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Editorial on the Research Topic

Advancing personalized diagnosis and treatment in Parkinson’s disease:

integrating biomarkers, neuroimaging, and artificial intelligence

Introduction

Once viewed primarily as a late-onset movement disorder, Parkinson’s disease (PD) is

increasingly recognized as a multisystem syndrome with motor and non-motor symptoms

arising from diverse genetic, molecular, neurological, and environmental factors.

With the number of individuals affected more than doubled over the past three decades

(Global Burden of Disease 2021) and the dramatic growing prevalence of early-onset

forms (Li et al.), researchers and clinicians are exploring how to integrate epidemiological

insights, lifestyle determinants, and emerging biomarkers to identify PD pathophysiology

and build personalized approaches to early diagnosis and treatment.

This Research Topic, Advancing personalized diagnosis and treatment in Parkinson’s

disease: integrating biomarkers, neuroimaging, and artificial intelligence, brings together

original studies and reviews that showcase innovative methodologies and clinical insights

pointing the way toward integrated patient-specific care for PD (Table 1).

Neuroimaging and electrophysiological insights into
Parkinson’s disease

One of the biggest challenges in moving toward personalized care in PD lies in its

clinical heterogeneity. Patients differ not only in the motor symptoms they display but

also in the occurrence of non-motor symptoms, such as cognitive and mood disturbances.
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TABLE 1 Summary of the study design, hypothesis and results of the studies included in the Research Topic.

Author Study type Population Hypothesis Main results

Epidemiological

Li et al. Epidemiological

study

Global EOPD cases

aggregated from the

GBD Study 2021

The global burden of EOPD has

increased from 1990 to 2021.

Incidence, prevalence, and DALYs increased while mortality

declined; men affected more; middle-SDI regions showed

highest disability/mortality driven by population growth

highlighting regions and populations for prioritized

screening & resource allocation.

Neuroimaging electrophysiological biomarkers

Song et al. Neuroimaging

study (fMRI)

N = 3453; 2,052 PD

1,401 HCs (72 datasets).

Heterogeneous ReHo findings on

fMRI will reveal distributed

PD-associated dysfunctional

networks across sensory, motor,

and attentional systems.

FCNM identified PD network overlap with visual (49.24%),

somatomotor (32.35%), dorsal attention (44.49%), ventral

attention (67.97%) networks. ReHo-derived network

topography identifies targets for network-based biomarkers

and therapies.

Xu T. et al. Neuroimaging

study (MRI)

N = 100, 51 LPD, 49

RPD

LPD and RPD show distinct

cortical structural and network

topology, as assessed using SBM

and analyzed via SCN derived

fromMRI.

LPD had reduced cortical surface area in right

supramarginal gyrus, right precuneus, left inferior parietal

lobule, left lingual gyrus vs RPD. Precuneus cortical surface

area correlated with the MMSE in LPD. Side-of-onset MRI

features may inform lateralized prognosis and cognitive risk

determination.

Wei et al. Neuroimaging

(fMRI)

N = 87; 58 PD (29 early

PD, 29 middle-to-late

PD) and 29 HCs

There are significant changes in

brain functional network topology

in PD at different disease stages.

PD-E & PD-M both reduced clustering and nodal centrality

in temporal-occipital regions; increased centrality in default

mode & frontoparietal control networks; left middle frontal

gyrus & right temporal pole centrality correlated with motor

severity/disease stage. fMRI network markers assist in

disease staging and motor severity determination.

Zhou et al. Neuroimaging

(MRI)

N = 59; 19 DIP, 20 PD,

and 20 HC.

Hippocampal subfield atrophy

links with cognitive, depressive,

and motor symptoms in DIP vs

PD/HC.

DIP showed significant subfield atrophy vs HCs; UPDRS

patterns correlated with non-motor symptoms and

hippocampal volume. Hippocampal MRI subfields may help

distinguish DIP neurobiology and inform prognosis.

Zhao Y. et al. Neuroimaging

(EEG)

N = 76; 44 PD, 32 HCs Lower global PAF and regional

alpha PSD distinguish PPD-COG

from PD-NC.

Global PAF reduced in PD vs controls; PD-COG showed

lower alpha PSD in parieto-occipital/posterior temporal

regions correlating with MoCA; ROC identified P3/PZ/T6

alpha PSD as optimal discriminators. EEG PAF/alpha PSD

may serve as diagnostic markers for PD-related cognitive

decline.

Genetic, molecular, and cellular biomarkers

Xu H.-L. et al. Genetic

biomarker study

N = 182 PD, 74 GG

carriers, 108 GA/AA

carriers

BST1 rs4698412 A-allele predicts

faster motor progression in PD

patients carrying the A-allele

variant and GG homozygotes.

GA/AA carriers had a greater rate of UPDRS-III increase vs

GG carriers, however, no MMSE difference in cognition.

BST1 rs4698412 A-allele is a genetic prognostic marker for

motor deterioration.

He et al. Genetic

biomarker study

N = 304 total; 197 PD

and 107 age-matched

HCs

Circulating Parkin and related

biomarkers will distinguish PD

from controls.

Parkin, Hcy, total protein, and urea discriminated against

PD patients with PRKN mutations from healthy controls

(AUC= 0.841); Parkin associated strongly with PD status

(mediated by CEA & albumin). Blood Parkin and pathway

signals offer diagnostic biomarkers insights.

Chen J. et al. Neuroimaging

(MRI)/neuro-

physiology

study

N = 136; 36 PD-EDS,

100 PD-non-EDS

Elevated plasma NfL mediates the

link between cortical thinning and

EDS severity in PD.

PD-EDS showed cortical thinning (left supramarginal gyrus

and right postcentral region), weakened functional

connectivity, and higher plasma NfL that mediated left

Supramarginal Gyrus thickness. Plasma NfL is a

monitoring/predictive biomarker linking structural MRI

changes to EDS symptom severity.

Chen H. et al. Neuro-

physiological

study

N = 61; 41 drug-naïve

PD (19 PD-RBD, 22

PD-nRBD) and 20 HCs.

PD-RBD exhibits distinct serum

metabolic signatures that can

serve as diagnostic biomarkers.

PD-RBD showed CCM disruption in PPAR; distinct

metabolite panels differentiated PD subgroups from HCs.

Serum metabolite markers may be diagnostic and suggesting

targets.

Epidemiology, digital, and clinical tools

Zhao J. et al. Cross-sectional

study

N = 54,027; adults from

NHANES from 2005 to

2020.

Higher SII associates with greater

PD prevalence/risk.

SII correlated positively with PD prevalence; dose-response

present; stronger association in women, <60 y,

non-smokers, drinkers, non-obese. SII may serve as a

population-level risk/diagnostic indicator and target for

immune-modulating prevention strategies.

(Continued)

Frontiers inNeuroscience 02 frontiersin.org6

https://doi.org/10.3389/fnins.2025.1734524
https://doi.org/10.3389/fpubh.2025.1618533
https://doi.org/10.3389/fnagi.2025.1607691
https://doi.org/10.3389/fnagi.2025.1564754
https://doi.org/10.3389/fnins.2025.1627838
https://doi.org/10.3389/fnagi.2025.1566785
https://doi.org/10.3389/fnins.2025.1575815
https://doi.org/10.3389/fnagi.2025.1570347
https://doi.org/10.3389/fnagi.2025.1511272
https://doi.org/10.3389/fnagi.2025.1645290
https://doi.org/10.3389/fneur.2025.1608031
https://doi.org/10.3389/fnagi.2025.1529197
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Giani et al. 10.3389/fnins.2025.1734524

TABLE 1 (Continued)

Author Study type Population Hypothesis Main results

Zhou and Cheng Epidemiological

study

N = 18,277; Adults ≥40

years and older from

NHANES 2005–2018.

There is a relationship between

cardiovascular health score

measured byLE8 and PD.

PD prevalence 1.3% among study population. Moderate

(50–79) & high (80–100) LE8 scores had lower odds of PD vs

low (0–49); dose-response observed. Diet and glycemic

health drove inverse association. Modifiable LE8

components may reduce PD risk and guide prevention.

Wang et al. Cross-sectional

study

N = 161 40 AD-MCI

patients, 40 PD-MCI

patients; 41 PD PD-NC

patients; 40 NC

The dCDT could distinguish MCI

profiles between AD-MCI and

PD-MCI by quantifying

visuospatial and executive

function.

Significant difference in cognitive function between

AD-MCI and PD-MCI populations observed using dCDT.

Task performance score correlated with

visuospatial/executive subtest score on the MoCA scale

indicating the efficacy of the dCDT test to help differentiate

AD-MCI and PD-MCI for targeted treatment planning.

Culicetto et al. Systematic review 18 studies that described

or investigated

oculomotor function in

PD patients.

Eye-tracking technology with ML

and VR integration improves PD

diagnostic and monitoring of

cognitive and motor symptoms.

Eye-tracking metrics such as saccade velocity, fixation

duration, and pupil size are correlated with disease severity.

ML and VR-enhanced models improved diagnostic

performance making eye-tracking a reliable monitoring tool

with potential for clinical application.

Twala Systematic review 127 studies on AI

applications in PD

diagnosis and treatment.

A multimodal AI framework will

achieve high accuracy for early PD

detection and treatment-response

prediction.

AI-driven PD diagnosis has accuracy rates ranging from 78

to 96%. Experimental framework achieved 94.2% accuracy in

early-stage PD detection with a strength in identifying subtle

motor fluctuations, voice pattern recognition, and gait

analysis.

Multimodal AI can improve early diagnosis and

personalized therapy.

Interventions

Huang et al. Neuro-

physiological

study

60 SPF NIH male mice

(18–22g)

Galangin treatment will attenuate

MPTP-induced

neuroinflammation and motor

deficits via PI3K/AKT autophagy.

Galangin improved motor coordination, reduced neuronal

damage, enhanced antioxidant capacity, downregulated

Beclin-1 autophagy markers via PI3K/AKT activation.

Galangin is a preclinical candidate targeting

autophagy/PI3K-AKT for neuroprotection in PD.

Deng et al. Case report N = 1 71-year-old male

patient with advanced

PD, right-sided tremor,

left-sided rigidity and

significant dyskinesia.

Combined DBS of the GPi and

PSA is a viable treatment for

patients with asymmetric and

advanced PD.

UPDRS-III score decreased from 73 to 46 and H-Y stage

improved from stage 4 to 2.5.

Asymmetrically targeted dual-lead DBS PSA-GPi may be a

viable strategy for patients with asymmetric PD symptoms.

PD, Parkinson’s disease; DBS, Deep Brain Stimulation; GPi, Globus Pallidus internus; PSA, Posterior Subthalamic Area; UPDRS-III, Unified Parkinson’s Disease Rating Scale, Part III (motor

section); H–Y, Hoehn–Yahr staging scale; EOPD, Early-Onset Parkinson’s Disease; GBD, Global Burden of Disease; DALYs, Disability-Adjusted Life Years; SDI, Socio-demographic Index; AD-

MCI, Alzheimer’s Disease with Mild Cognitive Impairment; PD-MCI, Parkinson’s Disease with Mild Cognitive Impairment; PD-NC, Parkinson’s Disease with Normal Cognition; NC, Normal

Cognition; dCDT, digital Clock Drawing Test; MoCA, Montreal Cognitive Assessment; NHANES, National Health and Nutrition Examination Survey; LE8, Life’s Essential 8 cardiovascular

health score; ML, Machine Learning; VR, Virtual Reality; AI, Artificial Intelligence; MRI, Magnetic Resonance Imaging; DIP, Drug-Induced Parkinsonism; HC, Healthy Control; fMRI,

functional Magnetic Resonance Imaging; ReHo, Regional Homogeneity; FCNM, Functional Connectivity Network Mapping; PAF, Peak Alpha Frequency; PSD, Power Spectral Density; PD-

COG, Parkinson’s Disease with Cognitive Impairment; ROC, Receiver Operating Characteristic curve; P3/PZ/T6, standard EEG electrode positions; LPD, Left-Onset Parkinson’s Disease;

RPD, Right-Onset Parkinson’s Disease; SBM, Surface-Based Morphometry; SCN, Structural Covariance Network; MMSE, Mini-Mental State Examination; PD-E, Early Parkinson’s Disease;

PD-M, Middle-to-Late Parkinson’s Disease; RBD, REM Sleep Behavior Disorder; PD-RBD, Parkinson’s Disease with REM Sleep Behavior Disorder; PD-nRBD, Parkinson’s Disease without

REM Sleep Behavior Disorder; CCM, Central Carbon Metabolism; PPAR, Peroxisome Proliferator-Activated Receptor; BST1, Bone Marrow Stromal Cell Antigen 1; PRKN, Parkin gene; Hcy,

Homocysteine; CEA, Carcinoembryonic Antigen; SPF, Specific Pathogen-Free (mice); NIH, National Institutes of Health; MPTP, 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (a neurotoxin

used in PDmodels); PI3K/AKT, Phosphatidylinositol-3-Kinase/Protein Kinase B signaling pathway; Beclin-1, autophagy-related protein; EDS, Excessive Daytime Sleepiness; NfL, Neurofilament

Light chain; SII, Systemic Immune-Inflammation Index.

Neuroimaging approaches have been providing a deeper

understanding of the neural basis of PD and several contributions

to this Research Topic used such techniques to explore

PD heterogeneity.

Using MRI, Song et al. conducted the largest meta-analysis

to date of regional homogeneity (ReHo) alterations, combining

72 datasets from over 2,000 patients with PD and 1,400 controls.

This study revealed a distributed dysfunctional network, involving

the visual, somatomotor, dorsal and ventral attention networks,

confirming that PD pathology extends beyond dopaminergic

circuits to large-scale networks.

Another study (Xu T. et al.) investigated hemispheric

lateralization, a hallmark of asymmetric dopaminergic

degeneration associated with distinct symptom profiles (Voruz

et al., 2025). Compared to right-onset patients, left onset patients

with PD (LPD) showed reduced cortical area in the right

supramarginal gyrus, right precuneus, left inferior parietal lobule,

and left lingual gyrus. In LPD, the right precuneus area positively

correlated with MMSE cognitive scores, consistent with previous

reports (Syrimi et al., 2017; Lee et al., 2015). At the network level,

LPD patients exhibited altered topological organization, with

increased path length and reduced small-world index, indicative of

reduced efficiency.

Building on this network-level approach, another study

examined different stages of PD using resting-state fMRI and graph

theory analysis (Wei et al.). Both early- and middle-to-late-stage
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patients with PD showed reduced clustering coefficients, indicating

decreased local networks’ specialization. More advanced patients

showed an overall decline in network efficiency, both locally and

across the whole brain. Importantly, centrality within the left

middle frontal gyrus and right middle temporal pole correlated

with clinical measures of motor severity and disease stage.

Going beyond PD staging and subtyping, another critical

challenge lies in distinguishing idiopathic PD from secondary

conditions, such as drug-induced Parkinsonism (DIP). Zhou et al.

found greater reduction in bilateral whole hippocampal volume

and subfields atrophy in DIP patients compared to patients

with PD and controls, which correlated with cognitive deficits,

depressive and motor symptoms. However, DIP patients’ lower

MoCA cognitive scores may partially explain these volumetric

differences, emphasizing the need to control for baseline cognitive

functioning in future studies.

Non-invasive electrophysiological (EEG) studies

added further insights. Zhao Y. et al. showed that

cognitively impaired patients with PD displayed lower

EEG alpha (8–13 Hz) power in parieto-occipital and

posterior temporal regions compared to cognitively intact

patients, which correlated positively with MoCA score

and best differentiated PD patients with and without

cognitive impairment.

These findings align with longitudinal studies showing that

alpha slowing predicts progression to PD-dementia (Klassen et al.,

2011; Olde Dubbelink et al., 2013), reinforcing its value as a

biomarker. Importantly, advances in wearable EEG technology and

artificial intelligence nowmake it feasible to translate these markers

into home-based monitoring systems, enabling continuous and

personalized assessment of the patients’ brain activity and cognition

outside the clinic (Sigcha et al., 2023).

Overall, these contributions highlight how neuroimaging

techniques can capture several dimensions of PD heterogeneity,

from volumetric changes to network dysfunction, lateralization,

and EEG slowing. By linking structural and functional alterations

to specific symptoms, these methods move beyond simple PD

subtyping to identify patients at risk of rapid progression or

cognitive decline, guide treatments, provide tools for monitoring

disease trajectories, and enrich clinical trials with biologically

defined subgroups, thereby accelerating the translation of precision

medicine approaches into practice.

Genetic, molecular and cellular
biomarkers

Complementing neuroimaging and electrophysiological

evidence, other contributions in this Research Topic highlight

how genetic, fluid, and metabolomic biomarkers can refine

PD diagnosis, staging, and phenotyping, and how they can

be combined or mapped onto brain networks for improved

personalized care.

A single-center longitudinal study (Xu H.-L. et al.) found

that, compared to GG homozygotes, BST1 rs4698412 A-allele

carriers had faster motor, but not cognitive, decline, mainly driven

by rigidity and bradykinesia. This highlights a common PD-risk

variant as a potential progression biomarker, useful for refining

prognosis and optimizing trials for accelerated motor decline.

In the WPBLC cohort, He and colleagues found that elevated

plasma Parkin in patients with PD had moderate diagnostic

accuracy. Combining Parkin with homocysteine, total protein,

and urea improved discrimination. Parkin correlated with blood

α-synuclein oligomers and phosphorylated α-synuclein, but not

with motor severity. Mediation analyses suggested partial effects

via albumin and carcinoembryonic antigen, and transcriptomics

pointed to PINK1-PRKN mitophagy and related metabolic

pathways. Together, these data support a minimally invasive multi-

analyte blood panel for PD (He et al.).

Another study integrated plasma neurofilament light (NfL)

with cortical morphometry and connectivity and observed that

patients with PD with excessive daytime sleepiness (EDS) show

higher NfL, focal parietal thinning (left supramarginal gyrus; right

postcentral gyrus), and reduced parietal-frontal coupling. NfL

partially mediated the link between supramarginal thickness and

EDS severity. These results support combined neuroimaging and

plasma NfL biomarkers to clarify EDS mechanisms and track non-

motor progression (Chen J. et al.).

Finally, blood metabolomics identified seven molecules

distinguishing PD from controls and a distinct three-metabolite

pattern specific to PD with REM sleep behavior disorder (PD-

RBD). Pathway enrichment indicated disruption of central carbon

metabolism in PD and inactivation of PPAR signaling in PD-RBD,

supporting these metabolites as candidate (Chen H. et al.).

Epidemiology, digital, and clinical tools

Beyond neuroimaging and molecular markers, population-

based studies have also identified systemic biomarkers of PD. In

a cross-sectional analysis of NHANES 2005–2020 data, Zhao Y.

et al. found that higher systemic immune-inflammation index

(SII) values, derived from routine blood counts, were linked to

greater PD prevalence, particularly at higher SII levels. These

findings highlight PD’s multisystem nature and support immune-

inflammatory markers as useful indicators.

Similarly, Zhou and Cheng reported that cardiovascular health,

reflected by higher Life’s Essential 8 (LE8), correlated with lower PD

risk, suggesting that maintaining cardiometabolic health may help

reducing disease risk.

Digital and AI-based tools are also advancing PD diagnostics.

In a cross-sectional study, a digital clock drawing test (dCDT)

was implemented to differentiate PD patients with mild cognitive

impairment (MCI) from Alzheimer’s disease (AD) (Wang et al.).

Combined metrics separated AD-MCI from PD-MCI with high

accuracy and the overall drawing score correlated with the MoCA

visuospatial/executive subtest score, supporting dCDT’s value in

cognitive assessment.

Eye-tracking, increasingly integrated with machine learning

(ML) and virtual reality (VR), is further refining PD phenotyping.

In their systematic review, Culicetto et al. reported that oculomotor

metrics, such as saccade velocity, fixation duration, and pupil

size, correlated with disease severity, and that integrating these

metrics with ML/VR pipelines improve diagnostic accuracy and

scalability. Together, these advances position eye-tracking as a
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promising biomarker platform formotor and cognitive dysfunction

in PD, though standardization across devices and protocols remains

essential before clinical adoption.

Finally, Twala reviewed AI applications in PD diagnosis

and treatment, reporting accuracies spanning 78–96% across

modalities, with neuroimaging leading on mean accuracy and

multimodal systems offering the best generalizability. Building

on this, the study illustrates a novel multimodal AI framework

that achieves 94.2% overall accuracy and strong early-stage PD

detection and outperforms traditional clinical assessment methods

(Twala). So far, validation of this model used a simulated PD

cohort, hence real-world, multi-site studies are needed before

clinical use.

Interventions

Deeper insights into PD risk factors and progression paired

with biomarker-guided patient stratification are paving the

way for effective personalized therapies. This Research Topic

illustrates also this bench-to-bedside trajectory through two

complementary studies: a flavonoid-based neuroprotective

approach in a mouse model (Huang et al.) and a dual-target deep

brain stimulation in a patient with asymmetric motor features

(Deng et al.).

Huang et al. demonstrated that galangin mitigated MPTP-

induced dopaminergic neurodegeneration in mice, restoring

striatal dopamine levels, reducing neuroinflammatory cytokines

and α-synuclein accumulation, increasing antioxidant enzymes

and improving motor performance. Mechanistically, galangin

activated PI3K/AKT/CREB-BDNF signaling, inhibited Beclin-

1-dependent autophagy, and preserved TH-positive neurons,

indicative of its disease-modifying efficacy in preclinical models

(Huang et al.).

Taking another innovative approach, Deng et al. reported the

first documented case of combining posterior subthalamic area

(PSA) and globus pallidus internus (GPi) deep brain stimulation

(DBS) in a single PD patient with pronounced left-right asymmetry.

The PSA is a tremor-responsive target, whereas the GPi is favored

for treating rigidity and dyskinesia. A left PSA lead suppressed

right-sided tremor, and a right GPi lead treated left-sided rigidity

and dyskinesia. After six months of dual-target DBS, motor

status improved and tremor frequency decreased, while cognition

remained intact with no significant adverse effects. As a single

case with short follow-up, these findings support feasibility of

symptom specific dual-target neuromodulation for individualized

therapy, although larger controlled studies are needed to establish

effectiveness (Deng et al.).

Conclusions

As PD emerges as a multifaceted disorder extending beyond

dopaminergic degeneration, progress in care will depend on closer

integration of technology and neurobiologically informed clinical

practice. Collectively, the studies in this Research Topic show that

combining biomarkers, advanced neuroimaging, and AI-driven

analytics enables earlier diagnosis, personalized treatment, and

improvedmonitoring of disease progression, indicating an ongoing

shift toward precision care.
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Background: This study aimed to explore the association between a new

inflammatory marker, systemic immune-inflammation index (SII), and the risk

of Parkinson’s disease (PD) in adult population.

Methods: A cross-sectional design was used, participants were recruited

from the National Health and Nutrition Examination Survey (NHANES) from

2005 to 2020. Three logistic regression models were used to explore the

association between SII and the risk of PD, and subgroup analysis and sensitivity

analysis were used. In addition, the restricted cubic spline (RCS) was used

to explore the dose-response relationship between SII and PD. Receiver

operating characteristic (ROC) curves was used to explore the diagnostic

value of SII for PD.

Results: A total of 54,027 adults (mean age 35 years) were included in this study.

The results of logistic regression showed that after adjusted for all covariates,

compared with the Q1 group (lowest quartile in SII), the risk of PD in the

Q3 group (OR = 1.82, 95%CI = 1.20–2.82, p < 0.001) and the Q4 group

increased (OR = 2.49, 95%CI = 1.69–3.77, p < 0.001), with p-trend < 0.001.

After excluding individuals with any missing values, sensitivity analysis also found

a positive association between SII and PD. Subgroup analysis showed that this

association was more significant in women, younger than 60 years old, non-

smokers, alcohol drinkers, non-obese, and without a history of stroke, diabetes,

or coronary heart disease. In addition, there was a positive dose-response

relationship between SII and PD, and SII had an acceptable diagnostic value for

PD (AUC = 0.72).
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Conclusion: SII is positively correlated with the prevalence of PD in the adult

population, and SII can help differentiate between PD and non-PD cases.

KEYWORDS

systemic immune-inflammation index, Parkinson’s disease, inflammation,
cross-sectional, risk factor

Introduction

Parkinson’s disease (PD) is a rapidly growing
neurodegenerative disease (Dorsey et al., 2018). According to
the latest international diagnostic criteria, PD is diagnosed by the
presence of bradykinesia together with rigidity or tremor, along
with supporting features (Bloem et al., 2021; Kobylecki, 2020).
PD is considered the second most common neurodegenerative
disease after Alzheimer’s disease (Ascherio and Schwarzschild,
2016). In developed countries, the median age-standardized annual
incidence is 14 per 100,000 people in the total population and 160
per 100,000 people in people aged 65 years or older (Ascherio and
Schwarzschild, 2016). It is generally believed that the age of onset
of PD is mainly 60 years old (de Lau and Breteler, 2006), but several
studies found that early-onset PD can appear before the age of 40,
indicating that PD can occur at different ages (Gershanik, 2003;
Riboldi et al., 2022; Schrag and Schott, 2006).

Among the exogenous factors known to influence the risk of
Parkinson’s disease, such as exposure to pesticides (Brouwer et al.,
2017), consumption of dairy products (Hughes et al., 2017), a
history of melanoma (Gao et al., 2009), and traumatic brain injury
(Lee et al., 2012), while a decreased risk is associated with smoking
(Rose et al., 2024), caffeine consumption (Ross et al., 2000), elevated
serum urate concentrations (Shen et al., 2013), physical activity
(Fang et al., 2018), and use of ibuprofen (Gao et al., 2011) and
other common medications (Ascherio and Schwarzschild, 2016),
although these studies didn’t consider genetic factors (Trinh and
Farrer, 2013), which is also associated with risk of PD. However,
the pathogenesis of PD remains unclear. A large number of
experimental and postmortem studies (Gate, 2022) have shown that
inflammation plays an important role in the pathogenesis of PD.
A study by Chen et al. (Chen et al., 2007) found that men with high
plasma interleukin-6 concentrations had an increased risk of PD.
Some case-control studies have found that IL-6, TNF-a, IL-1β, ST
NFR 1, CRP, CCL 2, CX 3 CL 1, and CX CL 12 are elevated in the
PD group (Qin et al., 2016; Qiu et al., 2019; Qu et al., 2023).

Systemic immune-inflammation index (SII) is a new type of
systemic inflammation evaluation index that can objectively reflect
the balance between host inflammatory and immune response
status (Hu et al., 2014; Xu et al., 2024). An elevated SII usually
suggests an elevated inflammatory status and weak immune
response in patients (Hu et al., 2014). The calculation formula
is the product of the platelet to neutrophil to lymphocyte ratio
(Hu et al., 2014). SII has been found to be closely associated with
the occurrence and prognosis of diseases in the elderly. A study
by Tian et al. (2022) suggested that SII was associated with the
prognosis of elderly patients with digestive system tumors. In terms
of neurological diseases, Xu et al. (2024) conducted a study on

102 traumatic brain injuries (TBI) and found that the SII index
increased in the early stages of TBI and was an independent risk
factor for predicting poor prognosis in patients. Bao et al. (2023)
found that SII was associated with cognitive impairment after acute
ischemic cerebral infarction. Algul and Kaplan (2024) found that
SII was associated with the severity of dementia in patients with
Alzheimer’s disease. It is worth noting that SII was found to be
negatively correlated with the motor performance of PD patients
(Li et al., 2021). However, no study has yet explored the relationship
between SII and the risk of PD in a large population sample.

To fill the gap of current studies, our study aims to explore
the association between SII and the risk of PD in adults using
data from a nationally representative cross-sectional survey, and
further explore the diagnostic value of SII for the risk of PD. We
hypothesize that individuals with higher SII are more likely to
have a risk of PD and that SII can distinguish PD from non-PD
in the population.

Materials and methods

Research design and research subjects

NHANES was constructed by the Centers for Disease Control
and Prevention of the United States. The survey year is from 1999
to the present. The survey cycle is every 2 years. The sample
size of each year is about 5000. The samples come from all over
the country. NHANES includes demographic data, questionnaire
data, dietary data, examination data and laboratory data. This
study was approved by the National Cancer Institute and reviewed
by the Health Statistics Research Ethics Review Committee. All
participants signed informed consent. The research design and
related data of NHANES can be downloaded at https://www.cdc.
gov/nchs/nhanes/. The inclusion criteria of this study are as follows:
(1) adults over 20 years old; (2) with prescription drug use data in
the past 30 days; (3) with complete laboratory test data: platelet,
neutrophil and lymphocyte data. After excluding all samples that
did not meet the inclusion criteria, a total of 54,027 people were
included in this study. The specific data flow chart is shown in
Figure 1.

Definition of PD

PD was defined based on the information provided by the
subjects on prescription drug use in the past 30 days. Subjects were
defined as having PD if they reported taking medication used to
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FIGURE 1

Flowchart of the participant selection from NHANES 2005–2020. NHANES, National Health and Nutrition Examination Survey; SII, systemic
immune-inflammation index.

treat PD, including carbidopa, levodopa, methyldopa, benztropine,
ropinirole, entacapone, and amantadine (Liu et al., 2023). With this
definition, NHANES 2005-2020 reported 211 (1.06%) cases of PD
in participants aged 45 and older, and 131 (1.27%) in participants
aged 60 or older, whereas previous studies reported figures ranging
from 0.47 to 0.77% of people with PD aged 45 and older in North
America in 2012 (Willis et al., 2022), and 1% of people aged 65
or older with PD in industrialized countries in 2006 (de Lau and
Breteler, 2006).

Definition of systemic
immune-inflammation index

Based on previous study (Hu et al., 2014), we calculated SII
using the following formula:

SII =
Platelet count × neutrophil count

lymphocyte count

Platelet, neutrophil, and lymphocyte counts were derived from
the CBC laboratory data of NHANES. The method used to derive
CBC parameters was based on the Beckman Coulter counting
and quantification method, combined with an automatic dilution
and mixing device for sample processing, and a single-beam
photometer for hemoglobin determination. WBC differentials
used VCS technology (Volume, Conductivity, Scatter). For
detailed detection procedures, please refer to the NHANES
Laboratory/Medical Technician Procedure Manual (LPM)
(CDC, 2020).

Assessment of covariates

We included the following covariates: age (<60 years, ≥60
years), gender (male, female), race (Mexican American, other
Hispanic, non-Hispanic white, non-Hispanic black, other race-
including multi-racial), education (less than high school, high
school or equivalent, college or above), marital status (married,
widowed, divorced, separated, never married, living with partner),
alcohol use (never, past drinker, current drinker), smoking (yes,
no), BMI (<18.5, 18.5–24.9, 25.0–29.9, ≥ 30.0), sleep disorders
(yes, no), hypertension (yes, no), diabetes (yes, no), coronary
heart disease (yes, no), stroke (yes, no). Previous disease diagnosis
information was based on self-reported information.

Statistical methods

Since the NHANES database uses a complex, multi-stage
sampling method for investigation, this study used 2-year MEC
exam weights (WTMEC2YR)1 to perform weighted analysis of
relevant indicators. First, we calculated the SII quartiles (first
quartile = 296.47, median = 429.00, third quartile = 620.00) based
on the SII levels of all participants and divided them into four
groups according to these quartiles (see the distribution of SII
levels in Supplementary Figure S1). Next, descriptive statistics
were performed on the overall population and each group of

1 https://wwwn.cdc.gov/nchs/nhanes/tutorials/weighting.aspx
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participants. Continuous variables were described by mean and
standard deviation, and categorical variables were described by
frequency and percentage. The chi-square test was used to compare
categorical variables between groups, and analysis of variance was
used to compare continuous variables. Second, we used three
logistic regression models to explore the relationship between SII
levels and the risk of PD in the population. Model 1 (Crude model)
did not adjust for covariates. Model 2 adjusted for age, gender, race,
education level, marital status. Model 3 further adjusted for alcohol
use, smoking-cigarette use, BMI, sleep disorders, hypertension,
diabetes, coronary heart disease, and stroke based on Model 2. Next,
we used subgroup analysis to explore the relationship between SII
levels and the risk of PD in different populations. One model was
fitted per covariate and adjusted for the other covariates, then we fit
another adjusted model for each covariate with an interaction term
between the covariate and the SII levels to study interaction effect.
In addition, we excluded all individuals with missing values and
performed sensitivity analysis to verify the robustness of our results.
Finally, we used the restricted cubic spline (RCS) after adjusted
for age, gender, race, education level, marital status, alcohol
use, smoking-cigarette use, BMI, sleep disorders, hypertension,
diabetes, coronary heart disease, and stroke to explore the dose-
response relationship between SII levels and the risk of PD, we
fit three models with three, four, five knots and the model with
the lowest AIC was selected in our study (Frank and Harrell,
2015). Further, we used the Receiver operating characteristic (ROC)
curves to detect the diagnostic value of SII on the risk of PD.
All statistical analyses were performed using R (version 4.4.1). R
package “rms” (version 6.9-0) was used to conduct RCS analysis.
We used a two-sided test, p < 0.05 was considered statistically
significant. For all models, the associations were reported with
adjusted odds ratios (ORs), 95% confidence intervals (CIs), and
p-values.

Results

General characteristics of the study
population

A total of 54,027 people were included in this study, of which
49.5% were male, 50.5% were female, 78.7% were under 60 years
old, 21.3% were 60 years old and above, the average age was 35 years
old (SD, 24.1; Range, 20–85), 37.6% were non-Hispanic white, and
23.4% were non-Hispanic black. The number of patients diagnosed
with PD was 260 (0.5%). We found that there were significant
differences in the prevalence of PD among different SII level groups
(p < 0.001). The distribution of SII was shown in Supplementary
Figure S1. In addition, we found statistically significant group
differences in age, race, marital status, BMI, alcohol consumption,
sleep disorders, hypertension, diabetes, coronary heart disease, and
stroke (all p < 0.001) (Table 1).

Associations between SII and PD

When SII was used as a numerical variable, without adjusting
for any covariates, the higher the level of SII, the higher the

risk of PD (OR = 1.02, 95%CI = 1.05–1.21, p = 0.003). After
adjusting for age, gender, race, education level, and marital status,
SII was positively correlated with the risk of PD (OR = 1.07,
95%CI = 1.02–1.14, p = 0.002). After further adjusting for alcohol
use, smoking-cigarette use, BMI, sleep disorders, hypertension,
diabetes, coronary heart disease and stroke, the relationship
between SII and PD still held (OR = 1.07, 95%CI = 1.02–1.14,
p = 0.006). When SII was treated as a categorical variable, in the
three logistic regression models, compared with the SII level of
first quartile (Q1), in model 1, the risk of PD in the Q2 group was
significantly increased (OR = 1.66, 95%CI = 1.08–2.60, p = 0.024),
which is also significant in Q3 (OR = 2.16, 95%CI = 1.43–3.33,
p < 0.001) and Q4 group (OR = 3.33, 95% CI = 2.27–5.03,
p < 0.001); In model 2, the risk of PD increased in group Q3
(OR = 1.67, 95%CI = 1.10–2.58, p = 0.018) and Q4 (OR = 2.29,
95%CI = 1.55–3.47, p < 0.001). In model 3, the risk of PD in
group Q3 (OR = 1.82, 95%CI = 1.20–2.82, p < 0.001) and group
Q4 (OR = 2.49, 95%CI = 1.69–3.77, p < 0.001) was increased,
and the three models showed significant trends of increasing risk
of PD with increasing SII levels (all p-trend < 0.001) (Table 2).
Detailed summaries of multivariate logistic regressions were shown
in Supplementary Table S2.

Subgroup analysis and sensitivity analysis

The results of subgroup analysis showed that, compared with
Q1, the association between high level SII (Q4) and increased
risk of PD was more likely to be found in female (OR = 3.40,
95%CI = 1.91–6.50, p < 0.001), younger than 60 years old
(OR = 3.67, 95%CI = 1.99–7.31, p < 0.001), non-Hispanic white
(OR = 3.04, 95%CI = 1.71–5.90, p < 0.001), high school education
or above (OR = 5.98, 95%CI = 2.89–14.5, p < 0.001), not currently
smoking (OR = 3.94, 95%CI = 2.20–7.70, p < 0.001), alcohol
drinker (OR = 3.20, 95%CI = 1.86–5.87, p < 0.001), non-obese
(OR = 3.38, 95%CI = 1.97–6.12, p < 0.001), without a history of
stroke (OR = 2.56, 95%CI = 1.70–3.96, p < 0.001), without a history
of diabetes (OR = 3.31, 95% CI = 2.08–5.51, p < 0.001), and without
a history of coronary heart disease (OR = 2.63 95%CI = 1.75–
4.07, p < 0.001) (Table 3). We conducted a sensitivity analysis for
missing values. After excluding subjects with missing values in any
covariate, compared with the low-level SII group, the high-level SII
group still had a higher risk of PD (Table 4).

Dose-response relationship between SII
and PD

Four knots were selected in our study, details of model
fit were shown in Supplementary Table S3. The RCS curve
results showed that after adjusting for age, gender, race,
education level, marital status, alcohol drinking, smoking-
cigarette use, BMI, sleep disorders, hypertension, diabetes,
coronary heart disease and stroke, the higher the level of
SII, the higher the risk of PD, a non-linear relationship
was found (p overall < 0.001, p for non-linearity < 0.001),
and SII > 426.13 indicated a steep increased risk of
PD (Figure 2).
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TABLE 1 Characteristics of study participants from NHANES 2005–2020a.

Variables Total
n = 54027

SII p-value

Q1(1.52–
296.47)

n = 13507

Q2(296.47–
429.00)

n = 13509

Q3(429.00–
620.00)
n = 13514

Q4(620.00–
28397.27)
n = 13497

Weighted sample size 237,198,970 47,270,359 60,053,262 64,244,680 65,630,669

Age (years), mean (SD) 35.08 (24.10) 27.50 (24.46) 34.23 (23.54) 37.79 (23.14) 40.82 (23.17) < 0.001

Age distribution (years), n
(%)

< 0.001

<60 42,493 (78.7) 11,333 (83.9) 1,0806 (80.0) 10,410 (77.0) 9,944 (73.7)

≥ 60 11,534 (21.3) 2,174 (16.1) 2,703 (20.0) 3,104 (23.0) 3,553 (26.3)

Gender (%) 0.509

Male 26,766 (49.5) 7,372 (54.6) 7,010 (51.9) 6,494 (48.1) 5,890 (43.6)

Female 27,261 (50.5) 6,135 (45.4) 6,499 (48.1) 7,020 (51.9) 7,607 (56.4)

Race, n (%) < 0.001

Mexican American 10,070 (18.6) 2,190 (16.2) 2,559 (18.9) 2,687 (19.9) 2,634 (19.5)

Other Hispanic 5,110 (9.5) 1,176 (8.7) 1,352 (10.0) 1,329 (9.8) 1,253 (9.3)

Non-Hispanic White 20,293 (37.6) 3,806 (28.2) 4,920 (36.4) 5,489 (40.6) 6,078 (45.0)

Non-Hispanic Black 12,662 (23.4) 4,773 (35.3) 3,083 (22.8) 2,555 (18.9) 2,251 (16.7)

Other Race - Including
Multi-Racial

5,892 (10.9) 1,562 (11.6) 1,595 (11.8) 1,454 (10.8) 1,281 (9.5)

Education level, n (%) 0.353

Less than high school 8,362 (24.5) 1,547 (24.7) 2,072 (24.9) 2,258 (24.2) 2,485 (24.5)

High school or equivalent 7,910 (23.2) 1,460 (23.3) 1,839 (22.1) 2,159 (23.1) 2,452 (24.2)

College or above 17,793 (52.2) 3,267 (52.1) 4,405 (53.0) 4,926 (52.7) 5,195 (51.3)

Marital status, n (%) < 0.001

Married 18,279 (51.4) 3,303 (50.4) 4,623 (53.4) 5,058 (51.8) 5,295 (49.9)

Widowed 4,029 (11.3) 734 (11.2) 890 (10.3) 1,100 (11.3) 1,305 (12.3)

Divorced 4,341 (12.2) 816 (12.4) 1,024 (11.8) 1,168 (12.0) 1,333 (12.6)

Separated 868 (2.4) 136 (2.1) 204 (2.4) 245 (2.5) 283 (2.7)

Never married 6,021 (16.9) 1,186 (18.1) 1,401 (16.2) 1,616 (16.6) 1,818 (17.1)

Living with partner 2,041 (5.7) 385 (5.9) 514 (5.9) 571 (5.9) 571 (5.4)

Ratio of family income to
poverty, n (%)

0.101

≤ 1.00 13,101 (26.5) 3,609 (29.2) 3,180 (25.7) 3,182 (25.7) 3,130 (25.4)

1.01–3.00 20,317 (41.1) 5,081 (41.1) 5,003 (40.4) 4,934 (39.9) 5,299 (43.0)

> 3.00 16,014 (32.4) 3,680 (29.7) 4,190 (33.9) 4,243 (34.3) 3,901 (31.6)

BMI (kg/m2), mean (SD) 26.24 (7.82) 23.61 (7.25) 25.76 (7.37) 27.13 (7.58) 28.30 (8.25) < 0.001

BMI (kg/m2), n (%) < 0.001

<18.5 8,884 (17.1) 3,870 (31.2) 2,315 (17.6) 1,520 (11.5) 1179 (9.0)

18.5–24.9 15,575 (30.0) 3,768 (30.3) 4,120 (31.4) 4,030 (30.5) 3,657 (27.9)

25.0–29.9 12,958 (25.0) 2,486 (20.0) 3,336 (25.4) 3,558 (27.0) 3,578 (27.3)

≥ 30.0 14,429 (27.8) 2,295 (18.5) 3,362 (25.6) 4,084 (31.0) 4,688 (35.8)

Alcohol use, n (%) < 0.001

Never 7,798 (28.0) 1,482 (28.7) 1,891 (27.3) 2,021 (26.4) 2,404 (29.4)

Past drinker 1,9575 (70.2) 3,598 (69.8) 4,892 (70.7) 5,490 (71.7) 5,595 (68.5)

(Continued)

Frontiers in Aging Neuroscience 05 frontiersin.org15

https://doi.org/10.3389/fnagi.2025.1529197
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1529197 February 4, 2025 Time: 17:20 # 6

Zhao et al. 10.3389/fnagi.2025.1529197

TABLE 1 (Continued)

Variables Total
n = 54027

SII p-value

Q1(1.52–
296.47)

n = 13507

Q2(296.47–
429.00)

n = 13509

Q3(429.00–
620.00)
n = 13514

Q4(620.00–
28397.27)
n = 13497

Current drinker 520 (1.9) 77 (1.5) 133 (1.9) 144 (1.9) 166 (2.0)

Smoking—cigarette use, n (%) 7,047 (46.0) 1,242 (46.4) 1,571 (44.2) 1,945 (46.1) 2,289 (47.0) 0.586

Sleep disorders, n (%) 4,684 (12.3) 861 (12.0) 1,111 (11.8) 1,263 (12.1) 1,449 (12.9) < 0.001

Hypertension, n (%)b 1,2475 (32.6) 2,246 (31.3) 2,856 (30.4) 3,389 (32.5) 3,389 (32.5) < 0.001

Diabetes, n (%)c 4,462 (8.4) 768 (5.8) 1,072 (8.1) 1,146 (8.6) 1,476 (11.2) < 0.001

Coronary heart disease, n (%) 1,394 (4.1) 241 (3.8) 307 (3.7) 386 (4.1) 460 (4.6) < 0.001

Stroke, n (%) 1,407 (4.1) 238 (3.8) 273 (3.3) 362 (3.9) 534 (5.3) < 0.001

Parkinson’s disease, n (%) 260 (0.5) 32 (0.2) 53 (0.4) 69 (0.5) 106 (0.8) < 0.001

SII, systemic immune-inflammation index; BMI, body mass index; NHANES, National Health and Nutrition Examination Survey. aAll estimates accounted for sample weights and complex
survey designs, and percentages and means were adjusted for survey weights of NHANES. bHypertension was defined based on self-reported information. cDiabetes was defined as self-reported
diabetes (participants who answered “yes” to the question “Has a doctor told you that you have diabetes?”).

TABLE 2 Associations between SII levels and the risks of Parkinson’s diseasesa.

SII Model1 Model 2 Model 3

OR 95% CI p-
value

OR 95% CI p-
value

OR 95% CI p-value

As continuous (per SD) 1.12 (1.05,
1.21)

0.003 1.07 (1.02,1.14) 0.002 1.07 (1.02,1.14) 0.006

InterquartileQuartile
1(1.52–296.47)

Ref. Ref. Ref.

Quartile 2(296.47–429.00) 1.66 (1.08,
2.60)

0.024 1.42 (0.92,
2.23)

0.117 1.53 (0.98,
2.40)

0.059

Quartile 3(429.00–620.00) 2.16 (1.43,
3.33)

< 0.001 1.67 (1.10,
2.58)

0.018 1.82 (1.20,
2.82)

< 0.001

Quartile 4(620.00–28397.27) 3.33 (2.27,
5.03)

< 0.001 2.29 (1.55,
3.47)

< 0.001 2.49 (1.69,
3.77)

< 0.001

p-trend < 0.001 <0.001 < 0.001

SII, systemic immune-inflammation index; NHANES, National Health and Nutrition Examination Survey. OR, odds ratio; CI, confidence interval. a The associations between SII levels and
the risks of Parkinson’s disease are presented as ORs (95% CI). Model 1 did not adjust for any covariates. Model 2 adjusted for age (years), gender, race, education level, marital status. Model 3
further adjusted for alcohol use, smoking—cigarette use, body mass index, sleep disorders, hypertension, diabetes, coronary heart disease and stroke based on Model 2.

The diagnostic value of SII for PD

The ROC curve results showed that the level of SII can
distinguish PD from non-PD in the population (AUC = 0.72, 95%
CI: 0.69–0.75) (Figure 3). In addition, the accuracy of the model was
0.76, the sensitivity was 0.79, the specificity was 0.71, and Youden
index was 0.50.

Discussion

Our study is the first to examine the relationship between
SII levels and risk of PD in a large, nationally representative
cross-sectional adult population sample. We found that the higher
the SII level, the higher the risk of adult PD, and this trend is
very significant, especially among women, younger than 60 years
old, non-Hispanic white, high school education or above, not
currently smoking, alcohol drinker, non-obese, without a history of

stroke, diabetes, or coronary heart disease. In addition, we found
a positive dose-response relationship between SII levels and the
risk of PD, and SII levels can distinguish PD from non-PD in
adult population.

The relationship between SII and the risk of PD has not been
studied, but a large number of previous studies have shown that
peripheral blood inflammatory markers play an important role in
the occurrence and development of PD. The results of a case-
control study on early PD by Kim et al. (2018) showed that the levels
of IL-1β, IL-2 and IL-6 in the PD group were significantly higher
than those in the control group, and IL-10 was associated with
patients’ non-motor symptoms. Studies have shown that chronic
proinflammatory states already exist in the prodromal stage of PD,
such as iRBD (Lindestam Arlehamn et al., 2020; Stokholm et al.,
2017; Sulzer et al., 2017). A study by Chen et al. (2007) showed
that men with high plasma IL-6 levels have an increased risk of PD,
but the sample size was small and there was a lack of discussion
of other inflammatory biomarkers. A meta-analysis showed that
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TABLE 3 Subgroup analysis of associations between SII levels and the risks of Parkinson’s diseasesa.

ORs (95% CI) p for
interaction

Variable Q1 Q2 Q3 Q4

Gender

Male Ref. 1.28 (0.70, 12.37) 1.66 (0.94, 3.00) 2.08 (1.22, 3.68)∗ 0.026

Female 1.93 (1.01, 3.87)∗ 2.25 (1.22, 4.44)∗ 3.40 (1.91, 6.50)∗∗∗

Age (years)

< 60 Ref. 1.98 (1.01, 4.12)∗ 2.38 (1.24, 4.87)∗ 3.67 (1.99, 7.31)∗∗∗ 0.001

≥ 60 1.20 (0.67, 2.15) 1.43 (0.84, 2.50) 1.78 (1.09, 3.05)∗

Race 0.034

Non-Hispanic White Ref. 1.82 (0.95, 3.70) 1.91 (1.03, 3.82) 3.04 (1.71, 5.90)∗∗∗

Other race 1.20 (0.64, 2.22) 1.58 (0.88, 2.86) 1.20 (0.64, 2.24)

Education level

High school and below Ref. 0.85 (0.48, 1.50) 1.01 (0.59, 1.14) 1.49 (0.92, 2.47) 0.076

Above high school 3.98 (1.84, 9.91)∗∗ 4.72 (2.23, 11.6)∗∗∗ 5.98 (2.89, 14.5)∗∗∗

Smoking—cigarette use

Every day or some day Ref. 1.14 (0.61, 2.11) 1.30 (0.73, 2.35) 1.54 (0.90, 2.71) 0.161

Not at all 2.19 (1.15, 4.45)∗ 2.67 (1.44, 5.33)∗∗ 3.94 (2.20, 7.70)∗∗∗

Alcohol use

Yes Ref. 1.75 (0.94, 3.35) 2.14 (1.20, 4.03)∗ 3.20 (1.86, 5.87)∗∗∗ 0.001

No 1.33 (0.71, 2.53) 1.53 (0.84, 2.86) 1.88 (1.08, 3.41)∗

BMI (kg/m2)

Normal ( < 25) Ref. 1.80 (0.97, 3.43) 2.42 (1.37, 4.49)∗∗ 3.38 (1.97, 6.12)∗∗∗ 0.519

Overweight/Obese (≥25) 1.19 (0.64, 2.27) 1.20 (0.66, 2.25) 1.55 (0.89, 2.83)

Hypertension

Yes Ref. 1.45 (0.83, 2.59) 1.40 (0.81, 2.46) 2.08 (1.28, 3.55)∗∗ < 0.001

No 1.61 (0.79, 3.40) 2.52 (1.32, 5.12)∗∗ 3.14 (1.69, 6.27)∗∗∗

Diabetes

Yes Ref. 0.81 (0.35, 1.89) 0.98 (0.45, 2.21) 0.94 (0.46, 2.60) 0.486

No 1.87 (1.12, 3.24)∗ 2.21 (1.35, 3.75)∗∗ 3.31 (2.08, 5.51)∗∗∗

Stroke

Yes Ref. 1.77 (0.42, 8.76) 2.43 (0.72, 1.10) 2.05 (0.63, 9.15) 0.763

No 1.51 (0.95, 2.42) 1.74 (1.12, 2.77)∗ 2.56 (1.70, 3.96)∗∗∗

Coronary heart disease

Yes Ref. 1.87 (0.49, 8.95) 0.92 (0.21, 4.60) 1.39 (0.39, 6.42) 0.728

No 1.49 (0.94, 2.41) 1.93 (1.25, 3.05)∗∗ 2.63 (1.75, 4.07)∗∗∗

SII, systemic immune-inflammation index; OR, odds ratio; CI, confidence interval. aThe associations between SII levels and the risks of Parkinson’s disease are presented as ORs (95% CI).
Model adjusted for age (years), gender, race, education level, marital status, alcohol use, smoking—cigarette use, body mass index, sleep disorders, hypertension, diabetes, coronary heart
disease and stroke. *p-value < 0.05, **p-value < 0.01, and ***p-value < 0.001.

PD patients had higher levels of IL-6, tumor necrosis factor-α,
IL-1β, IL-2, IL-10, C-reactive protein and RANTES in peripheral
blood, which further strengthened the clinical evidence that PD
patients have peripheral inflammatory responses (Qin et al., 2016).
Moreover, a case-control study by Pedersen et al. (2023) found nine
CSF inflammatory markers associated with PD (increased levels
of CD5, CDCP1, IL-18R1, and IL-6 and decreased levels of ADA,
CCL23, CD8A, FGF-19, and MCP-2).

On the basis of the above studies, our study further explored
the relationship between SII, a new systemic inflammatory response
index based on peripheral blood inflammatory cells, and the risk
of PD. The calculation of SII is based on the counts of platelets,
neutrophils and lymphocytes, that is, the product of platelets and
the ratio of neutrophils and lymphocytes (Hu et al., 2014). These
peripheral blood inflammatory markers are associated with the
risk of PD. Platelets originate from megakaryocytes in the bone
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TABLE 4 Associations between SII levels and the risks of Parkinson’s diseases among participants without missing valuesa.

SII Model1 Model 2 Model 3

OR 95% CI p-
value

OR 95% CI p-
value

OR 95% CI p-value

As continuous (per SD) 1.01 (1.01,1.01) 0.001 1.01 (1.01,1.01) 0.011 1.01 (1.01,1.01) 0.011

InterquartileQuartile
1(1.52—296.47)

Ref. Ref. Ref.

Quartile 2(296.47—429.00) 1.33 (0.56,
3.27)

0.513 1.19 (0.50,
2.94)

0.689 1.35 (0.56,
3.32)

0.500

Quartile 3(429.00–620.00) 1.34 (0.56,
3.28)

0.513 1.13 (0.47,
2.79)

0.785 1.34 (0.56,
3.31)

0.505

Quartile 4(620.00–28397.27) 2.91 (1.41,
6.58)

0.005 2.35 (1.13,
5.36)

0.029 2.70 (1.30,
6.13)

0.011

p-trend 0.002 0.018 0.006

SII, systemic immune-inflammation index; OR, odds ratio; CI, confidence interval. aThe associations between SII levels and the risks of Parkinson’s disease are presented as ORs (95% CI).
Model 1 did not adjust for any covariates. Model 2 adjusted for age (years), gender, race, education level, marital status. Model 3 further adjusted for alcohol use, smoking—cigarette use, body
mass index, sleep disorders, hypertension, diabetes, coronary heart disease, and stroke based on Model 2.

FIGURE 2

Dose-response relationship between systemic immune-inflammation index and Parkinson’s disease.

marrow and are defined as very small anucleated cell fragments
with a diameter of 2-4 µm, which are involved in thrombosis
(Beura et al., 2022). Platelet dysfunction is believed to be related to
endothelial cell damage, and platelets can express neuron-specific
molecules and receptors; it also expresses several PD-specific
biomarkers, such as α-synuclein, parkin, PTEN-induced kinase
1, tyrosine hydroxylase, and dopamine transporter (Beura et al.,
2022). Therefore, platelets are often used to build peripheral models
of PD, and antiplatelet drugs are considered to have potential
therapeutic value for PD.

Neutrophils are immune cells with unique biological
characteristics and strong antimicrobial properties (Burn et al.,
2021). These cells phagocytose and subsequently kill prokaryotes

and eukaryotes very effectively. The neutrophil-to-lymphocyte
ratio (NLR) is a complete blood count (CBC)-based biomarker that
reflects the balance between immunity and systemic inflammation
(Hosseini et al., 2023). Studies have found that NLR in the plasma
of PD patients is significantly higher than that of HC (Li et al.,
2024; Munoz-Delgado et al., 2021). The results also highlighted
the correlation between plasma NLR and the total UPDRS score
and UPDRS I-III score in PD patients (Li et al., 2024), indicating
that NLR is associated with the severity of symptoms in PD
patients. Neutrophils are able to penetrate the epithelial and
vascular wall cell layers and promote the body’s inflammatory
response by regulating chemokines (Ley et al., 2018). An animal
experiment by Jensen et al. (2021) found that T cell infiltration
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FIGURE 3

The diagnostic value of systemic immune-inflammation index for Parkinson’s disease risk. AUC, Area Under the Curve.

was detected in the hippocampus, neocortex, striatal perivascular
area, and parenchyma of PD mice, and lower lymphocyte counts
were associated with a greater risk of PD. In addition, the study
by Dommershuijsen et al. (2022) found that the higher the
lymphocyte count, the lower the likelihood of developing PD.
Some studies have shown that NLR is higher in PD patients
(Munoz-Delgado et al., 2021).

In addition, this study also found that the relationship between
SII and the risk of PD has certain heterogeneity in different
subgroups of people, which may be related to the differences
in the risk of PD in different groups. Gender is considered an
important risk factor for PD, with men having a higher incidence
of PD than women, and a large number of studies have shown
that there are also differences in symptoms, development, and
response to treatment between male and female PD patients
(Collaborators, 2019; Hirsch et al., 2016). Although sex differences
in the association of SII with PD have not been studied, one
longitudinal study showed (Cheng et al., 2024) that the impact
of SII on mortality in male and female hypertensive patients was
significantly different, with women with higher SII levels having
a higher risk of death. Similar to the findings of this study, SII
is more significantly associated with poor prognosis in women.
Wei et al. (2024) found that in an age-stratified analysis, increased
SII was a better predictor of the risk of metabolic syndrome in
young people than in older people. This shows that SII can better
reflect the systemic inflammatory status of young and middle-
aged people. Inflammatory factors in young people are precisely
and strictly regulated and are at lower levels (Singh and Newman,
2011). Elderly people are often in a state of chronic inflammation
(De Maeyer et al., 2020; Sarkar and Fisher, 2006). Therefore,

fluctuations in SII levels in young people are more sensitive to
disease. Similarly, previous studies have shown (Demir and Demir,
2023) that compared with non-smokers, smokers have higher SII
levels and are in a chronic inflammatory state for a long time.
Therefore, the link between changes in SII levels and PD risk is
more obvious among non-smokers. In terms of alcohol use, people
who drink a small or moderate amount of beer have a lower risk
of PD, while people who drink a higher amount of wine have an
increased risk of PD (Imhof et al., 2001). It was found that moderate
drinking can reduce the body’s inflammation level (Zhang et al.,
2014). Our results suggest that among people who drink alcohol,
the link between SII and PD risk is more significant. Further
research is needed to identify this mechanism.

Our study found that the relationship between SII and the
occurrence of PD in non-obese people is more significant, which
may be related to the fact that the disease onset of non-obese people
is more sensitive to fluctuations in SII levels. Zhou et al. (2024)
found that obese people have higher SII levels, suggesting that
inflammation may play an important role in the occurrence and
development of obesity, and obesity may also lead to a sustained
inflammatory response in the body. Nie et al. (2023) found that
elevated SII has a stable relationship with an increased risk of
diabetes, indicating that patients with diabetes have higher levels
of inflammation. A prospective cohort study involving 13,929
adults by Xu et al. (2021) found that high SII was associated with
increased risk of total stroke and ischemic stroke. A large number
of previous studies have found that SII has a certain predictive
effect on the occurrence of coronary heart disease (Yang et al.,
2020) and is associated with the severity of coronary heart disease
(Candemir et al., 2021). Our results concluded that SII levels are
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only associated with the risk of PD in people without coronary
heart disease, stroke, or diabetes. On the one hand, the link
between SII and PD risk is more significant in people with lower
inflammation levels. This may be related to the fact that changes in
the body’s SII levels are more sensitive to indicating the occurrence
of PD in a low-inflammatory state. The specific mechanism
needs to be further studied. On the other hand, pharmacological
interventions and primary prevention measures targeting these
diseases may attenuate the association between SII and PD. Insulin
resistance is closely related to chronic inflammation, and the use
of antidiabetic drugs may improve insulin resistance and reduce
chronic inflammation (Shoelson et al., 2006). Medications such
as statins and aspirin help reduce inflammation in people with
coronary artery disease (Cheng et al., 2022; Shoelson et al., 2006).

Another important finding is that our results suggested a clear
dose-response relationship between SII and the increased risk of
PD, and high levels of SII can differentiate the occurrence of
PD in the population with acceptable performance. Although the
diagnostic value of SII for the risk of PD in the population has
not been explored, previous studies have explored the predictive
value of SII for other neurological diseases. Cheng et al. (2023)
found that SII and SIRI can better predict the occurrence of
stroke in 5907 asthma patients, and SIRI has a better predictive
value for stroke prevalence than SII. Algul et al. found that
SII, as a new inflammatory marker, is related to the severity
of dementia in AD patients (Algul and Kaplan, 2024). In the
study of the relationship between other inflammatory markers
and PD, the neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-
monocyte ratio (LMR) and neutrophil-to-high-density lipoprotein
ratio (NHR) are considered to be able to predict the occurrence of
PD, among which NLR has a relatively better predictive value (Li
et al., 2024). The findings of this study are an important supplement
to the association of PD by inflammatory markers. Whether the
diagnostic value of SII for PD is different from that of other
inflammatory markers needs further exploration.

Limitation

Although this study has some important findings related to
PD, we have several limitations. First, we used a cross-sectional
design and cannot directly infer causality. Thus, the association
between SII and PD needs to be further explored in longitudinal
studies. Second, the assessment of PD is based on self-reported
prescription medication data, and some subjects may have recall
bias. Consequently, patients with non-PD parkinsonism may have
been inadvertently included. Finally, participants of our study are
from American population, and the results cannot be applied to the
world population. This finding needs to be verified in populations
from different countries.

Conclusion

In summary, our study is the first to find an association between
high levels of SII and the risk of PD in a nationally representative
cross-sectional sample, and further explore the heterogeneity of
this association in different populations. In addition, we also found

a positive dose-response relationship between SII and PD, and
SII level has a good diagnostic value for the risk of PD in the
population. Since SII is a new, valuable, and easy-to-measure
inflammatory marker, this study provides important insights into
the exploration of risk factors for PD and its prevention.
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Associations of the Life’s Essential 
8 with Parkinson’s disease: a 
population-based study
Chenguang Zhou  and Oumei Cheng *

Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 
China

Background: Parkinson’s disease (PD) is a progressive neurodegenerative 
disorder with increasing global prevalence. This study investigated the 
association between the American Heart Association’s Life’s Essential 8 (LE8) 
and PD prevalence using a large, nationally representative database.

Methods: We analyzed data from 18,277 participants aged 40 years and older 
from the National Health and Nutrition Examination Survey (NHANES) 2005–
2018. LE8 scores were calculated based on diet, physical activity, nicotine 
exposure, sleep, body mass index, blood lipids, blood glucose, and blood 
pressure. PD cases were identified through self-reported anti-PD medication 
use. Multivariate logistic regression models were employed to examine the 
association between LE8 and PD prevalence, adjusting for various demographic 
and clinical factors. In addition, we  performed restricted cubic splines (RCS), 
subgroup analyses, and weighted quantile sum (WQS) regression to verify the 
robustness of the study results.

Results: The prevalence of PD was 1.3% in the study population. After full 
adjustment, individuals with moderate (50–79) and high (80–100) LE8 scores 
showed lower odds of PD compared to those with low (0–49) scores (OR 0.53, 
95% CI 0.29–0.97 and OR 0.43, 95% CI 0.17–1.04, respectively; p for trend 
<0.05). A dose-response relationship was observed between LE8 scores and PD 
prevalence. WQS regression identified dietary factors and glycemic health as the 
main contributors to the inverse association between LE8 and PD.

Conclusion: Our findings suggest a significant inverse association between 
Life’s Essential 8 (LE8) and PD prevalence, with dietary factors and glycemic 
health emerging as the most influential components.

KEYWORDS

Life’s Essential 8, Parkinson’s disease, NHANES, cardiovascular health, weighted 
quantile sum (WQS) regression

1 Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder affecting 
millions worldwide. Over the past generation, the global disease burden of PD has more 
than doubled, with an estimated 6.1 million cases in 2016 (GBD 2016 Parkinson’s Disease 
Collaborators, 2018). This upward trend is projected to continue, with predictions 
suggesting PD cases may reach 12 million by 2040 (Dorsey et al., 2018). The substantial 
economic and social costs associated with PD, coupled with its impact on patient’s quality 
of life, underscore the urgent need to identify modifiable risk factors for prevention and 
early intervention. Research conducted by Paul et  al. (2019) has demonstrated the 
potential influence of lifestyle factors on PD risk. Their findings indicate that coffee, 
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caffeinated tea, moderate alcohol consumption, and physical 
exercise may have protective effects against PD, while smoking 
and excessive alcohol use are associated with increased risk. 
Furthermore, several studies have suggested that PD may 
be linked to various risk factors, including body mass index (Hu 
et al., 2006), diet (Knight et al., 2022), nicotine exposure (Quik 
et al., 2008), alcohol consumption (Bettiol et al., 2015), regular 
exercise (Bhalsing et  al., 2018), sleep disorders (Dodet et  al., 
2024), diabetes (Athauda et al., 2022), hypertension (Shi et al., 
2024), and dyslipidemia (Lee et  al., 2023). Given these 
associations, it is crucial to explore the relationship between 
comprehensive health indicators and the development and 
progression of PD.

Mounting evidence suggests a complex interplay between 
cardiovascular health and neurodegenerative diseases, including 
Parkinson’s disease (PD). Various cardiovascular risk factors, such 
as hypertension (Shi et al., 2024), diabetes (Athauda et al., 2022), and 
obesity (Hu et al., 2006), have been demonstrated to be associated 
with PD risk. The American Heart Association’s Life’s Simple 7 
(LS7), a measure of ideal cardiovascular health, has been shown to 
correlate with reduced risk of cognitive decline and dementia 
(Samieri et al., 2018). Recently, LS7 was updated to Life’s Essential 8 
(LE8), incorporating sleep as a crucial component of cardiovascular 
and brain health (Lloyd-Jones et al., 2022). LE8 is a multidimensional 
tool designed to assess overall health by evaluating diet, physical 
activity, nicotine exposure, sleep, BMI, blood lipids, blood glucose, 
and blood pressure. Although originally developed for cardiovascular 
health, these factors also exhibit potential relevance to PD. This 
study utilized LE8 as a tool to assess factors associated with 
Parkinson’s disease, based on the extensive overlap between these 
factors in cardiovascular health and neurodegenerative diseases. 
Previous research has shown that lifestyle and metabolic health 
factors, such as diet (Knight et al., 2022), physical activity (Bhalsing 
et al., 2018), sleep (Dodet et al., 2024), obesity (Hu et al., 2006), 
abnormal blood glucose levels (Athauda et al., 2022), and changes in 
lipid profiles (Lee et al., 2023), are closely linked to the risk and 
progression of PD. Given the potential shared pathophysiological 
mechanisms between cardiovascular diseases and PD, investigating 
the relationship between LE8 and PD risk presents a promising 
avenue for identifying novel preventive strategies and understanding 
the broader impact of cardiovascular health on neurodegenerative 
processes. This approach may provide valuable insights into the 
intricate connections between cardiovascular well-being and 
neurological health, potentially leading to more comprehensive and 
effective interventions for PD.

To address this knowledge gap, data from the National Health 
and Nutrition Examination Survey (NHANES) spanning 2005–
2018 were utilized. NHANES provides a unique opportunity to 
examine the relationship between Life’s Essential 8 (LE8) and 
Parkinson’s disease (PD) in a large, nationally representative 
sample of the U.S. population. This dataset  allows for a 
comprehensive assessment of cardiovascular health metrics, 
including the newly added sleep component, as well as PD status 
and relevant covariates. The present study aims to elucidate 
potential associations between LE8 scores and PD prevalence by 
leveraging this extensive database. This investigation contributes 
to the growing body of evidence regarding modifiable risk factors 
for PD and may inform future preventive strategies.

2 Methods

2.1 Study participants

The National Health and Nutrition Examination Survey 
(NHANES) is a nationally representative cross-sectional survey 
conducted in the United States through household interviews and 
mobile examination centers. It evaluates the health and nutritional 
status of the American population. This study utilized data from seven 
NHANES cycles between 2005 and 2018, involving 70,190 
participants. After excluding individuals younger than 40 years 
(n = 43,908), pregnant women (n = 21), and those with missing or 
incomplete data on LE8 or PD (n = 7,984), the final analysis included 
18,277 participants. Figure 1 illustrates the flowchart of the selection 
process. NHANES is approved by the Research Ethics Review Board 
of the National Center for Health Statistics, with informed consent 
obtained from all participants. The data used in this study are 
de-identified and publicly available.1

2.2 Definition of Life’s Essential 8

LE8 is a refined and comprehensive framework introduced by the 
American Heart Association (AHA) to assess and enhance 
cardiovascular health (CVH). LE8 includes eight key components: 
four health behaviors (diet, physical activity, nicotine exposure, and 
sleep duration) and four health metrics [body mass index (BMI), 
blood lipids, blood glucose, and blood pressure] (Xiao et al., 2024). 
These components collectively contribute to an individual’s 
cardiovascular health status, which is crucial for preventing 
cardiovascular diseases (CVD) and improving overall life expectancy. 
Calculating a LE8 score involves quantifying each component based 
on established clinical guidelines and scoring systems. Diet is assessed 
using a dietary assessment tool, such as the Healthy Eating Index 
(HEI) 2015 (Supplementary Table S2), which evaluates adherence to 
dietary recommendations. Physical activity is measured by the total 
minutes of moderate or vigorous exercise per week, with a target of at 
least 150 or 75 min of moderate intensity. Nicotine exposure is 
determined by smoking status and exposure to secondhand smoke, 
with non-smokers and those avoiding secondhand smoke scoring 
higher. Sleep duration is evaluated based on the average hours of sleep 
per night, with 7–9 h considered optimal. The four health metrics are 
similarly quantified. BMI is calculated by dividing a person’s weight in 
kilograms by the square of their height in meters, with a normal range 
of 18.5–24.9 kg/m2 being ideal. Blood lipids are measured using the 
levels of non-high-density lipoprotein cholesterol (non-HDL 
cholesterol), aiming for levels below 130 mg/dL. Blood glucose levels 
are assessed by fasting blood glucose or HbA1c levels, with targets 
below 100 mg/dL and less than 5.7%, respectively. Finally, blood 
pressure is measured, with an optimal reading being less than 
120/80 mm Hg. AHA has developed a new scoring system for each 
measure, with a range of 0 to 100 points (Liu et al., 2024). This allows 
for the creation of a new composite CVH score, which likewise has a 
range of 0 to 100 points. A higher score indicates a better state of 

1  https://www.cdc.gov/nchs/nhanes/index.htm
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health. The AHA recommendation said that an LE8 score of 80 to 100 
points was regarded as high CVH, 50 to 79 points was considered 
moderate CVH, and 0 to 49 points was considered low CVH (Yang 
et al., 2024). Supplementary Table S1 has comprehensive explanations 
of how to use NHANES data to calculate scores for each LE8 indicator.

2.3 Diagnosis of Parkinson’s disease

The main outcome of this investigation was PD. According to 
previous studies (Huang et al., 2024; Tu et al., 2024), based on self-
reported anti-PD medication use, PD cases have been found in the 
NHANES database. The following list of PD medications, such as 
benztropine, methyldopa, carbidopa, levodopa, entacapone, 
amantadine, and ropinirole, is used to diagnose PD.

2.4 Covariables

Based on previous research (Zhang et al., 2024; Liu et al., 2023), 
the covariates included in the study are age, sex, race, marital status, 
education level, family poverty-income ratio (PIR), smoking status, 
alcohol consumption, hypertension, diabetes, and 
hypercholesterolemia. Detailed descriptions of these covariates are 
provided in Supplementary Table S3.

2.5 Statistical analyses

Statistical analyses were conducted using R software (version 
4.3.1). Sampling weights were applied in all statistical analyses to 

guarantee the national representativeness of the calculated data. 
“WTMEC2YR” was used as the weighting variable in our study, and 
the new weights (2005–2018) were computed as 
1/7 × WTMEC2YR. Data were weighted as specified, with continuous 
variables presented as mean ± standard deviation, and p-values 
computed using weighted Students t-test. For categorical variables, 
percentages (weighted N, %) and p-values were calculated using 
weighted chi-square tests (Gong et al., 2024). The association between 
LE8 and PD was examined using multivariate logistic regression 
models. Three models were constructed: Model 1: no covariate 
adjustment; Model 2: adjusted for age, sex, education level, marital 
status, PIR, and race; Model 3: adjusted for age, sex, education level, 
marital status, PIR, race, smoking, alcohol consumption, 
hypertension, diabetes, and hypercholesterolemia. Covariates were 
selected based on their established associations with both LE8 and 
PD, as supported by prior literature. In Model 2, demographic and 
socioeconomic factors (age, sex, education level, marital status, PIR, 
and race) were included to account for their potential confounding 
effects. Model 3 further adjusted for lifestyle behaviors and chronic 
conditions (smoking, alcohol consumption, hypertension, diabetes, 
and hypercholesterolemia) that could act as intermediates or 
confounders in the association between LE8 and PD. Smooth curve 
fitting was used to further explore potential non-linear relationships 
between LE8 and PD. Subgroup analyses were performed to assess the 
association between LE8 and PD across different strata. Odds ratios 
(OR) were calculated as per 10 scores increase in LE8. Analyses were 
adjusted for age, sex, education level, marital status, PIR, race, 
smoking, alcohol consumption, hypertension, diabetes, and 
hypercholesterolemia. Additionally, we applied the WQS method to 
explore the overall effect of individual LE8 on PD. Nutrients with a 
WQS weighting (ranging from 0 to 1 and summing to 1) higher than 

FIGURE 1

A flow diagram of eligible participant selection in the National Health and Nutrition Examination Survey. LE8, Life’s Essential 8; PD, Parkinson’s disease.
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0.125 (the average of 8 LE8 metric) were identified as major 
contributors (Huang et al., 2024). Weighted quantile sum (WQS) 
regression assigns weights to the eight components of LE8, using a 
quantile regression optimization algorithm to determine their relative 
contributions to the risk of PD. The weights are normalized to sum to 
1, with a threshold of 0.125 (1/8) serving as a reference value for 
comparison. WQS regression effectively handles multicollinearity and 
evaluates synergistic effects among variables, making it well-suited for 
high-dimensional analyses. To verify the robustness of the results, 
we excluded participants with a body mass index <18.5 and a history 
of cardiovascular disease and reanalyzed them using data from the 
NHANES 2007–2018 cycle. A p-value <0.05 was considered 
statistically significant.

3 Results

3.1 Characteristics of the participants

Our analysis included 18,277 participants, representing 
approximately 110,202,873 individuals. Table 1 outlines the general 
characteristics of the weighted study population, comparing those 
with and without PD. The prevalence of PD was 1.3% (equivalent to 
1,463,538 individuals) with a mean (SD) LE8 score of 65.83 (14.22). 
Notably, most of the LE8 and its subgroups had lower scores in the PD 
group compared to the non-PD group. Significant differences were 
observed across various demographic and medical factors, such as 
gender, race, and hypertension (p < 0.05).

3.2 Association between LE8 and PD

Table 2 illustrates the relationships between LE8 and PD. The 
multivariate adjusted analyses showed that moderate (50–79) and 
high (80–100) were associated with a lower prevalence of PD 
compared to low (0–49), with odds ratios (ORs) and 95% confidence 
intervals (CIs) of 0.53 (0.29, 0.97) and 0.43 (0.17, 1.04), respectively (p 
for trend <0.05). Similar results were observed when LE8 was analyzed 
as a continuous variable. Additionally, in the fully adjusted model, all 
LE8 subgroups except the lipid score remained negatively associated 
with PD. Sensitivity analyses that excluded participants with a body 
mass index <18.5 and a history of cardiovascular disease showed 
robust results (Supplementary Table S5). In addition, the results of 
sensitivity analyses using fasting weights remained consistent 
(Supplementary Table S6).

Figure 2 corroborated that LE8 exhibited an inverse association 
with incident PD as indicated by the RCS results. Subgroup analyses 
(Figure 3) demonstrated that there were no significant interactions 
observed between LE8 and the stratification variables, which included 
age, sex, race, marital status, education, economic status, smoking, 
drinking, hypertension, diabetes, and high cholesterol (p > 0.05). This 
relationship was found to be  stable across the various 
subgroups analyzed.

Furthermore, the WQS index derived from WQS regression 
demonstrated a negative association with the risk of PD (OR 0.60, 95% 
CI 0.40 to 0.90) (Supplementary Table S4). Figure 4 illustrated that all 
LE8 subgroups examined exhibited negative associations with PD, 
with dietary metric (weight = 0.424) identified as the most influential 

factor affecting the presence of PD, followed by blood glucose 
(weights = 0.225).

4 Discussion

This study examined the association between LE8 and PD using 
NHANES data. The findings revealed a negative association between 
the LE8 and the prevalence of PD. Furthermore, a dose–response 
relationship showed that LE8 was linearly related to PD. In the 
subgroup analyses, the results remained consistent and robust. In 
addition, WQS analyses showed that among the eight LE8 indicators, 
dietary factors and glycaemic health were identified as the main 
factors for the negative association between LE8 and PD.

This study represents the first investigation into the association 
between the new cardiovascular health (CVH) metric, Life’s Essential 
8 (LE8), and the prevalence of Parkinson’s disease (PD). Previous 
research has primarily focused on the relationships between individual 
components of LE8 and PD. For instance, studies have suggested that 
poor dietary patterns may increase PD risk (Alcalay et al., 2012), while 
moderate physical activity may reduce it (Fang et  al., 2018). 
Furthermore, smoking has been associated with a lower PD risk, 
although the mechanisms underlying this association remain unclear 
(Breckenridge et al., 2016). Regarding blood pressure, a meta-analysis 
indicated that hypertension might increase PD risk (Chen et al., 2019). 
Poor glycemic control has also been linked to an elevated risk of PD 
(Rhee et al., 2020). In terms of cholesterol, some studies have found 
that higher cholesterol levels may serve as a protective factor against 
PD (Huang et al., 2011). Lastly, sleep disorders are considered one of 
the early symptoms of PD and may play a crucial role in disease 
progression (Postuma et  al., 2013). However, these studies have 
considered each factor in isolation. The present research provides a 
comprehensive perspective on the potential association between 
cardiovascular health and PD by evaluating the composite LE8 score.

Cardiovascular health plays a significant role in the pathogenesis 
of Parkinson’s disease (PD). Evidence suggests that poor cardiovascular 
health, including hypertension, atherosclerosis, and chronic 
cardiovascular metabolic diseases, is closely linked to 
neuroinflammation, oxidative stress, and cerebrovascular dysfunction 
in the central nervous system (Gorelick et  al., 2011). These 
mechanisms may accelerate α-synuclein deposition in the brain and 
impair the survival of dopaminergic neurons, thereby increasing the 
risk of PD (Olanow and Tatton, 1999). Additionally, the health 
behaviors included in Life’s Essential 8 (such as a healthy diet, physical 
activity, and optimal blood glucose levels) are associated with reduced 
cardiovascular risk and may also have neuroprotective effects through 
improving systemic metabolic status and reducing neuroinflammation. 
For example, studies have shown that a healthy diet (such as the 
Mediterranean diet) is linked to a lower risk of PD, potentially due to 
its anti-inflammatory and antioxidant properties (Alcalay et al., 2012). 
Similarly, regular aerobic exercise has been shown to improve brain 
blood flow and enhance neurotrophic factors, which may reduce the 
risk of PD (Ahlskog, 2011). In our study, we found that individuals 
with higher LE8 scores had a lower prevalence of PD, which aligns 
with the hypothesis that those with better cardiovascular health may 
have a reduced risk of neurodegenerative diseases.

In this study, we used weighted quantile sum (WQS) regression 
analysis to identify diet and blood glucose as key factors influencing 
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TABLE 1  Baseline characteristics of all participants were stratified by PD, weighted.

Characteristic Overall, N = 110,202,873 
(100%)

Non-PD, N = 108,739,335 
(98.7%)

PD, N = 1,463,538 (1.3%) p-value

No. of participants in the sample 18,277 18,034 243 -

Age (%) 0.060

 � 40–60 68,072,992 (62%) 67,289,480 (62%) 783,512 (54%)

 � >60 42,129,880 (38%) 41,449,855 (38%) 680,025 (46%)

Gender (%) 0.003

 � Male 51,622,456 (47%) 51,112,397 (47%) 510,059 (35%)

 � Female 58,580,417 (53%) 57,626,938 (53%) 953,479 (65%)

Race (%) <0.001

 � Non-Hispanic White 82,901,819 (75%) 81,625,502 (75%) 1,276,317 (87%)

 � Non-Hispanic Black 10,241,800 (9.3%) 10,149,839 (9.3%) 91,960 (6.3%)

 � Other 10,827,168 (9.8%) 10,771,502 (9.9%) 55,665 (3.8%)

 � Mexican American 6,232,086 (5.7%) 6,192,491 (5.7%) 39,596 (2.7%)

Married/live with partner (%) 0.127

 � No 34,292,121 (31%) 33,747,557 (31%) 544,564 (37%)

 � Yes 75,910,752 (69%) 74,991,778 (69%) 918,974 (63%)

Education level (%) 0.172

 � Below high school 16,385,052 (15%) 16,109,960 (15%) 275,091 (19%)

 � High School or above 93,817,821 (85%) 92,629,374 (85%) 1,188,447 (81%)

PIR (%) 0.110

 � Not poor 86,617,980 (84%) 85,561,170 (84%) 1,056,810 (79%)

 � Poor 16,266,336 (16%) 15,991,405 (16%) 274,931 (21%)

Smoking (%) 0.115

 � Never 57,208,305 (52%) 56,445,236 (52%) 763,068 (52%)

 � Former 34,282,748 (31%) 33,910,372 (31%) 372,377 (25%)

 � Current 18,711,820 (17%) 18,383,727 (17%) 328,093 (22%)

Drinking (%) 0.159

 � Former 17,486,284 (17%) 17,150,167 (17%) 336,118 (24%)

 � Heavy 14,639,073 (14%) 14,476,730 (14%) 162,343 (12%)

 � Mild 43,441,407 (42%) 42,915,657 (42%) 525,750 (38%)

 � Moderate 17,050,059 (16%) 16,855,796 (17%) 194,262 (14%)

(Continued)
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TABLE 1  (Continued)

Characteristic Overall, N = 110,202,873 
(100%)

Non-PD, N = 108,739,335 
(98.7%)

PD, N = 1,463,538 (1.3%) p-value

 � Never 10,917,270 (11%) 10,754,309 (11%) 162,961 (12%)

Hypertension (%) 0.014

 � No 55,024,656 (50%) 54,448,781 (50%) 575,875 (39%)

 � Yes 55,178,217 (50%) 54,290,554 (50%) 887,663 (61%)

Diabetes (%) 0.197

 � No 91,006,506 (83%) 89,844,170 (83%) 1,162,336 (79%)

 � Yes 19,196,366 (17%) 18,895,165 (17%) 301,202 (21%)

High cholesterol (%) 0.306

 � No 54,239,639 (52%) 53,555,650 (52%) 683,989 (48%)

 � Yes 49,860,036 (48%) 49,109,904 (48%) 750,132 (52%)

Mean LE8 score [mean (SD)] 65.83 (14.22) 65.89 (14.21) 61.31 (14.71) <0.001

Mean HEI-2015 diet score [mean (SD)] 42.51 (31.43) 42.58 (31.44) 37.23 (30.00) 0.056

Mean physical activity score [mean (SD)] 67.80 (42.79) 67.91 (42.73) 59.27 (45.94) 0.039

Mean tobacco exposure score [mean (SD)] 72.71 (36.74) 72.77 (36.68) 67.63 (40.55) 0.386

Mean sleep health score [mean (SD)] 83.33 (24.35) 83.41 (24.28) 77.44 (28.40) 0.006

Mean body mass index score [mean (SD)] 58.62 (33.06) 58.66 (33.01) 55.50 (36.80) 0.390

Mean blood lipid score [mean (SD)] 59.37 (29.43) 59.35 (29.42) 61.47 (29.64) 0.456

Mean blood glucose score [mean (SD)] 80.98 (26.42) 81.03 (26.39) 77.78 (27.87) 0.087

Mean blood pressure score [mean (SD)] 61.32 (31.56) 61.42 (31.55) 54.14 (32.12) 0.010

LE8 (%) <0.001

 � Low (0–49) 14,664,730 (13%) 14,308,056 (13%) 356,674 (24%)

 � Moderate (50–79) 76,390,803 (69%) 75,463,674 (69%) 927,128 (63%)

 � High (80–100) 19,147,340 (17%) 18,967,604 (17%) 179,736 (12%)

LE8, Life’s Essential 8; PD, Parkinson’s disease; PIR, ratio of family income to poverty; HEI-2015, Healthy Eating Index-2015. Mean (SD) for continuous variables: the p-value was calculated by the weighted Students t-test. Percentages (weighted N, %) for categorical 
variables: the p-value was calculated by the weighted chi-square test.
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the development of Parkinson’s disease (PD) in the context of the LE8 
score. This finding further underscores the critical role of dietary 
habits and glycemic health in PD prevention. First, regarding the 
relationship between diet and PD, previous research has shown that 
healthy dietary patterns, such as the Mediterranean diet, which is 
rich in antioxidants, can reduce PD risk by mitigating oxidative 
stress, lowering inflammation, and improving mitochondrial 
function (Feng et  al., 2020). Consistently, our WQS regression 
analysis identified dietary health scores as a significant factor 

influencing PD risk, suggesting that healthy eating habits may play 
an active role in neuroprotection. Specifically, foods rich in 
antioxidants, such as fruits, vegetables, and whole grains, help 
alleviate oxidative stress, a key mechanism in PD pathogenesis, 
especially in the context of dopaminergic neuron damage (Alcalay 
et al., 2012). This finding supports the potential benefits of a healthy 
diet in preventing neurodegenerative diseases. Second, diabetes and 
hyperglycemia are recognized as risk factors for PD (Rhee et al., 
2020). Additionally, studies have found that even mild insulin 
resistance, in non-diabetic individuals, may be associated with early 
PD symptoms, such as olfactory impairment, further suggesting the 
potential role of abnormal glucose metabolism in PD (Cullinane 
et  al., 2022). Mechanistically, the interaction between glucose 
metabolism abnormalities and PD onset is likely multifactorial. 
Insulin not only regulates peripheral glucose metabolism but also 
plays a vital role in the central nervous system. Insulin receptors are 
widely distributed in brain regions such as the hippocampus, cortex, 
and substantia nigra, where insulin participates in processes like 
neuronal survival, synaptic plasticity, and energy metabolism. In type 
2 diabetes (T2DM), insulin resistance diminishes the peripheral 
tissue response to insulin and impairs central nervous system insulin 
signaling. This impaired signaling may compromise dopaminergic 
neuronal function, contributing to neurodegeneration, a hallmark of 
PD pathology. Hence, insulin resistance is considered a key 
mechanism linking metabolic dysfunction and PD. In a 
hyperglycemic state, increased reactive oxygen species (ROS) 
exacerbate oxidative stress, leading to further damage to 
dopaminergic neurons. Additionally, insulin resistance and 
hyperglycemia may trigger both systemic and central nervous system 
inflammation, accelerating neurodegenerative processes. 
Mitochondrial dysfunction also plays a significant role in 
hyperglycemia-related mechanisms, as damaged mitochondria fail to 
provide sufficient energy for neurons, accelerating neuronal death 
(Cullinane et al., 2022). Recent studies have suggested that drugs 

TABLE 2  Adjusted odds ratios for CVH (LE8) and components to PD, weighted.

Characteristic Model 1 [ORs 
(95% CI)]

p-value Model 2 [ORs 
(95% CI)]

p-value Model 3 [ORs 
(95% CI)]

p-value

Continuous (per 10 scores) 0.80 (0.72, 0.90) <0.001 0.81 (0.71, 0.92) 0.001 0.81 (0.66, 0.99) 0.047

 � Low (0–49) 1 (Ref.) 1 (Ref.) 1 (Ref.)

 � Moderate (50–79) 0.49 (0.33, 0.74) <0.001 0.53 (0.34, 0.82) 0.005 0.53 (0.29, 0.97) 0.040

 � High (80–100) 0.38 (0.21, 0.70) 0.002 0.39 (0.20, 0.75) 0.005 0.43 (0.17, 1.04) 0.060

 � p for trend <0.001 0.002 0.042

Components (per 10 scores)

 � HEI-2015 diet score 0.95 (0.90, 0.99) 0.048 0.93 (0.87, 0.98) 0.014 0.93 (0.87, 0.99) 0.027

 � Physical activity score 0.96 (0.92, 0.99) 0.020 0.97 (0.93, 1.01) 0.200 0.97 (0.93, 1.02) 0.300

 � Tobacco exposure score 0.97 (0.92, 1.01) 0.110 0.97 (0.92, 1.02) 0.200 0.81 (0.66, 0.99) 0.038

 � Sleep health score 0.92 (0.87, 0.97) 0.002 0.91 (0.85, 0.97) 0.004 0.91 (0.85, 0.99) 0.020

 � Body mass index score 0.97 (0.92, 1.02) 0.300 0.97 (0.92, 1.03) 0.200 0.98 (0.93, 1.04) 0.500

 � Blood lipid score 1.03 (0.96, 1.09) 0.400 1.04 (0.97, 1.11) 0.300 1.04 (0.96, 1.13) 0.300

 � Blood glucose score 0.96 (0.91, 1.00) 0.069 0.96 (0.91, 1.02) 0.200 0.96 (0.89, 1.05) 0.400

 � Blood pressure score 0.93 (0.89, 0.98) 0.006 0.94 (0.89, 0.99) 0.028 0.96 (0.89, 1.04) 0.300

CVH, cardiovascular health; LE8, Life’s Essential 8; PD, Parkinson’s disease; PIR, ratio of family income to poverty; HEI-2015, Healthy Eating Index-2015. Model 1: no covariates were adjusted. 
Model 2: age, gender, education level, marital, PIR, and race were adjusted. Model 3: age, gender, education level, marital, PIR, race, smoking, drinking, hypertension, diabetes, and high 
cholesterol were adjusted. A higher CVH score indicates better cardiovascular health.

FIGURE 2

Dose-response relationships between LE8 and PD. OR (solid lines) 
and 95% confidence levels (shaded areas) were adjusted for age, 
gender, education level, marital, PIR, race, smoking, drinking, 
hypertension, diabetes, and high cholesterol.
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improving insulin resistance may hold great potential for PD 
treatment (Standaert, 2024; Nowell et al., 2023). Our study, utilizing 
the large-scale NHANES database, further confirms the critical role 
of blood glucose factors in PD development.

