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Editorial on the Research Topic 


Cellular immunotherapy: transforming cancer treatment


Cell-based cancer therapies first emerged in the 1950s with the pioneering work of Prof. Edward Donnall Thomas, who established bone marrow transplantation as a novel and groundbreaking therapeutic strategy for hematologic malignancies. Beyond achieving cures in patients who previously had minimal prospects for survival, this therapy, which remains a standard of care for leukemia and lymphoma, transformed oncology by introducing a paradigm shift: employing the body’s own immune cells to combat cancer (1). Building on this breakthrough, significant milestones have been achieved over the following decades with the development of therapies that harness the immune system to treat malignancies.

Currently, cell-based immunotherapies can be broadly classified into two main categories: those using native immune cells, which are typically isolated from the patient and subsequently expanded, activated and/or modified ex vivo before reinfusion, and those employing genetically engineered cells that express synthetic receptors to enhance target specificity. Within the first category, therapies employing dendritic cell (DC) vaccines, tumor-infiltrating lymphocytes (TILs), cytokine-induced killer (CIK) cells, and natural killer (NK) cells are under active evaluation across various clinical settings (2–4). The second category encompasses strategies based on engineered tumor-specific T cell receptors (TCR) and chimeric antigen receptors (CAR), the latter applied not only to T cells (CAR-T), but also to NK cells (CAR-NK) and macrophages (CAR-M) (5). Among these, only a subset of CAR-T cell therapies, along with one DC vaccine and one TIL-based therapy have so far received regulatory approval.

The groundbreaking discovery of DCs by Prof. Ralph Steinman and Prof. Zanvil Cohn in the 1970s laid the scientific foundation for the development of DC vaccines (6). Exploiting the antigen-presenting capabilities of these cells, DCs are loaded with tumor-specific antigens ex vivo and then administered to the patient to elicit a targeted anti-tumor immune response. After decades of research and early trials beginning in 1996, these efforts culminated in 2010 with the approval of the first DC vaccine (Sipuleucel-T) for metastatic castration-resistant prostate cancer, which remains the only therapy of its class approved to date (7, 8). This delayed clinical implementation reflects the challenges faced by DC vaccines, particularly those arising from their limited therapeutic efficacy within immunosuppressive tumor microenvironments (TME), underscoring the need for further research to develop strategies that overcome these limitations while also identifying novel tumor-specific antigens to effectively arm DCs. In this context, this Research Topic features the work from Lee et al., who explored the use of tumor lysate-pulsed DCs in combination with tyrosine kinase inhibitors (TKIs) for the treatment of post-transplant hepatocellular carcinoma recurrence. Their DC-based approach achieved disease control in the majority of patients and nearly doubled survival compared with TKIs alone, offering a promising therapeutic option for a highly vulnerable population with very limited treatment alternatives.

TIL-based therapies emerged from the landmark studies by Prof. Steven Rosenberg and colleagues in the 1980s, which demonstrated that TILs could be isolated directly from tumor tissue, expanded ex vivo, and reinfused into patients to achieve effective immune-mediated antitumor responses (9). Over the ensuing decades, this technology has been refined, culminating last year with the approval of the first TIL-based therapy (Lifileucel) for the treatment of unresectable and metastatic melanoma (8). To delve deeper into this topic, Kraja et al. provide in this Research Topic a comprehensive overview of TIL-based therapies, highlighting their potential as both biomarkers and therapeutic agents, as well as the factors influencing their antitumor efficacy, with particular emphasis on how preclinical models and emerging technologies can advance our understanding of TIL function and guide the development of more effective therapies.

CIK cells were first described in the early 1990s by Prof. Ingo Schmidt-Wolf and colleagues, who demonstrated in mouse models that cytokine stimulation of peripheral blood mononuclear cells (PBMCs) ex vivo generates a highly cytotoxic cell population able to mount strong antitumor responses in vivo. Further characterization revealed that this population is heterogeneous, comprising T cells, NK cells, and NKT cells, which exert tumor-killing activity independently of the major histocompatibility complex (MHC) (3). This approach forms the foundation of CIK-based therapies, which are currently under clinical investigation and have shown encouraging results in specific conditions. In this Research Topic, Yang et al. further investigate the therapeutic potential of CIK cells in preclinical gastric cancer murine models, evaluating the combination of this therapy with chemotherapy and immune checkpoint blockade. In this setting, the authors demonstrate that CIK cells actively home to the tumors and significantly inhibit their growth when paired with chemotherapy, with the addition of immune checkpoint blockade further enhancing this effect. These results illustrate how integrating CIK cell-based immunotherapy with complementary treatment strategies may improve therapeutic outcomes.

Beyond the therapies discuss so far, in recent years, the field has experienced a new revolution with the advent of CARs, which enable the genetic engineering of immune cells to specifically recognize and attack cancer cells, opening a powerful new frontier in immunotherapy. The pioneering work of Prof. Carl June led to the development of the first CAR-T cell therapy to receive approval in 2017 (Tisagenlecleucel), with five additional approvals granted in the following years that have transformed the treatment of B cell malignancies (10, 11). In this Research Topic, five review articles provide a comprehensive overview of the current state-of-the-art, each focusing on different aspects of CAR-T therapies and their application across various clinical settings. First, Tomai et al. trace the evolution of CAR-T cell therapies, showing how early challenges in activation and persistence led to the development of five successive CAR generations and highlighting strategies to improve both preclinical evaluation and clinical translation. Focusing specifically on hematologic malignancies, Liu et al. review recent advances in the application of CAR-T therapies to the treatment of acute myeloid leukemia, which have shown encouraging results in preclinical and early clinical studies, while Morgan et al. highlight the potential of CAR-T therapies as a promising approach for high-risk plasma cell dyscrasias, emphasizing the need to optimize target specificity. Finally, the reviews of Dong et al. and Khan et al. address a critical hurdle in the field: the challenges of applying CAR-T strategies to solid tumors. In these malignancies, CAR-T cells must navigate dense fibrotic stroma, abnormal vasculature, and the hypoxic and acidic conditions of the TME to reach their target cells, while their antitumor activity is often limited by local immunosuppressive signals and heterogeneous antigen expression that facilitate immune evasion (12). Moreover, adverse events such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are common in CAR-T-treated patients and, although not exclusive to solid tumors, further shift the risk-benefit balance of CAR-T therapies in these patients (13). These critical issues are thoroughly discussed by Dong et al., alongside with other safety concerns such as acute off-target toxicities in major organs and potential long-term effects, including cytokine-associated hematotoxicity and secondary malignancies. The authors further emphasize the need to reduce therapy-related risks through careful target antigen selection and/or combinatorial strategies, while also highlighting the importance of long-term monitoring to manage potential complications, with patient safety and quality of life as top priorities. Building on this concept, Khan et al. delve deeper into antigen selection strategies and the use of combinatorial antigen-sensing circuits that can shape the therapeutic success of CAR-T cells while reducing off-target effects. The authors also discuss innovative approaches to enhance tumor infiltration and maintain CAR-T cell function within the immunosuppressive TME, including cytokine-armored CARs, protease-regulated CARs, and CARs engineered with chemokine receptors. These two review articles are further complemented with the original research of Aniogo et al., who investigated the use of CAR-T cells targeting carcinoembryonic antigen (CEA) in a murine model of metastatic triple-negative breast cancer. The authors demonstrated that combining this therapy with image-guided radiation therapy (IGRT) enhanced CAR-T cell tumor infiltration and persistence, leading to a significant reduction in both lung metastases and primary tumor burden. This approach highlights a potential strategy to overcome some of the barriers that have limited the effectiveness of CAR-T cells in solid tumors.

In addition to the challenges already discussed, the wider application of CAR-T therapies is further constrained by the technical complexity of their production, as these cells are typically generated ad hoc from patient-derived T cells, rendering the process logistically demanding, time-consuming, and costly (14). These limitations have led to growing interest in the development of safer, more accessible, and scalable alternatives to CAR-T cells, particularly those that can be manufactured as off-the-shelf products. In this context, recent advances have extended CAR engineering to other immune cell types, such as NK cells and macrophages. CAR-NK therapies combine targeted antigen recognition with the innate cytotoxicity and favorable safety profile of NK cells, whereas CAR-M therapies exploit the phagocytic and immunomodulatory capacities of macrophages, offering an alternative to direct cytotoxic approaches through a dual mechanism that couples targeted tumor cell clearance with modulation of the TME. Moreover, unlike CAR-T cells, CAR-NK and CAR-M therapies can be derived from allogeneic sources, allowing off-the-shelf production that greatly reduces manufacturing time and cost while improving scalability and accessibility. Although these strategies remain under clinical evaluation and have not yet received regulatory approval for any indication, they represent promising alternatives to CAR-T cell therapies. These and other aspects of CAR-NK and CAR-M therapies are discussed in this Research Topic by dos Reis et al. and Morva et al., respectively. dos Reis et al. highlight the key role of tumor infiltration dynamics and adaptation to the TME in shaping CAR-NK cell efficacy, emphasizing the value of multi-omics approaches in guiding future efforts to improve therapeutic performance. Complementing this perspective, Morva et al. focus on the application of CAR-M therapies for the treatment of solid tumors, leveraging the natural tissue-infiltrating ability of macrophages, and discuss preclinical and early clinical findings alongside the challenges that must be overcome for broader implementation.

Beyond CARs, TCR engineering has emerged as an additional strategy to redirect T cell activity toward tumor cells. While initially overshadowed by the success of CAR-T cells in hematologic malignancies, engineered TCR T cell (TCR-T) therapies are gaining renewed interest, fueled by evidence suggesting they may be better suited to target solid tumors (5, 15). While both CAR-T and TCR-T cells are designed to target tumor-associated antigens, the way they recognize these antigens differs, with CAR-T cells binding them in an MHC-independent manner, whereas TCR-T cells recognizing them only when presented by the MHC (5, 15). This difference carries significant implications for their respective mechanisms of action and therapeutic potential. CAR-T cells target only antigens that the tumor cells express on their surface, often displaying thousands of copies that enable efficient recognition and killing. However, in solid tumors, this high antigen density can limit efficacy, as CAR-T cells tend to remain attached at the tumor periphery rather than fully infiltrating the tissue (5, 15). In contrast, TCR-T cells can target virtually any intracellular or extracellular protein as long as it is presented by the MHC, greatly expanding the pool of potential therapeutic targets. This enables the design of TCRs specific to tumor-restricted antigens, such as neoantigens derived from somatic mutations. Moreover, since MHC-presented antigens are displayed at far lower copy numbers than membrane-expressed antigens, TCR-T cells are less prone to remain confined to the tumor surface, potentially enabling deeper tumor penetration (5, 15). Aiming to provide new tools for TCR engineering, Lennerz et al. present in this Research Topic an innovative antigen-agnostic approach to identify tumor-specific TCRs in solid cancers. The authors compared the TCR repertoires of TILs and adjacent tissue-resident lymphocytes from non-small cell lung cancer (NSCLC) patients, enabling the identification of potential tumor-specific TCR candidates. Four of these TCRs were then engineered into TCR-T cells and tested against both patient-derived tumor cells and NSCLC cells lines, demonstrating effective targeting. Further characterization revealed that three of these TCR candidates specifically recognized a peptide containing the recurrent oncogenic Q61H substitution in KRAS, providing evidence of the potential of this method to detect TCRs recognizing tumor-specific neoantigens.

To complete this journey through the evolving landscape of the field, this Research Topic features the contribution of Looi et al., who provide a comprehensive review of the approaches discussed here, with a particular focus on their current and potential application in the clinical management of nasopharyngeal cancer.

Together, the articles outlined here highlight both the promise and the challenges of implementing cell-based immunotherapies in clinical settings. By enabling the customization of these treatments and their combination with other therapeutic strategies, cell-based immunotherapies offer the potential for highly targeted and versatile cancer management. However, significant barriers to their effective application remain and must be addressed by future research to broaden patient access. To this end, preclinical studies employing advanced in vitro and in vivo experimental models, combined with the integration of cutting-edge technologies such as novel analytical tools and multi-omics approaches, will be crucial. The development of next-generation cell-based immunotherapies will rely on research conducted using these innovative platforms, which will be instrumental in accelerating the translation of discoveries from bench to bedside.

This Research Topic has been spearheaded by the IMMUNO-model COST Action (CA21135), a collaborative scientific network devoted to fostering innovation in preclinical immuno-oncology models with the ultimate goal of advancing in the treatment of cancer patients by improving their outcomes and quality of life. Within this initiative, IMMUNO-model members have contributed four comprehensive reviews led by Kraja et al., Tomai et al., dos Reis et al. and Morva et al.. IMMUNO-model currently brings together over 400 researchers in basic, preclinical, and clinical cancer immunotherapy across Europe and beyond, representing both academia and industry. Since its establishment in 2022, the network has driven the creation of the IMMUNO-model Knowledge Hub, a dedicated platform for collecting, sharing, and disseminating protocols relevant to immuno-oncology research. IMMUNO-model also actively fosters networking and training initiatives and offers mobility grants to support attendance at key conferences or short-term scientific missions. Now entering the final year of the project, IMMUNO-model continues to welcome participants from around the world to engage in its upcoming activities.




Author contributions

YM: Writing – original draft, Conceptualization, Writing – review & editing. LB: Conceptualization, Supervision, Writing – review & editing, Writing – original draft.





Funding

The author(s) declare financial support was received for the research and/or publication of this article. This article is based upon work from COST Action IMMUNO-model, CA21135, supported by COST (European Cooperation in Science and Technology). LB is supported by the Ramón y Cajal Program from the Spanish Ministry of Science, Innovation and Universities (RYC2020-029400-I).





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.





Generative AI statement

The author(s) declare that Generative AI was used in the creation of this manuscript. This manuscript was edited with assistance from ChatGPT (GPT-5), a generative AI language model developed by OpenAI (https://openai.com) . The AI was used iteratively to refine phrasing, improve grammar, and enhance clarity. All content was reviewed and approved by the authors. Due to the iterative and incremental nature of the edits, individual prompts and responses are not listed, but the use of the model has been fully supervised by the authors.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.





References

	 Tang L, Huang Z, Mei H, Hu Y. Immunotherapy in hematologic Malignancies: achievements, challenges and future prospects. Signal Transduct Target Ther. (2023) 8:306. doi: 10.1038/s41392-023-01521-5, PMID: 37591844


	 Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun. (2019) 10:5408. doi: 10.1038/s41467-019-13368-y, PMID: 31776331


	 Zhang Y, Schmidt-Wolf IGH. Ten-year update of the international registry on cytokine-induced killer cells in cancer immunotherapy. J Cell Physiol. (2020) 235:9291–303. doi: 10.1002/jcp.29827, PMID: 32484595


	 Page A, Chuvin N, Valladeau-Guilemond J, Depil S. Development of nk cell-based cancer immunotherapies through receptor engineering. Cell Mol Immunol. (2024) 21:315–31. doi: 10.1038/s41423-024-01145-x, PMID: 38443448


	 Shafer P, Kelly LM, Hoyos V. Cancer therapy with tcr-engineered T cells: current strategies, challenges, and prospects. Front Immunol. (2022) 13:835762. doi: 10.3389/fimmu.2022.835762, PMID: 35309357


	 Katsnelson A. Kicking off adaptive immunity: the discovery of dendritic cells. J Exp Med. (2006) 203:1622. doi: 10.1084/jem.2037fta, PMID: 16886239


	 Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med. (1996) 2:52–8. doi: 10.1038/nm0196-52, PMID: 8564842


	 Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. (2010) 363:411–22. doi: 10.1056/NEJMoa1001294, PMID: 20818862


	 Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. (1988) 319:1676–80. doi: 10.1056/nejm198812223192527, PMID: 3264384


	 Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. (2011) 365:725–33. doi: 10.1056/NEJMoa1103849, PMID: 21830940


	 Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. (2014) 371:1507–17. doi: 10.1056/NEJMoa1407222, PMID: 25317870


	 Kankeu Fonkoua LA, Sirpilla O, Sakemura R, Siegler EL, Kenderian SS. Car T cell therapy and the tumor microenvironment: current challenges and opportunities. Mol Ther Oncolytics. (2022) 25:69–77. doi: 10.1016/j.omto.2022.03.009, PMID: 35434273


	 Morris EC, Neelapu SS, Giavridis T, Sadelain M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol. (2022) 22:85–96. doi: 10.1038/s41577-021-00547-6, PMID: 34002066


	 Cliff ERS, Kelkar AH, Russler-Germain DA, Tessema FA, Raymakers AJN, Feldman WB, et al. High cost of chimeric antigen receptor T-cells: challenges and solutions. Am Soc Clin Oncol Educ Book. (2023) 43:e397912. doi: 10.1200/edbk_397912, PMID: 37433102


	 Garber K. Driving T-cell immunotherapy to solid tumors. Nat Biotechnol. (2018) 36:215–9. doi: 10.1038/nbt.4090, PMID: 29509745







Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2025 Moualla and Belver. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




REVIEW

published: 10 October 2024

doi: 10.3389/fimmu.2024.1484535

[image: image2]


Revolutionizing the treatment for nasopharyngeal cancer: the impact, challenges and strategies of stem cell and genetically engineered cell therapies


Chin-King Looi 1, Ee-Mun Loo 2,3, Heng-Chee Lim 2, Yik-Ling Chew 2, Kok-Yong Chin 4, Shiau-Chuen Cheah 5, Bey Hing Goh 6,7,8 and Chun-Wai Mai 2*


1 School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia, 2 Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia, 3 Advanced Genomics Laboratory, AGTC Genomics, Kuala Lumpur, Malaysia, 4 Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia, 5 Faculty of Medicine and Health Sciences, UCSI University, Port Dickson, Negeri Sembilan, Malaysia, 6 Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia, 7 Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia, 8 College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China




Edited by: 

Laura Belver, Josep Carreras Leukaemia Research Institute (IJC), Spain

Reviewed by: 

Zhenyu Dai, Stanford University, United States

Yingchun He, Hunan University of Chinese Medicine, China

*Correspondence: 

Chun-Wai Mai
 maicw@ucsiuniversity.edu.my
 mai.chunwai@gmail.com


Received: 22 August 2024

Accepted: 24 September 2024

Published: 10 October 2024

Citation:
Looi C-K, Loo E-M, Lim H-C, Chew Y-L, Chin K-Y, Cheah S-C, Goh BH and Mai C-W (2024) Revolutionizing the treatment for nasopharyngeal cancer: the impact, challenges and strategies of stem cell and genetically engineered cell therapies. Front. Immunol. 15:1484535. doi: 10.3389/fimmu.2024.1484535



Nasopharyngeal carcinoma (NPC) is a distinct malignancy of the nasopharynx and is consistently associated with the Epstein-Barr virus (EBV) infection. Its unique anatomical location and complex aetiology often result in advanced-stage disease at first diagnosis. While radiotherapy (RT) and chemotherapy have been the mainstays of treatment, they often fail to prevent tumour recurrence and metastasis, leading to high rates of treatment failure and mortality. Recent advancement in cell-based therapies, such as chimeric antigen receptor (CAR)-T cell therapy, have shown great promise in hematological malignancies and are now being investigated for NPC. However, challenges such as targeting specific tumour antigens, limited T cell persistence and proliferation, and managing treatment-related toxicities must be addressed. Extensive research is needed to enhance the effectiveness and safety of these therapies, paving the way for their integration into standard clinical practice for better management of NPC and a better quality of life for human health.
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1 Introduction

Nasopharyngeal carcinoma (NPC) is an undifferentiated form of squamous cell carcinoma (SCC) formed from the uncontrolled growth of cells in the epithelium layer of the nasopharynx. While globally rare, it is prevalent in Southern China, Southeast Asia, North Africa and the Middle East. Among the Cantonese population in Southern China, the incidence is approximately 25-50 cases per 100,000, compared to less than 1 per 100,000 in other parts of the world (1).. This low incidence contributes to limited research and fewer diagnostic advancements compared to other cancer types, making it challenging to effectively identify and diagnose NPC. In 2020, the International Agency for Research on Cancer (IARC) reported 133,354 cases and 80,008 deaths of NPC worldwide, with 62,444 (46.8%) cases in China, and 36,747 (27.6%) cases in the rest of Southeast Asia (2). These findings highlight persistent disparities in NPC incidence and mortality globally, underscoring the urgent need for improved diagnostic tools and treatment strategies to address the NPC burden in affected regions and countries. Notably, NPC incidence may vary based on gender, age, Epstein-Barr virus (EBV) infection, and risk factors such as smoking, alcohol consumption, occupational exposures and dietary consumption of Cantonese-style salted fish (1, 3).

The conventional treatment modalities for NPC include chemotherapy, radiotherapy (RT) (4), and immunotherapeutic strategies (5). While emerging evidence highlights that surgery or nasopharyngectomy is effective in the salvage of recurrent tumours or metastasis after primary RT or when other treatments have failed (6), it has a significant disadvantages in treatment of primary NPC. The anatomical location of the nasopharynx limits the visual field, making surgical access difficult. Moreover, surgery is risky due to the proximity to critical structures such as the internal carotid artery, spinal cord, and cranial nerves, which can cause serious consequences if accidentally injured. Additionally, patient’s quality of life (QOL) has been shown to deteriorate significantly with surgical treatment. Therefore, these limitations have made non-surgical treatments the primary options for NPC (7). While RT has been the primary treatment since 1965, with a high 5-year overall survival rate of up to 90% with RT alone for Stage I NPC patients, treatment with RT has been associated with severe acute and late toxicities (4). Delivering a high radiation dose to targets while protecting radiosensitive organs such as the brain stem, spinal cord, temporal lobes, middle and inner ears, and parotid glands, which are anatomically surrounded by the nasopharynx, is particularly challenging (8). Additionally, chemotherapy can increase susceptibility to infection due to immunosuppression and may cause systemic adverse effects like vertigo and hair loss. Chemotherapy resistance is also a significant issue that often leads to therapeutic failure (9). Despite recent advancements in immunotherapies, especially immune checkpoint blockade therapy, treatment responses vary significantly among patients, and high rates of relapse with poor prognosis and treatment unresponsiveness remain significant challenges in improving patient’s outcomes (10).

In recent years, cell-based therapies, particularly those involving genetically modified T cells with chimeric antigen receptors (CAR), have shown promise in treating hematologic malignancies (11) and are being evaluated for NPC (12, 13). NPC is an epithelial malignancy closely associated with EBV infection and is characterised by intense infiltration of immune cells. Despite the abundance of tumour-infiltrating lymphocytes (TILs), many of these cells are highly activated and exhausted, expressing exhaustion markers such as lymphocyte activation gene (LAG-3), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and programmed cell death 1(PD-1) (14), while high programmed death ligand 1 (PD-L1) expression on NPC cells promotes immune evasion (15). In addition, EBV expresses a series of latent viral genes, including latent membrane proteins (LMP1 and LMP2), Epstein–Barr nuclear antigen (EBNA1), BamH1 A fragment rightward reading frame 1 (BARF1), non-polyadenylated and non-protein coding small EBV RNAs (EBER1 and EBER2), BamHI A rightward transcripts (BARTs) and BART microRNAs (miR-BARTs) (16). These genes support the growth of infected cells and serve as attractive targets for immunotherapy and cell-based therapies, such as CAR-T. LMPs are highly immunogenic and activate nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) signalling pathways, leading to the expression of various downstream targets involved in chronic inflammatory responses. These include interleukins (IL-6, IL-10, TNF-α), chemokines (CCL4, CCL5, CXCL10), vascular endothelial growth factor (VEGF), and hypoxia-inducible factor (HIF)-1α, all of which are involved in immune evasion, cell growth and proliferation, invasion, metastasis, and epithelial-mesenchymal transition (EMT) (17). Targeting EBV-specific antigens with cell-based therapies may offer long-lasting effects and reduce the risk of recurrence, with fewer side effects compared to conventional treatments (18). Inspired by the success of adoptive EBV-targeted cytotoxic T lymphocyte (EBV-CTL) therapy in other EBV-associated diseases (19, 20), anti-EBV cell-based strategies are gaining attention as potential treatments to improve NPC prognosis (21–23).

In this review, we delve into the potential of cell-based therapies as the next frontier in the treatment of NPC. We critically discuss the general mechanism of action and breakthroughs in cellular therapies and provide examples of utilising engineered immune cells in targeting NPC. Additionally, we summarise findings from both completed and ongoing clinical trials related to adoptive cell therapies against NPC and other cancers. We also address the limitations associated with cellular therapies and suggest integrating these therapies with conventional treatments to improve safety and effectiveness, aiming to enhanced outcomes for advanced NPC patients.

Despite the promise of developing new agents that target essential cellular pathways in cancer progression, most advanced cancer patients have experienced relatively short-term benefits. Among the emerging biologic therapeutics, cell-based therapy, also known as cell therapy or cellular therapy, holds potential to treat many intractable human diseases, including cancer (24). The first practice of cell therapy was introduced in the late 1950s by E. Donnall Thomas, who pioneered the use of hematopoietic stem cell (HSC) transplantation for the treatment of leukemia (25). Since then, the field of cell therapy has continuously progressed, with ongoing investigations focused on clinical safety and efficacy. Notably, the Food and Drug Administration (FDA) has approved Provenge (sipuleucel-T; Dendreon), an autologous cellular immunotherapy for metastatic castration-resistant prostate cancer in 2010 (26). In 2017, the FDA approved two genetically modified autologous T cell immunotherapies, Kymriah (tisagenlecleucel) and Yescarta (axicabtagene ciloleucel), for acute lymphoblastic leukaemia (ALL) (27), and relapsed or refractory large B cell lymphoma (LBCL) (28), respectively. Additionally, BRG01, an engineered, allogeneic, EBV-targeting T cell therapy, has recently received both fast-track and orphan drug designation from the FDA for EBV-positive relapsed/metastatic NPC (29). As highlighted in the Cell Therapy Market Size, Share, & Trends Analysis Report, the global cell therapy market size valued at USD 4.77 billion in 2022, is expected to grow at a compound annual growth rate of 16.5% from 2023 to 2030. This underscores the increasing adoption and demand for cell therapy solutions worldwide, opening a new era of therapy for human diseases.

Cell therapy can be generally classified into two categories: (i) stem cell-based and (ii) non-stem cell-based. It typically involves the use of autologous or allogenic cells and may incorporate genetic engineering or manipulations in formulation to achieve therapeutic effect (24).




2 Stem cell-based therapies

When comes to cell therapy, it is logical to explore the therapeutic potential of stem cells. Stem cells can be found in both embryos and adult cells. They are undifferentiated cells capable of self-renewal and differentiation into specialised cell types based on their developmental potency. This potency gradually reduced from totipotency (in the zygote and early embryonic cells) to pluripotency (in embryonic stem cells, ESCs), multipotency (in hematopoietic stem cells, HSCs), and unipotency (in the dermatocytes) (30). In cancer treatment, stem cells used include adult stem cells (ASC), and pluripotent stem cells (PSC), Different stem cells exhibit varying capabilities in proliferation, migration, and differentiation, defining their suitability for antitumour therapy (31).



2.1 Adult stem cells

Adult stem cells (ASCs), also known as somatic or resident stem cells, are undifferentiated cells found in various tissues with limited self-renewal ability and differential potential (32). Examples of ASCs include HSCs, neural stem cells (NSCs), and mesenchymal stem cells (MSCs).

HSCs are predominantly found in bone marrow, peripheral blood (PB) and umbilical cord blood (UCB). They play a crucial role in regenerating blood cells and treating haematologic malignancies through HSC transplantation (HSCT), also known as bone marrow transplantation (33). This procedure, pioneered by E. Donnall Thomas in the late 1950s, involves infusing autologous or allogeneic stem cells to reconstruct a functional hematopoietic system (25). HSCT is now a standard treatment for various hematologic malignancies and have also been explored in solid tumours as immune cell progenitors, exhibiting synergistic effects with adoptive T cell immunotherapy and dendritic cell vaccines. Studies show that HSCs facilitate T cell trafficking, augment immunological rejection of invasive tumour cells, and can differentiate into immune-stimulating dendritic cells (DCs) within the TME (34). These findings highlight the multifaced role of HSCs not only as stem or progenitor cells for cell regeneration, but also as cells capable of synergistically enhancing the efficacy of immunotherapy against solid cancers. However, till today, there is limited evidence of HSCs in treating NPC patients. And thus, HSCs may have theoretical role against NPC, but no clinical study has confirmed its efficacy.

NSCs are self-renewable stem cells in the central nervous system, capable of differentiating into astrocytes, oligodendrocytes, and neural cells (35). Engineered NSCs have shown promise in treating brain cancers due to their ability to migrate to malignant brain masses (36). While the mechanism of NSC homing to tumour is not fully understood, hypoxia has been identified as a key factor. HIF-1α in the TME activates NSC chemoattractant production, such as cytokines, chemokines, and growth factors (37). This migratory behaviour positions NSCs as an effective tumour eradication therapy (38, 39). Similar to HSCs, currently no clinical study has confirmed NSC can eradicate NPC, and thus further study is warranted to investigate whether the NSC has its clinical value for NPC patients.

MSCs, derived from sources such as bone marrow, adipose tissues, PB, placenta, and umbilical cord, playing roles in tissue repair and regeneration due to its primary, non-specialised, non-haematopoietic, with rapid proliferation and differentiation potential. MSCs also exhibit immunomodulatory and anti-inflammatory properties, and are non-immunogenic, making them suitable for transplantation without immunosuppression. For example, bone marrow-derived MSCs inhibited CTL activation by downregulating natural killer group 2 member D protein (NKG2D) receptor expression and increasing the production of immunosuppressive factors (40). MSCs also promote Tregs differentiation to suppress allogeneic T cell response (41). MSCs also suppress tumour growth by modulating cell cycle signalling pathways and inducing apoptosis (42, 43). However, MSCs is a double edge sword in cancer therapy, in which MSCs can differentiate into cancer-associated fibroblasts (CAFs) in response to TGF-β released from tumour cells, leading to the promotion of tumour growth and progression (44, 45).

It is also worth noting that MSCs release exosomes that facilitate cell communication (46) and modulate disease progression (47, 48). In NPC, MSC-derived exosomes are associated with elevated expression of fibroblast growth factor (FGF)-19, enhancing tumour growth, migration, and metastasis through the activation of the FGF19-fibroblast growth factor receptor 4 (FGFR4)-dependent ERK signaling cascade and promotion of EMT (49). However, some reports suggest that these exosomes can inhibit tumour growth by reversing its therapy resistance. For instance, MSC-derived exosomes with overexpressed tumour suppressor microRNA-34c-5p (miR-34c) have shown potential therapeutic value in reversing radioresistance and inhibiting malignant behavior in NPC cells (50). Similarly, exosomes from engineered human MSCs with elevated expression of microRNA-125a-3p (miR-125a) demonstrated the ability to suppress migration and vasculogenic mimicry formation in NPC cells, suggesting potential applications in anti-angiogenic therapy for cancer treatment (51).

In summary, HSC and NSC are currently still under investigation whether its potential can be translated to bedside for NPC patients. The dual role of MSCs as tumours promoter or suppressor (Table 1), may depend on tumour types, treatment doses, and duration. The role of MSCs as antitumour agents or therapeutic targets for NPC remains debated, and current evidence is insufficient to support the clinical application of MSC in NPC treatment. Further studies are needed to understand the complex interactions between MSCs and cancer, particularly the role of MSC-derived exosomes in carcinogenesis and therapy resistance.

Table 1 | Dual roles of MSC-derived exosomes in human cancers.
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2.2 Pluripotent stem cells

Pluripotent stem cells (PSCs) can proliferate infinitely and differentiate into various specialised cell types. ESCs and induced pluripotent stem cells (iPSCs) are two types of human PSCs with significant implications for regenerative medicine and clinical research (55). The first human ESC line was derived by James Thomson and his team from in vitro-fertilised human embryos in 1998 (56). Due to ethical issues with ESCs (57), Takahashi and Yamanaka generated iPSCs from mouse embryonic and adult human somatic cells in 2006 and 2007, respectively (58, 59). These cells exhibit similar properties to ECSs, including pluripotent status, morphology, growth properties, surface antigen, gene expression, and telomerase activity, highlighting their potential in medical applications.

iPSCs can be genetically engineered into T cells or NK cells, which can effectively target and eradicate tumour cells. The generation of iPSC-derived T cells involves the induction of mesoderm specification and hematopoietic commitment, followed by T cell differentiation. Briefly, iPSCs collected from healthy donors are co-cultured on murine cell lines (C3H/10T1/2 or OP9) with morphogens, such as bone morphogenetic protein 4 (BMP4), VEGF, and fibroblast growth factor (FGF) to induce mesoderm specification. These cells are then co-cultured in a cocktail of cytokines to generate CD34+ HSCs (60). The CD34+ hematopoietic progenitors are transferred onto OP9 overexpressing the Notch ligand Delta-like 1 (DLL1) or DLL4 (OP9-DLL1 and OP9-DLL4) feeder cells to induce T cell development in the presence of cytokines (60). Similarly, iPSC-derived NK cells are generated from CD34+ hematopoietic progenitor cells using feeder-dependent culture method (61). However, murine-derived stroma feeder cells pose risks of cross-species contamination and complicate quality control due to the reliance on different serum and basal media. Therefore, feeder-free methods, such as using immobilized-DLL4 protein or DLL4-µbeads with lymphopoietic cytokines, have successfully induced T cell differentiation without feeder cells (62, 63). Researchers have also generated rejuvenated iPSC-derived antigen-specific T cells that retain the same antigen specificity and cytotoxicity as the original T cells, with higher proliferative capacity and reduced exhaustion markers (64, 65). iPSC-derived human papilloma virus (HPV)-specific CTLs have demonstrated more potent and sustained cytotoxic activity against cancer cells compared to original peripheral blood CTLs (66). Likewise, iPSC-derived EBV-specific CTLs persisted as central memory T cells in vivo for at least 6 months, continuously targeting EBV-associated lymphoma cells (67). Another study demonstrated that incorporating an inducible caspase-9 (iC9)-based suicide system into iPSC-derived EBV specific CTLs effectively suppressed tumour growth in vivo without compromising antigen-specific killing activity. This system also reduced cytokine release syndrome (CRS), enhancing the safety of T cell therapy (68).

NK cells derived from iPSCs exhibit greater cytotoxicity against a wide variety of cancers. By combining embryoid body (EB) formation with membrane-bound IL-21-expressing artificial APCs, functional NK cells can be efficiently produced from iPSCs. Briefly, iPSCs collected from healthy donors are grown under feeder-free conditions for a week, spun to aggregate into EBs, and cultured in feeder-free media with morphogens to induce the formation of HSC progenitors. The hematopoietic progenitor-containing EBs are then transferred to a feeder-free plate with NK differentiation media containing cytokines (namely IL-3, IL-15, IL-7, SCF, and Flt3L) to generate iPSC-derived NK cells (69). This method offers a safe and robust platform for producing clinically applicable immune cells. Preclinically, iPSC-derived NK cells have demonstrated effective cytotoxic responses against a variety of tumours in xenograft models. For example, iPSC-derived NK cells combined with anti-PD-1 therapy showed synergistic effects in ovarian cancer, delaying tumour progression and enhancing T cell recruitment and inflammatory cytokine production, transforming a “cold” TME into a “hot” TME (70). Although iPSC-NK cell therapy has shown promising results, it has yet to receive FDA approval. A recently completed phase I clinical trial (NCT03841110) involved evaluating the safety and efficacy of FT500, an off-the-shelf iPSC-NK cell product, in combination with one of three immune checkpoint inhibitors (nivolumab, pembrolizumab, or atezolizumab) in patients with solid tumours, including HNSCC (71). The administration of six doses of FT500 cells was well tolerated, with no serious adverse events, such as graft-versus-host disease (GvHD), cytokine release syndrome (CRS), neurotoxicity (NT), or host immune rejection. Nine out of 13 patients achieved stable disease, and one patient with Hodgkin lymphoma refractory to prior anti-PD-1 therapy experienced a 58% reduction in tumour size following the combination therapy (71). This trial provides clinical support for the high tolerability and potential antitumour efficacy of allogeneic iPSC-NK cell therapy.

Based on the evidence above, we advocate that iPSCs as a platform to provide an unlimited source of rejuvenated T cells or NK cells-based therapy. Such cell-based therapy holds promise as a safe and effective method for targeting NPC and other cancers. Further studies are warranted to investigate the possibility of introducing the CARs or transgenic T cell receptors (TCRs) into the iPSC-derived immune cells to further enhance their tumour-targeting capabilities while suicide gene-based safeguard system to ensure its safety.





3 Non-stem cell-based therapies

Non-stem cell-based therapies typically involve the use of somatic cells isolated from the human body and undergo processes such as propagation, expansion, and selection. These cells are subsequently administered to patients for various purposes, including curative, preventive, or diagnostic applications (72). Examples of non-stem cell-based therapies include chimeric antigen receptor (CAR)-T cells, engineered T cell receptor-T (TCR-T) cell therapy, tumour-infiltrating lymphocytes (TILs) therapy, NK cell therapy, CAR-NK cell therapy, aimed at enhancing their ability to recognise and eliminate malignant cells (72). Tables 2, 3 provide a summary of preclinical and clinical studies on cellular therapies for NPC.

Table 2 | Summary of preclinical studies on cellular therapies for NPC.
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Table 3 | Summary of clinical studies on cellular therapies for NPC.
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3.1 Chimeric antigen receptors T cell

Chimeric antigen receptor (CAR)-T cells are a type of immunotherapy involving the genetic modification of a patient’s T cells to express a synthetic receptor known as CAR, which includes an antigen-recognition domain (often an antibody single-chain variable fragment, scFv), and an intracellular signalling domain (typically CD3ζ) (89). These CAR-T cells can selectively target tumour associated antigen (TAA) via scFv recognition domain, leading to tumour cell elimination through the production of inflammatory cytokines and cytolytic effectors, achieving a long-term potent antitumour activity (89).

CAR-T cell development has evolved over generations with improved efficacy (Figure 1). The first-generation CARs were developed in 1993 by Zelig Eshhar and consisted of a single signalling domain derived from the CD3ζ chain of the TCR (90). However, due to a low cytotoxicity, proliferation rate, and relatively short persistence in patients, the second-generation CARs were developed with an additional co-stimulatory domain (4-1BB/CD137 or CD28), resulting in enhanced T cell proliferation, cytotoxicity, and sustained response (91, 92). Soon, the third-generation CARs are further improved by including additional co-stimulatory domain, such as OX40/CD134 or CD137 (93, 94). CD28 and CD134 support the long-term T cell expansion and survival (95, 96), while CD137 to enhances T cell proliferation, IL-2 production, expression of anti-apoptotic genes to inhibit activation-induced cell death (AICD), and memory T cell development (97). Due to the undesirable clinical outcome, fourth-generation CARs, also known as T cell redirected for universal cytokine-mediated killing (TRUCKs) incorporated a nuclear factor of the activated T-cell (NFAT)-responsive promoter into the base of the second-generation CARs. This promoter can induce cytokine secretion, such as IL-7, IL-12, IL-15, and IL-18 upon CAR cell activation, augmenting T cell activation and killing of cancerous cells (98, 99). In the fifth-generation CARs, a truncated IL-2 receptor β (IL-2Rβ)-chain domain is introduced to provide a binding site for the transcription factor STAT3 and to activate JAK-STAT signalling pathway, further improving T cell activation, proliferation, and persistence (100).
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Figure 1 | Chimeric antigen receptor (CAR) structure and its evolution from first to fifth generation. The first-generation of CARs consists of an antigen-binding domain, typically a single-chain variable fragment (scFv), followed by a hinge, a transmembrane domain, and an intracellular region, commonly the T cell receptor (TCR) signalling component CD3ζ. In the second and third CAR generations, one or two co-stimulatory domains are added, respectively, enhancing T cell activation and proliferation. Fourth-generation CARs, also known as T cell redirected for universal cytokine-mediated killing (TRUCKs), combine a second-generation CAR construct with additional functional elements, such as cytokine secretion modules. These modules enable CAR-engineered cells to secrete cytokines such as IL-12, which recruit immune cells to the tumour microenvironment (TME) upon antigen recognition, enhancing antitumour activity. The fifth-generation CAR-T cells, also referred to as the next generation, contain a truncated IL-2 receptor β (IL-2Rβ)-chain domain with a motif for binding transcription factors such as STAT3. This can lead to JAK/STAT activation and subsequent cytotoxic responses.

In recent years, CAR T-cell therapy has demonstrated remarkable success in treating relapsed or refractory haematological malignancies. As of January 2024, the FDA has approved six CAR-T cell products: Abecma and Carvykti for multiple myeloma, Breyanzi and Yescarta for large B-cell lymphoma, Kymriah for non-Hodgkin lymphomas, and Tecartus for B-cell acute lymphoblastic leukaemia. Four target CD19, while Abecma and Carvykti target B cell maturation antigen (BCMA) (11). Despite the success in haematological malignancies, CAR-T cell therapies have not received clinical approval for the treatment of solid tumours, including NPC, due to challenges such as, the lack of specific antigens, on-target off-tumour effects, and the complexity of the TME (11). Encouragingly, clinical trials are ongoing. A Phase 1 clinical trial (NCT02915445) targeting epithelial cell adhesion molecule (EpCAM) in solid tumours, including NPC, showed promising antitumour efficacy and an acceptable safety profile, with two patients showing a partial response and three experiencing more than 23 months of progression-free survival (PFS) (80). Engineered T cells targeting LMP1 in EBV-positive NPC cells have also demonstrated increased IFN-γ and IL-2 production, effectively killing LMP1-overexpressing NPC cells in vitro and reducing tumour growth in vivo (73, 74). The safety and efficacy of these CAR-T cells have been evaluated in a Phase I/II clinical trial (NCT02980315) for the treatment of EBV-associated NPC. Additionally, an ongoing early phase I study (NCT04657965) is assessing these engineered T cells in patients with LMP1-positive infectious diseases and haematological malignancies.

It is also worth noting that numerous challenges limit the therapeutic efficacy of CAR-T cells in both hematological malignancies and solid tumours (Figure 2). These challenges include antigen escape, poor tumour infiltration, low persistence, and the immunosuppressive nature of the TME (101). On-target off-tumour recognition is also a concern as many solid tumour antigens are expressed in normal tissues at varying levels. For example, HER2 CAR-T cells may induce severe side effects, including respiratory distress, cardiac arrest, and cytokine-release syndrome (CRS)-induced multi-organ failure. This is because HER2 is expressed not only by malignant cells, but also on normal epithelial cells in various tissues, making them off-targets by HER2 CAR-T cells (102). Therefore, selecting a suitable antigen for CAR-T cell therapy and enhancing the selective expression of CARs for targeting solid tumours are crucial considerations in current research. High rates of severe adverse events with fatal outcomes have prevented CAR-T cells from becoming first-line treatment. In a Phase I clinical trial (NCT01044069) for relapse B-cell ALL patients who received CD19-specific CAR T cells, potent antitumour efficacy of CAR-T cells was observed. However, 14 out of 53 patients experienced severe CRS, and tragically, one patient died from it (103). Neurotoxicity is also common after CAR-T cell therapy, with reports in 33 out of 53 patients, 22 of whom developed severe neurotoxicity within 28 days of CAR-T cell infusion (104). These challenges highlight the need for ongoing improvements and alternative approaches such as engineered TCR-T cells.
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Figure 2 | Chimeric antigen receptor (CAR)-T challenges in solid tumours. CAR-T cell immunotherapy has emerged as a promising therapeutic strategy for haematological malignancies, but its application in solid tumours presents several challenges and limitations that need to be addressed. Firstly, the heterogenous nature of tumour cells results in various genetic mutations and antigen expression patterns, making it difficult for CAR-T cells to effectively target all tumour cells. Additionally, tumour cells may undergo antigen escape, where they downregulate or lose the target antigen recognised by the CAR-T cells, allowing them to evade immune detection and destruction. Secondly, the clinical efficacy of CAR-T cell therapy is limited by the inability of CAR-T cells to traffic and infiltrate the tumour due to increased extracellular matrix (ECM) density and abnormal vasculature, ultimately hindering CAR-T cell diffusion and expansion. Thirdly, solid tumours often harbour a complex and highly immunosuppressive microenvironment, which can compromise the effectiveness of CAR-T cell therapy by dampening the immune response and promoting tumour growth. Moreover, higher surface expression of immune checkpoint molecules such as programmed death 1 (PD-1) on CAR-T cells can induce an exhausted phenotype, characterised by reduced cytokine production, proliferation, and cytotoxicity, limiting their capacity to control tumour growth. Lastly, CAR-T cells targeting tumour cells can induce the release of cytokines such as interferon (IFN)-γ and tumour necrosis factor (TNF)-α, activating other immune cells including dendritic cells (DCs), natural killer (NK) cells, monocytes, macrophages, and T cells. These cells further release pro-inflammatory cytokines, triggering a cascade reaction and ultimately contributing to the onset of cytokine release syndrome (CRS), a potentially severe and systemic inflammatory response.




3.2 Engineered T cell receptor-T cell therapy

The TCR is a crucial component on the T cell surface for recognising antigens on infected or tumour cells. It consists of two antigen-binding peptide chains and three CD3 subunits (ζζ homodimers and δϵ and γϵ heterodimers), forming an octamer complex. Most T cells have αβ TCRs, while a smaller subset has γδ TCRs. The TCR chains comprises an extracellular region for antigen recognition, a transmembrane region, and a shorter cytoplasmic tail linked to the CD3 complex for signal transduction (105). However, due to their lack of co-stimulatory functions, TCRs often require additional co-stimulatory signals for effective T cell activation.

Similar to CAR-T cell therapy, TCR-T cell therapy involves genetically engineering T cells with TCR genes to specifically target tumour-specific antigens (TSAs) or TAAs. Unlike CAR-T cells, which recognise antigens directly in an MHC-independent manner, TCR-T cells use naturally occurring TCRs that recognise peptides presented by MHC molecules on the cell surface (106). This involves the proteasomal degradation of cellular proteins, transport into the endoplasmic reticulum (ER), and complex formation with MHC molecules. The peptide-MHC complexes are then presented on the cell surface for T cell surveillance (107). It has been reported that TCR-T cells exhibit nearly 100- to 1000-fold greater sensitivity in recognising peptide-HLA complexes compared to CAR-T cells, enhancing immune recognition and the tumour elimination (108, 109). This high specificity leads to more selective and regulated T cell activation, reducing the risk of excessive activation and cytokine production, thus resulting in milder treatment-related toxicity compared to CAR-T cell therapy (110, 111). Therefore, TCR-T cells offer an enhanced therapeutic strategy for targeting a broader range of malignancies compared to CAR-T cell therapy.

Over the past decade, therapies involving the EBV-specific T cell infusion have shown remarkable clinical responses in treating post-transplant lymphoproliferative disease (PTLD), a life-threatening complication following organ transplantation (112). Subsequent studies have explored the use of TCRs specific to EBV viral antigens, such as EBNAs and LMPs, in treating EBV-associated malignancies, including NPC. For example, retroviral transduction of engineered EBV antigen-specific TCRs into primary human T cells have demonstrated increased IFN-γ production and efficient lysis of tumour cells (113). Cho and co-workers developed a TCR specific to LMP1 from HLA-A*0201 transgenic mice immunised with the minimal epitope LMP1166 (TLLVDLLWL). Infusion of these engineered T cells into immunocompromised mice revealed specific activation by low peptide concentrations and efficient recognition of LMP1-expressing tumour cells, demonstrating high avidity for antigen recognition in EBV-associated malignancies (23). Promising outcomes were also observed with LMP2-specific TCR, where transduced CTLs increased IFN-γ production and specific lysis of target cells. Infusion of these CTLs significantly attenuated the growth of LMP2-expressing tumours in vivo, improving survival rates in tumour-bearing mice (75). Additionally, transgenic T cells expressing LMP2-specific TCRs showed high avidity antigen-specific functions, including proliferation, cytotoxicity, and cytokine release (IFN-γ, TNF-α, and IL-2) against EBV-positive NPC cells. These engineered T cells effectively suppressed LMP2-positive tumour growth in an immunocompromised mouse model and specifically recognised and targeted LMP2-expressing NPC cells in advanced NPC patients (76). Taken together, these findings highlight the potential of TCR-T cell therapies in redirecting T cells to recognise EBV antigens, demonstrating efficacy in combating EBV-associated malignancies such as NPC.

At present, TCR-T cell therapies have not received FDA approval for clinical application in solid tumours other than melanoma. However, extensive efforts are ongoing to evaluate their safety and efficacy in other cancers, including NPC. TCR-T cells have also been developed to target cancer-associated viral antigens, such as EBV, HPV, and hepatitis B virus (HBV), and are being tested in multiple clinical trials. In a phase I/II clinical trial (NCT02280811) with HPV16-E6-specific TCR-T cells, two of 12 chemotherapy-refractory, metastatic HPV16-positive cancer patients experienced objective tumour responses without off-target toxicities or dose-limiting toxicities (114). In another phase I clinical trial (NCT03899415), HBV-targeted TCR T cells for HBV-related advanced HCC post-hepatectomy or radiofrequency ablation showed promising results. Among the eight patients, one achieved a partial response lasting 27.7 months, with only mild adverse events reported. Additionally, circulating HBV antigens and HBV DNA loads were reduced in all patients after TCR-T cell infusions, indicating effective targeting (115). For NPC, multiple clinical trials are focusing on TCR-T cells targeting EBV viral antigen such as LMP1 and LMP2. An ongoing phase I/II study (NCT05587543) is investigating LMP2-specific IL-12-secreting TCR-T cells in EBV-positive metastatic/refractory NPC patients. Another phase I trial (NCT03925896) is evaluating the safety and efficacy of LMP2-specific TCR T cells for HLA-A2, HLA-A11, and HLA-A24 recurrent and metastatic NPC patients. Additionally, a phase II study (NCT03648697) is assessing the safety and tolerability of LMP1, LMP2 and EBNA1-specific TCRs (YT-E001) in HLA-A02:01-/24:02-/11:01-positive recurrent or metastatic NPC patients. These high affinity TCRs targeting specific EBV antigens were screened from healthy donors and transduced into autologous T cells via lentiviral vectors.

Despite their promise, TCR-T cell therapies face challenges, including antigen selection, tumour heterogeneity, T cell exhaustion, and safety concerns. Ideal target antigen should be selectively and homogeneously expressed in tumours and presented via MHC class I to minimise off-target effects and treatment-related toxicity. However, solid tumours often exhibit antigenic variability, increasing the risk of antigen escape and the emergence of TCR-T cell-resistant tumours (116, 117). The immunosuppressive TME further impedes TCR-T cell infiltration and their efficacy in eliminating tumour cells (118). Additionally, prolonged TCR stimulation can induce T cell exhaustion, characterised by upregulated immune checkpoint proteins, such as PD-1, CTLA-4, T cell immunoglobulin and mucin domain-containing protein (TIM)-3, and LAG-3 (119). Tumours can also evade TCR-T cell recognition through mechanisms, such as downregulation of loss of MHC class I molecules through genetic alterations or epigenetic silencing (120). For example, non-responsive patients in a phase I/II clinical trial (NCT02858310) targeting HPV-16 E7 antigen showed tumour resistance due to defects in antigen presentation and interferon response pathways (121). Therefore, developing screening assays to identify genomic alterations associated with treatment resistance is important in order to improve TCR-T cell therapy efficacy.




3.3 Tumour-infiltrating lymphocytes therapy

Tumour-infiltrating lymphocytes (TILs) represent a subset of intratumour lymphocytes, and their adoption for treating advanced solid tumours has shown promising clinical outcomes. TIL therapy involves isolating these cells from the tumour, cultivating them in vitro, and reinfusing them into the patient with a high dose of IL-2 after lymphodepletion to enhance T cell survival and target tumour cells (122, 123). The efficacy of TIL therapy was first established by Steven Rosenberg in 1988 (124), and has now shown encouraging outcomes in NPC.

EBV antigens in NPC have led to the exploration of EBV-specific T cells as an alternative treatment. Studies showed that TILs isolated from NPC patients consists of a high frequency of CD4+ T cells that produce IFN-γ in response to EBNA1, aiding tumour regression (125). A number of clinical studies have delved into assessing the effectiveness of EBV-specific T cells in patients with NPC. These investigations have revealed promising trends, notably in the alteration of EBV DNA copy numbers and the augmentation of CTL levels, indicating a potential therapeutic benefit of EBV-specific T cell therapy in NPC patients. For instance, a phase I clinical study targeting EBV-positive NPC resistant to RT and chemotherapy with EBV-specific CTLs showed acceptable safety and modest objective responses. Among the 10 participants, two displayed partial responses and four maintained stable disease states (81). Building on this success, a subsequent phase II study in 23 recurrent or refractory NPC patients showed well-tolerated autologous EBV-CTL infusion, with 1-year and 2-year PFS rates of 65% and 52%, and overall survival rates of 87% and 70%, respectively (82). Furthermore, in a phase III clinical trial (NCT02578641), when EBV-CTLs were used to treat NPC patients after completing a first course of chemotherapy, the response rate increased to 71.4%, including three complete responses and 22 partial responses (83). A phase I study (NCT01462903) evaluating the safety and antitumour activity of TILs following CCRT in locoregionally advanced NPC (LANPC) patients showed promising results, including sustained antitumour activity, extended disease-free survival (> 12 months in 18 out of 20 patients), and enhanced EBV antigen-specific T cell responses (84). However, a completed phase II study (NCT00834093) evaluating EBV-specific CTLs in patients with recurrent, metastatic NPC demonstrated a poor overall response rate (ORR) and a median progression-free survival (PFS) of only 2.2 months. Of the 28 patients enrolled, 21 were treated, only one patient achieved a complete response, two experienced stable disease, and the remaining patients had disease progression. Interestingly, two patients who had previously failed the same chemotherapy regimen showed a renewed and robust response to chemotherapy after receiving EBV-CTL immunotherapy (85). These findings suggest that the efficacy of EBV-CTL immunotherapy may be enhanced when used in combination with other conventional therapies. Combination therapies, such as EBV-specific CTL with PD-1 blockade, have shown potential, as evidenced by a complete response with no evidence of disease relapse for 22 months in a metastatic EBV-positive NPC patient, suggesting potential for synergistic combination therapies (86). An ongoing phase I clinical trial (NCT02065362) takes a step further by examining the antitumour activity of TGF-β resistant, EBV-specific CTLs in patients with EBV-positive NPC. These genetically modified T cells incorporate a dominant negative receptor (DNR), conferring resistance to TGF-β and augmenting their efficacy in eliminating tumour cells. The ongoing or completed clinical approaches utilising EBV-specific TILs for treating NPC are summarised in Table 4.

Table 4 | Clinical trials of EBV-specific TIL therapy in NPC. .
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Despite promising outcomes, TIL-based therapy encounters significant challenges. Initial steps involve invasive surgical resection for TIL isolation can be distressing and poses risks to patients (126). The heterogeneity of TILs in terms of antigen specificity and differentiation stages may affects their effectiveness against tumours, impacting the overall success of the therapy (127). Challenges in TIL expansion and preparation include the need for specialised facilities and technical expertise for TIL culture and expansion (128), and patient factors such as age and overall health may influence the success of ex vivo expansion (129). Furthermore, the lengthy process of isolation, expansion, and reintroduction into the patients’ body is around 3 weeks to 3 months, considered a prolonged duration that inevitably generates delays for patient intervention (130). Ongoing research aims to optimise expansion protocols and shorten production times, while exploring combination therapies involving TILs and conventional treatments that hold potential for synergistic efficacy in cancer therapy.




3.4 Natural killer cell therapy

Natural killer (NK) cells offer a promising alternative for cellular immunotherapy beyond T cells. As a key component of the innate immune system, NK cells play a vital role in cancer immune surveillance, eradicating tumour cells in an antigen-independent manner without requiring HLA matching (131). Their cytotoxic effects involve releasing perforin and granzymes, and activating killer activating receptors (KARs), leading to apoptosis via the expression of death ligands, such as TNF-α, FasL, and TRAIL. NK cells also modulate immunity by producing cytokines and chemokines, including IFN-γ, IL-10, CCL3, CCL4, and CCL5 (132). Several studies have confirmed the close relationship between NK cells and cancer development, with higher NK cell activity correlating with reducing susceptibility to oncogenic virus infection and improved survival (133, 134).

Adoptive transfer of autologous NK cells for cancer treatment is feasible due to easy sourcing and low risk of GVHD, but its limited tumour regression restricts clinical application (135). Researchers now focus on allogeneic NK cells, which offer advantages such as MHC-unrestricted immune recognition and lower GVHD incidence compared to CAR-T cell therapy. These cells, derived from PB, UCB, hESCs, iPSCs, or NK-92 cell lines, provide versatility for large-scale manufacturing and cryopreservation, allowing off-the-shelf availability (131). Among these, PB is the most accessible source but has limitations such as low cell counts (136), reduced proliferation and short lifespan (137), decreased cytotoxicity after cryopreservation (138), donor variability (139), and heterogenous NK cell populations, may potentially lead to variable NK cell function (140).

In contrast, UCB-derived NK cells offer several advantages over PB, including easier collection and long-term cryopreservation (141), better proliferation (142), enhanced bone marrow homing ability (143), and lower GVHD incidence (144). However, they have higher CD161 expression, limiting maturity and response to foreign antigens (143). The lower expression of adhesion molecules such as intercellular adhesion molecule (ICAM)-1 also limit their capacity to form conjugates with target cells (142, 145). They also exhibit higher expression of inhibitory molecules such as NKG2A/CD94, lower expression of CD16 (receptor that facilitates ADCC), CD57 (NK cell maturation marker), and KIR2DL4 (activating receptor), and reduced production of perforin, granzyme B, IFN-γ, and cell surface FasL and TRAIL, reducing cytotoxicity against tumour cells (146). However, cytokines such as IL-2, IL-12, IL-15, and IL-18 can restore UCB-NK cell cytotoxicity (147), and monoclonal antibodies such as monalizumab can enhance NK cell activity by inhibit the inhibitory function of NKG2A (148).

As discussed earlier, hESCs/iPSCs can differentiate into NK cells, offering an alternative source for allogeneic NK cells by providing homogenous cell populations that can be grown indefinitely. Their potential for genetic engineering with CARs makes them a promising strategy to generate standardised, off-the-shelf NK cells with enhanced expansion, in vivo persistence, and improved antitumour activity (149, 150). Immortalised NK cell lines such as NK-92, which can be expanded ex vivo, are also promising (151, 152). NK-92 shows high antitumour activity and are the only cell line approved for CAR-NK-92 clinical trials (153). It was established in 1992 from a non-Hodgkin lymphoma patient, showing characteristics of early NK cells with the expression of CD56, CD2, and CD7, but lack CD3 (154). The continuous growth of NK-92 is IL-2 dependent, and despite lacking CD16, they exhibit significant cytotoxicity due to the expression of activating receptors, including NKp30, NKp46, NKG2D, and CD28, with almost complete loss of inhibitory killer cell immunoglobulin-like receptors (KIRs) on the surface, except for KIR2DL4. NK-92 cells also express high levels of cytotoxic effector molecules, such as perforin, granzyme B, FasL, TRAIL, and TNF-α, consistently inducing high cytotoxic activity against tumour cells (155). In order to minimise the risk of developing lymphoma in recipients due to the origin of NK-92 cells, they require irradiation before infusion to prevent continuous growth while maintaining their cytotoxicity (156). Multiple phase I trials (NCT00990717, NCT00900809) have evaluated the safety and efficacy of irradiated NK-92 cells, showing favourable clinical outcomes, further reinforcing the potential of their therapeutic application (157, 158). However, irradiation may limit their expansion capacity, potentially diminishing overall antitumour efficacy (159).

There is growing research on NK cell-based therapy for NPC. LMP2 antigens are potential targets for NK cells, with targeted clearance of LMP2-containing cells showing robust antitumour effects and minimal toxicity to normal cells. During EBV infection, LMP2A induces F3 expression via the PI3K/Akt signalling pathway, negatively affecting NK cell activation (77). F3 promotes platelet aggregation, potentially aiding cancer metastasis and evading NK cell surveillance by downregulating NK2GD ligands and suppressing IFN-γ release (160). Additionally, platelet-derived TGF-β further enhances tumour metastasis by inhibiting the expression of CD226 and CD96 on NK cell surface, protecting tumour cells from being recognised by NK cells (161). Inhibition of F3 with the administration of NK-92MI (independent of exogenous IL-2) or UCB-derived NK cells has been shown to restore NK cell antitumour function in an NPC xenograft mouse model (77). UCB-derived NK cells also suppressed brain metastasis in a recurrent NPC patient post chemoradiotherapy, showing significant reduction over two years, with sustained efficacy (87). Combining RT with PD-1 inhibition synergistically increases NK cell-mediated killing of NPC cells in vitro and in vivo (78). Additionally, LMP1 induced B7-H3 expression via PI3K/AKT/mTOR pathway activation, leading to a reduction of NK cell cytotoxicity. Deleting B7-H3 in tumour cells and using anti-PD-L1 treatment restored NK cell function and enhanced cytotoxicity against NPC cells in xenograft models, suggesting the potential when combined with NK cell-based immunotherapy and immune checkpoint blockade against EBV-associated NPC (79). In a recent Phase I/II study (NCT02507154), Lim and co-workers assessed the safety and efficacy of combining cetuximab (anti-EGFR) with autologous expanded NK cells in EGFR-positive, recurrent and/or metastatic NPC patients who had failed at least two prior lines of chemotherapy. The treatment was well tolerated, with three out of seven patients achieved stable disease after the first NK cell infusion and experiencing a relatively long time to disease progression, lasting up to 19 months with two NK cell infusions (88).




3.5 CAR-NK cell therapy

NK-92 cells, known for their long-term cryopreservation capability and uniform population, are increasingly integrated with cancer-targeting CARs (CAR-NK-92). The first-generation CAR-NK cells feature a single signalling domain (CD3ζ), which is insufficient for potent killing. In contrast, the second- and third-generation CAR-NK cells incorporate additional co-stimulatory molecular motifs, such as CD28 or CD137 (4-1BB) for improved efficacy (162). For instance, anti-CD-19/CD22 bispecific CAR-NK-92 cells incorporating a CD3ζ/CD137 signalling domain exhibited increased cytotoxicity against B cell lymphoma cells compared to anti-CD19 CAR-NK-92 cells alone (163). Third-generation CAR-NK-92 cells targeting HER1 in HNSCC demonstrated enhanced antitumour immune responses characterised by increased INF-γ secretion and CD107a expression, a degranulation marker. Despite their enhanced killing activity, challenges such as PD-L1 upregulation and expansion of CD44v6-positive (putative CSC marker) on surviving HNSCC cells have been reported (164). This suggests that relying solely on CARs targeting a single TAA may not be effective as monotherapy, potentially leading to tumour relapse and treatment resistance. Therefore, combination therapy approaches are necessary to enhance CAR-NK cell efficacy. For instance, second-generation CAR-NK-92 cells co-expressing anti-HER2 and soluble PD-1 significantly increased NK cell and T cell infiltration and effector molecule release, enhancing immunological antitumour efficacy in PD-L1+Her2+ breast cancer cells (165). Similarly, a third-generation CAR targeting epidermal growth factor receptor (EGFR) in NK-92 cells, combined with the kinase inhibitor cabozantinib, effectively lysed EGFR-positive renal cell carcinoma (RCC) cells and improved tumour homing (166).

Currently, only a few registered clinical trials on the US Clinical Trials Registry (ClinicalTrials.gov) investigate CAR-NK-92 for hematological or solid tumours. For instance, a phase I clinical trial (NCT02944162) assessed the safety profile and clinical efficacy of third-generation CAR-NK-92 cells targeting CD33 in relapsed/refractory AML (167). Although no significant clinical efficacy was observed due to the decreased cytotoxic potential following irradiation, the therapy demonstrated safety with a high cell dose (five billion cells per patient) (167). Another ongoing phase I clinical trial (NCT03383978) is evaluating the safety and tolerability of a second-generation HER-2 specific CAR-NK-92 for recurrent glioblastoma. The trial has shown a favourable safety profile with local intracerebral injections of up to 1 x 108 HER2-CAR-NK-92 cells (168). New advancements include high-affinity Fc-receptor-expressing NK cells (haNKs), derived from NK-92 cells, which can be genetically engineered to express CARs, augmenting their targeting capabilities and cytotoxic potential (169). CAR-haNK cells targeting PD-L1 have demonstrated successful recognition and targeting of heterogeneous tumour cell populations, including both T cell-sensitive and T cell-resistant tumour cells, in an HNSCC mouse model, effectively overcoming immune resistance (170). A phase II clinical trial (NCT04847466) is evaluating the effectiveness of irradiated PD-L1 CAR-haNK cells in combination with the PD-1 inhibitor pembrolizumab plus N-803 (ALT-803, an IL-15 agonist) in patients with recurrent or metastatic gastric cancer and HNSCC. Preliminary studies (NCT04050709) have shown PD-L1 CAR-haNK cells at a dose of 2 x 109 cells twice weekly are well-tolerated, with no dose-limiting toxicities or CRS, supporting their advancement to phase II clinical trial (171). While studies have not yet evaluated CAR-NK products in NPC patients, the promising therapeutic efficacy observed in other solid tumours suggests that exploring genetic engineering of the ex vivo expanded NK cells could offer clinical benefits in NPC treatments.

Despite their promise, CAR-NK-92 cells require irradiation before infusion, which affects their viability and cytotoxicity more rapidly than non-irradiated cells (172). Therefore, the dosage and impact of irradiation on CAR-NK-92 cells needs to be carefully considered in future clinical trials. Given the short lifespan of irradiated CAR-NK-92 cells, shortening the interval between infusions may improve therapeutic efficacy. Similar to CAR-T cells, CAR-NK-92 cells exhibit target-dependent cytotoxicity and may induce on-target, off-tumour toxicity if target antigens are expressed in normal tissues (173). To address this, strategies like incorporating suicide genes into CAR constructs can serve as a safety switch, enabling control over engineered cell activity and facilitating elimination if necessary. This approach could improve safety and effectiveness of CAR therapies (174, 175).





4 Strategies to improve the efficacy of cell-based therapies in NPC

As discussed earlier, despite the encouraging results of cell-based therapies in hematological malignancies, their application in solid tumours is still in the clinical trial phase and faces numerous challenges. In this section, we will explore several strategies aimed at overcoming the insufficient infiltration of adoptively transferred cell types to the tumour site and improving the efficacy of the cellular therapies.



4.1 Alteration of chemokine expression profile

Chemokines are small cytokines that regulate immune cell migration and trafficking. The chemokine expression profile of solid tumours is complex and influenced immune cell recruitment to the TME and tumour growth (176). Strategies targeting chemokine and their receptors are increasingly used in immunotherapy to enhance the effectiveness of CAR-engineered immune cells. For instance, CAR-T cells engineered with IL-7 and CCR2b (7x2b CAR-T) showed improved survival and migration to the tumour site by boosting IFN-γ, IL-2, and granzyme production (177). Similarly, co-expressing CXCR1 in CAR-NK cells targeting NKG2D ligands exhibit better tumour trafficking and growth inhibition (178). Additionally, genetically modified oncolytic viruses (OVs) can alter the tumour chemokine profile, aiding in antigen presentation and boosting chemokine production to recruit immune cells into the TME (179). Studies show that intratumoral administration of a CXCL11-armed tumour selective vaccinia OV increases tumour-specific CTLs and granzyme B production, while reducing immunosuppressive cytokines in the TME of a syngeneic mouse mesothelioma model, leading to enhanced cytotoxic activities of CTLs (180). In another study, Moon and co-workers evaluated the synergistic effects of CXCL11 and mesothelin-redirected CAR-T cells. While CAR/CXCL11 showed limited T cell trafficking, VV.CXCL11, an oncolytic vaccinia virus producing CXCL11, effectively increased T cell infiltration and improved antitumour efficacy after adoptive T cell therapy (181). Thus, combining oncolytic virotherapy with adoptive T cell transfer holds promise for enhancing NPC therapy efficacy.




4.2 Targeting extracellular matrix and stromal cells

Solid tumours are enriched with extracellular matrix (ECM), stromal cells, and immunosuppressive cells, creating barriers that hinder immune cell penetration and infiltration (182). To tackle the problem, researchers have engineered CAR-T cells to target ECM components and cancer-associated fibroblasts (CAFs). For instance, CAR-T cells expressing heparanase (HPSE) can break down ECM components and reduce fibrosis, improving immune cell infiltration and antitumour effects (183). Fibroblast activation protein (FAP), a marker distinguishing CAFs from their normal counterparts, has been found in over 90% of epithelial cancers, including NPC, and is often correlated with poor prognosis (184). Preclinical studies shows that CAR-T cells targeting FAP can eliminate CAFs, suppress myeloid-derived suppressor cells (MDSCs) recruitment, and enhance CTL and CAR-T cell survival (185). At present, only two clinical trials have been conducted using anti-FAP CAR-T cells. A phase I clinical trial in malignant pleural mesothelioma (NCT01722149) reported that localized injection of these CAR-T cells was well tolerated with ongoing antitumour immune responses (186, 187). Another phase I clinical trial (NCT03932565) is evaluating the safety of fourth-generation CAR-T cells targeting Nectin4 and FAP, combined with IL-7, CCL19, or IL-12 for advanced Nectin4-positive solid tumours. Pre-clinical studies show that Nectin4-targeted CAR-T cells with IL-7 and CCL19 help prevent CAR-T cell exhaustion by reducing immune checkpoint expression, while FAP-targeted CAR-T cells with IL-12 enhance immune cells recruitment (188). These combination therapies show potential for improving treatment outcomes in NPC.




4.3 CAR-T cells secreting bispecific T-cell engagers

Over the past few decades, bispecific antibodies (BsAbs), especially bispecific T cell engagers (BiTEs), have proven effective in treating hematologic malignancies by binding two different antigens to direct immune cells to tumour (189). BiTEs facilitate direct interaction between T cells and tumour cells directly by binding CD3 on T cells and TAA on tumour cells, bypassing the need for antigen-presenting cells (APCs) (190). This approach helps overcome antigen loss and variability, as seen with EGFR variant III (EGFRvIII) CAR-T cells secreting BiTEs to target glioblastoma cells while activating bystander T cells, enhancing the antitumour response against heterogeneous tumours (191). A study by Yin and co-workers showed that BiTE-secreting T cells EGFR and interleukin-13 receptor alpha 2 (IL13Rα2) exhibited superior antitumour activity with higher sensitivity and specificity compared to their CAR-T counterparts in glioblastoma model (192). Overall, these findings suggest that BiTE-secreting CAR-T cells could be a promising approach to address challenges associated with antigen heterogeneity in solid tumours. While research on using BiTEs to enhance CAR-T efficacy in targeting NPC is limited, targeting LMPs expressed on EBV-infected cell surfaces, but not on normal cells, could be explored as a potential approach for BsAbs. This concept is supported by second-generation CAR-T cells targeting LMP1 in LMP1-positive NPC cells, demonstrating specific killing of NPC cells and inhibition of tumour growth in xenograft model (73).





5 Strategies to improve the safety of cell-based therapies in NPC

While cell-based therapies represent an innovative treatment in the oncology field, showing promising results in multiple clinical trials, they also carry the risk of potentially life-threatening or even fatal toxicities. In a recent study, Fusaroli and co-workers review post-approval adverse events associated with tisagenlecleucel and axicabtagene ciloleucel between October 2017 and September 2020 using the FDA Adverse Events Reporting System (FAERS) database. This database supports the FDA’s post-marketing safety surveillance program for drug and therapeutic biologic products. The study identified a total of 3225 reports (1793 for axicabtagene ciloleucel and 1433 for tisagenlecleucel), with CRS and neurotoxicity reported as the two major complications. Notably, 75% of these events occurred within the first 10 days of CAR-T therapy (193). Thus, enhancing the safety of cell-based therapies in NPC is critical for their efficacy and clinical application. This section explores strategies aimed at mitigating risks associated with these therapies, ensuring they are both effective and safe for patients.



5.1 Improving the safety of CAR-T by DNAX activation protein of 12 kDa (DAP12)

An increasing body of evidence suggests that CAR toxicity may be linked to the synthetic nature of the receptor design (194). To address this, researchers have constructed a natural multi-chain immunoreceptor CAR using DAP12 instead of CD3ζ. DAP12, a 12-kDa transmembrane adaptor protein with a single immunoreceptor tyrosine-based activation motif (ITAM), was originally found to activate NK cells and is involved in transmitting activating signals from various receptors (195). Studies show that DAP12-based CARs offer superior antitumour activity and safety than CD3ζ-based CARs, with improved antigen-specific cytotoxicity, TIL proliferation, reduced toxicity, and lower production of pro-inflammatory cytokines (196, 197), highlighting the potential of DAP12 in mitigating the risk of CRS. For instance, a phase I clinical trial (ChiCTR1800016584) of CD19-KIRS2/DAP12-BB CAR-T cells reported complete responses in all patients with low toxicity (198). Similarly, CAR-NK cells incorporating DAP12 have shown promising results in treating solid tumours. In a recent study, Xiao and co-workers constructed a CAR-NK cell by combining the NKG2D receptor with DAP12, which showed significant therapeutic effects and lower toxicity in mice with solid tumours. This approach also led to positive outcomes in three patients with metastatic colorectal cancer (199). Building on these results, a pilot clinical trial (NCT03415100) has been launched to evaluate the safety and feasibility of these CAR-NK cells for treating metastatic solid tumours.




5.2 Incorporation of suicide genes to address the challenge of toxicity

Another strategy to enhance the safety of CAR-based cell therapy is the engineering of suicide genes such as inducible caspase 9 (iCasp9) into the CAR construct. These suicide genes serve as a safety switch that can induce cell death upon activation by an external agent, such as drug or antibody (174, 175). For instance, the iCasp9 gene is often used in CAR-based cell therapy in conjunction with a small, bio-inert molecule AP1903 (Rimiducid), which acts as a chemical inducer of dimerization (CID) (200). When administered, AP1903 binds to the CID domain fused to iCasp9, leading to the formation of homodimers and subsequent activation of caspase 9. This activation triggers apoptotic cell death specifically in the CAR-engineered immune cells that express high levels of the transgene, allowing for the selective removal of inappropriately activated cells and thus providing a safety mechanism to manage potential toxicities or adverse events associated with CAR-T cell therapy (200). The efficacy of iCasp9 in eliminating CAR-engineered immune cells to counteract serious adverse event in CAR-based cell immunotherapy has been demonstrated in several preclinical studies (175, 201). Furthermore, several early phase clinical trials (NCT05239143, NCT03016377, NCT03696784 and NCT03721068) are ongoing to evaluate the safety and efficacy of this approach in patients with hematological malignancies or solid tumours, including NPC.





6 Efficient combinations of cellular therapies with conventional therapies

Conventional treatments such as RT and chemotherapy have long been standard for managing various malignancies. However, these approaches alone are often insufficient for eradicating large solid tumours or metastases, leading to recurrence or refractory disease. Additionally, the efficacy of immunotherapy may be restricted by an immunologically cold or immunosuppressive TME and its clinical success has primarily been limited to haematological malignancies (202, 203). Preclinical and clinical studies, however, suggested that combining conventional treatments with adoptive cell therapies can produce a synergistic anticancer effect, where RT or chemotherapy can relieve immune suppression, improve immune cell trafficking to the tumour sites, and enhance the antitumour activity of cytotoxic immune cells (204). For instance, a phase I clinical trial (NCT01462903) evaluating adoptive TIL immunotherapy following CCRT in locoregionally advanced NPC patients reported promising outcomes. Briefly, patients received RT (70 Gy) and cisplatin (100 mg/m2) on day 1, 22, and 43, followed by infusion of an average of 2.6 × 109 TILs (range 1.3 - 6.3 × 109) one week after CCRT. Of the 23 enrolled patients, 16 achieved a complete response by the end of CCRT, 19 maintained a complete response three months after adoptive cell transfer, and 18 experienced disease-free survival for over 12 months. This study demonstrated that CCRT prior to TIL infusion reduced tumour burden, decreased neutrophil and lymphocyte counts, and enhanced the expansion of EBV-antigen-specific T cells, leading to sustained antitumour activity and a robust anti-EBV immune response (84). Similarly, Chia and co-workers showed that metastatic and/or locally recurrent NPC patients who received a combination regimen of four cycles of gemcitabine and carboplatin, followed by up to six doses of EBV-specific CTLs, demonstrated a better response rate. Briefly, patients received 1000 mg/m2 of gemcitabine and AUC2 carboplatin on Day 1, 8, and 15 of each 28-day cycle, for a total of four cycles. This was followed by an autologous T cell infusion, with a median total CTL dose of 9.6 × 108 cells (range: 6.3–10.3 × 108 cells). Of the 38 patients enrolled, 35 received combination therapy. Among these patients, three achieved a complete response, 22 experienced a partial response, 10 had stable disease, and none developed progressive disease, resulting in a response rate of 71.4% compared to 42.9% during the CTL immunotherapy phase alone. Additionally, with a median follow-up of 29.9 months, the study reported a median progression-free survival of 7.6 months, surpassing the median PFS of 3.7 months only observed during the CTL immunotherapy phase alone (83).

In order to achieve this synergistic antitumour response, it is important to determine the order of administration, dosing, and volume of chemotherapy and RT when combined with cellular therapies to minimise toxicity while enhancing the efficacy of adoptive immune cells. For instance, RT can be administered prior to CAR-T cell therapy to reduce tumour burden and lessen the severity of CRS and neurotoxicity by decreasing the number of tumour cells for the CAR-T cells to target (205, 206). Poor MHC expression, low neoantigen load, and low density of infiltrating T lymphocytes are frequently associated with poor therapeutic response. Hence, in such conditions, it is necessary to upregulate the expression of neoantigens, converting the TME from cold to hot before receiving cellular therapies (207). To address this, lower doses of chemotherapy can be used to reduce immunosuppressive effects and toxicity, making it more compatible with cellular therapies. Shurin and co-workers demonstrated that low, non-cytotoxic concentrations of chemotherapeutic agents can upregulate the expression of antigen-presenting machinery components and co-stimulatory molecules on DCs, enhancing their ability to present antigens to antigen-specific T cells (208). Besides that, chemotherapy and RT have shown their ability to induce immunogenic cell death, characterised by the release of damage-associated molecular patterns (DAMPs) such as adenosine triphosphate (ATP), high mobility group box 1 protein (HMGB1), and calreticulin (CRT). These DAMPs are recognised by Toll-like receptor 4, which promotes the maturation and activation of DCs, thereby enhancing antigen presentation to CTLs and boosting the antitumour immune response (209, 210). McDonnell and co-workers also showed that systemic gemcitabine therapy can restore the capacity of suppressed or immature-like tumour-infiltrating DCs to cross-present antigens, thereby enhancing the DCs’ ability to present antigens to antigen-specific T cells and induce T cell activation (211). In the presence of high levels of immunosuppressive cells, it is recommended to deplete these cells or suppress their functions before administering cellular therapies. For instance, lymphodepleting chemotherapy with a combination of cyclophosphamide and fludarabine is usually given a few days before T cell infusion. These agents effectively eradicate Tregs and increase the production of homeostatic cytokine such as IL-15, which prolongs CAR-T cell expansion and persistence, thereby boosting their curative effects (212, 213). Chemotherapy can also sensitise tumour cells to cellular therapies. For example, chemotherapy-induced upregulation of mannose-6-phosphate receptors on the tumour cell surface enhances the penetration of T cells into the tumour site and increases the permeability of tumour cells to granzyme B in a perforin-independent manner. This increased permeability makes tumour cells, including bystander tumour cells that do not express tumour antigen, more susceptible to CTL-mediated cytotoxicity (214, 215). Similarly, Makowska and co-workers found that RT significantly increased the immunogenicity of NPC cells, leading to greater NK cell-induced killing compared to non-irradiated NPC cells. RT also upregulates the expression of PD-L1 on tumour cell surface, further enhancing the antitumour cytotoxicity of NK cells in combination with PD-L1/PD-1 blockade (78).

In the setting of NPC, it is well known that intensity-modulated radiation therapy (IMRT) alone or combined with chemotherapy has become the primary treatment for early or locally advanced patients. Hence, an effective approach to improving the homing and activation of infused immune cells, allowing their proper expansion without compromising overall immunity, would be to combine both high-dose and low-dose irradiation. Hypofractionated RT has been shown to be effective and well tolerated in patients with initial distant metastases in a phase II clinical trial (NCT03598218), compared to those who received IMRT (216). It is suggested that hypofractionated RT not only can directly kill tumour cells but also induces immunogenic cell death, releasing pro-inflammatory cytokines and DAMPs to enhance CTL-mediated cytotoxicity (217). Early preclinical studies have indeed shown that a hypofractionated regimen (8 Gy x 3) is superior to a single fraction of 20 Gy in promoting an antitumour immune response in combination with anti-CTLA-4 therapy, as evidenced by a significant increase in the number of CD4+ T cells and CTLs within the TME (218). Consistently, Vanpouille-Box and co-workers revealed that delivering 24 Gy in three fractions of 8 Gy promotes DC recruitment and CTL infiltration through IFN-β secretion and cGAS-STING pathway activation, enabling synergistic tumour rejection with CTLA-4 blockade therapy. However, when the single fraction dose exceeds 12 Gy, it induces the expression of DNA exonuclease Trex1, which attenuates tumour immunogenicity by degrading tumour DNA within the cytoplasm of tumour cells, leading to insufficient DC recruitment and activation of the CTL-mediated antitumour response (219). High-dose irradiation can also cause vascular damage, creating a hypoxic TME that limits CTL infiltration and leads to RT resistance (217). In contrast, low-dose RT (1 to 4 Gy) promotes immune cell infiltration without significant toxicity, reverses the suppressive function of immune cells, and inflames cold tumours, making it compatible with other anticancer treatments (220). As reported in a phase III clinical trial (NCT02456506), hyperfractionated RT significantly decreased the rate of severe adverse events and improved overall survival in patients with locally advanced recurrent NPC compared to IMRT (221). Therefore, combining a low-dose irradiation delivered in a large volume with a high dose delivered in a limited volume would improve the expansion, homing, and activation of infused T cells. Further studies are necessitated to determine optimal doses and fractionation schedules for activating the antitumour immune response while avoiding immune suppression to ensure the action of both endogenous and infused T cells.

Finally, a comprehensive evaluation and adjustment of immune cell infusion dosage are crucial for achieving optimal treatment effects. Previous studies have indicated that administering a single low dose of 2 x 105 CAR-T cells/kg was effective enough in inducing a complete response with no CRS observed in patients with high tumour burden, compared to those who received a higher dose of 2 x 107 CAR-T cells/kg (222). However, a high relapse rate was reported in this study, suggesting that a reduction in CAR-T cells may impair long-term efficacy. Therefore, dose fractionation or split dosing is recommended, wherein CAR-T cells are administered in multiple doses in the form of dose escalation. This approach aim to control T cell expansion and inflammatory cytokine secretion, striking a balance between long-term efficacy and safety of CAR-T cell therapy (223). Frey and co-workers compared three CAR-T cell infusion schemes in a pilot/phase I (NCT01029366) & and phase II (NCT02030847) study: high-dose single infusion (HDS, 5 x 108 CAR-T cells), low-dose single or fractionated infusion (LD, 5 x 107 CAR-T cells), and high-dose fractionated infusion (HDF, 5 x 108 CAR-T cells). In the fractionated infusion scheme, CAR T-cells were administered over three days (Day 1, 10%; Day 2, 30%; and Day 3, 60%). Among these groups, 20 patients in the HDF cohort achieved a complete response rate of 90% with manageable CRS, compared to the HDS cohort (n = 6), where only three patients achieved complete responses, and three patients died from CRS. Although the LD cohort (n = 9) experienced manageable CRS, only 33% patients achieved complete responses. The 2-year survival rate for the HDF cohort was 73%, compared to 22% and 17% in the LD and HDS cohorts, respectively (223). Similar fractionated dosing schemes were also evaluated in another clinical trial (NCT04309981). Administration of CAR-T cells in a fractionated manner with a booster dose induced sustained responses in patients. Of the 30 patients who received the fractionated CAR-T cells dosing, 80% experienced grade 1-2 CRS, and no neurotoxic events were reported (224). Collectively, these findings suggest that fractionated dosing of CAR-T cell infusion represents a promising strategy to ensure the safety of infused T cells without compromising their efficacy. However, further studies are needed to validate this approach across different cancer types and disease burdens, as well as to optimise the timing and dosing of infusion in order to achieve long-term favourable clinical outcomes.

In summary, combining cellular therapies with existing treatment modalities for NPC involves carefully designing synergistic combinations, sequencing, and dosing strategies. Integrating conventional treatments with cellular therapies holds promise for enhancing therapeutic efficacy and overcoming resistance. However, continuous monitoring and adaptive strategies are important for optimising patient outcomes and managing potential toxicities.




7 Conclusions and future perspective

Despite the promising outcomes demonstrated in a vast majority of preclinical studies on cell-based therapies, there have been relatively few clinical trials conducted in NPC. This indicates that sufficient clinical evidence is still lacking to fully support the implementation of these therapies into standard clinical practice. The limitations of the existing studies include small patient sample sizes, which can lead to false-positive results and reduced statistical power. Furthermore, many of these studies are non-randomised and lack control groups, which compromises the validity and generalizability of the findings (225). Additionally, long-term toxicity data are unavailable due to the short duration of observation and post-treatment follow up. This absence of long-term data makes it challenging to assess the sustained safety and efficacy of cell-based therapies. To address these issues, future research should focus on conducting larger, randomised controlled trials with extended follow-up periods to gather comprehensive data on both the benefits and potential risks of these therapies (226). This will provide a robust evidence base to support the clinical integration of cell-based therapies for NPC.

The evolution of cancer immunotherapy has revolutionised cancer treatment, offering an alternative approach to improve the survival and quality of life for NPC patients. Immunotherapy, by redirecting effector immune cells to selectively target tumour cells, offers a significant advantage over conventional treatments like RT and chemotherapy. This approach not only enhances the host’s antitumour response but also reduces treatment-related adverse events. Likewise, the integration of cellular therapies into the treatment regimen for NPC represents a transformative shift in cancer care. Traditional treatments such as RT and chemotherapy, while effective, often come with significant toxicities and limitations. Cellular therapies offer a targeted approach to overcoming these challenges. NPC, often associated with EBV, makes this cancer a suitable candidate for cellular therapies due to its expression of potentially targetable tumour-associated viral antigens. This suitability is enhanced by the capacity to genetically engineer both stem cells and non-stem cells for specific tumour cell recognition and stable expression of a variety of antitumour agents, which holds immense clinical potential. These precision therapies can potentially lead to more effective tumour control, sparing normal tissues and reducing the systemic toxicities associated with chemotherapy and RT. By priming the immune system, cellular therapies can reduce both primary and acquired resistance and offer long-lasting protection against cancer recurrence. Engineered T cells, for example, can persist in the body, providing continuous surveillance and the capability to respond to tumour relapse. This ongoing immune surveillance can significantly improve long-term patient outcomes.

However, the clinical application of cellular therapies in solid tumours, including NPC, encounters challenges arising from tumour heterogeneity and the immunosuppressive TME, potentially compromising the therapeutic efficacy. Safety concerns, including the development of GVHD, on-target, off-tumour cytotoxicity, and CRS, present additional hurdles that ongoing and future clinical trials must effectively address. To overcome these challenges and further enhance treatment outcomes, combinatorial approaches may prove pivotal. By combining cellular therapies with existing modalities, such as conventional treatments and immunotherapy, improved efficacy in targeting cancer cells and a reduction in cancer recurrence rates can be achieved. While the exploration of cell-based therapy in NPC lags behind its application in other cancers, promising findings from published and emerging research underscore its potential to significantly improve clinical outcomes for NPC patients. Not forgetting there is a need to integrate the recent cancer discoveries, ranging from cancer immunology (227), the role of epigenetic in cancer (3, 228), novel drug delivery system (229) to increase its clinical benefits and to reduce its side effects. More comprehensive studies are therefore required to further refine the efficacy and safety of cellular therapies, paving the way for their potential integration into mainstream clinical settings for the improved management of NPC.
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Introduction

Although CAR-T cell therapy has limited efficacy against solid tumors, it has been hypothesized that prior treatment with Image-Guided Radiation Therapy (IGRT) would increase CAR-T cell tumor infiltration, leading to improved antigen specific expansion of CAR-T cells.





Methods

To test this hypothesis in a metastatic triple negative breast cancer (TNBC) model, we engineered two anti-CEA single-chain Fab (scFab) CAR-T cells with signaling domains from CD28zeta and 4-1BBzeta, and tested them in vitro and in vivo.





Results

The anti-CEA scFab CAR-T cells generated from three different human donors demonstrated robust in vitro expression, expansion, and lysis of only CEA-positive TNBC cells, with the CD28z-CAR-T cells showing the highest cytotoxicity. IFN-γ and granzyme B release assays revealed significantly higher IFN-γ production at a 4:1 effector-to-target (E:T) ratio in CD28z-CAR-T cells compared to 4-1BBz-CAR-T cells. Treatment of CEA-positive TNBC MDA-MB231 xenografts in the mammary fat pads of NSG mice, that produced spontaneous lung metastases over time, resulted in significant tumor growth reduction compared to either therapy alone (p<0.01). Immunohistochemical (IHC) analysis revealed that only combined IGRT and CAR-T therapy resulted in the elimination of lung metastases.





Discussion

These findings demonstrate that the combination of IGRT and anti-CEA scFab CAR-T therapy induces a strong antitumor response, effectively targeting both the primary tumor and distant metastatic lesions in the lungs, thus demonstrating that IGRT enhances CAR-T cell infiltration, persistence, and overall efficacy within both primary and metastatic lesions.





Keywords: chimeric antigen receptor T cells, triple-negative breast cancer, carcinoembryonic antigen, image-guided radiation therapy, cell immunotherapy





Introduction

Breast cancer, that originates from the epithelial cells of the breast ducts and lobules, is the most common cancer affecting women. It is estimated that women in developed countries have about 1 in 8 chance of developing breast cancer in their lifetime (1). Triple-negative breast cancer (TNBC) is an aggressive and metastatic form that accounts for 15–20% of all breast cancers (2). TNBC cells lack estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2), making them very difficult to treat and contributing to their poor prognosis (3). Current breast cancer treatments include surgery, chemotherapy, and radiotherapy but these methods are often associated with adverse effects such as cosmetic damage, pancytopenia, nausea, diarrhea among others (4). Over the years, immunotherapy has gained approval for breast cancer treatment, with vaccines and immune checkpoint blockade being employed (5). Thus far, adoptive cell therapy, including chimeric antigen receptor (CAR) T cell immunotherapy has shown clinical promise in hematological malignancies such as leukemia, lymphoma, and multiple myeloma (6).

CAR-T cell immunotherapy involves engineering a patient’s T cells to express a chimeric antibody-T cell receptor, thereby redirecting them for effective tumor targeting without the need for MHC (7). However, the clinical efficacy of CAR-T cells for most solid tumors is substantially limited due to insufficient trafficking, poor functional persistence and inhibition by the immunosuppressive tumor microenvironment (8). To address these challenges, CAR-T cell therapy has been combined with other clinically approved treatments, including radiotherapy (9).

Image-guided radiation therapy (IGRT) is an approved therapeutic procedure used in combination regimens for managing various malignancies (10, 11). This procedure alters the tumor microenvironment (TME) by disrupting its mechanical and functional barriers, leading to the release of proinflammatory cytokines that can activate systemic immunomodulatory effects beneficial for CAR-T cells (12). Recent immunotherapy strategies have combined radiation with immune checkpoint inhibitors to enhance immune responses against solid tumors (13, 14). Targeted radiotherapy also causes the release of death-associated molecular patterns (DAMPs), that stimulate immune system activation, including vascular remodeling, neoantigen expression, and endothelial cellular adhesion changes that promote immune cell infiltration into the tumor (15). Although CAR-T cell and IGRT therapies have limitations as single-agent treatments for solid tumors, IGRT targets the TME of imageable tumors but misses micromets while CAR-T cells can reach both primary tumors, and micrometastases but are often ineffective due to immunosuppressive TME (16, 17). Hence their combination can create a synergistic effect that enhances therapeutic efficacy.

Carcinoembryonic antigen (CEA or CEACAM5) is an oncodevelopmental cell surface glycoprotein identified with the Cluster of Differentiation designation CD66e (18). It is a tumor-associated protein that is highly expressed in various solid tumors, including colon, gastrointestinal, breast, and lungs (19). CEA plays a significant role in tumor detection, prognosis, treatment monitoring, and its upregulation associated with the progression, proliferation and migration of metastatic breast tumors (20). Since most anti-CEA antibodies cross-react with other members of the CEA family found in normal tissues, the use of a CEA specific antibody such as our humanized M5A antibody is critical (21). Our previous study in immunocompetent CEA transgenic (CEA-Tg) mice that express the same antigen as human in endogenous organs demonstrated specific CAR-T cell responses in CEA positive breast and colon tumor models without any observed off-target effects (22). Similarly, Chmielewski and colleagues used anti-CEA CAR-T therapy in CEA-Tg mice bearing pancreatic tumors with no evidence of destruction of CEA-positive normal tissues (23).

Currently, most CAR-T constructs utilize a single-chain variable fragment (scFv) antigen-binding domain that have a tendency to aggregate and reduce the antigen-antibody interaction (24). This aggregation can result in the formation of CAR aggregates on the surface of CAR-T cells, leading to unexpected signaling and constitutive activation of T cells through an antigen-independent mechanism known as tonic signaling. This phenomenon contributes to faster signal loss and reduced efficacy of CAR-T therapy (25). Alternatives to scFv-based CARs, such as Fab-based chimeric antigen receptor T targeting CD276 (26) and CD19 (27, 28), have been explored and tested in vitro as substitutes for scFv CAR-T cells.

In this study, we assessed the specificity and functional killing efficacy of scFab anti-CEA CAR-T cells against CEA-positive TNBC cells both in vitro and in a xenograft metastatic tumor model. We hypothesized that antigen derived expansion of CAR Ts would occur at both the primary and metastatic sites and benefit from IGRT directed only at the primary site.





Materials and methods




Generation of CAR-specific T cells

The M5A-targeted 28z CAR construct consists of an hM5A(Fab) domain linked to an IgG4 hinge region with CD28 transmembrane and co-stimulatory domains, and the intracellular signaling domain of CD3ζ (Figure 1A). In contrast, the 4-1BBz CAR construct includes an hM5A(Fab)-IgG4-derived Fab linked to the transmembrane domain of CD4, the intracellular domain of 4-1BBz, and the CD3ζ intracellular signaling domain (Figure 1B). The two scFab CAR-T plasmids, driven by the EF1p promoter, feature distinct signaling domains; one with a CD28-CD3zeta configuration and the other with a 4-1BB-CD3zeta configuration. Both constructs include a T2A ribosomal skip sequence that separates the codon-optimized CAR sequence from the truncated human CD19t (hCD19t) to allow for identification and enrichment of expressed CARs. (Figures 1C, D). Leukapheresis products were obtained from healthy donors under COH-approved protocols. Peripheral blood mononuclear cells (PBMCs) were separated using density gradient centrifugation on Ficoll-Paque and depleted of CD14+ and CD25+ cells. T naïve/memory cells were then selected from the resulting negative fraction using CD62L+ magnetic beads and activated with CD3/CD28 beads. Activated cells were transduced with the different CAR lentiviral vectors and expanded as previously described (22). Similarly, the lentiviral plasmid construct used for dual transduction of luciferase CAR-T cells was generated using the epHIV7 vector, with luciferase expression driven by the EF1α promoter.

[image: Diagram illustrating two engineered constructs labeled A and B, depicting single-chain fragment variable (scFv) sequences. Both constructs show VH, CH1, CL, and VL domains linked by GS30. A features CD4 transmembrane and 4-1BB cytoplasmic regions; B features CD28 equivalents. Both use CD3ζ. Below, C and D list components with links: VL-CL, VH-CH1 with IgG4(ΔCH2), CD3ζ, 4-1BB, CD28 transmembrane regions, T2A, and hCD19t.]
Figure 1 | Schematics of humanized anti-CEA (M5A) scFab-CAR-T. (A) 4-1BB and (B) CD28 CAR constructs. Two constructs were tested, with cytoplasmic domain corresponding to second generation CAR-Ts. (C, D) The two scFab CAR-T constructs have distinct signaling domains; CD28-CD3zeta and 4-1BB-CDzeta configuration, both co-expressing hCD19t to allow identification of expressed CARs.





Antibodies and flow cytometry

Flow cytometry was performed for the phenotypic analysis of T cells and/or tumors. Briefly, CAR-T cells (1 × 105) were suspended in FACS staining solution and incubated with fluorescently labeled antibodies for 15 min at 4°C. Unless otherwise stated, cells were stained with mouse anti-human CD3, CD8, CD4, PD-1, Tim3 and CD19 antibodies (BD Biosciences). Anti-CD45RA and anti-CD62L antibodies (BD Biosciences) were used to assess the differentiation status of CAR-T cells.





Effector: target cell killing assay

Mock or anti-CEA CAR-T cells were incubated with either WT-MDA-MB231 (ATCC; HTB-26) or MDA-MB231 transfected with CEA and GFP (29) at varying effector to target (E:T) ratios (0.5:1, 1:1, 2:1, 4:1). Briefly, 100 µl of target cells in fluoroBrite DMEM complete medium (Gibco, A18967-01) was first seeded in 96-well plates, followed by addition of 100 µl of effector cells to the same well. The mixture was incubated overnight at 37°C for 24 hrs. Target-only cells were used as controls. The percentage cell cytotoxicity was calculated following the formula shown below, where 100% cell viability (valuemax) was measured by averaging the fluorescence readings of the target cells without any T cells. The fluorescence for each well co-cultured (target and effector) is labeled as the experimental value (valueexp). The background was subtracted as (valuemin) from both valuemax and valueexp. The fraction of live cell fluorescence was calculated by dividing ([image: The image shows a mathematical expression: "value sub max minus value sub min".] ) by ([image: Text displaying "value sub max equals value sub min".] ). To determine the fluorescence loss due to GFP-expressing target cell death, this fraction was subtracted from 1. The resulting value was then multiplied by 100% to obtain the percentage of cell cytotoxicity.

[image: The formula for percentage cell cytotoxicity: open parenthesis one minus fraction numerator value subscript exp minus value subscript min over denominator value subscript max minus value subscript min end fraction close parenthesis times one hundred percent.]	





Cytokine measurement

Cytokine release was analyzed using an ELISA kit assay (BioLegend; 430104 and R&D systems; DY2906-05, for human IFN-γ and granzyme B respectively) according to the manufacturer’s instructions. In brief, 50 µL of supernatant from the co-culture killing assay was collected and diluted 1:10 with the kit buffer solution. Cytokine levels for IFN-γ and granzyme B were measured using a human ELISA kit, with absorption readings in triplicates taken on a CLARIOstar instrument.





Measurement of cellular degranulation and T-cell exhaustion

CD107a was used to assess the level of cellular degranulation, a prerequisite for T-cell mediated cytolysis. Briefly, target cells were co-cultured with anti-CEA CAR-T cells for 6 hours at an effector-to-target (E:T) ratio of 2:1, with 0.26% w/w of Golgi stop (BD; 554724) added to the media. After the incubation period, the CAR-T cells were collected and stained with 1:20 dilutions of anti-CD3, CD4, CD8, and CD107a antibodies for 25 minutes on ice. The cells were then washed and analyzed using a flow cytometer.

To measure T cell exhaustion, target cells and scFab CAR-T cells were co-cultured at an effector-to-target (E:T) ratio 2:1 for three days. After the incubation period, the cells were washed with 1% PBS and subsequently stained with PD-1 and TIM-3 markers.





Animal study

All animal studies were performed with NOD/SCID/IL-2rg (NSG; 6 – 10 weeks old; Jackson Laboratory; Jax 005557) (IACUC 91037). Animals were housed in pie cages, in a pathogen free room with a maximum of 5 mice per cage. On Day 1, mice were engrafted orthotopically with 5x105 MB231/CEA-Luciferase positive cancer cells in 50 μL of PBS and Matrigel solution at 1:1 ratio (Corning, 356237) into the mammary fat pat of the female mice using 28G Insulin Syringes (BD, 329461). MB231/CEA-Luciferase positive cells were used to monitor tumor metastases using anti-firefly luciferase. Tumor size was measured and established tumors (50-75 mm3) on day 9 were randomly assigned to groups (n=4-5 mice per group). On day 10 post tumor engraftment, both radiations only group and combination treatment groups received 10 Gy of irradiation each. On day 11, combination group and CAR-T groups only were treated with 1x106 scFab anti-CEA CAR-T cells in 200 μL PBS were injected intravenously. Untreated groups received PBS. Tumor growths were monitored and measured with caliper and growth endpoint were set at >1500 mm3.

To track CAR-T cell tumor infiltration, activated human T-cells were co-transduced with lentivirus encoding GFP-firefly luciferase and scFab CAR-T. The double-positive cells were then isolated using a flow cytometry cell sorter. For the experiment, NSG mice bearing MDA-MB-231/CEA tumors (which do not express luciferase) were utilized and followed the same experimental procedure described above. On day 6, the mice were divided into treatment groups: untreated controls, CAR-T cells alone, fractionated radiation (4x 2.5 Gy), or single-dose IGRT (10 Gy). The untreated control group included 2 mice, while the other groups consisted of 3-5 mice each. The fractionated radiation group received 2.5 Gy daily from day 7 to day 10, while the single-dose group was treated with 10 Gy once on day 10. On day 11, both the fractionated and single-dose groups received an intravenous injection of 1x106 anti-scFab-CEA CAR-T cells expressing luciferase in 200 μL PBS. Untreated mice served as controls. Mice were imaged weekly using the LAGO bioluminescence imaging system (Spectral Instruments Imaging, LLC, Tucson, USA), and luciferase signals were quantified for comparative analysis.





Tissue collection and analysis

At endpoint, lungs tissue and tumors were collected in cold PBS. For flow cytometry analysis, small fractions of tumor were cut into pieces and digested with Tumor Dissociation Kit, Mouse (MACS, 130-096-730) and gentleMACS C Tubes (MACS, 130-096-334), as per manufacturer’s directions. The cells were meshed on a 0.40 μM cell strainer (Corning, 431750) and lysed with Red Blood Cell Lysis Buffer Hybri-Max (Sigma, R7757). Thereafter, the cells were stained with fluorescent antibodies for flow cytometry. To measure IFN-γ production, cells were re-stimulated with Cell Activation Cocktail (with Brefeldin A; Biolegend, 423303) in 10% FBS RPMI media for 4 hours at 37°C. Following, cells were stained for surface markers (CD4, CD8, PD-1) and viability marker (Zombie UV, BioLegend). These cells were fixed and permeabilized with Fixation/Permeabilization kit (ThermoFisher) according to the manufacture’s protocol and stained for intracellular IFN-γ (BioLegend) and analyzed by flow cytometry.

For immunohistochemistry (IHC), the harvested tumor and lungs tissues were fixed with 4% paraformaldehyde for 3 days and thereafter stored in 70% ethanol. Tissues were washed in PBS and frozen on dry ice using O.C.T. (Fisher HealthCare, 4585) in vinyl Specimen molds (Sakura, 4557) for H&E and IHC staining. Tissue block slides were stained with anti-firefly (luciferase detection) and mouse anti-human CD3 antibodies.





Statistical analysis

The results were analyzed using Prism statistical software using the T-test, one way ANOVA, or two-way ANOVA to compare the two experimental groups. Statistical analysis of more than three groups will be based on two-way ANOVA and Sidak’s multiple comparison test. A threshold of p < 0.05 was considered statistically significant throughout. * p < 0.05, ** p < 0.01, ***p < 0.001, ****p < 0.0001.






Results




Production of scFab-CAR T cells

Our initial studies used an all murine anti-CEA scFv CAR T derived from the anti-CEA monoclonal antibody T84.66 in immunocompetent CEA Tg mice (22). However, a scFv CAR-T derived from the humanized version of this antibody (21) exhibited poor stability in T cells (data not shown). Consequently, we designed and tested anti-CEA scFab CAR-T cells, that included constant and variable domains from the heavy and light chains of the humanized anti-CEA antibody (M5A) plus signaling domains CD28zeta or 4-1BBzeta (Figure 1). The construct also included an expression cassette for a truncated human CD19 gene (hCD19t) to allowing enrichment of transfected from non-transfected T cells (30). CD3+ T naïve/memory cells (Supplementary Figure S1) from human donors were transduced with or without (mock – untransduced) lentivirus encoding the anti-CEA scFab, and transduction efficiency was confirmed by flow cytometry monitoring hCD19t expression following enrichment with anti-CD19 beads (Figure 2A). CAR-T cells produced from three different human donors (HD) were enriched using anti-CD19 magnetic beads that resulted in final transduction efficiencies of 94%, 89% and 81% for CD28z-CAR-T and 82%, 75%, and 83% for 4-1BBz-CAR-T cells, respectively (Figure 2B). The mock transfected T cells showed no CAR-T cell expression. The growth expansion curve of T cells post-CAR-T production from three different donors is shown (Figure 2C), demonstrating good activation and proliferation of CAR-T cells. These results indicate that using the scFab fragment of the humanized M5A antibody for CAR-T production does not negatively impact the activity of the transduced human T cells.

[image: Panel A shows flow cytometry plots comparing CD19 CAR% for constructs pF04181: CD28.CD3zeta and pF04182: 4-1BB.CD3zeta, with CAR% of 94.34% and 82.41% respectively. Panel B illustrates Fab-CAR T cell production percentages across three donors, with high expression in CD28 and 4-1BB groups compared to mock. Panel C presents graphs of cell growth over time for three donors (HD 431, 460, 698), comparing mock, pF04181 (CD28), and pF04182 (4-1BB) constructs, showing increased cell growth for CD28 and 4-1BB conditions.]
Figure 2 | scFab-CAR-T production and expression on T cells. (A) Transduction efficiency was assessed by flow cytometry for CD19t expression of transduced T cells following enrichment with anti-CD19 beads. (B) Percentage expression of scFab-CAR-T cell production across T cells from three different donors. (C) Growth curves showing the expansion of scFab-CAR-T from three donors’ post-transduction.





