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Editorial on the Research Topic
 Advancing personalized diagnosis and treatment in Parkinson's disease: integrating biomarkers, neuroimaging, and artificial intelligence





Introduction

Once viewed primarily as a late-onset movement disorder, Parkinson's disease (PD) is increasingly recognized as a multisystem syndrome with motor and non-motor symptoms arising from diverse genetic, molecular, neurological, and environmental factors.

With the number of individuals affected more than doubled over the past three decades (Global Burden of Disease 2021) and the dramatic growing prevalence of early-onset forms (Li et al.), researchers and clinicians are exploring how to integrate epidemiological insights, lifestyle determinants, and emerging biomarkers to identify PD pathophysiology and build personalized approaches to early diagnosis and treatment.

This Research Topic, Advancing personalized diagnosis and treatment in Parkinson's disease: integrating biomarkers, neuroimaging, and artificial intelligence, brings together original studies and reviews that showcase innovative methodologies and clinical insights pointing the way toward integrated patient-specific care for PD (Table 1).

TABLE 1 Summary of the study design, hypothesis and results of the studies included in the Research Topic.


	Author
	Study type
	Population
	Hypothesis
	Main results





	Epidemiological



	Li et al.
	Epidemiological study
	Global EOPD cases aggregated from the GBD Study 2021
	The global burden of EOPD has increased from 1990 to 2021.
	Incidence, prevalence, and DALYs increased while mortality declined; men affected more; middle-SDI regions showed highest disability/mortality driven by population growth highlighting regions and populations for prioritized screening & resource allocation.



	Neuroimaging electrophysiological biomarkers



	Song et al.
	Neuroimaging study (fMRI)
	N = 3453; 2,052 PD 1,401 HCs (72 datasets).
	Heterogeneous ReHo findings on fMRI will reveal distributed PD-associated dysfunctional networks across sensory, motor, and attentional systems.
	FCNM identified PD network overlap with visual (49.24%), somatomotor (32.35%), dorsal attention (44.49%), ventral attention (67.97%) networks. ReHo-derived network topography identifies targets for network-based biomarkers and therapies.



	Xu T. et al.
	Neuroimaging study (MRI)
	N = 100, 51 LPD, 49 RPD
	LPD and RPD show distinct cortical structural and network topology, as assessed using SBM and analyzed via SCN derived from MRI.
	LPD had reduced cortical surface area in right supramarginal gyrus, right precuneus, left inferior parietal lobule, left lingual gyrus vs RPD. Precuneus cortical surface area correlated with the MMSE in LPD. Side-of-onset MRI features may inform lateralized prognosis and cognitive risk determination.



	Wei et al.
	Neuroimaging (fMRI)
	N = 87; 58 PD (29 early PD, 29 middle-to-late PD) and 29 HCs
	There are significant changes in brain functional network topology in PD at different disease stages.
	PD-E & PD-M both reduced clustering and nodal centrality in temporal-occipital regions; increased centrality in default mode & frontoparietal control networks; left middle frontal gyrus & right temporal pole centrality correlated with motor severity/disease stage. fMRI network markers assist in disease staging and motor severity determination.



	Zhou et al.
	Neuroimaging (MRI)
	N = 59; 19 DIP, 20 PD, and 20 HC.
	Hippocampal subfield atrophy links with cognitive, depressive, and motor symptoms in DIP vs PD/HC.
	DIP showed significant subfield atrophy vs HCs; UPDRS patterns correlated with non-motor symptoms and hippocampal volume. Hippocampal MRI subfields may help distinguish DIP neurobiology and inform prognosis.



	Zhao Y. et al.
	Neuroimaging (EEG)
	N = 76; 44 PD, 32 HCs
	Lower global PAF and regional alpha PSD distinguish PPD-COG from PD-NC.
	Global PAF reduced in PD vs controls; PD-COG showed lower alpha PSD in parieto-occipital/posterior temporal regions correlating with MoCA; ROC identified P3/PZ/T6 alpha PSD as optimal discriminators. EEG PAF/alpha PSD may serve as diagnostic markers for PD-related cognitive decline.



	Genetic, molecular, and cellular biomarkers



	Xu H.-L. et al.
	Genetic biomarker study
	N = 182 PD, 74 GG carriers, 108 GA/AA carriers
	BST1 rs4698412 A-allele predicts faster motor progression in PD patients carrying the A-allele variant and GG homozygotes.
	GA/AA carriers had a greater rate of UPDRS-III increase vs GG carriers, however, no MMSE difference in cognition. BST1 rs4698412 A-allele is a genetic prognostic marker for motor deterioration.



	He et al.
	Genetic biomarker study
	N = 304 total; 197 PD and 107 age-matched HCs
	Circulating Parkin and related biomarkers will distinguish PD from controls.
	Parkin, Hcy, total protein, and urea discriminated against PD patients with PRKN mutations from healthy controls (AUC = 0.841); Parkin associated strongly with PD status (mediated by CEA & albumin). Blood Parkin and pathway signals offer diagnostic biomarkers insights.



	Chen J. et al.
	Neuroimaging (MRI)/neuro-physiology study
	N = 136; 36 PD-EDS, 100 PD-non-EDS
	Elevated plasma NfL mediates the link between cortical thinning and EDS severity in PD.
	PD-EDS showed cortical thinning (left supramarginal gyrus and right postcentral region), weakened functional connectivity, and higher plasma NfL that mediated left Supramarginal Gyrus thickness. Plasma NfL is a monitoring/predictive biomarker linking structural MRI changes to EDS symptom severity.



	Chen H. et al.
	Neuro-physiological study
	N = 61; 41 drug-naïve PD (19 PD-RBD, 22 PD-nRBD) and 20 HCs.
	PD-RBD exhibits distinct serum metabolic signatures that can serve as diagnostic biomarkers.
	PD-RBD showed CCM disruption in PPAR; distinct metabolite panels differentiated PD subgroups from HCs. Serum metabolite markers may be diagnostic and suggesting targets.



	Epidemiology, digital, and clinical tools



	Zhao J. et al.
	Cross-sectional study
	N = 54,027; adults from NHANES from 2005 to 2020.
	Higher SII associates with greater PD prevalence/risk.
	SII correlated positively with PD prevalence; dose-response present; stronger association in women, < 60 y, non-smokers, drinkers, non-obese. SII may serve as a population-level risk/diagnostic indicator and target for immune-modulating prevention strategies.



	Zhou and Cheng
	Epidemiological study
	N = 18,277; Adults ≥40 years and older from NHANES 2005–2018.
	There is a relationship between cardiovascular health score measured byLE8 and PD.
	PD prevalence 1.3% among study population. Moderate (50–79) & high (80–100) LE8 scores had lower odds of PD vs low (0–49); dose-response observed. Diet and glycemic health drove inverse association. Modifiable LE8 components may reduce PD risk and guide prevention.



	Wang et al.
	Cross-sectional study
	N = 161 40 AD-MCI patients, 40 PD-MCI patients; 41 PD PD-NC patients; 40 NC
	The dCDT could distinguish MCI profiles between AD-MCI and PD-MCI by quantifying visuospatial and executive function.
	Significant difference in cognitive function between AD-MCI and PD-MCI populations observed using dCDT. Task performance score correlated with visuospatial/executive subtest score on the MoCA scale indicating the efficacy of the dCDT test to help differentiate AD-MCI and PD-MCI for targeted treatment planning.



	Culicetto et al.
	Systematic review
	18 studies that described or investigated oculomotor function in PD patients.
	Eye-tracking technology with ML and VR integration improves PD diagnostic and monitoring of cognitive and motor symptoms.
	Eye-tracking metrics such as saccade velocity, fixation duration, and pupil size are correlated with disease severity. ML and VR-enhanced models improved diagnostic performance making eye-tracking a reliable monitoring tool with potential for clinical application.



	Twala
	Systematic review
	127 studies on AI applications in PD diagnosis and treatment.
	A multimodal AI framework will achieve high accuracy for early PD detection and treatment-response prediction.
	AI-driven PD diagnosis has accuracy rates ranging from 78 to 96%. Experimental framework achieved 94.2% accuracy in early-stage PD detection with a strength in identifying subtle motor fluctuations, voice pattern recognition, and gait analysis. Multimodal AI can improve early diagnosis and personalized therapy.



	Interventions



	Huang et al.
	Neuro-physiological study
	60 SPF NIH male mice (18–22g)
	Galangin treatment will attenuate MPTP-induced neuroinflammation and motor deficits via PI3K/AKT autophagy.
	Galangin improved motor coordination, reduced neuronal damage, enhanced antioxidant capacity, downregulated Beclin-1 autophagy markers via PI3K/AKT activation. Galangin is a preclinical candidate targeting autophagy/PI3K-AKT for neuroprotection in PD.



	Deng et al.
	Case report
	N = 1 71-year-old male patient with advanced PD, right-sided tremor, left-sided rigidity and significant dyskinesia.
	Combined DBS of the GPi and PSA is a viable treatment for patients with asymmetric and advanced PD.
	UPDRS-III score decreased from 73 to 46 and H-Y stage improved from stage 4 to 2.5. Asymmetrically targeted dual-lead DBS PSA-GPi may be a viable strategy for patients with asymmetric PD symptoms.



PD, Parkinson's disease; DBS, Deep Brain Stimulation; GPi, Globus Pallidus internus; PSA, Posterior Subthalamic Area; UPDRS-III, Unified Parkinson's Disease Rating Scale, Part III (motor section); H–Y, Hoehn–Yahr staging scale; EOPD, Early-Onset Parkinson's Disease; GBD, Global Burden of Disease; DALYs, Disability-Adjusted Life Years; SDI, Socio-demographic Index; AD-MCI, Alzheimer's Disease with Mild Cognitive Impairment; PD-MCI, Parkinson's Disease with Mild Cognitive Impairment; PD-NC, Parkinson's Disease with Normal Cognition; NC, Normal Cognition; dCDT, digital Clock Drawing Test; MoCA, Montreal Cognitive Assessment; NHANES, National Health and Nutrition Examination Survey; LE8, Life's Essential 8 cardiovascular health score; ML, Machine Learning; VR, Virtual Reality; AI, Artificial Intelligence; MRI, Magnetic Resonance Imaging; DIP, Drug-Induced Parkinsonism; HC, Healthy Control; fMRI, functional Magnetic Resonance Imaging; ReHo, Regional Homogeneity; FCNM, Functional Connectivity Network Mapping; PAF, Peak Alpha Frequency; PSD, Power Spectral Density; PD-COG, Parkinson's Disease with Cognitive Impairment; ROC, Receiver Operating Characteristic curve; P3/PZ/T6, standard EEG electrode positions; LPD, Left-Onset Parkinson's Disease; RPD, Right-Onset Parkinson's Disease; SBM, Surface-Based Morphometry; SCN, Structural Covariance Network; MMSE, Mini-Mental State Examination; PD-E, Early Parkinson's Disease; PD-M, Middle-to-Late Parkinson's Disease; RBD, REM Sleep Behavior Disorder; PD-RBD, Parkinson's Disease with REM Sleep Behavior Disorder; PD-nRBD, Parkinson's Disease without REM Sleep Behavior Disorder; CCM, Central Carbon Metabolism; PPAR, Peroxisome Proliferator-Activated Receptor; BST1, Bone Marrow Stromal Cell Antigen 1; PRKN, Parkin gene; Hcy, Homocysteine; CEA, Carcinoembryonic Antigen; SPF, Specific Pathogen-Free (mice); NIH, National Institutes of Health; MPTP, 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (a neurotoxin used in PD models); PI3K/AKT, Phosphatidylinositol-3-Kinase/Protein Kinase B signaling pathway; Beclin-1, autophagy-related protein; EDS, Excessive Daytime Sleepiness; NfL, Neurofilament Light chain; SII, Systemic Immune-Inflammation Index.





Neuroimaging and electrophysiological insights into Parkinson's disease

One of the biggest challenges in moving toward personalized care in PD lies in its clinical heterogeneity. Patients differ not only in the motor symptoms they display but also in the occurrence of non-motor symptoms, such as cognitive and mood disturbances. Neuroimaging approaches have been providing a deeper understanding of the neural basis of PD and several contributions to this Research Topic used such techniques to explore PD heterogeneity.

Using MRI, Song et al. conducted the largest meta-analysis to date of regional homogeneity (ReHo) alterations, combining 72 datasets from over 2,000 patients with PD and 1,400 controls. This study revealed a distributed dysfunctional network, involving the visual, somatomotor, dorsal and ventral attention networks, confirming that PD pathology extends beyond dopaminergic circuits to large-scale networks.

Another study (Xu T. et al.) investigated hemispheric lateralization, a hallmark of asymmetric dopaminergic degeneration associated with distinct symptom profiles (Voruz et al., 2025). Compared to right-onset patients, left onset patients with PD (LPD) showed reduced cortical area in the right supramarginal gyrus, right precuneus, left inferior parietal lobule, and left lingual gyrus. In LPD, the right precuneus area positively correlated with MMSE cognitive scores, consistent with previous reports (Syrimi et al., 2017; Lee et al., 2015). At the network level, LPD patients exhibited altered topological organization, with increased path length and reduced small-world index, indicative of reduced efficiency.

Building on this network-level approach, another study examined different stages of PD using resting-state fMRI and graph theory analysis (Wei et al.). Both early- and middle-to-late-stage patients with PD showed reduced clustering coefficients, indicating decreased local networks' specialization. More advanced patients showed an overall decline in network efficiency, both locally and across the whole brain. Importantly, centrality within the left middle frontal gyrus and right middle temporal pole correlated with clinical measures of motor severity and disease stage.

Going beyond PD staging and subtyping, another critical challenge lies in distinguishing idiopathic PD from secondary conditions, such as drug-induced Parkinsonism (DIP). Zhou et al. found greater reduction in bilateral whole hippocampal volume and subfields atrophy in DIP patients compared to patients with PD and controls, which correlated with cognitive deficits, depressive and motor symptoms. However, DIP patients' lower MoCA cognitive scores may partially explain these volumetric differences, emphasizing the need to control for baseline cognitive functioning in future studies.

Non-invasive electrophysiological (EEG) studies added further insights. Zhao Y. et al. showed that cognitively impaired patients with PD displayed lower EEG alpha (8–13 Hz) power in parieto-occipital and posterior temporal regions compared to cognitively intact patients, which correlated positively with MoCA score and best differentiated PD patients with and without cognitive impairment.

These findings align with longitudinal studies showing that alpha slowing predicts progression to PD-dementia (Klassen et al., 2011; Olde Dubbelink et al., 2013), reinforcing its value as a biomarker. Importantly, advances in wearable EEG technology and artificial intelligence now make it feasible to translate these markers into home-based monitoring systems, enabling continuous and personalized assessment of the patients' brain activity and cognition outside the clinic (Sigcha et al., 2023).