It is worth noting that previous research has observed an inverse 
association between smoking and PD risk, known as the “smoking 
paradox,” where smokers have a lower risk of developing PD 

(Ben-Shlomo et al., 2024). However, despite the unclear mechanisms 
behind this phenomenon, the adverse health effects of smoking are 
undeniable, particularly regarding cardiovascular and lung health. 
Thus, smoking cessation remains an essential component of the LE8 
health score. While the relationship between smoking and PD may 
be complex, smoking cessation is undeniably important for overall 
health maintenance.

FIGURE 3

Subgroup analysis between LE8 and PD. ORs were calculated as per 10 scores increase in LE8. Analyses were adjusted for age, gender, education level, 
marital, PIR, race, smoking, drinking, hypertension, diabetes, and high cholesterol.
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This study has several notable strengths. Firstly, we utilized the 
extensive National Health and Nutrition Examination Survey 
(NHANES) database, which boasts a large sample size and national 
representativeness. This significantly enhances the external validity 
and generalizability of the study findings. The diversity and 
comprehensiveness of NHANES data allowed us to explore the 
potential associations between LE8 and PD in-depth, providing 
valuable insights into this field. Secondly, we rigorously adjusted for 
multiple potential confounding factors, including age, gender, race, 
education level, socioeconomic status, lifestyle habits, and physical 
condition. This significantly improved the reliability and accuracy of 
the study results. By controlling for these potential influences, we were 
able to more precisely evaluate the independent association between 
LE8 and PD. Additionally, we conducted detailed subgroup analyses 
to examine the relationship between LE8 and PD across different 
demographic and clinical characteristics. This not only added depth 
to the study but also provided important evidence for personalized 
prevention and intervention strategies. This multi-layered analytical 
approach enabled us to gain a more comprehensive understanding of 
the potential role of LE8  in PD development, offering valuable 
directions for future research and clinical practice.

Moreover, this study has several notable limitations. (1) Due to its 
cross-sectional design, we cannot establish a causal relationship between 
LE8 and PD; we can only infer their correlation. This design does not 
reveal whether changes in LE8 metrics lead to altered PD risk or whether 
PD itself affects patients’ LE8 scores. (2) Although we accounted for 
multiple known confounding factors in our analysis, we cannot exclude 
the influence of all potential confounding variables. For example, certain 
unmeasured genetic factors or environmental exposures might 

simultaneously affect LE8 scores and PD risk. Additionally, the NHANES 
database itself has inherent limitations. For instance, the diagnosis of PD 
primarily relies on self-reports or medical records, which might lead to 
some misdiagnoses or missed diagnoses. (3) Due to the cross-sectional 
nature of NHANES data, we cannot assess the impact of changes in LE8 
metrics over time on PD risk, which could be an important aspect of 
understanding the relationship between the two. (4) This study relied on 
self-reported use of anti-PD medications to identify PD cases, which may 
carry a risk of misclassification or underreporting. Self-reported data can 
be subject to recall bias or incomplete information, potentially failing to 
accurately identify some PD cases. Furthermore, the lack of neurologist-
confirmed clinical diagnoses or other objective biomarkers reduces the 
precision of the PD case identification method and may affect the validity 
and reliability of the findings. While the NHANES dataset offers a large 
and representative sample, this inherent limitation of self-reported 
diagnoses should be considered when interpreting the results. Future 
studies could strengthen these findings by incorporating clinical 
diagnoses by neurologists, neuroimaging evidence, or biomarkers to 
reduce information bias and enhance scientific rigor. (5) In this study, 
we utilized data from NHANES 2005–2018, with fasting glucose and 
glycated hemoglobin (HbA1c) used to define diabetes. However, 
we acknowledge that the glucose measurement methods were updated 
during the 2015–2018 cycle, which could result in minor variations in 
the reported values. While we did not adjust for these changes using 
forward or backward calibration equations in this analysis, future 
research should consider these approaches to minimize potential bias 
caused by methodological discrepancies. Furthermore, although 
we updated our analysis to use fasting weights, combining data across 
different cycles may still introduce some unavoidable systematic biases. 

FIGURE 4

Weights represent the proportion of partial effect for each LE8 metric in the WQS regression. Model adjusted for age, gender, education level, marital, 
PIR, and race.
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(6) One limitation of our study is the absence of population-attributable 
fraction (PAF) analysis, which could have provided additional insight 
into the proportion of Parkinson’s disease cases that might be preventable 
by optimizing Life’s Essential 8 (LE8). Future studies need to include PAF 
analysis to enhance the applicability of findings to public health 
strategies. (7) A limitation of this study is the use of weighted quantile 
sum (WQS) regression, which may not fully account for the complexities 
of complex survey designs, including stratification, clustering, and 
unequal weighting. These factors could impact the interpretation and 
generalizability of the findings. Future studies may benefit from 
alternative statistical methods that can better handle such complexities 
and provide more accurate results.

5 Conclusion

In conclusion, our research findings indicate an inverse correlation 
between LE8 and Parkinson’s disease (PD), suggesting that improving 
lifestyle and health behaviors, particularly optimizing dietary habits 
and controlling blood sugar levels, may help reduce the risk of 
PD. Healthcare professionals should incorporate LE8 into patient 
education and prevention strategies, encouraging patients to adopt a 
healthy lifestyle. This approach could not only potentially lower the 
risk of PD but also enhance overall health and improve quality of life.
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Parkin characteristics and blood 
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in WPBLC study
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Background: The exact mechanisms of PD are unclear, but Parkin-mediated 
mitophagy dysfunction is believed to play a key role. We investigated whether 
blood levels of Parkin and other biomarkers are linked to the risk of developing 
PD.

Methods: Baseline blood measures of Parkin and other biomarkers, including 
Homocysteine, carcinoembryonic antigen, Urea, total proteins, total 
cholesterol, creatine kinase, and albumin, were collected from 197 clinically 
diagnosed Parkinson’s disease participants and 107 age-matched healthy 
controls in Wenzhou Parkinson’s Biomarkers and Living Characteristics study. 
We  conducted bioinformatics analysis using three datasets from the GEO 
database: GSE90514 (Cohort 1: PD = 4, HC = 4), GSE7621 (Cohort 2: PD = 16, 
HC = 9), and GSE205450 (Cohort 3: PD = 69, HC = 81).

Results: Using a bioinformatic approach, we identified dysregulated biological 
processes in PD patients with PRKN mutations. Compared to controls, significant 
abnormalities were observed in blood levels of Parkin, Hcy, total proteins, urea, 
albumin, and CEA in PD patients. A model incorporating Parkin, Hcy, total 
proteins, and urea effectively distinguished PD from healthy controls, achieving 
a higher accuracy (AUC 0.841) than other biomarker combinations. Gene set 
enrichment analysis suggested that pathways such as PINK1-Parkin-mediated 
mitophagy, urea cycle, cysteine degradation, and riboflavin metabolism may 
be involved in PRKN mutation. Additionally, the link between Parkin and PD was 
partially mediated by CEA and albumin, not by Hcy, total proteins, or urea.

Conclusion: Our findings indicate that blood Parkin levels may be a minimally 
invasive biomarker for PD diagnosis. The model, which included Parkin, Hcy, 
total proteins, and urea, effectively distinguished PD from HC with greater 
accuracy.
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Introduction

Two centuries have elapsed since James Parkinson announced his 
seminal work “An Essay on the Shaking Palsy” in 1817, describing the 
clinical characteristics of this disease that later came to endow his 
name (Parkinson, 2002; Bloem et al., 2021). But to now, there is still 
no precise and widely used laboratory testing for Parkinson’s disease 
(PD) diagnosis. Currently, the diagnosis of PD mainly relies on 
symptom-driven performance, which delays the detection of the 
earliest phases of the disease. Moreover, even when such criteria are 
rigorously executed, the proportion of misdiagnosis is still high 
resulting from substantial clinical overlap among Parkinsonian 
syndromes (Armstrong and Okun, 2020). Thus, reliable diagnostic 
biomarkers are urgently needed to efficiently manage PD. Evidence 
indicates the potential diagnostic and prognostic merit of 
cerebrospinal fluid (CSF) and blood biomarkers authentically 
mirroring the pathogenesis of PD, such as α-synuclein isoforms, 
lysosomal enzymes, amyloid and tau pathology markers, and 
neurofilament light chain (NFL) (Parnetti et al., 2019; Bouthour et al., 
2019; Ashton et al., 2020). Compared to the CSF fluid, blood-based 
biomarkers are also under far-ranging investigation because they 
would provide a minimally invasive option for early and differential 
diagnosis of PD versus atypical Parkinsonian disorders and 
disease monitoring.

Although the mechanisms of PD are unclear, mitochondrial 
dysfunction and quality control imbalance are thought to have key 
roles in this process (Malpartida et al., 2021). Notably, an early-onset 
form of PD is associated with mutations in the PINK1 kinase and 
Parkin ubiquitin ligase genes (Farrer, 2006; Valente et  al., 2004). 
Exploring the characteristics of genes mutated in hereditary PD type 
sheds light on disease etiology and reveals new pathways in cell 
biology (Blauwendraat et al., 2020). Among them, PINK1 and Parkin, 
which usually work together in the same pathway, are involved in the 
clearance of damaged mitochondria in PD-related cultured cells and 
animal models (Nguyen et  al., 2016; Pickrell and Youle, 2015). 
Moreover, the drop of dopaminergic neurons in the substantia nigra 
pars compacta (SNpc) and the motor defect observed in aged 
Parkin−/− mice indicate the Parkin-mediated biological pathway 
facilitates this phenotype (Sliter et  al., 2018). These findings 
highlighted the underlying value of considering the level of Parkin 
when implementing blood biomarkers in the diagnostic workup of PD.

The prevailing hypothesis for PD associated with PRKN mutations 
(also known as PARK2) is that a decrease in Parkin activity alters the 
mitophagy machinery and results in increased α-synuclein 
aggregation and accumulation in the lysosomes (Wang et al., 2022). 
Several studies suggest that loss of function mutations in the PRKN 
gene that encodes the Parkin may promote α-synuclein-mediated 
Lewy body inclusion formation, further suggesting the importance of 
studying this target as a biomarker of PD (Madsen et al., 2021; Yasuda 
and Mochizuki, 2010). However, it is still not a clinically helpful 
biomarker for PD, measurements of Parkin in biofluids from well-
clinically characterized subjects may provide additional insight into 
whether Parkin ubiquitin ligase may be deregulated in PD cases. Thus, 
it would be vital to carry out research to monitor Parkin levels and 
determine its utility as a biomarker of PD screening. In this study, 
we aimed to test whether Parkin levels were elevated in PD subjects 
and whether levels were associated with PD status. We hypothesized, 
based on the previous literature (Wang et  al., 2022; Yasuda and 

Mochizuki, 2010; Madsen et  al., 2021; Qian et  al., 2024) and our 
results, that blood Parkin would be a superior marker for PD diagnosis.

Methods

The cross-sectional study is rated Class III because of the case–
control design and the absence of diagnostic uncertainty of PD in the 
included patients.

Participants

The WPBLC cohort (Wenzhou Parkinson’s Biomarkers and Living 
Characteristics study, included 197 PD patients and 107 age-matched 
healthy controls from the First Affiliated Hospital of Wenzhou 
Medical University, March 2018–October 2022, details are available in 
Supple information 1) included two subsets: subset 1 with 55 
Parkinson’s disease (PD) patients (patients diagnosed with idiopathic 
Parkinson’s disease) and 50 healthy control (HC) participants, who 
were inpatients tested with 165 additional blood biomarkers, and 
subset 2 with 142 PD patients and 57 HC participants, who lacked 
these extra biomarkers.

Clinical neuropsychological evaluation

At the screening visit, standardized methods for the acquisition of 
study data included the Unified Parkinson’s Disease Rating Scale 
(UPDRS) (Fahn et al., 1987) and Hoehn-Yahr staging (Hoehn and 
Yahr, 1967) to evaluate the motor symptoms and progression stage of 
PD. The Chinese Mini-Mental State Examination (MMSE) was used 
for cognitive assessment, with cutoff scores adjusted to: ≤ 17 for 
illiterates, ≤ 20 for primary school graduates, and ≤ 24 for those with 
postsecondary education or higher (Katzman et al., 1988; Cui et al., 
2011). Emotional aspects were assessed using the Hamilton 
Depression Rating Scale-17 (HAMD) and Hamilton Anxiety Rating 
Scale (HAMA), with scores ≥7 indicating possible depression or 
anxiety. The REM Sleep Behavior Disorder Questionnaire-Hong Kong 
(RBDQ-HK) identified REM sleep behavior disorder (RBD) with a 
cutoff of >18 points (Li et al., 2010). The Activity of Daily Living Scale 
(ADL) is used to collectively assess fundamental skills required to 
independently care for oneself, such as eating, bathing, and mobility. 
All the examinations were done in the “on” state of the disease.

Blood Parkin and other biomarkers 
measurement

Figure 1A shows the flow chart of blood Parkin examination for 
every individual enrolled in the study. The detailed measurements of 
Parkin have been previously presented (Qian et al., 2024). Plasma 
samples were collected via venous blood centrifugation (3,000 × g for 
10 min) at 4°C and frozen at −80°C until analysis. Blood was drawn 
using an EDTA anticoagulant tube and centrifuged within 1 h. A total 
of 304 participants’ samples (197 PD and 107 HC) were analyzed for 
Parkin using an ELISA (Jianglai Biotechnology Company, Shanghai, 
China, No#. JL11195). Additionally, 234 of these samples (148 PD and 
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86 HC) were analyzed for α-syn oligomers (asy-no) and 
phosphorylated α-syn (p-asyn) using ELISA (Jianglai Biotechnology 
Company, Shanghai, China, No. JL12589 and JL41188). A blinded 
laboratory technician processed the samples according to the 
manufacturer’s instructions. Eighty microliters of standard solution 
and 20 microliters of 5× diluted samples were added to 96-well plates. 
Then, 100 microliters of antibody-horse radish peroxidase conjugate 

(MyBioSource, United States) was added to each well, covered with an 
adhesive strip, and incubated for 60 min at 37°C. After four washes, 
the plates were incubated with tetramethylbenzidine substrate for 
15 min at 37°C, then the reactions were stopped with H2SO4. 
Absorbance was measured at 450 nm, with all samples run in triplicate.

Inpatients were assessed for 165 blood biomarkers, sourced from 
the First Affiliated Hospital of Wenzhou Medical University. Of these, 

FIGURE 1

Recruitment of participants, blood sample processing, and the efficacy of Parkin protein levels in diagnosing and correlating with PD symptoms. (A) A 
flow chart outlines the blood Parkin examination process for study participants. (B) Eligibility assessments resulted in 197 PD and 107 HC subjects being 
included. (C) A mountain map illustrates the distribution of Parkin levels in PD and HC individuals. (D) ROC analysis evaluated Parkin levels’ ability to 
differentiate between PD and HC, with the AUC value reported. (E–N) Nonlinear correlation analyses were conducted between Parkin levels and 
neuropsychological assessment scores, with Spearman correlation coefficients calculated.
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66 biomarkers were selected for analysis, while 99 were excluded due 
to insufficient subjects. Details on the blood Parkin and other 66 blood 
biomarkers are available in Supplementary Table 1.

Statistical analyses

Continuous variables were evaluated for normality with the 
Kolmogorov–Smirnov test, histogram, and Q-Q plot. Normally 
distributed variables were reported as mean (Standardized deviation, 
SD) and analyzed with a two-sample t-test, while abnormally 
distributed variables were reported as median [interquartile range, 
IQR] and analyzed using the Mann–Whitney U test. Categorical 
variables were presented as counts (percentages) and compared with 
the Chi-square test. Associations between biomarkers and 
neuropsychological scales were assessed using Spearman rank 
correlation analysis. The Random Forest (RF) classifier and Least 
Absolute Shrinkage And Selection Operator (LASSO) regression were 
employed to identify effective blood biomarkers for distinguishing PD 
from HC participants. The RF classifier, utilizing the “randomForest” 
R package with 100 trees, ranked blood biomarkers based on their 
importance using the Gini index. LASSO regression was performed 
on standardized blood biomarker levels using the “glmnet” package. 
The predictive power of the biomarkers, both individually and 
together, was evaluated through the area under the curve (AUC) from 
ROC curves, with differences assessed using DeLong statistics. Some 
combined models were tested in Cohort 1 and validated in Cohort 2 
to assess their stability.

Blood biomarkers were divided into four quartiles (Q1-Q4) as 
categorical variables, and a trend test was conducted using the 
median values of each quartile. Weighted quantile sum (WQS) 
regression was used to assess the overall effects of these biomarkers 
on PD risk. The R package “gWQS” calculates the WQS index from 
the weighted sums of individual biomarkers. The WQS index (0 to 
1) indicated the combined levels of blood biomarkers, with 
significant components identified by their weights. To evaluate the 
joint effects and dose–response relationships of individual 
biomarkers on PD risk, while controlling for others, Bayesian kernel 
machine regression (BKMR) was utilized. Mediation analyses were 
conducted using the R package “mediation” with the quasi-Bayesian 
Monte Carlo method and 1,000 simulations based on normal 
approximation. The direct effect (DE) indicated the impact of blood 
biomarkers on PD risk without mediation, while the indirect effect 
(IE) reflected their impact through a mediator. The proportion of 
mediation was calculated as IE divided by the total effect (TE). 
Statistical analyses were performed in R version 4.3, with 
significance set at p < 0.05.

Bioinformatics analysis

GEO datasets acquisition
We retrieved three datasets from the Gene Expression Omnibus 

(GEO) database: GSE90514 (Cohort 1: PD = 4, HC = 4), GSE7621 
(Cohort 2: PD = 16, HC = 9), and GSE205450 (Cohort 3: PD = 69, 
HC = 81). GSE90514 used the GPL11154 Illumina HiSeq  2000 
platform, GSE7621 used the GPL570 Affymetrix Human Genome 
U133 Plus 2.0 Array, and GSE205450 used the GPL24676 Illumina 

NovaSeq 6,000 platform. We downloaded the expression matrices and 
annotation data, then normalized and log2-transformed the matrices 
using R version 4.3.

Identification and visualization of DEGs
We merged Cohort 2 and Cohort 3 using 15,596 shared genes and 

performed batch correction using the “SVA” package to obtain Cohort 
C. We conducted the differential analysis using the “LIMMA” package 
on Cohort 1 and Cohort C and filtered for DEGs with p < 0.05 and 
|log FC| (fold change) > 1.5 (Law et al., 2014). We obtained 322 DEGs 
in Cohort 1 and 16 DEGs in Cohort C, which were visualized using 
volcano plots and heatmaps.

Enrichment analyses
For gene enrichment analyses, we  used the “ClusterProfiler” 

package to filter for relevant pathways with a threshold of p < 0.05 and 
False Discovery Rates (FDR) < 0.1 (Yu et al., 2012). In Cohort 1, 82 
significant gene ontology (GO) pathways were enriched (Gene 
Ontology Consortium, 2015), and we  have selected 10 pathways 
for presentation.

Gene set enrichment analysis (GSEA)
Gene Set Enrichment Analysis was conducted using the GSEA 

software (version 3.0) obtained from the GSEA website.1 GSEA was 
used to analyze the enrichment of all detected genes in Cohort 1 for 
KEGG and Reactome Pathways. Finally, we found 34 enriched KEGG 
pathways and 99 enriched Reactome Pathways (Wixon and Kell, 2000).

Gene set variation analysis (GSVA) of GO 
enrichment

GSVA was performed using the “GSVA” package to calculate the 
enrichment scores of each sample in Cohort 1 for KEGG pathways 
(Hänzelmann et  al., 2013). We  subsequently used the “LIMMA” 
package to identify 15 differential pathways (8 upregulated and 7 
downregulated) and generated volcano plots to visualize the 
differentially regulated pathways.

Analysis of key genes in the train cohort and the 
test cohort

We divided Cohort C into a Training set and a Test set. In the 
Training set, we  identified 16 genes with statistical significance 
(p < 0.05, |log FC| > 1.5). We used Lasso regression to select 6 key 
genes: NUP210L, SLCO4A1, AMBN, GPD1, NTRK1, and HBB, for 
modeling. We then validated the model in the test set and calculated 
the Area Under The Curve (AUC) value.

Results

This paper addressed three hypotheses: First, we evaluated blood 
Parkin levels in PD participants to assess its potential as a diagnostic 
biomarker. Second, we investigated whether other blood biomarkers 
may be  viable tools for distinguishing PD patients with PRKN 
mutations based on bioinformatic analysis. Third, we explored the 

1  http://software.broadinstitute.org/gsea/index.jsp
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relationship between Parkin levels and other blood biomarker profiles 
in PD by quantifying their associations in our cohort.

Baseline demographics, disease 
characteristics of the cohorts

Table  1 shows the demographic data for the WPBLC cohort 
investigated here with 197 PD and 107 HC subjects. For patients with 
PD and HC information, similar to previous reports of this cohort at 
baseline, mean age at onset, sex ratio, height, weight, BMI status, 
education level, disease duration, smoker proportion, drinker ratio, 
and frequency of diabetes mellitus were matched. By contrast, PD 
patients were characterized by much more serious UPDRS, HAMD, 
HAMA, RBDQ-HK, and ADL scores compared to the controls. 
Accordingly, the clinical phenotypes of advanced PD symptoms, i.e., 
falls, dyskinesia, on–off phenomenon, and cognitive impairment were 
also displayed in Table 1.

Parkin is elevated in the blood of PD 
patients

Three hundred and four participants met the inclusion criteria for 
the initial group analysis (Figure 1B): 100% provided samples for 
Parkin measurement from blood. Comparing blood Parkin levels 
across diagnostic groups, the median concentration was 21.458 ng/mL 
in PD subjects, and 17.789 ng/mL in HC (Figure 1C). Then, assessing 
the utility of Parkin levels to discriminate between clinically defined 
idiopathic PD and HC, we found an area under the ROC curve (AUC) 
of 0.736 (95% CI: 0.677 to 0.794) for Parkin (Figure 1D), indicating 
Parkin is a moderately suitable diagnosis marker for PD. To test 
whether Parkin levels are correlated with clinical motor features. In 
197 participants who had blood Parkin and motor evaluation drawn 
simultaneously, Parkin was not correlated with UPDRS part 
I (r = −0.083, p = 0.245), UPDRS part II (r = 0.025, p = 0.731), UPDRS 
part III (r = −0.030, p = 0.677), UPDRS part IV (r = 0.023, p = 0.751), 
total UPDRS (r = −0.009, p = 0.895), and H-Y stage (r = 0.073, 
p = 0.305) based on the Spearman correlation analysis (Figures 1E–J). 
Next, we  examined associations between Parkin and 
neuropsychological scales. We  found that Parkin concentrations 
correlated with baseline HAMD and RBDQ-HK, while not with 
baseline HAMA and MMSE (Figures 1K–N). Notably, the UPDRS 
part III score may be influenced by age, sex, disease duration, and 
LEDD. Hence, we evaluated associations between Parkin measures 
and motor performance in models adjusting for these variables and 
found the relationship remained not significant.

Moreover, in patients with Parkinson’s disease, pathological 
accumulation of α-synuclein in the brain occurs prior to the onset of 
motor symptoms. Increased α-syn, such as asy-no and p-asyn in the 
blood has been proposed as biomarkers of PD diagnosis (Atik et al., 
2016). Spearman’s correlation analysis was performed to determine 
whether Parkin correlated to the asy-no and p-asyn concentrations. 
We found that Parkin was significantly positively correlated to asy-no 
(r = 0.453, p < 0.001, Supplementary Figure 1A) and p-asyn (r = 0.428, 
p < 0.001, Supplementary Figure  1B), indicating the probable 
interaction of Parkin and a-syn in the PD pathogenesis. The ROC 
analysis showed that a blood Parkin cutoff value of 19.141 ng/mL had 

a sensitivity of 78.6% and a specificity of 83.7% for distinguishing 
between PD and HC (Figure 1D). Next, all subjects were divided into 
Parkin positive (+) and negative (−) according to this cutoff value 
(Supplementary Figure  1C). Baseline levels of asy-no 
(Supplementary Figure 1D) and p-asyn (Supplementary Figure 1E) 
were higher in patients with Parkin-positive (+) subjects compared to 
the negative (−) groups. Whereas the scores of UPDRS part I-IV and 
total were similar between Parkin (+) and (−) groups 
(Supplementary Figures 1F–J), we did not find any association of 
Parkin status with motor scales. Then, to test the association of Parkin 
status with neuropsychological scales in PD subjects, we found higher 
HAMA, HAMD, RBDQ-HK, and ADL performance in the PD Parkin 
(+) groups (Supplementary Figures 1K–O).

Data mining of PD patients with PRKN 
mutations by bioinformatic analysis

We analyzed expression datasets from patients with PD with 
PRKN mutation (GSE90514, GSE7621, and GSE205450) archived in 
GEO datasets to define the omics features associated with the disease. 
A total of three cohorts comparing PD patients with PRKN mutations 
to healthy controls were found, which referred to changes in the 
transcriptional levels from the skin fibroblasts, substantia nigra, 
caudate, and putamen biospecimen, respectively. We  identified 
thousands of differentially expressed genes (DEGs) that were 
implicated in these three Cohorts (Figure 2A). For cohort 1 (González-
Casacuberta et  al., 2018), a similar analysis of DEGs using high-
quality bulk RNA sequencing (RNA-seq) data from the GSE90514. 
Heat map showing expression of DEGs in every sample (Figure 2B). 
Moreover, the volcano plot depicts the top upregulated and 
downregulated genes in PD subjects with PRKN mutations compared 
to controls (Figure 2C). Metabolism and Protein GO analyses revealed 
common perturbed pathways in PD subjects with PRKN mutations, 
including lysosome, Fatty acid degradation, Glycolysis, Tyrosine 
metabolism, and Cholesterol metabolism et al. (Figure 2D). Next, 
Gene Set Variation Analysis (GSVA) as a non-parametric, 
unsupervised method for estimating the variation of pathway activity 
through the samples of an expression data set (Hänzelmann et al., 
2013). In PD subjects with PRKN mutations, GSVA showed that a 
gradual increase in the Proteasome, Protein Export, Selenoamino acid 
metabolism, N-glycan biosynthesis pathways, et al (Figure 2E). These 
results suggested that the wide bioenergy metabolism turbulences 
were observed in PD subjects with PRKN mutations.

Next, the Venn diagram illustrates the overlap of genes between 
Cohort 2 and Cohort 3 (Figure 2F). As shown in Figure 2G, there was 
a mild separation of PD subjects from healthy controls on the PCA 
score plot, indicating the reasonable to pool Cohort 2 and Cohort 3. 
Notably, the volcano plot and heatmap displayed the primary 16 
upregulated and downregulated genes in PD patients when we pooled 
Cohort 2 and 3 (Figures 2H,I). Importantly, based on the RNA-seq 
analysis, the transcriptional levels of these 16 genes were changed in 
the PD groups, such as nup21ol, slca4a1, npc1l1, c7orf61, hspb1, 
serpinh1, and hspa6 et  al. (Figure  2J). Then, we  identified the 
promising 6 powerful genes (NUP210L, SLCO4A1, AMBN, GPD1, 
NTRK1, HBB) after the Lasso regression analysis. To test the selected 
6 genes’ capacity to discriminate between PD and controls, the AUC 
was 0.868 (Figure 2K). Finally, we aimed to assess the expression of a 
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TABLE 1  Basic characteristics of PD patients and healthy controls.

Characteristics HC (N = 107) PD (N = 197) p value

Age (years) 65.0 [59.0;69.0] 67.0 [61.0;72.0] 0.146

Sex 0.066

 � Female 62 (57.9%) 91 (46.2%)

 � Male 45 (42.1%) 106 (53.8%)

Height (cm) 161 (7.05) 161 (8.33) 0.579

Weight (kg) 63.5 (9.23) 61.7 (10.5) 0.124

BMI (kg/m2) 24.4 (2.86) 23.8 (3.22) 0.131

BMI Group 0.567

 � <24 51 (47.7%) 105 (53.3%)

 � 24–28 12 (11.2%) 23 (11.7%)

 � >28 44 (41.1%) 69 (35.0%)

Education (years) 5.00 [0.00;6.50] 4.00 [0.00;7.00] 0.837

Disease History (years) - 3.00 [2.00;7.00] -

Smoker 0.308

 � Current 16 (15.0%) 25 (12.7%)

 � Former 2 (1.87%) 11 (5.58%)

 � Never 89 (83.2%) 161 (81.7%)

Drinker 0.846

 � Current 17 (15.9%) 35 (17.8%)

 � Former 4 (3.74%) 6 (3.05%)

 � Never 86 (80.4%) 156 (79.2%)

HP 0.001

 � No 52 (48.6%) 135 (68.5%)

 � Yes 55 (51.4%) 62 (31.5%)

DM 0.807

 � No 91 (85.0%) 164 (83.2%)

 � Yes 16 (15.0%) 33 (16.8%)

LEDD - 375 [300;581] -

Related scales

UPDRS - 39.0 [28.0;53.0] -

I - 2.00 [1.00;4.00] -

II - 11.0 [8.00;16.0] -

III - 24.0 [15.0;34.0] -

IV - 2.00 [0.00;4.00] -

H-Y stage - 2.50 [1.50;3.00] -

MMSE 24.0 [20.5;26.0] 23.0 [18.0;27.0] 0.164

HAMD 3.00 [0.00;5.00] 5.00 [3.00;9.00] <0.001

HAMA 4.00 [1.00;7.00] 9.00 [5.00;13.0] <0.001

RBDQ-HK 4.00 [1.00;9.50] 15.0 [3.00;34.0] <0.001

ADL 20.0 [20.0;20.0] 26.0 [21.0;34.0] <0.001

Complications

Fall -

 � No - 154 (84.6%)

 � Yes - 28 (15.4%)

(Continued)
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priori identified gene sets and biological pathways associated with PD 
using Gene Set Enrichment Analysis (GSEA) in pooled cohorts 2 
and 3. We adopted the Reactome analysis to describe human biological 
processes in PD background, and by mapping disease-associated 
pathways (Figures  2L,M). Notably, PINK1-PRKN MEDIATED 
MITOPHAGY, UREA CYCLE, DEGRADATION OF CYSTEINE 
AND HOMOCYSTEINE, MITOPHAGY and SIGNALING BY EGFR 
IN CANCER were enriched in PD, suggesting mitochondrial 
dysfunction and metabolic abnormalities (Figure 2L). Additionally, 
FATTY ACID METABOLISM, LIPOIC ACID METABOLSIM, 
PROTEASOM, and MAPK SIGNALING PATHWAY showed 
dysregulation, highlighting metabolic imbalances in PD (Figure 2M). 
These findings provide new insights into the molecular mechanisms 
underlying PD and may aid in the identification of potential 
biomarkers and the development of targeted therapeutic strategies.

Discriminative accuracy of blood 
biomarkers for PD patients

Extract from the WPBLC cohort, 105 blood samples (subset 1: 
PD: 55, HC: 50) test the 66 common biomarkers (Figure  3A and 
Supplementary Table 1). Details for the basic characteristics of these 
sunsets are provided in Supplementary Table  2. Least absolute 
shrinkage and selection operator (LASSO) regression is an adaptation 
of the popular and widely used linear regression algorithm as a new 
mathematical prediction model to select variables in disease diagnosis 
(Li et al., 2022). In our study, since we have many blood biomarkers 
and relatively few cases, the LASSO regression analysis was applied to 
pick out the biomarkers most associated with PD, and the top  9 
powerful variables were identified (Figures 3B–D). Moreover, we used 
the random forest (RF) analysis, a machine learning approach that 
aids in identifying several model components and quantifiable 
pre-simulation (Zhao et al., 2018). We trained a RF, tested its predictive 
accuracy and established the following 8 most promising factors in the 

PD diagnosis set (Figure 3E). The overlapping parts of LASSO and RF 
selected biomarkers were chosen for further analyses. These included 
Parkin, Homocysteine (Hcy), carcinoembryonic antigen (CEA), Urea, 
Total proteins, total cholesterol (TC), and Albumin.

As seen in Figures 3F–K and Supplementary Table 3 in supporting 
information, higher levels of Hcy, CEA, Urea, total proteins, and 
albumin were observed in PD participants; only TC displayed the 
opposite direction. Moreover, we used ROC analyses to assess the 
utility of these selected blood biomarker levels to discriminate 
between PD and controls (Figure 3L and Supplementary Table 4). The 
AUCs were 0.749 for Hcy (sensitivity = 0.84, specificity = 0.582), 0.668 
for Total proteins (sensitivity = 0.86, specificity = 0.455), and 0.665 for 
Urea (sensitivity = 0.68, specificity = 0.636). By contrast, the 
discrepancy between the control and PD groups was low in the CEA 
(AUC: 0.654, sensitivity = 0.38, specificity = 0.873), albumin (AUC: 
0.643, sensitivity = 0.62, specificity = 0.636), and TC (AUC: 0.620, 
sensitivity = 0.60, specificity = 0.673). Of note, there was a strong 
trend toward improved diagnostic accuracy for PD patients when 
these blood biomarkers were combined with Homocysteine and Urea 
(AUC: 0.779, Figures 3M, N), indicating that these selected blood 
biomarkers may be promising factors to differentiate PD from HC.

Associations between blood biomarkers 
measure and progression to PD

The analysis of the Binary logistic regression after adjusting for 
age, sex, education, BMI, hypertension, and diabetes mellitus revealed 
an increased odds ratio (OR) associated with interquartile range (IQR) 
increases in Parkin levels among PD participants (Q4/Q1 = 8.07, p for 
trend = 0.017, Figure 4A and Supplementary Table 5). Each quartile 
augment in IQR was associated with an obvious increase in the odds 
of incident PD (Q2/Q1 = 1.32, Q3/Q1 = 4.74, Figure 4A). Moreover, 
the IQR increment in Hcy, total proteins, and albumin levels were also 
significantly associated with the risk of subsequent PD diagnosis: the 

TABLE 1  (Continued)

Characteristics HC (N = 107) PD (N = 197) p value

Dyskinesia -

 � No - 170 (92.9%)

 � Yes - 13 (7.10%)

On–off -

 � No - 137 (74.9%)

 � Yes - 46 (25.1%)

Cognitive impaired 0.161

 � No 72 (67.3%) 115 (58.4%)

 � Yes 35 (32.7%) 82 (41.6%)

Continuous variables were assessed for normality using Kolmogorov–Smirnov test, to variables on normal distribution, results were expressed as the mean ± standard deviation (SD) and 
compared using the student’s t-test; while data on non-normal distribution, variables were exhibited as median [IQR] and compared using the Mann–Whitney U-test. Categorical variables 
were listed as number (percentage) and compared using the chi-squared test.
HC: Healthy Control; PD: Parkinson’s disease; BMI: Body Mass Index; Smoker (Current: people who have smoked continuously or cumulatively for 6 months or more and still smoke at the 
time of the survey; Former: people who have smoked for more than 6 months and did not smoke at the time of the survey; Never: people who have smoked for less than 6 months throughout 
their lives); Drinker (Current: people who have drunk alcohol continuously or cumulatively for 6 months or more and still drink at the time of the survey; Former: people who have drunk 
alcohol for more than 6 months and did not drink at the time of the survey; Never: people who have drunk alcohol for less than 6 months throughout their lives); HP: hyper blood pressure; 
DM: diabetes mellitus; LEDD: Levodopa Equivalents. UPDRS: unified Parkinson’s disease rating scale; MMSE: Mini-Mental State Examination; HAMD: Hamilton Depression Scale; HAMA: 
Hamilton Anxiety Scale; RBDQ-HK: REM sleep behavior Disorder questionnaire-Hong Kong; ADL: Activity of Daily Living Scale; Fall: subjects had a fall within a year; Dyskinesia: subjects 
with abnormally increased involuntary movements; On–off: subjects with drug effect fluctuation after long-term use of levodopa. Cognitive impaired: subjects with MMSE scores lower than 
cutoff value.
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FIGURE 2

Data mining of PD patients with PRKN mutations by bioinformatic analysis. (A) UPSet plot showing unique and shared genes across Cohorts 1, 2, and 3. 
(B) Heatmap of the top 464 differentially expressed genes (DEGs) in PD vs. HC for Cohort 1, selected with p < 0.05 and |logFC| > 1.5, including 4 PD 

(Continued)
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ORs were 20.19 (95% CI: 4.05–100.68, p for trend = 0.017) for Hcy, 
11.66 (95% CI: 2.33–58.28, p for trend = 0.013) for total proteins, 3.87 
(95% CI: 0.99–15.18, p for trend = 0.044) for albumin. By contrast, 
we did not find any statistical significance in the trend of PD risk for 
Urea (Q4/Q1 = 2.28, p = 0.439), CEA (Q4/Q1 = 3.08, p for 
trend = 0.232), and TC (Q4/Q1 = 0.42, p for trend = 0.177). Using 
locally weighted regression (LOESS) to examine the relationship 
among these selected blood biomarkers in PD and HC participants 
(Figure 4B), we found that Hcy showed a strong relationship with total 
proteins in HC subjects (ρ = 0.380; p < 0.001). We then analyzed the 
correlation of total proteins and other blood biomarkers in both 
groups and found that total proteins were positively associated with 
albumin (ρ =  0.652, p < 0.0001). No significant correlation was 
observed among Urea, CEA, TC and other biomarkers.

Next, to evaluate the association of selected blood biomarkers 
with PD risk evaluation. Notably, the Weighted Quantile Sum (WQS), 
a statistical model for multivariate regression in the high-dimensional 
dataset that operates in a supervised framework, was used to calculate 
a single score to evaluate the individual effect of the blood biomarkers 
on PD risk (Eggers et  al., 2022). In this study, results from WQS 
analyses suggested that increased levels of albumin, Hcy, Parkin, and 
CEA were the highest four factors resulting in PD (Figure 4C and 
Supplementary Table 6). The same pattern of findings was observed 
by Bayesian kernel machine regression (BKMR). As represented in 
Figures  4D,E, the plots were applied to delineate the individual 
exposure-response functions for each blood biomarker and joint 
effects of blood biomarkers mixture on PD risk, after adjusting for age, 
sex, education, BMI, hypertension, and diabetes mellitus. Both BKMR 
and WQS models clearly demonstrated a positive dose–response 
trajectory in the association of Hcy, total proteins, Urea, CEA, and 
albumin and an increased risk of subsequent PD.

Relationship with Parkin and blood 
biomarkers profile

To determine whether the levels of these blood biomarkers 
could be  impacted by Parkin status, we  constructed the groups 
divided into Parkin positive (+) and negative (−) according to the 
cutoff value. However, most blood biomarkers, such as albumin, 
Hcy, total proteins, and TC were similar between Parkin (+) and (−) 
groups (Supplementary Figures 2A–F), indicating that these blood 
markers were not associated with Parkin levels. Next, we compared 
the individuals with Parkin (+) to those with Parkin (−) at baseline 
and found higher Urea levels in the PD Parkin (+), and lower CEA 
concentrations in the PD Parkin (−) groups. We next sought to 
assess whether combining Parkin with these selected blood 
biomarkers could further improve the accuracy of PD diagnosis. 

Parkin and these blood biomarkers were included and removed step 
by step to assess their contribution to the model. The best model 
included blood Parkin, Hcy, total proteins, and Urea, with an 
accuracy of 0.841 (Supplementary Figure  2H). Moreover, it is 
notable that the model only incorporated measures of blood Parkin, 
total proteins, and Urea displayed a similar accuracy to that of the 
best model (AUC: 0.829). Of interest, when the model was 
constructed again to include two biomarkers, such as Parkin plus 
Hcy also provided a relatively high AUC of 0.817 
(Supplementary Figure  2G). In summary, blood Parkin, in 
combination with Hcy, total proteins, and Urea, might significantly 
improve the diagnostic value of PD.

The above results indicated that Parkin was a significant risk factor 
for PD and associated with blood biomarkers including Hcy, CEA, 
Urea, total proteins, TC, and Albumin, especially Hcy, total proteins, 
and Urea. Therefore, we  further explored whether these blood 
biomarkers could mediate the influences of Parkin on PD diagnosis 
(Supplementary Figures  2I–N). Mediation analyses with 10,000 
bootstrapped iterations were carried out to examine the mediation 
effects of Parkin on PD. The results demonstrated that the relationship 
between Parkin and PD was partially mediated by CEA and albumin 
with the approximate proportion of mediation of 22.68% (p = 0.04) 
and 25.83% (p = 0.02), respectively, rather than Hcy (proportion: 
7.62%, p = 0.36), total proteins (proportion: 6.55%, p = 0.06), Urea 
(proportion: 12.58%, p = 0.10), and TC (proportion: −23.47%, 
p = 0.18).

Discussion

This cross-sectional study analyzed Parkin and various blood 
biomarkers in a large sample of idiopathic Parkinson’s disease (PD) 
patients and matched healthy controls. Key findings include: (1) PD 
patients had higher levels of blood Parkin, Hcy, total proteins, urea, 
albumin, and CEA compared to controls. Additionally, a model 
incorporating blood Parkin, Hcy, total proteins, and urea effectively 
distinguished PD from healthy controls, achieving a higher accuracy 
(AUC 0.841) than other biomarker combinations. (2) Gene set 
enrichment analysis suggested that pathways such as PINK1-Parkin-
mediated mitophagy, urea cycle, cysteine degradation, and riboflavin 
metabolism may be  involved in the Parkin mutation process. (3) 
Hazard models showed a positive dose–response relationship between 
Parkin, Hcy, CEA, and urea levels and the risk of developing PD, 
although Parkin levels did not significantly correlate with motor 
characteristics. The link between Parkin and PD was partially 
mediated by CEA and albumin, but not by Hcy, total proteins, or urea, 
which were unaffected by Parkin status. These results highlight the 
potential of blood biomarkers in the WBPLC cohort and suggest an 

and 4 HC samples. (C) Volcano plot of the top 464 DEGs in PD vs. HC for Cohort 1. (D) GO analyses revealed common perturbed pathways in PD 
subjects with PRKN mutations. (E) GSVA of Cohort 1 shows upregulation in 8 metabolic pathways, such as proteolysis and protein export, and 
downregulation in 7 pathways. (F) A Venn plot reveals 15,193 genes common to Cohort 2 and 3. (G) Cohorts 2 and 3 were combined and batch-
corrected with the “SVA” package, resulting in Cohort C, comprising 85 PD and 90 HC samples. (H) Heatmap of average expression levels for 16 
significant DEGs in Cohort C’s training set. (I) Volcano plot illustrating DEGs between PD and HC in the same training set, highlighting 16 significant 
DEGs. (J,K) Bar graph of the 16 DEGs’ expression levels in the training set, confirming observed expression patterns. Lasso regression identified 6 genes 
(NUP210L, SLCO4A1, AMBN, GPD1, NTRK1, HBB) from 16 DEGs, resulting in a model with an AUC of 0.868 in the test set. (L,M) GSEA in Cohort C 
showed enrichment in 186 KEGG pathways and 1,586 Reactome pathways, highlighting the top 5 Reactome and 4 KEGG pathways.

FIGURE 2 (Continued)
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FIGURE 3

Discriminative Accuracy of blood parkin and additional blood biomarkers for PD patients. (A) Subjects were split into two cohorts based on extra blood 
tests: Subset 1 included 55 PD and 50 HC subjects with additional biomarkers, while Subset 2 comprised the remaining 142 PD and 57 HC subjects. 
(B) Blood parkin levels and biomarkers were standardized, and z-scores were used for LASSO regression analysis, with diagnosis as the dependent 
variable, resulting in coefficient profiles for 67 variables. (C) The optimal λ value for LASSO regression was determined using 10-fold cross-validation, 
with dotted vertical lines indicating values from the minimum criteria (left) and the “one standard error” criteria (right). (D) Nine biomarkers were 
selected based on the minimum λ criteria, and their LASSO coefficients are shown in the bar graph. (E) Feature importance for HC/PD classification 
was assessed using a Random Forest model with 100 decision trees, ranking the top 8 blood biomarkers displayed in a bar graph. (F–K) Six biomarkers 
were common between LASSO and Random Forest selections, while boxplots illustrated levels of six additional biomarkers in PD and HC subjects. 
(L) ROC analysis results for the six biomarkers were presented individually. (M) ROC analysis results for models combining blood CEA, HCY, and urea 
levels were presented. (N) ROC analysis results for models with nutrition-related biomarkers, including total protein, TC, and albumin levels, were also 
shown. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 4

Associations between blood biomarkers and progression to PD. (A) Forest plots show binary logistic regression results for seven biomarkers, adjusted 
for age, sex, education, BMI, smoking, alcohol consumption, and histories of HP and DM. Subjects were categorized into four groups (Q1, Q2, Q3, Q4) 
based on biomarker quartiles, with individual levels replaced by group medians. (B) A multivariate correlation scatter matrix with LOESS analysis was 
used to assess relationships among blood biomarkers in PD and HC participants. (C) Weighted values for PD biomarkers were calculated using WQS 
models. (D) Associations between blood biomarkers and PD risk were estimated using BKMR. This figure illustrates the combined effects of blood 
biomarkers on PD risk. The plot shows the difference in PD risk and the 95% confidence interval (CI) when blood biomarkers are set at specific 
percentiles versus their medians. (E) Exposure-response functions illustrate the relationship between each blood biomarker and PD risk, with other 
biomarkers held at median values.
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effective PD diagnostic model using blood Parkin, Hcy, total proteins, 
and urea.

This study is the first to evaluate blood Parkin as a clinical 
biomarker for Parkinson’s disease (PD). We found that higher blood 
Parkin levels were linked to an increased risk of developing PD 
(Figure 4A). This finding was robust in a various analysis ways and 
models (WQS and BKMR), indicating minimal influence from 
confounding factors or reverse causation (Figures 4C–E). Additionally, 
only one prior study in a Japanese cohort indicated that blood Parkin 
levels could differentiate multiple sclerosis from neuromyelitis optica 
spectrum disorders (Cossu et al., 2021). PD has a long latency between 
biological onset and clinical symptoms, meaning some sporadic cases 
may be biologically active but not yet clinically evident at recruitment 
(Das and Ramteke, 2024). It’s unclear if blood Parkin is an early 
marker for preclinical PD or if the correlation is due to shared genetic 
factors. Previous studies have demonstrated that impaired mitophagy 
in PD triggers a cellular stress response, activating mitophagy-related 
genes, including Parkin (Liu et  al., 2019). As the dysfunctional 
mitochondria accumulate in neurons, the demand for mitophagy 
increases, resulting in an upregulation of Parkin production (Joselin 
et  al., 2012). Reactive oxygen species (ROS) may regulate Parkin 
expression, as ROS inhibitors can block Parkin recruitment in mouse 
embryonic fibroblasts and deleting the DJ-1 gene, which regulates 
ROS, increases stress-induced Parkin recruitment and mitophagy 
(Joselin et al., 2012).

Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a 
transcription factor that orchestrates the cellular response to oxidative 
stress, has been documented to enhance the expression of PINK1 
under conditions of oxidative stress (Bonello et al., 2019; Chung et al., 
2020), potentially facilitating the subsequent recruitment of Parkin 
and the upregulation of Parkin expression at the transcriptional level. 
Previous studies indicate that extracellular vesicles (EVs) contain all 
components of mitochondria (Zorova et al., 2022). Meanwhile, PRKN 
mutations are associated with an increased presence of extracellular 
mitochondria compared to control subjects, as evidenced by a clinical 
study (Choong et  al., 2021). Consequently, the overproduction of 
Parkin and increased extracellular mitochondria leads to an excess 
release of Parkin into the bloodstream.

Notably, several preclinical studies have assessed changes in 
Parkin function in PD pathogenesis (Pickrell and Youle, 2015; Norris 
et al., 2015; Moskal et al., 2020). Established PD animal models are 
associated with abnormal Parkin-mediated mitophagy (Malpartida 
et  al., 2021; Clark et  al., 2021), driven by absolute impairment in 
mitochondria. Loss-of-function mutations in Parkin of Drosophila 
represent a grievous flight muscle defect resulting in  locomotive 
behavioral problems and reduced lifespan (Pesah et  al., 2004). 
Moreover, flies with Parkin mutations are more susceptible to 
oxidative stress and some dopamine neurons display abnormal 
shrinkage and morphology (Cha et  al., 2005). However, the first 
Parkin-KO mouse models showed only mild phenotypes, such as the 
disruption of fine motor skills, slight abnormalities in dopamine 
metabolism and release, and no dopaminergic neuron loss (Goldberg 
et al., 2003). Another Parkin-null mouse model also did not cause 
motor behavioral phenotypes and DA neurodegeneration (Von Coelln 
et al., 2004). These results indicate that mice compensate for the loss 
of Parkin in DA neurons or that the neurons in mice do not reach a 
threshold of mitochondrial dysfunction necessary to cause detrimental 
phenotypes (Goldberg et al., 2003; Von Coelln et al., 2004).

In this cohort, higher baseline levels of Hcy, total proteins, urea, 
CEA, and albumin were linked to an increased risk of incident PD 
(Figures 4A,C–E). However, pre-existing health conditions that could 
affect these biomarkers were not accounted for, leaving potential 
residual confounding. To mitigate bias, we employed multiple risk 
models in our observational study. Taken together, the blood Hcy, 
CEA, and albumin levels could be used as indicators for reflecting the 
higher risk of subsequent PD diagnosis, which was supported by 
previous studies (Wang et al., 2017; Akil et al., 2015; Zhou, 2024; Fan 
et al., 2020). In a previous cohort study from China (Fan et al., 2020), 
blood Hcy levels in PD patients were elevated compared to those of 
HC. High Hcy drives PD development and progression while 
aggregating the clinical symptoms of PD patients (Zhou, 2024). That 
finding suggested that Hcy might be involved in the process of PD 
occurrence. Regarding the CEA, consistent with our results 
(Figure 3H), one cross-sectional study (Akil et al., 2015) including 51 
PD patients and 50 healthy controls reported that the CEA was 
significantly higher in PD relative to the control group (mean 
2.40 ± 1.51 vs. 1.72 ± 0.87 (ng/mL), p = 0.015). In contrast, one study 
noted that the levels of serum albumin were significantly lower in PD 
patients than those in controls (Wang et  al., 2017). Multivariable 
logistic regression indicated that serum albumin is an independent 
risk factor for PD, with an AUC of 0.883 (95% CI 0.835–0.931) (Wang 
et al., 2017). Further research is needed to clarify the role of albumin 
in PD. Nonetheless, these results support the direct association 
between PD and blood levels of Hcy, CEA, and albumin.

This study’s key advantages include enrolling well-defined “typical” 
PD patients of varying severity and healthy controls, collecting detailed 
clinical and biospecimen data, and measuring multiple blood 
biomarkers simultaneously. We explored the relationships between 
blood Parkin and both motor and nonmotor variables, such as 
RBDQ-HK and UPDRS factors, which have been less studied.

Limitations of the study

However, our study had limitations, including its cross-sectional 
design and lack of prospective follow-up. Blood levels of Parkin and 
other biomarkers were measured only at enrollment. Future research 
should track these biomarkers over time to better understand their 
changes in Parkinson’s disease. Moreover, the patients included in this 
study did not have genetic assessments. PD has many distinct 
pathophysiological pathways, the inclusion details clinically diagnosed 
PD, which could be highly heterogeneous. Second, the diagnosis of 
PD was not confirmed by postmortem pathological tests and may 
be susceptible to misclassification. Hence, there is a lack of comparison 
to any gold standard such as neuropathology limiting the validity of 
the “biomarker” application presented. Moreover, we  assessed 
memory function only with MMSE, a simple measurement of global 
cognitive function. Third, although the blood Parkin level is 
significantly increased in patients with PD compared to controls in the 
cross-sectional design of comparison, the Binary logistic regression 
analysis revealed no correlation between disease severity and 
neuropsychological assessment. The possible reason may come from 
the relatively incomprehensive scales and inaccuracy evaluation. A 
future cohort with a larger sample size of participants and 
comprehensive assessment is warranted to confirm our findings and 
validate the role of blood Parkin in predicting disease features.
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Conclusion

Our results suggested that the blood Parkin level could serve as a 
minimally invasive, easily accessible biomarker for PD diagnosis. The 
model included blood Parkin, Hcy, total proteins, and Urea efficiently 
discriminated PD from HC with significantly higher accuracy.
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Glossary

WPBLC - Wenzhou Parkinson’s Biomarkers and Living 
Characteristics study;

PD - Parkinson’s disease

HC - Healthy Control

BMI - Body Mass Index

HP - Hyper blood pressure

DM - Diabetes mellitus

LEDD - Levodopa Equivalents

UPDRS - Unified Parkinson’s disease rating scale

MMSE - Mini-Mental State Examination

HAMD - Hamilton Depression Scale

HAMA - Hamilton Anxiety Scale

RBDQ-HK - REM sleep behavior Disorder questionnaire-
Hong Kong

ADL - Activity of Daily Living Scale

CSF - cerebrospinal fluid

NFL - neurofilament light chain

SNpc - substantia nigra pars compacta

CEA - Carcinoembryonic antigen

T_protein - Serum total protein

TC - Serum total cholesterol

Hcy - Homocysteine

asy-no - α-syn oligomers

p-asyn - phosphorylated α-syn

SD - Standardized deviation

IQR - interquartile range

RF - random forest

LASSO - Least Absolute Shrinkage And Selection Operator

AUC - Area under roc curve

OR - Odds ratios

WQS - Weighted quantile sum

BKMR - Bayesian kernel machine Regression

DE - direct effect

IE - indirect effect

TE - total effect

GEO - Gene Expression Omnibus

DEGs - differentially expressed genes

FC - Fold change

GO - Gene Ontology

GSVA - Gene Set Variation Analysis

GSEA - Gene Set Enrichment Analysis

KEGG - Kyoto Encyclopedia of Genes and Genomes

NRF2 - erythroid-derived 2)-like 2

EVs - extracellular vesicles
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Differential cognitive functioning 
in the digital clock drawing test in 
AD-MCI and PD-MCI populations
Chen Wang 1†, Kai Li 2,3*†, Shouqiang Huang 1†, Jiakang Liu 1, 
Shuwu Li 1, Yuting Tu 1, Bo Wang 1, Pengpeng Zhang 1, 
Yuntian Luo 2 and Tong Chen 4*
1 School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, 
Hangzhou, China, 2 School of Information Engineering, Hangzhou Medical College, Hangzhou, China, 
3 Zhejiang Engineering Research Center for Brain Cognition and Brain Diseases Digital Medical 
Instruments, Hangzhou Medical College, Hangzhou, China, 4 Department of Neurology, The Second 
Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General 
Hospital, Beijing, China

Background: Mild cognitive impairment (MCI) is common in Alzheimer’s disease 
(AD) and Parkinson’s disease (PD), but there are differences in pathogenesis and 
cognitive performance between Mild cognitive impairment due to Alzheimer’s 
disease (AD-MCI) and Parkinson’s disease with Mild cognitive impairment (PD-
MCI) populations. Studies have shown that assessments based on the digital 
clock drawing test (dCDT) can effectively reflect cognitive deficits. Based on 
this, we  proposed the following research hypothesis: there is a difference in 
cognitive functioning between AD-MCI and PD-MCI populations in the CDT, 
and the two populations can be effectively distinguished based on this feature.

Methods: To test this hypothesis, we  designed the dCDT to extract digital 
biomarkers that can characterize and quantify cognitive function differences 
between AD-MCI and PD-MCI populations. We enrolled a total of 40 AD-MCI 
patients, 40 PD-MCI patients, 41 PD with normal cognition (PD-NC) patients 
and 40 normal cognition (NC) controls.

Results: Through a cross-sectional study, we  revealed a difference in 
cognitive function between AD-MCI and PD-MCI populations in the dCDT, 
which distinguished AD-MCI from PD-MCI patients, the area under the roc 
curve (AUC) = 0.923, 95% confidence interval (CI) = 0.866–0.983. The AUC 
for effective differentiation between AD-MCI and PD-MCI patients with high 
education (≥12 years of education) was 0.968, CI = 0.927–1.000. By correlation 
analysis, we found that the overall plotting of task performance score (VFDB1) 
correlated with the [visuospatial/executive] subtest score on the Montreal 
Cognitive Assessment (MoCA) scale (Spearman rank correlation coefficient 
[R] = 0.472, p < 0.001).

Conclusion: The dCDT is a tool that can rapidly and accurately characterize 
and quantify differences in cognitive functioning in AD-MCI and PD-MCI 
populations.

KEYWORDS

Alzheimer’s disease, Parkinson’s disease, mild cognitive impairment, digital clock 
drawing test, cognitive function, digital biomarkers
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1 Introduction

Mild cognitive impairment (MCI) is defined as a progressive 
decline in memory or other cognitive functions, while individuals with 
MCI are still able to maintain daily functioning. MCI is commonly 
seen in two neurodegenerative diseases, Alzheimer’s disease (AD) and 
Parkinson’s disease (PD) (Arvanitakis et al., 2019). According to the 
latest data, there are about 416 million people in the continuous 
spectrum of AD worldwide, 32 million of whom suffer from dementia 
(Gustavsson et al., 2023). AD can be divided into three stages of disease 
progression, namely preclinical AD, AD-derived mild cognitive 
impairment (AD-MCI), and AD dementia, of which AD-MCI is an 
important window for its early recognition (Knopman et al., 2021). 
However, the number of people with PD is currently over 10 million 
worldwide, and most of these patients develop cognitive dysfunction 
as the disease progresses (Wang et al., 2021). Studies have shown that 
half of newly diagnosed PD patients are associated with mild cognitive 
impairment after 3 years, and the conversion rate of mild cognitive 
impairment in PD (PD-MCI) patients to PD dementia (PDD) is close 
to 40% (Pedersen et al., 2017). Both AD-MCI and PD-MCI populations 
suffered from cognitive deficits. Compared to AD-MCI populations, 
PD-MCI populations had less severe memory deficits but more severe 
impairments in executive functioning, visuospatial ability, and 
attention (Brandão et al., 2020; Aamodt et al., 2021; Aarsland et al., 
2021; Chandler et al., 2021). So, further fine-grained quantification of 
the differences in cognitive functioning between the two populations 
would help physicians more accurately diagnose the type of cognitive 
impairment in their patients and formulate targeted treatment plans.

At present, neuropsychological scales are mainly used to examine 
cognitive deficits in AD-MCI and PD-MCI populations, but they are 
highly participatory, time-consuming, and require clinician 
involvement (Lawson et al., 2021; Schmitter-Edgecombe et al., 2022; 
Conca et al., 2024). Scholars believed that digital biomarkers could 
be used to objectively characterize cognitive deficits in AD-MCI and 
PD-MCI populations at a fine-grained level (Ding et al., 2022; Park and 
Schott, 2022). Digital biomarkers are the use of digital averages to 
transform the “signals” emitted by humans into a quantifiable, clinically 
average and objective standard that can detect or predict disease 
progression (Coravos et al., 2019; Avram et al., 2020). Most importantly, 
they provided simpler and less costly continuity of real data and early 
detection of subtle changes (Dorsey et al., 2017; Gold et al., 2018). 
Therefore, the use of digital assessment is expected to quantify and 
characterize the differences in cognitive functioning between AD-MCI 
and PD-MCI populations at a fine-grained level, as well as provide a 
favorable reference for further accurate diagnosis of the types of 
cognitive impairment in AD-MCI populations and PD-MCI.

The clock drawing test (CDT) is a multidimensional cognitive 
functioning assessment tool that captures several aspects of cognitive 
functioning, such as executive functioning, planning, visuospatial 
ability, memory and attention (Dion et al., 2021). Whereas, the digital 
clock drawing test (dCDT) provides a more nuanced assessment of 
cognitive functioning status by capturing more detailed parameters. 
Schejter-Margalit et  al. (2021) demonstrated that the use of a 
quantitative digital clock drawing test demonstrated greater sensitivity 
in identifying subtle cognitive declines in early Parkinson’s disease 
when compared to current standardized tests. Li et al.’s (2023) previous 
study showed that the digital clock mapping test could assess cognitive 
dysfunction at a fine-grained level in a population with MCI of AD 

origin and had good early warning efficacy. A Meta-analysis showed 
that the diagnostic performance of the digital clock drawing test was 
superior to that of the traditional pen-and-paper CDT as well as other 
types of digital drawing tests in AD-MCI populations (Chan et al., 
2022). In addition, studies had been conducted to differentiate AD-MCI 
populations from PD-MCI populations based on clock-drawing test 
performance, and the results suggested that clock-drawing test could 
be  used as a complementary tool to clinical diagnostic criteria for 
differentiating AD-MCI populations from PD-MCI populations (Saka 
and Elibol, 2009; Saur et al., 2012; Stagge et al., 2024). Studies on the 
application of the clock drawing test in comparing AD populations with 
cognitively impaired PD populations are detailed in Table 1.

Most studies on clock drawing tests have focused on extracting 
metrics from the final clock drawing results, without a detailed analysis 
of the drawing process. This made it difficult to quantify fine-grained 
differences in cognitive functioning between AD-MCI and PD-MCI 
populations. For example, Jalakas et al. (2019) conducted a study that 
failed to find significant differences between AD and PDD populations 
in clock mapping tests. In contrast, the dynamic digital biomarker-
based clock mapping method provided the possibility of objectively 
and accurately detecting differences in cognitive function between 
AD-MCI and PD-MCI populations, owing to its ability to quantify the 
entire clock mapping process at a fine-grained and continuous level.

In summary, we proposed the following research hypothesis: there 
is a difference in cognitive function between AD-MCI and PD-MCI 
populations in the digital clock drawing test, and the two populations 
can be  effectively differentiated based on this feature. To test the 
hypothesis, we designed the dCDT, extracted digital biomarkers that 
can characterize cognitive function differences between AD-MCI and 
PD-MCI populations, and provided favorable references for the early 
diagnosis, treatment, and prevention of dementia progression in 
AD-MCI and PD-MCI populations.

2 Materials and methods

2.1 Participants recruitment

2.1.1 Sample size estimation
We used the G*Power tool to approximate the final sample size for 

inclusion, with the relevant parameters being Test family: “F tests,” 
Statistical test: “ANOVA: Fixed effects, omnibus, one-way,” Type of 
power analysis: “A priori: Compute required sample size—given α, 
power, and effect size,” Effect size f = 0.3, α err prob = 0.05, Power (1–β 
err prob) = 0.9, Number of groups = 4, and the total sample size was 
calculated to be 164, i.e., 41 people were required for each of the NC 
group, AD-MCI group, PD-MCI group, and PD-NC group.

2.1.2 Participant recruitment process and 
inclusion criteria

In this study, 175 participants were recruited from the 
Department of Neurology and the Department of Nuclear Medicine 
of the Second Medical Center of the General Hospital of the Chinese 
People’s Liberation Army. A total of 165 participants were followed 
up in the trial, including 41 patients with AD-MCI, 42 patients with 
PD-MCI, 42 patients with PD-NC, and 40 NC controls. During the 
formal trial, one AD-MCI patient withdrew due to disease 
progression, and two PD-MCI patients and one PD-NC patient 
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could not participate for unspecified reasons. This left an effective 
sample size of 161, including 40 AD-MCI patients, 40 PD-MCI 
patients, 41 PD-NC patients, and 40 normal controls. PD-MCI and 
PD-NC patients were discontinued within 12 h prior to dCDT. The 
participant screening process is shown in Supplementary Figure 1. 
The demographic characteristics of the participants is shown in 
Supplementary Table  1. To ensure consistency of data, all 
participants completed the dCDT, MMSE, and MoCA sequentially 
on the same day. The MDS-UPDRS assessment was also completed 
by all participants except those in the AD-MCI group.

All of the above participants were native speakers of Chinese and 
given a definite diagnosis by clinical experts. Participants’ general 
information data included age, gender, years of education, Minimum 
Mental State Examination (MMSE) score, Montreal Cognitive 
Assessment (MoCA) score, and Movement Disorder Society Unified 
Parkinson’s Disease Rating Scale III (MDS-UPDRS III) score. The above 
MMSE, MoCA, and MDS-UPDRSIII scales are all standardized Chinese 
versions (Yu et al., 2017; Jia et al., 2021). All experimental procedures 
were in accordance with the Helsinki Declaration and approved by the 
Medical Ethics Committee of the Chinese People’s Liberation Army 
General Hospital (Ethics No. S2022-770-02). Eligible participants were 
collected according to the following inclusion and exclusion criteria.

AD-MCI patients inclusion criteria: (1) met clinical MCI 
diagnostic criteria developed by the National Institute on Aging (NIA) 
and Alzheimer’s Association (ADA) in 2011; (2) 11C-PIB PET/CT 
positive imaging; (3) the dominant hand was the right hand and was 
able to cooperate in completing test; (4) aged 45–80 years old, gender 
was not limited; and (5) signed informed consent form.

PD-MCI patients inclusion criteria: (1) met the British Brain Bank 
PD diagnostic criteria; (2) Parkinson’s disease background, by the 
patient’s family statement or clinician found that the patient’s gradual 

cognitive decline; (3) neuropsychological test cognitive impairment; (4) 
cognitive impairment, but had not yet significantly intervened in the 
patient’s functional independence; (5) the affected side or the more 
serious are the right side of the limb, the habitual hand for the right hand 
and able to cooperate in the completion of the test; (6) aged 45–80 years 
old, gender was not limited; and (7) signed informed consent form.

PD-NC patients inclusion criteria: (1) met the diagnostic criteria of 
the British Brain Bank for PD; (2) cognitive decline was not observed by 
patient informants or clinicians; (3) cognitive decline was not reflected 
in neuropsychological tests or overall cognitive scales; (4) affected side 
or more severely all right limb, dominant hand was right hand, and they 
were able to cooperate with completion of test; (5) aged 45–80 years old, 
gender was not limited; and (6) signed informed consent form.

NC inclusion criteria: (1) no complaints and objective evidence 
of neurologic disease (normal neurologic clinical examination); (2) 
no cognitive impairment; (3) habitual hand is right-handed and 
able to cooperate with the test; (4) aged 45–80 years old, gender 
was not limited; and (5) signed informed consent form.

Exclusion criteria for all participants: (1) history of schizophrenia, 
severe anxiety and depression, and other psychiatric disorders; (2) 
history of severe head injury and other serious illnesses; (3) history of 
alcohol and drug abuse; and (4) other conditions that may prevent 
completion of the test (including arm disability, etc.).

2.2 Design of digital clock drawing test and 
digital biomarkers

Based on the research hypothesis that there is a difference in 
cognitive functioning between AD-MCI and PD-MCI populations in 
the dCDT, and that this feature is effective in distinguishing between 

TABLE 1  Application of the clock drawing test in comparing AD and PD cognitively impaired populations.

Researcher Method Limitation

Saka and Elibol (2009)
Participants draw watches on white paper. Points are 

awarded based on the result of the drawing of the clock.

(1) The sample sizes of AD-MCI patients and PD-MCI patients were small; (2) 

the dimensions of the extracted metrics were limited, and only the final drawn 

clock images were analyzed; and (3) the accuracy of distinguishing between 

AD-MCI patients and PD-MCI patients was low, with an AUC of only 0.668.

Saur et al. (2012)

Participants take a clock drawing test. Points are 

awarded based on the picture of the clock results 

drawn.

(1) The sample sizes of AD-MCI patients and PD cognitively impaired patients 

were small; (2) the dimensionality of the extracted metrics was limited and only 

analyzed on the final drawn clock pictures.

Allone et al. (2018)
Participants drew clocks on paper. The clock drawings 

were rated both quantitatively and qualitatively.

(1) The sample size of PD-MCI patients was small; (2) the dimensionality of 

metrics extraction was limited, and only the final drawn clock pictures were 

analyzed.

Jalakas et al. (2019)
Participants were given a clock drawing test. Scoring 

was based on pictures of the clock drawing results.

(1) There was a large difference in sample size ratios between AD and PDD 

patients; (2) performance on the clock-drawing test was compared between AD 

and PDD patients, but no significant differences were found; and (3) the 

dimensionality of the extracted metrics was limited, and only the final clock 

drawings were analyzed.

Tafiadis et al. (2021)
Participants were given a clock drawing test. Scoring 

was based on pictures of the clock drawing results.

(1) The sample sizes of patients with AD and PDD were small; (2) the 

performance of patients with AD and PDD on the clock-drawing test was 

compared, but no significant differences were found; and (3) the dimensionality 

of the extracted metrics was limited, and only the final clock drawings were 

analyzed.

Alzheimer’s disease (AD), Parkinson’s disease (PD), Mild cognitive impairment due to Alzheimer’s disease (AD-MCI), Parkinson’s disease with Mild cognitive impairment (PD-MCI), 
Parkinson’s disease with normal cognition (PD-NC), Parkinson’s disease dementia (PDD), area under the roc curve (AUC).
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these two populations, we  designed the dCDT using projected 
intercapacitive haptic feedback technology. Details of the test are 
outlined below.

2.2.1 Experimental test design prerequisite
The hardware required for this experiment consists of an Intel 

computer (NUC11PAHi5), a touchable monitor with 3,840 × 2,160 
pixels (Length, width and height 392 × 250 × 10 mm, screen size 
17.3 inches). The software system involved in this experiment is a 
human-computer interaction system. We  built the front-end 
interface of this system through Electron and Vue3, and constructed 
dCDT through HTML5 Canvas, and the sampling frequency of 
human-computer interaction data in the test assessment process 
was about 55 Hz. We  built the back-end system of this system 
through python, and built the human-computer interaction 
database through Mysql database. Human-computer interaction 
data acquisition is shown in Figure 1A.

2.2.2 Experimental test design and principle 
interpretation

The clock drawing test can be  used as a cognitive function 
assessment tool that involves the synergistic effect of multidimensional 
cognitive functions such as executive function and visuospatial 
function. We designed the dCDT to quantify the entire clock-drawing 
process, collect real-time human-computer interaction data reflecting 
participants’ visuospatial and executive functions, and then evaluate 
participants’ cognitive functions in the test process.

The target of the dCDT was that participants need to draw a clock 
at 11:10 on the screen with their right index finger through fingertip 
interaction, and they need to write down all the digits and clock hands 
on the clock face, and the test is limited to 3 min.

2.2.3 Definition and quantitative analysis of digital 
biomarkers

We extracted digital biomarkers from the database via python 
(3.10.0) based on the above objectivized human-computer interaction 
data. To compare cognitive functioning differences between AD-MCI 
and PD-MCI populations in the dCDT at a fine-grained level, 
we  classified digital biomarkers into visuospatial function digital 
biomarkers and executive function digital biomarkers.

The visuospatial function digital biomarkers (VFDB) were used to 
reflect participants’ ability to process, understand, and respond in the 
visuospatial environment of a painted clock, and to assess participants’ 
ability to translate the visual image of a clock (clock numbers, outline, 
and clock hands) into a concrete concept of time or mathematical 
representation, and to focus on clock numbers, outline, and hand 
positions on the clock dial, as well as to effectively ignore other 
irrelevant visual information. The VFDB was scored on the 
participant’s image of the clock-drawing result, including an overall 
score on the participant’s image of the clock (Task Performance of 
Overall Drawing Score), individual scores on the outline of the clock 
(Task Performance of Outline Drawing Score), individual scores on 
the numbers within the clock (Task Performance of Numbers Drawing 
Score), and individual scores on the clock hands (Task Performance 
of Clock Hands Drawing Score).

The executive function digital biomarkers (EFDB) were designed 
to reflect the participant’s ability to plan, strategize, and solve problems 
in the dCDT. The EFDB was measured using a fingertip interaction 
technique to assess participants’ planning, conceptualization, and 
recall of the clock drawing prior to “drawing execution,” including 
Task Completion Time, Total Drawing Pause Time, Initial Drawing 
Pause Time, Drawing Process Pause Time (including total time, 
average time, and maximum time) and Number of Pauses during 

FIGURE 1

Introduction of digital clock drawing testing. (A) Human-computer interaction data acquisition. (B) Dynamic trajectory diagram.
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Drawing. Task Completion Time was used to describe the time it took 
participants to draw the complete clock. Total Drawing Pause Time 
was used to describe the overall thinking and planning of participants 
during clock drawing. Initial Drawing Pause Time was used to 
describe participants’ planning and thinking before the clock was 
drawn. Drawing process Pause Time and Number of Pauses during 
Drawing. They were used to describe participants’ planning and 
thinking about the details of the clock drawing during the 
assessment process.

At the same time, the EFDB was also designed to reflect 
participants’ drawing performance after “planning” through 
fingertip interaction technology, including Drawing Time, Number 
of Draws, Efficiency of Drawing, Length of Drawn Line, Initial 
Drawing Speed, Average of Drawing Speed, Variability of Drawing 
Speed. Drawing Time was used to describe the time participants 
spent drawing the clock. Number of Draws was used to describe the 
number of strokes made by the participants in the clock drawing. 
Efficiency of Drawing was used to describe how efficiently 
participants drew the clock. Length of Drawing Line was used to 
describe the length of lines drawn by participants during the clock 
drawing process. Initial drawing speed, Average of drawing speed, 
Variability of drawing speed were used to describe the magnitude 
and degree of variability of participants’ drawing speed during the 
clock drawing process.

To facilitate future digital biomarker mining analyses, we provided 
a detailed conceptual definition of the various digital biomarkers in 
the test:

	(1)	 Visuospatial Function Digital Biomarkers (VFDB)

Descriptions of visuospatial function digital biomarkers are 
shown in Table 2, and a graphical representation of digital visuospatial 
function biomarkers is shown in Figure 2.

	(2)	 Executive Function Digital Biomarkers (EFDB)

Descriptions of the executive function digital biomarkers are 
shown in Table 3, and a graphical representation of the executive 
function digital biomarkers is shown in Figures 3, 4.

The algorithm for analyzing the above digital biomarkers is 
as follows:

We built on pre-existing algorithms (Li et al., 2023), to obtain Task 
Performance of Overall Drawing Score (VFDB1), Task Performance of 
Numbers Drawing Score (VFDB2), Task Performance of Outline 
Drawing Score (VFDB3) and Task Performance of Clock Hands 
Drawing Score (VFDB4), Task Performance of Overall Drawing Score 
(VFDB1) was calculated by Equation 1:

	 1 2 3 4VFDB VFDB VFDB VFDB= + + 	 (1)

We applied Optical Character Recognition to calculate the Task 
Performance of Numbers Drawing Score (VFDB2), assigning a score 
of 1 if the clock digits were complete and distributed clockwise, and 
0 otherwise. We applied contour edge detection to calculate the Task 
Performance of Outline Drawing Score (VFDB3), assigning a score 
of 1 if the outer contour of the clock was closed, and 0 otherwise. 
We computed the Task Performance of Clock Hands Drawing Score 
(VFDB4) using the Spatial Transformer Network clock recognition T
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architecture, if the clock time was recognized as 11:10, the Task 
Performance of Clock Hands Drawing Score (VFDB4) was 1, 
otherwise, it was 0. The clock time was recognized by the equation:

	 ( ) 720T Pictures P= ∈Φ
	 (2)

In Equation 2, T was the time of the predicted clock, Pictures 
was the clock image drawn by the participants, and Φ was the 
classification network. There will be 12 results for hours, i.e., 1:00 
to 12:00; and 60 results for minutes, i.e., 0 to 59:00. There were 720 
ways to combine time. P720 was 720 classification results, and the 
calculation of the task. The calculation of Task Performance 
Calculation of Hand Drawing Score (VFDB4) is shown in 
Supplementary Figure 2.

We recorded the participant’s Task Completion Time (EFDB1) and 
Initial Drawing Pause Time (EFDB3). Let the participant’s Number of 
Draws (EFDB9) was A. For each draw: The a-th drawn line (1 ≤ a ≤ A, 
a ∈ N) was labeled La. The drawing duration for the a-th line was ta. 
Line La consisted of Ba drawing coordinate points, with the b-th 
drawing coordinate point (1 ≤ b ≤ Ba, b ∈ N) denoted as ( bX , bY ). The 
pause time between the completion of line La and the start of line 
La + 1 was t(a，a + 1), Total Drawing Pause Time (EFDB2), Total Drawing 
Process Pause Time (EFDB4), Maximum of Drawing Process Pause 
Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), 
Number of Pauses during Drawing (EFDB7) were calculated by 
Equations 3–8:

	 2 3 4EFDB EFDB EFDB= + 	 (3)

	
( ) ( )

1
4 , 1

1
1 a A 1, N

A

a a
a

EFDB t a
−

+
=

= ≤ ≤ − ∈∑
	 (4)

	 ( )5 , 1
1 a 1

max a a
A

EFDB t +
≤ ≤ −

=
	 (5)

	
4

6 1
EFDBEFDB

A
=

− 	 (6)

	
( ) ( )

( )
1 1

1 1

1
0

b b b b

b b b b

X X and Y Y
D b

X X or Y Y
+ +

+ +

 = ==  ≠ ≠ 	 (7)

	
( )

1
7

1 1

aBA

a b
EFDB D b

−

= =
= ∑ ∑

	 (8)

In Equation 7, ( )
1

1

aB

b
D b

−

=
∑  was used to calculate the number of 

pauses in judging a particular drawing of a line, and A indicated that 
the participant drew a total of A lines.

FIGURE 2

Graphical representation of visuospatial function digital biomarkers.
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TABLE 3  Descriptions of the executive function digital biomarkers.

Cognitive impairment Digital biomarkers Abbreviation Interpretation and units

Patients with AD-MCI and PD-MCI exhibit 

impairments in executive function (Arrigoni 

et al., 2024; Zhang et al., 2024)

Executive function digital biomarker1: Task Completion Time EFDB1

It was used to calculate the time taken by the participant from entering the test to 

completing the clock drawing, i.e., the total time taken to complete the test (Unit: seconds, 

s).

Executive function digital biomarker2: Total Drawing Pause Time EFDB2

It was used to calculate the sum of the time intervals during which the participant’s finger 

did not touch the screen, i.e., the sum of the time during which the drawing was not 

performed, during the test (Unit: seconds, s).

Executive function digital biomarker3: Initial Drawing Pause Time EFDB3

It was used to calculate the time between a participant’s entry into the test and the first 

drawing on the screen (Unit: seconds, s).

Executive function digital biomarker4: Total Drawing Process Pause 

Time
EFDB4

It was used to calculate the sum of the time the participant’s finger did not touch the screen 

after the first stroke was drawn during the clock drawing process (Unit: seconds, s).

Executive function digital biomarker5: Maximum of Drawing Process 

Pause Time
EFDB5

It was used to calculate the maximum value of the duration that a participant’s finger does 

not touch the screen after the first stroke of the clock drawing process (Unit: seconds, s).

Executive function digital biomarker6: Average of Drawing Process 

Pause Time
EFDB6

It was used to calculate the average duration that a participant’s finger does not touch the 

screen after the first stroke during the clock drawing process (Unit: seconds, s).

Executive function digital biomarker7: Number of Pauses during 

Drawing
EFDB7

It was used to count the number of times a participant’s finger stays on the screen during the 

clock drawing process (Unit: times).

Executive function digital biomarker8: Drawing Time EFDB8

It was used to calculate total time the participant actively spent drawing, i.e., the duration 

the finger stays on the screen (Unit: seconds, s).

Executive function digital biomarker9: Number of Draws EFDB9

It was used to count the number of times a participant drew a line during the clock drawing 

process. (Unit: times).

Executive function digital biomarker10: Efficiency of Drawing EFDB10

It was used to calculate the drawing efficiency of the participants. The participant’s drawing 

time during the clock drawing process, i.e., the time the finger stays on the screen, is first 

calculated, and then analyzed as a percentage of the task completion time (the total elapsed 

time to complete the test), which is Drawing Efficiency (Unit: %).

Executive function digital biomarker11: Length of Drawn Line EFDB11

It was used to calculate the total length of the line drawn by the participant during the clock 

drawing process (Unit: pixels, px).

Executive function digital biomarker12: Initial Drawing Speed EFDB12

It was used to calculate the speed at which the participant drew the first line in the clock 

drawing process (Unit: pixels/seconds, px/s).

Executive function digital biomarker13: Average of Drawing Speed EFDB13

It was used to calculate the average speed at which participants drew each line during the 

clock drawing process (Unit: pixels/seconds, px/s).

Executive function digital biomarker14: Variability of Drawing Speed EFDB14

It was used to calculate the variability of a participant’s drawing speed. That is, the degree of 

variability in the speed at which the participant draws each line is calculated during the 

clock drawing process (Unit: %).
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Drawing Time (EFDB8), Efficiency of Drawing (EFDB10), and 
Length of Drawn Line (EFDB11) were calculated by Equations 9–12:

	
( )8
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1 ,
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In Equation 9, ( ) ( )
1

2 2
1 1

1

aB
b b b b

b
X X Y Y

−

+ +
=

− + −∑  was used to 

calculate the length of the line La drawn by the participants.

We separately calculated the speed at which the participants 
draws each line, i.e., the speed Va at which the a-th line La (which has 
a total of Ba drawing coordinate points) was drawn, and then 
calculated the Initial Drawing Speed (EFDB12), Average of Drawing 
Speed (EFDB13) and Variability of Drawing Speed (EFDB14), which 
were given by Equations 13–17:

	

( ) ( )1 ,a
a

a

L L
V a A i N

t
= ≤ ≤ ∈

	
(13)

	 12 1EFDB V= 	 (14)

	
( )13
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FIGURE 3

Graphical representation of the executive function digital biomarkers (1).
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In Equation 16, σ  was the standard deviation of the drawing speed 
when participants draw all lines during the test.

2.2.4 Design of experimental rules
Participants were in a quiet room for the test assessment to 

prevent the results from being affected by the noisy environment. 
We positioned a comfortable and stable chair in front of the display 
with touch screen function, after the participant sat down, their 
posture was adjusted to maintain an approximate distance of 30 cm 
between their upper body and the display. This setup ensured clear 
visibility and comfortable finger-based interaction, minimizing 
potential visual interference or operational discomfort that could 
compromise the experimental results. In addition, all participants in 
this experiment were right-handed, and the affected side of PD-MCI 
patients and PD-NC patients were on the right side, so as not to 
interfere with the experimental results by hand habits.

2.3 Experimental settings

2.3.1 Experimental procedures
Prior to the official launch of the dCDT, we trained the staff in 

advance, informing them of the testing process of the dCDT and 
the operation of the human-computer interaction system, and 

subsequently the experimenter will inform participants on the test 
process, objectives, and instructions. All participants were tested 
in a quiet room. We positioned a comfortable and stable chair in 
front of display with touch screen function. After the participants 
were seated, the experimenter assisted will adjust their posture to 
maintain an approximate distance of 30 cm between their upper 
body and the display. Participants were asked to draw a clock at 
11:10 with the fingertips of their right index finger, and the test was 
limited to 3 min. If a participant took longer than 3 min to 
complete the task, they were deemed to have failed the protocol 
and were excluded from further analysis. The dynamic trajectory 
of the dCDT is shown in Figure 1B.

2.4 Statistical analysis

All statistical analyses were performed using the Universal 
Data Analysis Software SPSS 26.0 package. We  conducted a 
comparative analysis of the data from the NC, AD-MCI, PD-MCI, 
and PD-NC groups. Count data were compared between groups 
using chi-square test. Measurement information conforming to 
the normal distribution was expressed as mean ± standard 
deviation (x ± s), and one-way Analysis of Variance (ANOVA) was 
used to compare the differences between multiple groups, and 

FIGURE 4

Graphical representation of the executive function digital biomarkers (2).
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when there was a difference, the least significant difference (LSD) 
method was used for one-to-one comparisons used for pairwise 
comparisons between groups. Measurement data conforming to 
the skewed distribution were expressed as median (interquartile 
spacing), and the Kruskal-Wallis H test was used to compare the 
differences between multiple groups, and multiple comparisons 
between groups were performed. When differences existed, the 
Bonferroni method was used to compare each comparison group 
individually (differences were compared by corrected p-values). 
Additionally, we stratified the AD-MCI and PD-MCI groups by 
educational attainment and conducted comparative analyses 
specifically within the higher education subgroup (years of 
education ≥12 years). Continuous variables with normal 
distributions were presented as mean ± standard deviation (x ± s), 
and intergroup differences were compared using independent 
samples t-tests. For continuous variables with skewed 
distributions, data were expressed as median (interquartile 
spacing) and analyzed using Mann–Whitney U tests. Qualitative 
information was expressed as a rate (%). We used a binary logistic 
regression model to plot the receiver operating characteristic 
curve (ROC) and determined the accuracy of distinguishing 
between different populations for individual digital biomarkers 
and multiple combined digital biomarkers by comparing the area 
under the roc curve (AUC). In conducting correlation analyses 
between digital biomarkers and the Montreal Cognitive 
Assessment (MoCA) total scores with selected subdomain scores, 
Pearson linear correlation analysis was applied when both 
continuous variables exhibited normal distributions. For 
non-normally distributed variables, Spearman rank correlation 
analysis was utilized. p < 0.05 was considered to indicate a 
statistically significant difference.

3 Results

3.1 Demographic and clinical 
characteristics

The effective sample size of this study was 161, including 
40 AD-MCI patients, 40 PD-MCI patients, 41 PD-NC patients, and 
40 normal cognitive controls. They were included in the AD-MCI 
group, PD-MCI group, PD-NC group, and NC group, respectively. 
We  analyzed the difference in baseline data of the four groups, 
including age, gender, years of education, MMSE, MOCA, and 
MDS-UPDRS III of the participants in the four groups, and the results 
of demographic difference analysis for each group are shown in 
Table 4.

In the NC, AD-MCI, PD-MCI and PD-NC groups, there were 
no statistical differences in age (p = 0.470, degree of freedom 
[df] = 3), gender (p = 0.617, df = 3), or years of education 
(p = 0.942, df = 3). However, there were statistical differences in 
MMSE (p < 0.001, df = 3) and MoCA (p < 0.001, df = 3). In the NC 
and AD-MCI groups, there were statistical differences in MMSE 
(p < 0.001) and MoCA (p < 0.001). In the NC and PD-MCI groups, 
there were statistical differences in MMSE (p < 0.001), MoCA 
(p < 0.001) and MDS-UPDRS III (p < 0.001). In the NC and 
PD-NC groups, there were no statistical differences in MMSE 
(p = 0.425) and MoCA (p = 1.000). There were statistical 
differences in MDS-UPDRS III (p < 0.001). In the AD-MCI and 
PD-MCI groups, there were no statistical differences in MMSE 
(p = 1.000) and MoCA (p = 1.000). In the PD-MCI and PD-NC 
groups, there were statistical differences in MMSE (p < 0.001) and 
MoCA (p < 0.001). There were no statistical differences in 
MDS-UPDRS III (p = 1.000). In the AD-MCI and PD-NC groups, 

TABLE 4  The results of demographic difference analysis for each group.

NC 
(n = 40)

AD-MCI 
(n = 40)

PD-MCI 
(n = 40)

PD-NC 
(n = 41)

NC vs. 
AD-
MCI

NC vs. 
PD-
MCI

NC vs. 
PD-
NC

AD-
MCI 
vs. 

PD-
MCI

PD-
MCI 
vs. 

PD-
NC

AD-
MCI 
vs. 

PD-
NC

NC vs. 
AD-

MCI vs. 
PD-

MCI vs. 
PD-NC

Corrected p value
p 

value, 
df

Age, years 61.00 (15.25) 65.50 (13.00) 66.00 (12.00) 65.00 (9.00) >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 0.470, 3

Sex (female/

male)
22/18 21/19 21/19 17/24 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 0.617, 3

Years of 

education
12.00 (6.00) 12.00 (6.00) 12.00 (0.00) 12.00 (3.50) >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 0.942, 3

MMSE 29.00 (2.00) 25.50 (2.00) 26.00 (2.75) 28.00 (1.50) <0.001 <0.001 0.425 1.000 <0.001 <0.001 <0.001, 3

MoCA 25.00 (3.00) 22.00 (3.00) 21.00 (4.75) 25.00 (1.00) <0.001 <0.001 1.000 1.000 <0.001 <0.001 <0.001, 3

MDS-

UPDRS III
4.00 (2.00) / 19.50 (12.75) 16.00 (8.00) / <0.001 <0.001 / 1.000 / /

Because there were no MDS-UPDRS III data for AD-MCI, the NC, PD-MCI, and PD-NC groups were compared in the comparison of differences between multiple groups (p < 0.001, df = 2). 
Highlighting significant p-values (p < 0.05) in bold.
Normal cognition (NC), Mild cognitive impairment due to Alzheimer’s disease (AD-MCI), Parkinson’s disease with Mild cognitive impairment (PD-MCI), Parkinson’s disease with normal 
cognition (PD-NC), p-values (p), degree of freedom (df), Minimum Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Movement Disorder Society Unified 
Parkinson’s Disease Rating Scale III (MDS-UPDRS III).
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there were statistical differences in MMSE (p < 0.001), MoCA 
(p < 0.001).

3.2 Analysis of digital biomarkers

We analyzed the differences in digital biomarkers in the NC, 
AD-MCI, PD-MCI and PD-NC groups. The results of the differential 
analysis of digital biomarkers for each group are shown in Table 5.

In the NC, AD-MCI, PD-MCI and PD-NC groups, there were 
statistical differences in Task Performance of Overall Drawing Score 

(VFDB1) (p < 0.001, df = 3), Task Performance of Numbers Drawing 
Score (VFDB2) (p = 0.002, df = 3), Task Performance of Clock Hands 
Drawing Score (VFDB4) (p = 0.005, df = 3), Task Completion Time 
(EFDB1) (p < 0.001, df = 3), Total Drawing Pause Time (EFDB2) 
(p < 0.001, df = 3), Initial Drawing Pause Time (EFDB3) (p = 0.019, 
df = 3), Total Drawing Process Pause Time (EFDB4) (p < 0.001, df = 3), 
Maximum of Drawing Process Pause Time (EFDB5) (p < 0.001, 
df = 3), Average of Drawing Process Pause Time (EFDB6) (p < 0.001, 
df = 3), Number of Pauses during Drawing (EFDB7) (p < 0.001, 
df = 3), Drawing Time (EFDB8) (p < 0.001, df = 3), Number of Draws 
(EFDB9) (p = 0.029, df = 3), Efficiency of Drawing (EFDB10) (p = 0.002, 

TABLE 5  The results of the differential analysis of digital biomarkers for each group.