Target specificity of scFab anti-CEA CAR-T cells

To determine the antigen specificity of anti-CEA scFab CAR-T cells, CD28z-CAR-T, 4-1BBz-CAR-T, or mock T cells were incubated with triple-negative human breast cancer cells (MB231) transfected with CEA and GFP or GFP only (Supplementary Figure S1). These cells were used in increasing Effector: Target (E:T) ratios with CEA or GFP-only cells as positive controls for specific and nonspecific targeting, respectively. The specific lysis of CEA+ versus CEA- target cells by scFab CAR-T cells was demonstrated, with the highest killing observed in CD28z-CAR-T cells. In contrast, the mock T cells were ineffective in killing the targets (Figures 3A, B). Measurement of IFN-γ and granzyme B by ELISA in the supernatants from the co-culture killing assay with CEA+ target cells showed an increased release of IFN-γ at 4:1 E:T ratio for CD28z-CAR-T cells (Figure 3C, Supplementary Figure S2). Conversely, 4-1BBz-CAR-T exhibited increased release of granzyme B (Figure 3D, Supplementary Figure S2). For control target cells, no IFN-γ or granzyme B was detected. In a separate experiment, the co-culture killing assay was extended for three days, and the expression levels of PD-1 and TIM-3 exhaustion markers were measured. The CD4 and CD8 T cell subpopulations in both CEA- and CEA+ MDA-MB231 cells co-cultures showed increased expression of PD-1 but not Tim3 exhaustion markers on the effector cells (Supplementary Figure S2). The expression of the PD-1 marker was higher in CD28z-CAR-T cells compared to 4-1BBz-CAR-T cells. Furthermore, the expression of CD107a degranulation marker was higher in scFab CD28z-CAR-T cells than in 41BBz-CAR-T cells (Figure 3E). Together, these data confirm that both formats of scFab anti-CEA CAR-T cells specifically targeted CEA-expressing cells through antigen recognition and T cell activation.

[image: Graphs showing immunological responses in MB231 cell experiments.   A shows % specific lysis of MB231/GFP cells at different E:T ratios for Mock, CD28, and 4-1BB, with lower lysis in Mock.   B displays % specific lysis in MB231/CEA/GFP cells, with higher effectiveness in CD28.   C presents IFN-γ levels, with CD28 and 4-1BB showing higher values than Mock.   D shows Granzyme B levels, with 4-1BB higher than others.  E compares % CD 107a expression, indicating increased activity in MB231/CEA for CD28 and 4-1BB.   Statistical significance is marked by asterisks.]
Figure 3 | In Vitro scFab-CAR T-cell cytotoxic assays; (A) Cytotoxicity against CEA-negative MDA-MB231 parental cells. (B) Cytotoxicity against CEA-positive MDA-MB231 cells. Both versions of scFab CAR-T cells exhibit antigen-specific lysis of target cells. (C, D) Analysis of IFN-γ and granzyme B production by mock and two versions of scFab CAR-T cells against CEA-positive MDA-MB231 cells. (E) Expression of the CD107a degranulation marker in both CAR-T cells when co-incubated with CEA-positive and negative MDA-MB231 target cells. (Statistical analysis was performed using two-way ANOVA and Sidak’s multiple comparison test *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns - not significant).





Image guided radiation therapy enhances the effectiveness of anti-CEA scFab CD28z-CAR-T cell therapy

To evaluate the therapeutic efficacy of anti-CEA scFab CAR-T cells against solid tumors, MB231/CEA breast tumors were orthotopically implanted in the mammary fat pads of immunocompromised NSG mice. MDA-MB231 xenografts were chosen due to their propensity to spontaneously form lung metastases (31). Established tumors in mice were treated with a 10 Gy single dose of IGRT alone, scFab CAR-T alone, or IGRT followed by scFab CAR T the following day (Figure 4A). A significant tumor growth reduction was observed in the mice treated with the combination of IGRT and anti-CEA scFab CAR-T cells compared to either monotherapy. The combination therapy was statistically significant (p<0.01) compared to scFab CD28z-CAR-T cells alone and untreated control (Figure 4B). The 10 Gy IGRT-treated mice showed significantly reduced tumor growth until day 30, after which the tumor growth escaped. On day 48, when the tumors in the control and scFab CAR-T cell-only treated mice reached maximum volume, the tumors and lungs from all mice were collected. Tumor weight measurements post-euthanasia showed a significant difference (p<0.0001) between the control and combined treatment groups (Figure 4C). At this endpoint, portions of the tumors were enzymatically digested and analyzed by flow cytometry for T cell phenotyping. Flow cytometry analysis revealed the presence of anti-CEA CAR-T cells in combination group only, and an increased CD4 T cell subpopulation compared to CD8 (Figure 4D). To assess T cell functions such as IFN-γ production and Treg activity, harvested T cells were restimulated for 4 hrs, followed by intracellular staining for IFN-γ and FoxP3. The analysis showed fewer exhausted cells stained with CTLA-4 in CD4 and PD-1 in the CD8 cell population. Additionally, there was an increased number of IFN-γ producing CD8 cells, that likely contributed to the improved anti-tumor activity and tumor inhibition (Figures 4E, F). The expression of PD-1 on CD4+ CAR T cells was only 20% with less than 1% of IFN-γ (data not shown). Repeating the experiment with a different donor T-cell, including mock and 4-1BB variants of the anti-CEA scFab CAR-T cells, also showed similar results with the best tumor inhibition observed in CD28-scFab-CAR-T (Supplementary Figure S3).
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Figure 4 | In Vivo therapeutic Efficacy of Anti-CEA scFab-CD28-CAR-T in combination with 10 Gy of IGRT. (A) Experimental design: orthotopic MDA-MB-231CEA-Luc positive tumors implanted in NSG mice were treated with 10 Gy IGRT on day 10, followed by an intravenous injection of 1 × 106 anti-CEA scFab CAR-T cells on day 11. Tumor size was monitored with calipers until reaching 1500 mm³ (for controls and CAR T groups). (B) MDA-MB-231CEA-Luc tumor growth curves (n=4-5 mice per group). The combination therapy of 10 Gy IGRT and scFab-CAR-T cells was statistically significant (p<0.01). (C) Tumor weight measurements after euthanasia on day 48 showed a significant difference (p<0.0001) in tumor weight between the control and combined treatment groups. (D) Tumor analysis for T cell subpopulations (CD4/CD8) using flow cytometry and their corresponding expression of exhaustion markers in CD4 (E) and CD8 (F) subpopulations. (Statistical analysis was performed using two-way ANOVA and Sidak’s multiple comparison test *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).





IGRT improves the infiltration scFab anti-CEA CAR-T cells in solid tumors

Anti-CD3 immunohistochemistry (IHC) analysis of the tumor tissues revealed poor infiltration of anti-CEA scFab CAR-T cells in the CAR-T only treated group (Figure 5A) compared to their significant infiltration in the combined therapy group (Figure 5B). CD3+ cells were abundant in the combination group even 37 days post a single injection of scFab anti-CEA CAR-T cells. Quantification of the infiltrating scFab CAR-T cells in the tumor showed a significant increase in the combination treatment group (Figure 5C). These findings suggest that IGRT facilitated the infiltration, persistence, and antitumor response of scFab CAR-T cells within solid tumor tissues.

[image: Histological sections and graph depicting tumor CD3 infiltration. Panel A shows low CD3 expression in "CAR Only" sections. Panel B shows increased CD3 expression in "10Gy + CAR" sections. Panel C displays a scatter plot indicating higher CD3 infiltration in the "10Gy + CAR" group compared to "CAR Only," with statistically significant differences marked by asterisks.]
Figure 5 | Comparative immunohistochemistry analysis of infiltrating anti-CEA CAR-T cells in MDA-MB231CEA-Luciferase Tumors with or without IGRT. NSG mice with orthotopic MDA-MB-231CEA-Luciferase-positive tumors were analyzed as (A) Tumors treated with CAR-T cells only and (B) Tumors receiving combination treatment of 10Gy IGRT and anti-CEA CAR-T cells. Tumors were monitored until they reached terminal size or until day 48, and then analyzed using immunohistochemistry. Anti-CD3 staining indicates infiltrating anti-CEA CAR-T cells, that were significantly increased in the combination therapy group. (C) Quantification of infiltrating CD3-positive T cells in MDA-MB-231CEA-Luciferase tumors (2 regions per tumor, 5 tumors each group) showed a significant increase in the combination treatment group compared to the anti-CEA CAR-T cell-only group (p < 0.01). (Statistical analysis was performed using student t-test **p < 0.01).





Combination IGRT with anti-CEA scFab CAR-T therapy prevents breast cancer metastasis to the lungs

Triple-negative breast cancer is known to metastasize to the lungs, so we performed IHC analysis of lung tissue to detect luciferase-positive tumor cells. Massive metastases were found in the control group, while slightly fewer metastases were detected in the mice treated with 10 Gy IGRT alone. Interestingly, relatively few metastases were observed in the CAR-T only treated mice, while the combination of IGRT and scFab anti-CEA CAR-T therapy almost eliminated lung metastases (Figures 6A–D). Luciferase staining of the lung lobes indicates metastatic lesions, and their quantification showed a significant bigger tumor aera in the lungs in the control group compared to the combination treatment group (Figure 6E). A similar pattern was observed when the experiment was repeated with a different CAR-T cell donor and included the scFab 4-1BBzeta variant (Supplementary Figure S4). These data demonstrate that the combination of IGRT and anti-CEA CAR-T therapy elicits a strong antitumor response against both the primary tumor and distant metastatic spread to the lungs.

[image: Histological comparisons show tumor areas under four conditions: Control (A) with extensive brown-stained tumor regions, 10Gy (B) with reduced staining, CAR (C) showing further reduction, and 10Gy + CAR (D) with minimal staining. Graph (E) indicates significant decreases in % tumor area across treatments, with 10Gy + CAR showing the most reduction, marked by asterisks for statistical significance.]
Figure 6 | Immunohistochemistry Staining of MDA-MB231CEA-Luc Tumor Metastasis to the Lungs. At termination, one lung lobe from each mouse was collected and stained to detect Luc+ tumor cells (A-D). (E) Quantification of Luc+ areas (average of 5 areas for each lobe) revealed a significant difference between control, single CAR-T treatment, and combination treatment groups (p < 0.001). Each group consisted of 4-5 mice. (Statistical analysis was performed using one-way ANOVA and Sidak’s multiple comparison test *p < 0.05, ***p < 0.001).





Kinetic tracking CAR-T cells tumor infiltration in vivo

Monitoring CAR-T cell tumor infiltration and proliferation in vivo provides an important insight into kinetics and effectiveness of the therapy. In this study, we co-transduced T cells with two lentiviral vectors expressing anti-CEA scFab CAR and GFP-Luciferase, respectively, to examine the kinetics of CAR T infiltration, preceded by 4 x daily 2.5 Gy IGRT to extend the TME effects over a longer period, as previous described (29). The treatment schedule is outlined in (Figure 7A) and production of double-positive (CD19 and GFP-Luciferase) CAR T-cells is shown in (Supplementary Figure S5). One day following IGRT, the mice were intravenously injected with 1x106 anti-CEA scFab CAR-T cells expressing luciferase. CAR-T cells were tracked in NSG mice bearing orthotopic MDA-MB231/CEA tumors (without luciferase) on days 18, 25 and 32 after treatment using bioluminescence. The CAR-T cell bioluminescence was low for all groups at day 18, peaked on day 25, and returned to low values by day 32 that corresponded with objective eradication of the tumors in both combination groups (Figures 7B, C). Interestingly, the bioluminescence data of day 18 showed significantly higher signal in fractionation IGRT+CAR-T group suggesting more efficient TME remodeling. The results for the CAR T only group have consistently low luminescent values demonstrating that few CAR T cells enter the tumor, take a week to expand to their maximum luminescent signal, and thereafter decline. Similar kinetic profiles are seen for the combination therapy groups with highest overall values for the combination therapy. We conclude (a) that the number of CAR T cells arriving at the tumor determine the degree of expansion, explaining the similar kinetics for all three groups, and (b) that IGRT increases that number, explaining the magnitude of the expansion in terms of luminescent signal. These findings underscore the importance of pretreatment of the tumor with IGRT and appropriate timing of the subsequent CAR T therapy.

[image: Timeline of the experimental procedure, with key events labeled. Images of mice at days 18, 25, and 32 show luminescent signals under different treatments: control, CAR-T cells only, 4X 2.5Gy + CAR-T cells, and 10Gy + CAR-T cells. Graphs depict photon radiance over time, showing increased luminescence in treated groups compared to controls, with significant differences noted.]
Figure 7 | In vivo analysis of CAR-T cell tracking kinetics. (A) the treatment schedule schematic, (B) representative bioluminescence scans for CAR-T cell luciferase activity, and (C) the graphical quantification of luciferase in photons per second across the treatment groups. The untreated control group included 2 mice, while the other groups consisted of 3-5 mice each. (Statistical analysis was performed using two-way ANOVA and Sidak’s multiple comparison test **p < 0.01, ns - not significant).






Discussion

CAR-T adoptive immunotherapy has been one of the most successful cellular therapies to date, particularly for hematological malignancies. However, the immunosuppressive TME of solid tumors presents challenges that require strategies to enhance the homing and expansion of CAR-T cells within the TME. Among the approaches to improve CAR-T cell infiltration into solid tumors, low dose radiotherapy, especially low dose image guide radiotherapy stands out (32, 33).

Selecting the best tumor antigen for T cell mediated immunotherapy is critical both for efficacy and reducing off target toxicity. CEA was chosen as a tumor antigen due to its broad application in tumor detection, diagnosis, prognosis, and treatment monitoring, and its association with metastatic breast tumors (20). The humanized anti-CEA antibody M5A has shown efficacy with no toxicity in several clinical trials to date (19, 34). A preclinical study with anti-CEA CAR-T cells from another group targeting the A3B3 domain of CEA, also showed specific targeting with no off-target toxicity in CEA transgenic mice (23). Our in vitro results with our anti-CEA scFab CAR-T cells exhibited good transduction efficiency, activation, and proliferation (Figure 2). The cellular cytotoxicity of scFab CAR against triple-negative breast cancer cells transfected with human CEA (MB231/CEA) vs CEA negative cells showed a high specificity and excellent E:T ratios.

In our initial study using syngeneic mouse anti-CEA CAR-T cells, we used a scFv construct that showed significant activity when combined with IL-2 antibody fusion immunocytokine (22). Despite its efficacy against a syngeneic solid tumor mouse model, the humanized anti-CEA scFv construct proved unstable in xenograft CAR-T therapy. Consequently, we designed and tested a scFab CAR-T cell, which includes one constant and one variable domain from the heavy and light chain of the humanized anti-CEA antibody M5A (21). The concept of using scFab fragments stems from numerous reports examining the structure and therapeutic advantages of antigen-specific fragments of antibodies produced through recombinant processes (35). scFab-CAR-T cells were first tested by Duan and colleagues, who reported that novel Fab-CAR-T cells demonstrated heightened recognition of tumor antigens in human thyroid cancer cells and extended the lifespan of CAR-engineered T cells, generating a durable antitumor response (26).

In our studies we tested scFab CAR-T in two variants of costimulatory signaling domains CD28 or 4-1BB. Previous studies showed that CD28-based CAR-T cells usually resulted in a more robust proliferative response and effector memory T cells, whereas 4-1BB co-stimulation induced a progressive response and with enhanced persistence and central memory differentiation (36). Moreover, the work by Starr et al. (37) showed improved specificity, persistence, and efficacy of 4-1BB–based IL13-ligand CARs when compared to CD28 format (37). Nonetheless, the selection of the co-stimulatory domain remains controversial and may be influenced by the structure of CAR molecules and the histopathology of the target diseases. However, our in vitro and in vivo studies have proven similar anti-tumor effects for both scFab CAR-T formats.

As expected, treatment of orthotopic TNBC cancer-bearing mice with our anti-CEA scFab CAR-T cells alone did not result in significant infiltration of these cells into the tumor or tumor inhibition. However, combination treatment with IGRT (single low dose of 10 Gy) resulted in synergistic activity, leading to stronger tumor inhibition compared to individual treatments. A repeat of the experiment with a different donor T-cell also showed similar tumor growth inhibition. For CAR-T cells to effectively kill tumor cells, they must sufficiently infiltrate the hostile tumor microenvironment (38). The combination of anti-CEA scFab CAR-T cells with IGRT increased CAR-T cell infiltration into the tumor as shown by immunostaining and luciferase labeling of the CAR T cells. A similar observation was also reported by Quach and colleagues, who found that tumor-targeted radiation prior to systemic administration of CAR-T cells substantially improved CAR-T cell therapy efficacy and infiltration in solid tumors (39). Akhavan et al. (40) investigated the effects of stereotactic radiation therapy at doses of 5, 10, and 20 Gy on the TME in a GBM murine tumor model. They found that a conditioning dose of 10 Gy was particularly effective in stimulating cells to enhance tumor growth kinetics and induce gene expression changes that support the combination with CAR-T cell immunotherapy (40). Additionally, other groups have reported that administering a sub-cytotoxic radiotherapy dose of 0.5 – 2Gy followed by CAR-T cells infusion have increased the regulation of death receptor molecules to enhance CAR-T cell efficacy (41).

An alternative approach by Cao and colleagues found that combining microwave ablation radiation therapy with AXL-CAR-T cells resulted in superior antitumor efficacy. Their findings suggest that tumor guided radiation enhances the activation, infiltration, persistence, and tumor-suppressive properties of AXL-CAR-T cells in non-small cell lung cancer patient-derived xenograft tumors via tumor microenvironment (TME) remodeling (42). Treatment of antigen-heterogenous pancreatic cancer with low-dose radiation therapy and CAR-T cells demonstrated that localized radiation can sensitize antigen-negative tumor cells, which would otherwise evade CAR recognition, to be effectively eliminated by CAR-T cell killing (43). IGRT prior to immunotherapy can cause tumor TME remodeling and depletion of some immunosuppressive cells, enhancing CAR-T cell migration to the tumor site. Thus, the combination therapy induced significant tumor suppression without observed toxicity in humanized immunocompetent mice.

However, the risk of induction of metastatic spread to distant organs caused by primary tumor irradiation has been less studied. Bouchard et al. (44) investigated the impact of radiation on the mammary glands, focusing on the invasiveness of breast cancer cells that survive radiation treatment. Their findings revealed a significant increase in breast tumor cell migration from the primary tumor compared to non-irradiated controls. This was associated with elevated expression of pro-migratory and pro-inflammatory molecules such as IL-6, cyclooxygenase-2, membrane type 1 metalloprotease, phospholipase A2, and transforming growth factor-β (TGF-β), which likely facilitated the migration of cancer cells, increased circulating tumor cells, and metastasis to the lungs. Supporting this, Biswas et al. (45) showed that increased secretion of TGF-β by stromal cells post-irradiation promoted lung metastases in an orthotopic mammary tumor model. Similarly, irradiation of hepatoma cells has been linked to the secretion of tumor necrosis factor-alpha (TNF-α), IL-6, VEGF, epidermal growth factor (EGF), MMP2, and MMP9, all of which enhance tumor invasion (46). Additionally, radiation has been shown to favor cancer cell migration at the expense of primary tumor growth in a glioblastoma rat model. Brain irradiation before primary tumor implantation promoted the infiltration of cancer cells into distant organs and induced a phenotypic shift in glioma cells from a proliferative to an invasive type (47).

The impact of vascular changes following IGRT is controversial. For example, Castel and Kirsch (48) reported that high-dose radiation causes endothelial cell proliferative defects, leading to increased vascular permeability and subsequent tumor cell death. However, Budach and colleagues (49) found no difference in local tumor control across various human cell lines using the high radiation dose necessary to cure 50% of tumors implanted in nude or SCID mice. Their findings suggest that stromal endothelial cells do not significantly influence tumor control by radiation, despite differences in the radiosensitivity of the mice used, supporting the theory of direct tumor killing (49). When we increased the radiation dose to 20 Gy, we observed a delayed tumor growth curve (results not shown) in the primary tumor, but this delay did not translate into long-term tumor control or elimination. Thus, it appears that low dose IGRT rather than high dose IGRT is preferable. Further improvements are possible with fractionated IGRT that affects tumor growth over a longer period. In a pilot study tracking CAR-T cell activity with luciferase after fractionated IGRT indicated the highest infiltration and expansion levels when tumors received four low daily doses of radiation. This insight highlights the need for further research to thoroughly understand the timing of CAR-T cell therapy after IGRT, with additional consideration of the radiation dosing schedules and possibility of multiple CAR-T cells treatments.

Importantly, our study demonstrated that the combination of IGRT and anti-CEA scFab CAR-T therapy elicited not only a strong antitumor response, but also prevention of metastatic spread to the lungs. As a mechanism, we suggest that low dose IGRT at the primary tumor enhanced CAR-T cell infiltration and expansion in the primary tumor, allowing sufficient persistence and increased CAR T trafficking to distant metastatic sites as they developed over time.

This study was limited to CAR-T therapy in immunocompromised animals, which restricts the ability to assess potential toxicity, an issue that we and other groups have previously shown in CEA transgenic mice treated with murine CAR T therapy without off-target effects (22, 23). Another limitation is that a detailed cytokine panel analysis at different time points was not performed, leaving open the question of involvement of other activation markers aside from IFN-γ and granzyme B. The exhaustion markers analysis was limited to PD-1 and TIM3. However, the emergence of newer markers like Tox and CD39 in the measurement of T-cell exhaustion may better explain the observations of tumor escape (50, 51). These aspects will be addressed in future experiments. Nevertheless, in our study the majority of the CD8+ CAR-T cells were PD-1 negative and expressed high levels of IFN-γ, both markers of effective CAR T therapy in clinical studies.

In summary, this study highlights the potential of anti-CEA scFab CAR-T cells as a promising therapeutic approach in combination with low dose IGRT. Building on our observations of the synergistic activity of anti-CEA scFab CAR-T cells with image-guided radiotherapy represents a novel therapeutic option that warrants clinical evaluation in solid tumor patients with metastases.
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Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of hematologic malignancies, achieving remarkable clinical success with FDA-approved therapies targeting CD19 and BCMA. However, the extension of these successes to solid tumors remains limited due to several intrinsic challenges, including antigen heterogeneity and immunosuppressive tumor microenvironments. In this review, we provide a comprehensive overview of recent advances in CAR T cell therapy aimed at overcoming these obstacles. We discuss the importance of antigen identification by emphasizing the identification of tumor-specific and tumor-associated antigens and the development of CAR T therapies targeting these antigens. Furthermore, we highlight key structural innovations, including cytokine-armored CARs, protease-regulated CARs, and CARs engineered with chemokine receptors, to enhance tumor infiltration and activity within the immunosuppressive microenvironment. Additionally, novel manufacturing approaches, such as the Sleeping Beauty transposon system, mRNA-based CAR transfection, and in vivo CAR T cell production, are discussed as scalable solution to improve the accessibility of CAR T cell therapies. Finally, we address critical therapeutic limitations, including cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and suboptimal persistence of CAR T cells. An examination of emerging strategies for countering these limitations reveals that CRISPR-Cas9-mediated genetic modifications and combination therapies utilizing checkpoint inhibitors can improve CAR T cell functionality and durability. By integrating insights from preclinical models, clinical trials, and innovative engineering approaches, this review addresses advances in CAR T cell therapies and their performance in solid tumors.
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1 Introduction

Adoptive cellular therapy (ACT), pioneered by Steven Rosenberg, utilizes the engineering of one’s own immune system to fight against malignancies. Chimeric Antigen Therapy (CAR T) is a form of ACT that has had tremendous impact in cancer therapy. The first approved CAR T therapy dates to 2017, when it was used for the treatment of hematological malignancies.

CAR T therapy utilizes the engineering of T cells to fight diseases in patients. T cells can be engineered to have heightened sensitivity towards target antigen – these T cells can then identify and begin an immune response against cells presenting the target antigen (1). While the basic structure of the CAR is well defined with an antigen binding domain, a transmembrane domain, and an intracellular signaling domain, there have been evolutions in the structures of CARs to allow for better immune response and greater antigen sensitivity (2). These advancements are fundamental for the potential expanded use of CAR T therapy.

The successes of CAR T therapy in hematological malignancies have opened doors for the utilization of this therapy to treat various forms of cancers, including solid tumors. Since CAR T therapy’s inception, its target range has considerably grown. The approach offered by CAR T therapy provides a unique advantage given that an engineered T cell can target any surface antigen whereas endogenous T cells can only recognize antigens presented on a major histocompatibility complex (MHC). This growth in target range comes with its own challenges. Namely, one of the primary challenges with CAR T therapy is the identification of truly tumor specific or tumor associated antigens. Thus, one area of research has been antigen identification for the development of specific and effective CAR T therapies (3).

Several CAR T cell products have been approved by the U.S. Food and Drug Administration (FDA) and are being integrated into treatment regimens for hematologic malignancies. These include CD-19 targeting therapies, such as tisagenlecleucel (Kymriah), axicabtagene ciloleucel (Yescarta), brexucabtagene autoleucel (Tecartus), and lisocabtagene maraleucel (Breyanzi), which have demonstrated exceptional efficacy in treating relapsed or refractory B-cell lymphomas and acute lymphoblastic leukemia (ALL) (4–7). Additionally, idecabtagene vicleucel (Abecma) and ciltacabtagene autoleucel (Carvykti), targeting B-cell maturation antigen (BCMA), have shown significant clinical benefits in patients with multiple myeloma (8–10). These therapies, which were initially used in relapsed or refractory setting, are now being explored in earlier lines of treatment, underscoring their potential to become first-line options for certain hematologic cancers.

Currently, CAR Ts are being explored for patients with various advanced solid tumors. However, CAR T therapies for treatment of solid tumors have yet to display their potential. The progress is limited due to a plethora of challenges – tumor accessibility, antigen heterogeneity, lack of specific tumor associated antigens (TSA) compared with hematologic malignancies, on target off tumor toxicity, cytokine release syndrome, neurological toxicities, the immunosuppressive properties of the tumor microenvironment, and T cell dysfunction driven by chronic antigen exposure (11–13). Rigorous studies on these areas of concern have led to promising translatable results that could soon cement CAR T therapy as one of the most effective treatment options for solid tumors. Approaches to address these areas of concern include modifications to the antigen binding domains of CARs, new methods to discover more cancer-enhanced antigens, enhancements to CAR T structure to allow for better solid tumor infiltration, and gene editing approaches to increase CAR T cell activity (14–20).

Additionally, the ability to produce CAR T cells at large using allogeneic T cells would allow for more widespread applications of CAR T therapies. While this approach does increase the risk for graft versus host disease, advancements in the methodologies used to produce allogeneic T cells have significantly lowered the adverse effects of such an approach. Thus, the use of allogeneic T cells allows for greater accessibility of CAR T therapy in its “off-the-shelf” form as compared to autologous T cell-based CAR T therapy.

The primary objective of this literature review is to specifically address the advances in CAR T cell therapy, namely in tumor-specific antigen identification and CAR modifications, and the performance of these advances in CAR T cell therapy clinical trials for solid tumors. Through an overview of CAR T structure, classification, modification, and manufacturing followed by an analysis of antigen selection techniques and clinical trials of CAR T cell therapies against identified antigens, we will discuss the current state of CAR T cell therapies in treating solid tumors while also presenting scopes for improvement for current therapeutic limitations and challenges.




2 Overview of CAR structure

CARs are similar to T cell receptors (TCR) in their composition of membrane-bound signaling receptors with ligand-binding domains followed by spacer ectodomains, a transmembrane domain, and one or more cytoplasmic domains (1, 21, 22) (Figure 1A). Typically, a CAR consists of four main components: (i) Target antigen-binding domain (extracellular). This is typically derived from the variable heavy (VH) and light (VL) chains of monoclonal antibodies that are bound by a linker to form single-chain variable fragments (scFv); however, another approach for CAR binding relies on variable heavy domains of heavy chains (VHHs). Further specification regarding the utilization of these VHHs, or nanobodies, is discussed in the “Modification of CAR T Cells” section. The target antigen-binding domain is involved in target identification and binding, which confers target specificity to CARs. (ii) Spacer region (also called hinge). This region provides flexibility to the antigen-binding domain, allowing for enhanced recognition of target epitopes. (iii) Transmembrane domain. This domain anchors the extracellular and intracellular domains to the cellular membrane and plays an important role in determining the CAR membrane stability and surface expression. (iv) Signaling domains (intracellular and may vary in number). Signaling domains are involved in downstream signaling after binding of the antigen-binding domain with the target antigen is complete. The intracellular signaling actions of these domains, which will be further discussed in the “CAR T Classification” section, ultimately lead to signaling cascades that activate T cell mediated cancer cell attack.

[image: Diagram illustrating CAR T-cell therapy. Panel A shows the structure of an IgG antibody transitioning to an ScFv, linking to create a CAR with a hinge, transmembrane, and intracellular signaling domain. Panel B depicts a CAR T-cell recognizing a target antigen on a cancer cell, releasing perforin and granzymes, and inducing cancer cell death through cytolytic activity.]
Figure 1 | CAR Structure and Function in Killing Cancer Cells (A) The CAR’s antigen binding domain is typically derived from a single-chain variable fragment (scFv). The antigen binding domain is present on the ectodomain of the T cell and is connected to hinge, transmembrane, and intracellular signaling domains that allow for CAR stability and binding induced attack of cancer cells by T cells. (B) CAR T cell binding to target antigens on cancer cells allows for T cell activation and T cell mediated killing of cancer cells.

Designing CARs requires careful evaluation of these several factors. Subsequently, a CAR T cell is generated by packaging these synthetic domains into viral vectors and transducing them into T cells. The flexibility of CAR modular composition provides CAR T cells with great versatility and tunability when used in therapeutic applications. During an antigen encounter event, the antigen-binding domain binds to its target, triggering conformational changes in the entire protein. As a result, several post-translational modifications (PTMs) are initiated that commence intricate intracellular signaling cascades, culminating in T cell activation (Figure 1B). Overall, the creation of custom CAR constructs can be achieved through plasmid editing that allows for insertions, alterations, and deletions of domain-encoding sequences.




3 CAR T classification

Currently, CAR T cells are classified into five generations according to the organization of their intracellular signaling domains (Figure 2). The intracellular domains are important in inducing differentiation, bringing about cytotoxic response, producing cytokines, and recruiting other immune cells. These events enhance the process of tumor elimination and allow non-MHC restricted targeting of tumors. Hence, current research focus aims to enhance CAR T cell clinical efficacy by amplifying and finetuning these functions.

[image: Diagram showing the evolution of chimeric antigen receptor (CAR) generations. Each CAR type features structural components like ScFv, hinge, transmembrane domains, and CD3ζ chain. First generation has basic components, while subsequent generations add costimulatory domains and cytokine inducers. Fifth generation includes additional elements like IL-2Rβ chain fragment and JAK/STAT pathway activation, leading to cytokine secretion and downstream cytokine production.]
Figure 2 | CAR T Generation Classification by Intracellular Structure. CARs are commonly grouped into generations based on the various structures present in their intracytoplasmic domains. Multiple costimulatory domains and combinations of costimulatory domains have been analyzed. Parentheses under costimulatory domains 1 and 2 represent specific domains that have been tested at that position throughout CAR generations.



3.1 First generation CARs

First-generation CARs carry a single CD3ζ-chain or FcϵRIγ intracellular domain (Figure 2) without any additional costimulatory domains. Though these complexes are like endogenous TCRs, they are unable to produce sufficient interleukin-2 (IL-2). As a result, first-generation CARs need to be supplemented with exogenous IL-2 for an efficient response. This proved to be a major drawback in the first-generation CAR Ts (11). First generation CARs have also demonstrated low cell proliferation and a short in vivo lifespan; both these points contributed to their poor performance in a clinical setting (12, 13). These drawbacks and poor clinical performance prompted the development of the second generation of CAR Ts.




3.2 Second generation CARs

To improve on the first generation of CARs, co-stimulatory domains such as CD28, 4-1BB, or OX-40 were added to the CAR structure (Figure 2). CARs carrying these cytoplasmic costimulatory domains proved much more effective in delivering a secondary signal upon encountering a tumor antigen. A comparison of T cells carrying only one signaling domain to those carrying an internal CD28 costimulatory domain showed a significant increase in proliferation and persistence (23). In general, addition of co-stimulatory domains improved proliferation and cytotoxicity, while also leading to a prolonged response and an increased in vivo life span. Each of these costimulatory domains imparted specific characteristics to the CAR T. 4-1BBζ-CAR T cells could persist longer in circulation than CD28ζ-CAR T. It was also observed that while the former caused early exhaustion of CAR T cells, the latter led to constitutive stimulation even in the absence of the antigen. Thus, subsequent CAR design focused on the engineering of more effective costimulatory constructs (23).




3.3 Third generation CARs

Third-generation CARs utilize a combination of multiple costimulatory signaling domains within the endodomain (Figure 3). Some of the common constructs carry CD3ζ-CD28-OX40 or CD3ζ-CD28-4-1BB (14, 24). Amongst these third generation CAR constructs, CD3ζ-CD28-4-1BB seems to be the most promising given the CD28 costimulatory domains contribute to rapid tumor elimination while the 4-1BB endodomains increase CAR survival (25, 26). Third generation CARs have been successful in the treatment of cancers as they demonstrate high proliferation, maintain longer survival periods, and display good safety profiles. However, their efficiency in tumor elimination does not always remain superior compared to second-generation CAR T cells (20). Hence, efforts to improve efficiency and safety resulted in the development of fourth generation CARs.
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Figure 3 | Selected Modifications of CAR T Cells. (A) Construction of a dual-signaling CAR utilizing a second-generation CAR. (B) Construction of a tandem CAR utilizing two scFvs in a second-generation CAR. (C) Construction of a CAR with Combinatorial Antigen Sensing Circuits in the form of an “AND” logic gate CAR. (D) Derivation of nanobodies for construction of nanoCARs. (E) T cell receptor fusion constructs (TRuCs) that contain an ScFv linked to various subunits of an endogenous TCR.




3.4 Fourth generation CARs

Subtle modifications of third generation CAR Ts gave rise to fourth-generation CARs. These CARs feature expression of transgenic proteins, often cytokines, that can be inducibly or constitutively expressed. In some cases, these CAR Ts are also designed with a regulatory switch for a suicide gene or an element that enhances T cell function (27, 28). In one instance, inclusion of Caspase 9 enhanced the safety of CAR Ts (29). An advanced version of this CAR was developed by Labanieh et al. (30). The group designed protease-based CARs that could be regulated with drug doses to enhance the safety and efficacy of the CAR Ts. Also belonging to the fourth generation of CAR Ts are T cells redirected for universal cytokine-mediated killing (TRUCKs). These CAR Ts are engineered to carry a nuclear factor of the activated T cell (NFAT)-responsive cassette (containing a transgenic cytokine such as IL-12) and deliver the transgenic product to the tumor site (Figure 2). The presence of a cytokine transgene enhances the efficacy of CAR T cell therapies in preclinical models with low systemic toxicity (31, 32). Thus, in TRUCKs, the expression of the transgene is induced when CD3ζ-containing CARs encounter their specific target. TRUCK CAR T cells thus carry two transgenic cassettes – one for the CAR structure and another for the inducible cytokine.




3.5 Fifth generation CARs

Fifth generation CARs integrate an additional membrane receptor into their structure. Of the several different approaches tested, one of the most promising is the addition of IL-2 receptors (Figure 2) that allow for antigen-dependent JAK/STAT pathway activation (33).

Another promising approach is the inclusion of switch receptors. Incorporation of a drug-dependent OFF-switch that leads to CAR depletion or the incorporation of an ON-switch that leads to activation remains a promising option. In fact, lenalidomide-gated CARs are designed on this principle (34). Even though these CARs exhibit less efficiency in vitro, they remain favored from a research perspective given their increased regulation and enhanced safety profile. Li et al. (2022) further developed this concept by developing a multiantigen targeted collection of CARs controllable with FDA-approved antiviral drugs (35). The VIPER (VersatIle ProtEase Regulatable) CARs are inducible with ON and OFF switch CAR circuits engineered using a viral protease domain. The group demonstrated limited toxicity of their system in a cytokine storm animal model. In addition, they also developed several complex CAR circuits with logic and multiplex control functions.





4 Modifications of CAR T cells



4.1 Dual-signaling CARs

Dual-signaling CARs make use of two separate CARs on the same T cell with each CAR cell having its own intracellular domains (Figure 3A). Such CARs are much more effective since they can target different antigens at the same time. Dual targeting, split costimulatory signaling and shared CD3ζ chain tailored CARs have been used to target two clinically relevant antigens (15). These dual-signaling CARs were targeted against GD2 and B7-H3 in a neuroblastoma disease model (36–38). In fact, this approach was further validated with other pairs of targets, namely mesothelin (MSLN) and chondroitin sulfate proteoglycan 4 (CSPG4) (15).

Similarly, a dual-signaling CAR T targeting CD19 and CD123 was created and proved more efficient in tumor eradication in preclinical trials than using CAR Ts with a single signaling moiety (CD19-CAR T cells and CD123-CAR T cells) (18). Additionally, this dual-signaling CAR T prevented disease recurrence caused by downregulation or loss of target antigens on the tumor cell surface much more efficiently. Thus, it has been shown that the dual-signaling CAR strategy allows for rapid and sustained antitumor effects while preventing tumor escape in heterogeneous antigen expression tumor cell populations (15).




4.2 Tandem CARs with multiple single-chain variable fragments

Refinement of antigen binding domains in the form of scFvs has also led to the production of CARs that target more than one antigen in the form of multiple antigen-binding CARs (Figure 3B). These CARs exist in the form of dual CARs, consistent of two separate binding domains, and in the form of TandemCARs, which contain a modified CAR ectodomain that encodes for multiple antigen-binding domains in a CAR module using scFvs from monoclonal antibodies (39–41).

To further enhance the efficiency of CARs, antigen binding domains have been designed to carry three scFvs in tandem. As a result, these CARs can target three different tumor associated antigens (TAAs), allowing for their utility in treating tumors with heterogeneous cell population (42). Constructed CARs with a single universal tricistronic transgene were designed to recognize three different TAAs, namely, human epidermal growth factor receptor 2 (HER2), interleukin-13 receptor subunit alpha-2 (IL13Rα2), and ephrin-A2 (EphA2) to treat glioblastoma. The outcomes of this CAR T therapy revealed that the trivalent-tandem CAR had strong anti-tumor activity and could overcome tumor antigen heterogeneity at a level greater than nonspecific or bispecific CAR T cells. On similar lines, Balakrishnan et al. (2019) designed a trivalent-tandem CAR by using three scFvs in tandem with ankyrin repeat proteins (DARPins) (43). These CAR T cells displayed potent anti-tumor effects and performed well despite extensive tumor antigen heterogeneity and immune escape.




4.3 CARs with combinatorial antigen sensing circuits

Another modification of CAR involves a design concept in which the CAR T can only be activated when two scFvs bind to corresponding antigens simultaneously (Figure 3C). Boolean logic gates are the recent developments to CAR T cells as safety switches. Integrated signals from multiple receptors at once can regulate CAR T cells activity based on their environment. The “AND”- gate logic utilizes two receptors that recognize different tumor antigens. Binding to both antigens of interest is needed to trigger CAR T cell activation (44). This combinatorial antigen sensing circuit is dependent on the synNotch receptor that forms the core design of “AND”-gate CARs. The synNotch binds to the first selective tumor antigen, inducing the expression of the second CAR, which then binds to specific second tumor antigen leading to the activation of CAR T.

The utilization of two scFvs binding to corresponding antigens can also be used to limit on-target off-tumor toxicity. Inhibitory CARs (iCARs) contain a T cell inhibitory signaling domain. An AND-NOT gate CAR T strategy allows for the CAR on the T cell to recognize the tumor antigen and activate the T cell while the iCAR recognizes a normal tissue antigen and inhibits T cell activity (45). This allows the CAR T cell to limit its on-target off-tumor toxicity by distinguishing between a tumor cell and a normal cell that both have the same CAR target antigen.




4.4 CARs with variable heavy domains of heavy chains antigen binding domains

While CARs exhibiting a TCR-like antibody form utilize scFvs from monoclonal antibodies, there exist other mechanisms for antigen binding (46). Another approach for CAR binding relies on variable heavy domains of heavy chains (VHHs), solely the variable domains of heavy-chain-only antibodies (HCAbs) (47). Given advancements in the complementarity-determining regions (CDRs) of VHHs, these VHHs, or nanobodies, can bind antigens with affinities comparable to those of antibodies (Figure 3D). These binding affinities are enhanced by further mutations in the VHH framework which allow for these molecules to remain stable in aqueous solutions while containing soluble protein domains (48). The applicability of these nanobody-driven CARs, or nanoCARs, is derived from investigations showing the drawbacks associated with scFv framework regions in CARs - such regions have shown to cause CAR aggregation and tonic signaling with low cell activation (49). Although nanoCARs are still subject to this mentioned aggregation issue, nanoCARs remain more predictable in their binding ability given their monomeric structure, allowing for the use of immune libraries (50).




4.5 T cell receptor fusion constructs

T cell receptor fusion constructs (TRuCs) utilize the biology of TCRs and fuse them with an antibody-based binding domain (44). The fusion of the antibody-based binding domain to the TCR to create TRuCs allows these modified TCR complexes to effectively recognize surface antigens (Figure 3E). These modified TCR complexes, specifically referred to as TRuC-T cells, have shown to kill tumor cells with the same level of potency as second-generation CAR-T cells while displaying a significantly lower cytokine release (51). Additionally, TRuCs have been used in targeting treatment-refractory mesothelin expressing solid tumors through the fusion of an anti-mesothelin antibody to the endogenous TCR complex. This TRuC-T therapy, gavocabtagene autoleucel, has shown positive results in a Phase I/II clinical trial (NCT03907852) has shown promising results with a disease control rate of 77% in thirty patients (52).





5 Manufacturing the CAR T



5.1 Acquisition of T cells

After leukapheresis separates leukocytes from the blood of patients, enrichment of the product allows for collection of T cells (53). Rather than completing the intensive process of purification of autologous antigen-presenting cells (APCs) from patients to activate T cells, beads coated with anti-CD3 and anti-CD28 monoclonal bodies have been employed to activate T cells in an efficient way (54, 55). Traditionally, autologous T cells, cells purified from the patient to be treated, have been used to produce CARs (56). However, a considerable drawback associated with the usage of autologous T cells remains the retrieval of patient specific T cells for CAR development for effective CAR T therapy. In specific, drawbacks include the time-consumption and cost associated with autologous T cell production, the functional quality of autologous T cells, and the potential manufacturing failures associated with autologous T cell preparation (57, 58). Unlike autologous T cells, allogeneic T cells serve as universal T cells from healthy donors.

To circumvent graft-versus-host diseases, allogeneic T cells are produced through genetic disruption of HLA-A, HLA-B, class II major histocompatibility complex transactivator (CIITA), T-cell receptor alpha constant (TRAC), and Programmed Cell Death Protein 1 (PD-1), leading to their inability in recognizing allogeneic antigens (57, 59, 60). Allogeneic T cells can thus be used to produce nearly universal CAR T cells for antigens of interest (Figure 4). Though these genetic disruptions to the HLA loci, CIITA, TRAC, and PD-1 present on T cells serve to mitigate the effects of graft-versus-host disease, there remains a life-threatening risk of graft-versus-host disease. In addition, universal allogeneic generated CAR T cells are eliminated by the patient’s immune system, whereas autologous CAR T cells last on the timescale of months to years (4, 58).
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Figure 4 | Utilization of Allogeneic T Cells to Produce CAR T Cells. Isolated T cells collected from healthy donor leukocytes allow engineering of the T cells so that they can be used universally. This process includes the introduction of a recombinant lentivirus to add the desired CAR to the T cell and includes the CRISPR/Cas9 mediated disruption of the HLA-A, HLA-B, class II major histocompatibility complex transactivator (CIITA), T-cell receptor alpha constant (TRAC), and Programmed Cell Death Protein 1 (PD-1) on transduced T cells. Further amplification and purification of these allogeneic T cells produces universal CAR T cells that can be infused to multiple patients.




5.2 T cell engineering

Within activation, T cells are subject to incubation with a produced lentiviral vector encoding for the CAR. Viral machinery can be utilized to inject RNA within patient cells such that the RNA is reverse transcribed into patient T cell DNA. This reverse transcription encodes for the CAR and allows for maintained expression, via transcription and translation, of the CAR within the patient T cells as they are expanded (61, 62). While lentiviral vectors are commonly employed to express CARs on patient T cells, manufacturing of the CAR T cell can also be completed by utilizing mRNA transfection and the Sleeping Beauty transposon system.

mRNA based transfection utilizes electroporation to modify T cells with transient CAR expression (63). This approach yields significant antitumor effects in preclinical models of solid tumors like mesothelioma, while remaining a cost-efficient manner to manufacture CAR T cells (64). One drawback, however, is that the mRNA transfection approach requires multiple rounds of CAR T cell infusion (65). Additionally, in vivo delivery of mRNA can be mediated by lipid nanoparticles in a non-viral vector system (66). These lipid nanoparticles-mRNA formulations protect the mRNA from nuclease degradation in cellular fluids while avoiding clearance by renal glomerular filtration as mRNA is internalized by target cells (67). Lipid nanoparticles have been administered in the clinical setting for small molecule and mRNA delivery (68).

The Sleeping Beauty transposon-based system utilizes electro-transfer of non-viral plasmids for DNA transduction - this clinical grade production occurs at a cost that is nearly 10% of the cost associated to produced good manufacturing grade (GMP) virus. Additionally, with proven potential for human gene therapy, the Sleeping Beauty system can generate significant amounts of modified T cells within 28 days (69, 70). Further positives associated with the Sleeping Beauty transposon system include its relative inexpensiveness in early-stage clinical trials. However, there remain lingering questions regarding the efficacy of this system in comparison to lentiviral vectors and the potential remobilization of transposons (71).




5.3 In vivo manufacturing

CAR T cells can be produced in vivo using various techniques. The first of these techniques employs the utilization of lentiviral vectors. Though the lentiviral vector approach can be used to manufacture CAR T cells in vivo, the tropism of CAR-encoding lentiviral vectors to T cells must be confined. This can be done by replacing natural receptor usage of the vectors and fusing binders which recognize solely T lymphocyte binders, such as CD8 or CD4 (72–74). Lentiviral vectors have been used to generate human anti-CD-19 CAR T cells by targeting human CD8+ cells in a mouse model (75). While such an approach did lead to B-cell depletion and signs of cytokine release syndrome (CRS), the utilization of CD4 lentiviral vectors led to the production of anti-CD-19 CD4+ CAR T cells that led to more efficient tumor cell killing activity (76).

Adeno-associated virus (AAV) vectors can also be used to manufacture CAR T cells in vivo. The injection of an AAV vector containing the CD4 targeting CAR gene allowing for the generation of potent CAR T cells in vivo that ultimately led to tumor regression in a mouse model (77).

Non-viral approaches have also been established in the in vivo manufacturing of CAR T cells. Lipid nanoparticles (LNPs) can be used to transfect T cells with mRNA in vivo through conjugation to antibodies or ligands that target various receptors on these T cells, including CD3, CD8, CD4, CD7, and CD5 (78–83). Specifically, LNPs using antibody conjugation platforms have been used to selectively and efficiently produce functional CAR T cells in vivo through the use of CD3 and CD7-LNPs (84).




5.4 Ex vivo manufacturing

While the methods to manufacture the engineered CAR T cell therapy are further expanded and refined, there remains the manufacturing bottleneck of growth of large enough numbers of cells for clinical use with the use of bioreactor culture systems (85). There are significant costs associated with both the aforementioned leukapheresis and expansion steps. While methods and devices, like the G-Rex (Wilson-Wolf) exist to expand cells from low seeding densities, propagation of such devices pose an obstacle to the widespread manufacturing of CAR T cells (86). However, devices like the CliniMACS Prodigy, produced by Miltenyi Biotec, provide hope for the future given its ability to prepare, enrich, activate, transduce, expand, and sample cells (87). While expensive, this device has been used to produce autologous CD19 CAR T cells safely and efficiently for treatment of lymphomas, making it plausible for use in clinical trials (88, 89).

Rapid manufacturing of CAR T cells also remains a prominent area of research and development. The typical ex vivo manufacturing of T cells involves activation, viral transduction, and ex vivo expansion for at least six days – this time in activation and expansion can negatively affect CAR T cell therapies due to the progressive differentiation and loss of anti-leukemic activity of these CAR T cells over that time (90). Utilizing lentiviral vectors to transduce non activated quiescent T cells allows for the stable expression of a CAR in these non-activated T cells. This process saves time and resources while also promoting higher efficacy at lower doses as compared to those seen in activated T cells (90, 91).





6 In vivo CAR T studies

Tumor heterogeneity is an evolving process that hinders tumor eradication by various therapeutic approaches. Using multiple CAR T cells targeting a specific single antigen is one of the options to overcome the problem of tumor heterogeneity. Co-administration of PSCA and MUC1 targeted CAR T cells showed a tumor-killing effect in an in vivo mice model implanted with non-small cell lung cancer (NSCLC) cells (92). At the same time, cytokines in the immunosuppressive tumor microenvironment render CAR T cells non-functional. Reversing the suppressive cytokine pathways is a strategy to overcome these challenges. Engineered TGF-β dominant-negative receptors (DNR) display inhibitory action on TGF-β signal (93). This action blocks the transformation of primitive T cells into Treg. TGF-β receptor II (TGFBR2) expressing CAR T cells engineered with CRISPR/Cas9 technology showed anti-tumor activity in in vivo models (94). Mesothelin targeting CAR T cells with PD-1 dominant negative receptor (DNR) expression had increased activity in pleural mesothelioma xenograft models (95). FAS DNR expressing CAR Ts showed a similar result in an in vivo model (96).

In another study, CAR T cells with inducible IL-12 secretion upon target encounter were developed to overcome the systemic toxicity of constitutively active IL-12 (31, 32). In these studies, the induction of IL-12 in CAR Ts reduced antigen-positive tumor growth and prevented the growth of antigen-free cancer cell proliferation in mice compared to CAR T cells lacking the cytokine. There was also increased macrophage accumulation at the tumor site in the presence of IL-12 thereby promoting anti-tumor activity (31). Additionally, the engineering of an optimized membrane-bound IL-12 molecule in CAR T cells led to positive results in in vitro and in vivo models. Specifically, CAR T cells equipped with the membrane bound IL-12 molecule showed increased antigen-dependent T cell proliferation and showed high efficacy in human ovarian cancer xenograft models. Membrane-bound IL-12 also promoted durable anti-tumor responses with demonstrated safety and efficacy in an immunocompetent mouse model (97).

Administration of anti-CD19 CAR T cells with constitutive expression of IL-18 to mice bearing CD19+ tumors showed better survival of mice compared to CAR Ts without this feature (98). The survival was attributed to CAR Ts increased cell expansion and persistence and activating the endogenous immune system. As opposed to constitutive expression, inducible IL-18 CAR T cells also showed reduction in the size of advanced pancreatic tumors in mice and prolonged survival compared to treatment with the CAR alone (99). It was also observed that IL-18 producing CAR T cells were more effective than IL-12 producing CAR Ts in controlling late-stage cancer. Similarly, anti-Delta-like Protein 3 (DLL3) IL-18 secreting CAR Ts were shown to have an enhanced potency, as well as increased activation of CAR T cells and tumor-infiltrating lymphocytes, in small cell lung cancer models (100).

CAR T cells engineered to secrete IL-15 have been shown to exhibit increased tumor cytotoxicity compared to using CAR alone T cells in vitro and in vivo studies (101, 102). The secretion of IL-15 provided greater protection against tumor rechallenge. It was also observed that IL-15 tethered to the membrane promoted the CAR T cells to develop a memory phenotype.




7 Current antigens and the search for new antigens

The first U.S Food and Drug Administration (FDA) approved CAR T cell therapy targets the B-lymphocyte antigen CD19, a transmembrane glycoprotein that belongs to the immunoglobulin superfamily. CD19 functions as a biomarker for follicular and dendritic cells and for neoplastic and normal B cells (92). Working as part of an extracellular complex on the surface of mature B cells, CD19 functions as an integral signaling component of these cells (103). Given the universal expression of CD19 in B cell neoplasms, CD19 has been the first target of CAR T cell development. Since the approval of CD19-targeted CAR T cell therapy for patients with acute lymphoblastic leukemias (ALL), the indication has expanded to aggressive B cell lymphomas. The current approved CD-19 targeted CAR T cells include axicabtagene ciloleucel, brexucabtagene autoleucel, tisagenleucelucel, and lisocabtagene maraleucel (4, 6, 7, 104–110). In fact, the effectiveness of CAR T cells targeting CD19 in ALL has been exceptional (111). Following the approval of CAR T cell therapies targeting CD19, the FDA has since approved CAR T cell therapies targeting B-cell maturation antigen (BCMA) for patients with multiple myeloma (MM) (112). MM is a malignant disease defined by the proliferation of plasma cells in bone marrow (113). With the continuous increase in the prevalence and frequency of MM, BCMA has become an antigen of significant interest, given its expression on the surface of both B-cell lineage cells and malignant plasma cells (114, 115). Given BCMA’s role in cell survival and its expression on the surface of target cells, it remains a pivotal antigen for the development of CAR T cell therapies (116, 117). Studies have demonstrated the significant clinical activities of BCMA-targeted CAR T cells, leading to the approval of idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel (cita-cel) (8, 118).

Given the potential robustness of CAR T cell therapy, there remains a search for additional tumor specific antigens. Of paramount importance in utilizing CAR based therapy for solid tumors is the distinction of antigens that would allow the CAR to be specific and effective in recognizing tumorous cells (119). The difficulty that arises in identifying such antigens is due to potential off-tumor on-target toxicity.

T cell receptor-engineered T (TCR-T) cell therapy is another rapidly developing form of adoptive cell therapy that targets tumor antigens. Unlike CAR therapy, TCR therapies rely on the MHC mediated presentation of peptide sequences from antigens (120). Such an approach can be advantageous as TCR-T therapy is not limited solely to antigens presented on the surface of cancer cells (121). However, there have been documented risks associated with the potential adverse effects of TCR and tumor associated antigen (TAA) mispairings. Additionally, there remain drawbacks given the difficulty associated with TCR acquisition (122). An approach where a TCR-like antibody is fused with CD28 and CD3-zeta chain endo-domains allows for the expression of TCR-like CARs on the surface of T cells. With TCR-like antibodies fused with transduction signals, these TCR-like CARs are then able to mediate interactions between the engineered T cells and tumor cells (123). Such an approach allows for TCR-like antibodies against peptide sequences presented on the ectodomains of tumor cells. This allows the TCR-like CAR to bind to directed antigens independent of the MHC-I, allowing for the activation of the intracellular domain signal transduction system which leads to the lysis of target tumor cells (123). The direct binding of a CAR to its antigen, a process that is mediated by TCR-like antibodies, allows for the engineered T cell to receive a fully competent activation signal - such a signal allows for the ensuing CAR dependent killing and cytokine production (69).

The exploration of CARs that bind to antigens based on natural affinity is also underway (124). Such CARs, natural ligand-receptor CARs, utilize molecules that maintain a natural affinity for an associated target. Unlike previously mentioned CARs, this binder does not rely on foreign antibody introduction. First generations of CARs targeting stress-associated ligands from NK cell receptors exhibit universal behavior across tumor types (125, 126). Though a certain drawback of ligand-receptor CARs is the lack of tumor restrictive ligand expression, there remains increased risks of on-target off-tumor toxicity, as shown with CARs targeting CD70 using the costimulatory receptor CD27 (127, 128). However, a distinct advantage of these CARs remains their lowered immunogenicity given the lack of refinement of extracellular components (129).

Given this overview of antigen binding, identification of tumor specific antigens remains one of the biggest challenges in the development of CAR therapy. Pan-cancer analyses have shown that tumor tissues contain up to 30% more alternative splicing events as compared to normal tissues (130). Findings like these have garnered interest in characterizing alternative splicing events as potential targets for immunotherapy (111, 112). A recently developed method to identify new antigens for CAR therapy comes in the form of splice isoforms found on the ectodomain of cells (16). The development of a computational platform, Isoform peptides from RNA splicing for Immunotherapy target Screening (IRIS), has potential in allowing for the discovery of tumor specific antigens. Long read RNA sequencing allows for the discovery of mRNA splice junctions. Such tumor-associated splice-junctions are then screened against pre-compiled tumor and normal transcriptomes. The approach to determine splice isoforms on cellular ectodomains in solid tumors based on sequencing data of selected cancer lines has allowed for an expansion in the realm of potential antigens for CAR therapy (131, 132). Additionally, this expanded range of potential antigens is coupled with the discovery of potentially novel splice isoforms of protein that are unique to specific solid tumors (16). In turn, these splice isoforms on cellular ectodomains could serve as an expanded range of potential antigens that also lower the risk of on-target off-tumor toxicity given their lack of expression in normal tissues (133).




8 Antigen targets in CAR T clinical trials

There are numerous CAR T clinical trials targeting various antigens for solid tumor treatment. These antigens, along with information regarding current and past clinical trials targeting these antigens in solid tumors, are examined in this section and are represented in Table 1.

Table 1 | The list of active or completed phase I/II clinical trials of CAR T cell therapies by target antigen.
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8.1 EGFR

The Epidermal Growth Factor Receptor (EGFR) is considered an important target for anti-tumor therapy in many solid tumors such as non-small cell lung cancer, gastrointestinal cancer, and colorectal cancer. Ongoing clinical studies are evaluating CAR T cell therapy targeting EGFR. In the case of NSCLC, a phase I trial for patients with EGFR mutation (NCT01869166) enrolled fourteen patients. Four of fourteen patients showed partial response for two to four months, and eight patients showed stable disease for two to four months as well. All Grade 3 events were manageable. The progression-free survival (PFS) was three months, and the overall survival (OS) was 4.9 months (134). Another phase I trial for patients with refractory/relapsed NSCLC showed therapeutic response (NCT03182816). One of nine patients maintained partial response for more than thirteen months, six patients showed stable disease, otherwise, and two patients showed progression in disease. All Grade 1-3 adverse events were manageable with proper treatment. The PFS was 7.13 months and OS was 15.63 months (135). An open label phase I clinical trial for patients with glioblastomas with EGFRvlll mutation (NCT02209376) assessed the efficacy of autologous CAR T cells targeting EGFRvlll, however, it was terminated prior to completion due to futility (136).




8.2 HER2

Human Epithelial Growth Factor Receptor 2 (HER2) plays a key role in targeted therapy, especially in breast cancer, and gastrointestinal malignancies. In addition, other types of solid tumors are applicable to Her2 targeted therapy and researchers highlighted the potential of HER2-targeted-CAR T cell therapy. A phase I trial of HER2-specific dual-switch CAR T cells in previously treated HER2 positive solid tumors (NCT04650451) showed the therapeutic and safety profile of CAR T cell products in combination with rimiducid. Five of nine patients achieved a prostate specific antigen (PSA) 50 response, and four of nine patients also got a PSA90 response. However, the last patients with metastatic castration-resistant prostate cancer experienced Grade 4 cytokine release syndrome (CRS) and reached second dose limiting toxicities (DLT) in the dose-escalation cohort. Given this safety issue, the trial was terminated. A phase I trial (NCT0195843) revealed that HER2 directed CAR T had the activity in advanced biliary tract cancer and pancreatic cancer. One patient achieved partial response for 4.5 months and five obtained stable diseases. Regarding safety profiles, most adverse events (AEs) were Grade 1 or 2, except one Grade 3 febrile syndrome and one abnormal liver function test (LFT) elevation that were both manageable (137). An ongoing phase I trial (NCT04511871) was designed to evaluate the efficacy of CCT 303-406, a HER2 targeting CAR T in refractory HER2 positive tumors. The primary objective was safety, tolerability, and optimization of the dose for phase II trial. In 2023, a new phase I trial (NCT05745454) began to recruit patients with HER2 positive solid tumors.




8.3 CEA

Carcinoembryonic Antigen (CEA) is an established tumor marker in epithelial solid tumors including colorectal cancer (CRC). As a result, CEA is regarded as a promising target for CAR T therapy. A phase I/II trial, which began to recruit patients in August 2023. is underway to assess safety and tolerability of CEA-targeted CAR therapy for patients with CEA-positive advanced solid tumors such as gastrointestinal (GI) malignancy, lung cancer, and breast cancer (NCT06006390). Another ongoing phase I trial (NCT06043466) is enrolling patients with various solid tumors, including GI malignancies and NSCLC. The primary objectives are determining the DLT and the maximum tolerated dose (MTD), while secondary objectives include disease control rate (DCR) within three months, maximum concentration of dosage, maximum time to reach the highest concentration, and the content of CEA in peripheral blood after infusion of the CAR T cells. Multiple other trials are evaluating the safety and efficacy of CEA-targeted CAR T cell therapy for patients with CEA- positive advanced solid malignancies (NCT05538195, NCT06126406). Lastly, a logic-gated Tmod CAR T therapy of A2B530 showed its safety and efficacy in patients with solid tumors associated with CEA expression and loss of heterozygosity (LOH) of HLA-A*02 (NCT05736731, EVEREST-1). The primary objectives of this phase I study are to assess the safety and tolerability of this therapy in patients with NSLC, CRC, and pancreatic cancer, while determining the maximum tolerated dose and the recommended phase II dose (RP2D).




8.4 Mesothelin

Mesothelin (MSLN) is usually expressed in normal mesothelial cells; however, it is overexpressed in pancreatic cancers, ovarian cancers, and mesothelioma as well. MSLN is considered as a potential target for CAR T cell therapy and multiple trials tested its clinical activity (138). A phase I of MSLN-targeting CAR T cells demonstrated anti-tumor activity in pancreatic ductal carcinoma, ovarian cancer, and malignant mesothelioma (NCT03054298 and NCT03323944). In these studies, eleven of fifteen patients obtained stable disease (the best response), and one patient experienced dose-limiting toxicity of Grade 4 sepsis. Short persistence after the intravenous infusion of the CAR T cells appears to be associated with limited clinical activity. Ongoing studies are evaluating the regional delivery (intrapleural administration, intramural administration, etc.) of CAR T cells to enhance their proliferation, persistence, and function (139). MSLN-targeting CAR T cells (mesocarp-T) that express CTLA-1 and PD-1 antibodies are under evaluation for patients with various MSLN positive solid malignancies (NCT03182803). Other early phase trials (NCT03941626) aimed to evaluate MSLN-targeted CAR T therapy in hepatocellular carcinomas, glioblastomas, esophageal carcinomas, and gastric carcinomas, but their results remained veiled so far (140–142).




8.5 ROR1

Receptor tyrosine kinase-like orphan receptor (ROR) is a subfamily of RTK and serves as a nuclear receptor interacting with intracellular transcription factor. It plays a significant role in embryonic development, and numerous studies have shown its aberrant expression in many diseases including advanced lung and triple negative breast cancers, making it a candidate for CAR T therapy (143, 144). A ROR1 targeted CAR T cell therapy, LYL797, is being tested in patients with advanced lung and triple negative breast cancers (NCT05274451). This phase I trial aimed to assess safety and determine the RP2D. The study plans to enroll fifty-four patients in dose-escalation and expansion cohorts. Another phase I trial of autologous T cell therapy for patients with ROR1+ triple negative breast cancer and ROR1+ non-small cell lung cancer (NCT02706392) assessed the safety profile in six patients, and no DLT was observed. However, the trial was terminated prematurely due to slow accruals (145). A trial of PRGN-3007 UltraCAR-T cells (NCT05694364) targeting ROR1 is currently under clinical development for patients with hematologic malignancies as well as ROR1+ triple negative breast cancers. The UltraCAR-T platform is designed to address various limitations of traditional CAR T cell manufacturing by using a nonviral gene delivery system and an overnight manufacturing process (146). In addition, PRGN-3007 is designed by incorporating Intrinsic down-regulation of PD-1 expression into a CAR T cell. The first patient was enrolled in April 2023 and a total of eighty-eight patients are expected to participate in this study. ROR2 has been considerably less studied than ROR1, however, various studies showed that it is highly expressed in solid tumors including melanoma, osteosarcoma, renal cell carcinoma, and head and neck squamous cell carcinoma (147). Hence, ROR2 has emerged as a candidate for CAR T cell therapy. A phase I trial of CCT301-59 (NCT03960060) is investigating the efficacy and safety of autologous ROR2-targeting CAR T cell therapy in adults with relapsed and refractory stage IV ROR2 metastatic solid tumors. The results have not yet been reported.




8.6 Claudin 18.2

Claudin-18.2 (CLDN 18.2) is a member of the claudin family and is expressed in gastric and pancreatic adenocarcinoma (148). Thus, CLDN is a promising target for CAR T cell therapy. A multicenter phase IB trial of salvage CT041 CLDN 18.2 specific CAR T therapy (NCT03874897) against CLDN18.2-pisitve advanced gastrointestinal cancers indicated that the investigational drug had tolerable safety profile; there was a Grade 3 or higher hematologic toxicity and Grade 1/2 CRS in most patients. The overall response rate (ORR) and disease control rate (DCR) were 48.6% and 73.0%, respectively. Patients with gastric cancer showed a better result in ORR and DCR (57.1% and 75.0% respectively). Encouraged by this result, a phase II trial was initiated in heavily pretreated patients with gastric cancer (149). An ongoing autologous T cell therapy of CT048 targets CLDN 18.2 in gastroesophageal (GE) junction cancer, gastric cancer, and pancreatic cancer (NCT05393986). Another phase I trial (NCT05472857) is evaluating the safety and efficacy of IMC002, an autologous CAR T cell therapy, in patients with CLDN 18.2-positive solid tumors. An exploratory trial is currently enrolling patients to assess the safety profile of XKDCT086 (iPD-1-claudin 18.2 CAR T) (NCT05952375) in patients with CLDN 18.2 positive gastric cancer.




8.7 GD2

Glycoprotein tumor antigen (GD2) is a membrane protein overexpressed in tumors from neuroectodermal origin (150). Neuroblastoma, retinoblastoma, and melanoma are examples of highly GD2 expressing tumors. Given its limited overall expression in normal tissue and high expression in the aforementioned tumor types, GD2 is considered as a viable candidate for targeted therapy. Since 2018, an ongoing phase I/II trial of autologous GD2-targeting CAR T cells (NCT03373097) is assessing the safety and efficacy of the therapy in pediatric patients with high-risk neuroblastoma (109). Twenty-seven patients received GD2-CART01 and no DLTs were observed. CRS was observed in twenty out of twenty-seven patients, however, nineteen out of twenty experienced a mild form of CRS. ORR was 63% (seventeen of thirty patients); nine patients presented with a complete response (CR), and eight patients presented with partial response (PR). Additionally, a GD2-targeting CAR T therapy (NCT04196413) indicated clinical efficacy in young adults with H3K27M-mutated diffuse intrinsic pontine glioma and spinal diffuse midline glioma. Ten of twelve patients showed improvement in clinical and radiologic courses without severe toxicity. Third generation GD2 CAR T cells were tested in patients with GD2 positive neuroblastoma and osteosarcoma (NCT02107963). Thirteen patients received the drug. These patients maintained stable disease by day 28 and, ultimately, progressed in their disease (151). Conversion between monocyte and myeloid cells may have played a role in limited expansion and activity of the CAR T cells in this trial. Andras et al., conducted a phase I trial to evaluate the clinical benefit of GD2 CAR and iCaspase suicide containing T cells (NCT01822652) in patients with neuroblastomas. The efficacy of C7R-GD2 CART cells has been under investigation in targeting neuroblastoma and other GD+ solid tumors (NCT03635632). A fourth generation GD2 specific CAR T cell therapy (4SCAR-GD2) is also one of investigational drugs for GD2-positive solid tumors (NCT02992210). In the case of cervical cancer, multiple antigens are being examined for patients presenting with GD2, PSMA, Muc1, mesothelin, or other markers (NCT03356795).




8.8 MUC1

Glycoprotein Mucin 1 (MUC1) is a member of the mucin family, which consists of mucus for lubricating and protecting normal epithelium. However, MUC1 promotes cancer invasion, metastasis, and neovascularization when it is expressed in cancer cells (152). A study of CAR T-TnMUC1 (NCT04025216) tried to assess the safety, feasibility, and efficacy of autologous T cells in TuMUC1 mutated tumors. Initially, six patients were enrolled, and two patients reached the planned dose. No significant toxicity profile was reported at the initial analysis. The study was terminated in 2023 due to an unfavorable risk-benefit analysis. A phase I/II study of autologous T cells co-expressing immune checkpoint antibodies (CTLA-4 and PD-1) and MUC1-targeting CARs was conducted in patients with MUC1 positive advanced solid tumors (NCT03179007). Another phase I/II trial (NCT02617134) evaluated MUC1-tageting CAR T cells for patients with MUC1 positive solid tumors. The enrollment status of the study is unknown, and the report is not available.




8.9 B7-H3 (CD276)

B7-H3(CD276) is a regulatory protein involved in the immune checkpoint pathway. It facilitates immune evasion of cancer cells and leads to proliferation, metastasis, and drug resistance. Given these findings, B7-H3 is a promising target for immunotherapy (153, 154). A TAA06 injection (B7-H3 targeting CAR T cell) trial (NCT05190185) was conducted for patients with malignant melanoma, lung cancer, and colorectal cancer. The enrollment status for this study is unknown. Another B7-H3 targeted autologous CAR T cell trial is planned (KT095 CAR T injection, NCT05515185). For pediatric patients with adrenocortical carcinoma, a trial of B7-H3-targeting autologous CAR T cell therapy is now recruiting patients (NCT04897321).




8.10 GPC3

The glypican family is defined by the heparan sulfate proteoglycans consisting of six members (GPC1 to 6). It is related to regulation of Wnt hedgehogs, and fibroblast growth factors and bone morphogenetic proteins signal (155). GPC3-targeting CAR T cells are being tested in children with relapsed or refractor liver tumors (NCT02932956, GAP trial). An Interleukin -15 and -21 armored GPC3 targeted CART therapy will be ready to open (NCT04715191). For other pediatric GPC3-positive solid tumors, interleukin-15 armored GPC3 specific CAR T therapy is recruiting patients. (NCT04377932). An ongoing trial is also assessing T cells engineered with GPC3-CAR and Interleukin-15 (CATCH T cells) in patients with GPC3-positive solid tumors (NCT05103631).




8.11 PSCA

Prostate stem cell antigen (PSCA) is a glycosylphosphatidylinositol (GPI) anchored cell surface antigen. It is expressed in epithelial cells of the genitourinary tract organ, skin, esophagus, stomach, and placenta. Overexpression of this antigen is observed in prostate cancer, bladder cancer, renal cell cancer, and hydatidiform mole (156). The results of a phase I trial of BPX 601 in prostate cancer were reported (NCT02744287). A total of eight patients were enrolled, and one patient gained sustained response (SD) after nine months. All patients experienced CRS (6 G1, 2 G2), and one patient reached DLT of neutropenic sepsis (G5). Due to the DLT of neutropenic sepsis, investigators suspended the trial. Additionally, a phase I trial of PSCA-CAR T cells was performed to assess the safety and tolerability (dose limiting toxicity) and determine the RP2D in patients with PSCA positive metastatic castration resistant prostate cancer (NCT03873805). A total of fourteen patients received CAR T cell infusion with varying treatments – the three cohorts were treated with the starting dose level (DL1, 100 million CAR T cells), the starting dose level that included the incorporation of lymphodepletion (DL2), and the starting dose level using a reduced lymphodepletion regimen (156). No DLTs were observed at DL1, while a DLT of grade 3 cystitis was observed at DL2, which led to the addition of DL3 which had no observed DLTs. CRS of grade 1 or 2 observed in five patients; prostate-specific antigen declines occurred in four patients with observed radiographic improvements. While limited persistence of CAR T cells was seen beyond twenty-eight days post-infusion, there were indicative changes as a result of therapy. Such changes included activation of peripheral blood endogenous and CAR T cell subsets, change in the tumor microenvironment, and TCR repertoire diversity in a subset of patients (156).




8.12 PSMA

Prostate specific membrane antigen is expressed at high levels in metastatic castration-resistant prostate cancer and has been established as a tumor-associated antigen for immune therapy (157). A phase I clinical trial of autologous anti-PSMA CAR T therapy in metastatic castration-resistant prostate cancer looked to determine the efficacy and safety of the treatment (NCT04249947). In this study, thirteen patients were treated with the P-PSMA-101 autologous CAR-T therapy. Declines in prostate specific antigens were seen in seven patients. CRS was seen in six of patients (one Gr 3 or greater). DLT was seen in one patient with macrophage activation syndrome (Gr 3 or greater CRS event) (158). Additionally, a first-in-human phase I trial of castration-resistant prostate cancer directed CAR T cells, targeting PSMA, and equipped with a dominant negative TGFβ receptor looked to determine the safety, bioactivity, and disease response. A total of eighteen patients were enrolled, and thirteen received varying doses of therapy (NCT03089203). Five of thirteen patients developed greater than grade 2 CRS – one of these patients experienced clonal CAR T cell expansion and death following grade 4 CRS with sepsis (157).




8.13 Additional CAR T Antigens

Guanylyl cyclase 2C (GCC) is a transmembrane receptor for an enterotoxin produced by diarrheagenic enteric bacteria. The receptor has a unique expression pattern in colorectal cancer (159). Therefore, a GCC-targeting CAR T therapy was tested in patients with metastatic colorectal cancer (NCT05287165). Nine patients received the treatment, and five of nine patients developed GR 1 - 2 cytokine release syndrome. The DCR was 66.7% and ORR was 11.1%. No DLT was observed. These results will open a dose-expansion cohort. In addition, the investigational drug XKDCT080 is recruiting candidates with GCC positive advanced solid tumors (NCT05875402).

Tyrosinase Related Protein 1 (TYRP1) is a key protein in melanine synthesis, and it is present in the membranes of normal and malignant melanocytes (160). Therefore, targeting TYRP1 was considered as a potential therapeutic approach in patients with malignant melanoma, and pre-clinical studies were performed to prove its efficacy. A recent report by Ribas and Puig-Saus et al., showed that TYRP1 targeting CAR T cell therapy demonstrated significant antitumor in tumor cells with high TYRP1 expression in murine and patient-derived cutaneous, acral, and uveal melanoma models. The study did not observe significant toxicities and clinical translation is underway based on the efficacy and safety profile (161).

Six transmembrane epithelial antigen of the prostate 1 (STEAP1) is a transmembrane protein that showed enriched expression in metastatic castration-resistant prostate cancer (mCRPC) and other solid tumors (162). An antibody-drug conjugate (ADC) targeting STEAP1 was tested in a phase I trial (NCT01283373) and showed an acceptable safety profile in patients with mCRPC (163). A phase I trial of STEAP1 and CD3 targeting bispecific-antibody is ongoing as well in patients with mCRPC (164). Bhatia V. et al. reported the study evaluating STEAP1-targeting CAR T cell therapy for mCRPC using in vitro and in vivo models. The study revealed that STEAP1 is highly expressed among mCRPC samples. Additionally, the in vitro cytotoxic assay was specific and strong even with minimal expression of STEAP1 on cancer cell surfaces. An in vivo study with NSG mice and a syngeneic mouse model demonstrated that STEAP1 CAR T cell therapy is efficacious and safe. Based on these promising results, clinical translation is underway (162).

NKG2D is a cell surface receptor usually expressed on cytotoxic immune cells. NKG2D is a natural receptor on the surface of natural killer cells that can recognize multiple ligands on the tumor cells. NKG2D therefore could be an efficient chimeric antigen receptor for these tumors. NKG2D ligands are present in tumor cells of various origins including colorectal cancer, ovarian carcinoma, pancreatic cancer, prostate cancer, acute lymphoblastic leukemia, lymphomas, and in a range of cancer cell lines indicating their use for both hematological and solid tumors (165, 166). NKG2D-targeting CAR T therapy was evaluated in patients with advanced solid tumors (NCT04107142 and NCT05302037).

Ephrin type-A receptor 2 (EphA2) is a transmembrane glycoprotein observed in epithelial cells during proliferation. EphA2 is upregulated in malignant lymphomas and EphA2-positive metastatic solid tumors, and it is regarded as a target for CAR T cell therapy (NCT05631886 and NCT05631899). A CAR T cell trial targeting epithelial cell adhesion molecule (EpCAM) is ongoing now (NCT02915445) (167). CD22 and CD79, B cell membrane antigens, are targets for CAR T cell therapy in patients with CD22-positive and CD79-positive B cell malignancies given their in vivo results (NCT04556669 and NCT02830724) (168). Lewis Y is a subtype of blood group related antigens and is associated with poor prognosis in breast cancer (169). Lewis Y specific CAR T cell therapy showed efficacy in an in vivo trial, and a phase I trial was conducted (NCT03851146) in patients with Lewis Y antigen-expressing solid tumors. This infused CAR-T therapy displayed poor persistence in patients; however, further tuning through utilization of features of stem-like T cells in designing the CAR T cell therapy may lead to better clinical performance (170).





9 Discussion



9.1 Therapeutic limitations, challenges, and scopes for improvement

While there are positive results associated with the presented clinical trials, there remain significant therapeutic limitations. As evidenced by the presented CAR T therapy clinical trials for solid tumor treatment, a recurring theme was adverse event reporting in patients due to dose limiting toxicities (DLT). Namely, clinical trials for CAR T therapy in HER2 (NCT04650451) and PSCA(NCT02744287) were suspended due to DLTs. Another recurring challenge in trials was cytokine release syndrome (CRS), which is the most common and one of the most critical adverse events associated with CAR T therapy. Many trials, notably CAR T trials targeting HER2 (NCT04650451), Claudin 18.2 (NCT03874897), GD2 (NCT03373097), PSCA (NCT02744287), and PSMA (NCT04249947, (NCT03089203), reported that patients experienced CRS (regardless of severity). As such, the management of DLTs and CRS are pivotal issues in successful treatment and advancement of CAR T therapies for solid tumors.

CRS usually occurs within the first week of treatment, and its clinical manifestation varies from fever to severe hypotension requiring vasopressors. The mechanism of development is related to the release of inflammatory cytokines such as IFN-γ, IL-6, IM-10, macrophage inflammatory protein (MIP)1β, monocyte chemoattractant protein (MCP)-1, and GM-CSF (171, 172). Several factors may predict a higher possibility of CRS – high tumor burden, high CAR T dose, prior lymphodepletion conditioning regimen, and high peak CAR T cell counts (173). Ironically, CRS may also be associated with a positive response to CAR T cell therapy given its immune-stimulatory mechanism. Secondary hemophagocytic lymphohistocytosis/macrophage activation syndrome (HLH/MAS) originates from immune hyperactivation, which shares common mechanisms with CRS. Thus, HLH/MAS may overlap with CRS. Furthermore, serum markers in severe CRS meet the criteria of HLH/MAS.

Neurotoxicity, known as immune effector cell-associated neurotoxicity syndrome (ICANS), is also a common adverse event. It occurs in approximately 65% of patients with hematologic malignancy (174). ICANS presents with tremors, dysgraphia, aphagia, delirium, and altered mentality in early phases; ICANS can deteriorate to seizures, stupor, obtundation, and coma, sometimes associated with cerebral edema. The exact mechanism of ICANS has remained unclear, but immune stimulating cytokines such as IL-1, IL-6, and GM-CSF play roles in its development (175, 176). The inflammation caused by myeloid cells can induce capillary leaks, endothelial activation, and dysfunction of the blood-brain barrier.

Optimization of the efficacy of CAR T therapy aims to maximize immune responses with acceptable toxicity. IL-6 inhibition with tocilizumab is a widely used method to control excessive reactions; similarly, corticosteroids suppress overall immune cells (177). These two drugs are the backbone of CRS management. ITK inhibition by ibrutinib may also reduce the activity of inflammatory cytokines (178, 179).

Zarei et al. showed that the immunomodulatory drug lenalidomide enhances the effect of NKG2D CAR T cells to kill colorectal cancers in vitro (180). The NKG2D CAR T cells, generated from transduction of second generation NKG2D-CAR, showed significant cytotoxic activity against colorectal cancer cell lines, HCT116 and SW480, as compared to non-transduced parental T cells. Addition of lenalidomide showed dose dependent increase in the cytotoxicity and cytokine secretion by NKG2D CAR T cells. This study outcome suggests that combinational therapy utilizing NKG2D-based CAR T cells and lenalidomide has a high potential for effectively eliminating tumor cells in vitro and that immunomodulatory medication lenalidomide (LEN) may increase the effectiveness of CAR T cells in the treatment of solid tumors.

Additionally, the effect of natural products on the function of CAR T cells has been investigated. Huang et al. (2023) assessed the effect of gastrodin (GAS) on CAR T cells targeting interleukin-13 receptor α2 antigen (IL-13Rα2 CAR T) in the brain against glioblastoma multiforme in both in vitro and in situ glioblastoma models (181). In a transwell assay, GAS increased the migratory and destructive capacity of IL-13Rα2 CAR T cells with no effect on cytokine release. There was elevated expression of S1P1 with GAS treatment which encouraged the entry of CAR T cells into the brain and bone marrow. In the transcriptomic analysis, there was upregulation of genes such as add2 and gng8 related to skeletal migration. GAS treatment improved the mobility of IL-13Rα2 CAR T, enhancing their ability to recognize the tumor antigen of glioblastoma, indicating its potential application of CAR T for the treatment of solid tumors.

These studies show that the utilization of drugs and natural products can further improve CAR T cell function in vitro.



9.1.1 Tumor antigen heterogeneity and loss

Unlike in hematogenic malignancies, heterogeneous expression of target antigens remains a challenge for CAR T cells in solid tumors. Target antigens may be expressed in benign tissues and are not unique in certain types of tumors. Therefore, finding tumor-specific antigens for subsequent CAR T design is a key factor in success of this therapy. Moreover, loss of antigen expression by subclonal evolution also causes treatment failure in CAR T therapy (182).

Targeting multiple antigens can help overcome the problem posed by the loss of antigen expression. For example, dual targeting of HER2 and IL13Rα2 antigen in GBM revealed an anti-tumor potential of dual-targeting CAR T cells. Blocking of the HER2 protein may facilitate selection of HER2 negative cells through an antigen escape mechanism; however, targeting IL13Rα2 made up for the negative effect perpetrated by the antigen escape mechanism (183). In the case of breast cancer, dual targeting of HER2 and MUC1 demonstrated efficacy in an in vitro model (184). In addition, CAR T cells that secreted EGFR-specific bi specific T cell engagers (BiTEs) for patients with glioblastoma were designed (185). These secreted BiTEs helped CAR T cells kill EGFR expressing tumor cells by recruiting bystander T cells as well as re-directing CAR T cells. In an in vivo model, CAR T only injection did not eliminate tumor cells completely and allowed the growth of remaining EGFR negative glioblastoma tumor cells (185). However, the injection of BiTes removed this heterogeneity. On top of increasing efficacy, the combination treatment can be activated carefully when both antigens are detected simultaneously.

One drawback in targeting multiple antigens remains targeting even more antigens expressed in normal tissue. Therefore, obtaining precise control to isolate tumor cells remains a challenge to manage on-and off-target effects. Usage of multiple CAR T cells targeting a single antigen each is another option to overcome heterogeneity (186). Co-administration of PSCA and MUC1 targeted CAR T cells showed a tumor-killing effect in an in vivo mice model implanted with NSCLC cells (92). In the case of cholangiocarcinoma, EGFR and CD133 revealed synergistic effects, and the patient gained sustained disease control for thirteen months (8.5 months in PR and 4.5 months in SD) (187).




9.1.2 Tumor infiltration of CAR T cells

Unlike in hematologic malignancies in which CAR T cells directly contact tumor cells in the bloodstream, trafficking and infiltration into the immunosuppressive tumor microenvironment are principal issues in delivering CAR T cells to solid tumors. First, abnormal vascularization of tumors of the factors may impact tissue infiltration by reducing adhesion molecules on the endothelium (10). Therefore, several experiments attempted to overcome this barrier. Deng et al. showed that adding combretastatin A-4 phosphate (CA4P), a vascular disrupting agent, enabled increased infiltration of CAR T cells (18). Moreover, tumor cells may modulate this process by modifying multiple membrane proteins and cytokine secretion. To overcome this, a CAR T cell was designed with receptors to detect chemokines released from tumor cells (188). For example, the chemokine receptors (CCR) were expressed in engineered CAR T cells and led to effective trafficking of the engineered T cells to tumors. CCR2 – CCL2 is considered the main mechanism in intratumoral trafficking of cell therapy. GD2 and MSLN targeting CAR T cells showed increased infiltration activity by acknowledging CCR2b (189, 190). In addition, the modified CXC chemokine receptor 2 (CXCR2) in T cells engaged with CXCL1 in melanoma cells and increased migration of T cells to melanoma tissue (191). CXCR1- and CXCR2 modified CD70 engineered CAR T cells demonstrated increased intratumoral infiltration in glioblastoma in an in vivo model. The action of CXCL8, a chemokine related to proliferation and invasion, was neutralized by CXCR1 and CXCR2 modified CAR Ts (192). Another strategy for delivering CAR Ts was to break physical barriers by degrading matrices. Targeting fibroblast activation protein (FAP) demonstrated enhanced intratumoral delivery of CAR T cells (193). Similarly, CAR T cells producing heparinase enzyme (HPSE) also broke down the barrier and increased trafficking to target tumor tissues (194).




9.1.3 Immunosuppressive tumor microenvironment

The immunosuppressive TME plays a vital role in decreased activity and the decreased tumor infiltration of CAR T cells. In addition to the hostile surrounding environment, consisting of the extracellular matrix and cancer-associated fibroblasts, immune suppressive cells such as regulatory T cells (Treg), TRIF-related adaptor molecule (TRAM), and myeloid-derived suppressor cells (MDSC) interfere with the antitumor activity of CAR T cells (195). Hypoxic conditions and immunosuppressive cytokines such as TGF-β can hamper the treatment. Reversing the suppressive cytokine and their respective pathways is a strategy to overcome these challenges.

Engineered TGF-β dominant-negative receptor (DNR) has inhibitory effects on TGF-β signal. These effects block the transformation of primitive T cells into Treg. A CAR T therapy targeting PSMA with TGF-β DNR is in an ongoing phase I clinical trial (NCT0089203). The trial looks to show the reversible effects to the suppressive environment. PD-1/PD-L1 and FAS/Fas ligand pathways also have similar inhibitory effects in immune boosting reactions. Such results were demonstrated as CAR T cells engineered with PD1 DNR expression or with FAS DNR expression had increased activity in in vivo models (95, 96).

Enhancing immunostimulatory cytokines remains another option in battling the immunosuppressive tumor microenvironment. IL-12 secreting CAR T cells highlighted their tumor killing effect by reducing Treg activity and empowering IFNγ secretion (31, 196). IL-18 has a similar role in its proinflammatory action in CAR T therapy (197). Suppressing immune-regulatory cells like myeloid-derived suppressor cells (MDSCs) can be an option to overcome resistance - modulating reactive oxygen species with all-trans retinoic acid (ATRA) can reduce the activity of MDSCs. Engineered NK cells targeting GD2 act on the impaired activity of MDSCs when co-administered with CD2 targeted CAR T cells in a neuroblastoma model (198).

Additionally, colony-stimulating factor 1 receptor (CSF1R) and granulocyte macrophage-colony stimulating factor (GM-CSF) can regulate the activity of tumor-associated macrophages (TAM). Hence, targeting CSF1R and GM-CSF may facilitate an anti-tumor effect of CAR T cell therapy (199, 200).





9.2 CRISPR gene editing for boosted CAR T cell activity

Some gene mutations were identified as enhancers to autologous CAR T cell therapy through CRISPR screening. For example, the deletion of TCR encoding genes and inactivation of PD-1 by CRISPR/Cas9 methods caused an increase in immune activity (19). In addition, the knock-down of Tet methylcytosine dioxygenase 2 (TET2) encoding genes led to the improved efficacy of CD19-based therapy (20). CRISPR knock-out screens of RASA2, which is a RAS GTPase-activating protein, in T cells led to increased T cell activation and led to more persistent cancer cell killing (201). Similarly, an in vivo pooled CRISPR-Cas9 screening approach targeting REGNASE-1 showed that T cells can be reprogrammed to long-lived effector cells with better persistence in tumors as compared to control T cells. Further CRISPR-Cas9 screens showed that BATF, the key target of REGNASE-1, loss led to the greater accumulation of REGNASE-1 deficient T cells (202).

Additionally, deletion of DNA methyltransferase 3 alpha (DNMT3A) indicated the enhanced immunogenicity and inhibition of T cell exhaustion (203). The recent study by Garcia J. et al. demonstrated that the other fusion mutation in caspase recruitment domain-containing protein (CARD11) and Phosphoinositide-3-Kinase Regulatory Subunit 3 (PIK3R3) improved tumor killing effect by enhanced signaling of CARD11–BCL10–MALT1 complex (204). Therefore, the exploration of various genetic mutations in T cell biology can be a promising solution for improvement and overcoming resistance. In the context of engineering CAR T cells, the overexpression of canonical AP-1 factor c-Jun has enhanced T cell expansion potential, increased functional capacity, and improved anti-tumor response in multiple in vivo mouse tumor models (205).

In November 2023, the FDA announced an investigation regarding the risk of T cell malignancies, including CAR positive lymphomas, for those who received BCMA or CD19 directed CAR T therapies. The recent report by Ghilardi et al. indicated that three cases of T cell lymphoma were observed after anti-CD19 CAR T therapy for non-Hodgkin B cell lymphoma was administered (206). According to this report, further studies among patients treated at the University of Pennsylvania showed that 3.6% (16 of 449 patients) reported a secondary malignancy – one case was identified as T cell lymphoma with a very low incidence. In addition, Garcia et al. discussed the concerns associated with T cell malignancies in those administered these CAR T cell therapies (204). Their study, and namely their experimental data derived from a longer term follow up in murine studies, did not suggest that there was an increased risk of developing secondary T cell malignancies when fusion genes were inserted into CAR T cells. Typically, these insertions are one of the naturally occurring mutations in human T cell cancers. Instead, Garcia et al. concluded that pre-existing genetic features could contribute to secondary sporadic malignancies. Moving forward, the field will need to continue address these concerns and adhere to a more cautious approach until more evidence is gathered.




9.3 Conclusion and outlook

CAR T therapy is proving to be a viable option in cancer treatment, especially with the advancements in CAR engineering. The areas of concern, namely antigen heterogeneity, the immunosuppressive tumor microenvironment, and tumor infiltration, have been identified. Focused research in these areas, as well as in expanded areas of CAR engineering and antigen discovery, has progressed. One of the prevailing problems that remains is that often CAR Ts do not reach target antigens in solid tumors in sufficient numbers because of their destruction by lymphatic system or by the tumor microenvironment. To overcome these problems, a nanoparticle-based packaging and delivery system is being examined. A variety of nanotechnologies, including hydrogel, nanoparticle conjugation, transient CAR expression in T cells through RNA delivery, and others are being explored (207). These advances and further engineering of CARs looks to further the ability of CAR T cell therapy to be used as a therapeutic approach for solid tumors.
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In recent years, the rapid progress in oncology, immunology, and molecular biology has dramatically advanced cancer immunotherapy, particularly CAR-T cell therapy. This innovative approach involves engineering a patient’s T cells to express receptors that specifically target tumor antigens, enhancing their ability to identify and eliminate cancer cells. However, the effectiveness of CAR-T therapy in solid tumors is often hampered by the challenging tumor microenvironment (TME). The complex TME includes dense stroma that obstructs T cell infiltration, abnormal blood vessel structures leading to hypoxia, and an acidic pH, all of which hinder CAR-T cell function. Additionally, the presence of immunosuppressive factors in the TME reduces the efficacy of CAR-T cells, making successful targeting of tumors more difficult. The safety of CAR-T therapy has gained interest, especially CAR-T therapy has shown considerable effectiveness in various cancers, with notable results in multiple myeloma and hepatocellular carcinoma, among others. Nonetheless, CAR-T cell therapy is associated with several adverse reactions primarily driven by heightened levels of proinflammatory cytokines. These reactions include cytokine release syndrome (CRS), neurotoxicity (CANS), and organ toxicity, often leading to serious complications. CRS, characterized by systemic inflammation due to cytokine release, can escalate to severe organ dysfunction. It typically occurs within the first week post-infusion, correlating with CAR-T cell expansion and often presents with fever and hypotension. Meanwhile, CANS encompasses neurological issues ranging from mild symptoms to severe seizures, possibly exacerbated by CRS. Organ toxicity can also arise from CAR-T therapy, with potential damage affecting the gastrointestinal tract, kidneys, liver, and lungs, often tied to shared antigens found in both tumor and healthy tissues. Moreover, long-term effects like cytokine-associated hematotoxicity (CAHT) and secondary malignancies represent significant concerns that could affect the patient’s quality of life post-treatment. The long-term adverse effects and challenges in treating solid tumors underscore the need for ongoing research. Strategies to improve CAR-T cell efficacy, minimize adverse reactions, and enhance patient safety are critical. Future explorations could include designing CAR-T cells to better navigate the TME, identifying specific target antigen profiles to minimize off-target damage, and developing adjunct therapies to mitigate cytokine-related toxicity. Continued monitoring for long-term effects will also be paramount in improving patient outcomes and maintaining their quality of life. Overall, while CAR-T therapy holds great promise, it must be administered with careful consideration of potential side effects and rigorous management strategies to ensure patient safety and treatment efficacy.
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1 Introduction

In recent years, the rapid advancements in oncology, immunology, and molecular biology have also fueled the rapid development of cancer immunotherapy (1, 2). CAR-T cell therapy is a cutting-edge cellular immunotherapy technique that utilizes gene engineering to construct and express receptors that specifically recognize tumor antigens on the patient’s own T cells, thereby equipping these T cells with “super soldier”-like precision in identification and efficient killing capabilities to attack specific tumor cells. In clinical practice, CAR-T cell therapy for solid tumors, such as glioblastoma multiforme (GBM), encounters challenges due to the complexity of the tumor microenvironment (TME), potentially resulting in complex adverse reactions. In HER2 CAR-T therapy, delayed fever occurred in two patients (3). In autologous HER2 CAR-T cell treatment for patients with advanced sarcoma, dose-limiting toxicity was observed, resulting in grade 3-4 CRS, which can be life-threatening (4). Studies on EGFRvIII-directed CAR-T therapy for GBM have shown that patients’ baseline characteristics and changes in EGFRvIII percentage are associated with the risk of adverse reactions (5) (NCT02209376). In solid tumors, stromal cells contribute to a dense fibrotic TME that restricts the movement and infiltration of CAR-T cells (6), while the abnormal vascular architecture can lead to tissue hypoxia, affecting the expression of key molecules necessary for T cell adhesion and further hindering their infiltration (7, 8). The acidic pH often found in these tumors can adversely impact CAR-T cell function, making effective targeting more difficult (9). Additionally, the TME harbors various soluble immunosuppressive factors, such as IDO, IL-10, and TGF-β, which dampen the activity and functionality of CAR-T cells, reducing their anti-tumor effectiveness (10–12). Furthermore, the heterogeneity of tumor antigen expression allows some cells to evade detection, and tumor cells can adopt escape mechanisms, including downregulating tumor-specific antigens or upregulating checkpoint molecules, to protect themselves from CAR-T cell attacks (13). Finally, the lack of necessary adhesion molecules within the TME limits CAR-T cell movement and accumulation (14). Together, these interrelated factors present considerable challenges for the success of CAR-T cell therapies in treating solid tumors.This study aims to explore the safety of CAR-T cell therapy for solid tumors, aiming to benefit more patients. Since the groundbreaking success of CAR-T cell therapy in curing Emily Whitehead, the first child with relapsed refractory leukemia in 2012, this treatment has attracted significant global interest. CAR-T therapy has shown remarkable effectiveness in various cancers. For example, BCMA CAR-T therapy has achieved impressive results in advanced IgGλ multiple myeloma, with some patients reaching complete remission within two weeks (15). CAR-T therapies targeting GPRC5D have also proven effective for patients who relapse after BCMA treatment (16). Additionally, CStone Pharmaceuticals’ GPC3-targeted CAR-T therapy has yielded notable outcomes in advanced hepatocellular carcinoma (HCC), with two patients remaining tumor-free for over seven years (17). In a Stanford trial, an innovative GD2 CAR-T therapy benefited patients with diffuse midline glioma (DMG), as nine out of eleven patients experienced improved neurological function, and one patient even achieved complete tumor disappearance, remaining cancer-free four years after treatment (18).




2 Manuscript



2.1 Mechanisms of adverse reactions associated with CAR-T cell therapy

The adverse reactions associated with CAR-T cell therapy are caused by multiple mechanisms. Firstly, they are primarily induced by high levels of proinflammatory cytokines secreted by activated T cells and myeloid cells (19). These adverse reactions include cytokine release syndrome (CRS) (20), cell-associated neurotoxicity syndrome (CANS) (19), secondary hemophagocytic lymphohistiocytosis (sHLH) (21), systemic reactions with mild symptoms as the main manifestation, and CRS-related organ toxicity. Secondly, due to the presence of shared antigens between tumor and healthy tissues, off-target effects can lead to organ toxicity, which is relatively common in solid tumor clinical trials (22). Thirdly, long-term adverse reactions caused by the combined action of multiple mechanisms include cell-associated haematotoxicity (CAHT), B/T cell aplasia, and secondary primary malignancies (SPMs) (23) (Figure 1).
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Figure 1 | Mechanisms of adverse reactions associated with CAR-T cell therapy. This figure vividly illustrates the primary adverse reaction mechanisms triggered by CAR-T cell therapy, described sequentially from left to right. Initially, it details reactions induced by high levels of pro-inflammatory cytokines, including Cytokine Release Syndrome (CRS), Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS), Secondary Hemophagocytic Lymphohistiocytosis (sHLH), mild systemic reactions, and CRS-related organ toxicity. Following this, the diagram shows off-target effects caused by shared antigens between tumor and healthy cells, leading to significant organ toxicity. Lastly, long-term adverse effects arise from a complex interplay of mechanisms, encompassing cell-associated hematotoxicity (CAHT), B/T cell aplasia, and secondary malignancies. The comprehensive depiction of these mechanisms not only reveals the potential risks associated with CAR-T therapy but also emphasizes the importance of meticulous monitoring and management of patients undergoing this treatment.



2.1.1 cytokine release syndrome

CRS is a severe adverse reaction in CAR-T cell therapy (24), representing a severe systemic inflammatory response syndrome triggered by the activation of immune cells and the massive release of cytokines such as tumor necrosis factor-α (TNF-α), interleukins (ILs), and interferons (IFNs) (20, 25).Severe CRS can lead to organ dysfunction. CRS typically occurs in the first week after infusion, coinciding with the peak expansion phase of CAR-T cells, and its severity correlates with the activity and number of these cells. Activated CAR-T cells release a large amount of cytokines, further exacerbating CRS, while the lysis and apoptosis of tumor cells also contribute to the occurrence of CRS (19, 26). IL-6 exhibits a biphasic peak phenomenon after CAR-T cell therapy, which predicts life-threatening infections (27) and triggers a series of clinical symptoms such as fever, hypoxia, and hypotension. CRS grading is based on the severity of symptoms, ranging from Grade 1 fever to Grade 4 severe hypotension and hypoxia (28, 29). Treatment for CRS includes medications (e.g., immunosuppressants, cytokine inhibitors) (19, 30, 31) and supportive measures (e.g., oxygen therapy, fluid replacement) (32). Tocilizumab is an FDA-approved therapy for CRS but is ineffective against CANS (29). In severe cases, therapeutic plasma exchange or hemofiltration may be required (33). Previous studies have warned that high-dose CAR-T therapy may lead to fatal Grade 4 CRS in patients (34). Therefore, it is particularly important to strictly control the preparation process of CAR-T cells, conduct comprehensive assessments before infusion, and closely monitor patients during treatment (19). This includes continuous observation of patients during and after infusion to promptly detect symptoms of CRS and rapidly intervene (35). Despite the potential severe consequences of CRS, moderate CRS responses are actually associated with better tumor response rates and patient survival, highlighting the importance of balancing risks and benefits during treatment (36).




2.1.2 cell-associated neurotoxicity syndrome

While CAR-T cell therapy demonstrates great potential in cancer treatment, it is accompanied by a severe complication that cannot be ignored: CANS. CANS is a series of neurological abnormalities caused by the activation of endogenous or exogenous T cells and other immune effector cells after CAR-T cell infusion, with diverse clinical manifestations and varying severity (19, 37). Symptoms can range from mild speech disorders to potentially fatal seizures (38, 39). Studies have confirmed that epileptiform discharges are associated with the rapid progression to higher grades of CANS within 24 hours (40). CANS in CAR-T cell therapy refers to a series of neurological abnormalities caused by the activation or involvement of endogenous or exogenous T cells and other immune effector cells in patients after CAR-T cell infusion.

CANS typically appears on days 4 to 5 after CAR-T cell reinfusion and sometimes occurs simultaneously with or subsequent to CRS, which may exacerbate the development of CANS (41). CRS, as a strong immune response, is considered a potential trigger or contributing factor for CANS, with higher grades of CRS often accompanied by higher grades of CANS. In extreme cases, CRS combined with neurotoxicity may lead to a rapid deterioration of the patient’s condition, accompanied by blood abnormalities, liver and kidney function damage, coagulation disorders, and even intracranial hemorrhage (42). It may also trigger secondary hemophagocytic lymphohistiocytosis (HLH), a life-threatening complication that requires prompt intervention to avoid rapid death (21, 43). Patients with HLH have significantly higher levels of IL-10, which helps distinguish HLH from severe CRS. Serum lactate dehydrogenase levels and fibrinogen levels can predict the development of CAR-T-cell-induced HLH (carHLH), providing valuable insights for the prevention and treatment of carHLH (44). In the treatment of CAR-T cell-induced HLH, a variety of medications and therapies constitute the primary strategies. Tocilizumab, an IL-6 receptor antagonist, is commonly used to treat CAR-T-related HLH and CRS, with most patients receiving this treatment to alleviate symptoms (45). Steroids, particularly dexamethasone, are also widely employed to control inflammation and modulate immune responses, with treatment duration tailored to individual responses (46). Furthermore, Anakinra, an IL-1 receptor antagonist, has demonstrated potential in the treatment of CAR-T-related HLH, aiming to further reduce inflammatory responses (47, 48). For patients with severe primary or CAR-T-related HLH refractory to other treatments, chemotherapy drugs such as etoposide and cyclophosphamide may be considered as therapeutic options (49). For patients with persistently elevated IL-6 levels, siltuximab provides another pathway to control inflammation (50). Basiliximab, an IL-2 receptor-blocking antibody, has also been trialed in some cases of CAR-T-related HLH (51). Additionally, anti-thymocyte globulin and the JAK2 inhibitor ruxolitinib have been explored for regulating the immune system and reducing inflammation (52, 53). In terms of supportive care, continuous venovenous hemodiafiltration (CVVH) plays a crucial role in correcting electrolyte imbalances, acid-base disturbances, and fluid management, aiding in renal function recovery and preventing severe complications (54). Early initiation of CVVH can mitigate the clinical symptoms of CAR-T-related HLH and shorten the duration of immunosuppressive therapy (55). In specific circumstances, the CytoSorb extracorporeal cytokine adsorption device is also used to adsorb and remove excess cytokines from the body, thereby reducing inflammatory responses (56).

Although the exact mechanism of CANS is not fully elucidated, several hypotheses have been proposed. These include the possibility that cytokines released by CAR-T cells cross the blood-brain barrier, triggering inflammation and neuronal damage in the central nervous system (19), direct entry of CAR-T cells into cerebrospinal fluid causing neuronal damage (57), and alterations in immune status induced by CAR-T therapy that may exacerbate neurological damage (58). Additionally, CAR-T cells activate tumor-associated macrophages, leading to increased secretion of the pleiotropic cytokine IL-1. The widely expressed IL-1 receptor is responsible for pro-inflammatory signaling, and studies have found that IL-1 plays a crucial role in the pathogenesis of CANS.

A clinical study (NCT03692429) of CAR-T therapy CYAD-101 for unresectable metastatic colorectal cancer (mCRC) resulted in two patient deaths due to CANS-related adverse events, ultimately leading to the termination of the project. A systematic review indicated that most CAR-T-related deaths are associated with blood-brain barrier disruption, central nervous system cell damage, and infiltrating T cells (59).

With the rapid development of artificial intelligence and machine learning technologies, we are capable of constructing predictive models based on big data to accurately identify patients who are more susceptible to immune cell-associated neurotoxicity syndrome (ICANS) (60, 61). This advancement provides physicians with potent tools for pretreatment risk assessment, enabling them to adopt targeted preventive measures. By extensively collecting and analyzing clinical data from patients undergoing CAR-T therapy, encompassing dimensions such as age, gender, underlying disease status, pretreatment tumor burden, and CAR-T cell infusion dosage, we can train highly efficient machine learning models to predict the occurrence of ICANS. Furthermore, delving into biomarkers associated with the pathogenesis of ICANS, such as specific cytokine level changes and gene expression profiles, will further enhance the accuracy of these predictive models (62). Serving as early warning signals, these biomarkers can assist physicians in swiftly responding to effectively mitigate ICANS symptoms (63). Currently, the primary clinical approach to managing severe toxicities associated with CAR-T therapy is systemic corticosteroid treatment. However, we should not rest on our laurels but actively explore other effective treatments, such as intrathecal corticosteroid injection and anti-IL-6 antibody therapy, and strive to develop novel drugs to more effectively alleviate or prevent neurotoxicity (47). In terms of CAR-T cell therapy, optimizing the specific CAR structure to reduce its attack on normal tissues and regulating the proliferation and activation state of CAR-T cells can lower the risk of overreaction (64). Simultaneously, it is essential to actively explore safer and more effective immunocellular therapies, such as CAR-NK cell therapy and CIK cell therapy, to provide patients with more options. Ultimately, formulating individualized treatment strategies based on patients’ specific conditions and ICANS risk factors is crucial. For high-risk patients, more aggressive preventive measures and rigorous monitoring should be implemented; for patients who have already developed ICANS, careful selection of a treatment plan based on the severity of their symptoms and pathophysiological mechanisms is necessary to achieve optimal therapeutic outcomes (65).