Overall, these contributions highlight how neuroimaging techniques can capture several dimensions of PD heterogeneity, from volumetric changes to network dysfunction, lateralization, and EEG slowing. By linking structural and functional alterations to specific symptoms, these methods move beyond simple PD subtyping to identify patients at risk of rapid progression or cognitive decline, guide treatments, provide tools for monitoring disease trajectories, and enrich clinical trials with biologically defined subgroups, thereby accelerating the translation of precision medicine approaches into practice.



Genetic, molecular and cellular biomarkers

Complementing neuroimaging and electrophysiological evidence, other contributions in this Research Topic highlight how genetic, fluid, and metabolomic biomarkers can refine PD diagnosis, staging, and phenotyping, and how they can be combined or mapped onto brain networks for improved personalized care.

A single-center longitudinal study (Xu H.-L. et al.) found that, compared to GG homozygotes, BST1 rs4698412 A-allele carriers had faster motor, but not cognitive, decline, mainly driven by rigidity and bradykinesia. This highlights a common PD-risk variant as a potential progression biomarker, useful for refining prognosis and optimizing trials for accelerated motor decline.

In the WPBLC cohort, He and colleagues found that elevated plasma Parkin in patients with PD had moderate diagnostic accuracy. Combining Parkin with homocysteine, total protein, and urea improved discrimination. Parkin correlated with blood α-synuclein oligomers and phosphorylated α-synuclein, but not with motor severity. Mediation analyses suggested partial effects via albumin and carcinoembryonic antigen, and transcriptomics pointed to PINK1-PRKN mitophagy and related metabolic pathways. Together, these data support a minimally invasive multi-analyte blood panel for PD (He et al.).

Another study integrated plasma neurofilament light (NfL) with cortical morphometry and connectivity and observed that patients with PD with excessive daytime sleepiness (EDS) show higher NfL, focal parietal thinning (left supramarginal gyrus; right postcentral gyrus), and reduced parietal-frontal coupling. NfL partially mediated the link between supramarginal thickness and EDS severity. These results support combined neuroimaging and plasma NfL biomarkers to clarify EDS mechanisms and track non-motor progression (Chen J. et al.).

Finally, blood metabolomics identified seven molecules distinguishing PD from controls and a distinct three-metabolite pattern specific to PD with REM sleep behavior disorder (PD-RBD). Pathway enrichment indicated disruption of central carbon metabolism in PD and inactivation of PPAR signaling in PD-RBD, supporting these metabolites as candidate (Chen H. et al.).



Epidemiology, digital, and clinical tools

Beyond neuroimaging and molecular markers, population-based studies have also identified systemic biomarkers of PD. In a cross-sectional analysis of NHANES 2005–2020 data, Zhao Y. et al. found that higher systemic immune-inflammation index (SII) values, derived from routine blood counts, were linked to greater PD prevalence, particularly at higher SII levels. These findings highlight PD's multisystem nature and support immune-inflammatory markers as useful indicators.

Similarly, Zhou and Cheng reported that cardiovascular health, reflected by higher Life's Essential 8 (LE8), correlated with lower PD risk, suggesting that maintaining cardiometabolic health may help reducing disease risk.

Digital and AI-based tools are also advancing PD diagnostics. In a cross-sectional study, a digital clock drawing test (dCDT) was implemented to differentiate PD patients with mild cognitive impairment (MCI) from Alzheimer's disease (AD) (Wang et al.). Combined metrics separated AD-MCI from PD-MCI with high accuracy and the overall drawing score correlated with the MoCA visuospatial/executive subtest score, supporting dCDT's value in cognitive assessment.

Eye-tracking, increasingly integrated with machine learning (ML) and virtual reality (VR), is further refining PD phenotyping. In their systematic review, Culicetto et al. reported that oculomotor metrics, such as saccade velocity, fixation duration, and pupil size, correlated with disease severity, and that integrating these metrics with ML/VR pipelines improve diagnostic accuracy and scalability. Together, these advances position eye-tracking as a promising biomarker platform for motor and cognitive dysfunction in PD, though standardization across devices and protocols remains essential before clinical adoption.

Finally, Twala reviewed AI applications in PD diagnosis and treatment, reporting accuracies spanning 78–96% across modalities, with neuroimaging leading on mean accuracy and multimodal systems offering the best generalizability. Building on this, the study illustrates a novel multimodal AI framework that achieves 94.2% overall accuracy and strong early-stage PD detection and outperforms traditional clinical assessment methods (Twala). So far, validation of this model used a simulated PD cohort, hence real-world, multi-site studies are needed before clinical use.



Interventions

Deeper insights into PD risk factors and progression paired with biomarker-guided patient stratification are paving the way for effective personalized therapies. This Research Topic illustrates also this bench-to-bedside trajectory through two complementary studies: a flavonoid-based neuroprotective approach in a mouse model (Huang et al.) and a dual-target deep brain stimulation in a patient with asymmetric motor features (Deng et al.).

Huang et al. demonstrated that galangin mitigated MPTP-induced dopaminergic neurodegeneration in mice, restoring striatal dopamine levels, reducing neuroinflammatory cytokines and α-synuclein accumulation, increasing antioxidant enzymes and improving motor performance. Mechanistically, galangin activated PI3K/AKT/CREB-BDNF signaling, inhibited Beclin-1-dependent autophagy, and preserved TH-positive neurons, indicative of its disease-modifying efficacy in preclinical models (Huang et al.).

Taking another innovative approach, Deng et al. reported the first documented case of combining posterior subthalamic area (PSA) and globus pallidus internus (GPi) deep brain stimulation (DBS) in a single PD patient with pronounced left-right asymmetry. The PSA is a tremor-responsive target, whereas the GPi is favored for treating rigidity and dyskinesia. A left PSA lead suppressed right-sided tremor, and a right GPi lead treated left-sided rigidity and dyskinesia. After six months of dual-target DBS, motor status improved and tremor frequency decreased, while cognition remained intact with no significant adverse effects. As a single case with short follow-up, these findings support feasibility of symptom specific dual-target neuromodulation for individualized therapy, although larger controlled studies are needed to establish effectiveness (Deng et al.).



Conclusions

As PD emerges as a multifaceted disorder extending beyond dopaminergic degeneration, progress in care will depend on closer integration of technology and neurobiologically informed clinical practice. Collectively, the studies in this Research Topic show that combining biomarkers, advanced neuroimaging, and AI-driven analytics enables earlier diagnosis, personalized treatment, and improved monitoring of disease progression, indicating an ongoing shift toward precision care.
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Background: This study aimed to explore the association between a new inflammatory marker, systemic immune-inflammation index (SII), and the risk of Parkinson’s disease (PD) in adult population.



Methods: A cross-sectional design was used, participants were recruited from the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2020. Three logistic regression models were used to explore the association between SII and the risk of PD, and subgroup analysis and sensitivity analysis were used. In addition, the restricted cubic spline (RCS) was used to explore the dose-response relationship between SII and PD. Receiver operating characteristic (ROC) curves was used to explore the diagnostic value of SII for PD.
Results: A total of 54,027 adults (mean age 35 years) were included in this study. The results of logistic regression showed that after adjusted for all covariates, compared with the Q1 group (lowest quartile in SII), the risk of PD in the Q3 group (OR = 1.82, 95%CI = 1.20–2.82, p < 0.001) and the Q4 group increased (OR = 2.49, 95%CI = 1.69–3.77, p < 0.001), with p-trend < 0.001. After excluding individuals with any missing values, sensitivity analysis also found a positive association between SII and PD. Subgroup analysis showed that this association was more significant in women, younger than 60 years old, non-smokers, alcohol drinkers, non-obese, and without a history of stroke, diabetes, or coronary heart disease. In addition, there was a positive dose-response relationship between SII and PD, and SII had an acceptable diagnostic value for PD (AUC = 0.72).
Conclusion: SII is positively correlated with the prevalence of PD in the adult population, and SII can help differentiate between PD and non-PD cases.
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systemic immune-inflammation index, Parkinson’s disease, inflammation, cross-sectional, risk factor


Introduction

Parkinson’s disease (PD) is a rapidly growing neurodegenerative disease (Dorsey et al., 2018). According to the latest international diagnostic criteria, PD is diagnosed by the presence of bradykinesia together with rigidity or tremor, along with supporting features (Bloem et al., 2021; Kobylecki, 2020). PD is considered the second most common neurodegenerative disease after Alzheimer’s disease (Ascherio and Schwarzschild, 2016). In developed countries, the median age-standardized annual incidence is 14 per 100,000 people in the total population and 160 per 100,000 people in people aged 65 years or older (Ascherio and Schwarzschild, 2016). It is generally believed that the age of onset of PD is mainly 60 years old (de Lau and Breteler, 2006), but several studies found that early-onset PD can appear before the age of 40, indicating that PD can occur at different ages (Gershanik, 2003; Riboldi et al., 2022; Schrag and Schott, 2006).

Among the exogenous factors known to influence the risk of Parkinson’s disease, such as exposure to pesticides (Brouwer et al., 2017), consumption of dairy products (Hughes et al., 2017), a history of melanoma (Gao et al., 2009), and traumatic brain injury (Lee et al., 2012), while a decreased risk is associated with smoking (Rose et al., 2024), caffeine consumption (Ross et al., 2000), elevated serum urate concentrations (Shen et al., 2013), physical activity (Fang et al., 2018), and use of ibuprofen (Gao et al., 2011) and other common medications (Ascherio and Schwarzschild, 2016), although these studies didn’t consider genetic factors (Trinh and Farrer, 2013), which is also associated with risk of PD. However, the pathogenesis of PD remains unclear. A large number of experimental and postmortem studies (Gate, 2022) have shown that inflammation plays an important role in the pathogenesis of PD. A study by Chen et al. (Chen et al., 2007) found that men with high plasma interleukin-6 concentrations had an increased risk of PD. Some case-control studies have found that IL-6, TNF-a, IL-1β, ST NFR 1, CRP, CCL 2, CX 3 CL 1, and CX CL 12 are elevated in the PD group (Qin et al., 2016; Qiu et al., 2019; Qu et al., 2023).

Systemic immune-inflammation index (SII) is a new type of systemic inflammation evaluation index that can objectively reflect the balance between host inflammatory and immune response status (Hu et al., 2014; Xu et al., 2024). An elevated SII usually suggests an elevated inflammatory status and weak immune response in patients (Hu et al., 2014). The calculation formula is the product of the platelet to neutrophil to lymphocyte ratio (Hu et al., 2014). SII has been found to be closely associated with the occurrence and prognosis of diseases in the elderly. A study by Tian et al. (2022) suggested that SII was associated with the prognosis of elderly patients with digestive system tumors. In terms of neurological diseases, Xu et al. (2024) conducted a study on 102 traumatic brain injuries (TBI) and found that the SII index increased in the early stages of TBI and was an independent risk factor for predicting poor prognosis in patients. Bao et al. (2023) found that SII was associated with cognitive impairment after acute ischemic cerebral infarction. Algul and Kaplan (2024) found that SII was associated with the severity of dementia in patients with Alzheimer’s disease. It is worth noting that SII was found to be negatively correlated with the motor performance of PD patients (Li et al., 2021). However, no study has yet explored the relationship between SII and the risk of PD in a large population sample.

To fill the gap of current studies, our study aims to explore the association between SII and the risk of PD in adults using data from a nationally representative cross-sectional survey, and further explore the diagnostic value of SII for the risk of PD. We hypothesize that individuals with higher SII are more likely to have a risk of PD and that SII can distinguish PD from non-PD in the population.



Materials and methods


Research design and research subjects

NHANES was constructed by the Centers for Disease Control and Prevention of the United States. The survey year is from 1999 to the present. The survey cycle is every 2 years. The sample size of each year is about 5000. The samples come from all over the country. NHANES includes demographic data, questionnaire data, dietary data, examination data and laboratory data. This study was approved by the National Cancer Institute and reviewed by the Health Statistics Research Ethics Review Committee. All participants signed informed consent. The research design and related data of NHANES can be downloaded at https://www.cdc.gov/nchs/nhanes/. The inclusion criteria of this study are as follows: (1) adults over 20 years old; (2) with prescription drug use data in the past 30 days; (3) with complete laboratory test data: platelet, neutrophil and lymphocyte data. After excluding all samples that did not meet the inclusion criteria, a total of 54,027 people were included in this study. The specific data flow chart is shown in Figure 1.


[image: Flowchart illustrating participant selection from the NHANES 2005-2020. Initial number is seventy-six thousand four hundred ninety-six. Participants with incomplete prescription drug information, nine thousand nine hundred seventy-one, are excluded, leaving sixty-six thousand five hundred twenty-five. Those with incomplete SII data, twelve thousand four hundred ninety-eight, are excluded, resulting in an included analytic sample of fifty-four thousand twenty-seven.]

FIGURE 1
Flowchart of the participant selection from NHANES 2005–2020. NHANES, National Health and Nutrition Examination Survey; SII, systemic immune-inflammation index.




Definition of PD

PD was defined based on the information provided by the subjects on prescription drug use in the past 30 days. Subjects were defined as having PD if they reported taking medication used to treat PD, including carbidopa, levodopa, methyldopa, benztropine, ropinirole, entacapone, and amantadine (Liu et al., 2023). With this definition, NHANES 2005-2020 reported 211 (1.06%) cases of PD in participants aged 45 and older, and 131 (1.27%) in participants aged 60 or older, whereas previous studies reported figures ranging from 0.47 to 0.77% of people with PD aged 45 and older in North America in 2012 (Willis et al., 2022), and 1% of people aged 65 or older with PD in industrialized countries in 2006 (de Lau and Breteler, 2006).



Definition of systemic immune-inflammation index

Based on previous study (Hu et al., 2014), we calculated SII using the following formula:

[image: SII equals the platelet count multiplied by the neutrophil count, divided by the lymphocyte count.]

Platelet, neutrophil, and lymphocyte counts were derived from the CBC laboratory data of NHANES. The method used to derive CBC parameters was based on the Beckman Coulter counting and quantification method, combined with an automatic dilution and mixing device for sample processing, and a single-beam photometer for hemoglobin determination. WBC differentials used VCS technology (Volume, Conductivity, Scatter). For detailed detection procedures, please refer to the NHANES Laboratory/Medical Technician Procedure Manual (LPM) (CDC, 2020).



Assessment of covariates

We included the following covariates: age (<60 years, ≥60 years), gender (male, female), race (Mexican American, other Hispanic, non-Hispanic white, non-Hispanic black, other race-including multi-racial), education (less than high school, high school or equivalent, college or above), marital status (married, widowed, divorced, separated, never married, living with partner), alcohol use (never, past drinker, current drinker), smoking (yes, no), BMI (<18.5, 18.5–24.9, 25.0–29.9, ≥ 30.0), sleep disorders (yes, no), hypertension (yes, no), diabetes (yes, no), coronary heart disease (yes, no), stroke (yes, no). Previous disease diagnosis information was based on self-reported information.