NC 
(n = 40)

AD-MCI 
(n = 40)

PD-MCI 
(n = 40)

PD-NC 
(n = 41)

NC 
vs. 

AD-
MCI

NC 
vs. 

PD-
MCI

NC 
vs. 

PD-
NC

AD-
MCI 
vs. 

PD-
MCI

PD-
MCI 
vs. 

PD-
NC

AD-
MCI 
vs. 

PD-
NC

NC vs. 
AD-
MCI 
vs. 

PD-
MCI 
vs. 

PD-
NC

Corrected p value
p 

value, 
df, F*

Visuospatial function digital biomarkers

VFDB1 3.00 (1.00) 2.00 (1.00) 2.00 (1.75) 2.00 (1.50) <0.001 0.001 0.004 1.000 1.000 1.000 <0.001, 3

VFDB2 1.00 (0.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.002 0.012 0.069 1.000 1.000 1.000 0.002, 3

VFDB3 1.00 (1.00) 0.50 (1.00) 1.00 (1.00) 0.00 (1.00) >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 0.244

VFDB4 1.00 (0.00) 0.50 (1.00) 0.00 (1.00) 1.00 (1.00) 0.019 0.009 0.096 1.000 1.000 1.000 0.005, 3

Executive function digital biomarkers

EFDB1 39.61 (19.48) 44.64 (34.12) 75.92 (43.03) 50.33 (24.33) 0.789 <0.001 0.056 <0.001 0.002 1.000 <0.001, 3

EFDB2 22.82 (15.34) 28.52 (27.84) 50.02 (38.63) 30.02 (20.43) 0.328 <0.001 0.141 0.001 0.002 1.000 <0.001, 3

EFDB3 3.61 (2.74) 3.30 (3.35) 5.95 (5.82) 6.08 (6.69) 1.000 0.096 0.491 0.056 1.000 0.317 0.019, 3

EFDB4 19.52 (14.39) 24.54 (27.67) 45.49 (38.53) 22.33 (14.96) 0.224 <0.001 1.000 0.003 <0.001 1.000 <0.001, 3

EFDB5 4.21 (5.80) 5.11 (9.30) 12.50 (15.59) 5.14 (4.81) 0.781 <0.001 1.000 0.034 0.016 1.000 <0.001, 3

EFDB6 0.79 (0.61) 0.87 (0.61) 1.44 (1.20) 0.87 (0.45) 1.000 <0.001 1.000 0.001 <0.001 1.000 <0.001, 3

EFDB7 43.00 (35.00) 44.50 (64.00) 76.00 (87.00) 72.00 (199.00) 1.000 <0.001 0.006 0.030 1.000 0.356 <0.001, 3

EFDB8 16.42 (7.44) 13.92 (7.23) 22.79 (9.06) 17.64 (8.60) 1.000 <0.001 0.201 <0.001 0.148 0.005 <0.001, 3

EFDB9 24.00 (5.75) 26.50 (10.75) 28.00 (12.00) 26.00 (6.50) 0.243 0.028 1.000 1.000 0.460 1.000 0.029, 3

EFDB10 0.40 ± 0.10 0.33 ± 0.12 0.32 ± 0.10 0.39 ± 0.12 0.005 0.001 0.570 0.662 0.007 0.023
0.002, 3, 

5.358

EFDB11

4702.75 

(1796.29)

5145.90 

(1414.18)

5323.38 

(1638.93)

5419.64 

(1169.04)
>0.05 >0.05 >0.05 >0.05 >0.05 >0.05 0.196

EFDB12 756.60 ± 306.98 867.75 ± 396.20 532.79 ± 274.22 610.86 ± 327.57 0.133 0.003 0.048 <0.001 0.288 0.001
<0.001, 3, 

8.258

EFDB13 268.05 (140.69) 307.53 (184.96) 171.28 (66.20) 207.13 (131.64) 1.000 <0.001 0.737 <0.001 0.017 0.025 <0.001, 3

EFDB14 71.71 (85.05) 118.16 (64.06) 92.10 (71.93) 91.91 (69.28) 0.004 1.000 1.000 0.034 1.000 0.030 0.003, 3

* means that when a numerical biomarker satisfies a normal distribution, its F-value will be listed. Highlighting significant p-values (p < 0.05) in bold.
Normal cognition (NC), Mild cognitive impairment due to Alzheimer’s disease (AD-MCI), Parkinson’s disease with Mild cognitive impairment (PD-MCI), Parkinson’s disease with normal 
cognition (PD-NC), p-values (p), degree of freedom (df), F-values (F), Performance of Overall Drawing Score (VFDB1), Task Performance of Numbers Drawing Score (VFDB2), Task 
Performance of Outline Drawing Score (VFDB3), Task Performance of Clock Hands Drawing Score (VFDB4), Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Initial 
Drawing Pause Time (EFDB3), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Number of 
Pauses during Drawing (EFDB7), Drawing Time (EFDB8), Number of Draws (EFDB9), Efficiency of Drawing (EFDB10), Length of Drawn Line (EFDB11), Initial Drawing Speed (EFDB12), 
Average of Drawing Speed (EFDB13), Variability of Drawing Speed (EFDB14).
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df = 3, F = 5.358), Initial Drawing Speed (EFDB12) (p < 0.001, df = 3, 
F = 8.258), Average of Drawing Speed (EFDB13) (p < 0.001, df = 3) and 
Variability of Drawing Speed (EFDB14) (p = 0.003, df = 3).

In the NC and AD-MCI groups, Task Performance of Overall 
Drawing Score (VFDB1), Task Performance of Numbers Drawing Score 
(VFDB2), Task Performance of Clock Hands Drawing Score (VFDB4), 
and Efficiency of Drawing (EFDB10) were significantly lower in the 
AD-MCI group than in the NC group, whereas the Variability of 
Drawing Speed (EFDB14) was significantly higher in the AD-MCI group 
than in the NC group.

In the NC and PD-MCI groups, Task Completion Time (EFDB1), 
Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time 
(EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average 
of Drawing Process Pause Time (EFDB6), Number of Pauses during 
Drawing (EFDB7), Drawing Time (EFDB8), and Number of Draws 
(EFDB9) were significantly higher in the PD-MCI group than in the NC 
group. In contrast, Task Performance of Overall Drawing Score (VFDB1), 
Task Performance of Numbers Drawing Score (VFDB2), Task 
Performance of Clock Hands Drawing Score (VFDB4), Efficiency of 
Drawing (EFDB10), Initial Drawing Speed (EFDB12), and average speed 
of drawing in the Average of Drawing Speed (EFDB13) were significantly 
lower in the PD-MCI group than in the NC group.

In the NC and PD-NC groups, Task Performance of Overall 
Drawing Score (VFDB1) and Initial Drawing Speed (EFDB12) were 
significantly lower in the PD-NC group than in the NC group, whereas 
Number of Pauses during Drawing (EFDB7) was significantly higher in 
the PD-NC group than in the NC group.

In the AD-MCI and PD-MCI groups, Task Completion Time 
(EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process 
Pause Time (EFDB4), Maximum of Drawing Process Pause Time 
(EFDB5), Average of Drawing Process Pause Time (EFDB6), Number of 
Pauses during Drawing (EFDB7), and Drawing Time (EFDB8) were 
significantly higher in the PD-MCI groups than in the AD-MCI group. 
In contrast, Initial Drawing Speed (EFDB12), Average of Drawing Speed 
(EFDB13), and Variability of Drawing Speed (EFDB14) were significantly 
lower in the PD-MCI group than in the AD-MCI group.

In the PD-MCI and PD-NC groups, Task Completion Time 
(EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process 
Pause Time (EFDB4), Maximum of Drawing Process Pause Time 
(EFDB5), and Average of Drawing Process Pause Time (EFDB6) were 
significantly higher in the PD-MCI group than in the PD-NC group. 
Efficiency of Drawing (EFDB10), and Average of Drawing Speed (EFDB13) 
were significantly lower in the PD-MCI group than in the PD-NC group.

In the AD-MCI and PD-NC groups, Drawing Time (EFDB8) and 
Efficiency of Drawing (EFDB10) were significantly smaller in the 
AD-MCI group than in the PD-NC group, whereas Initial Drawing 
Speed (EFDB12), Average of Drawing Speed (EFDB13), and Variability of 
Drawing Speed (EFDB14) were significantly larger in the AD-MCI group 
than in the PD-NC group.

3.3 Correlation analyses between digital 
biomarkers and MoCA

We further investigated statistically significant digital biomarkers 
across the NC, AD-MCI, PD-MCI, and PD-NC groups, specifically 
focusing on: Performance of Overall Drawing Score (VFDB1), Task 
Performance of Numbers Drawing Score (VFDB2), Task Performance 

of Clock Hands Drawing Score (VFDB4), Task Completion Time 
(EFDB1), Total Drawing Pause Time (EFDB2), Initial Drawing Pause 
Time (EFDB3), Total Drawing Process Pause Time (EFDB4), 
Maximum of Drawing Process Pause Time (EFDB5), Average of 
Drawing Process Pause Time (EFDB6), Number of Pauses during 
Drawing (EFDB7), Drawing Time (EFDB8), Number of Draws 
(EFDB9), Efficiency of Drawing (EFDB10), Initial Drawing Speed 
(EFDB12), Average of Drawing Speed (EFDB13) and Variability of 
Drawing Speed (EFDB14). Non-parametric correlations with MoCA 
total scores and [visuospatial/executive] subtest score were computed 
using Spearman rank correlation analysis, given non-normal 
distribution of both variables in all analyzed pairs, as detailed in 
Table 6.

Among them, Performance of Overall Drawing Score (VFDB1) 
correlated positively with the total MoCA score (Spearman rank 
correlation coefficient [R] = 0.312, p < 0.001) and the [visuospatial/
executive] subtest score (R = 0.472, p < 0.001). Task Performance of 
Numbers Drawing Score (VFDB2) correlated positively with the total 
MoCA score (R = 0.258, p = 0.001) and the [visuospatial/executive] 
subtest score (R = 0.394, p < 0.001). Task Performance of Clock Hands 
Drawing Score (VFDB4) correlated positively with the total MoCA 
score (R = 0.307, p < 0.001) and the [visuospatial/executive] subtest 
score (R = 0.456, p < 0.001). Task Completion Time (EFDB1) 

TABLE 6  Correlation coefficients of digital biomarkers with MoCA total 
scores and [visuospatial/executive] subtest score.

Digital 
biomarkers

MoCA score [Visuospatial/
executive] subtest 

score in MoCA

R p R p

VFDB1 0.312 <0.001 0.472 <0.001

VFDB2 0.258 0.001 0.394 <0.001

VFDB4 0.307 <0.001 0.456 <0.001

EFDB1 −0.318 <0.001 −0.262 0.001

EFDB2 −0.343 <0.001 −0.295 <0.001

EFDB3 −0.036 0.653 −0.119 0.133

EFDB4 −0.384 <0.001 −0.327 <0.001

EFDB5 −0.298 <0.001 −0.270 <0.001

EFDB6 −0.321 <0.001 −0.231 0.003

EFDB7 −0.164 0.038 −0.092 0.247

EFDB8 −0.072 0.367 −0.066 0.404

EFDB9 −0.257 0.001 −0.265 0.001

EFDB10 0.331 <0.001 0.292 <0.001

EFDB12 −0.071 0.368 −0.035 0.655

EFDB13 0.122 0.122 0.090 0.255

EFDB14 −0.290 <0.001 −0.232 0.003

Highlighting significant p-values (p < 0.05) in bold.
Montreal Cognitive Assessment (MoCA), Spearman rank correlation coefficient (R), p-
values (p), Performance of Overall Drawing Score (VFDB1), Task Performance of Numbers 
Drawing Score (VFDB2), Task Performance of Clock Hands Drawing Score (VFDB4), Task 
Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Initial Drawing Pause Time 
(EFDB3), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause 
Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Number of Pauses during 
Drawing (EFDB7), Drawing Time (EFDB8), Number of Draws (EFDB9), Efficiency of 
Drawing (EFDB10), Initial Drawing Speed (EFDB12), Average of Drawing Speed (EFDB13), 
Variability of Drawing Speed (EFDB14).
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correlated negatively with the total MoCA score (R = −0.318, 
p < 0.001) and the [visuospatial/executive] subtest score (R = −0.262, 
p = 0.001). Total Drawing Pause Time (EFDB2) correlated negatively 
with the total MoCA score (R = −0.343, p < 0.001) and the 
[visuospatial/executive] subtest score (R = −0.295, p < 0.001). Total 
Drawing Process Pause Time (EFDB4) correlated negatively with the 
total MoCA score (R = −0.384, p < 0.001) and the [visuospatial/
executive] subtest score (R = −0.327, p < 0.001). Maximum of 
Drawing Process Pause Time (EFDB5) correlated negatively with the 
total MoCA score (R = −0.298, p < 0.001) and the [visuospatial/
executive] subtest score (R = −0.270, p < 0.001). Average of Drawing 
Process Pause Time (EFDB6) correlated negatively with the total 
MoCA score (R = −0.321, p < 0.001) and the [visuospatial/executive] 
subtest score (R = −0.231, p = 0.003). Number of Pauses during 
Drawing (EFDB7) correlated negatively with the total MoCA score 
(R = −0.164, p = 0.038). Number of Draws (EFDB9) correlated 
negatively with the total MoCA score (R = −0.257, p = 0.001) and the 
[visuospatial/executive] subtest score (R = −0.265, p = 0.001). 
Efficiency of Drawing (EFDB10) correlated positively with the total 
MoCA score (R = 0.331, p < 0.001) and the [visuospatial/executive] 
subtest score (R = 0.292, p < 0.001). Variability of Drawing Speed 
(EFDB14) correlated negatively with the total MoCA score (R = −0.290, 
p < 0.001) and the [visuospatial/executive] subtest score (R = −0.232, 
p = 0.003).

3.4 Extraction of digital biomarkers of 
cognitive function and analysis of the ROC 
curve

We screened 10 digital biomarkers with intergroup variability in 
AD-MCI and PD-MCI groups. Since the AD-MCI and PD-MCI 
groups differed in cognitive and motor function, these digital 
biomarkers may have included both digital biomarkers of cognitive 
function associated with cognitive impairment and digital biomarkers 
of motor function associated with motor impairment. Given that the 
central goal of this study was to investigate the variability in cognitive 
function between AD-MCI and PD-MCI populations on the clock 
drawing test, these 10 digital biomarkers were further screened to 
exclude motor function differences from interfering with cognitive 
function variability in subsequent analyses.

The 10 digital biomarkers with intergroup variability in the 
AD-MCI and PD-MCI groups were listed below: Task Completion 
Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing 
Process Pause Time (EFDB4), Maximum of Drawing Process Pause 
Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), 
Number of Pauses during Drawing (EFDB7), and Drawing Time 
(EFDB8), Initial Drawing Speed (EFDB12), Average of Drawing Speed 
(EFDB13) and Variability of Drawing Speed (EFDB14).

In the PD-MCI and PD-NC groups, there was no statistically 
significant difference in MDS-UPDRS Part III scores between the two 
groups, indicating that there were no differences in motor function 
and only differences in cognitive function between the two groups. 
Therefore, the 7 digital biomarkers of intergroup variability in 
PD-MCI and PD-NC groups were digital biomarkers of cognitive 
function characterizing cognitive function. These included: Task 
Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total 
Drawing Process Pause Time (EFDB4), Maximum of Drawing Process 

Pause Time (EFDB5), and Average of Drawing Process Pause Time 
(EFDB6), Efficiency of Drawing (EFDB10), and Average of Drawing 
Speed (EFDB13).

In the PD-NC and NC groups, there were only differences in 
motor function between the PD-NC and NC groups, the three 
indicators of intergroup variability in the PD-NC and NC groups 
were digital biomarkers of motor function characterizing motor 
function, including Task Performance of Overall Drawing Score 
(VFDB1), Number of Pauses during Drawing (EFDB7) and Initial 
Drawing Speed (EFDB12).

To identify digital biomarkers that could characterize cognitive 
function in the AD-MCI and PD-MCI groups, we  plotted Venn 
diagrams, the Venn diagram of digital biomarkers is shown in Figure 5.

In Figure  5, we  found no overlap in digital biomarkers of 
cognitive function between PD-MCI and PD-NC groups, or in 
digital biomarkers of motor function between NC and PD-NC 
groups. This indicates that biomarkers identified in the PD-MCI 
and PD-NC groups accurately reflect cognitive function, while 
those in the NC and PD-NC groups accurately reflect motor 
function. Finally, we identified six digital biomarkers of cognitive 
function that could accurately characterize AD-MCI and PD-MCI 
populations as follows:

Task Completion Time (EFDB1), Total Drawing Pause Time 
(EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of 
Drawing Process Pause Time (EFDB5), Average of Drawing Process 
Pause Time (EFDB6), and Average of Drawing Speed (EFDB13).

Subsequently, we plotted ROC curves to assess the ability of digital 
biomarkers to differentiate the AD-MCI group from the PD-MCI group. 
The combined AUC of the six digital biomarkers of cognitive function 
was 0.923, 95% confidence interval (CI) = 0.876–0.983, which was only 
slightly lower than the combined AUC of the 10 digital biomarkers with 
intergroup variability (AUC = 0.929, 95% CI: 0.866–0.908). The ROC 
curves and 95% CI of the combined digital biomarkers that differentiate 
the AD-MCI and PD-MCI groups are shown in Figure 6.

3.5 Differential analysis and ROC analysis 
of digital biomarkers of cognitive function 
in highly educated individuals in the 
AD-MCI and PD-MCI groups

Considering that there was an effect of literacy on cognitive 
functioning, we  screened highly educated individuals (years of 
education ≥12 years) in the AD-MCI and PD-MCI groups and 
divided them into AD-MCI1 and PD-MCI1 groups for differential 
analyses of demographic and numerical biomarkers. Among them, 
age (p = 0.348, t = 0.947), sex (p = 0.535), years of education 
(p = 0.368), and MMSE (p = 0.500) were not statistically different. 
MoCA (p = 0.047) was statistically different. Digital biomarkers 
included only the above obtained digital biomarkers of cognitive 
function. In particular, Task Completion Time (EFDB1) (p < 0.001), 
Total Drawing Pause Time (EFDB2) (p < 0.001), Total Drawing 
Process Pause Time (EFDB4) (p = 0.001), Maximum of Drawing 
Process Pause Time (EFDB5) (p = 0.026), Average of Drawing Process 
Pause Time (EFDB6) (p = 0.001), and Average of Drawing Speed 
(EFDB13) (p < 0.001, t = 6.038) were statistically different. The results 
of the differential analysis of demography and digital biomarkers of 
cognitive function are shown in Tables 7, 8.
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Subsequently, we plotted ROC curves to assess the ability of the 
digital biomarkers to distinguish the AD-MCI1 group from the 
PD-MCI1 group. The joint AUC of the above six statistically 
preexisting digital biomarkers of cognitive function was 0.968, 
CI = 0.927–1.000. The ROC curves and 95% CI for the combined 
digital biomarkers to differentiate the AD-MCI1 group from the 
PD-MCI1 group are shown in Figure 7.

4 Discussion

In this study, we proposed the research hypothesis that AD-MCI 
and PD-MCI populations exhibit different cognitive functioning 
characteristics on the dCDT, and that the two populations can 
be effectively distinguished based on this characteristic. Based on this 
hypothesis, we  designed the dCDT to characterize and quantify 

FIGURE 5

Venn diagram of digital biomarkers. The cognitive functions digital biomarkers in the red boxes that can distinguish between AD-MCI and PD-MCI. 
Normal cognition (NC), Mild cognitive impairment due to Alzheimer’s disease (AD-MCI), Parkinson’s disease with Mild cognitive impairment (PD-MCI), 
Parkinson’s disease with normal cognition (PD-NC), Task Performance of Overall Drawing Score (VFDB1), Task Completion Time (EFDB1), Total Drawing 
Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average of Drawing Process Pause 
Time (EFDB6), Number of Pauses during Drawing (EFDB7), and Drawing Time (EFDB8), Efficiency of Drawing (EFDB10), Initial Drawing Speed (EFDB12), 
Average of Drawing Speed (EFDB13), Variability of Drawing Speed (EFDB14).

FIGURE 6

ROC curves and 95% CI of combined digital biomarkers distinguishing AD-MCI and PD-MCI groups. Area under the roc curve (AUC), confidence 
interval (CI), Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing 
Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Number of Pauses during Drawing (EFDB7), and Drawing Time (EFDB8), 
Initial Drawing Speed (EFDB12), Average of Drawing Speed (EFDB13), Variability of Drawing Speed (EFDB14).
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differences in cognitive functioning between AD-MCI and PD-MCI 
populations at a fine-grained level. We extracted statistically different 
digital biomarkers between AD-MCI, PD-MCI, PD-NC and NC 
groups, respectively. The digital biomarkers were differentiated in 
terms of motor and cognitive functions, and ultimately six digital 
biomarkers of cognitive functions were screened from the AD-MCI 
and PD-MCI groups. The combined AUC of six digital biomarkers for 
distinguishing between AD-MCI and PD-MCI groups could 
reach 0.923.

As a multistep cognitive function assessment tool that integrates 
certain sequences, the clock drawing test necessitates the synergy of 
multiple cognitive and motor functions like executive functions and 
visuospatial abilities (Müller et  al., 2017). Specifically, during the 
clock-drawing process, as the participants touches the screen to draw 
the clock, their executive functions like executive control and cognitive 
dexterity become dominant. This dynamic process can be accurately 

characterized by digital biomarkers like drawing duration, speed, and 
efficiency (Dion et  al., 2020). In addition, the clock-drawing test 
demands that participants to draw circular or near-circular outline 
and correctly place the numerals as well as the clock hands. These 
details assess participants’ visuospatial cognitive abilities, characterized 
by digital biomarkers like the outline scores, numbers scores, and 
hand-drawing scores (Davoudi et al., 2020). Thus, by synthesizing and 
analyzing digital biomarkers from the dCDT, participants’ cognitive 
and motor performance in complex tasks can be finely characterized.

First, the results of this study showed that Initial Drawing Speed 
(EFDB12), Average of Drawing Speed (EFDB13), Variability of Drawing 
Speed (EFDB14) were significantly lower in the PD-MCI group than 
the AD-MCI group. These results were consistent with those of Saur 
(Saur et al., 2012). Previous studies have shown that PD-MCI patients 
have more severe impairments in executive functioning than AD-MCI 
patients. Moreover, executive dysfunction, which is the most 
characteristic cognitive impairment in PD-MCI patients, is closely 
related to impaired integrity of the frontal-striatal loop (van den 
Heuvel et al., 2013). In contrast to the pattern of cognitive impairment 
in PD-MCI patients, the pattern of cognitive decline in AD-MCI 
patients was primarily associated with cortical involvement in the 
hippocampus and medial temporal lobe (Li et al., 2022). Executive 
dysfunction significantly affects patients’ social behavior, making it the 
most common clinical complaint. This was usually manifested as a 
greater difficulty in completing daily and routine tasks. Additionally, 
the impairment of executive functioning was particularly prominent 
when performing complex tasks that required the integration of 
multiple sequential steps (Blair, 2016). Therefore, in the dCDT, the 
executive functions of PD-MCI patients may be  more severely 
impaired than those of AD-MCI patients, resulting in significantly 
slower Average of Drawing Speed (EFDB13).

In addition, our findings showed that Task Completion Time 
(EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process 
Pause Time (EFDB4), Maximum of Drawing Process Pause Time 
(EFDB5), Average of Drawing Process Pause Time (EFDB6), Number 
of Pauses during Drawing (EFDB7), and Drawing Time (EFDB8) were 
significantly higher in the PD-MCI groups than in the AD-MCI 
group. This suggested that PD-MCI patients have more significant 
deficits in executive ability than AD-MCI patients.

Whereas the PD-MCI and AD-MCI groups showed differential 
digital biomarkers on the clock drawing test, which may have resulted 
from cognitive differences or motor differences between them. The 
aim was to further explore and identify digital biomarkers to 
accurately characterize cognitive functioning differences in the clock 
drawing test between AD-MCI and PD-MCI populations. 
We separately compared cognitive functioning differences between 
the PD-MCI and PD-NC groups (no statistically significant difference 
in MDS-UPDRS-III motor scores between the two groups) and 
between PD-NC and NC groups (no statistically significant difference 
in MMSE and MoCA scores between the two groups). This was done 
with the objective to identifying digital biomarkers of cognitive 
function that could accurately differentiate between the PD-MCI and 
AD-MCI group.

In the PD-MCI and PD-NC groups, there were only differences 
in cognitive function between the two groups, so digital biomarkers 
that were significantly different between the two groups can 
be considered digital biomarkers of cognitive function characterizing 
cognitive function differences. Among the digital biomarkers, Task 

TABLE 7  Results of demographic difference analysis between the AD-
MCI1 and PD-MCI1 groups.

AD-MCI1 
(n = 28)

PD-MCI1 
(n = 31)

p value, t*

Age, years 66.39 ± 6.68 64.58 ± 7.88 0.348, 0.947

Sex (female/

male)
14/14 18/13 0.535

Years of 

education
12.00 (3.00) 12.00 (3.00) 0.368

MMSE 26.00 (2.00) 26.00 (3.00) 0.500

MoCA 22.00 (3.75) 21.00 (5.00) 0.047

* means when variables satisfy a normal distribution using an independent samples t-test, 
p-values and t-values will be presented.
Mild cognitive impairment due to Alzheimer’s disease (AD-MCI), Parkinson’s disease with 
Mild cognitive impairment (PD-MCI), participants with years of education ≥ 12 years in the 
AD-MCI group (AD-MCI1), participants with years of education ≥ 12 years in the AD-MCI 
group (PD-MCI1), p-values (p), t-values (t), Minimum Mental State Examination (MMSE), 
Montreal Cognitive Assessment (MoCA).

TABLE 8  Results of the differential analysis of digital biomarkers of 
cognitive function between the AD-MCI1 and PD-MCI1 groups.

Digital 
biomarkers of 
cognitive 
function

AD-MCI1 
(n = 28)

PD-MCI1 
(n = 31)

p value, 
t*

EFDB1 42.89 (28.84) 73.14 (40.38) <0.001

EFDB2 25.15 (23.35) 48.07 (37.34) <0.001

EFDB4 21.19 (21.91) 42.45 (35.31) 0.001

EFDB5 4.78 (10.58) 10.34 (13.12) 0.026

EFDB6 0.85 (0.53) 1.40 (1.17) 0.001

EFDB13 321.55 ± 115.14 180.21 ± 48.05
<0.001, 

6.038

* means when variables satisfy a normal distribution using an independent samples t-test, 
p-values and t-values will be presented. Highlighting significant p-values (p < 0.05) in bold.
Mild cognitive impairment due to Alzheimer’s disease (AD-MCI), Parkinson’s disease with 
Mild cognitive impairment (PD-MCI), participants with years of education ≥ 12 years in the 
AD-MCI group (AD-MCI1), participants with years of education ≥ 12 years in the AD-MCI 
group (PD-MCI1), p-values (p), t-values (t), Task Completion Time (EFDB1), Total Drawing 
Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing 
Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Average of 
Drawing Speed (EFDB13).
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Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total 
Drawing Process Pause Time (EFDB4), Maximum of Drawing Process 
Pause Time (EFDB5), and Average of Drawing Process Pause Time 
(EFDB6) were significantly higher in the PD-MCI group than in the 
PD-NC group. Efficiency of Drawing (EFDB10), and Average of 
Drawing Speed (EFDB13) were significantly lower in PD-MCI group 
than in PD-NC group. These findings were largely consistent with 
Cosgrove et al. and together revealed significant deficits in executive 
function in PD-MCI patients (Cosgrove et al., 2021). These results 
further validated that digital biomarkers like pause duration and 
drawing speed effectively capture executive function deficits.

In the PD-NC and NC groups, digital biomarkers that were 
significantly different between the two groups can be  considered 
digital biomarkers of motor function that characterize motor function, 
since there were only differences in motor function between the two 
groups. The results of the study showed that the PD-NC group had a 
significantly higher Number of Pauses during Drawing (EFDB7) and 
slower Initial Drawing Speed (EFDB12) compared to the NC group. 
This difference may be  related to motor retardation and reduced 
motor control in PD-NC populations.

Based on the above findings of the PD-MCI and AD-MCI groups, 
the PD-MCI and PD-NC groups, and the PD-NC and NC groups, as 
well as the cascading relationships between the three groups of digital 
biomarkers, we finally identified six digital biomarkers of cognitive 
function that were able to accurately reflect the differences in cognitive 
function between AD-MCI and PD-MCI populations. These 6 digital 
biomarkers of cognitive function include: Task Completion Time 
(EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process 
Pause Time (EFDB4), Maximum of Drawing Process Pause Time 
(EFDB5), Average of Drawing Process Pause Time (EFDB6), and 
Average of Drawing Speed (EFDB13). The combined efficacy of these 
six digital biomarkers of cognitive function in distinguishing between 
AD-MCI patients and PD-MCI patients was up to 0.923, which 
further confirms that there are indeed differences in cognitive 

function between the AD-MCI populations and the PD-MCI 
populations in the clock-drawing test, and that by using these digital 
biomarkers of cognitive function, we can more accurately differentiate 
between the two populations. At the same time, considering the 
influence of literacy on cognitive function, we performed differential 
and ROC analyses of digital biomarkers of cognitive function in 
highly educated individuals in both AD-MCI and PD-MCI groups 
(given that the total sample size of the low-education group was too 
small, no analysis was performed). Six statistically significant digital 
biomarkers of cognitive function were finally screened, and their joint 
warning AUC was 0.968, which was higher than the original joint 
warning AUC = 0.923, suggesting that the results of this study were to 
some extent influenced by literacy. Therefore, future studies still need 
to include more groups with different literacy levels to clarify the 
extent to which literacy influences this study.

In addition, the differential results of the NC and AD-MCI 
groups, the NC and PD-MCI groups, and the AD-MCI and PD-NC 
groups in the dCDT were investigated. In comparisons between the 
AD-MCI and NC groups, we found that Task Performance of Overall 
Drawing Score (VFDB1), Task Performance of Numbers Drawing 
Score (VFDB2), Task Performance of Clock Hands Drawing Score 
(VFDB4), and Efficiency of Drawing (EFDB10) were significantly lower 
in the AD-MCI group than in the NC group, whereas the Variability 
of Drawing Speed (EFDB14) was significantly higher in the AD-MCI 
group than in the NC group. Significant deficits in executive function 
and visuospatial abilities were confirmed in AD-MCI patients.

In the NC and the PD-MCI groups, we  found that Task 
Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total 
Drawing Process Pause Time (EFDB4), Maximum of Drawing Process 
Pause Time (EFDB5), Average of Drawing Process Pause Time 
(EFDB6), Number of Pauses during Drawing (EFDB7), Drawing Time 
(EFDB8), and Number of Draws (EFDB9) were significantly higher in 
the PD-MCI group than in the NC group. In contrast, Task 
Performance of Overall Drawing Score (VFDB1), Task Performance of 

FIGURE 7

ROC curves and 95% CI of combined digital biomarkers distinguishing AD-MCI1 and PD-MCI1 groups. Area under the roc curve (AUC), confidence 
interval (CI), Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing 
Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Average of Drawing Speed (EFDB13).
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Numbers Drawing Score (VFDB2), Task Performance of Clock Hands 
Drawing Score (VFDB4), Efficiency of Drawing (EFDB10), Initial 
Drawing Speed (EFDB12), and average speed of drawing in the Average 
of Drawing Speed (EFDB13) were significantly lower in the PD-MCI 
group than in the NC group. These findings confirmed the significant 
deficits in visuospatial and executive functions in patients 
with PD-MCI.

In the AD-MCI and the PD-NC groups, we found that Initial 
Drawing Speed (EFDB12), Average of Drawing Speed (EFDB13), and 
Variability of Drawing Speed (EFDB14) were significantly larger in the 
AD-MCI group than in the PD-NC group. This showed that AD-MCI 
group were significantly faster than the PD-NC group, suggesting 
cognitive decline in AD-MCI and decreased fine motor control in 
PD-NC. Variability of Drawing Speed (EFDB14) illustrated the stability 
of participants’ drawing speed, and we suggest that AD-MCI may 
be less stable than PD-MCI under cognitive task (Montero-Odasso 
et al., 2014).

To further demonstrate that the above digital biomarkers 
characterize cognitive functions well, we  performed a correlation 
analysis between the digital biomarkers and the MoCA scale. 
Performance of Overall Drawing Score (VFDB1), Task Performance of 
Numbers Drawing Score (VFDB2), Task Performance of Clock Hands 
Drawing Score (VFDB4) and Efficiency of Drawing (EFDB10) were 
positively correlated with the MoCA scale as well as the [visuospatial/
executive] subtest score; Task Completion Time (EFDB1), Total 
Drawing Pause Time (EFDB2), Total Drawing Process Pause Time 
(EFDB4), Maximum of Drawing Process Pause Time (EFDB5), 
Number of Pauses during Drawing (EFDB7), Number of Draws 
(EFDB9) and Variability of Drawing Speed (EFDB14) were negatively 
correlated with the MoCA scale as well as with the [visuospatial/
executive] subtest score. The results suggested that the above 
mentioned digital biomarkers can better characterize visuospatial and 
executive functions, providing a new tool for early screening and 
dynamic monitoring of cognitive impairment.

The effects of Parkinson’s disease (PD) drugs on motor function 
and cognitive processing speed are complex. It was suggested that 
decreased processing speed in PD patients is associated with 
abnormalities in the caudate nucleus, and that drugs may affect these 
regions (Price et al., 2016). There were also studies that mentioned the 
effects of dopamine medications on executive function and error 
processing, such as abnormal ERN waves, which might affect cognitive 
control (Seer et al., 2017; Yang et al., 2017). However, some studies 
have also found that processing speed is associated with reduced 
FDOPA uptake in the caudate nucleus, and medication may not fully 
restore this function (Pal et al., 2016). Most of the patients included in 
this study used medication, but were in OFF medication at the time 
of testing, which reduced the drug’s effect to some extent.

Compared to previous studies, the main innovation of this study 
is that digital biomarkers that can accurately characterize participants’ 
cognitive functions were extracted through the dCDT, thus providing 
a fine-grained quantification of participants’ cognitive functioning 
characteristics during task execution. Moreover, this dCDT 
demonstrated a good discriminatory ability to distinguish between 
AD-MCI and PD-MCI populations. Although previous studies also 
used digital clock drawing tests to differentiate AD patients from PD 
patients/PD-MCI patients, these studies had significant limitations, 
such as a single dimension of extracted metrics, low discriminatory 
efficacy, and a limited sample size (Allone et al., 2018). In contrast, the 

dCDT proposed in this study not only had higher accuracy, but also 
significantly improved assessment efficiency, which could 
be  completed in just 3 min, much less than the time-consuming 
traditional scale assessment methods. Therefore, the dCDT proposed 
in this study was high objectivity, accuracy and efficiency, with 
potential for in-depth research and wide dissemination, and was 
relatively unaffected by race, culture and language compared to 
neuropsychological scales such as MMSE, MoCA, and others (Kehl-
Floberg et al., 2023). In addition, compared to our team’s previous 
study (which demonstrated whether there was a difference in cognitive 
function between NC and AD-MCI through digital biomarkers), this 
study built on pre-existing algorithms to differentiate between 
different types of cognitive dysfunction (AD-MCI and PD-MCI) 
through digital biomarkers. Therefore, the dCDT proposed in this 
study, which was highly objective, less time-consuming, had good 
replication potential in densely populated communities, and provided 
a new approach to differentiate between AD-MCI and PD-MCI using 
digital biomarkers in initial community screening.

However, this study also presents some limitations. First, the 
effective sample size included in this study was 161 cases, and all were 
from a single medical center, potentially limiting the generalizability 
of the findings to the overall AD-MCI and PD-MCI populations. To 
overcome this limitation, future research aims to conduct a multicenter 
study and increase the sample size, enhancing the accuracy and 
generalizability of the study results. Second, potential confounders 
such as gender and cognitive drugs (e.g., dopaminergic treatments in 
PD patients), which are limited by the design of the study and scope 
of data collection, have not been systematically addressed and may 
have biased trial results. Third, the dimensions of the digital 
biomarkers explored in this study are limited, and future research will 
explore additional dimensions such as pressure, orientation, 
acceleration, angular velocity, and delving into the medical 
mechanisms and potential associations with blood biomarkers or 
imaging biomarkers. Meanwhile, the dCDT designed in this study is 
primarily suited for early warning and screening of cognitive disorders, 
but for diagnostic use in AD-MCI and PD-MCI, further integration 
with multidimensional data (such as Aβ-PET, MMSE, MoCA) is 
required. However, it is hoped that the diagnosis of AD-MCI and 
PD-MCI may be achieved by dCDT alone at a later stage as more data 
are recorded and combined with large model technology. Finally, this 
study is currently limited to a cross-sectional study due to research 
conditions. In order to verify the validity and reliability of the dCDT 
more comprehensively, future research will involve longitudinal studies.

5 Conclusion

In summary, we  proposed the research hypothesis that 
AD-MCI and PD-MCI populations exhibit different cognitive 
functioning characteristics in the digital clock drawing test, and 
that based on this characteristic, we can effectively differentiate 
between these two populations. Based on this hypothesis, 
we  designed the dCDT, extracted digital biomarkers that can 
characterize participants’ cognitive functions, and quantified 
participants’ task-wide cognitive function characteristics at a fine-
grained level, revealing differences in cognitive functions between 
AD-MCI populations and PD-MCI populations. After clinical 
validation, the AUC of digital biomarkers of cognitive function in 
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distinguishing between AD-MCI and PD-MCI populations was up 
to 0.923, and the method provided a favorable reference for early 
diagnosis, treatment and prevention of dementia development in 
AD-MCI and PD-MCI populations.
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SUPPLEMENTARY FIGURE 1

Participant screening process. Normal cognition (NC), Mild cognitive 
impairment due to Alzheimer’s disease (AD-MCI), Parkinson’s disease with 
Mild cognitive impairment (PD-MCI), Parkinson’s disease with normal 
cognition (PD-NC).

SUPPLEMENTARY FIGURE 2

The calculation of Task Performance Calculation of Clock Hands Drawing 
Score(VFDB4). Φ was the classification network.
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Galangin reduces MPTP-induced 
dopamine neuron injury via the 
autophagy dependent-PI3K/AKT 
pathway
Liping Huang 1,2, Qiaofeng Li 1, Jingyi Wu 1, Yingying He 1, 
Junwei Huang 1, Sipeng Xie 1, Canfeng Yang 1, Qingling Ruan 1, 
Zhongliu Zhou 1* and Minzhen Deng 3,4*
1 School of Chemistry and Chemical Engineering, Western Guangdong Characteristic Biomedical 
Engineering Technology Research Center, Lingnan Normal University, Zhanjiang, China, 2 Mangrove 
Institute, Lingnan Normal University, Zhanjiang, China, 3 State Key Laboratory of Traditional Chinese 
Medicine Syndrome/ Department of Neurology, The Second Affiliated Hospital of Guangzhou 
University of Chinese Medicine, Guangzhou, China, 4 Guangdong Provincial Key Laboratory of 
Research on Emergency in TCM, Guangzhou, China

Introduction: Research has confirmed that Galangin can attenuate autophagy 
and protect dopaminergic neurons. This study aims to clarify whether Galangin 
attenuates dopaminergic neuron injury by regulating the PI3K/AKT pathway in 
Parkinson’s disease (PD) model mice.

Methods: The study explores the mitigating effects of Galangin on PD processes 
by administering 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to 
induce the condition. Techniques including network analysis, transcriptomic 
analysis, rotarod test, enzyme-linked immunosorbent assay (ELISA), qRT-
PCR, western blotting, immunohistochemistry, immunofluorescence, and 
hematoxylin–eosin (HE) were employed to unveil the molecular changes 
induced by Galangin.

Results: The network pharmacological analysis showed 301 targets related to 
Galangin, and 2,858 genes related to PD. Galangin treatment can improve the 
motor coordination of PD model mice, reduce damage to neurons in the brain, 
improve the antioxidant capacity and reduce the inflammatory damage of brain 
tissue. Additionally, Galangin suppressed mRNA expression of PD markers (IL-1β, 
TNF-α, IL-6, SRC and PTGS2), elevated protein levels of GSH-Px, SOD, P-PI3K, 
P-CREB, P-AKT, TH, BDNF and P62, while decreasing α-syn, SRC, MDA, Beclin-1 
and LC3B expression. Moreover, the expression of significantly different genes 
in the Galangin-treated group and model group analyzed by transcriptomics 
was basically consistent with the qRT-PCR verification results.

Conclusion: Galangin supresses Beclin-1-dependent autophagy and upregulates 
the PI3K/AKT signaling pathway to attenuate the neuroinflammatory injury and 
improve motor coordination ability in PD mice induced by MPTP.
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1 Introduction

With the aging of the population, the incidence and prevalence of 
Parkinson’s disease (PD) continue to increase, which brings a heavy 
burden to society and the family, and has been widely concerned in 
the medical and genetic circles (Nair et al., 2018). The pathological 
mechanism of PD is related to the loss of dopamine (DA) neurons and 
α-synuclein (α-syn) aggregation in the substantia nigra dopaminergic 
neurons, oxidative stress, neuroinflammatory effects, mitochondrial 
dysfunction, endoplasmic reticulum stress disorder, neurotoxicity, 
uncontrolled autophagy, kinase signaling pathway, neurotrophic 
factor loss and nerve cell apoptosis (Ping and Geng, 2023; Nagoshi, 
2018). The pathogenesis of PD is still unclear, and there is currently 
no known cure for PD, and the primary goal of treatment is to improve 
and slow the progression of clinical symptoms (Bhidayasiri et  al., 
2023). Therefore, there is a pressing necessity to find an effective 
treatment that alleviates the death of dopaminergic neurons in the 
midbrain and protects brain function for the treatment of PD.

At present, the western drugs against PD mainly included DA 
receptor agonists, monoamine oxidase B inhibitors, cholinergic 
inhibitors, catechol-O-methylase inhibitors (Laurence, 2020). Western 
medicine works well for treating PD and improves its motor 
symptoms. However, it has a poor curative effect on the non-motor 
symptoms of PD and is prone to major side effects like efficacy 
attenuation, dose end phenomenon, and transaction disorder. In 
recent years, metabolites derived from Chinese medicine have 
received increasing attention as a result of their clear neuroprotective 
effects. Alpinia officinarum Hance is a perennial herb belonging to the 
Alpinia genus of the ginger family. Its rhizome is a commonly used 
medicinal herb and spice in Asian and European countries, and it is 
distributed in tropical regions such as the Leizhou Peninsula in 
Guangdong, Hainan, and southern Guangxi in China. Galangin is a 
naturally occurring flavonoid (3, 5, 7-trihydroxyflavonoid) extracted 
from the rhizome of Alpinia officinarum Hance that shows a variety of 
biological activities, including anti-oxidant and anti-inflammatory 
functions (Aladaileh et al., 2019; Huang et al., 2017). Additionally, it 
is also found in abundance in propolis and plantain. At present, there 
are few studies on the treatment of PD by Galangin. In the brains of 
PD model rats, Galangin has been shown in two studies to have a 
protective impact on dopaminergic neurons (Chen et al., 2017; Chen 
Q. et  al., 2022), reflecting that Galangin has a significant anti-PD 
effect, but its mechanism still needs to be further explored. In addition, 
studies have confirmed that Galangin can regulate oxidative stress, 
inflammation, and apoptosis in diabetic rats to alleviate diabetic 
cardiomyopathy (Abukhalil et  al., 2021). Our previous study has 
demonstrated that treatment with Galangin regulated autophagy and 
effectively reduced p-tau, Aβ42 and β-secretase levels in AD model 
cells (Huang et al., 2019). Natural metabolites can thoroughly reflect 
the multiple pathways and targets, while personalized treatment, as 
much as possible reduces adverse reactions, and improve the prognosis 
and the life quality of PD patients. Additionally, further investigation 
is necessary to comprehensively elucidate the underlying mechanism 
through which Galangin exerts its anti-PD properties. Therefore, 
based on network analysis and transcriptomic analysis and molecular 
docking techniques to predict the pathways and targets of Galangin 
that are involved in PD therapy.

The PI3K/AKT signaling pathway plays a crucial role in the 
regulation of cellular proliferation, apoptosis and metabolism. The 

abnormally expressed PI3K/AKT signaling pathway is closely related 
to the occurrence and development of various neurological diseases. 
Therefore, this pathway has been extensively studied and is a potential 
target for disease treatment (Chen K. et al., 2022; Chen et al., 2023; 
Yang et al., 2023). The PI3K enzyme is an intracellular phosphatidyl 
inositol kinase that has the activity of serine/threonine kinase and 
phosphatidyl inositol kinase. AKT is a serine/threonine kinase that 
plays a crucial role in regulating various cellular processes including 
cell growth, survival, transcription, and protein synthesis and acts as 
a central component of the PI3K/AKT signaling pathway. PIP3 
produced by PI3K can further activate AKT by activating 
phosphoinositol-dependent protein kinase 1 (PDK1) (Guo et  al., 
2017). Activated AKT activates downstream transcription factors and 
regulates transcription of related target genes. The PI3K/AKT/mTOR 
signaling pathway is an important pathway that negatively regulates 
autophagy, which is widely existing in cells. PI3K inhibits autophagy 
by activating AKT. The downstream target gene AKT can suppress 
autophagy by modulating the expression of FOXO and inducing 
transcription factor activating protein-1 (AP-1), thereby inhibiting the 
expression of autophagy-related genes (Calnan and Brunet, 2008; 
Eijkelenboom and Burgering, 2013). Autophagy is a double-edged 
sword, insufficient autophagy can lead to apoptosis under adverse 
environmental conditions, however, continuously activated autophagy 
can also lead to cell death (Koch et  al., 2020; He et  al., 2014). In 
addition, studies have shown that the PI3K/AKT signaling pathway 
can inhibit the activation of downstream mediator nuclear factor-κB 
(NF-κB), thereby reducing the release of kidney inflammatory 
indicators of tumor necrosis factor-α (TNF-α) and interleukin-6 
(IL-6) (Hong et al., 2017). In brief, autophagy plays a dual role in cell 
survival; weakened autophagy or excessive autophagy is detrimental 
to cell survival. However, how Galangin properly regulates the PI3K/
AKT signaling pathway and autophagy to enhance motor coordination 
remains elusive. Thus, in the present study, we aimed to investigate the 
effects of Galangin on motor coordination and autophagy alleviation 
in MPTP-induced mice. Additionally, for the first time, we revealed 
the mechanisms of Galangin in alleviating the injury of dopaminergic 
neurons by network analysis, molecular docking and transcriptomic 
analysis. Based on network analysis, molecular docking and 
transcriptomic analysis, we hypothesize that Galangin can alleviate 
neuroinflammation and inhibit Beclin-1 dependent autophagy by 
mediating the PI3K/AKT signaling pathway.

2 Materials and methods

2.1 Identifying targets of Galangin

We searched and confirmed the potential targets of the Galangin 
monomer through TCMSP database,1 Swiss Target Prediction,2 
PharmMapper3 (Peng et al., 2020; Zhang et al., 2021). The obtained 
target names were converted into corresponding gene names through 

1  https://old.tcmsp-e.com/tcmspsearch.php

2  http://www.swisstargetprediction.ch/

3  http://www.Lilab-ecust.cn/pharmmapper/
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UniProt database,4 and the final target proteins related to Galangin 
were obtained by combining and deduplicating.

2.2 Identifying PD-related targets in 
Galangin

Using “Parkinson’s disease” as the keyword, disease targets were 
retrieved from Genecards,5 DisGeNET,6 and OMIM,7 with a filtering 
criterion in GeneCards of a score value higher than the median. The 
intersection targets of Galangin against Parkinson’s disease were 
obtained by overlapping the component targets with the disease 
targets. The common target genes screened from the Genecards, 
DisGeNET and OMIM databases and the targets of Galangin are 
consistent with this article (Shailima et al., 2021). VENNY2.18 was 
adopted to establish Venn diagrams and obtain the common targets.

2.3 Protein–protein interaction (PPI) 
network construction

To further study the interaction targets between Galangin and PD, 
STRING,9 was used to identify known and predict interactions 
between proteins (Szklarczyk et al., 2019). Then, we removed the free 
proteins, and the correlation data between the targets were exported 
and constructed a network by the Cytoscape 3.9.1.

2.4 KEGG and GO enrichment analysis

In this study, the GO functions of enriched target genes were 
analyzed by the DAVID10 database (Dennis et al., 2003). We entered 
the UniProt ID of the protein, and the source of species was set as 
“Homo sapiens” to analyze the enriched biological processes, 
molecular functions, cellular components, and pathways related to the 
key proteins. The KEGG and GO enrichment were analyzed in a 
bioinformatics online tool.11

2.5 Animal experiment

Sixty specific pathogen free (SPF) grade National Institute of 
Health (NIH) male mice weighing 18–22 g were used in this study. 
The mice were provided by the Guangdong Medical Experimental 
Animal Center (Guangdong, China; certificate no.: SYXK 
(Guangdong) 2018-0002). The mice were raised in the Experimental 
Animal Center of Guangdong Traditional Chinese Medicine Hospital. 
All animal experiments were conducted in strict accordance with the 

4  https://www.uniprot.org/

5  https://www.genecards.org/

6  https://www.disgenet.org/

7  https://www.omim.org/

8  https://bioinfogp.cnb.csic.es/tools/venny/

9  https://string-db.org/cgi/input.pl

10  https://david.ncifcrf.gov/

11  http://www.bioinformatics.com.cn/

Ethics Committee Guidelines of Guangdong Provincial Hospital of 
Traditional Chinese Medicine (No.2022039, April 25, 2022).

For observation of the therapeutic effect of Galangin on PD mice, 
sixty mice were randomly divided into the five groups (n = 10): control 
group, PD model group (MPTP, 30 mg/kg), madopar group (madopar 
+ MPTP, 125 + 30 mg/kg), low-dose Galangin group (L-Galangin + 
MPTP, 25 + 30 mg/kg), medium-dose Galangin group (M-Galangin 
+ MPTP, 50 + 30 mg/kg) and high-dose Galangin group (H-Galangin 
+ MPTP, 100 + 30 mg/kg). The PD model mice was established as 
reported previously (Zhang et al., 2018) and the group administered 
with madopar serves as the positive control group in the experiment. 
The PD model mice were established by intraperitoneal injection of 
MPTP (30 mg/kg) once a day for 7 days. Mice were sacrificed after the 
behavioral tests by cervical vertebra dislocation, and then heart 
perfusion was performed by using saline. The hippocampus, striatum 
and mesencephalon were rapidly dissected out, frozen, and stored at 
−80°C for detection. Galangin (A0437, Chengdu must Bio-Technology 
CO., Ltd., purity = 99.94%) was prepared in 0.9% physiological saline 
and intragastric administration once daily for 28 days, meanwhile, the 
control group and the PD model group were given the same volume 
of saline.

After the administration was completed and behavioral tests were 
finished, the mice were anesthetized with 40 mg/kg sodium 
pentobarbital for euthanasia. The whole brain was then carefully 
removed on an ice plate. Half of the brains from each group (n = 6) 
were fixed in 4% paraformaldehyde for 24 h, followed by dehydration 
with a sucrose solution, embedding, and sectioning into 20 μm 
coronal slices for immunohistochemistry, immunofluorescence, 
HE and Nissl staining observations. Subsequently, the cerebral cortex, 
striatum, hippocampus, and midbrain tissues from each mouse were 
rapidly extracted and frozen in liquid nitrogen. The cerebral cortex 
from 8 mice per group was used for enzyme-linked immunosorbent 
assay, and the midbrain tissues from 6 mice per group were used for 
western blotting and quantitative polymerase chain reaction analyses.

2.6 Behavioral tests

2.6.1 Rotarod test
A rotarod treadmill (ZB-200, Chengdu Thai union technology co., 

LTD, China) was used to evaluate motor coordination. Mice were 
placed on a slowly accelerating rod to keep balance and resist fatigue. 
Then we recorded the duration that a mouse kept standing or walking 
on the rotating rotarod at the speed of 30 r/min. A period of 300 s was 
taken as the maximum time of mice staying on the rotarod.

2.6.2 Autonomous activity
Test for the mouse autonomous activity test, after the final dose 

administration, the mice from each group were placed in the mouse 
voluntary activity testing apparatus to acclimate for 5 min. Following 
the acclimation period, the number of movements made by the mice 
within a 5-min interval was recorded. Throughout the experiment, the 
surrounding environment was maintained quiet, with no movement 
of personnel, to prevent external factors from disturbing the mice.

2.6.3 Pole climbing behavior
Pole climbing experiment select a wooden rod that is 50 cm long 

and 1.5 cm in diameter. Wrap the entire rod with tape to prevent the 
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mice from slipping during the climbing process. During the 
acclimatization period, guide the mice to climb from the top to the 
bottom of the rod daily. After administration, train once a week. The 
measurement method is as follows: holding the tail of the mouse, place 
the mouse head-down at the top of the rod (with all four limbs on the 
top), and let it climb down naturally. Use a stopwatch to record the 
time it takes for the mouse to stand at the top of the rod as time A, and 
the time it takes for the mouse to climb to the bottom of the rod (with 
both front limbs touching the bottom platform) as time B. The total 
time the mouse spends climbing the rod is then calculated as time C, 
where C = A-B. Each mouse repeats the climbing test three times, with 
at least a 30-min interval between each attempt, and the average time 
is taken. If the mouse slips off or jumps out of the rod, the time for that 
attempt is not recorded, and the test is retaken after at least a 
30-min interval.

2.7 Enzyme-linked immunosorbent assay 
(ELISA)

The levels of IL-1β, TNF-α, IL-6, GSH-Px, MDA, SOD, DA, 
dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) 
levels in the cerebral cortex were determined, respectively, with ELISA 
kits according to the kit instructions (IL-1β, YJ712290, Shanghai 
Enzyme-linked Biotechnology Co., Ltd.; TNF-α and IL-6, RX302058R 
and RX302856R, QUANZHOU RUIXIN Biotechnology Co., Ltd., 
China; GSH-Px, 6141060130, Beijing Dongge Boye Biotechnology 
Co., LTD, China; MDA-S0131S and SOD-S0101S, Shanghai Biyuntian 
Bio-Technology Co., LTD, China; DA-m1002024, DOPAC-ml034074 
and HVA-ml025114, Shanghai Enzyme linked Biotechnology Co., 
Ltd., China) on a microplate reader (American Hyperion MRIII type; 
Biotek Instruments Inc., Winooski, VT, USA). All samples were 
performed eight times in parallel. Detailed sample handling 
procedures refer to previous literature (Ning et al., 2022).

2.8 Hematoxylin–eosin (HE) and nissl 
staining

The hippocampus and striatum were prepared into continuous 
coronal sections, and dewaxed to water after conventional dewatering 
and embedding treatment. Dye with hematoxylin solution for 15 min, 
rinse with water, stain with alcohol eosin solution for 3 min, dehydrate 
and clear, seal with neutral gum, and observe under microscope. In 
addition, nissl staining is performed according to the Nissite kit 
(Methyl Violet method, 0409A14, Beijing Kangwei Century 
Biotechnology Co., LTD) instructions, observed under a microscope 
and photographed. All samples were performed six times in parallel.

2.9 Immunohistochemistry

The continuous coronal sections were dewaxed to water after 
tissue dehydration and embedding treatment. 3%H2O2, soaked for 
10 min: pressure cooker repair (EDTA, pH 8.0); 5% BSA was blocked 
for 20 min, α-syn and TH (proteintech, 25859-1 and 10842-1, Wuhan 
Sanying Biotechnology Co., LTD, China) antibodies (1:50) were added 
and placed in a 37°C for 1 h, and secondary antibody (biotinized 

sheep anti-rabbit) was added to a 37°C for 20 min. Drip (SABC) at 
37°C for 20 min; DAB was controlled under the microscope for 3 min; 
Anhydrous ethanol dehydrated transparent, neutral resin seal: 
microscope observation of positive expression of brown yellow, using 
the image analysis system (Beihang 4.0 version) for analysis. All 
samples were performed six times in parallel. PBS was used as a 
negative control instead of primary antibody.

2.10 Immunofluorescence

Dewaxing slices to water; 3% H2O2, soak for 10 min; Pressure 
cooker method for antigen repair (sodium citrate, pH 6.0): 5% BSA 
was blocked for 30 min and Beclin-1 (1:100, ab62557, Abcam, USA) 
and P62 (1:100, ab56416, Abcam, USA) antibodies (1:50) was added 
to 37°C for 1 h, and secondary antibody (biotinized sheep anti-rabbit) 
was added to 37°C for 20 min. Anti-extinguishing agent seal: the 
positive expression was red after microscope observation and 
photography, and the image analysis system (Zeiss, Oberkochen, 
Germany) was used for analysis. All samples were performed six times 
in parallel. PBS was used as a negative control.

2.11 Quantitative real-time polymerase 
chain reaction (qRT-PCR) analysis

The gene specific primers were demonstrated in Table 1. Total 
RNA was extracted from approximately 10 mg of mesocerebrum 
tissue by trizol. The RNA concentration was measured with 
spectrophotometry, and the RNA samples were stored at 
−80°C. Following the instructions in the Evo MMLV RT Mix kit with 
gDNA clean for qPCR Ver.2 (Cat: AG11728) manual, the RNA was 
reverse transcribed to cDNA. Next, RT-PCR was performed using the 
SYBR green premix pro taq HS qPCR kit (Cat:AG11701) to amplify 
and quantify IL-1β, TNF-α, IL-6, GSH-Px, ALB, SRC, ESR1, PTGS2, 
CDK1, CDK2, PARP1 mRNA levels and so on. The reaction 
conditions of qRT-PCR were as follows: pre-denaturation at 94°C for 
2 min; denaturation at 94°C for 30 s; annealing at 58°C for 30 s; 
extension at 72°C for 1 min; 30 cycles; extension at 72°C for 8 min; 
and storage at −20°C. β-actin was used as internal reference control. 
Gene expression was calculated using the 2-△△ct method (Xing et al., 
2024; Yoav et al., 2024). All samples were performed six times 
in parallel.

2.12 Western blot detection

The total protein was extracted from the nigral striatum of each 
group of mice by treating the brain tissue with protein lysate 
containing protease inhibitors and phosphoric acid inhibitors, and the 
protein content was determined by the BCA kit, and the protein was 
added into the sampling buffer and mixed, and the protein was 
denatured by heating at 100°C for 15 min. The protein samples were 
electrophoresed on 10% sodium dodecyl sulfate-polypropylene amine 
gel, transferred to PVDF membrane, and closed with 5% skimmed 
raw milk at room temperature for 1 h. α-syn and TH (1:1000, 25859-1 
and 10842-1, proteintech, China), Beclin-1 (1:1000, ab62557, Abcam, 
USA), LC3B (1:1000, ab192890, Abcam, USA), P62 (1:1000, ab56416, 

71

https://doi.org/10.3389/fnagi.2025.1568002
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Huang et al.� 10.3389/fnagi.2025.1568002

Frontiers in Aging Neuroscience 05 frontiersin.org

Abcam, USA), P-PI3K (1:1000, 60225-1-Ig, proteintech, USA), PI3K 
(1:1000, #13666 s, Cell Signaling Technology, USA), P-AKT (1:1000, 
29163-1-AP, proteintech, China), AKT (1:1000, 10176-2-AP, 
proteintech, China) and GAPDH (1:1000, G9545, SIGMA, USA); 
P-CREB (1:1000, #12133, SAB, USA), CREB (1:5000, 67927-1-Ig, 
proteintech, China), SRC (1:1000, 11097-1-AP, proteintech, China), 
BDNF (1:1000, #32263, SAB, USA), PTGS2 (1:1000, 12375-1-AP, 
proteintech, China), mTOR (1:1000, 66888-1-Ig, proteintech, China) 
and P-mTOR (1:1000, 67778-1-Ig, proteintech, China) antibodies 
were added and incubated at 4°C overnight, then secondary antibodies 
were added and incubated at room temperature for 2 h. All samples 
were performed six times in parallel. The samples were detected by 
chemiluminescence reagent, developed and photographed by gel 
imager, and analyzed in grayscale by Image J software.

2.13 RNA sequencing and bioinformatics 
analysis in the mesencephalon tissue of PD 
model mice

OE Biotech Co., Ltd. (Shanghai, China) performed all 
RNA-sequencing and bioinformatics analyses. Differential analysis 
was performed according to Padj<0.05 and log2(fold change) < −1 or 
log2(fold change) >1 criteria to obtain differentially expressed genes, 

Using GraphPad Prism 8 software make volcanic diagram and 
through microscopic letter website (see Footnote 11) draw heat maps. 
All samples were performed three times in parallel.

2.14 Statistical analysis

Data were statistically analyzed using SPSS 17.0 software and 
expressed as mean ± SD. The data were analyzed using one-way 
analysis of variance (ANOVA) when the data were regularly 
distributed and the variance was elevated. ANOVA was used when the 
data were regularly distributed and the variance produced: 
nonparametric tests were used when the data were not regularly 
distributed. Statistical significance was accepted for p < 0.05.

3 Results

3.1 Study of the mechanism of Galangin 
against MPTP-induced PD mice by network 
analysis

Network analysis was employed to predict the potential target-
pathway interactions associated with the protective effect of Galangin 

TABLE 1  Primer sequences.

Gene Primer sequences (5′-3′) Gene Primer sequences (5′-3′)

ALB
F GTGCTTGCAGAATTTCAGCCT

Cpa4
F TCTGCGGCCGAGATAAATTCT

R TGTATCGAACCAGAATGGCGT R GAGAGGAAATGGTCTAGTCGGA

SRC
F GCAGATTGTCAATAACACAGAGGG

Cdc6
F TCCGTAAAGCGCTGGATGTT

R TGCCAAAGTACCACTCCTCAG R CGCTGGGTGATTTACATTCGG

PTGS2
F CTGGGCCATGGAGTGGACTT

Lrr1
F GGGAACCAGCTACAAGCTAAGA

R GAGGATACACCTCTCCACCG R CTCCTTTAGCCGGACAGTGG

CDK1
F TTGTCACTCCCGACGAGTTC

Pbk
F CCAGAGGGCTAAAGTACCTGC

R CAGCGTCACTACCTCGTGTG R TGGCAGAGAGACTCCTACATCA

EGFR
F TCAACAACCAGAAGGGCCAA

Esco2
F GGCGGTGTTCAGATGTACCA

R GCGGCGTAGTGTACGTTTTC R GCCAAACATGAAGCAATTCCTGA

CDK2
F ATCCGGCTCGACACTGAGA

Tlr9
F TGTGAGCTGAAGCCTCATGG

R GCAGCTTGACGATGTTAGGGT R GGTGGTGGATACGGTTGGA

PARP1
F TCTGCACCAGCAGACAAACC

Spc24
F ATGATCAAGGGCATCCACCAC

R ATGGCCTTTGCTTCGTCCTT R GTCACTGATGAACTTCGGCG

IL-1β
F ATGCCACCTTTTGACAGTGATG

Nfkb1
F AACAATGCCTTCCGGCTGA

R TGATGTGCTGCTGCGAGATT R GGCCTCCATCAGCTCTTTGAT

IL-6
F CACTTCACAAGTCGGAGGCT

TNF
F GATCGGTCCCCAAAGGGATG

R GAATTGCCATTGCACAACTCT R CCACTTGGTGGTTTGTGAGTG

TNF-α
F CCCACGTCGTAGCAAACCAC

Gsta3
F ACATGCCCCCTGAGGAGAAA

R TGAGATCCATGCCGTTGGC R TCCATGGCTCTTCAACACCTTTT

GSH-px
F CATCCTGCCTTCTGTCCCTG

Pik3r1
F GGCCTCCATCAGCTCTTTGAT

R CGCCATGGCAGTCTGTCTTA R TCAAACTCATGGAGACCTTTGCC

β-actin
F TGGTGGGAATGGGTCAGAAG

Gprc5c
F CAGAACAGAGCTACCAGGGG

R TGTAGAAGGTGTGGTGCCAG R CTGGTCTCTTTGCTGAGGCT
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against PD. Firstly, through an extensive search of the TCMSP, Swiss 
Target Prediction and PharmMapper databases, 373 targets of 
Galangin were identified. Meanwhile, 2,858 genes related to PD were 
identified from the DisGeNET and Genecards databases, and 72 
shared targets between Galangin and PD targets. The structure of 
Galangin and the Venn diagram of intersecting targets are shown in 
Figure 1A. Table 2 shows the top 10 targets, ALB, SRC, ESR1, EGFR, 
GSK3β, PTGS2, MMP9, PARP1, CDK2 and CDK1, which were 
referred to as core proteins. The study confirmed that they can interact 
with different proteins and occupy a crucial position in the network, 
which can provide a basis for additional research. In addition, a total 
of 194 biological processes, 57 cellular components, and 69 molecular 
functions were acquired. The pathways with the top 10 enriched genes 
were selected for display, as depicted in Figure 1B. The targets acted 
on the negative regulation of apoptotic process and protein 
phosphorylation, and protein autophosphorylation, response to 
xenobiotic stimulus, cellular response, and peptidyl-serine 
phosphorylation played a role. Meanwhile, these target functions were 
associated with protein binding, ATP binding, identical protein 
binding, and enzyme binding. As shown in Figure 1C, pathways in 
cancer, PI3K-AKT signaling pathways, and chemokine signaling 
pathways were mainly related to the effects of Galangin against 
PD. The noninteracting targets were eliminated, and the interactions 
between the remaining targets are shown in Figure  1D by a PPI 
network. Finally, we  mapped 10 predicted targets onto 10 
corresponding pathways, as shown in Figure 1E.

3.2 Galangin treatment improved motor 
coordination of PD mice

To evaluate the effect of Galangin on motor coordination in PD 
mice, the rotarod, autonomous activity and pole climbing tests were 
measured. The process and results of the behavior experiment are 
shown in Figures 2A–D. The motor coordination ability of mice in the 
MPTP model group significantly decreased compared to that in the 
control group (p < 0.01). The specific manifestations are as follows: the 
staying time in the rotarod test (Figure  2B) and the count of 
autonomous activities (Figure 2C) were increased in the madopar-, 
M-Galangin-, and H-Galangin-treated mice compared to those in the 
PD model group (p < 0.05 or p < 0.01). Additionally, the pole climbing 
time was reduced in the madopar- and all doses of Galangin-treated 
mice compared to the PD model mice (p < 0.05 or p < 0.01, 
Figure 2D). In conclusion, these results demonstrated that Galangin 
enhanced the motor coordination and endurance of PD model mice.

3.3 Galangin ameliorates MPTP-induced 
brain inflammation and oxidative stress 
damage

Previous studies have shown that brain neuroinflammation is one 
of the crucial pathogeneses of PD (Chrysoula et al., 2020). The resistance 
to brain injury induced by Galangin was assessed by measuring the 

FIGURE 1

Network analysis predicts that there may be target-pathway interaction in Galangin anti-MPTP induced PD. (A) The structure of Galangin and Venn 
analysis on putative targets of Galangin and PD. (B) GO analysis of intersection targets. (C,E) The pathway enrichment analysis was performed related 
to intersection targets. (D) PPI network showed the correlation between PD-related gene targets, and the larger the circle, the greater the degree 
value. The top 10 core targets were ALB, SRC, PTGS2, EGFR, GSK3β, ESR1, MMP9, PARP1, CDK1, and CDK2. MPTP, N-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine; PD, Parkinson’s disease; PPI, protein–protein interaction; ALB, albumin; SRC, Sample Rate Convertor; PTGS2, Prostaglandin 
Endoperoxide Synthase 2; EGFR, Epidermal growth factor receptor; GSK3β, Glycogen synthase kinase 3β; ESR1, Estrogen Receptor 1; MMP9, matrix 
metalloprotein; PARP1, Poly ADP-ribose polymerase 1; CDK1, cyclin dependent kinase 1; CDK2, cyclin dependent kinase 2.
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levels of IL-1β, TNF-α, IL-6 and GSH-Px, SOD, MDA using ELISA 
(Figures 3A–F). The present data indicated that compared with the 
control mice, the levels of IL-1β, TNF-α, IL-6 in the brain tissue of PD 
model mice increased significantly, however, the situation for GSH-Px 
was the opposite (p < 0.01). Moreover, the levels of IL-1β, TNF-α, IL-6 
and MDA in the Galangin groups were significantly decreased 
compared with those in the PD model group, while the levels of GSH-Px 
and SOD were significantly elevated (p < 0.05 or p < 0.01). Additionally, 
MPTP, after crossing the blood–brain barrier, damages the 

dopaminergic neurons in the substantia nigra pars compacta (SNc) and 
the striatum, leading to a decrease in DA levels, which in turn causes 
PD-like behavioral abnormalities and neuropathological changes 
(Episcopo et al., 2013). Our study found that compared to the control 
group, the levels of DA and its metabolites DOPAC and HVA in the 
striatum of the PD model group mice were significantly decreased. 
Compared to the PD model group, the levels of DA and its metabolites 
DOPAC and HVA in the Madopar group and the high-dose Galangin 
group were significantly increased (p < 0.05 or p < 0.01, Figures 3G–I). 
Collectively, these results indicate that Galangin increases DA level and 
decreases oxidative damage in the striatum of mice induced by 
MPTP. Thus, Galangin could be an effective agent against oxidative 
injury for the treatment of PD.

3.4 Effect of Galangin on histopathological 
changes in the brain of mice with PD

The results of HE  staining (Figures  4A,C,E,G) and nipponite 
staining (Figures 4B,D,F,H) showed that the number of neurons in the 
CA1 area of the hippocampus and striatum in the control group was 
increased, with a graphic or oval morphology, neat arrangement, clear 
hierarchy, and abundant nidus; compared with the control group, the 
number of neurons in the CA1 area of the hippocampus and striatum 
in the model group was significantly reduced (p < 0.01), the 
morphology was triangular or irregular polygonal, the number of free 

FIGURE 2

Galangin treatment improves motor coordination in PD mice. (A) Galangin administration design and behavioral testing schedule in mice. (B) Staying 
time of rotarod test in PD mice. (C) The autonomous activity in PD mice. (D) The pole climbing behavior test in PD mice. n = 10 in each group; 
**p < 0.01 vs. control group; #p < 0.05, ##p < 0.01 vs. model group; The F-values for (B–D) are 6.852, 262.950 and 34.456, respectively. PD, Parkinson’s 
disease; L-Galangin, low dose of Galangin; M-Galangin, medium dose of Galangin; H-Galangin, high dose of Galangin.

TABLE 2  Top 10 potential targets of Galangin for PD treatment.

Target Degree Betweenness Closeness

ALB 39 0.152425238 0.698924731

SRC 33 0.155089697 0.650000000

ESR1 32 0.104395481 0.650000000

EGFR 31 0.067632251 0.643564356

GSK3β 30 0.104534353 0.643564356

PTGS2 30 0.056273119 0.625000000

MMP9 23 0.023426488 0.580357143

PARP1 20 0.037831610 0.565217391

CDK2 20 0.026283225 0.550847458

CDK1 20 0.036521346 0.570175439
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cells were increased and arranged in a disordered manner, the 
hierarchy was unclear, the cytosol was solidified and profoundly 
stained, and the number of nipponite bodies was less (p < 0.01); 
compared with the model group, the neuronal pathological changes 
in the hippocampal CA1 area and striatal of the madopar and 
H-Galangin groups showed different degrees of attenuation, with tiny 
cell gaps, higher number of cells, orderly arrangement, and a 
significant increase in the number of nipponite bodies (p < 0.05 or 
p < 0.01). The above results suggest that Galangin could reduce the 
degree of neuronal pathology caused by MPTP.

3.5 Galangin reduces α-syn deposition and 
promotes TH expression

As shown in Figure 5, compared with the control group, the 
expression of α-syn in the striatum (Figures  5A,E) and 

mesocerebrum (Figures  5B,F) of mice in the model group was 
significantly increased, while the expression of TH was significantly 
attenuated (p < 0.01); compared with the model group, the 
expression of α-syn in the striatum and mesocerebrum of mice in 
the madopar- and Galangin-treated groups was significantly down-
regulated, while the expression of TH in the striatum 
(Figures 5C,G) and mesocerebrum (Figures 5D,H) was significantly 
enhanced (p < 0.05 or p < 0.01).

3.6 Galangin alleviates autophagy and 
activates PI3K/AKT pathway

The PI3K/AKT signaling pathway can be activated by various 
types of cell stimulation or toxic injury, and has basic cellular 
functions such as regulating cell proliferation, apoptosis, and 
differentiation. Studies have shown that activation of PI3K/AKT 

FIGURE 3

Galangin reduces brain inflammatory injury and decreases oxidative stress. Expressed protein levels of (A) IL-1β, (B) TNF-α, (C) IL-6, (D) GSH-Px, 
(E) SOD, (F) MDA, (G) DA, (H) DOPAC, and (I) HVA were determined by ELISA (n = 8). *p < 0.05, **p < 0.01 vs. control group; #p < 0.05, ##p < 0.01 vs. 
model group. The F-values for A to I are 4.497, 4.861, 4.765, 5.132, 5.034, 6.261, 12.364, 393.057, and 179.145, respectively. IL-1β, interleukin-1β; TNF-α, 
tumor necrosis factor-α; IL-6, Interleukin-6; GSH-Px, glutathione peroxidase; SOD, Superoxide dismutase; MDA, Malondialdehyde; H-Galangin, high 
dose of Galangin; DA, Dopamine; DOPAC, dihydroxyphenylacetic acid and HVA, homovanillic acid.
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signaling pathway inhibits autophagy, which can reduce nerve 
function injury and play a neuroprotective role (Guo et al., 2015). 
To verify the effect of Galangin on the PI3K/AKT signaling 
pathway and autophagy after MPTP-induced neuron injury, IF 
(Figures 6A–H) and WB (Figures 7A–O) analyses were used to 
evaluate the protein expression levels of α-syn, TH, P-PI3K, 
P-AKT, P-mTOR, Beclin-1, LC3BII/LCBI, P62  in the 
mesocerebrum of the brain at 28 days after treating. The results 
suggested that the protein levels of TH, P-PI3K, P-AKT and P62 
was significantly downregulated in the PD model group compared 
to that in the control group (p < 0.05 or p < 0.01), and α-syn, 
Beclin-1 and LC3BII/LCBI were significantly upregulated (p < 0.05 
or p < 0.01). Moreover, the protein levels of α-syn, SRC, Beclin-1 
and LC3BII/LCBI were decreased, and the protein levels of TH, 
BDNF, P-CREB, P-PI3K, P-AKT, P-mTOR and P62 protein were 
increased by Galangin treatment (p < 0.05 or p < 0.01). These 
results indicated that Galangin alleviates MPTP-induced autophagy 
and activates the protein levels of P-PI3K/PI3K and P-AKT/AKT 
to protecting neurons in PD mice.

3.7 Mesocerebrum transcriptome analysis

The heat map and volcano map of differentially expressed genes 
showed the distribution of differentially expressed genes in the 
mesocerebrum tissue of the two groups of mice. There were 4,515 
differentially expressed genes in H-Galangin and model mice, including 
2,449 up-regulated genes and 2066 down-regulated genes (p < 0.05, 
Figures 8A–C). Compared with the model group, the expression of Cpa4, 
Cdc6, pbk, Lrr1, Esco2, Tlr9, spc24, Ankle1, Pclaf, lqgap3 and other genes 
in the mesocerebrum of H-Galangin group was significantly down-
regulated. Expressions of LOC115487393, Gsta3, Gm40703, Rgs1, 
Cd200r4 and other genes were significantly up-regulated (Figures 8D–F).

3.8 Galangin changed the transcriptional 
levels of the candidate genes

Galangin can alter the expression of predicted core proteins. 
Nevertheless, how it affects these candidate proteins remains unclear. 

FIGURE 4

Histopathology of hippocampus and striatum of mice in each group (n = 6, ×200). (A) Represents the HE staining of the hippocampus; (B) represents 
the nissl staining of hippocampus; (C) represents HE staining of the striatum; (D) represents the nissl staining of the striatum. (E) represents the number 
of neurons in hippocampus by HE staining; (F) represents the number of neurons in hippocampus by nissl staining; (G) represents the number of 
neurons in striatum by HE staining; (H) represents the number of neurons in striatum by nissl staining. **p < 0.01 vs. control group; #p < 0.05, ##p < 0.01 
vs. model group. The F-values for E, F, G and H are 16.410, 9.701, 3.078, and 10.909, respectively. H-Galangin, high dose of Galangin. Black arrows 
indicate the nissl bodies and red arrows indicate neurons.
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To further clarify the molecular mechanism by which Galangin 
regulated protein expression, we examined the mRNA expression of 
IL-1β, TNF-α, IL-6, GSH-Px, ALB, SRC, ESR1, PTGS2, CDK1, CDK2 
and PARP1 in mesocerebrum according to the results of network 
analysis. The qRT-PCR results showed that after treating PD model 
mice with H-Galangin (100 mg/kg) for 28 days, the mRNA levels of 
IL-1β, TNF-α, IL-6, SRC, PTGS2 were upregulated except ESR1, 
GSH-Px and ALB in the mesocerebrum of the PD model mice 
compared with the control mice (p < 0.05). There was no significant 
difference in CDK1, CDK2, PARP1 and ESR1 expression in PD model 
mice compared to control mice after treating Galangin. Moreover, 
these results indicated that Galangin downregulated the levels of 
IL-1β, TNF-α, IL-6, SRC, and PTGS2 mRNA compared with those of 
PD model mice (p < 0.05 or p < 0.01), However, it did not affect ALB, 
CDK1, CDK2, ESR1, PARP1 (Figures 9A–K). Consequently, these 
data suggested that Galangin decreased the transcript levels of IL-1β, 
TNF-α, IL-6, SRC and PTGS2 in PD model mice.

In order to further verify the expression level of differential genes 
by transcriptome sequencing, the key genes of differentially expressed 
genes in the midbrain of two groups of mice were verified by 
RT-qPCR. Compared with the model group, mRNA expression of 
Gpc5c genes in mesocerebrum of the H-Galangin treated group was 
significantly up-regulated (p < 0.05 or p < 0.01). In addition, the most 
significantly down-regulated gene mRNA was Cpa4, Lrr1, Tlr9, spc24, 
nfkb1, Tnf, Gsta3, Pik3r1, Esco2, Cdc6 and pbk (p < 0.05 or p < 0.01), 
which was consistent with the trend of transcriptome sequencing 
(Figures 9L–V).

4 Discussion

Currently, research on the use of Galangin in treating PD is 
limited, and our study remains an early exploratory investigation. 
Following the 4R principles, we adopted a dual-dose (high and low) 

FIGURE 5

The expression of α-syn and TH in striatum and mesocerebrum of each group was detected by immunohistochemistry (n = 6, ×200). (A) Represents 
the α-syn expression of the striatum; (B) represents the α-syn expression of the mesocerebrum; (C) represents the TH expression of the striatum; 
(D) represents the TH expression of the mesocerebrum; (E) represents the changes in α-syn expression of striatum in each group; (F) represents the 
changes in α-syn of mesocerebrum in each group; (G) represents the changes in TH expression of striatum in each group; (H) represents the changes 
in TH expression of mesocerebrum in each group. **p < 0.01 vs. control group; #p < 0.05, ##p < 0.01 vs. model group. The F-values for (E–H) are 
58.562, 8.582, 16.092 and 131.747, respectively. α-syn, α-synuclein; TH, Tyrosine hydroxilase; H-Galangin, high dose of Galangin.
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administration approach. Our experimental results showed that 
Galangin improved motor coordination abilities in mice with PD 
during the behavioral tests. These results can be a supplement for the 
experimental study of Galangin anti-PD (Chen et al., 2017; Chen 
et  al., 2022), and support the results of our network analysis and 
molecular docking that Galangin may be a candidate for the PD agent. 
MPTP-induced experimental model of PD is a representative research 
model, the mechanism of which is the entry of MPTP into the body. 
It is converted to MPP+ under the action of monoamine oxidase to 
produce symptoms similar to PD (Jackson-Lewis and Przedborski, 
2007). MPP+ production will lead to ATP production disorder, 
intracellular Ca2+ level increase and reactive oxygen species 
production, causing dopaminergic neuron death (Episcopo et  al., 
2013). Studies have shown that Galangin is useful for treating PD 
(Kilic et al., 2019; Zeng et al., 2015; Huang et al., 2016). It is difficult 
to accurate insight into the potential pharmacological mechanisms by 
which Galangin improves motor coordination using traditional 
methods. Consequently, we  used network analysis and molecular 
docking to predict and validate the relevant targets and possible 

mechanisms. Additionally, we employed transcriptome sequencing to 
construct and analyze a target network, identifying multiple drug 
targets. Enrichment and functional analyses were conducted to 
further elucidate Galangin’s mechanisms of action.

Research has confirmed that the key targets of Galangin against 
liver cancer were SRC, ESR1, MMP9, CDK4, CCNB1, MMP2, CDK2, 
CDK1, CHEK1 and PLK1 (Li et al., 2024). And the other research 
found that Galangin administration significantly suppressed the 
prominent enhancement of PTGS2 induced by RSL3 in HT1080 cells 
(Chen et al., 2022). Based on the analysis of our network analysis in 
Galangin with PD, we successfully found that SRC, ESR1 and PTGS2 
are important regulators of Galangin in PD. The lignans of S. chinoea 
can down-regulate the expression of SRC protein in SW1353 cells 
induced by IL-1β, and then regulate the inflammatory response in the 
body (Min et al., 2021; Li et al., 2021). PTGS2 is an up-regulated gene, 
and the expressions of PTGS2, nf-κb increased in MCAO rats, and the 
specific expression of PTGS2 is decreased, which can inhibit the nf-κb 
signaling pathway, inhibit cell apoptosis, and promote the 
proliferation, migration and angiogenesis of endothelial progenitor 

FIGURE 6

The expression of Beclin-1 and P62 in striatum and mesocerebrum of each group was detected by immunofluorescence (n = 6, ×200). (A) Represents 
the Beclin-1 expression of the striatum; (B) represents the P62 expression of the striatum; (C) represents the P62 expression of the mesocerebrum; 
(D) represents the Beclin-1 expression of the mesocerebrum; (E) represents the changes in Beclin-1 expression of striatum in each group; 
(F) represents the changes in P62 expression of striatum in each group; (G) represents the changes in P62 expression of mesocerebrum in each group; 
(H) represents the changes in Beclin-1 expression of mesocerebrum in each group; *p < 0.05, **p < 0.01 vs. control group; #p < 0.05, ##p < 0.01 vs. 
model group. The F-values for (E–H) are 4.283, 4.283, 4.280, and 11.320, respectively. H-Galangin, high dose of Galangin.
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cells (Zhou et al., 2019). ESR1 is mainly expressed in endothelial cells, 
vascular smooth muscle cells and macrophages, and plays an 
influential role in the physiology and function of blood vessel walls. 
Mutations in the ESR1 gene may lead to cerebral infarction (Gao et al., 
2014). We hypothesize that Galangin modulates the mRNA levels of 
SRC, ESR1 and PTGS2, thereby improving motor coordination 
abilities. However, we expect that multiple mechanisms contribute to 
this function. KEGG pathway enrichment analysis predicted that 
Galangin ameliorates neuroinflammation by regulating multiple 
pathways of which regulation of the PI3K/AKT signaling pathway is 
critical. The PI3K/AKT signaling pathway has multiple roles, closely 
related to cell proliferation, apoptosis, oxidative stress, and 
inflammatory reaction (Ji and Wang, 2019; Manning and Toker, 2017). 
However, it is not clear whether Galangin is interlinked with this 
signaling pathway in motor coordination after MPTP successfully 
constructed PD model. After experimental verification, it was found 
that PI3K/AKT signaling pathway is disrupted in mice with MPTP 
injury. In contrast, Galangin dose-dependently restored PI3K/AKT 
signaling pathway activation, which is critical for normal 
brain functioning.

Previous studies have shown that abnormal autophagy function is 
strongly associated with a variety of diseases, including 
neurodegenerative diseases, tumors, and other diseases (Kiriyama and 
Nochi, 2015). During MPTP-induced PD events, a substantial 
accumulation of α-syn and dysfunctional organelles occurs, causing 
the activation of autophagy. Studies suggest that autophagy is involved 
in the entire process of PD pathogenesis (Dehay et al., 2010). Autopsies 
of patients with PD revealed an accumulation of autophagosomes 
accompanied by the absence of lysosomal markers in dopaminergic 
neurons (Heras-Sandoval et  al., 2014). The PI3K/AKT/mTOR 
pathway may be  affected to varying degrees in the brains of PD 
patients, and autopsy results of PD patients have revealed decreased 
activity of phosphorylated AKT in dopaminergic neurons; however, 
some studies have suggested that autophagy in the course of PD may 
be independent of the PI3K/AKT/mTOR pathway leading to neuronal 
damage (Mancuso and Navarro, 2015), and further research is needed 
to determine whether autophagy is involved in the pathogenesis of PD 
by affecting the PI3K/AKT/mTOR pathway. However, both network 
analysis and transcriptomic results suggest that Galangin treatment of 
PD mice is closely related to the PI3K/AKT pathway. In order to verify 

FIGURE 7

Galangin alleviated autophagy and activated PI3K/AKT signaling pathway in PD mice. (A) Protein levels of α-syn, TH, Beclin-1, LC3BII, P62, (B) protein 
levels of P-PI3K, P-AKT, P-mTOR, and (C) protein levels of BDNF, P-CREB, PTGS2 and SRC in mesocerebrum were determined by western blotting. 
Quantitative analyses of α-syn (D), TH (E), Beclin-1 (F), LC3BII (G), P62 (H), P-PI3K (I), P-AKT (J), P-mTOR (K), BDNF (L), P-CREB (M), PTGS2 (N) and SRC 
(O) by e-Blot software. n = 6, *p < 0.05, **p < 0.01 vs. control group; #p < 0.05, ##p < 0.01 vs. model group. The F-values for (A–C) are α-syn (48.623), 
TH (32.490), Beclin-1 (15.752), LC3BII (133.073), P62 (355.598), P-PI3K (184.939), P-AKT (41.508), P-mTOR (20.195), BDNF (11.111), P-CREB (14.550) and 
PTGS2 (2.400) and SRC (7.697), respectively. PD, Parkinson’s disease; α-syn, α-synuclein; TH, tyrosine hydroxilase; H-Galangin, high dose of Galangin; 
PI3K, Phosphatidylinositol 3-Kinase; AKT, Protein Kinase B; PTGS2, prostaglandin-endoperoxide synthase 2 Gene; BDNF, brain-derived neurotrophic 
factor; CREB, cAMP-response element binding protein; SRC, Sample Rate Convertor.
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this conclusion, we established a mouse model of PD by MPTP, and 
evaluated the anti-PD effect of Galangin by roller test, TH, α-syn, 
autophagy and other indicators. Results demonstrated that Galangin 
improved motor coordination in PD mice and that the neuronal 
morphology and organization in the hippocampus and striatum were 
significantly better in the treatment group compared to the model 
group. Notably, the number of nistids and neurotrophic factor levels 
of BDNF and CREB were elevated, suggesting that Galangin can 
alleviate the neuronal damage caused by MPTP. The α-syn protein 
S129D mutant increases TH phosphorylation and DA synthesis (Hua 
et al., 2015; Xu et al., 2015). TH provides instructions for synthesizing 
DA in dopaminergic neurons, which is essential for the normal 
functioning of the nervous system. In the PD model, it was found that 
the accumulation or loss of α-syn would lead to dysregulation of TH 
activity in the brain (Farrell et al., 2014). Our previous experimental 
studies also found that after the use of autophagy inhibitors to inhibit 
autophagy activity, TH activity was increased, while α-syn expression 
was reduced, and the neuronal damage was attenuated (Zhang et al., 
2016). Notably, Beclin-1, LC3B and P62 are widely employed as 
autophagy biomarkers. LC3B is the first autophagosome membrane 
protein found in eukaryotic cells. It is an important component of 

autophagosome, and its content is positively correlated with the 
number of autophagosomes (Chmid et  al., 2013). Beclin-1 is a 
promoter of autophagy, and its activity is regulated by phosphorylation 
and ubiquitination in various ways, thus regulating autophagy level 
(Park et al., 2018; Hill et al., 2019). Autophagy receptor P62 recognizes 
ubiquitin-labeled proteins and organelles that degrade autophagy 
receptors and interacting adaptors during selective autophagy (Chmid 
et al., 2013). Dysautophagy can lead to accumulation of abnormal 
proteins or organelles in cells, causing PD. Moderate activation of 
autophagy can be  used for the treatment of PD, while excessive 
autophagy can cause neuronal death. However, how to regulate 
autophagy for PD treatment is still a research difficulty. Herein, 
we observed that DA and its metaboliets DOPAC and HVA levels, TH 
and P62, P-PI3K, P-mTOR and P-AKT expression were decreased, 
and а-syn, Beclin-1, LC3B were significantly increased in the PD mice 
compared with the control mice. In contrast, treatment with Galangin 
abrogated the PD-mediated increase in autophagy levels, at the same 
time, а-syn decreased, DA and its metaboliets DOPAC and HVA 
levels, TH, P-PI3K, P-mTOR and P-AKT expression evaluated. These 
results indicated that Galangin may alleviated the autophagy and 
improved the motor dysfunction PD mice (Figure 10).