2.1.3 Systemic reaction



2.1.3.1 Flu-like symptoms

Fever is one of the most common adverse reactions after CAR-T cell therapy, typically occurring within 24 hours of cell infusion. It is noteworthy that isolated fever is usually not considered a direct manifestation of CANS or CRS. For this adverse reaction, non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in clinical treatment, and most patients experience a rapid normalization of body temperature after treatment. Further research has shown that the fever response induced by CAR-T cell therapy is not affected by treatment specificity or CAR target, and fever is common in patients with gastric cancer and lung cancer undergoing single-target CAR-T cell therapy (66, 67). However, if fever occurs 21 days or more after CAR-T cell infusion, it may indicate the possibility of delayed-onset lung toxicity, which may be closely related to upregulated PD-L1 expression and toxicity to normal lung tissue (68). The underlying mechanisms of fever mainly involve the release of cytokines and nonspecific activation of immune responses, but it is important to note that the absence of a fever response cannot be directly used as a basis for judging the absence of therapeutic effect.

Similar to fever, headache as a single symptom has a low correlation with ICANS and CRS. CRS-induced neurological symptoms tend to appear earlier and present with more extensive encephalopathy symptoms, lacking a direct correlation with headache. In clinical practice of CAR-T therapy for solid tumors, headaches are more common after treatment in patients with intracranial tumors, which may be related to the influence of the primary tumor site. Additionally, some patients may experience mild flu-like symptoms, including headache (69), such as joint pain and myalgia, which are more pronounced with high-dose CAR-T cell infusion and tend to worsen progressively with increasing doses. Notably, high-dose CAR-T cell infusion can induce grade 3 headaches, and some patients may not respond well to oral analgesics (70). Furthermore, occasional occurrences of non-dose-limiting headaches have been reported in patients with seminoma and colon cancer (71, 72), which may be closely related to cytokine-driven immune responses.

Mild fatigue is one of the common adverse reactions in CAR-T cell therapy for solid tumors, with its specific mechanism not fully elucidated. A phase I study targeting malignant pleural mesothelioma, ovarian cancer, and pancreatic ductal adenocarcinoma showed that nearly half of the subjects experienced fatigue after CAR-T cell therapy (73). Although there was no significant correlation between the occurrence of fatigue and dose or lymphocyte depletion rate, it still requires attention from clinicians during treatment. As of now, there have been no reports of death due to fatigue in solid tumor patients after CAR-T cell infusion.




2.1.3.2 Allergic reaction

Although the overall risk of allergy in CAR-T cell therapy for solid tumors is relatively low, specific patient populations still face the potential threat of allergic reactions. Reports have shown that patients with a history of multiple allergies to anti-PD-1 antibodies and platinum-based drugs are prone to anaphylactic shock after CAR-T treatment, but fortunately, most patients can recover after timely and effective therapeutic intervention (66). Additionally, immune reactions induced by murine-derived single-chain variable fragments (scFv) in CARs are also an important cause of allergic reactions (73). It is noteworthy that when treating pleural mesothelioma with CAR-T cells, special vigilance is required regarding the risk of allergic reactions and acute respiratory distress syndrome (ARDS). Therefore, it is recommended that such patients receive the minimum recommended dose of cell therapy and undergo close monitoring within 48 hours after treatment (74). Future research should further focus on patients’ allergy histories, explore optimal therapeutic doses and mechanisms suitable for allergic populations, and minimize the risk of allergic reactions.





2.1.4 Organ toxicity

CRS, as a major inducing factor, can cause organ toxicity, with gastrointestinal toxicity, renal toxicity, pulmonary toxicity, and hepatic toxicity occurring less frequently than CRS and CANS. Currently, there are clear clinical diagnostic indicators and guidelines for these toxicities. Abnormal elevations of inflammatory cytokines such as IL-6, VWF, Ang-2, and TNF-α, as well as target cross-reactivity of CAR-T cells to actin, can lead to cardiovascular toxicity. CRS is also one of the inducing factors for skin toxicity, manifesting clinically as urticaria, vesicular ulcerations, and oral mucositis. The understanding of CRS-induced immunosuppression contributing to skin toxicity is still insufficient, potentially due to skin infections in patients. Currently, there are no diagnostic and treatment guidelines for skin toxicity. Patients with severe CRS are more prone to neutropenia, which is closely related to infectious complications and the occurrence of late-onset hematological toxicity (75). Besides high levels of pro-inflammatory cytokines associated with CRS, various organ toxicities are also related to tissue-targeting effects. The following paragraphs will provide a detailed review of these aspects.





2.2 Adverse reactions related to shared antigens between tumor and healthy tissues

In anti-cancer treatment, the tumor antigens that need to be targeted should ideally only be expressed on tumor cells or at very low levels on normal cells, and these tumor antigens are referred to as tumor-specific antigens (TSAs) (76). However, TSAs are rare, and most of the antigens currently used in CAR-T therapy are tumor-associated antigens (TAAs), which are expressed at low levels on other healthy cells. CAR-T cells injected into the body can kill both tumor cells and normal cells that express the target antigen, a phenomenon known as tissue-targeting effect. The tissue-targeting effect can cause severe side effects and even death (42). “On-target/off-tumor” (OTOT) toxicity may cause damage to healthy cells and organs (Figure 2).
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Figure 2 | Systemic toxicity and off-target effects caused by CAR-T cell therapy. This figure delineates the systemic toxicities associated with off-target effects of CAR-T cell therapy, as visualized through a human body silhouette that maps the principal organs affected and their specific adverse reactions. Detailed are the pulmonary toxicities in the lungs, including cough, dyspnea, pulmonary edema, and ARDS; hepatotoxicity in the liver, evidenced by elevated liver enzymes; nephrotoxicity in the kidneys, marked by AKI; cardiotoxicity in the heart, manifesting as arrhythmias and heart failure; pancreatic toxicity in the pancreas, characterized by increased levels of lipase and amylase; gastrointestinal toxicity in the digestive tract, presenting as nausea, vomiting, abdominal pain, and bleeding; and dermatologic and mucosal toxicity, involving rashes, oral ulcers, and mucositis. Lines connecting these adverse reactions to CAR-T cells underscore the systemic nature of these off-target effects. The illustration emphasizes the critical need for rigorous monitoring and management of patients receiving CAR-T therapy to effectively mitigate the risks of multiorgan toxicity.



2.2.1 Cardiovascular toxicity

Cardiovascular complications induced by CAR-T cell therapy have been reported infrequently in the treatment of solid tumors, with reports of cardiac toxicity mainly focusing on clinical studies in gastric cancer (66) and colorectal cancer (72). Furthermore, CRS is associated with cardiac toxicity, and early management of CRS can mitigate cardiac toxicity (77). High-risk patients should undergo cardiac assessment and, in cases of suspected cardiovascular adverse events, electrocardiogram, echocardiogram, and biomarker testing should be performed (78–82).




2.2.2 Gastrointestinal toxicity

Nausea and vomiting during CAR-T therapy are mostly related to preconditioning medications (3, 83), rather than the CAR-T cells themselves. Gastrointestinal bleeding is more common in tumors of the digestive system and is associated with local inflammation, often being reversible (3). In one case, a patient experienced rapid tumor regression accompanied by Grade 4 gastrointestinal bleeding shortly after CAR-T cell infusion (66). Abdominal pain is relatively common in digestive system tumors (66, 73, 78, 84), and the influence of preconditioning medications should also be considered in such cases (72). Therefore, gastrointestinal adverse reactions during CAR-T cell therapy need to be comprehensively assessed and managed in combination with the tumor type and preconditioning regimen.




2.2.3 Pancreatic toxicity

Elevated lipase or amylase levels have been observed in CAR-T therapies targeting EGFR and CLDN18.3 (66). In a CAR-T cell therapy study for NSCLC, a case of transient Grade 3-4 lipase elevation was reported. The specific causes of pancreatic toxicity in these studies are unclear, and a direct correlation between the elevation and abdominal pain symptoms has not been established (85). Since epithelial cell adhesion molecule (EpCAM) is overexpressed in various tumors as well as tissues such as the pancreas, CAR-T therapy targeting EpCAM theoretically may induce pancreatitis, requiring particular vigilance (86).




2.2.4 Hepatic toxicity

Hepatic toxicity is not prominent in CAR-T therapy for solid tumors (87), and is mainly detected through laboratory tests, such as elevations in transaminases, bilirubin, gamma-glutamyltransferase, and alkaline phosphatase (17, 88, 89). Mild elevations in liver enzymes do not necessarily lead to changes in liver tissue structure (78). When hepatic toxicity due to CAR-T is suspected, it needs to be differentiated from elevations in liver enzymes caused by liver metastasis (90).




2.2.5 Lung toxicity

CAR-T therapy can induce immune-related lung toxicity manifesting as cough, dyspnea, and other symptoms, severe cases may lead to pulmonary edema and ARDS (91), which may be related to cytokine release and off-target effects. Fatal cases have been reported in treatments targeting EGFRvIII and ERBB2 (92, 93). CAR-T cells targeting CEACAM5 drive localized lung toxicity, although the lung toxicity is transient and no patients required invasive ventilation. Despite prophylactic antibiotics, no respiratory tract infections were confirmed, and no systemic steroids were required. Immunomodulation may reduce toxicity but also decrease the efficacy of CAR-T therapy (42). High-resolution CT is the preferred diagnostic tool when lung toxicity is suspected (94–96), and severe cases may require mechanical ventilation and IL-6 inhibitor therapy. To mitigate off-target effects, researchers have developed CAR-T cells targeting CDH17, which have shown good antitumor efficacy and no toxic side effects in mouse models (97).




2.2.6 Renal toxicity

Renal toxicity mainly manifests as acute kidney injury (AKI), with CRS being a major contributing factor. The severity is graded based on the degree of serum creatinine elevation or the need for renal replacement therapy (RRT). Some patients experience AKI after CAR-T therapy, with a minority requiring RRT, and individual cases have resulted in death during severe CRS (98).




2.2.7 Mucocutaneous toxicity

Dermatological adverse events (DAEs) related to CAR-T therapy are rarely reported, but severe rash and vascular skin reactions are associated with high mortality. The median time of DAE onset is 3 days after CAR T-cell infusion (99). In CAR-T therapy targeting EGFR, skin toxicity manifests as oral mucositis, oral ulcers, etc., mostly grade 1-2, with a minority reaching grade 3-4 (100). Severe skin toxicity can be alleviated with treatment using corticosteroids, intravenous immune globulin, and etanercept (101, 102). Skin toxicity may be related to CAR T-cells attacking target antigens expressed on normal epithelial cells and vascular endothelial cells.





2.3 Long-term adverse effects related to the combined action of multiple mechanisms antifungal drugs as tumor immunotherapy sensitizers

Despite the significant short-term efficacy demonstrated by CAR-T cell therapy, its long-term adverse effects remain an issue of concern. With the widespread clinical application of CAR-T cell therapy, its long-term adverse effects have gradually emerged. These long-term adverse effects not only affect the quality of life of patients but may also pose a threat to their safety (23). The long-term adverse effects of CAR-T cell therapy mainly include cytokine-associated hematopoietic toxicity (CAHT) and secondary malignancies (23).



2.3.1 Cell-associated haematotoxicity

Although CAR-T cell therapy is effective, the common adverse effect of CAHT impacts patients’ immune function (39), increasing the risk of infection and bleeding (103, 104). This condition varies based on the treatment target, CAR-T type, and patient differences, with symptoms including anemia, leukopenia, and thrombocytopenia (105). It has been confirmed that most infectious events occur within 30 days after CAR-T cell infusion, with bacterial infections being dominant, mainly including bloodstream infections and respiratory infections (106). A small proportion of patients also experience infections between Day 31 and Day 180 after anti-CD19 CAR-T treatment (107).

The mechanisms involved include suppression of bone marrow hematopoiesis, cytokine release, and co-expression of target antigens (108). Clinical practice should involve close monitoring of blood parameters, using the CAR-HEMATOTOX score to identify high-risk individuals (105), and targeted treatment such as blood transfusions, antibiotics to prevent infection, and avoiding drugs that increase bleeding risk (109, 110). The CAR HEMATOTOX score is a specific rating system designed to assess the risk of hematological toxicity in patients undergoing CAR-T cell therapy (111). It integrates multiple clinical and laboratory parameters, such as blood cell counts, biochemical indicators, and other relevant factors during the treatment process, to comprehensively evaluate the likelihood of patients developing severe hematological toxicity (112). For B/T cell aplasia and infection, attention should be paid to immune status and infection prevention and control (113). Special vigilance is required for encephalitis caused by HHV-6 reactivation, and HHV-6 screening is necessary before treatment (114). In the early stages of CAR-T therapy, prophylactic anti-infective drugs should be promptly administered (115–119). The utility of Procalcitonin (PCT) in risk stratification and diagnosis of infectious complications in high-risk patients after CAR-T cell therapy is continued, with a PCT threshold of 1.5μg/L advocated for the diagnosis of sepsis. In situations where white blood cell count and CRP values are unreliable, particularly during CRS and lymphocyte depletion, a PCT value < 0.5 μg/L may help exclude sepsis (120).




2.3.2 Secondary primary malignancies

Due to impaired immune function and decreased immunoglobulin levels, patients are at increased risk of infection (121). Studies have found that when the median follow-up time reaches 3 years, approximately 6.5% of patients with hematological malignancies develop SPMs. The cause of death in these patients may be related to immunosuppression in patients undergoing CAR-T cell therapy, who may have underlying diseases, have previously undergone cancer treatment, or have received immunosuppressive chemotherapy as lymphocyte-depleting therapy (122), rather than due to erroneous insertion of chimeric antigen receptor genes during cellular gene engineering (123). Another perspective is that the occurrence of these malignancies may be related to the attack of CAR-T cells on normal cells or to gene instability induced by CAR-T cells (124). The long-term presence and activation of CAR-T cells in the body suggest that tolerable long-term adverse effects may indicate a better prognosis for patients (125, 126). The working mechanism, kinetic characteristics, persistence, factors related to prognosis, and potential side effects are among the multiple aspects involved in CAR-T cell therapy. CAR-T cells are living drugs with proliferative capacity and unique cellular kinetic characteristics. Over time, the number of CAR-T cells decreases, partly due to activation-induced cell death (127, 128). However, a small subset of CAR-T cells can maintain a memory cell phenotype for months to years, generating sustained antitumor activity. Persistence is one of the key indicators for assessing the effectiveness of CAR-T cell therapy (129, 130). Long-term follow-up data indicate that CD19 CAR-T cells can induce long-term remission in patients with B-cell malignancies, often with minimal long-term toxicity, and potentially lead to cure in some patients (125, 131). Factors associated with durable remission after CAR-T cell treatment include deep initial remission, lower baseline tumor volume, absence of extramedullary disease, higher peak levels of circulating CAR-T cells, and the administration of lymphodepleting chemotherapy (132, 133). The long-term presence and activation of CAR-T cells in the body continuously exert antitumor effects, thereby extending patients’ survival (134). However, it is inevitable that CAR-T cells may also cause damage to normal cells and even induce gene instability (124, 135), leading to immunosuppression and impaired immune function.

Research indicates that gene integration via viral vectors may trigger insertional oncogenesis, which raises significant concerns for gene therapy. Historical gene therapy trials have documented cases of leukemia arising from the inactivation of tumor suppressor genes, such as LMO2, due to integration events, highlighting the necessity for careful selection of integration sites (136–138). Recent clinical trial data show a decrease in adverse events related to integration; however, ongoing monitoring of T cell clonal expansion and long-term stability is essential. Although follow-up results suggest that vector integration does not significantly increase the incidence of SPMs researchers remain cautious about potential risks related to clonal expansion in certain patients (124, 139, 140). This underscores that, while current T cell therapies generally exhibit high safety, there is still a need for more precise vector designs to mitigate risks.

The occurrence of secondary primary malignancies is a critical safety concern in T cell therapies. The study conducted long-term observations on 783 patients who underwent CAR-T cell therapy and found that the overall incidence of secondary primary malignancies (SPMs) was 2.3% (141). Many affected patients have a prior history of malignancies or a high-risk genetic background. Although some cases may be linked to viral vector integration, a clear causal relationship has not been established. The remaining SPM cases involved solid tumors predominantly located in the liver, stomach, and lungs, likely connected to underlying health issues or chronic immunosuppression. Further analysis of integration site data revealed no direct association with oncogenes. Although most secondary primary malignancies (SPMs) occur within five years after treatment, there was one case of papillary thyroid cancer as an SPM that emerged 14 years post-treatment. However, it is noteworthy that the majority of SPMs actually occur within 1-3 years after treatment, which is a critical period when virus vector integration may pose risks. Follow-up data further indicates that the risk of new SPMs decreases over time, suggesting that the long-term impact of virus vector integration may be relatively minor (141).

CAR-T cell therapy aims to combat malignant tumors by reprogramming the patient’s immune system, but this process can come with significant downsides. For some patients, the treatment may lead to various immune suppression issues. Research has identified two primary manifestations of this immunosuppression: the depletion of normal B cells and immune remodeling following CRS (142). CAR-T therapy targets cells expressing the CD19 antigen, but because normal B cells also express CD19, patients may experience considerable B cell depletion, known as B-cell aplasia, which can impair antibody production and persist for years. Additionally, patients who undergo severe CRS may require an extended period for their immune systems to recover. During this recovery phase, their ability to fend off infections is notably diminished, often accompanied by prolonged inflammation and disruptions in immune function. This mechanism might also increase the susceptibility of SPM. This should be considered seriously for trials and attempts to introduce CAR T cells earlier in treatment, where the risks might be more concerning compared to other established therapies (143).






3 Analysis and prospects

The application of CAR-T therapy in solid tumors poses greater challenges due to the complexity of the tumor microenvironment and a series of adverse reactions induced by the therapy. In this review, we comprehensively analyzed the potential mechanisms of adverse reactions to CAR-T cell therapy in solid tumors and classified them into three major categories: adverse reactions associated with high levels of proinflammatory cytokines, adverse reactions caused by shared antigens between tumors and healthy tissues, and long-term adverse reactions resulting from a combination of multiple mechanisms.

CRS and CANS are typical examples of adverse reactions triggered by elevated cytokine levels. Off-target effects resulting from shared antigens between tumors and healthy tissues lead to organ toxicity, exemplified by reported cardiovascular, gastrointestinal, pancreatic, hepatic, lung, renal, and mucocutaneous toxicities. The severity of these toxicities is often correlated with the extent of CRS, thus, it is crucial to have a thorough understanding of the patient’s tumor antigen profile and to carefully select CAR-T targets to minimize off-target effects.

To overcome these challenges, various strategies need to be explored, such as improving the infiltration ability of CAR-T cells (144), enhancing the survival and function of CAR-T cells (145), utilizing CAR-T cells that target the tumor microenvironment (146), adopting combined treatment strategies, and optimizing the therapeutic regimen of CAR-T cells (147).

CAR-T therapy is accompanied by a series of long-term adverse reactions, with CAHT and secondary malignancies standing out as particularly notable. These complex reactions further complicate the treatment process. These long-term impacts underscore the urgent need for continuous monitoring of patients and the adoption of proactive management strategies to ensure their safety and quality of life are adequately protected. Looking ahead, research efforts can focus on several key directions: Firstly, delving deeper into the underlying mechanisms and clinical manifestations of long-term adverse reactions associated with CAR-T cell therapy, aiming to provide a solid theoretical foundation for clinical diagnosis and treatment. Secondly, striving to develop innovative CAR-T cell design strategies to reduce their potential attack on normal cells, thereby effectively minimizing off-target effects and the incidence of long-term adverse reactions. Furthermore, exploring new avenues for the combined application of CAR-T cell therapy with immunomodulatory agents, with the aim of reducing the intensity of immune responses and alleviating long-term adverse reactions. Lastly, strengthening long-term follow-up and monitoring mechanisms for patients to ensure that any long-term adverse reactions are promptly identified and appropriately managed, thereby comprehensively enhancing patients’ quality of life and treatment outcomes.

In summary, despite the promising prospects of CAR-T cell therapy in treating solid tumors, its clinical application must be cautiously conducted based on a thorough understanding of potential adverse reactions and their underlying mechanisms. Future research should focus on improving CAR-T design to enhance specificity and reduce off-target effects, developing more effective and safer strategies for managing CRS and CANS, and exploring long-term monitoring programs to identify and mitigate the risks of CAHT and secondary malignancies.
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T-cell receptors identified by a personalized antigen-agnostic screening approach target shared neoantigen KRAS Q61H
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Adoptive cell therapy (ACT) with TCR-engineered T-cells represents a promising alternative to TIL- or CAR-T therapies for patients with advanced solid cancers. Currently, selection of therapeutic TCRs critically depends on knowing the target antigens, a condition excluding most patients from treatment. Direct antigen-agnostic identification of tumor-specific T-cell clonotypes and TCR-T manufacturing using their TCRs can advance ACT for patients with aggressive solid cancers. We present a method to identify tumor-specific clonotypes from surgical specimens by comparing TCRβ-chain repertoires of TILs and adjacent tissue-resident lymphocytes. In six out of seven NSCLC-patients analyzed, our selection of tumor-specific clonotypes based on TIL-abundance and high tumor-to-nontumor frequency ratios was confirmed by gene expression signatures determined by scRNA-Seq. In three patients, we demonstrated that predicted tumor-specific clonotypes reacted against autologous tumors. For one of these patients, we engineered TCR-T cells with four candidate tumor-specific TCRs that showed reactivity against the patient’s tumor and HLA-matched NSCLC cell lines. The TCR-T cells were then used to screen for candidate neoantigens and aberrantly expressed antigens. Three TCRs recognized recurrent driver-mutation KRAS Q61H-peptide ILDTAGHEEY presented by HLA-A*01:01. The TCRs were also dominant in a tumor relapse, one was found in cell free DNA. The finding of homologous TCRs in independent KRAS Q61H-positive cancers suggests a therapeutic opportunity for HLA-matched patients with KRAS Q61H-expressing tumors.
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Introduction

Cell therapy with genetically engineered T cells expressing chimeric antigen receptors (CAR-T cells) specific for lineage antigens has shown therapeutic efficacy and received approval in a range of hematologic malignancies (1, 2). Successful translation of CAR-T therapies to the treatment of patients with solid tumors has encountered several challenges, lack of tumor-specific cell surface antigens being one of them (3).

Compared with CARs, TCRs can address antigens from any tumor cell compartment including intracellularly expressed tumor-associated and tumor-specific antigens (TAAs, TSAs) (4–6). Recent successful developments with TIL-therapies support this concept (7–9). However, TCR recognition depends on peptide presentation by HLA molecules, which dictates that a therapeutic TCR can only be used in HLA-matched patients with antigen-positive tumors. As a result, most clinical TCR-T studies to date have focused on peptides from common TAAs presented by the highly prevalent HLA-A*02:01 (10). Afami-cel (Afamitresgene autoleucel, marketed as Tecelra) targeting MAGE-A4/HLA-A*02:01 in patients with sarcoma (11) and Tebentafusp, a TCR-derived bispecific receptor recognizing gp100/HLA-A*02:01 and CD3 approved for uveal melanoma are prominent examples (12). TCR-T clinical trials targeting other shared epitopes of common TAAs have observed cases of severe on-target/off-tumor reactivity, as even low expression of the TAA or related antigens in few normal tissues resulted in severe autoimmune side effects including fatal incidences with affinity-optimized TCRs against MAGE-A3 (13–17).

In addition to toxicity risks, the TAA-directed TCR-T therapies described above are only available for a minority of patients. These barriers can be overcome by using natural TCRs to target TSAs, which include all types of somatic non-synonymous mutations in canonical proteins and aberrantly transcribed and translated gene products, collectively referred to as neoantigens (5). While neoantigens were shown to be fundamental for the effects of immune checkpoint inhibition (ICI) and TIL therapy, only a small fraction was found immunogenic (18–23). In addition, neoantigen expression is often heterogeneous in tumors and metastases, and most neoepitopes are unique to individual tumors. Although therapeutic exploitation requires personalization and identifying productive TCR-neoepitope-combinations is time- and labor-intensive (4, 24) personalized TCR-T cell therapy approaches targeting private neoepitopes in patients with refractory solid cancers are in clinical development (25, 26). Neoepitopes derived from recurrent mutations in oncogenes are considered optimal targets because they drive tumorigenesis and progression, and exhibit clonal and stable expression across lesions (27). Even though naturally occurring T cells specific for recurrent neoantigens have only occasionally been reported in patients (4, 27–29), their principal therapeutic activity has been demonstrated in the clinic (29–31). Also, developments with synthetic immune receptors based on TCR-mimic antibodies recognizing prevalent oncogene peptide-HLA-complexes show the substantial interest in targeting these neoantigens (32–34).

TILs of individual cancer patients harbor polyclonal populations of tumor-specific T-cell clonotypes targeting private and shared tumor antigens, clonal driver mutations included. While they probably represent patient-specific optimal combinations of immunodominant T-cell responses they are mostly diluted in larger pools of tumor-nonspecific bystander T cells (35). At least in part the tumor-experienced clonotypes are exhausted or dysfunctional reducing their responsiveness to current TIL expansion protocols (36). A direct antigen-agnostic identification of tumor-specific T-cell clonotypes from TILs, sequencing and cloning of the most promising TCRs for manufacture of autologous TCR-T cells provides a treatment option for many patients. Current developments employ sorting of candidate tumor-specific T cells based on selective cell surface markers or single-cell gene expression signatures (37–44). However, from a manufacturing and regulatory perspective, it is not clear as to whether these methods truly select only tumor-specific TCRs and how the most efficient ones are chosen for therapy. Personalized neoantigen-specific TCR-T approaches have shown that it is feasible to manufacture cell products with two to three different TCRs per patient (25, 26). Similarly, for an antigen-agnostic TCR selection approach, it would be straightforward to select TCRs from a variety (2-4) of immunodominant anti-tumor clonotypes to address antigen heterogeneity and immune escape mechanisms.

In this study, we introduce an antigen-agnostic method to identify tumor-specific T-cell clonotypes by comparative high throughput TCR-repertoire profiling of tumor- and adjacent normal tissue-infiltrating T-cell clonotypes from surgical specimens. In seven NSCLC patients we identified candidate tumor-specific TIL clonotypes, in six of them the selection was supported by single-cell gene expression profiling. Experimental validation in three patients revealed that tumor-specific clonotypes predicted by our method responded to autologous tumor cells. For one of these patients, we simulated the production of therapeutic TCR-T cells by selecting four tumor-specific TIL clonotypes, decoded their αβTCR sequences, synthesized and expressed them in healthy donor T cells. Screening with the TCR-T cells for recognition of expressed non-synonymous neoepitopes and overexpressed TAA candidates revealed that three of the four TCRs specifically recognized mutant KRAS Q61H-peptide ILDTAGHEEY presented by HLA-A*01:01. The tumor-specificity and therapeutic potential of the selected TCRs are reinforced by functional characterization of the TCR-T cells, the gene expression signatures of the original TIL clonotypes, the fact, that the clonotypes were found infiltrating a tumor relapse acquired more than 30 months after surgery of the primary tumor, and the discovery of highly homologous to identical TCRs in six of 29 archival (FFPE) tumor samples with confirmed KRAS Q61H-mutation. The results highlight our method’s capacity to directly select tumor-specific TCRs for therapy and suggest the mutant KRAS-specific TCRs as candidates for an off-the-shelf TCR-T therapy in HLA-A*01:01-positive patients with RAS Q61H-positive tumors.





Results




NSCLC patients’ clinical data and disposition of clinical materials

From seven patients who underwent lobectomy and lymph node dissection with curative intent, fresh tumor and adjacent normal lung specimens were selected by pathologist and transported to the laboratory along with a peripheral blood sample for immediate processing. The disposition of the patients’ materials with respect to the experimental strategy is shown in Figure 1A. In three patients, functional analyses were performed: patient 1 (m/57) was diagnosed with lung squamous carcinoma of the left lower lobe in May 2016, patient 2 (f/73) with adenocarcinoma of the right superior/middle lobe in September 2020, and patient 3 (f/54) with lung adenocarcinoma of the left superior lobe in June 2018. For patient 3, follow-up samples including a tumor recurrence, blood and plasma samples were analyzed in addition. In July 2019 a local recurrence was diagnosed via PET-CT and the patient received concomitant chemoradiotherapy followed by durvalumab maintenance therapy for one year. In January 2021 the local recurrence localized in the aortopulmonary window increased in size. An extended pneumonectomy was performed. From the recurrent tumor, formaldehyde-fixed paraffin-embedded (FFPE) tissue samples were preserved by pathologist. Further blood samples were collected and processed in September and December 2021. The patient’s clinical course is summarized in Supplementary Table S1 and sampling-time points are given in Supplementary Figure S1. Immunohistochemistry (IHC) of consecutive FFPE slices revealed that patient 3’s primary and recurrent tumors were positive for HLA-A expression and showed a PD-L1 proportion score >50% (Supplementary Figures S2C, D). CD3-positive, CD4-positive, and CD8-positive TIL subpopulations in the primary and in the recurrent tumor were prevalent in peritumoral areas rather than in the tumor core (Supplementary Figures S2A, B). The patient has been in sustained clinical remission since 2021.
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Figure 1 | Disposition of the study patients (A) and identification and selection of tumor-reactive T-cell clonotypes in patients 1 (B), 2 (C) and 3 (D). Frequencies of T-cell clonotypes (percentages) were determined by TCRseq from TILs, adjacent normal lung, the PD1-positive fraction of TILs and (patient 1, patient 2) after TIL-expansion and stimulation with autologous tumor cells. The top 100 TIL clonotypes of each patient were analyzed in relation to their frequency in normal lung (left), in the PD-1-positive TIL fraction (middle), and in the tumor-reactive fraction after stimulation with autologous tumor cells (B, C, right). Tumor-specific clonotypes were predicted according to high TIL-frequency and a frequency ratio >5 resulting from comparing the frequencies of TIL- and normal lung-infiltrating clonotypes (tumor-to-nontumor ratio, B–D, left). Clonotypes with ratios >5 are depicted in red. The dashed lines indicate ratio=1 values. Red triangles represent clonotypes selected as best candidates for tumor-specific T cells and possible sources of therapeutic TCRs. For patient 1, eight clonotypes were initially selected (B, left). The same clonotypes were highly abundant among PD1-positive TILs (B, middle). After expansion in vitro, stimulation with autologous tumor cells and sorting by IFN-γ-capture assay, six of the eight selected clonotypes showed tumor reactivity (B, right). For patient 2, ten clonotypes were initially selected (C, left) and shown expanded among PD1-positive TILs, too (C, middle). After in vitro expansion, stimulation with autologous tumor cells and sorting for CD137-positive cells, four of the ten selected clonotypes were found to be tumor-reactive ((C) right). For patient 3, no in vitro expansion of TILs was performed. Instead, the TCRs of the top four clonotypes according to TIL-frequency and high tumor-to-nontumor ratio (D left) and high frequency among PD—positive TILs (D middle) were selected, subjected to scTCRseq, synthesis and cloning. The four recombinant TCRs were used to produce TCR-T cells to show their tumor-reactivity and apply them to the screening of target antigens the TCRs recognize.





Identification of tumor-specific TIL clonotypes

For all seven patients, CD3-positive, CD4-positive, and CD8-positive lymphocyte fractions were sorted from primary tumor, adjacent lung tissue samples and PBMCs. (Figure 1A). PD-1-positive lymphocytes were sorted from TILs. The rests of the cell suspensions were cryopreserved. Genomic (g)DNA isolated from all T-cell fractions was used as template for TCR-VDJ-amplification and sequencing (TCRseq) to profile the αβTCR-repertoires of all TIL- and lung T-cell fractions as described in (45, 46) (Figure 1A). As exemplified for patients 1-3, candidate tumor-specific T-cell clonotypes were determined by comparing the frequencies of tumor-infiltrating with lung-infiltrating clonotypes. Based on high tumor prevalence and a tumor-specific distribution (frequency ratio tumor-to-nontumor >5), CD8-positive clonotypes were predicted as candidate tumor-specific T cells (Figures 1B–D left graphs). High frequencies of candidate clonotypes in PD-1-positive TIL fractions supported the selection (Figures 1B–D middle). In patients 1 and 2, TILs were subjected to in vitro expansion using an in-house protocol (patient 1, Supplementary Figure S3) or a small-scale rapid expansion protocol adapted from a clinical TIL manufacturing protocol (patient 2, Supplementary Figure S4) (47). After three to four weeks of culture, expanded TILs were challenged with autologous tumor cells and sorted based on IFN-γ Secretion (patient 1, Supplementary Figure S3) or CD137-expression per FACS (patient 2, Supplementary Figure S4). Tumor-activated IFN-γ- and CD137-positive cells were subjected to TCRseq, their frequencies determined and compared to their frequencies among the top 100 TIL clonotypes at the starting time point (Figure 1B,C right). In patient 1, six of eight candidate tumor-specific clonotypes showed tumor-reactivity (Supplementary Table S2, Figure 1B right), in patient 2, four of ten predicted tumor-specific clonotypes responded to tumor challenge (Table S3, Figure 1C right). In both patients, the tumor-reactive clonotypes represented the top six (patient 1, Supplementary Table S2) and top four (patient 2, Supplementary Table S3) clonotype candidates determined before. Having shown that our method can predict tumor-specific clonotypes based on comparative TCRseq between TILs and normal tissue-resident T cells, we set out to analyze the TCRs of the top four predicted tumor-specific clonotypes of patient 3 using a TCR-T cell approach. As for patients 1 and 2, the TCR selection for patient 3 was based on TIL-prevalence, high tumor-to-nontumor frequency ratio and high frequency among PD-1-positive TILs (Supplementary Table S4, Figure 1D). The selected TCRs were designated TCR-V1, TCR-V2, TCR-V3, and TCR-V4 (Figure 2A) and alignment of the TCRs’ CDR3 sequences revealed striking sequence homologies between TCR-V1, -V2, and -V3 suggesting a shared antigen specificity (Figure 2A). The predominance in the tumor was not reflected in peripheral blood, as three of the four selected clonotypes were absent from blood lymphocytes, one was detected only at low frequency (TCR-V2, 0,02%, Figure 1D, right). Single-cell RNA sequencing (scRNA-Seq) of TILs decoded the paired αβTCR chains of selected clonotypes (Supplementary Table S5), and sc-gene expression profiling revealed functional properties and differentiation trajectories of the cells (see below). The TCRs were synthesized as bicistronic chimerized expression constructs (cTCRs) with the human constant domains of the chains replaced by murine homologs (Figure 2A) and cloned into vector pMX-puro for retroviral transduction of human T cells from healthy donors.
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Figure 2 | (A) Schematic representation of the patient 3-TCR constructs synthesized and cloned for functional analyses. Human constant domains were replaced by murine homologous sequences. V-(D)-J gene segments of α- and β-chains and CDR3 sequences are shown. Red labels highlight differences between TCR-V1, -V2, and V3. Key data leading to the selection of the four T cell clonotypes for functional characterization are detailed in the adjacent table. (B) Recognition of patient 3 tumor cells by TCR-T cells as determined by IFN-γ ELISpot assay. Tumor cell suspension after thawing was sufficient for only one experiment. (C) Original ELISpot well-scans showing the tumor-response of TCR-V4-T cells. (D) Recognition of HLA-A2-matched allogeneic NSCLC cell line LC-MZ-16 by TCR-V4-T cells (summary of four independent experiments). OKT-3 mAb was used for unspecific activation. Pan-HLA class I mAb W6/32 blocked tumor-recognition in all experiments.





Production and functional characterization of tumor-specific TCR-T cells

Tumor-specific TCR-T cells were produced by retroviral transduction of donor-derived T cells with synthesized codon-optimized sequences encoding TCR-V1-V4 (Figure 2A) as described (48). Before retroviral transduction, the recipient T cells were depleted from endogenous TCRs by CRISPR/CAS9-mediated knock-out (KO) of human (h)TRBC and (h)TRAC domains to prevent mispairing of endogenous and recombinant TCR chains with unpredictable adverse specificities or allo-reactivity against allogeneic antigen-presenting cells used for subsequent antigen-screening. Successful hTCR-KO and expression of recombinant cTCRs was confirmed by flow cytometry (Supplementary Figure S5). IFN-γ-ELISpot-assays with the cTCR-T cells showed recognition of patient 3’s tumor cells (Figures 2B, C). When all TCR-T cells were tested against HLA-matched tumor cell lines (not shown), only TCR-V4 T cells responded by recognizing the HLA-A*02:01-matched lung cancer cell line MZ-LC-16 (Figure 2D). Because HLA-A*02:01 is the only allele matched between both tumors, this finding indicated HLA-A02-restriction of TCR-V4 and suggested expression of a target antigen shared between patient 3 tumor cells and MZ-LC-16. MHC class I restriction of all TCRs tested was demonstrated by blockade with the anti-HLA-antibody W6/32 (Figures 2B–D).





Target antigen screening using tumor-specific TCR-T cells

Neoantigens have been associated with favorable clinical responses to immunotherapy in NSCLC. Therefore, comparative whole exome- and transcriptome sequencing of tumor and adjacent lung tissue samples were carried out to identify tumor-specific non-synonymous variants as neoantigen candidates (Supplementary Figure S6). Seventy-three expressed non-synonymous single nucleotide variants (SNV) and one frameshift-mutation were identified (Supplementary Figure S6, Supplementary Table S6). Structural variant analysis revealed no translocations distinctive of subtypes of NSCLC (not shown). Binding predictions of mutated candidate peptides to the patient’s HLA I alleles (HLA-A*01:01/*02:01, HLA-B*08:01/*40:02, HLA-C*03:04/*07:01) using IEDB (http://tools.iedb.org/mhci/) and NetMHC4.0 (https://services.healthtech.dtu.dk/service.php?NetMHC-4.0) public databases found 581 9-mer or 10-mer peptides with IC50 <500nM and/or percentile rank <6 (Supplementary Table S7). HLA allele-assorted peptides were affinity score-ranked, and the 94 top-scoring peptides (and two quality control peptides) were synthesized and tested for recognition (Supplementary Table S7). K562 cells transduced with any of the patient’s HLA I alleles were pulsed with candidate peptides and tested for recognition by TCR-T cells using ELISpot assays. TCR-T cells expressing any of TCR-V1, TCR-V2 and TCR-V3 responded to KRAS Q61H peptide 55-64 ILDTAGHEEY, regardless of whether CD4-positive or CD8-positive lymphocytes expressed the TCRs. (Figures 3A, B). TCR-V4-T cells failed to recognize any of the mutated peptides tested. Because TCR-V4-T cells were shown before to respond to stimulation with NSCLC line MZ-LC-16 (Figure 2E), we suspected a target epitope shared between patient 3’s tumor and the cell line. Comparative analysis of non-synonymous variants as determined by WES found no shared mutated neoantigen in both tumors (Supplementary Figure S7A). Differential gene expression analysis of tumor versus normal lung tissues revealed overexpressed transcripts in both tumor entities (Supplementary Figures S7B–D). Shared overexpression was found only for cancer-germline antigens CT83, MAGEA12 and XAGEA1. TCR-V4-T cells were tested against 293T cells co-transfected with antigen-coding and HLA-A*02:01-coding cDNAs by ELISpot. However, none of the three candidates was recognized (Supplementary Figure S7E) and the cognate antigen of tumor-specific TCR-V4 was not found.
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Figure 3 | TCR-T cells transduced with P3-TCRs V1, V2, V3 recognize the naturally processed and presented KRAS Q61H-peptide 55-64 (ILDTAGHEEY). (A) Identification of the KRAS Q61H-peptide as target antigen of TCR-V2-T cells. ELISpot analysis testing TCR-T cells against monoallelic P3-HLA transduced K562 cells pulsed with 96 candidate neoantigen peptides identified by WES- and RNA-Seq. Only K562/HLA-A*01:01 cells were recognized when pulsed with several synthetic peptides in a cross-reactive manner, though less strong as the KRAS Q61H-peptide. (B) K562/HLA-A*01:01 cells were recognized by TCR-V1, TCR-V2, and TCR–V3-transduced CD4- and CD8-positive TCR-T cells when pulsed with mutant KRAS-peptide 55-64 (color code of the legend used for all figures). (C) K562/HLA-A*01:01 cells pulsed with titrated doses ILDTAGHEEY were recognized by TCR-T cells with high functional avidity (EC50<10nM). (D, E) Recognition of KRAS Q61H-mutated, HLA-A*01:01-transduced cell line NCI-H460/HLA-A*01:01 in comparison to wildtype NCI-H460 by CD8-positive (D) and CD4-positive (E) TCR-T cells. (F) Flow cytometry showing degranulation (CD107a) as surrogate for lytic activity of TCR-V1, TCR-V2, and TCR-V3-expressing CD8-positive TCR-T cells upon co-culture with NCI-H460/HLA-A*01:01. Corresponding results for CD4-positive TCR-T cells and the experiment gating strategy are shown in Supplementary Figure S8. Lytic activity and cytokine release of all TCR-T cell cultures showed overlapping results. All ELISpot experiments were done in duplicates or triplicates. Results shown in (B, D, E) are derived from three independent experiments. ns, not significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.





Characterization of the three distinct KRAS Q61H-reactive TCRs

For a more comprehensive analysis of the three mutant (m)KRAS-specific TCRs, CD4- and CD8-positive T cells transduced with TCR-V1, TCR-V2, or TCR-V3 were tested against K562/HLA-A*01:01 cells pulsed with titrated doses of the mKRAS peptide 55-64. All TCR-T cells showed recognition at EC50 values below 10nM regardless of whether the three TCRs were expressed in CD4- or CD8-positive TCR-T cells (Figure 3C). To verify that the mKRAS peptide is processed and presented, NCI-H460 cells were tested for recognition. NCI-H460 cells are natural carriers of the KRAS Q61H-encoding mutation (KRAS c.183A>T) but are negative for HLA-A*01:01 and were thus transduced with this allele. Wildtype NCI-H460 and NCI-H460/HLA-A*01:01 cells were tested for TCR-T-cell recognition by ELISpot (Figures 3D, E) and degranulation as a surrogate assay for cytolytic activity (Supplementary Figure S8). While NCI-H460 cells induced no response, as expected, NCI-H460/HLA-A*01:01 cells were strongly recognized by CD8-positive TCR-T cells transduced with any of the three TCRs (Figures 3D, F, Supplementary Figures S8B, C). In contrast, CD4-positive TCR-T cells showed significant reactivity only when transduced with TCR-V1 (Figure 3E, Supplementary Figure S8C). Weaker responses of TCR-V2 and TCR-V3-transduced CD4-positive T cells against NCI-H460/HLA-A*01:01 suggest dependency on CD8-costimulation of TCR-T cells transduced with these TCRs. H-, K-, and NRAS protein-family members share identical Aa sequences from position 1 to 86 (Supplementary Figure S9A) implying that the peptide comprising Aa 55-64 can be processed and presented from any of these proteins. Prevalent alterations at the RAS mutation hotspot Aa position 61 include Q61H, Q61R, Q61K and Q61L, which occur with different frequencies in different tumor entities (Supplementary Figure S9B). Taking advantage of three independently evolved homologous but not identical KRAS Q61H-specific TCRs (Figure 2A), we tested whether any of the TCRs was capable of cross-reacting against one of the alternative mutations. ELISpot assays with 293T cells transfected with HLA-A*01:01 and cDNAs encoding all four possible mKRAS variants as well as wildtype KRAS showed that all three TCRs are specific for the Q61H mutation (Figure 4A). As a definite proof that KRAS Q61H is the actual target of the TCRs, CRISPR/CAS9 technology was used to change the Q61H-encoding mutation in NCI-H460/HLA-A*01:01 cells to encode KRAS Q61R (codon alteration KRAS c.181-183CAT>CGC; Supplementary Figure S10). Because NCI-H460 cells are homozygous for the mutation, both alleles had to be edited to achieve an effect on TCR-T cell recognition. Treated tumor cells were cloned by limiting dilution and, after expansion, multiple clones were tested for recognition by the TCR-T cells. Patterns of recognition observed included unaltered, reduced and lost recognition. Sequencing of target genomic regions of one representative tumor clone for each pattern revealed that TCR-T cell recognition correlated with the extent of target codon editing (Figure 4B): failed editing resulted in unaltered recognition (clone C9), conservation of only one of the two Q61H-encoding alleles reduced recognition (clone B11), and the successful biallelic codon editing encoding KRAS Q61R (clone G5) resulted in loss of recognition (Figure 4B). The results demonstrate that all three TCRs only recognize NCI-H460/HLA-A*01:01 cells expressing the KRAS Q61H neoepitope but none of the alternative hotspot-neoepitopes, suggesting a strict target-specificity. Concerning cross reactivity, in addition to the lack of responses to the related peptides, the TCR-T cells did not respond to the various APCs used in different assays, including transfectants expressing the patient’s HLA alleles, involving K562 cells, 293T cells, and an HLA-matched lymphoblastoid cell line (not shown). Furthermore, a search with the cognate target peptide of the CrossDome database (48) for processed and presented peptides from normal tissues did not yield any peptide hits with cross-reactive potential (not shown).
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Figure 4 | TCR-T cells transduced with TCRs V1, V2, V3 are KRAS Q61H-specific. (A) Reactivity of TCR-V1/V2/V3 transduced CD8-positive (top row) and CD4-positive (bottom row) TCR-T cells against 293T cells transiently transfected with depicted KRAS-encoding variants and HLA-A*01:01. TCR-V1-transduced CD8-positive T cells produced comparable background activity against 293T cells expressing KRAS-wt, KRAS Q61L, Q61K, and Q61R in two of three independent experiments. Taken together, however, recognition of KRAS Q61H was stronger and a 1-way ANOVA test showed that this response was significant (*p<0.05), whereas responses of TCR-V1 T cells to the wt and variant epitopes were not significant (ns). All other TCR-transduced CD8-positive and CD4-positive TCR-T cells showed exclusive recognition of KRAS Q61H-/HLA-A*01:01-expressing 293T cells (****p<0.0001). (B) Reactivity of TCR-V1/V2/V3 transduced CD8-positive (top) and CD4-positive (bottom) TCR-T cells against NCI-H460, NCI-H460/HLA-A*01:01, and NCI-H460/HLA-A*01:01 cells treated by CRISPR/CAS9 for replacement of the Q61H-encoding mutation by Q61R-encoding sequences. Treated cells were cloned by limiting dilution, expanded and after target region sequencing tested for recognition by CD8-positive and CD4-positive TCR-T cells. Three examples with different outcomes are shown. NCI-H460/HLA-A*01:01 clone #G5 carries a biallelic substitution encoding KRAS Q61R and recognition of clone #G5 was lost. Clone #B11 harbors a frameshift mutation in one of two KRAS Q61H alleles, explaining the reduced recognition of the cells. In #C9, the H-to-R substitution failed explaining the retained recognition of the cells. All ELISpot experiments were done in duplicates or triplicates. Shown are results of three independent experiments. ns, not significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.





Course of the KRAS Q61H response in the patient over time and presence of matching TCRs in independent KRAS Q61H-positive tumors

Consistent with KRAS Q61H being a cancer driver in NSCLC, the hotspot variant was clonal and detected in genomic DNA from a tumor relapse obtained 32 months after surgery of the primary tumor (Supplementary Table S1, Supplementary Figure S1). TCRseq using template DNA from the relapse-FFPE sample detected multiple clonotypes predicted tumor-specific from the primary tumor, including all four confirmed tumor-reactive TCRs (TCR-V1 – TCR-V4) at highest frequencies (Figure 5A). Moreover, the TCR-V1-coding sequence was detected by TCR-repertoire sequencing from plasma cfDNA from a blood sample collected in September 2021 (Supplementary Figure S1, Figure 5B) suggesting cellular turnover of this clonotype at this time point in vivo. By contrast, the clonotype was undetectable in PBMCs from blood collected at the same timepoint and three months later.
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Figure 5 | TCR-V1–V4-positive clonotypes infiltrating the P3 relapse tumor, detected in plasma, and homologous TCRs in archival tumor samples of independent patients. (A) Frequencies of the four selected clonotypes (triangles) amid the top 100 clonotypes detected in primary tumor and relapse. (B) Frequency of the TCR-V1-clonotype (triangle) among TCR sequences amplified from plasma-derived cfDNA of P3. The top 100 primary tumor clonotypes were compared with clonotypes detectable in a plasma sample from September 2021. In corresponding blood from the same and a later time point, none of the clonotypes was detected. (C) Discovery of TRBV/TRAV-CDR3 sequences matching to the mutated KRAS-specific P3-TCRs in samples from patients with KRAS Q61H-positive tumors (29 FFPE samples tested, mutations encoded by c.183A>T or c.183A>C are symbolized by color). Sequence-identical or highly related TCRs were found in 6/29 patients. Only non-identical CDR3-sequences are posted, Aa differences highlighted in red. TCR-frequency ranges are represented by circle sizes.

To further investigate the immunogenicity of the KRAS Q61H mutation, we performed TCRseq on gDNA from FFPE-samples of various KRAS Q61H-positive tumors from 29 patients including 14 lung cancers, nine gastro-intestinal (including CRCs, pancreatic, and bile duct cancers), and six not otherwise specified tumors (others, Figure 5C, Supplementary Table S8). The KRAS-mutation was encoded by SNVs c.183A>T in 19 and c.183A>C in ten cases. Repertoire-analysis of TRBV- and TRAV-sequences revealed CDR3 sequences highly related or even identical to patient 3 TCR-V1, -V2, and -V3 in six out of the 29 patient samples analyzed (in 4/14 lung cancers). Most frequently detected was the exact TRBV-sequence of TCR-V1 in four samples (2 lung, 1 rectum and 1 other cancer Figure 5C, Supplementary Table S8). In lung cancer sample-2, in addition to the matching beta the alpha-chain of TCR-V1 was found. This sample contained also an alpha chain related to TCR-V3 (Figure 5C, Supplementary Table S8). In FFPE-samples 3 and 5, multiple TCR-V2-matching TRBV-sequences were discovered. However, being aware that sequencing of DNA/RNA from paraffin-material is riddled with artifacts (49), we considered only perfect matches and sequences represented in elevated frequencies (>0.001%, coverage >4reads) as true hits in these cases (Figure 5C, Supplementary Table S8). Of note, in sample-5 a TCR-V2 beta-chain perfect match represented 2.9% of all detected clonotypes. Taken together, these results suggest a convergent selection of cognate immune receptors in different patients with KRAS Q61H-positive cancers, suggesting a high epitope immunogenicity.





scRNA-Seq of TILs reveals differentiation trajectories of tumor-specific T-cell clonotypes consistent with cytotoxicity, chronic stimulation and exhaustion

Single-cell gene expression analysis can inform about activation and differentiation states of TIL clonotypes. We analyzed a pool of about 13,000 single T cells from six NSCLC patients including patients 2 and 3 (Figure 1A). To select tumor-specific clonotype candidates, a rigorous threshold (tumor-to-nontumor ratio >10, absolute frequency of CD8-positive TIL >0.2%) was applied. Of all TILs analyzed, 160 clonotypes (830 single cells, 6,4%) were confirmed or predicted to be tumor-specific by our method. Unsupervised clustering of all cells separated five clusters of CD8-positive from five CD4-positive T-cell clusters (Figures 6A, B). Following subclustering of only CD8-positive T cells (Figure 6C, ≈6600 cells) we identified the predicted tumor-specific clonotypes, including the confirmed tumor- and KRAS Q61H-specific clonotypes from patients 2 and 3, in three of the resulting five clusters (clusters 0, 2, and 3; Figures 6C, D). Generally, tumor-to-nontumor ratios were significantly higher in the aggregate of cluster 0, 2 and 3 as compared to clusters 1 and 4 (p< 0.0001). Specifically, CD8-positive T cells in cluster 2 were enriched for genes associated with activation, cytotoxicity, and tissue homing (granzymes, IFNG, CXCL13, CXCR6) but also terminal differentiation and exhaustion (LAYN, TOX, PDCD1, HAVCR2, ENTPD1, etc.; Figures 6D, F). As a control, predicted expanded bystander T-cell clonotypes (tumor-to-nontumor ratio <1, frequency >0.1%) were localized by barcodes (Figure 6E) and were found mainly in clusters 1 and 4 – were scarce in cluster 0 and largely absent from cluster 2. Single-cell trajectory and pseudotime analysis of clusters enriched for predicted tumor-specific clonotypes revealed differentiation trajectories ranging from effector-memory/resident memory to terminally differentiated/exhausted T cells, suggesting that the T cells have been activated by tumor cells and eventually became exhausted due to chronic antigen stimulation (Supplementary Figure S11). Hence, for the top clonotypes selected based on large frequency, a high tumor-to-nontumor frequency ratio and PD-1-expression, their gene signatures indicating exhausted/dysfunctional T cells supported the selection.
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Figure 6 | Single-cell gene expression analysis of TILs from six NSCLC patients coupled with barcode-mediated detection of predicted and confirmed tumor specific clonotypes. (A) Uniform Manifold Approximation and Projection (UMAP) of an unsupervised clustering of TILs from patient samples displaying five clusters each of CD4- and CD8-positive clonotypes. (B) Separation of CD4- and CD8-positive TIL clusters. (C) Subclustering of the CD8-clusters from B projects five new clusters. (D) Barcode localization of predicted (frequency >0.2%, tumor-to-nontumor frequency ratio >10) and confirmed tumor-specific clonotypes (in red). (E) Barcode localization of bystander clonotypes (frequency >0.1%, tumor-to-nontumor frequency ratio <1, in red). (F) Heatmap showing expression of genes associated with tissue residency, effector function and terminal differentiation/exhaustion. It is obvious that tumor-specific TILs (prevalent in clusters 0, 2 and 3) and bystander T cells (concentrated in clusters 1 and 4) express marker genes of cytotoxicity and tissue residency. However, expression of exhaustion markers is high in clusters 0 and 2 and absent from clusters 1 and 4, efficiently separating bystander T cells from tumor-specific TILs.






Discussion

Adoptive cell therapy with engineered tumor-reactive TCR-T cells expands the cellular therapy options for solid cancers. Compared with CARs, TCRs address a significantly larger antigen repertoire and TCR-T cells can recognize target epitopes with superior sensitivity (50, 51). Higher functional avidity of TCR-T cells endows them with stronger tumor cell killing efficacy. At the same time, lower target-binding affinity enables serial scanning and killing of multiple tumor cells. In a therapeutic setting, this quality may delay exhaustion and increase persistence of the TCR-T cells (10). Current TCR-T approaches in clinical development have in common that they are driven by an antigen-centered perspective. Either they target a very restricted number of antigens in combination with few common HLAs, mainly HLA-A*02:01 (10) or, in a personalized approach, they focus on TCRs against private neoantigens (25, 26). Both strategies are limited to small numbers of eligible patients.

In this study, we present an antigen-agnostic method to identify tumor-specific T-cell clonotypes based on (1) numerical dominance among TILs, (2) high tumor-to-non-tumor frequency ratios, (3) PD-1 expression, and (4) verification of clonotype selection by single-cell gene expression data showing that candidate clonotypes express gene signatures indicative of chronic activation, terminal differentiation and/or exhaustion. Compared to competing studies that have suggested the identification of tumor-specific T cells from TILs or peripheral blood using only single cell expression profiling (38–43, 51), our scoring matrix facilitates the direct selection of therapeutic TCRs from immunodominant clonotypes. A selection based on a combination of four qualifiers may be more likely to convince regulatory authorities to approve the testing of tumor-specific TCR candidates in clinical trials than a selection based on a single attribute. The efficacy of our method was demonstrated in three patients by showing that the top predicted tumor-specific clonotypes were tumor-reactive. The fact that not all initially predicted tumor-specific TILs (patients 1,2, Figures 1B, C right) were expanded and showed responses to tumor challenge can probably directly be attributed to exhaustion of the T cells (36). In patient 3, TCR-T cells generated with TCRs of the top four clonotypes proved to be tumor-specific and three of them recognized a neoepitope derived from oncoprotein KRAS Q61H. TCR-T cells expressing the fourth TCR (V4) were tested against a representative number of neoepitopes and a panel of cancer/germline and overexpressed antigens but the cognate target antigen was finally not detected. However, recognition of autologous tumor cells and of an HLA-A*02:01-matched NSCLC cell line indicated tumor specificity and recognition of a shared antigenic peptide presented by HLA-A*02:01. Predicted tumor-specific clonotypes from five additional patients showed congruent differentiation trajectories as determined by scRNA-Seq.

Regarding the clinical relevance of the KRAS-epitope, driver mutations in TP53, EGFR, and KRAS invariably represent clonal (or truncal) mutations in smoking- and non-smoking-related lung cancer (52). Resultant expression in all tumor cells in combination with the high immunogenicity of the epitope make the KRAS Q61H epitope an attractive target for immunotherapy. Immunogenicity is inferred by the fact that homologous NRAS mutations (ILDTAGKEEY, ILDTAGREEY) have been shown to be immunogenic in HLA-A*01:01-positive melanoma patients and presentation of the peptides was shown by immunopeptidomics (53). In our study, three independent T-cell clonotypes with strong avidity targeting epitope ILDTAGHEEY were found in the patient and highly homologous TCRs were discovered infiltrating KRAS Q61H positive tumors in other patients. Moreover, all TCRs were rediscovered in a relapse lesion and one even in circulating cell-free DNA analyzed almost three years after surgery of the primary tumor. The antigenic peptide is presented by HLA-A*01:01, which is expressed in 23,7% of tumors in the TCGA database (25). Compared with other KRAS-driver mutations, such as G12-hotspot mutations, the Q61H mutation is rare (according to TCGA occurring in lung, colorectal, and pancreatic cancer in 0.2%, 0.7%, 2.8% of cases, respectively), which may explain why this immunogenic epitope has remained undetected so far (54). However, given the high incidences of the mentioned tumor indications in Europe and the United States, hundreds of patients per year would be eligible for ACT with TCR-T cells expressing these TCRs. Clinical responses comparable to those reported for a small number of patients using TCR-T cells transduced with KRAS G12-mutation specific TCRs can be expected (29, 31, 54).

In conclusion, discovery of the tumor-specific and mutant KRAS-reactive TCRs in the presented cases implies that our strategy to identify and select tumor-specific TCRs can be applied to many patients with different tumors, provided that surgical material for analysis is available. Synthesis and cloning of the natural TCRs and manufacturing of autologous T cells with these TCRs for therapeutic application can be expected to be safe because the tumor-reactive clonotypes have passed thymic selection and dealt with the tumor in vivo without apparent adverse effects. Moreover, ACT with T cells transduced with three to four dominant tumor-specific TCRs per patient can address tumor heterogeneity and counteract immune-escape mechanisms (55, 56). However, while developing such personalized TCR-T cell products is feasible, the clinical implementation is challenging from a manufacturing and regulatory perspective (54). Yet, to overcome the challenges is worthwhile because an approach for the direct selection of tumor-specific TCRs from TILs can make more patients with solid tumors eligible for TCR-T cell therapy than antigen-centered selection approaches.





Materials and methods




Key resources table

For reproducibility, the key resources table (Table 1) lists reagents, antibodies, cell lines, software, instrumentation, etc. as they are referred to in the following chapters.

TABLE 1 | Key resources table.
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Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by lead contact Volker Lennerz (lennerz@therycell.de).





Materials availability

This study did not generate new unique reagents.





Data and code availability

Any additional data required to reanalyze the data reported in this work is available from the lead contact upon request.






Patient material

From seven patients with NSCLC, clinical material including blood, fresh tumor- and adjacent normal-lung tissue selected by a pathologist was obtained and transported to the lab in the fastest way possible. Lymphocyte subpopulations (CD3, CD4, CD8, PD1) were isolated from fresh tumor, lung, and blood for high throughput TCR-VDJ amplification and TCR-repertoire profiling (TCRSeq). From six patients, including patients 2 and 3, part of the CD3 fractions underwent single cell RNA-Seq (see below). For patients 1, 2, and 3 functional assays were performed. Only in patient 3, in addition to samples from primary surgery, FFPE samples from relapse surgery in January 2021 as well as blood samples collected in September and December 2021 were investigated. The clinical course of patient 3 and derivation of all samples are summarized in Supplementary Figure S1. Similarly, patient 3 was the only subject in whom lung and tumor tissue samples were subjected to whole exome and transcriptome sequencing, and cell-free (cf) DNA was isolated from blood plasma and also subjected to TCR repertoire profiling.

The study was performed in accordance with the declaration of Helsinki. Sample acquisition from NSCLC patients was approved by the ethics committee of the Aerztekammer Berlin (Eth-08/18) and informed consent received from all patients.





Primary tissue and blood cell processing

Small pieces from different tissue regions (~1g) each of tumor and adjacent normal tissue were physically disrupted using scalpels and subjected to GentleMACS tissue dissociation according to protocol (Miltenyi Biotec, Bergisch-Gladbach, Germany). After filtering through a 70 μm-cell strainer, one aliquot each of the cell suspension underwent Percoll gradient centrifugation and the remainder was cryopreserved. Percoll-interphases were collected and rested overnight at 0.5x106 cells/ml in TexMACS medium (Miltenyi Biotec) plus 25 mM HEPES (pH 7.2), L-glutamine (Lonza, Köln, Germany), 50 mM beta-mercaptoethanol (ThermoFisher Scientific, Waltham, MA, USA), and 10% autologous serum. Tumor- and lung cell pellets were resuspended and cryopreserved. After harvesting and washing the leukocyte fractions, CD3-positive, CD4- positive, CD8-positive, and PD1-positive cells were isolated from TILs and lung-leukocytes using magnetic beads (Miltenyi Biotec) or FACS. For whole exome sequencing and RNA-Seq (see below), sections of different tumor and lung regions were pooled separately, and snap-frozen in liquid nitrogen until preparation of nucleic acids.





TCR repertoire profiling of tumor- and lung-infiltrating lymphocytes and TIL-scRNA-Seq

From sorted subpopulations of TILs, lung-infiltrating lymphocytes, PBMCs, and blood plasma, genomic (g)DNA was isolated and subjected to TCR-VDJ-amplification using human TRBV/J-specific primer sets and NGS-analysis (referred to as TCRseq) (45, 46). Briefly, gDNA from CD3-positive, CD8-positive, and PD1-positive T-cell subpopulations was isolated using the QIAamp blood kit (Qiagen, Hilden Germany) and NGS libraries were generated employing a two-step PCR protocol (45). gDNA from FFPE samples processed with the AllPrep DNA/RNA FFPE kit (Qiagen) and from urine and plasma with the Norgen Plasma/Serum RNA/DNA Purification Mini Kit (BioCat GmbH, Heidelberg, Germany) was applied to TCRseq, too. In addition to TRBV-sequencing, FFPE-samples from 29 patients with various tumors expressing KRAS Q61H were subjected also to TCRseq using human TRAV/J-specific primer sets. Single cell cDNA-libraries were generated from CD3-positive TIL single cell suspensions using 10x Genomics® GemCode™ Technology (10x Genomics B.V., Leiden, The Netherlands). Briefly, lymphocytes were processed using the 10x Genomics Chromium Next GEM Single Cell V(D)J Reagent Kit in combination with the Chromium Single Cell V(D)J Enrichment Kit (Human) according to protocol. After clean-up, libraries were analyzed by Illumina next generation sequencing (StarSEQ GmbH, Mainz, Germany).





CRISPR/CAS9 engineering of primary T cells and cell lines

T cells isolated from Buffy Coats from three healthy donors were isolated by Ficoll (Sigma-Aldrich, Taufkirchen, Germany) separation and MACS-sorting according to protocol (Miltenyi Biotec). After OKT3-activation (plate-bound, 30 ng/µl), T cells were subjected to CRISPR/CAS9-mediated knockout of endogenous TCRs. Ribonucleoprotein (RNP) complexes were delivered by Human T Cell Nucleofector™ Kit (Lonza, Basel, Switzerland). Both TCR chains were targeted by two crRNAs. The TRBC-crRNA was previously described (57), the TRAC-crRNA was designed using the Alt-R Custom Cas9 crRNA Design Tool (IDT, Coralville, USA). Combined at 1:1-ratio with the Alt-R® CRISPR-Cas9 tracrRNA (IDT), two different gRNA complexes were formed. gRNA complexes were combined with recombinant Cas9 (IDT) for RNP complex generation (20 min, RT). 4x106 T cells were transfected in Nucleofector® Solution supplemented with 1 µM Alt-R® Cas9 electroporation enhancer (IDT) and 4 µM of RNPs. T cells were electroporated with program T-023 on a Nucleofector™ 2b Device (Lonza). T cells were cultivated at 1x106 cells/ml Panserin complete (plus 600 U/ml IL-2). TCR-KO efficiency was assessed 4-6 days later via flow cytometry. CRISPR/CAS9 genome editing was also used to substitute KRAS-codon 181-183 CGC (encoding KRAS_p.Q61R) for KRAS-codon 181-183 CAT (encoding KRAS_p.Q61H) in HLA-A*01:01-expressing NCI-H460 NSCLC cells by homology-directed repair (HDR). A specific crRNA was designed by the Alt-R Custom Cas9 crRNA Design Tool (IDT) and then combined with Alt-R® CRISPR-Cas9 tracrRNA (IDT) to generate specific RNPs. ssODN constructs encoding the KRAS_p.Q61R mutation flanked by homology arms of 40-46 nt were generated. ssODN constructs were stabilized by IDT-proprietary end-blocking groups and two phosphorothioate bonds. Three silent mutations at ssODN positions 48, 60 and 63 prevented the Cas9 enzyme from re-cutting target sequences after HDR. Cells underwent nucleofection with RNP complexes using program X-001 (Lonza). Briefly, two-part gRNA complexes were prepared at 100 µM and combined with recombinant Cas9-NLS nuclease (QB3 Macrolab, Berkeley, USA) for the generation of KRAS-specific RNPs. After formation (20 min, RT), 3x106 NCI-H460/HLA-A1 cells were transfected in 110 µl OptiMEM supplemented with 4 µM ssODN templates, 1 µM Alt-R® Cas9 enhancer (IDT) and 4 µM RNPs. Nucleofected cells were cultivated in 2 ml RPMI supplemented with 30 µM Alt-R™ HDR Enhancer V2 (IDT) per well of a 6-well plate. Nucleofection medium was replaced by RPMI+ after 18-20 h. Clonal cell lines were established via limiting dilution cloning.





TCR-encoding DNA-synthesis and cloning

T-cell receptor alpha-chain (TRAV/J-) and TCR beta-chain (TRBV/D/J-) region-coding sequences were synthesized as G-blocks (IDT) and cloned as bicistronic constructs connected by a P2A-encoding linker into gamma-retroviral expression vector pMX-puro as described (58). TCRs were designed as chimeric constructs in which the human TRA- and TRB-constant-region sequences (TRAC, TRBC) were replaced by murine homologous sequences.





Stable transduction of primary T cells and cell lines

TCR-encoding γ-retroviral particles were produced for transduction of primary T cells as described (48, 58). Briefly, T cells from Buffy coats of healthy donors were isolated by Ficoll separation followed by CD8- and CD4-magnetic bead isolation according to protocol (Miltenyi Biotec). After activation with plate-bound OKT-3 (30ng/μl) and culture for 3-5 days, endogenous TRAC/TRBC-knockout was accomplished. Viral particles were produced using Phoenix-ampho packaging cells seeded at 1,3x10e6 cells per 100mm plate. After 24 hours, cells were co-transfected with 5μg each of helper plasmids pCOLT-GALV, pHIT60 and 10μg of expression vector pMX/TCR using Fugene-6 according to protocol (Promega, Madison, WI, USA). Transfection medium was changed for T-cell medium after 24h and supernatant was harvested 16 hours later following cell-pelleting. TCR-T cells were generated by spin-inoculation with retrovirus-containing T cell medium of 2x10e6 T cells per reaction and TCR-T cells expanded and selected using puromycin (1μg/ml, Sigma Aldrich) as reported (48, 58). Transductions of K562- and NCI-H460 cells were performed accordingly with pMX/HLA-constructs.





Computational analyses

The results of TCR repertoire sequencing (TRB or TRA chains, 2x 150bp paired Illumina reads) were processed by in-house developed software using both reads to build a consensus sequence covering the complete CDR3 region and removing inconsistent non-overlapping read-pairs. High-quality consensus CDR3 sequences were clustered into unique clonotypes, respective V- and J-segment IDs, and a clonotype frequency was calculated as percentage of clonotype reads compared to all sample reads. Clonotype sequences were further analyzed for productive ORFs discarding non-functional sequences (59). The output frequency matrix with each row belonging to a unique CDR3 nucleotide sequence (for example Supplementary Table S4) showed clonotype frequencies in peripheral blood, tumor and adjacent non-tumor tissues. A frequency ratio TIL/adjacent normal lung was calculated for all clonotypes; those with a ratio >5 were considered enriched for tumor-specific T-cells.

Single cell sequencing reads were processed with the 10X Genomics Cell Ranger pipeline (v6.0.2) with default parameters to demultiplex and generate unique molecular identifier (UMI) matrices. The matrices were used in R with Seurat (v4.1.1) for quality control and downstream analyses. Each sample matrix was individually inspected for quality control before integration into a merged dataset. Cells with less than 400 UMI, fewer than 250 genes and greater than 20% UMI in mitochondrial genes were removed. For sc-gene expression analysis, TCR genes were neglected to avoid clustering based on certain V or J gene segments. To account for library chemistry and align cells from different samples, an integration method based on highly variable shared genes was used. Starting with the SCTransform function for normalization and identification of the most variable genes, we also regressed out variation due to mitochondrial expression. The top 3000 variable genes were used from the SCTransform object to find “anchors” with the FindIntegrationAnchors function and thereafter processed with IntegrateData to produce a sample-corrected data set. The first 30 principal components of the integrated data were used for uniform manifold approximation and projection (UMAP) construction, as well as the unsupervised graph-based clustering to identify distinct groups of cells, including CD4- and CD8-positive T-cell clusters. A subclustering of CD8-associated clusters (CD8-GZMK, CD8-ZNF683, CD8-ENTPD1 and CD4/8-MT) was done with the same parameters.

Regarding statistical analyses, Graph Pad Prism (v 9.1.3) was used for T-cell response analyses and Seurat (v 4.1.1) for scRNAseq-data. For TCR-T cell responses set up in duplicates and analyzed by IFN-γ-ELISpot assays, means and standard deviations (error bars) of spot numbers were calculated and test reactions normalized to control reactions (w/o targets). Important experiments were performed as up to four independent experiments. Means and standard deviations were calculated and SDs depicted as error bars. A Dunnett’s 1-way ANOVA test was used to compare the means of multiple data sets with the control mean of a reference data set. For experiments where responses were tested in comparison to only a single control, T-tests (unpaired, two-tailed) were performed.

Single-cell gene expression analysis data were preprocessed, quality controlled, filtered and normalized using Seurat. Then, the FindAllMarkers function was used to identify potential gene expression markers for all clusters with performance of a statistical test on each gene. Finally, the Wilcoxon Rank sum test was applied to determine statistical significance with following criteria: at least 0.5-log2 fold change between two groups and adjusted p-values <0.0001 with the gene being expressed at >10% in either of the groups.

The Mann–Whitney U test was used to determine if any cluster or a combination of them contains clonotypes with higher tumor-to-nontumor ratios than the rest of the CD8 clonotypes. As the ratio is unique to its clonotype, which can consist of many cells having the same ratio, we counted the ratio of every clonotype per group only once. The CD8 subclustering of five distinct clusters was divided in all possible 15 combinations to form two groups. The resulting p-values were adjusted with the Bonferroni correction, resulting in a combination of cluster 0, 2 and 3 vs. 1 and 4 having the biggest difference in tumor-to-nontumor ratios and therefore the most significant adjusted p-value (< 0.0001).

For single-cell trajectory construction of the CD8-positive clonotypes, Monocle 3 (v1.2.9) was used. Following unsupervised clustering, we assigned two partitions to the cell data object separating the clonotypes from clusters 0, 2, and 3 from clusters 1 and 4 which resulted from the previous Seurat clustering. Per partition the learn graph function calculated the pseudotime trajectories. Results were visualized as UMAP plots.





Culture of cell lines, TILs and primary T cells

Cell lines and primary T cells were grown in incubators at 37°C, 5% CO2, >85% humidity. HEK 293T-, K562-, NCI-H460-, and MZ-LC-16 cells (kindly provided by Dr. P. Haenel and Dr. S. Horn, UMC, Mainz, Germany) were maintained in RPMI-1640 supplemented with 10% FBS, and 1% penicillin/streptomycin (RPMI+, Sigma Aldrich, Taufkirchen, Germany). HLA-monoallelic K562 cells were engineered to express all six HLA-alleles of patient 3, and NCI-H460 to express HLA-A*01:01 using γ-retroviral transduction. Cells were maintained in RPMI+ plus puromycin (1μg/ml, Sigma Aldrich). Primary T cells from healthy donors were grown in Panserin-413 (PAN-Biotech, Aidenbach, Germany) supplemented with 10% heat-inactivated pooled human serum (provided by the blood bank of UMC Mainz, Germany), 1% Penicillin/Streptomycin (Sigma Aldrich), and rhIL-2 (250-600 IU/mL Novartis, Basel, Switzerland). Cell lines underwent STR-analysis for identity verification and were regularly subjected to mycoplasma testing to ensure absence of contamination. In patients 1 and 2, parts of the over-night rested TILs were taken in culture and expanded for three to four weeks. The procedures are outlined in Supplementary Figure S3 (patient 1) and Supplementary Figure S4 (patient 2) and further details are provided in the legends. For patient 1, after challenge with autologous tumor cells, reactive T cells were isolated using the IFN-γ secretion assay – cell enrichment and detection kit (Miltenyi). For patient 2, after TIL expansion and tumor-challenge, tumor-reactive T cells were isolated based on CD137-upregulation by FACS.





Flow cytometry

T lymphocyte subpopulations were stained with monoclonal antibodies anti-CD8-FITC or CD8-PE (clone 9.11, SK1; BD Biosciences, Heidelberg, Germany), anti-CD4-PE (13B8.2), anti-CD3 (UCHT1), anti-human TCR constant domain (IP26A; all Beckman Coulter, Krefeld, Germany), and anti-murine TCR constant domain (FITC, CL075F, Origene, Rockville, MD, USA). TCR-T cells were tested for activation-induced cytolytic responses by coincubation with target cells (1:1) overnight followed by staining with anti-murine TCR constant domain antibody (FITC, CL075F, Origene) and anti-CD107a mAb (PE-Cy5, clone H4A3, BD Biosciences, Heidelberg, Germany). Antibody-stained cells were analyzed on either FACS Canto II or Melody instruments (BD Biosciences). Data were analyzed using FlowJo 10 analysis software (BD Biosciences). Additional antibodies used in the study are listed in the Key Resources Table.





Whole exome- and RNA-sequencing of lung- and tumor tissue nucleic acid preparations

Genomic DNA for WES and totalRNA for RNA-Seq were isolated from frozen tumor and lung tissues using the QIAamp Fast DNA Tissue Kit and RNeasy Plus Kit as per protocols (Qiagen). Briefly, tissue blocks were cut into chunks of approx. 25 mg by using pre-chilled mortars and RNase-free scalpels. To prevent degradation by RNases, samples were kept cold with liquid nitrogen and mortars were sterilized beforehand by baking for 6 h at 180°C. To address tumor heterogeneity, three individual lung and tumor tissue chunks obtained from different areas were used for every gDNA and RNA purification. Tissue fractions were homogenized in QIAzol Lysis Reagent (Qiagen) using a TissueLyser LT bead mill (Qiagen) according to protocol (50 Hz, 2x 2.5 min). Exome enrichment, preparation of sequencing libraries and NGS were with StarSEQ GmbH (Mainz, Germany). Raw data were processed and analyzed using CLC Genomics Workbench (https://digitalinsights.qiagen.com/).





Transient transfection of HEK 293T cells

Overexpressed antigen-encoding and KRAS-encoding cDNAs were reverse-transcribed and amplified from patient 3 tumor-cell RNA and NCI-H460 cell RNA using standard RT- and PCR-kits and cloned into pcDNA3.1-derived vectors employing Gateway technology (Invitrogen). HEK 293T cells were transiently transfected with plasmids encoding HLA-A*01:01 and wildtype and mutated KRAS full-length and fragment cDNAs using Lipofectamine 2000 as per protocol (Invitrogen). Briefly, transfection was carried out in wells of Multiscreen HTS 96-well plates previously prepared for ELISpot testing. Per well, 20,000 cells were transfected with 100ng HLA-plasmid, 300ng antigen-encoding plasmid and 0.5μl Lipofectamine transfection reagent. Twenty-four hours after transfection, recombinant 293T cells were used as target cells in IFN-γ ELISpot assays.





IFN-γ ELISpot assays

Response analyses of TCR-T cells by IFN-γ ELISpot assays were performed as reported (60). TCR-T cells were expanded for several weeks and aliquots cryopreserved every week. TCR-T cells were ready for testing when they exhibited >50% cTCR-expression. ELISpot assays were performed with TCR-T cells from culture or after thawing. Thawed cells were rested overnight before testing. Briefly, HLA- and antigen-cDNA transfected 293T cells (20000/well), peptide pulsed (2μM) K562/HLA (50,000/well), NCI-H460, NCI-H460/HLA-A*01:01 cells (50,000/well), or tumor- and lung cell suspensions (20,000/well) were co-incubated with TCR-T cells (2,000-10,000 cTCR-positive cells/well) in IFN-γ antibody-coated Multiscreen HTS plates (Merck-Millipore, Darmstadt, Germany) overnight (16-20h). Positive control OKT3-antibody (purified from hybridoma, 400ng/ml) was co-coated in control-wells together with the anti-IFN-γ-antibody. All reactions were set-up in duplicates or triplicates. After 20h, cells were discarded, and tests developed as per protocol (60). Plates were scanned and analyzed by ImmunoSpot Analyzer S5 Versa with ImmunoSpot software 7.0.15.1 (CTL Europe, Bonn, Germany). For peptide-pulsing of K562/HLA-monoallelic cell lines, a Fast Track Peptide Library of candidate neoepitopes was purchased from JPT Peptide Technologies (Berlin, Germany). Lyophilized peptide pools were reconstituted with DMSO and after dilution with RPMI (16μg/ml RPMI/5% DMSO) stored at -20°C. Pan-HLA class I antibody W6/32 (purified from hybridoma supernatants) was used to block pMHC-specific recognition of target cells by TCR-T cells.





Immunohistochemistry

Primary tumor- and relapse FFPE samples were analyzed for tumor areas (H&E staining) and tumor cell expression of HLA-A using a polyclonal antibody against a common epitope of all HLA-A alleles (Thermo Fisher Scientific, Dreieich, Germany) and of PD-L1 using monoclonal (m)Abs 22C3 (Agilent, Waldbronn, Germany) and QR1 (Diagomics, Cedex, France). On consecutive slices, T cells were stained with mAbs specific for CD8 (C8/114B, Thermo Fisher Scientific), CD4 (4B12, Thermo Fisher Scientific), and PD-1 (NAT105, Roche, Rotkreuz, Switzerland). A polyclonal Ab was used to detect CD3 (DAKO, Agilent, Waldbronn, Germany). For identifiers of all IHC-antibodies used see key resources table.
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Chimeric antigen receptor (CAR) cellular therapies have advanced outcomes in challenging hematologic malignancies like leukemia, lymphoma, and multiple myeloma. Plasma cell-directed CAR T-cell therapies have been particularly beneficial in multiple myeloma, suggesting that these agents may have a role in other challenging plasma cell disorders such as systemic AL amyloidosis and plasma cell leukemia. AL amyloidosis is a monoclonal plasma cell disorder resulting in the deposition of protein fibrils that compromise end-organ function. Delays in diagnosis can result in end-organ dysfunction and organ failure, making designing and completing treatment difficult. Plasma cell leukemia (PCL) is a rare and highly challenging malignancy with dismal survival outcomes despite aggressive therapy. Both diagnoses are currently treated with regimens borrowed from myeloma: a combination of novel agents and chemotherapy induction, then autologous stem cell transplantation (ASCT), with the current practice trending towards consolidation and maintenance. Unfortunately, only 20% of AL amyloidosis patients are transplant-eligible at diagnosis. Those transplant-ineligible (TIE) patients are treated with combination induction chemotherapy, which may be limited by worsening disease-related end-organ dysfunction. Plasma cell leukemia patients are still very likely to relapse after this intensive and prolonged therapy. Despite the promise of a shorter course of therapy, CAR T-cell therapies directed against plasma cells have not been rigorously investigated in patients with AL amyloidosis or PCL; most trials of MM have excluded these patients. Herein, we describe current treatment paradigms for AL amyloidosis and PCL and review the evidence for CAR T-cell therapies in these challenging plasma cell disorders. Further investigation into CAR T-cell therapies for plasma cell disorders other than multiple myeloma is warranted.
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1 Introduction

The development of chimeric antigen receptor (CAR) T-cell therapies has revolutionized the treatment approach for many recalcitrant malignancies (1–3). The evolution and expansion of cell therapies from leukemia into lymphoma and multiple myeloma (MM) has yielded knowledge and experience that provide a foundation for subsequent areas of clinical development (4–8). CAR T-cell therapies are expanding across indications, including other plasma cell dyscrasias and solid tumors (9–15). These investigations offer invaluable instruction on cancer development and tumor microenvironment, prompting further study. What began less than 10 years prior as a high-risk therapy characterized by dangerous and unmanageable side effects that were poorly understood has become a standardized treatment modality used worldwide (16–21).

In MM, there are two CAR T-cell therapy products with U.S. Food and Drug Administration (FDA) approval: idecabtagene vicleucel (ide-cel, Abecma) and ciltacabtagene autoleucel (cilta-cel, Carvykti). Both are directed against B-cell maturation antigen (BCMA) and gained FDA approval in March 2021 and February 2022, respectively (22, 23). Idecabtagene vicleucel (ide-cel) was initially approved based on the results of the KarMMa study for the treatment of patients with relapsed or refractory MM after four lines of therapy with prior exposure to an immunomodulatory drug (IMiD), proteasome inhibitor (PI), and anti-CD38 monoclonal antibody (mAb). This indication was advanced in March 2024 to include patients with two lines of therapy after the phase 3 KarMMa-3 study showed significantly prolonged progression-free survival (PFS) and improved response compared to standard treatment, with a comparable safety profile to previous results (24). Ciltacabtagene autoleucel (cilta-cel) was approved for relapsed or refractory MM after four lines of therapy with prior exposure to an IMiD, PI, and anti-CD38 monoclonal antibody, based on the results of the CARTITUDE-1 study (25). The phase 3 CARTITUDE-3 study showed significantly improved overall response rates, PFS, minimal residual disease (MRD) negativity, and lower risk of death than the standard of care (26). Based on these results, the indication for cilta-cel was also expanded in 2024 to include patients with lenalidomide-refractory MM who had received at least one prior line of therapy that included a PI.

The successes seen in MM have prompted further study of CAR T-cells in patients with newly diagnosed MM (24, 26–30). This raises the question of whether these existing plasma-cell-directed CAR T therapies could benefit other challenging plasma cell disorders, particularly those without a clear standard of care or with inferior outcomes (31–35).

Historically, most rare plasma cell disorders like light chain amyloidosis (AL amyloidosis) and plasma cell leukemia (PCL) have been excluded from clinical trials in MM, which has limited progress in these diseases. Some advances have been made with the adoption of intensive MM-like regimens. Still, outcomes remain poor, particularly for those with advanced disease, those transplant-ineligible, the elderly, and those with significant end-organ dysfunction (36–38). Here, we review the currently available data for AL amyloidosis and PCL treatment paradigms, unique challenges, and opportunities for further study with novel therapies.




2 AL amyloidosis



2.1 Clinical presentation & epidemiology

Immunoglobulin light chain amyloidosis (AL amyloidosis, AL) accounts for approximately 70% of all systemic amyloidosis (39); still, the incidence in the U.S. is fewer than 4000 cases per year (40, 41). It is predominantly a disease of older adults; the median age at diagnosis is 64 years, and there is a male predominance of 60% (41).

AL amyloidosis originates in the bone marrow as a clonal plasma cell dyscrasia. Still, the clinical presentation, diagnosis, and management are complicated by the extracellular tissue deposition of the misfolded protein fibrils produced by the clonal cells. This protein deposition leads to end-organ dysfunction and failure, which limits treatment options and increases patient risk. Cardiac and renal involvement are the most commonly involved organs, occurring in 70% and 60% of patients, respectively, but other systems may also be affected, including hepatic (20%), peripheral nerves (15-20%), gastrointestinal (GI) tract (10%), lung and soft tissue (39, 42). This diversity in disease involvement complicates symptom presentation, which can delay diagnosis (43). Various non-specific symptoms can occur at presentation, like fatigue and weight loss, neuropathy, hepatomegaly and transaminitis, pseudohypertrophy, and bleeding diathesis.

Despite the challenges, survival outcomes have improved over the last 40 years from 1.4 years (1980-1989) to 4.6 years (2010-2019), although these gains are substantially lower than what has been observed for MM (44). Five-year overall survival (OS) during these time frames improved from 15% to 48%. The one-year mortality rate is still high at 12-30%, which is primarily related to increased age at diagnosis and advanced cardiac AL involvement (45–47). Delays in diagnosis are resulting in advanced disease and irreversible end-organ damage (48). The incorporation of ASCT in AL therapy contributes to mortality in fit, transplant-eligible patients, as the ASCT treatment-related mortality (TRM) is higher in AL (49, 50). Muchtar and colleagues have developed a predictive tool to assess ASCT day-100 TRM in AL based on 1718 patients at nine centers, using clinical factors and statistical analysis (50). Earlier diagnosis, improved disease detection, earlier effective treatment, better supportive care, and intensified, risk-adapted therapies are vital to improving outcomes in AL (51–53).




2.2 Staging & response criteria

Staging and response assessment in AL amyloidosis includes both hematologic and organ components (54). The extent of cardiac involvement is the most important prognostic factor in AL amyloidosis, although the characteristics of the plasma cell clone impact long-term outcomes (55). Other factors also contribute, as the number of involved organs, along with hepatic and autonomic involvement, all impact survival (56). The first reliable staging system was presented by the Mayo Clinic in 2004 (Mayo 2004) and stratified patients into three stages based on troponin-T and N-terminal probrain natriuretic peptide (NT-proBNP) (57). In 2012, Mayo updated the staging model to include both cardiac and hematologic disease parameters (55). Cardiac parameters were adjusted to increase NT-proBNP to 1,800 ng/L and decrease troponin T to > 0.025 ng/mL. The difference between the involved and uninvolved serum free light chains (dFLC) was added to assess the hematologic disease burden. The stages were assigned as I, II, III, and IV based on the patient having 0, 1, 2, or 3 parameters, respectively. In 2015, the European group, to better identify very high-risk patients, proposed amending the Mayo 2004 criteria by dividing the stage 3 patients into 3A and 3B, based on the level of NT-BNP of 8,500 pg/mL (58). More recently, Boston University proposed an update that utilized BNP instead of NT-proBNP or troponin T to allow for accurate staging at facilities with limited access to more specialized testing (59). Staging includes BNP > 81 ng/L or troponin I > 1 ng/mL, stratified as stage I for neither criterion, stage II for one criterion, and stage III for both criteria. Stage III is divided into IIIa and IIIb based on a threshold of BNP > 700 ng/L to better identify very high-risk patients.

Separate response criteria have been developed for hematologic, cardiac, renal, and hepatic involvement. The hematologic response is graded and is based on the absolute difference between the involved and uninvolved serum free light chains (dFLC) (39, 57, 60). Complete response (CR) includes negative serum and urine immunofixation and a normal free light chain (FLC) ratio. Very good partial response (VGPR) is defined as dFLC < 4.0 mg/dL. Partial response (PR) is a 50% reduction in the dFLC. No response is anything less than a partial response.

Organ response criteria have historically been binary, either response or no response and correlate with OS outcomes (61). Cardiac response is based on a decrease in NT-proBNP by > 30% and 300 ng/L. The renal response is based on a 30% reduction in proteinuria or a decrease below 0.5 g/24 hours (h) in the absence of renal progression, which is defined as a >25% decrease in eGFR (48, 62). The hepatic response is defined as a 50% decrease in abnormal alkaline phosphatase or a decrease in radiographic liver size by at least 2 cm (56, 60, 61). A more graded system was proposed by Muchtar et al. in 2019 that mirrored the typical treatment responses seen elsewhere: complete organ response, very good partial organ response, partial organ response, and no organ response, although this has not been universally applied (62).

Minimal (or measurable) residual disease (MRD) plays a significant role in assessing disease response in many hematologic malignancies and may also be associated with survival in AL amyloidosis (63). Several prospective and retrospective small studies have shown a prolonged PFS in those patients achieving MRD negativity (measured by next-generation flow cytometry, level of detection 10-5 and 10-6), higher MRD negative rates with ASCT than with chemotherapy alone, and an increased likelihood of cardiac response in MRD negative patients (63, 64). One explanation is that low-level continuous amyloid light chain production may contribute to poor organ function over time. A better quantitative assessment of the residual underlying clone may be valuable in this relatively low-cell-burden disease. For example, MRD could help guide treatment decisions for those patients not reaching organ response despite a complete hematologic response. A study by Palladini et al. investigated MRD by next-generation flow cytometry (NGF) in 92 patients with AL amyloidosis in CR (65). Undetectable MRD by NGF was associated with renal organ response in 90% vs. 75% in MRD-positive patients and cardiac organ response in 95% vs. 75%. Hematologic progression was also higher in the MRD-positive group: 25% vs. 0% at 1 year. Further investigation of MRD as a response criterion is needed to understand the full utility of MRD in this group.

Of note, although the cytogenetic changes are similar in MM and AL amyloidosis, these changes have a slightly different impact on outcomes and risk in AL amyloidosis, which is not entirely understood. Translocation t(11;14) is present in up to 61% of AL amyloidosis patients and has historically had a negative impact on PFS due in part to a lower response rate of these patients to bortezomib-based therapies (48, 66, 67). However, this group has responded more favorably to alkylator therapy and ASCT, as well as daratumumab-based therapy (68). Earlier inclusion of frontline anti-CD38 monoclonal antibodies, as well as early assessment of transplant-eligibility and incorporation of bcl-2 inhibitors with preferential activity in patients with t(11;14) may change the impact of this group on overall AL patient outcomes (69).




2.3 Treatment approach for newly diagnosed AL amyloidosis

Treatment strategies are primarily directed at eliminating the underlying plasma cell clone to stop fibril production and limit end-organ damage. The goal of therapy is both a rapid and deep response, ideally a hematologic complete response (hCR). Patients with AL amyloidosis are typically more clinically fragile due to end-organ damage, which may limit the feasibility of aggressive myeloma-type regimens or therapies with overlapping toxicities. Early diagnosis, assessment of patient fitness, accurate staging, risk stratification, and appropriate supportive care are paramount when determining a treatment approach (36).

A significant advance in AL amyloidosis has been the successful incorporation of daratumumab with a combination therapy of cyclophosphamide, bortezomib, and dexamethasone (CyBorD) in patients with newly diagnosed (ND) AL amyloidosis (70). The phase 3 ANDROMEDA study compared the combination of daratumumab with CyBorD (dara-CyBorD) with CyBorD alone for six cycles, followed by single-agent daratumumab every 4 weeks for up to 24 cycles. Hematologic CR rate was significantly higher in the daratumumab group (53.3% vs. 18.1% in the control group), as was survival free from major organ deterioration, hematologic progression, or death (70). Later analysis at a median follow-up of 61.4 months found a statistically significant benefit for dara-CyBorD over CyBorD (OS HR 0.62, 95% CI 0.42-0.90, p=0.0121) with the 5-year OS rate of 76.1% for Dara-CyBorD compared to 64.7% for CyBorD. The timing of daratumumab is significant: this 5-year survival benefit of daratumumab upfront in combination was evident even with the vast majority (71%) of patients in the standard CyBorD arm receiving daratumumab later (71). The success of the ANDROMEDA study led to the FDA approval of daratumumab for AL amyloidosis in 2021 (72).

An alternative treatment approach to directly target the misfolded fibrils has gained interest in recent years. The monoclonal IgG1 antibody anselamimab (CAEL-101) binds misfolded immunoglobulin light chains, then promotes phagocytosis and clearance of amyloid deposits (73). Randomized double-blind phase 3 clinical trials of anselamimab combined with CyBorD vs. placebo with CyBorD in newly diagnosed Mayo stage IIIa (NCT04512235) and IIIb (NCT04504825) are ongoing. Birtamimab (NEOD001) is another monoclonal antibody targeting light chains to neutralize and deplete amyloid deposits (74–76). The compound was tested in the VITAL trial, a phase 3 randomized, double-blind trial of birtamimab with bortezomib-based SOC chemotherapy in newly diagnosed AL patients but was stopped prematurely after futility analysis. However, a post-hoc analysis suggested a possible benefit of birtamimab for stage IV patients, prompting the AFFIRM-AL study of birtamimab to placebo + SOC therapy in stage IV patients (NCT04973137) (74, 77). A combination of anti-production and promotion of fibril removal may ultimately be needed. A phase 2 study of anselamimab in combination with CyBorD +/- daratumumab is currently ongoing (NCT04304144).



2.3.1 Treatment guidelines

Several organizations have provided guidance and recommendations for managing the complexities of this challenging disease. A comparison of the primary points of therapy is shown in Supplementary Figure 1. The consensus guidelines from the National Comprehensive Cancer Network® (NCCN ®), Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART), the American Society of Clinical Oncology (ASCO), the European Hematology Association (EHA), and the International Society of Amyloidosis (ISA) collectively recommend that all patients with AL amyloidosis be treated as part of a clinical trial at all stages, including initial diagnosis, ASCT, maintenance, and relapsed/refractory disease (39, 56, 78, 79). The goal of therapy, while clearly patient-specific and individually assessed, can be more objectively defined as hCR (per NCCN, EHA, and ISA) or hematologic very good partial response (hVGPR) (per mSMART). Patients should be treated with induction chemotherapy immediately to limit end-organ damage. Those patients with Mayo 2004 stage I-IIIa disease should receive induction chemotherapy with dara-CyBorD. Therapy for stage IIIb patients should be dose-modified dara-CyBorD if available; otherwise, CyBorD or bortezomib, melphalan, and dexamethasone (BMDex) may be alternatives. The recommended duration of induction therapy varies from 2-4 cycles to 6-8 cycles, mainly depending on transplant eligibility status. It is generally advised to continue for two cycles past the best response, as tolerated, to allow for the best disease response possible.

Consensus guidelines also agree that patients should be assessed for transplant eligibility early in therapy and that ASCT should be used carefully in AL patients due to the impact of end-organ dysfunction on TRM (39, 56). Historically, the recommendation has been for patients to proceed to ASCT after 2-4 cycles of induction, and those patients initially transplant-ineligible should be reassessed after induction as they may have become eligible with therapy. However, for those with excellent disease response to induction, ASCT may be deferred. Both NCCN and EHA-ISA guidelines recommend deferring ASCT in those patients with hCR to induction; ASCO guidance supports a threshold of hVGPR. Those deferring ASCT should go on to complete six cycles of Dara-CyBorD followed by eighteen cycles of daratumumab monotherapy as per the ANDROMEDA study (39, 78–80).

Although the consensus guidelines generally agree that there is insufficient data to recommend post-ASCT consolidation or maintenance therapy, most consider a few situations where maintenance may be helpful (39, 56, 78, 79). The mSMART guidelines support maintenance therapy for those with concomitant myeloma or high-risk cytogenetics, acknowledging the limited supportive data and providing the recommendation based on expert opinion only (56). EHA-ISA guidance adds that there may be a role for maintenance in patients with concurrent MM. Several clinical trials are underway investigating the question of maintenance therapy in various settings.




2.3.2 Transplant-ineligible AL amyloidosis

Although ASCT has proven to be important in achieving a significant disease response in AL amyloidosis, only 20% of newly diagnosed patients are transplant eligible (78, 80). The consensus guidelines recommend daratumumab-CyBorD for transplant-ineligible (TIE) patients, with eligibility reassessment after induction. In the absence of access to daratumumab, alternative therapies include a bortezomib-based triplet regimen, such as CyBorD or bortezomib, melphalan, and dexamethasone (BMDex) (56, 78). Based on the ANDROMEDA study and several other retrospective studies showing a hematologic response of 60-80% and CR of 20-25%, bortezomib is a vital component of frontline therapy.





2.4 Treatment approach for relapsed/refractory AL amyloidosis

Treatment in the relapsed/refractory setting becomes more complex due to the impact of amyloid fibril deposition on end-organ function. Nearly half of patients do not achieve a CR with daratumumab-based regimens, and only about half (55%) of those who fail daratumumab will go on to have an adequate hematologic response of ≥ VGPR (70, 81). The optimal treatment sequence for 2nd line and beyond is less well-defined. Treatment should be personalized based on patient fitness, personal preferences, degree of end-organ dysfunction, prior classes of therapies received, and other clinically relevant factors (39, 78). Retreatment with the initial therapy is reasonable, particularly if relapse-free for over 2 years (39, 79). Salvage ASCT is also an option for young, eligible, transplant-naïve patients (39). Venetoclax should be considered for patients with t(11;14) (69).

The mSMART relapsed/refractory algorithm provides more specific guidance, suggesting daratumumab as 2nd line for dara-sensitive or naïve patients. For Dara-refractory disease, CyBorD (VCd) is preferred as 2nd line if bortezomib-sensitive; pomalidomide-dexamethasone (Pd) or lenalidomide-dexamethasone (Rd) if bortezomib refractory. Third-line therapy includes ASCT, carfilzomib (for patients without cardiac involvement), venetoclax (for those with t(11;14)), and bendamustine (56). The BCMAxCD3-directed bispecific antibody teclistamab has been attempted in patients with refractory AL amyloidosis and has shown high rates of deep response with low-grade CRS but high rates of infections (82, 83).

Another practical question arises during therapy: At what point should treatment be modified if not PD? The guidelines vary in their advice, but they generally encourage an early move to salvage therapy for less than PR by cycle 2 of induction or < VGPR by cycle 4. Specifically, NCCN advises treatment modification for < PR after cycle two or < VGPR by cycle 3. EHA-ISA has similar guidance: ≤ PR by Cycle 2 or < VGPR by Cycle 3 and no organ response. mSMART guidelines also strongly encourage moving to salvage therapy for those not achieving PR within two cycles or VGPR within four cycles of induction or after ASCT, based on the significant difference in outcomes for patients with CR or VGPR compared to < VGPR (56, 84).




2.5 Clinical trial landscape in AL amyloidosis

A comprehensive search of investigational studies on clinicaltrials.gov using the search criteria “AL amyloidosis, amyloid, from dates 1/1/2014-9/17/2024” was conducted, and the results are shown in Supplementary Table 1A. Those therapeutic clinical trials identified with the same parameters but with status noted as completed, terminated, withdrawn, or unknown during this period are listed in Supplementary Table 1B.

Ongoing clinical trials investigate combinations of daratumumab with various anti-plasma cell regimens, focusing on patients with newly diagnosed (ND) and relapsed/refractory (RR) AL amyloidosis. A key area of interest is the role of ASCT in multi-drug regimens. For ND patients, studies are evaluating ASCT in combination with three- or four-drug regimens, including Dara-CyBorD plus ASCT in a Phase 3 trial (NCT06022939) and Dara-Pom-Dex with ASCT in an investigator-initiated trial (NCT06376214). Additionally, there is a trend toward incorporating targeted therapies in AL amyloidosis, particularly in combination regimens, with multiple Phase 1 and 2 trials exploring venetoclax in both ND and RR settings.

Various advanced therapeutic approaches are under investigation in the RR setting, including antibody-drug conjugates (ADCs), BCL-2 inhibitors, and BCMA-targeted therapies. BCMA-directed therapies encompass T-cell engagers (TCEs), chimeric antigen receptor (CAR) T-cells, and a range of monoclonal, bispecific, and tri-specific antibodies, highlighting the expanding scope of clinical trial options for these patients.




2.6 Current CAR T-cell experience in AL amyloidosis

BCMA may be a viable target in AL amyloidosis. In a study by Bal S. et al., patients with AL amyloidosis at Memorial Sloan Kettering Cancer Center from 2012 to 2018 were assessed for BCMA, GPRC5D, and BCL2 expression in bone marrow amyloidogenic plasma cells (52). Among the 27 patients studied, 27 diagnostic and five relapse specimens were evaluated. Median BCMA expression in clonal plasma cells was 80% (range 50-100%) in 25 samples, with GPRC5D at 80% (range 30-100%) in 18 samples and BCL2 expression observed in 92% of samples with the t(11;14) translocation.

A separate study analyzed plasma cell dyscrasia (PCD) patients diagnosed between 2018 and 2021, including 377 patients with BCMA flow cytometry data: 334 with multiple myeloma (MM), 21 with AL amyloidosis, 14 with monoclonal gammopathy of unknown significance, 5 with POEMS syndrome, and 3 with monoclonal gammopathy of renal significance (85). Non-MM patients did exhibit BCMA expression, but to a lesser degree than MM and with greater variability, measured by mean fluorescence intensity. There was no significant difference in BCMA expression among the non-MM diagnoses, possibly due to the small sample size. Non-MM patients also had a lower clonal plasma cell burden, which may be a result of decreased BCMA expression and subsequent loss of the survival advantage BCMA provides (86).

The clinical experience of CAR T-cell therapy in AL amyloidosis has been reported in four case series and one prospective cohort study, which included patients with advanced cardiac and renal disease (Table 1). Lebel et al. have reported on the largest cohort of AL patients treated with CAR T (45, 87–89). Sixteen patients with RR AL were included, with a median of four prior lines of therapy (range 3-10), the majority triple-refractory (14/16), and six also resistant to anti-BCMA ADC belantamab mafodotin (87–89). Thirteen had cardiac involvement, five with Mayo stages IIIa or IIIb, and six with NYHA stage III/IV at study entry. All patients received HBI0101 (NXC-201), an anti-BCMA CAR T-cell therapy. The overall hematologic response rate was 94%, with twelve achieving CR (75%), two VGPR, and one PR; MRD negativity was achieved in nine of 14 evaluable patients. Eight of thirteen patients (62%) met organ response criteria, including 78% of those with cardiac involvement. With a median follow-up of 8.4 months (4-31.5 months), the median EFS was 9.6 months (3.3-not reached (NR)), and the median DOR was 8 months (2-NR). Median OS was 10.1 months (5.8-NR). Despite the promising organ responses among cardiac patients, five patients died of cardiac disease: four died of advanced cardiac AL amyloidosis following disease progression, and one died of AL amyloidosis-related cardiac disease. Other toxicities included early hematologic events (prior to day +28), AL-related organ events, and cytokine release syndrome (CRS) without ICANS or treatment-related deaths (Table 2). Of the 14 patients that developed CRS, the majority were low-grade: 11 grade 1-2 and 3 grade 3. Hematologic events were higher grade, but most were resolved by day +28. All patients developed grade 4 lymphopenia and hypogammaglobulinemia < 600 mg/dL. Early (< day 28) infections were frequent (56%, 9/16); six were grade 3, two were grade 1-2 respiratory infections, and one was early cytomegalovirus (CMV) reactivation. Late infections included febrile neutropenia in 5/16, three cases of grade 3 pneumonia, one grade 3 COVID-19 infection, and one grade 5 COVID-19 infection.

Table 1 | Summary of CAR T-cell experience in AL amyloidosis (AL).


[image: A table compares six CAR-T cell therapy products for AL amyloidosis. Columns include product name, number of patients, median prior lines of therapy, prior BCMA, organ staging, CAR-T cell dose, overall response rates, organ responses, and median follow-up duration. Products listed are HBI0101, Ide-cel, Cilta-cel, ARI0002h, and Anti-CD19 CAR T. Specific staging and dosing details are provided, along with various response types, such as complete response and very good partial response, and follow-up periods ranging from 6.5 to 12 months.]
Table 2 | Cumulative reported adverse events in AL amyloidosis patients treated with CAR T-cell therapy (34, 35, 87–91).


[image: Table showing adverse events in 28 patients treated with CAR T-cell therapy. Events include CRS (79%), ICANS (7%), neutropenia (68%), anemia (36%), thrombocytopenia (14%), and others. Non-hematologic events: renal, cardiac, liver, infections, and worsening depression. A total of 28 patients with AL amyloidosis were included.]
A retrospective study of eight patients with concurrent RR MM and AL amyloidosis showed favorable disease response and safety outcomes (35). Six received ide-cel, and two received cilta-cel. These heavily pretreated patients had a median of eight prior lines of therapy (range 6-11); six (75%) had prior ASCT; all were daratumumab-refractory, and seven were triple-refractory. Three had prior BCMA-directed therapy. This cohort had generally favorable clinical features, with only one high-risk cytogenetic profile (del 17p, gain 1q), four with lower-stage AL, and limited cardiac (two patients) and renal (one patient) involvement. Seven had ECOG performance status ≤ 2. Post-CAR T-cell infusion, three achieved hCR, two hVGPR, and three were unevaluable due to lack of measurable dFLC at infusion. AL responses were rapid, with a median time to best hematologic response of 43 days (range 20-46 days). The two patients with cardiac involvement and one with renal involvement could not be assessed for organ response. Adverse events included CRS (six patients, all ≤ grade 2), ICANS grade 1 (one patient), neutropenia, anemia, thrombocytopenia, and respiratory viral infections.