Statistical methods

Since the NHANES database uses a complex, multi-stage sampling method for investigation, this study used 2-year MEC exam weights (WTMEC2YR)1 to perform weighted analysis of relevant indicators. First, we calculated the SII quartiles (first quartile = 296.47, median = 429.00, third quartile = 620.00) based on the SII levels of all participants and divided them into four groups according to these quartiles (see the distribution of SII levels in Supplementary Figure S1). Next, descriptive statistics were performed on the overall population and each group of participants. Continuous variables were described by mean and standard deviation, and categorical variables were described by frequency and percentage. The chi-square test was used to compare categorical variables between groups, and analysis of variance was used to compare continuous variables. Second, we used three logistic regression models to explore the relationship between SII levels and the risk of PD in the population. Model 1 (Crude model) did not adjust for covariates. Model 2 adjusted for age, gender, race, education level, marital status. Model 3 further adjusted for alcohol use, smoking-cigarette use, BMI, sleep disorders, hypertension, diabetes, coronary heart disease, and stroke based on Model 2. Next, we used subgroup analysis to explore the relationship between SII levels and the risk of PD in different populations. One model was fitted per covariate and adjusted for the other covariates, then we fit another adjusted model for each covariate with an interaction term between the covariate and the SII levels to study interaction effect. In addition, we excluded all individuals with missing values and performed sensitivity analysis to verify the robustness of our results. Finally, we used the restricted cubic spline (RCS) after adjusted for age, gender, race, education level, marital status, alcohol use, smoking-cigarette use, BMI, sleep disorders, hypertension, diabetes, coronary heart disease, and stroke to explore the dose-response relationship between SII levels and the risk of PD, we fit three models with three, four, five knots and the model with the lowest AIC was selected in our study (Frank and Harrell, 2015). Further, we used the Receiver operating characteristic (ROC) curves to detect the diagnostic value of SII on the risk of PD. All statistical analyses were performed using R (version 4.4.1). R package “rms” (version 6.9-0) was used to conduct RCS analysis. We used a two-sided test, p < 0.05 was considered statistically significant. For all models, the associations were reported with adjusted odds ratios (ORs), 95% confidence intervals (CIs), and p-values.




Results


General characteristics of the study population

A total of 54,027 people were included in this study, of which 49.5% were male, 50.5% were female, 78.7% were under 60 years old, 21.3% were 60 years old and above, the average age was 35 years old (SD, 24.1; Range, 20–85), 37.6% were non-Hispanic white, and 23.4% were non-Hispanic black. The number of patients diagnosed with PD was 260 (0.5%). We found that there were significant differences in the prevalence of PD among different SII level groups (p < 0.001). The distribution of SII was shown in Supplementary Figure S1. In addition, we found statistically significant group differences in age, race, marital status, BMI, alcohol consumption, sleep disorders, hypertension, diabetes, coronary heart disease, and stroke (all p < 0.001) (Table 1).


TABLE 1 Characteristics of study participants from NHANES 2005–2020a.

[image: Table displaying demographic and health-related variables across four quartiles of the Systemic Immune-Inflammation Index (SII) with a sample size of 54,027. The table includes data on age, gender, race, education level, marital status, poverty ratio, BMI, alcohol use, and various health conditions, with corresponding p-values indicating statistical significance.]



Associations between SII and PD

When SII was used as a numerical variable, without adjusting for any covariates, the higher the level of SII, the higher the risk of PD (OR = 1.02, 95%CI = 1.05–1.21, p = 0.003). After adjusting for age, gender, race, education level, and marital status, SII was positively correlated with the risk of PD (OR = 1.07, 95%CI = 1.02–1.14, p = 0.002). After further adjusting for alcohol use, smoking-cigarette use, BMI, sleep disorders, hypertension, diabetes, coronary heart disease and stroke, the relationship between SII and PD still held (OR = 1.07, 95%CI = 1.02–1.14, p = 0.006). When SII was treated as a categorical variable, in the three logistic regression models, compared with the SII level of first quartile (Q1), in model 1, the risk of PD in the Q2 group was significantly increased (OR = 1.66, 95%CI = 1.08–2.60, p = 0.024), which is also significant in Q3 (OR = 2.16, 95%CI = 1.43–3.33, p < 0.001) and Q4 group (OR = 3.33, 95% CI = 2.27–5.03, p < 0.001); In model 2, the risk of PD increased in group Q3 (OR = 1.67, 95%CI = 1.10–2.58, p = 0.018) and Q4 (OR = 2.29, 95%CI = 1.55–3.47, p < 0.001). In model 3, the risk of PD in group Q3 (OR = 1.82, 95%CI = 1.20–2.82, p < 0.001) and group Q4 (OR = 2.49, 95%CI = 1.69–3.77, p < 0.001) was increased, and the three models showed significant trends of increasing risk of PD with increasing SII levels (all p-trend < 0.001) (Table 2). Detailed summaries of multivariate logistic regressions were shown in Supplementary Table S2.


TABLE 2 Associations between SII levels and the risks of Parkinson’s diseasesa.

[image: A table presents odds ratios (OR) and 95% confidence intervals (CI) for systemic immune-inflammation index (SII) across four quartiles using three models. Model 1: OR 1.12 (CI 1.05-1.21), p 0.003 (continuous). Quartile 2: OR 1.66 (CI 1.08-2.60), p 0.024. Quartile 3: OR 2.16 (CI 1.43-3.33), p < 0.001. Quartile 4: OR 3.33 (CI 2.27-5.03), p < 0.001. Models 2 and 3 adjust for demographics and health factors, showing similar increasing ORs across quartiles with significant p-values.]



Subgroup analysis and sensitivity analysis

The results of subgroup analysis showed that, compared with Q1, the association between high level SII (Q4) and increased risk of PD was more likely to be found in female (OR = 3.40, 95%CI = 1.91–6.50, p < 0.001), younger than 60 years old (OR = 3.67, 95%CI = 1.99–7.31, p < 0.001), non-Hispanic white (OR = 3.04, 95%CI = 1.71–5.90, p < 0.001), high school education or above (OR = 5.98, 95%CI = 2.89–14.5, p < 0.001), not currently smoking (OR = 3.94, 95%CI = 2.20–7.70, p < 0.001), alcohol drinker (OR = 3.20, 95%CI = 1.86–5.87, p < 0.001), non-obese (OR = 3.38, 95%CI = 1.97–6.12, p < 0.001), without a history of stroke (OR = 2.56, 95%CI = 1.70–3.96, p < 0.001), without a history of diabetes (OR = 3.31, 95% CI = 2.08–5.51, p < 0.001), and without a history of coronary heart disease (OR = 2.63 95%CI = 1.75–4.07, p < 0.001) (Table 3). We conducted a sensitivity analysis for missing values. After excluding subjects with missing values in any covariate, compared with the low-level SII group, the high-level SII group still had a higher risk of PD (Table 4).


TABLE 3 Subgroup analysis of associations between SII levels and the risks of Parkinson’s diseasesa.

[image: A table displaying odds ratios (ORs) with 95% confidence intervals for various variables related to systemic immune-inflammation index (SII) levels and the risks of Parkinson's disease. Variables include gender, age, race, education level, smoking habits, alcohol use, BMI, hypertension, diabetes, stroke, and coronary heart disease. The table is divided into quartiles (Q1 to Q4) for each variable, with reference values and significant interactions indicated by asterisks. The rightmost column provides p-values for interactions. ]


TABLE 4 Associations between SII levels and the risks of Parkinson’s diseases among participants without missing valuesa.

[image: A table presenting odds ratios, confidence intervals, and p-values for systemic immune-inflammation index (SII) levels across three models related to Parkinson's disease risk. The models adjust for various covariates, with Model 3 including the most adjustments. Results show increasing odds ratios with higher SII quartiles, particularly in Quartile 4, where significant findings are observed across models.]



Dose-response relationship between SII and PD

Four knots were selected in our study, details of model fit were shown in Supplementary Table S3. The RCS curve results showed that after adjusting for age, gender, race, education level, marital status, alcohol drinking, smoking-cigarette use, BMI, sleep disorders, hypertension, diabetes, coronary heart disease and stroke, the higher the level of SII, the higher the risk of PD, a non-linear relationship was found (p overall < 0.001, p for non-linearity < 0.001), and SII > 426.13 indicated a steep increased risk of PD (Figure 2).


[image: Graph showing odds ratios with a 95% confidence interval shaded in red. The y-axis represents odds ratios and the x-axis indicates SII values, with a marked vertical line at SII = 426.13. The red line suggests a positive trend. P-values for overall and non-linearity are less than 0.001.]

FIGURE 2
Dose-response relationship between systemic immune-inflammation index and Parkinson’s disease.




The diagnostic value of SII for PD

The ROC curve results showed that the level of SII can distinguish PD from non-PD in the population (AUC = 0.72, 95% CI: 0.69–0.75) (Figure 3). In addition, the accuracy of the model was 0.76, the sensitivity was 0.79, the specificity was 0.71, and Youden index was 0.50.


[image: Receiver Operating Characteristic (ROC) curve showing sensitivity versus one minus specificity. The blue curve represents the model's performance, and the red dashed line indicates random performance. The area under the curve (AUC) is 0.72.]

FIGURE 3
The diagnostic value of systemic immune-inflammation index for Parkinson’s disease risk. AUC, Area Under the Curve.





Discussion

Our study is the first to examine the relationship between SII levels and risk of PD in a large, nationally representative cross-sectional adult population sample. We found that the higher the SII level, the higher the risk of adult PD, and this trend is very significant, especially among women, younger than 60 years old, non-Hispanic white, high school education or above, not currently smoking, alcohol drinker, non-obese, without a history of stroke, diabetes, or coronary heart disease. In addition, we found a positive dose-response relationship between SII levels and the risk of PD, and SII levels can distinguish PD from non-PD in adult population.

The relationship between SII and the risk of PD has not been studied, but a large number of previous studies have shown that peripheral blood inflammatory markers play an important role in the occurrence and development of PD. The results of a case-control study on early PD by Kim et al. (2018) showed that the levels of IL-1β, IL-2 and IL-6 in the PD group were significantly higher than those in the control group, and IL-10 was associated with patients’ non-motor symptoms. Studies have shown that chronic proinflammatory states already exist in the prodromal stage of PD, such as iRBD (Lindestam Arlehamn et al., 2020; Stokholm et al., 2017; Sulzer et al., 2017). A study by Chen et al. (2007) showed that men with high plasma IL-6 levels have an increased risk of PD, but the sample size was small and there was a lack of discussion of other inflammatory biomarkers. A meta-analysis showed that PD patients had higher levels of IL-6, tumor necrosis factor-α, IL-1β, IL-2, IL-10, C-reactive protein and RANTES in peripheral blood, which further strengthened the clinical evidence that PD patients have peripheral inflammatory responses (Qin et al., 2016). Moreover, a case-control study by Pedersen et al. (2023) found nine CSF inflammatory markers associated with PD (increased levels of CD5, CDCP1, IL-18R1, and IL-6 and decreased levels of ADA, CCL23, CD8A, FGF-19, and MCP-2).

On the basis of the above studies, our study further explored the relationship between SII, a new systemic inflammatory response index based on peripheral blood inflammatory cells, and the risk of PD. The calculation of SII is based on the counts of platelets, neutrophils and lymphocytes, that is, the product of platelets and the ratio of neutrophils and lymphocytes (Hu et al., 2014). These peripheral blood inflammatory markers are associated with the risk of PD. Platelets originate from megakaryocytes in the bone marrow and are defined as very small anucleated cell fragments with a diameter of 2-4 μm, which are involved in thrombosis (Beura et al., 2022). Platelet dysfunction is believed to be related to endothelial cell damage, and platelets can express neuron-specific molecules and receptors; it also expresses several PD-specific biomarkers, such as α-synuclein, parkin, PTEN-induced kinase 1, tyrosine hydroxylase, and dopamine transporter (Beura et al., 2022). Therefore, platelets are often used to build peripheral models of PD, and antiplatelet drugs are considered to have potential therapeutic value for PD.

Neutrophils are immune cells with unique biological characteristics and strong antimicrobial properties (Burn et al., 2021). These cells phagocytose and subsequently kill prokaryotes and eukaryotes very effectively. The neutrophil-to-lymphocyte ratio (NLR) is a complete blood count (CBC)-based biomarker that reflects the balance between immunity and systemic inflammation (Hosseini et al., 2023). Studies have found that NLR in the plasma of PD patients is significantly higher than that of HC (Li et al., 2024; Munoz-Delgado et al., 2021). The results also highlighted the correlation between plasma NLR and the total UPDRS score and UPDRS I-III score in PD patients (Li et al., 2024), indicating that NLR is associated with the severity of symptoms in PD patients. Neutrophils are able to penetrate the epithelial and vascular wall cell layers and promote the body’s inflammatory response by regulating chemokines (Ley et al., 2018). An animal experiment by Jensen et al. (2021) found that T cell infiltration was detected in the hippocampus, neocortex, striatal perivascular area, and parenchyma of PD mice, and lower lymphocyte counts were associated with a greater risk of PD. In addition, the study by Dommershuijsen et al. (2022) found that the higher the lymphocyte count, the lower the likelihood of developing PD. Some studies have shown that NLR is higher in PD patients (Munoz-Delgado et al., 2021).

In addition, this study also found that the relationship between SII and the risk of PD has certain heterogeneity in different subgroups of people, which may be related to the differences in the risk of PD in different groups. Gender is considered an important risk factor for PD, with men having a higher incidence of PD than women, and a large number of studies have shown that there are also differences in symptoms, development, and response to treatment between male and female PD patients (Collaborators, 2019; Hirsch et al., 2016). Although sex differences in the association of SII with PD have not been studied, one longitudinal study showed (Cheng et al., 2024) that the impact of SII on mortality in male and female hypertensive patients was significantly different, with women with higher SII levels having a higher risk of death. Similar to the findings of this study, SII is more significantly associated with poor prognosis in women. Wei et al. (2024) found that in an age-stratified analysis, increased SII was a better predictor of the risk of metabolic syndrome in young people than in older people. This shows that SII can better reflect the systemic inflammatory status of young and middle-aged people. Inflammatory factors in young people are precisely and strictly regulated and are at lower levels (Singh and Newman, 2011). Elderly people are often in a state of chronic inflammation (De Maeyer et al., 2020; Sarkar and Fisher, 2006). Therefore, fluctuations in SII levels in young people are more sensitive to disease. Similarly, previous studies have shown (Demir and Demir, 2023) that compared with non-smokers, smokers have higher SII levels and are in a chronic inflammatory state for a long time. Therefore, the link between changes in SII levels and PD risk is more obvious among non-smokers. In terms of alcohol use, people who drink a small or moderate amount of beer have a lower risk of PD, while people who drink a higher amount of wine have an increased risk of PD (Imhof et al., 2001). It was found that moderate drinking can reduce the body’s inflammation level (Zhang et al., 2014). Our results suggest that among people who drink alcohol, the link between SII and PD risk is more significant. Further research is needed to identify this mechanism.