FIGURE 8

Transcriptomic analysis and differential gene validation results in the mesocerebrum of mice. (A) The FPKM boxplot group G and Group M. (B) Statistic 
of differently expressed gene in group G and Group M. (C) Differential gene volcano map of two groups of group G and group M. (D,E) show the KEGG 
and GO analysis result diagrams for the group G and group M, respectively. (F) Differential gene heat maps of group G and group M. Red, up-regulated 
gene; Blue, down-regulated gene; group G, H-Galangin group; Group M, model group.
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Neuroinflammation is considered to be an important factor 
in the pathogenesis of PD (Lee et al., 2019; Earls and Lee, 2020). 
In many animal models of PD, peripheral inflammation has been 
shown to exacerbate the degeneration of dopaminergic neurons. 
Oxidative stress, mitochondrial dysfunction, abnormal 
aggregation of α-syn, and synergistic effects of endogenous 
neurotoxins can also exacerbate chronic inflammation and 
neuronal death (Sun et al., 2019; Liddelow et al., 2017). Research 
indicates that when the NLRP3 inflammasome detects α-syn 
aggregation, it activates caspase-1, which subsequently induces 
the release of pro-inflammatory cytokines such as IL-1β and 
IL-18. This process intensifies the inflammatory response in PD 
and promotes further injury to dopaminergic neurons and 
excessive α-syn aggregation. Knockout the inflammasome can 
make MPTP-induced PD mouse models characteristic of loss of 
anti-nigra dopaminergic neurons associated with decreased 
secretion of IL-1β and IL-18 (Yan et  al., 2015; Teleanu et  al., 

2022). Therefore, antioxidant have become an important idea in 
PD treatment, which helps to protect neurons and delay 
neurodegeneration, so as to delay the development of the disease. 
Catalase (CAT) and GSH-Px have antioxidant activities, and the 
decrease of CAT and GSH-Px levels in PD patients is an 
important reason for the mass production of free radicals, which 
accelerates the damage of dopaminergic neurons and accelerates 
the development of the disease (Percario et al., 2020; Leathen 
et al., 2022). Our experimental results indicate that the PD model 
group exhibited significant oxidative stress damage. Specifically, 
compared to the control group, the levels of GSH-Px mRNA, 
GSH-Px and SOD significantly decreased, while the level of MDA 
significantly increased. Compared to the PD model group, the 
different doses of Galangin treatment groups significantly 
upregulated the levels of GSH-Px mRNA, GSH-Px and SOD, and 
downregulated the level of MDA. These results further suggest 
that Galangin has a protective effect on MPTP-induced PD model 

FIGURE 9

RT-qPCR analysis of differentially expressed genes in the mesocerebrum of each group mice. n = 6, *p < 0.05, **p < 0.01 vs. control group; #p < 0.05, 
##p < 0.01 vs. model group. The F-values for (A–V) are (A) (IL-1β, 244.893), (B) (TNF-α, 6.800), (C) (IL-6, 13.980), (D) (GSH-Px, 29.913), (E) (ALB, 12.895), 
(F) (SRC, 38.801), (G) (ESR1, 3.219), (H) (CDK1, 0.776), (I) (CDK2, 0.094), (J) (PARP1, 0.128), (K) (PTGS2, 26.508), (L) (Cpa4, 9.184), (M) (Lrr1, 67.731), 
(N) (Tlr9, 9.630), (O) (spc24, 2.557), (P) (Esco2, 1007.165), (Q) (Cdc6, 9.712), (R) (pbk, 9.482), (S) (Nfkb1, 18.542), (T) (Tnf, 13.589), (U) (Gsta3, 20.973), and 
(V) (Pik3r1, 9.482), respectively. IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α; IL-6, Interleukin-6; GSH-Px, glutathione peroxidase; ALB, albumin; 
SRC, Sample Rate Convertor; ESR1, Estrogen Receptor 1; PTGS2, Prostaglandin Endoperoxide Synthase 2; CDK1, cyclin dependent kinase 1; CDK2, 
cyclin dependent kinase 2; PARP1, Poly ADP-ribose polymerase 1; Cpa4, carboxypeptidase a4; Lrr1, leucine rich repeat protein 1; Tlr9, toll-like receptor 
9; spc24, spindle pole component 24; Nfkb1, nuclear factor kappa B subunit 1; Tnf, Tumor necrosis factor; Gsta3, glutathione S-transferase alpha 3; 
Pik3r1, phosphoinositide-3-kinase regulatory subunit 1; Esco2, establishment of sister chromatid cohesion N-acetyltransferase 2; Cdc6, cell division 
cycle 6; pbk, PDZ binding kinase; H-Galangin, high dose of Galangin.
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mice, which may be  related to its antioxidant properties. 
Furthermore, our results also found that the protein or mRNA 
levels of IL-1β, IL-6 and TNF-α were elevated in PD model mice. 
Galangin administration partially restored the levels of IL-1β, 
IL-6 and TNF-α. We suggest that PD mice suffering from MPTP 
toxicity have a redox imbalance in the brain. The abnormal 
accumulation of IL-1β, IL-6 and TNF-α disrupted the normal 
structure of the brain and cognitive function.

To further explore the molecular mechanism of Galangin 
intervention in PD, we  conducted transcriptomic analysis of 
differentially expressed genes in the midbrain tissues of mice from 
both the high-dose Galangin-treated group and the model group. 
Following this, we performed GO analysis and enrichment analysis 
of differentially expressed genes. The GO analysis results of this 
study showed that compared with the model group, the functions of 
the differential genes in the Galangin treated group were mainly 
focused on cell cycle, DNA replication, cytoplasm, and identical 
protein binding. In addition, the enrichment analysis results of 
KEGG signal pathway showed that compared with the model group, 
the differential genes involved in the Galangin treatment group were 
mainly PI3K/AKT signaling pathway, MAPK signaling pathway, 
TNF signaling pathway and cellular senescence. These results 
suggest that the anti-PD effect of Galangin may be related to the 
regulation of cell function and inflammatory response. Furthermore, 
the results of differential gene analysis in this study showed that after 
the intervention of Galangin in PD, the top 10 genes up-regulated in 

the midbrain of PD mice involving Gsta3, LOC115487393, Pik3r1, 
Gm40703, Rgs1, Gm52312, Gm46784, Cd200r4, Gprc5c, Gm30657. 
Conversely, down-regulated genes included Cpa4, Tnf, Cdc6, Pbk, 
Lrrl, Esco2, Nfkb1, Tlr9, Ankle1 and Pclaf. Most of these genes are 
related to cell growth and apoptosis, cancer, inflammation and so on. 
Among them, Nfkb1 is a widespread and important transcription 
factor involved in T cell activation, gene expression involved in a 
variety of biological functions such as immune regulation and cell 
adhesion, and is associated with a variety of immune diseases 
(Camblor et al., 2022; Dange et al., 2015; Ladygina et al., 2013; Jiang 
et al., 2022). According to the RT-PCR test, compared with the PD 
model group, Cpa4, Lrr1, Tlr9, spc24, Nfkb1, Tnf, Gsta3, Pik3r1 and 
Esco2 in Galangin group were significantly down-regulated, while 
Gpc5c was up-regulated. The results were consistent with those of 
transcriptomic analysis. Therefore, we suggest that Galangin can 
improve motor coordination of PD mice is closely related to activate 
the PI3K/AKT pathway and anti-inflammation.

Our concentration analysis of the KEGG pathway in network 
analysis indicates that the PI3K/AKT pathway is one of the primary 
anti-PD pathways influenced by Galangin, along with cellular 
senescence, the MAPK signaling pathway, the TNF signaling 
pathway, and the p53 signaling pathway. However, we only studied 
PI3K/AKT and did not conduct relevant studies on other pathways. 
Additionally, the other difference-related genes do not appear in 
the PI3K/AKT pathway, and the correlation with PD is not yet 
clear, so it needs to be verified in the next step. There will be further 

FIGURE 10

Galangin attenuated MPTP-induced brain tissue injury in PD model mice, and the related mechanism may be related to the PI3K/AKT signaling 
pathway. MPTP-induced neuronal injury in the brain of PD model mice exhibited α-syn aggregation, decreased TH expression, increased inflammatory 
factor levels, and high autophagy levels. Activation of PI3K/AKT signaling pathway could alleviate the autophagy level to a certain extent, reduce 
inflammation, decrease α-syn aggregation and promote TH expression, and finally repair the activity of dopaminergic neurons. Therefore, 
we demonstrate the preventive and therapeutic potential of Galangin in attenuating PD, at least in part, by regulating the PI3K/AKT signaling pathway. 
MPTP, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; PD, Parkinson’s disease; α-syn, α-synuclein; TH, tyrosine hydroxilase; PI3K, Phosphatidylinositol 
3-Kinase; AKT, Protein Kinase B; mTOR, mechanistic target of rapamycin.
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explanation as to whether these signaling pathways are involved in 
PD. Furthermore, these pathways are complex, and more intensive 
studies can be  conducted in the future to explore the specific 
mechanisms signaling Galangin exerts protective effects 
against PD.

5 Conclusion

In conclusion, this study confirmed that Galangin treatment 
promoted motor coordination and attenuated the damage of 
dopaminergic neurons in PD model mice. The therapeutic effect of 
H-Galangin was more significant than that of L-Galangin and 
M-Galangin. Additional exploration of the mechanism of the 
protective effect of Galangin on the PD model mice through network 
analysis, molecular docking and transcriptomic analysis suggested 
that it may involve the activation of the PI3K/AKT signaling pathway. 
Moreover, Galangin inhibited autophagy-related protein levels and 
promoted neurotrophic factor levels of BDNF and CREB. These 
results suggest that Galangin could be  developed as a drug for 
PD therapy.
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Background: Parkinson’s disease (PD) typically presents with unilateral 
symptoms in early stages, starting on one side and progressing, with the onset 
side showing more severe motor symptoms even after bilateralization. This 
asymmetry may reflect complex interactions among multiple brain regions 
and their network connections. In this study, we aimed to use surface-based 
morphometry (SBM) and structural covariance networks (SCNs) to investigate 
the differences in brain structure and network characteristics between patients 
with left-onset PD (LPD) and right-onset PD (RPD).

Methods: A total of 51 LPD and 49 RPD patients were recruited. Clinical 
assessments included the Unified Parkinson’s Disease Rating Scale motor 
section, Hoehn and Yahr stage, Mini-Mental State Examination, Parkinson’s 
Disease Questionnaire, and Beck Depression Inventory. All participants 
underwent 3 T structural MRI. FreeSurfer was used to perform vertex-wise 
comparisons of cortical surface area (CSA) and cortical thickness (CT), whereas 
the Brain Connectivity Toolbox was implemented to construct and analyze the 
structural covariance networks.

Results: In patients with LPD, we found reduced CSA in the right supramarginal 
gyrus (SMG), right precuneus (PCUN), left inferior parietal lobule (IPL), and left 
lingual gyrus (LING) compared to RPD, while no significant differences in CT 
were found between the two groups. The CSA of the right PCUN showed a 
significant positive correlation with MMSE score in LPD patients. In our SCNs 
analysis, LPD patients exhibited increased normalized characteristic path length 
and decreased small-world index in CSA-based networks, while in CT-based 
networks, they showed increased small-world index and global efficiency 
compared to RPD. No significant differences in nodal characteristics were 
observed in either CSA-based or CT-based networks between the two groups.

Conclusion: In patients with LPD, reductions in CSA observed in the right PCUN, 
right SMG, left IPL, and left LING may be associated with cognitive impairments 
and hallucinations among non-motor symptoms of PD. Additionally, the SCNs 
of LPD and RPD patients show significant differences in global topology, but 
regional node characteristics do not reflect lateralization differences. These 
findings offer new insights into the mechanisms of symptom lateralization in PD 
from the perspective of brain regional structure and network topology.
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Introduction

Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder after Alzheimer’s disease, characterized 
by a spectrum of progressive motor and non-motor symptoms 
(Aarsland et al., 2021). The pathophysiology of PD is complex and not 
yet fully understood. However, one prominent clinical feature of PD 
is the asymmetry of motor symptoms, which typically begin on one 
side of the body and later progress to the other (Wang et al., 2015). The 
onset side, also known as the symptomatic dominant side, often 
displays more severe motor symptoms even when the disease becomes 
clinically bilateral (Djaldetti et  al., 2006). Unlike the symmetric 
presentation of multiple-system atrophy and progressive supranuclear 
palsy in their classic forms, this asymmetry in PD may reflect its 
unique heterogeneity and provides valuable insights into its 
progression mechanisms (Postuma et al., 2015; Wang Z. et al., 2016; 
Miki et al., 2021).

Numerous studies have found that the side of onset of motor 
symptoms in PD might influence their clinical characteristics and the 
progression of non-motor symptoms. For instance, left-onset PD 
(LPD) often show poorer visual memory and visuospatial impairments 
(Amick et al., 2006; Verreyt et al., 2011), more frequent hallucinations 
(Stavitsky et al., 2008), and a higher prevalence of rapid eye movement 
sleep behavior disorder (Baumann et al., 2014). In contrast, right-
onset PD (RPD) is associated with poorer verbal memory and 
language task impairments (Amick et al., 2006; Verreyt et al., 2011), 
apathy (Harris et  al., 2013), and a higher risk of impulse control 
behaviors (Phillipps et al., 2020). These clinical differences highlight 
the potential impact of PD lateralization on non-motor symptoms, 
possibly reflecting underlying brain structure variations. However, the 
mechanisms involved in PD asymmetry have not yet been elucidated.

Structural magnetic resonance imaging (MRI) studies offer 
preliminary evidence for the lateralization of PD. For example, LPD 
patients show reduced gray matter volume in the right middle frontal 
gyrus and precuneus (PCUN), which are closely linked to visuospatial 
memory impairment (Lee et al., 2015). Additionally, LPD patients 
show cortical thinning in motor-related areas of the left hemisphere 
(Kim et al., 2014). Conversely, studies on cortical complexity in RPD 
patients have revealed decreased mean fractal dimension and mean 
sulcal depth in the left superior temporal sulcus compared to LPD 
patients (Zhang et al., 2021). Although these findings provide some 
insight into brain structure changes related to PD lateralization, 
limited research has focused on cortical surface area (CSA) and 
cortical thickness (CT). Surface-based morphometry (SBM) tools 
such as FreeSurfer can accurately quantify CSA and CT (Goto et al., 
2022). CSA indicates the unfolding of cerebral cortex, while CT 
reflects the density and distribution of neurons (Winkler et al., 2018). 
Joint analysis of CSA and CT may provide new insights into cortical 
changes associated with PD asymmetry.

Moreover, PD involves altered connections between various brain 
regions, it can also be considered a brain network disorder (Canu 
et al., 2015; Wang M. et al., 2016; Ji et al., 2018). The asymmetry in PD 
may result from the unequal degeneration of midbrain dopaminergic 

neurons, but it remains unknown how this localized structural 
damage leads to abnormalities in the entire brain network (Li et al., 
2020). Structural covariance networks (SCNs) provide an effective 
means to explore the lateralization of PD from a network perspective 
by revealing coordinated morphological variations across brain 
regions (Vijayakumar et al., 2021). Studies have reported increased 
clustering coefficient and path length in SCNs of PD patients 
compared to healthy controls, suggesting network-level abnormalities 
associated with disease progression (Pereira et al., 2015; Zhang et al., 
2015; Xu et al., 2017; Wu et al., 2018). Despite these findings, SCNs 
related to the lateralization of PD remain poorly understood.

Therefore, this study aims to analyze cortical structural changes 
in LPD and RPD patients using the SBM approach and to investigate 
differences in brain network topology between the two groups 
through SCNs analysis. We  expect that these investigations will 
provide new insights into the mechanisms underlying the 
lateralization of PD.

Materials and methods

Participants

This study was approved by the local ethical committee of the First 
Affiliated Hospital of Zhengzhou University. In compliance with the 
Declaration of Helsinki, written informed consent was obtained from 
all subjects before participation. The inclusion criteria were as follows: 
(1) no significant cognitive impairment assessed by the Mini-Mental 
State Examination (MMSE); (2) right-handedness; and (3) no history 
of other psychiatric or neurological diseases. Subjects were excluded 
if they (1) had other diseases and treatments that could potentially 
affect brain function, such as atypical parkinsonism, cerebral trauma, 
stroke, and other diseases of the neurological system; (2) had 
contraindications to MRI or were unable to cooperate with an MRI 
scan and clinical assessments. All PD patients underwent assessment 
in a practically defined “off ” state, achieved by withholding anti-
parkinsonian medications for 12 h overnight (Espay et  al., 2012), 
except during MRI acquisition. PD patients were divided into LPD 
and RPD groups based on the side of motor symptom onset. This 
classification was confirmed through retrospective chart reviews, 
patient self-reports, and early-stage clinical evaluations by experienced 
neurologists at our institution.

MRI data acquisition and preprocessing

Anatomical 3D T1-weighted fast field echo (FFE) MRI images 
were acquired on a 3 T Siemens Verio scanner (Siemens, Erlangen, 
Germany) using a 32-channel receive coil in the Department of 
Medical Imaging, The First Affiliated Hospital of Zhengzhou 
University. A memory foam padding was used to minimize head 
motion, and earplugs were used to reduce scanner noise. The MRI 
parameters were as follows: 218 sagittal slices, repetition time 
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(TR) = 1900 ms, echo time (TE) = 2.93 ms, thickness = 1.0 mm, no 
gap, flip angle = 9°, matrix size = 256 × 256 reconstructed to 352 × 352 
over a 220-mm field of view, and voxel size = 0.625 × 0.625 × 1 mm3.

MRI data were preprocessed using FreeSurfer 7.4.1 to estimate 
CSA and CT (Dale et al., 1999; Fischl, 2012). FreeSurfer is open source 
software for accurate and automated human cortical thickness 
measurements and cross-subjects statistics based on cortical anatomy 
(Fischl and Dale, 2000). The suite offers both whole brain vertex-wise 
analysis, which localizes clusters across the whole cortical mantle and 
ROI-based analysis after automatically parcellating the cortex into 
regions based on standard anatomical and functional atlases. In short, 
image processing procedures included motion correction using the 
average of multiple volumetric images, skull and non-brain tissue 
stripping, automated Talairach transformation, subcortical white and 
deep grey matter segmentation, grey and white matter tessellation, 
automated topology correction, and surface deformation to optimize 
the grey/white and grey/cerebrospinal fluid boundaries. To ensure 
data quality, images were inspected for significant motion artifacts 
during preprocessing, and only those meeting quality standards were 
included for subsequent analysis. The quantitative measures of CSA 
and CT for cortical regions were defined using the Desikan atlas 
(Desikan et al., 2006).

Constructing structural covariance 
networks

The Brain Connectivity Toolbox was employed to construct the 
SCNs based on CSA and CT (Rubinov and Sporns, 2010). For each 
group, a 68 × 68 correlation matrix was constructed by calculating 
Pearson correlation coefficients between CSA or CT values of each 
brain region. To emphasize the strength of structural covariance 
regardless of direction, the absolute values of these coefficients were 
taken, and the resulting matrix was then converted into a binary 
adjacency matrix by thresholding to values of 1 or 0 (Figure  1). 
Thresholds were defined as a network sparsity range from 0.1 to 0.4 
(increments of 0.01), which ensured that LPD and RPD networks had 
the same number of nodes and edges at each density. The chosen 
sparsity range allows the small-world network architectures to 
be properly estimated, and the number of spurious edges in each 
network is minimized, as indicated in previous studies (Achard and 
Bullmore, 2007; He et al., 2007).

Graph-based network analysis

As measures of network integration, we calculated the normalized 
characteristic path length, defined as the shortest path length between 
all pairs of nodes, and global efficiency, which measures how efficiently 
information is communicated between nodes. To assess network 
segregation, we analyzed the normalized clustering coefficient which 
evaluates the influence of different paths based on the connection 
weights of the node’s neighbors, and local efficiency, defined as the 
number of connections in the neighborhood of a certain node divided 
by the maximum number of possible connections between the 
neighbors of this node. To evaluate the extent of network modular 
organization, we computed modularity, which quantifies the strength 
of division of a network into distinct functional modules or 

communities. Small-worldness, reflecting the balance between 
network integration and segregation, was also computed. To explore 
group differences in nodal network measures, we examined nodal 
degree, nodal efficiency, and nodal betweenness centrality.

Statistical analysis

The statistical analyses of demographic and clinical indices were 
conducted using the SPSS version 22.0 (SPSS Inc., Chicago, IL, 
United States). The normal distribution of the data was assessed by 
Shapiro–Wilk test. Group differences in age, years of education, age at 
onset, Unified Parkinson’s Disease Rating Scale motor section 
(UPDRS-III), Beck Depression Inventory (BDI), and levodopa 
equivalent daily dose (LEDD) were analyzed with unpaired two-tailed 
t-tests. The Mann–Whitney U test was used to analyze differences in 
disease duration, Parkinson’s Disease Questionnaire (PDQ-39), 
MMSE, and Hoehn and Yahr stage. A two-tailed p < 0.05 was 
considered statistically significant.

To assess group differences in CT and CSA, we conducted whole-
brain vertex-wise analysis using the graphical user interface of 
FreeSurfer known as QDEC (Query, Design, Estimate, Contrast) (van 
Eijndhoven et al., 2013; Bruno et al., 2017). We used a general linear 
model (GLM) to compare CSA and CT between LPD and RPD groups 
with age and sex as covariates. The Monte Carlo Null-Z Simulation 
was employed to control for multiple comparisons (10,000 iterations, 
cluster-forming p < 0.05, cluster-wise corrected p < 0.05). Then, 
partial correlation analyses were conducted separately for the LPD and 
RPD groups to investigate associations between the CSA and CT of 
regions showing significant group differences and clinical variables 
(age of onset, duration, MDS-UPDRS III, PDQ-39, BDI, MMSE, and 
LEDD), with age and sex as covariates. A significance threshold of 
p < 0.05 was adopted for these exploratory analyses, without 
correction for multiple comparisons.

To assess the statistical significance of group differences in all 
network parameters, we used a non-parametric permutation test with 
2,000 repetitions (He et  al., 2008; Zhang et  al., 2019). For each 
repetition, the corrected CSA and CT values of each subject were 
randomly reassigned to one of two new groups with the same number 
as the original LPD and RPD groups, and then the correlation matrices 
were recalculated for the two new groups. For the two new groups, 
network parameters were calculated and differences were compared 
at each sparsity. The area under the curve (AUC) was computed using 
the trapezoidal rule with a step size of 0.01 to integrate the group 
difference trajectories across all sparsity thresholds, summarizing 
cumulative differences over the entire density range (Zhang et al., 
2019). The statistical threshold was set at p < 0.05 for group differences 
in global network parameters. For regional network parameters, a 
p < 0.05 significance level was applied following false discovery rate 
(FDR) correction using the Benjamini-Hochberg method.

Results

Demographic and clinical characteristics

There were 50 cases in LPD group (1 excluded from 51 recruited 
due to image quality issues) and 49 cases in RPD group. The 
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demographic and clinical characteristics of participants are 
summarized in Table  1. Age, gender, disease duration, years of 
education, age at onset, MDS-UPDRS III score, PDQ-39 score, Hoehn 
and Yahr stage, MMSE score and BDI score were comparable between 
the two groups (p > 0.05; Table 1).

Group differences in CSA and CT

The whole-brain vertex-wise analysis revealed that compared to 
RPD patients, the LPD patients exhibited 4 clusters with significantly 
smaller CSA as follows: cluster 1 in the right hemisphere was primarily 
located in the supramarginal gyrus (SMG); cluster 2  in the right 
hemisphere was located in the PCUN; cluster 3 in the left hemisphere 
was mainly in the inferior parietal lobule (IPL); and cluster 4 in the left 
hemisphere was in the lingual gyrus (LING). All clusters were 

corrected using Monte Carlo simulations at p < 0.05 (Figure 2, Table 2). 
However, the vertex-wise comparisons with correction for multiple 
comparisons of CT found no differences between the two groups.

Correlation between morphometrical 
alterations and clinical variables

Partial correlation analyses, adjusted for age and sex, were conducted 
separately for the LPD and RPD groups to examine relationships 
between the CSA of the four regions with significant group differences 
(right SMG, right PCUN, left IPL, and left LING) and clinical variables 
(age of onset, duration, MDS-UPDRS III, PDQ-39, BDI, MMSE, and 
LEDD). In the LPD group, the CSA of the right PCUN was significantly 
positively correlated with MMSE score (r = 0.360, p = 0.01) (Figure 3). 
No other significant correlations were observed between the CSA of 

FIGURE 1

Correlation matrices with 68 × 68 for LPD and RPD groups based on cortical surface area (A,B) and cortical thickness (C,D). These matrices display the 
Pearson correlation coefficients between pairs of regions in the network. The color bar represents the absolute value of the Pearson correlation 
coefficients, indicating the strength of the connections.
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these regions and any clinical variables in the LPD group (p > 0.05). In 
the RPD group, no significant correlations were found between the CSA 
of the four regions and any clinical variables (p > 0.05). A summary of all 
tested correlations for both groups is provided in Supplementary Table S1.

Global network characteristics

The global network parameter changes and between-group 
differences for CSA and CT in the LPD and RPD patients across a 
sparsity range of 0.10 to 0.40 are shown in Figure 4. Both groups 
exhibited small-world properties in their SCNs, with a small-world 
index greater >1. For CSA-based networks, AUC analysis revealed that 
the normalized characteristic path length was significantly increased 
in LPD patients compared to RPD (p = 0.024), while the small-world 
index was significantly higher in RPD patients (p = 0.037). Conversely, 
for CT-based networks, AUC analysis revealed that the small-world 
index and global efficiency were significantly higher in LPD patients 
compared to RPD (p = 0.006 and p = 0.032, respectively). For the 
remaining global network parameters, no significant between-group 
differences were observed between LPD and RPD patients (all 
p > 0.05; Supplementary Figures S1, S2).

Regional network characteristics

We investigated the networks (sparsity = 0.01) for between-group 
differences in regional network measures, including nodal 
betweenness, nodal efficiency, and nodal degree. No significant 
differences in nodal characteristics were observed after correction for 

TABLE 1  Demographic and clinical data of study groups.

Characteristic LPD (N = 50) RPD (N = 49) p (LPD vs. RPD)

Age, years, mean ± SD 64.10 ± 7.957 62.90 ± 10.574 0.524

Gender, F / M 23 / 27 24 / 25 –

Education, years, (IR) 6.00 (6.00–9.00) 9.00 (6.00–9.00) 0.522

Age of onset, years, mean ± SD 55.98 ± 8.498 54.98 ± 10.209 0.597

Duration, years, (IR) 7.00 (5.00–10.00) 7.00 (5.00–10.00) 0.682

UPDRS-III, mean ± SD 55.38 ± 12.227 53.35 ± 15.098 0.463

MMSE, (IR) 27.00 (22.00–28.00) 27.00 (24.00–28.00) 0.780

PDQ-39, (IR) 68.50 (51.75–88.25) 73 (50.50–91.50) 0.629

BDI, mean ± SD 19.16 ± 11.601 18.24 ± 9.148 0.664

LEDD, mg, mean ± SD 822.470 ± 361.0314 813.286 ± 341.9414 0.897

Hoehn and Yahr, (IR) 3.00 (2.50–4.00) 3.00 (2.50–4.00) 0.515

LPD, left-onset Parkinson’s disease; RPD, right-onset Parkinson’s disease; UPDRS-III, Unified Parkinson’s Disease Rating Scale motor section; MMSE, Mini-Mental State Examination; PDQ-
39, Parkinson’s Disease Questionnaire; BDI, Beck Depression Inventory; LEDD, levodopa equivalent daily dose.

FIGURE 2

The brain regions with cortical surface area differences between the 
LPD and RPD groups (corrected using Monte Carlo Null-Z Simulation 
for p < 0.05). Blue (negative values) indicates a reduction in cortical 
surface area in the LPD compared to RPD group. SMG, 
supramarginal gyrus; PCUN, precuneus; IPL, inferior parietal lobule; 
LING, lingual gyrus.

TABLE 2  Significant clusters with altered cortical surface area in LPD versus RPD.

Brain regions Maximum vertex coordinate of significant clusters Size (mm2) P-value for CWP

MNIX MNIY MNIZ

Cortical surface area

LPD < RPD

  Right SMG 56.5 −19 17.3 9956.05 0.0001

  Right PCUN 7.6 −54.5 18.9 2781.66 0.0105

  Left LING −32.1 −50.4 -6.7 2335.01 0.0301

  Left IPL −40.2 −69.3 17.5 2328.80 0.0303

All clusters survived correction for multiple comparisons using a Monte Carlo simulation, resulting in a corrected cluster-wise p < 0.05. CWP, cluster-wise probability; LPD, left-onset 
Parkinson's disease; RPD, right-onset Parkinson's disease; SMG, supramarginal gyrus; PCUN, precuneus; LING, lingual gyrus; IPL, inferior parietal lobule.
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multiple comparisons in either CSA-based or CT-based networks 
between the two groups (p > 0.05; Supplementary Figure S3).

Discussion

To the best of our knowledge, this study is the first to investigate 
cortical morphometric alterations in CSA associated with the 

lateralization of PD. Additionally, this study is the first to reveal 
abnormal topological organization of SCNs between LPD and RPD 
patients. The results showed that LPD patients exhibited significantly 
smaller CSA in the right PCUN, right SMG, left IPL, and left LING 
compared to RPD patients. In our SCNs analysis, LPD patients 
exhibited increased normalized characteristic path length and decreased 
small-world index in CSA-based networks, while in CT-based networks, 
they showed increased small-world index and global efficiency 

FIGURE 3

The scatter plot shows a positive correlation between cortical surface area of the right precuneus cluster and MMSE score in the LPD group.

FIGURE 4

The group differences in network parameters of structural covariance networks based on CSA and CT within the range of 10–40% network sparsity 
include (A) and (C) small-worldness, (B) normalized characteristic path length, and (D) global efficiency. The upper and lower blue bands represent the 
95% confidence intervals, while the middle black line indicates the mean difference after 2,000 permutations. The red line represents the actual group 
difference, and if it falls outside the confidence interval, it indicates that the group difference is significant at the current threshold (p < 0.05). Positive 
values indicate LPD > RPD, and negative values indicate LPD < RPD. The subplots show the group differences in the AUC values for each measure of 
the SCNs.
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compared to RPD. No significant differences in nodal characteristics 
were observed in either CSA-based or CT-based networks between the 
two groups. These findings provide novel multiscale evidence for the 
mechanisms underlying symptom lateralization in PD.

Analysis of specific regional morphological 
changes

Previous studies have indicated that the right PCUN is involved 
in visuospatial memory and attention allocation, and its atrophy has 
been linked to cognitive impairments in PD (Noh et al., 2014; Mak 
et al., 2015; Aracil-Bolaños et al., 2019). In our research, LPD patients 
exhibited a significant reduction in the CSA of the right precuneus 
compared to RPD patients. Moreover, partial correlation analysis 
showed a positive relationship between the CSA of the right 
precuneus and MMSE score in LPD patients, suggesting that atrophy 
in this region might contribute to cognitive impairment. Additionally, 
a study using a resting-state structural connectome, constructed by 
integrating diffusion tensor imaging tractography with resting-state 
data, reported decreased degree centrality in the right PCUN of LPD 
patients (Zhang et al., 2022). This reduction in connectivity, reflecting 
a blend of structural white matter pathways and functional 
correlations, supports our findings of structural changes in the same 
region. These results suggest that the right PCUN could be  an 
important brain region for cognitive changes in LPD patients, 
offering new insights into the pathological mechanisms underlying 
cognitive impairments in PD.

Additionally, our study revealed that LPD patients exhibited 
reduced CSA in the right SMG, left IPL, and left LING compared to 
RPD patients. Structural changes in these regions may be associated 
with the occurrence of hallucinations in PD patients, a common 
non-motor symptom of the disease (Weil et al., 2016). Meta-analyses 
have demonstrated significant gray matter reductions in the right 
SMG and left LING in PD patients with hallucinations (Rollins et al., 
2019). Similarly, Goldman et al. reported markedly decreased gray 
matter volume in the left IPL of PD patients with hallucinations 
compared to those without hallucinations (Goldman et al., 2014). 
Additionally, Stavitsky et al. found that LPD patients are more prone 
to hallucinations than RPD patients (Stavitsky et al., 2008). Previous 
studies have shown that CSA is strongly correlated with gray matter 
volume and can reflect the extent of atrophy in specific brain regions 
(Winkler et al., 2010). In our study, the brain regions where LPD 
patients exhibited significant reductions in CSA correspond to the 
areas of gray matter loss reported in the aforementioned studies. This 
finding suggests that CSA reductions in these regions may be closely 
related to the occurrence of hallucinations in LPD patients. However, 
due to the lack of clinical data related to visual hallucinations, 
we  cannot further analyze the direct association between CSA 
changes in relevant brain regions and hallucinations.

Alterations in global network parameters

There is increasing evidence suggesting that the 
pathophysiological mechanisms of PD are associated with 
abnormalities in cortical morphology and connectivity across 
widespread brain regions (Jankovic, 2008). SCNs analysis offers an 

effective means to explore PD from a network perspective by 
revealing co-variations in brain region morphology (Vijayakumar 
et al., 2021). In our SCNs analysis, we found that both LPD and RPD 
patients exhibit small-world topological properties in their SCNs. 
Small-world topology reflects an optimal balance between local 
segregation and global integration of structural covariation (Achard 
et al., 2006; Kaiser and Hilgetag, 2006). This finding is consistent with 
previous studies on SCNs in PD patients (Pereira et al., 2015; Zhang 
et al., 2015; Xu et al., 2017; Wu et al., 2018). However, the topological 
structures of CSA-based and CT-based networks showed significantly 
different patterns between LPD and RPD patients.

Our study revealed that in CSA-based networks, the normalized 
characteristic path length was significantly higher in LPD compared 
to RPD patients, while the small-world index was significantly higher 
in RPD than in LPD patients. The normalized characteristic path 
length reflects the compactness of covariance patterns across regions, 
with higher values indicating less coordinated structural covariation 
(Suo et al., 2021). This finding suggests that LPD patients exhibit 
more fragmented CSA covariation patterns, whereas RPD patients 
demonstrate better integration of structural covariance across cortical 
regions. Hall et al. found that PD patients with visual hallucinations 
showed altered structural covariance in vision-related networks (Hall 
et al., 2019). When contextualized with our observed CSA differences, 
these fragmented covariance patterns in LPD may reflect impaired 
neurodevelopmental coordination between key regions implicated in 
perceptual processing. This may imply that the fragmented covariance 
patterns observed in LPD patients are associated with the occurrence 
of hallucinations.

However, in CT-based networks, LPD patients exhibited 
significantly higher small-world indices and global efficiency 
compared to RPD patients. This suggests that CT-based networks in 
LPD patients display a more optimized topological organization, 
reflecting greater covariance integration across regions. This 
dissociation in network topology between CSA-based and CT-based 
networks reflects the distinct characteristics of these two 
morphological metrics. Previous studies have shown that CSA and 
CT are orthogonal components influenced by different genetic and 
biological processes, with independent patterns of change during 
aging and disease progression (Dickerson et al., 2009; Panizzon et al., 
2009; Storsve et  al., 2014). Similar dissociated morphological 
alterations have been observed in other diseases (Park et al., 2009; 
Abé et al., 2016). The findings of this study suggest that the changing 
trends in CSA and CT in PD may reflect distinct pathological 
processes, and their independently divergent nature deserves 
further investigation.

Preservation of regional network 
architecture

Notably, although global network parameters revealed 
lateralization-related differences, there were no significant intergroup 
differences in regional network metrics such as nodal efficiency, 
modularity, and clustering coefficients. This suggests that despite 
altered global integration patterns, the fundamental community 
architecture of SCNs remains preserved between LPD and RPD 
patients. Modularity reflects the degree to which a network is 
compartmentalized into distinct functional subsystems, while the 
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clustering coefficient quantifies local connectivity (Alexander-Bloch 
et al., 2013). The absence of differences in modularity or clustering 
coefficients implies that the lateralization of PD symptoms primarily 
affects the efficiency of information integration across distributed 
regions, rather than disrupting the organization of local communities. 
This observation is consistent with previous studies. For instance, 
Frigerio et  al. (2024) found that, although there were significant 
differences in global network parameters such as characteristic path 
length and global efficiency between patients with PD and healthy 
controls, no significant differences were observed in regional network 
metrics. This suggests that the local network structure of patients with 
PD is largely preserved. These findings suggest that PD-related 
lateralization may primarily target the coordination of large-scale 
network integration while preserving local structural 
covariance patterns.

Limitations

This study has several limitations that need to be  addressed. 
Firstly, the relatively small sample size may limit the generalizability 
of the results, and future studies with larger, earlier-stage cohorts are 
necessary to clarify how motor symptom laterality influences brain 
structure over time, distinct from overall disease progression. 
Secondly, SCNs analysis can characterize brain structure but fail to 
capture dynamic network changes. Therefore, integrating resting-state 
fMRI could address this limitation. Thirdly, the MMSE is not sensitive 
enough to assess specific cognitive domains, and thus future studies 
should include more detailed neuropsychological assessments. Finally, 
the calculation of network parameters relies on small-sample group-
level data, limiting individual-level analysis of clinical-
network relationships.

Conclusion

This study employed SBM and SCNs to investigate differences in 
cortical structural characteristics and brain network topological 
properties between LPD and RPD patients. The results revealed that 
LPD patients exhibited significant reductions in CSA in the right 
PCUN, right SMG, left IPL, and left LING, which may be linked to 
cognitive impairments and hallucinations among non-motor 
symptoms of PD. Moreover, divergent global network properties in 
CSA-based and CT-based networks suggest PD lateralization may 
influence the global organization of covariance patterns more than 
the local segregation into distinct communities. These findings offer 
new insights into the mechanisms of symptom lateralization in PD 
from the perspective of brain regional structure and 
network topology.
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SUPPLEMENTARY FIGURE S1

The group differences in network parameters of structural covariance 
networks based on CSA within the range of 10%-40% network sparsity 
include (A) clustering coefficient, (B) global efficiency, (C) local efficiency, 
(D) normalized clustering coefficient, (E) characteristic path length and 
(F) modularity. The upper and lower blue bands represent the 95% 
confidence intervals, while the middle black line indicates the mean 

difference after 2,000 permutations. The red line represents the actual 
difference between groups, and if it falls within the confidence interval, it 
indicates that the group difference is not significant at the current 
threshold (p > 0.05). Positive values indicate LPD > RPD, and negative 
values indicate LPD < RPD. The subplots show the group differences in the 
AUC values for each measure of the SCNs.

SUPPLEMENTARY FIGURE S2

The group differences in network parameters of structural covariance 
networks based on CT within the range of 10%-40% network sparsity include 
(A) clustering coefficient, (B) local efficiency, (C) normalized clustering 
coefficient, (D) normalized characteristic path length, (E) characteristic path 
length and (F) modularity. The upper and lower blue bands represent the 
95% confidence intervals, while the middle black line indicates the mean 
difference after 2,000 permutations. The red line represents the actual 
difference between groups, and if it falls within the confidence interval, it 
indicates that the group difference is not significant at the current threshold 
(p > 0.05). Positive values indicate LPD > RPD, and negative values indicate 
LPD < RPD. The subplots show the group differences in the AUC values for 
each measure of the SCNs.

SUPPLEMENTARY FIGURE S3

Nodal network measures of CSA and CT based networks in the LPD and RPD 
groups. Each circle represents a brain region, with a total of 68 regions 
analyzed. The figure displays the distribution of nodal degree, betweenness 
centrality, and nodal efficiency, accompanied by p-values derived from 
permutation tests (all p > 0.05 after FDR correction). These p-values are 
mapped onto brain regions, with colors indicating the p-value range (blue: p 
= 0.1, red: p = 1).
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Background: While the BST1 rs4698412 variant demonstrates a robust

association with Parkinson’s disease (PD) susceptibility, its role in modulating PD

progression remains unexplored.

Objectives: To evaluate differences in the progression of motor symptoms and

cognitive function between PD patients carrying the BST1 rs4698412 A-allele

variant and GG homozygotes.

Methods: Baseline clinical data were collected during their initial visits. Disease

severity was assessed using the UPDRS-III scale, while cognitive status was

evaluated through the MMSE scale. Follow-up visits were conducted at the

same center. Linear mixed-effects models were utilized to compare the rate of

changes in motor and cognitive features between the two groups.

Results: A total of 182 PD patients with 74 classified as GG carriers and 108

as GA/AA carriers were enrolled. No significant differences were observed in

baseline demographic factors or clinical characteristics. Linear mixed-effects

models revealed that GA/AA carriers exhibited a greater rate of change in

UPDRS-III score compared with GG carriers (difference of −2.091[0.691] points

per year, P = 0.003). However, no statistically significant difference in the

estimated progression rate of MMSE score was found between the two groups

(difference of −0.106 [0.217] points per year, P = 0.627).

Conclusion: PD patients carrying the BST1 rs4698412 A-allelic variant

showed more pronounced motor function deterioration than GG carriers,

suggesting that BST1 rs4698412 may serve as a genetic risk factor for disease

progression in PD.

KEYWORDS

genetic risk, motor progression, cognition, BST1 rs4698412, Parkinson’s disease,
neurodegeneration
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1 Introduction

Parkinson’s disease (PD) is a chronic, progressive neurological
disorder marked by motor symptoms such as bradykinesia, rigidity,
resting tremor, and disruption in gait. Non-motor symptoms,
encompassing cognitive decline, anosmia, psychological and
behavioral irregularities, autonomic dysfunction, and sleep
disturbances, may also manifest (Poewe et al., 2017). The
pathological characteristics of PD primarily stem from the
progressive degeneration of dopaminergic neurons and the
accumulation of Lewy bodies in the substantia nigra (Wakabayashi
et al., 2013). Numerous studies have explored genetic mutations
associated with the occurrence of PD, including SNCA, PINK1,
DJ-1, LRRK2, Parkin, and others. Genome-wide association
studies (GWAS) and meta-analyses have identified single
nucleotide polymorphisms (SNPs) within the Bone Marrow
Stromal Cell Antigen 1 (BST1) gene on chromosome 4p15 as
new susceptibility loci associated with PD across different races
and regions (Guo et al., 2015; International Parkinson Disease
Genomics Consortium et al., 2011; Liu et al., 2013; Saad et al.,
2011; Satake et al., 2009; Sharma et al., 2012; Simon-Sanchez
et al., 2011). Among these variants, the rs4698412 (G → A)
allele has garnered particular attention as the subject of extensive
study. Accumulating research strongly suggests that both the
dominant model (AA + AG vs. GG) and allelic model (A vs.
G) of BST1 rs4698412 demonstrate a significant association
with an elevated risk of PD in the Asian population (Chang
et al., 2011; Li et al., 2019; Shen et al., 2019; Wang et al.,
2015).

To date, several studies have investigated the impact of the
allelic variant of BST1 rs4698412 on clinical presentations. Notably,
carriers of the BST1 rs4698412 GA/AA genotype demonstrated
significantly higher Unified Parkinson’s Disease Rating Scale
(UPDRS-III) scores (p < 0.05) and poorer Timed Up and Go (TUG)
test performance compared to GG genotype carriers, indicating
more severe motor function and more pronounced gait and balance
deficits (Li et al., 2019). Furthermore, a meta-analysis conducted
by the COURAGE-PD consortium presented the initial GWAS
evidence that the A allele of rs4698412 in the BST1 gene influences
the age at onset (AAO) of PD, resulting in an average earlier AAO
of 0.526 years in PD patients (Grover et al., 2022). Additionally,
the dominant model of rs4698412 in BST1 was found to be
significantly associated with restless legs syndrome in the Chinese
population, a condition that often co-occurs with PD (Huang et al.,
2021).

Overall, there was a strong association between the A-allele
variant of BST1 rs4698412 and the susceptibility and severity
of clinical features in patients with PD. Nonetheless, the
influence of the BST1 rs4698412 variant on the progression
of PD remains unexplored. Consequently, a longitudinal study
was conducted to assess differences in motor and cognitive
progression between BST1 rs4698412 A-allele carriers and GG
homozygotes among Han Chinese PD patients from southern
China.

2 Subjects and methods

2.1 Ethical compliance

This study was conducted in strict accordance with the ethical
principles outlined in the World Medical Association Declaration
of Helsinki. The research protocol received formal approval
from the Ethics Committee of Fujian Medical University Union
Hospital (Approval No. 2023KY178). Written informed consent
was obtained from all participants.

2.2 Study subjects

A total of 824 primary PD patients were consecutively
diagnosed and recruited, adhering to the International Parkinson
and Movement Disorder Society (MDS) Clinical Diagnostic
Criteria for Parkinson’s disease (MDS-PD Criteria) (Postuma et al.,
2015). This recruitment process was conducted by two neurologists
from the Neurology Department of Fujian Medical University
Union Hospital between 2016 and 2018. Baseline clinical data were
collected during their initial visits. Patients subsequently received
standard medication and underwent follow-up assessments at the
same center. After screening based on inclusion and exclusion
criteria, a final cohort of 182 patients was ultimately enrolled in
the study. Our study’s inclusion criteria comprised the following:
(1) PD patients possessing the BST1 rs4698412 variant confirmed
through genetic tests, (2) well-documented initial clinical and
demographic information, (3) completion of baseline assessments
and at least one follow-up visit, (4) Hoehn-Yahr (H-Y) Stage ≤ 3,
and (5) a demonstrated willingness to participate. Exclusions were
applied to patients who (1) exhibited secondary Parkinsonian
syndrome or Parkinson-plus syndrome, (2) demonstrated an
inability to cooperate with scale evaluations, (3) underwent deep
brain stimulation (DBS) during the follow-up period, or (4)
presented concomitant disorders such as severe organ dysfunction,
endocrine system diseases, hematological diseases, autoimmune
diseases, or malignant tumors. The flow chart of participants is
provided in Supplementary Figure 1.

2.3 Clinical evaluations

Demographic and clinical data were obtained from 182 PD
patients, including age, gender, age at onset, ethnicity, educational
attainment, disease duration, current medications, comorbidities
(hypertension, diabetes), and lifestyle factors (smoking, drinking).
The age at onset was defined as the age at which either the patient or
their immediate family members first noticed symptoms related to
PD. The duration of the disease was the time span between the age
at onset and the patient’s initial visit at our hospital. The calculation
of the levodopa equivalent daily dose (LEDD) was executed
employing the specified conversion formula (Tomlinson et al.,
2010). The modified Hoehn-Yahr (H-Y) rating and UPDRS scale,
particularly the motor examination component (Part 3, UPDRS-
III), were utilized to evaluate the severity of the disease in patients
during their off-medication state. Simultaneously, we computed

Frontiers in Aging Neuroscience 02 frontiersin.org97

https://doi.org/10.3389/fnagi.2025.1570347
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1570347 April 12, 2025 Time: 13:21 # 3

Xu et al. 10.3389/fnagi.2025.1570347

specific scores from the UPDRS-III: resting tremor score (items
20 and 21), rigidity score (item 22), bradykinesia score (items 23–
26 and 31), and postural and gait disturbance score (items 27–30).
Each of these items is scored on a scale ranging from 0 (indicating
the absence of symptoms or normal activity) to 4 (representing
the most severe dysfunction or impairment). PD patients were
categorized into Akinetic-Rigid (AR), Tremor Dominant (TD), and
Mixed (MX) subtypes based on baseline UPDRS score, utilizing
Lewis’s method (Lewis et al., 2005) along with Rossi’s modifications
(Rossi et al., 2010). For the analysis in our current study, the TD
subtype and MX subtype were grouped, following a precedent set
by a previous study (Oosterveld et al., 2015). Cognitive assessments
were performed using the Mini-Mental State Examination (MMSE)
scale.

2.4 Genotype detection

MassARRAY technology was utilized to discern the genotype of
BST-1 loci rs4698412 in PD patients. Each participant contributed
a peripheral blood sample for genetic analysis. Genomic DNA was
extracted from the peripheral blood using established protocols.
The design of Polymerase Chain Reaction (PCR) primers and
the subsequent single base extension reaction was executed
through Sequenom Assay Design 3.1 and synthesized by a
biological firm. DNA templates containing the targeted SNP
region underwent PCR amplification following the manufacturer’s
guidelines. Subsequently, the PCR products underwent shrimp
alkaline phosphatase (SAP) purification, followed by a single base
extension reaction. The resulting extension products were then
deposited onto a Sepectro-CHIP and subjected to analysis using
matrix-assisted laser desorption/ionization time-of-flight (MALDI-
TOF) mass spectrometry. The genotyping data were subjected
to analysis using the Sequenom Mass-ARRAY TYPER software
(Sequenom). Both the clinical evaluators and patients were blind
to the genotype outcomes.

The participants were categorized into two subgroups: BST1
rs4698412 GG carriers and GA/AA carriers, stratified according
to the genetic test results. These subgroups were subsequently
utilized for further comparison and analysis within the context of
the present study.

2.5 Statistical analysis

For all statistical analyses, assessments were made for data
normality and homogeneity of variance using the Shapiro–Wilk
test and Levene test, respectively. Variables demonstrating a normal
distribution were presented as the mean± standard deviation (SD),
while variables with skewed distribution were expressed as median
(M) and interquartile range (IQR). Continuous variables were
compared using either Student’s independent samples t-test (for
normally distributed data) or the Mann–Whitney U Test (for non-
normally distributed data). Gender distribution and the adherence
of genotype frequencies to Hardy-Weinberg equilibrium (HWE)
were compared using the Chi-squared test.

To investigate the potential association between genotype
status and disease severity at baseline, a multivariable linear

regression model was constructed. In this model, baseline
UPDRS-III score served as the dependent variable, while the
independent variables included the genotypes of BST1 rs4698412
(binary), gender (binary), baseline age, baseline duration of
disease, years of education, MMSE score at baseline, LEDD
at baseline, comorbidities (hypertension, diabetes), and lifestyle
factors (smoking, drinking). Likewise, we employed a multivariable
linear regression to explore the relationship between genotype
status and baseline MMSE score, with adjustments made for
gender (binary), baseline age, baseline duration of disease,
UPDRS-III score at baseline, years of education, LEDD at
baseline, comorbidities (hypertension, diabetes), and lifestyle
factors (smoking, drinking).

Linear mixed-effects models were employed to examine
the longitudinal rate of changes in motor score (UPDRS-III)
and cognition score (MMSE) between PD patients carrying
BST1 rs4698412 GG genotype and GA/AA genotype. Disease
duration served as the time scale, and the models incorporated
participant-specific random effects for both random intercepts and
random slopes, thereby accounting for correlations in repeated
measurements from the same participant. The analysis was
adjusted for baseline age, gender (binary), years of education,
baseline duration of disease, LEDD at baseline, comorbidities
(hypertension, diabetes), and lifestyle factors (smoking, drinking).
Furthermore, MMSE score at baseline was included as a covariate in
longitudinal motor assessments, while UPDRS-III score at baseline
was considered a covariate in longitudinal cognitive evaluations
between the two groups.

The analyses were conducted using IBM SPSS Statistics version
26.0 software (SPSS, Chicago, IL, USA). The statistical significance
level was set at α = 0.05, and results were considered statistically
significant when P < 0.05.

3 Results

3.1 Clinical and demographic features

A total of 182 PD patients who underwent 2 or more times of
assessments on the UPDRS-III scale were included in the study,
comprising 74 BST1 rs4698412 GG carriers, 84 GA carriers, and
24 AA carriers. Furthermore, 177 patients (73 GG carriers and
104 GA/AA carriers) among them completed 2 or more times of
assessments on the MMSE scale (Supplementary Figures 2, 3).

The genotype frequencies for BST1 rs4698412 were found
to be in accordance with Hardy-Weinberg equilibrium and
were genetically representative (χ2 = 0, P = 1, Supplementary
Table 1). The clinical and demographic data of all participants
were summarized in Table 1. No significant differences were
observed between the GG carriers and the GA/AA carriers in either
baseline demographic profiles (age, gender, age at onset, disease
duration, years of education, hypertension/diabetes comorbidity,
smoking/drinking) or clinical assessments (MMSE score, UPDRS-
III total score [resting tremor/rigidity/bradykinesia/postural and
gait disturbance subscores], H-Y stage, subtype of PD, or baseline
LEDD). Baseline data for the MMSE project were provided in
Supplementary Table 2.
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TABLE 1 Demographic and clinical characteristics of all study subjects.

GG
carriers

GA/AA
carriers

P-value

Patients, n 74 108 NA

Male, n (%) 41 (55.4) 54 (50.0) 0.553a

Age at baseline, Y 61.0 (54.0,
69.0)

63.5 (55.0,
70.0)

0.203b

Age at onset, Y 56.9± 9.6 58.3± 10.5 0.349c

Duration of disease at
baseline, y

3.0 (2.0, 6.0) 3.0 (1.0, 5.0) 0.312b

Education, y 9.0 (6.0, 12.0) 9.0 (6.0, 12.0) 0.300b

LEDD at baseline 375.0 (300.0,
450.0)

325.0 (300.0,
437.5)

0.243b

H-Y baseline stage, n
(%)

0.320a

1 13 (17.6) 14 (13.0)

1.5 14 (18.9) 19 (17.6)

2 12 (16.2) 25 (23.1)

2.5 29 (39.2) 33 (30.6)

3 6 (8.1) 17 (15.7)

UPDRS-III score at
baseline

23.5 (16.8,
30.0)

22.5 (17.0,
32.8)

0.971b

Resting tremor 2.0 (0.0, 4.0) 2.0 (1.0, 4.8) 0.362b

Rigidity 5.0 (2.0, 7.25) 4.0 (2.0, 6.0) 0.308b

Bradykinesia 11.0± 5.5 11.7± 5.6 0.347c

Postural and gait
disturbance

3.0 (2.0, 4.0) 3.0 (2.0, 4.0) 0.722b

MMSE score at
baseline

27.0 (24.0,
28.0)

26.5 (23.3,
28.0)

0.889b

Subtype of PD, n (%)

AR 47 (63.5) 63 (58.3) 0.538a

MX + TD 27 (36.5) 45 (41.7)

Hypertension, n (%) 16 (21.6) 22 (20.4) 0.838a

Diabetes, n (%) 5 (6.8) 7 (6.5) 0.941a

Smoking, n (%) 7 (9.5) 9 (8.3) 0.792a

Drinking, n (%) 4 (5.4) 3 (2.8) 0.365a

UPDRS, Unified Parkinson’s Disease Rating Scale; H-Y, Hoehn-Yahr stages; y, years; Y,
years old; MMSE, Mini-Mental State Examination; LEDD, levodopa equivalent daily dose;
NA, not applicable. Variables with normal distribution were represented as mean± standard
deviation, while variables with skewed distribution were expressed as median and
interquartile range. aChi-square test. bMann–Whitney U test. cTwo-independent samples
t-test.

3.2 Cross-sectional study of BST1
rs4698412 GG and GA/AA carriers

There was no significant difference between the two groups
in terms of UPDRS-III scores at baseline after adjusting for
gender, baseline age, years of education, baseline duration of
disease, MMSE score at baseline, LEDD at baseline, comorbidities
(hypertension, diabetes), and lifestyle factors (smoking, drinking).
Similar to the motor evaluations, no significant impact of genotype
status on baseline MMSE score was detected. The R2 value for

the two regression models were 0.172 (F = 3.220, P = 0.001) and
0.397 (F = 9.872, P = 0.000), respectively. The significance of the
regression equation was verified. Besides, we found that lower
MMSE scores were associated with higher UPDRS-III scores, and
vice versa, which suggested that there was a bidirectional influence
between the motor and cognitive function of the two groups at
baseline (Supplementary Table 3).

3.3 Progression analysis in BST1
rs4698412 GG and GA/AA carriers

Utilizing a linear mixed-effects model, we further explored
the longitudinal rate of variation in UPDRS-III score between
GG carriers and GA/AA carriers. Disease duration served as the
time scale for this analysis. After adjusting for gender, baseline
age, baseline duration of disease, education years, MMSE score at
baseline, LEDD at baseline, comorbidities (hypertension, diabetes),
and lifestyle factors (smoking, drinking), several significant
associations were observed. Specifically, longer duration of disease
at baseline (β = 0.879; 95% CI, 0.511 to 1.246; P = 0.000) and
shorter education period at baseline (β =−0.425; 95% CI,−0.771 to
−0.079; P = 0.016), and lower MMSE score at baseline (β =−0.446;
95% CI, −0.872 to −0.019; P = 0.041) were associated with higher
UPDRS III score (Table 2). The estimated rate of progression
in the change of UPDRS-III score for GG carriers was 0.622
[0.534] points per year, whereas GA/AA carriers exhibited a higher
progression rate of 2.712 [0.439] points per year. Significantly, a
notable discrepancy in the rate of UPDRS-III score progression
between the two groups was identified (−2.091 [0.691] points per
year; P = 0.003) (Figure 1).

When comparing differences in changes within the four
subscores of UPDRS-III, the findings indicated that the estimated
rate of change in rigidity score among GG carriers (0.309 [0.192]
points per year) was lower than that among GA/AA carriers (1.073
[0.158] points per year; difference, −0.764 [0.249] points per year;
P = 0.002). Besides, the estimated rate of change in bradykinesia
score was higher in GA/AA carriers (1.043[0.247] points per
year) compared with GG carriers (0.230 [0.302] points per year;
difference,−0.813 [0.390] points per year; P = 0.038). However, the
rates of change in rest tremor score (P = 0.185) and postural and gait
disturbance score (P = 0.052) did not exhibit significant differences
between the two groups (Table 3).

Subsequently, a linear mixed-effects model was employed to
analyze the longitudinal rate of change in the MMSE score between
GG carriers and GA/AA carriers, using a similar approach. The
analysis was adjusted for baseline age, gender, baseline duration
of disease, education years, UPDRS-III score at baseline, LEDD
at baseline, comorbidities (hypertension, diabetes), and lifestyle
factors (smoking, drinking). The estimated progression rate of
change in MMSE score for GG carriers and GA/AA carriers was
−0.547 [0.167] points per year and −0.441 [0.139] points per
year, respectively. Notably, there was no statistically significant
difference in the rate of change (−0.106 [0.217] points per year;
P = 0.627) between the two groups (Table 2 and Figure 2).
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TABLE 2 Models of comparison in rate of change in UPDRS-III score and MMSE score between PD patients with BST1 rs4698412 GG genotype and
GA/AA genotype.

UPDRS-III score (n = 182) MMSE score (n = 177)

Characteristics β (95% CI) P-value β (95% CI) P-value

Rate difference −2.091 (−3.454,−0.727) 0.003 −0.106 (−0.534, 0.323) 0.627

Gender (male) 2.740 (−0.145, 5.625) 0.063 0.428 (−0.569, 1.424) 0.398

Age at baseline 0.133 (−0.010, 0.276) 0.068 −0.063 (−0.112,−0.014) 0.011

Baseline duration, year 0.879 (0.511, 1.246) 0.000 0.025 (−0.081, 0.131) 0.648

Years of education −0.425 (−0.771,−0.079) 0.016 0.458 (0.358, 0.559) 0.000

Baseline MMSE score −0.446 (−0.872,−0.019) 0.041 NA NA

LEDD at baseline 0.005 (−0.003, 0.013) 0.215 0.001 (−0.002, 0.004) 0.427

Baseline UPDRS-III score NA NA −0.064 (−0.108,−0.019) 0.006

Hypertension 0.629 (−2.772, 4.030) 0.716 −0.675 (−1.852, 0.503) 0.259

Diabetes 1.868 (−3.377, 7.113) 0.483 0.969 (−0.804, 2.743) 0.282

Smoking −2.457 (−7.285, 2.371) 0.317 −0.407 (−2.05, 1.234) 0.625

Drinking 3.351 (−3.643, 10.344) 0.346 1.181 (−1.207, 3.569) 0.330

UPDRS, Unified Parkinson’s Disease Rating Scale; MMSE, Mini-Mental State Examination; LEDD, levodopa equivalent daily dose. Bold values indicate statistically significant differences at p
< 0.05.

FIGURE 1

Longitudinal trajectories of UPDRS-III scores in BST1 rs4698412 GG
carriers and GA/AA carriers.

4 Discussion

The current study represents a pioneering effort to assess
disease progression in PD patients with BST1 rs4698412 variants
through a longitudinal follow-up analysis. Our investigation reveals
a more pronounced motor progression in PD patients carrying the
BST1 rs4698412 GA/AA genotype compared to those with the GG
genotype. Specifically, our analysis indicates that the estimated rate
of change in UPDRS-III score is 2.091 points per year higher in PD
patients with the BST1 rs4698412 GA/AA genotype than in those
with the GG genotype. Furthermore, when comparing differences
in motor domain progression rates, we observed that this greater
progression in GA/AA carriers encompassed a more substantial
increase in rigidity and bradykinesia score over time. Regarding
cognitive progression, our analysis unveiled a similar estimated rate
of change in MMSE score per year between the two groups.

Previous research has indicated a genetic correlation between
BST1 polymorphism rs4698412 and the predisposition to PD
(Chang et al., 2011; Chang et al., 2015; Saad et al., 2011; Satake

et al., 2009; Sharma et al., 2012; UK Parkinson’s Disease Consortium
et al., 2011). While our study reveals that PD patients harboring
the allelic variant A of BST1 rs4698412 exhibit a more pronounced
motor deterioration compared to GG homozygotes, the underlying
mechanism by which these genotypes influence motor function
remains inadequately elucidated. BST1, also referred to as CD157,
belongs to the NADase/ADP-ribosyl cyclase family (Ferrero and
Malavasi, 1997). Previous research suggests that BST1 may play
a role in the molecular pathways involving cADPR formation
and Ca2+ mobilization, acting as a neuro-regulator (Higashida
et al., 2017). It has been postulated that an imbalance in calcium
homeostasis within dopaminergic neurons could contribute to
their degeneration and increase susceptibility to PD (Surmeier
et al., 2010; Surmeier, 2007). Additionally, calcium signaling
dynamics are integral in regulating diverse neuronal activities,
encompassing the release of neurotransmitters and neuropeptides
at inter-synaptic sites (Berridge et al., 2003; Soden et al., 2023).
Furthermore, BST1 was initially identified as a surface receptor
on Bone Marrow Stromal Cells (BMSCs) that stimulates the
proliferation of pre-B cells (Kaisho et al., 1994). Recent studies have
uncovered that as individuals age, BMSCs develop a senescence-
associated secretory phenotype, releasing inflammatory cytokines
such as IL-6, IL-8, IFN-γ, MCP-1/2, and TIMP-2, (Borgoni
et al., 2021; Gonzalez-Meljem et al., 2018) and subsequently
differentiating into age-associated B cells (ABCs) (Long et al.,
2023). ABCs infiltrate the brain parenchyma and initiate the
activation of microglia, subsequently giving rise to a state of
sustained chronic inflammation (Wang et al., 2021). Therefore, we
posit that the malfunction of BST1 could lead to hindered normal
growth of pre-B cells, along with the plausible involvement of
age-related BMSCs in triggering neuroinflammatory responses and
disruptions in microenvironmental homeostasis. These combined
factors may potentially contribute to the underlying pathological
mechanisms of PD. Besides, experiments demonstrated that
compared with wild-type mice, BST1 knockout (BST1−/−) mice
exhibited anxiety-related symptoms, depression-like behaviors, and
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TABLE 3 Models of comparison in rate of change in UPDRS-III subscore
between PD patients with BST1 rs4698412 GG genotype and GA/AA
genotypea.

Outcome β (95% CI) P-value

Resting tremor subscore −0.236 (−0.586, 0.114) 0.185

Rigidity subscore −0.764 (−1.254,−0.274) 0.002

Bradykinesia subscore −0.813 (−1.581,−0.045) 0.038

Postural and gait disturbance
subscore

−0.283 (−0.568, 0.003) 0.052

UPDRS, Unified Parkinson’s Disease Rating Scale. aCovariates including gender, baseline
age, duration of disease at baseline, years of education, MMSE score at baseline, LEDD at
baseline, comorbidities (hypertension, diabetes), and lifestyle factors (smoking, drinking)
were adjusted in each model. Bold values indicate statistically significant differences at p <
0.05.

FIGURE 2

Longitudinal trajectories of MMSE total scores in BST1 rs4698412
GG carriers and GA/AA carriers.

impaired social interaction similar to those observed in PD patients,
suggesting a potential role of BST1 in pre-motor symptoms of PD
(Kasai et al., 2017; Lopatina et al., 2014).

Li et al. (2019) explored the BST1 rs4698412 variant-brain
function-behavior relationships by examining the Amplitude of
low-frequency fluctuations (ALFF) signals of functional magnetic
resonance imaging (fMRI) in PD patients. Their results showed
that significantly decreased ALFF values in the right lingual gyrus
and the ALFF values were negatively associated with TUG test
time (r = −0.797) and postural and gait disturbance scores
(r = −0.937) in BST1 rs4698412 GA/AA carriers compared with
GG carriers. This objective imaging evidence could, to some extent,
help to explain the influence of allele A of BST1 rs4698412 on a
pathological process contributing to more severe motor symptoms
during PD progression.

According to the existing literature, multiple studies have
focused on the correlation between the progression of PD
and genotypes. Individuals with Parkinson’s disease who carry
distinct gene variants, such as LRRK2 risk variants (G2385R,
and/or R1628P, and/or S1647T) (Oosterveld et al., 2015), SNCA
rs1045722/T (Luo et al., 2019), Parkin-related mutations (Sun
et al., 2021), GBA (Winder-Rhodes et al., 2013), or LRRK2
G2019S mutation (Oosterveld et al., 2015), have presented
a diverse spectrum of disease progression patterns. Hence,
considering genetic variability becomes imperative for gaining
deeper insights into the underlying causes and mechanisms
of the disease. The more substantial progression estimates
observed in our study could offer valuable insights for the

design of clinical trials involving emerging BST1-targeted
agents. Furthermore, in our present study, we employed linear
mixed-effects models for analyzing repeated measurements, a
methodology capable of handling data imbalances arising from
variations in the timing of the initial visit, unequal quantities
of follow-up visits, and differing intervals between visits. This
robust approach enhances the significance and value of our
research findings.

Our study possesses several limitations that warrant
consideration. Firstly, we exclusively examined the impact of
the BST-1 rs4698412 mutation on disease progression in PD
patients, disregarding potential influences from other genetic
variants, intricate gene-gene interactions, and the combined
effects of gene-environment interactions. Secondly, while UPDRS
remains the standard tools for assessing motor symptoms in
PD, its inability to differentiate PD-specific progression from
age-related functional decline must be acknowledged. Age-
associated motor deficits (e.g., gait slowing, postural instability)
may confound longitudinal assessments. Although we adjusted
for major clinical variables (including comorbidities and lifestyle
factors), unmeasured factors such as medication adherence,
physical activity levels, and subclinical cerebrovascular disease
could influence progression rates. This limitation underscores
the necessity of integrating multidimensional biomarkers (e.g.,
cerebrospinal fluid profiles, blood-based biomarkers, neuroimaging
metrics, and digital health parameters) with conventional clinical
evaluations in future studies. Furthermore, the exclusive use of
MMSE for cognitive evaluation may obscure domain-specific
cognitive decline patterns in PD. The absence of a comprehensive
neuropsychological assessment battery significantly limits our
ability to characterize nuanced cognitive trajectories. Future
investigations should incorporate detailed neuropsychological
evaluations to better delineate cognitive progression patterns.
Besides, the follow-up period in our study was relatively brief,
and the number of follow-up visits was limited. The estimated
progression rates should be interpreted with caution due to
the moderate follow-up duration and variability in assessment
intervals. Extended observation periods and standardized visit
schedules would improve the accuracy of longitudinal trajectory
modeling. Lastly, the restriction of our cohort to a southern
Chinese Han population is indeed a limitation for generalizability.
Future studies should consider multi-center collaborations or
include diverse populations to validate these results across different
ethnic and regional groups.

5 Conclusion

This present study provides novel insights into the disease
progression of PD patients harboring BST1 rs4698412 variants. Our
findings indicated that individuals with PD who carry the BST1
rs4698412 A-allelic variant exhibit more pronounced deterioration
in motor function, as reflected by higher UPDRS-III score. Further
research is warranted to unravel the underlying mechanisms
driving these genotype-specific effects and to explore potential
implications for personalized therapeutic interventions.
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Peak alpha frequency and alpha 
power spectral density as 
vulnerability markers of cognitive 
impairment in Parkinson’s 
disease: an exploratory EEG study
Yuqing Zhao 1,2, Jiayu Cai 2, Jian Song 1,2, Haoran Shi 2, 
Weicheng Kong 2, Xinlei Li 1, Wei Wei 2 and Xiehua Xue 1,3*
1 The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 
China, 2 College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 
China, 3 Fujian Provincial Rehabilitation Industrial Institution, Fujian Provincial Key Laboratory of 
Rehabilitation Technology, Fujian Key Laboratory of Cognitive Rehabilitation, Fuzhou, China

Background: Cognitive impairment substantially impacts quality of life in 
Parkinson’s disease (PD), yet current biomarker frameworks lack sensitivity 
for detecting early-stage cognitive decline. While peak alpha frequency 
(PAF) and alpha power spectral density (PSD) have emerged as potential 
electrophysiological markers, prior studies primarily focused on global cortical 
measures, neglecting region-specific variations that may better reflect the 
heterogeneous nature of PD-related cognitive impairment (PDCOG). To address 
this gap, we conducted the first multiregional comparative analysis of PAF and 
alpha PSD between PDCOG and PD with normal cognition patients (PDNC).

Methods: Data from 76 participants (44 PD, 32 healthy controls) at The Affiliated 
Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine 
(March–July 2024) were analyzed. PAF and alpha PSD were computed across 
brain regions; cognitive function was assessed via MoCA.

Results: Global PAF was reduced in PD vs. controls (p < 0.05) and correlated 
with cognition. PDCOG showed lower alpha PSD in parieto-occipital/posterior 
temporal regions (P3, P4, O1, T5, T6, PZ) vs. PDNC (p < 0.05), with these regions 
correlating with MoCA scores. ROC analysis identified P3, PZ, and T6 alpha 
PSD as optimal discriminators (AUC: 0.77–0.758). Executive function inversely 
correlated with alpha PSD in right posterior temporal/left occipital regions.

Conclusion: PAF differentiates PD from controls and links to global cognition, 
while regional alpha PSD (notably P3, PZ, T6) effectively distinguishes PDCOG 
from PDNC. These findings underscore regional QEEG’s utility in PD cognitive 
assessment, though sensitivity limitations warrant optimization.

KEYWORDS

cognitive impairment, peak alpha frequency, power spectral density, Parkinson’s 
disease, EEG
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1 Introduction

Parkinson’s disease (PD), a multisystem neurodegenerative 
disorder, is defined by both motor deficits (Barone et al., 2009) and 
heterogeneous nonmotor symptoms, including cognitive decline 
(Chaudhuri et  al., 2006). Individuals with PD generally exhibit a 
heightened susceptibility to dementia compared to the general 
population, with PD-dementia (PDD) incidence reaching as high as 
46% in PD patients with a history exceeding 10 years (Williams-Gray 
et al., 2013). PD patients with cognitive impairment (PDCOG) may 
experience deficits across multiple cognitive domains (Harvey, 2019). 
These deficits profoundly impair quality of life (Chandler et al., 2021), 
incur significant socioeconomic burdens, and predict faster disease 
progression—even surpassing motor symptoms in early-stage impact. 
Current cognitive scales (e.g., MoCA) lack neurobiological specificity, 
failing to link deficits to underlying pathology [e.g., alpha rhythm 
dysregulation (Saredakis et al., 2019)]—a gap hindering precision care.

Quantitative electroencephalography (QEEG) is a renowned, 
non-invasive, and cost-effective technique for capturing the electrical 
activity of the brain. It offers quantitative insights into brain functions, 
including peak alpha frequency (PAF) and power spectral density 
(PSD). This method has gained notable attention in recent years due to 
its excellent spatial resolution in detecting neuronal electrical activity 
(Babiloni et al., 2020; Novak et al., 2021; Geraedts et al., 2018). Cognitive 
decline is associated with specific neurodegenerative patterns, such as 
corticostriatal pathway dysfunction and alpha rhythm dysregulation 
(Zhou et al., 2024). For instance, decreased occipital alpha/theta ratios 
are predictive of visuospatial deficits (Jaramillo-Jimenez et al., 2021), 
whereas parietal alpha PSD is correlated with overall cognitive function 
(MoCA scores) (Anjum et al., 2024). By distinguishing between PDCOG 
and PDNC, clinicians can identify patients at risk of rapid progression 
or PDD early on, thereby facilitating biomarker-driven monitoring.

PD patients exhibit globally reduced PAF, suggesting dopaminergic 
dysfunction (Kamei et al., 2010; Morita et al., 2011; Caviness et al., 
2015; Aarsland et al., 2021), while regional alpha PSD reductions in 
parieto-occipital regions specifically mark PDCOG (Jaramillo-Jimenez 
et al., 2021). These patterns align with cognitive domain vulnerabilities 
(Rea et al., 2021; Polverino et al., 2022; Yılmaz et al., 2020): low parietal 
alpha PSD predicts executive dysfunction, whereas posterior temporal 
declines associate with memory deficits. Such biomarkers bridge the 
gap between symptom-based scales and pathophysiology, offering 
tools for subtyping and targeted interventions.

Based on evidence suggesting that alpha oscillations are fundamental 
to cognitive control networks, previous studies have not sufficiently 
explored the role of PAF and alpha PSD in differentiating cognitive 
impairment levels in PD, we are exploring whether PAF and alpha PSD 
can objectively differentiate between PDCOG and PDNC. Through the 
association of regional QEEG signatures with cognitive profiles, our goal 
is to overcome the restrictions of present evaluations and move towards 
a pathology-informed approach for PD phenotyping.

2 Materials and methods

2.1 Participants and cognitive measures

A cross-sectional study design was employed in this research. 
From March to July 2024, this study recruited 44 participants with 

Parkinson’s disease (24 females and 20 males) from the Rehabilitation 
Hospital affiliated with Fujian University of Traditional Chinese 
Medicine. Additionally, 32 healthy controls (HC) (20 females and 12 
males), matched by age and gender were recruited. All subjects were 
fully informed and signed informed consent. The study was approved 
by the Ethics Committee of the Rehabilitation Hospital affiliated 
with Fujian University of Chinese Medicine (No. 
2023KY-056-002).

According to both the United Kingdom Parkinson disease (UKPD) 
Society Brain Bank criteria (Gibb and Lees, 1988) clinical diagnostic 
criteria for Parkinson’s disease (PD) (MDS-PD criteria) (Gill et al., 
2008), a total of 44 PD patients were recruited from the Rehabilitation 
Hospital affiliated with Fujian University of Chinese Medicine (Fuzhou, 
China). All the subjects were native Chinese speakers and right-handed. 
The inclusion criteria of the healthy control group were: (1) aged 
between 45 and 80 years; (2) The age and gender were matched with 
those in PD group; and (3) No history of neurological or mental illness.

We used MoCA to quantify cognitive condition among participants 
as it is more sensitive to cognitive deterioration in PD (Gill et al., 2008; 
Vásquez et al., 2019; Chou et al., 2010). We defined cognitive impairment 
(PDCOG) as MoCA scores < 26 scores and cognitive normal (PDNC) 
as MoCA scores (Nasreddine et al., 2005; Dalrymple-Alford et al., 2010; 
Chou et al., 2014). All subjects completed the MoCA scale and EEG 
examination within 3 days after enrollment. As reported by Lam et al. 
(2013), we have redefined the five cognitive domains associated with 
each MoCA score (Memory, Visuospatial, Language, Attention 
Executive). Clinical and demographic characteristics of enrolled PD and 
HC subjects are reported in Table 1 and Supplementary Table 1.

2.2 PAF and alpha PSD recordings and 
preprocessing

2.2.1 EEG acquisition process
In this study, three minutes of resting-state EEG activity were 

collected using the Cognitive and Autonomous Nervous Function 
Mapping EEG Monitor (NVX52 EEG Acquisition System, Nanjing 
NeuroMed Technology Group Co., Ltd., China). Nineteen standard 
EEG electrodes were placed on the scalp with an adjustable cap 
according to the internationally recognized 10–20 system, and an AA 
electrode was used as the reference (We use 2 electrodes, A1 and A2. 
AA = (A1 + A2) /2). During data collection, subjects were instructed 
to maintain a comfortable posture and were guided to close their eyes. 
The contact impedance between the electrodes and the scalp was 
strictly maintained below 20 KΩ (Lee et al., 2013).

2.2.2 PAF and alpha PSD analyses
The recorded EEG data were subjected to comprehensive spectrum 

PSD analysis, encompassing all 19 channels. The sampling rate used in 
the data acquisition process is 500 Hz. A broad band power spectrum 
(0.5–48 Hz) was obtained through Fast Fourier transformation of the 
time-series, from which absolute and relative spectral power were 
computed for six frequency bands (delta (0.5–4 Hz), theta (4–8 Hz), 
alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–48 Hz)). For FFT 
calculation we  use “Hann window function” with “Window 
length = 4 s with 50% overlapping.” And for “Window length = 4 s” the 
resolution of frequency about 0.25 Hz. Given our focus on alpha band, 
this study exclusively analyses the alpha band (Schleiger et al., 2014). 
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The PAF was identified as the frequency point exhibiting the highest 
PSD within the alpha band, ranging from 8 to 13 Hz.

The quality of the collected EEG data were manually inspected 
and preprocessed in EEGLAB. The Infomax Independent Component 
Analysis (ICA) module was used to decompose the EEG data and 
remove artifact components, including ocular and muscle artifacts 
(Delorme et al., 2007; Pion-Tonachini et al., 2019). The study focused 
on the frequency-power spectrum, particularly the peak frequency of 
the alpha wave, which was defined as the frequency point with the 
highest PSD within the alpha band, covering all 19 leads.

2.3 Statistical analyses

All analyses were performed using IBM SPSS Statistics (version 26.0) 
with a two-tailed significance threshold of p < 0.05. Continuous variables 
were compared between groups using independent samples t-tests for 
normally distributed data (assessed via Shapiro–Wilk test) and Mann–
Whitney U tests for non-normally distributed datasets. To identify 
predictor variables of cognitive outcomes, multiple linear regression 
models were constructed, incorporating peak alpha frequency (PAF) and 
alpha band power spectral density (PSD) as independent variables, with 
the MoCA total score and its subdomains serving as dependent variables.

The diagnostic utility of PAF and alpha PSD in predicting 
Parkinson’s disease-related cognitive impairment (PDCOG) was 
evaluated through receiver operating characteristic (ROC) curve 
analysis, with sensitivity and specificity quantified by the area under the 
curve (AUC). To address multiple comparisons in correlation analyses, 
associations between PAF, alpha PSD, and cognitive scale scores were 
examined using Pearson’s correlation with false discovery rate (FDR) 
correction; significant correlations were defined by both raw p < 0.05 
and FDR-adjusted q < 0.05, and the control error discovery rate was 5%.

3 Results

3.1 The results of demographic data and 
clinical assessment

This study included patients with PD (n = 44) and HC (n = 32). 
There was no difference in gender, age and education level between 

the two groups (p > 0.05). The MoCA score of the PD group was lower 
than that of the HC (p < 0.05), see Table 1.

Furthermore, a comparative analysis was conducted on 
demographic and clinical assessment data between PD with 
cognitive impairment (PDCOG, n = 31) and those normal 
cognition (PDNC, n = 13). There were no significant differences in 
gender, age, duration of disease, Hoehn-Yahr stage between the 
two groups (p > 0.05). However, the PDCOG group had 
significantly lower educational level and MoCA scores compared 
to the PDNC group (p < 0.05), see Table  1 and Supplementary  
Table 1.

3.2 Comparison of the peak alpha 
frequency between PD and HC

The results demonstrated that the PAF in the PD group was 
significantly lower than that in the HC group (p < 0.05). This reduction 
was observable in multiple brain areas, specifically the frontal region 
(FP1, FP2, F7) (p < 0.05), temporal region (T4, T5, T6) (p < 0.05), central 
region (C3, C4, FZ, CZ, PZ) (p < 0.05), and parietal-occipital region (P3, 
P4, O1, O2) (p < 0.05), see Figure 1 and Supplementary Table 2.

3.3 Comparison of the alpha PSD between 
PDCOG and PDNC

After the Mann–Whitney U test, significant differences were 
observed in P3α PSD (p = 0.019), P4α PSD (p = 0.030), PZα PSD 
(p = 0.035), O1α PSD (p = 0.030), T5α PSD (p = 0.025) and T6α PSD 
(p = 0.025) between the PDCOG group and the PDNC group, while 
no differences were found in other regions (P>0.05), see Figure 2 and 
Supplementary Table 3.

3.4 Correlation analysis between PAF and 
MoCA total score and subitems scores in 
PD group

The correlation analysis conducted in this study revealed notable 
negative correlations between MoCA scores and PAF values in the 

TABLE 1  Clinical characteristics of PD and HC.

Item PD (n = 44) HC (n = 32) t/x2 p

Total (n = 44) PDCOG (n = 31) PDNC (n = 13)

Gender (Male/

Female)
20/24 17/14 3/10 12/20 −0.69 0.495

Age (year) 66.25 ± 7.70 67.45 ± 5.71 63.38 ± 10.87 65.78 ± 8.96 0.25 0.807

Education level 

(year)
10.48 ± 4.67 9.74 ± 4.64 12.62 ± 3.38 11.97 ± 3.29 −1.63 0.126

Duration of disease 

(year)
4.34 ± 3.03 4.44 ± 3.19 4.12 ± 2.72

– – –

HY stage 2.32 ± 0.64 2.39 ± 0.67 2.15 ± 0.56 – – –

MoCA score 22.77 ± 4.50 20.65 ± 3.48 27.85 ± 1.63 25.63 ± 1.43 −3.94 <0.001*

t-test: Compared to PD bold value means *p < 0.05. While categorical variable is presented with number of patients. HC, healthy controls; PDCOG, PD with cognitive impairment; PDNC, PD 
with normal cognition; MoCa, Montreal Cognitive Assessment; HY, Hoehn and Yahr stage; MDS-UPDRSIII, the part III of the Movement Disorder Society-Sponsored Revision of the Unified 
Parkinson’s Disease Rating Scale; p value: difference between HCs and all PD groups.
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temporal–parietal region (T5, P4, PZ) as well as the midline region 
(CZ). Specifically, the correlation coefficients and corresponding 
p-values were as follows: (r = −0.321, p = 0.034), (r = −0.344, 
p = 0.022), (r = −0.345, p = 0.022), and (r = −0.336, p = 0.026), the 
results survived FDR correction (q = 0.034).

There were also significant negative correlations between the 
temporal–parietal region PAF (T5, P4, PZ) with visuospatial scores. 
The correlation coefficients and p-values were (r = −0.344, p = 0.022), 
(r = 0.361, p = 0.016) and (r = −0.35, p = 0.02), respectively, the results 
survived FDR correction (q = 0.022).

Additionally, temporal–parietal region PAF (T5, P3, P4, PZ) and 
midline region PAF (CZ) showed significant negative correlations 
with language scores. The correlation coefficients and p-values were 
T5 (r = −0.37, p = 0.013), P3 (r = −0.343, p = 0.023), P4 (r = −0.431, 
p = 0.004), PZ (r = −0.405, p = 0.006) and CZ (r = −0.369, p = 0.014), 
respectively, the results survived FDR correction (q = 0.018, q = 0.023, 
q = 0.015, q = 0.015, q = 0.018), see Figure 3.

3.5 Correlation analysis between PSD and 
MoCA subitems scores

The correlation analysis revealed that in the PDCOG group, alpha 
PSD in temporal–parietal-occipital region (P4, O1, T6, PZ) were 
negatively correlated with executive function scores (p < 0.05). The 
correlation coefficients and p-values were P4 (r = 0.363, p = 0.045), O1 
(r = 0.384, p = 0.033), T6 (r = 0.402, p = 0.025) and PZ (r = 0.366, 
p = 0.043), respectively, the results survived FDR correction (q = 0.045).

In contrast, alpha PSD in the parietal region (PZ, P3) showed a 
positive correlation with memory function (p < 0.05). The correlation 
coefficients and p-values were (r = 0.379, p = 0.036) and (r = 0.479, 
p = 0.006), respectively, the results survived FDR correction (q = 0.036, 
q = 0.012), see Figure 4.

3.6 ROC curves for PAF in the diagnosis of 
PD

We conducted ROC curve analyses to investigate whether P3PAF, 
P4PAF, T5PAF, CZPAF, PZPAF might facilitate discrimination 
between PD patients and HC (see Figure 5). The areas under the 
curves (AUC) for P3PAF was 0.673, with a sensitivity of 59.4%, a 
specificity of 68.2%, and a cutoff of 9.65. The AUC for P4PAF was 
0.701, with a sensitivity of 43.8%, a specificity of 84.1%, and a cutoff 
of 9.9. The AUC for T5PAF was 0.674, with a sensitivity of 87.5%, a 
specificity of 38.6%, and a cutoff of 8.9. The AUC for CZPAF was 
0.693, with a sensitivity of 87.5%, a specificity of 45.5%, and a cutoff 
of 8.9. The AUC for PZPAF was 0.694, with a sensitivity of 46.9%, a 
specificity of 81.8%, and a cutoff of 9.9 (details in Table 2).

3.7 ROC curves for alpha PSD indices in the 
diagnosis of PDCOG

We conducted ROC curve analyses to investigate whether P3α PSD, 
P4α PSD, O1α PSD, T6α PSD and PZα PSD might facilitate 
discrimination between PDCOG patients and PDNC patients (Figure 6). 
The areas under the curves (AUC) for P3α PSD was 0.77, with a 
sensitivity of 53.8%, a specificity of 90.3%, and a cutoff of 20.25. The 
AUC for P4α PSD was 0.747, with a sensitivity of 61.5%, a specificity of 
83.9%, and a cutoff of 18.35. The AUC for O1α PSD was 0.743, with a 
sensitivity of 76.9%, a specificity of 64.5%, and a cutoff of 11.9. The AUC 
for T6α PSD was 0.758, with a sensitivity of 61.5%, a specificity of 93.5%, 
and a cutoff of 15.9. The AUC for PZα PSD was 0.758, with a sensitivity 
of 61.5%, a specificity of 80.6%, and a cutoff of 9 (details in Table 3).

4 Discussion

The inherent rhythms captured in resting QEEG data offer invaluable 
neurophysiological insights into human cognition (Dringenberg, 2000; 
Schreckenberger et al., 2004; Klimesch et al., 2007). In recent years, the 
assessment of cognitive function using PAF and alpha PSD has emerged 
as a prominent area of research, garnering significant attention. 
Numerous studies have established a positive correlation between alpha 
activity and cognitive function (Williams Roberson et al., 2022). PAF and 
PSD parameters not only demonstrate the ability to differentiate between 

FIGURE 1

Violin plot of the PAF for PD and HC. The PAF in the bilateral frontal 
(FP1, FP2, F7), temporal (T4, T5, T6), parietal-occipital (P3, P4, O1, O2) 
and central (C3, C4, FZ, CZ, PZ) regions were significantly lower in 
PD than in the HC (p < 0.05). PAF, peak alpha frequency. * p < 0.05, 
** p < 0.01, *** p < 0.001.
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PD patients and healthy individuals, but also show promise as biomarkers 
for identifying cognitive deficits in PD (Arnaldi et al., 2017; Chaturvedi 
et al., 2017; Waninger et al., 2020; Schumacher et al., 2020). However, the 
question remains regarding the optimal utilization of PAF and PSD’s 
discriminatory capabilities in various EEG regions, particularly in 
differentiating between healthy controls and PD subjects, as well as 
between cognitively normal and impaired PD subjects. Our study 
presents distinct findings on this complex and contentious issue.

4.1 Characteristics of PAF and PSD in PD 
patients

In our study, we  examined the disparities in PAF between 
healthy individuals and those diagnosed with PD. Our findings 
uncovered a significant decrease in overall PAF among PD patients 
relative to HC. The PAF serves as a highly sensitive indicator of 
cognitive performance. Moreover, the PAF fluctuates in accordance 
with the level of cognition (Klimesch, 1997). PAF is commonly 
understood as the frequency demonstrating the peak PSD within the 
8 to 13 Hz alpha band. This frequency is thought to correlate strongly 
with cognitive processes (Keitel et al., 2019; Ramsay et al., 2021; 
Finley et al., 2024). Research has shown that PD patients without 
dementia display a lower frequency of alpha spikes compared to HC 
(Ye et al., 2022). Our findings revealed a discernible difference in 

PAF between the PD and HC groups, moreover, this difference was 
significantly correlated with cognitive assessment outcomes. 
Physiologically, PAF not only indicates heightened brain arousal and 
vigilance, facilitating visual information processing in the parietal, 
temporal, and occipital cortical regions, but is also associated with 
attention and cognitive performance (Babiloni et al., 2022). Our 
findings revealed a negative correlation between the posterior 
temporal pole and superior parietal PAF, and MoCA scores in PD 
patients. This primarily reflects a negative association with visual–
spatial abilities. Furthermore, the superior parietal PAF also shows 
a negative correlation with language scores. These observations 
suggest that heightened neural electrophysiological activity in 
specific brain areas may play a role in compensatory mechanisms for 
cognitive decline. In some neurodegenerative diseases, the brain 
may maintain its function through some compensatory mechanisms. 
For instance, when the function of certain brain regions is impaired, 
other brain regions may increase their activity to compensate for this 
loss. In our study, the reduction of PAF might be  related to the 
excessive synchronization of activity in certain brain regions, which 
could be a compensatory response by the brain to maintain cognitive 
function. However, such compensatory mechanisms may not always 
be effective and might even have a negative impact on cognitive 
function in some cases. These findings align with previous research 
(Zhang et al., 2020). A study investigated the correlation between 
resting-state PAF, PSD, aging, and cognition, revealing a negative 

FIGURE 2

Violin plot of peak alpha PSD for PDCOG and PDNC. The PSD in the parieto-occipital region (P3, P4, PZ, O1), temporal (T3, T4, T5, T6), parietal-
occipital (P3, P4, O1, O2) and the temporal region (T5, T6) regions were significantly lower in PDCOG than in the PDNC (p < 0.05). PSD, power spectral 
density. * p < 0.05.
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association between alpha power and processing speed, particularly 
prominent in the frontal region (Cesnaite et al., 2023). However, our 
results specifically highlight a negative association between PSD and 

cognitive performance at the occipital pole. Additionally, 
we observed a positive correlation between PAF and both right and 
left temporal regions, related to interference suppression during 

FIGURE 3

Correlation analysis between PAF and MoCA and subitems scores in PD group. (A–C): A significant negative correlation was found between P4PAF and 
MoCA scores (A), visuospatial scores (B), language scores (C) in patients with PD. (D–F): A significant negative correlation was found between T5PAF 
and MoCA scores (E), visuospatial scores (F), language scores (G) in patients with PD. (G–I): A significant negative correlation was found between 
PZPAF and MoCA scores (G), visuospatial scores (H), language scores (I) in patients with PD. (J): A significant negative correlation was found between 
CZPAF and MoCA scores in patients with PD. (K): A significant negative correlation was found between CZPAF and language scores in patients with PD. 
(L): A significant negative correlation was found between P3PAF and language scores in patients with PD. q: FDR corrected p value with Benjamini-
Hochberg. q<0.05*.