Four additional cases of CAR T-cell therapy in AL amyloidosis have been reported, three using anti-BCMA CAR T and one with anti-CD19 CAR T (90, 91). The first case involved a woman in her early 60s with relapsed multiple myeloma (MM) and systemic AL amyloidosis with renal involvement, treated with the anti-BCMA CAR ARI0002h in a fractionated dose. She experienced grade 1 CRS, severe neutropenia, and SARS-CoV-2 pneumonia but achieved hematologic partial response (PR) at one month, followed by stringent complete response (sCR) and renal response by 12 months.

The second and third cases were reported by Das et al. in 2023, involving patients with advanced cardiac and renal involvement (90). One patient, a 62-year-old woman with penta-refractory MM and AL amyloidosis, was treated with ide-cel, resulting in VGPR by day +30 and organ response by +9 months, without severe CRS or neurotoxicity. The other, a 33-year-old man with NYHA Class II heart failure and AL amyloidosis received cilta-cel, experienced grade 3 CRS, and achieved stringent complete response with a cardiac response by +9 months. The fourth case involved a 71-year-old man with IgM AL amyloidosis and marginal zone lymphoma, treated with anti-CD19 CAR HD-CAR-1 as 3rd line therapy (34). Despite achieving VGPR by six months, shortly after the six-month visit, he developed a severe respiratory infection due to Haemophilus influenzae and subsequent sepsis. He developed multisystem organ failure and died on day +195 after CAR T cell infusion.

The safety profile of CAR T therapy has been a significant concern and potentially limiting factor in discussing CAR T in AL amyloidosis. Table 2 summarizes overall safety among AL amyloidosis patients reported to date as treated with CAR T-cell therapy. CRS was the most frequently reported CAR T-cell therapy-related event, occurring in 79% of patients, with 64% experiencing grades 1-2 and 15% grades 3-4. ICANS was observed in 7% (n = 2) of patients; one case was grade 1, and for the other case, the grade was not reported. AL organ-related adverse events across all studies included renal involvement in 15% of cases (acute kidney injury, 3 cases grade 1, 1 case grade 2); cardiac involvement in 29% (acute cardiac failure, 3 cases grade 3, cardiac disease 5 cases grade 5); liver involvement in 21% (hepatic dysfunction 6 cases, 2 cases grade 1-2, 4 cases grade 3) (Table 2; Supplementary Table 3A).

Hematologic toxicities were common, with neutropenia in 76% of patients (52% in grades 3-4), anemia in 38% (19% in grade 2-3, 5% in grade 1), and thrombocytopenia in 24% (10% in grade 2, 5% in grade 3, and one case of grade 4 worsening of pre-existing thrombocytopenia). Non-hematologic events included viral infections: BK virus hemorrhagic cystitis, SARS-CoV-2 pneumonia, severe respiratory infection, respiratory viral infection, and sepsis, each affecting 5-14% of patients.

There does appear to be increased risk after CAR T for those high-risk patients with cardiac amyloid. The experience of CAR T in AL from Israel has been reported previously and has now been updated to include results for 16 patients treated with HBI0101 (45, 87–89). Aggressive supportive care was provided, and cardiac stage IIIb and IV were admitted for cardiac intensive care unit monitoring during and after CAR T infusion. There were no treatment-related deaths, suggesting that these measures were worthwhile and beneficial in the short term. However, even though most patients with cardiac disease showed organ response (7/9 evaluable, 78%), five patients died of cardiac disease within 1 year after CAR T. Four patients had PD with advanced cardiac AL amyloidosis, three of which had achieved a cardiac response after CAR-T therapy, and one died from AL amyloidosis-related cardiac disease.

As of this publication, only two Phase 1 CAR T-cell trials are ongoing for AL amyloidosis (Supplementary Table 1A). FKC288 (NCT05978661) is an anti-BCMA CAR T-cell therapy being evaluated in AL amyloidosis and autoimmune kidney disease. NXC-201 (NCT06097832), as previously discussed, is under investigation in the relapsed/refractory AL setting. Neither trial has reported results.

Despite the limited number of cases, these early CAR T reports provide essential insights for AL amyloidosis patients, who were previously considered less tolerant of novel therapy. The findings suggest that targeted anti-plasma cell immunotherapy could hold significant potential for this population, even among heavily pre-treated patients and those with advanced organ dysfunction. With refined supportive care and an evolving understanding of CAR T-cell therapy, the treatment possibilities for AL amyloidosis patients appear increasingly viable and promising (36, 39, 78, 92, 93).





3 Plasma cell leukemia



3.1 Diagnosis & epidemiology

Plasma cell leukemia (PCL) remains a clear area of unmet need. This very rare and highly aggressive plasma cell malignancy still has poor outcomes despite aggressive multi-modality treatment strategies and the incorporation of novel agents (94). Overall survival ranges from 4 to 12 months; those undergoing ASCT may survive 2 to 3 years (95–97).

PCL comprises approximately 2-4% of all plasma cell dyscrasias and is classified into primary (pPCL), those cases arising de novo without a prior diagnosis of MM, and secondary (sPCL), those occurring as leukemic transformation in the setting of MM (98). Historically, the diagnostic criteria for PCL required both circulating plasma cells (CPC) of 20% and an absolute plasma cell count of ≥ 2 × 109/L (99). In 2021, IMWG revised this to the current diagnostic definition of ≥ 5% CPCs in peripheral blood in patients otherwise diagnosed as symptomatic MM. This was based on studies from the Catalan Myeloma Group in Spain and the Mayo Clinic series, showing similarly poor outcomes for patients with 5 to 20% peripheral blood PCs as those with more than 20% (100–102).

When seen concurrently with MM, PCL is an independent predictor of early relapse or progression (103). Patients typically present at a younger median age (52-65 years) than MM but with a higher tumor burden, higher plasma cell proliferation indices, and more bone marrow involvement (98, 104). Consistent with the aggressive nature of the disease, PCL patients are more likely to present with more cytopenias, hypercalcemia, renal failure, a higher beta-2 microglobulin, higher lactate dehydrogenase, and lower albumin at diagnosis (98, 105).

The high rate of high-risk cytogenetic abnormalities in PCL is also thought to be a contributing factor to their poor outcomes, in particular, chromosome 1 abnormalities, del(17p), t(11;14), t(14;16), and high-risk cytogenetic anomalies (97, 106). Primary PCL frequently has changes such as complex karyotypes, hypodiploidy, amp1q, and TP53 mutations, including double-hit profiles and TP53 bi-allelic inactivation, which are also increased in the subset of pPCL patients with t(11;14) (107). These TP53 mutations are associated with significantly lower PFS (4 months vs. 11 months) and OS (5 months vs. 15 months) compared to pPCL patients collectively (107).




3.2 Treatment of newly diagnosed pPCL

Because of the aggressive nature of PCL, immediate treatment is advised to decrease tumor burden (104, 108). The approach for PCL therapy is similar to that of high-risk MM with multi-agent induction chemotherapy, including a combination of a PI and an IMiD, followed by stem cell transplant (SCT) for eligible patients, frequently followed by consolidation and/or maintenance regimens (98). The rationale is primarily based on retrospective studies, as most prospective studies of similar regimens in MM excluded PCL patients.

Demonstrating the effectiveness of bortezomib-based regimens (BBR) in PCL was a significant advance in the field (109). A retrospective study of 42 consecutive PCL patients showed a significantly higher overall response (OR) (considered as ≥ PR) with BBR compared with conventional therapies (69% vs. 30.8%, p=0.04) (109). Median OS was significantly improved with BBRs to 13 months vs 2 months, with manageable toxicity. In another retrospective study of 12 patients with PCL, bortezomib both alone and in combination showed improvement in ORR to 92% and responses ≥ VGPR to 50%, with median PFS of 8 months and OS of 12 months, the best responses seen in PCL at that time to date (98, 110). A third retrospective study from the Gruppo Italiano Malattie Ematologiche dell’Adulto (GIMEMA) of 29 newly diagnosed PCL patients treated with bortezomib-containing combination chemotherapy regimens showed an ORR of 79% at a median follow-up of 24 months, and ≥ VGPR in 38% (111). Moreover, 12 of the 29 patients in this analysis successfully received SCT, and those patients had the best outcomes.

One of the only trials dedicated to PCL was the EMN12/HOVON-129 study, which investigated carfilzomib, lenalidomide, and dexamethasone with or without autologous (and/or allogeneic) stem cell transplant for patients with PCL (112). The mPFS was only 15.5 months for younger patients who received transplants; for older patients who did not, the mPFS was only 13.8 months.

The monoclonal antibody daratumumab has also been shown to improve OS and PFS, both in pPCL and sPCL, to 21 months and 20 months, respectively (113). In a retrospective study of patients treated from 2001-2021, 90% were treated with bortezomib-containing regimens and 37% with daratumumab-based regimens. Those treated with daratumumab-based quadruplets or VRD had a significantly longer OS (OS not reached at a median follow-up of 51 months vs. 20 months) and PFS (25 vs. 12 months) (114). The promising role of daratumumab in PCL has translated into several clinical trials that are currently ongoing, primarily investigating the impact of the combination of Dara-VRD in newly diagnosed pPCL with ASCT, either single or tandem, consolidation and maintenance (see Supplementary Table 2). The OPTIMUM MUKnine trial included a total of 138 patients with ultra-high-risk cytogenetics, 129 of whom had a diagnosis of MM and 9 with PCL (defined as circulating plasmablasts > 20%). Dara-Cy-VRd induction was followed by ASCT, Dara-VR maintenance, and then Dara-R maintenance (115). The investigators found that such an approach yielded a 30-month PFS of 77%. In the SWOG S1211 study investigating elotuzumab-VRd vs. VRd in high-risk disease, a small number of patients with pPCL were included, and the mPFS was 29 months (116).



3.2.1 HSCT in pPCL

HSCT is still preferred as part of the frontline treatment of PCL based on the aggressiveness of the disease and the success of HSCT in MM, but the ideal approach has not been well-defined (104). Single autologous (auto), single allogeneic (allo), tandem autologous (auto-auto), and tandem autologous followed by allogeneic (auto-allo), with and without maintenance, have all been used (104, 117). A retrospective analysis of the European Society for Blood and Marrow Transplantation (EBMT) experience from 1998-2014 was published by Lawless et al. using dynamic prediction modeling to compare these approaches (118). The study found that for those with pPCL in CR prior to the first auto transplant, tandem auto-auto transplant had similar outcomes as auto-allo, while avoiding the higher non-relapse mortality (NRM) with allo and the risk of graft-versus-host disease (GVHD). For those in less than CR prior to the first auto transplant, auto-allo showed superior OS.

Another retrospective data analysis from the Center for International Bone and Marrow Transplant Research (CIBMTR) studied outcomes of patients with pPCL treated with HSCT from 2008 to 2015 (117). Of the 277 patients in the auto cohort, 90% received single auto, and 10% received tandem auto (auto-auto). Of the 124 patients for which induction chemotherapy was known, 83% received a bortezomib-based regimen (CyBorD or VRD), and 76% received one line of therapy. Only 19% were in CR at the time of transplant and 28% in VGPR; 40% were in PR, 6% stable disease (SD), and 5% progressive disease (PD). Median follow-up was 48 months (range 3-84 months). Planned post-HSCT maintenance therapy was given to 27% of patients in the auto cohort. Sixty-one percent of patients had died at the time of last follow-up, 85% of those from PD. Four-year PFS was 17%; 4-year OS was only 28%. Non-relapse mortality (NRM) was 7%, and the incidence of relapse/progression was 76%. Results from the allogeneic cohort were similarly dismal. Seventy-one patients received an allo HCT for pPCL, of whom 61% were single allo while 39% were tandem auto-allo. Induction therapy was known in 37 of the 71 patients; 86% had received bortezomib-based therapy (VRD or VDPACE), and 70% had received only one prior line of therapy. Disease response at transplant was slightly better; 21% were in CR, 27% VGPR, 34% PR, 7% SD, and 11% PD. A slight majority (55%) of allo patients received a non-myeloablative or reduced-intensity preparative regimen, and 51% received total body irradiation. Planned post-HCT therapy was reported as given in only 12% of patients. The median follow-up for the allo cohort was 60 months (range 6-92 months). At the last follow-up, 63% of the allo cohort had died, 76% from relapsed or progressive disease. Four-year PFS was 19% and 4-year OS 31%, with NRM 12% at 4 years and incidence of relapse/progression 69%. The authors did note an increased utilization of HSCT in this era, attributed to the addition of novel agents and improved induction regimens, and an improvement in NRM with improvement in transplant practice overall. Unfortunately, post-HSCT outcomes remained poor, predominantly because of the high rates of post-HCT relapse.




3.2.2 ASCT in pPCL

Adapting to the current standards of care in myeloma, proposed regimens for fit, transplant-eligible patients would be induction therapy with an anti-CD38 monoclonal antibody, proteasome inhibitor, lenalidomide, and dexamethasone with or without cyclophosphamide, followed by at least one autologous transplant and prolonged maintenance with an anti-CD38, proteasome inhibitor, and lenalidomide. Management of patients not eligible for transplant should balance toxicities with efficacy, allowing patients to receive continuous treatment for as long as possible (104, 108). Transplant-ineligible patients may benefit from prolonged triplet or even quadruplet myeloma therapy. Both transplant-eligible and transplant-ineligible patients may take advantage of the introduction of anti-CD38 monoclonal antibodies in induction therapy. For patients in need of rapid reduction in disease burden at diagnosis of pPCL, more aggressive combinations like VTd/VRd-PACE or hyperCVAD-RV are suitable options (105). CyBorD can be used as a less intensive option for more frail patients who still need rapid disease response (96).





3.3 Treatment of sPCL

Unfortunately, outcomes in relapsed or refractory PCL remain very poor, with a median OS of 7 months despite aggressive treatment upfront with multi-drug induction, HSCT, and novel therapies (104). Allogeneic SCT may be beneficial in eligible patients with chemo-sensitive disease. It is critical to utilize drugs active in MM to which the patient has not previously been exposed. However, despite various combinations of conventional plasma cell-directed therapies, sPCL often necessitates the use of aggressive cytoreductive chemotherapy for disease control. T-cell-engaging immunotherapies such as bispecific antibodies and CAR T-cell therapy may represent a new option for patients with sPCL.




3.4 Prospective clinical trials landscape in PCL

Currently, clinical trials involving pPCL are addressing the role of SCT, the approach to combination drug regimens, and the question of CAR T-cell therapy across newly diagnosed, transplant-ineligible, and relapsed/refractory settings. A comprehensive search of investigational studies on clinicaltrials.gov using the search criteria “plasma cell leukemia, primary plasma cell leukemia, from dates 1/1/2014-9/17/2024”, excluding those trials not directed at the underlying disease, i.e., supportive care studies, drug formulation studies, etc. The resulting studies are shown in Supplemental Table 2.

Most clinical trials available for PCL patients are still designed mainly as MM studies but allow for PCL patients. At the time of this writing, all available clinical trials for RR PCL are for CAR products in RR MM trials, primarily investigator-initiated trials (IIT) and early phase 1 studies, and limited to primary PCL. However, new studies exclusively for pPCL are now becoming available. In the newly diagnosed setting, a phase 2 study investigates daratumumab-PI-IMiD combinations as consolidation with tandem ASCT and lenalidomide maintenance (NCT05054478). An IIT in newly diagnosed pPCL patients includes VRd induction with a “triple tandem” design of anti-BCMA CART-ASCT-CART2 (NCT05870917). Another phase 2 anti-BCMA CAR T study is available for transplant-ineligible patients using VRd induction in combination with CAR T (NCT05979363). With a higher incidence of t(11;14) in PCL, there is enthusiasm for the addition of venetoclax or other bcl-2 inhibitors, although their role is still unclear (33, 48, 107, 119).




3.5 CAR T experience in PCL

CAR T-cell therapy for PCL, while scientifically rational, has not been well studied owing in part to concern about higher toxicities and lower efficacy (Table 3). The published CAR T-cell experience in PCL to date is shown in Table 4. There have been four published reports of CAR T-cell use in a total of 22 RR PCL patients: a multicenter retrospective study of 15 patients with PCL, a retrospective study of 8 patients with sPCL in China, a report of 2 patients included in an MM trial, and another patient treated with CAR T therapy for sPCL after RR MM (32, 33, 120). It is noted that these studies included both pPCL and sPCL, two biologically distinct diseases. Combining this data does create a limitation in the conclusions. However, despite the distinct biological features and outcomes of pPCL and sPCL, there are still lessons to be learned from a collective review of the CAR T experience in these patients.

Table 3 | Cumulative reported adverse events in plasma cell leukemia (PCL) patients treated with CAR T-cell therapy (32, 33, 120, 121, 132).
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Table 4 | Summary of CAR T-cell experience in PCL.
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Fortuna et al. published the most extensive retrospective anti-BCMA CAR T study in PCL patients (120). Fifteen patients underwent leukapheresis with the intent of receiving CAR T therapy; 11 were infused, and four patients died due to disease-related complications before infusion. The majority of patients in the group had high-risk cytogenetics (73%), including t(14;16), t(4;14), 1q21 gain or amp, and del17p, and 33% had t(11;14). All patients were triple-refractory, and 40% were penta-refractory, with a median of 6 prior lines of therapy (range 4-9). For the 11 patients infused, the median dose of ide-cel was 413 × 106 cells (range 331-455 × 106 cells). The response rate was 100% in the pPCL patients: 1 sCR, 1 VGPR, 2 PR. Of the sPCL patients, 4 of the seven dosed patients responded (57% response rate): 1 CR, 2 VGPR, 1 PR. Unfortunately, the median PFS (mPFS) for the cohort overall was only 3.7 months (2.8-NR months), and the median OS (mOS) was 6.7 months (4.6-NR months). Although sPCL had a significantly shorter mOS, there was no difference in mPFS between the two groups. Survival was longer for pPCL, but still only mOS of 8.1 months vs. 4.6 months. CRS was frequent but primarily low-grade; 81% of patients reported CRS, 11% grade 3, and the remainder grade 1-2. Approximately one-third of patients had ICANS (36%), all grade 1. Other adverse events included infection in 55%, neutropenia in 45%, anemia in 73%, and thrombocytopenia in 54% (grades not reported).

Another retrospective study of anti-BCMA CAR T-cell therapy in 8 patients with sPCL was published by Guo et al. (121). Patients were treated from December 2020 until November 2022 with a median of 3.5 prior lines of therapy (range 1-7, 62.5% greater than five lines). All patients were triple refractory; half were also resistant to pomalidomide. Three patients had been treated with SCT previously. ORR at 1 and 2 months after CAR T-cell therapy was 75%; 4 patients had PR, and 2 had VGPR. Three of the six patients in remission went on to allogeneic SCT 3 months after CAR T; two of those patients are still alive with sCR, although the DOR was not published, and one died shortly after SCT. Of the other three PR patients who did not receive allo-SCT, two died after relapse, and one remains in VGPR follow-up. Similar to the prior reports, CRS and myelosuppression were frequent. All eight patients developed CRS: 4 with Grade 1, 2 with Grade 2, and 2 with Grade 4. There were no cases of ICANS. Other adverse events included neutropenia Grade 2-3 in all patients, anemia Grade 3 in all patients, thrombocytopenia Grade 3-4 in all patients, and nausea/vomiting in all patients. Three patients died due to infectious and bleeding complications. One patient died within one month of CAR T infusion due to severe pneumonia, and another also died within a month of CAR T due to gastrointestinal hemorrhage. Both patients had up to 70% abnormal peripheral blood plasma cells. The third patient died 3 months after CAR T with pulmonary Aspergillus infection.

Zhou et al. published the results of their early phase I study of anti-BCMA CAR T-cell therapy in RR MM, including two patients with pPCL who benefited from therapy. One patient achieved a CR with a PFS of 307 days; the second had a VGPR with a PFS of 117 days (32). Gao and colleagues published their experience with anti-BCMA CAR T-cell therapy in a patient with sPCL in the setting of R/R MM after five prior lines of therapy (33). The patient had a stringent complete response (sCR) for 9 months after CAR T-cell infusion, then venetoclax to maintain a complete remission (CR) for another 7 months. Neither of these reports included specific safety data regarding CRS, ICANS, or other adverse events for those pPCL patients.

Overall, the disease response trend has been promising but short-lived: patients respond to therapy for a limited period compared to MM. Based on the small number of patients, it is unclear if the risk is higher in sPCL than in pPCL.





4 Discussion



4.1 Challenges of current therapy for plasma cell dyscrasias

Plasma cell dyscrasias are a diverse group of rare diseases. Although the disease trajectory of AL amyloidosis and PCL differ, both diseases can be physiologically damaging to the patient to an extent that can limit therapy options. The unique considerations of CAR T in these indications are shown in Figure 1. End organ damage in AL amyloidosis puts patients at significant risk of cardiac, renal, hepatic, and other organ insufficiencies that make it challenging to complete aggressive, prolonged regimens with multiple agents. Rapid tumor growth, aggressive disease presentation, and high disease burden in PCL put patients at risk for tumor lysis syndrome, significant cytopenias, bleeding diatheses, and hypercalcemia (122). Both are similar enough to MM to have borrowed from MM treatment approaches and have had variable amounts of success. However, the prolonged treatment course involving induction, consolidation, and maintenance is challenging for some patients to complete. CAR-T’s single-time point therapy design may be a good alternative to a prolonged regimen with the risk of treatment interruptions, dose reductions, and adverse events.

[image: Infographic comparing considerations for CAR T-cell therapy in AL Amyloidosis and Plasma Cell Leukemia. On the left, AL Amyloidosis shows a process where aberrant plasma cells produce toxic amyloid fibrils, affecting major organs. CAR T-cell therapy can eradicate these cells but poses a risk of organ toxicity. On the right, Plasma Cell Leukemia shows plasma cells circulating in the bloodstream, linked to aggressive disease. CAR T-cell therapy can target these cells but may lead to higher-grade toxicities and less durable responses.]
Figure 1 | Unique considerations for the use of CAR T in AL amyloidosis and PCL. CAR T, chimeric antigen receptor T-cell therapy; CRS, cytokine release syndrome; GI, gastrointestinal; ICANS, immune effector cell-associated neurotoxicity syndrome; IEC-HS, immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome; PCL, plasma cell leukemia. Created with BioRender.com.




4.2 Cell therapy-specific risks in AL and PCL

Additional disease-specific risks exist in the setting of stem cell mobilization, and leukapheresis demonstrated in the SCT setting for AL amyloidosis, which should also be considered in the context of CAR T. Stem cell mobilization in the SCT setting in AL amyloidosis is associated with increased hypotension, hypoxia, cardiac arrhythmia, and fluid retention, particularly in those AL patients with congestive heart failure or nephrotic syndrome (80). Such significant sequelae can interfere with lymphodepletion conditioning chemotherapy through treatment delays or dose modifications. In the SCT setting, the additional need for granulocyte colony-stimulating factor (G-CSF) increases the risk of volume overload and capillary leak; the lack of G-CSF use in lymphocyte apheresis for CAR T-cell therapy limits this risk.

The dosing of conditioning regimens may also need further consideration. In full-intensity conditioning regimens for SCT in AL amyloidosis, treatment-related mortality (TRM) rates of up to 20% have been noted (80). Accurate patient selection and risk-adapted dose modifications based on age, cardiac, and renal function have substantially reduced TRM to 2-10% (56, 80). These dose modifications are not without their own risk; a modified dose of melphalan (140 mg/m2) has been associated with lower CR rates and decreased OS. The lymphodepletion regimen of cyclophosphamide and fludarabine used in CAR T conditioning is tolerated well overall in similar populations of heavily treated RR MM patients. However, the use of fludarabine raises concerns for patients with renal involvement of AL amyloidosis. Induction chemotherapy may be beneficial for improving end-organ function prior to lymphodepletion chemotherapy (56). Conditioning chemotherapy prior to CAR T for the AL patients included in Table 1 generally included cyclophosphamide 300 mg/m2/dose x 3 doses and fludarabine 25-30 mg/m2/dose x 3 doses for those with sufficient renal function (creatinine clearance ≥ 30 mL/min or per institutional standards) (35, 87, 88, 90, 91). For those with decreased renal function, fludarabine dosing was reduced, or bendamustine 90 mg/m2 was used. The optimal dosing of fludarabine in patients with AL and renal involvement requires further investigation.

By contrast, TRM is not a primary limitation for PCL patients. According to a review from CIBMTR of 348 patients with pPCL treated between 2008 and 2015, non-relapse mortality (NRM) in the transplant setting was 7% for auto-HCT, still higher compared to auto-HCT in MM (123, 124) and 12% for allo-HCT (117). Even in these patients treated with SCT in the modern era of novel agents in the front-line setting, the rate of relapse within 4 years post-SCT was still high at 69-76%.




4.3 Updated safety of CAR T-cell therapy

The primary concern regarding the use of CAR T-cell therapy in AL amyloidosis is safety, particularly in patients with cardiac impairment, renal insufficiency, or other forms of end-organ dysfunction. Intrinsic to the success of CAR therapy is the activation of the immune system via cytokines such as IL-1, IL-6, IL-10, TNF-a, and interferon (IFN)-g to kill tumor cells (125, 126). These cytokines are also responsible for vascular leakage and disseminated intravascular coagulation (DIC), which can be life-threatening. Excessive stimulation of T-cells, cytokine production, and cytokine release from macrophages after CAR therapy results in Cytokine Release Syndrome (CRS), a frequent clinical syndrome manifesting in systemic inflammation, increased vascular permeability, and possible neurotoxicity (126). With CAR experience has also come improved management of CRS, including standardized assessment of grade and severity, prompt administration of tocilizumab with or without corticosteroids, management of infections, and multidisciplinary supportive care (19, 20, 126). In a real-world data study from the US Myeloma Immunotherapy Consortium of 159 patients at 11 centers in the USA, the rate of CRS with ide-cel was 82% overall but only 2% in grades 3-4 and 1% in grade 5 (127). In a similar study of real-world data outcomes from cilta-cel, the US Myeloma Immunotherapy Consortium reported on 139 patients treated; the rate of CRS was similar at 81% overall with 7% grade 3 or higher (128). Of those cases of AL treated with CAR T-cell therapy reported here, 15 of the 21 patients (71%) experienced CRS of any grade, with 12 being grades 1-2 and 3 with grade 3 (see Table 2). Other cumulative reported safety events for AL patients receiving CAR T therapy are shown per study in Supplementary Table 3A. The cumulative safety data for the published PCL cases treated with CAR T-cell therapy are shown in Table 3; Supplementary Table 3B shows safety data for PCL patients by study. CRS was very frequent but low grade: 19/20 (95%) had any grade of CRS. The majority were grade 1-2 (16/19, 80%). Although common in both AL and PCL, CRS is still predominantly mild, requiring minimal support, even in these vulnerable patients.

The most serious sequelae seen in these groups of patients seem to be infections and hematologic events. As with multiple myeloma (129), unexpected serious adverse events in the PCL patients included three deaths after CAR T, two of which occurred in the first month after CAR infusion, and both in patients with increased circulating plasma cells of up to 70%. One of these deaths was due to severe pneumonia and the other to gastrointestinal hemorrhage. A third patient died 3 months after CAR T with pulmonary Aspergillus infection. Among the AL amyloidosis CAR T patients, one patient died due to severe infection, subsequent sepsis, and multiorgan failure. Despite small numbers, these populations continue to see high-grade adverse events. It is unclear which variables may contribute to these outcomes, but further study should explore ways to improve the safety of cell therapies for these patients.




4.4 CAR T-cell efficacy in AL and PCL

Because of the rarity and clinical behavior of AL amyloidosis and PCL, these diseases have historically been excluded from most other clinical trials studying novel therapies, such as CAR T-cell therapy. CAR T is appealing for AL amyloidosis because, as a low-burden disease, there may be a more favorable response and less risk of infections, cytopenias, and CRS, as is seen in low-tumor burden MM (130). Clinical trials for both diseases are underway to study these novel agents and better understand the role of the currently available therapies like SCT, PIs, IMiDs, anti-CD38 antibodies, and others.

Tables 1 and 4 summarize the published experience of CAR T therapy in AL and PCL to date, respectively. All patients were treated with anti-BCMA CAR T agents, some with commercially available and others with investigational compounds. Stages varied in AL amyloidosis patients; in PCL, both primary and secondary PCL were included. CAR T-cell dose varied widely from 0.37 × 106 cells/kg to 800 × 106 cells, with varying responses. Median follow-up for all patients was at least 6 months (range 6-26.4 mo.). Among 21 AL patients treated with CAR T, 10 had sCR or CR, 6 had VGPR, 1 had PR, and four were not evaluable. Of 23 PCL patients, 5 had pPCL, and 17 had sPCL. Four patients had sCR or CR, 7 had VGPR, and 7 had PR. Unfortunately, the long-term outcomes after CAR T for patients with AL or PCL are well documented owing to short follow-up or a lack of granular details in reports on these patients. Despite high OR rates, the duration of response and overall outcomes still seem suboptimal. However, the experience is promising and deserves more investigation to find a better therapy combination or at least add another therapy option.

Further prospective studies are needed to understand the impact of these responses and post-CAR relapse risk in these groups. Despite the variability in product, dose, and disease demographics, these results are encouraging, suggesting that cell therapies may benefit these complex patients.

In addition to BCMA-directed therapies, other CAR T targets such as GPRC5D and CD229 also appear promising for plasma cell dyscrasias. CD229-directed CAR T was investigated in MM and included 3 PCL patients (131); the CD138+ tumor cells showed high CD229 expression. The anti-CD229 CAR T cell exhibited high cytotoxicity and pro-inflammatory cytokine production against these tumor cells, suggesting it could be a useful target. There are several ongoing GPRC5D-directed CAR T-cell studies in myeloma, and prior studies have already demonstrated high rates of GPRC5D expression in MM and AL amyloid (52).




4.5 Study limitations

The study of rare diseases is inherently limited and challenging. Large-scale clinical research on CAR T-cell therapies for AL amyloidosis and PCL remains constrained by the low incidence of these conditions and the exclusion of specific patient populations from prior trials. While the reviewed studies provide valuable insights, they predominantly consist of descriptive case reports or retrospective cohort analyses. The evaluation of outcomes, efficacy, and safety events is further restricted by limited detailed data in the original publications, as individual patient-level data is inaccessible for meta-analyses. Additionally, cross-study comparisons are hindered by the heterogeneity of anti-BCMA CAR T products, including ide-cel, cilta-cel, HBI0101, ARI0002h, CT103A, and other academic CAR T therapies, making it difficult to establish a standardized evaluation of therapeutic experiences across studies.





5 Future directions

Although the treatment of plasma cell disorders has advanced with novel therapies, better supportive care, and aggressive regimens, there is still work to do. Relapsed and refractory AL amyloidosis and PCL have ground to gain compared to their ND and MM counterparts. Studies specific to PCL and AL amyloidosis are understandably challenging to conduct due to the rarity and acuity of these diseases. It is imperative that clinical trials allow for the inclusion of these underserved populations; for these rare diseases, having even a small number of patients in a clinical trial is valuable.

CAR T-cell therapies warrant further exploration in the context of AL amyloidosis and PCL. Patient selection should be performed with caution, alongside proactive supportive care, especially for those with known end-organ dysfunction. Enhancing the efficacy of CAR T-cell therapy requires advancements in target specificity, prolonging cellular persistence in vivo, and mitigating therapy-related toxicities. Dose modification for either lymphodepletion or CAR T-cell products or both may be helpful to improve safety and reduce adverse events. Early-line use of CAR T-cell therapy may improve efficacy compared to use in heavily pretreated patients and minimize toxicity in patients with significant end-organ impairment. Alternative targets, such as GPRC5D and CD229, present promising avenues for investigation. Furthermore, future studies should incorporate basic science and genomic analyses to deepen our understanding of the pathophysiology underlying these conditions and refine therapeutic strategies.
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Acute myeloid leukemia (AML) is a heterogeneously primary hematopoietic neoplasm characterized by uncontrolled proliferation of immature myeloid cells, which is characterized with poor outcomes. Despite tremendous advances in the treatment paradigm of AML in the past several decades, the cure and prognosis remain unfavorable. More effective treatments are therefore needed to improve the clinical outcomes. Among newly emerging immunotherapies, chimeric antigen receptor (CAR)-T cell immunotherapy is an exceedingly promising approach that has remarkably improved the overall survival for patients with AML. However, current CAR-T cell therapy for AML faces numerous significant challenges such as the identification of truly AML-specific surface antigens, the on-target/off-tumor toxicity, and the immunosuppressive microenvironment of AML. In order to conquer these limitations, novel strategies to advance CAR-T therapy are urgently needed. In this comprehensive review, we summarize the current status of immunotherapy, especially CAR-T cell therapy, highlight the outcomes of current trials and the limitations of CAR-T immunotherapy, hopefully to provide novel insights into the future directions of CAR-T cells in AML.
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Introduction

In recent years, the occurrence of AML has been increased annually. It is reported that the incidence of AML in the US in 2023 is 20380 cases with approximately 11310 deaths (1, 2). Currently, the combination of cytarabine (ara-C) and anthracycline remains the standard induction chemotherapy for AML, which is commonly known as the “3 + 7” regimen, resulting in long-term cures of approximate 35% of the younger AML patients (3). Small molecular drugs that target specific molecules are gaining attention for their potential in treating AML. Among these, some are already used in clinic such as ivosidenib (IDH1 inhibitor) (4), enasidenib (IDH2 inhibitor) (5), gilteritinib (FLT3 inhibitor) (6), and venetoclax (BCL-2 inhibitor) (7). Despite the advancements of current available therapies, the majority of patients still have terrible prognosis due to the disease progression or recurrence, as a result of treatment resistance or adverse side effects (8, 9). Therefore, it is essential to identify and research potential novel therapeutic approaches for AML.

T-cell-based immunotherapy is an effective strategy, including the genetic modification and redirection of these cells to eradicate AML blasts (10). For example, CAR-T cell therapy is a relatively novel strategy, in which autologous/allogeneic T cells are collected and reprogrammed to express CARs that recognize tumor surface antigens specifically. The reprogrammed T cells can specifically identify tumor-associated targets and destroy these cells without the assistance of the major histocompatibility complex (11, 12). The treatment of hematological malignancies is the primary area for CAR-T cells, which has shown an impressive overall and complete response rate. This is because the adequate tumor antigen is easier to find and target in hematological malignancies compared with solid cancers (13, 14). However, due to the significant genetic and phenotypic heterogeneity, finding a true AML-specific antigen is challenging, which limits the successful application of CAR-T cell therapy in AML treatment (15). In addition, the expression of AML antigens on normal healthy tissues often causes variable degrees of toxicity due to the mistarget of the healthy tissues. The on-target/off-tumor toxicities are usually unavoidable for CAR-T therapy, such as the possibility of fatal myeloablation when targeting myeloid precursor cells (16). Here, we outline the progress achieved in the multiple categories of immunotherapeutic approaches for the management of AML, further discuss the particular mechanisms of CAR-T therapy, summarize the recent advances of CAR-T immunotherapy in AML, as well as the current limitations, hopefully providing some novel insights for the future research direction.





Overview of the current available immunotherapies for AML

In the management of AML, current available immunotherapy involves targeted antibodies, adoptive cell therapy (ACT), immune checkpoint inhibitors (ICIs), Hematopoietic stem cell transplantation (HSCT), and tumor vaccines. Among them, the allogeneic HSCT is still one of the most classic and effective immunotherapeutic approaches for hematological malignancies (17, 18). As the understanding of the genetic and phenotypic diversity of AML rapidly advances, immunological therapeutic targets have been revealed increasingly. Over the past 10–15 years, several small molecule targeting drugs have been successfully used for AML, either alone or in a combined form with other standard therapies (19, 20). For example, midostaurin which inhibits multiple tyrosine kinase receptors, is approved for FLT3-mutated AML alone or combined with chemotherapy (21). Cancer vaccines are a positive strategy to eliminate AML and prevent tumor recurrence, which stimulates a persistent immune response. Recently, researchers have developed the ECNV-αGC vaccination, demonstrating its efficacy in reducing the burden of AML. However, there is still a long way to go before cancer vaccines can be translated from the bench to the bedside (22). Despite the numerous ongoing trials, these immunotherapies for AML still have many limitations to overcome.

ACT has emerged as a widely applied immunotherapeutic strategy for patients with AML, including DC cell, TCR-T cell, cytokine-induced killer (CIK) cell and CAR-NK cell. Among them, CAR-T cells have become a promising candidate (23). The remarkable successful outcomes of CAR-T in other hematopoietic malignancies, such as acute lymphoblastic leukemia (ALL), have prompted their attempted application in AML (24). In a phase I clinical trial involving 10 cases, CLL-1 CAR-T cells demonstrated remarkable therapeutic potential that 7 of 10 R/R AML patients achieved CR/CRi (25). Although the application of CAR-T therapy in AML treatment remains in the early stages, trials to date have achieved encouraging initial outcomes just like in other hematological malignancies.





Principles of CAR-T cell therapies

Although the detail structures of each CAR construct are slightly different, the most commonly used CARs include an antigen binding domain, an activation domain from CD3z, an extracellular hinge domain and an intracellular costimulatory domain (Figure 1). When CAR-T cells recognize and bind to tumor-specific antigens, the intracellular structural domain initiates activation procedures via phosphorylation and subsequent signaling. Consequently, CAR-T cell specifically targets tumor-associated antigens with HLA independence (11). The primary cytotoxicity hinges on the cytokines secreted by CAR-T cells including granzymes and perforins (26). Furthermore, CAR-T cell triggers the apoptotic signaling cascade through the engagement of surface molecules, ultimately leading to the programmed death of cancer cells (27). The efficiency of the first generation was disappointing due to the absence of co-stimulatory signaling function. Therefore, the second‐generation CAR construct has one additional co‐stimulatory domain that differs from the first, respectively. Such bi-co-stimulatory domains enhance the activation and proliferation of CAR T cells. Furthermore, the structure of the third generation is similar to the second (28), while the fourth generation CAR-T has an additional inducible domain. When the domain is activated, CAR-T cells generate numerous cytokines displaying anti-tumor activity in local tumor tissue, leading to the improvement of durability and other comprehensive anti-tumor responses (29). The fifth generation incorporates an additional intracellular IL-2 receptor domain into the design of the second generation. This modification induces the production of memory T cells by the antigen-driven activation of the JAK/STAT signaling pathway, improving the therapeutic efficacy of CAR-T therapy. Genome editing technology is also used in the fifth generation, aiming to mitigate the risk of cytokine release syndrome (CRS) by inhibiting dominant negative receptors, including PD-1 and TGF-β (30).
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Figure 1 | Evolution of the 5 generations CARs. The first-generation has only a CD3z signaling domain. The second-generation is characterized by an additional costimulatory domain based on the first-generation. The third-generation incorporates two costimulatory domains similarly. The fourth-generation has an additional inducible domain to induce the production of tumor-killing cytokines. The fifth-generation incorporates an intracellular IL-2Rβ domain with a STAT3 binding motif to activate the JAK-STAT path.

Current CAR-T production methods mainly involve ex vivo strategy which needed isolation, genetic modification, and subsequent expansion of T cells outside the body, as well as in vivo strategy that engineered CAR-T cells directly within the body using delivery vehicles (31). Despite the pre-clinical results showing that in vivo production is less complicated than ex vivo production, in vivo CAR-T production is still under research, with no product receiving approval from the FDA compared with the mature ex vivo production strategy (32, 33).





Current CAR-T cell constructs for acute myeloid leukemia

CAR-T cell therapy is still in the early stages in AML compared with other hematopoietic malignancies. Currently, no CAR-T product is approved for clinical use in AML, however numerous AML-directed CAR-T cells are developed in preclinical and clinical trials. To designing an effective CAR, choosing an appropriate target is the most critical step. However, most of the targets identified in AML cells have not been ideal until now. The predominant targets of current clinical trials of AML are CD33 and CD123, however, these identified targets may also be expressed on healthy HSCs or may not be consistently presented in all AML cells. Currently, in a phase clinical I study, CLL-1 CAR-T cells in the R/R AML patients show a promising outcome with the CR/CRi rate 70% (n = 7/10), but off-target toxicity is quite concerning (25).

To overcome the limitations of CD33 and CD123 targets, researchers are exploiting other novel targets, such as NKG2DL, CLL-1, CD70, CLEAC12A and CD138, as well as dual antigen‐directed CARs. In the following sections, we will summarize the targets under current research (Table 1), and discuss the corresponding advances and the challenges of CAR-T cell therapy.

Table 1 | Selected landmark clinical trials of chimeric antigen receptor T‐cell therapy in acute myeloid leukemia.
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CD33

CD33 is an immunoglobulin-like lectin which expressed on cells of the monocytic and myeloid lineages, and is present in 87.8% of AML cases (62). However, the expression of CD33 in healthy HSCs was also detected, which could lead to off-target toxicity (63). Taking this into account, researchers performed an in vivo experiments through xenograft mouse model to selectively delete CD33 from normal HSCs to avoid undesired toxicity. Consequently, CAR-T cells targeting CD33 could efficiently destroy AML cells without myelotoxicity (64). Furthermore, a more commonly used strategy is to establish a balanced dual-CAR. Researchers established a balanced dual-CAR based on a low-affinity interleukin-3-zetakine (IL-3z) and a high specificity of CD33 to target AML cells. This CAR is designed without activating signaling domains in order to minimize off-target toxicity and maintain complete damaging capacity against AML cells (34). Meanwhile, the design of CAR that incorporates pharmacologic control is also considered. A clinical trial with rapamycin-regulated CD33 CAR-T cells has shown a controlled function in AML, demonstrating a promising prospect (35).





CD123

CD123, a cell membrane protein, is notably overexpressed on AML cells, but nearly absent on normal HSCs (65),unlike CD33, but CD123 expression on blood vessels leads to off-target toxicity (66). Researchers designed the CD123 CAR-T cells and analyzed the therapeutic effects on AML in a xenograft model. The data showed that these CAR-T cells exhibited anti-AML activity, importantly without toxicity to the hematopoietic system or other tissues (36). Furthermore, researchers found that 5′-Azacitidine (AZA) treatment could increase the density of CD123 on AML cells, therefore enhancing activity and abundance of CTLA-4neg CAR-T cells, revealing the potential benefits of combining CAR-T therapy with pharmaceuticals (36). A study evaluated the therapeutic effects of allogeneic gene-edited CAR-T cells (UCART123) targeting CD123 both in vitro and in vivo, displaying high efficacy to eliminate AML cell. In addition, the safety features are impressive by using genome editing technology to avoid graft versus host disease and expressing special antigens to eliminate CAR-T cells timely (37). Similarly, researchers also developed the bispecific CAR-T cell for both CD123 and NKG2DL, that not only eliminates AML cells but also targets immunosuppressive cells. Consequently, this dual-CAR strategy perfectly avoids antigen escape and counteracts the suppressive impacts of tumor microenvironment (TME) (38).





CD7

As a surface marker, CD7 is commonly expressed on T lymphocytes and natural killer cells (67). It is also expressed in about 30% of AML cases, but is absent on healthy myeloid cells, leading to high specificity and limited toxicity (68). Considering its expression on T cells has been proving fratricidal, researchers used genome editing technology to produce the CD7KO T cells that effectively eliminate CD7 AML cells but spare healthy myeloid cells (39). Later, the specific CD7 CAR-T cells which have a low expression of CD7 was further designed by transducing an anti-CD7 CAR into T blasts followed by the natural selection. These cells inhibited leukemia cell proliferation in a xenograft mouse model and efficiently killed CD7 AML cells of R/R AML patients in vitro, showing a novel effective strategy without expensive gene ablation (40, 69). A clinical trial reported a R/R AML patient who was treated with CD7 CAR-T cell therapy, displayed reduced tumor burden with controlled CAR-related toxicity (41). Another study also tested the therapeutic effects of CD7 CAR-T cells (RD13-01) in a R/R AML patient which achieved an MRD++− CR after CD7 CAR-T treatment (42).





CD117

CD117, also recognized as KIT, is categorized as a type III receptor tyrosine kinase, which is predominantly expressed on the majority of myeloid blasts and is crucial in the AML development. Nevertheless, the expression of CD117 is significantly elevated on healthy HSCs and most primary AML cells (70). Therefore, the CD117 CAR-T therapy which targets both healthy and cancerous cells at the same time to avoid additional myeloablative conditioning before HSCTs, holds promise as a transitional treatment of HSCTs. A study had successfully generated and examined CD117 CAR-T cells in a xenograft mouse model, showing an efficient clinical prospect (43).





CD70

CD70 is a tumor necrosis factor (TNF) superfamily member and is expressed on most leukemic blasts, but unlike CD33 and CD123, it is absent from normal HSCs (71). In a conducted research, researchers produced a series of CD70 CAR-T cells and evaluated their activity against AML both in vivo and in vitro. The findings indicated that the CAR utilizing the CD70 receptor CD27 had an enhanced anti-AML activity when compared to the conventional scFv-based CAR-T cells (44). In another study, another CD70-targeted CAR was designed which has a panel of hinge-modified regions. Functional analysis showed an enhanced ability to target tumor surface antigens (72). Researchers also evaluated CD70 targeted CAR-T in xenograft mouse model, exhibiting that such CAR-T displayed significant anti-AML activity and durability in an xenograft mouse model (45).





CD93

CD93 is a transmembrane glycoprotein, which is predominantly expressed in AML blasts and LSCs, but is absent in healthy HSCs (73).Importantly, CD93 expression is relatively stable and highly expressed in a significant proportion of relapsed AML patients. Therefore, CD93 is a perfect target for CAR-T cell therapy. Researchers have developed CD93 CAR-T cells utilizing a humanized CD93-specific binder which effectively targets and eliminates AML cells without side toxicity to HSCs. Furthermore, they introduced the NOT-gated CD93 CAR-T cells, aiming to overcome the undesired endothelial-targeting toxicity (46).





CD38

CD38 is expressed on most leukemic blasts and has successfully been harnessed in the treatment for various hematological malignancies, including multiple myeloma and ALL (62, 74). Considering the relatively low expression of CD38 in AML, a study was conducted to test its anti-AML effects when enhancing CD38 density on AML cells by combining all-trans retinoic acid (ATRA) with CD38 CAR-T cells. The research data demonstrated that ATRA significantly enhanced the anti-AML activity of CD38 CAR-T cells through elevating the CD38 surface expression levels (47). Recently, researchers developed and evaluated a novel CD38-targeting T-cell engager, which showed an enlightening outcome. The outcome demonstrated that this CD38-targeting T-cell engager could stimulate T cells to release IFN-γ and transform surrounding CD38neg cells into CD38pos cells when interacting with CD38pos AML cells, thereby efficiently eliminating AML. This strategy showed good application prospect, which may be used in the construction of CAR in the future (75).





FLT3

FMS-like tyrosine kinase 3 (FLT3) is typically expressed both on healthy HSCs and on AML blasts, with high specificity for FLT3 with internal tandem duplication (FLT3-ITD) (76). A study examined FLT3-specific CAR-T cells, revealing that these CAR-T cells could recognize and disrupt healthy HSCs in vitro and in vivo (48). Therefore, researchers further improved and developed an allogeneic CAR-T cell with the elimination of endogenous TCR, achieving a lower risk of alloreactivity and a more timely treatment with off-the-shelf CAR-T cells (49). In addition, considering about 37% AML patients have FLT3 mutations and a high expression of CD44v6, researchers constructed CD44v6 CAR-T cells to treat these patients with FLT3 mutations (50).





CLL1

The human C-type lectin-like molecule-1, identified as CLL-1 or CLEC12A, is primarily expressed on most AML blasts. Importantly, CLL-1 is expressed within LSCs contrasting with its absence in HSCs, much like CD123 (77). The CLL-1 CAR-T cells have been proven to specifically damage AML cells in vitro without toxicity to HSCs (51). A study also identified CD33/CLL1 as the preferred combinatorial targets for pediatric AML, which further expanded the potential clinical application of CAR-T (52, 78). 2 patients with R/R AML displayed successful outcomes when treated with PD-1 silenced CLL-1 CAR-T therapy, after the failure of HSCT and CD38 CAR-T therapy (53). In a clinical trial, CLL-1 CAR-T therapy showed positive efficacy and tolerable safety in R/R AML patients (25). Furthermore, researchers developed a special CAR that combined the CLL1 as a costimulatory receptor with the ADGRE2-CAR to specifically target ADGRE2pos and CLL1pos LSCs, while sparing the ADGRE2low and CLL1 neg healthy HSCs. Collectively, this combined targeting strategy could selectively eliminate AML cells and reduce hematological toxicity (54).





Folate Receptor β (FRβ)

In 2015, the first production of FRβ CAR-T cells which selectively disrupted AML cells, showed therapeutic potential. Furthermore, the application of ATRA resulted in improved elimination of AML cells with enhanced FRβ expression (79). A subsequent study proved that the high-affinity FRβ CAR-T cells displayed greatly enhanced anti-tumor activity compared with the low-affinity FRβ CAR-T cells (55). Furthermore, researchers generated a bispecific tandem CAR by combining FRβ with CD123 in the retroviral vector, proving to have an enhanced effect for AML (56).





GRP78

Glucose-regulated protein 78 (GRP78) is typically located within the endoplasmic reticulum (ER). However, when ER stress is elevated, the overexpressed GRP78 is transferred to the surface of tumor cells (80). Researchers designed T cells expressing a peptide-based CAR specifically targeting GRP78, and proved a decrease in fratricide treated with dasatinib during the production. In addition, the GRP78 CAR-T cells could effectively eliminate GRP78pos tumor cells without toxicity against HSCs (57).





NKG2DL

Natural killer group 2D ligand (NKG2DL) is widely expressed in various malignant neoplasms, but nearly absent in healthy tissues (81). In a phase I clinical trial, a single patient who received the maximum dose of NKG2D CAR-T cell therapy proved to have an improvement of blood cell counts and maintained clinical stability over several months without additional supplementary treatment. Since the endpoints of this clinical trial are assessing the feasibility and safety of a single injection of NKG2D CAR-T cells instead of stable disease, no objective clinical efficacy of CAR-T cells was proved. However, considering the outstanding safety and the unexpected disease stability of several patients during subsequent therapies, NKG2D CAR-T cells have shown potential therapeutic value in AML (58). Since high expression of NKG2DL can be induced by FLT3 inhibitors, researchers constructed dual-target FLT3scFv/NKG2D CAR-T cells, and examined the inhibitory effects in vitro, which showed the powerful ability to lyse AML cells and improvement by gilteritinib-pretreatment (59).





LILRB3

The members of LILR subfamily B (LILRB) are negative factors to regulate myeloid cell activation and are commonly expressed on myeloid and lymphocyte cells (82). In a recent study, CAR-T specifically targeting LILRB3 has exhibited remarkable anti-AML activity both in vivo and in vitro. Furthermore, LILRB receptors are upregulated in response to inflammatory stimulus and chemotherapy conditions, suggesting that combined CAR-T with specific stimulus can be applied by artificially regulating the tumor microenvironment to improve the LILRB3 CAR-T efficacy (60).





Intracellular targets: PRAME

PRAME is a melanoma-associated antigen overexpressed in a variety of hematologic malignancies, including AML and CML. Conventional CAR-T cells are unable to target PRAME because it is an intracellular antigen (83). Researchers developed a special CAR-T (PRAME mTCRCAR-T) by using a T-cell receptor mimic antibody that recognizes the complex constituent of HLA-A2 and PRAME ALY peptide, therefore achieving an effective anti-AML capacity upon applications of such CAR-T cells in vivo (61).






Limitations of CAR-T cell therapy in the treatment of AML

Despite the above-mentioned examples of CAR-T cells in AML, many challenges existing limit the clinical efficacy of CAR-T cells in AML. Limitations to effective CAR-T cell therapy include restricted anti-tumor efficacy, severe life-threatening toxicities, relapse and resistance. Furthermore, other unsolved challenges commonly exist. For example, the tumor microenvironment significantly influences the activity of CAR-T cells. The excessive period of waiting for treatment initiation, the requirement for an optimal CAR design, the design of the most effective intracellular costimulatory domains, and the determination of the optimal timing for CAR-T cell infusion are all critical and unsolved for CAR-T therapy in AML.




Restricted anti-tumor efficacy

Although AML has a modest mutational load in contrast to other malignancies like melanoma or lung cancer, the genetic diversity, epigenetic alterations, and clonal heterogeneity all contribute to the complexity of CAR-T therapy in AML. Among them, the genetic and phenotypic heterogeneity in the AML cells is the foremost challenge that limits the applicability of the universal CAR-T cells (84). Currently, the resistance mechanisms of CAR-T therapy remain largely elusive, only with some hypotheses including tumor heterogeneity, antigen escapes, and the exhaustion of T-cells, along with their diminished persistence. However, it is evident that the primary forms of resistance involve antigen-negative and antigen-positive relapses. These antigen-negative relapses are linked to a range of factors, such as CAR-T cell-induced mutations, alternative splicing, the masking of epitopes and low antigen density (85–87). In a study utilizing a mouse model of leukemia, it has been demonstrated that target antigens can be transferred to T cells via CAR T cell trogocytosis. This process results in a reduction in the density of target antigens on tumor cells, thereby promoting the exhaustion of CAR-T cells. Co-targeting different antigens may prove beneficial in addressing this type of antigen-negative relapses. Antigen-positive relapses are frequently attributed to inadequate persistence of CAR-T cells, which might be caused by several factors, including the immunogenicity of the CAR itself, the inherent quality of the T-cells, the initial phenotype of the T-cells, the co-stimulatory domain present within the CAR constructs, and the impact of the tumor microenvironment (88–90).

Other significant factors contributing to the diminished efficacy of CAR-T therapy are inadequate T cell proliferation and short-term T cell survival, which leads to a weak therapeutic response. It is widely believed that the immunosuppressive microenvironment created by AML contributes much to such restrictions. Among the critical elements for the suppressive tumor microenvironment, regulatory T (Treg) cells play a prominent role in inhibiting immune responses. First, Tregs with an overexpression of PD, OX40 and TIM3 have an increased frequency in the peripheral blood of AML patients (91). The engagement of PD-1 with PD-L1 or PD-L2 initiates a series of intracellular signals that inhibit T-cell activation. Furthermore, the expression of PD-1 on Tregs that migrate to the tumor microenvironment can stimulate these immunosuppressive cells, reinforcing their immunosuppressive functions (92, 93). Recently, the 123NL CAR-T cells likely targeting immunosuppressive cells through CD123 and NKG2DL, demonstrated a promising approach to overcome tumor microenvironment (38). In addition, researchers have proved that TP53 deficiency confers resistance of AML. Therefore, inhibiting the mevalonate pathway in TP53-deficient AML cells or enhancing the Wnt pathway in CAR-T cells in vitro restores the efficiency of CAR-T-cell-mediated AML cell lysis in a recent study. This data provided a novel insight into our understanding of CAR-T therapy resistance in terms of metabolic mechanisms (94). Lots of studies have been done to overcome these immune pathways which were hypothesized as the important barriers to T cell activation, but the conclusion remains uncertain.





Severe life-threatening toxicities

The frequently observed adverse effects for CAR-T therapies are CRS, neurotoxicity, cytopenias and infections. These adverse effects can range from minor symptoms to serious life-threatening situations. For example, ten R/R AML patients treated with CLL-1 CAR-T cells all suffered from CRS, among them, 4 cases of them were low-grade, the remaining 6 were considered high-grade (25). The precise mechanism of CRS remains elusive but is theorized that it may arise from the over-activation of T-cells, which subsequently leads to the emission of a variety of inflammatory cytokines such as TNF-α and interferon-gamma (95). Symptoms associated with CRS triggered by CAR-T cell therapy may include fever, tachycardia, headache, nausea, rash and shortness of breath. Furthermore, some severe cases could even lead to multiple organ failure (96). The standard approach to managing CRS typically involves supportive care alongside the administration of corticosteroids or tocilizumab as treatment options (95, 97).

Despite the enhanced targeting precision that CAR-based therapies present in comparison to conventional chemotherapy and radiotherapy, the on-target/off-tumor toxicity remains common and troublesome. Such type of toxicity is characterized by the devastation of health tissue when targeting tumor antigens due to the common expression of target tumor antigens on healthy cells. On-target/off-tumor toxicity is a common issue in CAR-T cell therapies, but many of its manifestations remain unidentified or are also obscured by other symptoms. For example, some toxicities are directly associated with the targeting effects by CAR-T cells, such as immune effector cell-associated neurotoxicity syndrome, hypogammaglobulinemia, hematologic toxicities; the others may be indirectly linked to the therapy-induced immunosuppression to the patients, such as infections, sepsis (98).






Potential effective strategies to improve CAR-T treatment, specially for failure and resistance

CAR-T cell therapy has achieved numerous encouraging progress in AML. This therapy has inimitable advantages compared with conventional chemotherapy and radiotherapy, but also has some limitations that need to be addressed. A variety of strategies including the combination of CAR-T cell therapy with other anti-AML approaches and the utilization of advanced CAR engineering techniques, have been put forward to enhance the therapeutic efficacy of CAR-T, mitigate adverse effects and broaden clinical applicability. In the following section, we describe some strategies for overcoming these limitations.




Optimizing CAR structure

The current clinical outcomes of CAR-T cells are unsatisfactory for AML therapy due to the modest cell responses. To improve it, researchers are extremely enthusiastic about modifying the structure of CAR. Recently, research has reported that a CD33 CAR targeting membrane-proximal epitopes outperforms the CAR targeting membrane-distal epitopes, emphasizing the importance of the antigen epitopes for optimizing CAR design (99). Researchers redesigned a series of hinge domains to reduce the proteolytic cleavage of the CD27 extracellular segment. This modification enhanced the binding stability between the CAR to CD70, thereby enhancing the binding ability and anti-tumor activity in vivo (72). Continuous optimization of the CAR structure might overcome the root cause of the undesired efficacy of CAR-T cells in AML. In addition, using different target-specific CARs coherently may also be a promising strategy. Researchers established a novel T-cell platform known as the Fab-based adapter CAR (AdCAR) which uses adapter molecules such as anti-CD33, anti-CD123, and anti-CLL1 to selectively target AML cells. The AdCAR platform overcomes the chronic T-cell exhaustion and antigen heterogeneity in AML, providing a more adaptable strategy against the complexities of AML (100).

Targeting at a single antigen may produce a selective pressure which potentially drives the evolution of cancer cells and results in the immune escape. Therefore, bispecific CAR-T cell is a promising therapeutic approach for AML. The bispecific CAR-T cells targeted both GRP78 and CD123 had been proven to successfully improve anti-AML activity compared to the CAR-T cells targeted GRP78/CD123 (101). A vitro study has demonstrated that CAR’TCR-T cells, engineered to co-express both a CD33-CAR and a transgenic dNPM1-TCR, exhibit enhanced and sustained anti-tumor efficacy. This is especially notable in a case where the target antigen density is extremely low, highlighting the potential value of this dual-expressing cell strategy (102). In addition, discovering novel CAR targets is also meaningful for the therapy efficacy of CAR-T. A study proposed an approach that evaluated many candidates simultaneously and applied some particular principles to guide combinatorial pairings (103). Structural surface-omic and Single-cell transcriptomic might also be helpful for discovering new targets (90, 104). Given the current lack of sufficiently suitable targets, a strategy of targeting multiple antigens may represent the optimal approach to overcome the heterogeneity of AML. Continuous refinement of CAR structures through bioengineering techniques, coupled with the potential of gene editing to enhance CAR-T efficiency, holds promise for overcoming AML heterogeneity.





Combining other therapies to improve the efficacy of CAR-T

Combining CAR-T cell therapy with other therapy is also necessary to improve the anti-tumor efficacy in AML. Research has confirmed that the pretreatment with rapamycin, which diminishes mTORC1 signaling, can attenuate the activity of CAR-T cells to infiltrate bone marrow by diminishing mTORC1 signaling. This intervention has been shown to intensify the eradication of AML cells within the bone marrow in mouse models of leukemia xenografts and may inspire us to combine other chemotherapeutic agents with CAR-T cells for AML treatment (105). Furthermore, a study reported a CD38-CD3 T-cell engager, named BN-CD38 was developed, which has demonstrated the ability to facilitate T-cell activation and proliferation, as well as contribute to the elimination of AML LSCs within an autologous context, offering a promising strategy for the targeted treatment of AML. Interestingly, IFN-γ–induced upregulation of CD38 may improve the CAR-T therapy through higher antigen density (75). Combining CAR-T therapy with AZA (demethylating agents) appears highly promising for clinical translation (36). Additionally, integrating CAR-T therapy with small molecule drugs such as venetoclax (BCL-2 inhibitors) and immune checkpoint inhibitors also offers significant potential for enhancing clinical efficacy (106).





Applying dual targets to avoid on-target/off-tumor effects

Because most target antigens are present on both AML cells and healthy tissues, CAR-T cell therapy often causes on-target/off-tumor effects inevitably, even threatening the patient’s life. In order to avoid these toxicities in CAR-T cell treatment of AML, researchers have proposed many strategies. For example, a universal CAR platform technology known as UniCAR divides conventional CARs into two distinct elements: a CAR for the non-specific manipulation of T cells and a targeting module for redirecting the activity of UniCAR T cells. This strategy reduces the risk of on-target side effects by allowing the precise activation and deactivation of CAR-T cells in a regulated method (107). Logic-gated CAR also shows a promising prospect, such as AND gates incorporating two individual receptors, OR gates based on dual or tandem CARs, and NOT gates with inhibitory signaling. In a study, the CAR-T cells that dual-target CD13 and TIM3 showed great specificity for eradicating both CD13pos and TIM3pos AML cells, with acceptable toxicity to the healthy cells with only expressing CD13 (108). A recent study repurposed cytosolic molecules into CARs by combining the LAT with SLP-76, and generated the AND-gate CAR-T cells which exhibited enhanced functionality and specificity (109). Furthermore, researchers developed a new platform named AbTCR-CSR, which combined an antibody-T-cell receptor (AbTCR) CAR with costimulatory signaling receptor (CSR), representing a similar AND gates strategy to avoid the toxicity of CAR-T therapy in AML (110). In the context of NOT-gated CAR-T cell therapy, these cells are engineered to express a secondary inhibitory CAR (iCAR) designed to recognize an antigen exclusively expressed in healthy cells, not present in tumor cells. This iCAR delivers an inhibitory signal that effectively counteracts the activation signal intended for the CAR-T cells, thus modulating their responses to prevent unintended interactions with healthy tissues. Researchers have tested the NOT-gated CD93 CAR-T in an in vitro model with a rewarding outcome and promising prospect (46).





Utilizing genetic engineering for CAR-T cells or healthy tissue cells

Gene editing can effectively avoid the T-cell exhaustion and enhance the activity of CAR-T cells. This strategy includes deleting negative regulatory molecules (111) or expressing specific transgenic molecules (112) to enhance anti-tumor activity, such strategy has been proved in many tumor models including AML. In addition, the gene editing strategy is also promising to avoid on-target/off-tumor toxicity. A study that deleted CD33 from normal HSCs in order to generate a hematopoietic system resistant to CAR-T cells showed the specific and effective killing capability of AML cells (64). However, the production of clinically compliant gene-edited CAR-T cells faces challenges including safety risks from off-target modifications causing genomic instability or oncogenic mutations, production efficiency concerns regarding CAR-T cell numbers and activity, and ethical issues in meeting global regulatory requirements (113, 114).





Attaching polyethylene glycol to the exterior of CAR-T cells

CRS and neurotoxicity are recognized as the predominant and distinctive adverse effects linked to CAR-T cell therapies. A recent study has demonstrated that in vivo attachment of PEG to the exterior of CAR-T cells significantly alleviates the incidence of CRS and neurotoxicity which are commonly induced by CAR-T cells. Importantly, this modification does not influence the capacity of CAR-7 to eliminate tumors, therefore preserving their therapeutic efficacy. This is because the CAR-T cell can block the interactions between CAR-T cells, tumor cells and monocytes, and decrease both monocyte overactivation and cytokine release in vitro. Furthermore, the gradual proliferation of CAR-T cells decreases PEG surface density and facilitates the re-establishment of interactions between CAR-T cells and AML cells, leading to robust anti-tumor responses, while reducing adverse effects (115).





Optimizing the production procedure of CAR-T

Despite some potential advantages, using autologous T cells to produce the CAR-T cells has complicated procedures which cost plenty of time, therefore prolonging the waiting time for treatment. The allogeneic FLT3 CAR-T cells is an off-the-shelf CAR-T therapy, showing the convenience and feasibility of, shortening the waiting time before treatment and increasing the odds for patients to acquire these therapies. Furthermore, the off-switch in the lead CAR mentioned in this study provides the possibility to modulate CAR-T cell activity and thus restores the functions of the hematopoietic system after the elimination of AML cells (49). Another limitation is that the intensive induction/salvage regimens, both for initial treatment and for rescuing purposes in AML, can significantly reduce the activity and the number of autologous T cells collected during leukapheresis. Consequently, producing CAR-T cells directly from AML patients would lead to the disappointing availability of CAR-T cells. Employing engineered CIK cell, genetically modified, as an allogeneic resource within the dual CAR strategy is promising for avoiding the decrease of autologous T cells activity (34).

Despite the many limitations in CAR-T therapy for AML, researchers have demonstrated numerous strategies to deal with them (Figure 2). These existing strategies provide valuable insights and inspiration for the subsequent research. For example, developing more effective CAR structure may be significant potential for advancement. Combing other therapies, such as rapamycin for pre-treatment, is also rewarding for overcoming these challenges.
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Figure 2 | The therapeutic limitations and potential effective strategies of CAR-T therapy. (I) Relapse, resistance and adverse effects are significant challenges of CAR-T therapy currently. (II) Some strategies for overcoming the limitations of CAR-T therapy.

Translating these strategies into subsequent trials still faces numerous challenges. These challenges include the limitations of mouse models in accurately replicating the immunosuppressive and metabolic stress conditions of the human tumor microenvironment, the potential for relapse following treatment observed in clinical trials, the necessity for hematopoietic stem cell transplantation as a salvage therapy, the rapid disease progression characteristic of AML patients, and the intricate manufacturing process required for personalized CAR-T cell production. Collectively, these factors impose stringent requirements on the design and execution of subsequent clinical trials (116).






Conclusions

Compared to recent systematic evaluations or meta-analyses (e.g., Shahzad et al., 2023) (14), we discuss in greater depth the many barriers and limitations faced by CAR-T cell therapies for the treatment of AML as well as strategies for avoiding adverse effects and improving the efficacy of CAR-T therapies. In this review, we outlined the progress achieved in the multiple categories of immunotherapeutic approaches for the management of AML, discussed the particular mechanisms of CAR-T therapy, and further summarized the recent advances of CAR-T immunotherapy in AML, as well as the current limitations, hopefully providing some novel insights for the future research direction.

Despite more and more treatment options in recent years, AML still poses a serious threat to human health with approximately 50% of patients ultimately dying from the disease progression and relapse. Immunological treatments, particularly CAR-T therapy, have shown magnificent efficacy in eliciting responses among patients with AML, indicating the likelihood of CAR-T to improve AML patient’s prognosis in future clinical practice. In the last several years, various CARs have been engineered and further evaluated rigorously in the clinical trials of AML patients to clarify their safety and efficacy. In addition, significant advancements have been achieved in overcoming the resistance of R/R AML and avoiding CAR-T cell-associated adverse toxicities. Although the CAR-T therapy for AML remains immature compared with other hematological malignancies such as ALL, we believe that CAR-T therapy holds great potential benefits for AML patients in the future.

At present, CAR-T cells still display numerous limitations to be overcome in order to improve the prognosis of AML patients. The foremost challenge among these issues is the safety of CAR-T therapy, which needs further input into the better design of CAR and avoiding the cross-interaction of both AML cells and health tissues, thus emphasizing the importance of optimization of CAR structures or combination of CAR with other therapies. Resistance and relapse of AML are also a sticky challenge, therefore clarifying the genetic and phenotypic heterogeneity of AML cells and utilizing gene editing technology to modify the CAR-T cells might be highly appreciated. The combination of multiple strategies may be even the futural dominant approach. All in all, in spite of the limitations, CAR-T therapy enriches the toolbox of AML treatment currently and is worthy of much great research in the future.
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Tumor-infiltrating lymphocytes (TILs) are a diverse population of immune cells that play a central role in tumor immunity and have emerged as critical mediators in cancer immunotherapy. This review explores the phenotypic and functional diversity of TILs—including CD8+ cytotoxic T cells, CD4+ helper T cells, regulatory T cells, B cells, and natural killer (NK) cells—and their dynamic interactions within the tumor microenvironment (TME). While TILs can drive tumor regression, their activity is often hindered by immune checkpoint signaling, metabolic exhaustion, and stromal exclusion. We highlight TIL recruitment, activation, and polarization mechanisms, focusing on chemokine gradients, endothelial adhesion molecules, and dendritic cell-mediated priming. Special emphasis is placed on preclinical models that evaluate TIL function, including 3D tumor spheroids, organoid co-cultures, syngeneic mouse models, and humanized systems. These provide valuable platforms for optimizing TIL-based therapies. Furthermore, we examine the prognostic and predictive value of TILs across cancer types, their role in adoptive cell therapy, and the challenges of translating preclinical success into clinical efficacy. Emerging technologies such as single-cell sequencing, neoantigen prediction, and biomaterial platforms are transforming our understanding of TIL biology and enhancing their therapeutic potential. Innovative strategies—ranging from genetic engineering and combination therapies to targeted modulation of the TME—are being developed to overcome resistance mechanisms and improve TIL persistence, infiltration, and cytotoxicity. This review integrates current advances in TIL research and therapy, offering a comprehensive foundation for future clinical translation. TILs hold significant promise as both biomarkers and therapeutic agents, and with continued innovation, they are poised to become a cornerstone of personalized cancer immunotherapy.
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1 Introduction

Tumor-infiltrating lymphocytes (TILs) represent a crucial component of the tumor microenvironment (TME), playing a pivotal role in tumor immunity and influencing cancer progression (1). TILs are a diverse group of immune cells that infiltrate tumor tissues, and their role can be both proinflammatory and immunosuppressive, depending on the context and specific types of TILs present. Ideally, these immune cells penetrate tumors and dynamically modulate anti-tumor responses through direct cytotoxic activity, antigen presentation, and cytokine secretion. In this way, TILs play a fundamental role in enhancing anti-tumor immunity, and this beneficial effect is the main focus of this review. Indeed, TILs have gained considerable attention in cancer immunotherapy due to their potential to mediate tumor regression, making them a central focus in novel oncological treatments based on specific cell therapies (2). Their presence, functional activity, and spatial organization correlate with patient prognosis and therapeutic outcomes, particularly in immune checkpoint blockade (ICB) therapies (3).

TIL recruitment to tumors is primarily driven by chemokine signaling, where they interact with cancer cells and stromal components in a dynamic and often immunosuppressive environment (4). Despite their presence within tumors, many TILs exhibit functional exhaustion, which impairs their cytotoxic potential. This exhaustion is frequently driven by immune checkpoint molecule upregulation, metabolic competition, and the presence of inhibitory cytokines within the TME (5). The variability in TIL infiltration across different cancer types and individual patients has made them a critical subject of investigation in oncology research (6).

Recent advancements in TIL-based therapies have explored their adoptive transfer as a promising therapeutic strategy, particularly in melanoma, triple-negative breast cancer (TNBC), and colorectal cancer (7). Genetic and transcriptomic profiling has been instrumental in identifying TIL subpopulations that exhibit enhanced cytotoxic activity and persistence within the TME (8). These findings underscore the potential of TILs as both prognostic biomarkers and therapeutic agents in cancer immunotherapy.

While TIL-based therapies hold promise, effectively testing and evaluating TIL function in controlled environments remains a significant challenge. Preclinical in vitro and in vivo models have been developed to study TIL interactions with tumors and assess their therapeutic potential. Well-developed in vitro models such as 3D tumor spheroids and organoid cultures allow for examining TIL infiltration, persistence, and cytotoxicity in a controlled setting (9). These models enable researchers to manipulate immune and tumor interactions, facilitating the screening of novel immunotherapeutic agents. However, they often lack the complexity of an intact immune system and may not fully recapitulate the suppressive TME encountered in vivo.

In vivo preclinical models, including syngeneic mouse models, patient-derived xenografts (PDX), and humanized mouse models, provide a more comprehensive understanding of TIL behavior within a tumor-bearing organism (10). Syngeneic models involve implanting murine tumors into immunocompetent mice, preserving the native immune system and enabling TIL expansion and response to therapy (11). PDX models, in which patient-derived tumor cells are engrafted into immunocompromised mice, allow for studying human-specific TILs but lack a fully functional human immune system (12). Humanized mouse models have been developed to overcome this limitation, where human immune cells, including TILs, are introduced into immunodeficient mice to mimic human immune-tumor interactions (13). These models provide a critical platform for evaluating TIL-based therapies in a physiologically relevant setting, informing the development of clinical applications.

Despite these advances, there are inherent challenges in translating TIL research from preclinical models to clinical applications. Tumors exhibit significant heterogeneity in TIL infiltration, functional exhaustion, and immune evasion strategies, which can vary between in vitro and in vivo systems. Additionally, the immune system’s interactions with the TME remain highly complex, requiring the integration of multiple experimental models to accurately assess TIL function and therapeutic efficacy (14).

This review will comprehensively discuss the biological mechanisms driving TIL recruitment and activation within the TME, elucidating the key signaling pathways and cellular interactions that shape their function. Additionally, it will explore the prognostic and predictive value of TILs in cancer, highlighting their potential as biomarkers for patient stratification and response prediction in immunotherapy. The review will also address the major challenges and limitations associated with TIL-based therapies, including functional exhaustion, immune evasion mechanisms, and patient-specific variability. Finally, an in-depth analysis of preclinical models used for studying TIL-based immunotherapy will be presented, focusing on in vitro systems, animal models, and translational strategies to optimize TIL efficacy for clinical applications. This review aims to provide a foundation for future advancements in harnessing TILs for improved therapeutic outcomes by integrating insights from fundamental immunology and applied cancer research.




2 The cellular landscape of tumor-infiltrating lymphocytes: phenotypes, functions, and roles in anti-tumor immunity

The crucial role of the immune system in cancer surveillance and control has been recognized for over a century (15). Over the decades, extensive research has been devoted to understanding how immune cells detect, respond to, and eliminate malignant cells, leading to the development of immunotherapies aimed at restoring or enhancing anti-tumor immunity. Among the various immune cell populations, tumor-infiltrating lymphocytes have emerged as central orchestrators of the anti-cancer immune response. TILs are a heterogeneous group of lymphocytes—predominantly T cells—that infiltrate tumor tissues and exert both pro- and anti-tumor effects, depending on their phenotype, functional status, and interactions within the tumor microenvironment. Their recruitment is largely driven by chemokine gradients and inflammatory signals that guide their migration from peripheral blood into tumor sites.

The therapeutic efficacy and prognostic value of TILs are strongly influenced by their abundance, activation status, and spatial distribution within the tumor. These characteristics determine their ability to mount effective anti-tumor responses or contribute to immune evasion (16). Key subsets of TILs include CD8+ cytotoxic T lymphocytes (CTLs), CD4+ helper T cells, regulatory T cells (Tregs), B cells, and natural killer (NK) cells—each playing distinct roles in shaping tumor immunity.

Recent advances have also revealed that not only the quantity but the quality and metabolic fitness of TILs are critical for their anti-tumor functions (17). Single-cell RNA sequencing studies have uncovered profound heterogeneity within TIL populations, identifying specific transcriptional programs associated with persistence, stemness, and cytotoxic capacity (18). Moreover, the spatial localization of TILs relative to tumor cells, blood vessels, and stromal barriers has emerged as a major determinant of therapeutic responsiveness, with proximity to tumor islets correlating with better outcomes. New findings suggest that particular TIL subsets, such as stem-like progenitor exhausted T cells residing in tumor-draining lymph nodes or tertiary lymphoid structures, may be key drivers of durable responses to immunotherapy (19). Furthermore, modulation of the tumor microenvironment to enhance TIL metabolic fitness—such as promoting mitochondrial biogenesis and oxidative phosphorylation—represents a novel and promising strategy to boost TIL efficacy in solid tumors (20).



2.1 CD8+ cytotoxic T cells

CD8+ T cells are among the most prevalent effector cells within tumors, where they differentiate into CTLs upon antigen presentation by dendritic cells or other antigen-presenting cells (APCs). Once activated, CTLs release cytolytic granules containing perforin and granzymes, initiating apoptosis in tumor cells marked for destruction (21, 22). Perforin forms pores in the tumor cell membrane, allowing granzymes to enter and activate caspase-dependent and independent cell death pathways. Additionally, proteases such as cathepsins may amplify these cytotoxic effects (21).

Beyond direct killing, CTLs secrete cytokines like interferon-γ (IFNγ) and tumor necrosis factor-α (TNFα), which further stimulate anti-tumor immunity. Some CTLs transition into memory T cells, including tissue-resident memory T cells characterized by CD103 and CD39 expression, which have been associated with prolonged survival in various cancers (23–25). However, sustained antigen exposure can lead to T cell exhaustion, reducing their cytotoxic function and proliferative capacity. Nonetheless, a high density of CTLs, particularly within tertiary lymphoid structures (TLS), correlates with favorable prognosis in many tumor types (26), while the presence of memory subsets has been linked to reduced metastasis and improved disease-free survival (27, 28).




2.2 CD4+ helper T cells

CD4+ T cells constitute a major TIL subset and are critical for coordinating the adaptive immune response. Through the secretion of IFN-γ, TNF-α, and IL-2, these cells enhance CD8+ T cell cytotoxicity, promote Th1 polarization, and facilitate tumor antigen presentation. Upon activation by antigen presentation, naïve CD4+ T cells differentiate into effector subsets depending on cytokine cues and environmental context (29).

Among these, Th1 cells are essential in anti-tumor responses, driven by IL-12 and mediated via STAT signaling pathways, culminating in the expression of T-bet and the production of pro-inflammatory cytokines (29). These cytokines recruit and activate additional immune effectors, reinforcing local immunity. Tissue-resident memory CD4+ T cells have also shown promise as targets for immunotherapeutic intervention due to their robust, localized responses to tumor antigens (30).




2.3 Regulatory T cells

Tregs play a dual-edged role in the TME by preserving immune homeostasis while suppressing anti-tumor immunity. Identified by the expression of FOXP3, CD4+, CD25+, CTLA-4, and CD127low/–, Tregs limit immune activation through multiple mechanisms (31). They inhibit effector T cell function via PD-1 and CTLA-4, and secrete immunosuppressive cytokines like TGF-β, IL-10, and IL-35. Their high CD25 expression deprives surrounding effector T cells of IL-2, further limiting cytotoxic responses. Based on FOXP3 expression levels and other surface markers, the heterogeneity of Treg subsets suggests a nuanced regulatory function that could be therapeutically modulated to enhance anti-tumor responses (32).




2.4 B cells

B Cells infiltrated in the tumor were identified as good predictors of therapeutical response (33). These B cells can differentiate into plasma cells (effector B cells) to produce antibodies that target invading agents for destruction by macrophages or may become memory B cells. Memory B cells will help the immune system to elicit a faster response when encountering the same agent.

Recently, Ma et al. (34) examined tumor-infiltrating B cells across 21 different types of cancer and identified 15 subsets of tumor-associated B cells differentiated into antibody-secreting cells by either an extrafollicular pathway or by a germinal center pathway. Tumor types grouped into the extrafollicular pathway presented poor clinical outcomes and resistance to immunotherapy associated with glutamine-derived metabolites through epigenetic-metabolic cross-talk, which stimulated a T cell-driven immunosuppressive program. Ma et al. demonstrate the importance of the balance of intratumor B cell subsets and suggest that B cell–targeting immunotherapy could exploit humoral immunity.




2.5 Natural killer cells

NK cells, defined as CD56+CD3- lymphocytes, are key players in innate anti-tumor immunity. They can eliminate tumor cells without prior sensitization by detecting stress-induced ligands and downregulated MHC class I molecules (35). NK cells mediate cytotoxicity through granzyme and perforin release and produce cytokines that modulate the immune landscape (36).

Subsets of NK cells—CD56bright CD16- and CD56dim CD16+—exhibit distinct functional properties. While the latter is highly cytotoxic, the former can achieve potent cytolytic activity after IL-15 priming (37). NK cells also play a role in T cell recruitment and remodeling of the TME through cytokine release and death ligands like TRAIL and FASL (36). However, their function is often suppressed by Tregs, M2 macrophages, and inhibitory cytokines (e.g., IL-10, TGF-β), as well as checkpoint molecules like PD-1 and TIM-3, which contribute to early functional exhaustion (36, 38).





3 Regulation of TIL access and function within the tumor microenvironment

The infiltration, positioning, and functional activation of tumor-infiltrating lymphocytes within solid tumors are hallmarks of effective anti-tumor immunity. However, this process is highly complex and tightly regulated. The successful recruitment, entry, and activation of TILs are orchestrated by a multilayered network of molecular signals, structural components, and metabolic conditions that collectively determine whether immune cells can access tumor sites, survive within the hostile tumor microenvironment, and execute cytotoxic functions.

CD8+ cytotoxic T lymphocytes are the principal effectors in solid and hematologic malignancies, with their tumoricidal activity mediated by cytokines such as IFN-γ and TNF-α. However, persistent antigen exposure in the TME frequently induces T cell exhaustion—a dysfunctional state marked by upregulation of inhibitory receptors like PD-1 and CTLA-4 and diminished effector cytokine production. Immune checkpoint inhibitors targeting these pathways have shown significant success in reinvigorating TIL responses in solid tumors, while their application in hematologic malignancies remains less robust (26, 31, 39). Notably, the presence of tertiary lymphoid structures (TLS) within solid tumors correlates with enhanced TIL activation and improved clinical outcomes, as these ectopic lymphoid aggregates facilitate local antigen presentation and T cell priming (26). In contrast, hematological cancers are typically characterized by systemic immune activity and rarely form TLS, resulting in distinct immunological landscapes (Table 1).

Table 1 | Comparison of TIL characteristics and behaviors in solid tumors versus hematological malignancies.
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This section explores the diverse biological systems that regulate TIL access and function—from initial chemotactic recruitment to physical entry across tumor vasculature and stromal barriers, and finally to their metabolic and immunologic engagement within the tumor core. Chemokines and cytokines establish navigational gradients for lymphocyte trafficking, influenced by inflammatory stimuli, oncogenic signaling, microbiota-derived factors, and tumor mutational burden. However, tumor-derived mechanisms such as decoy receptor expression, chemokine sequestration, or spatial mislocalization within stromal compartments can impede these gradients and undermine immune infiltration (45).

Structural components of the TME also impose significant physical and biochemical constraints. The tumor vasculature is frequently aberrant, leaky, and lacks the necessary adhesion molecules for efficient lymphocyte transmigration (46). Surrounding stromal elements—particularly cancer-associated fibroblasts (CAFs) and the extracellular matrix—further contribute to an immune-excluded phenotype by forming dense fibrotic barriers and secreting suppressive signals that limit immune cell penetration.

Even when TILs successfully infiltrate tumor tissues, their effector potential is threatened by a hostile microenvironment marked by nutrient deprivation, hypoxia, chronic antigen stimulation, and immunosuppressive cytokines. These factors promote T cell dysfunction and exhaustion, limiting sustained anti-tumor activity. Therefore, the transition from successful recruitment to effective cytotoxicity depends on a microenvironment that supports T cell metabolism, prevents exhaustion, and promotes immunological synapse formation (47).

This section provides an integrated analysis of the regulatory mechanisms that control TIL localization and function—spanning chemotaxis, stromal dynamics, vascular signaling, and immune activation. A deeper understanding of these processes is vital for the rational design of therapeutic strategies that not only guide TILs to tumors but also enable them to persist and function effectively within the TME.



3.1 Chemokine and cytokine networks governing TIL recruitment

The successful infiltration of tumor-infiltrating lymphocytes into tumors is a complex, highly regulated process controlled by networks of chemokines and cytokines. These soluble signaling molecules orchestrate immune cell trafficking by guiding T cells toward inflamed or malignant tissues via receptor-ligand interactions. Their expression, regulation, and spatial organization within the tumor microenvironment play a critical role in determining the quality and quantity of immune cell infiltration, directly impacting clinical outcomes and response to immunotherapy.

One of the most important chemokine-receptor pairs involved in TIL recruitment is the CXCL9/CXCL10/CXCL11–CXCR3 axis (48). These chemokines are potent chemo attractants for activated CD8+ and CD4+ Th1-type T cells that express the CXCR3 receptor. Studies have consistently shown that high levels of CXCL9 and CXCL10 in the TME are associated with greater CD8+ TIL density and improved survival in ovarian (49), breast (50), and colorectal cancers (51). For instance, in a study of advanced serous ovarian cancer, high expression of CXCL9 and CXCL10 predicted significantly better overall survival, and this was mechanistically linked to increased recruitment of CD8+ T cells via CXCR3 signaling (49).

Another key axis is CCL5–CCR5, which governs the trafficking of effector memory T cells (52). In renal cell carcinoma (RCC), tumor-infiltrating CD4+ T cells were found to predominantly express both CCR5 and CXCR3, supporting a Th1-polarized immune infiltrate. However, in metastatic RCC, there was a notable decrease in CCR5+ TILs and a rise in CCR4+ cells, suggesting a shift toward an immunosuppressive milieu during tumor progression (53).

Chemokine expression in tumors is not static—it is profoundly shaped by tumor-intrinsic factors such as oncogenic signaling and inflammatory cytokines. The IFN-γ signaling pathway, activated by T cells and NK cells, induces CXCL9 and CXCL10 expression in tumor and stromal cells (54). This creates a positive feedback loop that reinforces immune cell infiltration. Conversely, tumor cells can suppress this chemokine expression through activation of pathways like β-catenin, PI3K-AKT, or through overexpression of prostaglandin E2 (PGE2), which downregulates NF-κB-driven transcription of chemokines. COX inhibitors such as indomethacin were shown to restore CXCL9/10 expression in ovarian cancer models, while celecoxib suppressed it, indicating that even among COX inhibitors, the choice of agent can drastically alter immune infiltration outcomes (49).

The tumor’s mutational and microbial landscape also influences chemokine production. High tumor mutational burden (TMB) often correlates with elevated neoantigen load and IFN-γ production, leading to upregulation of CXCL9/10 and increased TIL recruitment. Moreover, in colorectal cancer, gut microbiota was shown to modulate chemokine expression directly. Bacterial components activated chemokine production (e.g., CXCL9, CXCL10, CCL5) by tumor cells, thereby enhancing T cell infiltration. Mice treated with antibiotics showed reduced chemokine levels and decreased TIL trafficking, highlighting a potential avenue for microbiota-based immunomodulation (55).

Finally, distinct subsets of chemokines also regulate the recruitment of other beneficial immune cells. CXCL13, for instance, is secreted by a specific transcriptionally distinct subset of CD103+CD8+ T cells under TGF-β signaling. This chemokine mediates B cell recruitment and tertiary lymphoid structure (TLS) formation in tumors, which is associated with enhanced anti-tumor immunity and checkpoint blockade responsiveness (56).




3.2 Endothelial adhesion molecules

Tumor-associated vasculature expresses adhesion molecules, such as ICAM-1 and VCAM-1, to facilitate lymphocyte transmigration. These molecules, belonging to the immunoglobulin superfamily of cell adhesion molecules (CAM), mediate the firm adherence of leukocytes to endothelial cells, a crucial step in leukocyte recruitment to inflammatory areas.

ICAM-1, an integrin ligand, is expressed on several malignant cells and may thus contribute to both cancer growth and cancer immunosurveillance by adaptive and non-adaptive immune arms (57). ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-α-activated vascular endothelium under flow (58).

While ICAM-1’s role in T cell crawling on initial lymphatics has been addressed, its specific role in tumor-infiltrating lymphocytes’ exit from tumors remains relatively unexplored (59). Blocking ICAM-1 in mice with intratumoral injections of activated T-lymphocytes led to significant increases in CD8+ T cell transit to the lymph nodes, suggesting that ICAM-1 blockage can decrease T-cell aggregates or clusters, with a parallel increment in oriented cell migration and transmigration across monolayers of lymphatic endothelial cells (59).

VCAM-1 mediates distinct tumor-stromal interactions that are unique to lung and bone microenvironments and facilitate metastasis to these sites when aberrantly expressed in breast cancer cells (60).

Monoclonal antibodies blocking ICAM-1 and VCAM-1 can efficiently inhibit DC adhesion and transmigration of dermal LEC monolayers in vitro, highlighting lymphatic transmigration as a potential new target for anti-inflammatory therapy. Transient local blockade of LFA-1/ICAM-1 functions offers an opportunity to attain systemic biodistribution of tumor-reactive T-lymphocytes (61). Elevated ICAM-1 expression in breast cancer cells results in a favorable outcome and prolonged survival of breast cancer patients (57). ICAM-1 expressed by metastatic breast cancer cells that expand inside the lung vasculature is involved in innate rather than in adaptive cancer cell killing, functioning as a suppressor of intravascular breast cancer metastasis to lungs (57). Ex vivo, neutrophils derived from tumor-bearing mice also killed cultured E0771 cells via ICAM-1-dependent interactions (57).




3.3 Dendritic cells

Dendritic cells (DCs) within the tumor microenvironment (TME) play a crucial role in antigen presentation, bridging innate and adaptive immune responses and priming naïve T cells for effector functions (62, 63). DCs are specialized antigen-presenting cells (APCs) that capture, process, and present tumor-associated antigens to T cells, initiating an adaptive immune response against the tumor (62, 63). DCs patrol the local environment, utilizing membrane and cytosolic receptors to recognize danger signals, including those from tumor cells (62, 63). Upon antigen uptake, DCs present these antigens to naïve T lymphocytes, initiating antigen-specific immune responses and regulating tolerance and immunity (62). DCs can present antigens via MHC class I and MHC class II molecules, activating CD8+ T cells and CD4+ T cells, respectively (64).

Different types of DCs exist within the TME, including conventional DCs (cDC1, cDC2, cDC3), monocyte-derived DCs (moDC), and plasmacytoid DCs (pDC), each with distinct roles (65). cDC1s are particularly important for cross-presentation, a process where they present antigens on MHC class I molecules to CD8+ T cells, leading to their activation and cytotoxic activity (63). A high percentage of cDC1s in the TME is generally associated with a better prognosis and favorable responses to immune checkpoint blockade (ICB) therapies (63). cDC2s, while less proficient in cross-presentation than cDC1s, effectively present MHC class II-related antigens to CD4+ T cells, promoting T helper cell responses (62, 63). The infiltration of CD4+ T cells in the TME has been correlated with the ratio of cDC2s to regulatory T cells (Tregs); a higher frequency of cDC2s correlates with greater CD4+ T-cell tumor infiltration (62).

The immunosuppressive TME impairs dendritic cell (DC) functions, inhibiting maturation, antigen presentation, and T cell activation, leading to immune tolerance and tumor progression (62, 63). Strategies to enhance antigen presentation and T cell priming are crucial for improving therapeutic outcomes (66). Novel approaches include DC vaccines pulsing DCs with tumor-associated antigens (66), reprogramming tumor cells into immunogenic cDC-like cells (67), and combining antigen presentation with other immunotherapies (66). The TME negatively regulates DC maturation, migration, and effector functions, with immunosuppressive populations like Tregs, MDSCs, and TAMs playing a significant role (68).




3.4 Functional polarization of TILs

Within the tumor microenvironment (TME), tumor-infiltrating lymphocytes (TILs) exhibit diverse functional polarizations, including effector T cells, exhausted T cells, and regulatory T cells (Tregs), each playing a significant, yet often opposing, role in anti-tumor immunity. Effector T cells, primarily CD8+ cytotoxic T lymphocytes (CTLs) and CD4+ helper T cells, are critical for directly targeting and eliminating tumor cells through the release of cytokines such as IFN-γ, TNF-α, and IL-2, and the use of cytotoxic granules containing perforin and granzymes (69). However, chronic antigen stimulation in the TME can lead to T cell exhaustion, characterized by the progressive loss of effector functions, reduced cytokine production, and diminished cytotoxicity. Exhausted T cells upregulate multiple inhibitory receptors (IRs), including PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT, which bind to ligands on tumor cells and antigen-presenting cells (APCs), impeding T cell survival, expansion, and function (70). Furthermore, exhausted T cells exhibit diminished production of effector cytokines, such as IL-2, IFN-γ, and TNF-α, and have impaired cytotoxic activity (70).

The balance between effector T cell activity and suppression by Tregs is crucial in determining the overall immune response against the tumor. Tregs, a significant subset of TILs, actively suppress anti-tumor immunity through various mechanisms (71). These include the secretion of inhibitory cytokines such as IL-10 and TGF-β, which suppress the activity of effector T cells, NK cells, and DCs. TGF-β also induces the development of cancer-associated fibroblasts (CAFs), increasing extracellular matrix (ECM) production and deposition, thereby inhibiting effector T cell migration (71). Tregs express inhibitory receptors such as CTLA-4, PD-1, TIM-3, TIGIT, and LAG-3, with CTLA-4 inhibiting T cell activation by outcompeting CD28 for binding to B7 ligands on APCs. Tregs also disrupt T cell metabolism by expressing high levels of CD25 (IL-2 receptor), depriving surrounding effector T cells of IL-2, and by expressing ectonucleotidases CD39 and CD73, which convert ATP and ADP into adenosine, suppressing effector T cells (71). Given the opposing roles of effector T cells, exhausted T cells, and Tregs within the TME, therapeutic strategies aim to enhance effector T cell function while reversing exhaustion and suppressing Treg activity to improve cancer immunotherapy outcomes (70). Targeting molecules involved in Treg function, such as CTLA-4, can enhance anti-tumor immune responses, and combining checkpoint inhibitors with other therapies may further enhance anti-tumor immunity (70).




3.5 Stromal regulation of TIL entry

Effective infiltration of tumor-infiltrating lymphocytes into solid tumors is not solely determined by immune activation but is profoundly influenced by the tumor’s stromal architecture. The expression of endothelial adhesion molecules and the physical density and composition of the extracellular matrix (ECM)—primarily shaped by cancer-associated fibroblasts (CAFs)—constitute formidable barriers to TIL entry and distribution within the tumor parenchyma.

Adhesion molecules such as ICAM-1 (Intercellular Adhesion Molecule 1), VCAM-1 (Vascular Cell Adhesion Molecule 1), and E- and P-selectins are critical for leukocyte rolling, adhesion, and trans endothelial migration (72, 73). Under physiological conditions, these molecules are upregulated in response to inflammatory cytokines like TNF-α and IFN-γ (74).

Once T cells traverse the endothelium, they encounter the tumor stroma, a dense and fibrous environment composed of ECM components such as collagen, fibronectin, and hyaluronic acid. ECM remodeling, often driven by cancer-associated fibroblasts (CAFs), plays a dual role in both supporting tumor progression and regulating immune cell access (75). CAFs produce matrix metalloproteinases (MMPs) that modify the ECM and secrete chemokines that may either support or hinder TIL movement, depending on the subtype and inflammatory milieu. Moreover, they physically compartmentalize the tumor, creating immune exclusion zones where TILs accumulate at the invasive margins but fail to infiltrate the tumor core (76). This phenomenon is particularly characteristic of the immune-excluded phenotype, often observed in pancreatic and colorectal cancers.

An illustrative example comes from a study in breast cancer models, where tenascin-C, a matrix glycoprotein secreted by CAFs, was shown to trap CD8+ T cells in the stroma via its interaction with CXCL12. This stromal retention depended on TLR4 signaling and could be reversed by blocking the CXCL12-CXCR4 axis, restoring T cell migration into the tumor core and enhancing anti-tumor immunity (77). Such findings underscore the potential of stromal-targeted therapies to complement immune checkpoint inhibitors by facilitating T cell access.




3.6 Activation and effector function of TILs in the tumor microenvironment

The activation of tumor-infiltrating lymphocytes begins not within the tumor itself but in the tumor-draining lymph nodes (TDLNs), where naive T cells first encounter antigen-presenting cells (APCs) that have captured tumor antigens. This initiation process, known as T cell priming, is highly dependent on dendritic cell subsets, especially conventional type 1 dendritic cells (cDC1s), which specialize in the cross-presentation of tumor-derived antigens to CD8+ T cells (78). Recent studies have elucidated the central and multifaceted role that cDC1s play in orchestrating both CD8+ (79) and CD4+ (80) T cell responses, thereby determining the efficiency and durability of anti-tumor immunity. This dual capability enables cDC1s to serve as an independent platform for initiating T cell immunity while simultaneously coordinating the crucial crosstalk between helper and cytotoxic lymphocytes. CD4+ T cells, in turn, license cDC1s through CD40-CD40L interactions, enhancing their ability to activate CD8+ T cells, thus forming a tightly regulated feedback loop that amplifies the anti-tumor response (81).

The success of this priming process relies heavily on antigen availability and neoantigen quality. Tumors with high mutational burden tend to produce more neoantigens—novel peptides do not present in the normal host proteome—which are more likely to be recognized as foreign by the immune system. These high-quality neoantigens improve T cell priming efficacy and are associated with better responses to immunotherapy. However, tumor cells may evade detection by downregulating antigen presentation machinery or selecting for clones with lower immunogenicity, leading to immune escape. Moreover, as shown by Nayak et al. (82), the uptake of heat shock protein–chaperoned peptides by CD91+ cDC1s enables effective presentation of low-abundance tumor antigens, emphasizing the importance of antigen-chaperoning mechanisms during early tumor development (82).

However, the balance between immunogenic priming and tumor-induced tolerance is delicate. In certain anatomical locations, such as the pancreas or central nervous system, tumors may escape immune surveillance despite expressing recognizable neoantigens. This was highlighted by Diamond et al. (83), who found that pancreatic tumors with high antigenicity still failed to initiate effective CD8+ T cell responses due to poor cDC1 activation. This “site-dependent immune escape” could be reversed with CD40 agonists, restoring T cell priming and expanding the repertoire of tumor-reactive clones through epitope spreading (83).

Once primed in tumor-draining lymph nodes, tumor-infiltrating lymphocytes must sustain their activation, expand locally, and carry out cytotoxic functions within the immunosuppressive and metabolically hostile tumor microenvironment. It begins with the engagement of their TCRs with tumor-derived peptides presented on major histocompatibility complex (MHC) molecules, either by tumor cells directly or by intratumoral antigen-presenting cells (APCs). This recognition event triggers immunological synapse formation and initiates a cascade of downstream signaling involving phospholipase Cγ1 (PLCγ1), Ca²+ flux, calcineurin-NFAT activation, and ERK/MAPK pathways (84). These signals ultimately lead to transcriptional activation of genes responsible for cytokine production (e.g., IFN-γ, TNF-α), cytotoxic granule release (e.g., perforin, granzyme B), and clonal expansion.

The summary of immune responses in tumor regression and progression can be seen on Figure 1.
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Figure 1 | The summary of immune responses in tumor regression and progression. Tumor regression (left side) is driven by CD8, NK and dendritic cells, which release molecules to target the tumor cells. Tumor progression (right) is driven by an immunosuppressive environment caused by TREGS, MDSCS and M2, allowing tumor growth.





4 Tumor-infiltrating lymphocytes as prognostic and predictive biomarkers

TILs have gained prominence as prognostic and predictive biomarkers across various cancers. Their presence, density, and composition in tumor tissues provide valuable insights into disease progression and therapeutic response. Standardized detection and quantification methods are crucial for validating TILs as reliable biomarkers across diverse populations. The importance of automated scoring methods in ensuring consistency and reproducibility in TIL assessments has been emphasized (85).

In breast cancer, TILs have demonstrated potential as significant biomarkers. However, heterogeneity in experimental designs and assessment methods has impeded a complete understanding of their prognostic value. The need for standardization in TIL evaluation is underscored by ongoing discussions regarding their biological and clinical significance (85). TILs have been extensively studied in HER2-positive breast cancer, with their presence correlating with various prognostic implications. A recent review consolidates findings on the prognostic significance of TILs in this subtype, suggesting their role in guiding therapeutic decisions. TIL assessment could be integrated into clinical practice to aid personalized treatment strategies and improve patient outcomes (86).

Efforts to establish reliable quantification methods for TILs led to introducing a standardized histological approach in 2014. This technique evaluates TIL percentages on hematoxylin and eosin (H&E)-stained slides, allowing for reproducibility across studies and reinforcing TILs as valid prognostic and predictive markers (87). While TILs are positively correlated with improved prognosis and chemotherapy response in triple-negative breast cancer (TNBC), their role in other breast cancer subtypes remains complex. Some subtypes show paradoxical associations between high TIL presence and poorer clinical outcomes, indicating the influence of tumor biology and immune interactions (88).

Despite TILs’ promising potential, inconsistencies in assessment methods and the need for standardized evaluation protocols hinder their clinical application. Further large-scale, well-controlled studies are essential to refine their role in oncological prognostication and integrate them into routine clinical practice. Standardized quantification techniques and additional immunological factor evaluations could enhance their utility in personalized treatment approaches (85, 89, 90).

Adoptive cell therapy (ACT) using TILs has demonstrated durable clinical responses in metastatic melanoma. This approach involves isolating, expanding, and reinfusing TILs to target cancer cells effectively. However, ACT remains complex, requiring extensive research to optimize patient selection and identify predictive biomarkers (91–94).

Studies have shown that specific lymphocyte subsets influence TIL therapy responses. Certain phenotypic characteristics of infused TILs are linked to clinical outcomes, highlighting the potential for TIL composition to serve as a predictive biomarker (91). Additionally, prior treatments, such as immune checkpoint inhibitors, affect TIL therapy efficacy, emphasizing the need for personalized treatment planning (95).

Peripheral immune biomarkers have also been associated with TIL therapy responses. Research identifying biomarkers in peripheral blood suggests potential predictive tools for assessing treatment success (96). Comprehensive biomarker research is crucial to refining patient selection criteria and improving TIL therapy outcomes in metastatic melanoma.

TILs play a vital role as prognostic and predictive biomarkers in solid tumors. Their density, presence, and immune composition are significant indicators of tumor behavior and patient outcomes (97, 98).



4.1 Prognostic significance of TILs

TILs are associated with better survival in several cancers, including breast cancer, melanoma, and non-small cell lung cancer (NSCLC) (99–102). A high density of CD8+ cytotoxic T lymphocytes within tumors is particularly linked to favorable outcomes, reflecting an active immune response against cancer cells (97, 103). Recent studies further highlight the prognostic role of different TIL subsets in specific cancer types. For instance, higher intratumoral CD4+ and stromal CD8+ counts in breast cancer were independently associated with improved survival, suggesting their potential as prognostic biomarkers (104). Similarly, in triple-negative breast cancer (TNBC), higher levels of TILs were correlated with prolonged overall survival and disease-free survival (105).

TILs are a strong prognostic factor in colorectal cancer, particularly in stage III disease, where a high TIL density was associated with significantly better disease-free survival (106). Similarly, in ovarian cancer, the presence and degree of TIL infiltration were significantly linked to patient survival. They could be a key factor in identifying patients who might benefit from immunotherapy.

Additionally, in NSCLC, a meta-analysis of 60 studies found that patients with higher TIL infiltration had significantly improved overall survival, particularly among CD8+, CD3+, and CD4+ subtypes (102). These findings emphasize the importance of TIL density and phenotype as independent prognostic markers across various malignancies, reinforcing their role in shaping the tumor immune microenvironment and influencing patient outcomes.

Although high TIL density is often linked to better outcomes in some cancers (97, 107), this isn’t always consistent across all cases. TIL prognostic value varies with their phenotype, function, and spatial context (108, 109). Without considering factors like T cell exhaustion or the presence of immunosuppressive cells such as Tregs, simply measuring TIL levels may lead to misleading conclusions (110).




4.2 Predictive value of TILs

TIL presence in tumors is increasingly recognized as a predictor of response to immunotherapies, especially immune checkpoint inhibitors like anti-PD-1/PD-L1 therapies. Tumors with robust CD8+ T cell infiltration are more likely to respond positively to these treatments (111, 112). Dynamic interactions between TILs and tumor cells also influence chemotherapy and targeted therapy responses, impacting tumor progression and patient outcomes (113, 114).

In breast cancer, high TIL levels have been shown to predict response to neoadjuvant chemotherapy, particularly in triple-negative and HER2-positive subtypes. Patients with high TIL densities often experience better pathological complete response (pCR) rates, indicating their role in guiding treatment decisions (86, 87). Additionally, in hormone receptor-positive breast cancer, the predictive value of TILs is less pronounced, suggesting the need for additional biomarkers to refine therapeutic strategies (88).

TIL composition and functionality play a crucial role in predicting response to immune checkpoint inhibitors for melanoma. Studies have demonstrated that tumors enriched with activated CD8+ T cells exhibit better responses to anti-PD-1 and anti-CTLA-4 therapies, supporting their predictive utility (98, 115). Moreover, TIL phenotypic markers, such as PD-1 and LAG-3 expression, have been explored as indicators of exhaustion and therapeutic response (116).

In lung cancer, the predictive value of TILs is increasingly recognized, particularly in NSCLC. High levels of CD8+ T cells and their spatial distribution within the tumor microenvironment are associated with enhanced responses to immunotherapies. PD-L1 expression in conjunction with TIL levels has been used to stratify patients likely to benefit from immune checkpoint inhibitors (100, 102).

Colorectal cancer patients with high TIL densities, especially those with a TH1-polarized immune profile, have demonstrated superior responses to immunotherapies. Microsatellite instability-high (MSI-H) tumors, characterized by abundant TILs, show significant sensitivity to checkpoint blockade therapies, reinforcing the predictive role of TILs in guiding immunotherapy choices (97, 114).