Our study found that the relationship between SII and the occurrence of PD in non-obese people is more significant, which may be related to the fact that the disease onset of non-obese people is more sensitive to fluctuations in SII levels. Zhou et al. (2024) found that obese people have higher SII levels, suggesting that inflammation may play an important role in the occurrence and development of obesity, and obesity may also lead to a sustained inflammatory response in the body. Nie et al. (2023) found that elevated SII has a stable relationship with an increased risk of diabetes, indicating that patients with diabetes have higher levels of inflammation. A prospective cohort study involving 13,929 adults by Xu et al. (2021) found that high SII was associated with increased risk of total stroke and ischemic stroke. A large number of previous studies have found that SII has a certain predictive effect on the occurrence of coronary heart disease (Yang et al., 2020) and is associated with the severity of coronary heart disease (Candemir et al., 2021). Our results concluded that SII levels are only associated with the risk of PD in people without coronary heart disease, stroke, or diabetes. On the one hand, the link between SII and PD risk is more significant in people with lower inflammation levels. This may be related to the fact that changes in the body’s SII levels are more sensitive to indicating the occurrence of PD in a low-inflammatory state. The specific mechanism needs to be further studied. On the other hand, pharmacological interventions and primary prevention measures targeting these diseases may attenuate the association between SII and PD. Insulin resistance is closely related to chronic inflammation, and the use of antidiabetic drugs may improve insulin resistance and reduce chronic inflammation (Shoelson et al., 2006). Medications such as statins and aspirin help reduce inflammation in people with coronary artery disease (Cheng et al., 2022; Shoelson et al., 2006).

Another important finding is that our results suggested a clear dose-response relationship between SII and the increased risk of PD, and high levels of SII can differentiate the occurrence of PD in the population with acceptable performance. Although the diagnostic value of SII for the risk of PD in the population has not been explored, previous studies have explored the predictive value of SII for other neurological diseases. Cheng et al. (2023) found that SII and SIRI can better predict the occurrence of stroke in 5907 asthma patients, and SIRI has a better predictive value for stroke prevalence than SII. Algul et al. found that SII, as a new inflammatory marker, is related to the severity of dementia in AD patients (Algul and Kaplan, 2024). In the study of the relationship between other inflammatory markers and PD, the neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR) and neutrophil-to-high-density lipoprotein ratio (NHR) are considered to be able to predict the occurrence of PD, among which NLR has a relatively better predictive value (Li et al., 2024). The findings of this study are an important supplement to the association of PD by inflammatory markers. Whether the diagnostic value of SII for PD is different from that of other inflammatory markers needs further exploration.



Limitation

Although this study has some important findings related to PD, we have several limitations. First, we used a cross-sectional design and cannot directly infer causality. Thus, the association between SII and PD needs to be further explored in longitudinal studies. Second, the assessment of PD is based on self-reported prescription medication data, and some subjects may have recall bias. Consequently, patients with non-PD parkinsonism may have been inadvertently included. Finally, participants of our study are from American population, and the results cannot be applied to the world population. This finding needs to be verified in populations from different countries.



Conclusion

In summary, our study is the first to find an association between high levels of SII and the risk of PD in a nationally representative cross-sectional sample, and further explore the heterogeneity of this association in different populations. In addition, we also found a positive dose-response relationship between SII and PD, and SII level has a good diagnostic value for the risk of PD in the population. Since SII is a new, valuable, and easy-to-measure inflammatory marker, this study provides important insights into the exploration of risk factors for PD and its prevention.
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Background: Parkinson’s disease (PD) is a progressive neurodegenerative disorder with increasing global prevalence. This study investigated the association between the American Heart Association’s Life’s Essential 8 (LE8) and PD prevalence using a large, nationally representative database.
Methods: We analyzed data from 18,277 participants aged 40 years and older from the National Health and Nutrition Examination Survey (NHANES) 2005–2018. LE8 scores were calculated based on diet, physical activity, nicotine exposure, sleep, body mass index, blood lipids, blood glucose, and blood pressure. PD cases were identified through self-reported anti-PD medication use. Multivariate logistic regression models were employed to examine the association between LE8 and PD prevalence, adjusting for various demographic and clinical factors. In addition, we performed restricted cubic splines (RCS), subgroup analyses, and weighted quantile sum (WQS) regression to verify the robustness of the study results.
Results: The prevalence of PD was 1.3% in the study population. After full adjustment, individuals with moderate (50–79) and high (80–100) LE8 scores showed lower odds of PD compared to those with low (0–49) scores (OR 0.53, 95% CI 0.29–0.97 and OR 0.43, 95% CI 0.17–1.04, respectively; p for trend <0.05). A dose-response relationship was observed between LE8 scores and PD prevalence. WQS regression identified dietary factors and glycemic health as the main contributors to the inverse association between LE8 and PD.
Conclusion: Our findings suggest a significant inverse association between Life’s Essential 8 (LE8) and PD prevalence, with dietary factors and glycemic health emerging as the most influential components.
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 Life’s Essential 8; Parkinson’s disease; NHANES; cardiovascular health; weighted quantile sum (WQS) regression


1 Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder affecting millions worldwide. Over the past generation, the global disease burden of PD has more than doubled, with an estimated 6.1 million cases in 2016 (GBD 2016 Parkinson’s Disease Collaborators, 2018). This upward trend is projected to continue, with predictions suggesting PD cases may reach 12 million by 2040 (Dorsey et al., 2018). The substantial economic and social costs associated with PD, coupled with its impact on patient’s quality of life, underscore the urgent need to identify modifiable risk factors for prevention and early intervention. Research conducted by Paul et al. (2019) has demonstrated the potential influence of lifestyle factors on PD risk. Their findings indicate that coffee, caffeinated tea, moderate alcohol consumption, and physical exercise may have protective effects against PD, while smoking and excessive alcohol use are associated with increased risk. Furthermore, several studies have suggested that PD may be linked to various risk factors, including body mass index (Hu et al., 2006), diet (Knight et al., 2022), nicotine exposure (Quik et al., 2008), alcohol consumption (Bettiol et al., 2015), regular exercise (Bhalsing et al., 2018), sleep disorders (Dodet et al., 2024), diabetes (Athauda et al., 2022), hypertension (Shi et al., 2024), and dyslipidemia (Lee et al., 2023). Given these associations, it is crucial to explore the relationship between comprehensive health indicators and the development and progression of PD.

Mounting evidence suggests a complex interplay between cardiovascular health and neurodegenerative diseases, including Parkinson’s disease (PD). Various cardiovascular risk factors, such as hypertension (Shi et al., 2024), diabetes (Athauda et al., 2022), and obesity (Hu et al., 2006), have been demonstrated to be associated with PD risk. The American Heart Association’s Life’s Simple 7 (LS7), a measure of ideal cardiovascular health, has been shown to correlate with reduced risk of cognitive decline and dementia (Samieri et al., 2018). Recently, LS7 was updated to Life’s Essential 8 (LE8), incorporating sleep as a crucial component of cardiovascular and brain health (Lloyd-Jones et al., 2022). LE8 is a multidimensional tool designed to assess overall health by evaluating diet, physical activity, nicotine exposure, sleep, BMI, blood lipids, blood glucose, and blood pressure. Although originally developed for cardiovascular health, these factors also exhibit potential relevance to PD. This study utilized LE8 as a tool to assess factors associated with Parkinson’s disease, based on the extensive overlap between these factors in cardiovascular health and neurodegenerative diseases. Previous research has shown that lifestyle and metabolic health factors, such as diet (Knight et al., 2022), physical activity (Bhalsing et al., 2018), sleep (Dodet et al., 2024), obesity (Hu et al., 2006), abnormal blood glucose levels (Athauda et al., 2022), and changes in lipid profiles (Lee et al., 2023), are closely linked to the risk and progression of PD. Given the potential shared pathophysiological mechanisms between cardiovascular diseases and PD, investigating the relationship between LE8 and PD risk presents a promising avenue for identifying novel preventive strategies and understanding the broader impact of cardiovascular health on neurodegenerative processes. This approach may provide valuable insights into the intricate connections between cardiovascular well-being and neurological health, potentially leading to more comprehensive and effective interventions for PD.

To address this knowledge gap, data from the National Health and Nutrition Examination Survey (NHANES) spanning 2005–2018 were utilized. NHANES provides a unique opportunity to examine the relationship between Life’s Essential 8 (LE8) and Parkinson’s disease (PD) in a large, nationally representative sample of the U.S. population. This dataset allows for a comprehensive assessment of cardiovascular health metrics, including the newly added sleep component, as well as PD status and relevant covariates. The present study aims to elucidate potential associations between LE8 scores and PD prevalence by leveraging this extensive database. This investigation contributes to the growing body of evidence regarding modifiable risk factors for PD and may inform future preventive strategies.



2 Methods


2.1 Study participants

The National Health and Nutrition Examination Survey (NHANES) is a nationally representative cross-sectional survey conducted in the United States through household interviews and mobile examination centers. It evaluates the health and nutritional status of the American population. This study utilized data from seven NHANES cycles between 2005 and 2018, involving 70,190 participants. After excluding individuals younger than 40 years (n = 43,908), pregnant women (n = 21), and those with missing or incomplete data on LE8 or PD (n = 7,984), the final analysis included 18,277 participants. Figure 1 illustrates the flowchart of the selection process. NHANES is approved by the Research Ethics Review Board of the National Center for Health Statistics, with informed consent obtained from all participants. The data used in this study are de-identified and publicly available.1

[image: Flowchart depicting participant selection from NHANES 2005-2018. Initial count: 70,190. Exclusions: participants under 40 (43,908), pregnant women (21), incomplete LE8 data (7,975), and incomplete PD data (9). Final count: 18,277.]

FIGURE 1
 A flow diagram of eligible participant selection in the National Health and Nutrition Examination Survey. LE8, Life’s Essential 8; PD, Parkinson’s disease.




2.2 Definition of Life’s Essential 8

LE8 is a refined and comprehensive framework introduced by the American Heart Association (AHA) to assess and enhance cardiovascular health (CVH). LE8 includes eight key components: four health behaviors (diet, physical activity, nicotine exposure, and sleep duration) and four health metrics [body mass index (BMI), blood lipids, blood glucose, and blood pressure] (Xiao et al., 2024). These components collectively contribute to an individual’s cardiovascular health status, which is crucial for preventing cardiovascular diseases (CVD) and improving overall life expectancy. Calculating a LE8 score involves quantifying each component based on established clinical guidelines and scoring systems. Diet is assessed using a dietary assessment tool, such as the Healthy Eating Index (HEI) 2015 (Supplementary Table S2), which evaluates adherence to dietary recommendations. Physical activity is measured by the total minutes of moderate or vigorous exercise per week, with a target of at least 150 or 75 min of moderate intensity. Nicotine exposure is determined by smoking status and exposure to secondhand smoke, with non-smokers and those avoiding secondhand smoke scoring higher. Sleep duration is evaluated based on the average hours of sleep per night, with 7–9 h considered optimal. The four health metrics are similarly quantified. BMI is calculated by dividing a person’s weight in kilograms by the square of their height in meters, with a normal range of 18.5–24.9 kg/m2 being ideal. Blood lipids are measured using the levels of non-high-density lipoprotein cholesterol (non-HDL cholesterol), aiming for levels below 130 mg/dL. Blood glucose levels are assessed by fasting blood glucose or HbA1c levels, with targets below 100 mg/dL and less than 5.7%, respectively. Finally, blood pressure is measured, with an optimal reading being less than 120/80 mm Hg. AHA has developed a new scoring system for each measure, with a range of 0 to 100 points (Liu et al., 2024). This allows for the creation of a new composite CVH score, which likewise has a range of 0 to 100 points. A higher score indicates a better state of health. The AHA recommendation said that an LE8 score of 80 to 100 points was regarded as high CVH, 50 to 79 points was considered moderate CVH, and 0 to 49 points was considered low CVH (Yang et al., 2024). Supplementary Table S1 has comprehensive explanations of how to use NHANES data to calculate scores for each LE8 indicator.



2.3 Diagnosis of Parkinson’s disease

The main outcome of this investigation was PD. According to previous studies (Huang et al., 2024; Tu et al., 2024), based on self-reported anti-PD medication use, PD cases have been found in the NHANES database. The following list of PD medications, such as benztropine, methyldopa, carbidopa, levodopa, entacapone, amantadine, and ropinirole, is used to diagnose PD.



2.4 Covariables

Based on previous research (Zhang et al., 2024; Liu et al., 2023), the covariates included in the study are age, sex, race, marital status, education level, family poverty-income ratio (PIR), smoking status, alcohol consumption, hypertension, diabetes, and hypercholesterolemia. Detailed descriptions of these covariates are provided in Supplementary Table S3.



2.5 Statistical analyses

Statistical analyses were conducted using R software (version 4.3.1). Sampling weights were applied in all statistical analyses to guarantee the national representativeness of the calculated data. “WTMEC2YR” was used as the weighting variable in our study, and the new weights (2005–2018) were computed as 1/7 × WTMEC2YR. Data were weighted as specified, with continuous variables presented as mean ± standard deviation, and p-values computed using weighted Students t-test. For categorical variables, percentages (weighted N, %) and p-values were calculated using weighted chi-square tests (Gong et al., 2024). The association between LE8 and PD was examined using multivariate logistic regression models. Three models were constructed: Model 1: no covariate adjustment; Model 2: adjusted for age, sex, education level, marital status, PIR, and race; Model 3: adjusted for age, sex, education level, marital status, PIR, race, smoking, alcohol consumption, hypertension, diabetes, and hypercholesterolemia. Covariates were selected based on their established associations with both LE8 and PD, as supported by prior literature. In Model 2, demographic and socioeconomic factors (age, sex, education level, marital status, PIR, and race) were included to account for their potential confounding effects. Model 3 further adjusted for lifestyle behaviors and chronic conditions (smoking, alcohol consumption, hypertension, diabetes, and hypercholesterolemia) that could act as intermediates or confounders in the association between LE8 and PD. Smooth curve fitting was used to further explore potential non-linear relationships between LE8 and PD. Subgroup analyses were performed to assess the association between LE8 and PD across different strata. Odds ratios (OR) were calculated as per 10 scores increase in LE8. Analyses were adjusted for age, sex, education level, marital status, PIR, race, smoking, alcohol consumption, hypertension, diabetes, and hypercholesterolemia. Additionally, we applied the WQS method to explore the overall effect of individual LE8 on PD. Nutrients with a WQS weighting (ranging from 0 to 1 and summing to 1) higher than 0.125 (the average of 8 LE8 metric) were identified as major contributors (Huang et al., 2024). Weighted quantile sum (WQS) regression assigns weights to the eight components of LE8, using a quantile regression optimization algorithm to determine their relative contributions to the risk of PD. The weights are normalized to sum to 1, with a threshold of 0.125 (1/8) serving as a reference value for comparison. WQS regression effectively handles multicollinearity and evaluates synergistic effects among variables, making it well-suited for high-dimensional analyses. To verify the robustness of the results, we excluded participants with a body mass index <18.5 and a history of cardiovascular disease and reanalyzed them using data from the NHANES 2007–2018 cycle. A p-value <0.05 was considered statistically significant.