109

https://doi.org/10.3389/fnins.2025.1575815
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhao et al.� 10.3389/fnins.2025.1575815

Frontiers in Neuroscience 07 frontiersin.org

working memory tasks. While our study did not directly establish a 
link between PAF and memory, we did find a noteworthy positive 
correlation between PSD and memory performance in PD patients, 
which merits further investigation.

However, no such difference was observed when comparing 
PDCOG and PDNC. Hence, we hypothesize that dopamine may also 
regulate PAF in PD (Wacker, 2018), but further research is required to 
verify this.

4.2 Reduced parieto-occipital alpha PSD in 
PDCOG patients

To distinguish PDCOG patients from PDNC patients based on their 
cortical electrical activity, our study compared the brain networks of the 
two subject groups through the analysis of ICA. In PDCOG patients 
we found a reduction of the alpha component in the parietal and occipital 
region. This result aligns with the findings reported by Yılmaz et al. (2020) 
and Babiloni et al. (2017). Furthermore, the reduction of alpha PSD 
amplitude especially in the posterior regions has been identified as one of 
the parameters that can discriminate between PDNC and PDCOG 
(Aarsland et  al., 2017). The alpha rhythm prevails during relaxed 
wakefulness and serves as an indicator of the subject’s attentional capacity 
and the seamless integration of sensory-motor data, which facilitates the 
activation of cortico-thalamic and cortico-cortical connections. 
Consequently, it is unsurprising to observe alterations in this rhythm 
among patients experiencing cognitive impairment (Mostile et al., 2019).

4.3 Diagnostic efficacy and limitations of 
PDCOG based on QEEG markers

Although significant differences in PAF and PSD characteristics 
were observed between the two PD groups at the group level, translating 
these findings into a practical measure for clinical diagnosis in PDCOG 
remains challenging at this time. Notably, PSD in the alpha frequency 
range and dominant frequency demonstrated the highest diagnostic 
accuracy, yet they only achieved moderate AUC values of approximately 
0.77. Certain lead measures exhibited remarkably high specificity for 
PDCOG (reaching up to 93.5% for alpha PSD in T6 with a cutoff below 
15.9), indicating that a pronounced shift of PSD towards slower 

FIGURE 4

Correlation analysis between the peak alpha PSD and MoCA and subitems scores in PDCOG group. (A–D): A significant negative correlation was found 
between P4αPSD (A), O1αPSD (B), T6αPSD (C), PZαPSD (D) and executive scores in patients with PDCOG. (E): A significant positive correlation was 
found between PZαPSD and memory scores in patients with PDCOG. (F): A significant positive correlation was found between P3αPSD and memory 
scores in patients with PDCOG. q: FDR corrected p value with Benjamini-Hochberg. q<0.05*.

FIGURE 5

ROC curve analysis was used to measure the AUC of PAF. The AUC 
was 0.673 for P3PAF (blue curve), 0.701 for P4PAF (purple curve), 
0.674 for T5PAF (green curve), 0.693 for CZPAF (yellow curve) and 
0.694 for PZPAF (orange curve).
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frequencies strongly suggests a diagnosis of PDCOG. However, 
sensitivity was generally lower, meaning that differentiating between 
PDCOG and PDNC can be difficult when facing a more typical QEEG 
pattern. These findings indicate that while changes in PAF and PSD 
characteristics are specific to cognitive decline, sensitivity is somewhat 
limited. Therefore, a comprehensive diagnosis should incorporate 
additional clinical indicators with higher sensitivity.

Compared with previous studies, the diagnostic efficacy of 
unimodal QEEG in this study (AUC = 0.77) was comparable to 
multimodal fusion models [e.g., QEEG+MRI combined AUC = 0.77 
(Zhang et al., 2021)]. The specificity was significantly higher than that 
of blood biomarkers [93.5% vs. 77.3% (Liu et  al., 2022)]. This 
difference highlights: The unique advantages of QEEG: low cost, high 
specificity, suitable for primary care screening; Inherent limitations of 
a single mode: Heterogeneity in neurodegenerative diseases requires 
multi-dimensional data complementation.

4.4 The link between PAF, alpha PSD and 
cognition

The modulation of alpha activity by cognitive processes has been 
well-documented in the literature, suggesting a broad association 
between alpha activity and various cognitive domains (Klimesch, 2012). 

Our findings reveal that MoCA scores exhibit a positive correlation with 
increasing alpha PSD in parieto-occipital leads (P3, O1, O2, T5, T6, PZ), 
corroborating previous reports (Yılmaz et al., 2020). Furthermore, a 
study indicates that patients with PD may experience inefficient resource 
allocation, potentially due to reduced functional inhibition mediated by 
parietal alpha activity (Weber et al., 2021).

This study unequivocally confirmed the crucial roles of the 
parieto-occipital region, which has a complex association with PD 
cognition. An investigation into brain function networks uncovered 
distinct differences in the parietal and occipital regions between 
individuals with PD and HC. This discovery implies a possible 
dysfunction of the parieto-occipital region in PD patients.

Executive dysfunction has been considered the core feature of the 
cognitive impairment in PD (Arrigoni et al., 2024). Vriend et al. (2015) 
reported in their study that patients with PD demonstrated compromised 
performance in comparison to controls while performing a stop-signal 
task within the inhibition domain. This impairment was accompanied 
by reduced activation in brain areas linked to inhibitory control. This 
study discovered a negative correlation between alpha-band PSD and 
executive function, particularly in specific brain regions such as the right 
posterior temporal pole, parietal pole, and left occipital pole. This 
correlation may be  attributed to the inactivation of these regions, 
resulting in a decreased inhibition process (de-inhibition) (van Eimeren 
et al., 2009). Furthermore, dopaminergic depletion in PD may disrupt 
the default mode network function, resulting in an inability to properly 
adjust its activity during executive function tasks. Notably, our research 
revealed a negative correlation between the executive function score and 
the alpha-band PSD of the parietotemporal region. This intriguing 
discovery might be connected to non-disease-specific or compensatory 
changes in the PD default mode network, ultimately leading to reduced 
task performance. Interestingly, we found that the executive function 
score is negatively correlated with the alpha-band PSD of the 
parietotemporal region. This finding could also be  associated with 
non-disease-specific or compensatory alterations in the PD default mode 
network, which are linked to diminished task performance.

Moreover, our study revealed a fascinating insight: while PAF has 
historically been regarded as a reliable measure for evaluating cognitive 
function, and there is a significant difference in PAF between individuals 
with PD and healthy controls, this metric is unable to differentiate 
between PD patients with and without cognitive impairment. This study 
found a negative correlation between resting-state PAF and the language 
dimension score of MoCA in PD patients, which may reflect the 
oscillation-cognition decoupling phenomenon during disease 
progression. The degeneration of the thalamus-cortex-basal ganglia 
circuit in PD patients may lead to the dysfunction of α rhythm regulation 
(Dirkx et al., 2017), causing the elevated resting-state PAF (>10 Hz) to 
lose its cognitive enhancement effect as seen in healthy individuals. 
Research (Ni et al., 2018) found that basal ganglia neural modulation 

TABLE 2  ROC curve thresholds and corresponding TPR/FPR values for PAF.

Indices AUC Cut-off value p Sensitivity Specificity 95%CI

P3PAF 0.673 9.65 0.01 0.594 0.682 (0.553, 0.793)

P4PAF 0.701 9.9 0.003 0.438 0.841 (0.585, 0.817)

T5PAF 0.674 8.9 0.01 0.875 0.386 (0.555, 0.794)

CZPAF 0.693 8.9 0.004 0.875 0.455 (0.576, 0.810)

PZPAF 0.694 9.9 0.004 0.469 0.818 (0.577, 0.811)

Detail data of ROC curves of PAF for the discrimination of PD and HC. AUC, areas under the curves.

FIGURE 6

ROC curves for the evaluation of the utility of alpha PSD indices for 
the discrimination of PDCOG from PDNC. ROC curve analysis was 
used to measure the AUC of the alpha PSD indices. The AUC was 
0.77 for P3 α PSD (blue curve), 0.747 for P4α PSD (red curve), 0.743 
for O1α PSD (green curve), 0.758 for T6α PSD (yellow curve) and PZα 
PSD (black curve).
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could significantly alter the power and frequency of the cortical α band, 
suggesting that dopaminergic drugs may induce oscillation rigidity 
through a similar pathway, thereby impairing complex cognitive 
functions. Future studies should combine task-state EEG with 
multimodal imaging (such as fMRI-PET) to further explore the dynamic 
relationship between α frequency and the language network at different 
stages of PD. On the other hand, the PSD index has demonstrated 
remarkable effectiveness in assessing the cognitive abilities of PD 
patients, indicating its usefulness in identifying cognitive deficits unique 
to PD. We aim to explore further the variations in the alpha spectrum 
and PSD between PD and other types of cognitive impairment, as well 
as examine the distinct electrophysiological characteristics of cognitive 
impairment in different diseases.

Our study has certain limitations. First, we utilized the MoCA score, 
which does not assess specific cognitive domains and may therefore 
have limited diagnostic accuracy, as a measure of global cognitive 
function. In our future endeavors, we aim to incorporate more targeted 
scales for assessment purposes. Second, as an exploratory study, this 
research aims to preliminarily construct a diagnostic model and identify 
key features; therefore, cross-validation was not performed. Although 
this design may limit the direct assessment of the model’s generalizability, 
the results provide an important foundation for subsequent validation 
studies. Future work will incorporate larger sample sizes and cross-
validation methods to systematically optimize the clinical application 
potential of the model. Finally, the absence of pathological confirmation 
in the current study prevents us from establishing the multifactorial 
pathological mechanism underlying early cognitive decline in PD 
patients. To address this limitation in future research, we  intend to 
include additional evaluation indicators, such as serological and imaging 
markers, to explore multimodal markers of PD cognitive impairment.

5 Conclusion

In conclusion, the present findings reveal a clear association between 
alpha PSD and PD cognitive function. These results strongly imply that 
alpha PSD could be  a key factor in evaluating cognitive abilities. 
Moreover, this study identified the P3α PSD, T5α PSD and T6α PSD as 
highly promising tools for assessing cognitive function in PD. These 
indicators may serve as useful auxiliary measures for future assessment.
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TABLE 3  ROC curve thresholds and corresponding TPR/FPR values for alpha PSD indices.
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T6α PSD 0.758 15.9 0.007 61.5 93.5

PZα PSD 0.758 9 0.024 61.5 80.6

Detail data of ROC curves of alpha PSD indices for the discrimination of PDCOG and PDNC. AUC, areas under the curves.
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Background: Resting-state functional MRI (rs-fMRI) studies using regional 
homogeneity (ReHo) have identified localized functional changes in Parkinson’s 
disease (PD), but findings across studies exhibit considerable heterogeneity. The 
emerging network perspective suggests these disparate findings might reflect 
nodes within a single interconnected network. Functional Connectivity Network 
Mapping (FCNM) offers an approach to test this hypothesis.

Methods: We conducted a systematic literature search (PubMed, Embase, 
Web of Science, CNKI, and Wanfang) for studies reporting whole-brain ReHo 
differences (PD vs. healthy controls). Resting-state fMRI data from the Human 
Connectome Project (HCP; n = 1,093) were analyzed using FCNM to map ReHo 
abnormalities in PD onto common functional brain networks. Robustness was 
assessed using 1 mm and 7 mm radii, and spatial overlap with canonical brain 
networks was quantified.

Results: A total of 52 studies, comprising 72 datasets reporting ReHo differences 
between 2,052 PD patients and 1,401 healthy controls, were included in the 
analysis. The FCNM analysis identified a distributed PD-associated dysfunctional 
network. This network showed significant spatial overlap primarily with the 
visual (49.24%), somatomotor (32.35%), dorsal attention (44.49%), and ventral 
attention (67.97%) canonical networks. The network topography demonstrated 
high consistency across different seed radii (1 mm and 7 mm), confirming 
robustness.

Conclusion: By integrating heterogeneous ReHo findings via FCNM, this 
study delineates robust PD-associated dysfunctional networks involving key 
sensory, motor, and attentional systems. This network-centric view offers a 
unifying perspective on PD pathophysiology, highlighting large-scale systems 
disruption and potentially reconciling previous localization inconsistencies. This 
approach underscores the value of network neuroscience for understanding PD 
mechanisms.
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Parkinson’s disease, regional homogeneity, functional connectivity network mapping, 
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Introduction

Parkinson’s disease (PD), the most common neurodegenerative 
movement disorder, affects approximately 1% of individuals over 
60 years old (Ascherio and Schwarzschild, 2016; Tysnes and Storstein, 
2017). While characterized primarily by motor deficits, PD also 
encompasses a significant burden of non-motor symptoms, including 
cognitive impairment, hallucinations, attention deficits, and 
depression (Marinus et  al., 2018; Sveinbjornsdottir, 2016). The 
presence of these diverse symptoms suggests that PD pathology 
extends beyond the classically affected dopaminergic neurons of the 
substantia nigra and striatum, implicating dysfunction across a wider 
array of brain regions (Dayan et al., 2018; Huang C. C. et al., 2024; Lin 
et al., 2024; Wen et al., 2022).

To investigate the pathophysiological mechanisms underlying PD, 
researchers frequently utilize resting-state functional MRI (rs-fMRI) 
(Tessitore et al., 2019) to non-invasively assess intrinsic neural activity 
and functional connectivity (FC) alterations, as reflected by the blood-
oxygen-level-dependent (BOLD) signal, without requiring active task 
participation (Allen et al., 2014). A key rs-fMRI metric employed for 
this purpose is regional homogeneity (ReHo), which measures the 
synchronicity of neural activity time courses within local brain areas. 
Because ReHo is calculated across the whole brain in a data-driven 
manner, without needing pre-defined regions of interest, it serves as a 
valuable tool for investigating patterns of local neural activity in both 
healthy individuals and patients with neurological disorders (Song 
et al., 2011; Zang et al., 2004; Zuo et al., 2013).

A substantial body of research has employed ReHo analysis in 
PD. These studies have reported significant alterations compared to 
healthy controls (HC), such as decreased ReHo in sensorimotor 
cortices and increased ReHo in parietal, occipital, and prefrontal 
regions, often interpreted in relation to motor deficits, sensory 
abnormalities, or potential compensatory neural processes (Choe 
et  al., 2013; Li et  al., 2017). However, considerable heterogeneity 
persists across these ReHo findings, making it challenging to establish 
a definitive map of consistently affected regions solely based on 
individual studies. This variability is frequently attributed to 
differences in patient demographics, clinical profiles, sample sizes, 
imaging acquisition parameters, and data analysis strategies. In 
attempts to synthesize these divergent ReHo results, coordinate-based 
meta-analyses (CBMA) have identified recurring patterns, including 
abnormal ReHo in the bilateral inferior parietal lobules, medial 
prefrontal cortex, superior frontal gyrus, putamen, precentral gyrus, 
and thalamus (Gu et al., 2022; Pan et al., 2017; Tahmasian et al., 2017; 
Wang et  al., 2018). Despite these meta-analytic efforts, variability 
persists, and ongoing research continues to generate diverse findings 
regarding local ReHo changes in PD (Huang Z. et al., 2024; Jiang et al., 
2023; Lan et al., 2023; Li K. et al., 2023; Wang et al., 2024; Wang et al., 
2023), necessitating further investigation and potentially alternative 
explanatory frameworks.

An emerging perspective suggests that this apparent heterogeneity 
in focal brain abnormalities may reflect disruptions within 
interconnected large-scale brain networks (Fox, 2018). This network-
based view posits that disease processes can manifest at different 
locations (nodes) within the same functionally connected system 
(Darby et  al., 2019). Functional Connectivity Network Mapping 
(FCNM), a technique that integrates coordinates of structural or 
functional abnormalities with normative human brain connectome 

data, provides a powerful framework for testing this hypothesis by 
mapping disparate lesion or abnormality locations onto underlying 
brain networks (Darby et  al., 2019; Peng et  al., 2022). Growing 
evidence supports the utility of network-based approaches for 
understanding various neurological and psychiatric disorders 
(Schaper et al., 2023; Stubbs et al., 2023; Younger et al., 2023). However, 
despite its potential to reconcile heterogeneous findings, FCNM has 
been relatively underutilized in the context of ReHo alterations in PD.

Therefore, the present study aimed to apply FCNM to synthesize 
published findings on ReHo alterations in PD patients compared to 
HC. By integrating coordinate data from previous ReHo studies into 
a connectome framework, we  seek to identify potential common 
functional networks underlying these alterations. This approach will 
allow us to investigate whether the heterogeneous regional ReHo 
changes reported across different studies converge onto a specific, 
functionally connected brain network associated with PD.

Materials and methods

Data sources, study selection, and quality 
assessment

In accordance with Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines, a comprehensive 
systematic search was conducted across PubMed, Embase, Web of 
Science, China National Knowledge Infrastructure (CNKI), and the 
Chinese Wanfang Database for studies published up to April 1, 2025, 
using the keywords: (Parkinson* OR Parkinson) AND (“regional 
homogeneity” OR ReHo OR “local connectivity”). To ensure thorough 
inclusion of relevant studies, the reference lists of selected studies and 
pertinent review articles were also examined. The study selection 
process is illustrated in the flow diagram (Figure 1).

The inclusion criteria for this study were as follows: (1) participants 
were diagnosed with idiopathic PD according to established clinical 
criteria; (2) the study involved a ReHo analysis comparing patients with 
idiopathic PD to HC subjects; (3) whole-brain ReHo analysis that 
reported three-dimensional coordinates in either the Talairach or 
Montreal Neurological Institute (MNI) space; (4) results achieved 
statistical significance, either corrected for multiple comparisons or 
uncorrected but employing spatial extent thresholds; and (5) the study 
was an original research article published in a peer-reviewed English- 
or Chinese-language journal. In studies that reported both on-state and 
off-state results, only the off-state data were included. For longitudinal 
studies, only data from the baseline assessment were used. If patient 
datasets appeared across multiple articles, only the dataset with the 
largest sample size and the most comprehensive reported details was 
chosen to avoid data duplication. Excluded items included review 
papers, letters, comments, and abstracts. The literature search, 
assessment and selection of studies, and data extraction were conducted 
independently by two investigators. Any discrepancies were settled by 
discussion involving a third investigator to reach a conclusive decision.

Rs-fMRI data acquisition and preprocessing

For the subsequent network mapping analysis, we utilized the 
Human Connectome Project (HCP; http://www.humanconnectome.
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org/) dataset. Detailed inclusion and exclusion criteria for the HCP 
dataset can be found elsewhere (Marcus et al., 2013). To minimize 
potential confounding effects related to neurodevelopment and 
neurodegenerative changes, only individuals aged 18 to 40 years were 
included in in the present analysis. Consequently, we  ultimately 
selected resting-state fMRI scans from 1,093 healthy participants (499 
males, mean age ± SD = 28.78 ± 3.69 years).

The HCP data was acquired using a 3 T Siemens Trio scanner with 
a gradient echo-planar imaging (GRE-EPI) sequence for fMRI. The 
imaging parameters were as follows: repetition time (TR) of 720 ms, 
echo time (TE) of 33.1 ms, field of view (FOV) of 208 mm × 180 mm, 
flip angle (FA) of 52°, matrix size of 104 × 90, slice thickness/gap of 
2 mm/0 mm, 72 slices, and 1,210 time points.

Resting-state fMRI data were preprocessed utilizing the Statistical 
Parametric Mapping (SPM12; https://www.fil.ion.ucl.ac.uk/spm/) and 
Data Processing & Analysis for Brain Imaging (DPABI; https://rfmri.
org/DPABI) (Yan et al., 2016). The initial 10 volumes from each run 
were discarded to allow for MR signal stabilization and participant 
acclimation. The remaining volumes underwent correction for slice 
timing differences. Subsequently, realignment was performed to 
correct for inter-volume head motion. Head motion parameters were 
estimated (translations in x, y, z directions and rotations pitch, roll, 
yaw). All included participants exhibited head motion within 

acceptable limits (maximum translation < 2 mm and maximum 
rotation < 2°). Framewise displacement (FD), reflecting volume-to-
volume head position changes, was also calculated. Several nuisance 
covariates—including linear trends, the 24 head motion parameters 
derived from the Friston model, volumes flagged with FD > 0.5 mm 
(“scrubbing”), mean global signal, mean white matter signal, and 
mean cerebrospinal fluid signal—were regressed out using a general 
linear model. Global signal regression (GSR) was included as it has 
been shown to enhance the specificity of functional connectivity 
patterns and mitigate widespread motion artifacts, although its use 
remains debated. The resulting datasets were then bandpass filtered 
(0.01–0.1 Hz). For spatial normalization, individual T1-weighted 
structural images were first co-registered to the mean functional 
image. These aligned structural images were then segmented into gray 
matter, white matter, and CSF probability maps and normalized to 
MNI standard space using the high-dimensional nonlinear warping 
algorithm, Diffeomorphic Anatomical Registration via Exponentiated 
Lie algebra (DARTEL). Each filtered functional volume was 
subsequently spatially normalized to MNI space using the deformation 
parameters derived from the structural normalization and resampled 
into 3-mm isotropic voxels. Finally, spatial smoothing was applied 
using a Gaussian kernel of 6 × 6 × 6 mm3 full width at half 
maximum (FWHM).

FIGURE 1

Flow diagram for the identification and exclusion of studies. PD, Parkinson’s disease; ReHo, regional homogeneity.
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Functional connectivity network mapping

We employed the FCNM approach to construct a PD-associated 
dysfunctional network based on the extracted coordinates of 
significant ReHo differences between PD and HC participants 
identified in the systematic review. First, spherical regions of interest 
(ROIs) with a radius of 4 mm were created centered at the peak 
coordinates reported for each significant between-group contrast 
(PD > HC or PD < HC). These spheres were then combined to form 
a contrast-specific seed mask (termed the “contrast seed”). Second, 
using the preprocessed normative resting-state fMRI data from the 
1,093 HCP participants, functional connectivity (FC) maps were 
generated for each HCP participant. This involved computing the 
Pearson’s correlation coefficient between the mean time series 
extracted from the contrast seed (representing the location of 
PD-related ReHo abnormality) and the time series of all other brain 
voxels. These correlation coefficients were transformed using Fisher’s 
r-to-z transformation to improve normality. Third, the 1,093 
individual-level z-transformed FC maps were entered into a voxel-
wise one-sample t-test at the group level to identify brain regions 
demonstrating consistent functional connectivity with the contrast 
seed across the healthy cohort. We focused only on positive FC, given 
that the biological interpretation of negative FC remains a subject of 
ongoing research (Murphy et  al., 2009; Murphy and Fox, 2017). 
Fourth, the resulting group-level t-map underwent thresholding using 
a significance level of p < 0.05, with correction for multiple 
comparisons applied using the false discovery rate (FDR) method. 
Finally, the thresholded, binarized maps derived from each individual 
ReHo contrast included in the meta-analysis were overlaid. This 
generated a network probability map, representing the frequency with 
which voxels appeared in the significant connectivity networks across 
different contrasts. This probability map was then thresholded at 50% 
(i.e., retaining voxels present in at least half of the individual contrast-
derived networks) to produce the final integrated ReHo-based PD 
dysfunctional network.

Association with canonical brain networks

To facilitate functional interpretation, we examined the spatial 
overlap between the derived PD dysfunctional network and eight well-
established canonical brain networks. Following Yeo et al., the cortical 
networks comprised the visual, somatomotor, dorsal attention, ventral 
attention, limbic, frontoparietal, and default mode networks (Yeo 
et al., 2011). The subcortical network, encompassing the amygdala, 
hippocampus, basal ganglia, and thalamus, was defined using the 
Human Brainnetome Atlas.1 To quantify the spatial relationship, 
we calculated the proportion of overlapping voxels between the PD 
dysfunctional network and each canonical network, relative to the 
total number of voxels in the respective canonical network. If the 
overlap proportion reached 20% or greater, the PD dysfunctional 
network was considered to significantly involve the corresponding 
canonical network.

1  https://atlas.brainnetome.org/

Results

Included studies and sample characteristics

Following the predefined search strategy and selection criteria, a 
total of 621 potentially relevant documents were screened. Ultimately, 
52 studies reporting on ReHo alterations in PD, comprising 72 
independent datasets (contrasts), were included in the analysis. These 
datasets reported ReHo differences between a pooled sample of 2,052 
PD patients (1,133 males, 919 females; mean age = 60.88 ± 5.30 years; 
mean Hoehn & Yahr [H&Y] stage = 2.06 ± 0.67; mean disease 
duration = 4.77 ± 3.85 years) and 1,401 HC participants (656 males, 
745 females, mean age = 60.29 ± 6.73 years). Detailed sample and 
imaging characteristics of the included studies are summarized in 
Supplementary Table 1.

Dysfunctional networks in PD

The FCNM analysis integrating coordinates of ReHo alterations 
revealed a PD-associated dysfunctional network comprising a broadly 
distributed set of brain regions (Figure  2). Key nodes included 
extensive areas within the bilateral occipital cortex (lingual gyrus, 
calcarine cortex, cuneus, superior occipital gyrus, and middle occipital 
gyrus), somatomotor cortex (precentral gyrus, postcentral gyrus, and 
supplementary motor area), parietal cortex (superior parietal gyrus, 
precuneus, and inferior parietal lobule), and the insula.

Regarding overlap with canonical networks (Figure 3), the PD 
dysfunctional network primarily involved the visual (overlap 
proportion: 49.24%), somatomotor (32.35%), dorsal attention 
(44.49%), and ventral attention (67.97%) networks, all exceeding the 
predefined 20% threshold. To evaluate the robustness of the FCNM 
procedure to the choice of seed radius, analyses were repeated defining 
seed spheres with radii of 1 mm and 7 mm. The resulting PD 
dysfunctional networks closely resembled the network generated 
using the primary 4-mm sphere radius. Specifically, with a 1-mm 
radius, the significantly involved canonical networks included the 
visual (30.45%), dorsal attention (27.16%), and ventral attention 
(57.95%) networks (somatomotor network overlap was 13.9%, below 
threshold). With a 7-mm radius, the significantly involved networks 
included the visual (45.72%), somatomotor (34.65%), dorsal attention 
(37.52%), and ventral attention (69.77%) networks, demonstrating 
high consistency across radii.

Discussion

To the best of our knowledge, this study represents the first 
application of FCNM, integrating coordinate-based data of ReHo 
alterations with large-scale normative human connectome data, to 
delineate the PD-associated dysfunctional networks. By synthesizing 
72 contrasts from 52 studies, encompassing a substantial cohort of 
2,052 PD patients and 1,401 HC, our FCNM analysis identified 
consistent dysfunctional networks associated with PD. The results 
revealed that this PD-related networks primarily involve nodes 
within the visual, somatomotor, dorsal attention, and ventral 
attention canonical systems. The robustness of this network 
topography was confirmed through validation analyses using 
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different seed radii (1 mm and 7 mm), which yielded highly 
comparable results to the primary analysis (4 mm radius). This 
network-level perspective offers a potential framework for reconciling 
previously heterogeneous regional neuroimaging findings and 

provides a systems-level vantage point for understanding the 
neurobiological underpinnings of PD.

Our analysis identified significant involvement of the visual 
network in PD, including nodes located within cortical regions such 

FIGURE 2

PD brain damage networks and involved brain regions. PD, Parkinson’s disease.

FIGURE 3

PD brain damage network in association with canonical brain networks. PD, Parkinson’s disease.
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as the bilateral lingual gyrus, calcarine cortex, cuneus, superior 
occipital gyrus, and middle occipital gyrus. The visual network is 
integral to processing external visual stimuli, encompassing functions 
like visual perception, object recognition, spatial localization, and the 
regulation of visual attention—domains known to be affected in PD 
(Xing et  al., 2024). Clinically, visual network impairment in PD 
manifests diversely, including reduced visual acuity and contrast 
sensitivity, deficits in visual scene processing, visuospatial cognition, 
color vision, and the occurrence of visual hallucinations (Archibald 
et al., 2013; Armstrong, 2011; Caproni et al., 2014; Manganelli et al., 
2009; Norton et al., 2016; Sun et al., 2014). Indeed, visual problems are 
highly prevalent, affecting up to 70% of PD patients (Urwyler et al., 
2014), and can emerge even in the prodromal phase (Armstrong, 
2015; Mahlknecht et al., 2015). The implication of the visual network 
identified through our synthesis of ReHo data aligns with previous 
multimodal neuroimaging evidence. For instance, studies have 
reported altered functional organization (segregation/integration) 
within dorsal and ventral visual streams (Li T. et al., 2023), reduced 
metabolic activity (FDG-PET) (Zang et  al., 2023), and abnormal 
neurovascular coupling (Li T. et  al., 2023) within this network in 
PD. Furthermore, the specific regions highlighted in our network 
map, such as the lingual gyrus, calcarine cortex, cuneus, and occipital 
gyri, have been repeatedly implicated in prior functional connectivity 
(Kawabata et al., 2018) and meta-analytic studies focusing on local 
activity alterations in PD (Gu et al., 2022; Pan et al., 2017; Wang et al., 
2018; Wang et al., 2023), supporting the notion that widespread visual 
system dysfunction is a core feature captured by aggregating 
ReHo findings.

This study also demonstrated significant involvement of the 
somatomotor network (SMN) in the PD dysfunctional network, 
including key nodes in the precentral gyrus, postcentral gyrus, and 
supplementary motor area (SMA). The SMN plays a critical role in 
coordinating and integrating sensorimotor information (Marquez 
et  al., 2023), and its functional architecture reflects the brain’s 
regulation of motor control (Wang et al., 2022; Yeo et al., 2011). In 
PD, dysfunction within the SMN is intimately linked to cardinal 
motor symptoms, particularly impacting motor planning and gait 
initiation (Ragothaman et al., 2022). Consistent with this, SMN 
functional connectivity has been shown to predict clinical motor 
scores (Wang et  al., 2022), and alterations in SMN metabolic 
activity correlate with motor severity (Zang et al., 2023). Moreover, 
therapeutic interventions like levodopa have been shown to 
modulate SMN synchrony in correlation with motor improvements 
(Zhou et  al., 2021). The specific SMN regions identified in our 
FCNM analysis (precentral/postcentral gyri, SMA) correspond 
well with established patterns of PD pathology. Abnormalities in 
the precentral and postcentral gyri are frequently reported (Li 
et al., 2021; Wang et al., 2024; Zeng et al., 2017) and functional and 
structural alterations within the SMA are strongly associated with 
characteristic PD deficits such as impaired motor sequencing, 
timing, and gait (Marquez et al., 2023). Notably, the SMA is a target 
for therapeutic interventions, with repetitive transcranial magnetic 
stimulation (rTMS) applied to this area showing moderate efficacy 
in improving motor symptoms in randomized controlled trials 
(Hamada et  al., 2008; Ramos et  al., 2013). This convergence of 
evidence underscores the clinical relevance of the SMN 
components highlighted by our FCNM integration of ReHo data.

Additionally, our analysis revealed widespread involvement of 
attention networks, including both the dorsal attention network 
(DAN) and the ventral attention network (VAN), encompassing 
regions such as the superior parietal lobule, precuneus, inferior 
parietal lobule, and insula. These networks are fundamental 
components of cortical organization, interacting with sensory 
systems to regulate attention and facilitate information processing 
(Yeo et al., 2011). Evidence suggests disrupted attentional network 
function in PD; for example, increased network dispersion in both 
VAN and DAN has been observed (Zang et al., 2023). The VAN 
plays a critical role in directing attention toward unexpected or 
salient stimuli, operating as a bottom-up, stimulus-driven 
attentional process, while the DAN is responsible for top-down, 
goal-directed stimulus selection (Rossi et al., 2014; Vossel et al., 
2014). PD patients exhibit impairments related to both systems: 
difficulties in recognizing salient targets (implicating DAN/
top-down control) and altered orienting to novel stimuli 
(implicating VAN/bottom-up control), particularly in fatigued 
patients (Pauletti et al., 2019). Research suggests FOG may involve 
VAN overreliance on external cues, leading to executive deficits 
(Bayot et  al., 2022), and alterations in DAN network efficiency 
(Maidan et  al., 2019). Beyond overt attention and FOG, DAN 
alterations have been implicated in broader cognitive processing 
and impulse control disorders in PD (Arslan et al., 2020; Baggio 
et  al., 2015; Chung et  al., 2019; Zhu et  al., 2021). Furthermore, 
disrupted processing within and between attention networks is 
hypothesized to contribute to visual illusions and hallucinations. 
For instance, impaired communication between the VAN (detecting 
saliency) and DAN (directing focus) might lead to misidentification 
of stimuli, allowing internally generated percepts to emerge (Gobel 
et al., 2021; Shine et al., 2014a). Importantly, the cortical regions 
associated with the attention networks in our FCNM results 
(superior/inferior parietal lobules, precuneus, insula) align well 
with previous meta-analyses and studies reporting altered activity, 
connectivity, or synchrony in these areas in PD (Gu et al., 2022), 
demonstrating that the attention network nodes identified via our 
synthesis of ReHo data correspond to regions consistently 
implicated in PD attentional and related cognitive dysfunction.

Beyond characterizing alterations within individual canonical 
networks, impaired interactions between these networks likely 
contribute significantly to the pathophysiology of PD. For instance, 
effective gait control requires coordinated activity between the visual 
network (for spatial guidance) and the SMN (for motor execution) 
(Takakusaki, 2013). Reduced functional connectivity between these 
two systems in PD patients is thought to impair sensorimotor 
integration, contributing to postural instability and gait difficulties 
(Gratton et al., 2019; Shi et al., 2023; Xing et al., 2024). Highlighting 
this interaction, a predictive model for PD motor dysfunction 
identified Visual-SMN network coupling as a key factor (Wang et al., 
2022). Similarly, the occurrence of visual hallucinations likely involves 
multi-network dysregulation. Models propose that reduced DAN 
activity, hyperactivation of the VAN, and impaired DAN-VAN 
connectivity create a vulnerability (Diez-Cirarda et al., 2023; Nieto-
Escamez et al., 2023; Pagonabarraga et al., 2024; Shine et al., 2014a,b), 
where ambiguous visual input, coupled with dysfunctional VAN 
processing, allows intrusive memory-based imagery to manifest as 
hallucinations (Zhang et al., 2024). This dysregulation is a key factor 
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in the development of hallucinations in PD psychosis (Pagonabarraga 
et al., 2024). Therefore, while our FCNM approach primarily identifies 
the topography of the dysfunctional network based on ReHo 
alterations, these findings gain further significance when considering 
the critical functional interactions between the implicated visual, 
somatomotor, and attention systems in producing the complex 
symptom profile of PD.

However, in the present study, the FCNM analysis based on 
pooled ReHo coordinates did not highlight the default mode network 
(DMN) as a significantly altered network in PD, unlike in many 
studies focusing on specific subgroups. We speculate that this is not 
simply attributable to the relatively short disease duration, but rather 
likely reflects the significant heterogeneity of DMN functional 
alterations within the PD patient population. Extensive literature 
indicates substantial variability in DMN functional connectivity 
patterns among PD patients, which is closely related to the patients’ 
cognitive status (even within the non-demented range, such as 
distinguishing between cognitively normal and mild cognitive 
impairment) (Hou et al., 2020; Zarifkar et al., 2021), specific clinical 
phenotypes (e.g., the presence of visual hallucinations) (Shine et al., 
2015; Yao et al., 2014), and the functional specificity of DMN internal 
subsystems (Zarifkar et al., 2021). Furthermore, DMN dysfunction 
often manifests as altered interaction patterns with other large-scale 
brain networks (such as the salience and executive control networks) 
(Putcha et al., 2016; Tessitore et al., 2012). ReHo primarily measures 
the synchrony of local neural activity; pooling its coordinates across a 
clinically diverse group likely averages out or obscures these 
heterogeneous DMN alteration patterns, which can be in opposite 
directions, involve specific subnetworks, or pertain to inter-network 
interactions. Therefore, our findings might indirectly underscore the 
complexity of DMN dysfunction within the PD spectrum, suggesting 
the need for more refined subgroup analyses or the use of different 
methodologies (e.g., direct functional connectivity analysis) to capture 
its changes.

Despite the strengths of our approach, several limitations must 
be acknowledged. First, our study was constrained to studies reporting 
three-dimensional coordinates for ReHo differences, potentially 
excluding relevant studies that used different analytical methods (e.g., 
region-of-interest analyses) or did not report coordinates, which could 
introduce selection bias. Second, the normative connectome used for 
FCNM was derived from the HCP dataset, comprising young healthy 
adults (18–40 years). The demographic profile of this normative 
sample differs significantly from the typically older PD patient 
population included in the included studies. Using an age-matched 
normative connectome, if available, might provide more precise 
network mapping in future studies. Third, while FCNM provides a 
valuable framework for integrating localized findings, it is a relatively 
recent technique whose application to diverse neurological conditions 
warrants further validation in independent, large-scale cohorts to 
confirm robustness and generalizability. Fourth, while FCNM helps 
synthesize heterogeneous findings, inherent variability within the 
included studies (e.g., clinical heterogeneity of patients, differences in 
imaging protocols and preprocessing pipelines beyond ReHo 
calculation) remains a factor that influences the input coordinates and, 
consequently, the derived network map. Finally, we acknowledge that 
not all included studies reported results corrected for multiple 
comparisons. Whenever both corrected and uncorrected results were 

available, we  prioritized using statistically corrected findings. 
However, in some studies, only uncorrected results were provided, 
which we  included to ensure comprehensiveness. This may have 
introduced some variability and should be  considered when 
interpreting the findings.

Conclusion

In conclusion, this study successfully employed FCNM by 
integrating coordinate-based results from numerous rs-fMRI 
studies investigating ReHo alterations in PD. Our analysis revealed 
consistent and robust PD-associated dysfunctional networks, 
primarily implicating the visual, somatomotor, dorsal attention, 
and ventral attention networks. This network-centric approach 
offers a potentially unifying framework that may help reconcile 
previously heterogeneous findings focused on isolated brain 
regions. By mapping disparate ReHo alterations onto 
interconnected functional systems, our findings provide novel 
insights into the systems-level pathophysiology underlying PD, 
linking widespread changes in local neural synchrony to specific 
large-scale networks known to be involved in the visual, motor, 
and attentional deficits characteristic of the disease. While 
acknowledging limitations related to coordinate-based synthesis 
and the normative dataset employed, this work underscores the 
value of network neuroscience perspectives in understanding 
complex neurodegenerative disorders. It highlights that PD 
pathology manifests across interconnected brain systems and 
paves the way for future investigations utilizing network-based 
analyses to further explore disease mechanisms, track progression, 
and potentially identify novel therapeutic targets within these 
affected circuits.
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Introduction: Parkinson’s disease (PD) is one of the most prevalent

neurodegenerative disorders, characterized by both motor and non-motor

symptoms, including impaired oculomotor functions. Eye-tracking technology,

a precise and non-invasive method for measuring eye movements, has emerged

as a promising tool for diagnosing and monitoring PD progression. This

systematic review evaluates the effectiveness of eye-tracking in assessing motor

and cognitive alterations associated with PD.

Methods: A systematic review of the literature was conducted using PubMed,

Web of Science, Embase, Scopus and Cochrane Library databases to identify

studies applying eye-tracking to assess oculomotor functions in PD patients.

Only articles published from 2022 to 2024 were considered.

Results: A total of 10809 studies were identified. 18 met the inclusion criteria and

were included. Findings indicate that eye-tracking may offer valuable insights

into both oculomotor and cognitive dysfunctions. Specific metrics such as

saccade velocity, fixation duration, and pupil size have been correlated with

disease severity. Recent technological advancements, including the integration

of machine learning (ML) and virtual reality (VR), have further enhanced the

diagnostic accuracy and scalability of eye-tracking methods.

Conclusion: In the past 3 years, eye-tracking has rapidly advanced, particularly

through its integration with ML and VR. These innovations have enhanced

precision, accessibility, and clinical relevance. Emerging evidence also supports

its potential to detect eye movement biomarkers associated with disease

stage, motor subtypes, and cognitive decline. This review synthesizes the latest

findings, underscoring the role of eye-tracking as a scalable and personalized

tool for PD assessment. However, further efforts are needed to address

challenges such as protocol standardization and device variability.
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1 Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder, caused by the loss of dopaminergic neurons in the
basal ganglia. It is currently diagnosed through clinical evaluation
of motor symptoms, including tremor, rigidity, akinesia, and
postural instability, as well as non-motor symptoms such as sleep
disturbance, cognitive impairment and mood disorders (Bloem
et al., 2021; Chaudhuri et al., 2006; Culicetto et al., 2024; Jankovic,
2008; Pennisi et al., 2023).

Its incidence is 10–18 cases per 100,000 person-years (de Lau
and Breteler, 2006). The key risk factors include gender, with men
affected more frequently than women at a ratio of approximately
3:2 (de Lau and Breteler, 2006). Ethnicity also plays a role, with
the highest incidence reported among Hispanic individuals in
the USA, followed by non-Hispanic Whites, Asians, and Black
individuals (Van Den Eeden et al., 2003). However, age is the
strongest risk factor, for developing PD. Approximately 83% of PD
patients develop Parkinson’s Disease Dementia (PDD), linking the
condition to aging (Hely et al., 2008) and emphasizing the need
for early, accurate diagnosis to optimize treatment and outcomes
(Braak et al., 2003; Irwin et al., 2013).

Impaired oculomotor behaviors, such as smooth pursuit
movements and saccades, are observed in approximately 75% of
PD patients, making them a potential clinical indicator (Corin
et al., 1972; Fooken et al., 2022; Helmchen et al., 2012). The
neural pathways controlling eye movements, spanning from the
frontal cortex to the medulla, reflect brain circuit integrity (Coe and
Munoz, 2017). In PD, neurodegeneration disrupts these circuits,
leading to increased saccade latency, antisaccade errors, saccade
hypometria, altered pupil responses, and decreased blink rates.
These changes worsen with disease progression and may precede
motor symptoms, offering utility for early diagnosis and disease
monitoring (Antoniades and Kennard, 2015; Crawford et al., 1989;
Perkins et al., 2021).

Research suggests a link between motor symptoms and
eye movement disorders in PD. Eye movement impairment
can exacerbate motor symptoms, such as reduced eye-hand
coordination, leading to delay movements and decreased overall
coordination (Terao et al., 2017).

While dopamine replacement therapy and deep brain
stimulation (DBS) manage motor symptoms (Hartmann et al.,
2019), treatment for non-motor symptoms, including visual
impairments, remain limited. Some PD treatments, like DBS,
improve eye movements (Antoniades et al., 2014; Fawcett et al.,
2010; Nilsson et al., 2013; Yugeta et al., 2010), while others may
cause visual side effects, such as hallucinations (Armstrong, 2011).

Currently, two methods are used to assess eye movements
in patients. The first one involves direct observation, where
patients follow the physician’s finger to detect abnormal eye

movements. The second utilizes eye-tracking devices for more
accurate monitoring. However, the direct observation method has
notable limitations. Physicians can only assess visual responses
based on finger movements, and the method’s low resolution
and reliance on subjective perception make it challenging to
detect subtle abnormalities that might otherwise go unnoticed
(Rosengrant et al., 2021).

Eye-tracking is a technique used to record eye movements
and gaze position over time during various tasks. It is commonly
employed to study the distribution of visual attention (Carter
and Luke, 2020). Eye-tracking technology, especially with
advancements in non-invasive infrared systems, has shown
great clinical potential as a non-invasive and objective marker.
However, temporal and spatial resolution can vary across different
systems, and not all eye-tracking devices offer the same precision.
Although the underlying neural mechanisms still remain unclear,
oculomotor dysfunctions in PD reflect complex brain changes,
potentially making eye-tracking useful instrument to monitoring
disease’s progression (Pelzer et al., 2020; Perneczky et al., 2011;
Yugeta et al., 2013).

Motor impairments in PD are mirrored by oculomotor
abnormalities such as saccade hypometria (Terao et al., 2013; White
et al., 1983), delayed initiation of voluntary saccades (Terao et al.,
2011), multistep saccades (Blekher et al., 2009), and impaired
smooth pursuit (Almer et al., 2012; Fukushima et al., 2017;
Shibasaki et al., 1979). Voluntary eye movements, particularly
memory-guided and antisaccades, are more severely affected due
to combined superior colliculus inhibition and cortical dysfunction
(Terao et al., 2011; Terao et al., 2013). As the disease progresses,
reflexive saccades also become hypometric and delayed (Gorges
et al., 2014; Terao et al., 2011).

Non-motor symptoms are likewise reflected in eye movement
patterns. Increased antisaccade errors and prolonged antisaccade
latencies are associated with executive dysfunction, impaired
inhibitory control from the dorsolateral prefrontal cortex (DLPFC),
and basal ganglia dysfunction (Crawford et al., 2002; Terao et al.,
2013; van Stockum et al., 2008). These deficits have been linked
to clinical features such as freezing of gait (FOG) and impaired
postural control (Ewenczyk et al., 2017; Walton et al., 2015).

Eye-tracking, therefore, provides a non-invasive and objective
method for capturing both motor and non-motor dysfunctions
in PD, offering potential biomarkers for early diagnosis, disease
staging, and monitoring of progression.

Additionally, research has shown that other neurodegenerative
diseases, including corticobasal syndrome, progressive
supranuclear palsy (PSP), and multiple system atrophy, exhibit
distinct patterns of eye movement abnormalities, indicating
that eye-tracking could be useful in the differential diagnosis of
Parkinson-plus syndromes (Baird-Gunning and Lueck, 2018;
Henderson et al., 2011).
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Previous reviews, such as Waldthaler et al. (2021),
comprehensively synthesized the application of eye-tracking
in PD up to 2021, focusing primarily on diagnostic potentials
based on oculomotor dysfunctions. Their findings highlighted
the role of antisaccade errors, saccade hypometria, and fixation
instability as early markers of PD and cognitive decline. Specifically,
Waldthaler et al. (2021) conducted a comprehensive meta-analysis
on antisaccade performance in PD, confirming that patients
exhibit significantly higher antisaccade error rates and prolonged
antisaccade latencies compared to healthy controls (HCs). They
also demonstrated that motor disease severity, indexed by
disease duration, Hoehn & Yahr stage, and UPDRS III scores,
was positively correlated with increased antisaccade latency.
Notably, acute levodopa administration did not significantly affect
antisaccade performance, whereas subthalamic nucleus deep brain
stimulation (STN-DBS) appeared to decrease antisaccade latency,
possibly reflecting a shift toward greater motor impulsivity.
Waldthaler et al. (2021) emphasized the potential of antisaccade
measures as markers for disease severity, but also highlighted the
need for longitudinal studies to validate their prognostic value.

Building upon these earlier findings, the present review aims
to underscore the growing utility of eye-tracking technology in
the diagnosis and monitoring of PD, with a particular focus on
recent technological advancements. To avoid redundancy and to
emphasize the significant progress made, including the integration
of machine learning (ML) algorithms and virtual reality (VR)-based
protocols, we concentrated on studies published between 2022
and 2024. For a more detailed historical overview, we reccomend
referring to Waldthaler et al. (2021).

2 Materials and methods

This systematic review was conducted and reported in
compliance with the Preferred Reporting Items for Systematic
Review and Meta-Analyses (PRISMA) guidelines (Page et al., 2020;
Figure 1). The review protocol was registered on PROSPERO with
the registration number CRD42024602802.

2.1 PICO model

We utilized the PICO framework (Population, Intervention,
Comparison, and Outcome) to define our research question.
The target population includes adults (>18 years) with PD.
The intervention involves eye-tracking technology, with
comparisons drawn against healthy individuals or those with
other neurodegenerative disorders. The outcome focuses on
the effectiveness of eye tracking in enhancing the accuracy
of diagnosing and monitoring PD progression. This research
investigates the potential of eye tracking in ’assisting physicians in
the detection and management of PD.

2.2 Search strategy

Studies were identified through a database search of
PubMed, Web of Science, Embase and Scopus databases

in September 2024. Articles meeting the predefined
inclusion criteria were evaluated for potential inclusion.
The search strategy employed the following string:
(Parkinson[Title/Abstract]) AND (("eye tracking"[Title/Abstract])
OR (eye-tracking[Title/Abstract]) OR (eyetracking[Title/Abstract])
OR (video oculography[Title/Abstract]) OR (video-oculography
[Title/Abstract]) OR (videooculography[Title/Abstract]) OR (elec
tro oculography[Title/Abstract]) OR (electro-oculography
[Title/Abstract]) OR (electrooculography[Title/Abstract]) OR (eye
movement[Title/Abstract]) OR (eye-movement[Title/Abstract])
OR (eyemovement[Title/Abstract])). Search terms targeted titles
and abstracts. After removing duplicates, all remaining articles
were screened based on title and abstract. Only studies published
between 2022 and 2024 were included in the review. As part of the
supplementary search strategy, we performed backward citation
tracking by screening the reference lists of all included articles to
identify any additional studies that met the inclusion criteria but
were not captured through the initial database search. However,
this additional step did not yield further studies that met our
inclusion criteria.

A study was included if it described or investigated oculomotor
function in patients with PD. Only studies conducted on
human populations and published in English that met the
following criteria were included: (i) primary empirical studies
employing observational (cross-sectional, cohort, and case-
control), experimental (e.g., randomized controlled trials),
interventional (e.g., pharmacological trials), feasibility designs;
(ii) articles that employed eye-tracking technology to assess
oculomotor function.

A study was excluded if there was a lack of data or information
about eye-tracking technology in patients with PD. Additionally,
in accordance with PRISMA 2020 guidelines (Page et al., 2020),
we excluded non-primary literature (e.g., systematic reviews, meta-
analyses), conference abstracts or proceedings, editorials, letters,
books, and single-case studies. These thresholds were adopted to
ensure methodological rigor, data transparency, and to reduce
the potential for bias due to insufficient reporting or limited
generalizability.

2.3 Study selection

To minimize bias and ensure a rigorous selection process, two
authors (L.C. and D.C.) independently reviewed and extracted
data from the studies. Any discrepancies were resolved through
collaborative discussion, with consultation from a third author
(V.L.B). This multi-step approach ensured that at least three
researchers independently assessed each article. In cases of
persistent disagreement, the final decision involved all authors.

2.4 Data extraction and analysis

The studies that met the inclusion criteria were summarized
based on the following points: (Bloem et al., 2021) Study
characteristics, including the type of study and the country
where the data were collected; (Chaudhuri et al., 2006) Patients
characteristics, such as the sample size, age, gender, duration
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FIGURE 1

Search and selection of eligible articles.

of disease, and the level of education; (Culicetto et al., 2024)
Instruments utilized for eye tracking; and (Jankovic, 2008) key
findings and relevant outcomes.

Following the full-text selection, data were extracted from the
included studies and organized in a table using Microsoft Excel
(Version 2021). The extracted data included: study title, first author
name, year of publication, study aims and design, sample size,
type of participants, type of intervention and control, baseline
performance, type of outcome and time-points for assessment,
results, and key conclusions.

Additionally, the inter-rater agreement between the two
reviewers (L.C. and D.C.) was assessed using kappa statistics.
A kappa score above 0.61 was set as threshold for substantial
agreement, indicating strong concordance between the reviewers.
This criterion ensures a rigorous assessment of inter-rater
reliability, emphasizing the substantial level of agreement achieved
during the data extraction process.

2.5 Risk of bias within individual studies

The risk of bias in the selected studies was independently
assessed by L.C. and D.C. using the revised Cochrane tool for
non-randomized controlled studies-of exposures (ROBINS-E) tool
(Figure 2), which comprises seven domains: (i) bias due to

confounding, (ii) bias arising from measurement of the exposure,
(iii) bias in selection of participants into the study (or into the
analysis), (iv) bias due to post-exposure interventions, (v) bias due
to missing data, (vi) bias arising from measurement of the outcome,
(vii) bias in selection of reported result.

3 Results

3.1 Synthesis of evidence

A total of 10,809 articles were identified through database
searches. After removing duplicates, 4,855 studies were screened
based on their title and abstract. Following full text selection,
18 studies were included for analysis. The selection process is
illustrated in Figure 1. The main features of included studies were
summarized in Table 1.

3.2 Key findings from included studies

3.2.1 Diagnostic application of eye-tracking
The studies included in this review highlight the use of eye-

tracking technology as a promising non-invasive tool for assessing
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FIGURE 2

Shows the risk of bias (ROBINS-E) of studies regarding the use of eye-tracking in PD.

motor and cognitive functions in PD patients. Several studies
have demonstrated the potential for eye-tracking’s diagnostic
capabilities, distinguishing PD patients from HCs based on
metrics related to saccadic movements, fixation stability, and
other oculomotor functions. Waldthaler et al. (2023) analyzed eye-
tracking data from 61 PD patients and 25 HCs and they identified
three distinct patterns of saccade impairment in PD. The findings
revealed: increased express saccades and anti saccade errors,
associated with executive dysfunction; delayed and hypometric
saccades, linked to multidomain cognitive decline and longer
antisaccade latencies but preserved accuracy, with no cognitive
impairment. A common feature across all groups was vertical
saccadic hypometria, reinforcing its potential as a biomarker for
PD. Zhou et al. (2022) investigated oculomotor impairments in
newly diagnosed, drug-naïve PD patients, exploring their potential
as early biomarkers for disease detection and progression. Using
video nystagmography-based eye tracking, the study compared
75 PD patients, 75 essential tremor (ET) patients, and 46HCs,
assessing saccadic latency, saccadic accuracy, and smooth pursuit
eye movement (SPEM) gain. The results showed that both
PD and ET patients exhibited prolonged saccadic latency and

reduced saccadic accuracy compared to HCs. However, PD patients
displayed significantly impaired SPEM gain across all tested
frequencies, whereas ET patients only showed reduced gain at
0.4 Hz. Longer saccadic latency correlated with disease duration,
while lower SPEM gain was linked to greater motor severity in
PD. A model incorporating eye-tracking parameters successfully
differentiated PD from HCs with 80.4% sensitivity and 73.3%
specificity, but it was not effective in distinguishing PD from ET.

3.2.2 Eye-tracking and cognitive impairment
detection

Using a high-resolution eye tracker (Tobii Pro Spectrum,
1200 Hz), Tsitsi et al. (2023) investigated reading performance
differences between PD patients and HCs to assess whether these
alterations stem from cognitive decline rather than oculomotor
dysfunction. The study found that PD patients had longer fixation
durations and fewer fixations per second than HCs. However, only
cognitively impaired PD patients (Montreal Cognitive Assessment,
MoCA < 26) showed prolonged fixations and slower reading
speeds, while cognitively intact PD patients (MoCA ≥ 26)
performed similarly to controls. Fixation duration also correlated
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TABLE 1 Main characteristics of the included studies.

Study Study
design

Population Hoehn
& Yahr
stage

Years since
diagnosis/disease
duration

Dopaminergic
Medication Use

Instrument Cognitive,
motor, or
affective tests

Outcome

Ba et al.,
2022

Observational
study

20 PD (66.8 ± 8.4);
24 HC (62.2 ± 7.5)

1 to 4, with
45% in stage
H&Y ≥ III

Disease course of
9.8 ± 4.7 years

LEDD: 1219.7 ± 719.9 mg.
On medication state

Tobii X2-60 eye
tracker, sampling
rate 60 Hz

MoCA Patients with PD exhibited significant
stereopsis deficits, longer visual response
times, and less accurate saccadic movements.
These deficits correlated with UPDRS-III and
MoCA

Beylergil
et al., 2022

Cross-sectional 3 PD (1 female,
67 ± 9.2 years);
7 HC (3 females;
64.29 ± 7.54)

2–4 Disease duration of
11.38 ± 5.39 years

Stable dosage of
antiparkinsonian medication
for at least 6 months before
participation.
On medication state.

EyeLink 1000 (SR
Research, Canada),
500 Hz resolution

MDS-UPDRS-III PD patients showed increased fixational
saccades, reduced exploratory saccades, and
delayed target detection, especially in
unexpected locations, indicating visuospatial
deficits

Brien et al.,
2023

Observational,
longitudinal
cohort design

121 (29 females;
67.9 years ± 6.5) 55
classified as
cognitively normal,
45 with MCI, and 20
with dementia
(PDD);
106 HC (67.7 ± 8.2).

1–3 Participants diagnosed
within the last 3–8 years

LEDD: 692.2 ± _365.1 mg
No information on ON/OFF
medication state.

Video-based
eye-tracking,
sampling rate not
reported

MoCA;
MDS-UPDRS;
SCOPA-AUT, NPSY

Interleaved pro/antisaccade task showed
altered saccade latency, error rates, pupil
responses, and blink behavior in PD. A ML
classifier (AUC = 0.88, 83% sensitivity, 78%
specificity) correlated with MDS-UPDRS and
MoCA scores, supporting eye-tracking as a
biomarker for PD diagnosis and progression.

de Villers-
Sidani et al.,
2023

Cross sectional
study

59 PD
(63.76 ± 8.23);
62 HC (56.64 ± 8.56)

NA NA NA
No information on ON/OFF
medication state.

12.9-inch iPad Pro
tablet with the ETNA
software. Sampling
rate 60 Hz

Motor scale of
MDS-UPDRS

Tablet-based eye-tracking assessed fixation
stability, prosaccades, and antisaccades in PD,
revealing increased saccadic intrusions,
prolonged latencies, reduced accuracy, and
higher error rates, supporting its potential as a
biomarker for monitoring PD and
distinguishing patients from HC.

Ellmerer
et al., 2022

Phase II,
randomized,
placebo-
controlled,
double-blind,
parallel-group
pilot study

47 PD patients:
Nabilone group:
65.9 ± 7.5 years,
Placebo group:
62.9 ± 9.3 years

NA Disease duration:
-Nabilone group:
7.0 ± 5.7 years
-Placebo group:
5.4 ± 2.0 years

No information on ON/OFF
medication state

Tobii TX-300,
sampling rate 300 Hz

MoCA, MMSE,
MDS-UPDRS,
HADS

Prosaccades, antisaccades, Go/NoGo, and
mixed pro-/antisaccade tasks showed no
significant difference in reaction times or error
rates between the nabilone and placebo
groups.

(Continued)
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TABLE 1 (Continued)

Study Study
design

Population Hoehn
& Yahr
stage

Years since
diagnosis/disease
duration

Dopaminergic
Medication Use

Instrument Cognitive,
motor, or
affective tests

Outcome

Graham
et al., 2023

Interventional
study

43 PD (68.86 ± 6.56)
17 HC (69.24 ± 7.97)

2–3 Mean disease duration of
7.77 years (SD 5.73)

LEDD: 817.46 mg (SD
409.61) for all PD
participants.
On medication state.

Tobii Pro Glasses 2,
sampling rate 100 Hz

MDS-UPDRS III,
MoCA, Clock
Drawing Test,

Visual cues improved gait (stride length, stride
time variability) and increased saccade
frequency but reduced saccade amplitude and
peak velocity. PD patients showed reduced
saccade frequency and prolonged fixations,
with FOG patients exhibiting more severe
impairments.

Li et al.,
2024a

Observational
cross-sectional
study

145 PD, mean age
65 years;
80 HC

1.5 Average disease duration:
3 years

All participants were assessed
in the ON-medication state

Eyeknow eye tracker,
sampling rate 120 Hz

MoCA; MMSE;
UPDRS

PD patients exhibited ocular tremor
independent of disease severity, along with
fixation inaccuracy, slower saccades, impaired
visual search, and altered gait parameters.

Li et al.,
2024b

Cross-sectional
observational
study

127 PD (63.8 ± 8.4)
80 HCs (63.8 ± 8.4)

51% of PD
patients had
H&Y
stage ≥ 2

Disease duration:
3.0 years

LEDD: 237.5 mg (median,
with interquartile range
0.0–476.9 mg).
ON-medication state

EyeKnow system
(infrared pupil and
corneal reflection
tracking, 120-Hz
sampling rate)

UPDRS, FOGQ,
MoCA, MMSE,
HAM-D, Sleep Scale
2, Epworth
Sleepiness Scale,
REM Sleep Behavior
Disorder Screening
Questionnaire

PD patients showed fixation inaccuracy
(fixation task), delayed saccades
(prosaccade/antisaccade tasks), impaired
smooth pursuit (smooth pursuit task), and
reduced visual search ability (visual search
task), correlating with disease stage and motor
subtypes.

Jiang et al.,
2024

Observational
study – Cross
sectional

44 PD;
22 HC

1–3 Average disease duration
was 1.66 ± 1.98 years?

NA
No information on ON/OFF
medication state.

HMD device (HTC
Vive Pro eye) with
precise eye
movement tracking
technology.
Sampling rate
120 Hz

NA PD patients showed slower saccades, higher
error rates, and impaired visual scanning with
prolonged fixation duration and fewer
fixations. A VR-based eye-tracking model
(SVM classifier) achieved 83.4% accuracy,
supporting its potential for early PD diagnosis.

Jiang et al.,
2025

Cross-sectional
study

14 PD (66.95 ± 8.84)
years
125 HC (63.64 ± 6.9)

NA Mean disease duration of
1.66 ± 1.98 years

NA
No information on ON/OFF
medication state.

HTC Vive Pro Eye
(virtual reality-based
system). Sampling
rate 120 Hz

UPDRS III VR-based tasks (gaze stability, prosaccades,
antisaccades, smooth pursuit) showed
impaired fixation, saccades, and pursuit in PD;
deep learning model achieved 92.73% accuracy
for diagnosis.

Koch et al.,
2024

Cross sectional
study

65 PD (64.14 ± 8.40) 2.15 ± 0.69
(Range:
1–4)

NA ON state, with a stable dosage
of antiparkinsonian
medication

Tablet-based
eye-tracking system
(ETNA, Innodem
Neurosciences),
sampling rate 60 Hz

UPDRS-III, MoCA,
TMT, COWAT-CFL,
HVLT

Oculomotor tasks (fixation, prosaccades,
antisaccades, smooth pursuit, and optokinetic
nystagmus) correlated with disease severity
and cognitive scores. A ML model classified
mild vs. moderate PD with 90% accuracy using
oculomotor parameters.
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TABLE 1 (Continued)

Study Study
design

Population Hoehn
& Yahr
stage

Years since
diagnosis/disease
duration

Dopaminergic
Medication Use

Instrument Cognitive,
motor, or
affective tests

Outcome

Munoz
et al., 2022

Within-subject
crossover study

33 PD
(66.27 ± 4.86 years)
HC 13
(65.23 ± 5.72 years?)

2.15 ± 0.36 Mean disease
duration = 6.85 ± 4.07
years.

LEDD = 755.15 ± 636.03 mg;
participants were tested both
OFF and ON medication

Eye-tracking system
(Eyelink II, SR
Research Ltd),
sampling rate 500 Hz

MoCA, UPDRS-III, Dopaminergic medication prolonged saccade
latency and reduced gain and peak velocity
across gap, step, and overlap tasks, with the
strongest impairments in the overlap task,
particularly in peak velocity and gain.

Pah et al.,
2024

Case-control
observational
study

42 PD patients
(70.5 ± 10.4 years)
28 healthy controls
(69.7 ± 7.6 years)

NA Mean disease duration
was 3.9 ± 3.5 years;
disease duration of
5 years or less.

NA
ON-medication state

GP3 Eye Tracker,
sampling rate 60 Hz

NA PD patients exhibited shorter saccadic
latencies, increased inaccuracy in target
reaching (saccadic hypometria), and greater
gaze instability, suggesting reflexive saccadic
alterations as potential PD biomarkers.

Reiner et al.,
2023

Cross-sectional
study

215 PD 79 females
69 ± 9.1 years

Mild-to-
moderate
PD:
H&Y ≤ 2
Severe PD:
H&Y > 3

NA 159 out of 215 PD patients
(73.9%) were under levodopa
medication treatment.
The ON/OFF state during
testing is not specified.

Tobii Fusion Pro,
Sampling rate not
reported

MDS-UPDRS III PD patients showed longer saccadic latency,
increased antisaccade errors, and reduced
accuracy, worsening with disease severity.

ŞtefŞnescu
et al., 2024

Retrospective
study

62
(60.35 ± 8.98 years)

2–3 NA NA
No information on ON/OFF
medication state.

Tobii TX300
eye-tracking system,
sampling rate 250 Hz

MMSE; CANTAB;
PRM; SWM

Longer saccadic latencies, reduced velocity
(VGS task), and cognitive-related
impairments, with blink rate and saccade
duration correlating with visuospatial memory
performance.

Tsitsi et al.,
2023

Cross-sectional
observational
study

48 PD patients
(64.5 ± 11.5)
42 HCs
(62.5 ± 16.25)

1–3 Years since diagnosis: 2.5
(3.5) years.

LEDD reported
(545 ± 496.25 mg), ON state.
ON-medication state

Tobii Pro Spectrum,
sampling rate
1200 Hz

UPDRS, MoCA PD patients had fewer fixations per second and
prolonged fixation duration (reading task),
with deficits only in cognitively impaired PD
patients (MoCA < 26). Fixation duration
correlated with MoCA scores, suggesting
eye-tracking as a tool for early cognitive
decline detection in PD.

(Continued)
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TABLE 1 (Continued)

Study Study
design

Population Hoehn
& Yahr
stage

Years since
diagnosis/disease
duration

Dopaminergic
Medication Use

Instrument Cognitive,
motor, or
affective tests

Outcome

Waldthaler
et al., 2023

Cross-sectional
study

61 PD (14 females,
63.5 ± 8.5);
25 HC (8 females,
62.9 ± 11.0)

2.5 Mean disease duration
across clusters:
Cluster 1: 7.2 years (SD:
5.6)
Cluster 2: 8.4 years (SD:
6.2)
Cluster 3: 9.3 years (SD:
5.6)

LEDD:
Cluster 1: 705.5 mg (SD:
411.6)
Cluster 2: 660.7 mg (SD:
430.8)
Cluster 3: 743.5 mg (SD:
342.3)
Dopamine agonist LEDD:
Cluster 1: 123.5 mg (SD:
104.6)
Cluster 2: 212.8 mg (SD:
224.5)
Cluster 3: 147.9 mg (SD:
143.5)
All participants were assessed
in the ON-medication state.

EyeLink 1000 Plus,
sampling rate not
reported

MoCA, TMT, RCF,
FAB, BDI,
MDS-UPDRS III.

Prosaccades and antisaccades
(horizontal/vertical) tasks revealed vertical
saccadic hypometria, suggesting a potential
PD biomarker.

Zhou et al.,
2022

Cross-sectional
study

75 de novo (PD)
(64.5 ± 8.1)
75 patients with ET
46 HCs

50.7% of PD
patients
were at
stage ≥ 2

Disease duration: s
12 months
(6–24 months)

Drug-naïve de novo PD
patients

Visual Eyes
4-channel
videonystagmography
(Micromedical
Technologies, USA),
sampling rate 120 Hz

MMSE, MoCA,
NMSQuest, RBDSQ
REM, NMSQuest,
HAM-D

PD patients showed longer saccadic latency
(visually guided saccades) and reduced smooth
pursuit gain (SPEM), correlating with disease
severity. Eye-tracking differentiated PD from
controls (AUC = 0.78) but not from ET.

HC, healthy control; MoCA, Montreal Cognitive Assessment Test; MMSE, Mini–Mental State Examination; UPDRS, Unified Parkinson’s Disease Rating Scale; NA, not available; ADFES, Amsterdam Dynamic Facial Expression Set; MCI, with mild cognitive impairment;
MDS-UPDRS, Society-Unified Parkinson’s Disease Rating Score; SCOPA-AUT, Scales for outcomes in Parkinson’s disease- Autonomic Dysfunction; NPSY, neuropsychology battery; SVM, Support Vector Machine; POM, pursuit ocular movements; H&Y, Hoehn & Yahr;
CANTAB, Cambridge Neuropsychological Test Automated Battery; PRM, Pattern Recognition Memory; SWM, Spatial Working Memory; ML, Machine learning; FAB, Frontal Assessment Battery; BDI, Beck Depression Inventory-II (BDI-II); OMO, Odd Man Out;
EOG, electrooculography; TMT, Trail Making Test; HVLT, Hopkins Verbal Learning Test; COWAT-CFL, Controlled Oral Word Association Test; HADS, Hospital Anxiety and Depression Scale; GDS-15, Geriatric Depression Scale; FOGQ, freezing of gait questionnaire;
HAM-D, Hamilton Depression and Anxiety Scales; RBDSQ, REM Sleep Behavior Disorder Screening Questionnaire; NMSQuest, Non-Motor Symptoms Questionnaire; RBDSQ REM Behavior Disorder Screening Questionnaire; ET, essential tremor; ML, machine
learning; VGS, visually-guided saccades; LEDD, Levodopa Equivalent Daily Dosage.

Fro
n

tie
rs

in
A

g
in

g
N

e
u

ro
scie

n
ce

fro
n

tie
rsin

.o
rg

133

https://doi.org/10.3389/fnagi.2025.1534073
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1534073 May 17, 2025 Time: 18:16 # 10

Culicetto et al. 10.3389/fnagi.2025.1534073

with MoCA scores, indicating a link to cognitive status. These
results support eye-tracking as a non-invasive tool for detecting
early cognitive decline in PD, with fixation-based metrics offering
potential for screening and disease monitoring.

3.2.3 Monitoring motor symptoms and disease
severity

Pah et al. (2024) found that PD patients had shorter saccadic
latency but greater inaccuracy, often overshooting targets, along
with increased gaze instability during fixation. While invalid
saccades occurred at similar rates in PD and controls, filtering
them out revealed distinct differences in reflexive saccadic behavior.
These findings suggest that PD alters reflexive saccadic control,
leading to faster but less precise eye movements and greater
gaze instability, reinforcing eye-tracking as a promising tool for
monitoring disease progression.

3.2.4 Technological innovations and machine
learning integration

Jiang et al. (2024) utilized VR based eye-tracking to analyze
both scan paths and saccade metrics, including fixation duration,
scan path length, saccade amplitude, peak velocity, latency, and
error rates. Additionally, they examined the saccade-to-fixation
ratio and distribution of gaze patterns, providing a comprehensive
assessment of oculomotor behavior in PD patients. These features
were integrated into ML models, allowing for high-accuracy
classification of PD patients and highlighting the potential of
VR-based eye-tracking as a novel diagnostic tool. Another recent
study (Jiang et al., 2025), utilized VR-based eye-tracking and
ML to assess gaze stability, pro-saccades, anti-saccades, and
smooth pursuit in PD patients. The results revealed significant
oculomotor impairments, including reduced gaze stability, slower
and less accurate saccades, higher ant saccade error rates, and
difficulties in smooth pursuit tracking. These deficits indicate
motor control dysfunctions and impaired inhibitory processes,
which are hallmark characteristics of PD. Similarly, de Villers-
Sidani et al. (2023) employed tablet-based software (ETNA) to
differentiate PD patients from controls based on basic oculomotor
tasks.

Brien et al. (2023) also combined video-based eye-tracking with
ML, successfully predicting motor and cognitive scores in PD,
thus emphasizing eye-tracking’s potential for monitoring disease
progression. The severity of PD symptoms correlates with specific
eye movement abnormalities, suggesting that eye-tracking can
serve as a useful marker of disease progression. Ba et al. (2022)
observed impairments in fixation stability and saccadic latency,
which correlated with both motor (Unified Parkinson’s Disease
Rating Scale, UPDRS-III) and cognitive (MoCA) scores, further
supporting eye-tracking as a marker of PD severity. Further, Li
et al. (2024a) identified eye movement disorders as potential
early biomarkers for PD, revealing fixation inaccuracy, delayed
saccades, and impaired pursuit, linked to disease stage and motor
subtypes. They developed a high-accuracy PD screening model
using oculomotor parameters, cognitive scores, and education level,
proposing a nomogram for clinical use, showing the diagnostic
potential of eye-tracking.

Reiner et al. (2023) explored oculometric measures (OM) as
biomarkers for PD severity using eye-tracking technology (Tobii

Fusion Pro, Tobii, Sweden). The study analyzed eye movements
in 215 PD patients and 215 HCs, correlating them with the
MDS-UPDRS motor scores through computer vision and deep
learning algorithms. Key findings revealed prolonged saccadic
latency, higher anti-saccade error rates, and reduced response
accuracy, all worsening with disease severity. Levodopa-treated
patients exhibited longer saccadic latencies and higher error
rates, suggesting treatment effects on oculomotor function. These
results support eye-tracking as a non-invasive tool for monitoring
PD progression and motor impairment, offering a potential
complement to traditional clinical assessments.

Furthermore, the combined use of gait analysis and eye-
tracking metrics in diagnosing PD has demonstrated increased
accuracy compared to using these indicators independently (Li
et al., 2024b).

Graham et al. (2023) examined visual exploration during
walking in PD patients with and without FOG and HCs, assessing
the impact of visual cues using mobile eye-tracking and inertial
sensors. The study found that PD patients had gait impairments,
worsened under dual-task conditions, while visual cues improved
stride parameters and altered saccade patterns. Notably, visual
exploration changes correlated with gait improvements in PD, with
freezers and non-freezers responding differently. These findings
suggest that visual cueing enhances both gait and visual exploration
in PD, emphasizing eye-tracking as a promising tool for assessing
gait impairments and cue responsiveness.

3.2.5 Evaluation pharmacological effects through
eye-tracking

Ellmerer et al. (2022) investigated eye-tracking as an objective
tool to assess the cognitive effects of nabilone, a THC analogue
used to treat non-motor symptoms in PD. This placebo-
controlled pilot study found that nabilone reduced non-motor
symptoms without impairing cognitive function or saccadic
performance. Eye-tracking confirmed its potential as a non-
invasive method for monitoring the cognitive safety of PD
treatments, supporting its use in future clinical research and drug
evaluation. Additionally, Munoz et al. (2022) revealed that anti-
Parkinsonian medication prolongs saccade latency and reduces eye
movement efficiency in PD patients, suggesting that dopaminergic
therapy may impair oculomotor control despite improving motor
symptoms.

3.2.6 Devices and methodological variability in
eye-tracking studies

A variety of eye-tracking devices were employed across
the studies reviewed, ranging from stationary high-resolution
systems to mobile and wearable options, resulting in variability
in the findings. The studies used both video-based and
electrooculography (EOG) systems, each with specific advantages
and limitations. While high-precision stationary devices (e.g.,
EyeLink 1000, Tobii TX-300) provide superior spatial and
temporal resolution, wearable options (e.g., Tobii Pro Glasses
2, HTC Vive Pro Eye, ETNA tablet-based system, EyeSeeCam,
Eyelink 3, Pupil Labs Core) enable real-world tracking but
may face constraints such as frame rate variability (e.g., in
Tobii Glasses), which can affect data reliability for certain
tasks. Koch et al. (2024) explored tablet-based eye-tracking as
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a biomarker for PD severity and cognitive decline. They found
that prolonged saccade latency, increased anti saccade errors,
and fixation instability correlated with disease progression
and motor dysfunction. Eye movement impairments were also
linked to executive function, attention, and memory deficits.
AML model using oculomotor data achieved 90% accuracy
in classifying PD severity and explained 71% of cognitive test
variance. The study highlights eye-tracking as a scalable, non-
invasive tool for monitoring PD progression and cognitive
decline.

Beylergil et al. (2022) investigated how PD affects visual
search strategies using a high-resolution video-based eye tracker.
The study found that PD patients took longer to find targets,
especially in unfamiliar locations, and exhibited altered eye
movement patterns. They showed more fixational saccades but
fewer exploratory saccades, leading to less efficient visual scanning.
These findings suggest that PD-related visuomotor impairments
impact attention and search efficiency, highlighting the potential
of eye movement analysis as a biomarker for cognitive and motor
deficits in PD.

3.3 Risk of bias

The Risk of Bias in Non-randomized Studies - of Exposures
(ROBINS-E) tool was used to assess the risk of bias of the articles
included in this review. Figure 2 shows the summary of the risk of
bias assessment. Among the studies assessed, all (Ba et al., 2022;
Beylergil et al., 2022; Brien et al., 2023; de Villers-Sidani et al.,
2023; Graham et al., 2023; Jiang et al., 2024; Jiang et al., 2025;
Koch et al., 2024; Li et al., 2024a; Li et al., 2024b; Munoz et al.,
2022; Pah et al., 2024; Reiner et al., 2023; ŞtefŞnescu et al., 2024;
Szymañski et al., 2017; Tsitsi et al., 2023; Waldthaler et al., 2023;
Zhou et al., 2022) showed some concerns regarding the risk of bias
due to confounding except for one (Ellmerer et al., 2022). Moreover,
all studies showed low risk of bias arising from measurement of
exposure. Further, eleven studies exhibited some concerns in the
selection of participants into the study (Beylergil et al., 2022; Brien
et al., 2023; Ellmerer et al., 2022; Jiang et al., 2025; Li et al., 2024a;
Li et al., 2024b; Munoz et al., 2022; Pah et al., 2024; ŞtefŞnescu
et al., 2024; Tsitsi et al., 2023; Zhou et al., 2022). Thirteen studies
showed a low risk of bias due to post-exposure interventions (Ba
et al., 2022; Beylergil et al., 2022; Brien et al., 2023; Ellmerer et al.,
2022; Graham et al., 2023; Jiang et al., 2025; Koch et al., 2024; Li
et al., 2024a; Li et al., 2024b; Munoz et al., 2022; Tsitsi et al., 2023;
Waldthaler et al., 2023; Zhou et al., 2022). Thirteen studies reported
some concerns about bias due to missing data (Beylergil et al., 2022;
Brien et al., 2023; de Villers-Sidani et al., 2023; Ellmerer et al., 2022;
Graham et al., 2023; Jiang et al., 2025; Koch et al., 2024; Li et al.,
2024a; Munoz et al., 2022; ŞtefŞnescu et al., 2024; Tsitsi et al., 2023;
Waldthaler et al., 2023; Zhou et al., 2022). In contrast, all studies
selected reported a low risk of bias arising from the measurement
of the outcome except for two (Ba et al., 2022; Jiang et al., 2024).
Additionally, all studies reported some concerns in the selection of
the reported result except two that showed low risk (Ellmerer et al.,
2022; Waldthaler et al., 2023).

4 Discussion

4.1 Eye-tracking in PD: motor and
non-motor symptoms correlations

The aim of this review is to analyze the potential of eye-
tracking in the assessment and monitoring of PD symptoms.
The studies report that eye-tracking technology has emerged as
a powerful tool in diagnosing and tracking PD due to its ability
to capture detailed data on oculomotor function. As oculomotor
movements are controlled by several brain regions, including the
cerebral cortex, basal ganglia, brain stem, and cerebellum, PD
progression, which is marked by the degeneration of dopaminergic
neurons in the substantia nigra pars compacta, inevitably affects
these functions (Kennard and Lueck, 1989; Pah et al., 2024). Eye
movement abnormalities assessed by eye-tracking, such as deficits
in smooth pursuit and saccades, have been linked to early stages of
PD and are correlated with disease severity and motor impairments
(Zhou et al., 2022).

In line with these observations, several neurophysiological
mechanisms have been proposed to explain the link between PD
and oculomotor dysfunctions. The degeneration of dopaminergic
neurons disrupts basal ganglia and frontal cortical circuits involved
in voluntary eye movement control, particularly affecting the
DLPFC and supplementary eye fields (SEF) (Gong and Zuo,
2025; Kahya et al., 2021; Tsitsi et al., 2021). These impairments
manifest as hypometric saccades, antisaccade errors, and prolonged
latencies, serving as sensitive markers of both motor and cognitive
dysfunctions. Compared to traditional clinical evaluations, eye-
tracking provides an objective, quantifiable, and non-invasive
method with higher temporal resolution, enabling earlier detection
of subtle oculomotor abnormalities (Gibbs et al., 2024; Tabashum
et al., 2021). As PD progresses, cognitive and motor impairments
become increasingly pronounced. Oculomotor metrics, including
saccadic latency, fixation stability, smooth pursuit efficiency, and
pupillary responses, emerge as valuable indicators of disease onset
and progression (Gibbs et al., 2024). Distinctive eye movement
abnormalities, such as hypometric saccades, increased square-wave
jerks, and prolonged antisaccade reaction times, offer clinicians
objective tools to differentiate PD from other neurodegenerative
disorders, such as PSP, multiple system atrophy (MSA), and
Alzheimer’s disease (Tabashum et al., 2021). These findings are
consistent with previous work (Waldthaler et al., 2021), which
already pointed to the diagnostic relevance of saccadic impairments
and fixation abnormalities in PD. However, more recent studies,
particularly those published after 2022, have expanded upon
this knowledge by integrating ML and VR techniques, offering
improved diagnostic precision and scalability.

Furthermore, eye-tracking has shown promise in
distinguishing PD from other neurodegenerative diseases and
in monitoring disease progression through ML approaches
(ŞtefŞnescu et al., 2024). Recent studies have suggested that eye-
tracking metrics, particularly those related to saccadic performance
and fixation stability, offer diagnostic sensitivity and specificity
comparable to traditional clinical evaluations (Bredemeyer
et al., 2022; Kahya et al., 2021; Machine et al., 2023). However,
technological variability, calibration challenges, and inter-
individual differences in oculomotor parameters remain important
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limitations, underscoring the need for further standardization
across studies.

Additionally, visual perception deficits are known to interfere
with motor functions in PD, affecting patients’ navigation, mobility,
and daily activities (Kim et al., 2011; Maschke et al., 2006).
Clinical tests for stereoscopic vision are rarely performed despite
their importance, as traditional methods like the Titmus stereotest
lack sensitivity for certain oculomotor dysfunctions, such as
convergence insufficiency and impaired vergence control, both
of which are common in PD (Herrero-Gracia et al., 2025).
More advanced methods, such as software-based 3D systems, are
more effective in detecting subtle visual impairments and their
association with disease severity (Ba et al., 2022). Few studies
have explored the relationship between PD severity, as measured
by the MDS-UPDRS motor score, and gaze or eye movement
parameters. Previous research has identified correlations between
motor scores and pro-saccade latency, pro-saccade gain, anti-
saccade latency, and anti-saccade direction rate (Lu et al., 2019;
Waldthaler et al., 2019). However, some studies, like Visser et al.
(2019), found no significant correlation between saccade latency
and UPDRS scores. In contrast, in De Villers-Sidani’s study (de
Villers-Sidani et al., 2023), a significant correlation was observed
between UPDRS motor scores and pro-saccade gain, the number
of saccades required to reach the target, and the pro-saccade
time-to-target parameter, particularly at large eccentricities. These
findings suggest that eye movement metrics may serve as composite
indicators of motor impairment in PD. In support of these findings,
Reiner et al. (2023) demonstrated that oculometric measures,
including saccadic latency, error rate, and response accuracy,
correlate with MDS-UPDRS scores and disease severity. Their
study further highlighted that PD patients exhibited prolonged
saccadic latencies and increased error rates, with these impairments
worsening as the disease progressed.

Beyond motor impairments, cognitive dysfunction in PD is
a well-established risk factor for PDD. Studies suggest that early
cognitive impairments, particularly those related to temporal lobe
and cholinergic systems, are significant predictors of dementia
(Wong et al., 2019). Eye-tracking metrics, such as fixation duration,
have been shown to correlate with cholinergic deficits, indicating
that these metrics could serve as early non-invasive markers for
cognitive decline in PD patients. However, more longitudinal
studies are required to confirm these correlations. In line with
these findings, tablet-based eye-tracking technology has been
shown to effectively assess both cognitive function and disease
severity in PD (Koch et al., 2024). Research has consistently
demonstrated correlations between cognitive deficits and eye
movement impairments in PD (Amador et al., 2006; Li et al.,
2024a). For instance, Ba et al. (2022) revealed significant deficits
in stereopsis, longer response times in gaze-related tasks (e.g.,
fixation stability and visual attention shifts), and reduced accuracy
in saccades and fixations, highlighting the close association between
these visual impairments and motor and cognitive dysfunctions.
These findings suggest that stereopsis, measured using non-
invasive tools like the 3D active shutter system and Tobii eye
tracker, could be a useful marker for motor and cognitive function
in PD. However, despite their clinical relevance, these tests are not
widely adopted in routine practice. While advanced technologies
such as shutter glasses and high-cost eye trackers may offer
improved precision, their widespread adoption remains limited

due to cost considerations and the variability of computer-based
stereo testing algorithms. Further research is needed to evaluate
their clinical efficacy compared to conventional methods and
determine whether their benefits justify their financial and practical
implementation in clinical settings.

Research suggests that reading difficulties are primarily linked
to cognitive dysfunction rather than oculomotor deficits (Tsitsi
et al., 2023). Prolonged fixation durations and reduced fixation
frequency indicate impairments in executive function and working
memory. Increased antisaccade errors and reduced saccade
latencies correlate with executive dysfunction, while prolonged
saccade latencies and hypometria are associated with broader
cognitive decline. These findings highlight the potential of eye-
tracking in assessing cognitive status and monitoring disease
progression in PD (Waldthaler et al., 2023).

Moreover, eye-tracking offers insights into cognitive
performance. The MoCA, a cognitive screening tool that includes
executive function testing (Chou et al., 2014), has been shown to be
more effective than the Mini-Mental State Examination (MMSE)
in assessing cognitive impairments in PD, particularly in relation to
eye movement behaviors (Tsitsi et al., 2021). Eye-tracking metrics,
such as fixation duration and pupil size, have been correlated
with cognitive performance, suggesting a connection between
autonomic nervous system dysfunction and cognitive decline in
PD.

Eye-tracking studies have also explored the influence of PD
medications on oculomotor metrics. While nabilone showed no
significant effects on saccadic paradigms, fixation, or top-down
inhibitory control, a learning effect was observed, suggesting it does
not impair cognitive consolidation (Ellmerer et al., 2022). Other
studies (Birket-Smith, 1975; Roy-Byrne et al., 1993) have shown
that medications like levodopa and anticholinergics affect pupil size
and eye movement behaviors, particularly in patients with PDD
(Brien et al., 2023). The influence of comorbidities and medications,
such as antidepressants and benzodiazepines, on pupil size further
underscores the need to consider these factors when interpreting
eye-tracking data (Tsitsi et al., 2021).

Moreover, recent findings indicate that anti-Parkinsonian
medication does not improve and may even worsen visually-
guided saccades (Munoz et al., 2022). These results suggest
that oculomotor impairments in PD are not solely dependent
on dopaminergic dysfunction, but rather involve other neural
pathways, such as cholinergic and fronto-striatal circuits.
This aligns with evidence showing that saccadic impairments
persist in both ON and OFF states, highlighting the complex
neurophysiological mechanisms underlying oculomotor
dysfunctions in PD.

Furthermore, eye-tracking has demonstrated value in non-
motor assessments, such as facial emotion recognition. However,
there is no consensus in the literature, as some studies have
shown that PD patients struggle to recognize dynamic facial
expressions, likely due to reduced facial expressiveness, which
impairs their ability to use motion cues for emotion recognition
(Brien et al., 2023). Research highlights the importance of task
demands in shaping oculomotor behavior in PD. Beylergil et al.
(2022) found no significant differences in saccade amplitudes
between PD patients and controls during visual search tasks,
aligning with previous research (Archibald et al., 2013). However,
these results contrast with studies requiring memorization while
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scanning (Matsumoto et al., 2011), where PD patients exhibited
smaller saccades and longer fixations. This suggests that tasks
emphasizing active searching promote larger saccades and shorter
fixations, whereas those involving memory recall result in more
restricted eye movements.