Overall, TILs are valuable predictive biomarkers across multiple cancer types, guiding treatment selection and improving patient outcomes. Further refinement of TIL assessment methodologies and integration with additional immune markers could enhance their clinical utility in precision oncology.





5 Limitations and resistance mechanisms of TIL therapy

TILs, as effectors of the adaptive immune system, can recognize and destroy malignant cells through their antigen-specific cytotoxic responses. These lymphocytes originate from the host’s immune repertoire. They are recruited into the tumor microenvironment, where they can directly kill tumor cells, produce cytokines such as IFN-γ and TNF-α, and promote broader anti-tumor immunity (117). The presence of TILs, particularly CD8+ cytotoxic T cells and certain subsets of CD4+ T helper cells, within the TME is widely recognized as a favorable prognostic marker across multiple solid tumors, including melanoma, non-small cell lung cancer, bladder cancer, breast cancer, and ovarian cancer (118). This strong correlation with improved clinical outcomes provides the rationale for adoptive cell therapy using TILs, which involves isolating and expanding tumor-reactive lymphocytes from patient tumor samples and reinfusing them after lymphodepletion. TIL therapy has demonstrated promising results in melanoma, achieving durable responses in some patients resistant to other forms of immunotherapy (95). However, this therapeutic strategy remains limited by both intrinsic and extrinsic barriers that diminish TIL efficacy in vivo (119).

Intrinsic factors include tumor heterogeneity, loss of neoantigen expression, and TIL exhaustion due to chronic antigen stimulation. Extrinsic barriers are shaped by the immunosuppressive TME, characterized by regulatory cells (e.g., Tregs, MDSCs, M2 macrophages), inhibitory cytokines (TGF-β, IL-10), metabolic stressors, and checkpoint ligand expression (e.g., PD-L1, VISTA). Moreover, poor tumor antigenicity in low-mutational burden cancers impairs initial T cell priming and recruitment. TILs may also fail to infiltrate tumors adequately due to physical barriers in the stroma or a lack of appropriate chemokine signals (120).

Despite ongoing efforts to optimize cell expansion, selection of tumor-reactive clones, and combination with immune checkpoint inhibitors or other modulatory agents, many patients still experience relapse or do not respond to TIL therapy at all. These failures highlight the need to better understand and therapeutically modulate the complex interplay between TILs and the TME (121). Current research is focusing on improving TIL persistence, overcoming exhaustion, and enhancing tumor infiltration through genetic engineering and combination strategies.



5.1 Tumor microenvironment phenotypes and immunological landscapes

The immunological characteristics of the TME are broadly classified into three phenotypes: inflamed, immune-excluded, and immune-desert. These phenotypes predict differential responses to immunotherapy and shape TIL activity (120).

The inflamed TME is typified by abundant infiltration of CD8+ cytotoxic T lymphocytes (CTLs), CD4+ helper T cells, NK cells, and antigen-presenting cells. These immune cells mediate anti-tumor activity, but their function is often impaired by immunosuppressive populations such as regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs) (119). These cells upregulate inhibitory ligands and secrete immunosuppressive cytokines, contributing to T cell exhaustion (122).

CD4+ T cell subsets, particularly Th2 and Th17, contribute to tumor progression by promoting TAM and MDSC recruitment via IL-4, IL-13, and IL-17-driven pathways (123, 124). However, Th17 cells also display dual roles—exerting anti-tumor effects through IFN-γ and chemokine-mediated recruitment of effector immune cells (123). Tregs are particularly abundant in the inflamed TME, suppressing CTL and NK cell activity via surface-bound and secreting TGF-β and IL-10 (125, 126). Their accumulation strongly correlates with poor prognosis and resistance to immune checkpoint inhibitors (ICIs) (127).

In the immune-excluded phenotype, immune cells are retained in the peritumoral stroma, unable to infiltrate tumor nests due to physical barriers like dense collagen matrices and an unfavorable chemokine milieu (128, 129). This exclusion hampers effective T cell-tumor cell interaction and renders tumors less responsive to TIL and ICI therapies.

Immune-Desert TME is characterized by the paucity or complete absence of TILs within both the tumor and surrounding stroma. Tumors in this category often exhibit low mutational burden and neoantigen expression, resulting in impaired T cell priming and immunological ignorance (130, 131). Deficiencies in antigen presentation—through HLA I downregulation or β2-microglobulin mutations—further exacerbate immune evasion (132). The immune-desert TME also harbors immunosuppressive cell types like TAMs, Tregs, and MDSCs inhibiting dendritic cell (DC) maturation and activation (133).




5.2 Key immunosuppressive cell populations

The tumor microenvironment is heavily infiltrated by immunosuppressive cells that collectively inhibit the activation, expansion, and cytotoxic function of tumor-infiltrating lymphocytes. These cells—especially tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs)—orchestrate a suppressive network that interferes with anti-tumor immunity on multiple levels, contributing significantly to resistance against TIL therapy and immune checkpoint inhibitors.

TAMs are among the most abundant immune cells within the TME and exhibit high plasticity, capable of polarizing into two main functional states: classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages play a pro-inflammatory, anti-tumoral role. They are typically induced by IFN-γ, TNF-α, and microbial products like LPS, and express high levels of inducible nitric oxide synthase (iNOS), reactive oxygen species (ROS), and IL-12. M1 macrophages promote tumor destruction by directly killing tumor cells and by enhancing the recruitment and activation of cytotoxic CD8+ T cells and natural killer (NK) cells via secretion of CXCL9, CXCL10, and CXCL11 chemokines (134). They also secrete TNF-α and IL-1β, which amplify T cell responses and facilitate antigen presentation.

In contrast, M2 macrophages are stimulated by IL-4, IL-10, IL-13, and glucocorticoids and exhibit a strongly immunosuppressive, pro-tumoral phenotype. They express arginase-1, CD206, and secrete high levels of IL-10 and TGF-β, both suppressing T cell responses. M2 TAMs promote tumor progression by expressing PD-L1, remodeling the extracellular matrix through matrix metalloproteinases (MMP2, MMP9), enhancing angiogenesis via vascular endothelial growth factor (VEGF), and recruiting immunosuppressive cells such as Tregs. They facilitate epithelial-to-mesenchymal transition (EMT) and metastasis through cytokines such as CCL18 and TGF-β (135). Moreover, the ratio of M1 to M2 macrophages within tumors is increasingly recognized as a prognostic indicator: high M2 infiltration is correlated with poor outcomes in many cancers, including breast, lung, and colorectal cancer (136).

MDSCs are a heterogeneous population of immature myeloid cells that expand during cancer, inflammation, and infection. Tumors are differentiated into two main subtypes: monocytic (M-MDSCs) and polymorphonuclear or granulocytic (PMN-MDSCs). MDSCs are potent suppressors of both innate and adaptive immunity. They inhibit T cell receptor signaling and effector function through multiple mechanisms, including expression of arginase-1 (ARG1), inducible nitric oxide synthase (iNOS), and the production of ROS and reactive nitrogen species (RNS) (137). These mechanisms collectively deplete L-arginine, nitrate tyrosine residues on TCR complexes, and downregulate CD3ζ chain expression, thereby silencing T cell activation.

MDSCs also impair NK cell cytotoxicity by downregulating activating receptors such as NKG2D, and suppress DC maturation, leading to inefficient antigen presentation. Significantly, MDSCs facilitate the expansion and recruitment of Tregs by producing IL-10, TGF-β, and by expressing membrane-bound TGF-β (mTGF-β), further dampening the anti-tumor immune response (138, 139). Tumor-derived inflammatory cytokines, including IL-6, IL-1β, IL-8, GM-CSF, and VEGF, support the expansion, survival, and migration of MDSCs to the tumor site, establishing a chronic state of immune suppression (140). Elevated MDSC levels in the peripheral blood and tumors of cancer patients have been associated with poor prognosis and reduced response to immunotherapy.

Tregs, primarily characterized by CD4+CD25+Foxp3+ expression, are central to maintaining immune homeostasis and self-tolerance under physiological conditions. However, in the tumor setting, their expansion is co-opted to suppress anti-tumor immunity. Tregs accumulate in large numbers within the TME and exert their suppressive effects via multiple pathways. They secrete immunosuppressive cytokines such as TGF-β and IL-10, directly inhibit the proliferation and cytotoxic activity of CD8+ T cells and NK cells and suppress the maturation and antigen-presenting capacity of dendritic cells (125).

Treg stability and function are supported by IL-10 and insulin-like growth factors (IGFs), which also promote the expansion of MDSCs and the immunosuppressive M2 macrophage phenotype. These molecular interactions create a feedback loop within the TME that maintains a state of immune privilege for the tumor (141–143). High Treg infiltration is consistently associated with poor clinical outcomes, especially in cancers such as ovarian, pancreatic, and hepatocellular carcinoma.

Moreover, Tregs express high levels of immune checkpoint receptors like CTLA-4, PD-1, TIM-3, LAG-3, and TIGIT, and they can outcompete effector T cells for IL-2, thereby promoting exhaustion and anergy in TILs (144). Through CTLA-4-mediated downregulation of CD80/CD86 on antigen-presenting cells and the delivery of suppressive signals via contact-dependent mechanisms, Tregs function as key mediators of immune evasion. In addition to immune suppression, Tregs contribute to tumor angiogenesis by secreting VEGF and enhancing M2 macrophage polarization.




5.3 Metabolic challenges in the TME

The tumor microenvironment imposes unique and profound metabolic constraints on tumor-infiltrating lymphocytes, significantly impairing their effector functions and persistence. One of the hallmark features of solid tumors is hypoxia, resulting from the rapid proliferation of cancer cells outpacing their blood supply. Hypoxic conditions disrupt oxidative phosphorylation in TILs and lead to the stabilization of hypoxia-inducible factors (HIFs), particularly HIF-1α, which alters T cell metabolism toward a less efficient glycolytic phenotype. While effector T cells also rely on glycolysis, the simultaneous nutrient depletion within the TME severely restricts this adaptation (145).

Rapidly dividing tumor cells consume glucose and essential amino acids such as glutamine, arginine, and tryptophan at a much higher rate than surrounding immune cells, creating a state of nutrient scarcity. This competition limits the availability of key metabolic substrates required for TIL proliferation, activation, and cytokine production. For instance, glucose deprivation impairs glycolytic flux and reduces IFN-γ production, a key cytokine in anti-tumor immunity (146). Similarly, arginine deprivation, often mediated by the enzyme arginase secreted by myeloid-derived suppressor cells (MDSCs), blocks T cell proliferation and reduces CD3ζ expression, which is essential for TCR signaling (147).

Amino acid catabolism is another major mechanism by which tumors create an immunosuppressive metabolic niche. Indoleamine-2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO), both upregulated in many tumors and dendritic cells within the TME, degrade tryptophan into kynurenine. Elevated levels of kynurenine suppress T cell function by inducing T cell anergy, promoting regulatory T cell differentiation, and activating aryl hydrocarbon receptor (AhR)-mediated immunoregulatory pathways. The depletion of tryptophan itself inhibits mTOR signaling, essential for T cell metabolism and activation (69).

Furthermore, lactic acid, a byproduct of anaerobic glycolysis heavily employed by tumor cells (the Warburg effect), accumulates in the TME and acidifies the extracellular environment. Acidification inhibits T cell motility, survival, and their ability to form immunological synapses with tumor cells. It also suppresses cytotoxic activity and cytokine secretion by effector CD8+ T cells. High lactate levels have been associated with reduced infiltration and function of TILs and are now considered a barrier to successful immunotherapy (148).

Recent studies also highlight how mitochondrial dysfunction in TILs—caused by oxidative stress, mitochondrial DNA damage, and impaired biogenesis—contributes to their functional exhaustion. The energy-depleted, ROS-rich environment within tumors further promotes the expression of inhibitory receptors such as PD-1, TIM-3, and LAG-3, reinforcing the exhausted phenotype of T cells and diminishing their capacity to persist and eliminate tumor cells (149).

To address these challenges, new strategies are being explored, including metabolic reprogramming of TILs ex vivo, use of metabolic adjuvants like metformin to enhance mitochondrial function, and inhibition of enzymes such as IDO or arginase. These approaches aim to restore metabolic fitness and effector capacity of TILs and improve the clinical efficacy of adoptive T cell therapies and checkpoint inhibitors.




5.4 Manufacturing and expansion limitations

Another major limitation in TIL therapy is the ex vivo expansion process. Traditional rapid expansion protocols (REPs) using feeder cells and high-dose IL-2 often lead to TIL exhaustion and reduced in vivo persistence (150). Advanced platforms now aim to address these drawbacks. For instance, CRISPR/Cas9-engineered TIL products like KSQ-001EX knock out negative regulators such as SOCS1, enhancing TIL sensitivity to cytokines and promoting cytotoxic function (151). In preclinical models, these engineered cells retain a diverse TCR repertoire and show potent anti-tumor activity.

Similarly, the GT316 TIL product, generated by dual knockout of GT304 and GT312 via CRISPR/Cas9, exhibited robust tumor control in vivo with reduced dependence on IL-2 (152). These innovations in TIL manufacturing represent critical steps toward improving clinical scalability and durability of responses.

The effectiveness of TIL therapy is fundamentally shaped by the immunosuppressive forces of the TME, epigenetic and metabolic barriers, and limitations in manufacturing and cell persistence. Innovations in gene editing, metabolic reprogramming, and biomarker-guided personalization are paving the way to enhance TIL therapy across a broader range of solid tumors. Future therapeutic success will likely depend on integrating TIL therapy with combination strategies that target multiple axes of resistance, from checkpoint inhibition and cytokine modulation to targeting suppressive stromal and myeloid cell populations.





6 From bench to bedside: experimental models guiding the development of next-generation TIL immunotherapies

The rapid evolution of tumor-infiltrating lymphocyte-based immunotherapies demands sophisticated experimental models that faithfully recapitulate the complex interplay between tumor cells, the immune microenvironment, and therapeutic interventions. As the clinical relevance of TIL therapy expands beyond melanoma into diverse solid tumors, there is a pressing need for robust and translationally relevant platforms to investigate the biological mechanisms governing TIL recruitment, activation, persistence, and therapeutic efficacy.

A fundamental challenge in TIL research lies in bridging the gap between the highly controlled, reductionist nature of in vitro studies and the intricate, system-wide dynamics observed in human tumors. To meet this challenge, researchers have developed a spectrum of model systems—ranging from simple two-dimensional (2D) cultures to advanced three-dimensional (3D) organoid-TIL co-cultures and from immunocompetent murine syngeneic models to humanized mouse systems capable of supporting human immune-tumor interactions. Each platform offers unique advantages and limitations and collectively serves as the foundation for preclinical development, functional validation, and optimization of next-generation TIL therapies.

In vitro and in vivo experimental models form the backbone of TIL-based immunotherapy research, each offering distinct advantages for understanding and optimizing TIL behavior and therapeutic efficacy. In vitro systems—ranging from traditional 2D cytotoxicity assays to more advanced 3D tumor spheroids, patient-derived organoids, and microfluidic or bioprinted devices—enable controlled, high-throughput analysis of TIL-tumor interactions. These models allow researchers to dissect mechanisms of cytotoxicity, immune evasion, chemokine responsiveness, and drug synergy in a tractable setting. They are particularly valuable for testing gene edits, evaluating cytokine dependencies, and profiling functional responses across various tumor types.

In contrast, in vivo models offer a more comprehensive view of TIL dynamics in a physiologically relevant environment. Syngeneic mouse models, which preserve immune-competent settings, remain foundational for assessing murine TIL infiltration, expansion, memory formation, and therapeutic efficacy. Humanized mouse models further enable the study of gene-engineered human TILs and their activity against patient-derived xenografts (PDXs), providing a critical bridge toward clinical application.

This chapter synthesizes the latest developments in both in vitro and in vivo platforms used to investigate TIL function, engineering, and translational potential. Detailing the design, utility, and limitations of these systems highlights how preclinical modeling informs the rational development of next generation TIL therapies and accelerates their progression from bench to bedside in cancer immunotherapy.



6.1 Advanced in vitro platforms for modeling TIL–tumor interactions and optimizing immunotherapy

In vitro models have become essential platforms for studying tumor-infiltrating lymphocyte (TIL)–tumor interactions under controlled and reproducible conditions. 2D co-culture systems remain foundational for rapid, high-throughput TIL-mediated cytotoxicity and activation assessments. However, they lack the spatial and biochemical context of in vivo tumors. To address these limitations, 3D tumor spheroids have gained traction. These models recapitulate important features of tumor architecture, such as proliferation gradients, hypoxic cores, and stromal barriers. Recent studies have shown that 3D spheroids significantly enhance TIL activation, expansion, and cytotoxicity compared to 2D systems, especially when combined with immune checkpoint blockade like PD-1 inhibition (153).

Patient-derived organoid (PDO) systems co-cultured with autologous TILs offer even greater translational relevance. Platforms like those described by Liu et al. allow tracking of real-time infiltration and tumor-specific killing in autologous settings, while also enabling immune-phenotypic analysis and drug response profiling (154).

Researchers, such as the EVIDENT platform, have developed microfluidic systems that incorporate dynamic perfusion, oxygen gradients, and immune cell flow to improve physiological fidelity. This device allows for real-time imaging of autologous TIL-tumor fragment interactions and the assessment of immune checkpoint inhibitor efficacy (155).

Bioprinted models also present new opportunities for recapitulating spatial features of the tumor microenvironment (TME) (156). Flores-Torres et al. employed a multicomponent hydrogel co-culture tumor-immune model that simulates TIL migration and functional activation (157). Other studies using laser-based bioprinting offer precise control over spheroid size and geometry to fine-tune drug response assays (158).




6.2 Tumor-level preclinical models

Murine tumor models remain the cornerstone for evaluating the in vivo functionality of engineered tumor-infiltrating lymphocytes, enabling researchers to assess T cell expansion, trafficking, persistence, tumor infiltration, and therapeutic efficacy in an intact immunological environment. Among these, syngeneic tumor models, in which murine tumors are implanted into immunocompetent mice of the same genetic background, offer a robust system for dissecting immune-tumor interactions and testing next-generation TIL products before clinical translation.

The B16-OVA melanoma model is one of the most widely used systems for evaluating antigen-specific TILs. It expresses the model antigen ovalbumin (OVA), which allows for precise tracking of TCR-specific responses (e.g., OT-I CD8+ T cells) (159). This model is instrumental in testing variables such as lymphodepletion regimens, cytokine support (e.g., IL-2, IL-15), and routes of TIL administration (e.g., intravenous vs. intratumoral).

A landmark study by Wong et al. (160) utilized the B16-OVA model to evaluate dual-edited TILs with CRISPR-mediated knockout of Regnase-1 and SOCS1. These two transcriptional repressors act as intracellular immune checkpoints (160). The dual knockout resulted in over 3,500-fold increased TIL infiltration, robust IFN-γ production, and complete tumor eradication, surpassing the performance of single-edited TILs. The engineered TILs exhibited improved survival, polyfunctionality, and metabolic fitness within the TME, confirming that simultaneous targeting of multiple negative regulators could dramatically enhance therapeutic potency (160).

Beyond B16 melanoma, other models such as MC38 colon carcinoma (161), and 4T1 breast cancer (162) provide platforms for evaluating TIL therapy in more immunosuppressive or immune-excluded environments. These models help researchers assess the impact of stromal barriers, tumor antigen heterogeneity, and spatial localization of TILs. Notably, in orthotopic models—where tumors grow in their tissue of origin—TIL trafficking and local immune suppression more accurately reflect clinical settings, allowing for better prediction of therapeutic success.

Recent innovations have also introduced humanized mouse models, where immunodeficient mice are engrafted with human tumors and immune cells. These models facilitate the study of human TILs in vivo and allow direct testing of gene-edited human TIL products (e.g., PD-1 KO or synthetic TCR-TILs) (163). Such systems have been essential for optimizing TIL expansion protocols and validating neoantigen-specific responses prior to initiating early-phase clinical trials.

Moreover, tumor rechallenge experiments in murine models are used to test the formation of T cell memory. Mice that rejected tumors after adoptive TIL therapy are re-injected with tumor cells weeks or months later to assess whether long-term immunological protection has been established (164).

In conclusion, tumor-level preclinical models—particularly syngeneic and humanized murine systems—are indispensable tools for advancing TIL therapy. They enable precise functional dissection of engineered T cells, facilitate biomarker discovery, and accelerate the translation of next generation TIL products from bench to bedside.





7 Therapeutic strategies to enhance TIL recruitment and activation

The therapeutic potential of tumor-infiltrating lymphocyte-based immunotherapy depends not only on the intrinsic quality and tumor-reactivity of the infused lymphocytes but also on the receptiveness of the tumor microenvironment to support their infiltration, activation, and persistence. Given the numerous immune barriers posed by solid tumors—ranging from immunosuppressive cytokines and metabolic stress to stromal exclusion and checkpoint inhibition—multiple complementary strategies have been developed to potentiate TIL function. These include immune checkpoint inhibitors, costimulatory agonists, innate immune activators, chemokine modulation, and strategies to normalize tumor vasculature.

One of the foundational pillars of TIL-enhancing strategies is immune checkpoint blockade. Monoclonal antibodies targeting PD-1, CTLA-4, and LAG-3 relieve inhibitory signals that contribute to T cell exhaustion and functional anergy within the TME (165). These therapies have revolutionized treatment for several cancers by reinvigorating endogenous and adoptively transferred T cells. Recent innovations have expanded this paradigm to include intracellular checkpoints such as Cytokine-Inducible SH2-containing protein (CISH), a suppressor of TCR signaling. Deletion of CISH using CRISPR/Cas9 technology has been shown to enhance TIL sensitivity to tumor neoantigens, boost cytokine secretion (e.g., IFN-γ), and improve responses to PD-1 blockade in preclinical models, laying the groundwork for combinatorial strategies that target both surface and intracellular checkpoints (166).

In parallel, costimulatory receptor agonists—such as anti-4-1BB (CD137) and anti-OX40—are being investigated to further enhance TIL expansion and survival following activation (167). These molecules augment IL-2 production and promote the development of long-lived effector and memory T cells, thus improving TIL persistence in hostile tumor environments. The synergistic potential of combining checkpoint inhibitors with costimulatory agonists is currently being evaluated in clinical trials, with early-phase studies showing enhanced T cell proliferation and improved tumor control (168).

Beyond adaptive immune modulation, innate immune agonists are gaining traction as tools to reshape the immunological landscape of tumors and facilitate TIL infiltration. STING (Stimulator of Interferon Genes) agonists, such as ADU-S100, activate cytosolic DNA sensing pathways that drive the production of type I interferons and chemokines including CXCL10 and VEGI. Intratumoral administration of STING agonists has been shown to normalize tumor vasculature, recruit dendritic cells, and promote the formation of tertiary lymphoid structures (TLS)—niches that support local T cell priming and expansion (169). Notably, endogenous STING signaling upregulates CXCL10 and CCL5 in mismatch repair-deficient colorectal cancers, facilitating dense CD8+ T cell infiltration. These findings highlight the therapeutic promise of exogenous STING activation in otherwise poorly immunogenic tumors (170).

Additional innate immune strategies include oncolytic viruses and toll-like receptor (TLR) ligands, which stimulate pattern recognition receptors (PRRs) on tumor and immune cells, leading to enhanced antigen presentation and immune cell recruitment (171, 172). These agents increase the visibility of tumor cells to the immune system and create inflammatory conditions favorable for TIL expansion and effector function. Together, these emerging approaches illustrate a multi-pronged therapeutic arsenal aimed at unlocking the full potential of TIL therapy by transforming immune-cold tumors into immune-active sites primed for T cell–mediated destruction.




8 Technology driven insights and emerging directions

Molecular and computational biology advances continuously transform our understanding of tumor-infiltrating lymphocytes (TILs) and their application in cancer immunotherapy. Despite significant strides in current therapies, emerging research avenues promise to refine further and enhance the efficacy of TIL-based approaches. This section reviews several key innovations - including single-cell sequencing, neoantigen targeting, combination therapies, and biomaterial strategies - and discusses how these technologies may address current challenges in TIL research and pave the way for next-generation therapies (Figure 2).
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Figure 2 | Overview of a multifaceted cancer treatment paradigm integrating single cell technologies with diverse therapeutic strategies. High-performance computing (left) is used to process large-scale single cell data, along the identification of patient-specific neoantigens and the selection of targeted agents. Conventional therapies, including radiation and chemotherapy, are combined with advanced modalities such as various biomaterials (right). By uniting data-driven insights with both established and emerging therapies, such a framework may optimize and personalize TIL-based cancer treatment for improved patient outcomes.

Single-cell RNA sequencing (scRNA-seq) has emerged as a transformative tool in immuno-oncology by allowing researchers to profile individual cells within the tumor microenvironment (TME). This technology has several critical advantages (18). It enables the identification of diverse TIL subpopulations that may differ in activation status, exhaustion profiles, or cytotoxic potential (1). By cataloging these differences, researchers can pinpoint which subsets are most effective at mediating anti-tumor responses. Beyond phenotypic classification, scRNA-seq also provides insights into the dynamic functional states of TILs, including cytokine production, metabolic activity, and engagement of key signaling pathways. These insights are crucial for understanding the mechanisms underlying T cell exhaustion and resistance to immunotherapy. Furthermore, the high-resolution data generated by single-cell approaches can inform the development of predictive biomarkers, aiding in selecting and expanding the most therapeutically potent TIL subsets for adoptive cell therapy.

Emerging protocols now combine scRNA-seq with spatial transcriptomics, enabling researchers to map the spatial distribution of TILs in relation to other cells in the TME (173). These advances enhance our understanding of immune cell dynamics and inform the design of interventions to selectively enrich for beneficial TIL populations.

Next, neoantigen targeting and combination therapies represent a transformative avenue for enhancing TIL specificity through personalized immunotherapies. Neoantigens, tumor-specific antigens arising from somatic mutations, can activate TILs with high specificity against cancer cells. Advances in computational biology have identified patient-specific neoantigens, facilitating the design of personalized vaccines or adoptive T-cell therapies. Huber et al. recently reported NeoDisc, an advanced computational framework designed to identify and predict clinically relevant antigenic peptides on cancer cells. For this, genomic, transcriptomic and immunopeptidomic data are integrated to accurately identify peptides originating from tumor specific antigens, mutations, oncoviral elements or noncanonical sources. Hence, a personalized proteome reference is generated for each individual and their tumor lesions, including annotating such tumor-specific alterations (174). These approaches aim to improve the efficacy of TIL-based interventions while minimizing off-target effects. Of note, integrating TIL-based therapies with other treatment modalities has shown promise in amplifying therapeutic efficacy. Combination strategies involving chemotherapy, radiotherapy, immune checkpoint inhibitors, and targeted agents can synergistically enhance TIL recruitment, activation, and persistence within tumors. For instance, immune checkpoint blockade can alleviate T-cell exhaustion by targeting inhibitory pathways such as PD-1/PD-L1 or CTLA-4, thereby boosting the anti-tumor activity of TILs. Similarly, radiotherapy has been shown to modulate the TME by increasing antigen presentation and chemokine production, fostering a more favorable environment for TIL infiltration.

More than ever, biomaterials represent a promising frontier in cancer immunotherapy, providing innovative solutions to overcome the physical and biochemical barriers that limit TIL infiltration and activity within solid tumors (175). These materials have been shown to incorporate ECM-driven cues to influence immune cells, fitting into the 3D architecture and altering or tuning immune cell phenotypes. A rich set of materials can be engineered to achieve biocompatibility and deliver immunomodulatory agents, such as cytokines, chemokines, or small molecules, directly to the tumor site, creating a localized immune-stimulatory environment. Key examples include nanoparticle delivery systems, hydrogels and scaffolds designed to mimic extracellular matrix components that serve as supportive niches for TIL expansion and persistence within the TME. The TME is characterized by hypoxia, acidity, high interstitial pressure, and a dense extracellular matrix, all hindering TIL infiltration and activity. Biomaterials can be engineered to specifically target these barriers, helping to normalize the TME and improve immune cell function. For instance, nanoparticles designed to deliver oxygen or neutralize acidic conditions can alleviate hypoxia and acidity within tumors, thereby enhancing TIL activation and cytotoxicity (176). Similarly, biomaterials that disrupt the dense ECM can facilitate TIL penetration into deeper tumor regions, improving their access to malignant cells. Hydrogels infused with CCL21 or CXCL9 have increased lymphocyte migration into tumors. These biomaterial systems enhance recruitment and sustain localized immune activation by providing a controlled release of immunomodulatory agents.

One of the most promising applications of biomaterials is their ability to reshape the immunosuppressive TME by neutralizing inhibitory signals or enhancing antigen presentation. For example, nanoparticles loaded with immune checkpoint inhibitors or stimulatory cytokines can selectively target tumor-associated immune cells, reinvigorating exhausted TILs and promoting robust anti-tumor responses. Additionally, biomaterials can recruit TILs by delivering chemokines that attract lymphocytes to the tumor site. Recent studies have demonstrated the potential of biomaterials in combination therapies (177). By integrating biomaterial-based approaches with other modalities, such as chemotherapy or radiotherapy, researchers aim to enhance TIL recruitment and activation synergistically. Biomaterial scaffolds combined with radiotherapy have increased antigen presentation and fostered a more favorable environment for TIL infiltration (178). These advancements underscore the versatility of biomaterials in addressing multiple challenges associated with TIL-based immunotherapy. Interestingly, Inambar et al. reported a cell-free polymer implant designed to recruit, genetically reprogram and expand host T cells at tumor lesions in situ (178) (Table 2).

Table 2 | Advancing TIL-based therapies.


[image: A table summarizing emerging approaches in TIL (tumor-infiltrating lymphocyte) therapies. It includes categories: Single-Cell Technologies, Neoantigen Targeting, Combination Therapies, and Biomaterial Innovations. Each category outlines key advances, benefits, and considerations, such as the use of spatial transcriptomics, personalized immunotherapies, and biomaterial developments. Benefits include enhanced TIL specificity and increased tumor cell targeting, while considerations highlight the need for careful validation, sequencing, and rapid manufacturing to avoid unintended effects.]
In summary, the convergence of single-cell technologies, neoantigen targeting, combinatorial treatment regimens, and biomaterial innovations is paving the way for the next generation of TIL-based therapies. These emerging strategies hold significant promise for refining personalized immunotherapy approaches and improving outcomes for cancer patients. Of course, reshaping the TME shall occur with care to minimize the risk of tumor growth and distant metastasis.




9 Conclusions

Tumor-infiltrating lymphocytes (TILs) have emerged as a cornerstone of modern cancer immunotherapy, offering the unique advantage of harnessing the patient’s own tumor-specific immune repertoire to target and eliminate malignant cells. Their natural infiltration into tumors and broad antigen recognition capabilities position TILs as powerful agents for personalized adoptive cell therapy. Clinical successes, particularly in metastatic melanoma, have demonstrated their capacity to induce durable responses—even in patients refractory to checkpoint inhibitors—thereby validating the therapeutic potential of TILs in solid tumors (179, 180).

Despite these promising outcomes, TIL therapy faces a complex array of biological and technical challenges that limit its broader application. One of the primary barriers lies within the tumor microenvironment (TME), a highly immunosuppressive landscape that impedes T cell infiltration, activation, and persistence. Factors such as stromal exclusion, vascular dysfunction, metabolic deprivation, and immune checkpoint engagement collectively contribute to TIL dysfunction and exhaustion. Regulatory immune cells, including Tregs, myeloid-derived suppressor cells (MDSCs), and M2-polarized tumor-associated macrophages (TAMs), further shape this suppressive ecosystem by producing inhibitory cytokines (e.g., TGF-β, IL-10) and depleting key metabolic substrates required for TIL fitness (119, 181).

Additionally, the intrinsic heterogeneity of solid tumors—ranging from antigenic diversity to variable mutational burden—affects the immunogenicity and composition of the TIL pool. In poorly immunogenic or “immune-cold” tumors, the absence of chemokine gradients and dendritic cell priming mechanisms leads to suboptimal TIL recruitment and ineffective priming in tumor-draining lymph nodes (78, 83). In such cases, therapeutic strategies that restore chemokine signaling (e.g., CXCL9/10-CXCR3 axis), enhance antigen presentation, or normalize tumor vasculature are essential to reinvigorate TIL activity within the TME (48, 169).

To overcome these limitations, researchers have developed a suite of innovative approaches aimed at boosting TIL recruitment, effector function, and persistence. These include the use of immune checkpoint inhibitors (e.g., anti-PD-1, anti-CTLA-4), costimulatory agonists (e.g., 4-1BB, OX40), and innate immune activators such as STING agonists and oncolytic viruses. Genetic engineering of TILs via CRISPR/Cas9 to delete inhibitory regulators like CISH or SOCS1 has shown promise in preclinical models, leading to enhanced tumor infiltration, polyfunctionality, and complete tumor regression (160, 166).

A parallel frontier in TIL therapy advancement is the development of sophisticated experimental models that replicate the complexity of human tumors and guide therapeutic optimization. In vitro systems, including 3D tumor spheroids, patient-derived organoids (PDOs), and microfluidic tumor-on-a-chip devices, enable precise dissection of TIL-tumor interactions under controlled conditions. These platforms facilitate high-throughput testing of cytokine dependencies, gene edits, and drug combinations in autologous contexts (154, 157). Meanwhile, in vivo models—particularly syngeneic and humanized mouse models—offer essential insights into TIL trafficking, memory formation, and therapeutic efficacy in an immunocompetent setting. Humanized models further enable testing of engineered TIL products against patient-derived xenografts, bridging the gap between preclinical validation and clinical translation (163).

As manufacturing platforms continue to evolve, rapid expansion protocols and GMP-compliant workflows are refined to generate potent TIL products at a clinical scale. New-generation products such as IOV-4001, GT316, and KSQ-001EX reflect a shift toward genetically enhanced, IL-2-independent, and functionally robust TILs suitable for broad clinical deployment (182–184). Moreover, novel in situ TIL therapies—such as local mRNA delivery of activating ligands—may further streamline treatment by obviating ex vivo manipulation.

In conclusion, TIL-based immunotherapy represents a rapidly maturing field that harnesses the adaptive immune system’s natural specificity and potency to combat cancer. While challenges related to tumor heterogeneity, immune suppression, and TIL exhaustion remain, advances in model systems, combination strategies, and genetic engineering are accelerating the field’s trajectory toward broader and more effective clinical application. Integrating biomarker-driven patient selection, improved manufacturing, and rationally designed combinatorial regimens is key to unlocking the full therapeutic potential of TILs in solid tumors.
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Generation of Chimeric Antigen Receptors (CARs) presented a significant advance in the field of immunotherapy, allowing the targeting of cell-surface expressed molecules in an MHC-independent manner. Arming NK cells with CARs merges their innate natural cytotoxicity with the refined precision of targeted antigen recognition. The success of these therapies hinges on selecting the right tumor-specific targets to ensure effective activation and avoid self-reactivity. Optimization of CAR design and targeting is based on NK cell intrinsic properties (CAR modules and sources of NK cells), as well as on NK-tumor cell interactions (multi-antigen, multi-step, multi-switch). Additionally, the dynamics of tumor infiltration and adaptation to the tumor microenvironment play a critical role in CAR-NK cell efficacy. Combining CAR-NK cell therapies with chemotherapy, radiotherapy, checkpoint inhibitors, and emerging approaches like epigenetic modulators and oncolytic viruses, may address some of these challenges. The development of CAR-NK cell strategies for metastatic disease is especially promising, though the complexities of metastasis require refined targeted designs. As immunomics and multi-omics continue to evolve, the potential for designing more effective CAR-NK cell therapies expands. As results from preclinical and clinical trials unfold, a multidisciplinary approach integrating all those aspects will be key to unlock the full potential of CAR-NK cell-based adoptive transfers.
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1 Introduction

Chimeric Antigen Receptor (CAR) immunotherapy has emerged as a promising approach for cancer treatment. In fact, having demonstrated substantial efficacy in pre-clinical and clinical studies, the U.S. Food and Drug Administration (FDA) has approved, to date, seven CAR-T cell therapies for the treatment of various hematologic cancers (1, 2). Despite this encouraging progress, CAR-T cell-based therapies face several challenges, including risk of severe side effects, such as cytokine release syndrome (CRS), neurotoxicity, and graft-versus-host disease (GvHD) (3–5). By combining CAR specificity with NK cell natural cytotoxicity, CAR-NK cells may tackle some of the challenges faced by CAR-T cell therapies. As part of the innate immune system, NK cells have the ability to target tumor cells in an antigen-independent manner, rapidly eliminating target cells through the release of perforins and granzymes. NK cell activity is regulated by the integrated balance of activating and inhibitory receptors that interact with specific ligands on the surface of tumor, virus-infected or transformed cells (6–8). This capacity allows for CAR-NK cells to combine CAR-dependent and -independent killing of tumor cells, particularly important to target tumor heterogeneity. Moreover, unlike CAR-T cells, CAR-NK cells can be derived from allogeneic donors, as they do not require Human Leukocyte Antigen (HLA) matching or prior antigen presentation, making them suitable for “off-the-shelf” use, substantially reducing production time and costs, and increasing scalability and accessibility (3, 5, 9–11). Early clinical data indicate that the safety profile of CAR-NK cell therapy holds an additional advantage, as the risk of CRS, GvHD and other severe adverse effects is lower and better manageable compared with CAR-T cells (5, 9). Comprehensive comparisons between CAR-NK and CAR-T cell therapies have been extensively described elsewhere previously (12, 13).

As the field evolves, CAR-NK cell-based therapies stand as promising approaches for the treatment of several cancer types, including solid tumors. However, employing CAR-NK cells to target solid tumors presents several obstacles inherent to their complexity. Solid malignancies exhibit physical barriers, such as dense extracellular matrix (ECM) and abnormal vasculature, restricting NK cell access (10, 13, 14). Strategies to increase CAR-NK cell infiltration are under development, including genetic engineering of chemokine receptors, such as CXCR1/2 and CXCR4, to enhance chemokine-guided migration (15, 16). Moreover, the tumor microenvironment (TME) can create immune hostile conditions through hypoxia, low pH, nutrient deprivation, and inhibitory factors like PD-L1, TGF-β, and adenosine, which can lead to NK cell impaired cytotoxicity and persistence. Approaches being explored include pharmacological inhibition of TGF-β and cytokine support (e.g. IL-15) to increase NK persistence and activation (13, 17). In addition, besides developing strategies to evade NK cell immune surveillance, such as downregulation of NK cell ligands, solid tumors typically display complex clonal heterogeneity and shared antigen expression between tumor and healthy tissues, increasing the complexity of applying CAR-NK cell therapies to target these malignancies (10). Nevertheless, several NK-CAR strategies are being developed and combined with other therapeutic approaches to overcome these hurdles, with multiple clinical trials on solid tumor currently underway.

In this review, we discuss methods for CAR-NK cell production, explore various preclinical tumor models, and provide an update on the current status of CAR-NK clinical trials. In addition, we delve into the promise of combining CAR-NK therapies with different therapeutic approaches, the relevance of this adoptive therapy to tackle metastatic disease, and the need of integrating the usage of computational biology to further potentiate CAR-NK cell therapy efficacy.




2 CAR-NK generation: sources and methodologies



2.1 Advances in CAR-NK cell constructs

Recent advances in CAR-NK cell constructs are driven by an increased understanding of NK cell biology and the desire to harness their unique activation mechanisms for cancer immunotherapy. The CAR construct itself typically comprises an extracellular antigen recognition domain, usually consisting of a single-chain variable fragment (scFv), a transmembrane domain, and intracellular signaling domains (4, 18). Different CAR generations are emerging, with increasing complexity on the composition of their intracellular signaling domains. While first-generation CARs contained only one signaling domain, second and third-generation CARs have been designed to further incorporate one or multiple co-stimulatory signaling endodomains, respectively (4, 10). These co-stimulatory signaling domains can include CD28, 4-1BB (CD137), OX40 (CD134) (11), 2B4 (CD244) and DNAX Accessory Molecule-1 (DNAM-1)/CD226 domains (19). Besides the conventional CD3ζ signaling domain, CAR-NK cells often incorporate intracellular signaling domains downstream of activating NK receptors, such as DNAX-activation protein 12 (DAP12) and DAP10 (20, 21). These signaling modifications aim to better align CAR-NK functionality with the innate cytotoxic pathways of NK cells.

To further improve the precision and efficacy of CAR-NK cell therapy, innovative “current-generation” CAR constructs have been designed (11). Bi-specific CARs are engineered to recognize two distinct tumor antigens simultaneously, reducing the risk of tumor escape due to antigen loss or inter- and intra-patient heterogeneity. For B-cell malignancies, bi-specific CARs targeting both CD19 and CD22 have shown promise in increasing tumor targeting and improving treatment outcomes in a murine lymphoma model (22). Moreover, advances in genetic engineering have enabled the development of cytokine armoring, intending to enhance CAR-NK cell persistence and function by providing autocrine cytokine support. This can be achieved through the release of soluble cytokines into the TME, such as IL-15, or by engineering cytokines in membrane-bound form, thus inducing immune responses upon cell-to-cell contact (11).

Another notable advancement is the development of logic-gated CARs that require multiple signals for activation. These CARs can reduce off-tumor toxicity by ensuring full NK cell activation only in the presence of a specific combination of tumor antigens. For instance, AND-gate CARs are activated only when two target antigens are present, while OR-gate CARs are triggered by either of two antigens (23). A notable example is the development of SENTI-202, an off-the-shelf CAR-NK cell therapy incorporating both “OR” and “NOT” logic gates. This construct enables CAR-NK cells to target acute myeloid leukemia (AML) cells expressing either FLT3 or CD33 (OR gate), while sparing healthy hematopoietic stem cells which express the endomucin (EMCN) (NOT gate). The FLT3-CD33 OR-gate CAR construct outperformed significantly single target CARs against FLT3 or CD33, both in vitro and in vivo. The FLT3-EMCN NOT-gate mediated a preferential killing of FLT3+ EMCN- (AML-like), while preserving the double positive population (hematopoietic stem cell (HSC)-like) (24). SynNotch receptors represent an even more sophisticated approach, enabling multi-step tumor recognition. SynNotch receptors respond to an antigen by inducing expression of a CAR for another antigen, thus creating a sequential activation process that significantly enhances specificity (25). Finally, CAR-NK cells engineered to express CD19-CAR, IL-15 and inducible caspase 9, as a safety switch, have been administered to patients with relapsed or refractory CD19-positive cancers (17). The safety switch, which can be activated by rimiducid, was introduced to serve as a control measure to mitigate the potential adverse events in patients. Nevertheless, the safety switch was not activated in this study. Collectively, these advanced CAR designs aim to improve the safety, precision, and therapeutic potential of CAR-NK cell therapies (Figure 1).
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Figure 1 | CAR-NK cell generations. The structural components of CARs comprise an extracellular antigen binding domain consisting of a single-chain variable fragment, a transmembrane domain and intracellular signaling domains. First CAR generations are composed of only one intracellular signaling domain, while second and third generations have additional co-stimulatory domains which potentiate the CAR-NK cell anti-tumor cytotoxicity. Current generation CAR designs allow for cytokine secretion, targeting of multiple antigens, and selective cell antigen targeting (logic-gated) to further improve the therapeutic activity of CAR-based immunotherapies. aCAR, activating chimeric antigen receptor; EMCN, endomucin; iCAR, inhibitory chimeric antigen receptor; scFV, single-chain variable fragment. Created in https://BioRender.com.

As the field continues to evolve, ongoing research into CAR structure optimization and clinical testing is essential to ensure the development of highly effective next-generation CAR-NK cell therapies for cancer treatment.




2.2 CAR-NK cell transduction methods

Classical CAR-T cell generation approaches typically rely on viral-vector delivery of CAR constructs to ensure high transduction efficiency and stable long-term expression. The most widely used vectors for this purpose are lentivirus, retrovirus, and adeno-associated virus (AAV) vectors. NK cells are notoriously difficult to transduce due to their inherent resistance to genetic modifications, particularly through traditional viral vectors (26). However, significant progress has been made in recent years, improving both the efficiency and safety of transduction methods. These advances include the development of optimized viral vectors and non-viral methods.



2.2.1 Viral vectors

Lentiviral vectors are a primary tool for CAR-NK engineering (27). However, lentiviral envelope pseudotyping plays a crucial role in optimizing transduction efficiency in primary NK cells. Traditionally, CAR-T cell lentiviruses are pseudotyped with vesicular stomatitis virus G (VSV-G). VSV-G lentiviruses bind to the low-density lipoprotein receptor (LDL-R) on the surface of T cells (28). However, NK cells exhibit a very low LDL-R expression, rendering the transduction with such vectors poorly efficient (29). Alternatively, the baboon envelope (BaEV) has been shown to induce higher transduction efficiency both in freshly-isolated and cultured NK cells (30). Retroviral vectors have also been explored as a transgene delivery method. For instance, alpharetroviral vectors have been shown to induce more than 60% transduction efficiency and a stable CAR expression for several weeks (31, 32). Finally, adenoviral vectors offer high transduction efficiency without genomic integration, making them an attractive option for transient CAR expression, though this may require repeated administration to maintain therapeutic efficacy. Altogether, the viral vectors are well established transgene transfer platforms. However, viral systems come with several drawbacks, including increased immunogenicity, potential insertional mutagenesis, limited insert size, high costs for good manufacturing practice (GMP)-grade viral production, and complex regulatory hurdles. These challenges associated with viral vectors encouraged the exploration of new transgene transfer venues.




2.2.2 Non-viral transduction methods

Non-viral methods enable cell transduction without the risk of insertional mutagenesis or other genomic alterations. The Sleeping Beauty (SB) system is a synthetic transposon platform consisting of two components: a transposon, which carries the CAR gene and selectable marker flanked by inverted repeat sequences for genome insertion, and a transposase enzyme that mediates “cut-and-paste” integration at TA dinucleotide sites. Unlike viral vectors, it avoids hotspot integration, reducing the risk of insertional mutagenesis (32). The PiggyBac transposon system is another non-viral gene delivery platform increasingly used for stable integration of genetic material, such as CAR constructs, into NK cells. Originally derived from the cabbage looper moth, PiggyBac has gained significant attention in CAR-NK cell therapy due to its high transposition efficiency and the ability to carry large genetic payloads. Similarly to the SB, the PiggyBac operates by a cut-and-paste mechanism, but integrates at a TTAA site, thus enabling the system to carry large payloads (33). A potential application of the larger capacity of the PiggyBac would be the delivery of multiple CARs, logic-gated CARs and the manipulation of the balance of specific genes responsible for sustaining and potentiating CAR-NK cells (34). The use of lipid nanoparticles in various contexts has been a hot topic for the last couple of years given their low immunogenicity, the efficiency of mRNA transfer and protein expression in often exceeding 80% of positive cells (35). However, this strategy is transient, and scalability could be challenging. Electroporation is another widely used approach to produce CAR-NK cells, which is compatible with both freshly-isolated and cultured NK cells. Given the relatively low costs and transient expression of the transgene, it could potentially be useful in studies involving multiple dosing. Recently, CAR-NK cells against ROR1 have been generated by electroporation for the treatment of neuroblastoma. The product has shown efficacy in killing target cells in vitro and significantly prolonging survival in preclinical settings (36).

In sum, given the advances in CAR-NK construct design and transduction methods, we can expect the development of more effective CAR-NK strategies that will enhance scalability, safety, and clinical efficacy.





2.3 CAR-NK cell sources

The complex biology of NK cells, characterized by the lack of major histocompatibility complex (MHC) restriction and the complex balance of activating and inhibitory cues required for cell activation, prevent them from inducing GvHD (37). Therefore, most NK cell-based therapies prioritize allogeneic sources to circumvent the biological, logistical and economic burdens associated with autologous approaches (38). NK cells can be obtained from several sources, including peripheral blood, cord blood, immortalized cell lines and induced pluripotent stem cells (iPSCs). Each of these sources can produce clinically relevant cell doses, can be engineered to express CARs, and have shown efficacy both in preclinical models and in in-human studies. However, they present distinct advantages and challenges, and may exhibit differential transcriptional, phenotypic, and functional characteristics.



2.3.1 NK-92 cells

NK-92 is an immortalized NK cell line derived from a patient with non-Hodgkin lymphoma (NHL) in 1992 (39). CAR-NK-92 cells were the first NK cell-based immunotherapy to receive Investigational New Drug approval by the FDA for clinical testing (40). Unlike primary NK cells, NK-92 cells exhibit a homogeneous phenotype, allowing for consistent and large-scale expansion in vitro, which is advantageous for adoptive cell therapy (41). Moreover, due to the low expression of Killer-Cell Immunoglobulin-Like Receptors (KIRs) on the cell surface, the cell line displays high cytotoxic activity which can be further enhanced by CARs (42). However, the cell line lacks the expression of CD16 on its surface, thus cannot execute antibody-dependent cell cytotoxicity (43). Finally, given the cancerous origin of the NK-92 cell line, the derived products are required to undergo irradiation, which limits both the persistence in vivo and long-term efficacy.




2.3.2 Induced pluripotent stem cells (iPSCs)

iPSCs have garnered growing interest as a source for CAR-NK cells due to their self-renewal capacity and ability to differentiate into functional NK cells. Large-scale production of CAR-NK cells from iPSCs offers standardized manufacturing and batch-to-batch consistency, making them a promising option for off-the-shelf immunotherapies. However, the use of iPSCs comes with both technical and economic challenges. Differentiating iPSCs into fully functional NK cells is a time-consuming and complex process. Additionally, iPSCs may retain epigenetic memory from their tissue of origin, which can potentially influence their terminal function (44). While the manufacturing costs of iPSC-derived CAR-NK cells are substantially lower than those of autologous CAR-T cells, they remain significant (4).




2.3.3 Primary NK cells

Allogeneic CAR-NK cell therapy can be achieved by harvesting primary NK cells from either cord blood (CB-NK) or peripheral blood (PB-NK). CB-NK cells offer advantage by containing a rich population of naïve NK cells, and are readily available through cord blood biobanks. CB-derived CAR-NK cells have been utilized in several clinical trials, most notably for treating CD19-positive lymphoid malignancies. However, some concerns have been raised regarding the lower cytotoxic potential of CB-derived NK cells, as well as limited persistence and overall phenotypical and functional immaturity (18, 29, 45). Alternatively, peripheral blood serves as another important source for CAR-NK cells. Peripheral blood is easily accessible in most clinical settings, and NK cell isolation is well established and minimally invasive. Compared with complex manufacturing processes like iPSC-derived CAR-NK cells, using primary NK cells significantly reduces costs. However, their scalability remains limited, making it challenging to obtain clinically relevant doses for large-scale treatments, and the natural inter-donor variability leads to heterogeneity of the final product (29).






3 CAR-NK cells and clinical trials

A growing number of CAR-NK clinical trials are being registered and conducted for various tumor types and patient populations. These trials are predominantly in early phases (Phase I and Phase I/II), focusing on evaluating the safety and efficacy of CAR-NK cells. Most trials target relapsed or refractory (R/R) hematological cancers, such as acute lymphoblastic leukemia (ALL), NHL, and AML, with CD19 and CD33 being the most common target antigens. A notable portion of these trials use NK cells derived from cord blood, reflecting the ease of genetic modification and scalability of this source. Several institutions are at the forefront of CAR-NK research. The M.D. Anderson Cancer Center, for instance, is leading multiple trials using CB-derived CAR-NK cells to target CD5, CD19, CD70, and TROP2 in R/R hematological cancers and solid tumors, such as ovarian and pancreatic cancer. Chinese institutions, including Zhejiang University and PersonGen BioTherapeutics, are actively testing CAR-NK therapies for various cancers, with a particular focus on AML and solid tumors. Trials using NK-92 cell lines and iPSCs are also in progress, highlighting a growing interest in off-the-shelf NK cell products for broader clinical application. In addition to hematological cancers, CAR-NK trials targeting solid tumors, such as colorectal cancer (CRC), ovarian and pancreatic cancers, are gaining traction. These trials include targeting of TROP2, CD70, MUC1, Claudin 18.2, as well as NKG2D ligands.



3.1 CAR-NK cell clinical trials: where do we stand?

Although most CAR-NK cell clinical trials are still ongoing, there are already published papers showing evidence of clinical success. In 2018, Tang and colleagues reported for the first time the results of the clinical administration of CAR-NK cells, testing the safety of CD33-CAR-NK-92 cells in three R/R AML patients (NCT02944162, Table 1). The authors demonstrated that this therapy could be safely applied in a series of three increasing doses without substantial adverse effects. However, no obvious clinical efficacy was observed. These results were associated with low in vivo survival of irradiated NK-92 cells upon infusion, thus requiring further optimization (46).


Table 1 | CAR-NK cell clinical trials.
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In a study conducted at the M.D. Anderson Cancer Center, CB-derived NK cells engineered with a CD19-CAR, IL-15, and inducible caspase 9 (iCasp9), were administrated to CD19+ R/R NHL and chronic lymphocytic leukemia (CLL) patients (NCT03056339, Table 1). An interim analysis of the first 11 patients revealed promising results, considering the complete remission rate of 64%, without reporting any CRS, GvHD, or neurotoxicity events. Additionally, the infused CAR-NK cells showed long-term persistence for at least 12 months, suggested to be associated with the inclusion of IL-15 in the construct (17). This clinical trial has since then been completed, and the final results were published in 2024. Treatment responses were rapid at all dose levels. For the 37 patients who received lymphodepletion and CAR-NK cell infusion, the 1-year complete response rate was 29.7%. For patients with NHL, CLL and diffuse large B-cell lymphoma (DLBCL), the 1-year cumulative complete response rates were 83%, 50% and 29%, respectively (47). Most recently, the results of a terminated phase 1 clinical trial exploring FT596, an iPSC-derived CD19-CAR NK cell therapy for B-cell lymphoma patients, have also shown durable responses upon treatment (NCT04245722, Table 1) (48).

Focusing on solid tumors, NKG2DL-CAR NK cell treatment has been administrated to three metastatic CRC patients (NCT03415100, Table 1) without serious adverse effects. Upon receiving intraperitoneal CAR-NK cell infusion, two patients with malignant ascites experienced a decrease in tumor cells. The third patient was injected directly at the site of metastasis and showed complete metabolic response, highlighting the potential of CAR-NK cells for the treatment of solid tumors (49). Additionally, a case report evaluating treatment using ROBO1-CAR NK cells in a liver metastatic pancreatic ductal adenocarcinoma patient revealed safe administration with no substantial side effects (NCT03941457, Table 1). Moreover, the pancreatic lesion and liver metastasis were controlled within 5 months. Unfortunately, the patient passed away 3 months later due to multiple organ failure related to tumor progression (50). Lastly, the phase 1 CAR2BRAIN clinical trial (NCT03383978, Table 1) aimed to determine the safety and feasibility of HER2-CAR NK cells in glioblastoma patients. Out of the 9 patients treated at the time of publication, 5 experienced stable disease from 7 to 37 weeks, and 4 showed disease progression. Of note, in agreement with the results from the previous studies, the safety profile was favourable, with neither neurotoxic nor systemic side effects (51). Overall, these early findings demonstrate the potential of CAR-NK cell therapy for the treatment of several cancer types, expanding beyond the traditionally targeted hematological malignancies, thus offering promising therapeutic potential for hard-to-treat solid tumors. As the field progresses, results from these early-phase trials will be crucial in determining the viability of CAR-NK therapies as a treatment option.





4 CAR-NK cells and pre-clinical models

The choice of pre-clinical models to test CAR-bearing cellular therapeutics depends on different factors, such as target antigen and tumor type, but also availability, scalability and price. A combination of both in vitro and in vivo models to comprehensively evaluate CAR-NK cell efficacy and safety before moving to clinical trials is frequently applied (Figure 2).
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Figure 2 | Immuno-models used for CAR-NK cell pre-clinical studies. CAR-NK cell pre-clinical research has been performed resourcing to several different models. In vitro/ex-vivo models include tumor cell lines and patient-derived material, in both 2D or 3D settings. 3D models can comprise spheroids, patient-derived organoids (PDOs) and patient-derived explants (PDEs). In vivo mouse models include immunocompetent mice inoculated with mouse tumor cells, or mice genetically-modified to generate tumors (GEMM). Immunodeficient mice, including NSG and humanized mice, can both be inoculated with (1) human tumor cell lines or (2) patient-derived explants. Humanized mice can be generated by inoculating human PBMCs or human hematopoietic stem cells (HSC). In addition, BLT (Bone Marrow-Liver-Thymus) mouse models are generated by the implantation of human liver and thymus tissues under the kidney capsule of immunodeficient mice, followed by the delivery of human HSCs, enabling the development of a functional human immune system. Created in https://BioRender.com.



4.1 In vitro/ex vivo models

Initial testing of CAR-NK cell cytotoxicity against specific cancer cell lines is performed in vitro using both 2D and 3D based approaches. 3D models, such as tumor spheroids (52), can be used for high-throughput efficacy testing. Simple spheroids are typically derived from immortalized cancer cell lines, and fibroblasts, endothelial cells, or immune cells can be added to create more complex models that better replicate the TME. Within spheroids, tumor cells self-aggregate due to cell-cell adhesion and cell-matrix interactions, and frequently form layered zones of proliferating, quiescent, and necrotic cells. Although they can mimic topography and metabolic gradients of solid tumor tissue, they largely lack patient-specific relevance. There are, however, increasing efforts to utilize novel technologies, such as 3D bioprinting or microfluidic systems (53), to better represent complex structures of solid tumor tissue. Moreover, there are emerging spheroid tools based on cancer stem cells or fragmented tumor tissue, better representing patient heterogeneity and genetic traits of the original tumor (54). Spheroids are useful tools for proof-of-principle CAR-NK cell testing, as shown recently in the context of CAR-NK-92 cells secreting a peptide that blocks TGFβ1 signaling, which were tested using multicellular cancer spheroids and cancer-derived fibroblasts from patients with pancreatic cancer (55).

Alike spheroids, patient-derived organoids (PDOs) allow testing of CAR-NK cell migration and infiltration and can enable the evaluation of on-target/off-tumor effects using normal tissue organoids as controls. Tumor PDOs are re-constructed by cancer cells obtained from patient through biopsies, surgical resections, or from biological fluids (56, 57). They represent self-organizing cellular aggregates that mimic the architecture and the genomic landscape of the original tumor. Compared to spheroids, organoids allow differentiation into multiple cell lineages and therefore can have a multicellular identity that creates a more physiologically relevant model. However, as spheroids, they do not fully recapitulate the TME, as they miss vasculature, various tissue accessory cells, as well as tumor-infiltrating immune cells. PDOs can be used as an in vitro/ex vivo platform to evaluate the efficacy of CAR products in a personalized manner, as exemplified by Schnalzger et al. who generated luciferase‐expressing colorectal cancer organoids to quantify CAR-NK-92-mediated cytotoxicity (58). Although CAR-NK/NK92 products have been also tested against several tumor types, such as triple-negative breast cancer (59), pancreatic adenocarcinoma (60), esophageal cancer (61) and others, these studies are critically lacking a large number of patient-derived organoids to represent patient heterogeneity, urging the generation of biobanks available for testing and stratifying the patients for the best available treatment.

Patient-derived explants (PDEs) allow for ex vivo culture of freshly resected human tumor slices (62). Although limited in scalability, their advantage over PDOs is the retention of the original tumor architecture, microenvironment, and - importantly – the native infiltrating immune cell populations, enabling the evaluation of combination therapies that target other cells in TME. Due to short viability, PDEs can provide only immediate patient-proximal data. Unlike organoids, they cannot model tumor evolution over time or be used for genetic manipulation. However, they can be applied in combination with other approaches. By using malignant pleural mesothelioma explants treated with a STING agonist, Knelson and colleagues (63) identified activation of chemokine secretion by cancer cells and fibroblasts, along with differential T and NK cell resistance to treatment-induced cytotoxicity, which enabled downstream testing of mesothelin-specific CAR-NK cells in patient-derived organotypic tumor spheroids.




4.2 In vivo models

Pre-clinical mouse models are crucial tools for developing and evaluating cancer immunotherapies. They are successfully used to evaluate the efficacy of treatments, testing combinatorial therapies, and importantly, to study mechanisms of response and resistance. Currently, the available toolbox includes immunocompetent, humanized, and genetically engineered mouse models.



4.2.1 Immunocompetent mice

Immunocompetent mouse models typically use syngeneic murine cancer cells that can be delivered via several routes of injection and implanted in various sites. Their main limitation is the kinetics of growth of the implanted tumor cells, whereby rapid tumor growth (avg. 2–4 weeks) is overemphasized (64). Mouse models mainly utilize pre-edited tumor cell lines lacking human-like immunoediting tumor evolution (elimination → equilibrium → escape) (65). In typical experiments, genetically homogeneous, inbred strains are used, failing to recapitulate human genetic diversity. While cancer risk increases exponentially with aging (66), the experiments are rarely performed in aged animals. The implanted tumors are often not orthotopic (grafted in the original organ site), and the tumor initiation (cell transformation, immune surveillance) is not recapitulated. Despite all this, mouse models do provide a physiologically relevant TME consistent of tumor cells, stromal cells and immune infiltrate that is shaped by the microenvironment. In the study of Look et al., murine CAR-NK cells were generated, and their efficacy was compared to CAR-T cells and CAR-macrophages in an orthotopic glioma model (67). The study indicated that all three CAR products succumbed to TME-mediated re-shaping, and that combination with cytokines benefited the outcome of the treatment. Mouse models can also be used to mechanistically address the actions of therapeutic agents in individual components of TME, e.g by applying targeted gene deletions (conditional gene knock-out models), and therefore address the complexity of cellular interactions in the context of tumor progression and response to therapy.

To more accurately reflect human cancer pathogenesis and allow for the study of tumor development and progression, genetically engineered mouse models (GEMMs) have been developed. Besides the assessment of therapy efficacy, they allow the exploration of carcinogenesis. In genetically engineered tumorigenic mouse models, tumors develop de novo in a natural immune-proficient microenvironment and closely mimic the histopathological features and genetic heterogeneity of their human counterparts. They are superior to cancer cell inoculation models, as they can recapitulate not only cancer heterogeneity, but also the metastatic cascade. In this regard, those models are primarily used to investigate NK cell “natural antitumor roles” and to highlight the mechanisms of suppression of their functions, therefore providing a basis for harnessing this knowledge in the context of immunotherapy.




4.2.2 Immunodeficient and humanized mice models

Immunocompetent models are fully mouse systems and cannot be used to test human therapeutic products. Xenograft mouse models utilize immunodeficient mice co-engrafted with human tumors and human immune cells. The most commonly used immunodeficient mouse model is the NSG mouse strain (68–70) bearing IL-2 receptor gamma chain deficiency (IL2rγnull) on Non-Obese Diabetic (NOD)/severe combined immunodeficiency (SCID) background. These mice lack mature T, B, and NK cells, functional complement system, and display impaired macrophage and deficient dendritic activity.

The procedure utilizing NSG mice often involves low-grade irradiation that supports tumor cell engraftment. Frequently, tumor cells are delivered intravenously and subsequently form metastatic-like nodules in the lung. Tumor cells are often engineered to express luciferase, enabling their detection via measurement of bioluminescence. This allows follow-up measurements and assessment of therapy efficacy over time. In a recent publication, Li et al. used a preclinical xenograft model to show that tumor resistance to CAR-NK therapy is caused by a loss of metabolic fitness of NK cells after infusion in a lymphoma-bearing host (71). By applying single-cell transcriptomics, they demonstrated dynamic co-evolution of adoptively transferred NK cells and the tumor, whereby metabolically active tumor cells eventually progressed towards a NK-resistant phenotype. Although limited in scalability, they could show that in patients participating in a clinical trial utilizing their CAR-NK product (NCT03056339, see the Table 1), at single-cell level, NK cells bear similar traits as observed in preclinical model.

Although xenografts can recapitulate some aspects of the human immune-tumor interactions, they cannot evaluate the contribution of other cells to the therapy. Immunodeficient mice do not express human HLA molecules, lack a human endothelial barrier, and do not have fully developed lymph nodes with germinal centers that can participate in the immune reaction. In addition, adoptively transferred human immune cells into mice rely on endogenous growth factors, chemokines and cytokines, which often have low or no cross-reactivity, and cannot support their functions.

To establish a more human immune system in mice, several approaches have been developed (72, 73). Human peripheral blood mononuclear cells (PBMC)-humanized mice are created by injecting PBMCs into immunodeficient mice. Rapid engraftment of human immune cells can be achieved, albeit with differential efficacy for various immune cell types. However, these models allow only short-term studies due to GvHD development. Therefore, various approaches are undertaken to create next-generation models with reduced GvHD and improved engraftment, such as knock-out of MHC genes (74, 75). For example, in HUMAMICE, both murine MHC class I and MHC class II expression were eliminated, while simultaneously expressing human HLA-A2 (class I) and HLA-DR1 (class II) (76).

HSC-engrafted mice are created by injecting human CD34+ HSCs into immunodeficient mice (77, 78). They provide long-term engraftment, enable reconstitution of both innate and adaptive human immune cell populations and allow long-term studies. However, several cautionary factors should be considered when performing experiments in these animals. Donor variability can affect the engraftment rates and the differentiation of the different immune cell subpopulations, which in turn may impact the response to experimental treatments. NPI (NOD/SCID/IL2rγnull with human cytokine knock-ins) mice are advanced models engineered to express human cytokines on an NSG background, and can achieve engraftment with lower doses of human HSCs, showing improved development and function of human myeloid cells and NK cells (79, 80). Immune humanized mouse models are in the meantime commercially available and can be obtained as off-the-shelf ready-to-use products for immuno-oncology studies.

BLT (bone marrow-liver-thymus) humanized mice are a more advanced model, created by implanting human fetal liver and thymus tissue under the kidney capsule of immunodeficient mice, prior to human HSC injection (81–84). This procedure can be combined by provision of human cytokines using genetic knock-ins, as in NPI model. BLT mice develop a nearly complete human immune system, in which human T cells develop in the human thymus with proper HLA restriction. However, the procedure and the requirement of fetal tissues, which face ethical and regulatory challenges, limits the scalability of using these mice at large experimental testing.

Humanized mouse models can be used for the injection of patient cancer cells, or for the engraftment of PDEs, thus generating patient-derived xenografts (PDXs) (85). PDXs are increasingly used for drug development and precision oncology, as they provide personalized medicine approaches for individual patients. However, although they better reflect complexity of tumor biology and heterogeneity, and could aid expanding actionable genetic targets for treatment, they are not routine models used in academic research. In the context of CAR-NK therapy, humanized mouse nasopharyngeal carcinoma–patient-derived xenografts were used to show the efficacy of the combination therapy involving HSC–derived CAR-NK cells targeting programmed death-ligand 1 (PD-L1) and nivolumab (86). By comparing the PDX engrafted in NSG mice and humanized mice, this study also demonstrated that a humanized immune system differentially shaped the TME, more accurately mimicking the patient context.

Although humanized mouse models represent a significant breakthrough in immuno-oncology, they still face important limitations, particularly in recapitulating a fully functional human immune system due to species-specific differences in cytokine signaling, cellular interactions, and TME cues. Neverthless, although still limited in accurately predicting human immune responses and clinical outcomes, they remain a promising platform for pre-clinical evaluation, providing crucial insights that would be otherwise difficult to obtain in vitro or in human studies.

Optimal utilization of CAR-NK advanced tumor models requires collaboration across disciplines, including clinicians, researchers, and bioinformaticians, to standardize protocols, improve reproducibility, create centralized repositories, facilitate sharing of models and data, and to comprehensively analyze the data by leveraging advanced technologies (multi-omics, deep learning). While clinical studies performed so far show promise, at least for a subset of patients and some tumor types, a large load of groundwork is still required to understand complex mechanisms operating withing different tumors and individuals, and along trajectory of immune cell-tumor co-evolution, to improve current treatments and pave the road towards CAR-NK personalized therapy.






5 CAR-NK cell therapies and metastasis

Metastatic disease is responsible for about 90% of cancer-related deaths (87, 88). In recent decades, immunotherapy has emerged as a promising therapeutic strategy, but its success in the metastatic setting remains limited. Although metastatic spread is determined by intrinsic characteristics of tumor cells, the immune microenvironment also plays a crucial role in this process. Several studies highlight the important role of NK cells in controlling metastasis, from epithelial-mesenchymal transition (EMT) to the colonization of distant sites (89, 90). Thus, the anti-metastatic potential of NK cells has been extensively studied (91–93), and NK cell-based immunotherapies have been proposed as promising strategies against metastases. Among these approaches, CAR-NK cells represent a cutting-edge option due to their highly potentiated antitumor activity and scarce off-tumor toxicity. In the preclinical setting, some studies have reported the efficacy of CAR-NK cells as an encouraging therapy against metastases.



5.1 CAR-NK cells as a strategy against tumor metastasis

Different groups have studied CAR-NK cells as a putative strategy against breast cancer metastases. Mice bearing the human breast cancer cell line MDA-MB-453, treated with HER2-CAR-NK-92 cells, showed a significant decrease of tumor and lung metastasis formation compared to those receiving parental NK-92 cells (94). In another study, zEGFR-CAR-NK cells were implanted in a 3D-engineered hyaluronic acid (HA)-based niche for cell expansion. Mice treated with those cells showed a significant reduction in the number of lung metastases in an incompletely resected orthotopic breast cancer model (95). In a preclinical study, CAR-NK-92 cells targeting EGFR exhibited anti-tumor activity against breast cancer brain metastases, especially in combination with oncolytic herpes simplex virus 1 (96). Moreover, a biomimetic nanoplatform consisting of a combination of CAR-NK cell-derived exosomes (ExoCAR) and a nanobomb, produced a strong antitumor response in vivo against HER2-expressing breast cancer brain metastases, increasing mice survival (97). A next-generation CAR targeting CD44v6, a cell-surface glycoprotein implicated in tumorigenesis, tumor cell invasion and metastasis, has also been developed. CD44v6 CAR-NK cells demonstrated cytotoxicity against 3D spheroid models of triple-negative breast cancer (98).

Regarding lung metastases, CAR-NK-92 cells targeting ERbB2/HER2 have shown to reduce tumor growth in an experimental mouse model of lung metastases from renal carcinoma (99). Melanoma cell adhesion molecule (MCAM) is a relevant target, expressed on Ewing sarcoma (ES) and associated with metastasis. MCAM-CAR-NK cells significantly reduced lung metastasis and prolonged animal survival in an ES orthotopic xenograft mouse model (100). A different study used the ephrin type-A receptor-2 (EphA2) as a target antigen, showing that EphA2-CAR-NK-92 cells suppressed local tumor progression and metastatic burden in lungs in a sarcoma orthotopic mouse model (101).

Glypican-3 (GPC3)-specific CAR-NK-92 cells have been also explored, demonstrating potent antitumor effects both in vitro and in vivo against hepatocellular carcinoma (HCC). This CAR-NK product was also tested in an abdominal metastasis model, presenting better antitumor efficacy when injected intraperitoneally compared to intravenous administration (102).

The efficacy of adapter chimeric antigen receptor (AdCAR)-engineered NK-92 cells against bone metastases has also been demonstrated in vitro, in a panel of different cell lines derived from patient bone metastases, including those from mammary, renal cell and colorectal carcinoma, as well as melanoma (103). In differentiated thyroid cancer, it was observed that Thyroid-Stimulating Hormone Receptor (TSHR) is expressed not only in primary tumor, but also in metastatic sites. Accordingly, TSHR-CAR-NK-92 cells exhibited antigen-specific cytotoxic activity both in vitro and in vivo (104). Another targeted molecule, carcinoembryonic antigen (CEA), is a glycoprotein overexpressed in various epithelial tumors, including pancreatic, breast, lung, and colon cancer, associated with tumor differentiation, invasion, and metastasis. A next-generation CEA-CAR-NK-92 cells demonstrated effective cytotoxicity against colorectal cell lines and tumor spheroid models (105).

Finally, targeting cancer stem cells (CSCs) with CAR-engineered immune cells, including CAR-NK cells, is another promising strategy under investigation. CSCs represent a highly aggressive cell population responsible for metastases, tumor recurrence and chemoresistance, making them an interesting target to fight aggressive cancer (106–109).




5.2 CAR-NK cells and metastasis: clinical trials

In addition to the preclinical studies, some clinical trials have been conducted to test the efficacy of CAR-NK therapy in metastatic disease. In a clinical trial (NCT03941457, Table 1), a patient with pancreatic ductal adenocarcinoma and liver metastasis was treated with ROBO1-CAR-NK-92 cells, as described above. ROBO1 is a protein that plays a pivotal role in tumor angiogenesis and metastatic processes. The patient received CAR-NK treatment intravenously and by percutaneous administration to treat liver metastasis. No substantial treatment-related adverse events were reported. The patient had an 8-month overall survival, then dying due to tumor progression (50). Another clinical trial (NCT03415100, Table 1) explored CAR-NK cell therapy in three patients with metastatic CRC. In this case, the CAR construct was developed by fusing the extracellular domain of NKG2D to DAP12. Two patients were treated with intraperitoneal injection of low doses of the CAR-NK cells. These patients presented decreased ascites generation and a reduction in the number of tumor cells in ascites samples. The third patient, with liver metastases, was treated with intraperitoneal infusion of the CAR-NK cells, and achieved a rapid tumor regression in the liver after treatment (49). Finally, a phase II clinical trial (NCT04847466, Table 1) is evaluating the effectiveness of irradiated allogeneic PD-L1 CAR-NK cells in combination with pembrolizumab (PD-1 inhibitor) and N-803 (IL-15-based immunostimulatory fusion protein complex (IL15RaFc)), in patients with recurrent or metastatic gastric or head and neck cancer.

These findings highlight the growing potential of CAR-NK cells as a therapeutic strategy against metastatic disease, although further research is needed to fully understand their efficacy in clinical settings.





6 CAR-NK cells and combination therapies

Combinatory therapies of CAR-NK cells with conventional therapeutic strategies, such as chemotherapy, radiotherapy, or immunotherapy, have emerged as promising strategies (Figure 3). Those approaches not only aim at overcoming challenges associated with CAR-NK cell-based therapies, but also to enhance their efficacy. By addressing key challenges, such as an immunosuppressive TME, poor tumor trafficking, reduced effector function, and downregulation of activating NK cell ligands and receptors, these approaches seek to break through critical barriers to effective treatment.

[image: Illustration of a CAR-NK cell engaging with cancer cell therapies. The CAR-NK cell displays activating and inhibitory receptors. Treatments like immunotherapy, oncolytic viruses, epigenetic drugs, radiotherapy, and chemotherapy target cancer cells. The image shows interactions between receptors such as CTLA4, PD1, and PDL1, demonstrating multiple therapeutic approaches.]
Figure 3 | CAR-NK cell combination with other therapeutic approaches. CAR-NK therapies can be combined with other therapies, ranging from conventional therapeutic approaches (chemotherapy and radiotherapy), to checkpoint inhibition (anti-PD-1, anti-PDL-1 and anti-CTLA-4) and emerging therapies, such as epigenetic drugs and oncoviruses. Created in https://BioRender.com.



6.1 Immune checkpoint inhibitors (ICIs)

The programmed-cell death protein 1 (PD-1) immune checkpoint has been shown to be expressed on both circulating and tumor-infiltrating NK cells across several cancer types (110–115), being correlated with poor patient prognosis (116). Recent evidence also shows that this phenotype is associated with decreased NK cell activity, as demonstrated by impaired cytotoxicity, proliferation and cytokine production, which can be partially reverted through mAb-mediated disruption of PD-1/PD-L1 interactions (112, 113, 115–117). Following this rationale, combining checkpoint blockade with CAR-NK cell therapy could be a promising strategy to promote CAR-NK targeting of PD-L1-expressing tumors. Indeed, combination of CAR-NK-92 targeting prostate-specific membrane antigen (PSMA) with an anti-PD-L1 mAb (Atezolizumab) resulted in increased in vitro CAR-NK-92 mediated killing of C4-2 cells (a human castration-resistant prostate cancer (CRPC) cell line expressing PSMA) and primary tumor cells from a CRPC patient. Additionally, combination therapy enhanced in vivo cytotoxicity against C4–2 cells, leading to decreased tumor volume and longer survival in NOD/SCID mice, by directly blocking the PD-L1/PD-1 axis in both NK cells and CD8+ T cells (118). In another study, Liu et al. showed a synergistic antitumor response in vivo, upon treating a novel humanized nasopharyngeal carcinoma PDX mouse model with PD-L1 CAR-NK and an anti-PD-1 antibody (Nivolumab) (86).

The phase II clinical trial NCT04847466 (Table 1), referred above, is currently recruiting patients with recurrent/metastatic gastric or head and neck cancer, to test PD-L1 CAR-NK in combination with Pembrolizumab, together with an IL-15 superagonist. Additionally, in the CAR2BRAIN Phase I clinical trial (NCT03383978, Table 1), researchers are evaluating HER2-specific CAR-NK-92/5.28z cells, in combination with the anti-PD-1 mAb Ezabenlimab, for patients with recurrent HER2-positive glioblastoma (51, 119).

In addition, targeting NK inhibitory receptors have been reported to increase CAR-NK potential. A recent study showed that CD33-CAR-NK cells with CRISPR/Cas9-based disruption of the KLRC1 gene, which encodes the NKG2A inhibitory receptor, exhibited increased cytotoxicity against AML cells, both in vitro and in vivo (120).

Targeting other immune checkpoints, such as cytotoxic T-lymphocyte associated protein 4 (CTLA-4), T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT), and T cell immunoglobulin and mucin-containing domain (Tim-)-3, in a CAR-NK combination context could also represent a strategy to increase CAR-NK cell cytotoxicity, since upon their inhibition, improved NK cell activity has been observed (121–126).




6.2 Radiotherapy

As a key approach in cancer treatment, radiotherapy directly causes tumor cell damage, leading to increased expression of antigens and cytokine release, ultimately impacting the TME (127, 128). Evidence suggests that radiation treatment increases NK cell infiltration and migration to the tumor site, while also modulating NK cell activity and tumor cell recognition. This effect is likely mediated by increased chemokine signaling and upregulation of activating ligands, such as MICA/B and ULBP-1, resulting in enhanced NK cell cytotoxicity (128–130). In 2024, a study by Lin et al. showed that pre-treatment of HCC cells with irradiation increased in vivo migration and activity of CXCR2-armed GPC3-targeting CAR-NK92 cells, through MICA/B and ULBP1 upregulation (131).

However, it is relevant to mention that radiation therapy has also been linked to a direct cytotoxic effect towards immune cells, including NK cells, leading to a decrease in circulating NK cell counts (128, 132). Although these findings highlight the potential synergy between radiotherapy and CAR-NK cells, the schedule modality of each approach should be taken into consideration.




6.3 Chemotherapy

Besides the standard lymphodepleting chemotherapy used before CAR-NK infusion, which aims to increase CAR-NK cell persistence and activity (119), conventional chemotherapy may also be used as an approach to improve CAR-NK cytotoxicity through direct tumor destruction, release of cytokines/chemokines and an overall decrease in immunosuppressive cell populations (133). In a recent study, treatment of primary ovarian cancer cells, harvested from ascites of an ovarian cancer patient, simultaneously using CD44-CAR-NK cells and cisplatin led to increased anti-tumor cytotoxicity, compared with monotherapies alone (134). Furthermore, combination of EGFR-CAR-NK-92 with cabozantinib showed a synergistic therapeutic effect against renal cell carcinoma (RCC) cell lines and in human RCC xenograft models, highlighting the potential of combining CAR-NK cells and chemotherapy as a promising strategy for the treatment of solid tumors (135).




6.4 Oncolytic viruses (OVs)

Oncolytic virotherapy relies on the use of viruses that replicate within cancer cells, directly leading to their death, while preserving normal cells and stimulating anti-tumor immune responses (136, 137). Thus, several studies have explored the possibility of combining OVs with CAR-NK cells. In an in vivo model of breast cancer brain metastases (BCBMs), intratumoral administration of oncolytic herpes simplex virus (oHSV) and EGFR-CAR-NK-92 cells resulted in improved killing of cancer cells and longer survival, when compared to monotherapy (96). Another study showed that treatment with herpes simplex 1-based OV expressing human IL-15/IL-15Rα sushi domain fusion protein (OV-IL15C), and EGFR CAR-NK cells, was able to synergistically suppress tumor growth in a glioblastoma mouse model, while also leading to increased survival and enhanced infiltration and activation of NK and CD8+ T cells (138). Evidence thus suggests that this combination approach may represent a powerful strategy to increase CAR-NK therapeutic success.

This approach may also be further extended to other viral-based platforms, such as virus-like particles (VLPs) and virus-mimicking nanoparticles (VMNs), which can stimulate the immune system and delivery of therapeutic cargoes (139), and may thus be considered to expand the CAR-NK combination toolbox.

Overall, exploiting the combination of CAR-NK cells with ICIs, radiotherapy, chemotherapy or OVs is an exciting opportunity to, not only overcome some of the challenges related with CAR-NK cell therapies, but also to further improve their efficacy by functioning as complementary strategies.





7 CAR-NK cells and epigenetics: what is in there?

Epigenetics involves heritable and reversible changes in gene expression that do not alter the DNA sequence itself. These changes comprise mechanisms such as DNA methylation, histone modifications, and microRNA regulation (140). DNA hypermethylation, driven by DNA methyltransferases (DNMTs) is known to lead to transcriptional repression. Histone proteins can undergo post-translational modifications, such as acetylation and methylation, which regulate chromatin structure. Histone acetylation, mediated by histone acetyltransferases (HATs), promotes gene transcription by creating an open chromatin state. In contrast, histone deacetylases (HDACs) remove acetyl groups, condensing chromatin and suppressing gene transcription. Histone methylation, catalyzed by histone methyltransferases (HMTs), involves the transfer of a methyl group to a lysine residue on a histone protein, either activating or repressing transcription, depending on the specific lysine residue and number of methyl groups added (140, 141).

Beyond regulating tumor development, recent research has highlighted the pivotal role of epigenetic mechanisms in shaping immune cell function and tumor cell recognition. Different studies have shown that treatment with epigenetic modulating drugs (epi-drugs), including DNMT, HDAC and HMT inhibitors, has led to increased expression of activating NK cell ligands, such as MICA/B, ULBP1-6, PVR and Nectin-2 (142–152). Additionally, NK cell function has also been shown to be modulated by epi-drug treatment. However, while some studies show increased expression of Perforin, CD107a, Granzyme-B/K, IFN-γ and TNF-α by NK cells (148, 153–157), leading to enhanced tumor cell killing, others report impaired degranulation and cytotoxic ability (152, 158–161). Thus, although promising, further studies are still necessary to fully depict the potential of epi-drugs as modulators of NK cell function. Recently, combination of CEA-CAR-NK-92 cells with the HDAC inhibitor sodium butyrate (NaB) led to CEA upregulation in CRC cells, increasing CEA-CAR-NK-92 cell-mediated killing in an in vivo model, leading to reduced tumor volumes (162). Moreover, in 2025, Tan et al. evaluated the combination of CEA-CAR-NK cells with STM2457, an inhibitor of METTL3, in an in situ CRC tumor immunocompetent mouse model (163). METTL3 is a writer of the epitranscriptomic m6A modification, which regulates splicing, stability and mRNA translation. Combination treatment showed significant tumor growth suppression, reduced CRC recurrence and increased NK cell infiltration within the TME (163). Notably, a multi-center Phase I clinical trial (NCT04623944, Table 1) is currently assessing allogeneic CAR-NK cells targeting NKG2D ligands, in the presence or absence of the DNMT inhibitor Decitabine, in patients with R/R AML and myelodysplastic syndrome (MDS).

Overall, these emerging findings highlight the potential of harnessing epigenetic mechanisms to potentiate CAR-NK cell therapies.




8 CAR-NK cell therapies: what can we learn from bioinformatics?

Nowadays, the analysis of omics data using bioinformatic techniques is becoming a standard practice in biomedical sciences. This approach enables a comprehensive understanding of the cell state, as it goes beyond the examination of a single gene, incorporating a broad spectrum of molecular data. Bioinformatics is a vast field. There exists a more specialized area called immunogenomics, consisting of the study of the immune system and the tumor-immune cells interactions. This bioinformatics approach can delve into the mechanisms of action of CAR-NK cells in two key areas: (i) the design of new CAR-NK cells, and (ii) the analysis of omics data derived from experiments involving CAR-NK cells.

As an example of CAR-NK design, Lee and colleagues used a data-driven bioinformatics approach to predict optimal antigen combinations of AML and healthy tissue target antigens to incorporate into CAR gene circuits based on OR or NOT logic gated CAR gene circuits. By using this pipeline, they designed the first-in-class CD33 OR FLT3 NOT EMCN gene circuit, as described above (24, 164). Peng et al. also used bioinformatic tools to address the expression and the prognostic role of c-Met as a target prior to developing c-Met-CAR-NK-92 cells specific for lung adenocarcinoma (165).

To understand CAR-NK mechanisms of action using immunogenomics, not only bioinformatics, but also artificial intelligence (AI) tools can process vast amounts of genomic and multi-omics data to identify biomarkers associated with immunotherapy responses (166). AI can assist in providing insights into the intricate molecular networks between the immune and the cancer cells. Several studies utilize omics data analysis, to evaluate functionality of CAR NK cells, particularly in preclinical studies. A common approach in these studies is the use of sequencing protein-coding transcriptome (RNAseq) (47, 167–169). For example, Silvestre et al. used RNAseq to evaluate transcriptomic profiles of CD19-CAR-NK-92 cells after coculture with target B cell lines. Their study revealed that fourth generation CAR.19-IL15/IL15Rα had improved proliferation and effectiveness compared with other NK-92 cell-based tumor therapies (169). Biggi and colleagues used RNAseq to assess differences between CAR.19 and CAR.19-IL-27 cells, and digital droplet PCR to study persistence of CAR NK cells in mouse blood during treatment (170). In the last years, single-cell sequencing is also being implemented to study CAR-NK cells in the preclinical settings (71, 171, 172). Namely, Li et al. conducted single-cell RNAseq to analyze the evolution of CAR-NK cells after adoptive transfer using an in vivo preclinical model and samples from patients responding and non-responding to CAR/IL15 NK cells (71).

Although immunomics approaches strongly supports personalized treatments with CAR-NK, some challenges remain, such as data quality, model interpretability, integration of multi-modal data, and privacy protection.




9 CAR-NK cells: where can we go?

CAR-NK cell knowledge is emerging, with a growing amount of translational research and early clinical trials substantiating their therapeutic potential. While several clinical trials are currently underway, only very few have been completed or have published results. Thus, the coming years will provide crucial insights demonstrating the true potential of CAR-NK strategies, and guide more refined and effective designs. CARs are designed to recognize tumor-specific surface molecules, a process that provides cell activation while ensuring no reactivity to self. Therefore, selecting the right target is vital. The CAR construct is comprised of modules that are designed for optimal cell activation by delivering co-stimulatory and pro-survival signals. In this regard, the design of optimal constructs for each CAR-NK cell product should take into consideration their origin, differentiation or haplotype, requiring further groundwork. Moreover, the spatiotemporal component is often underestimated in most of preclinical tests. CAR-NK cells need to reach and infiltrate tumor tissue, adapt to TME, and co-evolve with the tumor. These dynamics can affect CARs directly (eg. recognition, signaling), but also other regulatory hubs of NK cells, such as transcription, epigenome or protein synthesis. The combination of CAR-NK immunotherapy with other strategies, such as chemotherapy, radiotherapy, or checkpoint inhibitors, aims to address and overcome some of these issues. Moreover, emerging approaches, such as epigenetic modulating drugs and oncolytic viruses, hold promise and should be further explored. As NK cells are key effectors in controlling metastases, the development of CAR-NK strategies to tackle metastatic disease assumes particular relevance. However, the metastatic cascade is complex, and outgrowing metastases often show phenotypes and targets distinct from the primary tumor, which should further guide the design of CAR-NK strategies against metastatic disease. With the rising standing of immunomics for designing novel targets and innovative strategies, alongside the growing field of multi-omics that allows spatiotemporal mapping and identification of novel mechanisms operating at immune-tumor axis, the doors of opportunities to better design CAR-NK-based therapies, are wide open. Thus, it is crucial to pursue multidisciplinary approaches and to integrate computational biology into the study framework and in-depth analysis of pre-clinical and clinical results. NK-CAR therapies offer several advantages over CAR-T cells, including the possibility to use them “off-the-shelf”, a lower risk of GvHD and of severe CRS, and intrinsic anti-tumor activity that can target cancer cells through both CAR-dependent and CAR-independent mechanisms. Nevertheless, NK cells tend to persist for a shorter period, showing limited proliferation post-infusion, often requiring multiple administrations. Moreover, they are harder to genetically modify, displaying lower transduction/transfection efficiencies and lack classical memory (although they can exhibit ‘trained immunity’), which may make them less effective for long-term tumor control. Although several efforts have been made to overcome these hurdles, such as more effective transduction strategies and CAR designs incorporating cytokines to enhance their persistence, further refinement of NK-CAR strategies will be crucial to maximize their therapeutic potential. Moreover, recent findings showed that combination of CAR-T cells with a small number of CB-derived CAR-NK cells could significantly enhance therapy efficacy, particularly in the early phases of treatment. Bachiller and colleagues showed that CAR-T/CAR-NK co-administration appears to support early activation and migration of CAR-T cells toward multiple myeloma (MM) targets, improving cytotoxicity and decreasing T cell exhaustion, without increasing the risk of CRS. These results highlight a novel synergistic immunotherapeutic approach that may overcome some of the current limitations of each therapy (173).

CAR-NK cells represent a revolutionary advancement in cancer therapy. As basic, translational, and clinical research advances, the near future will provide clearer guidance on the trajectory of CAR-NK therapies toward their development as standard treatment strategies.
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Background

Cytokine-induced killer (CIK) cell therapy has shown potent antitumor cytotoxicity. To date, no study has evaluated the efficacy and safety of combining CIK cell therapy with chemotherapy, with or without the immune checkpoint inhibitor (ICI) cadonilimab, for treating gastric cancer (GC).





Methods

In vitro cytotoxicity, in vivo distribution, and acute toxicity of CIK cells were assessed. A nude mouse subcutaneous xenograft model of GC was established. To determine the antitumor effect of the CIK cells + chemotherapy regimen, 32 mice were randomized into the following four groups: control, CIK cells alone, chemotherapy alone, and CIK cells + chemotherapy. To evaluate the antitumor effect of CIK cells + chemotherapy supplemented with the cadonilimab regimen, mice subcutaneously inoculated with MGC803 cells were randomly assigned to the following eight experimental groups: vehicle, CIK cells, cadonilimab, chemotherapy, cadonilimab + chemotherapy, CIK cells + cadonilimab, CIK cells + chemotherapy, and CIK cells + cadonilimab + chemotherapy.





Results

In vitro cytotoxicity assays indicated that CIK cells possessed good biocompatibility and sufficient therapeutic efficacy. An in vivo biodistribution assay revealed that CIK cells were mainly distributed in the spleen, lung, and liver. Acute toxicity analysis suggested that CIK cells had low toxicity. According to the tumor volume, the CIK cells + chemotherapy and chemotherapy-alone groups showed significantly higher tumor growth inhibition rates (34.2% and 50.8%, respectively) with well-tolerable toxicity than the control group (p < 0.01). The CIK cells + chemotherapy group exhibited a stronger, but not statistically significant, antitumor effect than the chemotherapy-alone group. In the safety and efficacy evaluation of CIK cells + chemotherapy + cadonilimab, the results showed that the tumor inhibitory effects of the cadonilimab + chemotherapy, CIK cells + chemotherapy, and CIK cells + cadonilimab + chemotherapy groups were significantly higher with tolerable toxicity than those of the CIK cells and cadonilimab groups (p < 0.05). The antitumor effect of the CIK cells + cadonilimab + chemotherapy regimen was also superior to that of the CIK cells + cadonilimab regimen (p = 0.0364). However, the tumor lysis ability showed no significant difference between the chemotherapy-based combination treatment groups and the chemotherapy-alone group.





Conclusions

The combination of CIK cells and chemotherapy with or without ICIs can serve as a potential therapeutic option for treating GC, with promising efficacy and good tolerability.
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1 Introduction

Gastric cancer (GC) ranks fifth in terms of morbidity and mortality rates among all cancer types worldwide, and it represents a severe public health threat (1). GC is a major health concern in East Asia, with the highest incidence rate in China (2). More than 80% of GC patients are in the advanced stage of the disease at the time of diagnosis. Chemotherapy remains the mainstream treatment approach for advanced GC. However, chemotherapy alone has limited efficacy in treating GC, with a median overall survival (OS) of 6–10 months (3).

Recently, based on the results of several clinical trials (e.g., CheckMate 649, KEYNOTE-859, ORIENT-16, and RATIONALE-305), anti-programmed cell death protein-1 (PD-1) plus chemotherapy has become the standard first-line treatment for HER2-negative, unresectable, locally advanced or metastatic gastric or gastroesophageal junction (G/GEJ) adenocarcinomas. However, the survival benefits were mostly observed in patients with high programmed death ligand 1 (PD-L1) expression. As reported previously, combining PD-1 and cytotoxic T lymphocyte antigen-4 (CTLA-4) inhibitors could enhance antitumor response in patients with multiple solid tumor types (4, 5). A phase III clinical trial (COMPASSION-15 study) showed that the combination of cadonilimab (anti-PD-1/CTLA-4 bispecific antibody) and chemotherapy substantially improved OS and progression-free survival (PFS) of GC patients even with low PD-L1 expression (combined positive score (CPS) < 5) (6).

Although the emergence of immune checkpoint inhibitors (ICIs) has offered survival benefits to patients with locally advanced or metastatic GC, these agents lack the required efficacy to meet the clinical demand (7, 8). Previous research has indicated that lymphocyte infiltration in tumor tissues positively correlates with the effectiveness of ICIs. Therefore, tumors with less lymphocyte infiltration may lead to poor efficacy of ICIs (9). Hence, novel therapeutic approaches are required to enhance antitumor immune responses.

Adoptive cell therapy (ACT) involves the collection of human autoimmune cells, proliferation of these cells through in vitro cultivation, enhancement of their targeted killing function, and re-inoculation of these cells into the patient’s body to kill cancer cells or mutated cells in blood and tissues (10). The current ACT approach utilizes tumor-infiltrating lymphocytes, lymphokine-activated killer (LAK) cells, dendritic cells (DCs), natural killer (NK) cells, cytokine-induced killer (CIK) cells, cytotoxic T lymphocytes, chimeric antigen receptor T cells, and T cell receptor-engineered T cells (11). ACT infusion is an alternative approach to increase intratumoral immune cell infiltration and augment the antitumor immune responses of the host (12).

CIK cells are a heterogeneous cell population obtained from human peripheral blood mononuclear cells (PBMCs) through ex vivo stimulation of multiple cytokines (13). The antitumor activity of CIK cells can be mainly attributed to the CD3+ CD56+ cells, which show an NK-like, major histocompatibility complex (MHC)-unrestricted antitumor activity without requiring prior antigen exposure or priming (14, 15). Moreover, in vivo, CIK cells can regulate and enhance the function of the host cellular immune response by secreting cytokines and chemokines. Therefore, CIK-based adoptive cellular immunotherapy might become a potential strategy for treating cancer. Previous research has demonstrated that CIK cells exhibit potent antitumor cytotoxicity against various tumor cells with tolerable side effects, both in vitro and in vivo (16–18). In recent years, several small-scale clinical studies have shown that CIK cell therapy combined with chemotherapy is a promising approach to improve the prognosis and quality of life of patients with locally advanced or metastatic GC (17, 19–25).

In the present study, we investigated the antitumor activity and toxicity of the combination of CIK cells, chemotherapy (oxaliplatin plus S-1), and cadonilimab in a nonclinical animal model of GC.




2 Methods



2.1 Cells and culture conditions

The human GC cell lines (MKN45 and MGC803) were obtained from the American Type Culture Collection (Manassas, VA, USA). These cell lines were cultured in Roswell Park Memorial Institute 1640 (RPMI 1640) medium supplemented with 10% fetal bovine serum (FBS, Excell Bio, Shanghai, China), streptomycin (100 µg/mL, Solarbio, Shanghai, China), and penicillin (100 U/mL, Solarbio) at 37°C under a 5% CO2 environment. The culture medium was replenished every 3 to 4 days. When the cell confluence reached approximately 80%, the cells were routinely passaged at a 1:3 ratio (approximately every 3 to 4 days). The cells in the logarithmic growth phase were utilized for subsequent experiments.




2.2 Establishment of the mouse subcutaneous xenograft model

Immunodeficient female B-NDG mice (Biocytogen Pharmaceuticals Co., Ltd., Beijing, China), female NCG mice (GemPharmatech Co., Ltd., Nanjing, China), and NPG mice (Beijing Vitalstar Biotechnology Co., Ltd., Beijing, China) were used for xenograft studies. All mice were reared under specific pathogen-free conditions by providing autoclaved food and water. Animal care and experiments were conducted according to the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The animal use protocol for this study was reviewed and approved by the Laboratory Animal Ethical Committee, Chinese National Drug Safety Assessment and Monitoring Center (Approval Number: IACUC-2020-056).

In the experiment for determining the in vivo distribution of CIK cells, MKN45 cells (1 × 107 cells/mouse) were subcutaneously injected into the right armpit of NPG mice on day 0. In the experiment for assessing the effect of the combination of CIK cells and chemotherapy, MKN45 cells (8.8 × 106 cells/mouse) were subcutaneously inoculated into the back of B-NDG mice on day 0. To examine the effect of the combination of CIK cells, chemotherapy, and cadonilimab, MGC803 cells (5 × 106 cells/mouse) were subcutaneously inoculated into the right flank of NCG mice on day 0.




2.3 CIK cell generation

PBMCs were obtained using freshly collected peripheral blood samples from healthy volunteers, who had provided signed informed consent for sample collection. PBMCs were isolated from the samples by Ficoll gradient density centrifugation. On day 0, PBMCs were seeded into a Corning T75 flask containing X-VIVO 15 media (Lonza, Switzerland) supplemented with recombinant human IFN-γ (R&D Systems, MN, USA) at 50 ng/mL concentration. After 24 h, 100 ng/mL of anti-CD3 pure human-functional grade antibodies (OKT-3, Miltenyi Biotec, CA, USA) and recombinant human interleukin-2 (Proleukin, Novartis, Switzerland) at 1,000 IU/mL concentration were added. From day 3, 50 ng/mL recombinant IL-15 (R&D Systems) was added to the medium at 2-day intervals. The cultures were maintained at 37°C under a 5% CO2 environment until injection into mice. On day 14, the cells were collected, washed with PBS solution, and centrifuged, and the supernatant was discarded. In this study, the tested CIK cell product was named TA cell.




2.4 Experimental design



2.4.1 Experiment 1: in vitro cytotoxicity

The calcein-AM assay (26) was performed to determine the cytotoxicity of CIK cells in vitro. Human GC cells (AGS, HGC27, and MKN45), human non-small cell lung cancer (NSCLC) cells (HCC827), and human chronic myeloid leukemia cells (K562) were used as target cells. CIK cells were used as effector cells. Target cells were resuspended in RPMI-1640 medium at the final concentration of 1 × 106 cells/mL and incubated with 1 μg/μL calcein-AM (Invitrogen Inc., city, country) at 37°C for 30 min. After two washes in RPMI 1640 medium, the cell density was adjusted to 2 × 105 cells/mL. Effector cells and calcein-labeled target cells were then co-cultured in 96-well plates in triplicates for 4 h at 37°C with various effector-to-target cell (E: T) ratios, i.e., 50:1, 20:1, 10:1, 5:1, 2:1, 1:1, and 1:3. Wells with co-cultured target cells and PBS served as spontaneous release wells. Wells with co-cultured target cells and lysis buffer (5% Triton X-100) were considered maximal release wells. Following incubation, the plate was centrifuged for 5 min, and 100 μL of the supernatant was then transferred to another 96-well plate. The fluorescence intensity of the supernatant samples was measured with a microplate reader (Multiskan MK3, Thermo Fisher Scientific) with 490 nm excitation and 515 nm emission filters. Percent cytotoxicity of the assay was calculated as follows: Cytotoxicity (%) = [(experimental release - spontaneous release)/(maximal release - spontaneous release)] × 100%.




2.4.2 Experiment 2: in vivo distribution

The in vivo distribution of CIK cells was determined by quantitative real-time PCR (qRT-PCR). A total of 126 NPG mice were assigned to three groups as follows (1): control group (21 males and 21 females) (2), nontumor-bearing mice group (21 males and 21 females), and (3) tumor-bearing mice group (21 males and 21 females). Tumor-bearing mice were generated by injecting MKN45 cells (1 × 107 cells per mouse) subcutaneously into the right armpit of nude mice. Six days after tumor implantation, animals with a tumor volume of 100 mm3 were selected. The nontumor-bearing and tumor-bearing mice groups received an intravenous injection of CIK cells (4 × 107 cells per mouse) through the tail vein. To determine the tissue distribution of CIK cells in vivo, we harvested various tissues (including blood, heart, liver, spleen, lung, kidneys, brain, testes, epididymides, uterus, ovaries, stomach, duodenum, colon, bone marrow, adipose tissue, and muscle) from the mice groups at different time points (3 h and 2, 7, 14, 28, 41, and 56 d post-dosing) and estimated the copy number of the human GAPDH (hGAPDH) gene by qRT-PCR, which reflected the injected CIK cell number.




2.4.3 Experiment 3: acute toxicity

Forty-eight NPG mice were assigned to the following four groups, with 12 mice in each group (six males and six females): control group, low-dose group, mid-dose group, and high-dose group. High-dose, mid-dose, and low-dose groups were injected with 5 × 107 cells/kg, 80 × 107 cells/kg, and 250 × 107 cells/kg CIK cells through the tail vein, respectively. The animals were observed twice daily (morning and evening) during the study to assess clinical symptoms. The body weight (BW) and food intake of mice in all groups were weighed weekly. The mice were monitored for 28 days and sacrificed for histopathological examination on the 29th day post-dosing.




2.4.4 Experiment 4: efficacy of the combination of CIK cells and chemotherapy

To examine the antitumor effect of the CIK cells + chemotherapy regimen in vivo, 32 female B-NDG mice with subcutaneously inoculated MKN45 cells were divided into four groups (eight mice per group) and administered different treatment regimens. Mice in group 2 (G2) were dosed 1 day after tumor cell inoculation. Other mice were randomly assigned to group 1 (G1), group 3 (G3), and group 4 (G4) according to their tumor volume and weight on day 5 after inoculation. The dosing regimen of each group is shown in Table 1. The mice in the control group were administered an equal volume of the vehicle. The antitumor efficacy was determined based on BW, general status, tumor growth curve, and tumor weight (TW). The copy number of CIK cells in peripheral blood was assessed by quantitative PCR (qPCR). IFN-γ, TNF-α, IL-6, IL-4, and IL-10 levels in the tumor tissues were detected by ELISA. T-cell infiltration into tumor tissues was examined by immunohistochemistry (IHC). The levels of cytokines (IFN-γ, IL-2, TNF-α, IL-6, IL-4, and IL-10) in peripheral blood samples were detected by flow cytometry [fluorescence-activated cell sorting (FACS)].

Table 1 | Treatment schedule involving CIK cells and chemotherapy.


[image: Table showing treatment groups for a study. Group G1: Vehicle, no administration details. G2: CIK cells, 5x10^7 cells/mouse, intravenously on days 1, 13, 28. G3: Chemotherapy with Oxaliplatin, 4.2 mg/kg intravenously on days 5, 20, and S-1, 6.9 mg/kg orally on days 5-11, 20-26. G4: Combination of CIK cells and chemotherapy with specified doses and routes. NA denotes not available.]



2.4.5 Experiment 5: efficacy of the combination of CIK cells, chemotherapy, and cadonilimab

To assess the antitumor effect of the combined regimen of CIK cells plus chemotherapy with cadonilimab, NCG mice with subcutaneously inoculated MGC803 cells were randomly assigned to eight experimental groups on day 5 (four or five mice per group). The schematic diagram of this experiment is provided in Figure 1, and complete details of drug administration doses and protocols are shown in Table 2. The mice in the control group were administered an equal volume of the vehicle. The antitumor efficacy was determined according to BW, general health status, tumor growth curve, and TW. The proportion of CIK cells was determined by FACS.

[image: Diagram showing a two-part experimental setup. Part A illustrates a sequence from a petri dish to a syringe injected into a mouse, with arrows leading to "Grouping." Part B is a timeline detailing injections and administrations for mice, involving CIK cells, Oxaliplatin, S-1, and cadonilimab at various intervals from PG-D0 to PG-D36.]
Figure 1 | Schematic representation of the experimental design and the dosing procedure. (A) Diagram of establishing a mouse xenograft tumor model. (B) Schematic timeline for the drug administration. PG, post grouping; BIW, twice a week; QD, daily; p.o., per os (oral administration); i.v., intravenous; i.p., intraperitoneal.

Table 2 | The dosing regimen involving CIK cells, chemotherapy, and cadonilimab.


[image: A table detailing the administration of various drugs across eight groups, G1 to G8. Columns include the number of animals (N), drug name, dose, application route, and day of administration. Drugs include vehicle, CIK cells, cadonilimab, oxaliplatin, and S-1. Doses vary, with routes such as intravenous (i.v.), intraperitoneal (i.p.), and oral (p.o.). Administration occurs on specified days, including post-grouping days (PG-D0/8/22/32, PG-D4, PG-D14), with some treatments given twice a week (BIW) or daily for specific days (QD).]