3 Results


3.1 Characteristics of the participants

Our analysis included 18,277 participants, representing approximately 110,202,873 individuals. Table 1 outlines the general characteristics of the weighted study population, comparing those with and without PD. The prevalence of PD was 1.3% (equivalent to 1,463,538 individuals) with a mean (SD) LE8 score of 65.83 (14.22). Notably, most of the LE8 and its subgroups had lower scores in the PD group compared to the non-PD group. Significant differences were observed across various demographic and medical factors, such as gender, race, and hypertension (p < 0.05).



TABLE 1 Baseline characteristics of all participants were stratified by PD, weighted.
[image: A table comparing characteristics between non-Parkinson’s disease (PD) and PD groups. It includes total participants, age, gender, race, marital status, education level, poverty ratio, smoking and drinking habits, hypertension, diabetes, cholesterol, and various health scores. Each category lists values for overall participants, non-PD and PD groups, with corresponding percentages and p-values. Key differences noted in gender, race, cholesterol levels, and health scores.]



3.2 Association between LE8 and PD

Table 2 illustrates the relationships between LE8 and PD. The multivariate adjusted analyses showed that moderate (50–79) and high (80–100) were associated with a lower prevalence of PD compared to low (0–49), with odds ratios (ORs) and 95% confidence intervals (CIs) of 0.53 (0.29, 0.97) and 0.43 (0.17, 1.04), respectively (p for trend <0.05). Similar results were observed when LE8 was analyzed as a continuous variable. Additionally, in the fully adjusted model, all LE8 subgroups except the lipid score remained negatively associated with PD. Sensitivity analyses that excluded participants with a body mass index <18.5 and a history of cardiovascular disease showed robust results (Supplementary Table S5). In addition, the results of sensitivity analyses using fasting weights remained consistent (Supplementary Table S6).



TABLE 2 Adjusted odds ratios for CVH (LE8) and components to PD, weighted.
[image: A table presents odds ratios (ORs) with 95% confidence intervals (CI) and p-values for cardiovascular health characteristics across three models. Key components analyzed include diet, physical activity, tobacco exposure, sleep, body mass index, blood lipids, glucose, and pressure scores. Models adjust for various covariates, and higher scores indicate better health. Significant p-values are noted for several components, such as the HEI-2015 diet score and sleep health score, across different models. The table also provides references for comparison.]

Figure 2 corroborated that LE8 exhibited an inverse association with incident PD as indicated by the RCS results. Subgroup analyses (Figure 3) demonstrated that there were no significant interactions observed between LE8 and the stratification variables, which included age, sex, race, marital status, education, economic status, smoking, drinking, hypertension, diabetes, and high cholesterol (p > 0.05). This relationship was found to be stable across the various subgroups analyzed.

[image: Graph showing odds ratios (OR) with 95% confidence intervals (CI) for "Life's Essential 8" score ranging from 0 to 100. The OR line trends downward, crossing the reference line at 1 and tails off. A shaded area represents CI. P values are 0.011 for overall and 0.832 for nonlinear trends. Dashed vertical and horizontal reference lines intersect at 60 and OR 1, respectively.]

FIGURE 2
 Dose-response relationships between LE8 and PD. OR (solid lines) and 95% confidence levels (shaded areas) were adjusted for age, gender, education level, marital, PIR, race, smoking, drinking, hypertension, diabetes, and high cholesterol.


[image: Forest plot showing odds ratios (OR) and 95% confidence intervals (CI) for various subgroups related to a protective or risk factor, indicated by positions relative to a red line at OR=1. Subgroups include age, gender, race, marital status, education, poverty income ratio (PIR), smoking, drinking, hypertension, diabetes, and high cholesterol. P-values for interaction are listed, suggesting statistical significance considerations for each subgroup.]

FIGURE 3
 Subgroup analysis between LE8 and PD. ORs were calculated as per 10 scores increase in LE8. Analyses were adjusted for age, gender, education level, marital, PIR, race, smoking, drinking, hypertension, diabetes, and high cholesterol.


Furthermore, the WQS index derived from WQS regression demonstrated a negative association with the risk of PD (OR 0.60, 95% CI 0.40 to 0.90) (Supplementary Table S4). Figure 4 illustrated that all LE8 subgroups examined exhibited negative associations with PD, with dietary metric (weight = 0.424) identified as the most influential factor affecting the presence of PD, followed by blood glucose (weights = 0.225).

[image: Bar chart showing various health-related scores. HEI diet score is the highest, followed by blood glucose, sleep health, physical activity, blood pressure, tobacco exposure, body mass index, and blood lipid scores. A red dashed line at 0.1 marks a reference point on the horizontal axis.]

FIGURE 4
 Weights represent the proportion of partial effect for each LE8 metric in the WQS regression. Model adjusted for age, gender, education level, marital, PIR, and race.





4 Discussion

This study examined the association between LE8 and PD using NHANES data. The findings revealed a negative association between the LE8 and the prevalence of PD. Furthermore, a dose–response relationship showed that LE8 was linearly related to PD. In the subgroup analyses, the results remained consistent and robust. In addition, WQS analyses showed that among the eight LE8 indicators, dietary factors and glycaemic health were identified as the main factors for the negative association between LE8 and PD.

This study represents the first investigation into the association between the new cardiovascular health (CVH) metric, Life’s Essential 8 (LE8), and the prevalence of Parkinson’s disease (PD). Previous research has primarily focused on the relationships between individual components of LE8 and PD. For instance, studies have suggested that poor dietary patterns may increase PD risk (Alcalay et al., 2012), while moderate physical activity may reduce it (Fang et al., 2018). Furthermore, smoking has been associated with a lower PD risk, although the mechanisms underlying this association remain unclear (Breckenridge et al., 2016). Regarding blood pressure, a meta-analysis indicated that hypertension might increase PD risk (Chen et al., 2019). Poor glycemic control has also been linked to an elevated risk of PD (Rhee et al., 2020). In terms of cholesterol, some studies have found that higher cholesterol levels may serve as a protective factor against PD (Huang et al., 2011). Lastly, sleep disorders are considered one of the early symptoms of PD and may play a crucial role in disease progression (Postuma et al., 2013). However, these studies have considered each factor in isolation. The present research provides a comprehensive perspective on the potential association between cardiovascular health and PD by evaluating the composite LE8 score.

Cardiovascular health plays a significant role in the pathogenesis of Parkinson’s disease (PD). Evidence suggests that poor cardiovascular health, including hypertension, atherosclerosis, and chronic cardiovascular metabolic diseases, is closely linked to neuroinflammation, oxidative stress, and cerebrovascular dysfunction in the central nervous system (Gorelick et al., 2011). These mechanisms may accelerate α-synuclein deposition in the brain and impair the survival of dopaminergic neurons, thereby increasing the risk of PD (Olanow and Tatton, 1999). Additionally, the health behaviors included in Life’s Essential 8 (such as a healthy diet, physical activity, and optimal blood glucose levels) are associated with reduced cardiovascular risk and may also have neuroprotective effects through improving systemic metabolic status and reducing neuroinflammation. For example, studies have shown that a healthy diet (such as the Mediterranean diet) is linked to a lower risk of PD, potentially due to its anti-inflammatory and antioxidant properties (Alcalay et al., 2012). Similarly, regular aerobic exercise has been shown to improve brain blood flow and enhance neurotrophic factors, which may reduce the risk of PD (Ahlskog, 2011). In our study, we found that individuals with higher LE8 scores had a lower prevalence of PD, which aligns with the hypothesis that those with better cardiovascular health may have a reduced risk of neurodegenerative diseases.

In this study, we used weighted quantile sum (WQS) regression analysis to identify diet and blood glucose as key factors influencing the development of Parkinson’s disease (PD) in the context of the LE8 score. This finding further underscores the critical role of dietary habits and glycemic health in PD prevention. First, regarding the relationship between diet and PD, previous research has shown that healthy dietary patterns, such as the Mediterranean diet, which is rich in antioxidants, can reduce PD risk by mitigating oxidative stress, lowering inflammation, and improving mitochondrial function (Feng et al., 2020). Consistently, our WQS regression analysis identified dietary health scores as a significant factor influencing PD risk, suggesting that healthy eating habits may play an active role in neuroprotection. Specifically, foods rich in antioxidants, such as fruits, vegetables, and whole grains, help alleviate oxidative stress, a key mechanism in PD pathogenesis, especially in the context of dopaminergic neuron damage (Alcalay et al., 2012). This finding supports the potential benefits of a healthy diet in preventing neurodegenerative diseases. Second, diabetes and hyperglycemia are recognized as risk factors for PD (Rhee et al., 2020). Additionally, studies have found that even mild insulin resistance, in non-diabetic individuals, may be associated with early PD symptoms, such as olfactory impairment, further suggesting the potential role of abnormal glucose metabolism in PD (Cullinane et al., 2022). Mechanistically, the interaction between glucose metabolism abnormalities and PD onset is likely multifactorial. Insulin not only regulates peripheral glucose metabolism but also plays a vital role in the central nervous system. Insulin receptors are widely distributed in brain regions such as the hippocampus, cortex, and substantia nigra, where insulin participates in processes like neuronal survival, synaptic plasticity, and energy metabolism. In type 2 diabetes (T2DM), insulin resistance diminishes the peripheral tissue response to insulin and impairs central nervous system insulin signaling. This impaired signaling may compromise dopaminergic neuronal function, contributing to neurodegeneration, a hallmark of PD pathology. Hence, insulin resistance is considered a key mechanism linking metabolic dysfunction and PD. In a hyperglycemic state, increased reactive oxygen species (ROS) exacerbate oxidative stress, leading to further damage to dopaminergic neurons. Additionally, insulin resistance and hyperglycemia may trigger both systemic and central nervous system inflammation, accelerating neurodegenerative processes. Mitochondrial dysfunction also plays a significant role in hyperglycemia-related mechanisms, as damaged mitochondria fail to provide sufficient energy for neurons, accelerating neuronal death (Cullinane et al., 2022). Recent studies have suggested that drugs improving insulin resistance may hold great potential for PD treatment (Standaert, 2024; Nowell et al., 2023). Our study, utilizing the large-scale NHANES database, further confirms the critical role of blood glucose factors in PD development.

It is worth noting that previous research has observed an inverse association between smoking and PD risk, known as the “smoking paradox,” where smokers have a lower risk of developing PD (Ben-Shlomo et al., 2024). However, despite the unclear mechanisms behind this phenomenon, the adverse health effects of smoking are undeniable, particularly regarding cardiovascular and lung health. Thus, smoking cessation remains an essential component of the LE8 health score. While the relationship between smoking and PD may be complex, smoking cessation is undeniably important for overall health maintenance.

This study has several notable strengths. Firstly, we utilized the extensive National Health and Nutrition Examination Survey (NHANES) database, which boasts a large sample size and national representativeness. This significantly enhances the external validity and generalizability of the study findings. The diversity and comprehensiveness of NHANES data allowed us to explore the potential associations between LE8 and PD in-depth, providing valuable insights into this field. Secondly, we rigorously adjusted for multiple potential confounding factors, including age, gender, race, education level, socioeconomic status, lifestyle habits, and physical condition. This significantly improved the reliability and accuracy of the study results. By controlling for these potential influences, we were able to more precisely evaluate the independent association between LE8 and PD. Additionally, we conducted detailed subgroup analyses to examine the relationship between LE8 and PD across different demographic and clinical characteristics. This not only added depth to the study but also provided important evidence for personalized prevention and intervention strategies. This multi-layered analytical approach enabled us to gain a more comprehensive understanding of the potential role of LE8 in PD development, offering valuable directions for future research and clinical practice.

Moreover, this study has several notable limitations. (1) Due to its cross-sectional design, we cannot establish a causal relationship between LE8 and PD; we can only infer their correlation. This design does not reveal whether changes in LE8 metrics lead to altered PD risk or whether PD itself affects patients’ LE8 scores. (2) Although we accounted for multiple known confounding factors in our analysis, we cannot exclude the influence of all potential confounding variables. For example, certain unmeasured genetic factors or environmental exposures might simultaneously affect LE8 scores and PD risk. Additionally, the NHANES database itself has inherent limitations. For instance, the diagnosis of PD primarily relies on self-reports or medical records, which might lead to some misdiagnoses or missed diagnoses. (3) Due to the cross-sectional nature of NHANES data, we cannot assess the impact of changes in LE8 metrics over time on PD risk, which could be an important aspect of understanding the relationship between the two. (4) This study relied on self-reported use of anti-PD medications to identify PD cases, which may carry a risk of misclassification or underreporting. Self-reported data can be subject to recall bias or incomplete information, potentially failing to accurately identify some PD cases. Furthermore, the lack of neurologist-confirmed clinical diagnoses or other objective biomarkers reduces the precision of the PD case identification method and may affect the validity and reliability of the findings. While the NHANES dataset offers a large and representative sample, this inherent limitation of self-reported diagnoses should be considered when interpreting the results. Future studies could strengthen these findings by incorporating clinical diagnoses by neurologists, neuroimaging evidence, or biomarkers to reduce information bias and enhance scientific rigor. (5) In this study, we utilized data from NHANES 2005–2018, with fasting glucose and glycated hemoglobin (HbA1c) used to define diabetes. However, we acknowledge that the glucose measurement methods were updated during the 2015–2018 cycle, which could result in minor variations in the reported values. While we did not adjust for these changes using forward or backward calibration equations in this analysis, future research should consider these approaches to minimize potential bias caused by methodological discrepancies. Furthermore, although we updated our analysis to use fasting weights, combining data across different cycles may still introduce some unavoidable systematic biases. (6) One limitation of our study is the absence of population-attributable fraction (PAF) analysis, which could have provided additional insight into the proportion of Parkinson’s disease cases that might be preventable by optimizing Life’s Essential 8 (LE8). Future studies need to include PAF analysis to enhance the applicability of findings to public health strategies. (7) A limitation of this study is the use of weighted quantile sum (WQS) regression, which may not fully account for the complexities of complex survey designs, including stratification, clustering, and unequal weighting. These factors could impact the interpretation and generalizability of the findings. Future studies may benefit from alternative statistical methods that can better handle such complexities and provide more accurate results.