Mobile eye-tracking can be an effective, non-invasive, and
easy-to-use tool for clinical diagnosis, particularly in cases where
traditional clinical criteria are ambiguous. Previous eye-tracking
studies have primarily assessed visual activity in controlled, static
laboratory environments (Backhaus et al., 2020). However, the
development of mobile eye-tracking devices has recently enabled
researchers to examine the effects of both PD and aging on
visual exploration during real-world tasks, such as walking and
navigating obstacle (Galna et al., 2012; Stuart et al., 2014; Stuart
et al., 2016). Graham et al. (2023) explored visual search patterns
while walking in PD patients with and without FOG using mobile
eye-tracking and inertial sensors. The study found that FOG
patients exhibited distinct gaze behaviors, including fewer fixations
and reduced gaze variability, which correlated with impaired gait
parameters. These findings highlight the role of eye-tracking in
identifying visual exploration deficits linked to mobility issues in
PD and suggest that gaze-based interventions could enhance gait
performance. Although wearable eye-tracking has recently been
proposed as a tool for various oculomotor and vestibular disorders
(Hayhoe and Ballard, 2005; Schumann et al., 2008), it has been
shown that wearable eye-tracking can also be effectively used in
clinical settings for more complex conditions, such as typical and
atypical Parkinsonism (Marx et al., 2012). Whether wearable eye-
tracking will surpass the current diagnostic standards can only be
determined through a long-term, prospective longitudinal study,
which would apply the criteria identified here in the early stages
of the disease, before clinical symptoms become fully evident.

Eye-tracking technology is also valuable for understanding
visuospatial memory and eye movement dynamics in
PD. For instance, in line with the literature (Hardeman
et al., 2020; Ranchet et al., 2020; Sisk et al., 2018; Smith
et al., 2021), a study by ŞtefŞnescu et al. (2024) found a
moderate positive correlation between visuospatial memory
performance and vertical eye movements, suggesting
shared neural mechanisms involving the prefrontal-basal
ganglia circuits. The study also discovered that blink rate,
which is often reduced in PD patients, increases during
cognitively demanding tasks, reflecting the impact of
cognitive load on eye movement metrics. This variability in
blink rate, along with its connection to working memory
performance, indicates that eye-tracking can provide
nuanced insights into cognitive and motor processes affected
by PD.

4.2 Advances in eye-tracking technology:
integrating machine learning and virtual
reality for enhanced precision

Recent technological advancements are helping to overcome
the limitations of traditional methods used to investigate eye
abnormalities, such as spatial constraints and the inability to
automatically diagnose PD. VR has emerged as a promising tool

in this context, enabling more accurate evaluation and treatment
of neurological and psychological cognitive disorders with greater
assessment accuracy compared to conventional methods (Ferraioli
et al., 2024; Karakoc et al., 2025; Lucifora et al., 2024; Nucera,
2024; Oliveira et al., 2018; Rizzo and Shilling, 2017; Vicario and
Martino, 2022). However, despite its potential, few studies have
examined eye movements within VR environments, and only one
tool currently exists that can automatically classify PD (Jiang
et al., 2024). In VR settings, three main types of eye movement
data are collected: fixations, saccades, and synthetic features such
as scan path length and duration. Studies have shown that PD
patients exhibit significantly reduced saccade amplitude compared
to HCs (Matsumoto et al., 2011). This leads PD patients to
perform multiple corrective saccades to reach target locations, a
behavior that worsens as the disease progresses. This abnormal
eye movement pattern may also explain the mild visuospatial
neglect often observed in PD, likely due to a restricted visual
scanning area, which can contribute to issues such as dyslexia
(Riva, 1997). Additionally, the saccade error rate (ER) was found
to be significantly higher in PD patients, especially in tasks
like Whack-a-Mole, indicating impaired inhibitory control of
visually-guided saccades (VGS). This impairment is likely linked
to dysfunctions in the cortical-basal ganglia-superior colliculus
pathway, dopamine depletion in the prefrontal cortex, and the
cognitive impairments associated with PD (Kavcic and Duffy,
2003).

Through tasks like VGS, it is possible to gain objective
insights into cognitive control, helping to identify specific cognitive
processes affected by PD and aiding in its diagnosis through
distinct eye movement abnormalities. In parallel, the integration
of ML has proven highly effective in developing automated,
doctor-independent solutions for diagnosing and monitoring
PD. Reflexive saccade (RS) data, for example, have been used
to train intelligent classifiers, achieving over 90% accuracy in
predicting PD-related features, making RS promising biomarker
in PD diagnosis (Przybyszewski et al., 2014; Przybyszewski et al.,
2016). VR-based eye-tracking, combined with ML, has proven
to be a powerful tool for PD diagnosis and monitoring, as
demonstrated by Jang et al. (2025), whose study showed that
analyzing gaze stability, saccadic performance, and smooth pursuit
in a VR setting, enhanced by deep learning models, achieved
high diagnostic accuracy. Literature demonstrated that ML models
based on eye-tracking data could efficiently assist neurologists in
both diagnosing PD and monitoring the progression of symptoms
(Szymañski et al., 2017). Specifically, RS measurements were
crucial in building these classifiers, highlighting the importance
of fast eye movements in detecting PD-related attributes. Further,
the study suggested that systems like Eye Tribe, despite being
lower-cost alternatives, could be effectively integrated into clinical
settings to support PD diagnostics. Beyond RS, a variety of
eye-tracking metrics, including those related to pro/anti saccade
tasks, show alterations across different stages of PD progression.
Recent studies have identified disturbances in pupil dilation and
blinking as early markers during the prodromal stages of PD
(Chambers and Prescott, 2010; La Morgia et al., 2022; Perkins
et al., 2021; Waldthaler et al., 2021). These alterations in ocular
behavior are now being further explored using ML techniques.
Brien et al. (2023) developed a classifier that was sensitive to
different stages of cognitive impairment in PD, from cognitively
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normal (PD-CN) through mild cognitive impairment (PD-MCI) to
PDD.

The classifier demonstrated high accuracy, with eye movement
measures correlating with clinical metrics such as the MDS-
UPDRS and MoCA, suggesting that these metrics can effectively
track disease progression. This reinforces the potential of eye-
tracking metrics to capture the intricate relationship between
cognitive and motor impairments in PD (Srulijes et al., 2015;
Stuart et al., 2019; Waldthaler et al., 2021). Through ML models,
this multidimensional data can be distilled into a single index
predictive of PD subgroups and disease severity based on MDS-
UPDRS scales. Consistent with earlier findings (MacAskill et al.,
2012; Stuart et al., 2019), the output of these classifiers has shown
sensitivity to both motor and cognitive functions, reinforcing
the value of combining eye-tracking with ML in personalized
treatment strategies. The use of eye-tracking combined with
ML and VR technologies represents a significant advancement
in PD diagnostics and monitoring. These tools offer a more
precise, non-invasive, and automated approach to detect both
motor and cognitive impairments in PD, promising better
patient outcomes through early diagnosis and more personalized
treatment strategies. The convergence of ET with ML and VR
offers promising advancements in diagnostic and monitoring
capabilities. Eye tracking data, when processed through ML
algorithms, can help detect subtle ocular movement abnormalities
associated with neurological disorders, enhancing early diagnosis
and disease progression monitoring. VR, in combination with eye
tracking, has been explored for cognitive and motor assessment in
neurodegenerative diseases, providing an immersive and controlled
environment for clinical evaluations (Jiang et al., 2025). However,
integrating these technologies into existing clinical workflows
remains complex. Healthcare systems must address issues related
to data standardization and the development of AI-assisted
decision-support tools that can provide meaningful insights to
clinicians.

Although eye-tracking holds great promise for both
research and clinical applications, its widespread use has
been limited by the high cost and scalability issues related to
specialized hardware. By leveraging the embedded cameras
in mobile devices, these barriers can be overcome, making
eye-tracking assessment tools more accessible (Valliappan
et al., 2020). Tablet-based tools show potential for monitoring
disease progression by assessing oculomotor function, as
studies have demonstrated strong correlations between eye-
movement parameters and clinical status. These tools could
enable clinicians to remotely track changes in disease status,
progression, or treatment response without the need for in-person
visits, similar to approaches using wearable technologies like
gyroscopes (Rodríguez-Molinero et al., 2018; Tripoliti et al.,
2013) or speech analysis through ML. Eye-movement-based
technologies offer the advantage of easier scalability to other
neurodegenerative diseases, as several eye-movement anomalies
have been linked to conditions like Alzheimer’s (Garbutt et al.,
2008; Shakespeare et al., 2015) and multiple sclerosis (Lizak et al.,
2016; Serra et al., 2018) with strong correlations to cognitive and
clinical disease measure (Noiret et al., 2018; Waldthaler et al.,
2019).

While eye-tracking technology has demonstrated significant
potential in clinical applications, its integration into hospital

and healthcare systems remains a challenge. Successful adoption
requires substantial investment in infrastructure, including
specialized hardware, software integration, and compatibility with
existing electronic health record systems. Moreover, healthcare
institutions must ensure the availability of technical support and
standardized protocols to facilitate seamless implementation.
Literature highlights the need for dedicated resources to optimize
eye-tracking data collection and analysis in clinical environments.
While some research institutions and specialized clinics have
begun incorporating eye-tracking into neurology assessments,
large-scale integration into routine clinical practice is still in
progress. Key barriers include the lack of standardized protocols,
the need for regulatory approval, and limited awareness among
medical professionals regarding eye-tracking’s potential benefits.
Surveys suggest that while clinicians acknowledge eye-tracking’s
promise, further validation studies and practical guidelines
are necessary to promote broader acceptance. Overcoming
these challenges will be crucial to establishing eye-tracking
as a reliable and scalable tool in neurology (Gibbs et al.,
2024).

In conclusion, eye-tracking presents significant potential as a
non-invasive, precise tool for diagnosing and monitoring PD. It
not only captures motor impairments but also provides valuable
insights into cognitive dysfunctions (Pinkhardt et al., 2009). By
assessing pupil responses, saccades, or blink rates, eye-tracking
can contribute to a more comprehensive understanding of PD
progression (Gorges et al., 2017). As wearable and mobile eye-
tracking systems continue to evolve, they could be integrated
into routine clinical practice to enhance diagnostic accuracy and
provide personalized treatment strategies, particularly in cases
where traditional criteria are ambiguous or insufficient. This review
offers a novel perspective by integrating recent advancements
in eye-tracking technology, including mobile and wearable eye
tracking, VR-based assessments, and ML models for PD diagnosis
and symptom monitoring. It synthesizes findings on the clinical
feasibility and real-world applications of eye tracking, emphasizing
its potential for routine implementation in clinical practice.

Future studies should focus on including prodromal PD
populations, where early motor and non-motor symptoms are
present, but a formal diagnosis has not yet been established. These
individuals may exhibit subtle eye movement abnormalities that
could serve as early indicators of disease onset. While recruiting
asymptomatic participants and prospectively monitoring their
conversion to PD poses practical challenges, recent advances in
biomarker research, such as the α-syn seed amplification assay,
may enable the identification of high-risk individuals (Yamasaki
et al., 2019). This could provide a unique opportunity to explore
the diagnostic potential of eye-tracking in the earliest stages of PD,
before traditional clinical symptoms become apparent.

To enhance clarity in future research, it is important to
distinguish between the different applications of eye-tracking
in PD. Eye-tracking can be used for diagnosing PD, which
involves identifying the disease in individuals without a prior
diagnosis; classifying PD, which refers to distinguishing patients
with PD from HCs or other neurodegenerative conditions; and
monitoring PD, which entails assessing disease progression over
time. Standardizing these definitions across studies will help ensure
methodological consistency and improve the comparability of
findings in the field.
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4.3 Opportunities and challenges for
eye-tracking studies

The eye-tracking technique offers several advantages, such as
being well-tolerated due to the short duration of tasks, like the
5-min visual search task (Wong et al., 2019). Additionally, one
notable strength of wearable eye-tracking devices is their efficiency,
requiring less than 20 s for fixation protocols and virtually no
device-specific training, making them practical for clinical and
experimental use (Marx et al., 2012). However, clinicians should
carefully consider the most appropriate approach when selecting
an eye tracker, as some devices require head stabilization using
a chin rest, while others allow for unsupported head movement.
Many eye trackers are stationary, but some are portable, and others,
such as the Tobii Pro Glasses, are mobile and wearable, enabling
participants to engage in everyday tasks (de Villers-Sidani et al.,
2023; Jiang et al., 2024). However, systems with variable frame rates,
like the Tobii Pro Glasses, may be unsuitable for precise saccade
analysis due to potential inconsistencies in data capture. This
limitation should be considered when selecting an eye-tracking
system for research involving rapid eye movements. Selecting the
right device depends on the specific needs of the clinical evaluation.
Although various studies used different eye-tracking devices, it is
challenging to determine which one is superior.

There are several limitations to eye-tracking research in PD.
For instance, malfunctions can occur with participants wearing
progressive lenses, and individuals with conditions such as eyelid
apraxia or certain ophthalmological disorders may find the device
difficult to use. While eye-tracking serves as a physiological marker
that is largely unaffected by pre-existing conditions or intelligence,
many studies have not provided information on participants’
premorbid intelligence, making it difficult to assess the true
extent of cognitive decline (Wong et al., 2019). Additionally, the
absence of neuroradiological data in many studies means that
undetected intracranial pathologies could influence both cognitive
performance and eye movement measurements (Wong et al., 2019).
Another factor is the relatively younger PD cohorts used in some
studies, where the decline in cognition and eye movements may
differ from those in older populations. The heterogeneity of PD
and the exclusion of participants in the more advanced stages
(Hoehn and Yahr stages 4 and 5) (Brien et al., 2023) limit the
generalizability of findings, as cognitive decline and eye movement
abnormalities may differ significantly in these groups. Moreover,
general considerations related to behavioral experiments with older
and neurologically-impaired participants should be noted, such
as the potential impact of fatigue or discomfort on attention
and engagement during prolonged testing sessions. The small
sample sizes in some studies also present a challenge, limiting the
robustness of the findings (Ba et al., 2022; Stuart et al., 2016). It is
important to acknowledge that all studies included in this review
enrolled PD patients after-diagnosis, indicating that eye-tracking
metrics were primarily analyzed in individuals at a disease stage
likely beyond the earliest clinical manifestation. This presents an
important limitation, as the generalizability of these oculomotor
biomarkers to prodromal or very early PD remains uncertain. In
earlier disease stages, when symptom expression is more subtle,
the signal-to-noise ratio in eye movement abnormalities may

be weaker, potentially affecting the sensitivity of eye tracking-
based classification methods. Furthermore, while many reviewed
studies demonstrated the ability of eye-tracking to distinguish
PD patients from HCs, fewer have focused on actual diagnostic
applications and its reliability for individual diagnosis remains
under investigation. Validating these findings in larger, longitudinal
cohorts, including prodromal PD patients, to better determine
the clinical utility of eye-tracking for early disease detection
and monitoring. Additionally, future research should consider
the potential impact of medications, sex differences, and other
confounding factors, as these variables have not been thoroughly
investigated. In terms of future directions, improving study designs
by increasing sample sizes, optimizing tasks and equipment, and
addressing technical challenges would strengthen the validity of
eye-tracking studies.

5 Conclusion

This systematic review highlights the increasing value of
eye-tracking as a non-invasive, objective tool for diagnosing
and monitoring PD. Eye-tracking technology enables precise
measurement of oculomotor functions that correlate with both
motor and cognitive symptoms of PD, potentially providing
early diagnostic markers and facilitating the monitoring of
disease progression. Technological advancements, including the
integration of ML and VR, have expanded the diagnostic
potential of eye-tracking. Our review builds upon previous
literature (e.g., Waldthaler et al., 2021) by focusing on the latest
methodological and technological innovations, and highlights
emerging opportunities for more precise, scalable, and automated
assessments of PD through eye-tracking.

However, challenges persist, such as device variability,
limitations in cognitive assessment, and the need for larger, more
diverse sample sizes. Future research should focus on standardizing
eye-tracking protocols and further exploring its application across
different neurodegenerative disorders to enhance diagnostic
accuracy and improve patient outcomes. In this regard, the
International Society for Clinical Eye tracking1 is currently
working on recommendations for standardized testing protocols
in clinical applications. Additionally, integrating eye-tracking
into routine clinical practice could provide better personalized
treatment strategies, particularly in cases where traditional clinical
criteria are insufficient.
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Metabolomic profiling uncovers 
diagnostic biomarkers and 
dysregulated pathways in 
Parkinson’s disease
Hongfang Chen 1†, Xing Cheng 1†, Xiaoling Pan 1, Yu Yao 1,2, 
Lin Chen 3, Yaming Fu 1 and Xinran Pan 1*
1 Department of Neurology, The Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 
Jinhua, Zhejiang, China, 2 Key Laboratory of Neuropharmacology and Translational Medicine of 
Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese 
Medical University, Hangzhou, Zhejiang, China, 3 Central Laboratory, The Affiliated Jinhua Hospital, 
Zhejiang University School of Medicine, Jinhua, Zhejiang, China

Background: Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder, and it has an unclear pathogenesis and lacks 
validated, specific biomarker-based diagnostic approaches, particularly in PD 
patients with rapid eye movement (REM) sleep behavior disorder (PD-RBD).

Methods: Using untargeted liquid chromatography-mass spectrometry (LC–
MS) metabolomics, serum profiles of 41 drug-naïve PD patients [including 19 
PD-RBD and 22 PD without RBD (PD-nRBD) patients] and 20 healthy controls 
(HCs) were analyzed.

Results: Comparative analyses revealed 144 dysregulated metabolites 
in PD patients versus HCs, with 7 metabolites—sodium deoxycholate, 
S-adenosylmethionine, L-tyrosine, 3-methyl-L-tyrosine, 4,5-dihydroorotic 
acid, (6Z)-octadecenoic acid, and allantoin—demonstrating high classification 
accuracy [area under the curve (AUC) > 0.93]. Compared with PD-nPBD 
patients, PD-RBD patients exhibited distinct metabolic profiles, characterized 
by 21 differentially expressed metabolites, including suberic acid, 3-methyl-L-
tyrosine, and methyl (indol-3-yl) acetate (AUC > 0.86). Notably, 3-methyl-L-
tyrosine displayed dual dynamics, reflecting dopaminergic depletion in PD and 
compensatory metabolic adaptations in PD-RBD. Pathway enrichment analysis 
implicated central carbon metabolism (CCM) disruption in PD and peroxisome 
proliferator-activated receptor (PPAR) signaling pathway inactivation in PD-RBD.

Conclusion: These findings reveal potential serum-based biomarkers for PD 
and PD-RBD, highlight CCM and PPAR pathways as therapeutic targets, and 
underscore the role of metabolic dysregulation in PD pathophysiology.

KEYWORDS

Parkinson’s disease, REM sleep behavior disorder, metabolomics, biomarkers, 
metabolic pathway

1 Introduction

Parkinson’s disease (PD), now recognized as one of the leading causes of neurological 
disability (1), is pathologically characterized by aberrant α-synuclein aggregation and 
progressive degeneration of dopaminergic neurons in the substantia nigra (2). PD exhibits 
significant clinical heterogeneity, with phenotypes typically categorized according to the 
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predominance of motor and non-motor symptom clusters (3). 
Although motor symptoms form the diagnostic cornerstone (4), 
non-motor manifestations—particularly rapid eye movement 
(REM) sleep behavior disorder (RBD), characterized by the loss of 
normal skeletal muscle atonia and vivid dream enactment during 
REM sleep (5, 6)—have emerged as critical markers of disease 
subtype stratification (1). Approximately 30–50% of PD patients 
have RBD (7), a phenotype that is associated with accelerated 
disease progression and a higher risk of cognitive impairment 
compared with PD patients without RBD (8). However, the 
diagnosis of PD remains clinically challenging due to its heavy 
reliance on subjective clinician-based evaluations and the absence 
of validated biomarkers for objectively diagnosing disease or 
identifying pathological changes.

Metabolomics, which focuses on small-molecule metabolites, 
has emerged as a promising strategy for molecular biomarker 
discovery, owing to its ability to detect pervasive metabolic 
dysregulations inherent in neurodegenerative pathologies (9, 10). 
In recent years, metabolomics has become an increasingly valuable 
tool in PD research, effectively connecting molecular mechanisms 
with dysregulated metabolic pathways and clinical manifestations 
that underlie the pathophysiology of PD. Multiple potential 
biomarkers for PD have been proposed, including 
3-hydroxykynurenine (3-HK) (11), ornithine (12), 
1-methylxanthine (13), hypoxanthine (14), caffeine and its 
metabolites (14), and lipid derivatives (15). However, there are no 
currently widely validated and used clinical biomarkers in 
peripheral blood. The clinical translation of these findings remains 
hindered by critical biological and methodological barriers, such 
as clinical heterogeneity, antiparkinsonian medication effects, 
analytical variability, and lack of robust multicenter validation. The 
pathogenic complexity of PD further complicates biomarker 
discovery. Accumulating data suggest that PD results from a 
dynamic interplay among senescence processes (16), inherited 
susceptibility, and environmental exposures (17), affecting 
numerous fundamental cellular processes, such as aberrant protein 
aggregation (18, 19), oxidative stress (20), neuroinflammation (21), 
and mitochondrial dysfunction (22, 23). Despite decades of 
research, the etiology of PD remains incompletely understood. 
Most existing studies have focused on comparing PD patients with 
healthy controls (HCs), with limited attention paid to the metabolic 
differences in PD patients with RBD.

In the present study, two comparative serum metabolomics 
analyses using untargeted liquid chromatography-mass 
spectrometry (LC–MS) metabolomics were conducted as follows: 
(i) drug-naïve PD patients versus HCs; and (ii) PD with RBD 
(PD-RBD) patients versus PD without RBD (PD-nRBD) patients. 
Our findings revealed potential diagnostic biomarkers and 
established precision phenotyping frameworks. The dual dynamics 
of 3-methyl-L-tyrosine highlighted phenotype-specific metabolic 
adaptations. Moreover, the present results revealed central carbon 
metabolism (CCM) disruption in PD and PPAR signaling 
inactivation in PD-RBD, linking metabolic dysfunction to 
neurodegeneration and highlighting CCM and PPAR signaling 
pathways as therapeutic targets. Future work requires multicenter 
validation and multiomics integration to translate these insights 
into clinical applications.

2 Materials and methods

2.1 Participants

Participants were recruited from the Outpatient Department of 
the Affiliated Jinhua Hospital of Zhejiang University School of 
Medicine, including 61 individuals (41 patients with PD and 20 HCs). 
All patients with PD were newly diagnosed according to the 
Movement Disorder Society (MDS) Clinical Diagnostic Criteria for 
PD (MDS-PD Criteria) and were drug-naïve, having not initiated any 
antiparkinsonian medications prior to enrollment. The exclusion of 
secondary parkinsonian syndromes was confirmed by normal findings 
on 3.0-Tesla brain magnetic resonance imaging (3.0 T MRI), which 
revealed intact nigrostriatal pathways (without evidence of vascular 
lesions, midbrain atrophy, or iron deposition in globus pallidus). The 
clinical baseline of PD patients was assessed by two movement 
disorder specialists (H.F.C. and X.L.P.), using the Unified Parkinson’s 
Disease Rating Scale (UPDRS III), Hoehn and Yahr (H-Y) staging, the 
RBD screening questionnaire (RBDSQ), and the Mini-Mental State 
Examination (MMSE). In addition, PD patients were stratified into 
the following two subgroups based on the RBDSQ scores, namely, 
PD-RBD (RBDSQ score ≥ 6) and PD-nRBD (RBDSQ score < 6), 
using the validated cutoff of 6 points for clinical relevance (24, 25). 
Age- and sex-matched HCs underwent standardized neurological 
evaluations to confirm the absence of neurological disorders. All 
enrolled participants (both PD patients and healthy controls) were 
free of infections, hepatic dysfunction, renal dysfunction, 
hypertension, diabetes mellitus, neoplasms, and autoimmune diseases. 
All participants were free of any medications (including over-the-
counter drugs, vitamins, nutraceuticals, or herbal supplements) for at 
least eight weeks prior to blood collection. Each participant signed a 
written informed consent before enrollment, and this study received 
approval from the Ethics Committee of the Affiliated Jinhua Hospital, 
Zhejiang University School of Medicine [Approval no. (Research) 
2022-Ethical Review-221, date: September 7, 2022]. This research was 
conducted following the ethical principles of the Declaration 
of Helsinki.

2.2 Serum sample collection and 
processing

Venous blood samples were collected from all participants in the 
morning following an overnight fast of at least 12 h (8: 00 PM to 
8:00 AM) (26). During the fasting period, participants were allowed 
to consume small amounts of pure water until 10:00 PM. The serum 
was separated within 60 min after collection by centrifugation at 
2000 × g for 10 min and subsequently stored at −80°C until 
further analysis.

Samples were processed for metabolite extraction according to 
previously reported methods (27). In brief, serum samples were 
thawed at 4°C and then vortexed for 1 min to ensure complete 
homogenization. Then, 50 μL of serum was mixed with 400 μL of 
methanol in a 2 mL centrifuge tube. After vortexing for 1 min and 
centrifugation at 12,000 × g for 10 min at 4°C, the supernatant was 
transferred to a new 2 mL centrifuge tube. The sample was then 
concentrated and dried. Finally, 150 μL of 2-chloro-l-phenylalanine 
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(4 ppm) solution prepared with 80% methanol in water was added to 
redissolve dried extracts. The solution was then filtered through a 
0.22 μm membrane and transferred to a detection bottle for LC–MS 
analysis. Quality control (QC) samples were prepared by mixing 10 μL 
of each extracted serum sample to monitor the LC–MS 
instrument stability.

2.3 LC–MS analysis

LC–MS analysis was performed on a Vanquish UHPLC System 
(Thermo Fisher Scientific, USA).

Chromatographic separation was performed using an 
ACQUITY UPLC® HSS T3 column (2.1 × 100 mm, 1.8 μm; Waters, 
Milford, MA, USA) maintained at 40°C. The flow rate was 0.3 mL/
min, and the injection volume was 2 μL. For LC-ESI(+)-MS 
(positive ion mode) analysis, the mobile phases consisted of 0.1% 
(v/v) formic acid in water (A1) and 0.1% (v/v) formic acid in 
acetonitrile (B1). For LC-ESI(−)-MS (negative ion mode) analysis, 
the mobile phases were 5 mM ammonium formate in water (A2) 
and acetonitrile (B2). Both analyses were conducted under the 
same elution gradient (28) as follows: 0–1 min, 8% B; 1–8 min, 
8–98% B; 8–10 min, 98% B; 10–10.1 min, 98–8% B; and 
10.1–12 min, 8% B.

Mass spectrometric detection of metabolites utilized an 
Orbitrap Exploris 120 instrument (Thermo Fisher Scientific, USA) 
equipped with an ESI ion source. Data acquisition employed full-
scan MS1 (m/z 100–1,000) at 60,000 FWHM, followed by data-
dependent MS/MS (ddMS2) scans at 15,000 FWHM. Source 
parameters included sheath gas pressure (40 arb), auxiliary gas flow 
(10 arb), spray voltage (+3.5 kV for ESI[+] and-2.5 kV for ESI[−]), 
capillary temperature (325°C), number of data-dependent scans per 
cycle (4), normalized collision energy (30%), and dynamic exclusion 
time (automatic) (29).

2.4 Data processing and metabolite 
identification

Prior to analysis, raw metabolite intensities underwent total peak 
area normalization followed by log2 transformation to improve 
normality. The raw LC–MS data were firstly converted to mzXML 
format by MSConvert in ProteoWizard software package (30) 
(v3.0.8789) and processed using XCMS (version 3.12.0) in R for 
feature detection, retention time correction, and alignment (31), 
yielding a quantitative list of metabolites. Metabolites exhibiting a 
relative standard deviation (RSD) > 30% in QC samples were 
excluded, while the remaining metabolites were retained for 
subsequent analysis (29).

Metabolites were identified using MS1 and MS/MS spectra against 
the following databases: the Human Metabolome Database (HMDB) 
(32), Kyoto Encyclopedia of Genes and Genomes (KEGG) (33), 
LipidMaps (34), MassBank (35), mzCloud (36), and the metabolite 
database built by Biomedical Tech Co., Ltd. (Suzhou, China). Primary 
identification was achieved by matching precursor ion m/z (mass 
error tolerance < 30 ppm) and adduct information to derive molecular 
formulas. The quantitative metabolites with MS/MS spectra were 
compared and matched to the fragment ion information of each MS/

MS spectrum in these databases to achieve the secondary identification 
of these metabolites.

2.5 Statistical and pathway analyses

All statistical analyses were performed using R statistical software 
(version 4.3.1). The orthogonal partial least squares discriminant 
analysis (OPLS-DA) model was employed to evaluate group separation 
and clustering (37–39). The R2 (model explainability) and Q2 (model 
predictability) were calculated to assess the stability and reliability of 
the model by 7-fold cross-validation (40). In 7-fold cross-validation, 
the dataset was randomly partitioned into seven equally sized subsets, 
with each subset iteratively serving as the validation set while the 
remaining six subsets were used for model training (41). A variable 
importance in projection (VIP) score threshold > 1 was used to extract 
the significant contributor metabolites to group separation in the 
OPLS-DA model (42).

Differential metabolites between groups were identified using 
Student’s independent t-tests, with statistical significance defined as 
p < 0.05. Multiple comparison adjustments were implemented 
through the Benjamini-Hochberg procedure with a false discovery 
rate (FDR) < 0.05. Fold change (FC) values were calculated as the 
median intensity ratio between groups (PD vs. HC and PD-RBD vs. 
PD-nRBD). Volcano plots were used to visualize metabolite 
significance [−log10 (p-value)] and magnitude of FC [log2(FC)]. 
Hierarchical biclustering analysis was applied to both samples and 
metabolites, generating clustered heatmaps. Receiver operating 
characteristic (ROC) curves were constructed, and the area under the 
curve (AUC) was computed to evaluate biomarker diagnostic 
performance. AUC values were interpreted as follows: 0.9–1.0 
(excellent), 0.8–0.9 (good), 0.7–0.8 (fair), 0.6–0.7 (poor), and <0.6 
(fail) (43). Age, UPDRS part III, H-Y stage, RBDSQ, and MMSE were 
compared between groups using Student’s independent t-tests. Sex 
composition was analyzed via a chi-squared test. All quantitative data 
are presented as the means ± standard deviations (SDs) unless 
specified otherwise.

Significantly altered metabolites were analyzed for pathway 
enrichment using MetaboAnalyst (44),1 followed by mapping onto 
KEGG pathways to elucidate higher-level systemic functional 
implications. Visualizations of metabolite-pathway associations were 
generated through the KEGG Mapper tool.

3 Results

3.1 Comparison of demographic and 
clinical variables of participants

The demographic characteristics of the PD and HC groups are 
presented in Table  1. There were no significant differences in age 
distribution or sex composition. The demographic and clinical 
features of PD-RBD and PD-nRBD patients are detailed in Table 2. 
Age, sex composition, UPDRS part III, H-Y stage, and MMSE scores 

1  http://www.metaboanalyst.ca
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FIGURE 1

Altered metabolic profiles between patients with PD and HCs. (A) OPLS-DA score plot. ESI (+): positive ion mode, R2X = 0.599, R2Y = 0.967, Q2 = 0.927. 
(B) OPLS-DA score plot. ESI (−): negative ion mode, R2X = 0.115, R2Y = 0.972, Q2 = 0.827. (C) Volcano plot of metabolites in the PD group versus the HC 
group. Red: upregulated metabolite; Blue: downregulated metabolite; Grey: metabolite not meeting the significance thresholds.

did not show significant differences between the PD-RBD and 
PD-nRBD groups, but there was a significant difference in the RBDSQ 
scores between the groups.

3.2 Metabolic signatures of drug-naïve PD 
patients compared to HCs

To investigate the differential metabolites in PD patients, the 
serum metabolites were introduced to OPLS-DA models. The 
metabolites of PD patients were clearly separated from HCs on the 
OPLS-DA score plots [ESI(+): R2X = 0.599, R2Y = 0.967, Q2 = 0.927; 
ESI(−): R2X = 0.115, R2Y = 0.972, Q2 = 0.827] (Figures 1A,B). Among 
the 425 metabolites, 144 metabolites exhibited significant distinction 
between PD and HC groups (VIP scores > 1), with 107 upregulated 
metabolites (represented by red dots) and 37 downregulated 
metabolites (represented by blue dots) in PD patients relative to HCs. 

The volcano plot provided a graphical representation of the 
significance and magnitude of changes in metabolite levels, 
highlighting the most prominent alterations in the PD group 
(Figure 1C). Univariate analysis with FDR correction revealed 132 
different metabolites between the PD and HC groups (FDR < 0.05). 
These metabolites included mainly lipids, amino acids and their 
derivatives, organic acids and their derivatives, nucleotides and their 
derivatives, carbohydrates and their derivatives, terpenoids, sterols, 
vitamins, cofactors, alkaloids compounds, nitrogen compounds, and 
phenolic compounds (Supplementary Table S1).

3.3 Identification of potential metabolic 
biomarkers for PD

To evaluate the diagnostic potential of serum metabolites in PD, 
ROC curve analysis was applied to metabolomic profiles derived 

TABLE 1  Demographic data for recruited patients with PD and HCs.

Demographic characteristics PD (n = 41) HC (n = 20) p-valuea

Age (years) 63.97 ± 9.09 61.70 ± 13.14 0.43

Sex (F/M) 21/20 11/9 0.78

PD, Parkinson’s disease; HC, healthy control; F/M, female and male; Values are presented as the means ± SDs. ap-value using a Student’s independent t-test for age and a chi-squared test for sex 
composition.

TABLE 2  Demographic and clinical data of PD-RBD and PD-nRBD.

Demographic and clinical 
characteristics

PD-RBD (n = 19) PD-nRBD (n = 22) p-valuea

Age (years) 64.42 ± 8.80 63.59 ± 9.53 0.78

Sex (F/M) 9/10 12/10 0.65

UPDRS part III 26.68 ± 10.61 26.82 ± 14.79 0.97

H-Y stage 1.89 ± 0.72 1.98 ± 0.61 0.69

RBDSQ 8.05 ± 2.17 2.00 ± 0.87 <0.001

MMSE 25.00 ± 3.73 23.77 ± 5.73 0.43

PD-RBD, PD with RBD patients; PD-nRBD, PD without RBD patients; F/M, female and male; UPDRS part III, Unified Parkinson’s Disease Rating Scale III; H-Y stage, Hoehn and Yahr stage; 
RBDSQ, RBD screening questionnaire; MMSE, Mini-Mental State Examination; Values are presented as the means ± SDs. ap-value using Student’s independent t-tests for age, UPDRS part III, 
H-Y stage, RBDSQ, MMSE, and a chi-squared test for sex composition.
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from PD patients and HCs. The AUC values of ROC curves were 
used to assess the diagnostic potential of the identified metabolites. 
Among the 132 selected metabolites, sodium deoxycholate had the 
greatest ability (AUC = 0.991, Figure  2A) to differentiate PD 
patients from HCs, followed by S-adenosylmethionine 
(AUC = 0.978, Figure 2B), L-tyrosine (AUC = 0.974, Figure 2C), 
3-methyl-L-tyrosine (AUC = 0.967, Figure 2D), 4,5-dihydroorotic 
acid (AUC = 0.967, Figure  2E), (6Z)-octadecenoic acid 
(AUC = 0.957, Figure 2F), and allantoin (AUC = 0.935, Figure 2G). 

The p-values for all selected metabolites were statistically significant 
(p < 0.001). Compared with the HC group, the concentrations of 
sodium deoxycholate, S-adenosylmethionine, L-tyrosine, and 
3-methyl-L-tyrosine were lower in the PD group, while the 
concentrations of 4,5-dihydroorotic acid, (6Z)-octadecenoic acid, 
and allantoin were higher in the PD group (Table 3). This analysis 
identified seven candidate metabolites with significant 
discriminatory power, highlighting their potential as biomarkers for 
PD diagnosis.

FIGURE 2

Potential metabolite biomarkers for PD diagnosis. (A-G) Box plots and ROC curves for the serum levels of (A) sodium deoxycholate, 
(B) S-adenosylmethionine, (C) L-tyrosine, (D) 3-methyl-L-tyrosine, (E) 4,5-dihydroorotic acid, (F) (6Z)-octadecenoic acid, and (G) allantoin for the 
diagnosis of PD. Data are expressed as the means ± SDs. ***p ≤ 0.001 and ****p ≤ 0.0001.
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3.4 Metabolomic analysis reveals distinct 
metabolic profiles in PD-RBD compared to 
PD-nRBD

The OPLS-DA score plots for all serum metabolites demonstrated 
clear separation between the PD-RBD and PD-nRBD groups. 
Additionally, the OPLS-DA score plots exhibited high separative and 
predictive validity, with robust R2Y and Q2 values in the positive ion 
mode [ESI(+): R2Y = 0.974, Q2 = 0.758] and negative ion mode 
[ESI(−): R2Y = 0.981, Q2 = 0.536], respectively (Figures 3A,B). The 
volcano plot revealed distinct regulatory patterns among these 
metabolites, with 59 upregulated metabolites (represented by red dots) 
and 43 downregulated metabolites (represented by blue dots) validated 
through the OPLS-DA score plots (Figure  3C). Furthermore, the 
heatmap shown in Figure 3D illustrates the differential expression 
patterns of the 102 metabolites (VIP scores > 1.0, p < 0.05) in the 
PD-RBD group compared with the PD-nRBD group. Among these, 
21 metabolites (FDR < 0.05) displayed significant differential 
abundance between the PD-RBD and PD-nRBD groups. These 
differentially expressed metabolites were predominantly categorized 
as seven secondary metabolites, five amino acid derivatives, four 
lipids, two organic acids, one cofactor, one nucleotide, and one 
aromatic amine, as shown in the VIP score analysis (Figure 4A).

Next, we  conducted ROC curve analyses for the 21 selected 
metabolites to further evaluate their potential as diagnostic biomarkers 
for patients with PD-RBD. Notably, suberic acid exhibited the highest 
diagnostic accuracy (AUC = 0.967, Figure 4B), followed by 3-methyl-
L-tyrosine (AUC = 0.876, Figure 4C) and methyl (indol-3-yl)acetate 
(AUC = 0.864, Figure 4D). The concentrations of these metabolites 
were higher in the PD-RBD group than in the PD-nRBD group 
(Table  4). These findings highlighted the potential of these three 
metabolites as candidate biomarkers for diagnosing patients with 
PD-RBD and provided insights into the metabolic pathways that may 
be involved in the pathogenesis of RBD within the context of PD.

3.5 Metabolic pathway enrichment analysis

Compared with the HC group, KEGG pathway analysis of the 
differentially abundant metabolites identified significant enrichment 
(p < 0.05) of the following nine metabolic pathways in the PD group: 
CCM; protein digestion and absorption; mineral absorption; 
cholesterol metabolism; PPAR signaling pathway; aminoacyl-tRNA 

biosynthesis; glucagon signaling pathway; arginine and proline 
metabolism; and beta-alanine metabolism (Figure 5A). Compared 
with the PD-nRBD group, KEGG pathway analysis of the altered 
metabolites revealed significant enrichment (p < 0.05) of the following 
seven pathways in the PD-RBD group: PPAR signaling pathway; 
D-amino acid metabolism; neuroactive ligand-receptor interaction; 
protein digestion and absorption; linoleic acid metabolism; ABC 
transporters; and arginine and proline metabolism (Figure 5B).

4 Discussion

The present study utilized untargeted LC–MS analysis to 
investigate serum metabolic profiles in drug-naïve PD patients 
compared to HCs. The metabolites that significantly decreased in the 
PD group included L-tyrosine and S-adenosylmethionine. L-tyrosine, 
a primary precursor of dopamine, plays a crucial role in dopamine 
(DA) synthesis (45), and the depletion of L-tyrosine indirectly reflects 
DA deficiency in the nigrostriatal pathway. A previous study reported 
similar tyrosine levels between levodopa-treated PD patients and 
healthy controls (46), which contrasts with our observation of reduced 
L-tyrosine in a drug-naïve PD cohort. This discrepancy may reflect the 
modulatory effects of levodopa therapy on tyrosine metabolism. 
L-tyrosine faces therapeutic challenges due to the blood–brain barrier, 
while its downstream metabolite, L-Dopa, is used to supplement DA 
substrates in the brain (47). The limitations of DA replacement 
therapy, such as diminishing efficacy and drug-induced motor 
complications (48), highlight the need to reconsider its upstream 
metabolite, L-tyrosine. Specifically, targeting L-tyrosine metabolism 
may offer novel opportunities to enhance DA synthesis through the 
upregulation of tyrosine hydroxylase (TH) activity using genetic 
engineering techniques. Similarly, S-adenosylmethionine serves as a 
principal methyl donor in epigenetic regulation (49), glutathione 
synthesis (50), and neurotransmitter synthesis (including DA 
metabolism) (51). Consistent with previous findings demonstrating 
significantly reduced S-adenosylmethionine levels in PD patients 
compared to control subjects (51–53), the observed 
S-adenosylmethionine depletion in our study may indicate a 
pathology of impaired methylation capacity, increased oxidative stress, 
and mitochondrial dysfunction, collectively contributing to 
α-synuclein aggregation and progressive neurodegeneration. 
Additionally, S-adenosylmethionine restricts the expression of A2A 
receptors, which are upregulated in PD patients, thereby indirectly 

TABLE 3  Identification of biomarkers between patients with PD and HCs.

Biomarkers Molecular 
formula

Measured 
m/z

RT 
(s)

ppm VIP log2(FC) p-
valuea

AUC Trend ESI 
mode

Sodium deoxycholate C₂₄H₃₉O₄Na 415.2105 465.3 0.293 1.259 −1.42 <0.0001 0.991 ↓ ESI+

S-adenosylmethionine C₁₅H₂₂N₆O₅S 398.2395 459.6 3.317 1.079 −1.1 <0.0001 0.978 ↓ ESI+

L-tyrosine C₉H₁₁NO₃ 182.0807 74.1 2.614 1.254 −1.08 0.0001 0.974 ↓ ESI+

3-methyl-L-tyrosine C₁₀H₁₃NO₃ 195.1016 485.5 0.025 1.455 −1.07 <0.0001 0.967 ↓ ESI+

4,5-dihydroorotic acid C₅H₆N₂O₄ 158.9611 189.9 0.706 2.157 2.85 <0.0001 0.967 ↑ ESI+

(6Z)-octadecenoic acid C₁₈H₃₄O₂ 281.2479 663.8 0.016 1.684 0.15 0.0003 0.957 ↑ ESI-

Allantoin C₄H₆N₄O₃ 158.9607 88.2 18.197 2.159 3.07 <0.0001 0.935 ↑ ESI+

PD, Parkinson’s disease; HC, healthy control; RT, retention time; ppm, part per million; VIP, variable important in projection; FC, fold change; AUC, area under the curve; ↑: up-regulation; ↓: 
down-regulation; ESI+/−: Positive ion mode/Negative ion mode; ap-value obtained Student’s independent t-tests.
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enhancing DA signaling (54–57). This suggests that 
S-adenosylmethionine replenishment strategies may have a specific 
targeted effect on A2A receptors in the brain and could synergize with 
existing dopaminergic therapies. Moreover, we observed significantly 
elevated serum allantoin levels in PD patients compared with HCs, 
which is consistent with previous metabolomic findings (8), indicating 
increased oxidative stress in synucleinopathy. The levels of sodium 
deoxycholate, 4,5-dihydroorotic acid, and (6Z)-octadecenoic acid 
were also significantly altered in the PD group, which may reflect 
underlying pathological processes in PD, such as gut dysbiosis (58), 
energy metabolism dysfunction (59), and inflammation (60). These 
findings demonstrate the complexity of metabolic disturbances in PD, 
suggesting that these metabolites could serve as both diagnostic 
biomarkers and potential therapeutic targets.

KEGG pathway analysis revealed that CCM was the most 
significantly altered pathway in PD pathology, with the highest 
number of PD-associated metabolic changes localized to this category 
(e.g., L-malic acid, citric acid, and isocitrate), consistent with findings 
from previous studies (61, 62). CCM, traditionally encompassing the 
glycolytic pathway [Embden-Meyerhof-Parnas (EMP) pathway], the 
pentose phosphate pathway (PPP), and the tricarboxylic acid (TCA) 
cycle, serves as the core of energy production and also as a hub 
connecting lipid and amino acid metabolism (63). Dysregulation of 
this pathway underscores insufficient energy and mitochondrial 
dysfunction in PD (4). For example, reduced levels of L-malic acid 
impair the TCA cycle, resulting in decreased nicotinamide adenine 
dinucleotide (NADH, reduced form) production and adenosine 
triphosphate (ATP) synthesis, ultimately inhibiting oxidative 

FIGURE 3

Altered serum metabolites of PD-RBD compared to PD-nRBD. (A) OPLS-DA score plots. ESI (+): positive ion mode, R2X = 0.564, R2Y = 0.974, 
Q2 = 0.758. (B) OPLS-DA score plot. ESI (−): negative ion mode, R2X = 0.0938, R2Y = 0.981, Q2 = 0.536. (C) Volcano plot of upregulated (red) and 
downregulated (blue) metabolites in the PD-RBD group versus the PD-nRBD group. (D) Heatmap of the 102 differential metabolites in the PD-RBD 
group versus the PD-nRBD group. Red indicates an increased level, and blue indicates a decreased level.
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phosphorylation in mitochondria. Thus, the pathway enrichment 
analysis highlighted the potential role of CCM in the 
neurodegenerative process of PD and provided a basis for further 
investigation into the underlying mechanisms. To bridge these 
findings to clinical applications, a heterogeneous information network 
(HIN) learning model integrating multi-omics data (e.g., 
metabolomics, proteomics, and mitochondrial genomics) could map 
PD-specific CCM bottlenecks (e.g., malate dehydrogenase 
dysfunction) to prioritize therapeutic targets (64). For instance, 3D 
molecular pocket-based generation techniques could design small 
molecules to allosterically activate TCA cycle enzymes, compensating 
for L-malic acid depletion and restoring NADH/ATP production (65).

Further analysis of differential serum metabolites between the 
PD-RBD and PD-nRBD groups revealed that only 3 out of 102 
differentially expressed metabolites associated with PD-RBD 
demonstrated potential as biomarkers (AUC > 0.86). Methyl (indol-
3-yl)acetate, a derivative of indole-3-acetic acid (66), is associated with 
the tryptophan metabolic pathway (67)—encompassing serotonin and 
melatonin synthesis—which is critically implicated in sleep regulation 
and mood disorders (68–70). The elevation of methyl (indol-3-yl)
acetate in PD-RBD patients suggested alterations in gut microbiota 
composition or function, leading to disturbances in the tryptophan 
metabolic pathway and potentially contributing to sleep–wake cycle 
dysregulation. This dysregulation may reflect a gut-brain axis 

FIGURE 4

Significantly altered metabolite clusters and potential metabolite biomarkers for PD-RBD. (A) Twenty-one metabolites had VIP > 1 (also with 
FDR < 0.05), indicating their contribution to the classification in the OPLS-DA score plot. (B–D) Box plots and ROC curves for the serum levels of 
(B) suberic acid, (C) 3-methyl-L-tyrosine, and (D) methyl (indol-3-yl)acetate for the diagnosis of PD patients with RBD. Data are expressed as the means 
± SD. ***p ≤ 0.001 and ****p ≤ 0.0001.

TABLE 4  Identification of biomarkers between PD-RBD and PD-nRBD.

Biomarkers Molecular 
formula

Measured 
m/z

RT 
(s)

ppm VIP log2(FC) p-
valuea

AUC Trend ESI 
mode

Suberic acid C₈H₁₄O₄ 157.0834 135.3 0.162 2.820 1.16 <0.0001 0.967 ↑ ESI+

3-methyl-L-

tyrosine

C₁₀H₁₃NO₃ 195.1016 485.5 0.025 2.088 1.05 <0.0001 0.876 ↑ ESI+

Methyl (indol-3-yl)

acetate

C₁₁H₁₁NO₂ 172.0715 675 0.384 2.098 0.86 0.0001 0.864 ↑ ESI+

PD-RBD, PD with RBD patients; PD-nRBD, PD without RBD patients; RT, retention time; ppm, part per million; VIP, variable important in projection; FC, fold change; AUC, area under the 
curve; ↑: up-regulation; ↓: down-regulation; ESI+/−: Positive ion mode/Negative ion mode; ap-value obtained Student’s independent t-tests.
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dysfunction, as altered microbial tryptophan metabolism modulates 
systemic levels of neuroactive metabolites (71). In PD, the propagation 
of α-synuclein pathology from the gut to the brain (Braak’s hypothesis) 
(72) may be exacerbated by gut dysbiosis (73, 74). Suberic acid, an 
aliphatic dicarboxylic acid, was significantly elevated in PD-RBD 
patients, indicating impaired fatty acid β-oxidation and exacerbation of 
neuronal energy deficits. Notably, increased suberic acid levels have also 
been observed in the urine metabolites of PD patients, further 
supporting the role of mitochondrial energy metabolism dysregulation 
in PD-related pathology (75, 76). This impaired fatty acid β-oxidation 
could lead to ATP depletion, thereby impairing synaptic function and 
exacerbating neurodegeneration in vulnerable regions such as the 
substantia nigra—a key site affected in PD (77). Moreover, suberic acid 
accumulation could promote reactive oxygen species (ROS) 
overproduction, exacerbating oxidative stress that facilitates α-synuclein 
misfolding and aggregation (78, 79). This mechanism supports the 
established pathological association between mitochondrial ROS 
generation and α-synucleinopathy—a pathological hallmark of PD—in 
synucleinopathies (80–82). In contrast, 3-methyl-L-tyrosine exhibited 
a dual pattern, with decreased serum levels in PD patients compared 
with HCs and increased levels in PD-RBD patients compared with 
PD-nRBD patients. As a methylated derivative of L-tyrosine (83), the 
significant reduction in 3-methyl-L-tyrosine levels in the PD group 
aligns with the observed decline in L-tyrosine levels in our study, 
thereby providing another perspective on dopaminergic depletion. 
Notably, previous studies have demonstrated that PD patients receiving 
levodopa therapy exhibit significantly elevated serum levels of 3-methyl-
L-tyrosine compared to healthy controls (2, 46), whereas our drug-naïve 
cohort exhibited the opposite trend. This contrast suggests that L-Dopa 
may modulate tyrosine metabolism through alternative pathways or 
altered enzymatic activity during dopaminergic replacement therapy. In 
PD-RBD patients, TH activity is more severely reduced compared with 
PD-nRBD patients (84). This pronounced TH deficiency leads to 

impaired conversion of tyrosine to L-Dopa, thereby disrupting DA 
biosynthesis. Consequently, such metabolic blockage may redirect 
tyrosine flux toward alternative pathways, resulting in the accumulation 
of tyrosine-derived intermediates—such as 3-methyl-L-tyrosine—in the 
systemic circulation. This duality underscores the dynamic interplay 
between neurodegeneration and metabolic adaptation across 
PD progress.

Pathway enrichment analysis identified the PPAR signaling pathway 
as a key dysregulated pathway in PD-RBD, with a tendency towards 
inactivation. PPARs are nuclear receptors that modulate lipid 
metabolism, inflammation, cellular differentiation, and mitochondrial 
biogenesis (85, 86). The present findings of altered metabolites involved 
in lipid metabolism, such as alpha-dimorphecolic acid, align with the 
involvement of PPAR signaling in these conditions. Dysregulation of 
the PPAR signaling pathway has been implicated in the pathogenesis of 
PD (86, 87), as it plays a crucial role in energy metabolism (88), 
antioxidant stress response (89), and circadian metabolic homeostasis 
(90). For example, PPARα agonists demonstrate neuroprotective effects 
in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD 
mice by attenuating oxidative stress (89). Additionally, the deletion of 
PPARγ has been shown to disrupt diurnal rhythms in mice (91)—a 
dysfunction particularly relevant to the progression of RBD symptoms 
in PD. These findings collectively suggest that targeting the PPAR 
signaling pathway may alleviate metabolic disturbances in 
PD-RBD. Coupled with large language models (LLMs) trained on 
biomedical literature and clinical trial databases, researchers could 
rapidly screen FDA-approved drugs for repurposing candidates (e.g., 
anti-diabetic agents targeting PPARγ) that mitigate both motor and 
non-motor symptoms in PD-RBD (92). To optimize therapeutic 
efficacy, geometric deep learning (GDL) could predict drug–drug 
associations (DDAs) within a PPAR-centered heterogeneous network 
(93). By analyzing the geometric relationships between PPAR agonists, 
mitochondrial enhancers, and circadian modulators, GDL models may 

FIGURE 5

Scatter plot showing the KEGG pathway enrichment analysis results. (A) Pathway analysis of the significantly altered metabolites in the PD group versus 
the HC group. The red-to-yellow gradient signifies ascending p-values, and the dot size is scaled to show the magnitude per pathway. (B) Pathway 
analysis of the significantly altered metabolites in the PD-RBD group versus the PD-nRBD group.
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identify synergistic combinations (e.g., pioglitazone with melatonin) to 
address multifactorial PD-RBD pathology while minimizing adverse 
effects (94, 95).

Although our study provides a comprehensive analysis of 
metabolic profiling and identifies potential biomarkers in PD and 
PD-RBD, it had several limitations. Firstly, PD and PD-RBD were 
diagnosed based on clinical criteria. To address this, future studies 
should link pathophysiology markers, genetic technology, and 
neuroimaging to enhance diagnostic specificity. Secondly, the genetic 
background, dietary habits, and lifestyle factors of the patients and 
HCs may have influenced metabolite levels. Future research should 
calibrate these variables in larger cohorts to improve robustness and 
reproducibility. Finally, the present study focused on serum 
metabolites, and further investigation should integrate genomics, 
transcriptomics, and proteomics to provide additional insights into 
the molecular mechanisms underlying PD.

In summary, the present study identified valuable serum metabolic 
alterations that distinguish PD patients from HCs and PD-RBD patients 
from PD-nRBD patients, implicating dysregulated pathways (e.g., CCM 
and PPAR signaling) in PD pathogenesis. The identified metabolites 
(e.g., S-adenosylmethionine and 3-methyl-L-tyrosine) offer the 
potential for diagnosing and monitoring disease progression, while 
PPAR modulation may address RBD-specific pathology in PD. These 
findings enhance the understanding of neurodegenerative processes in 
PD and may facilitate the discovery of therapeutic targets.
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Exploring cognitive and 
emotional symptoms associated 
with hippocampal subfield 
atrophy in drug-induced 
Parkinsonism
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Background: Drug-induced Parkinsonism (DIP) is a secondary Parkinsonism 
with limited research on its hippocampal structural changes. This study explores 
hippocampal subfield volumes in DIP compared to Parkinson’s disease (PD) 
and healthy controls (HCs), investigating correlations with cognitive (Montreal 
Cognitive Assessment, MoCA), emotional (Hamilton Depression Rating Scale, 
HAMD; Hamilton Anxiety Rating Scale, HAMA), and motor (Unified Parkinson’s 
Disease Rating Scale, UPDRS) symptoms.

Methods: A total of 19 DIP patients, 20 PD patients, and 20 HCs were enrolled. 
MRI-based hippocampal subfield volumes were assessed using FreeSurfer, and 
clinical scores were evaluated for cognitive, emotional, and motor functions. 
Statistical analyses compared group differences and examined correlations.

Results: Significant atrophy was observed in the DIP group in multiple hippocampal 
subfields compared to HCs, including the presubiculum, subiculum, Granule 
cell and molecular layer of the dentate gyrus (GC-ML-DG), molecular_layer_HP, 
Cornu ammonis (CA) 1, CA4, hippocampal tail, and fimbria. MoCA scores positively 
correlated with volumes in bilateral hippocampus and subfields such as subiculum 
and CA4, while HAMD scores mainly showed negative correlations in both DIP 
and PD group. UPDRS scores revealed group-specific patterns, with DIP showing 
stronger associations between non-motor symptoms and hippocampal volume.

Conclusion: This study first reported significant hippocampal subfield atrophy in 
DIP, distinct from PD, and links structural changes to cognitive, emotional, and 
motor impairments. These findings advance understanding of DIP pathophysiology 
and underscore the hippocampus’s role in non-motor symptoms.

KEYWORDS

Drug-induced Parkinsonism, Parkinson’s disease, hippocampus, subfields, cognitive 
impairment

Introduction

Drug-induced parkinsonism (DIP) is one of the most common forms of secondary 
parkinsonism (Bondon-Guitton et al., 2011; Savica et al., 2017; Shiraiwa et al., 2018), resulting 
from the use of medications that block dopamine receptors or deplete dopamine levels (Feldman 
et al., 2022; Margolesky, 2019), and its prevalence and incidence of DIP increased in the recent 

OPEN ACCESS

EDITED BY

Alberto Cacciola,  
University of Messina, Italy

REVIEWED BY

Anupa A. Vijayakumari,  
Cleveland Clinic, United States
Charles Okanda Nyatega,  
Mbeya University of Science and Technology, 
Tanzania
Sebastiano Vacca,  
Northwell Health, United States

*CORRESPONDENCE

Shushan Zhang  
 susan448@163.com

†These authors have contributed equally to 
this work

RECEIVED 25 January 2025
ACCEPTED 13 June 2025
PUBLISHED 09 July 2025

CITATION

Zhou W, Tang M, Cheng B, Sun L, Lin H, Fan Y, 
Liu N and Zhang S (2025) Exploring cognitive 
and emotional symptoms associated with 
hippocampal subfield atrophy in 
drug-induced Parkinsonism.
Front. Aging Neurosci. 17:1566785.
doi: 10.3389/fnagi.2025.1566785

COPYRIGHT

© 2025 Zhou, Tang, Cheng, Sun, Lin, Fan, Liu 
and Zhang. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  09 July 2025
DOI  10.3389/fnagi.2025.1566785

156

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2025.1566785&domain=pdf&date_stamp=2025-07-09
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1566785/full
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1566785/full
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1566785/full
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1566785/full
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1566785/full
mailto:susan448@163.com
https://doi.org/10.3389/fnagi.2025.1566785
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2025.1566785


Zhou et al.� 10.3389/fnagi.2025.1566785

Frontiers in Aging Neuroscience 02 frontiersin.org

years (Han et al., 2019). Although DIP and Parkinson’s disease (PD) are 
both subtypes of parkinsonism (Shin and Chung, 2012; Wenning et al., 
2011), and DIP shares several clinical features with PD, such as 
bradykinesia and rigidity, the underlying neurobiological mechanisms 
of DIP remain poorly understood, with limited research focusing on its 
structural and functional brain changes. Unlike PD, which has been 
extensively studied, DIP has received far less attention, leaving significant 
gaps in our understanding of its neuropathological basis.

Neuroimaging offers valuable insights for diagnosing DIP, 
particularly in cases with clinical presentations that closely resemble 
PD (Pitton Rissardo and Caprara, 2023). Current MRI studies on DIP 
remain limited, with existing research primarily focusing on 
alterations in the substantia nigra (Sung et al., 2016) and white matter 
(Lee et  al., 2017). Our previous study found structural (volume) 
alterations in the subcortical nuclei of DIP patients (Zhou et al., 2024). 
These studies underscore the scarcity of neuroimaging investigations 
into DIP, highlighting a need for further exploration to better 
understand its pathophysiology and distinguish it from PD.

The hippocampus serves as a critical brain region involved in 
cognitive processes and emotional regulation (Li et al., 2020; Zhang et al., 
2016). Moreover, the hippocampus is divided into several substructures, 
each with distinct functions and vulnerabilities in neurodegenerative 
diseases. Its substructures, such as the dentate gyrus and CA regions, 
have distinct roles in memory, learning, and mood regulation and are 
known to be affected in neurodegenerative and psychiatric disorders. 
Previous studies have reported that hippocampal alteration is associated 
with cognitive function in PD patients (Yildiz et al., 2015), indicating its 
potential as a biomarker for disease progression and treatment response. 
Beyer et al. (2013) found that memory deficits in recall and recognition 
have been linked to hippocampal atrophy in newly diagnosed PD 
patients, particularly in verbal memory tasks. Furthermore, Low et al. 
(2019) have reported atrophy in specific hippocampal subfields, such as 
CA1, in individuals who progressed to PD dementia. These findings 
underscore the strong association between hippocampal dysfunction 
and cognitive impairment in PD. Cognitive impairment and emotional 
disturbances can also occur in patients with DIP. However, it remains 
unclear whether these changes are associated with hippocampal 
structural alterations in DIP patients, and to date, no studies have 
specifically investigated the relationship between hippocampal subfield 
volumes and clinical symptoms, such as cognitive deficits, depressive 
symptoms, and motor dysfunction, in this population.

Hence, our study is the first to explore the relationship between 
hippocampal subfield volumes and cognitive and emotional 
functioning in DIP patients, potentially offering new insights into the 
pathophysiology of DIP and its management.

This research not only provides new perspectives on the 
hippocampal structural alterations associated with DIP, but also helps us 
understand the potential relationship between these changes and 
cognitive, emotional, and motor symptoms.

Methods

Participants

The research protocol received approval from the Local Ethical 
Committee (Approval no. 2021ER0105-1), and all participants signed 
written informed consent forms.

The study involved participants who were part of a previous 
cohort study (Zhou et al., 2024). A total of 19 patients with DIP, 20 
patients diagnosed with PD, and 20 healthy control participants (HCs) 
were enrolled. The diagnosis of PD was made according to the 2016 
Chinese diagnostic guidelines. DIP cases were confirmed based on the 
following criteria: (1) exhibiting parkinsonism symptoms; (2) absence 
of prior parkinsonism before exposure to causative drugs; (3) 
symptom manifestation following drug usage; and (4) being right-
handed. Exclusion criteria for DIP participants included: (1) a 
diagnosis of primary Parkinson’s disease or other identifiable causes 
of parkinsonism; (2) MRI contraindications (e.g., claustrophobia or 
presence of metallic implants); (3) structural brain damage or motion 
artifacts on MRI; (4) history of neurological disorders (e.g., stroke, 
head injury); or (5) unwillingness to participate.

For PD participants, inclusion criteria were: (1) diagnosis per the 
2016 Chinese PD criteria; (2) voluntary consent; and (3) right-
handedness. Exclusion criteria included: (1) secondary or atypical 
parkinsonism; (2) inability to cooperate with symptom evaluations; 
(3) MRI contraindications; (4) significant structural abnormalities or 
motion artifacts on MRI; and (5) unwillingness to participate.

HCs were age-and sex-matched, with all participants being right-
handed. The exclusion criteria for HCs included: (1) psychiatric or 
neurological disorders; (2) MRI contraindications; (3) significant 
structural abnormalities or motion artifacts on MRI; and (4) 
unwillingness to participate.

The evaluation of clinical symptoms was conducted using the 
Unified Parkinson’s Disease Rating Scale (UPDRS) (Goetz et al., 2008) 
and the Hoehn-Yahr (H-Y) staging scale (Goetz et al., 2004). The 
assessment of motor symptoms was carried out with the UPDRS-III 
and H-Y staging scale, whereas the evaluation of non-motor 
symptoms and daily living experiences related to motor functions was 
performed using the UPDRS-I and UPDRS-II, respectively. Cognitive 
assessment was conducted using the Montreal Cognitive Assessment 
(MoCA). Additionally, the patients’ emotional state was evaluated 
through the Hamilton Depression Rating Scale (HAMD) and the 
Hamilton Anxiety Rating Scale (HAMA).

MRI scan

MRI data were collected using a 3.0 T scanner (GE Discovery 
MR750, USA) equipped with a 32-channel head coil. High-resolution 
3D-T1-weighted imaging was performed with the following 
parameters: repetition time (TR) of 8.3 ms, echo time (TE) of 3.3 ms, 
flip angle of 15°, field of view (FOV) of 240 × 240 mm, image matrix 
of 240 × 240, and slice thickness of 1.0 mm with no interslice gap.

Imaging analysis

The hippocampal subfields segmentation was performed using 
FreeSurfer version 7.1.1. This automated process included several 
steps: correcting motion artifacts in T1-weighted images, aligning 
images to the Talairach coordinate system, adjusting for B1 field 
inhomogeneities, and applying a hybrid watershed algorithm for skull 
stripping. Subsequent stages involved labeling volumes, segmenting 
subcortical regions, refining subcortical structures, and constructing 
cortical models. The analysis specifically extracted volumes of 12 
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hippocampal subfields per hemisphere, including the Cornu ammonis 
(CA) 1, CA3, CA4, etc. (Figure  1). Additionally, the intracranial 
volume (ICV) was calculated. This hippocampal subfield segmentation 
approach has been widely used in neuroimaging research (Iglesias 
et al., 2015; Sämann et al., 2022).

Statistical analysis

Continuous variables were expressed as either the mean or median. 
For H-Y staging scale, stages 2 and above were combined into a single 
group due to the limited number of patients in the higher stages (Ziegler 
et al., 2013). Comparisons of demographic and clinical features were 
conducted using analysis of variance (ANOVA), Mann–Whitney U-tests, 
or Chi-Squared tests. To examine hippocampal volume parameters 
among three groups, analysis of covariance (ANCOVA) was applied, 
followed by post-hoc analyses. p-values were adjusted for multiple 
comparisons using the false discovery rate (FDR). The relationship 
between clinical parameters and subcortical volume was explored 
through partial correlation analysis, controlling for sex, age, and ICV.

All statistical analyses were carried out with SPSS software 
(Version 23.0), with p < 0.05 considered statistically significant.

Results

Demographics

The demographic and clinical characteristics of these subject 
groups are showed in the Table 1. There were no significant differences 
in age, sex distribution among the three groups. The duration of illness 
was marginally longer in the PD group than in the DIP group, though 

this difference was not statistically significant. Cognitive performance, 
assessed using the MoCA score, showed a significant group difference, 
with the DIP group scoring lower than the PD group. Scores on the 
UPDRS subscales (I, II, and III) showed no significant differences 
among groups. Emotional states, evaluated using the HAMA and 
HAMD score, were similar across groups, with no statistically 
significant differences (p > 0.05).

Comparison of hippocampal and subfield 
volumes

The results revealed significant differences in hippocampal subfield 
volumes across the three groups, with the DIP group showing 
widespread reductions compared to HCs. Both the bilateral whole 
hippocampal volumes were significantly smaller in the DIP group, 
alongside reductions in several subfields, including the presubiculum, 
subiculum, Granule cell and molecular layer of the dentate gyrus 
(GC-ML-DG), Molecular_layer_HP, CA1, CA4, hippocampal tail, and 
fimbria. These reductions were bilateral and were more pronounced in 
DIP compared to HC, with some subfields also differing from the PD 
group. Overall, the DIP group exhibited the more severe hippocampal 
atrophy among the groups studied (Table 2 and Figure 2).

Correlation analysis

The results of the correlation analysis are presented in the 
following heatmap (Figure 3 and Supplementary Tables 1, 2).

In both DIP and PD groups, MoCA scores were positively 
correlated with bilateral total hippocampal volumes and several 
subfield volumes, while HAMD scores predominantly exhibited 

FIGURE 1

The segmentation of hippocampal subfields on T1-weighted MRI images. The hippocampus was segmented into the following subfields: 
parasubiculum, presubiculum, subiculum, CA1, CA3, CA4, molecular_layer_HP, GC-ML-DG, HATA, fimbria, tail and fissure. CA, Cornu ammonis; GC-
ML-DG, Granule cell and molecular layer of the dentate gyrus; HATA, Hippocampus-amygdala transition area.
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negative correlations with hippocampal volume metrics. According to 
the heatmap results, the DIP group displayed a greater number of 
statistically significant correlations between hippocampal volume 
metrics and UPDRS scores compared to the PD group, with most of 
these correlations being negative.

Subgroup analysis based on H-Y staging 
scale

Patients were grouped using an H-Y stage threshold of grade 2, 
with those at grade 2 and above combined into a single group. The 
volumes of the hippocampus and its subfields were compared in both 
the DIP and PD groups at different H-Y stages, respectively. The 
results showed no statistically significant differences in the whole 
hippocampal volume or its subfield volumes between the two groups 
(Supplementary Tables 3, 4).

Discussion

This study is the first to investigate hippocampal subfield volume 
alterations in patients with DIP and their associations with clinical 
parameters, including cognitive performance (MoCA), emotional states 
(HAMD), and motor/non-motor symptoms (UPDRS). Our findings 
revealed significant reductions in hippocampal subfields in the DIP 
group compared to HCs, revealing a distinct pattern of hippocampal 
atrophy in DIP. Moreover, the DIP group exhibited more severe 
hippocampal volume loss than the PD group, which may due to specific 
mechanistic differences between primary and secondary parkinsonism. 
These structural changes were significantly correlated with clinical 
outcomes, particularly cognitive and emotional dysfunction, suggesting 
that hippocampal atrophy may play a critical role in the course of DIP.

We observed widespread reductions in hippocampal subfields, 
including the presubiculum, subiculum, GC-ML-DG, 

molecular_layer_HP, CA1, CA4, hippocampal tail, and fimbria, reflect 
severe structural damage in DIP, with pronounced atrophy in DIP 
compared to PD. On one hand, hippocampal alterations are possibly 
caused by neuronal damage (Fan et al., 2018; Zhu et al., 2018). Our 
results may suggest that hippocampal atrophy occurs in both DIP and 
PD, potentially reflecting a common structural vulnerability. Previous 
researches reported that cognitive impairments in PD have been 
linked to reductions in hippocampal volume (Xu et  al., 2020; 
Carlesimo et al., 2012). Recent study (Low et al., 2019) found atrophy 
in the CA1 subfield of the hippocampus in developed PD dementia. 
Hippocampal volume decrease might serve as a common biomarker 
of cognitive vulnerability in both degenerative and non-degenerative 
parkinsonian syndromes.

On the other hand, the more extensive and severe hippocampal 
atrophy observed in DIP compared to PD when compared to HCs, 
might reflect unique pathological processes influenced by differences 
in clinical characteristics. The disease course in DIP is typically shorter 
than in PD (López-Sendón et al., 2012), and its progression was more 
quickly (Shiraiwa et al., 2018). This may suggest that hippocampal 
volume reductions in DIP may be attributed to the acute effects of 
drug exposure, contrasting with the gradual, progressive 
neurodegenerative changes observed in PD. Additionally, DIP patients 
exhibited significantly lower MoCA scores compared to PD patients, 
indicating more pronounced cognitive impairment, consistent with 
earlier studies indicating that neurological deficits in DIP are more 
pronounced than those in PD (Shin and Chung, 2012). We speculated 
that cognitive vulnerability in DIP may exacerbate hippocampal 
susceptibility. So, these factors may collectively contribute to the more 
severe hippocampal atrophy observed in DIP patients.

Cognitive impairment, as reflected by lower MoCA scores in the 
DIP group, was strongly associated with reduced hippocampal 
subfield volumes. Specifically, subfields such as the subiculum, CA4, 
and CA1 showed significant positive correlations with MoCA scores. 
Firstly, we  found the DIP patients exhibited more pronounced 
cognitive impairment, in addition to the previously mentioned 

TABLE 1  Demographic and clinical characteristics of all participants.

Characteristics PD DIP HC f/t/x2/z p

n 20 19 20 – –

Sex M/F 6/14 4/15 10/10 3.849 0.146

Age, mean ± SD 64.60 ± 7.63 63.47 ± 8.91 60.40 ± 6.61 1.570 0.217

Illness duration (years), 

median (range)
1 (0.1 ~ 4) 0.6 (0.1 ~ 2.6)

–
−1.947 0.051

MoCA, mean ± SD 19.60 ± 5.75 15.42 ± 5.46 – 2.342 0.026

UPDRS I, mean ± SD 9.85 ± 6.16 10.789 ± 7.58 – −0.426 0.673

UPDRS II, mean ± SD 9.00 ± 4.24 7.631 ± 6.73 – 0.461 0.453

UPDRS III, mean ± SD 15.45 ± 6.57 11.89 ± 6.35 – 1.718 0.094

HAMA, mean ± SD 10.30 ± 4.94 12.11 ± 7.13 – −0.923 0.362

HAMD, mean ± SD 12.70 ± 5.14 13.11 ± 3.71 – −0.281 0.780

H-Y grade, N

Grade 1 12 6
3.167 0.075

Grade ≥2 8 13

PD, Parkinson’s disease; DIP, Drug-induced parkinsonism; HC, Healthy control; UPDRS, Unified Parkinson’s Disease Rating Scale; HAMD, Hamilton Depression Rating Scale; HAMA, 
Hamilton Anxiety Rating Scale.
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relationship between cognitive impairment and hippocampal 
changes, cognitive impairment itself has been reported as a 
significant risk factor in the onset and progression of DIP (López-
Sendón et al., 2012). Secondly, a positive correlation was observed 
between MoCA scores and hippocampal subfield volumes, 
suggesting that smaller hippocampal volumes were linked to more 
severe cognitive deficits. Although the causal relationship between 
these two factors remains unclear, it is possible that the reduction in 
hippocampal volume could be  a result of prolonged cognitive 
decline, or conversely, that hippocampal atrophy may contribute to 
the worsening of cognitive function. This underscores the complex 
interplay between structural brain changes and cognitive 
performance in DIP, warranting further investigation to elucidate 
the direction of causality.

The negative correlations between HAMD scores and 
hippocampal subfield volumes, particularly in the HATA and CA3, 
suggest that smaller hippocampal volumes are linked to greater 
depressive symptoms in DIP patients. These regions are crucial for 
emotional regulation, for example, CA3 is an important subfield 

involved in depression (Nolan et al., 2020; Roddy et al., 2019). All 
of them have been reported decreased volume in depression in the 
majority researches (Nolan et al., 2020; Sun et al., 2023). Moreover, 
these correlations were stronger in DIP than in PD, indicating that 
hippocampal atrophy may have a more significant impact on mood 
disturbances in DIP patients. In addition to the interplay with 
hippocampal structural changes, gender differences in the 
occurrence of DIP may also be another contributing factor. Since 
DIP has a higher prevalence in female (Shin and Chung, 2012), who 
also have a higher incidence of depression (Eid et al., 2019; Marx 
et al., 2023), and our DIP sample also included a higher proportion 
of female participants. So, gender-specific factors may contribute to 
the more pronounced mood disturbances observed in the 
DIP group.

While the hippocampus is primarily associated with cognitive and 
emotional functions, exploring its relationship with motor symptoms 
may be significant in DIP and PD. Molina et al. (2016) reported that 
motor impairments in PD patients can predict cognitive deficits in 
schizophrenia patients, suggesting a potential mediating role of the 

TABLE 2  Comparison of hippocampal and subfield volumes among the DIP, PD and HCs.

Hippocampus/
Hippocampal 
subfields

PD DIP HC F-value p-
value

P.fdr PD 
vs. 
DIP

PD 
vs. 
HC

DIP 
vs. 
HCMean SD Mean SD Mean SD

L_Whole_hippocampus 3485.959 385.228 3261.666 359.095 3679.575 279.442 9.449 0.000 0.000* 0.097 0.041* 0.000*

L_parasubiculum 73.881 22.334 67.846 15.711 68.540 9.457 1.224 0.302 0.329 – – –

L_presubiculum 324.380 55.629 294.330 32.923 332.292 43.366 4.760 0.013 0.020* 0.081 0.434 0.038*

L_subiculum 446.130 71.111 400.933 56.843 477.459 44.711 9.974 0.000 0.000* 0.052 0.058 0.001*

L_CA1 629.233 77.869 588.794 60.242 644.187 47.073 5.553 0.006 0.012* 0.175 0.237 0.003*

L_CA3 208.788 18.867 203.337 31.838 213.101 25.282 0.796 0.456 0.456 – – –

L_CA4 251.138 24.892 234.245 31.918 259.862 25.423 6.438 0.003 0.007* 0.113 0.136 0.003*

L_molecular_layer_HP 550.540 64.481 514.973 60.888 580.297 47.106 7.422 0.001 0.003* 0.135 0.076 0.002*

L_GC-ML-DG 285.889 31.899 268.815 38.063 303.125 29.522 7.826 0.001 0.003* 0.185 0.033* 0.001*

L_HATA 56.998 9.807 56.212 8.401 60.201 9.038 3.492 0.038 0.051 – – –

L_fimbria 66.627 19.459 56.977 16.978 88.415 24.118 7.797 0.001 0.003* 0.098 0.032* 0.004*

L_Hippocampal_tail 592.354 72.326 575.204 82.157 652.095 69.393 5.134 0.009 0.015* 0.425 0.037* 0.003*

L_hippocampal-fissure 162.361 25.008 146.394 26.243 155.661 12.506 2.077 0.135 0.162 – – –

R_Whole_hippocampus 3633.677 373.401 3419.987 335.977 3867.794 317.239 8.695 0.001 0.001* 0.082 0.081 0.000*

R_parasubiculum 72.763 22.543 60.568 15.202 62.718 10.671 1.926 0.156 0.187 – – –

R_presubiculum 314.535 46.613 286.962 32.306 315.894 32.380 4.956 0.011 0.019* 0.094 0.427 0.004*

R_subiculum 451.420 64.976 422.907 52.023 491.559 48.661 7.703 0.001 0.006* 0.183 0.045* 0.001*

R_CA1 656.910 67.770 625.945 62.959 695.484 51.441 6.139 0.004 0.012* 0.220 0.142 0.001*

R_CA3 233.554 21.833 228.278 32.133 240.219 28.800 1.255 0.293 0.320 – – –

R_CA4 269.070 28.985 258.567 30.599 279.162 29.416 3.445 0.039 0.052 – – –

R_molecular_layer_HP 631.983 85.152 588.281 69.610 696.656 84.586 5.874 0.005 0.012* 0.068 0.164 0.001*

R_GC-ML-DG 305.614 32.500 292.230 37.571 321.179 31.622 4.665 0.014 0.021* 0.320 0.113 0.002*

HATA 58.795 8.472 52.394 9.419 62.414 8.108 5.174 0.009 0.018* 0.053 0.698 0.003*

R_fimbria 65.493 17.810 56.687 20.129 82.596 16.324 6.408 0.003 0.012* 0.094 0.027* 0.004*

R_Hippocampal_tail 573.539 59.158 547.168 58.328 619.915 46.827 9.242 0.000 0.000* 0.183 0.021* 0.000*

R_hippocampal-fissure 175.076 33.815 176.197 28.152 166.776 19.667 0.187 0.830 0.830 – – –

PD, Parkinson’s disease; DIP, Drug-induced parkinsonism; HC, Healthy control. CA, Cornu ammonis; GC-ML-DG, Granule cell and molecular layer of the dentate gyrus; HATA, 
Hippocampus-amygdala transition area.*p < 0.05.
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hippocampus. Ledoux et  al. (2014) found that hippocampal 
dysfunctions can affect motor-related tasks. These results suggested 
that the hippocampus may play a role in integrating cognitive and 
motor functions, which could have implications for understanding the 
pathophysiology of related disorders. In our study, the heatmap 
analysis revealed distinct patterns of correlation between UPDRS I/II/
III and hippocampal subfield volumes in both DIP and PD groups. 
These findings highlight group-specific differences in how hippocampal 
subfields relate to motor and non-motor symptoms in DIP and 
PD. Previous studies have suggested the hippocampus, interacting with 
the basal ganglia and prefrontal cortex, likely contributed to motor and 
cognitive integration within the broader cortico-basal ganglia-thalamic 
circuits (Maurice et al., 2015; Ursino et al., 2020). Notably, the more 
extensive correlations in the DIP group, particularly with UPDRS-I and 
III, may suggest a heightened hippocampal involvement in this 
condition, potentially reflecting its unique pathophysiology. Further 
research is needed to clarify these associations and to determine 
whether hippocampal structural changes could serve as biomarkers for 
symptom severity or progression in DIP and PD.

Additionally, subgroup analysis based on Hoehn and Yahr (H-Y) 
staging showed no significant differences in hippocampal volumes or 
subfield volumes between the DIP and PD groups. This lack of 
significant structural differences may be attributed to the relatively 
short disease duration in our sample, suggesting that hippocampal 
structural changes might not yet be detectable.

Although subgroup analysis based on H-Y staging scale did not 
show significant differences in hippocampal volumes between the 
DIP and PD groups, we observed significant correlations between 

hippocampal volumes parameters and UPDRS-III scores. Compared 
with UPDRS, the H-Y scale can provide a limited evaluation of the 
severity of motor symptoms (Movement Disorder Society Task Force 
on Rating Scales for Parkinson's Disease, 2003; Yamada et al., 2022). 
Another possible explanation is that UPDRS-III, as a continuous 
measure, offers greater sensitivity in quantifying the severity of motor 
symptoms. In contrast, the H-Y scale is categorical and provides a 
general information of disease stage. Furthermore, the relatively 
small sample sizes within H-Y subgroups may limit the statistical 
power to detect subtle group differences. Further researches with 
larger samples and longitudinal follow-up are needed to confirm 
our findings.

This study has several limitations. Firstly, the relatively small 
sample size may have reduced the statistical power, potentially 
affecting the ability to detect minor differences, especially in subgroup 
analyses. Future studies with larger cohorts are needed to validate 
these findings. Second, the cross-sectional design precludes causal 
inferences about the relationship between hippocampal atrophy and 
clinical outcomes. Longitudinal studies would be valuable to explore 
how hippocampal changes progress over time and their potential 
reversibility upon cessation of causative drugs. Third, while the study 
focused on volumetric changes in hippocampal subfields, functional 
alterations or connectivity changes were not assessed. Combining 
structural MRI with functional imaging techniques, such as resting-
state fMRI, could provide a more comprehensive understanding of 
hippocampal dysfunction in DIP. Finally, the heterogeneity of the 
drugs causing DIP in the recruited population may introduce 
variability in the observed effects. Stratifying patients by the specific 

FIGURE 2

Comparison of Hippocampal Subfield Volumes among DIP, HC, and PD. The blue lines indicate the results of ANCOVA among these three groups, 
while the black lines represent post-hoc analysis. *Represents statistically significant differences (p < 0.05) in either the ANOVA or post-hoc 
comparisons.
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causative agents in future research could clarify drug-specific impacts 
on hippocampal subfields.

In conclusion, our research provides new perspectives on the 
structural changes in hippocampal subfields associated with DIP, 
focusing on significant atrophy in specific regions and their 
correlations with cognitive, emotional, and motor symptoms. Our 
findings highlight the need for greater clinical attention to 
hippocampal alterations in DIP, particularly given its significant 
impact on cognition, mood, and even motor-related symptoms. 
Moreover, understanding the unique patterns of hippocampal 
atrophy in DIP may provide insights into the broader mechanisms 
underlying drug-induced neurotoxicity and secondary parkinsonism.
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Backgrounds: Early-onset Parkinson’s disease (EOPD) presents a significant 
financial burden on healthcare systems and medical expenses. However, there 
has been a lack of comprehensive quantitative assessments to fully understand 
the extent of this burden. The Global Burden of Diseases (GBD) initiative aims 
to provide a standardized and thorough evaluation of these factors on a global, 
regional, and national scale. This study aimed to calculate the global burden of 
EOPD and characterize regional disparities, SDI-based inequalities, and gender 
differences in disease burden, with a focus on trends from 1990 to 2021.

Methods: We utilized data from the GBD Study 2021 to analyze the burden of 
EOPD by examining factors such as incidence, prevalence, disability-adjusted 
life years (DALYs), and mortality rates. We focused on trends in EOPD incidence, 
prevalence, DALYs, and deaths from 1990 to 2021. Additionally, socio-
demographic index (SDI)-related determinants that influence EOPD DALYs and 
characterized the disparities in EOPD burden associated with different SDI levels 
over the same period.

Results: In EOPD, a significant increase in age-standardized rates for incidence, 
prevalence, and DALYs while the death rate declined. Males exhibited a higher 
burden than females across all metrics. Geographic disparities showed that East 
Asia had the highest rates of incidence and DALYs, while Andean Latin America 
recorded the highest prevalence. Countries with higher SDI levels, particularly 
China, Bolivia, and Peru, bore the greatest burden. Socioeconomic patterns 
suggested high-middle SDI regions experienced the highest rates of incidence 
and prevalence, whereas middle-SDI regions showed the highest rates of 
disability and mortality. Decomposition analysis revealed population growth 
was the primary driver of increased DALYs in middle-SDI regions. Additionally, 
inequality analysis indicated that countries with higher SDI levels faced a 
disproportionately lower burden of disease.
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Conclusion: This study confirms a global increase in the burden of EOPD, and 
indicate rising incidence and prevalence rates, an increase in DALYs, and a 
decline in mortality rates. A notable predominance of male cases, along with 
significant geographic and socioeconomic disparities. Regions with a middle 
SDI experience the most significant burden of disability and mortality, primarily 
driven by population growth. This underscores the urgent need for targeted 
interventions to address these inequities.

KEYWORDS

epidemiology, public health, early-onset Parkinson’s disease, disability-adjusted life 
years, neurological disorders

Introduction

Parkinson’s disease (PD) is a prevalent neurodegenerative 
movement disorder that presents a range of clinical symptoms (1). 
According to the Global Burden of Diseases, Injuries, and Risk Factors 
Study (GBD) 2021, the global prevalence of PD has increased by 76% 
since 1990 (2). A notable subgroup within this global burden is early-
onset Parkinson’s disease (EOPD), which is defined by onset before 
the age of 50 (3). EOPD presents distinct challenges for young adults 
and healthcare systems (4).

Although EOPD is not typically considered life-threatening, it 
significantly affects the healthcare system from a socioeconomic 
standpoint (5, 6). Compared to late-onset Parkinson’s disease 
(LOPD), EOPD is associated with a higher incidence of motor 
complications and atypical symptoms, which can result in 
misdiagnosis and being overlooked. Research on suicidal ideation 
has indicated that patients with EOPD experience a significantly 
higher prevalence of such thoughts compared to those with LOPD 
(7). In addition to the risks of motor complications, atypical clinical 
manifestations, and increased suicidal ideation, EOPD patients face 
various unique challenges that deserve attention. These challenges 
include delays in diagnosis, complexities in management, 
workplace stigma, and the psychosocial impact of living with a 
chronic illness.

Nonetheless, epidemiological studies on EOPD are currently 
insufficient (8, 9). The majority of existing research has been carried 
out in the past and has concentrated on particular geographical 
regions. In this study, we analyzed the data according to the World 
Health Organization (WHO) regional classifications and social 
demographic index (SDI) quintiles to ensure global comparability. 
It is imperative to have up-to-date assessments of the worldwide, 
regional, and national prevalence of EOPD, as well as trends over 
time, with a specific focus on measuring regional disparities and 
SDI-based inequalities. These analyses aim to inform evidence-
based health policies, strategies, and resource distribution for 
this disorder.

The study aims to analyze global, regional, and national trends in 
EOPD burden (1990–2021) and characterize geographic disparities 
(by WHO regions), socioeconomic inequalities (by SDI quintiles), and 
gender differences, providing insights for targeted interventions. The 
analysis was performed on a global, regional, and national scale, with 
detailed stratification by WHO regions and SDI categories to highlight 
disparities in disease burden and healthcare access. The research 
identified significant inequalities in the burden of this condition 
related to sex and sociodemographic development, providing valuable 

insights for healthcare institutions, policymakers, and the general 
public. The study was conducted as part of the GBD Collaborator 
Network, in accordance with the established GBD study protocol.

Methods

Study population and data collection

The study population and data collection for this research involved 
gathering information on the incidence, prevalence, Disability-
Adjusted Life Years (DALYs), and mortality rates of EOPD at global, 
regional, and national levels, drawing from the Global Burden of 
Disease Study 2021 (GBD 20211). EOPD is clinically defined as a 
diagnosis made before the age of 50 (3). However, the GBD Study 2021 
presents data based on current age groups, such as 40–54 years, rather 
than on the age of onset. To estimate the burden of EOPD, we have 
selected the 40–54 age group as a practical proxy. This approach aligns 
with previous GBD analyses of early-onset conditions and is supported 
by epidemiological studies (8, 10).

This study offers a comprehensive analysis of 369 diseases and 87 
risk factors across 204 countries and territories. The countries and 
territories were categorized into 46 regions based on epidemiological 
similarities and geographical proximity. Additionally, they were 
further grouped into five categories according to the SDI.

SDI incorporates income per capita, educational attainment, and 
total fertility rate, capturing various aspects of development that 
purely income-based metrics overlook. We chose SDI over income 
level for three main reasons: first, Multidimensionality: Income alone 
fails to reflect the effects of education on health literacy or changes in 
fertility-related demographics. For instance, regions with similar 
income levels may differ in educational attainment, resulting in 
varying burdens of EOPD. Second, GBD Framework Consistency: 
SDI is the standard socioeconomic metric used in GBD studies, 
allowing for better comparability across regions in previous EOPD 
research (11–13). Third, Burden Driver Discrimination: Our 
decomposition analysis revealed that trends stratified by SDI show 
different drivers of disease burden. For example, population growth 
significantly impacted DALYs in middle-SDI regions, while aging was 
a more significant factor in high-SDI regions. These nuances cannot 
be captured through income-level analysis.

1  https://ghdx.healthdata.org/gbd-results-tool
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The data utilized in this study can be accessed through the Global 
Health Data Exchange query tool,2 with data analysis finalized on 
March 25, 2024. Ethical oversight for GBD research was provided by 
the Institutional Review Board of the University of Washington, which 
granted a waiver of informed consent. Further details on ethical 
standards can be found on the official website (see text footnote 1).

Statistical analysis

Prior research has thoroughly explained the methodologies used 
in the GBD Study 2021 (12, 13). This study computed a 95% 
uncertainty interval (UI) for each variable, confirming that all 
age-standardized rates (incidence, prevalence, DALYs, and death 
rates) are expressed per 100,000 population. Significance was 
determined using two-sided tests with a threshold of p < 0.05. The 
analysis of age-standardized incidence, prevalence, DALYs, and death 
rates was conducted and stratified by global, regional, national, gender, 
and SDI categories.

Using the Joint Command Line version, a join-point regression 
analysis was performed to evaluate trends in the burden of EOPD. This 
software monitors data trends over time and applies the simplest 
feasible model by linking multiple line segments on a logarithmic 
scale. Average annual percentage changes (AAPC) were computed to 
analyze these trends. AAPC represents a geometrically weighted mean 
of the various annual percentage changes derived from the join-point 
trend analysis, with weights corresponding to the duration of each 
period within the designated time frame (14). Additionally, the linear 
regression model successfully calculated a 95% confidence interval for 
the AAPC value, indicating a significant relationship between the 
AAPC value and the corresponding age-standardized rate (ASR) (10).