2.5 Efficacy assessment

The tumor volume was measured using a vernier caliper twice a week. The tumor volume (TV) was calculated as follows: TV = L × W2/2, where L and W represent the long diameter and short diameter of the tumor, respectively. The relative tumor volume (RTV) was calculated as RTV = Vt/V0, where V0 is the initial TV before administration (Day 0) and Vt is the TV at the time of measurement (Day t). The evaluation index of the antitumor effect was the relative tumor proliferation rate: T/C (%) = (TRTV/CRTV) × 100%) (TRTV: the average RTV of the treatment group, CRTV: the average RTV of the vehicle control group). Tumor growth inhibition (TGI) was defined as TGITV (%) = (1 - T/C) × 100%. The BW of mice was monitored every other day by using an electronic balance and was recorded before and after drug administration. The general health status (including activity, feeding, and bowel movements) and survival of mice were observed and recorded during the experiment. At the end of the experiments, the mice were euthanized. The tumor tissues were excised and photographed, and the TW was measured. The TW of each group was estimated to calculate the tumor growth inhibition rate (TGITW): TGITW% =(1 - T/C)× 100% (T/C = the average TW of the treatment group/the average TW of the vehicle control group).




2.6 Flow cytometry

Peripheral blood samples were analyzed by flow cytometry. In the experiment for assessing the efficacy of CIK cells + chemotherapy with cadonilimab in vivo, peripheral blood samples from mice in the G2 (CIK cells), G6 (CIK cells + cadonilimab), G7 (CIK cells + chemotherapy), and G8 (CIK cells + cadonilimab + chemotherapy) groups were collected on days 7, 14, 17, and 36 after administration. Human cells (hCD45+, hCD3+, hCD4+, hCD8+, and hCD56+) in mouse peripheral blood samples were quantified by FACS.

During flow cytometry analysis, debris and cell aggregates were first excluded from mouse peripheral blood samples based on FSC-SSC characteristics to gate the single-cell population. Within the single-cell population, a CD45 vs SSC scatter plot was generated to gate CD45+ cells. From the CD45+ population, a CD3 vs SSC scatter plot was created to identify CD3+ T cells. Among the CD3+ cells, a CD4 vs CD8 scatter plot was generated to distinguish CD4+ and CD8+ subsets. Additionally, a CD3 vs CD56 scatter plot was plotted from the CD45+ population to gate CD3-CD56+ NK cells.




2.7 IHC

At the end of in vivo studies, tumor tissue samples were dissected from mice. Tissue specimens were fixed with 4% buffered formaldehyde, and paraffin-embedded sections were subjected to IHC analysis. Immunohistochemical staining of the tumor samples was used to evaluate the persistence and infiltration of CIK cells.




2.8 ELISA

At the end of the experiment, the tumor tissues were resected and collected to quantify cytokine levels. The levels of IFN-γ, TNF-α, IL-4, IL-6, and IL-10 were measured using ELISA sets for human IFN-γ, TNF-α, IL-4, IL-6, and IL-10 (BD Biosciences, USA), respectively.




2.9 Statistical analysis

GraphPad Prism 9.0 software (GraphPad Software, San Diego, CA, USA) and SPSS 19.0 software (IBM Corporation, NY, USA) were used for statistical description and analysis. One-way or two-way analysis of variance (ANOVA) was utilized for comparison among groups. Standard deviation (SD), standard error of the mean (SEM), and p-values were calculated using Student’s t-test and ANOVA. A p-value of < 0.05 was considered statistically significant.





3 Results



3.1 Cytotoxic activity of CIK cells against different human tumor cells

The cytotoxicity of CIK cells was examined under in vitro conditions in a calcein-AM cytotoxicity assay. The results indicated that CIK cells showed specific cytotoxic activity against various human cancer cell lines, and the cytotoxicity level increased as the E: T ratio increased between 1:3 and 50:1 (Figure 2). K562 cells were most susceptible to CIK cell-mediated cytotoxicity with the highest tumor cell lysis rate (121.3% ± 14.4%) at the E: T ratio of 50:1. The highest cytotoxicity rates of CIK cells toward GC cells HGC-27, AGS, and MKN-45 were 50.1% ± 4.3%, 35.4% ± 8.2%, and 24.9% ± 24.8%, respectively. CIK cells also showed cytotoxic effects on the human NSCLC cells (HCC827), with the highest tumor cell lysis rate of 46.6% ± 17.9%. Overall, the results confirmed that CIK cells killed various human cancer cells in vitro. The antitumor effect of CIK cells was dose-dependent, which indicated that the strong cytotoxic effect was achieved through the non-MHC-restricted pathway.

[image: Line graph displaying cytotoxicity percentages against E:T ratios for different cell lines: K562, HGC-27, AGS, MKN45, and HCC-827. K562 shows the highest cytotoxicity, decreasing across 50:1 to 1:3 ratios. HGC-27, AGS, MKN45, and HCC-827 have lower, relatively stable values. Error bars indicate variability.]
Figure 2 | The cytotoxicity of CIK cells against various human tumor cells at different E/T ratios [n = 3, mean ± standard deviation (SD)].




3.2 Biodistribution of CIK cells in vivo

The distribution of CIK cells in vivo in mice was assessed by qRT-PCR, wherein the abundance of the hGAPDH gene in various organs of mice was estimated at different time points (3 h and 2, 7, 14, 28, 41, and 56 d) after injecting CIK cells. Variations in the copy number of the hGAPDH gene were consistent between the nontumor-bearing mice group and the tumor-bearing mice group. As shown in Figure 3A, hGAPDH gene copies showed abundance in various tissues at different time points. In peripheral blood, the number of hGAPDH gene copies peaked at 2 d and then declined. At 28 days after drug administration, the copy number of the hGAPDH gene began to increase and reached a second peak at 41 d. In the lung, liver, heart, and kidney, the hGAPDH gene copy number exhibited an overall declining trend from 3 h to 14 d, then gradually increased, and peaked at 41 d. The spleen tissue is an important immune organ; hGAPDH gene copies were detected in the spleen tissue at 3 h and exhibited an overall upward trend from 14 d to 56 d. The hGAPDH gene copies in adipose tissue and bone marrow remained relatively low from 3 h to 14 d, started to increase at 14 d, and peaked at 41d. In the reproductive organs (uterus, ovary, testis, and epididymis), stomach, skeletal muscle, duodenum, and colon tissues, hGAPDH gene copies were mostly detected after 28 d. Overall, CIK cells were mainly distributed in the spleen, followed by the lung, liver, and peripheral blood, with a relatively low distribution in the kidney and heart tissues (Figure 3B). In most tissues, the gene copy number was significantly increased from 28 to 41 d, indicating the activation of CIK cells. Both male and female mice showed consistent trends in CIK cell distribution.

[image: Graphs comparing hT DNA copy numbers in non-tumor-bearing and tumor-bearing mice over time in various tissues. Line graphs (A) show data across multiple days for each tissue. A bar graph (B) depicts the area under the curve (AUC) for different tissues from day 0 to day 56, with color-coded bars for non-tumor and tumor-bearing mice.]
Figure 3 | In vivo biodistribution of CIK cells. (A) Blood and various tissues hGAPDH gene copies concentration-time profiles after CIK cells administration to non-tumor-bearing mice and tumor-bearing mice (mean ± SD). (B) CIK cell accumulation in blood and various tissues from 0 to 56d post-dose.




3.3 Acute toxicity of CIK cells

An acute toxicity study was performed to evaluate the potential toxicity of CIK cells. During clinical observation, female mice in the mid-dose and low-dose groups appeared normal, with no signs of poisoning and no death. In the high-dose group, 50% of the mice experienced symptoms such as piloerection and hunched posture. Compared to female mice, several male mice in all groups presented symptoms, including piloerection, epilation, and hunched posture, which might be associated with xenogeneic graft-versus-host disease (xGVHD). On the 26th day after administration, one female mouse in the high-dose group died. Microscopy examination revealed that this mouse had xGVHD-associated histopathological changes and showed severe bone marrow failure. Therefore, the cause of death may be related to the occurrence of severe xGVHD in this mouse. CIK cell administration showed no significant effect on mouse BW and food intake in the mid-dose and low-dose groups. In the third week, mice in the high-dose group had lower feed intake than control mice, and the increase in their BW was suppressed. The BW recovery of female mice began in the fourth week after administration. The results of the evaluation of acute toxicity are shown in Table 3.

Table 3 | The body weight of mice during acute toxicity (mean ± SD, g).


[image: Table showing mean values with standard deviations for two groups, female and male, across different days of administration. Each group, including control, low-dose, mid-dose, and high-dose, has values recorded from the day of grouping through day twenty-nine. Significant differences are noted with footnotes, indicating statistical comparisons with the control group, where p is less than zero point zero five and p is less than zero point zero zero one.]



3.4 In vivo antitumor effect of the combination of CIK cells and chemotherapy



3.4.1 Changes in BW

The mouse subcutaneous xenograft model was used to evaluate the antitumor effects of the combination of CIK cells and chemotherapy. Following drug administration, all animals showed good general conditions with normal behavior, feeding, and drinking within 3 weeks; this finding suggested that the tested CIK cell-based regimen was safe and adequately tolerable. Twenty-two days after administration, the BW of mice in the G3 and G4 groups showed a significant decrease. At the end of the experiment, the animals in the G3 and G4 groups had lower BW (by 2.6 g and 3.0 g, respectively) than those before administration. The mean BW of the G2 group mice also decreased by 1.3 g at the end of the experiment. The mean BW of the G3 and G4 groups was significantly different from that of the control group (G1) at 25 and 28 d, respectively (p < 0.05). The decrease in the BW of mice in the G3 and G4 groups might be associated with the cytotoxicity of chemotherapeutic drugs and GVHD. The changes in BWs are shown in Figure 4A.

[image: Graphs depicting the impact of different treatments on body weight, tumor volume, and cytokine levels in mice. Graph A shows body weight over 30 days, with a notable decrease in G3 and G4 groups. Graph B shows tumor volume increase, with G4 showing reduced growth. Graph C displays tumor weight, with G4 having a lower weight. Graphs D to H show cytokine levels (IFN-γ, IL-6, TNF-α, IL-10, IL-4) with significant variations among groups. Statistical significance is indicated with asterisks.]
Figure 4 | Antitumor effect of combination CIK cells with chemotherapy. (A) The body weight change curve of mice after administration. (B) Tumor progression after administration with CIK cells and/or chemotherapy. (C) Tumor weight of mice 29 days after administration. (D–H) Levels of IFN-γ, IL-6, TNF-α, IL-10, and IL-4 in tumor tissues. *, compared with the vehicle control group, p < 0.05; **, compared with the vehicle control group, p < 0.01; mean ± SD, n = 8.




3.4.2 Changes in tumor volume and TGI

On day 28, the average tumor volume of the control group (G1) was 1,556.2 ± 223.3 mm3, and those of the G2, G3, and G4 groups were 1,298.6 ± 387.6, 1,027.5 ± 347.0, and 770.5 ± 212.2 mm3, respectively. The TGI rates based on the tumor volume were 7.8%, 34.2%, and 50.8% for the G2, G3, and G4 groups, respectively. The TGITV rates of the combination group and the chemotherapy group were significantly higher than that of the control group (p < 0.01). However, CIK cells alone had a limited effect on the growth inhibition of gastric tumors. Moreover, the TGITV rate of the combination group was higher than that of the chemotherapy group, but not significant (p > 0.05). The change in the tumor volume for each group is shown in Figure 4B.




3.4.3 TW inhibition rate

At the end of the experiment (29 d), the mice were euthanized, and the tumors were dissected, weighed, and photographed. The average TW in each group was calculated and compared (Figure 4C). The TWs in the G3 and G4 groups were significantly lower than that of the control group (p < 0.05). The inhibition rates of TW (TGITW) in the G3 and G4 groups were 31.2% and 47.2%, respectively. The TGITW of the G3 and G4 groups was significantly higher than that of the control group; this finding showed that both CIK cells + chemotherapy regimen and chemotherapy alone could inhibit tumor growth. Although the result was not statistically significant, the CIK cells + chemotherapy combination group exhibited a trend toward a higher TGITW than the chemotherapy-alone group. The TGITW in the G2 group was only 12.1%, which suggested that CIK cells alone exhibited no apparent tumor suppressive effect.




3.4.4 Infiltration of CIK cells in the tumor tissues of mice

The infiltration of T cells at the tumor site was evaluated by IHC. The results showed that T cell infiltration in the tumor tissues could be detected in the G2 and G4 groups after CIK cell administration. The tumor margin, but not the stroma or tumor core, was the primary site for the active infiltration of T cell subsets (Supplementary Figure 1).




3.4.5 Cytokine secretion in tumor tissues

At the end of the experiment, ELISAs were conducted to detect the cytokines secreted in tumor tissues. The resected tumor mass from the G2 group showed an elevated IFN-γ level and reduced TNF-α and IL-6 levels; this finding suggested the infiltration of activated T cells into the tumor tissues (Figures 4D–H).





3.5 In vivo antitumor effect of the combination of CIK cells, chemotherapy, and cadonilimab



3.5.1 Changes in BW of mice

Chemotherapy combined with an ICI is known to improve the survival benefits of patients with metastatic GC. Based on the attractive antitumor effect of combining CIK cells and chemotherapy, we concluded that the addition of an ICI to CIK cells and a chemotherapy regimen might optimize cancer treatment and achieve enhanced antitumor efficacy. A subcutaneous xenograft nude mouse model was established to investigate the inhibitory effects of the combination regimen of CIK cells, chemotherapy, and cadonilimab (a PD-1/CTLA-4 bispecific antibody) on tumor growth and metastasis in vivo. Following administration of the regimen components, mice in each group showed normal autonomic activities, behavior, and feeding, indicating that this novel regimen was safe. The BW of tumor-bearing mice was measured to assess the toxicity of the regimen. At the end of the experiment (36 d), compared to 0 d, the average BW of the G7 group (CIK cells + chemotherapy) and G8 group (CIK cells + cadonilimab + chemotherapy) was significantly different from that of the G1 group (vehicle control) (p < 0.05) (Figure 5A). The reduced BW may be associated with GVHD.

[image: Seven graphs depict data from a scientific study involving different treatment groups. Graph A shows body weight over time, while Graph B represents tumor volume progression. Graph C illustrates tumor weight across various treatment groups. Graphs D to G present the proportion of immune cell populations (CD45+, CD3+CD4+, CD3+CD8+, CD49b+CD3-, NKCD45+) at different time points (PG-07, PG-014, PG-017, PG-036) for treatments involving G1 to G4, including vehicle, cdk cells, cdk cells with caxloxamine, chemotherapy, and their combinations. Data indicates trends and variations among the groups.]
Figure 5 | Antitumor effect of the combination of CIK cells with chemotherapy and cadonilimab. (A) The body weight change curve of mice after administration. (B) Tumor volume for each group of mice after administration. (C) Tumor weight of mice 36 days after administration. (D–G) The proportion of immune cell populations in the peripheral blood between different groups at various time points (day 7, 14, 17, and 36 after grouping). *compared with the vehicle control group, p < 0.05; mean ± SEM.




3.5.2 Changes in tumor volume and TGI

At the end of the experiment, the average tumor volume of the G1 group was 2,753 ± 351 mm3 and those of the G2 to G8 groups were 2,857 ± 331, 2,753 ± 389, 1,986 ± 155, 1,784 ± 240, 2,857 ± 366, 2,097 ± 250, and 1,996 ± 169 mm3, respectively. The average tumor volume of the G4 (chemotherapy), G5 (cadonilimab + chemotherapy), G7 (CIK cells + chemotherapy), and G8 (CIK cells + cadonilimab + chemotherapy) groups was significantly smaller than that of the G1 group (p < 0.05) (Table 4). The TGITV rates of the G2 to G8 groups were -3%, -1%, 28%, 34%, -6%, 21%, and 24%, respectively. Compared to the G2 and G3 groups, the G5, G7, and G8 groups showed significantly better tumor inhibitory effects (p < 0.05). However, the TGITV rates showed no significant difference between the chemotherapy-based combination treatment groups (G5, G7, and G8) and the chemotherapy-alone group (G4). Furthermore, the TGITV rates showed no significant difference between the CIK + chemotherapy + cadonilimab group (G8) and CIK + chemotherapy group (G7) (p = 0.77). Tumor volume changes for each group of mice are shown in Figure 5B.

Table 4 | Tumor volume and tumor growth inhibition rate.
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3.5.3 TW inhibition rate

After the final observation on 36 d, mice were sacrificed, and their tumors were dissected and weighed. The average TW and TGITW rates of each group were calculated and compared (Figure 5C, Table 5). The TGITW rates of the G2 to G8 groups were -1%, 4%, 33%, 39%, -1%, 29%, and 30%, respectively. Based on TW, the antitumor effects were significantly better in the G4, G5, G7, and G8 groups than in the control group (p < 0.05). Moreover, compared to the G2 and G3 groups, the G5, G7, and G8 groups showed significantly better tumor inhibitory effects (p < 0.05). However, the TGITV rates were not significantly different between the chemotherapy-based combination treatment groups (G5, G7, and G8) and the chemotherapy-alone group (G4).

Table 5 | Tumor weight and tumor growth inhibition rate.
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3.5.4 Proportion of immune cells detected in peripheral blood samples

The proportion of immune cells in peripheral blood samples was detected by FACS. The hCD45+ cells showed a low proportion in the G2, G6, G7, and G8 groups at all time points. At the end of the experiment (36 d), the proportion of hCD45+ cells in the peripheral blood of mice in the G7 and G8 groups increased significantly (16.54% and 32.49%, respectively) as compared to that in the G6 group. Moreover, the percentage of hCD45+ cells was higher in the G8 group than in the G7 group, although the difference was not statistically significant (p > 0.05). These results suggested that ICIs combined with chemotherapy might activate CIK cells.

The majority of hCD45+ cells in peripheral blood samples were CD3+ lymphocytes. The percentage of CD3+ lymphocytes showed a tendency to increase after administration. In the G7 and G8 groups, in particular, the percentage of CD3+ cells was higher than that in the G2 and G6 groups at each time point. Among the CD3+ cell subsets, the percentage of CD8+ T cells was higher than that of CD4+ T cells in the four groups. NK cells formed a small subset of immune cells with a declining trend over time. The proportion of immune cells detected in peripheral blood samples between different groups is shown in Figures 5D–G.






4 Discussion

CIK cells have been extensively evaluated in preclinical studies and have shown promising antitumor effects against various tumors, including GC (27, 28). Our in vitro cytotoxicity assay also indicated that CIK cells showed cytotoxicity against several GC cell lines. The acute toxicity study revealed that CIK cells at moderate and low doses did not show any critical cytotoxicity, while a high dose of CIK cells caused xGVHD-related symptoms and histopathological changes. In clinical practice, autologous CIK cells do not induce GVHD, as confirmed by several clinical trials (25). Overall, CIK cells are good candidates for cellular immunotherapy in patients with GC. However, CIK cells exhibit only modest therapeutic efficacy when used as a single agent. This might be because the TME is immunosuppressive, which prevents the infiltration of CIK cells (29, 30).

Based on previous studies, conventional chemotherapy might mediate tumor cell sensitivity to ACT through multiple immune-based mechanisms (31). First, chemotherapy might play a critical role in rebounding immune cell pools after lymphodepletion, contributing to the prolonged persistence and enhanced efficacy of CIK cell therapy. Second, chemotherapy alters the TME to activate T cells for cancer cell apoptosis through low-affinity epitopes. Third, several chemotherapeutic drugs can increase CTL-induced production of IFN-γ in the TME and promote cell-mediated antitumor activity by eliminating myeloid-derived suppressor cells (MDSCs) (32). Fourth, chemotherapy can deplete immunosuppressive regulatory T cells and MDSCs (33). Fifth, the phagocytosis of cell debris enhances Toll-like receptor-dependent signaling, which directly stimulates antigen-presenting cells, thereby eliciting potent anticancer immune responses. Several preclinical studies have confirmed that chemotherapy can induce autophagy in NSCLC cells (34, 35). Therefore, we hypothesized that CIK cells can synergize with chemotherapeutic drugs to provide a robust anticancer immune response.

Combining S-1 with oxaliplatin (designated as SOX) is one of the most commonly used first-line chemotherapies for GC patients. The present research showed that the CIK cells + SOX and SOX-alone groups exhibited significantly higher tumor growth inhibition rates and well-tolerable toxicity as compared to the control group. Additionally, the antitumor effect of the CIK cells + SOX group was stronger, although not statistically significant, than that of the SOX-alone group. Thus, it can be preliminarily inferred that combining adoptive CIK cells and chemotherapy had a synergistic tumoricidal effect. In the CIK cells + SOX group, infiltrated T cells were detected at the margin of tumor tissues; this finding demonstrated that CIK cells possessed the capacity of homing to tumors and then activated the immune system to suppress tumor growth. The elevated IFN-γ secretion level and reduced levels of TNF-α and IL-6 detected in tumor tissues suggested that activated CIK cells infiltrated into tumors.

Based on a research study by Yost et al., the T cell response to ICIs relies on reinvigorating the recruitment of novel T cells rather than using preexisting tumor-infiltrating lymphocytes (36). The authors performed paired single-cell RNA and T-cell receptor sequencing of cells from site-matched tumors of patients with basal cell carcinoma or squamous cell carcinoma before and after anti-PD-1 therapy. The results showed that T cells responding to ICIs originated from a distinct repertoire of T cell clones that recently infiltrated the tumor, while pre-existing tumor-specific T cells exhibited limited reinvigoration capacity. Therefore, compared to pre-existing tumor-infiltrating lymphocytes, CIK cells as exotic T cells may respond strongly to ICI therapy and subsequently exert an overt antitumor effect. Another preclinical study showed that the combination of anti-PD-1 and anti-CTLA-4 antibodies with CIK cells exerts synergistic antitumor effects on renal cancer cells (37). Anti-PD-1 and anti-CTLA-4 antibodies induced the proliferation of CIK cells and upregulated the secretion of the immunostimulatory cytokine IFN-γ by these cells. Therefore, CIK cells combined with nivolumab and ipilimumab could be considered a promising strategy for adoptive immunotherapy.

Cadonilimab is an anti-PD-1/CTLA-4 bispecific antibody. The phase III randomized clinical trial COMPASSION-15 showed that cadonilimab plus chemotherapy significantly improved the median OS and median PFS of patients with unresectable G/GEJ adenocarcinoma (6). In our study, compared to the CIK cell group and cadonilimab group, the chemotherapy-based combination groups showed significantly better tumor inhibitory effects with tolerable toxicity. However, the chemotherapy-based regimen groups showed no significant difference in tumor lysis ability. The proportion of hCD45+ cells in the peripheral blood of mice was significantly increased in the CIK cells + chemotherapy group and the CIK cells + cadonilimab + chemotherapy group as compared to that in the CIK cells + cadonilimab group. The percentage of hCD45+ cells in the CIK cells + cadonilimab + chemotherapy group was also higher than that of the CIK cells + chemotherapy group, although the difference was not statistically significant. These results suggested that cadonilimab combined with chemotherapy might activate CIK cells.

Because changes in BW indirectly reflect the toxicity of antitumor drugs, we assessed the safety of the different combinations by measuring changes in the BW of treated mice. The SOX and CIK cells + SOX groups in Experiment 4 as well as the CIK cells + SOX and CIK cells + cadonilimab + SOX groups in Experiment 5 showed an apparent decrease in BW as compared to the control group. All mice in these groups received chemotherapy, and the significant decrease in BW is probably due to chemotherapy-induced toxicity and tumor shrinkage. In mice receiving CIK cells, the decreased BW might also be related to GVHD, which has been demonstrated in previous studies (38, 39). However, in clinical practice, autologous CIK cells do not cause GVHD in humans.

This study had some limitations. First, this study employed an immunodeficient mouse model, utilized CIK cells without targeting property, and used MKN45 cells, which was a human-derived cell line. Thus, this model might not appropriately reflect the immune responses related to cancer treatment; consequently, the findings of the current study cannot be fully translated to human subjects. Future studies with human subjects are required to confirm our findings. Second, the tumor PD-L1 expression level was not determined in the MGC803 cell line. In recent years, several clinical trials have confirmed that the combination of ICIs and chemotherapy provides a better prognosis for GC patients with high levels of PD-L1 expression. Hence, it is essential to accurately estimate PD-L1 expression to better understand the research data. Third, the CIK + chemotherapy regimen provided only moderate improvement in clinical response, which might be related to the short duration of administration. In published clinical trials evaluating the combination of ICI plus chemotherapy, ICI was administered for a maximum period of 2 years. The 5-year follow-up survival results of the Checkmate 649 study showed that the immunotherapy-based treatment approach could provide patients with long-term benefits. A phase II study suggested that patients who received three or more cycles of CIK cells derived most benefits from treatment with CIK cells plus chemotherapy (25). In the future, randomized controlled clinical trials are required to assess whether the addition of CIK cells to chemotherapy with ICIs could enhance the clinical benefits of patients with GC.

In conclusion, the present study showed that the combination of CIK cells and chemotherapy with or without cadonilimab served as a potential therapeutic option for treating GC. These promising preclinical data promoted the entry of this novel combination regimen into human clinical trials.
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Chimeric antigen receptor (CAR) -T cell therapy targeting B-cell maturation antigen (BCMA) has demonstrated significant efficacy and is considered an ideal target for the treatment of relapsed or refractory multiple myeloma (R/R MM). However, due to the unstable or negative expression of BCMA, single-target BCMA CAR-T cell therapy still faces challenges, whereas targeting G protein-coupled receptor C5 family member D (GPRC5D) provides a new therapeutic direction. Clinical studies have shown that CAR-T cell therapy targeting GPRC5D has promising therapeutic potential for R/R MM. Here, this study is a case report on a 61-year-old male R/R MM patient with extramedullary disease (EMD) who participated in a clinical trial of anti-BCMA/GPRC5D bispecific CAR-T cell therapy. Three months after infusion, the patient achieved a very good partial response (VGPR). Although the patient experienced four episodes of CAR-T cell expansion and developed grade 3 cytokine release syndrome (CRS), the symptoms were well controlled, and the treatment demonstrated generally safe. Our report analyzes the reasons for the four CAR-T cell expansions, highlighting the need for close monitoring and laboratory testing during anti-BCMA/GPRC5D bispecific CAR-T cell therapy. Clinical trial registration: This study was registered on ClinicalTrials.gov, number NCT06068400.
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1 Introduction

Innovative immunotherapies, particularly chimeric antigen receptor T (CAR-T)cell therapy, have shown potential in treating relapsed or refractory multiple myeloma (1). B-cell maturation antigen (BCMA) is a widely and almost exclusively expressed antigen on plasma cells and B cells, making it a promising therapeutic target for multiple myeloma (2). However, myeloma cells with low to negative BCMA expression may evade BCMA-targeted CAR-T cell therapy and lead to relapse (3). G protein-coupled receptor C5 family member D (GPRC5D) is highly expressed on the surface of primary multiple myeloma cells and is independent of BCMA expression (4). Furthermore, GPRC5D is minimally expressed in bone marrow samples of other hematologic malignancies, making it a promising immunotherapeutic target for treating multiple myeloma patients (5). For multiple myeloma patients who are BCMA-negative or have low BCMA expression, as well as those who experience BCMA-negative relapse due to target cell antigen immune escape after BCMA-targeted therapy, targeting GPRC5D offers a new therapeutic direction (6). A previous clinical study validated the safety and efficacy of anti-GPRC5D CAR T cells (7). Dual-target CAR T-cell therapy can increase the targetable antigens on tumor cells, thereby enhancing long-term therapeutic effects and reducing the incidence of antigen-negative escape (8). Early studies also showed that engineering bispecific CAR-T cells is a promising strategy to overcome the limitations of single-target CAR-T cell therapy and enhance CAR-T cell function (9). Furthermore, a phase 1 clinical study in 2024 demonstrated that anti-BCMA/GPRC5D bispecific CAR T-cell therapy is a promising treatment modality for multiple myeloma, suitable for patients with relapsed or refractory multiple myeloma (R/R MM) (10).

The overall efficacy of CAR-T cell therapy in MM is quite promising, but its toxicity varies from individual to individual, ranging from clinical to life-threatening levels (11, 12). Cytokine release syndrome (CRS) is the most common adverse reaction following CAR-T cell infusion. It has been reported that nearly 46% of B-cell acute lymphoblastic leukemia (ALL) patients receiving anti-CD19 CAR-T therapy and 13% of B-cell lymphoma patients experience severe CRS (≥ Grade 3), while 41% of MM patients develop severe CRS (13). Appropriate CRS is believed to help in tumor cell clearance. However, excessive CRS can lead to significant organ damage and often put patients at risk (14). Previous studies showed that CRS is accompanied by a significant elevation of various cytokines, with IL-6, IL-1β, and IFN-γ mediated by monocyte/macrophage signaling playing a crucial role in the development of the cytokine storm (15).

In this study, a patient with R/R MM treated with anti-BCMA/GPRC5D bispecific CAR-T cell therapy is reported. Although four occurrences of CAR-T cell expansion and the development of grade 3 CRS, the symptom was well controlled. We suggest that multiple factors may collectively trigger CAR-T re-expansion, leading to more severe toxic reactions. This study suggests that CAR-T re-expansion requires closer monitoring and effective medical management to mitigate life-threatening severity.




2 Case presentation

M1801 is a 61-year-old male who was hospitalized 4 years ago due to iliac bone pain. He has no underlying diseases or a family history of hematological malignancies (Table 1). The patient underwent right frontotemporal approach for malignant cranial tumor resection, duraplasty, cranioplasty. He was diagnosed with MM through positron emission tomography/computed tomography (PET/CT) and bone marrow biopsy pathology, which showed multiple bone destructions. He underwent 4 cycles of PAD regimen chemotherapy (bortezomib, doxorubicin, and dexamethasone) followed by autologous stem cell transplantation, achieving a complete response (CR). After 4 cycles of maintenance therapy with the VD regimen chemotherapy (bortezomib and dexamethasone), the patient’s condition relapsed. He underwent four more cycles of PAD regimen chemotherapy but still experienced a relapse. Subsequently, he underwent radiotherapy, but the disease continued to progress. Next, he received daratumumab combined with selinexor and dexamethasone, but the disease progression remained uncontrolled. Large masses appeared in both iliac bones and gradually increased in size. A follow-up PET-CT indicated extramedullary disease (EMD), with sizes measuring 7.5 cm × 4.0 cm on the left side and 7.9 cm × 2.9 cm on the right side. Given the patient’s recurrent disease after multiple lines and various drug treatments, he was enrolled in a clinical study of anti-BCMA/GPRC5D bispecific CAR-T cell therapy (NCT06068400) (Table 2).

Table 1 | General clinical characteristics of the patient.


[image: Patient information table with details: Age: 61, Sex: Male, Diagnosis: Multiple Myeloma IgG (Stage I, Lambda Light chain), Autologous stem cell transplantation: Yes, Bulky disease in the left iliac bone (7.5 by 4.0 centimeters) and right iliac bone (7.9 by 2.9 centimeters), Time of initial diagnosis: 5 years ago.]
Table 2 | Prior therapies of the patient.


[image: Table listing treatment regimens and their efficacy for malignant cranial tumor. Treatments include surgical approaches, PAD, stem cell transplantation, thalidomide, VD, radiotherapy, and Daratumumab. Efficacy results are listed as CR or Relapse.]
M1801 then received preconditioning with the FC regimen chemotherapy (fludarabine 30 mg/m² from day -5 to -3, cyclophosphamide 300 mg/m² from day -5 to -3). The patient received anti-BCMA/GPRC5D bispecific CAR-T cells at a dose of 3 × 10^6 cells/kg according to the clinical study protocol (Figure 1A). The assessment of CRS follows the ASTCT evaluation criteria (16). The grading and management of CRS follow the recommendations for the assessment and management of CAR-T cell therapy-related toxicities (16, 17). On the first day after CAR-T cell infusion, the patient’s vital signs were stable, but he developed high fever with a temperature of 39.4°C (Figure 1B; Table 3), which was considered grade 1 CRS combined with infection. Symptomatic treatment for fever and preventive anti-infection therapy were provided. On the fourth day after CAR-T cell infusion, the patient’s transaminases were more than three times the normal value. He was given enhanced liver protection treatment, and tocilizumab was administered to antagonize IL-6. By the fifth day post-infusion, the patient’s temperature returned to normal, and liver function normalized by the seventh day. CAR-T cells begin to expand for the first time. On the 19th day post-infusion, the patient experienced recurrent high fever with a maximum temperature of 40°C, along with chills and rigors, which was assessed as grade 2 CRS combined with infection. Meropenem was administered for infection treatment, along with tocilizumab to antagonize IL-6. On the 21st day post-infusion, the patient developed lactic acidosis, which was assessed grade 3 CRS combined with Hemophagocytic Lymphohistiocytosis (HLH), and dexamethasone was used to block CRS. Meropenem combined with vancomycin was given for infection treatment, and methylprednisolone was administered along with tocilizumab and etoposide to suppress the response. The patient was transferred to the Intensive Care Unit (ICU) for further treatment, where he developed multiple organ failure and severe bone marrow suppression. Treatments included the removal of inflammatory mediators and the correction of acid-base and electrolyte balance, as well as anti-infection and supportive symptomatic treatments. Continuous renal replacement therapy (CRRT) was performed to timely remove inflammatory and acidic metabolic products (18). On the 31st day post-infusion, the second CAR-T expansion occurred, peaking on the 34th day. Methylprednisolone combined with intravenous immunoglobulin was administered to block CAR-T expansion. On the 43rd day post-infusion, the patient was transferred out of the ICU. However, on the 59th day post-infusion, the patient again developed high fever, with a maximum temperature reaching 40°C, and experienced the third CAR-T expansion, peaking on the 61st day. Cyclophosphamide and fludarabine were used to suppress CAR-T expansion. The CAR-T expansion was accompanied by CRS and HLH, and hydrocortisone was used to suppress the inflammatory response. CRRT was performed to remove inflammatory mediators immediately, and the IFN-γ inhibitor imatinib was administered, along with ruxolitinib to block hemophagocytic syndrome. On the 91st day, the patient exhibited low fever with a temperature of 37.5°C, heart failure, and the fourth CAR-T expansion occurred, peaking on the 94th day. Methylprednisolone combined with ruxolitinib was used to alleviate the inflammatory response. The level of CAR-T cells in peripheral blood mononuclear cells (PBMCs) peaked at 69.31% (160.21 cells/uL) on day 21 (Figures 1D, E). On day 21 post-CAR-T cell infusion, serum IL-6 peaked at 1981.00 pg/ml, and serum IFN-γ reached a peak of 4626.00 pg/ml (Figure 1C). One month after CAR-T cell therapy, flow cytometry showed negative minimal residual disease (MRD) in the bone marrow, negative immunofixation electrophoresis, negative serum M protein, and negative urine M protein. Two months after CAR-T cell therapy (Table 4), PET/CT showed reduced activity in the large masses in the hip region. Additionally, pathological examination of the lesions at high metabolism sites under CT guidance showed no activity three months after CAR-T cell therapy (Figure 1F). After comprehensive evaluation, the patient achieved very good partial response (VGPR) three months after CAR-T cell infusion. As of 110 days post-infusion, the patient remained in a state of remission.

[image: Diagram showing CAR-T cell therapy timeline, patient temperature, cytokine levels, and CAR-T cell presence post-infusion. Flow cytometry plots of CD3 marker at various time points. PET/CT scans depict metabolic activity at days -40 and 90.]
Figure 1 | (A) Timeline of CAR-T cell therapy, from peripheral blood collection to 3 months post CAR-T cell infusion. (B) Changes in body temperature following CAR-T cell infusion. (C) Levels of IL-6, IFN-γ, and C-reactive protein in serum at different time points after CAR-T cell infusion. (D) Expansion of CAR-T cells in PBMCs at different time points. (E) Kinetics of circulating CAR-T cells in M1801, absolute number of CAR-T is shown. (F) PET/CT scans revealed a reduction in activity at 3 months post-CAR-T cell therapy, indicating that the patient remains in remission.

Table 3 | Changes in vital signs following CAR-T cell infusion.


[image: Table displaying vital signs from day 0 to day 110. Temperature ranges from 36.6°C to 40°C. Pulse rate varies from 81 to 148 per minute. Respiratory rate is between 13 and 36 per minute. Blood pressure fluctuates from 97/68 to 129/57 mmHg.]
Table 4 | Treatment efficacy evaluation.


[image: Table comparing medical test results before and after treatment. Minimal residual disease changes from positive to negative. Serum and urine immunofixation electrophoresis results show IgG(lambda light chain) before treatment and become negative. Serum M protein is 2.88 grams per liter before, changing to negative. Urine M protein remains negative.]
Most patients experience only one CAR-T cell expansion, but M1801 experienced four expansions (Figure 1D). During the first CAR-T expansion, the patient developed life-threatening CRS that led to multiple organ dysfunction, but he recovered after being promptly transferred to the ICU for rescue. To gain a deeper understanding of the reasons for M1801’s multiple episodes of CRS, we conducted a detailed study of this unique case. The first CRS occurred on day 4 and was quickly alleviated after the administration of tocilizumab. The first CAR-T expansion occurred, liver function impairment (grade 1) was temporary and resolved by day 7. The second CRS appeared on day 18 and was accompanied by severe liver function dysfunction (grade 3). It is considered that cytokines released by CAR-T cells in peripheral blood may cause liver function disturbance. Since CAR-T cells are typically activated by targeted antigens, we speculate that the presence of BCMA/GPRC5D-expressing cells may play a stimulating role. On day 31, the second CAR-T expansion occurred, and high-throughput sequencing of pathogenic microbial nucleic acids in peripheral blood indicated infections with rubella virus and human cytomegalovirus (HCMV). The complete blood count indicates severe marrow suppression, and the lymphocyte subset analysis shows a significantly reduced expression of the NK cell subset. Interestingly, whole-exome sequencing (WES) results of peripheral blood revealed a homozygous mutation in the TET2 gene (Table 5). We performed WES again during the third and fourth CAR-T cell expansion, and no differences were observed in the TET2 gene mutation sites. We performed CAR-T cell integration site analysis on peripheral blood during the second and third CAR-T cell expansions (Figures 2A, B). The lentivirus-based integration vector showed relatively more integration events in intronic and intergenic regions, with no indication of construct-specific risks.

Table 5 | Whole-exome sequencing results of the TET2 gene mutation.


[image: Table displaying genetic variants for the TET2 gene. Columns include Gene Symbol, HET/HOM status (all HOM), Consequence Type (Missense variant), HGVS.c, Transcript Biotype (Protein coding), and HGVS.p. The HGVS.c entries are c.5347A>G and c.5384A>G, with corresponding HGVS.p entries p.Ile1783Val and p.Ile1762Val.]
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Figure 2 | (A) Statistical distribution chart of integration sites in gene functional regions in the second expansion of CAR-T cells. (B) Statistical distribution chart of integration sites in gene functional regions in the third expansion of CAR-T cells.

Overall, the efficacy of M1801 CAR-T cell therapy achieved VGPR. Although M1801 underwent four episodes of CAR-T cell expansion, the treatment exhibited generally safe. However, the patient experienced severe CRS with a strong systemic response induced by CRS.




3 Methods



3.1 Flow cytometry

To detect the expansion of CAR-T cells in peripheral blood, the following antibodies were used: CD45-Alexa Fluor 488, CD3-PerCP5.5, and tEGFR-PE (BD Biosciences, San Diego, USA). CD45/SSC gating strategy was applied to identify PBMCs and further examine anti-BCMA cells. Since these anti-BCMA CAR-T cells were engineered with a CAR gene carrying a truncated human epidermal growth factor receptor (tEGFR), they could be directly detected in this study using CD3-PerCP5.5 and tEGFR-PE antibodies. To detect multiple myeloma cells in the bone marrow, the following antibodies were utilized: CD45-V500, CD19-PE-Cy7, CD20-PerCP-Cy5.5, CD56-PerCP-Cy5.5, CD38-FITC, and CD138-APC (BD Biosciences, San Diego, USA). Multiple myeloma cells were identified based on CD138 positivity and strong CD38 expression. Additionally, in the above flow cytometry analysis, debris was first excluded based on light scatter properties.




3.2 Cytokine measurement

The levels of TNF-α, IFN-γ, IL-2, IL-4, IL-6, IL-10, and CRP in serum were measured using commercial ELISA kits (R&D Systems, Minneapolis, USA) and analyzed according to the manufacturer’s instructions using the corresponding experimental protocols.




3.3 Whole exome sequencing

Library preparation was performed using the MGIEasy Universal DNA Library Prep Kit (MGI, China). A certain amount of genomic DNA was fragmented, followed by fragment selection. The reaction system was then prepared and programmed to repair DNA ends and add an A base to the 3’ end. Adapter ligation was performed by preparing and programming the adapter ligation reaction system to connect the adapters to the DNA fragments.

Pre-PCR was conducted by preparing the reaction system and setting the reaction program to amplify the product. A specific amount of PCR product was hybridized using the SureSelectXT Human All Exon V6 Kit (Agilent, USA). The adapter-ligated library was hybridized in solution with a biotin-labeled probe library, allowing the probes to bind to the target DNA fragments based on complementary base pairing. Streptavidin magnetic beads were then mixed with the hybridization mixture to firmly bind the beads to the biotin-labeled target fragments, thereby capturing the exonic regions of the genome. Further washing steps were performed to remove nonspecifically bound DNA, enriching the exon-targeted DNA in the library.

A PCR reaction system was then prepared and programmed to amplify the enriched DNA. The PCR product was denatured into single strands, followed by the preparation and execution of a circularization reaction to generate single-stranded circular DNA. Uncircularized linear DNA molecules were digested, yielding the final library. The final library was amplified using phi29 polymerase to generate DNA nanoballs (DNBs). These DNBs were loaded onto a high-density DNA nanochip and sequenced on a G400 sequencer (BGI-Shenzhen, China) using combinatorial probe-anchor synthesis (cPAS) technology with PE150 sequencing.




3.4 Lentiviral vector integration site analysis

Genomic DNA was fragmented and processed using the Vazyme VAHTS® Universal DNA Library Prep Kit (VazymE, China) for end repair, A-tailing, and adapter ligation. Primers were designed based on the vector’s LTR/ITR sequences and asymmetric adapter sequences. Two rounds of PCR were performed to enrich the integration sites and ligate Illumina sequencing elements.





4 Discussion

Anti-BCMA CAR-T cell therapy became the first cellular immunotherapy approved by the U.S. Food and Drug Administration (FDA) in 2021 for the treatment of multiple myeloma, achieving unprecedented clinical efficacy (19, 20). However, due to the variable expression of BCMA antigen on myeloma cells, some patients fail to achieve a good response (21, 22). A preclinical study demonstrated that CAR-T cell therapy targeting both BCMA and GPRC5D can reduce relapse caused by BCMA antigen escape and eliminate BCMA-negative multiple myeloma cells in a mouse model (23). A previous clinical study has shown that anti-BCMA/GPRC5D bispecific CAR-T cells exhibit good safety and promising activity in patients with relapsed or refractory multiple myeloma (10). The results showed that there was no significant difference in efficacy between patients with single-positive expression of BCMA or GPRC5D and those with double-positive expression. Comparing the efficacy and safety of anti-BCMA/GPRC5D CAR T-cell therapy with existing treatment modalities, the anti-BCMA/GPRC5D bispecific CAR-T cells demonstrated a better safety profile, showing lower grades of cytokine release syndrome compared to BCMA-targeted therapies, but similar to GPRC5D-targeted CAR-T cells in the same center (24).

M1801 was a patient with MM complicated by EMD and was resistant to bortezomib-based chemotherapy. Due to the high tumor burden, MM patients with EMD is associated with a higher risk and poor prognosis, and many treatment methods, including ASCT, have failed to improve patient outcomes in most studies (25). M1801 relapsed after chemotherapy, daratumumab, and autologous hematopoietic stem cell transplantation. Therefore, the patient was enrolled in a clinical trial of anti-BCMA/GPRC5D bispecific CAR-T cell therapy. Although CAR-T cells may undergo re-expansion in certain cases, the reason for CAR-T cell re-expansion has not yet been fully elucidated (26). In this study, we report a rare case in which the patient experienced four consecutive waves of CAR-T cell expansion following infusion.

The first two CAR-T expansions were significant and were accompanied by severe CRS and HLH. To our knowledge, this is not the only documented case to date in which confirmed CAR-T clonal expansion led to severe CRS. We speculate that several factors may have contributable to this unexpected complication. First, EMD is associated with an increased risk of higher-grade CRS (27). Second, the interaction between CAR-T cells and antigen-expressing cells at local lesions may induce severe immune response (28) Third, viral reactivation might have occurred in the setting of immune dysfunction following CAR-T therapy (29). Fourth, a somatic TET2 mutation was likely a potential intrinsic factor in the clonal expansion of CAR-T cells and the subsequent fatal inflammatory storm in this patient, independent of the manufacturing process (30). The absolute numbers of the third and fourth CAR-T expansions were not high, and cytokine levels remained low, likely due to stimulation from extramedullary residual lesions.

The phenomenon observed in M1801 is reminiscent of a reported case of anti-BCMA CAR-T cell therapy (patient RJ-31) (31). RJ-31, a 61-year-old patient, likely had a small T-cell clone carrying a TET2 mutation, which posed a hidden risk before being used for CAR-T manufacturing—leading to the uncontrolled expansion of CAR-T cells derived from autologous lymphocytes upon viral infection. In RJ-31’s case, the genetic defect was considered the primary determinant driving CAR-T clonal proliferation, while viral infection may have acted as a trigger, engaging in antigen stimulation alongside CAR-T cells. Although there are similarities between M1801 and RJ-31 in terms of TET2 mutations and severe toxicity, differences in their subsequent outcomes may be attributed to several factors: First, differences in synergistic effects. While M1801 carried a TET2 mutation, whole-exome sequencing did not indicate significant abnormalities in the TET2 mutation across the four episodes of CRS, and viral infection was also present. In contrast, the TET2 mutation likely played a more critical role in the aggressive expansion of CAR-T cells in RJ-31. However, the other two factors—viral activation and antigen stimulation—should not be overlooked in RJ-31. Second, differences in CRS timing. In M1801, each CRS episode occurred only after the patient had recovered from the previous one, whereas in RJ-31, the next CRS episode occurred consecutively before full recovery from the first inflammatory storm. Third, differences in cytokine profiles. M1801 showed elevations in common inflammatory molecules, while RJ-31 exhibited a markedly expanded and more toxic cytokine signature. However, despite these objective observations, the genetic events that occurred in both M1801 and RJ-31 remain sporadic occurrences.

TET2 mutations are generally considered initiating events for clonal hematopoiesis, and the functional abnormality of TET2 protein can lead to exacerbated immune inflammation, particularly characterized by elevated IL-6 levels (22). The somatic TET2 mutation identified in this study is particularly observed in healthy elderly individuals, where loss-of-function mutations in DNMT3A, TET2, and ASXL1 are among the most commonly detected mutations (32, 33). Before undergoing CAR-T cell therapy, subjects need to undergo WES of peripheral blood. A positive TET2 gene mutation provides important guidance for effectively assessing subsequent treatment risk. We need to further investigate the mechanism by which TET gene mutation triggers CAR-T cell expansion.

Previous study have shown that patients with EMD have higher grades of CRS compared to those without EMD. Additionally, serum IL-6 levels are significantly elevated in patients with EMD. These results may be related to the tumor burden in patients with EMD (34). Therefore, tumor burden should be minimized as much as possible to reduce excessive stimulation of CAR-T cells by target antigen-expressing cells before CAR-T cell therapy.

Before CAR-T cell manufacturing, certain conditions—such as viral infections—may act as antigenic stimuli, leading to ectopic proliferation of CAR-T cells derived from autologous lymphocytes (35). Viral infections can trigger CAR-T cells as part of the adaptive immune response (36). Our study suggests that early administration of antiviral drugs should be considered when using dual-target CAR-T therapy to reduce the risk of severe viral infections (37). The life-threatening CRS observed in this patient highlights the importance of appropriate and timely administration of immunoglobulins or specific antimicrobial agents to minimize the risk of pathogen infection, especially during periods of immunoglobulin decline when circulating CAR-T cells remain in an effector state (38).

In recently reported clinical studies of dual-target CAR-T cells in RR/MM patients, the therapy has shown good clinical activity and safety. We speculate that multiple CRS are not significantly related to dual-target CAR-T cell therapy (24, 39). Additionally, previous studies have shown that among patients receiving CAR-T cell therapy, those who developed CRS had similar clinical outcomes compared to those who did not. There was no significant difference in the complete remission rate or overall response rate between patients who developed CRS and those who did not (40, 41).

During the first CAR-T cell expansion, the patient’s inflammatory cytokines peaked, CRRT was used to remove inflammatory mediators, effectively suppressing the systemic inflammatory response and thereby reducing the resulting organ dysfunction. During the second CAR-T cell expansion, CRRT was applied at an early stage, which prevented severe multi-organ dysfunction. Therefore, if a significant increase in IL-6 is observed during CAR-T cell expansion, early application of CRRT can help prevent multi-organ dysfunction. Additionally, for elderly patients with weakened immunity, the CAR-T cell infusion dose should be appropriately reduced (42). Furthermore, CAR-T cells equipped with suicide genes are highly sought after to mitigate life-threatening side effects (43).




5 Conclusion

In summary, our case report discusses the reasons for the four CAR-T cell expansions and provides a treatment summary, deepening our understanding of the systemic toxicity associated with bispecific anti-BCMA/GPRC5D CAR-T cell therapy. Although this study was conducted in patients with R/R MM undergoing treatment, we believe that the findings are not limited to this specific disease type or engineered product. Instead, these conclusions may also apply to other dual-target CAR-T cell therapy. However, due to the limited number of patients in this study, further clinical data are needed to confirm the safety and efficacy of the bispecific anti-BCMA/GPRC5D CAR-T cell therapy.
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Chimeric antigen receptor (CAR) macrophage therapy represents a promising new frontier in cancer immunotherapy, with the potential to overcome the limitations of CAR-T cell approaches, particularly in solid tumours. This comprehensive review focuses on the current state and future prospects of CAR macrophage technology, emphasising its applications in solid malignancies across preclinical and early clinical development. The key topics covered included CAR design optimisation, macrophage sources and engineering strategies, mechanisms of antitumour activity, in vivo efficacy in animal models, initial clinical trial results, and challenges for broader implementation. The unique properties of macrophages, including tumour penetration and microenvironment modulation, offer significant advantages over T cell-based therapies in solid-tumour settings. However, strategies to enhance persistence, maintain proinflammatory phenotypes, and improve manufacturing are required. Although early research suggests additional applications beyond oncology, including for infectious and inflammatory diseases, this review primarily concentrates on the oncologic potential of CAR-M therapies. Continued optimisation and larger randomised trials will be critical to establish clinical efficacy and define the role of this approach in the treatment of solid tumours.




Keywords: CAR-M, chimeric antigen receptor, macrophages, cellular immunotherapy, advances in research




1 Introduction

Cellular immunotherapy strategies have gained momentum with the success of chimeric antigen receptor T-cell (CAR-T) therapy for the treatment of blood cancers (1, 2). However, these promising success stories reveal unavoidable challenges against solid tumours, which act as physical barriers against CAR-T cells (3–8). Although more than 200 clinical trials involving CAR-T cells have been registered to cure solid tumours, scientists have expanded the study sizes to cross tumour microenvironment (TME)-related hurdles and obtain a safe and stable way to combat tumour cells (9, 10). Limitations such as diminished antitumour efficacy due to the immunosuppressive TME, scarcity of appropriate tumour-associated antigens (TAAs), tumour-specific antigens (TSAs), dense extracellular matrix (ECM) that keeps CAR-T cells out of the tumour, and severe adverse effects have led scientists to renovate the CAR platform (3, 11). This unmet need has revolutionised CAR technology and has extended it to screen the innate immune compartment to manipulate other immune cells. Macrophages, after natural killer (NKs) cells, are being explored as alternative immune cells to upgrade this strategy (5, 12–14).

In the mainstream CAR-T cells, the chimeric antigen receptor macrophage (CAR-M) platform is optimised in alignment with those of the CAR-T and CAR-NK platforms (15, 16). Macrophages, which are sentinels of the body, have emerged as promising options. They are specialised phagocytic cells of the innate immune system, being the first-line defense of the host by constantly removing dead cells and providing clearance of harmful pathogens. In addition to their wide range of functions, including antigen presentation, macrophages have plastic features and a generous biological gift to keep them in view as a live therapeutic candidate. Furthermore, macrophages are particularly active trafficking to the TME, constituting the largest immune cell population found in tumor tissues (up to 50% of the immune cells in the TME). The highly efficient infiltration of CAR-M into solid tumours is the basis of its antitumour effect. Therefore, it is not surprising that an increasing number of studies have focused on tumor-associated macrophages (TAMs). Macrophages critically influence various behaviours of tumour cells, such as proliferation, metastasis, angiogenesis, and tumour immune evasion via immune suppression, immune escape, and drug resistance (17). Given their exceptionally high ability to infiltrate tumours and traffic through the inhibitory TME, particularly in solid cancers such as breast and colorectal cancers, there is growing research directed at the development of CAR-Ms as a promising approach for new anti-cancer immunotherapies (18).

TAMs are heterogeneous and supportive stromal cell populations that present a dual phenotypic and functional profile in response to environmental stimuli (19). While classically activated M1 macrophages exhibit a pro-inflammatory phenotype and support an anti-tumourigenic response via phagocytosis and tumour-targeted cytotoxicity, alternatively activated M2 macrophages exhibit an anti-inflammatory phenotype associated with pro-tumourigenic activity, thus promoting tumour growth by inducing angiogenesis and favouring a TME-immunosuppressive milieu (20). Although the presence of M1 macrophages is beneficial for fighting malignant cells, the TME milieu is dominated by TAMs with an M2 phenotype, ultimately inducing a favourable immunosuppressive habitat for tumour progression (21). To reverse this unfavourable balance and highlight the healing power of M1 macrophages, preclinical studies on CAR-M programming should carefully consider several parameters, such as CAR structural design, macrophage source, antigen specificity, and mechanism of action, as key factors in generating a sufficient number of inflammatory cells with a stable enhanced capacity. To delve deeper into these concerns, in vitro and in vivo preclinical studies must be carefully performed, which will help us understand the present breakthroughs in CAR-M therapeutic programs.



1.1 Aim and scope of this review

This review aims to provide a comprehensive and up-to-date overview of CAR-M therapy with a focus on its application in solid tumours. We discuss the current advances in CAR design, engineering strategies, sources of macrophages, and their mechanisms of antitumour activity in detail. Importantly, we highlight emerging strategies to overcome challenges, such as limited persistence, phenotypic instability, and TME-induced immunosuppression. We also explored the translational potential of CAR-Ms and novel delivery platforms by integrating data from preclinical and early clinical studies. This review contributes to the field by outlining the most recent developments in CAR-M immunotherapy, identifying key obstacles to its clinical success, and proposing future directions to unlock its full therapeutic potential.





2 In silico advances

Computational approaches in CAR-M research are still in their infancy compared with CAR-T cell therapies. Although CAR-M technology has rapidly advanced in experimental settings, the development of computational tools to model macrophage behaviour, predict therapeutic efficacy, or simulate interactions within the TME remains limited. The inherent plasticity of macrophages, their complex responses to environmental cues, and their dual roles in inflammation and immune modulation present significant challenges for in silico modelling. Nevertheless, early computational studies began to provide valuable insights into CAR-M design, cytokine dynamics, and potential therapeutic outcomes, offering a complementary approach to experimental research.

Most computational and in silico studies in the CAR field have focused on CAR-T therapies. However, CAR-M cells are still in preclinical development due to their incredibly plasticity, which depends on microenvironmental signals, making them more difficult to model than T cells. Currently, most studies have focused on proving the feasibility and function of CAR-Ms experimentally, rather than building predictive or mechanistic models. However, during the COVID-19 pandemic, CAR engineering strategies have been explored for viral infections. Traditional CAR-T and CAR-NK cell therapies are effective against infected cells and exacerbate cytokine storm complications, which are known limitations in both cancer and infectious settings (22–25). CAR-Ms, which are characterised by phagocytic activity and reduced systemic toxicity, have emerged as promising alternatives. Fu et al. engineered COVID-19-targeting CAR-Ms by manipulating THP-1 human macrophage cell lines or macrophages differentiated from peripheral blood monocytes using CAR constructs possessing a single-chain variable fragment (scFv) targeting the viral spike protein (26). These CAR-Ms demonstrated remarkable viral internalisation capacity without excessive cytokine amplification. Complementing these experimental findings, Amoddeo et al. developed an in silico mathematical model to simulate SARS-CoV-2 infection dynamics and cytokine responses during CAR-M therapy (24). Their computational analysis predicted that CAR-M could facilitate effective viral clearance, while maintaining a controlled inflammatory profile. Although these studies focused on infectious diseases, they provided valuable lessons for oncology, namely, the ability of CAR-Ms to maintain functional activity without provoking deleterious systemic inflammation. Non-cancer applications reinforce the therapeutic potential of CAR-Ms in solid tumours, where balancing cytotoxic efficacy and safety remains a major challenge.




3 In vitro advances



3.1 Structure and generation

CARs are synthetic receptors composed of three main domains: an extracellular antibody domain that specifically binds the appropriate antigen, typically an scFv, a transmembrane domain anchoring the CAR in the cell membrane, and an intracellular signalling domain that contains the signal transduction domain and triggers activation of immune effector functions. The modular design of CARs allows for customisable targeting and downstream responses, depending on the effector cell type. Although originally developed for T cells, CARs have been adapted for use in macrophages, with modifications that reflect their distinct biological roles and signalling requirements. Understanding the general structure of CARs provides a foundation for interpreting specific engineering strategies employed in CAR-M development.

CAR-Ms are an emerging class of engineered cellular immunotherapies designed to enhance the natural tumour-infiltrating, phagocytic, and immunomodulatory functions of macrophages. Unlike CAR-T and CAR-NK cells, CAR-Ms have demonstrated superior persistence within the TME and possess the ability to degrade ECM, thereby facilitating immune cell infiltration. The structural design of CAR-Ms has evolved over successive generations to maximise their therapeutic efficacy and adaptability. Early CAR constructs originally developed for T cells also served as templates for CAR-M engineering, with preclinical studies adopting modular architectures tailored to macrophage-specific functions. The first CAR constructs designed for CAR-T cells also provided guidance for CAR-M development (18, 27, 28). In vitro and in vivo preclinical studies have followed the basic principles of CAR-T technology and have progressed rapidly to generate new generations of CARs. Structurally, CAR constructs in CAR-Ms are similar to those anchored on CAR-T cells (29, 30) (Figure 1).
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Figure 1 | Schematic structure of a chimeric antigen receptor (CAR) with dual costimulatory domains. The diagram shows a CAR engineered with an extracellular single-chain variable fragment (scFv) for antigen recognition, connected via a hinge domain to a transmembrane region. The intracellular portion includes one costimulatory domain and a CD3z signalling module. This dual-costimulation configuration is designed to enhance cell activation, proliferation and persistance.

The extracellular antibody domain (scFv) consists of heavy and light chains of variable regions of monoclonal antibodies connected by a flexible linker. This modular domain is responsible for recognising tumour-associated antigens such as CD19, human epidermal growth factor receptor 2 (HER2), and CD47, which are commonly expressed in tumour tissues (31–36). Regarding preclinical advances in CAR construct refinement, the scFv design remains the favoured extracellular domain and is preserved in most next-generation CAR constructs, even when changes occur in the intracellular signalling domain, targeted antigens, or gene delivery methods (37–40). In addition to conventional scFv designs, some researchers have proposed replacing the classical antibody domain with natural receptor-ligand pairs in new CAR-M generations. In a 2021 study by Niu et al., Raw264.7-derived mouse macrophages were modified with a CAR construct incorporating a chemokine (C-C motif) ligand 19 (CCL19) extracellular domain (41). Preclinical data showed the emergence of a highly immunosuppressive subpopulation expressing lipid droplets and CC chemokine receptor 7 (CCR7), migrating from tumour tissues to lymphoid organs, such as the thymus and spleen. CCL19+ CAR-Ms were directed against these immunosuppressive cells in vivo by binding to CCR7 antigens. The results demonstrated that CCL19+ CAR-Ms prolonged the survival of breast tumour-bearing mice by exerting strong phagocytic activity on tumour cells and inhibiting the migration of the immunosuppressive subpopulation to lymphoid organs (41). The intracellular signalling domain, the most diversified component in CAR structures, triggers downstream pathways that convert the initial antigen recognition signal into an anti-tumour response. CD3ζ and its homologue Fcγ receptor (FcRγ) are the most common intracellular activating modules introduced into the first generation of CAR-Ms to promote effective phagocytic activity (31, 33).

In one of the initial functional models of CAR-Ms, Morrissey et al. explored the phagocytic potential of CAR-Ms targeting CD19 and CD22 surface antigens of B cells. J774A.1 mouse macrophages expressing anti-CD19 or anti-CD22 CAR constructs fused with Megf10 or FcRγ intracellular domains exhibited significant antigen-specific engulfment of CD19- or CD22-coated silica beads compared with wild-type (WT) macrophages. Similar pilot engulfment assays confirmed the capacity of these CAR-Ms to internalize CD19+ Raji B human cells, demonstrating both “biting” and complete “eating” of cancer cells (31).

Although CD3ζ and FcRγ can mediate strong opsonisation and phagocytosis, alternative intracellular domains have been investigated to further enhance CAR-M function. Co-stimulatory molecules, such as 4-1BB (CD137), CD28, and OX40, originally used in second-generation CAR-T cells to reinforce CD3ζ signalling, have also been explored in CAR-M engineering (42–44).

In addition to classical co-stimulatory domains, such as CD28 and OX40, recent constructs have incorporated novel intracellular modules, such as CD86 and 4-1BB. For example, the CCR7-targeting CAR-M developed by Niu et al., integrated toll-like receptor (TLR) signalling domains such as TLR2, TLR4, TLR6, MerTK, and 4-1BB-CD3ζ modules. When co-cultured with 4T1 breast tumour cells, macrophages expressing any of these constructs exhibit strong tumour-killing activity (41).

The increasing diversity of intracellular domains beyond the basic generations not only enhances CAR-M phagocytic capacity, but also expands their complementary antitumour functions, as will be discussed later. CAR-M technology has progressed over multiple generations, improving its therapeutic efficacy and adaptability (Figure 2; Table 1).
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Figure 2 | Evolution of the first three generations of chimeric antigen receptors in macrophages (CAR-Ms). The illustration depicts the progressive structural modifications introduced in CAR-M design from the first to the third generation. First-generation CAR-Ms consist of an scFv linked via a hinge and transmembrane domain to a single macrophage-activating signalling domain. Second-generation CAR-Ms incorporate one costimulatory domain to enhance activation and persistence. Third-generation CAR-Ms further include a second costimulatory module, aiming to maximise pro-inflammatory signalling, phagocytic activity, and resistance to tumour-induced immunosuppression. These architectural advances are designed to improve the therapeutic efficacy of CAR-Ms in the solid tumour microenvironment.

Table 1 | Different CAR macrophage developments.
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CAR-M technology has progressed through three successive generations, each incorporating increasingly sophisticated features to enhance the therapeutic efficacy. First-generation CAR-Ms primarily focus on tumour antigen recognition and direct phagocytosis, using intracellular signalling domains such as FcγR and Megf10, with some variants incorporating PI3K signalling to improve whole-cell engulfment (31). Second-generation CAR-Ms integrate additional costimulatory domains, including CD3ζ- and Toll-like receptor (TLR)-based modules, to amplify pro-inflammatory responses and support antigen presentation. These constructs facilitated enhanced cytokine secretion, T cell activation, and macrophage persistence. Notably, adenoviral vectors, such as Ad5f35, and the use of induced Pluripotent Stem Cells (iPSCs)-derived CAR macrophages (CAR-iMACs) enabled scalable production and prolonged M1 polarisation (45). For example, anti-HER2 CAR-M (CT-0508) was engineered for HER2-positive tumours and showed durable antigen presentation and macrophage activity (46). Third-generation CAR-Ms have introduced features such as polycostimulatory domains, cytokine secretion modules, and nanocarrier-based delivery systems to further remodel the TME, boost T-cell recruitment, and enhance in vivo efficacy. A recent example includes DNA nanocomplex-mediated CAR-HER2 macrophages, which selectively target tumours while maintaining potent antitumour activity (47).

Ongoing refinements in CAR-M technology aim to improve its efficacy, persistence, and adaptability, positioning it as a promising tool for advanced cancer immunotherapy.

Despite these advancements, challenges, such as macrophage plasticity, limited expansion in vivo, and potential off-target effects, remain. Continued development has focused on refining tumour antigen specificity, improving persistence, and ensuring clinical safety for broader application.




3.2 Source of CAR-M

The idea of TAMs as a therapeutic cell substitute is based on the plasticity of macrophages, meaning that they are reprogrammable at functional and phenotypical levels; thus, they are exemplar cell candidates for use in tumour eradication programs. Furthermore, several studies have shown that macrophages are naturally capable of infiltrating solid tumours and exhibiting sustainable antitumour activity (29, 48). Following the publication of early pioneering reports, CAR-M-based immunotherapy options have increased owing to their superiority in terms of expansion, infiltration, and activity compared to CAR-T cell therapy. Targeting the improvement of CAR technology, CAR-M pipeline projects may evaluate the potential of different macrophage sources. However, phenotype pursuit and stable transformation are not sufficient to evaluate CAR-Ms for clinical application. Many of preclinical studies on murine and human tumor models are nominated as proof-of concept studies, testing the fruitfulness of a wide range of macrophages cell lines, immortalized murine macrophages isolated from the bone marrow, and human THP-1 macrophages (31, 37, 40, 49, 50).



3.2.1 Immortalized macrophage cell lines

Macrophage collection from immortalised cell lines is a promising method for translation into preclinical studies owing to the many advantages offered by their nature. Their genetic stability, higher proliferation rate compared to primary cells, and simple culture conditions make them a considerable cell source for generating new versions of CAR-Ms. Murin Raw264.7 and J774A.1, and THP-1 human macrophages are the most preferred cell fountains used in preclinical studies (37, 50–52). Although cell lines offer many advantages in developing CAR-Ms, the translation of knowledge from preclinical to clinical areas is a real challenge because clinical application programs do not permit the infusion of immortalised cells into patients. Macrophages differentiated from peripheral blood monocytes and pluripotent stem cells (PSCs) are the two main sources of macrophages that generate clinically applicable CAR-Ms (45, 53–55).




3.2.2 Peripheral blood–derived monocytes

The CAR-M manufacturing process begins with the observation of monocytes with a high viability rate in the appropriate tissue. Although monocytes constitute only about 5% of the total mononuclear population in the peripheral blood, large numbers of CD14+ monocytes can be purified and mobilised from whole blood using leukapheresis (33, 49). Peripheral blood monocytes were differentiated into macrophages using the gold standard protocol based on granulocyte-macrophage colony-stimulating factor (GM-CSF), which promotes M1-like polarisation and enhances antigen-presenting and phagocytic functions. This differentiation step was performed prior to CAR gene transfer to ensure that the cells adopted a functional phenotype compatible with the antitumour activity. The genetic manipulation of human primary cells poses a serious challenge in terms of resistance to gene transfer. Klichinsky et al., developed an anti-HER2 CAR into Ad5f35 adenoviral vector to resolve this problem. The newly designed CAR-Ms showed strong phagocytic activity against SKOV3 human ovarian cells and exhibited an M1 proinflammatory phenotype. Additionally, the transfer of CAR-Ms in two separate solid tumour xenograft mouse models eradicated tumour cells and prolonged the overall survival. Ex vivo differentiation of monocytes into macrophages expressing CAR can be problematic in patients with an insufficient number of monocytes following their treatment regimen. Gabitova et al., proposed direct engineering of monocytes to express CAR to streamline the expansion protocol (56). In a previous study, engineered CAR-monocytes targeting HER2 antigens were polarised towards an M1 pro-inflammatory phenotype, phagocytosed HER2 expressing tumoral cells, and assured their removal from the body. Magnetic cell isolation is another method used by CAR scientists to obtain a sufficiently high number of purified CD14+ monocytes (36, 57).

Monocyte isolation from the peripheral blood is the easiest and most common route for clinical handling. However, peripheral monocytes have a relatively low differentiation rate compared to monocytes isolated from the bone marrow. Moreover, high heterogeneity after gene delivery and an insufficient number of adequate cells after hard anti-cancer treatments in autologous cell transfer pose non-negligible technical problems, resulting in low engineering and high-cost production. To overcome these challenges, researchers would benefit from regenerative technology and engineer CAR-Ms from pluripotent stem cells (PSCs), the most plastic cells that undergo self-renewal and give birth to any type of cell (58). Pierini et al., established a relevant immunocompetent syngeneic mouse model (36) to study the antitumor capacity of bone marrow-derived CAR-Ms targeting HER2 antigens on murine CT26 colorectal and human AU-565 breast cancer cell lines. They advanced their study to establish a murine model by engrafting CT26 colorectal and 4T1 mouse breast cancer cells into immunocompetent syngeneic mice, where they used monocytes or PSCs derived from the bone marrow as macrophage sources. The results extracted from three different differentiation protocols clearly showed that PSCs are more productive than primary monocytes (36).




3.2.3 Pluripotent stem cell–derived macrophages

Zhang Jin and his team are the pioneers of the use of induced Pluripotent Stem Cell (iPSCs) from peripheral blood to generate CAR-Ms. In 2020, the team published an astonishing study on human- iPSC-derived CAR-Ms, named CAR-iMACs. CAR-iMACS cells designed against CD19 and mesothelin were co-cultured with CD19+ K562 human leukaemic cells, mesothelin+ OVCAR3 human ovarian cancer cells, or mesothelin+ ASPC1 human pancreatic cancer cells. CAR-iMACs have a strong phagocytic capacity and an M1 phenotype characterised by an increase in pro-inflammatory cytokine expression; this positive effect is antigen-dependent. Moreover, the transcriptional data supported the observation of a leading M1 phenotype by indicating the upregulation of genes implicated in cytokine release, antigen presentation and processing, and TLR signalling. In vivo screening of interferon gamma (IFN-γ)-polarised M1 CAR-iMACS in an ovarian cancer model showed that CAR-iMACS has a rapid expansion rate and can persist for more than 20 days in a system with significant anticancer activity (53). As iMACs have proven to be a reliable source for large-scale production, the team upgraded their CAR-iMAC program to mitigate the antitumour activity of macrophages by engineering second-generation CAR-iMACS, exhibiting a stronger effect than first-generation CAR-iMACS (45). In line with these developments, Zhen et al., recently employed a CRISPR-mediated HITI (homology-independent targeted integration) strategy to generate iPSC-derived CAR-Ms with site-specific insertion of dual-signalling CARs (CD3ζ and Megf10). These engineered macrophages maintained a stable M1 phenotype, promoted bystander macrophage activation, and demonstrated potent antitumour activity both in vitro and in vivo (59).

As mentioned above, iPSCs are a broad source for manipulation, and their conversion into CAR-Ms could facilitate the rapid and widespread application of CAR therapy. However, one problem is that in the absence of specific antigens, CAR-iMACS switch off and tolerate the tumor cells by acquitting a M2 phenotype. This tendency towards a pro-tumorigenic state warrants a delicate survey and must be controlled via versatile safety screening. If required, the CAR-iMACS must be produced by integrating a safety alert system into the CAR construct. Shah et al., established a prostate cancer model and examined CAR-iMACS targeting the prostate stem cell antigen (PSCA) (60). To avoid uncontrolled proliferation of undifferentiated or inappropriately activated CAR-iMACS, a truncated form of the epidermal growth factor receptor (EGFR) was genetically integrated as a suicide switch in the construct.

Collectively, the diversification of cellular sources from peripheral blood monocytes and immortalised cell lines to pluripotent stem cells has significantly expanded the landscape of CAR-M development. Each source has distinct advantages in terms of scalability, phenotype control, and engineering feasibility. In particular, iPSC-derived CAR-Ms offer remarkable potential for large-scale, standardised manufacturing. However, the risk of protumorigenic drift in the absence of antigenic stimulation necessitates the integration of robust safety mechanisms. Continued refinement of source-specific differentiation protocols and engineering strategies will be crucial to ensure the effective and safe clinical application of CAR-M therapies.





3.3 Antitumor activities of CAR-Ms

Macrophages play a key role in clearing pathogens and maintaining the immune balance. Mostly known for the phagocytosis process, they are classified as M1 and M2 type macrophages to conduct a pro- or anti-inflammatory response, respectively. As mentioned above, TAMs are tumour tissue-resident macrophages that favour tumour growth and are associated with poor prognosis in most cancers, owing to their predominant M2 phenotype. In addition, TAMs regulate the cytokine and chemokine networks and influence other immune cells. This modulation creates an immunosuppressive TME that favours tumour growth. As TAMs play a pivotal role in cancer progression, they have become prominent targets for antitumour immunotherapy research. In addition to TAM depletion therapies, TAMs reprogramming strategies require special attention. Functional reprogramming and phenotypic repolarization of TAMs can be achieved using TLR agonists, PIK3 inhibitors targeting the phosphatidylinositol 3-kinase/protein kinase-B (PIK3-PKB/Akt) signalling pathway, co-delivery of signal transducers and activators of the transcription 6 (STAT6) inhibitor, and IκB kinase-β (IKKb) small interfering (siRNA) to decrease M2-TAMs frequency and increase M1-TAMs with anti-tumourigenic activity (61–63). Building on TAM reprogramming strategies, researchers have developed CAR-M therapies to further enhance antitumour responses. Parallel to this strategy, the reprogramming of TAMs can consist of functionality modulation, represented by the enhancement of phagocytic activity and minimisation of the immunoregulatory impact of TAMs in the TME, such as the unfavourable activation of regulatory T cells (Tregs). Blocking the CD47- signal regulatory protein alpha (SIRPα) interaction by using blocking antibodies or small drugs to silence the ‘don’t eat me signal’ from solid or liquid tumours is a promising way to prolong the survival (64, 65). Indeed, TAM-targeted immunotherapy is a good option to treat cancer because of the phenotypic plasticity of TAMs and their adaptive capacity to reinforce their killing activity. Inspired by CAR-T cell immunotherapy, a gene-editing strategy can be introduced in TAM-targeted therapy programs to obtain more satisfactory results in solid cancer treatment. CAR-M therapy has emerged as a promising response to the disadvantages of CAR-T and CAR-NK therapies. Experiments confirmed that CAR-M antitumour activity builds on natural macrophage mechanisms. In vitro and in vivo models demonstrated the ability of CAR-Ms to reduce the tumour burden and elucidate their cytotoxic mechanisms Figure 3. In this section, we provide a review of pioneering preclinical studies that thoroughly investigate CAR-M anti-tumoricidal effects.
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Figure 3 | Antitumor mechanisms of CAR macrophages (CAR-Ms). (A) CAR-mediated phagocytosis of tumour cells through specific antigen recognition. (B) Enzymatic degradation of the extracellular matrix (ECM) within the tumour microenvironment, facilitating immune infiltration. (C) Secretion of proinflammatory cytokines that promote immune cell recruitment and activation. (D) Presentation of tumour-derived antigens to lymphocytes, contributing to the activation of adaptive immune responses.




3.4 Preclinical evidence: functional capabilities of CAR-Ms

CAR-Ms exhibit multiple antitumour mechanisms (66, 67).

	Enhanced phagocytosis.

	The M1-type proinflammatory response is mediated by the secretion of TNF-α, IL-1, IL-6, and IL-12.

	Induction of DNA damage through ROS and nitric oxide production.

	Modulation of the hypoxic TME.



Several preclinical models have been developed since the demonstration of the anti-cancer activity of biter and eater macrophages by Morrisey et al. to enhance phagocytosis (33, 39, 41). Gill, who was nominated for the design of the first clinical trial on CAR-Ms in 2020, demonstrated the phagocytic activity of anti-CD19, -CD22, -HER2, and -mesothelin CARs using THP-1 human macrophage cell lines on antigen-positive target cells (33, 52). In a recently published study by Chupradit et al., phagocytosis was enhanced in a hepatocellular carcinoma model to target the CD147 tumour-associated antigen using CAR-Ms derived from THP-1 human cells. It has been noticed that such CAR-Ms are homologues of natural macrophages, but are equipped with enhanced phagocytosis activity, exhibiting significant cytotoxicity specific to tumour cells (68). The anti-cancer activity of CAR-M extends beyond mere tumour cell engulfment and killing. CAR-Ms polarized towards M1 pro-inflammatory phenotype can acts as antigen-presenting cells and infiltrate the cytotoxic CD8+ T cells, Th17 cells, NKs and neutrophils to create a collaborative immunological niche against malign cells (49, 53, 69).




3.5 Next-generation CAR-Ms: improving functional strength and specificity

Creating more complex CAR structures is the next step in CAR programs to strengthen the functional abilities of CAR-Ms and reduce off-target specificity. Eisenberg et al., designed a new generation of CAR constructs using mucin1 (MUC1) tumor-associated antigen-specific scFv domain, CD3ζ domain, and CD28 and OX40 costimulatory domains. Anti-cancer assays on a solid lung tumour or malignant pleural effusion model have shown that anti-MUC-1 CAR-Ms can be differentiated with a stable CD86+ TNF-α+ IL-8+ IL-1β+ M1 phenotype, displaying tumour-restricted phagocytosis and antigen-specific lysosomal processing with negligible off-target specificities (70).

To enhance the autonomous activity of CAR-Ms, Zhang et al., engineered HER2-targeted CAR-Ms with integrated shRNA targeting SIRPα. These shSIRPα-CAR-Ms displayed reinforced proinflammatory polarisation, superior phagocytic capacity, and improved cytotoxicity in both patient-derived tumour organoids and in vivo models (71).

Building on these efforts, recent studies have introduced synthetic modules to further improve the functional sophistication of CAR-Ms. For instance, Huang et al., developed dual-specific CAR-M constructs capable of simultaneously engaging tumour antigens and innate immune receptors, thereby enhancing phagocytic activity and TME modulation (72). In another example, CD147-based intracellular signalling domains promote tumour matrix degradation and cell motility, increasing infiltration while preserving cytotoxic function (73).

Zhao et al., used CRISPR-Cas9 to edit metabolic pathways in CAR-Ms, boosting their inflammatory output and oxidative burst, which resulted in more durable M1 polarisation and tumour rejection in vivo (74). Complementary strategies include combining CAR-Ms with immune checkpoint blockade; for example, co-administration of PD-1 inhibitors has been shown to synergise with CAR-M-induced T-cell recruitment and remodelling of the immunosuppressive niche (38).

Together, these findings underscore the emergence of multifunctional CAR-M designs that not only enhance direct cytotoxicity but also shape the tumour microenvironment and coordinate with other immune compartments to sustain robust antitumour responses.




3.6 Overcoming TME-mediated suppression: CAR-M strategies

A common challenge in CAR-M research is that the TME often drives macrophages toward an M2 anti-inflammatory phenotype, which impairs their antitumour efficacy. Thus, TME conditioning is a very important aspect to be visualised by CAR researchers to allow CAR-Ms to gain an M1 phenotype and assist in direct anti-cancer activity accompanied by the infiltration of other immune cells to create a tumour-invasive habitat. Zhang et al., tested Raw264.7 mouse macrophages in a murine breast cancer model to consider the CAR-M effect on the ECM, which is a highly rigid, complex acellular network within the TME that acts as a dense barrier that impedes most cell- and drug-based antitumour therapies (37, 75). The team introduced a CAR motif to bind HER2 tumour antigen and aimed to activate CD147 signalling to increase the expression of matrix metalloprotease (MMP), degrade ECM, and allow T cells to infiltrate the tumour. These promising results showed that infusion of CD147 targeting CAR-Ms inhibited the growth of HER2+ 4T1 tumour cells and allowed T cell trafficking into tumours via ECM degradation (37). Strong antitumour activity has also been observed in anti-HER2 and anti-CD47 THP-1 human macrophages towards HER2+ SKOV3 and CD47+ A2780 human ovarian cancer cells (76). CD47 is a critical “don’t eat me signal” biomarker which allows cancer cells to evade the innate immune defense. The high expression level of CD47 and activation of the CD47-SIRPα pathway are correlated with a low survival rate in cancer patients (77). This in vitro CAR-Ms model merits special attention by pointing to a combined antigen-specific anticancer effect manifested by phagocytosis and cytotoxic T lymphocyte (CTL) polarisation. This therapeutic effect was validated in a xenograft tumour model using BALB/c nude mice transplanted with THP-1 and SKOV3 cells. The inhibitory effect was versatile and was expressed by phagocytosis, infiltration by CTLs, and switching of M2 macrophages to M1 macrophages within the TME. A recent study by Chen et al., introduced a novel CAR-M design that co-expresses a chimeric receptor with an FcRγ signalling domain and a soluble SIRPα decoy, effectively neutralising the CD47–SIRPα axis and enhancing phagocytosis, even under low-antigen conditions. This engineered CAR-M not only boosted direct tumour cell engulfment but also reshaped the TME by promoting infiltration of cytotoxic T cells and inflammatory myeloid populations, highlighting a promising approach to overcome immune escape in solid tumours (78).




3.7 Combination strategies involving CAR-Ms

Combination strategies involving CAR-Ms are increasingly being explored to overcome the key limitations of monotherapies for solid tumours. While CAR-Ms exhibit unique capabilities, such as matrix degradation, tumour infiltration, and pro-inflammatory polarisation, their efficacy can be hampered by immunosuppressive cues within the TME and limited persistence. Combining CAR-Ms with complementary modalities, such as immune checkpoint inhibitors, targeted therapies, and chemotherapeutics, aims to boost antitumour responses through synergistic mechanisms. This section highlights selected preclinical and translational efforts that exemplify the rationale and potential of CAR-M combination strategies.

To address CAR-M exhaustion and improve their persistence in the TME, Lei et al., engineered constructs with increased antigen specificity, resulting in enhanced antitumour activity and reduced off-target effects (45). In this design, the CAR construct included the classical CD3ζ intracellular domain, which was further strengthened by the addition of a tandem TLR4-derived toll/IL-1 receptor (TIR) domain. Locked onto EGFRvIII- and Glypican-3 (GPC3), the new version of CAR-iMACs polarised with LPS stimulation seems to be resistant to the immunosuppressive effect of the TME and are conferred with an ameliorated adhesive nature and displayed a strong anti-cancer effect on EGFRvIII+ U87MG-human glioblastoma cell lines compared to WT or first-generation CAR-iMACs. In line with this functional buildup, the adoptive transfer of a-EGFRvIII CD3ζ-TIR-CAR-iMACs diminished the tumour growth rate and prolonged the survival of animals in an orthotopic glioblastoma model. The dual signalling offered by the CD3ζ-TIR intracellular domain augments the secretion levels of IL-6, IL-12, IL-23, and TNF-α pro-inflammatory cytokines and ensures antigen-dependent antitumour activity, reflected by a robust phagocytic capacity, TNF-α dependent clearance of apoptotic tumour bodies, and emendation of the TME. This study emphasised the potential synergy between CAR-iMACs and CD47 antibodies. The combinatory infusion strategy achieved a stronger anticancer effect in a hepatocellular carcinoma model and resulted in significant remission in tumour-bearing mice. In 2023, Wang et al., applied metabolic gene knockout on CAR-iMACS to neutralise the Aconitate Decarboxylase 1 (ACOD1) gene and obtained M1 polarized CAR-iMACS with a more potent phagocytic and cytotoxic activity against cancer cells. The M1 profile was positively correlated with high expression of CD80/CD86 costimulatory molecules, release of IL-6, IL-1β cytokines and low expression of CD163/CD206 anti-inflammatory proteins. The anti-cancer effect has been validated in vivo by human HO-8910 driven ovarian and human AsPC-1 driven pancreatic cancer models, where tumour-bearing animals had better survival under the control of CAR-iMACs. The tumour suppression effect of CAR-iMACS was even more pronounced by adding anti-CD47 or anti-programmed cell death protein-1 (PD1) immune checkpoint inhibitors in the treatment regimen (79). The PD1-PD-L1 interaction is one of the most studied signalling mechanisms in cancer treatment. PD1- programmed death ligand-1 (PD-L1) pathways keeps the TME in an immunotolerigenic state and favours tumor growth. Unfortunately, this has been clearly demonstrated in most patients with solid tumours and there is no satisfactory response to anti-PD1 monotherapy (80). In a recently published paper by Pierini et al., a clinically relevant fully immunocompetent syngeneic mouse model was developed to consider how CAR-Ms endeavoured to reduce the coverage of the PD1 blockade strategy. Promising results have shown that anti-HER2 CAR-Ms not only have a multifaceted anti-tumour effect by directly killing tumour cells and by remodelling the TME, but also sensitise solid tumours to anti-PD1 immunotherapy (36). Finally, the newly established combined strategy included the synergistic use of CAR-T and CAR-M cells. Liu et al., were the first to demonstrate beneficial cooperation between CAR-T and CAR-Ms (48). Anti-CD19 CAR-Ms carrying the FcRγ intracellular domain and anti-CD19 CAR-T cells showed significant cytotoxicity against Raji B cells. However, the conjugation of the antitumour effect from each cell type exhibited a stronger effect than that obtained from CAR-Ts or CAR-Ms alone. The mechanisms underlying the trademark of the combinatory effect have been described as the differentiation of macrophages into M1 macrophages by CAR-T cell-derived cytokines and the enhancement of cytotoxicity from CAR-Ms. CAR-Ts and CAR-Ms boost each other in a circular cascade because CAR-Ts augment the expression of CD80 and CD86 surface co-activation molecules on CAR-Ms, which in turn ensures T cell priming and activation via the CD80 and CD86-CD28 signaling pathway. Finally, the alliance of CAR-Ts with CAR-Ms remodulates the TME to the detriment of the tumour via a large cytokine network including IL-6, IL-1β, and IFN-γ. In conclusion, preclinical data have shown that CAR-Ms are sufficiently flexible to be introduced into a combined antitumour strategy, and encouraging observations endorse their beneficial assistance and future evaluation in clinical trials.




3.8 Enhancing CAR-M therapies: new delivery methods

The recapitulatory information drawn from these proof-of-concept studies indicates that CAR-Ms are highly likely to be modulated to create a better version of the previous generation, and their beneficial effects can be accentuated in combined immunotherapy strategies. One of the brilliant advancements in CAR-M generation methods is that the nanotechnology field and in situ programming have been integrated into CAR engineering to allow the evolution of third-generation CAR-Ms. Despite the widespread use of adenoviruses and lentiviruses in CAR-M generation, concerns over the immunogenicity of viral vectors, safety risks (particularly the potential for insertional mutagenesis), and significant economic burden have driven researchers to explore alternative gene delivery strategies and enhance safety protocols.

A transient delivery method of chemically modified mRNA has been optimised to induce M1 type macrophages in the presence of IFN-γ, and this non-viral delivery system induced persistent expression of CAR constructs and enhanced antitumour activity (81).

Nanomaterial-based carriers are a rising trend in classical viral gene delivery systems, owing to their low cost, large-scale production, and production simplicity (82). Among them, lipid nanoparticle vectors (LNPs) shine amongst others by their efficiency in mRNA vaccine development against COVID-19 (83, 84). The translational potential of the LNPs was integrated into mRNA technology using the CAR-M engineering platform. The team of Zhongfeng Ye et al., successfully engineered functionally active CAR-Ms using LNPs to transfer CD19 mRNA, and in vitro preclinical experiments demonstrated that CAR-Ms are highly cytotoxic against B lymphoma (85). The following year, Yang et al., encapsulated anti-GPC3 CAR into LNPs to specifically edit macrophages in a hepatocellular carcinoma (HCC) model (39). The combination of CAR-M therapy with the blockade of the CD24–Siglec-G axis, achieved through the use of Siglec-G lacking ITIM motifs, reduced tumor burden and prolonged survival in HCC-bearing mice by enhancing CAR-M-mediated phagocytic activity. Kang et al., reported a proof-of-concept study of an anaplastic lymphoma kinase (ALK)-expressing neuroblastoma solid tumour model in 2021 (47). By using macrophage-targeted polymer nanocarriers as gene delivery vectors, the group designed an anti-ALK CAR to transfer into bone marrow-derived macrophages (BMDMs), within M2-BMDM were reprogrammed at the same time as CAR-IFN-γ gene constructs to shift the M2 phenotype to M1. This study has indicated that the switch-on of strong anti-cancer activity is associated with phagocytosis, antitumour immunoregulation, and the reduction of tumour size.

In a 2022-dated preclinical study, Chen and his group, working on glioblastoma multiforme known to have a high rate of relapse due to residual glioma stem cells (GSCs) after surgical intervention, were motivated to generate in vivo CAR-Ms targeting GSCs as part of postsurgical therapy (86). The group used a nanopore loaded with an anti-CD133 gene-hydrogel structure and co-injected the structure with anti-CD47 antibodies in the resection intracavity to edit local macrophages in situ. The results clearly revealed that edited CAR-Ms were either able to deteriorate GSCs via efficient phagocytic activity or mounted an adaptive immune response by gaining antigen-presenting capacity. Building upon advances in nanoparticle-based therapeutics, Zhou’s team, in 2025, integrated in situ CAR-M generation with LNP-mediated delivery to mitigate the challenge of nanoparticle sequestration by tissue-resident macrophages (as detailed previously), thereby harnessing their intrinsic capacity for in vivo uptake. The group developed a 4T1- trophoblast antigen 2 (Trop2) breast cancer model to target the Trop2 tumour-associated antigen. In situ delivery of Trop2-CARs led to the development of CAR-Ms, which selectively destroyed Trop2+ cancerous cells and simultaneously boosted the activation of NK cells and CTLs.

Reprogramming macrophages into CAR platforms holds substantial promise for the treatment of solid tumours. Notwithstanding the preclinical findings that have begun to be appraised in the context of clinical trials, in silico immuno-oncology models based on CAR-M therapies are of vital importance in determining the key components of remission and relapse phase-associated immune responses and predicting the long-term benefits and side effects of therapy and therapy resistance mechanisms. In silico modelling of CAR platforms is still in its infancy and mostly dedicated to CAR-T cell-targeted immunotherapy (87, 88). Recently, computational tools have been integrated into CAR-M research. In a TME-targeted in silico study directed by Sugimura R. in 2024, anti-inflammatory transforming growth factor (TGF)-β cytokine is one of the nefarious cytokine keeping TME in a immunosilent atmosphere to benefit the growth of tumor (89). The group processed their computational knowledge using in vitro and in vivo liver cancer models and reprogrammed macrophages to secrete anti-TGFβ scFv (AB-CAR-M). Preliminary results demonstrated that the supernatants from AB-CAR-Ms induced CTL-related anticancer activity, suppressed pro-tumourigenic regulatory T cell activity, and boosted pro-inflammatory M1 macrophages within the TME.




3.9 Beyond cancer

Since the latest encouraging reports on CAR-Ms in solid tumour treatments, the rapid development of CAR-M therapies in solid tumours has prompted researchers, clinicians, and clinical investigators to consider these immunotherapeutic cells as alternative personalised therapy options to fight non-oncologic diseases. CAR-Ms have recently emerged as promising immune therapeutic agents for managing the pathogenesis of various diseases (90). Inspired by the fact that CAR-Ms act in an antigen-dependent manner and modulate the milieu in which they are localised, several preclinical studies have focused on the ability of CAR-Ms to eliminate exogenous pathogens or abnormal cells that present a specific antigen signature. Since 2021, CAR-Ms have been subjected to in vitro and in vivo studies on an extended area of pathogenesis, including viral and bacterial infections, neurodegenerative diseases, and cardiac diseases (35, 91–93). As discussed in previous studies, CAR-Ms have demonstrated potential to clear SARS-CoV-2 infection from the immune system (26). In a murine model of septicaemia caused by methicillin-resistant Staphylococcus aureus (MRSA) infection, LNPs loaded with CAR mRNA targeting SasA surface protein and siRNA targeting the CASP11 evasion biomarker mediated the in situ generation of CAR-Ms, which exhibited potent phagocytic activity against MRSA (91).

Neurodegenerative diseases, such as Alzheimer’s disease (AD), have also been targeted using CAR-Ms. AD is an uncured neurodegenerative disease that affects millions of individuals worldwide. Although the pathogenesis is not yet fully understood, the deposition of β-amyloid plaques in brain tissue and the consequent neurotoxic cascades and destructive neuroinflammation are accepted as key signatures of the disease. In addition to the anti-β-amyloid monoclonal antibody drug approved by the FDA in 2021, antigen-specific CAR-Treg infusion has also been proposed as a potential therapeutic strategy owing to the immunomodulatory character of Tregs, which can dampen excessive neuroinflammation and induce local tolerance (94). More recently, in 2024, Kim et al., explored CAR-M immunotherapy for AD (92). This work aligns with recent reviews on the role of CAR-Ms in neuroinflammatory disorders and the therapeutic potential of targeting the central nervous system (95). They debuted the study with intracranial administration of a first-generation CAR-M targeting β-amyloid plaques differentiated from Hoxb8 murine cells, which showed a beneficial effect on the plaque load. Based on these encouraging results, the group designed an upgraded version that could be maintained by macrophage colony-stimulating factor (M-CSF) secretion in an autocrine manner. As expected, anti-β-amyloid CAR-Ms secreting M-CSF could persist for 30 days in local tissue compared to the first generation of CAR-Ms with only two weeks of lifespan and presented a reinforced phagocytic activity on plaque load. In the cardiovascular field, CAR-T cell-based therapies have recently been explored for cardiac injury, and CAR-M immunotherapeutic approaches have emerged as promising alternatives for cardiac injury treatment (96). CAR-M-based immunotherapeutic assays have also been considered as alternative methods.

CAR-M therapy has been proposed as an alternative to T-cell–based approaches for cardiovascular diseases. Wang et al., working on myocardial fibrosis as a result of myocardial ischemia-reperfusion injury, designed a-FAP (fibroblast activation protein) CAR-Ms (93). Two weeks of treatment indicated that CAR-Ms could infiltrate the cardiac tissue, mediate the phagocytosis of fibroblasts, help recover cardiac function, and thus attenuate the extreme inflammation related to ischaemia-reperfusion injury. By harnessing the superlative immune properties of macrophages, researchers have made exciting breakthroughs that could translate CAR-M programming into non-cancerous diseases. Although CAR-based immuno-oncologic key points serve as a reference for their preclinical applications in non-cancer diseases, very little is known about clinical trials targeting CAR-Ms in cancer; thus, CAR-Ms need time to be validated into non-tumour therapeutic classes. These preclinical studies collectively underscore the broad therapeutic potential of CAR-Ms beyond oncology, establishing a foundation for future clinical translation.





4 In vivo advances

Demonstrating robust antitumour activity in vivo is a critical step in the clinical translation of CAR-M therapy. Unlike conventional CAR-T therapies, which face major barriers in solid tumours due to poor infiltration and immunosuppressive environments, CAR-M offers unique advantages in tissue penetration and microenvironmental remodelling. Preclinical in vivo models have been instrumental for validating these properties and establishing a foundation for early clinical trials.

Building on the extensive research discussed previously, numerous CAR-M designs have advanced to in vivo testing to assess their therapeutic potential. In this section, we highlight key studies that have significantly contributed to validating CAR-M efficacy in animal models and informing clinical translation efforts. Dong et al., engineered HER2-specific CAR-M from human peritoneal macrophages and achieved significant tumour suppression and improved survival following intraperitoneal administration in murine gastric cancer xenografts (97). Importantly, this study highlights the relevance of localised delivery strategies to maximise CAR-M infiltration and its therapeutic impact in vivo. Similarly, Chen et al., developed a dual-specific HER2- and CD47-targeted CAR-M, demonstrating antigen-specific phagocytosis and robust immune activation in ovarian cancer models (97). This dual-targeting approach reflects early efforts to address both tumour cell clearance and the inhibition of anti-phagocytic signals in vivo.

Beyond direct tumour targeting, the stromal components of the TME have been successfully addressed. Mao et al., generated CAR-M directed against (FAP, a marker highly expressed by cancer-associated fibroblasts (CAFs)), and demonstrated reduced fibrosis, improved immune infiltration, and delayed tumour progression in colon cancer models (98). Innovations in cell sourcing have contributed to expanding the feasibility of CAR-M. Hu et al., used iPSC-derived macrophages (CAR-iMAC) expressing a c-Met-specific CAR to eliminate cancer stem-like cells and suppress angiogenesis in pancreatic cancer models (99). Zheng et al., further enhanced c-Met CAR-M efficacy by combining them with chemotherapy agents such as gemcitabine and irinotecan, achieving superior tumour control in vivo (100). Notably, preclinical in vivo studies have not been theoretical. Building upon encouraging animal data, Li et al., conducted a first-in-human trial with mesothelin-targeted CAR-M (SY001) in patients with ovarian cancer, reporting favourable safety and preliminary evidence of disease stabilisation (101). Collectively, these studies highlight that progression from in vitro assays to rigorous in vivo validation is indispensable for establishing the therapeutic potential of CAR-Ms. Many of the initial designs discussed here have served as a platform for subsequent refinements aimed at enhancing in vivo efficacy, as detailed in the following sections.



4.1 Strategies to enhance CAR-M efficacy in vivo

Although early preclinical studies have confirmed the feasibility of CAR-M therapies in animal models, further refinement is necessary to overcome the complex barriers of solid tumours, including immunosuppressive cytokine networks, hypoxia, and stromal fibrosis. Enhancing the in vivo efficacy remains a priority to ensure robust tumour infiltration, sustained antitumour activity, and durable immune system engagement. Several innovative strategies have been developed and validated, specifically in preclinical in vivo models, offering a roadmap for future clinical applications.

These strategies encompass not only improvements in CAR architecture (e.g. dual-costimulatory domains and cytokine expression modules) but also modulation of macrophage metabolic programming to favour M1 polarisation and enhanced persistence within the TME. For instance, metabolic reprogramming through inhibition of immunoregulatory pathways, such as ACOD1 or IDO1, has shown promise in increasing the inflammatory and cytotoxic capacity of CAR-Ms. Additionally, CAR-Ms can be engineered to resist key immunosuppressive signals (for example, TGF-β and IL-10) through dominant-negative receptors or decoy constructs and have demonstrated improved persistence and functionality in vivo.

Beyond genetic strategies, environmental conditioning via pretreatment with cytokines (e.g. IFN-γ) or metabolic adjuvants is being explored to “prime” CAR-Ms for pro-inflammatory activity. Collectively, these approaches illustrate a growing toolbox of engineering and conditioning strategies aimed at maximising CAR-M efficacy in vivo and overcoming the resistance mechanisms prevalent in solid tumours.




4.2 Combination therapies to overcome immunosuppression

Combination strategies have emerged as a promising approach to enhance CAR-M potency within the immunosuppressive TME, where high levels of regulatory cytokines, inhibitory ligands, and suppressive immune cells pose significant challenges to sustained macrophage activation. These strategies aim to synergise CAR-M activity with other therapeutic modalities to achieve deeper tumour regression and broader immune engagement.

Dong et al., demonstrated that combining HER2-targeted CAR-M with oxaliplatin chemotherapy significantly improved tumour regression compared to monotherapies in gastric cancer xenografts (97). This chemoimmunotherapy synergy is thought to be mediated by oxaliplatin-induced immunogenic cell death and increased antigen presentation, which sensitises tumours to macrophage-mediated phagocytosis and antigen cross-priming.

Similarly, Zheng et al., showed that the co-administration of c-MET-targeted CAR-M with gemcitabine or irinotecan amplified antitumour effects in pancreatic cancer models (100), suggesting that certain chemotherapeutics may remodel the TME in ways that enhance macrophage infiltration and persistence. Importantly, chemotherapeutic agents may also reduce the density of stromal barriers and myeloid-derived suppressor cells (MDSCs), further facilitating CAR-M efficacy.

In the immunotherapy domain, Pierini et al., reported that HER2-CAR-M reprogrammed the TME, enhancing CD8+ T cell infiltration, and sensitising tumours to PD-1 checkpoint blockade in vivo (36). This positions CAR-Ms not only as direct effectors but also as immunological “primers” that convert immunologically “cold” tumors into “hot” ones, enabling previously refractory tumours to respond to checkpoint inhibitors.

In addition to PD-1 inhibitors, combinatory approaches involving anti-CD47, anti-CSF1R, or anti-TGF-β therapies are under investigation to prolong M1 macrophage phenotypes and block alternative immunosuppressive loops. Altogether, these combinations highlight the versatility of CAR-Ms as both effector and facilitator cells in multiagent therapeutic strategies.




4.3 Targeting the tumor stroma and fibroblasts

The tumour stroma, predominantly composed of CAFs, represents a major physical and immunological barrier to effective therapy. Thus, stromal targeting using CAR-M cells is a key innovation. Mao et al., engineered a FAP-specific CAR-M capable of selectively eliminating CAFs, leading to reduced fibrosis, enhanced CD8+ T cell infiltration, and significant tumour growth delay in vivo (98). This pioneering study underscores the importance of remodelling the TME to facilitate immune access and enhance responsiveness to therapy.

CAFs not only produce dense ECM components that hinder immune cell infiltration, but also secrete immunosuppressive cytokines and chemokines that promote tumour progression and inhibit effector cell function. Therefore, the selective elimination of CAFs by CAR-Ms can exert a dual benefit: mechanically opening the tumour for immune cell infiltration and biologically reversing immune suppression. Importantly, their study revealed that CAR-M-mediated stromal depletion not only disrupted the physical barriers surrounding tumour nests but also created a more permissive microenvironment for endogenous immune responses.

Building on this strategy, Zhang et al., designed a quadrivalent CAR-M system capable of simultaneously targeting FAP (on CAFs) and GPC3 (on tumour cells) while expressing a dominant-negative TGF-β receptor to resist stromal-mediated immunosuppression (102). Delivered via in vivo lipid nanoparticle (LNP) systems, these quadrivalent CAR-Ms achieved potent stromal remodelling and durable tumour regression in hepatocellular carcinoma models. This approach reflects the growing interest in multifunctional CAR-M designs that can simultaneously address multiple components of the tumour architecture.

Together, these studies demonstrate that disrupting the stromal architecture is essential for enhancing CAR-M efficacy in vivo. By combining physical barrier elimination with immunological reprogramming, stroma-targeted CAR-Ms offer a promising route for amplifying the penetration and antitumour activity of both innate and adaptive immune cells in solid tumour settings.




4.4 Genetic engineering to boost functional potency

As described in more detail in the previous section, focused on in vitro improvements, genetic modifications have been strategically explored to reprogram macrophages towards a pro-inflammatory (M1-like) phenotype and enhance their anti-tumour functions. Building on these in vitro findings, several studies have successfully validated the impact of genetic engineering on preclinical in vivo models.

For example, Wang et al., demonstrated that deletion of the ACOD1 gene in iPSC-derived mesothelin-targeting CAR-Ms enhanced pro-inflammatory activation and reactive oxygen species (ROS) production, significantly boosting antitumour activity in ovarian and pancreatic cancer models (79). This metabolic reprogramming led to a higher expression of M1 markers (CD80 and CD86), increased secretion of IL-6 and IL-1β, and reduced expression of M2-associated proteins (CD163 and CD206), confirming a stable inflammatory phenotype. These results emphasise the role of intrinsic macrophage metabolism in the modulation of CAR-M potency.

Similarly, Duan et al., adopted a complementary strategy by incorporating TLR4 or IFN-γ receptor signalling domains into VEGFR2-targeted CARs (103). These synthetic modules promote M1-like activation and enhance tumour infiltration and suppression in breast cancer xenografts. The inclusion of TLR4 domains mimicked microbial danger signals, stimulating the production of TNF-α, IL-12, and other pro-inflammatory cytokines that helped overcome immunosuppressive cues in the TME.

An additional strategy to preserve the antitumour phenotype involves targeting the intrinsic regulators of macrophage polarisation. Ziane-Chaouche et al., demonstrated that Furin knockdown in CAR-Ms prevented their M2 reprogramming in the TME, sustained M1-associated cytokine profiles, and increased their ability to activate T cells and eradicate tumor cells in patient-derived tumoroids and xenograft models (104).

Overall, these studies illustrate that rational engineering of CAR signalling domains or macrophage intracellular programs can substantially increase effector function, persistence, and specificity in vivo. Future designs may benefit from modular “plug-and-play” CAR systems incorporating synergistic co-stimulatory, cytokine, or metabolic modules tailored to the tumour type and TME characteristics.




4.5 Improving CAR-M tumor infiltration through optimized delivery

Effective infiltration of CAR-M into the tumour bed is crucial for therapeutic success, particularly in solid tumours that are characterised by dense stromal components and abnormal vasculature. Several studies have investigated optimised delivery routes to maximise tumour homing and tissue penetration.

Li et al., demonstrated that intraperitoneal administration of mesothelin-targeting CAR-M resulted in superior tumour infiltration and control compared to intravenous infusion in ovarian cancer models (101). This finding underscores the importance of locoregional delivery for enhancing cell persistence and functional activity at tumour sites. Similarly, Dong et al., found that local intratumoural delivery significantly improved HER2-CAR-Ms efficacy in gastric cancer xenografts (97), likely because of enhanced retention within the TME and immediate proximity to tumour cells.

These observations suggest that conventional systemic delivery routes may limit CAR-M accumulation in tumours, particularly in immunologically “cold” or poorly perfused tumour types. Thus, alternative administration strategies, such as intratumoural, intracavitary, or intrapleural injection, are being increasingly considered to overcome these limitations and maximise local cell density and antitumour activity.

Moreover, the route of administration may influence the macrophage phenotype post-infusion. Local exposure to tumour antigens and cytokines may sustain M1 polarisation and enhance the immunomodulatory functions of CAR-Ms. Therefore, tailoring the delivery strategy to the tumour type, anatomical location, and desired immune outcomes is a key consideration in CAR-M therapeutic design.