5 Conclusion

In conclusion, our research findings indicate an inverse correlation between LE8 and Parkinson’s disease (PD), suggesting that improving lifestyle and health behaviors, particularly optimizing dietary habits and controlling blood sugar levels, may help reduce the risk of PD. Healthcare professionals should incorporate LE8 into patient education and prevention strategies, encouraging patients to adopt a healthy lifestyle. This approach could not only potentially lower the risk of PD but also enhance overall health and improve quality of life.
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Background: The exact mechanisms of PD are unclear, but Parkin-mediated mitophagy dysfunction is believed to play a key role. We investigated whether blood levels of Parkin and other biomarkers are linked to the risk of developing PD.
Methods: Baseline blood measures of Parkin and other biomarkers, including Homocysteine, carcinoembryonic antigen, Urea, total proteins, total cholesterol, creatine kinase, and albumin, were collected from 197 clinically diagnosed Parkinson’s disease participants and 107 age-matched healthy controls in Wenzhou Parkinson’s Biomarkers and Living Characteristics study. We conducted bioinformatics analysis using three datasets from the GEO database: GSE90514 (Cohort 1: PD = 4, HC = 4), GSE7621 (Cohort 2: PD = 16, HC = 9), and GSE205450 (Cohort 3: PD = 69, HC = 81).
Results: Using a bioinformatic approach, we identified dysregulated biological processes in PD patients with PRKN mutations. Compared to controls, significant abnormalities were observed in blood levels of Parkin, Hcy, total proteins, urea, albumin, and CEA in PD patients. A model incorporating Parkin, Hcy, total proteins, and urea effectively distinguished PD from healthy controls, achieving a higher accuracy (AUC 0.841) than other biomarker combinations. Gene set enrichment analysis suggested that pathways such as PINK1-Parkin-mediated mitophagy, urea cycle, cysteine degradation, and riboflavin metabolism may be involved in PRKN mutation. Additionally, the link between Parkin and PD was partially mediated by CEA and albumin, not by Hcy, total proteins, or urea.
Conclusion: Our findings indicate that blood Parkin levels may be a minimally invasive biomarker for PD diagnosis. The model, which included Parkin, Hcy, total proteins, and urea, effectively distinguished PD from HC with greater accuracy.
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Introduction

Two centuries have elapsed since James Parkinson announced his seminal work “An Essay on the Shaking Palsy” in 1817, describing the clinical characteristics of this disease that later came to endow his name (Parkinson, 2002; Bloem et al., 2021). But to now, there is still no precise and widely used laboratory testing for Parkinson’s disease (PD) diagnosis. Currently, the diagnosis of PD mainly relies on symptom-driven performance, which delays the detection of the earliest phases of the disease. Moreover, even when such criteria are rigorously executed, the proportion of misdiagnosis is still high resulting from substantial clinical overlap among Parkinsonian syndromes (Armstrong and Okun, 2020). Thus, reliable diagnostic biomarkers are urgently needed to efficiently manage PD. Evidence indicates the potential diagnostic and prognostic merit of cerebrospinal fluid (CSF) and blood biomarkers authentically mirroring the pathogenesis of PD, such as α-synuclein isoforms, lysosomal enzymes, amyloid and tau pathology markers, and neurofilament light chain (NFL) (Parnetti et al., 2019; Bouthour et al., 2019; Ashton et al., 2020). Compared to the CSF fluid, blood-based biomarkers are also under far-ranging investigation because they would provide a minimally invasive option for early and differential diagnosis of PD versus atypical Parkinsonian disorders and disease monitoring.

Although the mechanisms of PD are unclear, mitochondrial dysfunction and quality control imbalance are thought to have key roles in this process (Malpartida et al., 2021). Notably, an early-onset form of PD is associated with mutations in the PINK1 kinase and Parkin ubiquitin ligase genes (Farrer, 2006; Valente et al., 2004). Exploring the characteristics of genes mutated in hereditary PD type sheds light on disease etiology and reveals new pathways in cell biology (Blauwendraat et al., 2020). Among them, PINK1 and Parkin, which usually work together in the same pathway, are involved in the clearance of damaged mitochondria in PD-related cultured cells and animal models (Nguyen et al., 2016; Pickrell and Youle, 2015). Moreover, the drop of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the motor defect observed in aged Parkin−/− mice indicate the Parkin-mediated biological pathway facilitates this phenotype (Sliter et al., 2018). These findings highlighted the underlying value of considering the level of Parkin when implementing blood biomarkers in the diagnostic workup of PD.

The prevailing hypothesis for PD associated with PRKN mutations (also known as PARK2) is that a decrease in Parkin activity alters the mitophagy machinery and results in increased α-synuclein aggregation and accumulation in the lysosomes (Wang et al., 2022). Several studies suggest that loss of function mutations in the PRKN gene that encodes the Parkin may promote α-synuclein-mediated Lewy body inclusion formation, further suggesting the importance of studying this target as a biomarker of PD (Madsen et al., 2021; Yasuda and Mochizuki, 2010). However, it is still not a clinically helpful biomarker for PD, measurements of Parkin in biofluids from well-clinically characterized subjects may provide additional insight into whether Parkin ubiquitin ligase may be deregulated in PD cases. Thus, it would be vital to carry out research to monitor Parkin levels and determine its utility as a biomarker of PD screening. In this study, we aimed to test whether Parkin levels were elevated in PD subjects and whether levels were associated with PD status. We hypothesized, based on the previous literature (Wang et al., 2022; Yasuda and Mochizuki, 2010; Madsen et al., 2021; Qian et al., 2024) and our results, that blood Parkin would be a superior marker for PD diagnosis.



Methods

The cross-sectional study is rated Class III because of the case–control design and the absence of diagnostic uncertainty of PD in the included patients.


Participants

The WPBLC cohort (Wenzhou Parkinson’s Biomarkers and Living Characteristics study, included 197 PD patients and 107 age-matched healthy controls from the First Affiliated Hospital of Wenzhou Medical University, March 2018–October 2022, details are available in Supple information 1) included two subsets: subset 1 with 55 Parkinson’s disease (PD) patients (patients diagnosed with idiopathic Parkinson’s disease) and 50 healthy control (HC) participants, who were inpatients tested with 165 additional blood biomarkers, and subset 2 with 142 PD patients and 57 HC participants, who lacked these extra biomarkers.



Clinical neuropsychological evaluation

At the screening visit, standardized methods for the acquisition of study data included the Unified Parkinson’s Disease Rating Scale (UPDRS) (Fahn et al., 1987) and Hoehn-Yahr staging (Hoehn and Yahr, 1967) to evaluate the motor symptoms and progression stage of PD. The Chinese Mini-Mental State Examination (MMSE) was used for cognitive assessment, with cutoff scores adjusted to: ≤ 17 for illiterates, ≤ 20 for primary school graduates, and ≤ 24 for those with postsecondary education or higher (Katzman et al., 1988; Cui et al., 2011). Emotional aspects were assessed using the Hamilton Depression Rating Scale-17 (HAMD) and Hamilton Anxiety Rating Scale (HAMA), with scores ≥7 indicating possible depression or anxiety. The REM Sleep Behavior Disorder Questionnaire-Hong Kong (RBDQ-HK) identified REM sleep behavior disorder (RBD) with a cutoff of >18 points (Li et al., 2010). The Activity of Daily Living Scale (ADL) is used to collectively assess fundamental skills required to independently care for oneself, such as eating, bathing, and mobility. All the examinations were done in the “on” state of the disease.



Blood Parkin and other biomarkers measurement

Figure 1A shows the flow chart of blood Parkin examination for every individual enrolled in the study. The detailed measurements of Parkin have been previously presented (Qian et al., 2024). Plasma samples were collected via venous blood centrifugation (3,000 × g for 10 min) at 4°C and frozen at −80°C until analysis. Blood was drawn using an EDTA anticoagulant tube and centrifuged within 1 h. A total of 304 participants’ samples (197 PD and 107 HC) were analyzed for Parkin using an ELISA (Jianglai Biotechnology Company, Shanghai, China, No#. JL11195). Additionally, 234 of these samples (148 PD and 86 HC) were analyzed for α-syn oligomers (asy-no) and phosphorylated α-syn (p-asyn) using ELISA (Jianglai Biotechnology Company, Shanghai, China, No. JL12589 and JL41188). A blinded laboratory technician processed the samples according to the manufacturer’s instructions. Eighty microliters of standard solution and 20 microliters of 5× diluted samples were added to 96-well plates. Then, 100 microliters of antibody-horse radish peroxidase conjugate (MyBioSource, United States) was added to each well, covered with an adhesive strip, and incubated for 60 min at 37°C. After four washes, the plates were incubated with tetramethylbenzidine substrate for 15 min at 37°C, then the reactions were stopped with H2SO4. Absorbance was measured at 450 nm, with all samples run in triplicate.
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FIGURE 1
 Recruitment of participants, blood sample processing, and the efficacy of Parkin protein levels in diagnosing and correlating with PD symptoms. (A) A flow chart outlines the blood Parkin examination process for study participants. (B) Eligibility assessments resulted in 197 PD and 107 HC subjects being included. (C) A mountain map illustrates the distribution of Parkin levels in PD and HC individuals. (D) ROC analysis evaluated Parkin levels’ ability to differentiate between PD and HC, with the AUC value reported. (E–N) Nonlinear correlation analyses were conducted between Parkin levels and neuropsychological assessment scores, with Spearman correlation coefficients calculated.


Inpatients were assessed for 165 blood biomarkers, sourced from the First Affiliated Hospital of Wenzhou Medical University. Of these, 66 biomarkers were selected for analysis, while 99 were excluded due to insufficient subjects. Details on the blood Parkin and other 66 blood biomarkers are available in Supplementary Table 1.



Statistical analyses

Continuous variables were evaluated for normality with the Kolmogorov–Smirnov test, histogram, and Q-Q plot. Normally distributed variables were reported as mean (Standardized deviation, SD) and analyzed with a two-sample t-test, while abnormally distributed variables were reported as median [interquartile range, IQR] and analyzed using the Mann–Whitney U test. Categorical variables were presented as counts (percentages) and compared with the Chi-square test. Associations between biomarkers and neuropsychological scales were assessed using Spearman rank correlation analysis. The Random Forest (RF) classifier and Least Absolute Shrinkage And Selection Operator (LASSO) regression were employed to identify effective blood biomarkers for distinguishing PD from HC participants. The RF classifier, utilizing the “randomForest” R package with 100 trees, ranked blood biomarkers based on their importance using the Gini index. LASSO regression was performed on standardized blood biomarker levels using the “glmnet” package. The predictive power of the biomarkers, both individually and together, was evaluated through the area under the curve (AUC) from ROC curves, with differences assessed using DeLong statistics. Some combined models were tested in Cohort 1 and validated in Cohort 2 to assess their stability.

Blood biomarkers were divided into four quartiles (Q1-Q4) as categorical variables, and a trend test was conducted using the median values of each quartile. Weighted quantile sum (WQS) regression was used to assess the overall effects of these biomarkers on PD risk. The R package “gWQS” calculates the WQS index from the weighted sums of individual biomarkers. The WQS index (0 to 1) indicated the combined levels of blood biomarkers, with significant components identified by their weights. To evaluate the joint effects and dose–response relationships of individual biomarkers on PD risk, while controlling for others, Bayesian kernel machine regression (BKMR) was utilized. Mediation analyses were conducted using the R package “mediation” with the quasi-Bayesian Monte Carlo method and 1,000 simulations based on normal approximation. The direct effect (DE) indicated the impact of blood biomarkers on PD risk without mediation, while the indirect effect (IE) reflected their impact through a mediator. The proportion of mediation was calculated as IE divided by the total effect (TE). Statistical analyses were performed in R version 4.3, with significance set at p < 0.05.



Bioinformatics analysis


GEO datasets acquisition

We retrieved three datasets from the Gene Expression Omnibus (GEO) database: GSE90514 (Cohort 1: PD = 4, HC = 4), GSE7621 (Cohort 2: PD = 16, HC = 9), and GSE205450 (Cohort 3: PD = 69, HC = 81). GSE90514 used the GPL11154 Illumina HiSeq 2000 platform, GSE7621 used the GPL570 Affymetrix Human Genome U133 Plus 2.0 Array, and GSE205450 used the GPL24676 Illumina NovaSeq 6,000 platform. We downloaded the expression matrices and annotation data, then normalized and log2-transformed the matrices using R version 4.3.



Identification and visualization of DEGs

We merged Cohort 2 and Cohort 3 using 15,596 shared genes and performed batch correction using the “SVA” package to obtain Cohort C. We conducted the differential analysis using the “LIMMA” package on Cohort 1 and Cohort C and filtered for DEGs with p < 0.05 and |log FC| (fold change) > 1.5 (Law et al., 2014). We obtained 322 DEGs in Cohort 1 and 16 DEGs in Cohort C, which were visualized using volcano plots and heatmaps.



Enrichment analyses

For gene enrichment analyses, we used the “ClusterProfiler” package to filter for relevant pathways with a threshold of p < 0.05 and False Discovery Rates (FDR) < 0.1 (Yu et al., 2012). In Cohort 1, 82 significant gene ontology (GO) pathways were enriched (Gene Ontology Consortium, 2015), and we have selected 10 pathways for presentation.



Gene set enrichment analysis (GSEA)

Gene Set Enrichment Analysis was conducted using the GSEA software (version 3.0) obtained from the GSEA website.1 GSEA was used to analyze the enrichment of all detected genes in Cohort 1 for KEGG and Reactome Pathways. Finally, we found 34 enriched KEGG pathways and 99 enriched Reactome Pathways (Wixon and Kell, 2000).



Gene set variation analysis (GSVA) of GO enrichment

GSVA was performed using the “GSVA” package to calculate the enrichment scores of each sample in Cohort 1 for KEGG pathways (Hänzelmann et al., 2013). We subsequently used the “LIMMA” package to identify 15 differential pathways (8 upregulated and 7 downregulated) and generated volcano plots to visualize the differentially regulated pathways.



Analysis of key genes in the train cohort and the test cohort

We divided Cohort C into a Training set and a Test set. In the Training set, we identified 16 genes with statistical significance (p < 0.05, |log FC| > 1.5). We used Lasso regression to select 6 key genes: NUP210L, SLCO4A1, AMBN, GPD1, NTRK1, and HBB, for modeling. We then validated the model in the test set and calculated the Area Under The Curve (AUC) value.





Results

This paper addressed three hypotheses: First, we evaluated blood Parkin levels in PD participants to assess its potential as a diagnostic biomarker. Second, we investigated whether other blood biomarkers may be viable tools for distinguishing PD patients with PRKN mutations based on bioinformatic analysis. Third, we explored the relationship between Parkin levels and other blood biomarker profiles in PD by quantifying their associations in our cohort.