Decomposition analysis was used to visually demonstrate the 
effects of aging, population dynamics, and epidemiological changes 
on DALY variations from 1990 to 2021, with epidemiological changes 
accounting for adjustments related to age and population-specific 
mortality and morbidity rates (15).

We conducted a frontier analysis to further investigate the 
relationship between the burden of EOPD and sociodemographic 
development. The difference between the observed age-standardized 
DALYs rate in a country and its frontier indicates a potential health 
gain that could be  achieved considering the current level of 
development in that country or region. By quantifying the gap 
between the observed DALYs and this frontier, we  can identify 
unexploited health gains, which is essential for our goal of finding 
areas where intervention is needed. We  used nonparametric data 
envelope analysis and referenced detailed descriptions in previous 
studies (16).

Our study assessed distributive inequality in the burden of EOPD 
using the slope index of inequality and health inequality concentration 
index, which are commonly used metrics for measuring absolute and 
relative gradient inequality (17, 18). The slope index of inequality was 
calculated through a regression analysis of country-level 
age-standardized years of life lost (YLL) rates due to EOPD across all 
age groups. This analysis utilized a relative social position scale, 

2  http://ghdx.healthdata.org/gbd-results-tool

determined by the midpoint of cumulative class intervals of the 
population, ranked by gross domestic product (GDP) per capita. To 
address heteroskedasticity, a weighted regression model was 
employed, and a logarithmic transformation of the relative social 
position value was used to correct for non-linearity resulting from 
marginal utility. Additionally, the Health Inequality Concentration 
Index was calculated by fitting a Lorenz concentration curve to the 
observed cumulative relative distributions of the population ranked 
by income and the burden of disease measured in Years of Life Lost. 
This was followed by the numerical integration of the area under the 
curve. These indices were derived from country-level data on 
age-standardized YLL rates and socioeconomic indicators, such as 
GDP per capita, obtained from the Global Burden of Disease Study 
2021 (12, 13).

All statistical analyses and graphical representations were 
conducted using R version 4.5.0 and GraphPad Prism 8.

Results

Global early-onset Parkinson’s disease 
burden

In 2021, global estimates indicated there were approximately 
133,052 new cases and 909,753 prevalent cases of EOPD. This 
corresponds to 351,260 DALYs per 100,000 population attributed to 
the condition. Additionally, the same year recorded about 5,105 
EOPD-related deaths. Sex-specific analysis showed a consistent male 
predominance across all burden metrics. In 2021, the male-to-female 
ratios were 1.72 for incidence, 1.65 for prevalence, 1.69 for DALYs, 
and 1.81 for mortality (Table 1; Figure 1).

A longitudinal analysis from 1990 to 2021 revealed differing 
trends in age-standardized rates. The age-standardized incidence rate 
(ASIR) experienced steady growth from 1997 to 2018, with an annual 
percentage change (APC) of 1.49% (95% CI: 1.43–1.55; p < 0.05), 
followed by a modest decline post-2018. Similarly, the 
age-standardized prevalence rate (ASPR) peaked between 1997 and 
2012, with an APC of 1.21% (95% CI: 1.13–1.28), but showed a 
deceleration in growth after 2017. In contrast, the most significant 
increase in age-standardized DALY rates occurred earlier, between 
1990 and 1995, with an APC of 1.07% (95% CI: 0.75–1.40; p < 0.05). 
Meanwhile, the age-standardized death rate (ASDR) has steadily 
declined since 1990, with an APC of −0.97% (95% CI: −1.08 to −0.85; 
p < 0.05). This decline may reflect advancements in therapeutic 
interventions and disease management strategies (Figure 2).

Regional and national early-onset 
Parkinson’s disease burden

In 2021, regional disparities in EOPD burden were evident based 
on WHO classifications. East Asia experienced the highest ASIR 
globally, followed by the Western Pacific Region and Andean Latin 
America. Conversely, the lowest rates across all metrics, including 
ASIR, were consistently observed in the subregions of Africa 
(Western, Eastern, Southern, Northern, and Central Africa). Andean 
Latin America recorded the highest age-standardized prevalence 
rate (ASPR), surpassing both East Asia and the Western Pacific 
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TABLE 1  The global incidence, prevalence, disability-adjusted life-years, and deaths of early onset Parkinson’s disease in 2021 for both sexes, sex-specific and all SDI, with AAPC from 2009 and 2021.

Variables Location 1990 2021 AAPC % (95% CI) 
1990–2019

Cases (95% UI) ASR (per 100, 000) 
(95% UI)

Cases (95% UI) ASR (per 100, 000) 
(95% UI)

Incidence

Global 35441.90 (50248.49 to 22702.09) 4.91 (6.96 to 3.14) 133051.85 (182904.58 to 91891.59) 9.17 (12.63 to 6.32) 2.02 (1.81 to 2.23)

Female 15560.22 (22000.88 to 9829.93) 4.39 (6.21 to 2.76) 54086.32 (74602.55 to 36954.93) 7.47 (10.32 to 5.10) 1.68 (1.56 to 1.8)

Male 19881.68 (28207.25 to 12833.81) 5.41 (7.69 to 3.49) 78965.52 (108716.71 to 54933.75) 10.87 (14.98 to 7.55) 2.24 (2.05 to 2.43)

High SDI 7500.99 (10581.71 to 4815.34) 4.75 (6.70 to 3.04) 14885.68 (19633.44 to 10645.56) 6.38 (8.46 to 4.54) 0.95 (0.92 to 0.98)

High-middle SDI 8994.53 (12637.78 to 5781.47) 5.37 (7.59 to 3.42) 39402.08 (54233.28 to 27439.12) 12.99 (17.94 to 9.01) 2.88 (2.63 to 3.12)

Middle SDI 10978.25 (15583.06 to 7041.42) 5.11 (7.26 to 3.28) 55518.14 (76423.31 to 38586.21) 11.06 (15.26 to 7.67) 2.39 (2.14 to 2.63)

Low-middle SDI 6051.41 (8755.24 to 3807.48) 4.57 (6.60 to 2.88) 17872.09 (25488.05 to 11745.83) 6.10 (8.69 to 4.01) 0.9 (0.8 to 1)

Low SDI 1883.93 (2778.19 to 1124.14) 3.78 (5.57 to 2.26) 5312.80 (7742.36 to 3252.07) 4.38 (6.35 to 2.68) 0.47 (0.43 to 0.51)

Prevalence

Global 266610.27 (369684.20 to 186707.43) 36.97 (51.18 to 25.92) 909753.30 (1228381.75 to 666184.39) 62.47 (84.42 to 45.69) 1.66 (1.55 to 1.78)

Female 112145.11 (155156.21 to 77703.35) 31.64 (43.72 to 21.95) 366765.10 (500896.75 to 261723.21) 50.42 (68.95 to 35.96) 1.45 (1.35 to 1.55)

Male 154465.16 (213026.52 to 109337.58) 42.12 (58.00 to 29.84) 542988.20 (727112.67 to 400303.72) 74.48 (99.78 to 54.86) 1.81 (1.68 to 1.93)

High SDI 56168.94 (77933.64 to 39232.86) 35.60 (49.30 to 24.89) 99726.51 (131274.51 to 73280.21) 42.57 (56.16 to 31.24) 0.58 (0.55 to 0.62)

High-middle SDI 61553.40 (85736.37 to 42356.85) 36.72 (51.11 to 25.30) 247345.35 (337049.72 to 178123.71) 80.37 (109.75 to 57.80) 2.51 (2.38 to 2.64)

Middle SDI 82855.55 (113800.19 to 58397.74) 38.70 (53.04 to 27.32) 376585.13 (506444.85 to 274363.18) 74.47 (100.27 to 54.19) 2.19 (1.92 to 2.45)

Low-middle SDI 49776.70 (68974.53 to 35189.84) 37.69 (52.14 to 26.69) 141231.87 (194394.18 to 101320.70) 48.31 (66.42 to 34.70) 0.78 (0.71 to 0.85)

Low SDI 16011.43 (22489.76 to 11067.92) 32.22 (45.20 to 22.31) 44410.34 (61736.39 to 30856.55) 36.73 (50.94 to 25.57) 0.41 (0.36 to 0.46)

Disability-adjusted 

life-years

Global 161635.72 (186792.25 to 139607.80) 22.42 (25.90 to 19.38) 351260.21 (422771.72 to 290342.77) 24.17 (29.10 to 19.98) 0.29 (0.19 to 0.38)

Female 65160.69 (78261.20 to 53478.94) 18.40 (22.09 to 15.11) 133980.00 (164876.87 to 109480.14) 18.43 (22.69 to 15.05) −0.01 (−0.13 to 0.12)

Male 96475.03 (112063.02 to 82616.93) 26.31 (30.56 to 22.54) 217280.21 (262099.37 to 178179.79) 29.90 (36.06 to 24.52) 0.46 (0.37 to 0.54)

High SDI 27452.61 (32242.87 to 23820.64) 17.46 (20.48 to 15.16) 43784.03 (50994.44 to 37804.68) 18.67 (21.78 to 16.11) 0.22 (0.13 to 0.32)

High-middle SDI 38868.80 (44945.20 to 33219.64) 23.16 (26.80 to 19.78) 79337.10 (101844.12 to 63275.00) 25.96 (33.32 to 20.73) 0.4 (0.32 to 0.49)

Middle SDI 56363.22 (64871.57 to 47767.80) 26.36 (30.33 to 22.34) 136263.92 (166052.97 to 111012.98) 27.07 (33.00 to 22.07) 0.12 (0.03 to 0.2)

Low-middle SDI 28195.26 (33651.67 to 23568.84) 21.44 (25.57 to 17.93) 67159.62 (80359.99 to 56070.27) 22.99 (27.50 to 19.21) 0.22 (0.15 to 0.29)

Low SDI 10624.13 (12993.33 to 8548.99) 21.44 (26.23 to 17.24) 24490.98 (29838.15 to 19569.14) 20.25 (24.64 to 16.20) −0.16 (−0.31 to −0.02)

(Continued)
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Region. Regarding disability burden, East Asia faced the highest 
age-standardized DALY rate, followed by Andean Latin America and 
the Western Pacific Region. For mortality, the highest 
age-standardized death rate (ASDR) was found in the Eastern 
Mediterranean Region, with North Africa and the Middle East next. 
Longitudinally (1990–2021), ASIR and ASPR accelerated in 83% of 
regions, with East Asia exhibiting the most dramatic surge; this 
contrasted sharply with High-income North America, where ASPR 
declined significantly (−0.82% APC) despite stable ASIR. Mortality 
trends revealed 27 regions with rising age-standardized DALY rates, 
particularly Southern Sub-Saharan Africa, which demonstrated the 
steepest increase (1.32% APC), while Central Europe achieved the 
most substantial decline (−1.15% APC). Nationally, China, Bolivia, 
and Peru had the highest ASIRs. Peru led in ASPR, followed by 
Bolivia and Ecuador. Afghanistan, Saudi Arabia, and North Korea 
recorded the highest ASDR and DALY rates. Geopolitically, 179 
countries showed rising ASIR/ASPR trends, and 112 had declining 
mortality metrics, with Italy (−1.07% ASIR APC), Poland (−0.93% 
ASPR APC), and Kuwait (−2.41% ASDR APC) standing out as 
national leaders in improvement (Figures  3, 4; Supplementary  
Tables S1, S2).

Early-onset Parkinson’s disease burden and 
SDI

In 2021, the burden of EOPD displayed significant 
socioeconomic disparities across the spectrum of the Socio-
demographic Index (SDI). High-middle SDI countries had the 
highest age-standardized incidence rate (12.99 per 100,000; 95% UI: 
9.01–17.94) and prevalence rate (80.37 per 100,000; 95% UI: 57.80–
109.75). In contrast, middle SDI countries experienced the greatest 
disability burden, with the peak age-standardized disability-adjusted 
life years (DALY) rate at 27.07 per 100,000 (95% UI: 22.07–33.00) 
and a mortality rate of 0.38 per 100,000 (95% UI: 0.33–0.43). 
Geographically, East Asia recorded the highest age-standardized 
incidence rate (ASIR) of 19.62 and a DALY rate of 35.05, while 
Andean Latin America showed notable prevalence intensity with an 
age-standardized prevalence rate (ASPR) of 120.09. Notably, 
mortality rates were highest in North Africa and the Middle East 
(age-standardized death rate, ASDR = 0.45), surpassing other 
regions by 18–23% (see Figure 5).

The relationship between SDI and EOPD showed nonlinear 
dynamics. Both the ASIR and ASPR followed inverted U-shaped 
curves along the SDI continuum, peaking in upper-middle SDI 
territories before declining as economic development continued. 
This suggests that beyond certain levels of socioeconomic 
advancement, the occurrence of the disease may decrease. In terms 
of mortality metrics, age-standardized DALY and death rates 
initially increased before declining with higher SDI levels, ultimately 
revealing an overall downward trend. However, considerable 
regional variability remained; while 62% of high-SDI regions 
exhibited steady declines, 38% showed fluctuating patterns that were 
not related to SDI progression. These findings indicate that although 
global socioeconomic development generally correlates with a 
reduced burden of EOPD, localized factors—such as healthcare 
infrastructure and environmental exposures—likely influence the 
specific trajectories of the disease.T
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Decomposition analysis of change in DALYs

The demographic decomposition analysis of the burden of 
EOPD reveals distinct drivers across different levels of development 
(Figures 6, 7; Supplementary Table S3). Between 1990 and 2021, 
global DALYs related to EOPD increased by 62.3%. Notably, 
countries with middle SDI quintiles experienced the most significant 
rise at 89.1%, compared to 38.7% in high SDI and 41.2% in low SDI 
groups. Population growth emerged as the primary factor 
contributing to this increase, accounting for 83.7% of the global 
changes in DALYs, followed by epidemiological shifts at 11.3% and 
aging effects at 5.0%.

The SDI-stratified analysis identified critical thresholds in trends. 
The influence of population growth diminished at higher SDI levels, 
with it accounting for 67.2% in high SDI regions compared to 91.4% 
in low SDI areas. Epidemiological changes intensified the burden in 
middle-high and high SDI regions (both at +17.8%), while 
paradoxically reducing DALYs in low SDI areas by 8.3%.

Aging effects became clinically significant only in regions above 
the middle SDI threshold, contributing +14.7% in high SDI areas and 

+7.4% in middle SDI areas, with negligible to negative impacts in 
lower development levels.

These patterns suggest there are two distinct dynamics in disease 
burden: lower SDI regions primarily face an escalation in burden 
driven by population growth, whereas advanced economies contend 
with challenges intensified by aging and changes in epidemiology. The 
inverse relationship between SDI and the impact of population growth 
(r = −0.82, p < 0.001) highlights the need for development-stage-
specific interventions.

Frontier analysis s on the basis of 
age-standardized DALYs

To assess the performance of Disability-Adjusted Life Years 
(DALYs) and to identify practical differences among countries or 
regions with varying levels of sociodemographic development, 
we conducted a frontier analysis using age-standardized DALY data 
and the sociodemographic index from 1990 to 2021 (Figure 8A). The 
frontier represents the minimum achievable age-standardized DALYs 

FIGURE 1

Sex-specific disparities in the burden of EOPD across various metrics, 1990–2021. (A) Age-standardized incidence rate; (B) age-standardized 
prevalence rate; (C) age-standardized DALY rate; (D) age-standardized death rate.
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for a given country or territory based on its sociodemographic index. 
Each dot on the graph indicates the actual age-standardized DALYs 
reported in these regions. The practical difference, which is the 
distance from the frontier, measures the gap between observed and 
theoretically achievable age-standardized DALYs based on the 
sociodemographic index.

We observed an inverse relationship between the SDI and, but 
significant variation was noted among countries with middle SDI 
(Figure  8B), where the most pronounced effective 
differences appeared.

The top  15 countries or regions with the largest practical 
differences from the frontier, which ranged from 18.66 to 34.30, 
included the Marshall Islands, Morocco, Iraq, Ecuador, Seychelles, 
Peru, Eswatini, Honduras, Bolivia, Libya, China, Nauru, the 
Democratic People’s Republic of Korea, Afghanistan, and the 
Kingdom of Saudi Arabia.

In contrast, the 10 countries or regions with the smallest effective 
differences from the frontier, with practical differences ranging from 
0 to 0.59, were San  Marino, Armenia, Azerbaijan, Uzbekistan, 
Slovenia, Somalia, the Czech  Republic, Albania, Kyrgyzstan, and 
Mauritania. This indicates that these areas have achieved the expected 
burden of DALYs relative to their development status.

Among countries or regions with an SDI below 0.5, Somalia, 
Niger, Ethiopia, Madagascar, and Mauritania showed 
age-standardized DALY rates that were close to the frontier. 

Meanwhile, countries or regions with a higher SDI (>0.85) and 
relatively improved effective differences included Monaco, the 
United  Kingdom, Canada, Taiwan (Province of China), and the 
United States of America.

Cross-country social inequalities analysis

Significant disparities, both absolute and relative, were evident in 
the EOPD burden across varying SDI levels (Figure 9). Nations with 
higher SDI values experienced a disproportionately lower 
EOPD burden.

The slope index of inequality (SII), quantifying the absolute gap 
between the highest and lowest SDI countries, showed a slight 
decrease in magnitude from 7 DALYs per 100,000 population in 1990 
to 6 DALYs per 100,000 population in 2021. The concentration index 
(CI), a measure of relative inequality, worsened from −0.1 in 1990 to 
−0.12 in 2021, indicating a more pronounced concentration of EOPD 
burden among lower-SDI countries.

These contrasting trends highlight a complex landscape: while 
absolute gaps in disease burden have diminished, relative inequalities 
in burden distribution across socioeconomic strata have persisted or 
even increased. This underscores the need for targeted interventions 
to address both absolute and relative disparities in EOPD 
impact worldwide.

FIGURE 2

Global trends for age-standardized rates (per 100,000 population) of EOPD from 1990 to 2021. (A) Age-standardized incidence rate; 
(B) age-standardized prevalence rate; (C) age-standardized DALY rate; (D) age-standardized death rate. DALY, disability-adjusted life-year; 
AAPC, average annual percentage change; APC, annual percentage change.
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Discussion

This study offers the most recent and comprehensive analysis of 
the burden of EOPD globally, regionally, and nationally for individuals 
aged 40–54 over the past three decades. It confirms findings from a 
Minnesota cohort study conducted between 2010 and 2015, which 
reported increasing incidence rates and a predominance of male 
mortality risk (19). Between 1990 and 2021, the burden of EOPD 
increased significantly: global incidence rose by 2.7 times and 
prevalence by 2.4 times, likely due to advancements in diagnostic 
techniques, such as door-to-door surveys (20) and prolonged disease 
duration due to increased life expectancy (21). Factors such as changes 
in lifestyle and dietary habits may also impact health (22, 23).

The age-standardized DALY rates for EOPD have increased by 2.1 
times. The ASPR curve has shown fluctuations, beginning with a 
gradual increase from 1995 to 2003, followed by a decline, and then a 
resurgence since 2010. This trend is consistent with environmental 
exposures driven by global industrialization (24). The introduction of 
DBS for the treatment of movement disorders by Benabid in the late 
1980s marked a significant advancement in functional procedures 
(25–27). However, DBS remains accessible only to a limited subset of 
eligible patients due to surgical criteria and disparities in healthcare 
(28). This may help explain the slowdown in the increase of DALYs 
for EOPD since 1959.

While deaths related to EOPD have shown a decrease in ASDRs, 
the absolute number of deaths has increased from 1990 to 2021, 

particularly among males. Although both males and females are 
experiencing a rise in EOPD cases, males consistently exhibit higher 
rates, potentially due to genetic factors (29). Global health strategies 
seem to have positively impacted the reduction of DALYs for both 
genders, suggesting that advancements in healthcare may be benefiting 
both males and females (24).

The analysis of trends in EOPD across various geographic regions 
and countries over the past three decades reveals a complex 
relationship among socio-demographic, economic, and healthcare 
factors. The significant disparity in ASPR between Andean Latin 
America, East Asia, and the Western Pacific Region in comparison to 
high-income North America suggests that regional influences—such 
as genetic predisposition, healthcare availability, and environmental 
factors—play a crucial role. The notable increase in ASPR in East Asia 
may be attributed to improvements in healthcare infrastructure and 
advancements in EOPD surveillance methods. In contrast, the rise 
observed in Africa could be linked to delays in medical progress (30). 
Furthermore, the substantial increase in ASDR in the Eastern 
Mediterranean, North Africa, and the Middle East indicates potential 
weaknesses in their healthcare systems and challenges in accessing 
timely treatment. Conversely, the decline in mortality rates in regions 
like West and East Africa may be  connected to advancements in 
healthcare infrastructure and improved socioeconomic conditions 
that help mitigate risk factors (31).

Socioeconomic status significantly impacts health outcomes, with 
higher SDI scores generally associated with better health (17, 18, 32). 

FIGURE 3

National age-standardized rates (per 100,000 population) of EOPD for both sexes combined in 2021. (A) Age-standardized incidence rate; (B) age-
standardized prevalence rate; (C) age-standardized DALY rate; (D) age-standardized death rate. DALY, disability-adjusted life-year. The original data was 
obtained from the GBD studies. There might be problems in the regional division, which was not the critical point for this study.
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This underscores the need to prioritize socioeconomic development 
in policy frameworks aimed at addressing the issue of EOPD. However, 
there is a paradox in regions with a middle SDI, where the 
age-standardized DALY rates are highest, despite the expectation that 
socioeconomic advancement would lead to improved health 
outcomes. This finding was supported by a decomposition analysis 
which showed that population growth accounted for 89.2% of the 
increases in DALYs in middle-SDI regions. In contrast, 
epidemiological shifts and aging were more prominent in high-SDI 
areas (Figure 6). Demographic dynamics and gaps in healthcare are 
significant issues in middle-SDI regions, such as China and Bolivia. 
These regions often face rapid population growth, but their healthcare 
infrastructure does not expand at the same pace. For instance, China’s 
incidence of EOPD doubled from 1990 to 2019, largely due to 
industrialization and a lag in diagnostic capacity (11). Additionally, 
middle-SDI countries have fewer neurologists per capita compared to 
their high-SDI counterparts (33).

Middle-SDI regions undergoing industrialization are experiencing 
increased environmental exposure to neurotoxic agents, such as 
pesticides and solvents, which are linked to the development of EOPD 
(34). For instance, rapid industrialization in countries like China has 
led to a significant increase in pesticide use (35) and heavy metals use 
(36, 37).

Studies have shown correlations between exposure to industrial 
chemicals and the risk of Parkinson’s disease (38). At the same time, 

these regions are undergoing demographic transitions, with aging 
populations contributing to a rise in disease prevalence. GBD analyses 
indicate that middle-SDI areas are experiencing accelerated aging 
trends (12), which further heighten the burden of neurodegenerative 
disorders. In contrast, high-SDI countries manage these risks more 
effectively through stricter environmental regulations and early 
intervention programs, resulting in lower rates of exposure-related 
diseases in those regions (39).

There are several underlying causes of inequality regarding 
EOPD. First, genetic variants specific to certain populations 
significantly influence EOPD risk in middle-SDI regions. For example, 
particular genetic mutations are more prevalent in certain ethnic 
groups, while different risk alleles have been identified in other 
cohorts (40). These genetic predispositions, combined with regional 
environmental exposures, such as pesticide use, create “gene–
environment interaction hotspots” in areas where industrialization 
outpaces the capacity for genetic screening (41).

Second, middle-SDI regions experience systematic underreporting 
of EOPD cases due to structural flaws in diagnostic systems. Limited 
access to neuroimaging facilities and clinician biases—where 
infectious diseases are prioritized over neurodegenerative disorders in 
resource-constrained settings—lead to a significant underestimation 
of the disease’s burden, as seen in global health analyses (42).

Additionally, economic policies significantly contribute to health 
disparities (17). Despite rising average incomes, middle-SDI countries 

FIGURE 4

National age-standardized rates (per 100,000 population) of early-onset Parkinson’s disease for both sexes combined in 2021. (A) Age-standardized 
incidence rate; (B) age-standardized prevalence rate; (C) age-standardized DALY rate; (D) age-standardized death rate.
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allocate disproportionately low healthcare budgets to neurology. This 
creates a vicious cycle of insufficient funding, limited diagnostic 
capacity, and ongoing neglect of resources. This policy gap exacerbates 
treatment inequities and highlights the complex interplay between 
socioeconomic development and healthcare access in shaping 
disparities related to EOPD.

The escalating prevalence of EOPD over the past 30 years has 
become a pressing public health issue, particularly impacting males 
disproportionately, highlighting the necessity for further investigation 
into the underlying factors contributing to these observed gender 
disparities. The age-standardized EOPD DALY rates have shown 
variability, including both declines and periods of stability, yet the 
projected rise in these rates raises apprehensions regarding the impact 
of an aging population on future disease prevalence. Despite the 
worrisome escalation in age-standardized incidence and prevalence 
rates of EOPD since 1990, the decline in age-standardized mortality 
rates indicates advancements in the disease. The increasing total 
DALYs attributed to EOPD highlights the enduring morbidity burden, 
underscoring the significance of improving patient quality of life 

post-treatment. These emerging patterns highlight the need for 
improved health policies aimed at reducing the incidence rates of 
EOPD and enhancing long-term patient outcomes through effective 
management and medical interventions.

Our research provides important information on worldwide 
patterns of EOPD, but it is important to interpret these findings 
cautiously. Variations in methodology and limitations in the studies 
may lead to prevalence estimates that differ significantly and 
underestimate the true burden of EOPD (43).

Addressing this significant health challenge necessitates 
proactive measures to prevent the disease where possible and 
enhance the quality of life for individuals impacted by the condition 
(44). Potential strategies include promoting increased physical 
activity in early adulthood (26) and minimizing pesticide exposure 
to prevent the disease (41). Enhancing global access to care and 
effective treatments, such as levodopa, is imperative. Furthermore, 
increased research funding to elucidate the underlying causes and 
develop novel therapies is crucial in effectively addressing this 
pressing health issue.

FIGURE 5

Trends for age-standardized rates (per 100,000 population) of EOPD among 46 regions by SDI for both sexes combined from 1990 to 2021. 
(A) Age-standardized incidence rate; (B) age-standardized prevalence rate; (C) age-standardized DALY rate; (D) age-standardized death rate.
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Limitations

This study provides a comprehensive assessment of the global 
burden of EOPD. However, it presents several limitations that need to 
be addressed.

Firstly, the GBD framework uses indirect estimation techniques, 
which pose two significant challenges for accurately assessing the 
burden of EOPD. First, the inability to distinguish between EOPD 
subtypes, such as genetic versus idiopathic forms, obscures 
population-specific risk profiles and progression patterns. This 

FIGURE 6

The changes in DALYs associated with EOPD have been analyzed from 1990 to 2021. This analysis explores population-level determinants, such as 
population growth, aging, and shifts in epidemiology, both globally and by SDI quintile. In the graph, the black dot represents the overall change 
contributed by all three components. A positive value indicates an increase in EOPD attributed to that component, while a negative value signifies a 
decrease in EOPD related to the corresponding factor.

FIGURE 7

Heatmaps and regional maps for visualizing DALY inequalities in EOPD.
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FIGURE 8

(A) Frontier analysis based on the SDI and the age-standardized DALYs rate of EOPD from 1990 to 2021. The color scale represents the years from 
1990, shown in dark blue, to 2021, shown in light blue. A solid black line delineates the frontier. (B) Frontier analysis based on the SDI and age-
standardized DALY rate of EOPD in 2021. The frontier is represented by the solid black line, with countries and territories depicted as dots. An increase 
in the age-standardized DALYs rate for EOPD from 1990 to 2021 is illustrated with blue dots, while a decrease is shown with red dots. The top 15 
countries with the largest effective differences are labeled in black. Examples of frontier countries with a lower SDI (SDI < 0.5) and lower effective 
differences are labeled in blue, whereas countries and territories with a high SDI (SDI > 0.85) and relatively high effective differences are labeled in red.
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FIGURE 9

SDI-related cumulative fraction of the population and relative rank curves for the burden of EOPD at the country level for the years 1990 and 2021. 
(A) Cumulative fraction of people ranked by SDI curves. (B) Relative rank according to SDI curves.
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limitation hinders the analysis of varying burdens among groups with 
different underlying causes (45). In low-and middle-income countries 
(LMICs), differences in medical record practices and inconsistencies 
in reporting can result in a systematic underestimation of EOPD 
prevalence (46, 47). This data sparsity, in turn, compounds the 
limitations of the SDI as a socioeconomic proxy, which overlooks 
modifiable risk factors like environmental pollution—factors that may 
be  disproportionately prevalent in regions with poor data 
infrastructure. Additionally, low-SDI regions often lack detailed data 
on young-onset cases (48, 49), further biasing GBD’s extrapolation of 
adult-based estimates.

Finally, the analysis ultimately left out important genetic and 
biomarker data, such as PRKN/PINK1 mutation profiles and 
dopamine transporter imaging, which are essential for subclassifying 
EOPD (50, 51). By excluding this information, the study may overlook 
key risk factors that are specific to subtypes—for instance, 
environmental exposures in idiopathic cases compared to genetic 
predispositions in familial cases. This omission could restrict our 
understanding of the underlying mechanisms of the disease.

Future research should integrate these factors for a more 
comprehensive view of EOPD epidemiology.

Conclusion

This research provides a thorough analysis of the global 
distribution and 30-year trends of EOPD. It reveals a consistent 
increase in the global burden of this condition, with significant 
disparities observed in nations with lower SDI. The findings have 
important policy implications, highlighting the need for targeted 
resource allocation to enhance neurological healthcare capacity in 
low-SDI regions. Additionally, there is a call for the development of 
stronger surveillance systems in resource-constrained settings to 
address issues of underdiagnosis and inconsistencies in data collection. 
The research also emphasizes the importance of cross-regional 
collaborations to share effective intervention models for integrating 
EOPD management into primary healthcare. These recommendations 
stress the necessity for tailored strategies to reduce disparities, as well 
as the need for further research into region-specific risk factors and 
affordable diagnostic tools that meet the needs of populations that 
bear a high burden of the disease.
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AI-driven precision diagnosis and 
treatment in Parkinson’s disease: 
a comprehensive review and 
experimental analysis
Bhekisipho Twala *

Office of the DVC for Digital Transformation, Tshwane University of Technology, Pretoria, South Africa

Background: Parkinson’s disease (PD) represents one of the most prevalent 
neurodegenerative disorders globally, affecting over 10 million individuals 
worldwide. Traditional diagnostic approaches rely heavily on clinical observation 
and subjective assessment, often leading to delayed or inaccurate diagnoses. 
The emergence of artificial intelligence (AI) technologies offers unprecedented 
opportunities for precision diagnosis and personalized treatment strategies in 
PD management.

Objective: This study aims to comprehensively review current AI applications in 
Parkinson’s disease diagnosis and treatment, evaluate existing methodologies, 
and present experimental results from a novel multimodal AI diagnostic 
framework.

Methods: A systematic review was conducted across PubMed, IEEE Xplore, and 
Web of Science databases from 2018 to 2024, focusing on AI applications in 
PD diagnosis and treatment. Additionally, we  developed and tested a hybrid 
machine learning model combining deep learning, computer vision, and natural 
language processing techniques for PD assessment using motor symptom 
analysis, voice pattern recognition, and gait analysis.

Results: The systematic review identified 127 relevant studies demonstrating 
significant advances in AI-driven PD diagnosis, with accuracy rates ranging from 
78 to 96%. Our experimental framework achieved 94.2% accuracy in early-
stage PD detection, outperforming traditional clinical assessment methods. 
The integrated approach showed particular strength in identifying subtle motor 
fluctuations and predicting treatment response patterns.

Conclusion: AI-driven approaches demonstrate substantial potential for 
revolutionizing PD diagnosis and treatment personalization. The integration of 
multiple data modalities and advanced machine learning algorithms enables 
earlier detection, more accurate monitoring, and optimized therapeutic 
interventions. Future research should focus on large-scale clinical validation 
and implementation frameworks for healthcare systems.
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Parkinson’s disease, artificial intelligence, machine learning, precision medicine, 
neurodegeneration, digital biomarkers
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1 Introduction

Parkinson’s disease (PD) stands as the second most common 
neurodegenerative disorder after Alzheimer’s disease, with prevalence 
rates increasing substantially with age (Dorsey et al., 2018). The Global 
Burden of Disease Study 2019 estimated that PD affects over 8.5 
million individuals worldwide, with projections suggesting this 
number could double by 2040 due to population ageing. The disease 
is characterized by progressive degeneration of dopaminergic neurons 
in the substantia nigra, leading to motor symptoms including 
bradykinesia, rigidity, tremor, and postural instability, alongside 
non-motor manifestations such as cognitive impairment, depression, 
and autonomic dysfunction (Postuma et al., 2015; Braak et al., 2003).

Current diagnostic practices for PD rely primarily on clinical 
criteria established by the Movement Disorder Society (Postuma et al., 
2015), which emphasize the presence of motor symptoms and 
response to dopaminergic therapy. However, this approach presents 
several limitations: diagnosis typically occurs after 50–70% of 
dopaminergic neurons have already been lost (Braak et al., 2003), 
subjective clinical assessment introduces variability between 
practitioners, and differential diagnosis from other Parkinsonian 
syndromes remains challenging. These limitations have profound 
implications for patient outcomes, as early intervention strategies 
could potentially slow disease progression and improve quality of life 
(Kalia and Lang, 2015; Armstrong and Okun, 2020).

The advent of artificial intelligence and machine learning 
technologies has opened new frontiers in neurological disease 
diagnosis and management (LeCun et al., 2015; Rajkomar et al., 2019). 
AI-driven approaches offer the potential to identify subtle patterns in 
complex, multidimensional data that may escape human observation, 
enabling earlier detection and more precise characterization of disease 
progression (Esteva et  al., 2019). Furthermore, the integration of 
digital biomarkers derived from wearable sensors, smartphone 
applications, and advanced imaging techniques provides 
unprecedented opportunities for continuous monitoring and 
personalized treatment optimization (Topol, 2019; Chen and 
Snyder, 2013).

Given the limitations in existing single-modality approaches, 
we  hypothesized that a multimodal AI framework integrating 
computer vision-based motor assessment, voice pattern recognition, 
and gait analysis would achieve superior diagnostic accuracy 
compared to individual modalities and traditional clinical assessment 
methods. Our investigation aimed to address three specific gaps in the 
current literature: (1) the lack of comprehensive multimodal 
diagnostic frameworks that systematically integrate complementary 
data sources, (2) limited validation of AI diagnostic tools against 
established clinical rating scales in diverse patient populations, and (3) 
insufficient evaluation of early-stage detection capabilities when 
therapeutic interventions may be most effective.

The experimental design employed a controlled cross-sectional 
study comparing our integrated AI framework against traditional 
clinical assessment in 847 participants (423 PD patients, 424 
age-matched controls) recruited from movement disorder clinics. 
Unlike previous studies that focused on single modalities or small 
sample sizes, our investigation specifically addressed the need for 
scalable, multimodal diagnostic tools that could enhance early 
detection while maintaining a strong correlation with established 
clinical measures.

This comprehensive review not only synthesizes the current 
landscape of artificial intelligence applications in Parkinson’s disease 
diagnostics and management but also presents novel experimental 
findings derived from our proposed multimodal diagnostic 
framework. By systematically evaluating developments across multiple 
AI domains—including machine learning, deep learning, computer 
vision, and natural language processing—we provide a unified 
perspective on how these technologies are reshaping PD detection, 
monitoring, and treatment. Our integration of experimental results 
enhances the review’s practical relevance, showcasing real-world 
efficacy in fusing diverse data modalities such as gait analysis, voice 
biomarkers, and sensor-derived metrics. This multidimensional 
approach reflects a broader trend in personalized medicine, where 
individualized, data-driven strategies hold the promise of improving 
early diagnosis and therapeutic outcomes in complex neurological  
disorders.

Moreover, this work contributes meaningfully to the expanding 
body of evidence advocating for the transformative role of AI in 
neurological care. While the potential benefits are clear, our findings 
also emphasize the limitations and gaps that must be addressed before 
full clinical integration can be  realized. These include data 
heterogeneity, ethical considerations, regulatory barriers, and the need 
for transparent, explainable AI models that clinicians can trust. Our 
review highlights the importance of interdisciplinary collaboration in 
addressing these challenges. It proposes targeted areas for future 
research—ranging from the standardization of diagnostic datasets to 
the development of hybrid AI-clinician decision-making frameworks. 
As such, this paper serves as both a knowledge base and a roadmap 
for researchers, clinicians, and policymakers striving to harness AI’s 
capabilities in the fight against Parkinson’s disease.

This paper is organized into six more sections. Section 2 provides 
a comprehensive literature review of AI applications in neurological 
diagnostics, covering the evolution of AI technologies and current 
approaches in neuroimaging, voice analysis, gait assessment, and 
digital biomarkers. Section 3 details our methodology, including the 
systematic review protocol following PRISMA guidelines and the 
development of our multimodal AI framework integrating computer 
vision, voice pattern recognition, and gait analysis. Section 4 presents 
the results from both the systematic review of 127 studies and our 
experimental validation involving 847 participants, with five 
embedded interactive figures demonstrating the 94.2% diagnostic 
accuracy achieved by our integrated approach. Section 5 discusses the 
clinical implications of our findings, technological innovations, 
limitations, and future research directions. Section 6 addresses clinical 
translation and implementation considerations, including regulatory 
pathways, healthcare integration strategies, and economic factors. 
Finally, Section 7 provides conclusions highlighting the key 
contributions and transformative potential of AI-driven approaches 
in Parkinson’s disease diagnosis and management.

2 Literature review

2.1 Evolution of AI in neurological 
diagnostics

The application of artificial intelligence in neurological diagnostics 
has undergone a remarkable transformation over the past decade, 
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largely fueled by exponential growth in computational capabilities, 
improved algorithmic design, and access to large, multimodal datasets 
(Jiang et al., 2017; Yu et al., 2018). Initially, AI tools in this domain 
were dominated by traditional machine learning techniques that relied 
on manually engineered features derived from structured clinical data, 
neuropsychological assessments, and basic imaging modalities. These 
models often required domain expertise to identify relevant predictors 
and suffered from limited scalability and generalizability across 
diverse patient populations. Despite these limitations, they laid the 
groundwork for demonstrating the feasibility of automated decision-
support tools in neurology and spurred further research into more 
dynamic and adaptive learning methods.

With the advent of deep learning, the field has seen a paradigm 
shift toward models capable of directly processing raw, unstructured 
data such as MRI scans, EEG signals, voice patterns, and gait sensor 
outputs (Shen et al., 2017; Miotto et al., 2018). Convolutional neural 
networks (CNNs), recurrent neural networks (RNNs), and other deep 
architectures have dramatically improved pattern recognition and 
feature extraction, allowing for more nuanced and accurate diagnostic 
predictions without requiring hand-crafted input features. This has 
opened new possibilities for detecting subtle biomarkers of 
neurological disorders—such as Parkinson’s disease, Alzheimer’s 
disease, and multiple sclerosis—earlier and with greater precision.

Moreover, the integration of multimodal data sources within deep 
learning frameworks enables a more holistic view of patient health, 
fostering a shift from symptom-based to data-driven precision 
neurology. These advancements represent a critical step toward 
scalable, AI-enabled diagnostic platforms that could transform both 
clinical practice and population-level screening initiatives.

2.2 Current AI applications in Parkinson’s 
disease

2.2.1 Neuroimaging-based approaches
Neuroimaging represents one of the most extensively studied 

domains for AI application in PD diagnosis (Prashanth et al., 2016; 
Amoroso et al., 2018). Dopamine transporter (DaTscan) imaging, 
combined with convolutional neural networks (CNNs), has 
demonstrated remarkable success in distinguishing PD patients from 
healthy controls (Choi et  al., 2017). Recent studies have reported 
accuracies exceeding 95% using deep learning analysis of DaTscan 
images, significantly outperforming traditional visual interpretation 
(Prashanth et al., 2014; Rana et al., 2015).

Structural and functional magnetic resonance imaging (MRI) 
applications have shown promising results in both diagnosis and 
progression monitoring (Poewe et al., 2017; Burciu and Vaillancourt, 
2018). Graph neural networks—deep learning architectures designed 
to operate on graph-structured data, where brain regions are 
represented as nodes and functional connections as edges—applied to 
resting-state functional connectivity data have achieved classification 
accuracies of 88–92% in distinguishing PD patients from controls 
(Cao et al., 2020). These networks enable the modelling of complex 
brain network relationships and connectivity patterns that characterize 
neurological disorders. Additionally, diffusion tensor imaging 
analyzed through advanced machine learning algorithms has revealed 
subtle microstructural changes in white matter tracts that precede 
clinical symptom onset (Duncan et al., 2016; Schwarz et al., 2014).

2.2.2 Voice and speech analysis
Voice alterations represent one of the earliest non-motor 

symptoms of Parkinson’s disease, often emerging years before the 
onset of clinically detectable motor impairments (Rusz et al., 2011; 
Harel et al., 2004). These vocal changes—such as reduced loudness, 
monotone speech, breathiness, and imprecise articulation—can 
be  subtle and easily overlooked in routine clinical assessments. 
However, they provide a valuable opportunity for early detection, 
especially in contexts where traditional diagnostic tools may not yet 
indicate clear signs of disease. The integration of artificial intelligence 
in voice analysis has significantly enhanced the sensitivity and 
specificity of vocal biomarker detection. By extracting acoustic 
features such as fundamental frequency variation, jitter, shimmer, 
harmonics-to-noise ratio, and various spectral measures, AI-driven 
models have achieved diagnostic accuracies between 85 and 93% 
(Tsanas et al., 2012; Sakar et al., 2019). These results underscore the 
viability of voice-based screening tools, particularly for remote 
monitoring and community-based early detection programs.

More recent advances have introduced deep learning 
methodologies that extend beyond traditional signal processing 
techniques. Recurrent neural networks (RNNs), especially long short-
term memory (LSTM) units, have demonstrated a strong capability to 
model temporal dependencies in voice data—the sequential 
relationships and patterns that evolve within speech signals—
capturing the dynamic nature of speech alterations associated with PD 
progression (Vaswani et al., 2017). Furthermore, the application of 
transformer architectures—originally designed for natural language 
processing—has shown promise in modelling long-range relationships 
in voice sequences, enabling a more nuanced assessment of vocal 
dysfunction. These models can learn directly from raw or minimally 
processed audio signals, reducing the need for hand-crafted feature 
engineering and allowing for end-to-end disease classification. As a 
result, AI-powered voice analysis not only offers a cost-effective and 
non-invasive diagnostic avenue but also opens the door for 
longitudinal disease tracking, real-time feedback for clinicians, and 
scalable deployment in telehealth ecosystems (Moro-Velazquez 
et al., 2017).

2.2.3 Gait and movement analysis
Gait disturbances are among the most recognizable and 

diagnostically relevant motor symptoms of Parkinson’s disease, often 
manifesting as shuffling steps, reduced arm swing, postural instability, 
and freezing episodes. These alterations in walking patterns provide 
valuable, quantifiable indicators of disease onset and progression. 
Artificial intelligence has increasingly been employed to analyze gait 
abnormalities, capitalizing on data collected from wearable sensors 
such as accelerometers and gyroscopes. These devices, placed on the 
feet, waist, or limbs, collect high-frequency motion data during 
walking tasks. Machine learning algorithms trained on this data have 
been able to classify PD patients with high accuracy, identifying 
patterns invisible to the naked eye. In some cases, sensitivity and 
specificity for early-stage PD detection have exceeded 90%, even when 
traditional clinical evaluations may yield inconclusive results (Espay 
et al., 2016; Del Din et al., 2016). This precision has made gait analysis 
a powerful tool in both diagnosis and longitudinal monitoring of PD.

Beyond wearable technologies, AI-powered computer vision 
approaches have introduced new possibilities for non-contact, scalable 
gait assessment. Markerless motion capture techniques now enable the 
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analysis of walking patterns using standard video recordings captured 
by smartphones or surveillance cameras. These systems extract joint 
positions and body kinematics from footage and use deep-learning 
models to detect gait irregularities indicative of PD. This method 
offers a more accessible and cost-effective alternative to specialized 
hardware, enabling assessments in diverse settings such as homes, 
clinics, and public spaces (Pereira et al., 2016). Moreover, these tools 
can be integrated into telemedicine frameworks, making continuous 
remote monitoring of motor symptoms a reality. As AI algorithms 
continue to evolve, they hold the promise of transforming how 
clinicians and researchers evaluate gait dysfunction in Parkinson’s 
disease, particularly in underserved or rural populations where access 
to neurology specialists is limited (Galna et al., 2015).

2.2.4 Digital biomarkers and smartphone 
applications

The proliferation of smartphone technology has revolutionized 
the landscape of neurological disease assessment, particularly for 
Parkinson’s disease. Leveraging the ubiquity and computing power of 
smartphones, researchers and clinicians have developed a variety of 
accessible digital biomarker platforms aimed at non-invasive, cost-
effective, and scalable PD monitoring solutions. These platforms 
typically utilize embedded sensors and software to collect and analyze 
behavioral and physiological signals such as finger-tapping rhythms, 
speech patterns, and postural stability metrics (Bot et al., 2016; Zhan 
et al., 2018). For instance, finger-tapping applications assess motor 
speed and variability, which are sensitive indicators of bradykinesia. 
At the same time, voice recording apps analyze speech fluency and 
tremor-induced vocal disruptions—both hallmark symptoms of PD 
(Arora et al., 2015; Stamatakis et al., 2013).

Beyond clinical settings, these technologies offer tremendous 
value in remote monitoring and telehealth, allowing continuous, 
passive tracking of symptoms in patients’ natural environments. This 
facilitates timely intervention, supports personalized treatment 
adjustments, and enhances patient engagement. Moreover, in 
resource-constrained or rural settings, smartphone-based digital 
biomarkers can serve as front-line tools for large-scale, population-
wide screening and early detection, ultimately improving disease 
outcomes and reducing healthcare disparities (Prince et al., 2019; Rusz 
et al., 2015).

The computational capabilities of modern smartphones enable 
sophisticated real-time signal processing and machine learning 
inference that extends far beyond simple data collection. Edge 
computing approaches allow complex algorithms to perform local 
analysis of sensor data, extracting advanced features such as spectral 
analysis of tremor patterns, fractal analysis of gait variability, and 
time-frequency decomposition of speech signals. These on-device 
machine-learning models can provide immediate feedback to patients 
and clinicians while addressing privacy concerns through local data 
processing. Furthermore, federated learning approaches enable 
continuous model improvement across patient populations without 
compromising individual privacy, allowing smartphone-based 
diagnostic tools to become more accurate and personalized over time 
through collective learning from diverse patient experiences 
(Hausdorff et al., 1998; Morris et al., 1994; Kingma and Ba, 2014).

Despite the promising potential of smartphone-based digital 
biomarkers, their translation from research tools to validated clinical 
applications faces significant challenges that must be systematically 

addressed. Clinical validation studies must demonstrate a robust 
correlation between smartphone-derived metrics and established 
clinical rating scales across diverse patient populations, accounting for 
variations in hardware specifications, user behaviour patterns, and 
environmental conditions. The integration of these tools into existing 
healthcare workflows requires seamless interoperability with 
electronic health record systems, standardized data formats, and 
comprehensive clinician training programs. Additionally, regulatory 
approval processes for mobile medical applications continue to evolve, 
requiring ongoing collaboration between technology developers, 
clinical researchers, and regulatory agencies to establish appropriate 
validation frameworks that ensure both safety and efficacy while 
enabling innovation in this rapidly advancing field.

2.3 Treatment optimization and 
personalized medicine

Beyond the scope of diagnosis, artificial intelligence has emerged 
as a transformative force in the optimization of treatment strategies 
and the advancement of personalized medicine for Parkinson’s 
disease. Machine learning algorithms are increasingly being employed 
to analyze complex patterns in patient responses to dopaminergic 
therapies, the mainstay treatment for PD. By incorporating 
longitudinal data such as motor symptom fluctuations, medication 
adherence, and side-effect profiles, these models can predict individual 
treatment efficacy with higher accuracy than traditional trial-and-
error approaches (Olanow et al., 2009; Verschuur et al., 2019). This 
predictive capability enables clinicians to tailor pharmacological 
regimens to specific patient profiles, thus reducing the likelihood of 
adverse drug reactions and improving clinical outcomes. Moreover, 
AI-driven decision support systems are being integrated into 
electronic health records to guide dosage adjustments in real-time, 
promoting a more responsive and dynamic model of care (Pahwa 
et al., 2006; Weaver et al., 2009).

In parallel, AI techniques such as deep reinforcement learning are 
being applied to fine-tune neuromodulation therapies like deep brain 
stimulation (DBS). DBS has proven effective for patients with 
advanced PD, but determining optimal stimulation parameters is 
often a laborious and subjective process. By simulating various 
scenarios and learning from patient feedback data, reinforcement 
learning algorithms can identify stimulation settings that maximize 
therapeutic benefits while minimizing side effects such as speech 
difficulties or mood disturbances (Katzman, 2018; Rosa et al., 2015). 
These intelligent systems not only improve patient quality of life but 
also reduce clinician workload and resource utilization. Taken 
together, these advancements highlight the potential of AI to usher in 
a new era of precision therapeutics in PD management, where 
interventions are informed by continuous learning and individualized 
data patterns.

Artificial intelligence applications in Parkinson’s disease treatment 
extend beyond immediate therapeutic optimization to encompass 
predictive modelling for long-term disease progression and 
complication prevention. Advanced machine learning algorithms can 
analyze multimodal datasets combining clinical assessments, 
neuroimaging data, genetic markers, and digital biomarkers to 
develop personalized disease trajectory models that predict the 
likelihood of motor complications, cognitive decline, and quality of 
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life deterioration over time. These predictive models enable proactive 
therapeutic interventions, such as early initiation of neuroprotective 
strategies or timely adjustments to medication regimens before 
complications become clinically apparent. Furthermore, AI-driven 
risk stratification tools can identify patients most likely to benefit from 
specific interventions, such as DBS candidacy assessment or 
participation in clinical trials, optimizing resource allocation and 
improving patient selection for advanced therapies while minimizing 
unnecessary exposure to invasive procedures for patients unlikely 
to benefit.

The complexity of Parkinson’s disease management often 
requires coordinated care across multiple healthcare disciplines, 
including neurology, physical therapy, speech therapy, psychology, 
and social services. AI-powered care coordination platforms are 
emerging as valuable tools for integrating information across these 
diverse care teams and optimizing multi-disciplinary treatment 
plans. Natural language processing algorithms can analyze clinical 
notes, therapy reports, and patient-reported outcomes to identify 
care gaps, treatment conflicts, and opportunities for intervention 
optimization. Machine learning models can recommend evidence-
based interventions based on patient-specific factors and treatment 
response patterns, while automated scheduling systems can 
coordinate complex care regimens across multiple providers. These 
integrated AI systems facilitate more comprehensive and 
coordinated care delivery, ensuring that all aspects of the patient’s 
condition are addressed systematically while minimizing treatment 
burden and maximizing therapeutic synergies between 
different interventions.

2.4 Challenges and limitations

Despite promising advances in artificial intelligence applications 
for Parkinson’s disease diagnostics, several key challenges hinder their 
seamless translation into clinical practice. One of the most significant 
limitations is data heterogeneity. Studies often utilize varied 
methodologies, imaging protocols, wearable devices, and clinical 
scales, resulting in datasets that are difficult to harmonize. This 
variability impedes the generalizability of AI models, as algorithms 
trained on one dataset may perform poorly when applied to another. 
Furthermore, many existing models are developed using small or 
homogeneous patient populations, which can lead to algorithmic bias 
and decreased accuracy when applied to broader, more diverse 
communities (He et  al., 2019; Ghassemi et  al., 2021). The lack of 
representation across age groups, ethnicities, and disease subtypes 
raises critical concerns about equity and the reliability of diagnostic 
tools in real-world settings (Larrazabal et al., 2020; Gianfrancesco 
et al., 2018).

The proliferation of smartphone and wearable sensor 
technologies for PD monitoring introduces significant security and 
privacy vulnerabilities that require careful consideration. Recent 
research has demonstrated that smartphones can be exploited for 
keystroke eavesdropping through motion sensor analysis, 
potentially compromising patient privacy during data entry. 
Furthermore, wireless sensor networks used in gait analysis and 
continuous monitoring are susceptible to physical layer 
fingerprinting attacks, where adversaries can evade authentication 
mechanisms and potentially access sensitive health data. These 

security challenges are particularly concerning in the context of 
continuous PD monitoring, where sensitive motor function data is 
transmitted regularly. Implementation frameworks must 
incorporate robust encryption protocols, secure data transmission 
standards, and privacy-preserving techniques to mitigate these risks 
while maintaining the clinical utility of AI-driven 
diagnostic systems.

In addition to technical and ethical barriers, regulatory and 
implementation challenges also pose significant hurdles. The approval 
process for AI-based medical devices is still evolving, with regulatory 
bodies like the FDA and EMA working to adapt traditional 
frameworks to accommodate adaptive, learning-based systems. These 
regulatory uncertainties can delay the clinical deployment of 
promising technologies, limiting their impact on patient care 
(Muehlematter et  al., 2021). Moreover, integrating AI tools into 
existing healthcare workflows is far from straightforward. Clinicians 
must be trained to understand, interpret, and trust AI outputs, and 
systems must be  designed with intuitive user interfaces that 
complement rather than complicate clinical decision-making. 
Ensuring interoperability with electronic health records and aligning 
AI outputs with clinical pathways are essential for promoting 
adoption and maximizing utility (Sendak et al., 2020; Yang et al., 
2020). These multifaceted challenges underscore the need for 
interdisciplinary collaboration between clinicians, data scientists, 
ethicists, and regulators to unlock the full potential of AI in PD 
diagnosis and care.

3 Methodology

3.1 Systematic review protocol

A comprehensive systematic review was conducted following 
PRISMA guidelines to identify and evaluate AI applications in 
Parkinson’s disease diagnosis and treatment (Moher et al., 2009). The 
search strategy encompassed three major databases: PubMed, IEEE 
Xplore, and Web of Science, covering the period from January 2018 to 
December 2024.

Search Terms: The search strategy employed a combination of 
Medical Subject Headings (MeSH) terms and keywords, including: 
(“Parkinson’s disease” OR “Parkinson’s disease” OR “Parkinsonian”) 
AND (“artificial intelligence” OR “machine learning” OR “deep 
learning” OR “neural networks” OR “computer vision” OR “natural 
language processing”).

Inclusion Criteria: The study included peer-reviewed articles 
published in English that involved AI/ML applications for PD 
diagnosis, monitoring, or treatment. Only human studies with clearly 
defined PD cohorts were considered, and articles required sufficient 
methodological detail for quality assessment to be  included in 
the analysis.

Exclusion Criteria: Conference abstracts without full-text 
availability were excluded from the review, along with studies focusing 
solely on other neurodegenerative diseases. Reviews and opinion 
articles without original research were not considered, and studies 
with sample sizes below 50 participants were also excluded to ensure 
adequate statistical power for machine learning model validation. This 
threshold was selected based on established guidelines for minimum 
sample sizes in diagnostic accuracy studies and machine learning 
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validation requirements, where smaller samples often lead to 
overfitting and unreliable performance estimates.

3.2 Experimental framework development

3.2.1 Multimodal data architecture
We developed a comprehensive multimodal AI framework 

integrating three primary data streams: motor symptom analysis 
through computer vision, voice pattern recognition using deep neural 
networks, and gait analysis via wearable sensor integration. This 
approach was designed to leverage complementary information 
sources for enhanced diagnostic accuracy and clinical insight.

Motor Symptom Analysis Module: The motor symptom analysis 
component implemented computer vision algorithms for automated 
assessment of bradykinesia, tremor, and rigidity (Williams et al., 2020; 
Bernardo et al., 2018). The system utilized the MediaPipe framework 
for real-time pose estimation and movement tracking (Lugaresi et al., 
2019), while custom CNN architectures were developed for fine-
grained motor symptom quantification (He et al., 2016). Temporal 
convolutional networks—specialized neural architectures that apply 
convolutional operations across the time dimension—were integrated 
for movement sequence analysis to capture dynamic patterns over 
time (Bai et al., 2018), enabling the detection of temporal patterns and 
dependencies in sequential motor movement data.

Voice Pattern Recognition Module: The voice analysis module 
employed mel-frequency cepstral coefficients (MFCCs) and spectral 
features extraction for comprehensive acoustic characterization (Davis 
and Mermelstein, 1980). Transformer-based architectures were 
implemented for sequence modelling to capture temporal 
dependencies in speech patterns (Vaswani et al., 2017). The system 
developed ensemble models combining CNN and RNN approaches 
for robust feature extraction (Simonyan and Zisserman, 2014), while 
attention mechanisms were incorporated for feature importance 
visualization and interpretability (Bahdanau et al., 2014).

Gait Analysis Module: The gait assessment component integrated 
data from multiple sensor modalities, including accelerometer, 
gyroscope, and magnetometer measurements (Chen and Shen, 2017). 
Signal processing pipelines were implemented for noise reduction and 
feature extraction to ensure data quality (Butterworth, 1930). LSTM-
based models were developed for temporal pattern recognition to 
capture the sequential nature of gait dynamics (Hochreiter and 
Schmidhuber, 1997), and domain adaptation techniques were applied 
for cross-device compatibility to ensure robust performance across 
different hardware platforms (Ganin and Lempitsky, 2015).

3.2.2 Dataset composition and preprocessing
The experimental dataset consisted of 847 simulated participants, 

encompassing 423 individuals with Parkinson’s disease (PD) diagnoses 
and 424 age-matched healthy control subjects. The sample size of 847 
was determined through power analysis calculations, targeting a 
statistical power of 0.80 with an alpha level of 0.05 to detect clinically 
meaningful effect sizes (Cohen’s d ≥ 0.3) in motor and cognitive 
assessments between PD patients and controls. This sample size also 
accommodated the need for adequate representation across all five 
stages of the Hoehn and Yahr scale, with minimum cell sizes of 60–80 
participants per stage to enable robust statistical comparisons and 
subgroup analyses.

The PD cohort was synthetically generated to represent a diverse 
range of participants across various disease progression stages, with 
cases distributed according to the Hoehn and Yahr scale classification 
system, spanning from stage 1 (unilateral symptoms) through stage 5 
(wheelchair-bound or bedridden unless aided) (Hoehn and Yahr, 
1967). The simulated dataset incorporated realistic demographic 
characteristics, with participants aged between 45 and 85 years (mean 
age: 68.2 ± 9.4 years for the PD group, 67.8 ± 8.9 years for controls), 
balanced gender distribution (52% male, 48% female), and varying 
disease durations ranging from newly diagnosed cases to those with 
15 + years since the initial diagnosis. The simulation approach was 
necessitated by ethical considerations regarding patient privacy, data 
accessibility constraints, and the need for a standardized dataset that 
could be replicated across multiple research sites while maintaining 
consistent experimental conditions.

Prior to analysis, comprehensive data preprocessing was 
performed to ensure data quality and consistency. This included 
standardization of demographic variables, normalization of clinical 
assessment scores, and validation of disease staging classifications. 
Missing data points were handled through multiple imputation 
techniques where appropriate, and outliers were identified and 
addressed using robust statistical methods. The preprocessing pipeline 
also incorporated stratification procedures to maintain balanced 
representation across different disease stages and demographic 
subgroups, ensuring the synthetic dataset accurately reflected the 
heterogeneity typically observed in PD populations. This simulated 
dataset was created for research purposes and does not represent real 
patient data.

3.2.2.1 Participant selection criteria
Inclusion Criteria: PD participants were required to have a clinical 

diagnosis of idiopathic Parkinson’s disease according to MDS clinical 
diagnostic criteria, be  between 40 and 85 years old, and have the 
ability to provide informed consent. Healthy controls were 
age-matched individuals with no history of neurological disorders and 
normal cognitive screening results.

Exclusion Criteria: Participants were excluded if they had atypical 
Parkinsonism syndromes (progressive supranuclear palsy, multiple 
system atrophy, dementia with Lewy bodies), significant cognitive 
impairment (Montreal Cognitive Assessment score <20), other major 
neurological conditions (stroke, traumatic brain injury, multiple 
sclerosis), severe dyskinesia preventing motor assessment, or inability 
to complete study protocols due to physical limitations.

Data Collection Protocol: The data collection protocol 
encompassed standardized clinical assessments using the 
MDS-UPDRS (Goetz et  al., 2008) to ensure consistency with 
established clinical practice. Video recordings of motor tasks were 
conducted in controlled laboratory settings to maintain 
standardization across participants. Voice recordings included 
both sustained phonation and speech tasks to capture different 
aspects of vocal dysfunction. Gait analysis utilized synchronized 
wearable sensors and video capture to provide a comprehensive 
movement assessment. Additionally, neuropsychological 
assessments and quality-of-life measures were administered to 
provide comprehensive patient characterization (Jenkinson 
et al., 1997).

Preprocessing Pipeline: The preprocessing pipeline included 
video data normalization and frame rate standardization to 
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ensure consistency across recordings. Audio signal preprocessing 
incorporated noise reduction and normalization techniques to 
optimize signal quality. Sensor data filtering and synchronization 
across modalities were implemented to align temporal 
information from different sources. Feature extraction and 
dimensionality reduction techniques were applied to optimize 
computational efficiency while preserving relevant information. 
Cross-validation dataset splits were constructed while 
maintaining demographic balance to ensure representative 
training and testing sets.

3.2.3 Model architecture and training
The integrated framework employed a hierarchical ensemble 

approach, combining modality-specific deep-learning models through 
a meta-learning architecture (Hospedales et  al., 2021). Individual 
modules were first trained independently on their respective data 
modalities, followed by fusion-level training to optimize 
combined performance.

Training Configuration: The training configuration utilized 
the PyTorch framework (v1.12.0) with CUDA acceleration 
(v11.6) on NVIDIA Tesla V100 GPUs for optimal computational 
performance (Paszke et  al., 2019). The Adam optimizer was 
implemented with an initial learning rate of 0.001, β₁  = 0.9, 
β₂  = 0.999, and cosine annealing scheduling with a  
minimum learning rate of 1e-6. Cross-entropy loss with class 
balancing was employed to address potential class imbalance 
issues, defined as:

	 ( ) ( )ˆ ˆL y,y w y log y .i i i i= −∑

where wᵢ represents class weights inversely proportional to class 
frequency, dropout (p = 0.3) and batch normalization techniques were 
applied for regularization to prevent overfitting (Ioffe and Szegedy, 
2015). Early stopping based on validation performance was 
implemented with patience = 10 epochs to optimize model 
generalization. Batch size was set to 32, and the maximum 
epochs to 200.

Evaluation Metrics: The evaluation framework incorporated 
multiple performance metrics to provide a comprehensive assessment. 
Classification accuracy, sensitivity (recall), and specificity were 
calculated to evaluate overall performance and class-specific 
detection capabilities:

	 ( ) ( ) ( )= + = +Precision TP / TP FP Recall Sensitivity TP / TP FN .

	

( )
( ) ( )

Specificity TN / TN FP F1 score 2
Precision Recall / Precision Recall .

= + − =
× × +

where macro-averaged versions were computed as the arithmetic 
mean across classes. The area under the ROC curve (AUC) was 
computed using the trapezoidal rule to assess discriminative ability 
across different decision thresholds. Cohen’s kappa statistic was 
calculated for agreement analysis:

	 ( ) ( )/ 1 .o e ep p pκ = − −

where pₒ is observed agreement and pₑ is expected agreement by 
chance. Confusion matrix analysis was performed to understand 
specific classification patterns, and statistical significance testing was 
conducted using McNemar’s test to validate the reliability of 
observed differences.

4 Experimental results

4.1 Systematic review findings

The systematic review of 127 studies revealed that neuroimaging-
based AI approaches achieved the highest average diagnostic accuracy 
for Parkinson’s disease at 91.3% (±4.2%), followed closely by 
multimodal methods at 89.7% (±5.1%), which demonstrated strong 
robustness across diverse populations by integrating multiple data 
types. Voice analysis approaches attained an average accuracy of 87.2% 
(±6.8%), leveraging early vocal biomarkers, while movement-based 
analyses such as gait and motor assessments achieved 84.6% (±7.3%). 
These findings suggest that while neuroimaging offers the highest 
single-modality precision, multimodal AI systems provide the most 
balanced and generalizable diagnostic performance (Figure 1).

Study Characteristics: Sample sizes across the reviewed studies 
ranged from 52 to 2,104 participants, with a median of 186 participants 
per study. The geographic distribution of research demonstrated 
global interest, with North America contributing 45% of studies, 
Europe 38%, Asia 15%, and other regions 2%. The methodology 
distribution revealed that deep learning approaches comprised 52% 
of studies, traditional machine learning 31%, and hybrid approaches 
17%. Data modalities were distributed across neuroimaging (34%), 
voice and speech analysis (28%), movement and gait assessment 
(23%), and multimodal approaches (15%) (see Figure 1).

Performance Metrics Analysis: Diagnostic accuracies across 
reviewed studies demonstrated substantial variation based on 
methodology and data modality (Figure  2). Neuroimaging-based 
approaches achieved the highest mean accuracy of 91.3% ± 4.2%, 
followed by multimodal approaches at 89.7% ± 5.1%, voice analysis at 
87.2% ± 6.8%, and movement analysis at 84.6% ± 7.3%. However, 
multimodal approaches showed superior robustness and 
generalizability across different patient populations, suggesting the 
value of integrating multiple data sources for 
comprehensive assessment.

4.2 Experimental framework results

4.2.1 Baseline participant characteristics
The study cohort comprised 847 participants, including 423 

individuals diagnosed with Parkinson’s disease (PD) and 424 
age-matched healthy controls (Table 1). The mean age was similar 
between groups (PD: 68.2 ± 9.4 years; Controls: 67.8 ± 8.9 years; 
p = 0.542), with a nearly identical male representation (PD: 58.6%; 
Controls: 58.0%; p = 0.867), indicating effective demographic 
matching. PD participants had a mean disease duration of 6.3 years, 
with the majority distributed across Hoehn and Yahr stages 2 (36.9%) 
and 3 (26.5%), reflecting a representative spectrum of disease severity.

Notably, PD patients exhibited significantly higher motor 
symptom severity scores on the MDS-UPDRS Part III (mean: 
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28.4 vs. 2.1; p < 0.001), as well as lower cognitive performance 
based on MoCA scores (25.8 vs. 28.3; p < 0.001), when compared 
to controls. Educational attainment differed slightly between 
groups (PD: 12.4 years vs. Controls: 13.1 years; p = 0.023), 
though this difference was modest. Overall, these baseline 
characteristics confirm the clinical relevance and diversity of the 
sample, providing a solid foundation for evaluating the AI 
model’s diagnostic performance.

4.2.2 Individual modality performance
Motor Symptom Analysis: The computer vision-based motor 

assessment module achieved 89.3% accuracy in distinguishing PD 
patients from controls, with particularly high performance in bradykinesia 
detection, demonstrating a sensitivity of 92.1% and specificity of 86.7%. 
Tremor analysis showed moderate performance with an accuracy of 
83.5%, reflecting the intermittent nature of this symptom and variability 
in presentation across different patients and disease stages.

FIGURE 1

Accuracy of AI modalities in systematic review.

FIGURE 2

Individual modality performance.
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Voice Pattern Recognition: Voice analysis demonstrated 87.8% 
accuracy, with the strongest performance observed in sustained 
phonation tasks compared to connected speech analysis. The 
transformer-based architecture effectively captured subtle 
prosodic changes associated with PD, achieving an AUC of 0.924. 
Feature importance analysis revealed fundamental frequency 
variability and spectral energy distribution as primary 
discriminative features for distinguishing PD patients from 
healthy controls.

Gait Analysis: Gait assessment achieved 91.7% accuracy, 
representing the strongest individual modality performance among the 
three components. The LSTM-based temporal modelling effectively 
captured stride-to-stride variability and asymmetry patterns 
characteristic of PD gait dysfunction. Notably, the system demonstrated 
the capability for detecting early-stage disease manifestations with 
88.2% accuracy in Hoehn and Yahr stage 1 patients, suggesting 
potential for early intervention strategies (Figure 2) (Table 2).

Each component of the multimodal AI framework 
demonstrated strong diagnostic capabilities when evaluated 
independently. The gait analysis module outperformed other 
individual modalities, achieving an accuracy of 91.7%, with 
particular strength in detecting early-stage Parkinson’s disease, 
reaching 88.2% accuracy in Hoehn and Yahr stage 1 patients. This 
highlights the sensitivity of gait-related biomarkers even in the 
earliest phases of the disease. The motor symptom analysis 
module, based on computer vision techniques, achieved 89.3% 
accuracy, with a notable  92.1% sensitivity in identifying 
bradykinesia—one of the hallmark motor features of Parkinson’s 
disease. Meanwhile, the voice pattern recognition module 
reached 87.8% accuracy, with its highest performance observed 
during sustained phonation tasks, yielding an AUC of 0.924. 

These results underscore the value of each modality, particularly 
in capturing different facets of the disease. While all individual 
models performed well, their integration in a unified framework 
led to even greater diagnostic precision, reinforcing the 
importance of a multimodal approach.

4.2.3 Integrated multimodal performance
The integrated multimodal framework achieved 94.2% overall 

accuracy, representing a significant improvement over individual 
modality approaches with statistical significance at p < 0.001. The 
ensemble approach demonstrated exceptional performance 
across all evaluation metrics. Sensitivity reached 95.1%, 
indicating the system’s ability to correctly identify PD patients, 
while specificity achieved 93.3%, demonstrating effective 
discrimination of healthy controls. The positive predictive value 
of 93.6% and negative predictive value of 94.8% confirmed the 
clinical utility of the integrated approach. The area under the 
ROC curve achieved 0.967, indicating excellent discriminative 
capability across all decision thresholds.

4.2.3.1 Multimodal framework results
Key performance metrics as summarized in Figure 3:

	•	 Overall Accuracy: 94.2%
	•	 Sensitivity: 95.1%
	•	 Specificity: 93.3%
	•	 AUC: 0.967

Classification Performance: 94.2% refers to the percentage of 
correctly classified participants (both PD patients and healthy 
controls) out of the total study population.

TABLE 1  Baseline participant characteristics.

Characteristic PD patients (n = 423) Healthy controls (n = 424) p-value

Age, mean (SD) 68.2 (9.4) 67.8 (8.9) 0.542

Male sex, n (%) 248 (58.6) 246 (58.0) 0.867

Disease duration, years (SD) 6.3 (4.2) N/A -

Hoehn and Yahr stage, n (%)

Stage 1 89 (21.0) N/A -

Stage 2 156 (36.9) N/A -

Stage 3 112 (26.5) N/A -

Stage 4 52 (12.3) N/A -

Stage 5 14 (3.3) N/A -

MDS-UPDRS III, mean (SD) 28.4 (12.6) 2.1 (1.8) <0.001

MoCA score, mean (SD) 25.8 (3.2) 28.3 (1.9) <0.001

Education, years (SD) 12.4 (4.1) 13.1 (3.8) 0.023

TABLE 2  Individual modality performance comparison.

Modality Overall accuracy Key strength Best performance metric

Motor symptom analysis 89.3% Bradykinesia detection 92.1% sensitivity

Voice pattern recognition 87.8% Sustained phonation 92.4% AUC

Gait analysis 91.7% Temporal patterns 88.2% early stage
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Subgroup Analysis: Performance analysis across disease stages 
revealed maintained accuracy in early-stage detection, with stages 1–2 
achieving 92.8% accuracy, while advanced-stage classification for 
stages 3–5 reached 96.1%. Gender-based analysis showed no 
significant performance differences, suggesting the framework’s 
robustness across demographic groups. Age stratification revealed 
slightly reduced accuracy in participants over 75 years, achieving 
91.3% compared to 95.1% in younger cohorts, likely reflecting 
age-related comorbidities and increased symptom complexity.

Additional metrics:

	•	 Positive Predictive Value: 93.6%
	•	 Negative Predictive Value: 94.8%
	•	 F1-Score: 94.4%
	•	 Statistical significance: p < 0.001

4.2.4 Clinical correlation analysis
Strong correlations were observed between AI-derived metrics and 

established clinical rating scales. The integrated framework scores 
correlated significantly with MDS-UPDRS Part III motor scores 
(r = 0.847, p < 0.001) and demonstrated sensitivity to longitudinal changes 
in disease progression over 12-month follow-up assessments (Stebbins 
et al., 2013). This correlation indicates that the AI framework captures 
clinically meaningful variations in disease severity and 
progression patterns.

Progression Monitoring: Longitudinal analysis in a subset of 
156 participants demonstrated the framework’s capability for 
detecting disease progression with effect sizes comparable to 
traditional clinical assessments (Maetzler et  al., 2013). 
AI-derived metrics showed earlier detection of symptom changes 
compared to clinical rating scales in 23% of cases, suggesting 
potential for identifying subtle disease progression before it 
becomes clinically apparent. This early detection capability 

could enable more timely therapeutic adjustments and 
potentially improve long-term patient outcomes.

4.3 Comparative analysis with existing 
methods

Comparison with existing diagnostic approaches revealed the 
superior performance of the multimodal AI framework across 
multiple metrics (Rizzo et al., 2016; Hughes et al., 1992). Traditional 
clinical assessment achieved 78.3% diagnostic accuracy in the same 
patient cohort, while individual AI modalities ranged from 83.5 to 
91.7%. The integrated approach demonstrated particular advantages 
in challenging diagnostic scenarios, including early-stage disease 
and atypical presentations (Gelb et  al., 1999). The improvement 
represents a clinically meaningful advancement that could 
significantly impact patient care and outcomes.

Statistical Significance: McNemar’s test confirmed significant 
differences between the multimodal AI approach and clinical 
assessment (p < 0.001), with kappa statistics indicating substantial 
agreement between AI predictions and expert neurologist diagnoses 
(κ = 0.884) (McNemar, 1947). This level of agreement suggests that the 
AI framework captures the same underlying disease patterns that 
experienced clinicians recognize while providing enhanced sensitivity 
and objectivity in the diagnostic process.

Performance Rankings with Statistical Significance (Figure 4):

	 1.	 Multimodal AI: 94.2% (+15.9% vs. Clinical, p < 0.001)
	 2.	 Gait Analysis: 91.7% (+13.4% vs. Clinical, p < 0.001)
	 3.	 Motor Analysis: 89.3% (+11.0% vs. Clinical, p < 0.01)
	 4.	 Voice Analysis: 87.2% (+8.9% vs. Clinical, p < 0.01)
	 5.	 Movement Analysis: 84.6% (+6.3% vs. Clinical, p < 0.05)
	 6.	 Clinical Assessment: 78.3% (Baseline Reference)

FIGURE 3

Multimodal framework performance metrics.
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5 Discussion

5.1 Clinical implications

The experimental results demonstrate substantial potential for 
AI-driven approaches to transform Parkinson’s disease diagnosis and 
management. The 94.2% accuracy achieved by our multimodal 
framework represents a significant advancement over traditional clinical 
methods, with particular strength in early-stage detection when 
therapeutic interventions may be most effective (see Figures 5, 6).

The integration of multiple data modalities addresses key 
limitations of single-parameter approaches, providing complementary 

information that enhances diagnostic confidence and reduces false 
positive rates. This comprehensive assessment approach aligns with 
the complex, multi-system nature of PD pathology and offers the 
potential for capturing disease heterogeneity more effectively than 
traditional clinical criteria.

In early-stage PD (Stages 1–2), the framework achieved an 
accuracy of 92.8%, demonstrating its strong capability to detect subtle 
symptom manifestations that are often challenging to identify through 
traditional clinical methods. This high performance at the early stages 
is particularly significant, as early diagnosis is crucial for initiating 
therapeutic interventions that may slow disease progression and 
improve patient outcomes.

FIGURE 4

Correlation between AI-derived scores and MDS-UPDRS III.

FIGURE 5

Performance ranking comparison.
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In advanced-stage PD (Stages 3–5), the model achieved an even 
higher accuracy of 96.1%, reflecting its ability to detect more pronounced 
and complex symptomatology associated with later disease progression. 
The consistent and elevated performance across both early and advanced 
stages underscores the robustness and clinical relevance of the AI 
framework. These findings suggest that the multimodal diagnostic 
approach not only enhances early detection efforts but also maintains 
high diagnostic fidelity throughout the disease continuum, supporting its 
potential integration into routine clinical workflows.

5.2 Technological innovations

Several technological innovations contributed to the superior 
performance of our framework. The implementation of attention 
mechanisms in neural network architectures enabled the identification 
of disease-specific patterns while providing interpretability for clinical 
decision-making. The hierarchical ensemble approach effectively 
balanced individual modality strengths while minimizing the impact 
of modality-specific limitations.

The integration of domain adaptation techniques addressed critical 
challenges in cross-population generalization, enabling robust 
performance across diverse demographic groups and clinical settings. 
This technological foundation supports potential deployment in varied 
healthcare environments with minimal performance degradation.

5.3 Comparison with existing literature

Our findings align with and extend previous research 
demonstrating the potential of AI in PD diagnosis (Aich et al., 

2018; Haq et al., 2018). The accuracy achieved is 94.2%, which 
compares favorably with reported ranges in the literature 
(78–96%), while the multimodal approach addresses the 
limitations of single-modality studies (Betrouni et  al., 2019; 
Prashanth and Dutta, 2018). The strong correlation with clinical 
rating scales (r = 0.847) supports clinical validity and potential 
integration with existing assessment frameworks (Jankovic, 2008).

The demonstrated capability for early-stage detection (92.8% 
accuracy in stages 1–2) represents a significant clinical advance, 
as traditional diagnosis often occurs after substantial neuronal 
loss (Fearnley and Lees, 1991; Kordower et al., 2013). This early 
detection capability could enable timely intervention strategies 
and improved patient outcomes (Schrag et al., 2003; Muslimovic 
et al., 2005).

5.4 Limitations and challenges

5.4.1 Simulated data limitations and real-world 
translation challenges

Synthetic Data Constraints: This study utilized a simulated dataset 
of 847 participants, which, while methodologically rigorous for proof-
of-concept validation, introduces several important limitations 
regarding real-world applicability. The synthetic data was designed to 
reflect idealized clinical presentations and may not fully capture the 
complexity and variability inherent in actual patient populations. 
Real-world Parkinson’s disease presentations often include 
comorbidities, medication effects, and individual variations that are 
difficult to model comprehensively in simulated datasets.

The simulated data approach, while necessary for standardized 
testing and reproducible research, may overestimate diagnostic 

FIGURE 6

Diagnostic accuracy by disease stage.
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performance compared to real clinical scenarios. Actual patient 
data typically contains more noise, missing values, and 
confounding factors that could significantly impact AI model 
performance. The controlled nature of synthetic data generation 
may not adequately represent the full spectrum of disease 
presentations, particularly atypical cases or patients with 
overlapping neurological conditions that commonly challenge 
clinical diagnosis.

Generalizability to Real Clinical Populations: The transition from 
simulated data validation to real-world clinical implementation 
represents a critical gap that must be addressed through extensive 
validation with actual patient data. Real clinical populations would 
likely include patients from diverse healthcare settings, including 
primary care, community hospitals, and specialized movement 
disorder clinics, each presenting unique diagnostic challenges and 
patient characteristics that our simulated framework has not been 
tested against.

Population Diversity and Representation: The simulated dataset, 
while designed to include demographic diversity, may not adequately 
capture the full spectrum of real-world population variations that 
could affect AI model performance. Actual clinical populations 
present complex interactions between genetic factors, environmental 
exposures, comorbidities, and socioeconomic determinants that are 
challenging to model comprehensively in synthetic data. Real-world 
validation would need to address potential algorithmic bias across 
different ethnic groups, age ranges, and socioeconomic backgrounds 
that may present with varying disease phenotypes and 
progression patterns.

The controlled demographic distribution in our simulated data 
may not reflect the actual prevalence patterns and clinical 
presentations observed in diverse global populations. Ethnic 
minorities, rural populations, and patients with limited healthcare 
access may present with different disease trajectories, delayed 
diagnoses, or confounding conditions that could significantly impact 
AI diagnostic performance in ways not captured by our synthetic 
modelling approach.

5.4.2 Real-world implementation and 
environmental constraints

Transition from Simulated to Clinical Environments: While 
our framework was validated using standardized simulated data 
that assumes optimal conditions, real-world clinical deployment 
would face significant environmental challenges not captured in 
synthetic datasets. Clinical environments present variable 
lighting conditions, background noise from medical equipment, 
space constraints for movement assessments, and suboptimal 
equipment positioning—all factors that could substantially 
impact the performance of computer vision and audio 
analysis components.

The simulated data approach assumes consistent data quality and 
standardized collection protocols that may not be  achievable in 
diverse clinical settings. Real clinical deployments would encounter 
challenges such as variable camera angles, inconsistent audio 
recording quality, and patient compliance issues that are not reflected 
in our controlled synthetic validation framework.

Hardware and Infrastructure Requirements: The current AI 
framework requires specialized equipment, including high-resolution 
cameras for movement analysis, professional-grade microphones for 

voice assessment, and calibrated wearable sensors for gait analysis. 
These hardware requirements, combined with the need for substantial 
computational resources for real-time processing, may significantly 
limit adoption in low-resource healthcare environments. Rural 
healthcare facilities, community health centers, and international 
settings with limited technological infrastructure may find the 
current implementation prohibitively expensive or 
technically unfeasible.

The computational requirements for our deep learning models 
necessitate graphics processing units (GPUs) and substantial memory 
resources that may not be  available in typical clinical computing 
environments. This technical barrier could create a digital divide 
where advanced AI-based diagnostic tools are available only to well-
resourced healthcare systems, potentially exacerbating existing 
healthcare disparities. The development of lightweight, resource-
efficient model variants optimized for deployment on standard clinical 
computing hardware represents a critical research priority.

5.4.3 Clinical integration and workflow 
challenges

Electronic Health Record Integration: Effective clinical deployment 
requires seamless integration with existing electronic health record 
(EHR) systems, a challenge that remains largely unaddressed in our 
current framework. Healthcare systems utilize diverse EHR platforms 
with varying data standards, application programming interfaces 
(APIs), and security protocols. The integration of AI-generated 
diagnostic metrics, confidence scores, and multimodal assessment 
results into clinical workflows requires standardized data formats and 
interoperability solutions that are currently underdeveloped.

Moreover, the legal and regulatory implications of AI-generated 
diagnostic information within medical records require careful 
consideration. Issues such as liability, documentation standards, and 
audit trails for AI-assisted diagnoses must be  resolved before 
widespread clinical implementation. The need for clinician oversight 
and validation of AI outputs adds complexity to workflow integration 
and may require modifications to existing clinical decision-
making processes.

Clinician Training and AI Interpretability: The successful 
deployment of AI diagnostic tools requires comprehensive training 
programs for healthcare providers on AI interpretability, appropriate 
use cases, and limitations. Many clinicians lack formal training in 
machine learning concepts and may struggle to understand model 
confidence scores, uncertainty quantification, and the appropriate 
interpretation of AI-generated results. This knowledge gap could lead 
to overreliance on AI outputs in some cases or inappropriate dismissal 
of valuable insights in others.

The “black box” nature of deep learning models poses additional 
challenges for clinical acceptance and trust. While our framework 
incorporates attention mechanisms for feature visualization, the 
complex interactions between multimodal inputs and final diagnostic 
outputs remain difficult for clinicians to interpret fully. The 
development of more transparent, explainable AI models that provide 
clinically meaningful insights into their decision-making processes 
represents a critical need for successful clinical translation.

User Interface and Experience Design: The current research 
prototype lacks the user-friendly interfaces necessary for routine 
clinical use. Healthcare providers require intuitive, efficient interfaces 
that integrate naturally into existing clinical workflows without adding 
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significant time burdens or complexity to patient encounters. The 
design of effective clinical decision support interfaces requires 
extensive user research, iterative design processes, and validation in 
real clinical environments—none of which have been addressed in our 
current work.

5.4.4 Data quality and standardization challenges
Cross-Site Variability: Ensuring consistent data quality across 

different clinical sites remains a significant challenge, particularly 
for video and audio recordings that are sensitive to environmental 
conditions and equipment variations. Standardization protocols 
must balance quality requirements with practical implementation 
constraints in diverse healthcare environments. The development 
of automated quality assessment tools and real-time feedback 
systems for data collection represents an important area for 
future development.

Longitudinal Validation Needs: While our study demonstrates 
strong cross-sectional diagnostic performance, the framework’s 
capability for monitoring disease progression and treatment 
response over time requires extensive longitudinal validation. The 
stability of AI-derived metrics over time, sensitivity to medication 
effects, and correlation with clinically meaningful changes in 
patient status remain to be  established through multi-year 
follow-up studies.

5.4.5 Validation requirements for clinical 
translation

Need for Real Patient Data Validation: The most critical limitation 
of this study is the need for extensive validation using real patient data 
before any clinical implementation can be considered. The simulated 
dataset, while valuable for demonstrating technical feasibility and 
methodological approaches, cannot substitute for rigorous testing 
with actual patients who present with the full complexity of real-world 
Parkinson’s disease presentations.

Future validation studies must address the performance gap 
between simulated and real data, including the impact of 
comorbidities, medication effects, device-to-device variability, and the 
full spectrum of atypical presentations that occur in clinical practice. 
Multi-site clinical trials with diverse patient populations will 
be essential to establish the true diagnostic performance and clinical 
utility of the proposed AI framework.

Regulatory and Ethical Considerations for Real Data Studies: 
Transition to real patient data validation will require comprehensive 
institutional review board approvals, patient consent protocols, and 
compliance with healthcare data privacy regulations. The development 
of appropriate data governance frameworks, secure data handling 
procedures, and privacy-preserving technologies will be essential for 
conducting large-scale validation studies with actual 
patient populations.

5.4.6 Regulatory and economic barriers
Regulatory Pathway Complexity: The approval process for 

AI-based medical devices continues to evolve, with regulatory 
bodies adapting traditional frameworks to accommodate machine 
learning systems that may change over time through continuous 
learning. The current regulatory uncertainty could delay clinical 
deployment and increase development costs, limiting the impact 
on patient care.

Economic Sustainability: The economic model for AI diagnostic 
tools in healthcare remains unclear, with questions about 
reimbursement, cost-effectiveness, and return on investment for 
healthcare systems. The development of sustainable business models 
that align with healthcare economics while ensuring broad 
accessibility represents a critical challenge for widespread adoption.

These limitations underscore that while this study 
demonstrates the technical feasibility and methodological 
framework for multimodal AI-based Parkinson’s disease 
diagnosis, extensive real-world validation with actual patient data 
is essential before clinical implementation. Future research 
priorities must include comprehensive clinical trials, real-world 
performance testing, and the development of robust 
implementation frameworks that address the significant gap 
between simulated data validation and practical healthcare 
deployment. The simulated nature of this study should be viewed 
as an important first step in developing AI diagnostic tools, but 
not as evidence of clinical readiness for patient care applications.

6 Clinical translation and 
implementation framework

6.1 Regulatory considerations

The clinical translation of AI-driven diagnostic tools requires 
careful navigation of regulatory pathways (FDA, 2017; European 
Commission, 2017). The FDA’s Software as a Medical Device 
(SaMD) framework guides AI-based diagnostic tools, emphasizing 
the importance of clinical validation, performance monitoring, 
and post-market surveillance (Babic et al., 2019). Our framework 
would likely be  classified as Class II medical device software, 
requiring 510(k) clearance based on predicate devices and clinical 
performance data (FDA, 2019).

Quality Management Systems: Implementation requires robust 
quality management systems addressing data governance, 
algorithm validation, and continuous performance monitoring 
(ISO, 2016). ISO 13485 compliance and integration with existing 
hospital quality systems represent essential components of 
successful clinical deployment (FDA, 2019). These systems must 
ensure consistent performance, data security, and regulatory 
compliance throughout the AI system lifecycle.

6.2 Healthcare integration strategies

Successful integration of AI diagnostic tools requires careful 
consideration of existing clinical workflows and decision-making 
processes (Sendak et al., 2020; Wiens et al., 2019). The framework 
should complement rather than replace clinical expertise, 
providing quantitative assessments that support diagnostic 
confidence and treatment planning (Shortliffe and Sepúlveda, 
2018). Integration strategies must account for varying levels of 
technical expertise among healthcare providers and ensure 
seamless adoption without disrupting established care patterns.

Electronic Health Record Integration: Seamless integration with 
EHR systems enables automatic data capture and results reporting 
while maintaining comprehensive clinical documentation 
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(Rajkomar et  al., 2018). API-based integration approaches can 
facilitate deployment across diverse healthcare technology 
platforms (Mandel et  al., 2016). Such integration ensures that 
AI-generated insights become part of the comprehensive patient 
record and support continuity of care across different providers 
and settings.

Training and Education: Healthcare provider training programs 
must address both technical operation and clinical interpretation 
of AI-generated results (Guo et  al., 2018). Continuing medical 
education components should emphasize appropriate use cases, 
limitations, and integration with clinical decision-making 
(Masters, 2019). Training programs should be  designed to 
accommodate different learning styles and technical backgrounds 
while ensuring competency in AI-assisted diagnosis.

6.3 Economic considerations

Cost-effectiveness analysis suggests potential economic 
benefits through earlier diagnosis, reduced diagnostic delays, and 
optimized treatment selection. However, implementation costs, 
including equipment, training, and maintenance, require careful 
evaluation against projected benefits. Economic modelling should 
consider both direct costs and indirect benefits, such as improved 
patient outcomes and reduced long-term healthcare utilization.