4.6 Generation and delivery of CAR-M: focus on in vivo feasibility

Although ex vivo engineering approaches have successfully generated potent CAR-Ms for preclinical studies, their clinical translation faces significant logistical challenges, including scalability, manufacturing complexity, and patient-specific variability. Therefore, innovative strategies that enable efficient in vivo reprogramming of endogenous macrophages are gaining increasing attention as a promising approach.

Traditional ex vivo manufacturing involves leukapheresis, cell isolation, differentiation, viral transduction, and reinfusion, which require time, specialised facilities, and significant financial resources. These complexities are particularly problematic in the context of autologous therapies, in which patient-to-patient variability can compromise product consistency and delay treatment.

In contrast, the in vivo reprogramming of macrophages represents a paradigm shift, enabling on-site genetic modification without the need for ex vivo manipulation. Nonviral delivery systems, particularly lipid nanoparticles (LNPs), have emerged as promising platforms for this purpose. As previously described, several studies have shown that the in situ delivery of CAR constructs via LNPs or polymer-based carriers can effectively program macrophages within the TME, leading to tumour-selective CAR-M generation and robust antitumour activity.

This approach offers multiple advantages: it circumvents the need for individualised cell manufacturing, potentially enables repeated dosing, and leverages the natural tropism of macrophages at tumour sites. Furthermore, the use of tissue-specific promoters or localised administration routes (e.g. intratumoural injection) can help to restrict CAR expression to the desired myeloid subsets, thereby improving safety. As in vivo delivery technologies mature, they are likely to play a central role in scalable implementation of CAR-M therapy.




4.7 Ex vivo engineering: proof-of-concept for CAR-M potency

As previously discussed in the section focused on in vitro CAR-M generation, classical ex vivo strategies involve isolation of peripheral blood monocytes or bone marrow-derived cells, differentiation into macrophages using cytokines (M-CSF or GM-CSF), and genetic modification via viral vectors, most notably lentiviruses or adenoviruses. Building on these established methodologies, several preclinical studies have demonstrated that ex vivo engineered CAR-M can exert potent antitumour activity in vivo.

Dong et al., utilised an Ad5f35 vector system to transduce HER2-specific CARs into human peritoneal macrophages, achieving significant tumour control in gastric cancer models (97). This study validated the antitumour potential of CAR-Ms and highlighted their capacity to infiltrate tumour tissues and modulate the immune microenvironment. Similarly, Pierini et al. demonstrated that ex vivo engineered HER2-CAR-M could remodel the tumour microenvironment and sensitise tumours to PD-1 checkpoint blockade (36), indicating a synergistic role for CAR-Ms in combination immunotherapies.

Ex vivo approaches also offer a controlled environment for optimising the transduction efficiency, CAR construct expression, and functional polarisation of macrophages prior to infusion. These features are particularly advantageous for the development of “next-generation” CAR-Ms with enhanced cytokine production, antigen presentation, or resistance to TME-mediated suppression.

Nevertheless, the complexity, cost, and individualised nature of ex vivo production remain significant hurdles for widespread clinical application. For clinical-grade manufacturing, scalable good manufacturing practice (GMP)-compliant protocols and standardised cell sources, such as iPSC-derived macrophages, are being explored to bridge the gap between the bench and bedside. In this regard, ex vivo CAR-M engineering continues to serve as a crucial platform for proof-of-concept studies and the development of lead candidates for early phase clinical trials.




4.8 In vivo reprogramming strategies: towards scalable therapies

Recent preclinical studies have developed novel in vivo CAR-M programming platforms to overcome the challenges associated with ex vivo macrophage expansion and engineering. These strategies enhance accessibility, reduce manufacturing complexity, and open new avenues for the treatment of solid tumours by directly reprogramming endogenous macrophages. Nonviral delivery systems, particularly LNPs, have emerged as promising platforms for this purpose. Kang et al., employed mannose-conjugated polyethylenimine (MPEI) nanocomplexes to deliver plasmids encoding anti-ALK CAR and IFN-γ into endogenous macrophages, using a PiggyBac transposon system for stable genomic integration in vivo (47). CAR was designed to promote tumour cell phagocytosis, whereas IFN-γ secretion enhanced macrophage polarisation toward an M1-like, pro-inflammatory phenotype. The in vivo experiments were conducted using a murine neuroblastoma model (Neuro-2a, ALK+). Notably, direct intratumoural injection of the nanocomplexes resulted in a higher CAR-M programming efficiency and better tumour control than systemic intravenous administration. Extending this approach, Zhang et al., engineered quadrivalent LNPs encoding two distinct CAR constructs to simultaneously target hepatocellular carcinoma (HCC) and tumour stroma. One CAR recognised GPC3-expressing tumour cells and incorporated a Super IL-2 cytokine module designed to stimulate T-cell activation locally. The second CAR targeted FAP-expressing CAFs and was fused to a dominant-negative TGF-β receptor to resist stromal immunosuppression. In preclinical HCC models, this dual-targeting strategy achieved potent stromal remodelling, enhanced T cell infiltration, and durable tumour control (102). Systemic intravenous administration preferentially reprogrammed hepatic macrophages, leading to effective TME remodelling, enhanced CD8+ T cell infiltration, and durable immune memory formation. Although additional early-stage efforts are emerging, these studies represent the most advanced and translationally relevant examples of in vivo CAR-M reprogramming to date. Together, they highlight the feasibility, flexibility, and clinical promise of this approach, where vector design, CAR architecture, and delivery route critically shape the therapeutic efficacy and immune activation.




4.9 Monitoring CAR-M activity in preclinical in vivo models

Accurate monitoring of CAR-M in vivo is essential to evaluate its biodistribution, persistence, tumour infiltration, functional reprogramming, therapeutic efficacy, and potential toxicity (105). In addition, advanced imaging strategies provide crucial insights into CAR-M dynamics within the TME, helping to optimise therapeutic protocols and predict clinical outcomes (106). Monitoring approaches can be broadly categorised into two groups: experimental modalities widely used in preclinical CAR-M studies, and clinically validated imaging technologies initially developed for macrophage tracking, which hold promise for future translation to human applications (Table 2).

Table 2 | Imaging techniques for in vivo CAR-M monitoring.
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Fluorescence-based techniques, including genetic expression of Green Fluorescent Protein (GFP) and membrane dye labelling with DiR or DiD, have been extensively used for short-term CAR-M tracking in small animal models (47). These approaches allow the visualisation of cell migration and tumour infiltration via confocal or intravital microscopy. For example, Klichinsky et al., employed VivoTrack680, a near-infrared lipophilic membrane dye, to label HER2-targeted CAR-Ms and monitor their biodistribution and tumour infiltration in vivo, demonstrating robust accumulation within xenograft tumours (33). However, their limited tissue penetration and lack of clinical translatability have restricted their use in preclinical studies.

Bioluminescence imaging (BLI), utilising luciferase-expressing CAR-M or tumour cells in combination with luciferin substrate injection, provides sensitive, non-invasive monitoring of CAR-M persistence and antitumour activity over time (33). BLI is a standard tool in numerous preclinical CAR-M studies, including HER2-targeted (97), c-MET-targeted (99, 100), and stroma/tumour dual-targeted quadrivalent CAR-M models (102). This modality enables longitudinal assessment of therapeutic responses and survival outcomes in vivo, providing critical validation prior to clinical translation.

Emerging high-resolution ex vivo technologies such as RNA in situ hybridisation (RNAscope) and multiplex ion-beam imaging (MIBI) have further enhanced the ability to characterise CAR-M localisation and interactions with the TME at single-cell resolution. For example, Reiss et al., successfully applied RNAscope technology to detect CAR-M in tumour biopsies of patients treated with CT-0508, providing spatial confirmation of CAR-M infiltration within the solid tumour microenvironment in a first-in-human clinical trial (46).

Together, these techniques enable comprehensive spatiotemporal tracking of CAR-M behaviour in vivo and offer valuable platforms for correlating phenotypic persistence with therapeutic efficacy and safety. As clinical development advances, continued innovation in imaging and molecular tracking will be crucial to inform dosing, scheduling, and patient-stratification strategies.




4.10 Clinically established imaging modalities for macrophage tracking

Several imaging platforms originally developed for macrophage tracking have demonstrated clinical feasibility and can be adapted for CAR-M monitoring in patients. Magnetic Resonance Imaging (MRI) with superparamagnetic iron oxide nanoparticles (SPIONs), such as Ferumoxytol (an FDA-approved agent), enables non-invasive visualisation of macrophage infiltration into tumours (107). Sharkey et al., demonstrated the ability to track SPION-labelled macrophages using MRI, offering a clinically compatible approach for future CAR-M studies. Positron Emission Tomography (PET) is another highly sensitive imaging method. Radiolabelling of macrophages ex vivo with isotopes such as 89Zr-oxine or using probes targeting macrophage markers such as CD206 (mannose receptor) enables the quantitative assessment of cell distribution in vivo (106). Single-photon emission computed tomography (SPECT) has also been employed for macrophage imaging using radiolabelled antibodies against myeloid markers (108). Photoacoustic Imaging (PAI), a novel hybrid optical ultrasound modality, offers high-resolution, real-time imaging without the need for ionizing radiation (108). Although still largely experimental, PAI holds promise for future clinical applications in immune-cell monitoring. The integration of clinically established modalities, combined with novel probe development, could significantly enhance the real-time, non-invasive evaluation of CAR-M therapies during human trials.





5 Clinical advances



5.1 Ongoing clinical trials

CAR-M represents a promising new cell therapy platform designed to overcome several key challenges faced by T cell-based therapies, particularly in the treatment of solid tumors. Their unique ability to penetrate the TME and stimulate innate and adaptive immune responses has sparked considerable interest. CAR-M is entering the early phase of clinical trials following excellent results observed in vitro and in vivo (33, 97, 100), with a few studies currently registered on ClinicalTrials.gov. The details of these studies can be found in Table 3 and are currently evaluating the safety and efficacy of CAR-M therapies in solid tumors, particularly those overexpressing HER2. A recent review by Li et al., comprehensively summarized the preclinical and clinical progress of CAR-Ms, emphasizing translational hurdles and the therapeutic potential of combining CAR-Ms with chemotherapy or checkpoint blockade to enhance efficacy in solid tumors (109).

Table 3 | Early phase clinical trials using CAR-M.
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One of the most advanced is NCT04660929, a first-in-human phase 1 trial investigating CT-0508 (46) (Figure 4), an autologous anti-HER2 CAR-M, in patients with advanced HER2-overexpressing solid tumors. In this open-label study, CT-0508 was administered without lymphodepleting chemotherapy, highlighting its favourable safety profile. No dose-limiting toxicities or high-grade cytokine release syndromes (CRS) were observed. Preliminary efficacy data indicated stable disease in a subset of patients, particularly those with high HER2+ expression, along with evidence of TME remodeling and T-cell recruitment. Building on this foundation, the ongoing NCT06224738 trial explored the combination of CT-0508 and pembrolizumab, a PD-1 checkpoint inhibitor, for HER2+ tumors. This phase 1 dose escalation study aimed to assess the safety and potential synergistic activity of this combination. This is based on preclinical findings suggesting that CAR-M-induced tumor inflammation may sensitize tumors to immune checkpoint blockade, potentially overcoming T-cell exhaustion and enhancing antitumor immunity.
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Figure 4 | Overview of the clinical procedure used in the CT-0508 trial evaluating anti-HER2 CAR macrophages. This schematic illustrates the clinical workflow of the CT-0508 phase I trial (NCT04660929), the first-in-human study of HER2-targeted chimeric antigen receptor macrophages (CAR-Ms) in patients with advanced HER2-positive solid tumours. The procedure includes leukapheresis for monocyte collection, ex vivo differentiation and CAR transduction of autologous macrophages, followed by infusion into the patient without prior lymphodepleting conditioning. The trial assesses safety, tolerability, and early signals of antitumor activity, alongside immunological changes in the tumour microenvironment.

Complementing these clinical studies, the NCT05007379 trial focuses on a translational approach by testing CAR-M therapies in patient-derived breast cancer organoids. This cohort study aimed to evaluate the antitumor activity of CAR-Ms in ex vivo models that reflect clinical heterogeneity and treatment resistance to help identify responsive tumor subtypes and refine future therapeutic strategies. Although no clinical results from this trial have yet been published, the research group has contributed valuable publications and protocols demonstrating the feasibility and relevance of using ex vivo organoid models to optimize CAR-M development (110, 111).

NCT06562647 is the first-in-human, single-center, single-arm, dose-escalation exploratory clinical trial that evaluates the safety, tolerability, pharmacokinetics, and preliminary efficacy of SY001, a mesothelin-targeted CAR-M therapy, in patients with advanced solid tumors (101). The trial commenced on April 12, 2023, and is currently recruiting participants. Initial clinical data from the first two patients indicated that SY001 was well tolerated, with no dose-limiting toxicities observed. Only two grade 3 adverse events occurred, and common grade 1–2 adverse events included fever and elevated C-reactive protein levels. Notably, no CRS or neurotoxicity related to cell infusion has been reported previously. The NCT03608618 trial is a phase 1, first-in-human, dose-escalation study assessing MCY-M11, a mesothelin-targeting CAR-M therapy, in patients with advanced ovarian cancer and malignant peritoneal mesothelioma (Figure 5). MCY-M11 was generated using a rapid, non-viral, mRNA-based manufacturing platform to produce autologous fresh peripheral blood mononuclear cells (PBMCs) transfected with anti-mesothelin CAR mRNA. The therapy was administered intraperitoneally without preconditioning chemotherapy, following a 3 + 3 dose-escalation design across four planned dose levels, with one cycle consisting of three weekly infusions.
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Figure 5 | Overview of the clinical procedure used in the MCY-M11 trial evaluating intraperitoneal mesothelin-targeted CAR macrophages. This schematic represents the clinical workflow of the MCY-M11 phase I trial (NCT03608618), a first-in-human study investigating intraperitoneal administration of mesothelin-targeted CAR-Ms in patients with advanced ovarian cancer and malignant peritoneal mesothelioma. The procedure involves leukapheresis, rapid non-viral mRNA transfection of autologous peripheral blood mononuclear cells (PBMCs), and fresh cell infusion via the peritoneal cavity without lymphodepleting preconditioning. The trial follows a dose-escalation design and aims to assess safety, tolerability, and feasibility of this localized CAR-M therapy.

Despite promising early safety signals, challenges such as cell persistence, manufacturing scalability, and tumor infiltration efficiency remain critical areas for further investigation.




5.2 Reported toxicities and clinical management

In the first in-human phase 1 trial of CT-0508 (46), an anti-HER2 CAR-M therapy, the overall safety profile was favourable. No dose-limiting toxicities (DLTs), high-grade CRS (≥ grade 3), or immune effector cell-associated neurotoxicity syndrome (ICANS) were observed. The most common adverse event was mild CRS (grades 1–2), occurring in 64.3% of patients, which resolved spontaneously or with supportive care; only one patient required tocilizumab. Infusion-related reactions, gastrointestinal symptoms (e.g., nausea and vomiting), and transient cytopenia were also reported, all of which were low-grade. Importantly, the therapy was administered without prior lymphodepletion, thereby reducing the risk of prolonged immunosuppression or hematologic toxicity. These findings suggest that CAR-M therapy can be administered safely in heavily pretreated patients with solid tumors, with a distinct toxicity profile compared with CAR-T cell therapies. Table 4 summarizes the toxicities observed with CT-0508.

Table 4 | Toxicities observed with CAR-M therapy (CT-0508, anti-HER2 (46)).
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In the data reported in ASCO for the first-in-human phase 1 trial of MCY-M11, a mesothelin-targeting CAR PBMCs (112) (including CAR-M) therapy delivered intraperitoneally, the overall safety profile was favourable. No dose-limiting toxicities (DLTs), high-grade CRS (≥ grade 3), or immune effector cell-associated neurotoxicity syndrome (ICANS) were observed. The most common treatment-related adverse events were mild (grades 1–2), and included transient fever, abdominal pain, nausea, and fatigue. A single case of grade 2 pericarditis associated with fever and transient neutropenia was reported, which was attributed to on-target off-tumor effects and possible low-grade CRS. It resolved fully with supportive care without the need for corticosteroids or cytokine blockade. To date, no infusion-related reactions or treatment-related deaths have been reported. Importantly, MCY-M11 was administered without preconditioning chemotherapy, thus minimizing the risk of prolonged immunosuppression or hematologic toxicity. These findings indicate that intraperitoneal CAR-M therapy can be safely administered to patients with advanced solid tumors, with a manageable toxicity profile distinct from that observed with CAR-T cell therapies. Table 5 summarizes the treatment-related toxicities observed in MCY-M11.

Table 5 | Toxicities observed with CAR-M therapy (MCY-M11, anti-mesothelin (112))*.
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5.3 Clinical responses and preliminary efficacy

Initial clinical data from early phase trials suggest that CAR-M therapy may induce antitumor activity in heavily pretreated patients with solid tumors. In the NCT03608618 trial evaluating MCY-M11, intraperitoneal administration of anti-mesothelin CAR-Ms led to disease stabilization in a subset of patients with advanced ovarian cancer and malignant peritoneal mesothelioma, with stable disease observed in several patients after a single treatment cycle. Similarly, in a phase 1 trial of CT-0508 (NCT04660929), preliminary efficacy signals included stable disease in patients with HER2-overexpressing tumors, particularly in those with HER2 3+ expression. In addition to clinical stabilization, evidence of TME remodeling and T-cell recruitment has been reported in CT-0508-treated patients, supporting the hypothesis that CAR-M therapies may modulate the immune landscape to enhance antitumor responses. Although objective responses remain limited at this stage, these findings are encouraging and justify the continued investigation of combination strategies and expanded dosing regimens. These early findings suggest that CAR-M therapies may achieve durable tumor control by reshaping the TME, even in the absence of strong cytoreductive responses.




5.4 Current and potential indications

The current clinical development of CAR-M therapies has focused primarily on solid tumours, particularly those characterised by the high expression of tumour-associated antigens and an immunosuppressive microenvironment. Ongoing trials, such as NCT03608618 and NCT04660929, are evaluating CAR-Ms that target mesothelin and HER2, respectively, in patients with advanced ovarian cancer, malignant peritoneal mesothelioma, breast cancer, and gastroesophageal cancer. These indications were selected based on the biological rationale that macrophages can penetrate dense stromal barriers and modulate the TME, thereby overcoming the limitations of T cell-based therapies. Beyond the current targets, CAR-M therapies have the potential to expand to a broader range of solid malignancies, including pancreatic cancer, non-small cell lung cancer, and glioblastoma, in which effective immune infiltration remains a major therapeutic challenge. Preclinical models also suggest opportunities for targeting antigens, such as EGFR, diasilogangloside (GD2), and prostate specific membrane antigen (PSMA). Additionally, CAR-Ms can play a role in haematologic malignancies by exploiting their innate phagocytic capabilities and antigen-presenting functions; however, clinical exploration in this area remains limited. Future directions may include the development of armoured CAR-Ms engineered to secrete pro-inflammatory cytokines or express checkpoint blockade molecules, further enhancing their antitumour efficacy across diverse tumour types.




5.5 Clinical challenges and limitations

Despite encouraging early phase results, several challenges remain in the clinical translation of CAR-M therapy. One of the most significant limitations is the relatively short persistence of CAR-Ms in vivo, particularly when using transient mRNA-based platforms, which may limit the durability of the antitumour responses. Strategies to enhance macrophage survival and functionality post-infusion are under active investigation, including the use of autocrine cytokine loops, genetic modifications to resist apoptosis, and incorporation of long-lived memory-like traits. Efficient homing and infiltration into solid tumour sites are also critical hurdles. Although macrophages naturally migrate to sites of inflammation, tumour-associated immunosuppressive signals such as IL-10, TGF-β, and hypoxiacan impair their recruitment or reprogram them toward an M2-like, tumour-supporting phenotype. Optimising the route of administration (e.g. intratumoural or intraperitoneal delivery), engineering enhanced chemokine responsiveness, and shielding CAR-Ms from immunosuppressive cues are active areas of research. Macrophage phenotypic plasticity, which is advantageous for reprogramming, poses a major risk. CAR-Ms may revert to an M2-like, anti-inflammatory, and pro-tumour phenotype under TME pressure. Sustaining M1 polarisation in vivo remains a significant challenge, particularly in solid tumours with a strong immunosuppressive architecture. This has prompted interest in “armored” CAR-Ms expressing pro-inflammatory cytokines or dominant-negative receptors that counteract key TME-derived inhibitory signals. Another complicating factor is the absence of lymphodepleting preconditioning in current CAR-M protocols. While this avoids the toxicities associated with lymphodepletion, it may also limit the therapeutic “niche” for infused cells and reduce engraftment. Future studies should explore tailored, nontoxic conditioning regimens that enhance macrophage persistence without compromising safety.

From a logistical and manufacturing perspective, current CAR-M therapies typically rely on fresh autologous cell products and rapid turnaround, making large-scale deployment challenging. The development of allogeneic or off-the-shelf CAR-M platforms, such as iPSC-derived or -immortalised macrophages, may improve scalability, although they are still in the early phase of development. Furthermore, regulatory frameworks for macrophage-based therapies remain less defined than those for CAR-T cells, adding complexity to their clinical translation.

Therefore, safety remains a concern. Given the widespread expression of many solid tumour-associated antigens, the risk of on-target off-tumour toxicity must be carefully assessed. Engineering strategies to improve antigen specificity, the use of dual antigen recognition, and incorporation of synthetic logic gates or suicide switches are currently being evaluated to mitigate these risks. Finally, the lack of predictive biomarkers for patient stratification and absence of robust immunocompetent translational models hinder both clinical trial design and therapeutic refinement. Addressing these challenges is essential to fully unlock the therapeutic potential of CAR-M therapies in the clinical setting.




5.6 Future perspectives for clinical practice

CAR-M therapies represent a novel and versatile approach to cancer immunotherapy, particularly for the treatment of solid tumours, for which conventional T cell-based strategies have shown limited efficacy. As preclinical data accumulate and clinical trials progress, several key developments are expected to shape the future integration of CAR-Ms into clinical oncology. First, enhancements in cell engineering to improve in vivo persistence, tumour homing, and resistance to immunosuppressive signals are essential for achieving durable and reproducible clinical responses. Emerging strategies include the use of synthetic signalling domains, epigenetic reprogramming, and the incorporation of metabolic or cytokine modules that promote long-lasting M1-like activity within the TME. Secondly, combination therapies are likely to play a central role in maximising the clinical impact of CAR-Ms. The pairing of CAR-Ms with immune checkpoint inhibitors, chemotherapy, radiotherapy, or oncolytic viruses may overcome the mechanisms of adaptive resistance and synergistically enhance antitumour immunity. In particular, the use of CAR-Ms as TME modulators to “prime” tumours for subsequent T-cell engagement is an attractive concept that has been actively explored. Third, innovation in manufacturing platforms is crucial to increasing accessibility. The development of standardised GMP-compliant protocols for rapid autologous production, as well as scalable allogeneic macrophage banks derived from iPSCs or universal donor sources, could significantly reduce the production costs and turnaround time. These advances are particularly relevant in the context of rapidly progressing cancers where treatment delays are critical.

Additionally, future CAR-M designs will likely integrate safety switches, logic gates, and tunable activation systems to enhance the control and minimise on-target off-tumour toxicity. Refining antigen selection based on tumour specificity and heterogeneity as well as incorporating dual-antigen targeting approaches may also improve selectivity and broaden clinical applicability. Beyond technical and biological improvements, the successful translation of CAR-Ms into routine clinical practice will require well-designed randomised trials to demonstrate clear therapeutic benefits over standard-of-care treatments. The identification of predictive biomarkers for patient stratification and response monitoring will be critical for personalised therapy and outcome optimisation. If these scientific, logistical, and regulatory milestones are achieved, CAR-M therapies have the potential to become a valuable addition to the immunotherapeutic arsenal, initially for solid tumours, and potentially expand into haematologic malignancies or non-oncologic indications such as fibrotic or infectious diseases.





6 Discussion

CAR macrophage therapy represents an exciting new frontier in cancer immunotherapy, with the potential to overcome some of the key limitations of CAR-T cell approaches, particularly for solid tumours. The basic CAR structure used in macrophages is similar to that of T cells, consisting of an extracellular antigen-binding domain, transmembrane domain, and intracellular signalling domains. CAR-M designs have evolved to incorporate macrophage-specific signalling components such as Fcγ receptors to enhance phagocytic function. More recently developed CAR-M designs include additional elements that promote M1 polarisation and resistance to the immunosuppressive TME. The incorporation of safety switches and tunable activation systems is important as clinical developments progress. Although immortalised cell lines and primary monocyte-derived macrophages have been useful for proof-of-concept studies, CAR-iMAC is emerging as a promising scalable source for clinical applications. The ability to generate large numbers of genetically modified macrophages from iPSCs could help overcome the manufacturing challenges. However, ensuring the stable phenotypes and functions of iPSC-derived CAR-M cells in vivo is critical. CAR-M exhibits multifaceted antitumour activity beyond direct tumour cell phagocytosis, including remodelling of the TME, recruitment and activation of endogenous T cells, and antigen presentation. The ability of CAR-M to penetrate solid tumours and alter the local immune landscape may be particularly advantageous compared to CAR-T cells. However, strategies to prolong CAR-M persistence and maintain M1 polarisation in vivo are required to achieve durable responses. Although ex vivo engineering approaches have dominated early development, in situ reprogramming of endogenous macrophages using nanoparticle-delivered CAR constructs is an intriguing strategy to simplify manufacturing and potentially improve tumour targeting. Optimising delivery methods and CAR design for efficient in vivo programming is an important area for future research. Initial phase 1 trials of HER2-targeted and mesothelin-targeted CAR-M demonstrated encouraging safety profiles, with manageable toxicities distinct from those typically observed with CAR-T therapy. Preliminary efficacy signals included disease stabilisation in some patients and evidence of TME modulation. However, the objective responses remain limited at this early stage.

These early phase observations should be interpreted with caution because of the limited persistence of CAR-Ms in vivo and the risk of phenotypic drift toward an M2 profile that may inadvertently support tumour growth. The immunosuppressive nature of the TME remains a barrier, requiring further engineering strategies to maintain macrophage activation. Furthermore, large-scale GMP-compliant production of CAR-Ms remains a challenge, especially in autologous settings. Regulatory frameworks for this novel cellular therapy platform are also evolving. Addressing these challenges is critical to unlocking the full clinical potential of CAR-M therapies.



6.1 Future directions

Looking ahead, several key areas will be pivotal for advancing CAR-M therapies toward clinical maturity. One critical objective is to enhance CAR-M persistence and maintain a stable M1 pro-inflammatory phenotype in vivo, as these features are essential for sustained anti-tumour activity. Achieving this may require genetic modifications that promote survival signals, resistance to immunosuppressive cues from the tumor microenvironment (TME), and incorporation of cytokine support systems. Equally important is the optimisation of antigen selection and CAR construct design to maximise efficacy, while minimising off-target effects. Dual-antigen targeting and tunable activation systems can improve the specificity and safety profiles, particularly in solid tumours with heterogeneous antigen expression. Combination strategies are emerging as a promising direction. Pairing CAR-Ms with immune checkpoint inhibitors, chemotherapy, or oncolytic viruses may amplify therapeutic responses by addressing multiple layers of tumour immune evasion. CAR-Ms may serve not only as direct cytotoxic agents, but also as TME modulators that facilitate the recruitment and activation of other immune cell types. Refining manufacturing processes on the translational front remains a major challenge. Developing consistent, scalable protocols—whether for rapid autologous production or allogeneic “off-the-shelf” platforms—is essential for broad clinical accessibility.

Finally, the identification of predictive biomarkers for patient selection and response monitoring is vital for personalised application of CAR-M therapies. These biomarkers could guide treatment decisions and help stratify patients most likely to benefit from this approach. Beyond oncology, CAR-M is also being explored for other indications such as infectious diseases, neurodegenerative disorders, and cardiovascular conditions. The unique properties of macrophages may enable diverse therapeutic applications. Although still in the early stages, CAR-M therapy shows promise as a versatile new tool for cancer immunotherapy. Continued optimisation of CAR designs, manufacturing processes, and combination strategies is critical for realising the full potential of this approach. Larger randomised trials are needed to definitively establish the clinical efficacy and role of CAR-M in cancer treatment.
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Background

Hepatocellular carcinoma (HCC) recurrence after liver transplantation is frequently multiple and extrahepatic, and with a poor prognosis. The therapeutic effects of current medications for post-transplant HCC recurrence are limited. This study assessed whether outcomes could be improved by adding dendritic cell (DC)immunotherapy to the treatment regimen.





Methods

Eleven patients treated with tyrosine kinase inhibitors and DC-immunotherapy for post-transplant HCC recurrence between 2020 and 2024 were included. DC were propagated from peripheral blood monocytes and pulsed with tumor lysate. Historical data of patients (n =23) with tyrosine kinase inhibitors for post-transplant HCC recurrence between 2009 and 2020 were collected as a reference.





Results

Seven male and four female patients were included in this study. The median (interquartile) tumor recurrence time after transplantation was 35.0 (7.4-55.3) months. The median number of DC-immunotherapy were 5 ranged from 3 to 10, and the median number of cells admitted was 29.5x106 cells ranged from 16.0 to 137.2 x106 cells. Responses to DC-immunotherapy included nine stable diseases and two progressive diseases. No adverse effects related to DC treatment were observed. The 1-, 2- and 3- year survival rates were 70.7%, 40.4%, and 40.4%, respectively, compared to 52.5%, 17.4%, and 8.7%, respectively, for patients treated with tyrosine kinase inhibitors only (p = 0.050).





Conclusion

DC immunotherapy is a safe treatment for transplant recipients with HCC recurrence. Adding DC-immunotherapy to the treatment regimen could prolong the survival of some patients.





Keywords: DC, dendritic cell, hepatocellular carcinoma, liver transplantation, tyrosine kinase inhibitor, immune checkpoint inhibitor





Introduction

Hepatocellular carcinoma (HCC) had been a relative contraindication for liver transplantation because HCC was easy to recur after liver transplantation. Until the so-called Milan criteria of liver transplantation were established for HCC, liver transplantation was resumed for HCC treatment (1). Currently, liver transplantation is the treatment of choice for HCC and yields the best outcome among the therapeutic modalities if the tumors are within the Milan criteria (2). Nevertheless, the Milan criteria are frequently challenged to restrict HCC patients from undergoing liver transplantation. Hence, the criteria for liver transplantation for HCC are extended to the University of California, San Francisco (UCSF) criteria, up-to-7 criteria, and various other criteria (3–5). However, the extension of criteria will expense the outcomes of liver transplantation for HCC, as tumor recurrence will increase (6, 7).

HCC recurrence after liver transplantation is a critical issue because treatment is troublesome and the prognosis is very poor. In the literature, the tumor recurrence rate after liver transplantation was 13-17% (8, 9). When these criteria are extended, the tumor recurrence rate is expected to increase. Post-transplant recurrent HCC is usually extra-liver metastasis, and effective treatments for extra-liver metastasis are still lacking. Sorafenib, a tyrosine kinase inhibitor (TKI), was introduced in 2008 to treat advanced HCC. Patient survival can be significantly prolonged, although the objective response rate is low (10, 11). Nivolumab, an immune checkpoint inhibitor (ICI), was used to treat advanced HCC with a 15-20% objective response (12). Recently, a combination of atezolizumab and bevacizumab achieved a 30% of objective response rate for advanced HCC and could be used to treat extra-liver metastases (13). Nevertheless, ICI is concerned to be used in organ transplant patients because ICI may induce acute rejection and result in graft loss (14–16). Hence, TKI remains the main therapeutic option for post-transplant HCC recurrence (17, 18).

Dendritic cells (DC) are the most potent antigen-presenting cells and can process tumor-specific or associated antigens to activate cytotoxic T-cells and undergo anti-tumor immunity. Theoretically, cancer cells develop due to transformation of cells as a consequent of enhanced oncogenes or loss of tumor suppressor genes. Cancer cells may express tumor-specific or tumor associated antigens due to genetic change. DC can pick up these antigens to stimulate antigen-specific cytotoxic T-cells and attack cancer cells. DC has been applied to treat various cancer with promising effects and without major adverse effects (19). For early stage HCC, DC can be used as an adjuvant therapy after liver resection to increase disease-free and overall survival (20, 21). For advanced HCC, DC-therapy could increase count of T-lymphocyte and improve overall survival (22). In our previous study, DC vaccination could achieve a 12.9% of objective response rate and a 67.7% of disease control rate (23). In a meta-analysis, DC-based immunotherapy for HCC could increase 1.9 folds of progression-free survival and 1.72 folds of overall survival compared to the control (24). Post-transplant recurrent HCC is usually advanced and metastatic, and DC may be usable to treat these tumors.

When HCC recurred after liver transplantation, the median survival was only 7–16 months (8, 9, 25). For improving survival, some effective treatments must be added. Since DC could be used to treat advanced HCC, we added tumor lysate-pulsed DC to supplement TKI for post-transplant HCC recurrence in this study. Herein, we examined the preliminary therapeutic results of TKI supplemented with DC for post-transplant HCC recurrence.





Patients and methods




Patients

Patients who had post-transplant HCC recurrence and were treated with TKI supplemented with DC therapy from 2020 to 2024 were included in the study. Patient profiles, tumor characteristics, and post-recurrence treatments were collected for analysis. The objective of this study was to assess whether DC-immunotherapy was safe and could prolong patient survival when HCC recurred after liver transplantation. DC-immunotherapy was approved by the Ministry of Health and Welfare, Taiwan, under special regulations. This study conformed to the ethical guidelines of the 2000 Declaration of Helsinki and was approved by the institutional review board of Chang-Gung Memorial Hospital, Linkou Main Branch. (IRB No.202300279BO).





Clinical diagnosis and criteria of liver transplantation

The diagnosis of HCC was dependent on tumor lesions on dynamic computed tomography (CT) or magnetic resonance imaging (MRI) with a typical vascular pattern, while AFP was ≥ 200ng/ml, or tumor lesions with a typical vascular pattern in two imaging studies. A typical vascular pattern was defined as contrast uptake during the arterial phase and washout during the venous and late phases. The criteria for HCC for transplantation were Milan criteria (1) for deceased liver and UCSF criteria (3) for living donor liver transplantation.





Post-transplant immunosuppressive regimen

After liver transplantation, immunosuppression was induced by an immunosuppressive regimen consisting of steroids, tacrolimus, mycophenolate mofetil, and everolimus. Methylprednisolone was not administered during the operation. Postoperatively, methylprednisolone was tapered from 200 mg/day to 40 mg/day over five days and discontinued within three months after the operation. Tacrolimus was administered orally on post-transplant day 2 or 3, when renal function was restored. Therapeutic trough levels of tacrolimus were targeted at 5–8 ng/ml which was achieved within 7 days after transplantation. Tough levels of tacrolimus were kept at 3-5ng/ml in the long-term. Mycophenolate mofetil (MMF; 0.5–1 g/day) or everolimus (1 mg/day) was given orally one month after transplantation.





Clinical follow up

Liver tumor recurrence was screened for every liver transplant patient whose explant liver showed HCC. A-fetoprotein (AFP) levels were measured every 3 months after transplantation. Liver ultrasonography was performed every three months in the first three post-transplant years and then every six months. The screen activities lasted forever. CT was performed every 3 months in the first year and every 6 months in the 2nd year. However, CT can be performed anytime if needed. Tumor recurrence was defined as a tumor in the liver with a typical vascular pattern or extra-liver metastases.





Generation of DC and DC administration

The propagation of DC proceeded as described in our previous report (23). Briefly, peripheral blood, 50–60 ml, was obtained for DC propagation. Monocytes were isolated and suspended in serum-free AIM-V medium (Life Technologies, Graitherburg, MD, USA) supplemented with recombinant granulocyte-macrophage colony-stimulating factor (1000u/ml; R&D System Inc., Minneapolis, MN, USA) and interleukin (IL)-4 (1000u/ml; R&D System Inc., Minneapolis, MN, USA). Two days before harvesting DC, the DCs were pulsed with autologous tumor lysates and matured with cocktail cytokines. Before DC administration, DC must be negative for bacteria, mycoplasma, and high expression (> 60%) of CD40, CD80, CD83, CD86, and HLA-DR. Fresh 50–60 ml of peripheral blood was drawn to isolate monocytes for each time of DC propagation. The peripheral blood monocytes were not stored. The DCs yielded in each preparation was administrated within 4 hours, and were not stored, either. The number of cells infusion depended on the cell number yielded in each DC preparation. Three courses of DC were administered intravenously at 2-week interval. DC was boosted if the patient was willing to continue DC therapy.





Tumor lysate preparation

Tumor specimens were obtained via biopsy or local surgical excision. Tumor cells were dispersed into a single-cell suspension (2x106 cells/ml). These tumor cells were lysed using three cycles of snap freeze-thawing to obtain the tumor lysate. The large particles were removed by centrifuge (600rpm for 5 min). The lysate was preserved in –20°C freezer until it served as a tumor antigen.





Immune cell and tumor response to DC-immunotherapy

To examine immune cell response to DC-therapy, the percentage of CD4+ and CD8+ cells in peripheral lymphocytes were measured prior to and one month after DC-therapy by flow cytometry after stained by florescence-conjugated monoclonal antibodies. The tumor response to DC-immunotherapy was assessed using the Response Evaluation Criteria in Solid Tumors 1.1 (RECIST 1.1) and modified RECIST (mRECIST) (26). Briefly, complete response (CR) was defined as disappearance of all target visible lesions, partial response (PR) was defined as at least a 30% decrease from the baseline sum of the longest diameter, stable disease (SD) was defined as no significant change in the size of target lesions, and progressive disease (PD) was defined as ≥20% increase in the sum of the longest diameter or appearance of any new lesions.





Biostatistics

Categorical variables were compared using the Chi-square or Fisher’s exact tests. The significance of differences between different groups was determined using paired or unpaired Student’s t-tests. Estimated survival rates were calculated using the Kaplan-Meier method. All statistical analyses were performed using SigmaPlot 14 for Windows (Systat Software, Inc., San Jose, CA, USA). P < 0.05 was considered statistically significant.






Results




Patients

Eleven patients (seven males and four females) with TKI and DC-immunotherapy for post-transplant HCC recurrence were included. The median (interquartile) age at tumor recurrence was 56.4 (54.9-64.1) years ranging from 50 to 72 years. The median (interquartile) tumor recurrence time after transplantation was 35 (7.4 -55.3) months ranging from 3 to 114 months. Among them, only one patient had recurrent HCC limited to the liver, and all other patients had extra-liver metastases (Table 1). Moreover, most of the recurrent tumors were multiple; therefore, lung metastasis was observed in 7 (63.6%) patients, intrahepatic metastasis in 5 (45.5%) patients, lymph node metastasis in 3 (27.3%) patients, adrenal gland metastasis in 2 patients, bone metastasis in 1 patient, abdominal muscle metastasis in 1 patient, and inferior vena cava thrombus in 1 patient.


Table 1 | The characteristics of the 11 patients with DC-immunotherapy.
	Patients
	gender
	Age
	Op
	Time to 
recurrence (m)
	Site of tumor recurrence
	TKI
	Response to DC
	Survival time (m)
	Outcomes



	1
	F
	57
	LDLT
	35
	Mediastinal lymph nodes, lung, liver, kidney
	Sora →Reg
	PD
	42.5
	D


	2
	M
	57
	DDLT
	114
	lung, liver
	Sora
	SD (minor reaction)
	52.5
	A


	3
	M
	50
	DDLT
	9
	Liver, periportal lymph nodes
	Sora → Reg
	SD
	14
	D


	4
	M
	59
	LDLT
	24
	Lung, rectal abdominal muscle
	Len
	SD (minor response)
	18
	D


	5
	M
	64
	LDLT
	48
	lung
	Len
	SD
	12
	D


	6
	F
	58
	LDLT
	22
	liver
	Len
	SD
	57
	A


	7
	F
	72
	LDLT
	57
	Lung, left adrenal gland
	Len
	SD
	24
	D


	8
	M
	61
	DDLT
	35
	Iliac bone
	Sora
	SD
	51
	A


	9
	M
	53
	LDLT
	3
	Lung
	Len
	SD
	11
	D


	10
	F
	56
	LDLT
	4.5
	Lung
Retroperitoneal lymph nodes
	Len
	PD
	4.5
	D


	11
	M
	66
	LDLT
	90
	Liver, right adrenal gland,
IVC thrombus
	Reg
	SD
	6
	A





IVC, inferior vena vaca; Op, operation; DDLT, deceased donor liver transplantation; LDLT, living donor liver transplantation; TKI, tyrosine kinase inhibitor; Sora, sorafenib; Reg, regorafenib; Len, lenvatinid; PR, partial response; SD, stable disease; PD, progressive disease; N/A, not assess; D, dead; A, alive.







Phenotype of DC and DC administration

To determine the phenotype of DC in this culture system, they were stained with fluorescence-conjugated monoclonal antibodies and analyzed by flow cytometry. DCs express high levels of CD40, CD80, CD86, and HLA-DR. This DC was mature and expressed high levels of CD83. (Figure 1) Under our DC propagation methods, the median DC (interquartile) number yielded in each preparation was 3.11 (2.51-5.01) x106 cells ranging from 1.60 to 13.72 x106 cells.

[image: Flow cytometry histograms showing marker expression on cells. CD83+ at 96.59%, HLA-DR+ at 97.99%, CD40+ at 98.94%, CD80+ at 99.31%, and CD86+ at 99.68%. Each graph displays peaks in a different color indicating positive marker expression.]
Figure 1 | A representative of surface molecular expression and MHC class II antigen on DC. The DC applied to treat recurrent HCC expressed high levels of CD83, HLA-DR, CD40, CD80, and CD86.





Outcomes of treatments

DC-immunotherapy was introduced to treat post-transplant HCC recurrence at this institute in August 2020. All 11 patients with post-transplant HCC recurrence underwent regular treatment with TKI at first, then followed by DC-immunotherapy. The median (interquartile) time from tumor recurrence to DC-immunotherapy was 2.5 (2–9) months ranging from 1 to 24 months. The median course of DC was 5, with a range from 3 to 10. The total number of cells admitted was 31.1x106 cells ranged from 16.0 to 137.2 x106 cells. To assess alteration of T-cells prior to and after DC-immunotherapy, the percentage of CD4+ and CB8+ cells in peripheral blood lymphocytes were measured. The median (interquartile) percentage of CD4+ in T-lymphocytes was 32.2 (29.1- 40.1)% prior to DC therapy, and 32.1 (25.94 -38.2)% one month after DC-therapy (p = 0.625). The median (interquartile) percentage of CD8+ in T-lymphocytes was 44.3 (36.4- 51.7)% prior to DC therapy, and 45.3 (41.0 -58.2)% one month after DC-therapy (p = 0.137). Among 11 patients, only 5 patients had elevated levels of AFP. The median (interquartile) level AFP was 39 (19.2 -1125.4) ng/ml prior to DC-therapy, and 71.8 (30.6 – 180.5) ng/ml after DC-therapy (p = 0.137). To assess the responses to DC-immunotherapy, nine patients had stable disease and two had progressive disease. No adverse effects related to DC treatment were observed. The median (interquartile) aspartate aminotransferase (AST) levels prior to DC therapy were 29 (15-52)U/L and 30 (16-37)U/L after DC therapy (Figure 2A, p = 0.638). The median (interquartile) alanine aminotransferase (ALT) levels prior to DC therapy were 36 (14-84)U/L and 29 (11-40)U/L after DC therapy (Figure 2B, p = 0.175). The concomitant treatments for these patients included pembrolizumab in three patients (two prior to and one after DC-immunotherapy), surgical excision in two patients, radiotherapy in four patients, and transcatheter arterial chemoembolization (TACE) in three patients. For the three patients treated with pembrolizumab, the pembrolizumab courses were 3, 4, and 6, respectively. None of the patients had a tumor response to treatment, and one patient had acute rejection with elevation of liver function. The estimated median (interquartile) survival for these 11 patients was 24 (12-not reach) months. The 1-, 2-, and 3- year survival rates were 70.7, 40.4, and 40.4%, respectively. (Figure 3)

[image: Comparison of AST and ALT enzyme levels before and after DC treatment. Chart (A) shows AST levels, with a p-value of 0.638, and chart (B) shows ALT levels, with a p-value of 0.175. Both graphs indicate individual changes for multiple data points.]
Figure 2 | AST and ALT levels prior to and after 3 courses of DC-immunotherapy. (A) The median (interquartile) aspartate aminotransferase (AST) level prior to DC therapy was 29 (15-52)U/L and 30 (16-37)U/L after DC therapy (p = 0.638). (B) The median (interquartile) alanine aminotransferase (ALT) level was 36 (14-84)U/L prior to DC therapy and 29 (11-40)U/L after DC therapy (p = 0.175).

[image: Kaplan-Meier survival curve comparing two groups: DC (solid line) and No DC (dashed line). The y-axis represents survival percentage, and the x-axis shows months. The p-value is 0.050, indicating the statistical significance of the difference in survival between the groups.]
Figure 3 | Kaplan-Meier survival curves of the patients with DC-immunotherapy and historical patients without DC-immunotherapy. For the patients with DC-immunotherapy, the 1-, 2-, and 3- year survival rates were 70.7%, 40.4% and 40.4%, respectively. For historical patients without DC-immunotherapy, the 1-, 2-, and 3- year survival rates were 52.2%, 17.4% and 8.7%, respectively. (p = 0.050).





Neutrophil to lymphocyte ratio

To determine whether NLR could be used as a reference to predict the efficacy of DC therapy and outcomes, NLR was measured prior to DC therapy, at the end of DC-therapy and one month after DC therapy. Patients were divided into those who survived for ≥24 months and those who survived for <24 months. The NLR for the patients who survived ≥24 months was 2.58 ± 0.74, 2.18 ± 0.73, and 1.93 ± 0.50 prior to DC therapy, at the end of DC-therapy and one month after DC-therapy, respectively (Figure 4A, p = 0.281). The NLR for patients who survived <24 months was 2.27 ± 0.93, 2.15 ± 1.40, and 3.822 ± 2.31, respectively, prior to DC therapy, at the end of DC-therapy, and one month after DC therapy, respectively (Figure 4B, p = 0.522). Although the difference in NLR before and after DC therapy did not reach statistical significance in both groups of patients due to the small number of patients, NLR seemed to increase in patients with survival <24 months at one month after DC therapy.

[image: Two line graphs labeled A and B show NLR levels over time points: pre-DC, end of DC, and one month after. Both graphs exhibit various line patterns, indicating different trends in NLR values for groups or conditions. In graph A, the lines generally remain stable or slightly rise, while in graph B, there is more variation with some lines increasing and others decreasing.]
Figure 4 | NLR prior to DC-therapy, at the end of DC-therapy and one month after DC-therapy. (A) NLR for the patients survived ≥24 months was 2.58 ± 0.74, 2.18 ± 0.73, and 1.93 ± 0.50 prior to DC-therapy, at the end of DC-therapy and one month after DC-therapy, respectively (p = 0.281). (B) NLR for the patients survived <24 months was 2.27 ± 0.93, 2.15 ± 1.40, and 3.822 ± 2.31 prior to DC-therapy, at the end of DC-therapy and one month after DC-therapy, respectively (p = 0.522).





Historical patients for comparison

The patients with post-transplant HCC recurrence between 2009 and 2020 were collected and reviewed (Table 2). The median (interquartile) age at tumor recurrence was 57.3 (49.7-64.3) years. The median (interquartile) tumor recurrence time after transplantation was 13.8 (9.8-27.6) months. Most of the recurrent tumors were multiple and extra-hepatic, such as lung metastasis in 14 (60.9%) patients, intra-liver metastasis in 6 (26.1%), lymph node metastasis in 6 (26.1%), bone metastasis in 6 (26.1%), intra-abdominal carcinomatosis in 5 (21.7%), inferior vena cava/right atrium tumor thrombus in 3 (13.0%), and adrenal gland metastasis in 2 (8.7%). 22 patients received sorafenib, and one received regorafenib. For the 23 patients, the median (interquartile) survival was 12.6 (5.4-19.5) months. The 1-, 2-, and 3- year survival rates were 52.2%, 17.4%, and 8.7%, respectively, which were lower than those of patients receiving DC therapy (Figure 3, p = 0.050).


Table 2 | The characteristic of the patients with DC or without DC-therapy.
	Variables
	DC 
(n = 11)
	No DC 
(n = 23)
	p



	Sex (M/F)
	7/4
	21/2
	0.07


	Age (years)
	56.4 (54.9-64.1)
	56 (50-64)
	0.386


	Median (IQR)


	Transplant type
	 
	 
	 0.782


	 deceased whole liver
	2
	4
	 


	 deceased split liver
	0
	1
	 


	 living donor
	9
	18
	 


	Viral hepatitis
	 
	 
	 0.328


	 B (+)
	10
	16
	 


	 C (+)
	0
	3
	 


	 B (-) C (-)
	1
	4
	 


	Tumor 


	Milan (in/out)
	4/7
	8/15
	1.000


	UCSF (in/out)
	6/5
	13/10
	1.000


	Vascular invasion (+)
	8 (72.7%)
	10 (43.5%)
	0.146


	AFP ≥ 400ng/ml
	0
	2 (8.7%)
	1.000


	AFP ≥ 1000ng/ml
	0
	1 (4.3%)
	1.000


	Grade


	 I
	2
	3
	0.287


	 II
	4
	11
	 


	 III
	2
	6
	 


	 IV
	3
	3
	 


	Time to recurrence (months), median (IQR)
	35 (7.4-55.3)
	13.8 (9.8-27.6)
	0.122


	TKI
	 
	 
	<0.001


	 Sorafenib
	3
	22
	 


	 Regorafenib
	2
	1
	 


	 lenvatinib
	6
	0
	 


	Concurrent treatment


	 TACE
	1 (12.5%)
	2 (8.7%)
	 


	 local excision
	2 (25.0%)
	10 (43.5%)
	 


	 radiotherapy
	2 (25.0%)
	2 (8.7%)
	 





UCSF, University of California San Francisco; AFP, α-fetoprotein; IQR, interquartile range; TACE, transcatheter arterial chemoembolization.







Case presentation

Case 2 was a 57-year old male patient who had a deceased liver transplantation for hepatitis B cirrhosis and HCC at his 40s. Recurrent and metastatic tumors were seen in the lung (solitary and attached to pericardium, 64.0mm in diameter, Figure 5a) and the liver (solitary, 33.3mm in diameter, Figure 5e). Lung tumor biopsy was done to serve as tumor antigens to proceed DC-therapy. The lung tumor diameter was decreased from 64.0mm to 59.5mm and freed from the pericardium after 3 courses of DC (Figure 5b). Then, the lung tumor was excised and served as tumor antigens to proceed 3 additional coursed of DC-immunotherapy. The pathological figures of lung tumor showed tumor necrosis with CD3+ and CD8+ cells at tumor border (Figures 5c, d). After 3 additional DC-therapy, the diameter of liver tumor was decreased from 33.3mm to 26.3mm (Figures 5e, f). Later on, liver resection was performed to excise the tumor. Now, the patient is freed from HCC for 3 years.

[image: Panels (a) and (b) show axial lung CT scans with subtle differences in lung opacity. Panels (c) and (d) display histological slides labeled CD3 and CD8, highlighting cell distribution. Panels (e) and (f) present abdominal CT scans depicting organ structures and contrast variations.]
Figure 5 | Imaging studies of patient number 2. A recurrent and metastatic tumor, 64.0mm in diameter, in the lung and attached to pericardium (a). The lung tumor diameter was decreased to 59.5mm and freed from the pericardium after DC-therapy (b). The lung tumor was excised and showed necrotic with CD3+ cells (c) and CD8+ cells (d) at tumor border. The recurrent tumor in the liver was 33.3mm in diameter (e). The diameter of liver tumor was decreased to 26.3mm after DC-therapy (f).

Case 4 was a 59-year-old male with hepatitis B who had tumor recurrence in the lung and abdominal rectal muscle 24 months after living donor liver transplantation. A combination of pembrolizumab and lenvatinib has been used to treat tumor recurrence. After 3 courses of pembrolizumab, acute rejection occurred with elevation of AST and ALT; hence, the treatment was discontinued. Imaging studies showed tumor progression, and the sum of target lesion diameters increased from 152.0 mm to 189.62 mm. Instead of pembrolizumab, the treatment was replaced with DC immunotherapy. After 9 courses of DC infusion, the disease was stabilized and the sum of the target lesion diameters decreased to 140.8 mm. (Figure 6) Unfortunately, the patient got Covid-19 and died of respiratory failure 18 months after the HCC recurrence.

[image: CT scan images showing four different transverse abdominal views. Each image is labeled from (a) to (d). Image (a) shows prominent structures on the left and right side. Image (b) includes various organs with some gaseous patterns. Image (c) resembles (a) with a clear view of abdominal organs. Image (d) displays a wider distribution of abdominal features and fluid-filled areas.]
Figure 6 | Imaging studies of patient number 4. Post-transplant HCC recurrence at xyphoid process (a) and abdominal rectal muscle (b). After 9 courses of DC-immunotherapy, tumors at xiphoid process and abdominal rectal muscle regressed (c , d).






Discussion

Liver transplantation is indicated for HCC to yield the best outcomes among HCC treatment modalities. However, post-transplant HCC recurrence is a critical issue because most recurrent tumors are extrahepatic and multiple, and effective treatments are lacking. The prognosis of post-transplant HCC recurrence is very poor, with a median survival of only 7–16 months (8, 9, 25). Hence, the indication of liver transplantation is limited to the Milan criteria or only allows modest extension of the criteria in order to minimize tumor recurrence (1, 3, 4, 6). In our liver transplantation program, the criteria for liver transplantation are limited to the Milan criteria for deceased liver transplantation or the UCSF criteria for living donor liver transplantation. However, there is a discrepancy between clinical imaging and pathological findings. In this study, 63.6% of the patients were beyond the Milan criteria and 45.5% of the patients were beyond the UCSF criteria based on pathological findings. Of these patients, 72.5% had microvascular invasion, which was difficult to identify before transplantation. Post-transplantation screening for tumor recurrence is essential for patients with HCC (9, 27); in particular, tumors had vascular invasion or were beyond the criteria.

Post-transplant HCC recurrence is frequently extrahepatic and multiple in nature. Treatment of post-transplant HCC recurrence is difficult. Before TKI was approved for the treatment of advanced HCC, treatments for post-transplant recurrent HCC were lacking. Sorafenib was the first TKI approved for the treatment of advanced HCC, and was introduced in Taiwan in 2008. Since then, sorafenib has been the first-line treatment for patients with posttransplant HCC recurrence. Lenvatinib is another TKI approved for the treatment of advanced HCC, as the treatment results were not inferior to sorafenib in a clinical trial. Although the overall survival of patients with advanced HCC was not different between sorafenib and lenvatinib treatment, lenvatinib had a higher objective response rate and longer progression-free survival than sorafenib (28). Hence, the treatment for post-transplant recurrent HCC has shifted from sorefenib to lenvatinib at our institute. In 2019, the Ministry of Health and Welfare in Taiwan opened cell therapy under special regulations. Therefore, DC immunotherapy was added to joint TKI for post-transplant HCC recurrence.

DCs are the most potent antigen-presenting cells and can process tumor-specific or associated antigens to activate antigen-specific cytotoxic T-cells. The development of cancer cells is recognized as cell transformation due to a consequence of enhancement of oncogenes or loss of tumor suppressor genes. DC has been applied to treat various cancer with promising effects and without major adverse effects. DC has been used as a cancer vaccine to decrease HCC recurrence and prolong patient survival after liver resection, reported by Sun TY et al. (20) DC combined with cytokine-induced killer cells also has been used to decrease post-hepatectomy tumor recurrence (21), or tumor response/patient survival when combined with trans-arterial chemoembolization (29). Besides usage of DC-therapy in early and intermediate stage HCC, DC was used to treat advanced HCC. In a meta-analysis study, DC could increase progression-free and overall survival, compared to traditional treatments (24). As the therapeutic effects of TKI for post-transplant recurrent HCC were limited, DC may be added to the treatment regimen to increase therapeutic efficacy and improve patient survival.

DC immunotherapy improves the survival of patients with post-transplant HCC recurrence. When DC-immunotherapy was added into the treatment regimen, the median survival was increased from 12.6 month in historical patients to 24.0 months. The 1-, 2-, and 3-year survival rates also increased. The median survival for our historical patients was similar to that reported by Rajendran et al., who reported that the survival of patients with post-transplant HCC recurrence was 10–13 month (9). Dr. Mahmud et al. also reported that the median survival after HCC recurrence was 13.2 months (25). TKI used in most of historical patients was sorafenib, compared to lenvatinib used in this study. Although lenvatinib may have a higher objective response rate and longer progression-free survival than sorafenib (28), the difference between lenvatinib and sorafinib is not large enough to occupy all the difference between the study and historical groups. In this study, DC pulsed by tumor lysate were used to treat post-transplant recurrent HCC, and 9 of 11 patients had stable disease or minor reactions. The disease control rate of DC-immunotherapy is 81.8%, and survival is prolonged in some patients.

DC-based immunotherapy is a safe and promising treatment option for transplant recipients. In this study, patients received 3–10 courses of DC immunotherapy. No adverse events were observed. No DC immunotherapy-related acute rejection was observed. Two patients had minor reactions to DC-immunotherapy, in which the tumors regressed but did not meet the criteria of partial response. One of the two patients underwent surgery because it became feasible to excise the tumors, and the patient has been free from tumors until now. Post-transplant HCC recurrence is an advanced HCC status in patients. Treatment with therapeutic effects and concomitant low adverse effects is important in these patients. In this study, we showed that DC-based immunotherapy has therapeutic effects, with few adverse effects. DC-immunotherapy potentially met the requirements for post-transplant HCC recurrence treatment.

Immune checkpoint inhibitors are used to treat advanced HCC (12, 13, 30). However, whether ICI can be used to treat post-transplant recurrent HCC is concerned because ICI may cause acute rejection and lead to graft loss (15, 16, 31). In this study, three (two prior to and one after DC-immunotherapy) patients received pembrolizumab combined with lenvatinib, but no tumor response was seen in these 3 patients. One patient had a clinical suspicion of acute rejection and required steroid treatment. Clinical data on ICI treatment for post-transplant HCC recurrence are limited. In the literature, ICI used to treat post-transplant HCC recurrence or de novo malignancy can yield outcomes similar to those of patients without organ transplantation. However, the incidence of acute rejection was as high as one-third of patients (32, 33). ICI application in transplant recipients should be very careful.

DC immunotherapy is a highly personalized study. The limitations of this DC-immunotherapy highly depend on patient condition which is associated with cell number yielded and response to treatment. The yielded DC number is various in each propagation because monocyte counts are different in different conditions for each patient. Hence, it is believed that DC-therapy administration shall be carried out before immunity is deteriorated. Another limitation of this study is that HCC-specific or associate antigens are difficult to be specified until now and antigen specificity of DC-induced immunity is not performed. The number of patients receiving DC immunotherapy in this study was also limited. Nevertheless, DC immunotherapy is a new treatment for post-transplant HCC recurrence. The short-term outcomes were promising. Long-term follow-up and a larger number of patients are needed in future studies.

In conclusion, HCC recurrence after transplantation is a troublesome issue with poor prognosis. Adding DC-immunotherapy to TKI treatment regimens can significantly prolong survival without causing severe adverse effects. DC immunotherapy can be used to treat post-transplant HCC recurrence.
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The advent of immunotherapy in the treatment of cancer has opened a new dimension in the management of this complex multifaceted disease, bringing hope to many patients whose tumors have failed to respond to conventional therapies. The adoptive T cell therapy has since been extended to the treatment of several hematologic malignancies, initially in relapsed settings and more recently at the forefront of treatment due to high response rates. Despite exciting initial results, the preclinical antitumor effects of the first long-term studies show that CAR (Chimeric Antigen Receptor)-T cells have been slow to translate to the clinical setting, with early clinical trials showing suboptimal responses. The main reasons for the limited clinical performance seemed to be related to the low activation and short persistence of CAR-T cells. Thus, began a journey to improve the initial CAR structure, leading to the development of more complex constructs, which are grouped into five CAR generations. In this review, we describe the main challenges and potential solutions for the evaluation of CAR T-cell-based therapies in the preclinical setting.
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1 Background on CAR-T targets

The emergence of immunotherapies in cancer treatment has provided a new approach to counter challenging diseases, offering hope for many patients whose conditions remained unchanged after conventional chemotherapy. The notion of harnessing the body’s own defenses and directing them towards the disease was first proposed back in the 19th century, although the mechanisms involved remained long unknown. In the second half of the 20th century, immune cells have been shown to be capable of eliciting an antitumoral effect and later on, tumor infiltrating lymphocytes were successfully used in the treatment of cancers (1–3). The concept of chimeric T cell receptors was later developed when T cell receptors combined with antibody-derived variable regions were shown to induce T cell activation in a non-major histocompatibility complex (MHC) mediated manner (4, 5). This seminal discovery is what led to the development of the revolutionary immune therapy which uses the transgenic Chimeric Antigen Receptor (CAR) to direct T cells towards a desired target cell and induce activation and tumor killing. CAR-T therapy has been shown to be effective in achieving clinical response in cancer patients initially in chronic lymphocytic leukemia and follicular lymphoma with the first CD19-targeting CAR-T cell therapy eventually approved by the Food and Drug Administration (FDA) in the U.S.A. in 2017 for the treatment of pediatric and young adult B-cell acute lymphoblastic leukemia (6–8). The adoptive T cell therapy has since been expanded to the treatment of multiple hematologic malignancies starting in relapsed settings and recently moving towards the front lines of treatment due to the high response rates (1, 9, 10).

While exciting, the preclinical antitumoral effects of initial CAR-T cells were slow to translate to the clinical setting, with early clinical trials showing suboptimal responses. Despite the remarkable initial responses observed in clinical trials, long-term outcome studies show that most of the treated patients experience progression of the disease. The main reasons for this limited success seem to be related to low CAR-T cell activation and reduced longevity/durability, as well as antigen escape. Consequently, the initial CAR structure has been continuously improved, leading to the development of more complex constructs that can be organized into five CAR generations (Figure 1) (1).
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Figure 1 | Five CAR-T cell generations. The 1st Generation of CAR-T cells contain the CD3ζ domain, which triggers the intracellular signaling. The 2nd Generation has a co-stimulatory domain (CD28 or 4-1BB) enhancing the cytotoxicity of the CAR-T cells. The 3rd Generation has two co-stimulatory domains, offering superior cytokine secretion and CAR-T cell persistence. The 4th Generation has the cytokine inducer domain, and two co-stimulatory domains, modulating cytokine secretion. The 5th Generation of CAR-T cells have two co-stimulatory domains and with similar structure to the 2nd Generation with a STAT3 binding site, and its activation triggers cell signaling through CD3ζ, CD28 and JAK/STAT3 signaling activating the CAR T cells and maintain proliferation.

The first generation of CARs consists of an extracellular antibody-derived single-chain variable (scFv) region joined to CD3ζ or FcϵRIγ signal transducing endodomains by a hinge, and a transmembrane domain (11, 12). While first-generation CARs were able to induce T cell activation and produce in vitro and in vivo antitumoral effects in tumor models such as ERBB2-expressing tumors and ovarian cancer, early clinical trials employing these receptors unfortunately showed little to no tumor response and limited in vivo persistence of CAR T cells, varying from one to nine weeks, with longest durability in patients stimulated with interleukin 2 (IL-2) (12–17).

The second generation of CAR constructs improved on the first generation by integrating an additional costimulatory endodomain into the CAR structure to enhance function and persistence. Since normal T cell receptor (TCR)-mediated T cell activation requires costimulation, it was postulated that replicating this mechanism in CAR-T cells might enhance their activation. It was thereafter demonstrated that costimulatory signaling effectively improves CAR T cell activation regardless of whether it is exogenous, intrinsic, or originates in target cells (18–20). Costimulatory domains employed in CAR constructs originate in the activation pathways of B and T lymphocytes, where they provide the required signaling for activation. Multiple domains such as CD27, CD28, 4-1BB (CD137), OX40 (CD134) have been successfully used to augment CAR function by increasing activation, cytotoxicity and persistence (21, 22). The two most commonly used costimulatory domains are 4-1BB and CD28. While both improve efficacy, important differences have been observed among the two approaches. CD28 CAR has been shown to lead to a more robust expansion while 4-1BB CAR is associated with longer persistence, likely due to activation of non-canonical NF-kB pathway with antiapoptotic effects (23–25). It is important to note that the choice of costimulatory domain influences T cell differentiation and phenotype, though results from mouse models and clinical trials show that the efficacy between the two types of CAR is similar (24–26). Following validation of their clinical efficacy, second-generation CAR were approved for use in clinical practice, pioneered by the 4-1BB anti-CD19 CAR-T therapy in 2017 (8). Further efforts to improve CAR-T efficacy led to the development of third, fourth, and fifth generation CARs. The third-generation receptors incorporate multiple costimulatory domains, usually from different receptor families such as Ig and tumor necrosis factor superfamilies (27, 28). This approach benefits from the joint effects of each costimulatory domain such as inducible T cell costimulatory (ICOS) domain and 4-1BB, which promote persistence of CD4+ and CD8+ CAR-T cells, respectively (29). Multiple studies have shown the improved in vivo expansion and persistence of third generation CAR-T cells, which might prove beneficial in instances where the target antigen is scarcely expressed (30, 31). The superiority of third generation CAR-T to the second one is still to be established as, in certain instances, they underperformed compared to the second-generation. One of the proposed mechanisms for the observed lower efficacy is tonic signaling, leading to activation induced activation-induced cell death. The order of costimulatory domains on the CAR and their proximity to the cell membrane may account for this effect and might be mitigated by alternative receptor designs (32).

Digressing from the beaten path of adding new domains to the CAR receptor, the design of fourth-generation CAR-T cells aims to improve antitumor effect by secretion of cytokines to induce a proinflammatory microenvironment. In addition to the CAR, these cells, also known as TRUCKs (T cells Redirected for Antigen-Unrestricted Cytokine-initiated Killing), include a constitutive or NFAT (nuclear factor of activated T cells) inducible expression cassette. Upon CAR binding to its target antigen, CD3ζ mediatedCD3ζ-mediated phosphorylation of Nuclear factor of activated T-cells (NFAT) induces cytokine secretion, which acts to enhance CAR-T function as well as to recruit inflammatory cells (33, 34). Several cytokines known to stimulate T cell functions in vitro have been incorporated in TRUCKs models, with the most notable being interleukin 12 (IL-12), interleukin 18 (IL-18) and interleukin 15 (IL-15) (35, 36).

IL-12 has been reported to induce a more robust antitumor response against CD19+ positive acute leukemia and in mouse models of ovarian cancer. However, multiple studies report severe toxicity related to its potent pro-inflammatory effects and important macrophage activation (37). In one study, Il-12 TRUCKs induced significant tumor infiltration by macrophages, albeit at the expense of a decrease of in CD8+ CAR-T cells, possibly via interleukin 10 (IL-10)-mediated immune suppression (33, 37). Similarly, the use of IL-18 secreting CAR-T cells enhances antitumor effects and generates a pro-inflammatory environment, while recruiting inflammatory cells without severe toxicity (37, 38).

The effects of IL-15 releasing TRUCKs offer promising therapeutic applications by favorizing a T stem cell memory -like phenotype, increased persistence, and antitumoral activity via BCL upregulation (33). Fifth generation CAR-T cells, in addition to second and third generations, rely on activation of JAK-STAT pathways via an additional truncated intracellular domain of cytokine receptors with a binding site for transcription factor STAT3 (39–41).

Though innovative and exciting, not all advancements guarantee better outcomes, as benefits gained in terms of cytotoxicity may be diminished by exhaustion through tonic signaling, and increased persistence mediated by interleukin secretion can lead to more severe cytokine mediated systemic toxicity. Ideally, the optimal design for CAR constructs should be validated by testing combinations of signaling domains, co-stimulatory regions in systematic head-to-head comparisons, though financial and economic constraints are limiting for this scale of trials.



1.1 CAR-T cell mechanism of action

Depending on generation, CAR-T cells fully or partially mirror the physiologic TCR mediated activation of T lymphocytes, with its 3 essential signals. Activation is initiated following recognition by the antigen recognition domain of its cognate antigen, constituting signal 1 and leading to immunoreceptor tyrosine-based activation motif (ITAM) phosphorylation in the CD3ζ domain. Signal 2 is provided by the costimulatory molecules, and optimal T cell functioning is achieved with the contribution of the 3rd signal mediated by cytokines (42, 43). To exert their cytolytic effects, CAR-T cells employ two main pathways (Figure 2). The perforin and granzymes induce cell death by creating pores in tumor cell membranes which are used by the granzymes to enter the cytosol and trigger apoptotic death through caspase dependent and independent pathways. The second pathway makes use of FAS (CD95) ligand secreted by the T lymphocytes, which upon binding to its receptor on tumor cells, leads to the formation of a death-inducing signaling complex followed by cell death (43–45). Interestingly, FAS-FASL mediated cytolytic activity has been reported to be responsible for cytolytic activity against antigen-negative tumors as well, allowing for clearance of antigen-heterogenous tumors which might prove to be an avenue for overcoming mechanisms of resistance to treatment by antigen loss (46).
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Figure 2 | Cell death triggered by CAR-T cells. (A) Cell death induced by granzyme and perforin action. The CAR-T cells are releasing perforin and granzyme after binding the target, both are inducing membrane damage and trigger the apoptosis in tumor cells. (B) Cell death induced via FasL/Fas mechanism. The CAR-T cells trigger the FasL/Fas signaling which trigger the activation of Casp8 which will further initiate Casp3 cleavage leading to tumor cell apoptosis. CAR-T, Chimeric Antigen Receptor T cell; FasL, Fas Ligand; Fas, Fas receptor (known as CD95 or APO-1); Casp8, Caspase 8; FADD, Fas associated death domain; Casp3, Caspase 3.





2 Available experimental models for CAR-T research

The Development of novel, effective CAR-T therapies can be a challenging task. For these therapies to be considered for clinical applications, first they must be thoroughly characterized. The purpose of these laborious processes is to predict as accurately as possible their behavior in the human body. Unfortunately, a model remains just that, and the multi-faceted characteristics of CAR-T cells require multiple in vitro and in vivo surrogates to be combined to achieve a comprehensive characterization.



2.1 Modeling the target

The cytotoxic potential of a novel CAR construct can be assessed in vitro, by using tumor-associated antigen (TAA) expressing cells, or with cell-free antigens. Plate or nanobead-bound recombinant antigens enable the isolation and evaluation of CAR-T cell activation in a strictly CAR dependent manner without the contribution of normally occurring costimulatory molecules and cell ligands. This also allows for easy adjustment of antigen density (47–49). Serving as a universal tool for CAR antigen binding is protein L, a protein of bacterial origin which indiscriminately binds to immunoglobulin light chain and scFvs, and can be used for CAR detection as well as for CAR mediated T cell activation (50, 51). Evaluation of cytotoxic activity against living cells is the mainstay of in vitro testing as this can provide a more complex view of CAR-T and tumor cell interaction, recapitulating costimulatory signaling, dynamics of cell killing and allows modulation of effector to target (E:T) ratios as well as thorough characterization of T lymphocytes. The most readily available and widely used experimental targets for CAR-T therapy are immortalized cells (cell lines). They are well characterized and easy to use, thus providing an important frame for various assays in CAR T development. Tumor cell lines can expand indefinitely and can be genetically engineered to express fluorescent reporter genes or knocked-out for certain genes to produce negative control targets (52–54). Additionally, target cells can be created by inducing expression of certain transgenic antigens. One such example is the acute B cell leukemia cell line NALM-6 which is often transduced to express tumor associated antigens (TAA) and to control antigen density (55) (Figure 3).

[image: Diagram illustrating the interaction between CAR T cells and tumor cells. CAR T cells move toward tumor antigens, leading to two outcomes. Tumors with high antigen expression activate CAR T cells, resulting in cell death (sensitive to therapy). Tumors with low or no antigen expression do not activate CAR T cells, resulting in therapy resistance.]
Figure 3 | Expression of tumor associated antigens (TAA) regulates CAR-T cell persistence and response to therapy. Tumors with positive TAA clones are sensitive to therapy. However, tumors with poor response to therapy are associated with negative TAA and with other factors that may induce resistance, such as: T-cell exhaustion, senescence, or T-cell differentiation. In tumor with heterogenous tumor cells including population with high antigen expressing tumor cells and tumor cells that are TAA negative, the TAA negative clones are selected as they have poor response to CAR-T therapy and promote resistance to therapy, while TAA positive clones, are targeted and undergo cell death.

While immortalized cells offer a reliable model for research, they often harbor complex cytogenetic abnormalities and mutations, and their behavior may differ in certain aspects from in vivo counterparts (56). Primary tumor cultures offer an alternative ex-vivo approach which accurately replicates primary tumor biology. However, they bear certain limitations regarding cell purity, while issues of tumor tissue accessibility and limited low ex vivo culture potential limit the quantities of primary cells available for experiments. Additionally, repeated passages of primary cultures alter the cellular heterogeneity with preferential selection of subclones (57, 58).




2.2 Spheroid cultures (3D structures)

Bridging the gap towards a more realistic in vitro model of tumors are patient-derived organotypic spheroids (PDOS), a novel 3D ex-vivo model created from patient tumor tissues. This model is achieved by enzymatic and physical tumor tissue dissociation and cell separation, after which cells are resuspended in gel to reconstitute the 3D structure (59). Spheroids bear a high resemblance to the original tumor and preserve tumor multicellularity and its native niche. PDOS exhibits architectural heterogeneity, with superficial layers predominantly epithelial and an inner core of mesenchymal origin. The spheroids retain initial tumor cells with stem-like properties and are capable of engrafting in mice to produce tumor xenografts (60, 61). The utility of these 3D structures is more important in the development of solid-tumor targeted CAR-T therapies, as this system may replicate aspects of cell trafficking into tumors and temporospatial heterogeneity of CAR-T cells characteristics as well as the influence of local tumor niche on the adoptive cells. This provides a foundation for optimizing CAR-T cells. For example, Cho et al. (62) have shown that the size of breast cancer–derived organoids directly impact CAR-T cell intratumoral trafficking and cytotoxicity, with reduced cytotoxicity observed in the spheroid core (62). Additionally, supporting data for the ability of PDOS to model in vivo CAR-T efficacy comes from pioneering work by Logun et al., in which the in vitro cytotoxicity exhibited by CAR-T cells against patient-derived glioblastoma organoids mirrored CAR-T expansion and cytokine release patterns observed in the same patients during a phase I clinical trial (63).

Ideally, autologous CAR-T cells would avoid any alloreactivity that could confound results in PDOS settings. However, using T cells autologous to the patient from whom the PDOS are derived is challenging and uncommon. Allogeneic CAR-T cells used in these models must account for TCR-mediated non-specific cytotoxicity, which can be controlled by including appropriate experimental controls, such as non-specific CAR-T cells or non-transduced T cells from the same donor (64). Alternatively, TCR-mediated cytotoxicity can be mitigated by using TCR-knockout CAR-T cells while preserving CAR-specific activation (64).




2.3 In vivo models

Adequate in vivo models are essential for bridging in vitro research to clinical applications, to mitigate potential adverse effects such as cytokine release syndrome (CRS) and immune effector cell associated neurotoxicity as well as to validate antitumor effects taking into consideration tumor architecture, heterogeneity and influence of tumor microenvironment. Additionally, important data such as tumor infiltration, dynamics of CAR-T cells persistence in the host organism can be obtained using animal models (48, 65).



2.3.1 Immune-compromised models – xenograft models

Engraftment of human tumors in immune-compromised mice is the core principle of xenograft models, the most used in vivo model for CAR-T cell research. Human tumors can be obtained in mice by inoculation with immortalized human cell lines or primary tumors for creating patient-derived xenografts (PDX) (66). Inoculation can be done intravenously, to replicate metastases, subcutaneously, for localized tumors, providing easy access, or orthotopically, for more anatomically realistic models. Mice used in for xenograft models are all deficient in adaptive immunity and including T lymphocytes, thus unable to mount a host versus graft reaction, and rejection of foreign tissues (67). While athymic nude (nu/nu) mice lack T lymphocytes, severe combined immunodeficient (SCID) mice lack both B and T cells, and other types, such as non-obese SCID, Rag2-Knockout and NSG Mice (NOD-SCID IL2Rγnull) have increasingly more profound immune suppression, making them more suitable for the engraftment of patient-derived tumors (68, 69). Retaining part of the myeloid-derived immune cells makes it possible to evaluate CAR-T therapies considering the influence of myeloid-derived suppressor cells (MDSC) such as dendritic cells and macrophages on tumors and adoptive cells. This is only valid to some extent, and it is also noteworthy that these MDSCs may not be fully competent, thus not being able to fully mirror the properties of human MDSCs (70).

Though mice are the most common in vivo models, they are largely unfit for the evaluation of adverse effects of adoptive cell therapy, especially regarding CRS, a severe and potentially lethal complication caused by large-scale immune cell activation (71). Thus, non-human primates, though expensive and less accessible, are used as immunocompetent models for more reliable recapitulation of CAR-T cell-associated toxicities. They also serve as models for novel approaches, such as in vivo CAR-T cell generation, which require competent host T cells and higher resemblance to humans (65, 72). A cheaper xenograft alternative to mice, with higher throughput, is the zebrafish embryonic xenograft, which lacks a functional adaptive immune system while in this stage of development. These models have important limitations related to their short duration for evaluation, and due to important differences between human and zebrafish signaling pathways. Nonetheless, they have been successfully used to assess CAR-T mediated antitumor effects in vivo and offer the advantages of requiring small tumor samples, a low number of CAR-T cells, and allow high-resolution live imaging of effector: target (E:T) interactions (73, 74).

Importantly, significant differences have been observed in response to CAR-T therapies between in vivo models and human trials. arise due to omission of TME. This discrepancy can be attributed to the exclusion of the influence of the tumor microenvironment (TME) on tumor survival, progression, and resistance development in in vivo immunodeficient models as it happens in immune-deficient mouse models (75). The complexity of TME and tumor tumor-associated macrophages (TAM) interaction with CAR-T cells is gaining increasingly more attention due to their important immune suppressive effects, limiting CAR-T efficacy. Alternatively, the potential of cytokine-producing CAR-T cells to recruit inflammatory cells and modulate an antitumoral microenvironment makes comprehensive TME-tumor models essential in preclinical research (36, 76). The prerequisite for this is the presence of a functional, adaptive, and innate immune system. However, this implies the ability to mount a graft-versus-graft effect.





2.4 Modeling the target and microenvironment



2.4.1 Immune competent - humanized

Humanized mice (HM) are obtained via reconstitution of the human immune system in immune-deficient mice and are achieved through the engraftment of human CD34+ hematopoietic stem and precursor cells (HSC) in mice. This allows the engraftment of a human tumor in immune competent mice and a more accurate portrayal of tumor-TME interaction. Depending on the origin, engraftment of HSCs from bone marrow, peripheral blood, cord blood, and bone-liver-marrow cells differ in terms of complications and duration of immune reconstitution, and achieve slightly different mature populations (77). Following differentiation, myeloid and lymphoid cells can interact with and infiltrate tumors, recapitulating the TME. Unfortunately, HM are expensive, difficult to obtain and are accompanied by significant limitations constraints. These include the limited availability of human stem cells, the toxicity of chemotherapy or irradiation conditioning, and the risk of engraftment failure. Additionally, they may be complicated by xenogeneic graft versus host disease (GVHD), especially as mice age (77–80).




2.4.2 Immune competent – syngeneic

Tumor-bearing immune competent mice fully reconstitute the complex TME and are easily obtained by inoculation of mice with murine tumors of genetically identical background (81). Additionally, genetically engineered mouse models (GEMMs) such as the Vk*MYC or the Tyr(CreER, BrafCA, Ptenf/f) develop tumors spontaneous spontaneously or under certain stimuli, recapitulating oncogenesis with high fidelity, albeit tumors produced this way present with reduced immunogenicity (82–84). By being the closest to nature in vivo model, in addition to TME models, syngeneic mice are indispensable for modeling and understanding lymphodepletion prior to CAR-T cell administration and for assessment of on-target-off-tumor toxicity and CRS (85, 86). The limitations of syngeneic mouse models stem from the compromise that both tumors and CAR-T cells are of murine origin. This implies notable differences regarding immune cells and cytokine function when compared to humans (87, 88). Antigen expression varies between the two species, and certain epitopes have different immunogenicity and thus, targets are not always translatable between mice and humans (84–89). An alternative approach in such instances is the use of transgenic mice, which can be genetically engineered to express human antigens in an immunocompetent all-murine setting (74). The main drawback of syngeneic models remains the difficulty of obtaining murine CAR-T cells, as current protocols for murine T culture and expansion have low yields, which is only aggravated by lower cytotoxicity and shorter persistence (85–90).





2.5 Modeling the effector

In addition to target tumor models used in CAR-T research, models for effector cells offer provide a reliable setting framework for the assessment of novel CAR constructs. Acute T cell leukemia cell line, Jurkat is particularly useful for this purpose as it lacks TCR α and β chain, which can prove effective to avoid possible Graft versus Host Disease (GVHD) toxicities and TCR-mediated T cell activation (91, 92). CAR-Jurkat cells have been successfully used to show anti-tumor effects of novel CAR constructs and have the advantage of being high-throughput (93, 94).

The advantages of using an established cell line for CAR characterization stem from the sturdiness of cells, allowing for transduction with multiple reporter genes as well as for selection and expansion of CAR-transduced cells to obtain a homogenous cell population (95, 96). While this model is far from the reality in the way that it does not recapitulate all the various T cell subtypes obtained from patient peripheral blood mononuclear cells (PBMC), as well as missing the inter-patient CD4+/CD8+ variability, it allows characterization of CAR constructs while reducing background noise through isolation of CAR mediated T cell activation (97).

It is increasingly evident that model selection dramatically influences preclinical CAR-T outcomes. Immortalized cell lines are high-throughput models though with no heterogeneity; primary tumor cultures are more clinically relevant but are subject to clonal drifting; PDOS exhibit spatial heterogeneity by they lack systemic features, like CAR-T persistence and immune system interactions whereas mouse models either humanized or syngeneic are expensive, time consuming and are prone to GVHD or require murine CAR constructs respectively. As such, integrated experimental strategies are crucial and tiered model pipelines are the future for CAR-T therapies to ensure translational relevance and align preclinical data with clinical results (91, 92, 97).





3 Methods for identifying novel CAR-T target

Despite the remarkable initial success of CD19 and B cell maturation antigen (BCMA)-targeting CAR-T cells in the treatment of B-cell derived malignancies, long-term follow-up studies reveal that not all patients achieve durable responses, partially due to downregulation or loss of target antigen (98, 99). The increasing interest in CAR T cell therapies in oncology promotes extensive investigation for new surface proteins that could be targeted by adoptive cell immunotherapies. However, finding an appropriate surface antigen carries various challenges. An ideal target for CAR-T-mediated immunotherapy should exhibit high, exclusive, and uniform expression on cancer cells, including cancer stem cells. To provide low off-tumor activity and avoid life-threatening toxicity, the target shall not be present in vital tissues, nor be expressed on cells responsible for normal hematopoiesis (hematopoietic stem/progenitor cells (HSPCs)) (100). Furthermore, a successful CAR target must be associated with high stability and sustainability. This could be accomplished by identifying antigens that play essential roles in cancer biology and survival. It is noteworthy however that none of the proteins targeted by the currently approved CAR-T therapies fit all of these requirements, particularly since tumor-specific antigens are rare.

Despite these challenges, an increasing interest in finding novel targets for CAR-based immunotherapy has been observed over the years, both for new indications (e.g., solid tumors) (101) and for relapsed/refractory (r/r) hematological malignancies in which previous CAR-T treatment rendered ineffective due to antigen escape (99, 102). Indeed, since seminal case report studies with CD19 CAR-T cells were published in the early 2010s (7, 103–105), the number of clinical trials targeting surface proteins expanded exponentially. Thus, as of the end of 2024 there are 169 ongoing, and nearly a thousand clinical trials still looking for participants (https://clinicaltrials.gov/). Selecting known cancer biomarkers or surface proteins targeted by already existing clinically approved immunotherapies, especially monoclonal antibodies (mAbs), was one of the earliest strategies to create new CAR-T treatments for pre-clinical evaluation. Examples of such antigens include known surface bio-/prognostic markers such as mesothelin (106, 107), PSMA (108), GPRC5D (109, 110), or previously known immunotherapeutic targets: CD20 (111), HER2 (ERBB2) (112), and EGFR (113), targeted clinically with rituximab, trastuzumab, and cetuximab mAbs, respectively. Importantly, as the mechanism of action of mAbs and CAR-T cells differs greatly, targeting the same antigens through various effector immune cells may provide different and unexpected toxicity profiles. Indeed, infusion of anti-HER2 CAR-T cells resulted in multiorgan failure in a patient with metastatic colon cancer due to rapid cytokine release following target recognition on normal lung cells (114). Simultaneously, anti-HER2 mAbs (e.g., trastuzumab, pertuzumab, margetuximab) are safely used for patients with HER2-positive breast cancer alone or in combination with chemotherapy (115). Similar observations were made for other antigens, including CD38 and PD-L1. Despite the successful targeting of these proteins with respective mAbs, daratumumab (CD38) (116) or atezolizumab (PD-L1) (117) in clinical practice, case report studies demonstrated life-threatening toxicities in patients infused with anti-CD38 (118) or anti-PD-L1 (119) CAR-T cells. Ultimately, this data underscores that target identification for CAR-T therapy must be performed with caution and rigorous pre-clinical evaluation, employing malignant and normal cells. Therefore, in this chapter, we will summarize unbiased approaches to actively searching for cancer-associated and cancer-specific proteins, which have led to the development of new CARs.

Given the considerable advances achieved in studying the transcriptome of human malignancies and the increasing accessibility of high-throughput methods such as RNA sequencing (RNA-seq), the search for novel cancer biomarkers has long relied on these tools. Importantly, since RNA-seq evaluates the level of all transcripts in the cell, established tools for the annotation of surface protein-coding genes are crucial for appropriate CAR target identification (120). Furthermore, the employment of transcriptomic data for immunotherapy target selection suffers inaccuracy due to a complex correlation between transcript expression and protein level in cells, which is owing in part to varying transcript isoforms and translation efficiency (121). Therefore, to minimize the inaccuracy of this approach, integrated transcriptome-proteome analyses of normal and cancer cells have been proposed (122). Indeed, Perna et al. (123) presented an elegant pipeline for CAR target selection, integrating transcriptomic and proteomic data generated from acute myeloid leukemia (AML) cell lines/patient samples, a comprehensive literature search of already published CARs, and available databases of protein levels in normal tissues. The rigorous algorithm served to identify more than 20 potential CAR targets. Expression of these proteins was then evaluated by flow cytometry in primary AML samples, normal bone marrow, and resting/activating T cells to exclude the possibility of fratricide killing mediated by CAR-T cells. Accordingly, four molecules, ADGRE2, CCR1, CD70, and LILRB2 represented the best profile of expression, fulfilling most of the criteria for the desirable CAR candidate described at the beginning of this chapter. In a subsequent study, the authors verified the expression of selected targets in r/r AML patients and successfully designed CAR-T cells targeting ADGRE2 in combination with CLEC12A (124). Importantly, several other targets were discovered by the combined transcriptomic/proteomic approach, such as CCR10 (125), ILT3 (LILRB4) (126), and endothelin receptor B (127), all in multiple myeloma cells. Accordingly, for CCR10 and LILRB4, antigen-specific CAR-T cells were developed and proved effective in pre-clinical studies (125, 128).

Nevertheless, owing to the extensive technological progress that has been made in studying cell surfaceome, several recent studies relied entirely on proteomic data in the search for new CAR candidates (129–131). comprehensive analyses employing mass spectrometry (MS) platforms are currently well-recognized in the CAR-T field and are superior to conventional flow cytometry and mass cytometry approaches as they are not restricted to the necessity of using previously generated antibodies. Surfaceome profiling is a multistep procedure aimed at the specific enrichment of surface proteins, which are then analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The capture of surface proteins is achieved through various techniques, with chemical-based tagging being the most common (132). This includes approaches based on biotinylation, metabolic labeling, or cell-surface capture by glycan oxidation. A comprehensive and elegant summary of these and other MS-based techniques for immunotherapy target identification is available elsewhere (133).

Cell surface enrichment of malignant cells, followed by MS, contributed to the discovery of new immunotherapy targets, such as CD72 in B-cell acute lymphoblastic leukemia (129) or SEMA4A in multiple myeloma (131, 134). In addition, Mandal et al. (130) presented a specific form of proteomic approach aimed at identifying tumor-specific proteins, focusing on structural differences in surface antigens of cancer and normal cells. Interestingly, the authors combined cross-linking mass spectrometry (XL–MS) with the cell surface capture method, thus yielding enriched surface N-linked glycoproteins in their native conformation. This led to identifying AML-specific, activated integrin β2, and generating a novel CAR-T cell therapy, thoroughly tested in preclinical studies. Of note, one of the challenges of this structural proteomics technique and other MS-based approaches for studying cancer cell surfaceome lies in the high sample input required. As a result, the majority of proteomic studies mentioned in this review used human-immortalized malignant cell lines. This approach, however, does not recapitulate cancer heterogeneity observed in patients nor capture all attractive antigens, which may be absent on established cell lines. Noteworthy, Marhelava et al. described an optimized method for cell surface biotinylation, subsequent MS, and surface protein detection on xenograft cells generated from B-cell acute lymphoblastic leukemia patients (135).

Moreover, an innovative approach has been recently developed to guide CAR-T cells to neuroblastoma cells (136). In the seminal paper, the authors screened the immunopeptidome of patient-derived xenografts and found that PHOX2B oncogene-derived peptides presented in specific MHC class I molecules (HLA) were particularly enriched in tumors. Interestingly, as selected peptides were not immunogenic and peptide-specific TCRs did not exert high affinity, peptide-centric CARs were designed. The selection of scFvs binding PHOX2B peptide-MHC (pMHC) complexes was performed, which resulted in identifying one tumor-specific binder. Importantly, PHOX2B-peptide-centric CAR-T cells showed impressive tumor-killing potential in pre-clinical neuroblastoma xenograft models with different HLA allotypes. This study highlights that integrated transcriptomic, epigenomic, and immunopeptidomic dataset analyses hold promise in searching for cancer-specific proteins that could be targeted with CAR-T cells. More clinically relevant data are needed to verify the safety and efficacy of this method.

Importantly, all above-mentioned techniques study the whole tumor population, thus failing to address tumor heterogeneity. The current advancement in single-cell analysis technologies overcomes issues and provides a helpful tool to profile the tumor at a single-cell resolution. This is particularly important as bulk tumor analysis for CAR target identification may overlook rare, though clinically important cell types, such as cancer stem cells or therapy-resistant clones. Noteworthy, cover single-cell transcriptomics (scRNA-seq), with various platforms available, such as 10X Genomics. Indeed, by using scRNA-seq datasets, Gottschlich et al. identified CSF1R CD86 as viable CAR targets for AML (137). It is important to note that, given the complex correlation between transcript expression and protein level, single-cell proteomics are arguably more useful for developing CAR targets than single-cell transcriptomics. In fact, single-cell proteomic techniques such as CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) (138) or Cellenion’s platforms have been developed and could be exploited to revolutionize CAR target development (139).

Nonetheless, despite impressive numbers of novel techniques for CAR target selection and novel CAR-T therapies being tested as single or multi-targeting CARs (dual, tandem, mixed, etc.), thus addressing tumor heterogeneity, other hurdles related to CAR-T treatment persist. These challenges are particularly frequent in solid tumors and are linked to limited CAR-T cells trafficking and persistence in the tumor microenvironment, as explained in detail in the following chapter.




4 Challenges for CAR-T cells in solid malignancies



4.1 Limited efficacy in clinical response

CAR-T cell therapies have made a name for themselves and first gained approval for use in hematologic malignancies though initial studies did not specifically aim a narrow spectrum of malignancies. In fact, some of the earliest targets for CAR-T research were solid tumors such as ovarian cancer, colorectal carcinoma and renal cancers, however several core differences between solid and hematologic malignancies have favored the latter for clinical applications of CAR-T cells which gained approval for clinical practice whereas, to date, no CAR-T therapies are FDA approved for solid tumors (140, 141). Unfortunately, despite exciting results in vitro, early phase clinical trials for solid cancers showed little to no response. Consequently, a significant amount of research is currently being undertaken to elucidate the underlying causes of this phenomenon. and to date much research is going into decrypting the reasons for this matter. For instance, a phase I trial of CAR-T cells targeting the α folate receptor in 8 patients with metastatic ovarian cancer, and another targeting the tumor-associated glycoprotein 72 (TAG-72) for metastatic colon cancer showed no clinical response. However, in the latter trial, the longest living out of the 25 patients was the patient with the greatest most significant lymphocyte expansion and had detectable circulating CAR-T cells at 48 weeks and whereas in all other patients they were not detectable after 14 weeks, thus pointing to potential benefits of CAR-T cells in solid tumors if their activity can be preserved. Despite the low or absent objective clinical responses, these trials did much to show that adoptive immune therapies in solid tumors are a category of their own when it comes to CAR-T cell efficacy, or lack thereof. Low CAR-T persistence, reduced intratumor trafficking and the occurrence of inhibitory factors to CARs all rapidly emerged as challenges which would require various strategies to be overcome (16, 142).




4.2 CAR-T cell expansion and persistence

CAR-T cell expansion as an early activity indicator, followed by persistence are clearly associated with favorable responses in hematologic malignancies (143). Stemming from the use of murine-derived antibodies and their inherent immunogenicity, the occurrence of human anti-chimeric antibodies (HACA) hindering T cell expansion, has been reported in several clinical trials, with over half of the patients developing CAR-directed antibodies in clinical trials targeting TAG-72 (142). In another clinical trial, with similar incidence of HACA, investigators showed that antibodies arising to CAR-T targeting carbonic anhydrase IX (CAIX) have inhibitory capacities and reduce CAR-T functionality and persistence (144). Though not specific to solid tumors, this phenomenon seems to be reported less frequently in hematologic malignancies. This might have to do with the prior treatments that patients with lymphoma and leukemias often undergo prior to CAR-T therapies and are therefore often more lymphopenic than patients with solid tumors. Lymphodepletion with Cyclophosphamide (CP) and Fludarabine (FLU) has become an integral part of CAR-T therapies as it led to remarkable benefits across trials in both types of cancers, allowing for achievement of 72% overall response rate (ORR) and 50% complete remission (CR) in relapsed refractory Non-Hodgkin Lymphomas (NHL) treated with CD19 targeted CAR-T therapies, with enhanced T cell expansion as well as reducing immune responses to therapy (145). The efficacy of conditioning judged by the degree of lymphopenia at the time of adoptive cells infusion appears to be good predictor for T cell engraftment, as absolute lymphocyte numbers are inversely correlated with CAR-T expansion (146). For instance, a phase I trial using conditioning with either CP+Oxaliplatine or CP+FLU showed more profound lymphodepletion with the latter regimen, which correlated with higher peak CAR-T expansion as well as lower immune response to CAR sequence (147). Likewise, in two phase I solid tumor trials targeting CEACAM5+ cancers and metastatic castration resistant prostate cancer, prior conditioning with FLU and CP or CP alone led to improved T lymphocyte expansion and activation in patients with more intense conditioning, however, both trials reported serious adverse effects of acute respiratory toxicity and CP dose-related cystitis respectively (148, 149). Perhaps due to the rather intact adaptive immunity of patients with solid tumors, the maximal benefits of lymphodepletion cannot currently be achieved due to dose-limiting toxicities. Indeed, there may yet be benefits to be achieved with alternative conditioning regimens.

Persistence of CAR-T cells after infusion is a particularly challenging aspect in solid tumors. With circulating tumor cells readily available, hematologic malignancies are naturally more accessible targets, and the hypothesis is that persistent antigen exposure is what entertains enables superior CAR-T cell expansion and persistence in these patients (150). Generally, the kinetics of infused cells follow pattern of expansion at 7-10 days, followed by a gradual decrease to undetectable levels at approximately 6 weeks (91, 151). A phase I/II trial for HER-2 positive sarcoma included 19 patients, maximum CAR-T levels were observed at 3 hours following infusion and persisted for 6 weeks, however, no expansion was observed. Despite this, tumor samples from two patients, obtained following treatment, both showed CAR-T infiltration (152). In another phase I trial targeting EFGRvIII in recurrent glioblastoma, including 10 patients, the peak expansion occurred within 3-10 days and was followed by a rapid decline after the 14th day. Seven of the 10 patients underwent surgical tumor resection at different time points, which allowed for assessment of tumor CAR-T infiltration. Interestingly, tumor infiltration seems to be higher at the earlier time points, suggesting that there is no late CAR-T localization in the tumors in this case (151). While persistence has become an indicator of promise and efficacy for CAR-T, it does not always seem to be the case. When evaluating GD.2 targeting CAR-T including a constitutively active chimeric IL-7 receptor in high grade pediatric tumors in a phase I trial, patients experienced improvement in neurologic deficits and 29% of 11 patients achieved objective partial response, however response to treatment did not show any correlation with expansion in peripheral blood and while circulating CAR-T cells declined within 4 weeks, they were present in tumors up to 3 months post infusion (153). These observations imply that due to tumor-localized antigens, peripheral CAR-T cell persistence in patients with solid tumors is a surrogate and might not capture the dynamics within tumors and lymphoid structures.




4.3 CAR-T cells intra tumoral trafficking

A very relevant depiction of the dual nature of prerequisites for CAR-T cell therapy efficacy in solid tumors comes from the biology of checkpoint inhibitors and mechanisms of resistance to treatment.

According to work done by Dangaj et al. characterizing the immune reactivity of tumors, the efficacy of checkpoint inhibitors is dependent on tumor infiltration by cytotoxic T cells. The key players in these events are the chemokines CCL5 and CXCL9 secreted by tumor cells and local myeloid cells respectively. Overexpressing tumors are immunoreactive and are associated with improved outcomes and response to checkpoint inhibitors, whereas downregulation of chemokine expression via DNA methylation leads to loss of infiltrating lymphocytes (154). In a complementary manner, murine studies of pancreatic ductal adenocarcinoma showed that residing cancer-associated fibroblasts (CAF) as well as FAP (fibroblast activation protein) positive stromal cells reduce the efficacy of checkpoint inhibitors by suppressing the cytotoxic activity of locally present cancer specific effector T cells. This inhibition is mediated by secretion of CXCL12 binding to CXCL12 receptor on tumor cell but antitumoral effects of checkpoint inhibitors can be restored via depletion of CAF or inhibition of CXCL12 (155).

As checkpoint inhibitors mechanism of action relies on endogenous cytotoxic T cells, it becomes evident that the intra tumoral presence of reactive T cells and their actual anti-tumor effects are two distinct prerequisites for CAR-T cell therapy success. The barriers preventing these goals for CAR-T cells are described as reduced intra tumoral trafficking and local immune suppression under the influence of the local TME.

Encompassing the stark differences in persistence and trafficking between hematological and solid malignancies is an interesting phase I clinical trial which used the same ROR1 targeting CAR-T cells in patients with ROR1 positive chronic lymphocytic leukemia (CLL), breast cancer and non-small cell lung cancer. This particular setting allows for a fairer comparison between the two different entities. As expected, expansion was greatest in CLL patients with the highest peak (over 95% of CD8+ cells) in the patient with the highest proportion of circulating tumor lymphocytes perhaps due to increased antigen exposure, whereas peak levels in patients with solid tumors were much lower, and 4 out of 18 patients had peak CAR-T levels < 3% of circulating CD8+ cells. This translated into trafficking, with only 2 out of 7 solid tumor samples showing detectable CAR-T levels and this was in the patients with high expansion peaks. Two out of 3 patients with CLL achieved a partial response, whereas, disappointingly, only one out of 18 patients with solid tumors achieved a transient partial response (147). The underwhelming levels of tumor infiltration seem to be improving with the use of novel generations of CAR-T cells (152). For instance, a clinical trial using PSMA TGFβ dominant negative armored CAR-T cells showed better tumor trafficking, detectable in 7 out of 9 biopsies performed at day 10 following infusion. The CAR-T levels measured by qPCR as copies/ng of genomic DNA were 1 log lower than in peripheral blood in most patients, whereas one patient had 17 times higher CAR-T levels in tumor than in blood, however despite approximately 30% of patients showing a reduction in PSA, no radiological response was documented (156). Though CAR DNA can be found in increasingly more samples, the small size of patient cohorts is insufficient to make correlations with clinical response, which is made more difficult by the very low number of responders. Multiple studies have shown both in murine models as well as human trials that local administration of CAR-T cells enhance trafficking and antitumoral effects, although it is still unclear what appropriate tumor infiltration is and will probably vary depending on tumor and particular CAR construct.

Inherent to the heterogenous and tridimensional nature of solid tumors, infiltration of the neoplastic fortresses is a monumental task for transgenic lymphocytes. The first challenge encountered by CAR-T cells is the lack of physiological stimuli to guide lymphocytes to inflammation sites. Selective extravasation of lymphocytes from circulating blood into tissues is dependent on endothelial upregulation of integrins and selectins and is also supported by expression of costimulatory molecules. In tumor vessels, angiogenic factors VEGF, bFGF mediate a reduction in expression of integrins ICAM-1/2, VCAM-1, and E selectin leading to the so called anergy manifested as reduced lymphocyte-endothelium interaction and immune tolerance. Additionally, tumors can induce endothelial cells to secrete Fas-ligand which further reduces lymphocyte infiltration by inducing apoptosis in the adhering cells (157). Secondly, a physical barrier of dense tumor stroma and extracellular matrix produced by fibroblasts isolate tumors from the immune cells (158).

It stands to reason that antitumoral effects would be directly correlated with the number of CAR-T cells located inside the tumors. However, assessing effector cell trafficking to tumor sites proves to be rather difficult and currently available data on CAR-T trafficking in clinical trials is very scarce. Very few studies include systematic biopsies while others assessed effector cell infiltration on biopsies obtained from patients undergoing surgery mostly for palliative reasons.

Accurate assays are critical to understanding and optimizing CAR-T therapies in solid tumors. Most accurate for this purpose are tumor biopsies which can be processed by immune histochemistry (IHC), flow cytometry of dissociated tissue or by more sensitive qPCR (159–161). The risks associated with repeated surgical sampling, potential infections and discomfort make it an unreasonable approach for routine practice and even for dynamic CAR-T monitoring within clinical trials.

Non-invasive assays would be much more practical for this purpose; however, they assays are not as sensitive as tumor biopsies. For instance, one clinical trial which used both biopsy and imaging found intra tumoral trafficking in one out of the three tumor samples, whereas 111-Indium based assays failed to show any tumor infiltration (142). As opposed to diagnostic applications of PET imaging, where its sensitivity is critical for evaluating residual disease, the purpose in CAR-T therapies would be to assess sufficient or relevant tumor infiltration, thus different expectations might be applicable in this case.

Various assays are available for in vitro and in vivo models, however, very few translate to human applications. Bioluminescence assays are commonly used in mice and make use of Luciferase transduced CAR-T cells able to emit light upon metabolization of substrate. Humans, however, are too large for the lymphocyte emitted light to traverse tissues. Two-photon microscopy, one of the highest resolution assays used in research is also not translatable to humans (51). Positron emission tomography (PET) based imaging is an alternative non-invasive assay which is reported to retain sensitivity for as few as 10000 CAR-T cells, which has been used in several clinical trials (162, 163). For this, CAR-T cells can be labeled prior to infusion and tracked after infusion for as long as they remain radioactive. This has no apparent deleterious effect on cell activation or viability; however the radiotracer is diluted with each cell division and though radioisotopes with long half-lives such as 89Zirconium-oxine can be used, the trafficking window is about 8 days (163, 164). Alternatively, CAR-T cells can be traced at any time point with the transduction of reporter genes which metabolize and accumulate radioactive substrate. Two such examples are reporter herpes simplex virus type 1 thymidine kinase (HSV1-TK) and probe 9-(4-(18F)fluoro-3-(hydroxymethyl)butyl)guanine (18F-FHBG) or Escherichia coli dihydrofolate reductase enzyme (eDHFR) reporter with (18F)-TMP fluorine-18 probe which have been validated for tracking CAR-T cells into tissues and confirmed by IHC (51, 165). The caveat of this approach is that CAR-T cells require an additional transduction prior to infusion, and that it cannot be applied to CAR-T cell therapies already in trials. Additionally, signal intensity in tumors seems to be influenced by local vascularization which may be low in poorly irrigated tumors. This is further complicated by the reported nonspecific tracer uptake in tissues leading to background signal (163). Inducible T-cell COStimulator (ICOS) targeting tracers directly bind activated T cells, thus obviating the need for prior CAR-T cell manipulation and allow tracking of CAR-T cells distribution though they will also show non-transduced T cells (166).




4.4 Tumor immunosuppressive microenvironment

Poor responses to therapy even in patients with detectable tumor infiltration confirm that the mere presence of CAR-T cells is not sufficient to produce adequate anti-tumor effects. Inactivation of CAR-T cells with the occurrence of exhausted phenotype is the result of both intrinsic and extrinsic factors. Excessive signaling attributable to the CAR structure itself has been shown to lead to exhaustion through tonic signaling, with 4-1BB CAR seemingly less affected by this phenomenon (167). Additionally, extrinsic signaling and immune suppression can induce T cell exhaustion, for instance through PD1/PD-L1 signaling (168).

As has been shown in the case of checkpoint blockade inhibitors, tumor microenvironment plays an important part in suppressing immunity towards tumors. Multiple cell types mediate the immune suppressive local microenvironment, with cancer associated fibroblasts (CAF), lymphocytes, endothelial cells, macrophages, and myeloid-derived suppressor cells (MDSC) altering cell phenotypes and functions to create a protective niche for cancer cells. MDSC seem to be especially important as they appear to expand in response to robust CAR-T cell expansion, protecting tumors (146, 156).