Baseline demographics, disease characteristics of the cohorts

Table 1 shows the demographic data for the WPBLC cohort investigated here with 197 PD and 107 HC subjects. For patients with PD and HC information, similar to previous reports of this cohort at baseline, mean age at onset, sex ratio, height, weight, BMI status, education level, disease duration, smoker proportion, drinker ratio, and frequency of diabetes mellitus were matched. By contrast, PD patients were characterized by much more serious UPDRS, HAMD, HAMA, RBDQ-HK, and ADL scores compared to the controls. Accordingly, the clinical phenotypes of advanced PD symptoms, i.e., falls, dyskinesia, on–off phenomenon, and cognitive impairment were also displayed in Table 1.



TABLE 1 Basic characteristics of PD patients and healthy controls.
[image: A table compares characteristics between healthy controls (HC) and Parkinson's disease (PD) patients, with 107 and 197 participants respectively. It includes age, sex, height, weight, BMI, education, smoking and drinking status, and medical conditions like hypertension (HP) and diabetes (DM). The table also lists results from related scales such as UPDRS, MMSE, HAMD, HAMA, and RBDQ-HK. Comparisons show statistical significance with p-values for various characteristics. Complications include falls, dyskinesia, on-off effects, and cognitive impairment, with data comparing occurrence in both groups.]



Parkin is elevated in the blood of PD patients

Three hundred and four participants met the inclusion criteria for the initial group analysis (Figure 1B): 100% provided samples for Parkin measurement from blood. Comparing blood Parkin levels across diagnostic groups, the median concentration was 21.458 ng/mL in PD subjects, and 17.789 ng/mL in HC (Figure 1C). Then, assessing the utility of Parkin levels to discriminate between clinically defined idiopathic PD and HC, we found an area under the ROC curve (AUC) of 0.736 (95% CI: 0.677 to 0.794) for Parkin (Figure 1D), indicating Parkin is a moderately suitable diagnosis marker for PD. To test whether Parkin levels are correlated with clinical motor features. In 197 participants who had blood Parkin and motor evaluation drawn simultaneously, Parkin was not correlated with UPDRS part I (r = −0.083, p = 0.245), UPDRS part II (r = 0.025, p = 0.731), UPDRS part III (r = −0.030, p = 0.677), UPDRS part IV (r = 0.023, p = 0.751), total UPDRS (r = −0.009, p = 0.895), and H-Y stage (r = 0.073, p = 0.305) based on the Spearman correlation analysis (Figures 1E–J). Next, we examined associations between Parkin and neuropsychological scales. We found that Parkin concentrations correlated with baseline HAMD and RBDQ-HK, while not with baseline HAMA and MMSE (Figures 1K–N). Notably, the UPDRS part III score may be influenced by age, sex, disease duration, and LEDD. Hence, we evaluated associations between Parkin measures and motor performance in models adjusting for these variables and found the relationship remained not significant.

Moreover, in patients with Parkinson’s disease, pathological accumulation of α-synuclein in the brain occurs prior to the onset of motor symptoms. Increased α-syn, such as asy-no and p-asyn in the blood has been proposed as biomarkers of PD diagnosis (Atik et al., 2016). Spearman’s correlation analysis was performed to determine whether Parkin correlated to the asy-no and p-asyn concentrations. We found that Parkin was significantly positively correlated to asy-no (r = 0.453, p < 0.001, Supplementary Figure 1A) and p-asyn (r = 0.428, p < 0.001, Supplementary Figure 1B), indicating the probable interaction of Parkin and a-syn in the PD pathogenesis. The ROC analysis showed that a blood Parkin cutoff value of 19.141 ng/mL had a sensitivity of 78.6% and a specificity of 83.7% for distinguishing between PD and HC (Figure 1D). Next, all subjects were divided into Parkin positive (+) and negative (−) according to this cutoff value (Supplementary Figure 1C). Baseline levels of asy-no (Supplementary Figure 1D) and p-asyn (Supplementary Figure 1E) were higher in patients with Parkin-positive (+) subjects compared to the negative (−) groups. Whereas the scores of UPDRS part I-IV and total were similar between Parkin (+) and (−) groups (Supplementary Figures 1F–J), we did not find any association of Parkin status with motor scales. Then, to test the association of Parkin status with neuropsychological scales in PD subjects, we found higher HAMA, HAMD, RBDQ-HK, and ADL performance in the PD Parkin (+) groups (Supplementary Figures 1K–O).



Data mining of PD patients with PRKN mutations by bioinformatic analysis

We analyzed expression datasets from patients with PD with PRKN mutation (GSE90514, GSE7621, and GSE205450) archived in GEO datasets to define the omics features associated with the disease. A total of three cohorts comparing PD patients with PRKN mutations to healthy controls were found, which referred to changes in the transcriptional levels from the skin fibroblasts, substantia nigra, caudate, and putamen biospecimen, respectively. We identified thousands of differentially expressed genes (DEGs) that were implicated in these three Cohorts (Figure 2A). For cohort 1 (González-Casacuberta et al., 2018), a similar analysis of DEGs using high-quality bulk RNA sequencing (RNA-seq) data from the GSE90514. Heat map showing expression of DEGs in every sample (Figure 2B). Moreover, the volcano plot depicts the top upregulated and downregulated genes in PD subjects with PRKN mutations compared to controls (Figure 2C). Metabolism and Protein GO analyses revealed common perturbed pathways in PD subjects with PRKN mutations, including lysosome, Fatty acid degradation, Glycolysis, Tyrosine metabolism, and Cholesterol metabolism et al. (Figure 2D). Next, Gene Set Variation Analysis (GSVA) as a non-parametric, unsupervised method for estimating the variation of pathway activity through the samples of an expression data set (Hänzelmann et al., 2013). In PD subjects with PRKN mutations, GSVA showed that a gradual increase in the Proteasome, Protein Export, Selenoamino acid metabolism, N-glycan biosynthesis pathways, et al (Figure 2E). These results suggested that the wide bioenergy metabolism turbulences were observed in PD subjects with PRKN mutations.
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FIGURE 2
 Data mining of PD patients with PRKN mutations by bioinformatic analysis. (A) UPSet plot showing unique and shared genes across Cohorts 1, 2, and 3. (B) Heatmap of the top 464 differentially expressed genes (DEGs) in PD vs. HC for Cohort 1, selected with p < 0.05 and |logFC| > 1.5, including 4 PD and 4 HC samples. (C) Volcano plot of the top 464 DEGs in PD vs. HC for Cohort 1. (D) GO analyses revealed common perturbed pathways in PD subjects with PRKN mutations. (E) GSVA of Cohort 1 shows upregulation in 8 metabolic pathways, such as proteolysis and protein export, and downregulation in 7 pathways. (F) A Venn plot reveals 15,193 genes common to Cohort 2 and 3. (G) Cohorts 2 and 3 were combined and batch-corrected with the “SVA” package, resulting in Cohort C, comprising 85 PD and 90 HC samples. (H) Heatmap of average expression levels for 16 significant DEGs in Cohort C’s training set. (I) Volcano plot illustrating DEGs between PD and HC in the same training set, highlighting 16 significant DEGs. (J,K) Bar graph of the 16 DEGs’ expression levels in the training set, confirming observed expression patterns. Lasso regression identified 6 genes (NUP210L, SLCO4A1, AMBN, GPD1, NTRK1, HBB) from 16 DEGs, resulting in a model with an AUC of 0.868 in the test set. (L,M) GSEA in Cohort C showed enrichment in 186 KEGG pathways and 1,586 Reactome pathways, highlighting the top 5 Reactome and 4 KEGG pathways.


Next, the Venn diagram illustrates the overlap of genes between Cohort 2 and Cohort 3 (Figure 2F). As shown in Figure 2G, there was a mild separation of PD subjects from healthy controls on the PCA score plot, indicating the reasonable to pool Cohort 2 and Cohort 3. Notably, the volcano plot and heatmap displayed the primary 16 upregulated and downregulated genes in PD patients when we pooled Cohort 2 and 3 (Figures 2H,I). Importantly, based on the RNA-seq analysis, the transcriptional levels of these 16 genes were changed in the PD groups, such as nup21ol, slca4a1, npc1l1, c7orf61, hspb1, serpinh1, and hspa6 et al. (Figure 2J). Then, we identified the promising 6 powerful genes (NUP210L, SLCO4A1, AMBN, GPD1, NTRK1, HBB) after the Lasso regression analysis. To test the selected 6 genes’ capacity to discriminate between PD and controls, the AUC was 0.868 (Figure 2K). Finally, we aimed to assess the expression of a priori identified gene sets and biological pathways associated with PD using Gene Set Enrichment Analysis (GSEA) in pooled cohorts 2 and 3. We adopted the Reactome analysis to describe human biological processes in PD background, and by mapping disease-associated pathways (Figures 2L,M). Notably, PINK1-PRKN MEDIATED MITOPHAGY, UREA CYCLE, DEGRADATION OF CYSTEINE AND HOMOCYSTEINE, MITOPHAGY and SIGNALING BY EGFR IN CANCER were enriched in PD, suggesting mitochondrial dysfunction and metabolic abnormalities (Figure 2L). Additionally, FATTY ACID METABOLISM, LIPOIC ACID METABOLSIM, PROTEASOM, and MAPK SIGNALING PATHWAY showed dysregulation, highlighting metabolic imbalances in PD (Figure 2M). These findings provide new insights into the molecular mechanisms underlying PD and may aid in the identification of potential biomarkers and the development of targeted therapeutic strategies.



Discriminative accuracy of blood biomarkers for PD patients

Extract from the WPBLC cohort, 105 blood samples (subset 1: PD: 55, HC: 50) test the 66 common biomarkers (Figure 3A and Supplementary Table 1). Details for the basic characteristics of these sunsets are provided in Supplementary Table 2. Least absolute shrinkage and selection operator (LASSO) regression is an adaptation of the popular and widely used linear regression algorithm as a new mathematical prediction model to select variables in disease diagnosis (Li et al., 2022). In our study, since we have many blood biomarkers and relatively few cases, the LASSO regression analysis was applied to pick out the biomarkers most associated with PD, and the top 9 powerful variables were identified (Figures 3B–D). Moreover, we used the random forest (RF) analysis, a machine learning approach that aids in identifying several model components and quantifiable pre-simulation (Zhao et al., 2018). We trained a RF, tested its predictive accuracy and established the following 8 most promising factors in the PD diagnosis set (Figure 3E). The overlapping parts of LASSO and RF selected biomarkers were chosen for further analyses. These included Parkin, Homocysteine (Hcy), carcinoembryonic antigen (CEA), Urea, Total proteins, total cholesterol (TC), and Albumin.
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FIGURE 3
 Discriminative Accuracy of blood parkin and additional blood biomarkers for PD patients. (A) Subjects were split into two cohorts based on extra blood tests: Subset 1 included 55 PD and 50 HC subjects with additional biomarkers, while Subset 2 comprised the remaining 142 PD and 57 HC subjects. (B) Blood parkin levels and biomarkers were standardized, and z-scores were used for LASSO regression analysis, with diagnosis as the dependent variable, resulting in coefficient profiles for 67 variables. (C) The optimal λ value for LASSO regression was determined using 10-fold cross-validation, with dotted vertical lines indicating values from the minimum criteria (left) and the “one standard error” criteria (right). (D) Nine biomarkers were selected based on the minimum λ criteria, and their LASSO coefficients are shown in the bar graph. (E) Feature importance for HC/PD classification was assessed using a Random Forest model with 100 decision trees, ranking the top 8 blood biomarkers displayed in a bar graph. (F–K) Six biomarkers were common between LASSO and Random Forest selections, while boxplots illustrated levels of six additional biomarkers in PD and HC subjects. (L) ROC analysis results for the six biomarkers were presented individually. (M) ROC analysis results for models combining blood CEA, HCY, and urea levels were presented. (N) ROC analysis results for models with nutrition-related biomarkers, including total protein, TC, and albumin levels, were also shown. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.


As seen in Figures 3F–K and Supplementary Table 3 in supporting information, higher levels of Hcy, CEA, Urea, total proteins, and albumin were observed in PD participants; only TC displayed the opposite direction. Moreover, we used ROC analyses to assess the utility of these selected blood biomarker levels to discriminate between PD and controls (Figure 3L and Supplementary Table 4). The AUCs were 0.749 for Hcy (sensitivity = 0.84, specificity = 0.582), 0.668 for Total proteins (sensitivity = 0.86, specificity = 0.455), and 0.665 for Urea (sensitivity = 0.68, specificity = 0.636). By contrast, the discrepancy between the control and PD groups was low in the CEA (AUC: 0.654, sensitivity = 0.38, specificity = 0.873), albumin (AUC: 0.643, sensitivity = 0.62, specificity = 0.636), and TC (AUC: 0.620, sensitivity = 0.60, specificity = 0.673). Of note, there was a strong trend toward improved diagnostic accuracy for PD patients when these blood biomarkers were combined with Homocysteine and Urea (AUC: 0.779, Figures 3M, N), indicating that these selected blood biomarkers may be promising factors to differentiate PD from HC.



Associations between blood biomarkers measure and progression to PD

The analysis of the Binary logistic regression after adjusting for age, sex, education, BMI, hypertension, and diabetes mellitus revealed an increased odds ratio (OR) associated with interquartile range (IQR) increases in Parkin levels among PD participants (Q4/Q1 = 8.07, p for trend = 0.017, Figure 4A and Supplementary Table 5). Each quartile augment in IQR was associated with an obvious increase in the odds of incident PD (Q2/Q1 = 1.32, Q3/Q1 = 4.74, Figure 4A). Moreover, the IQR increment in Hcy, total proteins, and albumin levels were also significantly associated with the risk of subsequent PD diagnosis: the ORs were 20.19 (95% CI: 4.05–100.68, p for trend = 0.017) for Hcy, 11.66 (95% CI: 2.33–58.28, p for trend = 0.013) for total proteins, 3.87 (95% CI: 0.99–15.18, p for trend = 0.044) for albumin. By contrast, we did not find any statistical significance in the trend of PD risk for Urea (Q4/Q1 = 2.28, p = 0.439), CEA (Q4/Q1 = 3.08, p for trend = 0.232), and TC (Q4/Q1 = 0.42, p for trend = 0.177). Using locally weighted regression (LOESS) to examine the relationship among these selected blood biomarkers in PD and HC participants (Figure 4B), we found that Hcy showed a strong relationship with total proteins in HC subjects (ρ = 0.380; p < 0.001). We then analyzed the correlation of total proteins and other blood biomarkers in both groups and found that total proteins were positively associated with albumin (ρ = 0.652, p < 0.0001). No significant correlation was observed among Urea, CEA, TC and other biomarkers.

[image: A multi-panel figure presents statistical data related to various blood biomarkers and their association with Parkinson's Disease (PD) risk. Panel (a) shows forest plots for odds ratios (OR) with confidence intervals for subgroups defined by biomarkers like Parkin, Homocysteine, and Albumin. Panel (b) features scatter plots with density overlays and correlation coefficients. Panel (c) illustrates a bar graph of estimated weights for the weighted quantile sum (WQS) index. Panel (d) provides a line chart depicting estimated PD risk against blood biomarker Z-scores. Panel (e) contains individual plots for each biomarker showing estimated risk in PD with confidence intervals.]