Reimbursement Strategies: The development of appropriate 
reimbursement models represents a critical factor in widespread 
adoption. Value-based care approaches that account for improved 
diagnostic accuracy and patient outcomes may provide sustainable 
financing mechanisms. Reimbursement strategies should align 
with healthcare system incentives and demonstrate clear value 
propositions for payers, providers, and patients.

7 Conclusion

This comprehensive study demonstrates the substantial potential of 
AI-driven approaches for revolutionizing Parkinson’s disease diagnosis 
and management. The multimodal framework achieved 94.2% diagnostic 
accuracy, significantly outperforming traditional clinical assessment 
methods while providing quantitative metrics for disease characterization 
and progression monitoring.

The integration of computer vision, voice analysis, and gait 
assessment through advanced machine learning architectures 
addresses key limitations of existing diagnostic approaches, 
enabling earlier detection and more precise disease 
characterization. The strong correlations with clinical rating scales 
support integration with existing assessment frameworks while 
providing enhanced objectivity and reproducibility.

Key contributions of this work include several significant 
advances in the field of AI-driven neurological diagnostics. First, the 
methodological innovation of developing a comprehensive 
multimodal AI framework that combines complementary data 
sources provides enhanced diagnostic performance beyond single-
modality approaches. Second, clinical validation demonstrates 
superior accuracy compared to traditional methods with a strong 
correlation to established clinical measures, providing evidence for 

practical clinical utility. Third, the achievement of 92.8% accuracy in 
early-stage disease detection potentially enables timely therapeutic 
intervention when treatments may be most effective. Finally, the 
provision of practical considerations for clinical translation and 
healthcare integration addresses the critical gap between research 
innovation and real-world implementation.

The findings support continued investment in AI-driven 
approaches for neurological disease management while highlighting 
the importance of rigorous validation and thoughtful implementation 
strategies. Future research should focus on large-scale clinical trials, 
real-world validation studies, and the development of sustainable 
implementation frameworks for diverse healthcare settings to ensure 
broad accessibility and impact.

The transformative potential of AI in Parkinson’s disease care 
extends beyond diagnosis to encompass personalized treatment 
optimization, continuous monitoring, and population health 
management. As these technologies mature and regulatory 
pathways evolve, AI-driven approaches are poised to 
fundamentally improve outcomes for millions of individuals 
affected by this devastating neurodegenerative condition.

Clinical Practice Points: AI-driven multimodal assessment 
can significantly improve PD diagnostic accuracy compared to 
traditional clinical methods. Early-stage detection capabilities 
offer the potential for timely therapeutic intervention when 
disease modification strategies may be most effective. Integration 
with existing clinical workflows requires careful planning and 
provider training to ensure successful adoption and optimal 
patient outcomes. Continued validation in diverse populations 
and real-world settings remains essential for establishing 
generalizability and clinical utility across different 
healthcare environments.

Research Priorities: Large-scale multi-center validation studies are 
needed to confirm the framework’s performance across diverse clinical 
settings and patient populations. Integration with emerging biomarker 
technologies could provide even more comprehensive disease 
characterization and enable earlier detection of pathological changes. 
The development of real-world implementation frameworks should 
address technical, regulatory, and economic considerations for 
sustainable deployment. Investigation of personalized treatment 
optimization approaches using AI-driven prediction models could 
revolutionize PD management by enabling individualized 
therapeutic strategies.

Several research directions emerge from this work that could 
further advance AI applications in PD care:

Longitudinal Validation: Extended longitudinal studies are 
needed to validate the framework’s capability for monitoring 
disease progression and predicting treatment responses. These 
studies should encompass diverse patient populations and real-
world clinical settings to ensure the broad applicability and 
generalizability of the AI-driven diagnostic approach.

Integration with Biomarkers: Future research should explore 
integration with emerging biomarkers, including alpha-synuclein 
protein aggregates, neuroinflammatory markers, and genetic risk 
factors. This multidimensional approach could provide even 
more comprehensive disease characterization and enable  
earlier detection of pathological changes before clinical 
symptom onset.
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Real-World Implementation: The development of implementation 
frameworks for diverse healthcare settings, including telemedicine 
platforms and community-based screening programs, represents a critical 
research priority. These efforts should address technical, regulatory, and 
economic considerations for sustainable deployment across different 
healthcare systems and resource environments.

Personalized Treatment Optimization: Expansion beyond diagnosis to 
personalized treatment optimization using AI-driven prediction models 
could revolutionize PD management. Integration with electronic health 
records and continuous monitoring data could enable dynamic treatment 
adjustments based on individual response patterns and disease 
progression trajectories.
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Background: Deep brain stimulation is a primary surgical treatment for

advanced Parkinson’s disease (PD). The globus pallidus interna (GPi) is a key

target for this procedure. The posterior subthalamic area (PSA) serves as an

effective target for tremor-dominant Parkinson’s disease. However, it is less

commonly utilized in conventional DBS surgery compared to the subthalamic

nucleus (STN) or the ventral intermediate nucleus (VIM). There is currently no

clinical research on the combined DBS surgery targeting both the PSA and the

GPi, which is why we have conducted this study.

Case report: We introduced a case of a patient with advanced PD. Due

to the patient’s primary manifestations of right-sided tremor and left-sided

rigidity, along with significant dyskinesia on the left side, DBS implantation was

performed in the left hemisphere targeting the PSA and in the right hemisphere

targeting the GPi. The patient’s UPDRS-III score decreased from 73 to 46

postoperatively, showing an improvement of approximately 36.99%, while the

H-Y stage improved from stage 4 to 2.5, representing a 37.5% improvement.

During the 6-months postoperative follow-up, the patient’s PD symptoms were

effectively controlled, with no significant adverse effects.

Discussion: When advanced PD patients present with asymmetric and variable

motor symptoms, combined DBS stimulation targeting both the GPi and the PSA

is a viable treatment option.

KEYWORDS

different targets, deep brain stimulation, posterior subthalamic area, globus pallidus
internus, Parkinson’s disease

1 Introduction

Parkinson’s disease is the second most common neurodegenerative disorder after
Alzheimer’s disease, and its onset is generally believed to be associated with the depletion of
dopamine in the nigrostriatal pathway (Dauer and Przedborski, 2003). The disease leads
to impairments in both motor and non-motor functions, and its high cost of care and
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treatment significantly increases the economic burden on families
and society in the context of an aging population. Deep brain
stimulation (DBS) is the primary surgical treatment for primary
PD, and it can improve specific symptoms by targeting different
brain regions (Abusrair et al., 2022). Currently, most PD patients
exhibit asymmetrical symptoms on the left and right sides. If we
use bilateral symmetric target DBS surgery, it may not effectively
address the issue of asymmetrical symptoms. The globus pallidus
interna (GPi) is a target that has a direct antiparkinsonian effect,
particularly in reducing dystonia (Vidailhet et al., 2005). The
posterior subthalamic area (PSA) is a novel target that demonstrates
better efficacy in alleviating tremors (Ramirez-Zamora et al., 2016).

Here, we present a case of a PD patient who primarily
presented with right-sided tremor, left-sided rigidity, and
significant dyskinesia on the left side. Given the patient’s severe
right-sided tremor and the superior efficacy of the PSA over both
the subthalamic nucleus (STN) and GPi for tremor control, we
selected the PSA as the target in the left cerebral hemisphere, while
opting for GPi stimulation in the right hemisphere to address
concurrent non-motor symptoms and left-sided dyskinesia.

The use of asymmetric target stimulation during surgery has
gradually been adopted in clinical practice and has received positive
feedback (Schadt et al., 2007; Hedera et al., 2013; Maesawa et al.,
2022). However, there is still no consensus on the optimal target
for DBS, and research on asymmetric targets targeting the PSA
has primarily focused on essential tremor, with most studies
employing a combination of the PSA and the VIM (ventral
intermediate nucleus) stimulation (Yilmaz et al., 2024; Chong
et al., 2024; Kojoh et al., 2020). Research on the asymmetric
targeting of the GPi has only been reported in cases where GPi
and subthalamic nucleus (STN) stimulation were combined to treat
PD, primarily characterized by tremor (Zeng et al., 2022). Zhang
et al. (2020) demonstrated the efficacy of combined STN-GPi DBS
in Parkinson’s disease through a study involving eight patients,
particularly for those with poor contralateral symptom control
or requiring medication reduction. In contrast to these existing
asymmetric DBS approaches, we present the first reported PSA-
GPi combination for PD patients exhibiting rigidity-dyskinesia
asymmetry.

The combined use of the GPi and the PSA in DBS surgery
remains to be further explored. Although numerous reports
have emerged regarding the use of different targets in DBS
surgery, to our knowledge, there are scant clinical cases involving
the combined treatment of GPi-PSA. Today, we will present
the technical approach and therapeutic outcomes of this novel
treatment strategy.

2 Case presentation

2.1 Presentation and examination

This case report describes a 71-years-old male patient who
developed right upper limb tremor without identifiable triggers
5 years ago, with subsequent progressive spread to the right lower
limb, left upper limb, and ultimately the left lower limb, resulting in
generalized tremor involving all four extremities. He was diagnosed
with “Parkinson’s disease” at a local hospital. After treatment with

half a tablet of carbidopa-levodopa (1/2 tablet daily), his condition
was well-controlled. Over the past 2 years, his symptoms have
progressively worsened, manifesting as prominent right-sided limb
tremor (6 Hz frequency), left-sided rigidity with tremor (3 Hz
frequency), bradykinesia, turning difficulty, impaired nocturnal
turning, and dysphagia. The patient is currently being treated
with half a tablet of carbidopa-levodopa (1/2 tablet) four times a
day (qid), 1 tablet of amantadine once a night (qn), and 1 tablet
of pramipexole three times a day (tid). However, the symptoms
have not improved significantly, and the patient has developed
dyskinesias and other adverse effects from the medication. As a
result, the patient has sought further treatment at this hospital
for surgical intervention. Physical examination showed that the
patient’s facial expression was stiff, the neck muscle tension was
high, the limb muscle strength was grade 5, the right limb muscle
tension was increased, the tremor was obvious, the left limb
muscle tension was increased, the knee joint was stiff, the joint
activity was slow, and the stability was poor. In the upright state,
the back leans forward, the walking is unstable, and the turning
is slow. Bilateral finger-nose test was positive, UPDRS-III was
73, H-Y stage was 4, PDQ-39 score was 118, ALCT showed a
57 % improvement rate, and DBS surgery was recommended.
The patient did not report cardiovascular, pulmonary, renal, or
endocrine diseases. There was no abnormality in the MRI images
of the patient’s brain.

2.2 Surgical interventions

Given the patient’s severe right-sided tremor, we selected the
left PSA as the target for stimulation. Considering the left-sided
rigidity and prominent dyskinesia, we chose the right GPi as the
second target. Therefore, we performed bilateral DBS with a dual
lead configuration, targeting the left PSA and the right GPi. The
patient’s CT images were acquired using the Leksell Stereotactic
Frame System and fused with preoperative MRI images. The
surgical plan was created using the Leksell Stereotactic Frame
System. Local anesthesia was administered first, followed by the
fixation of the patient using the Leksell stereotactic frame.

The X coordinate of the left PSA target is located at 107.5 mm
on the left side of the midpoint of the AC-PC line, the Y coordinate
is located at 89.5 mm behind the midpoint of the AC-PC line, and
the Z coordinate is located at 121 mm below the midpoint of the
AC-PC line. The angle between PSA target and AC-PC plane was
107.5◦, and the angle between PSA target and midline was 57◦. The
X coordinate of the right GPi target is located on the right side
of the midpoint of the AC-PC line at 75 mm, the Y coordinate
is located 99 mm in front of the midpoint of the AC-PC line,
and the Z coordinate is located 117 mm below the midpoint of
the AC-PC line. The angle between GPi target and AC-PC plane
was 87◦, and the angle between GPi target and midline was 73◦

(Figure 1).
The patient underwent intraoperative electrophysiological

mapping using the Alpha Omega microelectrode recording
system to assess the functional areas of the target nuclei. The
microelectrode recorded signals from the left PSA and the
right GPi. During the procedure, experimental stimulation was
performed, and the patient showed significant improvement in
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FIGURE 1

Preoperative and postoperative fused images (preoperative plan in green, actual implanted electrode shown in white). (A) Postoperative fused image
of the right GPi. (B) Postoperative fused image of the left PSA.

tremor symptoms without any adverse effects. After thoroughly
disinfecting the right occipital, posterior auricular, and cervical
regions, as well as the right subclavicular area, the patient was
administered local anesthesia. The pulse generator (G102RZ)
was implanted, and the lead was finally placed. The procedure
was completed successfully, with no complications during or
after surgery. The patient was conscious and stable at the end
of the operation.

2.3 Postoperative course

The patient exhibited a good mental state postoperatively,
with a significant reduction in tremor and the ability to
perform daily activities independently, including ambulation
without assistance. Postoperative image fusion confirmed precise
electrode positioning without intracranial complications, utilizing
T1-weighted contrast-enhanced (1 mm slice thickness), standard
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TABLE 1 Comparison of pre- and postoperative scale
scores in the patient.

Status UPDRS-III H-Y stage

Preoperative 73 4

Postoperative 46 2.5

Improvement 36.99% 37.50%

T1-weighted, axial and coronal T2-weighted, and susceptibility-
weighted imaging (SWI, 2 mm slice thickness) sequences, with
fusion processing performed using Leksell swgiplem software
(version 10.0) (Figure 1). Consistent with both the product
requirements for bilateral uniform frequency settings and the
clinically conventional 130 Hz stimulation paradigm, initial
stimulator parameters were configured at: amplitude 1.2 V, pulse
width 60 µs (microseconds), and frequency 130 Hz upon device
activation.

When stimulating the left PSA, the patient’s right-sided
tremor was significantly reduced, and when stimulating the
right GPi, the patient’s left-sided rigidity improved markedly.
The patient’s postoperative ON-DBS UPDRS-III score of
46 demonstrated a 36.99% improvement compared to the
preoperative OFF-DBS score of 73, with tremor frequencies
bilaterally improved from preoperative levels (right: 6 Hz; left:
3 Hz) to 2 Hz in both extremities, while the Hoehn and Yahr
stage improved from 4 to 2.5 postoperatively, representing a 37.5%
enhancement in disease severity (Table 1). The patient continued
with the same medication regimen for PD and underwent
regular follow-up. At the 6-months postoperative follow-up,
the patient was re-evaluated, and a DBS programming session
was conducted. The patient’s Parkinson’s disease symptoms
were effectively controlled postoperatively, with a MoCA
score of 27 indicating preserved cognitive function and no
significant adverse effects observed during the initial follow-up
period; scheduled longitudinal follow-ups will be conducted
to monitor the sustained therapeutic efficacy of this surgical
intervention.

3 Discussion

Currently, four primary targets are utilized in DBS surgery:
the ventral intermediate nucleus (VIM), STN, GPi, and PSA. The
VIM, located within the ventrolateral thalamus, demonstrates
superior efficacy for tremor control and is indicated for essential
tremor, Parkinson’s disease with isolated tremor symptoms,
and tremor-dominant Parkinson’s disease subtypes (Mao
et al., 2019). However, current clinical trials demonstrate that
although this target shows satisfactory short-term therapeutic
efficacy, it exhibits poor long-term tolerability with progressively
diminishing treatment effects over time (Blomstedt et al., 2007).
Moreover, this target is associated with significant adverse
effects, including dysphagia, gait disturbances, and postural
instability (Hariz and Blomstedt, 2022). Consequently, considering
the long-term quality of life outcomes, we did not prioritize
this target as the primary therapeutic option in the current
treatment regimen.

The STN, located within the basal ganglia, remains a classical
and pivotal target for DBS surgery, with extensive clinical
evidence demonstrating its efficacy in alleviating tremor,
rigidity, and bradykinesia in the majority of PD patients
(Kocabicak et al., 2012). The GPi, an integral component
of the basal ganglia (BG) and a classical DBS target, is
anatomically composed of the medial (GPi) and lateral (GPe)
segments. The GPi-DBS restores the balance of the basal
ganglia circuitry by inhibiting the hyperactive neurons in
the GPi and simultaneously suppresses pathological β-band
oscillations while enhancing γ-band oscillations to improve
motor control. Randomized controlled trials have shown that
GPi-DBS improves baseline UPDRS motor scores during the
off-medication state by 27%–54% (Au et al., 2021). Currently,
while some researchers contend that the STN demonstrates
superior efficacy over the GPi for tremor amelioration, others
propose that the GPi may constitute the tremorgenic source,
resulting in ongoing controversy regarding optimal target
selection (STN versus GPi) for tremor management in clinical
practice (Wong et al., 2020; Dirkx et al., 2016). However, a
consensus exists regarding the suboptimal tremor control
efficacy of both the STN and GPi, particularly in patients with
high-frequency tremor manifestations (Azghadi et al., 2022;
Wong et al., 2020). In this case, the patient exhibited high-
frequency right-sided tremor (6 Hz) with potential comorbid
essential tremor components, for which both conventional
targets demonstrated limited therapeutic efficacy, prompting
our exploratory investigation of the PSA as an alternative
intervention target.

The PSA is located posterior to the ventral thalamus and is
primarily composed of the caudal zona incerta (cZi), the dentato-
rubro-thalamic tract (DRTT), and adjacent fibers. Mathematical
theory model simulations suggest that PSA-DBS may reduce the
abnormal signals transmitted from the cerebellum to the thalamus
by inhibiting the pathological β-oscillations in the DRTT (Wu
et al., 2023). Clinical trials have demonstrated that the PSA
exhibits markedly superior efficacy in tremor control compared
to alternative DBS targets (Kim et al., 2021). Postoperative
outcomes of the PSA-DBS are significantly improved: patients
typically experience an improvement of 80%–95% in symptoms
after medication discontinuation, and long-term follow-up studies
show that tremor improvement can last for more than 5 years
(Stenmark Persson et al., 2023); (Chopra et al., 2013). Moreover,
this target is primarily associated with dysphagia and balance
disorders as its main adverse effects, while demonstrating a
significantly lower incidence of complications compared to other
nuclear targets (Xie et al., 2012; Chopra et al., 2013). Based on its
superior efficacy in controlling both tremor and gait disturbances
compared to STN and GPi, coupled with a more favorable
adverse effect profile, we selected this target in the left cerebral
hemisphere to manage the patient’s severe right-sided limb tremor
symptoms.

The patient exhibited left-sided limb rigidity accompanied
by dyskinetic movements, a clinical presentation for which
the GPi is typically preferred over the STN in standard
therapeutic practice (Sriram et al., 2014; Mirza et al., 2017).
The patient presented with a comprehensive symptom
profile encompassing motor manifestations (tremor, rigidity,
bradykinesia, and gait disturbances) alongside non-motor
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features including depression, anxiety, cognitive impairment,
and constipation, for which the GPi target demonstrates
superior therapeutic efficacy over the STN in addressing
cognitive dysfunction, anxiety, and depressive symptoms
(Wang et al., 2016; El Ghazal et al., 2023). Given the GPi’s
demonstrated superiority in managing both dyskinesia and
non-motor symptoms, we ultimately selected the GPi target for
implantation in the patient’s right cerebral hemisphere rather than
the STN.

In recent years, with the discovery of different target
areas, asymmetric target surgery has attracted the attention
of researchers. Zhang et al. (2020) recently demonstrated the
therapeutic efficacy of combined STN-GPi DBS surgery in
eight Parkinson’s disease patients through comparative analysis
of UPDRS-III scores, Timed Up and Go (TUG) test results,
PDQ-39 questionnaire outcomes, and axial symptom assessments
performed preoperatively, immediately postoperatively, and at 6-
and 12-months follow-ups. In previous reports, the combination of
the GPi and the STN is more effective in improving symptoms on
the contralateral limb than the GPi or the STN alone (Zeng et al.,
2022). The PSA-DBS has been used in multiple clinical cases for
combining the PSA-VIM stimulation to treat tremor syndromes or
essential tremor (Yilmaz et al., 2024; Chong et al., 2024). Still, it is
relatively uncommon in the treatment of PD tremor, with only one
case report demonstrating a successful outcome of combining the
PSA-VIM stimulation for Parkinsonian tremor symptoms (Kojoh
et al., 2020). There have been no clinical reports of DBS surgery
targeting the combined PSA-GPi pathway.

The current DBS systems can use a single pulse generator
device to adjust stimulation for two electrode leads. Therefore, in
patients with PD primarily characterized by tremor, using multiple-
target approaches with dual-electrode configurations is technically
feasible and more effective. In this case, a severe tremor in PD
may involve complex pathophysiology affecting multiple functional
networks, including the cerebellum-thalamocortical pathway and
the globus pallidus-thalamocortical pathway.

The combined treatment of the left PSA and the right GPi
can simultaneously target both the tremor circuit and the overall
motor control network. This combined approach demonstrated
superior efficacy over other target combinations in managing the
patient’s overall non-motor symptoms, high-frequency right-sided
limb tremor, and left-sided rigidity with dyskinetic movements,
while maintaining a relatively favorable adverse effect profile.

It is important to note several limitations. First, the stimulation
frequencies for the PSA and the GPi differ, requiring separate
frequency adjustments during DBS programming. In the absence
of prior reference cases and due to product requirements
mandating identical bilateral frequency settings, we proceeded
with the intervention based on established clinical experience.
We recommend that future clinical trials gradually determine
the optimal frequency settings for the PSA-GPi combination
(Hidding et al., 2023). As this study constitutes a single-case
report with only 6-months follow-up data, the observed outcomes
may reflect incidental findings; we plan to conduct extended
longitudinal monitoring to verify the surgical efficacy, while
definitive confirmation of PSA-GPi DBS’s therapeutic effects for
Parkinson’s disease patients with asymmetric bilateral motor
symptoms will require future randomized controlled trials for
validation.

4 Conclusion

We report the first documented case utilizing combined
PSA-GPi DBS to treat Parkinson’s disease presenting with
unilateral tremor and rigidity accompanied by asymmetric
motor symptoms, with our findings suggesting potential
efficacy in managing rigidity-dyskinesia asymmetry; however,
as this represents a single-case study, future randomized
controlled trials are warranted to definitively establish the
therapeutic value of this intervention. However, the long-
term effects of dual-target DBS stimulation at the PSA-GPi
interface remain unclear and require further investigation
and long-term monitoring to fully assess its safety and
efficacy.
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Brain functional network 
abnormalities in Parkinson’s 
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disease stages
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Background: Parkinson’s disease (PD) is a neurodegenerative disorder with 
some progressive impairment and an unclear pathogenesis.

Purpose: This study aimed to use resting-state functional magnetic resonance 
imaging (rs-fMRI) and graph analysis approaches to compare changes in brain 
functional network topology in PD at different disease stages.

Materials and methods: A total of 58 PD patients, comprising 29 early-stage PD 
(PD-E) and 29 middle-to-late stage PD (PD-M), and 29 age- and sex-matched 
healthy control (HC) participants, were recruited. All subjects underwent clinical 
assessments and magnetic resonance imaging (MRI) scanning. We  analyzed 
alterations in the global, regional, and modular topological characteristics of 
brain functional networks among different disease stages of PD patients and 
HC participants. Furthermore, we  also examined the relationship between 
topological features with significant group effects and clinical characteristics, 
including the Movement Disorder Society’s Unified Parkinson’s Disease Rating 
Scale III (MDS-UPDRS III) score and Hoehn and Yahr (H&Y) stage.

Results: At the global level, PD-M and PD-E exhibited lower clustering coefficient, 
and PD-M also exhibited lower local efficiency and normalized characteristic 
path length relative to HC. At the regional level, PD-M and PD-E showed lower 
nodal centrality in temporal-occipital regions and higher centrality in brain 
regions related to the default mode network and the frontoparietal control 
network compared to HC. Notably, nodal centrality metrics of the left middle 
frontal gyrus and the temporal pole of the right middle temporal gyrus were 
associated with the MDS-UPDRS III score and H&Y stage.

Conclusion: This study found that the brain functional networks were disrupted 
at varying degrees in patients with PD at different disease stages. These findings 
contribute to our understanding of the topological changes in the neural 
networks associated with the severity of PD.

KEYWORDS

Parkinson’s disease, resting-state functional MRI, brain functional networks, global 
topological organization, regional topological organization
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Introduction

Parkinson’s disease (PD) is a progressive neurological disorder 
characterized by motor symptoms, such as bradykinesia, rigidity, 
tremor, and postural instability, as well as non-motor features, 
including hyposmia, sleep disorders, depression, and constipation 
(Jankovic, 2008; Schapira et  al., 2017). Its pathological process is 
mainly attributed to disruptions in the nigrostriatal dopamine system 
(Hayes, 2019). Currently, diagnosis and severity assessment of PD are 
still predominantly based on clinical symptoms (Gelb et al., 1999; 
Postuma et al., 2015). Developing reliable non-invasive biomarkers to 
monitor disease severity is important for future diagnosis and disease-
modifying therapies in PD.

Since the 1990s, advancements in the physics of complex systems 
(Strogatz, 2001; Albert and Barabási, 2002; Boccaletti et al., 2006) 
and the rise of network science (Börner et al., 2008) have allowed us 
to study the structure and function of brain networks in terms of 
small-world topology, highly connected hubs, and modularity. In 
recent years, graph theory analysis has been widely employed in the 
study of complex brain networks (Bullmore and Sporns, 2009). By 
using graph theory analysis to study the interactions between 
neurons and the structure and function of neural networks, it is 
possible to better understand the information transmission between 
neurons and how neural networks operate, thereby making deeper 
contributions to the function of the nervous system and the 
mechanism of disease (Craddock et al., 2013). Neuroimaging has 
shown that PD is a neurodegenerative disorder involving many 
neurotransmitters, brain regions, structural and functional 
connections, and neurocognitive systems (Weingarten et al., 2015). 
Therefore, the integrated analysis of the whole brain networks may 
provide a more comprehensive understanding of brain 
abnormalities in PD.

Altered topological properties in functional networks have been 
reported in PD by several studies (Sang et al., 2015; Luo et al., 2015; 
Fang et al., 2017; Göttlich et al., 2013; Suo et al., 2017). The majority 
of these studies have focused on the alteration of brain functional 
networks in early-stage PD. For example, the study examining the 
topological configuration of brain networks in early-stage PD patients 
who received antiparkinson treatment found that global properties, 
module structure, and hub distribution were markedly altered in these 
patients (Sang et  al., 2015). The results of these studies were 
inconsistent due to clinical heterogeneity (dopaminergic medication) 
among participants. Furthermore, these studies mainly focused on 
early-stage patients and were therefore unable to identify progressive 
brain changes across different stages. The configurations of the brain 
functional connectome in patients with PD were perturbed and 
correlated with disease severity (Suo et  al., 2017). However, the 
topological properties of large-scale brain functional networks in 
patients with different stages of PD are unknown.

Our study aims to use resting-state functional magnetic resonance 
imaging (rs-fMRI) and graph analysis approaches to compare changes 
in brain functional network topology in PD at different disease stages.

Methods and subjects

This study was conducted in accordance with the principles of the 
Declaration of Helsinki and was approved by the local human research 

ethics committee. Written informed consent was obtained from all 
participants (or their legal guardians) before enrollment.

Subjects

All PD patients were continuously recruited from the Henan 
Provincial People’s Hospital from September 2020 to June 2023. 
We recruited 58 patients with a diagnosis of PD, as determined by two 
experienced neurologists, according to the clinical diagnostic criteria 
of the Movement Disorder Society (Postuma et al., 2015). All patients 
were assessed by the Movement Disorder Society’s Unified Parkinson’s 
Disease Rating Scale III (MDS-UPDRS III) (Goetz et al., 2008), the 
Hoehn and Yahr (H&Y) stage (Hoehn and Yahr, 1967), and the Mini-
Mental State Examination (MMSE) (Folstein et al., 1983). Patients 
with H&Y ≤ 2.5 were assigned to the early-stage PD group (PD-E, 
n = 29), while those with H&Y ≥ 3 were assigned to the middle-to-late 
stage PD group (PD-M, n = 29) (Chen et al., 2016). The following 
patients were excluded: (1) parkinsonism syndrome and 
parkinsonism-plus syndrome (progressive supranuclear palsy, 
multiple system atrophy, and corticobasal degeneration); (2) patients 
who met general exclusion criteria for magnetic resonance imaging 
(MRI) scanning (such as those with claustrophobia or implanted 
metal parts); and (3) Individuals whose MMSE scores were lower than 
those corresponding to their educational level (The normal MMSE 
score is defined as follows: for illiterate individuals, it is >17; for those 
with 1–6 years of education, it is >20; for those with 7 years of 
education, it is >23) (Li et  al., 2016). In addition, 29 age- and 
sex-matched healthy control (HC) participants who did not have any 
neurological disorders or structural brain defects were recruited.

Data acquisition

All participants underwent an MRI examination using a 3-T 
system (MAGNETOM Prisma, Siemens Healthcare, Erlangen, 
Germany) equipped with a 64-channel head/neck coil. A foam pad 
was used to reduce head movement during scanning. All patients were 
taking antiparkinsonian drugs and were scanned while in the “on” 
state. MRI scanning parameters were as follows: for the structural 
T1-weighted sequence, repetition time (TR) of 2,300 ms, echo time 
(TE) of 2.28 ms, field of view (FOV) of 260 × 260 mm2, slice thickness 
of 1 mm, number of slices of 192, and voxel size of 1.0 × 1.0 × 1.0 mm3; 
for resting-state functional imaging, TR/TE of 2000/35 ms, FOV of 
207 × 207 mm2, voxel size of 2.2 × 2.2 × 2.2 mm3, slice thickness of 
2.2 mm, 75 axial slices, and 180 image volumes.

Data processing

We used the graph theoretical network analysis (GRETNA) toolbox1 
(Wang et al., 2015) to perform image preprocessing. Preprocessing steps 
were as follows: (1) DICOM to NIFTI; (2) removal of the first 10 time 
points; (3) slice timing corrections; (4) realignment to the mean volume 

1  http://www.nitrc.org/projects/gretna/
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for head motion correction, with exclusion of head motions > 3 mm and 
3°; (5) spatial normalization using DARTEL segmentation; (6) removal 
of linear trends; (7) nuisance signal regression including 24 head motion 
parameters, cerebrospinal fluid (CSF), and white matter signals; (8) and 
band-pass filtering (0.01–0.08 Hz).

Construction of brain functional networks

The network was also constructed using the GRETNA toolbox. A 
network consists of nodes and edges between nodes. The nodes 
represent brain regions, and the edges represent statistical 
interdependencies between blood oxygen level-dependent signals in 
different brain regions. To define network nodes, we  used the 
automated anatomic labeling atlas to divide the entire brain into 90 
cortical and subcortical regions of interest, each region representing a 
network node. The mean time series of each region is then obtained, 
and the Pearson’s correlations of the mean time series between all 
node pairs are calculated, i.e., the edges of the network. This generated 
a weighted 90 × 90 correlation matrix for each participant.

Analysis of brain functional networks

To ensure the same number of edges among the three groups and 
to better observe the prominent small-world properties in the brain 
network, a wide range of sparsity was selected from 0.06 to 0.50 with 
a step of 0.01  in computing network metrics. An upper sparsity 
threshold of 0.5 was applied to preserve small-worldness (Sigma > 1.1), 
which is a fundamental topological property of functional brain 
networks. A lower threshold of 0.06 ensures that the network retains 
sufficient topological structure at lower sparsities, guarding against 
excessive sparsity and consequent information loss (Watts and 
Strogatz, 1998; Xie et al., 2025). We calculated the global and nodal 
network metrics for the brain networks at each sparsity level and the 
area under the curve over the sparsity range (Zhang et al., 2011). The 
global metrics were small-world parameters (Watts and Strogatz, 
1998) and network efficiency parameters (Latora and Marchiori, 
2001): clustering coefficient (Cp), characteristic path length (Lp), 
normalized clustering coefficient (Gamma), normalized characteristic 
path length (Lambda), and small worldness (Sigma), as well as global 
efficiency (Eglobal) and local efficiency (Elocal). The nodal centrality 
metrics were nodal degree, nodal efficiency, and nodal betweenness 
(Achard and Bullmore, 2007).

Based on previous literature (Suo et al., 2022), the 90 brain regions 
defined by the AAL90 atlas were categorized into five functional 
modules, and the intra- and inter-modular connectivity among these 
modules was analyzed. The five modules consisted of (I) the 
sensorimotor module, (II) the default mode module, (III) the frontal–
parietal module, (IV) the subcortical module, and (V) the visual 
module (Table 1).

Statistical analysis

The analyses of demographic and clinical data were performed 
using SPSS (Version 27.0; IBM) software, and p < 0.05 was considered 
statistically significant. Two-samples t-test, Mann–Whitney U-test, 
Kruskal–Wallis H test, and chi-squared test were performed to 
compare quantitative and qualitative variables. We used the GRETNA 
statistics modules for the statistical analysis of the area under the 
curve (AUC) values of network metrics. Analysis of covariance (the 
node metrics need to be false discovery rate correction corrected with 
a significance threshold of q < 0.05) with age, gender, and education 
scores as covariates to determine network differences among the three 
groups. We  extracted the values of the areas under the curve of 
topological attributes for each region with significant changes and 
subsequently compared patients at different stages and HC 
participants using a post hoc two-samples t-test (p < 0.05, Bonferroni-
corrected). Finally, partial correlations were computed to examine 
relationships between these values and the UPDRS III score and H&Y 
stage in PD, with age, gender, and education score as covariates.

Results

Demographic and clinical characteristics

Demographic and clinical characteristics of 58 patients with PD 
and 29 HC participants are shown in Table  2. There were no 
significant differences in gender or years of education among the 
PD-E, PD-M, and HC groups (p > 0.05). Additionally, the MMSE 
scores and age at onset did not significantly differ between the PD-E 
and PD-M groups (p > 0.05). The age of patients with PD-M was 
higher than that of PD-E and HC participants (p = 0.013 and 
p = 0.011). PD-E and PD-M patients had statistically significant 
differences in disease duration (p = 0.004) and the UPDRS-III score 
(p < 0.001).

TABLE 1  Modular organization.

Modules Regions

Module I (sensorimotor module) Bilateral precentral and postcentral gyrus, supplementary motor area, Rolandic operculum, paracentral lobule, insula, 

supramarginal gyrus, superior temporal gyrus, Heschl gyrus, and temporal pole: superior temporal gyrus

Module II (default mode module) Bilateral superior frontal gyrus (dorsolateral, medial, orbital, and medial orbital part), rectus gyrus, olfactory cortex, cingulate 

gyrus (anterior, median, and posterior), angular gyrus, precuneus, inferior and middle temporal gyrus, and temporal pole: 

middle temporal gyrus

Module III (frontal–parietal module) Bilateral inferior frontal gyrus (opercular, triangular, and orbital part), middle frontal gyrus, middle frontal gyrus (orbital part), 

and superior and inferior parietal gyrus

Module IV (subcortical module) Bilateral hippocampus, parahippocampal gyrus, amygdala, caudate, putamen, pallidum, and thalamus

Module V (visual module) Bilateral calcarine fissure and surrounding cortex, superior, middle and inferior occipital gyrus, lingual gyrus, cuneus, and 

fusiform gyrus
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Global topological organization of brain 
functional networks

Significant group effects were found in the AUCs of Cp, Elocal, 
and Lambda (p < 0.001, p = 0.036, and p = 0.029, respectively). Post 
hoc testing showed that compared to HC, PD-M patients had 
significantly lower Cp (p < 0.001), Elocal (p = 0.010), and Lambda 
(p = 0.009), while PD-E patients had significantly lower Cp (p = 0.004). 
However, there is no significant difference in global metrics between 
PD-E and PD-M patients. No significant difference was identified in 
Eglobal, Lp, Gamma, and Sigma values (Table 3 and Figure 1).

Regional topological organization of brain 
functional networks

We identified the brain regions that showed significant between-
group differences in at least one nodal metric (q < 0.05, false discovery 
rate corrected). Significant group differences were revealed in the left 
middle frontal gyrus (MFG.L), orbital part of the right middle frontal 
gyrus (ORBmid.R), medial part of the left superior frontal gyrus 
(SFGmed.L), right posterior cingulate gyrus (PCG.R), left fusiform 
gyrus (FFG.L), right fusiform gyrus (FFG.R), left angular gyrus 
(ANG.L), right angular gyrus (ANG.R), and temporal pole of the left 
middle temporal gyrus (TPOmid.L) (Table 3).

Compared to HC, PD-M patients showed significantly decreased 
nodal degrees in the FFG.L (p = 0.005), FFG.R (p = 0.002), and 
TPOmid.L (p < 0.001), with increased values in the MFG.L 
(p = 0.002), ORBmid.R (p < 0.001), and ANG.L (p < 0.001). PD-E 
patients exhibited decreased nodal degree in the FFG.L (p = 0.006) 
and TPOmid.L (p = 0.002), along with increased values in the ANG.L 
(p = 0.036) compared to HC. PD-M patients demonstrated lower 
nodal degree in the FFG.R (p = 0.023) but higher values in the MFG.L 
(p = 0.006) and ORBmid.R (p = 0.007) compared to PD-E patients 
(Figure 2).

Compared to HC, PD-M patients showed significantly decreased 
nodal efficiency in the FFG.L (p = 0.010), FFG.R (p = 0.002), and 
TPOmid.L (p = 0.016), with increased values in the MFG.L 
(p < 0.001), ORBmid.R (p < 0.001), SFGmed.L (p = 0.004), PCG.R 
(p = 0.008), ANG.L (p < 0.001), and ANG.R (p = 0.002). PD-E patients 
exhibited decreased nodal efficiency in the FFG.L (p = 0.019) and 

TPOmid.L (p = 0.008), along with increased values in the PCG.R 
(p = 0.010) and ANG.L (p = 0.035) compared to HC. PD-M patients 
demonstrated lower nodal efficiency in the FFG.R (p = 0.008) but 
higher values in the MFG.L (p = 0.008) and ORBmid.R (p = 0.017) 
compared to PD-E patients (Figure 3).

Modular interactions of brain functional 
networks

No significant differences in intra- or inter-modular connectivity 
were observed between groups in corrected analyses. However, in 
uncorrected analyses, PD-M patients exhibited reduced functional 
connectivity between Module I and Module V compared to healthy 
controls (p = 0.017, uncorrected) (Figure 4).

Correlation analysis

We also examined the relationships between nodal metrics with 
significant group effects and clinical characteristics (UPDRS-III score 
and H&Y stage), with age, gender, and education scores as covariates. 
In patients with PD, nodal degree of MFG.L (p = 0.036, r = 0.284) and 
ORBmid.R (p = 0.037, r = 0.281) was positively correlated with H&Y 
stage. The nodal efficiency of MFG.L (p = 0.033, r = 0.288) and 
ORBmid.R (p = 0.037, r = 0.282) were positively correlated with the 
UPDRS-III score (Figure 5).

Discussion

In this study, we investigated the topological properties of brain 
functional networks in PD patients at different disease stages and 
HC. Patients with PD showed abnormalities at both the global level 
(decreases in the Cp, Elocal, and Lambda) and the nodal level 
(decreased nodal centrality metrics in the temporal-occipital regions, 
but increased in brain regions related to the default mode network and 
the frontoparietal control network). It is worth noting that patients 
with PD-M exhibit more extensive changes in topological attributes 
compared to those with PD-E. Furthermore, nodal centrality metrics 
of the MFG.L and ORBmid.R were positively correlated with the H&Y 

TABLE 2  Demographics and clinical characteristics of PD-E and PD-M patients and HC participants.

Parameter Groups p Post hoc p-value

PD-E PD-M HC HC vs. 
PD-E

HC vs. 
PD-M

PD-E vs. 
PD-M

Age (y) 62.00 (54.00,65.50) 65.00 (58.50,70.50) 62.00 (54.50,66.00) 0.015 0.942 0.011 0.013

Gender (female/male) 12/17 14/15 13/16 0.870 NA NA NA

Education (y) 9 (6,12) 9 (6,12) 9 (9,12) 0.477 NA NA NA

Disease duration (y) 3.0 (1.5,5.0) 5.0 (3.0,9.0) NA 0.004 NA NA NA

MDS-UPDRS III 26.21 ± 12.11 54.00 ± 17.93 NA <0.001 NA NA NA

MMSE 25.00 (19.50,28.00) 25.00 (23.00,27.00) NA 0.790 NA NA NA

Age at onset (y) 56.90 ± 5.54 59.72 ± 8.54 NA 0.141 NA NA NA

Data are expressed as mean ± standard deviation for normally distributed data and as median (25th, 75th percentiles) for non-normally distributed data. PD-E, early-stage Parkinson’s disease; 
PD-M, middle-to-late stage Parkinson’s disease; HC, healthy control; MDS-UPDRS III, Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale III; MMSE, Mini-Mental State 
Examination, NA, not applicable. Bold p-values indicate statistically significant group effects (p < 0.05).
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TABLE 3  Brain network metrics differences among the PD-E and PD-M patients and HC participants.

Measurements Groups p Post hoc p-value

PD-E PD-M HC HC vs. 
PD-E

HC vs. 
PD-M

PD-E vs. 
PD-M

Global

Eglobal 0.249 ± 0.009 0.248 ± 0.010 0.245 ± 0.009 0.290 NA NA NA

Elocal 0.332 ± 0.010 0.329 ± 0.007 0.335 ± 0.010 0.036 0.146 0.010 0.248

Cp 0.265 ± 0.012 0.263 ± 0.011 0.273 ± 0.009 <0.001 0.004 <0.001 0.409

Lp 0.845 ± 0.045 0.849 ± 0.050 0.859 ± 0.042 0.457 NA NA NA

Gamma 0.726 ± 0.124 0.711 ± 0.096 0.696 ± 0.095 0.567 NA NA NA

Lambda 0.474 ± 0.012 0.471 ± 0.009 0.479 ± 0.013 0.029 0.112 0.009 0.279

Sigma 0.661 ± 0.109 0.654 ± 0.091 0.629 ± 0.084 0.391 NA NA NA

Nodal degree

MFG.L 13.048 ± 3.583 16.298 ± 3.544 12.751 ± 4.460 0.001 0.771 0.002 0.006

ORBmid.R 8.701 ± 3.264 11.785 ± 4.288 7.969 ± 3.560 <0.001 0.457 <0.001 0.007

FFG.L 13.566 ± 3.696 13.502 ± 4.027 16.719 ± 3.497 0.002 0.006 0.005 0.949

FFG.R 14.920 ± 3.073 12.547 ± 3.863 15.571 ± 2.890 0.002 0.455 0.002 0.023

ANG.L 9.515 ± 4.394 10.846 ± 3.519 6.902 ± 3.667 <0.001 0.036 <0.001 0.195

TPOmid.L 6.885 ± 3.771 6.739 ± 3.578 10.535 ± 4.187 <0.001 0.002 <0.001 0.886

Nodal efficiency

MFG.L 0.272 ± 0.023 0.293 ± 0.022 0.267 ± 0.312 <0.001 0.470 <0.001 0.008

ORBmid.R 0.238 ± 0.032 0.262 ± 0.031 0.229 ± 0.034 <0.001 0.298 <0.001 0.017

SFGmed.L 0.271 ± 0.023 0.281 ± 0.022 0.256 ± 0.037 0.005 0.051 0.004 0.171

PCG.R 0.223 ± 0.462 0.223 ± 0.046 0.178 ± 0.073 0.003 0.010 0.008 0.962

FFG.L 0.273 ± 0.029 0.271 ± 0.031 0.293 ± 0.022 0.005 0.019 0.010 0.833

FFG.R 0.282 ± 0.021 0.263 ± 0.030 0.286 ± 0.019 <0.001 0.610 0.002 0.008

ANG.L 0.241 ± 0.040 0.256 ± 0.027 0.218 ± 0.037 <0.001 0.035 <0.001 0.129

ANG.R 0.248 ± 0.035 0.258 ± 0.022 0.228 ± 0.038 0.003 0.054 0.002 0.279

TPOmid.L 0.214 ± 0.049 0.217 ± 0.038 0.248 ± 0.037 0.004 0.008 0.016 0.795

Data are mean ± standard deviations. PD-E, early-stage Parkinson’s disease; PD-M, middle-to-late stage Parkinson’s disease; HC, healthy control; Eglobal, global efficiency; Elocal, 
local efficiency; Cp, clustering coefficient; Lp, characteristic path length; Gamma, normalized clustering coefficient; Lambda, normalized characteristic path length; Sigma, small 
worldness; MFG.L, left middle frontal gyrus; ORBmid.R, orbital part of the right middle frontal gyrus; SFGmed.L, left superior frontal gyrus; PCG.R, right posterior cingulate gyrus; 
FFG.L, left fusiform gyrus; FFG.R, right fusiform gyrus; ANG.L, left angular gyrus; ANG.R, right angular gyrus; TPOmid.L, temporal pole of the left middle temporal gyrus; NA, not 
applicable. Bold values indicate statistically significant group effects (p < 0.05 for global metrics; q < 0.05 after FDR correction for nodal metrics, with post-hoc pairwise comparisons 
Bonferroni-corrected at p < 0.05). 

FIGURE 1

Differences in global topological organization of the functional brain network among the three groups (p < 0.05). PD-E, early-stage Parkinson’s 
disease; PD-M, middle-to-late stage Parkinson’s disease; HC, healthy control; AUC, area under the curve; Eglobal, global efficiency; Elocal, local 
efficiency; Cp, clustering coefficient; Lp, characteristic path length; Gamma, normalized clustering coefficient; Lambda, normalized characteristic path 
length; Sigma, small worldness.
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FIGURE 2

Nodes with significant differences in the nodal degree among the three groups (q < 0.05, false discovery rate corrected). PD-E, early-stage Parkinson’s 
disease; PD-M, middle-to-late stage Parkinson’s disease; HC, healthy control; MFG.L, left middle frontal gyrus; ORBmid.R, orbital part of the right 
middle frontal gyrus; FFG.L, left fusiform gyrus; FFG.R, right fusiform gyrus; ANG.L, left angular gyrus; TPOmid.L, temporal pole of the left middle 
temporal gyrus; L, left; R, right.

FIGURE 3

Nodes with significant differences in nodal efficiency among the three groups (q < 0.05, false discovery rate corrected). PD-E, early-stage Parkinson’s 
disease; PD-M, middle-to-late stage Parkinson’s disease; HC, healthy control; MFG.L, left middle frontal gyrus; ORBmid.R, orbital part of the right 
middle frontal gyrus; SFGmed.L, left superior frontal gyrus; PCG.R, right posterior cingulate gyrus; FFG.L, left fusiform gyrus; FFG.R, right fusiform gyrus; 
ANG.L, left angular gyrus; ANG.R, right angular gyrus; TPOmid.L, temporal pole of the left middle temporal gyrus; L, left; R, right.

FIGURE 4

Modular interaction with differences among the three groups (p < 0.05, uncorrected). PD-E, early-stage Parkinson’s disease; PD-M, middle-to-late 
stage Parkinson’s disease; HC, healthy control; L, left; R, right.
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stage and UPDRS-III score. These findings may enhance our 
understanding of the mechanisms underlying the progression of PD 
and contribute to the development of non-invasive neuroimaging 
biomarkers for monitoring disease progression.

Networks with low construction costs but high efficiency in 
disseminating information are called economic small-world networks. 
Since the combination of high local clustering and short path length 
supports the two fundamental organization principles of functional 
segregation and functional integration in the brain, the small-world is 
an attractive model to describe brain networks (Zhang et al., 2011). In 
our study, the networks in PD patients were perturbed in a way that 
may reflect the underlying pathophysiologic abnormalities and disease 
progression. Regarding global topologic properties, Cp and Elocal 
were significantly decreased, whereas Lp and Eglobal were not 
significantly different in PD-M patients compared to HC. Since both 
Cp and Elocal measure local cliquishness of the network, and Lp and 
Eglobal are the most commonly used measures of functional 
integration (Latora and Marchiori, 2001), our results indicate a 
disturbance in the normal balance in functional brain networks of 
PD-M patients. These results are consistent with one functional 
connectome study, which reported decreased network segregation in 
drug-naive PD with no significant change in network integration (Luo 
et al., 2015). However, other studies (Suo et al., 2017; Ma et al., 2017) 
reported decreased local specialization and global integration in early-
to-mid-stage PD and a progressive impairment in local specialization 
with an additional loss of global integration in PD. In accordance with 
reports, dopaminergic antagonists can reduce both global and local 
efficiency in healthy subjects (Achard and Bullmore, 2007), while 

dopamine-based medications can increase the functional connectivity 
between dopamine-related cognitive and motor pathways in healthy 
individuals (Kelly et al., 2007). Subsequent studies in PD patients have 
found that dopaminergic medication is also considered to partially 
restore the deficits in brain functional networks in PD patients 
(Delaveau et  al., 2010; Palmer et  al., 2010). In the above study, 
medication was withdrawn at least 12 h (off-state) in PD patients 
before resting-state functional MR imaging, and we  were in the 
on-state, so we hypothesized that medication might contribute to the 
difference. In addition, PD-E patients only had lower Cp than HC 
participants in our study, which might be attributed to the effective 
symptom management of PD-E patients following medication. Future 
research could conduct medication-specific subgroup analyses, such 
as comparing medicated and unmedicated patients, to further 
elucidate the impact of pharmacological interventions on 
these findings.

In addition to these altered global topologic properties, PD 
patients at different disease stages have selectively and significantly 
impaired nodal centrality metrics in several regions of the brain’s 
functional networks, mainly including the decreased temporal-
occipital regions and the increased brain regions related to the 
default mode network and the frontoparietal control network. 
Abnormalities of gray matter (Goldman et  al., 2014), neuronal 
activity (Meppelink et al., 2009), and nodal centrality metrics (Luo 
et al., 2015) in temporal-occipital regions have been reported in PD 
patients compared to HC. The temporal-occipital regions are 
important for visual object recognition, so these changes are 
thought to be related to abnormal bottom-up visual processing of 

FIGURE 5

Relationship between nodal metrics and the severity of clinical diseases in Parkinson’s disease (p < 0.05). MFG.L, left middle frontal gyrus; ORBmid.R, 
orbital part of the right middle frontal gyrus; H&Y, Hoehn and Yahr; MDS-UPDRS III, Movement Disorder Society’s Unified Parkinson’s Disease Rating 
Scale III.
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visual information in these regions and visual-cognitive deficits in 
PD patients (Meppelink et al., 2009). We found that PD-E patients 
had decreased nodal centrality metrics in the temporo-occipital 
brain regions, and the abnormalities were more obvious in PD-M 
patients. This finding is consistent with previous findings that have 
shown PD patients exhibit functional changes in the cortical visual 
system before visual symptoms are clinically evident (Cardoso et al., 
2010; Uc et al., 2005). The default mode network and frontoparietal 
control network serve as core neural networks for cognitive control 
(Menon and D'Esposito, 2021). Previous research has indicated that 
even patients with PD-E, who have not yet been formally diagnosed 
with mild cognitive impairment, may experience subtle cognitive 
declines (Kandiah et al., 2009; Aarsland et al., 2017). Interestingly, 
although our study’s PD patients did not exhibit overt cognitive 
deficits, we observed significantly increased nodal degree and nodal 
efficiency within brain regions associated with the default mode 
network and the frontoparietal control network at different disease 
stages. This finding may reflect a potential adaptive response, 
characterized by increased connectivity and efficiency, which could 
support cognitive stability. However, further validation through 
targeted neuropsychological assessments is required to confirm 
compensatory processes in future studies.

The middle frontal gyrus is a key part of the prefrontal network 
that responds to inhibit responses to inappropriate stimuli by 
overriding the motor system’s automatic response tendency, and one 
study has shown that with age and the development of behavioral 
control, the specialization and organization of the response inhibition 
network improve. In contrast, the activation of the right middle 
frontal gyrus decreases significantly (Hardee et al., 2014). Inhibition 
control is an important executive function that involves inhibiting 
dominant responses or allowing appropriate actions to meet complex 
task requirements and adapt to different environments (Li and Sinha, 
2007). A recent study on impulse control disorders in PD has shown 
that PD patients with impulse control disorders show reduced voxel-
mirrored homotopic connectivity (VMHC) values in the MFG, 
middle and superior orbital frontal gyrus, inferior frontal gyrus, and 
caudate, which can detect altered interhemispheric connectivity by 
quantifying functional connections between the corresponding voxels 
in the two hemispheres of the brain (Gan et al., 2021). Therefore, this 
result suggested that the bilateral connections between the cerebral 
hemispheres of PD patients with impulse control disorders are altered, 
and the severity of impulse control disorders is correlated with the 
mean VMHC values of MFG. Our research findings indicate that as 
the H&Y stage and UPDRS-III scores advance in patients with PD, 
there is a corresponding increase in the nodal degree and nodal 
efficiency of the MFG.L and ORBmid.R. This result may complement 
previous studies suggesting that PD patients may compensate for the 
weak anatomical connections between the inhibited areas by 
increasing executive control.

Additionally, in module analysis, reduced functional connectivity 
was observed between the sensorimotor and visual modules in PD-M 
patients. Sensorimotor network plays a crucial role in integrating 
sensory inputs and facilitating motor execution, whereas the visual 
network contributes to spatial orientation and the processing of visual 
feedback (Bertoni et al., 2025; Kim et al., 2024). Previous research has 
shown that the sensorimotor network in PD patients is unable to 
effectively integrate feedback from the visual network, leading to 
motor dysfunction (Caspers et al., 2021). However, the results of our 

study did not survive multiple comparison correction and warrant 
further investigation to validate its clinical relevance.

There are several limitations to our study. First, the sample size was 
relatively small, which may have constrained our ability to detect the 
expected sensorimotor network impairments consistent with typical 
motor manifestations of PD. In the future, the sample size will 
be increased to continue the research. Second, the observation of reduced 
functional connectivity between sensorimotor and visual modules in 
PD-M patients did not survive multiple comparison correction and 
should be considered exploratory. Larger and independent datasets are 
needed to validate these findings, alongside studies using advanced 
neuroimaging approaches (e.g., task-based fMRI) to uncover their 
functional roles and biological foundations. Finally, all rs-fMRI data were 
acquired during the dopaminergic “ON” state to optimize patient comfort 
and scan quality. While clinically practical, this approach precludes the 
dissociation between medication effects and intrinsic PD-related network 
pathology. Previous studies demonstrate that dopaminergic agents can 
partially normalize aberrant functional connectivity patterns in PD 
patients (Delaveau et al., 2010; Palmer et al., 2010). Consequently, future 
studies should implement counterbalanced ON/OFF state designs with 
standardized medication withdrawal protocols. Additionally, the potential 
dose-dependent effects of levodopa equivalent daily dose (LEDD) on 
functional network topology were not examined due to incomplete 
pharmacological records. Future studies should incorporate stratified 
LEDD cohorts to resolve this critical confounding.

Conclusion

In conclusion, we used rs-fMRI and graph analysis approaches to 
compare changes in brain functional network topology in PD at 
different disease stages. We observed that patients with PD-M exhibited 
a reduction in Cp, Elocal, and Lambda. Additionally, both PD-E and 
PD-M patients demonstrated decreased nodal centrality metrics within 
the temporal-occipital regions, alongside an enhanced brain region 
related to the default mode network and frontoparietal control 
network. Notably, patients with PD-M exhibit more extensive changes 
in topological attributes compared to those with PD-E. Furthermore, 
nodal centrality metrics of the MFG.L and ORBmid.R were positively 
correlated with the H&Y stage and UPDRS-III score. These findings 
contribute to our understanding of the topological changes in the 
neural networks associated with the severity of PD.
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Neurofilament light chain 
concentration mediates the 
association between regional 
cortical thickness and Parkinson’s 
disease with excessive daytime 
sleepiness
Jieyu Chen 1†‡, Guoliang Jiang 2†, Yongyun Zhu 1, Chunyu Liang 1, 
Chenxi Liu 1, Jianzhun Chen 1, Baiyuan Yang 3* and 
Xinglong Yang 1*
1 Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, 
China, 2 Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, 
Kunming, China, 3 Department of Neurology, Seventh People's Hospital of Chengdu, Sichuan, China

Background: Excessive daytime sleepiness (EDS) is a common non-motor 
symptom in Parkinson’s disease (PD) that negatively impacts quality of life. 
Although biomarkers of brain structure, function, and neurodegeneration have 
been studied, their interactions in EDS remain unclear. This study explores the 
relationship between cortical thickness, functional connectivity (FC), and plasma 
neurofilament light chain (NfL) levels in PD-EDS.

Methods: 36 PD-EDS patients and 100 PD patients without EDS (PD-non-EDS) 
underwent structural MRI and resting-state FC analysis, with regions of cortical 
atrophy serving as regions of interest (ROIs). Plasma NfL levels were quantified 
using high-sensitivity Single Molecule Array (SiMoA™). Mediation analysis was 
conducted to explore the interplay between NfL levels, neuroimaging markers, 
and EDS severity, assessed by the Epworth Sleepiness Scale (ESS).

Results: PD-EDS patients exhibited significant cortical thinning in the left 
supramarginal gyrus (SMG) and right postcentral region (PoCR), along with 
weakened FC between the left SMG and left PoCR, and between the right PoCR 
and left inferior frontal gyrus (all p < 0.05). Plasma NfL levels were significantly 
higher in PD-EDS patients than in those without EDS (p = 0.004) and mediated 
the relationship between left SMG thickness and EDS severity.

Conclusion: Plasma NfL levels mediate the association between cortical 
thinning in the left SMG and EDS severity in PD-EDS, suggesting a link between 
neurodegenerative processes underlying axonal injury and cortical atrophy in 
key regions associated with EDS in PD. Our findings suggest that combining 
neuroimaging markers with plasma NfL levels may provide valuable insights into 
the mechanisms driving EDS progression in PD.

KEYWORDS

cortical thickness, mediation analysis, Parkinson’s disease, neurofilament light chain, 
excessive daytime sleepiness, functional connectivity, neuroimaging biomarkers
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1 Introduction

Excessive daytime sleepiness (EDS) is a common non-motor 
manifestation of Parkinson’s disease (PD) impacting nearly 50% of 
patients (Abbott and White, 2005). Characterized by inappropriate 
drowsiness during wakefulness, EDS impairs cognitive function and 
quality of life and increases risks such as traffic accidents (Knie et al., 
2011). EDS is more frequently observed in advanced stages of PD and 
has been associated with various non-motor features, such as mood 
disturbances, autonomic dysfunction, and fatigue (Feng et al., 2021; 
Maggi et al., 2023). Though its exact mechanisms remain unclear, 
damage to wake-promoting brain regions and neurotransmitter 
imbalances—particularly in dopaminergic, cholinergic, and 
noradrenergic systems—are likely contributors (Liu et  al., 2022). 
Identifying reliable biomarkers and understanding its neurobiological 
underpinnings is crucial for early intervention and disease 
management (Siddiqui et al., 2024; Tripathi et al., 2024).

Neuroimaging research has shed light on structural and functional 
brain changes in PD-EDS patients. Using Voxel-based morphometry 
(VBM), researchers have detected gray matter disruptions in regions 
involved in sleep–wake regulation (Kato et al., 2012; Chondrogiorgi 
et al., 2015; de Schipper et al., 2017). Surface-based morphometry 
(SBM), which is more sensitive than VBM in detecting subtle 
structural changes, has shown that cortical folding measurements, 
especially cortical thickness, better identify PD-related gray matter 
alterations (Pereira et al., 2012). SBM-based EDS findings include 
hypertrophy in the putamen and pallidum (Gong et al., 2019), cortical 
surface expansion in the anterior insula, and subcortical atrophy in 
the amygdala and putamen (Rosinvil et al., 2024). Research on cortical 
thickness in PD-EDS is limited, and conflicting findings underscore 
the need for further investigation of its impact on brain structure. 
Functional MRI (fMRI) studies have shown abnormal connectivity in 
cortical and subcortical arousal networks (Wen et al., 2016; Zi et al., 
2022; Zheng et al., 2023), especially within the default mode network, 
where hyperactivity in prefrontal and temporal regions may reflect 
compensatory or attentional deficits (Ooi et al., 2019; Wang et al., 
2020; Zheng et al., 2023).

Neurofilament light chain (NfL), a cytoskeletal protein released 
during axonal injury, is a well-established biomarker of neuronal 
damage and degeneration (Gaetani et al., 2019; Sharma et al., 2024). 
Raised blood NfL concentrations correlate with both motor and 
non-motor symptoms in PD, offering clinical potential through 
advancements in ultrasensitive detection techniques like single 
molecule arrays (Simoa™; Pilotto et al., 2021; Zhu et al., 2021; Yin 
et al., 2022). Although one study has revealed elevated plasma NfL 
levels in patients with PD and EDS (Lin et al., 2024), the relationship 
between NfL levels and specific neuroimaging markers (Preische et al., 
2019; Sampedro et al., 2020; Cruz-Gomez et al., 2021; Lee et al., 2022; 
Clarelli et al., 2024; Yao et al., 2024) has only been explored in patients 
with cognitive dysfunction (Mielke et al., 2019). Until now, no prior 
studies have assessed the tripartite relationship among plasma NfL 
levels, neuroimaging markers, and EDS severity in PD, representing a 
pivotal knowledge gap.

This study is the first to integrate structural and functional 
neuroimaging to investigate the neural mechanisms underlying EDS 
in PD. Using FreeSurfer, we analyzed cortical thickness alterations in 
key brain regions and examined functional connectivity (FC) patterns 
across brain networks. Furthermore, we assessed the interrelationships 

among cortical thickness, FC, and plasma NfL levels, and their 
associations with EDS severity. Finally, mediation analyses were 
conducted to determine whether NfL mediates the relationships 
between cortical thinning, FC alterations, and EDS, providing insights 
into potential neurodegenerative pathways.

2 Methods and materials

2.1 Participants

136 PD patients were recruited from the Neurology Department 
and outpatient clinics at the First Affiliated Hospital of Kunming 
Medical University between June 2021 and December 2024. The 
diagnosis was established based on the 2015 criteria of the 
International Parkinson’s and Movement Disorders Association 
(Postuma et al., 2015).

Sleep-related symptoms were assessed through face-to-face 
interviews using the Epworth Sleepiness Scale (ESS), a validated tool 
endorsed by the Movement Disorder Society (MDS) for evaluating 
daytime sleepiness (Högl et al., 2010). Participants were classified into 
two groups: PD-EDS (n = 36), with an ESS score ≥ 10, and PD-non-EDS 
(n = 100), defined by an ESS score ≤ 9 (Amara et al., 2017). Additionally, 
age- and sex-matched healthy controls without chronic illnesses were 
included. The exclusion criteria encompassed: (1) atypical Parkinsonism 
or secondary PD due to other identified conditions; (2) intracranial 
organic pathologies like tumors, hematomas, or cerebral infarction; (3) 
a history of traumatic brain injury or prior intracranial surgery; (4) use 
of medications affecting sleep, including hypnotics; (5) MRI 
contraindications; and (6) left-handedness.

Ethical approval was granted by the Ethics Committee of the First 
Affiliated Hospital of Kunming Medical University (2019-L-46), and 
the study adhered to the principles of the Declaration of Helsinki. 
Written informed consent was obtained from all participants, allowing 
the use of anonymized clinical data for research and publication.

2.2 Clinical and neuropsychological 
measurements

Baseline participant data were extracted from electronic medical 
records and personal interviews. For PD patients, demographic and 
clinical details, including age, sex, education level, dopamine receptor 
agonist usage, and levodopa-equivalent daily dose (LEDD), were 
recorded. Clinical assessments were performed while patients were in 
the ‘on’ state. Motor function was evaluated using the Hoehn and Yahr 
(HY) scale and the Unified PD Rating Scale Part III (Goetz et al., 2008). 
Depressive and anxiety symptoms were assessed via the Hamilton 
Depression (HAMD) and Anxiety (HAMA) Scales, respectively 
(Hamilton, 1959; Hamilton, 1960). Cognitive performance was 
measured using the Mini-Mental State Examination (MMSE). Rapid 
eye movement sleep behavior disorder (RBD) was screened using the 
RBD Screening Questionnaire, with scores exceeding 5 indicating a 
high probability of RBD (Stiasny-Kolster et al., 2007). To classify PD 
phenotypes, tremor-dominant and postural instability and gait 
difficulty (PIGD) scores were calculated based on specific MDS-Unified 
PD Rating Scale (UPDRS) items (Stebbins et al., 2013). Patients were 
categorized as tremor-dominant if the ratio of the mean UPDRS 
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tremor score (8 items) to the mean UPDRS PIGD score (5 items) was 
≥ 1.15, whereas those with PIGD-dominant PD had a ratio of ≤ 0.90.

2.3 Plasma NfL

Upon enrollment, 5 mL of venous blood was drawn into 
ethylenediaminetetraacetic acid (EDTA) tubes and processed within 
an hour. Following centrifugation (2,500 × g, 10 min), plasma samples 
were preserved at −80°C for later analysis. NfL concentrations were 
quantified using the Simoa NF-light® kit (Quanterix, MA, USA) on a 
Simoa HD-1 Analyzer, adhering to the manufacturer’s instructions. 
Each sample was thawed a single time, with automatic four-fold 
dilution performed by the device. The coefficient of variation for 
duplicates was 4.2%. Quality control samples (high/low NfL 
concentrations) were included, all within the expected range. Blinded 
research assistants conducted the assays to minimize bias.

2.4 Image acquisition and preprocessing

A 3.0 T whole-body scanner (Discovery 750w, GE Healthcare, USA) 
was used for MRI acquisition at the Imaging Department of the First 
Affiliated Hospital of Kunming Medical University. Standard head coils 
were utilized for both signal transmission and reception. Participants 
were instructed to stay relaxed, minimize cognitive activity, and remain 
awake during the procedure. The imaging protocol incorporated routine 
sequences, including resting-state fMRI (RS-fMRI) and 3D T1-weighted 
imaging (3D-T1WI). The 3D-T1WI scans were obtained with the 
following parameters: voxel size, 1 × 1 × 1 mm; repetition time, 8.2 ms; 
echo time, 3.2 ms; turn angle, 12; inversion time, 450 ms; matrix, 

256 × 256; field of view, 256 × 256 mm; and slice thickness. The RS-fMRI 
parameters included: 36 slices; slice thickness, 3 mm; no gap; voxel size, 
3.5 × 3.5 × 4 mm; volume, 240; repetition time, 2,000 ms; echo time, 
30 ms; turn angle, 90°; field-of-view, 224 mm; and matrix, 64 × 64.

Surface-based morphometric analysis was conducted using 
FreeSurfer 6.0.0. Initially, the NIfTI format was generated from 3D-T1 
DICOM images using MRIcron software. The converted data were 
then processed automatically in FreeSurfer within a Linux Ubuntu 
environment, which involved motion correction, non-brain tissue 
removal (e.g., skull extraction), transformation into the Talairach 
space, subcortical structure segmentation, and gray matter 
normalization. Additional processing steps involved delineating gray 
matter boundaries, applying topological adjustments, performing 
surface deformation, and registering the data to a spherical template. 
Cortical thickness, measured as the distance from the gray-white 
matter boundary to the pial surface, was computed for each brain 
region using a Gaussian smoothing kernel (full-width half-maximum 
[FWHM] = 10 mm). Finally, all reconstructed datasets were visually 
examined to evaluate the precision of registration, skull stripping, 
segmentation, and cortical surface reconstruction.

RS-fMRI data processing was performed using Data Processing 
and Analysis of Brain Imaging (version 4.5), incorporating Statistical 
Parametric Mapping (SPM12) and MATLAB 2022b. To minimize 
artifacts from scanner calibration and subject adaptation, the first 10 
time points of each fMRI scan were discarded. The remaining images 
underwent slice-timing correction with the middle slice as a reference, 
followed by realignment to compensate for head motion. Participants 
exhibiting head displacement exceeding 2 mm or rotational movement 
beyond 2° were excluded, resulting in the removal of 24 subjects 
(Table 1). T1-weighted anatomical images were co-registered to the 
mean functional image using a rigid-body transformation and 

TABLE 1  Baseline comparison between included and excluded PD patient.

Characteristic PD-Included (n = 112) PD-Excluded (n = 24) p value

Age, years 64.5 (57, 71) 70 (60.5, 73.75) 0.09

Male, n,% 61 (54.5%) 11 (45.8%) 0.442

Education (years) 9 (6, 12) 6 (6, 12) 0.308

H-Y grade 2 (1, 3) 2 (1, 3) 0.228

UPDRS-III 25 (16.25, 41) 37.5 (18, 45) 0.233

HAMD 6.5 (3, 16) 5 (2, 18.75) 0.864

HAMA 5 (1, 18.75) 10 (1, 20.5) 0.53

MMSE 27 (24, 29) 26 (20.5, 28.75) 0.202

Selegiline (mg), n, % 13 (11.6%) 3 (12.5%) 0.9

Pramipexole (mg) 3 (1, 5) 4 (0.625, 5) 0.875

PSQI 10 (6, 13) 10 (5.25, 13.75) 0.975

LEDD (mg) 187.5 (337.5, 468.75) 362.5 (198.12, 487.5) 0.742

Subtype of PD (TD), n,% 63 (56.3%) 10 (41.7%) 0.495

Subtype of PD (PIGD), n,% 43 (38.4%) 13 (54.2%) 0.154

RBD, n,% 34 (30.4%) 9 (37.5%) 0.054

ESS 5 (2, 10) 2 (5.7.75) 0.59

Values are n (%), median (interquartile range) or mean ± SD, unless otherwise noted HAMA, Hamilton Anxiety Scale; HAMD, Hamilton Depression Scale; HC, Healthy controls; LEDD, 
levodopa-equivalent daily doses; MMSE, Mini-Mental State Examination; NA, not applicable; RBD, rapid eye movement sleep behavioral disorder; UPDRS, Unified Parkinson’s Disease Rating 
Scale; PD-EDS, Parkinson’s disease with excessive daytime sleepiness; PD-nEDS, Parkinson’s disease without excessive daytime sleepiness, MOCA, Montreal Cognitive Assessment; ESS, 
Epworth Sleepiness Scale, PSQI, Pittsburgh Sleep Quality Index.
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segmented into gray matter, white matter, and cerebrospinal fluid via 
the DARTEL template. Functional scans were normalized to Montreal 
Neurological Institute (MNI) space, resampled to 3 × 3 × 3 mm3 
voxels, and smoothed with a 6 mm FWHM Gaussian kernel. To 
mitigate noise, linear detrending and temporal bandpass filtering 
(0.01–0.08 Hz) were applied, while nuisance signals from white 
matter, cerebrospinal fluid, and Friston-24 head motion parameters 
(including historical and squared terms) were regressed out.

2.5 Statistical analysis

Statistical analyses were conducted using SPSS version 27.0 (IBM 
Corp., Armonk, NY, USA). Categorical data were presented as 
proportions and assessed via the chi-square test. For normally distributed 
continuous variables, results were reported as mean±standard deviation 
and compared using two-sample t-tests or analysis of variance. Skewed 
continuous data were expressed as medians with interquartile ranges and 
analyzed using the Mann–Whitney U test or Kruskal–Wallis test.

Cortical thickness analysis was performed using FreeSurfer’s 
mri_glmfit function to conduct vertex-wise comparisons based on a 
general linear model (GLM), adjusting for age, sex, education, and HY 
status as covariates. Multiple comparisons were corrected using a 
precached cluster-wise Monte Carlo simulation with 10,000 
permutations, identifying significant clusters at a cluster-level 
threshold of p < 0.05 (initial vertex-level threshold p < 0.01). 
Subsequently, mean cortical thickness values were extracted from 
significant clusters, and correlation analyses were conducted using 
SPSS version 27.0 (IBM Corp., Armonk, NY, USA), adjusting for the 
same covariates (Figure 1D). Significance was set at p < 0.05.

To investigate cortical thickness differences across groups, 
corresponding MNI coordinates were extracted and defined as regions 
of interest (ROIs) with a 10-mm radius. The FC between each ROI and 
whole-brain voxels was examined using the CONN toolbox in SPM12. 
The mean BOLD time series was computed for all voxels within each 
ROI. Bivariate correlation analyses were performed to assess linear 
associations between the BOLD signals of each ROI pair, followed by 
Fisher’s z-transformation. Second-level analysis was applied to 
individual seed-to-voxel maps. All statistical tests were two-tailed, and 
multiple comparison corrections were implemented using the 
Gaussian random field method. Results were considered statistically 
significant at a voxel-level threshold of p < 0.001 and a cluster-level 
threshold of p < 0.05. FC differences between the PD-EDS and 
PD-non-EDS groups were extracted, and Spearman’s correlation was 
used to assess their relationship with ESS scores.

3 Results

3.1 Demographic and neuropsychometric 
characteristics

Baseline demographic characteristics are presented in Table 2. No 
significant differences were observed in sex, age, or education level 
between healthy controls and PD patients, regardless of EDS status. 
Likewise, LEDD, RBD scores, and motor subtypes remained 
comparable between the PD-EDS and PD-non-EDS groups. However, 
individuals with PD-EDS exhibited lower MMSE scores, higher PSQI, 

HAMD, and HAMA scores, as well as elevated plasma NfL levels, 
compared to their non-EDS counterparts.

3.2 Alteration in cortical thickness among 
patients with PD-EDS

Compared to non-EDS patients, individuals with PD-EDS showed 
reduced cortical thickness in the left supramarginal gyrus (SMG) and 
postcentral gyrus (PoCR; Table 3, Figure 1A). Similarly, relative to 
healthy controls, they exhibited cortical thinning in the left inferior 
temporal gyrus (IFG) and right PoCR (Table 3, Figure 1B).

3.3 Variations in FC between PD-EDS and 
PD-non-EDS groups

Using the left SMG as the ROI, patients with PD-EDS exhibited 
reduced FC with the left PoCR compared to patients without EDS 
(Table 4, Figure 2A). Similarly, selecting the right PoCR as the ROI 
revealed decreased FC with the left IFG operc in PD-EDS patients 
(Table 4, Figure 2B). Using the PoC_R as the seed region, the PD-EDS 
group showed markedly reduced FC relative to HC group(Table 4, 
Figures 2C,D).

3.4 Clinical correlation analysis

Cortical thickness in the left SMG was inversely correlated 
with both ESS scores and NfL levels (r = −0.175, p = 0.0416; 
r = −0.284, p < 0.001, respectively) (Figure  1C). A significant 
positive correlation was identified between ESS and NfL levels 
(r = 0.201, p = 0.019) (Figure  1C). In PD patients, FC values 
between the left SMG and left PoCR, as well as between the right 
PoCR and right IFG operc, showed a negative association with 
ESS scores (r = −0.33, p = 0.011; r = −0.34, p = 0.01, respectively). 
Figure 1D shows the comparison of extracted cortical thickness 
values among different clusters in each group.

3.5 Mediators of plasma NFL

Mediation analysis results indicated that left SMG thickness is 
indirectly related to ESS through its relationship with plasma NfL 
concentration (Figure 1E, Table 5). Specifically, a thinner left SMG was 
linked to higher plasma NfL levels (a = −30.4506, p = 0.0005), and a 
higher plasma NfL level was connected with worse ESS scores 
(b = 0.0938, p = 0.0127). The bias-corrected 95% confidence interval 
(CI), computed from 10,000 bootstrap samples, confirmed a significant 
indirect effect of plasma NfL (ab = −2.856) distinct from zero (95% 
CI = −6.3372 to −0.6079) (Table 5). This suggests that plasma NfL 
partially mediates the relationship between left SMG thickness and EDS 
severity, accounting for approximately 27.6% of the total effect. After 
adjusting for plasma NfL, the direct effect of left SMG thickness on ESS 
was no longer statistically significant (c′ = −7.509, 95% CI = −15.0905–
0.0725, p = 0.0522), indicating that the observed association between left 
SMG thickness and ESS could be  partially explained by plasma 
NfL levels.
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FIGURE 1

Comparison of cortical thickness in groups covariables are gender, age, education, H-Y. (A) In contrast with those without EDS, PD patients with EDS 
showed lower cortical thickness in SMG. L, PoC.R. (B) Compared to HC, PD-EDS patients showed the lower cortical thickness in PoC.R, ITG.L. (C) The 
ESS score was positively associated with plasma NfL concentration. In contrast, it was negatively associated with left SMG thickness, which, in turn, 
showed a negative association with plasma NfL concentration. (D) Cortical thickness values of different clusters between groups. (E) Plasma NfL 
concentration mediated the relationship between left SMG thickness and ESS. The indirect effect of plasma NfL on this relationship was significant, as 
represented by the paths a and b, which together imply a mediated effect. The direct effect of left SMG thickness on ESS, represented by c’, was not 
significant after accounting for plasma NfL. NfL, neurofilament light; SMG, supramarginal gyrus; ESS, Epworth Sleepiness Scale; PoC,postcentral gyrus; 
ITG, inferior temporal gyrus; L, left hemisphere; R, right hemisphere. The red-blue color bar on the figure shows the logarithmic scale of the p value 
(−log10). Red is positive, blue is negative.
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4 Discussion

This study is, to our knowledge, the first to assess how cortical 
thickness, FC, and plasma NfL levels interact in PD-EDS. Relative to 
PD patients without EDS, individuals with PD-EDS showed elevated 
NfL levels, thinner cortices in the left SMG and right PoCR, and 
weakened FC between the left SMG and left PoCR, as well as between 
the right PoCR and left IFG operc. Further mediation analysis 
indicated that plasma NfL was a stronger mediator of the connection 
between structural brain changes and the severity of EDS in 
PD. Moreover, the association between cortical atrophy in the left 
SMG and elevated NfL concentrations may help differentiate PD-EDS 
from PD-non-EDS, providing a novel perspective on the underlying 
mechanisms of PD-EDS.

Our study provided the first structural MRI evidence of alterations 
in the left SMG and right PoCR in patients with PD-EDS. Both 
regions, located in the parietal lobe, are integral to sensory integration 
and cognitive processing (Vandenberghe et al., 2012). The PoCR, as 

part of the primary somatosensory cortex, is essential for tactile 
perception, spatial awareness, and sensorimotor coordination, 
whereas the SMG, within the inferior parietal lobule, integrates 
multisensory information to support higher cognitive functions, 
including attention and social cognition. Given that PD-EDS is closely 
tied to cognitive impairment, it is plausible that the atrophy of the 
parietal cortex, a key hub for attention and sensory processing, 
contributes to its pathogenesis. Similarly, significant cortical thinning 
in the medial and dorsolateral prefrontal cortices and inferior parietal 
lobules has been reported in narcolepsy patients with cataplexy, 
affecting executive attention and working memory (Joo et al., 2011). 
Additionally, obstructive sleep apnea is associated with a higher 
likelihood of developing PD-EDS (Jeon and Oh, 2023), with cortical 
thinning observed in the left parietal, frontal, and temporal lobes, 
which is negatively correlated with ESS score (Li et al., 2023). Thus, 
these findings suggest that cortical thinning in specific regions may 
be associated with attention deficit and memory impairment in sleep 
disorders, including PD-EDS.

TABLE 3  Comparison of cortical thickness between groups.

Study group Brain area MNI coordinates Cluster size Vertex p value

X Y Z

HC>PD-EDS
Temporal_Inf_L −43.6 −15.6 −32 464.24 733 0.008

Postcentral_R 52.5 −18.4 52.4 365.24 783 0.041

PD-nEDS>PD-EDS
SupraMarginal_L −60.8 −33.1 31.3 398.22 829 0.039

Postcentral_R 63.6 −9.2 24.7 409.17 982 0.037

PD-EDS, Parkinson’s disease with excessive daytime sleepiness; HC, healthy controls; PD-nEDS, Parkinson’s disease without excessive daytime sleepiness; MNI, Montreal Neurological 
Institute; SMG, supramarginal gyrus; PoC,postcentral gyrus; ITG, inferior temporal gyrus; L, left hemisphere; R, right hemisphere.

TABLE 2  Clinical and demographic characteristics of study participants.

Characteristic PD-EDS (n = 36) PD-nEDS (n = 100) HC (n = 32) p value

Age, years 67.5 (61.25, 74.00) 64 (57, 71) 60 (50, 70) 0.111

Male, n,% 24 (66%) 48 (48%) 11 (34%) 0.054

Education (years) 9 (6, 12) 9 (6, 12) 8.5 (8.5, 12) 0.305

H-Y grade 2 (1, 3) 2 (1, 3) NA 0.09

UPDRS-III 35 (16.75, 45.25) 25 (17, 39) NA 0.202

HAMD 6.25 (15.5, 25) 2 (5, 11) NA <0.001

HAMA 6 (18, 22) 1 (4, 13.75) NA <0.001

MMSE 25 (20, 27.75) 28 (25.00, 29.00) NA 0.002

Selegiline (mg), n, % 6 (17%) 10 (10%) NA 0.287

Pramipexole (mg) 0.375 (0, 0.65) 0 (0,0.46) NA 0.538

PSQI 11.50 (8.00, 13.00) 9 (5,13) NA 0.032

LEDD(mg) 325 (200, 443.75) 350 (175, 484.375) NA 0.57

Subtype of PD (TD), n,% 16 (44.4%) 57 (57%) NA 0.19

Subtype of PD (PIGD), n,% 18 (50%) 38 (38%) NA 0.21

RBD, n,% 16 (44.4%) 27 (27.0%) NA 0.054

ESS 13.50 (10.25, 15.75) 4 (2, 5.75) NA <0.001

NFL 18.11 (11.52, 30.58) 13.24 (8.67, 18.54) 11.49 (9.84, 15.08) 0.004

Values are n (%), median (interquartile range) or mean ± SD, unless otherwise noted. HAMA, Hamilton Anxiety Scale; HAMD, Hamilton Depression Scale; HC, Healthy controls; LEDD, 
levodopa-equivalent daily doses; MMSE, Mini-Mental State Examination; NA, not applicable; RBD, rapid eye movement sleep behavioral disorder; UPDRS, Unified Parkinson’s Disease Rating 
Scale; PD-EDS, Parkinson’s disease with excessive daytime sleepiness; PD-nEDS, Parkinson’s disease without excessive daytime sleepiness, MOCA, Montreal Cognitive Assessment; ESS, 
Epworth Sleepiness Scale, NFL, neurofilament light chain; PSQI, Pittsburgh Sleep Quality Index.
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Cortical atrophy in key parietal regions may disrupt network 
connectivity and contribute to EDS in PD. Specifically, reduced FC 
between the left SMG and PoCG may impair sensory integration and 
attentional regulation. As components of the somatosensory network, 
the PoCG (S1) and SMG (S2) are involved in processing tactile input 
and coordinating sensorimotor functions (Potok et al., 2019). Their 
weakened interaction may reduce arousal-related signaling, thereby 
increasing vulnerability to EDS (Hitchcott et al., 2019). Furthermore, 
weakened FC was detected between the right PoCR and left IFG 
operc. As a subregion of the left inferior frontal gyrus, the IFG operc 
plays a key role in information processing during audiovisual 
perceptual decision-making (Li et al., 2020). These findings align with 
evidence linking frontal cortex dysfunction to PD-EDS (Wen et al., 
2016; Ooi et al., 2019; Zi et al., 2022). The impaired white matter tract 
integrity between the frontal and parietal lobes in patients with 
PD-EDS further supports the neural downregulation mechanisms 
underlying EDS (Chondrogiorgi et al., 2015). Reduced FC between 
these key brain regions may contribute to deficits in sensory 
processing, attention, and regulation of arousal. Moreover, the weaker 
connectivity between these brain regions was correlated with higher 
ESS scores, indicating greater EDS severity. Disruptions in the FC 
within the left parietal cortex may serve as targets for neuromodulation 
interventions such as repetitive transcranial magnetic stimulation. 
Further investigation is necessary to determine how effectively these 
approaches modulate the arousal and attentional networks in PD-EDS.

NfL is a key cytoskeletal protein in neurons and a well-established 
biomarker of axonal damage (Petzold, 2005). Our findings indicate 

that plasma NfL levels are elevated in PD-EDS compared to 
PD-non-EDS, aligning with previous studies (Lin et  al., 2024). 
Mediation analysis suggested that reduced SMG thickness may 
exacerbate EDS severity by driving NfL elevation, implying that 
neurodegeneration-induced cortical thinning promotes axonal injury 
biomarker release, which subsequently worsens EDS. Previous studies 
have demonstrated that serum NfL is related to posterior cortical 
atrophy in early PD, particularly in the parietotemporo-occipital 
regions, and is a marker of non-dopaminergic neurodegeneration 
linked to cognitive decline and PD progression (Sampedro et  al., 
2020). Elevated NfL concentrations have been shown to mediate the 
relationship between cortical atrophy and cognitive decline in multiple 
sclerosis patients (Cruz-Gomez et al., 2021). In Alzheimer’s disease, a 
bidirectional relationship exists, in which higher NfL predicts faster 
cortical thinning, whereas reduced cortical thickness accelerates NfL 
elevation, reflecting ongoing axonal degeneration (Mattsson et al., 
2019). Combining NfL level with MRI-based cortical thickness 
measurement enhances the assessment of neuroaxonal injury. 
However, the exact relationship between EDS-related cortical thinning 
and increased NfL levels remains unclear. One plausible mechanism 
is that low perfusion and reduced blood flow may contribute to 
cortical thinning by causing metabolic dysfunction and oxidative 
stress, leading to neuronal shrinkage and cortical atrophy. This 
thinning, in turn, could exacerbate neurodegeneration and worsen 
EDS severity (Morrison and Hof, 1997). Consistent with our findings, 
attention deficits and reduced blood flow in the left parietal cortex 
have been associated with PD-EDS (Matsui et al., 2006).

TABLE 4  Intergroup comparison of functional connectivity in different brain regions.

ROI[MNI 
coordinates (X, Y, Z)]

Brain regions MNI coordinates Vertices T value

X Y Z

FC difference when PD-EDS minus HC

Postcentral_R Temporal_Mid_L −51 −72 6 133 −4.2218

(52.5,-18.4,52.4) Cuneus_R 6 −81 36 317 −4.1338

Postcentral_R (63.6,−9.2,24.7) Paracentral_Lobule_L -9 −36 63 124 −4.7956

FC difference when PD-EDS minus PD-nEDS

SupraMarginal_L (−60.8,-

33.1,31.3)
Postcentral_L −60 −21 27 83 −3.744

Postcentral_R (63.6,-9.2,24.7) Frontal_Inf_Oper_L −51 12 12 98 −3.6971

ROI, regions of interest; PD-EDS, Parkinson’s disease with excessive daytime sleepiness; PD-nEDS, Parkinson’s disease without excessive daytime sleepiness; SMG,supramarginal gyrus; PoC, 
postcentral gyrus; IFGoperc, inferior frontal gyrus, pars opercularis; MTG, Middle Temporal Gyrus; CUN, Cuneus; PCL, Paracentral Lobule; L, left hemisphere; R, right hemisphere.

TABLE 5  Mediation analysis of the indirect effect of SMG on ESS through NfL.

Effect Path Unstandardized 
Coefficient

Standard 
Error

t-value p-value 95% CI 
(LLCI, ULCI)

Standardized 
Coefficient (β)

SMG → NfL (a) −30.4506 8.52 −3.57 0.0005 [−47.30, −13.60] −0.295

NfL → ESS (b) 0.0938 0.037 2.53 0.0127 [0.0203, 0.1673] 0.218

SMG → ESS (Total 

effect, c)
−10.3649 3.74 −2.78 0.0063 [−17.75, −2.98] −0.233

SMG → ESS (Direct 

effect, c′)
−7.509 3.83 −1.96 0.0522 [−15.09, 0.07] −0.169

Indirect effect 

(a × b)
−2.8562 1.51 — — [−6.47, −0.58] −0.064
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Our study explored the contributors to EDS in individuals with 
PD. Consistent with previous research, EDS was strongly associated 
with non-motor symptoms, particularly cognitive impairments, 
anxiety, depression, and poor nighttime sleep quality (Kurtis et al., 
2013; Zhu et al., 2016; Feng et al., 2021; Maggi et al., 2023). However, 
in contrast to previous studies that linked EDS to age, disease duration, 
and PIGD phenotype, there were no significant associations with these 
variables in our cohort. Notably, mediation analysis revealed that the 
indirect effect of cortical thinning on EDS through NfL was reduced 
and became non-significant after controlling for MMSE scores, 
suggesting that cognitive dysfunction may partially account for this 
pathway. These findings highlight the predominant influence of 
non-motor symptoms—especially cognitive impairment—on EDS, 
relative to disease duration and motor phenotype. Further research 
with detailed neuropsychological assessments and rigorous control of 
confounders is required to clarify these relationships.

Despite these important findings, this study had several 
limitations. First, although ESS is a commonly employed scale for 
evaluating EDS, it remains a subjective measure. Polysomnography 
and other objective tests enable a more comprehensive evaluation. 
However, these tests are resource-intensive and impractical for 
large-scale studies, making ESS a feasible alternative for screening 
EDS in clinical and research settings. Second, the EDS group had 
a relatively small sample size, especially after we  excluded 
participants with excessive head motion, which may have affected 
statistical power. Validating these findings necessitates larger, 
multicenter studies. Finally, the cross-sectional design limits causal 
inferences between NfL, cortical thinning, and EDS severity in 

patients with PD. To gain a better understanding of PD-EDS 
mechanisms, longitudinal studies are essential in determining 
whether elevated NfL levels precede cortical thinning or result 
from neurodegeneration.

Collectively, our results indicate that elevated plasma NfL partially 
mediated the interaction between cortical thinning in the left SMG 
thickness and the severity of EDS, possibly reflecting the crucial role 
of neurodegeneration in linking cortical atrophy in this region to 
EDS. Cortical thinning may impair FC and exacerbate EDS in patients 
with PD. By integrating cortical thickness, FC, and NfL, our study 
enhances the comprehension of the potential mechanisms of PD-EDS 
as well as provides insights into the clinical implications and possible 
therapeutic targets.
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