The immunosuppressive TME is characterized by the presence of various immunosuppressive cells such as regulatory T cells (Treg cells), myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages, as well as the upregulated expression of immunosuppressive molecules such as programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1), making this environment an important barrier for an effective antitumor immune response (276–278). Treg cells are an immunosuppressive subset of CD4+ T cells characterized by the expression of the master transcription factor forkhead box protein P3 (FOXP3)+ and CD25 (the interleukin-2 (IL-2) receptor (chain)) (279). Treg cells were originally identified in 1995 by Sakaguchi et al. as CD4+CD25+ T cells that suppress an excessive immune response to various antigens but also contribute to tumor progression by inhibiting antitumor immunity (280). Treg cells are frequently detected in inflamed tumors, where they suppress various types of effector lymphocytes, including CD4+ T helper cells (TH) and CD8+ cytotoxic T lymphocytes and CD8+ cytotoxic T lymphocytes (CTLs) (281). In addition, tumor infiltration of Treg cells and the high number of Treg cells in the TME are associated with poor prognosis in various cancers (279, 282).

Interestingly, in a clinical trial including patients with recurrent glioblastoma, early tumor CAR-T trafficking was accompanied by polyclonal lymphocyte infiltrates, however these reactive lymphocytes show a Treg (regulatory) phenotype along with high concentration of immunosuppressor molecules (151). On the other hand, a trial using 4th generation GD.2 targeting CAR-T cells for high grade pediatric tumors showed that incorporating a constitutively active IL-7 receptor leading to improved tumor cell killing was associated with higher level of tumor-specific polyfunctional cells (153). Similarly, another study in patients with recurrent high-grade glioma showed an increased survival associated with elevated pretreatment intra tumoral CD3 levels (146). This is to show that local immune cells are crucial allies which can play a dual role both pro and antitumoral and that treatment efficacy may depend on which way they can be swayed. One remarkable example of immune cells which can change allegiances is the tumor associated macrophage which can take a proinflammatory and antitumoral M1-like phenotype or a myelosuppressive M2-like phenotype which prevents T lymphocyte mediated cytotoxicity by secreting PD-L1 and CTLA4-lingands and is associated with poor prognosis (169, 170).




4.5 Tumor antigen heterogeneity

Unlike hematologic malignancies where lineage specific antigens are universally and consistently expressed, solid tumors lack highly specific targets (171). Instead, they are TAA, defined by overexpression, although these antigens are also shared by other normal tissues of epithelial origin. In addition to the lack of specificity, TAA exhibits important heterogeneity in expression levels between different patients but also within different regions of the same tumor and temporal heterogeneity with tumors changing histology over time. This is explained by selection of subclones and results in distinct tumor cell populations with varying levels of antigen expression (172–174). Tumor cells evasion of cytotoxicity through antigen expression downregulation and selection of TAA negative clones, termed antigen escape is one of the main mechanisms of resistance to CAR-T cell therapies.

For instance, the early recurring tumors in mice bearing peritoneal ovarian cancer showed reduced TAA expression and correlated with reduced CAR-T persistence and in patients with recurrent glioblastoma, five out of seven biopsies evaluated after CAR-T therapy had lost TAA expression (151, 175). Therefore, selecting patients for treatment depending on their percentage of expression is essential since high antigen expressing cells are preferentially killed within tumors meaning that lower antigen expression increases the risk for antigen escape (174).

Unlike TCR which benefits from an activation amplification system allowing them to recognize very low levels of antigens, CAR-T cells depend on a higher threshold for antigen density with low TAA densities limiting CAR-T cell activation (55, 176). Countering this issue with higher CAR expression is useful to a certain extent, as too high CAR densities lead to antigen independent activation and CAR-T cell exhaustion. At the same time, excessive antigen affinity of CAR increases the risk of on-target off-tumor toxicity. Severe toxicity stemming from on-target off-tumor cytotoxicity was reported in several clinical trials where CAIX targeting CAR-T cells infiltrated the antigen expressing bile-ducts causing grade 2 to 4 hepatotoxicity even at the lowest used treatment doses, as well as the severe respiratory toxicity in the trial assessing CEACAM5 targeting CAR-T cells which led to trial closure (141, 148).

Regarding CAR affinity, it seems that a good balance between activation by overexpressed tumor-associated antigen while avoiding activation by lower-level expression in normal tissues is more likely to be achieved in the range of Kd 10-6 – 10-7 M which is the natural affinity range of TCR (176). Another mechanism of resistance to therapy related to antigen heterogeneity besides antigen escape was discovered using tumor-derived organoids showing that antigen-negative tumor cells form shield-like structures protecting the high-expressing cells. Additionally, the authors of this study proposed a saturation mechanism for CAR-T cell therapies in solid tumors showing that effector cells which do not act to kill cancer cells, termed “free CAR-T cells” increase with higher therapeutic doses, leading to increased risks of side-effects (177).




4.6 The influence of microbiota in CAR-T cell therapy

Gut microbiota has been studied in various topics during the last decades, including autoimmunity, metabolic disorders, cardiovascular disease, neurodegenerative disorders and even in cancer. Gut microbiota has a critical role in immune regulation and could influence the outcome of antitumor therapies (178).

The role of gut microbiota in CAR-T cell therapies was evaluated by several groups, in retrospective studies, which are of high importance as the data suggests that the response to therapy and the toxicity of CAR-T cell therapy have a clear connection with microbiota. Smith et al. evaluated patients with R/R B-ALL and LBCL that received anti CD19 CAR-T cells using CD28 and 4-1BB costimulatory CAR-T cells, showing that the patients that received broad-spectrum of anaerobe-targeting antibiotics correspond with a decreased alpha diversity and the exposure to the antibiotic cure was correlated with reduced progression-free survival, overall survival and in the case of lymphoma patients, ICANS had higher incidence in those that received antibiotics (179).

The presence of Bifidobacterium longum and the peptidoglycan synthesis was strongly correlated with a long-term survival and response to therapy. Furthermore, it was highlighted that the presence of Akkermansia muciniphila could be potentially responsible for a better quality of the final CAR-T product as the CD3+ and CD4+ T cells count were favorable for generating a good quality product (180).

Hu et al. presented the case of multiple myeloma patients that have different gut microbiota patterns who achieved CR after anti-BCMA CAR-T cells. The research highlights different amino acid metabolism pathways enriched in responders versus nonresponders, with Bifidobacterium marked as enriched in CR patients and being associated with CRS (181).

The first observation of the relationship between gut microbiome and CAR-T cell therapy was made by Kuczma et al, who evaluated the anti-CD19 CAR-T cells in murine models. The study showed that the administration of a broad-spectrum antibiotics therapy was responsible for the alteration of the gut microbiome and was associated with a prolonged persistence of the CAR-T cells (182). While, on the other hand, Uribe-Hernadez et al. showed that vancomycin therapy administered in immunocompetent mice after receiving CAR-T cells experienced better lymphoma control, as the use of vancomycin enriched endogenous CD8+ T cells and Cd11+CD103+ dendritic cells (183).

Based on these findings and considering that microbiota has a key role in immune modulation, many therapeutic strategies have been developed to adjust microbiota activity to boost the antitumor effects of different immunotherapies: adjustment of antimicrobial therapy, diet, prebiotics, probiotics and fecal microbiota transplantation (178).

The gut microbiota has demonstrated considerable effects on cancer treatment, and immune functions. Initial findings indicate their possible connections in changing the effects of CAR T cell therapies, but the exact mechanisms have yet to be thoroughly explained. We have highlighted several potential therapeutic avenues to improve the performance of engineered T cells and improve the treatment of patients receiving CAR T therapy by utilizing the gut microbiota. Clinical trials are necessary to evaluate the possibility of these approaches and to achieve consistent improved outcomes.





5 Strategies to overcome the problems



5.1 Memory cell paradigm

Despite the initial success of immunotherapy with CAR-T cells in hematologic malignancies, high relapse rates and resistance remain major limitations that urgently need to be addressed. Although the exact mechanism is not yet clear, recent studies have shown that CAR-T cell exhaustion is closely related to epigenetic regulations such as gene modification, DNA methylation and histone acetylation (184–186). As previously described, HDAC inhibitors can significantly enhance the antitumor efficacy of T cells, but only in recent years have the effects of such a combination with CAR-T cells on therapeutic outcome been investigated in preclinical and limited clinical studies.

In addition to hematologic malignancies, some solid tumors that are generally more resistant to CAR-T cell therapy, mainly due to the immunosuppressive tumor microenvironment and antigen escape mechanism, have been shown to be more susceptible to CAR-T cells when HDACi is added to the treatment. The pan-HDACi vorinostat was able to increase the cytotoxic activity of CAR-T cells targeting the B7-H3 antigen in several solid tumor cell lines by increasing the expression of B7-H3 on the cell surface and downregulating immunosuppressive signaling pathways (187). Panobinostat resulted in substantial suppression of Her2+ pancreatic tumors in mice when co-administered with Her2-gp100 dual specific CAR-T cells and a vaccine that activates CAR-T cells by inducing apoptosis and memory cell formation (188). In a more recent attempt to improve CAR-T immunotherapy in pancreatic cancer, Zhang and coworkers incorporated short hairpin RNA (shRNA) sequences targeting HDAC11 into the NKG2D (Natural killer group 2 D receptor)-targeted CAR-T cells (they termed them sh-NKG2D-CAR) (189). In vitro studies on PC-3 and DU-145 cells showed that downregulation of HDAC11 by sh-NKG2D-CAR resulted in enhanced cytotoxicity compared to conventional CAR-T cells, which was attributed to enhanced T-cell activation and degranulation capacity as well as increased expression of Granzyme B (GzmB) and IFN. Sh-NKG2D-CAR were also able to promote proliferation and differentiation of CAR -T cells into memory T cells while reducing depletion, as demonstrated in vitro and in the pancreatic cancer xenograft model in mice. These reports provide a reliable basis for further clinical evaluation of CAR -T cell therapy in combination with HDAC inhibition as a promising strategy to increase efficacy and overcome resistance to CAR -T cell therapy in malignant B-cell tumors and some solid tumors. However, HDACi could induce DNA damage in both normal and cancer cells. Fortunately, normal cells could repair the HDACi induced DNA damage, which can explain the therapeutic window observed in clinical practice. This off target effect could be controlled as in the case of demethylating agents, by following a standard regimen, in cycles, allowing the normal cells to recover, while the tumor cells which grow faster and have intense metabolism, will still be affected by HDACi (190, 191).

The cornerstone of the CAR T-cell production process relies on the most effective T-cell product. Several strategies can be employed to overcome resistance in CAR T-cell therapy related to the memory cell paradigm, focusing on enhancing memory T-cell generation, maintenance, and function. Central memory T cells and stem cell memory T cells are associated with better clinical outcomes in CAR T-cell therapy. These subsets of T-cells possess the ability to self-renew and differentiate into effector cells upon encountering an antigen, offering the potential for long-lasting anti-tumor responses (192).

The choice of costimulatory domains in CAR design significantly impacts the differentiation and persistence of memory T-cells (193, 194). Several domains have been described in CAR T-cell products, but CD28 and 4-1BB are used in most clinical trials, and current CAR T-cells approved by the FDA contain one of these costimulatory domains. It was found that 4-1BB costimulation is more likely to lead to the new generation of central memory phenotype T cells with better proliferation, survival, cytokine secretion ability, and higher persistence than CD28 costimulation. In turn, CD28 promotes high cytotoxic activity and an effector-like phenotype (193). Combining 4-1BB and CD28 can enhance CAR T-cell activity, improve the central memory phenotype, boost proliferation, and increase recruitment of lymphocyte-specific protein-tyrosine kinase to the CAR (38).

Selecting memory-like characteristics in T cells used for CAR T-cell manufacturing can improve outcomes. It was observed that a memory profile in CD8+ CAR T cells, marked by elevated CCR7, CD27, and SELL expression in the infusion product, has been associated with complete response (CR). In contrast, patients with a more exhausted CD8+ CAR T cell phenotype tend to show a poorer early molecular response, as indicated by tumor-derived cell-free DNA levels in plasma (195). Also, central memory phenotype CAR T cells have been associated with higher in vivo and in vitro activity than effector memory phenotype T-cells (196). Another evidence is that an equal CD4:CD8 ratio in the CAR T cell product correlates with better outcomes (197–199). Implementing a 1:1 ratio of both CD4:CD8 Chimeric Antigen Receptor (CAR) T cells can improve outcomes. This consideration is implemented in the manufacturing workflow where CD4+ and CD8+ T cells are co-cultured, and ratios are defined during the initial culture stage. This strategy has been observed to promote the expansion and activity of CD8+ CAR T cells. The CD4+ cells serve to maximize proliferation and support the maintenance of a functional CD8+ T cell phenotype, which is essential for anti-tumor activity, during the initiation of culture. Coculturing creates a population of CD4+ and CD8+ T cells at a 1:1 ratio, which improves upon the expansion, phenotype, and in vivo anti-tumor activity of CAR T cells compared to isolated cultures of CD8+ T cells. Typically, the manufacturing process is to select and enrich CD4+ and CD8+ T cells simultaneously, and then co-culture them in a specified ratio. This is a practical method since it reduces the manufacturing process, and if done properly, will lead to a balanced CAR T cell product. CD4+ cells have a beneficial function on CD8+ through both cytokines signaling as well as cell contact, through mechanisms including CD40L-CD40 and CD70-CD27 (145, 200). Additionally, Galli et al. found that a lower CD4/CD8 ratio in the infused CAR T cell product was associated with better clinical responses at 3 and 6 months post-treatment (201). The controlled ratio of CD4/CD8 ratio for CAR T cell manufacturing has several limitations such as the high complexity in manufacturing the product, as separate cultures of CD4 and CD8 positive cells do complicate the process and implies additional resources and time. Coculturing at different ratios can simplify the manufacturing process.

Producing CAR T cells with a stem central memory phenotype can also be an option to improve outcomes once these cells have a more fit metabolism with more vigorous killing activity and persistence (202).

Altering the metabolic pathways of CAR T cells can foster the emergence of a memory phenotype. FOXO1 is a key regulator for memory programming in CAR T cells, boosting their stemness, metabolic health, and effectiveness (203–205). At the same time, the NOTCH-FOXM1 pathway contributes to the formation of stem cell memory-like CAR T cells (206, 207). Additionally, overexpression of PRODH2 in CAR T cells reprograms proline metabolism, promoting mitochondrial proliferation and oxidative phosphorylation, reducing glycolysis, and increasing the generation of memory cell phenotype CAR T cells (208, 209). Also, inhibition of IDH2 with small-molecule inhibitors leads to an increase in glutamine oxidation and inhibits KDM5-dependent H3K4 demethylation, increasing the ability of CAR-T cells to differentiate into memory cells (210). Thus, reducing glycolysis and enhancing glutaminolysis and polyamine synthesis are potential strategies to improve CAR T-cells’ persistence and immune characteristics (211). Transient rest can restore functionality in exhausted CAR-T cells via epigenetic remodeling. This can be done by disrupting TET2, which promotes the formation of memory cells that results in increased efficacy (212). Knocking out DNA methyltransferase 3 alpha (DNMT3A) retains a stem-like phenotype, preventing exhaustion and enhancing antitumor activity (213).

For stem central memory phenotype CAR T cell production, a preselection of naïve and stem memory T cells can enhance the CAR T cell antitumor responses and persistence, with the cells exhibiting an increased expansion rate. These being translated into better long-term efficacy (214). Another way to generate these stem central memory phenotype CAR T cells is to incorporate the membrane-bound IL-15, as Hurton et al. mentioned (215). Coexpressing CAR with membrane bound chimeric IL-15 can promote the development of T cells with a stem central memory, this approach enhancing the persistence and antitumor activity of the CAR T cells. The manufacturing process limitations for these CAR T cells include the complexity of cell selection and expansion as preselection of naïve and stem memory T cells is technically challenging; moreover, the growth media needs specific concentrations and ratios of cytokines and other growth factors, and then the TME challenges can impair the function of these CAR T cells. The main issue with the manufacturing process for these naïve and stem central memory phenotype CAR T cells is the variation between batches, as the T cell quality may be different for one donor to another (216–218).

Metabolic interventions can be feasibly implemented in clinical-grade CAR-T cell manufacturing, while several strategies have been tested to enhance CAR-T cell metabolic fitness and their antitumor efficacy (219). Modulating ex-vivo culture conditions such as cytokine supplementation, nutrient composition and the use of metabolic pathway activators or inhibitors, all during the manufacturing process to produce less differentiated memory-like T-cell phenotypes with improved persistency (220). These changes should be integrated into current GMP workflows during expansion and activation phases. Any added agents should pass the regulatory compliance and safety, all changes should be compatible with the automated close-system bioreactors and should not induce variability in products. In the end, the quality control should be passed without any unintended effects on T-cell phenotype and functionality (221). The current implementation of metabolic interventions for next-generation CAR-T cells investigates the modulation of cytokine cocktails, modulation of glucose and amino acid concentrations or the transient exposure to metabolic modulators during the expansion phase.




5.2 Short-lived effector cell paradigm

The short-lived effector cell paradigm involves differentiating T cells into effector cells that can rapidly respond and eliminate tumor cells. While these cells are crucial for immediate tumor control, they have a limited lifespan and may not provide long-term protection. Indeed, T-cell exhaustion, characterized by the loss of effector functions, is a significant limitation in CAR Tcell therapy (222, 223).

Disrupting checkpoint signal pathways is a common strategy to reduce CAR-T cell dysfunction and restore their efficacy. PD-1 blockade can increase memory phenotype, reduce exhaustion, and induce durable responses of CAR-T cells (224, 225). The combination of PD-1 antibody checkpoint blockade and CAR-T cells demonstrated enhanced effectiveness of CAR-T cell therapy in both preclinical and clinical studies (226). For example, A Phase I clinical trial demonstrated that anti-mesothelin CAR-T cells, combined with the anti-PD-1 agent pembrolizumab, exhibited therapeutic effects in patients suffering from malignant pleural disease (227). In another study, CAR-T cells armed with autocrine PD-L1 scFv antibody reversed exhaustion and enhanced anti-tumor immune response in solid tumors and hematologic malignancies by blocking the PD-1/PD-L1 signaling (228). CRISPR technology can also be used to disrupt checkpoint pathways. A study showed the preliminary feasibility and safety of CRISPR-engineered CAR-T cells with PD-1 disruption and suggested that the natural TCR plays an important role in the persistence of CAR-T cells when treating solid tumors (229). Additionally, researchers have worked on engineering CARs that arm cytokines or express cytokine receptors, swapping inhibitory domains for activation domains in PD-1 or TGF-β as switch receptors, as well as deleting negative regulators in T cells or overexpressing factors that enhance T cell function (230). Regarding CTLA4, its deficiency improved proliferation and anti-tumor efficacy in preclinical models of leukemia and myeloma, rescuing the function of T cells from patients with leukemia who previously failed CAR-T cell treatment (231).

Specific cytokines can promote memory cell formation and persistence. IL-15 can enhance CAR-T cell activity by reducing mTORC1 and preserving stem cell memory phenotype with better metabolic fitness. This results in superior vivo antitumor activity, creating a pathway to improve future adoptive T-cell therapies (232, 233). IL-15 also can protect NKT cells from inhibition by tumor-associated macrophages and enhance anti-metastatic activity (234). Co-expression of IL-4/IL-15 based inverted cytokine receptor in CAR-T cells overcomes IL-4-mediated immunosuppression in solid tumors (235). The expression of IL-7 and CCL19 in CAR-T cells enhances immune cell infiltration and supports the survival of CAR-T cells within tumors (236). Furthermore, tumor-targeted CAR T cells can secrete IL-12 and IL-18 to eliminate ovarian and other tumors effectively (237, 238).

Metabolic interventions can also enhance the effector function of CAR T cells (239, 240). For example, targeting the glycolytic metabolism and polyamine/hypusine axis can control the generation of CD8+ tissue-resident memory T cells (241). Additionally, NAD+ supplements can potentiate tumor-killing function by rescuing defective TUB-mediated NAMPT transcription in tumor-infiltrated T cells (242). Enhancing fatty acid catabolism can increase the efficacy of immunotherapy by improving the CD8+ tumor-infiltrating T lymphocytes’ ability to slow tumor progression (243). Another strategy is integrating stearoyl-CoA desaturase 1 (SCD1) inhibitors with CAR-T cell therapy to improve the antitumor effects. SCD1 inhibitors block the conversion of saturated fatty acids, including palmitic and stearic acids, into mono-unsaturated fatty acids via ACAT1-dependent reduction of esterified cholesterol. Therefore, the SCD1-ACAT1 axis regulates effector functions of CD8+ T cells, and SCD1 inhibitors and ACAT1 inhibitors are attractive drugs for cancer immunotherapy (244).

The role of HDACs in T cells has been extensively studied in recent years, and many of them have been shown to be important for T cell development and function (245, 246). Shen and Pili (2012) (247) demonstrated that Class I HDAC inhibitors can specifically target Treg cells and thereby disrupt immune tolerance in cancer. Their study showed that the HDAC1 inhibitor entinostat suppresses Treg function, thereby increasing antitumor activity and immunotherapy efficacy in mouse models of renal cell carcinoma and prostate cancer (248). The study showed that entinostat represses Foxp3 expression at either the transcriptional or post-transcriptional level, resulting in a reduction in Foxp3 protein levels and impaired suppressive function in Treg populations, while the total number of peripheral Treg cells remains unaffected (248). The mechanism by which entinostat exerts its effect on Treg cells is primarily mediated by Signal Transducer and Activator of Transcription 3 (STAT3). STAT3 forms a complex with HDACs 1 and 3, which leads to hyperacetylation of STAT3 (249). Entinostat has been confirmed to specifically target STAT3, triggering its acetylation and pathway activation, leading to suppression of Foxp3 gene expression and reduced inhibitory function of Tregs (249). HDAC3 also plays a crucial role in modulating the suppressive function of Treg cells. Conditional deletion of HDAC3 in Foxp3+ Treg cells disrupts both the development of Treg cells and their suppressive function (250). In addition, the study by Wang and co-authors (2018) shows that conditional deletion of HDAC8 in Foxp3+ Treg cells or the use of HDAC8 inhibitors impairs Treg function and promotes anti-tumor immunity (251). SIRT2 moderately suppressed Foxp3 expression as well as the immunosuppressive function of Tregs (252).

On the other hand, Trichostatin A, a pan-HDAC inhibitor, enhances the differentiation and suppressive function of Treg (247, 253–255). Further studies are needed for each HDAC isoform and their effects on Treg cells. Overall, these data suggest that HDAC enzymes affect the immunosuppressive function of Treg cells in tumor microenvironment.




5.3 Overcoming trafficking

A significant obstacle for CAR T-cell therapy in solid tumors is the poor trafficking of T cells to the tumor sites. This can happen not only because the immunosuppressive TME can hinder CAR-T cell activity but also because tumor stroma and physical barriers limit the mobility and penetration of CAR T cells (256–258).

Directly administering CAR T-cells into the tumor can bypass the need for systemic trafficking, increase their concentration at the tumor site, and mitigate off-tumor toxicities (259, 260). Local delivery can result in an earlier and increased accumulation of CAR-T cells within the tumor and induce systemic and long-lasting anti-tumor immunity (256–259). For example, pre-clinical models have demonstrated the superior therapeutic efficacy of intraventricular injection of CAR-T cells targeting HER2 and IL13Rα2 in breast cancer brain metastases and glioblastoma, respectively (261, 262). Likewise, preclinical models showed superior CAR-T cell treatment of malignant pleural mesothelioma through intrapleural injection (107). Moreover, a transdermal porous microneedle patch was observed to allow the intra-tumoral penetration of CAR-T cells and enhance their infiltration compared to direct intra-tumoral injection in solid tumors (263).

Engineering CAR T-cells to express chemokine receptors can enhance migration to the tumor. Low radiation doses and phosphoramide can modify ligands secreted by the TME, augmenting cell trafficking by inducing the expression of CXCR4 and CXCL-12, blocking inhibitory cytokines and receptors, and reducing the expression of the endothelin B receptor (155, 264, 265). Experimental studies in murine models have shown encouraging results on pancreatic cancer through the negative regulation of pro-tumor cytokines (266). Some tumors can restrict T cell infiltration by reducing the expression of T cell-recruiting chemokines or adhesion molecules essential for extravasation. This can be found in brain, breast, plural, and liver cancers (267, 268).

Designing CAR-T cells to secrete matrix-degrading enzymes can disrupt physical barriers in solid tumors and improve infiltration (269). This can be achieved by engineering CAR-T cells to secrete the heparanase enzyme, which can degrade the tumor matrix and overcome tissue barriers and targeting CAR-T cells to fibroblast activation protein to remove stromal cells (270–272). Other strategies were found to increase trafficking, such as disrupting the “sugar coat” by designing molecules that can break the sugar shield that tumors use to resist CAR -T cell attack (273), the combination of immune therapy with oncolytic viruses with effective tumor debulking by destroying the molecular shield used by some solid tumors to escape the immune system attack (274, 275), and using nanobody-based CAR-T cells such as PD-1/CTLA-4- antibodies secreting CAR-T cells (276).




5.4 Overcoming tumor heterogeneity

Tumor heterogeneity, the variation in antigen expression within a tumor, is another challenge for CAR -T cell therapy (192, 224, 258). Tumor cells can downregulate or lose the target antigen, leading to resistance, such as on biallelic loss of BCMA has been observed as a resistance mechanism to CAR -T cell therapy and EGFRvIII-directed CAR -T cells mediating antigen loss and inducing adaptive resistance (151, 277). Additionally, the varied and limited antigens found in solid tumors, as opposed to those in liquid tumors, create a significant challenge for successful CAR -T cell therapy (258).

One approach to mitigating antigen escapes phenomena commonly associated with CAR-T cell therapy involves combinatorial strategies, such as sequential or combination treatments involving different CAR-T cell products that concurrently target multiple antigens. This strategy has already proven to be both clinically safe and effective in DLBCL (diffuse large B-cell lymphoma), and it could also offer a promising approach for treating solid tumors (278, 279). Another approach involves creating multitarget CAR-T cells, which can be done by integrating two different CAR constructs into T cells or using bi-specific or Tandem CAR-T cells. For example, in breast cancer, bi-CAR-T cells targeting ErbB2 and MUC1 in vitro, showed efficient antitumor activity (280). In glioblastoma, combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells, namely T cells coexpressing HER2 and IL-13Rα2-CARs (281). Tandem CAR -T cells feature a paired arrangement of two single-chain variable fragments (scFv). Research revealed that a tandem configuration of IL13 and EphA2 scFv demonstrated that the IL13-anti-EphA2 TanCAR showed significantly enhanced anti-tumor efficacy compared to single CAR-T cells, in both in vitro and in vivo settings (282).

Using synthetic Notch (SynNOTCH) receptors to control CAR -T cell activity can overcome challenges of specificity, heterogeneity, and persistence challenges. With this approach, the SynNOTCH receptor is activated by one tumor antigen and triggers the expression of a CAR against a second tumor antigen. Using this strategy, CART cells are only active and kill when both antigens are present (283). An alternative approach to antigen escape has been successfully demonstrated in AML models with CD70 loss by engineering CD70-targeting CAR-T cells to secrete a CD3/CD33 bispecific T cell engager. This strategy enables the cells to effectively overcome escape mechanisms involving either CD70 or CD33 (284).

Intrinsic tumor antigen expression and intratumoral heterogeneity can be rendered irrelevant by tagging tumors with small molecules such as FITC, which act as surrogate targets in a universal manner. A key benefit of this approach is that CAR-T cells can target both tumor cells and tumor-infiltrating cells such as MDSCs and tumor associated macrophages (TAMs) indiscriminately, while also priming endogenous cell-mediated immunity. However, a significant limitation is that tumors must be tagged via intratumoral injection, restricting this strategy to large, accessible tumors (285).

Modular CAR-T cells represent a remarkable concept that enables fine-tuning of therapeutic functions to address tumor antigen heterogeneity. This technology separates CARs into interchangeable, interlocking units, allowing engineered T cells to become universal and function with various target antigens through the simple addition of compatible Fvs. One notable example is the split, universal, and programmable (SUPRA) system, which uses leucine zippers to connect CAR modules, tailor binding affinities, and introduce logic gates to both enhance sensitivity in heterogeneous tumors and reduce on-target, off-tumor toxicity (286).

Modular CAR-T cells are poised to expand the scope of T cell redirection, as multiple similar platforms developed by commercial companies—such as SparX-ARC-T from Arcellx and OmniCAR from Prescient Therapeutics—broaden the repertoire of antigen recognition domains and enable enhanced CAR-T fine-tuning capabilities (287).

Additionally, CAR -T cells can be combined with treatments that boost Fas expression on tumor cells, like Smac mimetics or BCL-2/xL inhibitors. This approach would circumvent tumor heterogeneity and tumor cells’ resistance to CAR -T cell elimination (46). Switching CAR-T cells on or off can also control activation and inhibition. For example, using a bifunctional small “switch” molecule composed of folate and fluorescein isothiocyanate allowed CAR-T cells to identify tumor cells overexpressing folate receptors specifically (288). Furthermore, employing suicide genes or activating antibody-mediated killing can inhibit CAR-T cell functionality. Specifically, integrating the inducible caspase 9 system into CAR-T cells triggers apoptosis, resulting in reduced CAR-T cell activity (289).

Targeting components of the tumor microenvironment, such as fibroblast activation protein (FAP) on stromal cells, can indirectly affect tumor growth and survival and overcome tumor heterogeneity. FAP is a protease produced by cancer-associated fibroblasts (CAFs) and is involved in the remodeling of the tumor extracellular matrix (ECM). Research has shown that the adoptive transfer of FAP-CAR -T cells diminishes tumor growth in a FAP-dependent manner and can eliminate stromal cells, evident in several solid tumors, including mesothelioma, lung cancer, and pancreatic cancer, demonstrating antitumor activity in preclinical models (272, 290–292). CAR -T cells can be engineered to release cytokines that modify the tumor stroma, enhancing their therapeutic effects. These engineered cells, sometimes called “armored” CAR -T cells or TRUCKs (T-cells Redirected for Universal Cytokine Killing), can express various cytokines, interleukins, pro-inflammatory ligands, or chemokines to counteract the immunosuppressive environment of solid tumors (293). Many cytokines, including IL-2, IL-4, IL-7, IL-8, IL-9, IL-10, IL-12, IL-15, IL-18, IL-21, IL- 23 are being investigated for their ability to enhance CAR-T activation and persistence (42). For instance, CAR-T cells directed at the extracellular domain MUC, designed to secrete IL-12, demonstrated improved efficacy in preclinical ovarian cancer models (237). Additionally, CAR-T cells engineered to release IL-18 successfully modulated the tumor microenvironment, significantly enhancing their in vivo expansion, persistence, and survival (38).

Many advances in CAR-T cell design offer solutions to isolated challenges posed by solid tumors. However, clinical efficacy of these therapies may lie in integrating these models into intelligent, environment-sensing CAR-T cells using logic gates and modular CARs, which can adapt and regulate activity in response to tumor-specific cues to maintain efficacy amid dynamic changes such as antigen density variations, hypoxia, and suppressive cell pressure. In parallel, the field must recognize that effective therapy also requires functional trafficking—ensuring that CAR-T cells not only reach but also survive and operate within tumors (294, 295). These biologically tuned CARs should be co-developed with adjunctive strategies such as localized immunomodulation, matrix remodeling agents, or oncolytic viruses to dismantle the hostile tumor stroma and create a receptive environment for T cell action. Such integrative designs will likely be essential to achieve durable responses in solid tumors.





6 Successful trials

Despite significant challenges in the field of adoptive cell therapies for solid tumors, several successful trials bring hope that this approach might someday improve the outlook of these patients. A phase I clinical trial showed remarkable responses using Claudin18.2 (CLDN18.2) second generation CAR-T for the treatment of CLDN18.2 positive gastrointestinal cancers. This trial included 37 patients and led to radiographic tumor reduction in 83.3% of patients, with an overall response of 48.6% according to RECIST criteria. While the median persistence of CAR-T cells was 28 days, it ranged from 14 to 203 days. As expected, responders showed higher peak expansion, with peak values over 2-fold higher than non-responders which seems to be more characteristic of more naïve CAR-T subsets. Additionally, a composite indicator of both persistence and peak expansion, the CAR-T cell AUClast as determined until the last measurable value seems to be more relevant for efficacy and positively correlated with PFS. Although it was shown that 75% of patients developed anti-drug antibodies, it did not influence response to treatment. Perhaps contributing to the remarkable response rates, repeated biopsies following CAR-T infusion did not show TAA downregulation (296).

More recently, an Italian phase I-II study using a 3rd generation CAR-T cell therapy engineered to express the iCAS9 suicide gene achieved exceptional responses in pediatric refractory neuroblastoma, with one third of patients achieving complete response. The recommended dose selected after assessment of dose-limiting toxicity was 10x106/kg, which is very similar to the doses used in the CLDN18.2 trial. Out of the 27 patients treated, 9 and 8 patients achieved CR and PR respectively. An unusual occurrence is that three of the patients with partial responses show long term persistence of response, still maintained at cutoff. In this trial, one patient developed severe CRS in which rimiducid was effectively used to rapidly reduce circulating CAR-T cell levels. Remarkably, after 6 weeks, the CAR-T cells re-expanded and the patient was one of the nine achieving CR. Additionally, CAR-T cells preserved their iCas9 mediated sensitivity to rimiducid after re-expansion. In relapsing patients, however, despite preserved tumor antigen expression, CAR-T cells do not re-expand; however, one patient achieved a second CR after repeat infusion. In this trial, high-burden disease was the most important risk factor, and none of these patients were alive at the 3-year time point (297).

The shared features of these successful trials (Table 1) might be highly indicative of what will prove to be the future of CAR-T cell therapy in solid malignancies. Therapeutic doses used in both trials seem to be similar when accounting for the differences in weight between pediatric patients and adults, and the CAR-T subtype composition of infusion appears to be determinant of responses. Additionally, the preservation of antigen expressions including in relapse may indicate that downregulation might be antigen specific and that better understanding of what leads to this property might allow mitigation of antigen-escape through careful target selection.


Table 1 | Response rates in phase I and I/II trials of CAR-T cell therapies in solid cancers.
	Clinical trial and sources
	Trial Phase
	CAR-T Gen
	Target Cancer
	Target Antigen
	Costim. Domain
	Best radiologic response
	Observations



	NCT03874897 (298, 299)
	I
	2nd
	CLDN18.2 positive GI tumors
	CLDN18.2
	CD28
	37.8% ORR
75.5% DCR
	CLDN18.2 IHC expression >40%
No dose limiting toxicities


	NCT04581473 (300)
	II
	2nd
	CLDN18.2 positive pancreatic cancer
	CLDN18.2
	CD28
	16.7% ORR 70.8% DCR
	CA19-9 level reduction in the majority of patients
mPFS and mOS benefit in patients achieving PR/SD


	NCT04196413 (301, 302)
	I
	2nd
	H3K27M-mutated diffuse midline gliomas
	GD2
	4-1BB
	N.R.
	Intravenous and intracerebroventricular infusions serial infusions
83% of patients showed clinical and/or radiograhic benefit


	NCT02761915 (303)
	I
	2nd
	Pediatric neuroblastoma
	GD2
	CD28
	0% ORR
	Regression of soft tissue and bone marrow disease in 25% of patients


	NCT01822652 (146)
	I
	3rd
	GD2 positive solid cancers
	GD2
	CD28, OX-40
	41.6% ORR
58.3% DCR
	Used in combination with BRAF/MEK inhibitor therapy in metastatic melanoma
Increased CAR-T expansion and persistence with protocols for CAR-T enriched for central-memory-like, CCR7 and CD62L-expressing cells


	NCT03373097 (297)
	I/II
	3rd
	Relapsed/refractory neuroblastoma
	GD2
	CD28, 4-1BB + iCas9
	33.3% CR
63% ORR
83% DCR
	Successful elimination of GD2-CART by activation of suicide gene in 1 patient with severe CRS


	NCT04483778 (304)
	I
	3rd
	Non-CNS B7-H3 positive solid tumors
	B7-H3
	CD28, 4-1BB
	11% ORR
44% DCR
	Systemic administration


	NCT04185038 (305)
	I
	2nd
	Diffuse intrinsic pontine glioma (DIPG)
	B7-H3
	4-1BB
	6% ORR
89% DCR
	Intracerebroventricular serial infusions
mOS 19.8mo is higher than historical mOS


	NCT01869166 (306, 307)
	I
	2nd
	EGFR-positive advanced unresectable, relapsed/metastatic cancers
	EGFR
	4-1BB
	In BTC ORR 5.8%
DCR 64.7%
In PC
ORR 28.5%
DCR 85.7%
	EGFR IHC expression >50%
Grade I/II on-target off-tumor toxicity
1-3 repeated infusions


	NCT02209376 (151)
	I
	2nd
	EGFRvIII positive glioblastoma
	EGFRvIII
	4-1BB
	ORR 0%
DCR 10%
	No on-target off-tumor toxicity
Stable disease > 18mo. in one patient


	NCT03618381 (308)
	I
	2nd
	Non-CNS EGFR positive solid tumors
	EGFR806
	4-1BB
	N.R.
	DLT hepatotoxicity in 1/10 patients
20% of patients showed mixed response


	NCT02414269 (227)
	I
	2nd
	Malignant pleural cancers
	Mesothelin
	CD28
	8.6% ORR
56.5% DCR
	Mesothelin IHC expression >10%
11% CR achieved in patients who also received Pembrolizumab


	NCT01935843 (309)
	I
	2nd
	advanced BTC and PC
	HER2
	CD28
	9% ORR
54.5% DCR
	HER2 IHC expression >50%
1/11 patients grade III hepatotoxicity


	NCT00902044 (310)
	I
	2nd
	HER2-positive sarcomas
	HER2
	CD28
	21% ORR
50% DCR
	 


	NCT01212887 (148)
	I
	1st
	Carcinoembryonic (CEA) positive tumors
	CEACAM5
	none
	0% ORR
50% DCR
	CEA positivity defined by IHC or CEA > 50 μg/L
Acute respiratory toxicity attributed to on-target off-tumor toxicity


	NCT03089203 (156)
	I
	Armored CAR
	Metastatic castrate resistant prostate cancer
	PSMA
	4-1BB
	0% ORR
38.5% DCR
	PSMA IHC expression >10%
>30% PSA reduction in 23% of patients
Uses dominant-Negative TGF-β Receptor CAR-T cells
Evidence of tumor regression in 1 patient


	NCT02706392 (311)
	I
	2nd
	ROR1 positive triple-negative breast cancer or non–small cell lung cancer
	ROR1
	4-1BB
	5.5% ORR
94% DCR
	ROR1 IHC expression >20%
After 6 mo., all patients had progressed


	NCT05103631 and NCT04377932 (312)
	I
	IL-15 armored
	GPC3 positive solid tumors
	GPC3
	4-1BB
	33% ORR
66% DCR
	Increased CRS incidence associated with IL-15 armored CAR-T





IHC, immunohistochemistry; N.R., not reported; CLDN18.2, claudin18.2; GD2, disialoganglioside GD2; EGFR, Epidermal growth factor receptor; EGFRvIII, EGFR variant III; HER2, human epidermal growth factor receptor 2; CEACAM5, carcinoembryonic antigen; PSMA, prostate-specific membrane antigen; ROR1, Receptor tyrosine kinase-like Orphan Receptor 1; GPC3, Glypican-3; BTC, biliary tract cancers; PC, pancreatic cancers; N.R., not reported; ORR, overall response rate; DCR, disease control rate (complete response + partial response + stable disease)






7 Conclusions

CAR-T cell therapies have the potential to become the upfront treatment for both hematologic and solid malignancies. Still, for solid tumors, clinical applications face several roadblocks which are difficult to foresee in preclinical studies. The architectural complexity and heterogeneity of tumors creates physical and immunological barriers leading to poor trafficking and infiltration of CAR-T cells as well as an immunosuppressive TME which limits the antitumoral potential of current CAR-T cell therapies.

Success in overcoming these challenges rests on several pillars: characterizing and understanding mechanisms of resistance towards CAR-T cell therapies, accurately modeling the components of the CAR-T–tumor interface, and designing predictive models of clinical efficacy.

The current in vitro and in vivo models often fail to fully recapitulate the dynamic and immunologically complex environment of human tumors, leading to discrepancies between preclinical promise and clinical efficacy. Advanced experimental models such as patient-derived organotypic spheroids (PDOS) and humanized mice models provide more accurate platforms which promise to bridge this gap and allow testing of new CAR-T cell designs and strategies to find solutions for tumor resistance to treatment.

The costs for the preclinical setup would increase if testing the CAR-T cells on different organoid, humanized mice and by applying multi-omics approaches, moreover, many pipelines would need improvements, but all these investments and challenges will lead to better understanding and to a comprehensive overview of the next-generation CAR-T cells. Moreover, using such a variety of in vitro and in vivo models could offer a better prediction of the potential outcome, limiting the future negative outcomes which will come with extra costs to counter them in later stages of the clinical trials. The regulatory complexity will increase, while the benefits and outcomes are worth the investments and challenges during the preclinical setups.

Innovations in CAR design, such as armored CARs, TRUCKs, dual-targeting CARs, modular and logic-gated CARs are being developed to enhance persistence, trafficking, and functional adaptability of CAR-T cells in solid tumors. Additionally, refining the phenotype composition of CAR-T products to favor stem-like and memory T-cell subsets has shown promise in increasing durability and response rates and adjuvant therapies may be used to mitigate the immune suppressive effects of the TME and aid in overcoming tumor heterogeneity issues.

Despite these hurdles, there have been encouraging signs of clinical efficacy in solid tumors, perhaps owing to a synergy of effective conditioning, target antigen selection and CAR design. Such notable success seen in phase I trials for gastrointestinal cancers and pediatric neuroblastoma where patients achieved remarkable objective tumor responses underscore the feasibility of CAR-T cell therapies for solid tumors when optimally designed.

Ultimately, the future of CAR-T cell therapy in solid tumors lies in a comprehensive approach: coupling technological advancements in cell engineering with the continual refinement of preclinical models and translational strategies. Robust and iterative evaluation frameworks integrating transcriptomic, proteomic, and immunologic data will be crucial for rational CAR target selection and for overcoming the limitations posed by the solid tumor milieu. While the road ahead is complex, sustained multidisciplinary efforts hold the promise of unlocking the full therapeutic potential of CAR-T cells across a broader spectrum of cancers.
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Source
of exosome

Exosomal cargo/pathway

Findings

Reference

Tumour Gastric cancer UC-MSCs Activated Akt pathway Increases expression of mesenchymal (52)
promoter markers and promotes angiogenesis
via Akt pathway.
AML BM-MSCs S100A4 Promotes cell proliferation, invasion, (47)
and chemoresistance.
Breast cancer Human and mouse TGF-B, Clq, & semaphorins Accelerates tumour progression by (48)
tumour- inducing differentiation of M-MDSCs
educated MSCs into M2-polarized macrophages.
NPC BM-MSCs FGF19 Promotes tumour progression via (49)
FGF19-FGFR4-dependent ERK
signaling cascade and EMT.
Tumour NPC MSCs miR-34¢ Suppresses malignant behaviour and (50)
suppressor enhances radiosensitivity of
NPC cells.
NPC MSCs miR-125a Attenuates migration and (51)
vasculogenic mimicry formation in
NPC cells.
Gastric cancer BM-MSCs miR-1228 Inhibits angiogenesis and tumour (53)
progression by downregulating
MMP14 expression.
Pancreatic cancer BM-CSCs Galectin-9 siRNA, oxaliplatin Suppresses macrophage polarization (54)

and Tregs suppressive activity, while
increasing CTL recruitment.

UC-MSCs, Umbilical cord-derived mesenchymal stem cells; Akt, Protein kinase B; AML, Acute myeloid leukemia; BM-MSCs, Bone marrow-derived mesenchymal stem cells; S100A4, $100
calcium binding protein Ad; TGE-B, Transforming growth factor beta; Clq, Complement component 1g; M-MDSCs, Monocytic myeloid-derived suppressor cells; NPC, Nasopharyngeal
carcinoma; FGF19, Fibroblast growth factor 19; FGFR4, Fibroblast growth factor receptor 4; ERK, Extracellular signal-regulated kinase; EMT, Epithelial-mesenchymal transition; miR-34c,
microRNA-34c-5p; miR-125a, microRNA-125a-3p; miR-1228, microRNA-1228; MMP14, Matrix metalloproteinase 14; siRNA, Small interfering RNA; CTL, Cytotoxic T lymphocytes.
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Clinical
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identifier/
Reference

EBV-CTL alone PB 1. Tsolate PBMCs. Stage IV radiotherapy- and i Autologous CTLs were infused weekly for + Induced LMP2-specific immunologic )
2. Incubate with EBV-containing chemaotherapy- the first four administrations and then responses
supernatant from the B95-8 cell line to resistant EBV-related every 2 to 4 weeks, with low-dose « Well tolerated with no reported acute
establish LCL in the presence of NPC recombinant IL-2. The first five patients  adverse effects
cyclosporine-A. received an initial dose of 2 x 107 CTL/m® |+ 4 out of 10 patients achieved stable
3. Expand CTLs by weekly stimulations followed by subsequent doses of 4 x 107 | disease, lasting a median of 6 months
with LCLs in the presence of recombinant CTL/nr’. For the last five patients
2 (patients 6 o0 10), the schedule was
modified to include four escalating doses
of EBV CTL (2x 107, 4x 107, 6 x 107,
and 8 x 107 CTL/m?) every 2 weeks,
followed by infusions of 6 x 107 CTL/m’.
EBV-CTL alone B 1. Isolate PBMCs. Relapsed/ i Patients were treated at one of three dose + No significant toxicity was reported )
2. Incubate with EBV-containing refractory EBV-positive NPC levels and received cither 2 doses of 2x107 |« Demonstrated progression-free survival
supernatant from the B9S-8 cell line to CTL/m? (dose level 1), 1 dose of 2x107  rates of 63% at first year and 52% at
establish LCL in the presence of and 1 dose of 1x10° CTL/m? (dose level | second year
cyclosporine-A. 2), 0 1 dose of 1x10° and 1 dose of « Achieved overall survival rates of 87%
3 Expand CTLs by weekly stimulations 2x10° CTL/m? (dose level 3). All patients | at first year and 70% at second year
with LCLs in the presence of recombinant in the Phase I extension received the
L3 highest dose level. CTL infusions were
given 2 weeks apart.
EBV-CTL B 1. Tsolate PBMCs. Metastatic and/or u Patients received chemotherapy with « Well tolerated with no grade 3 or 4 NCT02578641
+ Gemitabine + 2 Incubate with EBV-containing locally recurrent NPC gemcitabine (1,000 mg/m’) and adverse events (83),

Carboplatin supernatant from the B95-8 cell line to carboplatin (AUC 2) on days 1, 8,and 15 |« Achieved a response rate of 71.4%
establish LCL in the presence of every 4 weeks for four cycles. Two to four |« Out of 35 patients, 3 achieved a
cyclosporine-A. weeks after the last chemotherapy course, | complete response, 22 had a partial
3. Expands CTLs by weekly stimulations EBV-CTLS were administered at a dose of | response, and 10 had stable disease
with LCLs in the presence of recombinant 1% 10° cells/m? on weeks 0,2, 8, 16,24, « Demonstrated 1, 2-, and 3-year overall
2 and 32. survival rates of 77.1%, 62.9% and 37.1%

EBV-TILs Biopsied 1. Mince NPC biopsy specimens into to~ Locoregio-nally advanced NPC 1 ‘The PTV of the GTVnx was treated with « Induced EBV-specific T cell expansion  NCT01462903

+ NPC isolate TILs. 70 Gy in 30-32 fractions. Cisplatin was in 13 of 20 patients (81,
CCRT tumours 2. Digest with collagenase type IV (0.1 administered at 100 mg/m’ on days 1,22, « No treatment-related deaths. Only mild
pg/mL) for 2 hous. and 43 of radiotherapy. One week after | adverse events were reported
3. Culture in X-VIVO-15 medium with completing CCRT, patients received a « 18 out of 20 patients exhibited disease-
5% human AB serum and recombinant single-dose intravenous infusion of TILs | free survival longer than 12 months
L2, (average infused TIL number = 2.6 x 10° |« Plasma EBV load was undetectable in
+2.2) and began a 14-d regimen of low- 17 patients at 6 months after this therapy
dose IL-2 subcutaneous injection.

EBV-CTLs B 1. Tsolate PBMCs. Recurrent, metastatic NPC v Each subject received two EBV-CTL + One out of 21 treated pa NCT00834093
2. Incubate with EBV-containing infiusions, given 2 weeks apart ata dose of | complete response (#5),
supernatant from the B9S-8 cell line to 1x10° cells/m’. Eight weeks after the + Two patients maintained stable disease
establish LCL in the presence of second infusion, subjects underwent for 187 months and 6.5 months
cyclosporine-A. restaging scans to evaluate their response  » Overall response rate was 4.8%

3. Expand CTLs by weekly stimulations using RECIST (version 1.1). If additional + Median progression-free survival was
with LCLs in the presence of recombinant product was available, patients could 2.2 months
IL-2 receive one more infusion (1-2x10% cells/  + Median overall survival was 16.7
m?) approximately 8 to 12 weeks after the  months
second infusion, « No grade 2 3 adverse events were
found to be related to treatment
EBV-CTLs B 1. Tsolate PBMCs. EBV-positive metastatic NPC n ‘The patient was treated with nivolumab ~ « EBV DNA remained undetectable for (86)
+ 2. Coculture with irradiated PBMCs at 240 mg per cycle (14 days). Following  more than 250 days after the completion

Nivolumab infected with AdE1-LMPpoly (MOI 10:1) this, the patient received six intravenous  of combination therapy
at a responder to stimulator ratio of 7:3. infusions of in vitro-expanded T cellsata  + No signs of disease recurrence for 22
3.0n Day 3, and every 3 to 4 days, add dose of 4x 107 T cells (2x 107 cells/m?). months
recombinant IL-2 to the medium. « EBV-specific CTLs in PBMC increased
4. Harvest the cells on Day 14. from 0.16% to 0.33% following the

ACT product
TGE-p resistant B 1. Tsolate APC from the patient's blood. EBV-positive NPC 1 Patients will be treated with (1) either two  + Ongoing clinical study NCT02065362
EBV-CTL 2. Coculture with K562 cells coated with a doses of EBV-specific T cells, with the « No dlinical data is available

mixture of LMP, EBNAL, and BARF
protein fragments to generate EBY -
specific T cells.

second dose administered 2 weeks after
the first dose or (2) cyclophosphamide
and fludarabine for 3 days before
receiving the EBV-specific T cells.

EBV, Epstein-Barr virus, TIL, Tumour-infiltrating lymphocytes; NPC, Nasopharyngeal carcinoma; CTL, Cytotoxic T lymphocytes; PB, Peripheral blood; PBMC, Peripheral blood mononuclear cells; LCL, B-lymphoblastoid cellline; IL-2, Interleukin-2; LMP2, Latent
membrane protein 2; CCRT, Concurrent chemoradiotherapy: PTV, Planning target volumes: GTVx, Gross tumor volume in the nasopharynx; RECIST, Response Evaluation Criteria in Solid Tumours; MO Multiplicity of infection; ACT, Adoptive T-cell therapy; TGF-B.
Transforming growth factor-beta; APCs, Antigen presenting cells; EBNAL, Epstein-Barr nuclear antigen 1; BARF, BamHI A right frame.





OPS/images/fimmu.2025.1609320/table2.jpg
Group
G

@

@

G

as

@

rry————y

Drug
Vehicle

Ok eels

exdonilimaly

Oxalipltin

s

eadonilimay

Oxalplain
1

CIK eels

exdonilimaly

K el

Oxalplatin
1

CIK eels

aadonilmab

Oxaliplatin

st

Dose
Na
40" celsimouse

I mgkg

Smyig
125 mgfkg

comykg.

I mghg

Smeks
125 gk

69mghe
140 celsimouse
I mgkg

Smyhg

0 celsimonse

125 gy
69 mykg
10 celmouse
I mghg

Smgkg
125 mghg

comyks.

e Sptag BV ¥0ie s etk A S RO DEr 95 G eaMERRRy b

Application rou

i

po.

i

in.

po.

ey

Day of administration
Pa-DUSRR

PGDURRR

WS (frst thee doses, sared from
PGDY)

BV (st s doss)
PG4

QD3 days o and 7 days offand QD7
days (started from PG-D)

BV (et thre doss, startd from,
PGDY),

BV (st s doss)
PGDIA

QD days o and 7 days off and QD7
days (stared from PG-D)

PGDURR2R

WS (frst thece doses,sarted from
PGDY)

Wi st s doses)
PaDsR2R
PGDHIA

QD3 days o and 7 days off and QD7
days startedfrom PG-DY)

PGDUSR2

BIVG (st thce doss, starid from
PGDY),

BV (st sis doss)
PaDIA

QD3 days o and 7 days offand QD7
days (sarted from PG-D4)

==y





OPS/images/fimmu.2024.1499471/crossmark.jpg
©

2

i

|





OPS/images/fimmu.2025.1609320/table3.jpg
Day Days after administration

Group of grouping 4 2
Contel group 205220 W2:18 o1y WSS 23 B3 28l
Low-dose group 02014 19516 | 2016 | Ms:1s | 220 | 27217 Do
Femae
Mid-dose group wix1s Wxls | WSl 2asl | 22s0s | 271 | 22s1s
High dose roup 200213 20613 2219 2asly W2e19 mraze | 20225
Control group 2is1s 1220 mSe2s | w7e26 | B3a2s | 05229 09228
Lovw.dose group 20215 ixis | Bitls | 2srl4 2213 23219 B2:1S
Mid-dose group 59214 M0t1s | N7220  2Sely mes2l | 22220 | 2817
High-dose group Bz 85109 26207 | 2:10  BI20v | n9rirt | Mri7

“compared with the vehice control group, p < 0.05; **compared with the sehicl control group, p < 001,





OPS/images/fimmu.2024.1484535/table2.jpg
Intervention Target
CAR-T LMP1
TCR-T LMP1L

LMP2
NK cells LMP2
LMP1L

Aims of the study

To assess the efficacy of second-generation CAR on
targeting the LMP-1 protein to improve EBV-targeted
T cell therapy

To enhance the antitumour efficacy of HELA/CAR-T
cells using a third-generation CARs

To develop and evaluate a novel TCR gene transfer
regimen to rapidly and reliably generate T cells
specific to EBV-encoded LMP1

To evaluate the effectiveness of different TCR
promoters in lentiviral vectors for the transduction of
LMP2-specific TCRs into activated T cells, with the
goal of developing a universal, MHC-restricted
approach for treating EBV-associated tumours

To develop a TCR gene transfer method to quickly
generate T cells specific for LMP2 and evaluate their
effectiveness in inhibiting LMP2-positive

tumour growth

To investigate the cytotoxic function of NK cells in
EBV-associated epithelial malignancies

To investigate the effect of radiotherapy on the killing
of NPC cells by NK cells in combination with PD-
1 inhibition

To elucidate how EBV infection impairs NK cell
cytotoxic function in NPC and to explore the
therapeutic potential of combining B7-H3 deletion on
tumour cells with anti-PD-L1 treatment to restore NK
cell-mediated antitumour activity

Outcomes

HELA/CAR-T cells exhibited specific
recognition of LMP1-positive NPC
cells. They induced efficient killing via
the production of IL-2 and IFN-yin a
LMPI specific manner.

HELA/137CAR produced larger
quantities of IFN-y and IL-2 and
demonstrated superior antitumor
activity and long-term persistence in
an LMP1-positive NPC xenograft
model compared to HELA/CAR.

T-cells engineered with LMP1-specific
TCR can recognise and elicit specific
cytotoxicity towards LMP1-expressing
tumour cells with increased production
of IL-2 and IFN-y.

Lentiviral vectors containing the VB 6.7
promoter were found to be optimal for
TCR gene expression, maintaining
expression for up to 7 weeks. These
transduced T cells effectively recognized
EBV antigens, demonstrated by their
cytotoxicity and IFN-y secretion.
Additionally, mice infused with these
cells showed significant resistance to
LMP2-positive NPC cells.

The optimized HLA A*1101-restricted
TCR led to the generation of high-
avidity T cells with strong antigen-
specific functions, such as proliferation,
cytotoxicity, and cytokine release.
These engineered T cells effectively
inhibited LMP2-positive tumour
growth in a mouse model and lysed
LMP2-expressing NPC cells from
advanced NPC patients.

LMP2A-mediated upregulation of F3
through PI3K/AKT signaling pathway
inhibits the antitumour function of
NK cells. Inhibition of F3 restored
NK cell cytotoxicity and showed
therapeutic efficacy when
administered with adoptive NK cells.

Radiotherapy sensitized NPC cells to
NK cell killing and increased the
expression of PD-L1 in NPC cells and
the PD-1 in NK cells. Blocking the
PD-L1/PD-1 checkpoint further
enhanced the cytotoxicity of NK cells.

LMP1-upregulated B7-H3 expression
suppresses NK cell cytotoxicity via the
PI3K/AKT/mTOR signaling pathway.
Knockdown of B7-H3 in tumor cells,
combined with anti-PD-L1 treatment,
restored NK cell function and enhanced
cytotoxicity against NPC cells.

Reference(s)

(73)

(74)

(23)

(75)

(76)

(77)

(78)

(79)

CAR, Chimeric antigen receptor; LMP, Latent membrane protein; EBV, Epstein-Barr virus; IL-2, Interleukin-2; IEN-y, Interferon-y; TCR, T cell receptor; MHC, Major histocompatibility
complex; HLA, Human leukocyte antigen; NK, Natural killer; F3, Coagulation factor III; PD-1, Programmed cell death receptor 1; PD-LI, Programmed cell death ligand 1; PI3K,
Phosphoinositide 3-kinase; Akt, Protein kinase B; mTOR, Mammalian target of rapamycin.
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Intervention rget

Clinical
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Phase

NENH

Outcome measure

Efficacy & Long-term safety

Limitations

Reference(s)

CART EpCAM  NCT02915445 1 Active, | To determine the response rate and assess | Two patients had PR and three showed 523 Limited number of enrolled patients (30)
not recruiting | treatment-related adverse events/dose months of PFS. No CRS event was reported.  to confirm the linical benefit of
limiting toxicity of EpCAM-CAR-T cells | 50% (6/12) of the enrolled patients infused T cells.
experienced self-remitted grade 1/2
. one patient (8.3%) experienced
reversible grade 3 leukopenia.
LMPI | NCT02980315 7 Unknown | To evaluate the safety of the designed - - -
status LMP1-CAR-T cells and determine whether
the CAR-T cells are effective in the
treatment of EBV-associated
malignant tumours
TCRT EBV  NCT05587543 1 Recruiting | To compare the safety and efficacy of EBV | — - -
TCR-T versus CAR-T cells in the
recurrent/refractory EBV-positive NPC
LMP2 | NCT04509726 m Recruiting | To assess the maximun tolerated dose of | — = =
LMP2-specific IL-12-secreting TCR-T cells
in EBV-positive metastatic/refractory
NPC patients
NCT03925896 1 Unknown | To determine the safety and efficacy of - - -
status EBV TCR-T cells in the treatment of
recurrent/metastatic NPC with positive
EBV infection in the Chinese population
LMPI | NCT03648697 1 Unknown | To investigate the safety and tolerability of | — - -
LMP2 status EBV-TCR-T cell therapy in subjects with
EBNAL NPC who had received prior therapy for
their disease, but their disease has
progressed or relapsed
EBV-CTLs 1 To evaluate the safety and efficacy of Patients who received a median of 10 CTL  EBV-CTLs monotherapy may face (s1)
autologous EBV-specific CTLs in treating  infsion were well tolerated with the limitations similar to chemotherapy,
stage IV NPC that was refractory to induction of LMP-2-specific immunologic  where malignant clones with low
conventional treatments responses. Control of disease progression EBV antigen expression might evade
was obtained in six of 10 patients (two with  CTL-mediated killing This suggests
PR and four with SD). the need for combining EBV-CTLs
ith other conventional therapeutic
‘modalities in future studies.
0 To assess the toxicity, efficacy, specificity  EBV-CTLs infusion was well-tolerated and  Lack of a clear impact of EBV-CTL (2)
and expansion of infused CTLs for provided significant long-term clinical antigen specificity or in vivo
recurrent/refractory NPC patients benefits, especially for patients with expansion on treatment outcomes,
locoregional disease, with OS rates of 87% at  and the results may not be
1-year and 70% at 2-years. However, it
showed limited antitumour activity in generalizable due to the small
‘metastatic disease and was associated witha  sample size.
higher risk of disease progression.
LMP2 | NCT02578641 m Completed  To evaluate whether combining GC-CTL therapy achieved a 71.4% response  ~ (#3)
EBNAL gemcitabine-carboplatin with adoptive T | rate, with 3 CR and 22 PR. At a median
cell therapy (GC-CTL) improves clinical follow-up of 29.9 months, the 2-year and 3-
outcomes for patients with metastatic or  year OS rates were 62.9% and 37.1%,
locally recurrent EBV-positive NPC respectively. Five patients did not need
additional chemotherapy for over 34 months
after starting CTL therapy.
LMPI | NCTO1462903 1 Unknown | To investigate the safety and tolerability of | Most adverse events were grade 1 or 2. ‘The outcome and efficacy of TIL (8
LMP2 status autologous TIL in combination with 1L-2  Nineteen out of 20 patients showed an immunotherapy was not clearly
EBNAI following CCRT in advanced NPC patients  objective antitumour response, with 18 defined in the current study.
achieving DFS for over 12 months. The
plasma EBV load significantly decreased
after one week of ACT and stayed below
‘measurable levels in most patients after 6
‘months of ACT.
LMP2 | NCT00834093 1 Completed  To evaluate the efficacy of EBV-CTLs for  Few severe adverse events were observed. ‘The number of evaluable (#3)
EBNAL recurrent, metastatic NPC patients ‘The ORR was 4.8%, with a median PES o participants did not meet protocol
22 months. Notably, two patients who had  objectives (n=13 versus target n=18).
previously failed the same chemotherapy
regimen responded well after EBV-
CTL immunotherapy.
Case report To evaluate the efficacy of combining The patient showed complete resolution of  The findings from this single case (86)
EBV-CTL with PD-1 blackade therapy in |~ meftastatic disease with no evidence of may not be directly translatable to a
treating metastatic NPC patient disease relapse for 22 months following larger cohort of NPC patients.
combination immunotherapy. Subsequent
immunological analysis showed a significant
change in the overall variety and
composition of the T cells, which was linked
to the observed clinical improvement.
LMPI | NCT02065362 1 Active, | To determine the safety of escalating doses | ~ - -
LMP2 not recruiting | of intravenous infusions of autologous
BARFI TGF-B-resistant EBV-CTL with
EBNAL Iymphodepleting chemotherapy in EBV-
positive NPC patients
NK Case report To assess the efficacy of an allogeneic Patient was well tolerated. Intracranial ‘The optimal dose of NK cells was (s7)
UCB-NK cell product in an advanced ‘metastases did not decrease 10 months after ot clearly determined. Further well-
NPC patient after failure of CCRT the NK cell treatment, but they decreased  designed and randomized studies
significantly at 31 months after the
treatment and partially disappeared. The with larger numbers of patients are
tumour response indicated a PR. needed to fuly evaluate this strategy.
Furthermore, all of the intracranial
metastases continued to decrease at about 42
months after treatment.
EGFR | NCT02507154 v Unknown  To evaluate the safety and efiicacy of Combination therapy was well tolerated. All | While three out of seven patients (s9)
status expanded activated autologous NK cells  three patients who received twice infusion of ~ demonstrated durable stable disease,

administered after cetuximab in patients
with EGFR-positive, recurrent/
metastatic NPC

NK cells had a relatively long time to disease
progression (12 months, 13 months, and
19 months)

the overall response was limited,
with three subjects experiencing
disease progression. Further research
with larger cohorts is necessary to
validate these findings.

CAR, Chimeric antigen receptor; EpCAM, Epithelial ell adhesion molecule; PR, Partial response; PES, Progression free survival; CRS, Cytokine release syndrome; LMP, Latent membrane protein; TCR, T cell receptor; EBV, Epstein-Barr virus; IL-12, Interleukin-12;
EBNAL Epstein-Barr virus nuclear antigen 1; EBV-CTL, EBV-specific cytotoxic T lymphocyte; SD, Stable disease; OS, Overall survival; CR, Complete response; CCRT, Concurrent chemoradiotherapy: DFS, Disease free survival; ACT, Adoptive cell therapy; TIL, Tumour
infiltrating lymphocytes; ORR, Overall response rate; BARF1, BamHI-A rightward frame 1 TGE-B, Transforming growth factor-B; NK, Natural killer; UCB-NK, Umbilical cord blood-derived NK cells; EGER, Epidermal growth factor receptor.
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Patient Patient

information

Age 61

Sex Male

Diagnosis MM IgG(I stage,Lambda Light chain)

Autologous stem
cell transplantation

Yes

Bulky disease Left iliac bone,7.5 x 4.0 cm in size, Right iliac bone,
7.9 x 2.9 in size
Time of 5 years ago

initial diagnosis
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Treatment regimen Efficacy

Right frontotemporal approach for malignant cranial tumor
resection, duraplasty, cranioplasty

PAD (Bortezomib, Doxorubicin, and Dexamethasone)

Autologous stem cell transplantation CR
Thalidomide

VD (Bortezomib and Dexamethasone) Relapse
PAD (Bortezomib, Doxorubicin, and Dexamethasone) Relapse
Radiotherapy with GTV_R and GTV_L regimens Relapse

Daratumumab combined with selinexor and dexamethasone Relapse
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tal signs
Tempemperature (°C)
Pulse rate (/min)

Respiratory rate (/min)

Blood pressure (mmHg)
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Before

After

treatment treatment

Minimal residual disease Positive Negative
Serum IgG(Lambda Negative
immunofixation electrophoresis Light chain)

Urine IgG(Lambda Negative
immunofixation electrophoresis Light chain)

Serum M protein 2.88g/L Negative
Urine M protein Negative Negative
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Targets ScFV Cosignaling  Outcomes Reference

origin  domain

CD33 Dual CAR Human CD28 and 4-1BB Reduced tumor burden (BM: 0.06% vs. 65.7% in controls, P < 0.05) (34)
and CD123 prolonged survival in vivo (mice)
low toxicity to endothelial cells and HSPCs.

CD33 DARIC33 Llama 4-1BB Phase I clinical trial initiated (PLAT-08, NCT05105152) (35)

CD123 CD123 CAR Human CD28 and OX40 Enhanced anti-AML activity in vivo with AZA pre-treatment (36)

CD123 UCART123 Murine 4-1BB 2.5%x1076 UCART123 cells significantly extended overall survival in PDX-AML2 37)
and PDX-AML37 models

CD123 123NL CAR Human 4-1BB Mice with chloroform-labeled tumor cells had a 90% higher survival rate (38)

and compared to controls

NKG2DLs

CDh7 CD7 CAR Human CD28 In the xenograft model, there was no tumor growth at 125 days (median survival (39)
of control group: 54 days)

cD7 CD7 CAR Murine 4-1BB Tumor load was no longer detectable at day 22 after injection in xenograft mice (40)

CD7 CD7 CAR Murine CD28 and 4-1BB Patient with relapsed/refractory AML achieved MLFS (bone marrow blasts: 20% (41)
to 0%)

CD7 CD7 CAR Human 4-1BB At 28 days post-infusion, 81.8% (9/11) had objective responses, including a (42)
complete response rate of 63.6% (7/11)

CD117 CD117 CAR Human 4-1BB CD117+ tumor cells are killed in a humanized mouse model (43)

CD70 CD70 CAR Human CD28 and 4-1BB In xenograft models, CD27z-CAR T cells induced complete leukemia remission in  (44)
all xenograft mice by day 21

CD70 CD70 CAR Human 4-1BB Prolonged survival in mouse models (median survival extended by about 50%) (45)

CD93 NOT-gated Human CD28 and 4-1BB Complete remission in 80% of mice with CD93-28z and 70% with CD93-BBz in (46)

CD93 CAR PDX model (N=17 for CD93-28z, N=20 for CD93-BBz)

CD38 CD38 CAR Human 4-1BB ATRA treatment increased CD38 expression to 99.94% and specific cytotoxicity (47)
to 98.92%.

FLT3 FLT3 CAR Human CD28 NSG mice carrying MOLM-13 AML cells had a higher overall survival rate (48)
compared to controls (p<0.05)

FLT3 FLT3 CAR Human 4-1BB Complete and durable responses in mice with low disease burden (49)

CD44v6 CD44v6 CAR Human 4-1BB Significantly inhibited tumor progression in FLT3 or DNMT3A mutant AML (50)

cells in a mouse model

CLLL CLL1 CAR Murine CD28 and 4-1BB Significantly reduced leukemia burden and improved survival in xenografted mice ~ (51)
(p < 0.001)

CLL1 CLL1 CAR Human CD28 and CD27 3 achieved CR with MRD negativity. One patient survived for 5 months. (52)

CLL1 CLL1 CAR Murine CD28 and OX40 Molecular CR achieved in 2 post-transplant relapse patients, with sustained (53)
remission of 8 and 3 months at last follow-up

CLECI2A ADCLECsynl = Human 4-1BB 2 out of 2 AML PDX models showed complete remission (54)

and ADGRE2

FRB HA FRB CAR | Human  CD28 Exhibited enhanced anti-leukemic activity in vitro and in vivo compared to LA (55)
FRB CAR T cells

CD123 Bispecific Human CD28 Produced higher levels of IFN-y and IL-2 than monospecific CAR-T cells. (56)

and FRB TanCAR

GRP78 GRP78 CAR | Human  CD28 Prolong survival (p < 0.0001) but appeared to relapse (57)

NKG2DL NKG2DL Human Dapl10 Median OS was 4.7 months (range, 1.2-24.9+ months) with 2 patients alive at (58)

CAR 16.8 and 24.9 months.

FLT3 FLT3scEv/ Human  4-1BB Gilitinib pretreatment prolonged median survival from 24 days with monotherapy ~ (59)

and NKG2DL NKG2D CAR to 35 days with combination therapy

LILRB3 LILRB3 CAR Human 4-1BB All treated mice achieving lasting remission and survival exceeding 100 (60)
days (n=7)

PRAME PRAME Human 4-1BB In the THP-1 model, median survival was extended to 110 days (61)

mTCR CAR

PDX, patient-derived xenograft; HA, High Affinity; FRP, Folate Receptor B; TanCAR, Tandem Chimeric Antigen Receptor.
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Median Prior Median Follow-

CAR-T cell dose Responses
LoT (range) P up (mo)
sCR (n=1)
pPCL 100% VGPR (n=1)
(n=4) " (pPCL) PR (n=2)
Ide-cel 120) | 11 6(0-15) Unk b ><41505 :eilés(izﬂff 2l 6(0-15)
SPCL 57% CR (n=1)
(n=7) (sPCL) VGPR (n=2)
PR (n=1)
75% ORR
62.5%
Anti-BCMA CAR sPCL VGPR (n=2)
T 8 3.5(1-7) Unk (o8) Unk 6mo PFS PR (rod) 62
60%
6mo OS
CR, PFS 307d
PL‘?;'ZCZE‘M' 2 4(3-11)° No pPCL 112 x 10° cells/kg © = VGPR, Unk
PFS 117d
Anti-BCMA CAR < SCR, PFS
T (33) 1 5 No sPCL 0.37 x 10° cells/kg = —— N/A
VGPR,
. o S
CT103A (132) | 1 4(3-6) Unk SPCL 3% 10° cells/kg S 75

“ Median follow-up listed applies to both pPCL and sPCL patients.

® Median LoT for all participants (MM and PCL), LoT for PCL patients not provided.

© Median CAR-T dose for study, including MM and PCL patients, range 5.4-25.0 x 10° cells/kg. Dose for PCL patients not provided.

BCMA, B-cell maturation antigen; CAR-T, chimeric antigen receptor T-cell; CR, complete response; d, days; Ide-cel, idecabtagene vicleucel; LoT, lines of therapy; MM, multiple myeloma; mo,
months; N/A, not available; neg, negative; NR, no response; ORR, Overall response rate; OS, overall survival; PCL, plasma cell leukemia; PES, progression-free survival; pPCL, primary plasma cell
leukemia; PR, partial response; sCR, stringent complete response; sPCL, secondary plasma cell leukemia; Unk, Unknown result or not reported; VGPR, very good partial response.
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Patients (%total) N=28

se Event Grade (100%) 2

CAR T-cell Therapy-Related Events

CRS Any 22 (79%)
3 4 (14%)
1-2 18 (64%)

ICANS Any 2 (7%)
1 2 (7%)

Hematologic Events

Neutropenia Any 19 (68%)
34 16 (57%)
1-2 2 (7%)

Anemia Any 10 (36%)
3-4 5 (18%)
1-2 3 (11%)

Thrombocytopenia Any 4 (14%)
3-4 2 (7%)
1-2 2 (7%)

Non-Hematologic Events

AL Organ-Related Events

Renal
Acute kidney injury Any 4 (14%)
2 1 (4%)
1 3 (11%)
Cardiac
Cardiac event Any 8 (29%)
Acute cardiac failure 3 3 (11%)
Cardiac disease 5 5 (18%)
Liver
Acute liver injury Any 6 (21%)
12 2 (7%)
3 4 (14%)
Infections Any 17 (61%)
Febrile neutropenia Any 6 (21%)
Pneumonia Any 4 (14%)
3 3 (11%)
Respiratory infection 1-2 5 (18%)
3 2 (7%)
BK virus hemorrhagic 3 1 (4%)
cystitis Unk 1 (4%)
CMV reactivation 5 1 (4%)
(without disease) Any 3 (11%)
H. influenzae sepsis 5 1 (4%)
SARS-CoV-2 infection 3 2 (7%)
Worsening depression Any 1 (4%)

“ A total of 28 AL amyloidosis patients treated with CAR T-cell therapy reported safety data in
published literature.

AL, AL amyloidosis; BK virus, human polyomavirus 1; CAR, chimeric antigen receptor; CRS,
cytokine release syndrome; CMV, cytomegalovirus; H. influenzae, Haemophilus influenzae;
ICANS, immune effector cell-associated neurotoxicity syndrome; MDS, myelodysplastic
syndrome; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; Unk, unknown.
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Patients (%total) N=20

Adverse Event Grade (100%) 2

CAR T-cell Therapy-Related Events

CRS Any 19 (95%)
1-2 16 (80%)
3-4 3 (15%)
5 0 (0%)
ICANS 1 4 (20%)
Infection ) Any 8 (40%)
Severe pneumonia
5 1 (5%)
Pulmonary
P Unk 1 (5%)
aspergillosis
Hematologic Events
Neutropenia Any 18 (90%)
2 1 (5%)
3 7 (35%)
Anemia Any 16 (80%)
3 8 (40%)
Thrombocytopenia Any 14 (70%)
3 1 (5%)
4 7 (35%)

Non-Hematologic Events

Nausea and Vomiting 1 4 (20%)
3 4 (20%)
GI hemorrhage 5 1 (5%)

“ A total of 20 PCL patients treated with CAR T-cell therapy reported safety data in
published literature.

CAR, chimeric antigen receptor; CRS, cytokine release syndrome; GI, gastrointestinal; ICANS,
immune effector cell-associated neurotoxicity syndrome; Unk, unknown.
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Target NK

g Study Start Cancer type Sponsor Location
antigen cell source
R/R
M.D. Andk
hematological Cord blood nderson Phase I/11 Recruiting NCT05110742  USA
3 N Cancer Center
. S0 malignancies
R/RNK and T- Notdiscosed  OC ) Phase I Nt NCTO6699771  Korea
cell malignancies Cell Corporation yet recruiting
Second Affiliated
R/R B-NHL Hospital Sehool of oy, oy Not - NCT06707259 | China
Medicine, yet recruiting
Zhejiang University
Cord blood
Second Affiliated
MR Hospttal, School of | ppzer Nt | NCTos#64s6l  Unknown
cell malignancies Medicine, yet recruiting
Zhejiang University
R/R NHL ImmunityBio Phase I Recruiting NCT06334991 = South Africa
NK-92
2024 R/RNHL ImmunityBio Phase 1 Recruiting NCT05618925 = USA
Shahid Beheshti Not
R/R ALL University of Phase /11 et recruitin NCT06631040 | Iran
Medical Sciences 24 g
The Second
Hospital of Not
B-cell malignancies Not disclosed Sphe o Farly Phase 1 | o NCT06596057 = China
Shandong yet recruiting
University
Shanghai
R/R NHL Simnova Phase T Recruiting NCT06206902  China
Biotechnology
R/R B-NHL Changhai Hospital ~ Early Phase I Unknown NCT05673447 = China
2023 Allogeneic (NS)
ALL, CLL, B- Xuzh
u .ou L Early Phase I Recruiting NCT05739227 = China
cell lymphoma Medical University
co19 Second Affiliated
R/R B-NHL Cord Blood  11ospitab Schoolof 1 py Enrolling. NCT05472558  China
Medicine, by invitation
Zhejiang University
920th Hospital of
Joint Logistics
B-cell malignancies Support Force of Phase 1/1T Unknown NCT05654038 = China
People’s Liberation
Allogeneic (Ng) | Army of China
2022
Affiliated Hospital
RRE to Academy of Phase 1 Unknown ~ NCT05645601  China
cell malignancies Military
Medical Sciences
Shanghai Simnova
R/R ALL Biotechnology Phase T Completed NCT05563545 = China
Not disclosed | 0=l
Beii
B cell malignancies eying } Phase I Unknown NCT05410041 = China
Boren Hospital
R/R Wah
hematological whan Phase T Unknown NCT04796675 = China
Tionanch Union Hospital
maignancies Cord blood
2021 R/R NHL Takeda Phase 1T Adive, 1 NeTos0a0015 | USA
Not recruiting
R/RNHL, CLL or P Active, USA,
B-ALL Allogeneic (NS) ~ Nkarta, Inc. Phase 1 Not recruiting NCT05020678 Australia
Second Affiliated
R/R B-NHL Hospital, School of - py oy Unknown NCT04887012  China
Medicine,
Zhejiang University
R/R ALL Not disclosed Zhejiang University = Phase I Unknown NCT05379647 = China
) Xingiao Hospital -
R/R B-NHL Not disclosed : Early Phase I Unknown NCT04639739 = China
of Chongging
2020
R/R B-cell
. iPSCs Fate Therapeutics | Phase I Terminated  NCT04245722  USA
lymphoma, CLL
Leukemia : . . .
N Allogeneic Timmune Biotech  Early Phase I Unknown NCT03910842 | China
2019 . .
RIRB- Allife Medical

Not disclosed Science Early Phase I Unknown NCT03690310 = Unknown

cell lymphoma and Technology

M.D. And
2017 ALL, CLL, NHL Cord blood Heemon Phase I/IT Completed NCT03056339  USA
Cancer Center

2016 Hematological NK-92 PersonGen Phase 1/11 Unknown NCT02892695  China
malignancies BioTherapeutics
RRB Allife Medical
CD19/CD22 2019 Not disclosed Science Early Phase I Unknown NCT03824964 = Unknown
cell lymphoma
and Technology
Tongji University - :
2023 R/R B-NHL Cord blood % Phase /11 Recruiting NCT05842707 = China
School of Medicine
CD19/CD70 School of
2022 R/R B-NHL Cord blood Medicine, Phase I Recruiting NCT05667155 = China
Zhejiang University
School of Not
2024 TCL, AML Cord blood Medicine, Phase I NCT06696846 ~ China

t iti
Zhejiang University yet recruiting

Renal cell i
enal cell carcinoma MLD. Anderson

CD70 2023 Mesothelioma Cord Blood Phase 1/11 Recruiting NCT05703854 = USA
Cancer Center
Osteosarcoma

R/R
M.D. And

2022 hematological Cord blood nceron Phase 1/11 Recruiting NCT05092451  USA
Cancer Center

malignancies
2024 R/R AML Allogeneic/ Shanghal Phase T Recruiting NCT06307054 = China
CLLI Autologous General Hospital
2023 AML iPSCs Zhejiang University = Phase T Recruiting NCT06027853 | China
2024 AML iPSCs Zhejiang University ~ Phase Recruiting NCT06367673 = China
Institute of
Hematology & Not
2023 R/R AML iPSC: Phase T NCT05987696 = Chi
CLLI/CD33 o Blood Diseases o yet recruiting a8
Hospital, China
. Wuxi ’
2020 AML Not disclosed . ) Early Phase I Unknown NCT05215015 = China
People’s Hospital
. Xingiao Hospital .
2021 R/R AML Not disclosed ‘ Phase [ Unknown NCT05008575 ~ China
of Chongging
CD33
P
2016 R/R AML NK-92 empnGeri Phase I/I1 Unknown NCT02944162 | China
BioTherapeutics
. o . USA
CD33/FLT3 2024 AML, MDS Allogeneic Senti Biosciences Phase T Recruiting NCT06325748 Australia
Chongging
2024 R/R AML, BPDCN Not disclosed Precision Biotech Phase I Recruiting NCT06690827 = China
Co., Ltd
) Chongging - .
CD123 2023 RR AML, BPDCN Not disclosed Precision Bistech Phase 1/11 Recruiting NCT06006403 = China
Affiliated Hospital
f
2022 R/R AML Allogeneic ;‘/’[f‘t cadesmy;o Early Phase I | Recruiting NCT05574608 = China
litary
Medical Sciences
Shahid Beheshti Not
2024 R/R MM Not disclosed University of Phase 1/11 ~ NCT06242249 = Iran
p < et recruiting
Medical Sciences
R MM Hrai
2023 R/ Allogeneic i Early Phase I | Recruiting NCT06045091 = China
PCL Biotechnology
2022 R/R MM Allogenci Shenzhen Early Phase I Unknown NCT05652530  Chi
BCMA oEmee Pregene Biopharma 0 © "
Xingiao Hospital .
R/R MM Cord blood . Early Phase I Unknown NCT05008536 = China
of Chongqing
2021
§ g Active,
MM iPSCs Fate Therapeutics Phase I " NCT05182073 = USA
Not recruiting
2019 R/R MM NK-92 Asclepius Phase 1/11 Unknown NCT03940833 = China
BCMA/ Not
2024 R MM Allg i Ren]i Hospital NA NCT06594211 hi
GPRCSD R BENE oI yet recruiting = e
H N¢
NSCLC Allogeneic enan Phase 1/11 o NCT06454890 | China
Cancer Hospital yet recruiting
2024
CRC Cord Blood MD. Anderson Phase T Recruiting NCT06358430  USA
Cancer Center
TROP2
Ovari; d M.D. Andk
varian an nderson Phase I/IT Recruiting NCT05922930  USA
pancreatic cancer Cancer Center
2023 Cord blood
M.D. And
Solid tumors nCETRon. Phase T Recruiting NCT06066424 ~ USA
Cancer Center
Pancreatic cancer Not disclosed Zhejiang University =~ Early Phase I Recruiting NCT06478459 ~ China
2024 Pancreatic cancer Not disclosed Zhejiang University =~ Early Phase I Recruiting NCT06503497 = China
Ch: hou No.2 Not
R/R MM Not disclosed angznon o Farly Phase 1 | o NCT06379451 | China
People’s Hospital yet recruiting
Hangzhou Cheetah
Ovarian cancer Not disclosed angziou Lheetal | ) Recruiting NCT05776355 = China
2023 Cell Therapeutics
R/R AML Not disclosed Zhejiang University =~ NA Recruiting NCT05734898 | China
Metastati
NKG2DL 2021 clastatic Not disclosed Zhejiang University | Phase I Recruiting NCT05213195 | China
colorectal cancer
2021 R/R AML Cord blood Hanghow Cheetah | Terminated  NCT05247957 ~ China
Cell Therapeutics
i Active,
2020 R/R AML, MDS Allogeneic Nkarta Phase I o NCT04623944  USA
Not recruiting
The Third
i Metastatic Allogeneic/ Affliated Hospital SHinowm eS| e
solid tumors Autologous of Guangzhou
Medical University
Gynecological Masonic Cancer
MICA/B 2024 ca}l,'lncers 8 iPSCs Center, University Phase I Recruiting NCT06342986 =~ USA
of Minnesota
Gastri 3 Zheji Provincial
Claudin 18.2 2024 MRS AR Cord blood clang Provincial | pyse 1 Recruiting NCT06464965 ~ China
pancreatic cancer People’s Hospital
Placental PersonGen
MUC1 2016 R solid t Phase 1/11 Unkn NCT02839954 = Chi
R/RISolid/Raios HSC-derived BioTherapeutics ey - =
Tianjin Medical
University C:
DLL3 2022 scLe Notdisclosed | "HESY T phage 1 Unknown NCT05507593  China
and Hospital
PD-L1 2021 GEJ, HNSCC NK-92 Natlonal, _ Phase I Recruiting NCT04847466  USA
Cancer Institute
R/IRB- Allife Medical

cp22 2019 Not disclosed Science Early Phase T | Unknown NCT03692767 ~ Unknown
cell lymphoma
and Technology

2019 Solid tumors Not disclosed Asclepius Phase I/ Unknown NCT03940820  China
ROBO1 2019 Malignant tumors Not disclosed Asclepius Phase /1 Unknown NCT03931720 = China
2019 Pancreatic cancer Not disclosed Asclepius Phase 1/I1 Unknown NCT03941457 = China
5T4 2021 Solid tumors Not disclosed Wi Early Phase 1 Unknown NCT05194709 = China

People’s Hospital

Shanghai General
Hospital, Shanghai

GPC3 2024 HCC Allogeneic Jiao Tong Early Phase 1 Recruiting NCT06652243 =~ China
University School
of Medicine
Epithelial Allife Medical
Mesothelin 2019 P . Not disclosed Science Early Phase I Unknown NCT03692637 = Unknown
Ovarian Cancer
and Technology
Allife Medical
PSMA 2018 mCRPC Not disclosed Science Early Phase I Unknown NCT03692663 = China
and Technology
CLDN6/ Hospital of
Advanced i .
GPC3/ 2022 lid t PBMCs Guangzhou Phase [ Recruiting NCT05410717 =~ China
MSLN/AXL FEKLmOr Medical University

Johann Wolfgang Adtive
HER2 2017 Glioblastoma NK-92 Goethe Phase 1 S NCT03383978 =~ Germany
e . Not recruiting
University Hospital

ALL, acute lymphoid leukemia; AML, acute myeloid leukemia; BPCDN, blastic plasmacytoid dendritic cell neoplasm; B-NHL, B cell non-Hodgkin lymphoma; CLL, chronic lymphocytic
leukemia; CRC, colorectal cancer; GEJ, gastroesophageal junction cancers; HNSCC, head and neck squamous cell carcinoma; mCRPC, metastatic castration-resistant prostate cancer; MDS,
myelodysplastic syndrome; MM, multiple myeloma; NA, not applicable; NHL, non-Hodgkin lymphoma; NS, not specified; NSCLC, non small cell lung cancer; R/R, relapsed or refractory; SCLC,
small cell lung cancer; TCL, T-cell lymphoma; PCL, plasma cell leukemia; HCC, hepatocellular carcinoma; HSC, hematopoietic stem cells.
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eature Solid Tumors

Types of TILs CD8+ CTLs, CD4+ T helper cells, Tregs, B cells, NK cells

Functionality Effector functions include cytotoxicity and cytokine release; often
impaired by the TME

Exhaustion High PD-1 and CTLA-4 expression linked to poor outcomes

Markers

TME Influence | Highly heterogeneous; immune suppression by Tregs and other
immune cells prevalent

Prognostic Higher TIL density is associated with better prognosis in many solid
Value tumors (e.g,, melanoma, breast cancer)

Therapeutic Adoptive cell therapy, checkpoint inhibitors (e.g., anti-PD-1) have
Approaches shown promise.

Challenges Tumor heterogeneity and immunosuppressive microenvironment

limit the effectiveness of therapies

matological Malignancies

CD4+ T cells, CD8+ T cells, B cells, regulatory T cells

Generally maintain anti-tumor immunity; can be
dysfunctionnal depending on the malignancy

PD-1 and CTLA-4 expression can also
indicate exhaustion
More uniform; micro-environment varies but generally

supports immune responses

Variable; often context-dependent based on tumor type

CAR-T cell therapy is a major focus for treatment

Resistance mechanisms can lead to treatment failure
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(39)
(41)
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Emerging

approach

Key advances

Considerations

Single-
Cell Technologies

Neoantigen
Targeting

Combination
Therapies

Biomaterial
Innovations

High-resolution profiling of individual TILs to identify

distinct subpopulations, functional states, and
cellular interactions.

Integration with spatial transcriptomics.

Allows understanding of TIL heterogeneity and
exhaustion mechanisms.

Personalized immunotherapies that target tumor-
specific antigens arising from somatic mutations.

Utilizes computational biology to identify patient-
specific neoantigens.

Next-generation sequencing and
bioinformatic prediction

Customized TIL expansion protocols

Integration of TIL-based therapies with other
treatment modalities (chemotherapy, radiotherapy,
targeted agents, immune checkpoint inhibitors)

Engincering materials (scaffolds, hydrogels,

nanoparticles) to deliver immunomodulatory agents

directly to the tumor site, modulate the TME, and
enhance TIL recruitment, expansion, and function.

Can normalize TME, deliver cytokines, or serve as
supportive niches.

Enables the identification of TILs

with enhanced cytotoxic activity
and persistence.

Can guide the development of
targeted therapies to reinvigorate
exhausted TILs.

Enhanced biomarker discovery and
patient stratification

Enhances TIL specificity and
minimizes off-target effects, leading
to more effective tumor cell killing.

Increased TIL specificity for
tumor cells

Personalized immunotherapies
tailored to individual tumor profiles

Synergistically enhances TIL
recruitment, activation, and
persistence within tumors.

Can overcome immune suppression,
resistance mechanisms and improve
overall efficacy.

Improves TIL infiltration, overcomes
physical and biochemical barriers,
and enhances localized immune
activation within the TME.

Careful analysis required to avoid inadvertently
promoting immunosuppressive subsets or
disrupting beneficial immune-

stromal interactions.

High data complexity. Need for robust
computational tools to analyze and
interpret data

Requires thorough validation to ensure
neoantigen selection drives robust and specific
anti-tumor immunity, avoiding tolerance or
immune evasion.

Accurate prediction of
immunogenic neoantigens

Rapid, patient-specific manufacturing required

Requires careful sequencing and dosing to
maximize synergistic effects while minimizing
toxicity and the potential for promoting tumor
growth or metastasis.

Precise control over biomaterial properties and
release kinetics is essential to avoid off-target
effects, excessive inflammation, or unintended
promotion of tumor progression.
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Multiorgan Toxicities Caused by Off-Target
Effects in CAR-T Cell Therapy

Skin and Mucous Membranes
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e Mucositis

Pulmonary Toxicity
e Cough

e Dyspnea
e Pulmonary Edema
e ARDS

Cardiotoxicity
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Pancreas

Pancreatic Toxicity
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B b | | . \| Gastrointestinal Toxicity
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rget antigen Trial no. Disease CAR T therapy Co-targeted Recruitment

cell source antigens status
EGER NCT01869166 EGER positive advanced solid tumors Autologous Phase 1 &2
NCT03182816 Autologous CTLA-4 and PD-1 Phase 1 &2
NCT03941626 Esophageal, hepatoma, glioma and gastric cancer Autologous NY-ESOL, DR, Phase 1 &2
and mesothelin
Her2 NCT04650451 Advanced Her2 positive solid tumors Autologous Phase 1 Discontinued due
to DLT
NCT01935843 Advanced Her2 positive solid tumors Autologous Phase 1/2
NCTO4511871 Advanced Her2 positive solid tumors Autologous Phase 1 Active, recruiting
CEA NCT06006390 CEA positive advanced solid tumors Phase 1/2 Recruiting
NCT06043466 CEA positive advanced solid tumors Phase 1 Recruiting
NCT05538195 CEA-positive advanced solid tumors Phase 1/2 Recruiting
NCT05736731 Solid tumors that express CEA and have lost HLA- Autologous Absence of HLA-A®02 | Phase 12 Recruiting
A*02 expression
NCT06126406 CEA positive advanced solid tumors Phase 1 Recruiting
Mesothelin NCT03054298 and NCT03323944 Advanced solid tumors expressing mesothelin Autologous Phase | Active, not recruiting
NCT03373097 High risk and/or relapsed/refractory neuroblastoma Autologous Phase 1 &2 Recruiting
NCT03182803 Mesothelin positive advanced solid tumors Autologous CTLA-4 & PD-1 Phase 1/2
NCT03941626% Advanced refractory solid tumors Autologous NY-ESOL, DR, Phase 1/2
and mesothelin
NCT03545815 Advanced mesothelin positive solid tumors Autologous Phase 1
NCT03030001 Advanced mesothelin positive solid tumors Autologous Phase 1/2
NCT03356795% Cervical cancer GD2, PSMA, Mucl Phase 1/2
RORI NCT05274451 Advanced lung cancer and TNBC Autologous Phase 1 Recruiting
NCT02706392 Advanced ROR 1 positive solid tumors Autologous Phase 1 Terminated due to
slow acerual
NCT03694364 Advanced hematologic and solid malignancies Autologous Phase 1 Recruiting
ROR2 NCT03960060 Recurrent or refractory solid tumors Autologous Phase 1
Claudin 18.2 NCT03874897 Advanced solid tumors; gastric cancer in phase 2 Autologous Phase 1 Recruiting
NCT05393986 Advanced solid tumors Autologous Phase 1 Recruiting
NCT05472857 Advanced CLDN 182 positive gastric cancer Autologous Phase 1 Recruiting
NCT05952375 Advanced CLDN 18.2 positive solid tumor Phase 1 Recruiting
GD2 NCT03373097% High risk and/or relapsed/refractory neuroblastoma or other Autologous Phase 1/2 Recruiting
GD2-positive solid tumors
NCTO4196413 Diffuse intrinsic pontine gliomas with H3K27M mt and spinal  Autologous Phase 1 Recruiting
e midline glioma with K27M mt
NCT02107963 Advanced GD2 positive solid tumors Autologous Phase 1 Completed
NCT01822652 Relapsed or refractory neuroblastoma Autologous Phase 1 Active, not recruiting
NCT03635632 Relapsed or refractory neuroblastoma and other GD2 Autologous Phase 1 Active, not recruiting
positive cancers.
NCT02992210 GD2 positive solid tumors Autologous Phase 1/2
NCT03356795% Cervical cancer Mesothelin, Phase 1 &2
PSMA, Mucl
MuC NCT04025216 TaMUCI-positive advanced cancers Autologous Phase 1 Terminated due to
unfavorable result
NCT03179007 MUCI positive advanced solid tumors Autologous Co expressing CTLA-1 | Phase 1 &2
and PD-1
NCT03356795¢ Cervical caner GD2, mesothelin, Phase 1 &2
and PSMA
NCT02617134 MUCI positive solid tumors Autologous Phase 1 &2
B7H3 NCT05190185 B7-H3 positive advanced solid tumors Phase 1
NCT03515185 B7-H3 positive solid tumors Autologous Phase 1 Not yet recruiting
NCT04864821 B7H3 positive advanced solid tumors Autologous Phase 1
NCT04897321 B7H3 positive solid tumors in pediatric Autologous Phase 1 Recruiting
NCT04691713 Advanced CD276+ solid tumors Autologous Phase 1 Recruiting
GPC3 NCT02032956 GPC3 positive pediatric solid tumors Autologous Phase 1 Active, not recruiting
NCT04715191 GPC3 positive pediatric solid tumors Autologous Phase 1 Not yet recruiting
NCT04377932 GPC3 positive pediatric solid tumors Autologous Phase | Recruiting
NCT05103631 GPC3-positive solid tumors Autologous Phase 1 Recruiting
Gee NCT05287165 GCC positive advanced digestive system neoplasms Phase 1 Recruiting
NCT05875402 GCC positive recurrent or refractory solid tumors N/A Recruiting
PSCA NCT02744287 and NCT04650451 Metastatic castration resistant prostate cancer Autologous Phase 172 Suspended due
to DLT
NCT03873805 Metastatic castration resistant prostate cancer Autologous Phase [ Completed
PSMA NCT04249947 Metastatic castration-resistant prostate cancer and advanced Autologous Phase 1 Active, not
salivary gland cancers yet recruiting
NCT03089203 Metastatic castration-resistant prostate cancer Autologous TGFp-resistant Phase 1 Active, not
yet recruiting
NKG2D NCTO4107142 Relapsed or refractory solid tumors Haplo/Allogeneic Phase 1
NCT05302037 Advanced solid tumors Allogeneic Phase 1 Not yet recruiting
EphA2 NCT05631886 Advanced solid tumors Autologous Phase 1 Recruiting
NCT03631899 Advanced solid tumors Autologous Phase 1 Recruiting
EpCAM NCT02915445 Advanced solid tumors Autologous Phase | Active, not
yet recruiting
cp2 NCT04556669 Advanced solid tumors Autologous Phase 1 Recruiting
cp70 NCT02830724 CD70 expressing cancers Autologous Phase 1 &2 Recruiting
Lewis Y NCTO3851146 Lewis Y expressing solid tumors Autologous Phase 1 Completed

# These trials have multiple targets.
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CAR-T Therapy: Mechanisms of Adverse Reactions

Adverse Reactions Caused by High Off-target Effects Due to Shared Long-term Adverse Reactions from
Levels of Pro-inflammatory Cytokines Antigens Multiple Mechanisms

Shared Antigen

Healthy Tissue Cells

ICANS

SHLH - . - B/T Cell Aplasia
Mlid Systemic o 1> e Secondary Malignancies’
CRS-related Organ Toxicity |
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HBIO101
(87-89)

Ide-cel,
cilta-
cel (35)

Ide-cel (90)

Cilta-
cel (90)

ARI0002h
o1

Anti-CD19
CART
b (34)

16

4 (3-10)

8 (6-11)

No

No

No

No

Staging (Organ Disease)

Cardiac n=13, 5 stage Illa/b

Stage I n=1, Stage II n=3, N/A n=4
(cardiac n=2, renal n=1, GI n=1, soft
tissue n=4)

Stage I (cardiac, renal)

Stage IV (cardiac)

Stage 11 (renal)

Stage IT renal; Stage I1la cardiac

 CAR-T cells infused per fractionated protocol on days 0, + 2, + 6 (91).

® Diagnosis of immunoglobulin M type of AL amyloidosis concurrent with marginal zone lymphoma.

CAR-T cell dose

800 x 10° cells (n=13)
(range 570 - 1050 x
10° cells)

Unk

4.46 x 10° cells/kg

0.75 x 10° cells/kg

3 x 10° cells/kg *

Unk

94%, 62%

62.5%,
NE

Responses

CR (n=12)
VGPR (n=2)
PR (n=1)
NR (n=1)
MRD neg 9/14

CR (n=3)
VGPR (n=2)
NE (n=3)

VGPR, MRD
neg.
Renal stable,
Cardiac

sCR, MRD
neg.
Cardiac
response

sCR, MRD
neg.
Renal response

VGPR
(180 days)

8.4 (4-31.5)

11 (5.6-26.4)

8.6

12

6.5

AL, AL amyloidosis; BCMA, B-cell maturation antigen; CAR-T, chimeric antigen receptor T-cell; Cilta-cel, ciltacabtagene autoleucel; CR, complete response; GI, gastrointestinal; Ide-cel,
idecabtagene vicleucel; LoT, lines of therapy; mo, months; MRD, minimal residual disease; N/A, not available; neg, negative; NE, not evaluable; NR, no response; ORR, Overall response rate; PR,
partial response; sCR, stringent complete response; Unk, Unknown result or not reported; VGPR, very good partial response.
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REAGENT

or RESOURCE

SOURCE

IDENTIFIER

Antibodies

BD

Anti-human-CD8-FITC o #345772
Biosciences
; BD
Anti-human-CD8-PE . #345773
Biosciences
Anti-human-CD4-PE el e #A07751
Coulter
#
Anti-human-CD3-FITC Beckman A07746,
Coulter RRID: AB_2801270
Beckm
Anti-human-panTCRo/ e U #B13981
Coulter
; BD
Anti-human-CD107a-PE-Cy5 L #555802, RRID: AB_396136
Biosciences
Anti-mouse-TCR-FITC Origene #CLO75F
i #3420-3-1000,
Anti-human IFN-y Mabtech RRID: AB_907282
. #3420-6-1000,
Anti-human IFN-y Mabtech RRID: AB. 907272
Anti-human-HLA-A02 ATCC #HB-54, RRID: CVCL_L672
Anti-human-CD3 (OKT3) ATCC #CRL-8001
Anti-human-panMHCI ATCC #HB-95, RRID: CVCL_7872
Anti-human-HLA-A Thermo #PA5-79366
Anti-human-PD-L1 (22C3) Agilent # M365329-2
Anti-human-PD-L1 (QR1) Diagomics # C-P001-01
#MAS5-13473,
Anti-h -CD8 Th ;
pihman ermo RRID: AB_11000353
#MA1-90346,
Anti-h -CD4 Th
Human erme RRID: AB_1954821
Anti-human-PD1 Roche #760-4895
Anti-human-CD3 Agilent #GA50361-2
CRISPR/CAS9 oligos
crRNA#4
UCAGGGUUCUG DT Integrated
GAUAUCUGUGUUUU DNA Technologies
AGAGCUAUGCU
crRNA.TRBC1/2.KNK
CAAACACAGCGA IDT Integrated
CCUCGGGUGUU DNA Technologies
UUAGAGCUAUGCU
Hs.Cas9.KRAS.1.AA:
UUGGAUAUUCUCG DT Integrated
ACACAGCGUUUUAG DNA Technologies
AGCUAUGCU
KRAS-KI_ssODN_p.Q61R:
T*A*ATTGATGGA
GAAACCTGTCTCTTAG
ATATTCTCGATACC DT Integrated
GCAGGTCGCGAG DNA Technologies
GAGTACAGTGCAATGAG
GGACCAGTACATG
AGGAC'T*G
Cell lines & primary cells
NCI-H460 (NSCLC) Dr. P. Haenel = ATCC: HTB-177
NCI-H460/HLA-A*01:01 This paper Engineered cell line
MZ-LC-16 (NSCLC) Dr. S. Horn Primary cell line
K562 cells ATCC #CRL-3344
K562/HLA-A*01:01 This paper Engineered cell line
K562/HLA-A*02:01 This paper Engineered cell line
K562/HLA-B*08:01 This paper Engineered cell line
K562/HLA-B*40:02 This paper Engineered cell line
K562/HLA-C*03:04 This paper Engineered cell line
K562/HLA-C*07:01 This paper Engineered cell line
HEK 293T cells ATCC # CRL-11268
Pri T cells fr
PBMCs from healthy donors UMC Mainz rimaty % €™ trom

blood donations

IFN-v Elispot reagents & equipment

HTS plates IPFL 0.45um Clear

Anti-TFN-y coating Ab

Anti-IFN-y detection Ab

VECTASTAIN Elite ABC Kit

AEC

PepTrack Peptide Library
Fast Track PLUS

Immunospot Analyzer S5 Versa

Merck

Mabtech

Mabtech

Vector Labs.
Sigma

JPT
Peptide
Technologies

CTL Europe

Single cell RNA-Seq reagents

#S5E]104107

#3420-3-1000,
RRID: AB_907282

#3420-6-1000,
RRID: AB_907272

#PK-6100

# A6926

Custom peptide synthesis

https://immunospot.com

Chromium Next GEM 10x #PN-1000290
Automated Single Cell 5 Kit v2 = Genomics )
Chromium Automated Single
Cell Human TCR 10x #PN-1000300
Amplification & Library Genomics
Construction Kit
Chromium Next GEM Chip K 10x
#PN-1000289
Automated Single Cell Kit Genomics
: . 10x
Chromium single cell controller X #PN-110211
Genomics
Software and algorithms
https:
CLC Genomics Workbench Qiagen i I,)S // 4 .
digitalinsights.qiagen.com
ImmunoSpot software 7.015.1 CTL Europe https://immunospot.com
Alt-R CRISPR HDR https://eu.idtfina.com/pages/
. IDT tools/alt-r-crispr-hdr-
Design Tool g
design-tool
Alt-R Custom Cas9 crRNA https://euildtdna.com/sne/
Desien Tool IDT order/designtool/
8 index/CRISPR_CUSTOM
Flow]Jo v7.6.5, FlowJo v10 BD https://www.flowjo.com
DTU http.s://
NetMHC4.0 services.healthtech.dtu.dk/
Health Tech R
services/NetMHC-4.0/
IEDB MHC I binding pred. NIAID http://tools.iedb.org/mhci/
https://
t.10: ics..
CellRanger 10xGenomics srxppor SpesR el
single-cell-gene-
expression/software
https://github.
Seurat 4.1.1 Satija Lab. P,s g
satijalab/seurat
le- g 5 -
Monodle:3 Cole https://github.com/cole

GraphPad Prism 9.3.1

Trapnell lab

GraphPad

trapnell-lab/monocle3

https://www.graphpad.com/
scientific-software/prism/
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Unique Considerations for CAR T
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kidney, Gl tract, nervous system) 3

CAR T-cell therapy can eradicate
amyloid-producing CAR T-cells

CAR T-cell therapy may pose a A CAR T-cell therapy can traffic
higher risk of organ toxicity (e.g. anywhere to eradicate
cytokine release syndrome may malignant plasma cells
lead to cardiac decompensation) -

. CAR T-cell therapy in PCL may
lead to higher grade toxicities
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