FIGURE 4
 Associations between blood biomarkers and progression to PD. (A) Forest plots show binary logistic regression results for seven biomarkers, adjusted for age, sex, education, BMI, smoking, alcohol consumption, and histories of HP and DM. Subjects were categorized into four groups (Q1, Q2, Q3, Q4) based on biomarker quartiles, with individual levels replaced by group medians. (B) A multivariate correlation scatter matrix with LOESS analysis was used to assess relationships among blood biomarkers in PD and HC participants. (C) Weighted values for PD biomarkers were calculated using WQS models. (D) Associations between blood biomarkers and PD risk were estimated using BKMR. This figure illustrates the combined effects of blood biomarkers on PD risk. The plot shows the difference in PD risk and the 95% confidence interval (CI) when blood biomarkers are set at specific percentiles versus their medians. (E) Exposure-response functions illustrate the relationship between each blood biomarker and PD risk, with other biomarkers held at median values.


Next, to evaluate the association of selected blood biomarkers with PD risk evaluation. Notably, the Weighted Quantile Sum (WQS), a statistical model for multivariate regression in the high-dimensional dataset that operates in a supervised framework, was used to calculate a single score to evaluate the individual effect of the blood biomarkers on PD risk (Eggers et al., 2022). In this study, results from WQS analyses suggested that increased levels of albumin, Hcy, Parkin, and CEA were the highest four factors resulting in PD (Figure 4C and Supplementary Table 6). The same pattern of findings was observed by Bayesian kernel machine regression (BKMR). As represented in Figures 4D,E, the plots were applied to delineate the individual exposure-response functions for each blood biomarker and joint effects of blood biomarkers mixture on PD risk, after adjusting for age, sex, education, BMI, hypertension, and diabetes mellitus. Both BKMR and WQS models clearly demonstrated a positive dose–response trajectory in the association of Hcy, total proteins, Urea, CEA, and albumin and an increased risk of subsequent PD.



Relationship with Parkin and blood biomarkers profile

To determine whether the levels of these blood biomarkers could be impacted by Parkin status, we constructed the groups divided into Parkin positive (+) and negative (−) according to the cutoff value. However, most blood biomarkers, such as albumin, Hcy, total proteins, and TC were similar between Parkin (+) and (−) groups (Supplementary Figures 2A–F), indicating that these blood markers were not associated with Parkin levels. Next, we compared the individuals with Parkin (+) to those with Parkin (−) at baseline and found higher Urea levels in the PD Parkin (+), and lower CEA concentrations in the PD Parkin (−) groups. We next sought to assess whether combining Parkin with these selected blood biomarkers could further improve the accuracy of PD diagnosis. Parkin and these blood biomarkers were included and removed step by step to assess their contribution to the model. The best model included blood Parkin, Hcy, total proteins, and Urea, with an accuracy of 0.841 (Supplementary Figure 2H). Moreover, it is notable that the model only incorporated measures of blood Parkin, total proteins, and Urea displayed a similar accuracy to that of the best model (AUC: 0.829). Of interest, when the model was constructed again to include two biomarkers, such as Parkin plus Hcy also provided a relatively high AUC of 0.817 (Supplementary Figure 2G). In summary, blood Parkin, in combination with Hcy, total proteins, and Urea, might significantly improve the diagnostic value of PD.

The above results indicated that Parkin was a significant risk factor for PD and associated with blood biomarkers including Hcy, CEA, Urea, total proteins, TC, and Albumin, especially Hcy, total proteins, and Urea. Therefore, we further explored whether these blood biomarkers could mediate the influences of Parkin on PD diagnosis (Supplementary Figures 2I–N). Mediation analyses with 10,000 bootstrapped iterations were carried out to examine the mediation effects of Parkin on PD. The results demonstrated that the relationship between Parkin and PD was partially mediated by CEA and albumin with the approximate proportion of mediation of 22.68% (p = 0.04) and 25.83% (p = 0.02), respectively, rather than Hcy (proportion: 7.62%, p = 0.36), total proteins (proportion: 6.55%, p = 0.06), Urea (proportion: 12.58%, p = 0.10), and TC (proportion: −23.47%, p = 0.18).




Discussion

This cross-sectional study analyzed Parkin and various blood biomarkers in a large sample of idiopathic Parkinson’s disease (PD) patients and matched healthy controls. Key findings include: (1) PD patients had higher levels of blood Parkin, Hcy, total proteins, urea, albumin, and CEA compared to controls. Additionally, a model incorporating blood Parkin, Hcy, total proteins, and urea effectively distinguished PD from healthy controls, achieving a higher accuracy (AUC 0.841) than other biomarker combinations. (2) Gene set enrichment analysis suggested that pathways such as PINK1-Parkin-mediated mitophagy, urea cycle, cysteine degradation, and riboflavin metabolism may be involved in the Parkin mutation process. (3) Hazard models showed a positive dose–response relationship between Parkin, Hcy, CEA, and urea levels and the risk of developing PD, although Parkin levels did not significantly correlate with motor characteristics. The link between Parkin and PD was partially mediated by CEA and albumin, but not by Hcy, total proteins, or urea, which were unaffected by Parkin status. These results highlight the potential of blood biomarkers in the WBPLC cohort and suggest an effective PD diagnostic model using blood Parkin, Hcy, total proteins, and urea.

This study is the first to evaluate blood Parkin as a clinical biomarker for Parkinson’s disease (PD). We found that higher blood Parkin levels were linked to an increased risk of developing PD (Figure 4A). This finding was robust in a various analysis ways and models (WQS and BKMR), indicating minimal influence from confounding factors or reverse causation (Figures 4C–E). Additionally, only one prior study in a Japanese cohort indicated that blood Parkin levels could differentiate multiple sclerosis from neuromyelitis optica spectrum disorders (Cossu et al., 2021). PD has a long latency between biological onset and clinical symptoms, meaning some sporadic cases may be biologically active but not yet clinically evident at recruitment (Das and Ramteke, 2024). It’s unclear if blood Parkin is an early marker for preclinical PD or if the correlation is due to shared genetic factors. Previous studies have demonstrated that impaired mitophagy in PD triggers a cellular stress response, activating mitophagy-related genes, including Parkin (Liu et al., 2019). As the dysfunctional mitochondria accumulate in neurons, the demand for mitophagy increases, resulting in an upregulation of Parkin production (Joselin et al., 2012). Reactive oxygen species (ROS) may regulate Parkin expression, as ROS inhibitors can block Parkin recruitment in mouse embryonic fibroblasts and deleting the DJ-1 gene, which regulates ROS, increases stress-induced Parkin recruitment and mitophagy (Joselin et al., 2012).

Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a transcription factor that orchestrates the cellular response to oxidative stress, has been documented to enhance the expression of PINK1 under conditions of oxidative stress (Bonello et al., 2019; Chung et al., 2020), potentially facilitating the subsequent recruitment of Parkin and the upregulation of Parkin expression at the transcriptional level. Previous studies indicate that extracellular vesicles (EVs) contain all components of mitochondria (Zorova et al., 2022). Meanwhile, PRKN mutations are associated with an increased presence of extracellular mitochondria compared to control subjects, as evidenced by a clinical study (Choong et al., 2021). Consequently, the overproduction of Parkin and increased extracellular mitochondria leads to an excess release of Parkin into the bloodstream.

Notably, several preclinical studies have assessed changes in Parkin function in PD pathogenesis (Pickrell and Youle, 2015; Norris et al., 2015; Moskal et al., 2020). Established PD animal models are associated with abnormal Parkin-mediated mitophagy (Malpartida et al., 2021; Clark et al., 2021), driven by absolute impairment in mitochondria. Loss-of-function mutations in Parkin of Drosophila represent a grievous flight muscle defect resulting in locomotive behavioral problems and reduced lifespan (Pesah et al., 2004). Moreover, flies with Parkin mutations are more susceptible to oxidative stress and some dopamine neurons display abnormal shrinkage and morphology (Cha et al., 2005). However, the first Parkin-KO mouse models showed only mild phenotypes, such as the disruption of fine motor skills, slight abnormalities in dopamine metabolism and release, and no dopaminergic neuron loss (Goldberg et al., 2003). Another Parkin-null mouse model also did not cause motor behavioral phenotypes and DA neurodegeneration (Von Coelln et al., 2004). These results indicate that mice compensate for the loss of Parkin in DA neurons or that the neurons in mice do not reach a threshold of mitochondrial dysfunction necessary to cause detrimental phenotypes (Goldberg et al., 2003; Von Coelln et al., 2004).

In this cohort, higher baseline levels of Hcy, total proteins, urea, CEA, and albumin were linked to an increased risk of incident PD (Figures 4A,C–E). However, pre-existing health conditions that could affect these biomarkers were not accounted for, leaving potential residual confounding. To mitigate bias, we employed multiple risk models in our observational study. Taken together, the blood Hcy, CEA, and albumin levels could be used as indicators for reflecting the higher risk of subsequent PD diagnosis, which was supported by previous studies (Wang et al., 2017; Akil et al., 2015; Zhou, 2024; Fan et al., 2020). In a previous cohort study from China (Fan et al., 2020), blood Hcy levels in PD patients were elevated compared to those of HC. High Hcy drives PD development and progression while aggregating the clinical symptoms of PD patients (Zhou, 2024). That finding suggested that Hcy might be involved in the process of PD occurrence. Regarding the CEA, consistent with our results (Figure 3H), one cross-sectional study (Akil et al., 2015) including 51 PD patients and 50 healthy controls reported that the CEA was significantly higher in PD relative to the control group (mean 2.40 ± 1.51 vs. 1.72 ± 0.87 (ng/mL), p = 0.015). In contrast, one study noted that the levels of serum albumin were significantly lower in PD patients than those in controls (Wang et al., 2017). Multivariable logistic regression indicated that serum albumin is an independent risk factor for PD, with an AUC of 0.883 (95% CI 0.835–0.931) (Wang et al., 2017). Further research is needed to clarify the role of albumin in PD. Nonetheless, these results support the direct association between PD and blood levels of Hcy, CEA, and albumin.

This study’s key advantages include enrolling well-defined “typical” PD patients of varying severity and healthy controls, collecting detailed clinical and biospecimen data, and measuring multiple blood biomarkers simultaneously. We explored the relationships between blood Parkin and both motor and nonmotor variables, such as RBDQ-HK and UPDRS factors, which have been less studied.


Limitations of the study

However, our study had limitations, including its cross-sectional design and lack of prospective follow-up. Blood levels of Parkin and other biomarkers were measured only at enrollment. Future research should track these biomarkers over time to better understand their changes in Parkinson’s disease. Moreover, the patients included in this study did not have genetic assessments. PD has many distinct pathophysiological pathways, the inclusion details clinically diagnosed PD, which could be highly heterogeneous. Second, the diagnosis of PD was not confirmed by postmortem pathological tests and may be susceptible to misclassification. Hence, there is a lack of comparison to any gold standard such as neuropathology limiting the validity of the “biomarker” application presented. Moreover, we assessed memory function only with MMSE, a simple measurement of global cognitive function. Third, although the blood Parkin level is significantly increased in patients with PD compared to controls in the cross-sectional design of comparison, the Binary logistic regression analysis revealed no correlation between disease severity and neuropsychological assessment. The possible reason may come from the relatively incomprehensive scales and inaccuracy evaluation. A future cohort with a larger sample size of participants and comprehensive assessment is warranted to confirm our findings and validate the role of blood Parkin in predicting disease features.




Conclusion

Our results suggested that the blood Parkin level could serve as a minimally invasive, easily accessible biomarker for PD diagnosis. The model included blood Parkin, Hcy, total proteins, and Urea efficiently discriminated PD from HC with significantly higher accuracy.
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Glossary

WPBLC - Wenzhou Parkinson’s Biomarkers and Living Characteristics study;

PD - Parkinson’s disease

HC - Healthy Control

BMI - Body Mass Index

HP - Hyper blood pressure

DM - Diabetes mellitus

LEDD - Levodopa Equivalents

UPDRS - Unified Parkinson’s disease rating scale

MMSE - Mini-Mental State Examination

HAMD - Hamilton Depression Scale

HAMA - Hamilton Anxiety Scale

RBDQ-HK - REM sleep behavior Disorder questionnaire-Hong Kong

ADL - Activity of Daily Living Scale

CSF - cerebrospinal fluid

NFL - neurofilament light chain

SNpc - substantia nigra pars compacta

CEA - Carcinoembryonic antigen

T_protein - Serum total protein

TC - Serum total cholesterol

Hcy - Homocysteine

asy-no - α-syn oligomers

p-asyn - phosphorylated α-syn

SD - Standardized deviation

IQR - interquartile range

RF - random forest

LASSO - Least Absolute Shrinkage And Selection Operator

AUC - Area under roc curve

OR - Odds ratios

WQS - Weighted quantile sum

BKMR - Bayesian kernel machine Regression

DE - direct effect

IE - indirect effect

TE - total effect

GEO - Gene Expression Omnibus

DEGs - differentially expressed genes

FC - Fold change

GO - Gene Ontology

GSVA - Gene Set Variation Analysis

GSEA - Gene Set Enrichment Analysis

KEGG - Kyoto Encyclopedia of Genes and Genomes

NRF2 - erythroid-derived 2)-like 2

EVs - extracellular vesicles
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Background: Mild cognitive impairment (MCI) is common in Alzheimer’s disease (AD) and Parkinson’s disease (PD), but there are differences in pathogenesis and cognitive performance between Mild cognitive impairment due to Alzheimer’s disease (AD-MCI) and Parkinson’s disease with Mild cognitive impairment (PD-MCI) populations. Studies have shown that assessments based on the digital clock drawing test (dCDT) can effectively reflect cognitive deficits. Based on this, we proposed the following research hypothesis: there is a difference in cognitive functioning between AD-MCI and PD-MCI populations in the CDT, and the two populations can be effectively distinguished based on this feature.
Methods: To test this hypothesis, we designed the dCDT to extract digital biomarkers that can characterize and quantify cognitive function differences between AD-MCI and PD-MCI populations. We enrolled a total of 40 AD-MCI patients, 40 PD-MCI patients, 41 PD with normal cognition (PD-NC) patients and 40 normal cognition (NC) controls.
Results: Through a cross-sectional study, we revealed a difference in cognitive function between AD-MCI and PD-MCI populations in the dCDT, which distinguished AD-MCI from PD-MCI patients, the area under the roc curve (AUC) = 0.923, 95% confidence interval (CI) = 0.866–0.983. The AUC for effective differentiation between AD-MCI and PD-MCI patients with high education (≥12 years of education) was 0.968, CI = 0.927–1.000. By correlation analysis, we found that the overall plotting of task performance score (VFDB1) correlated with the [visuospatial/executive] subtest score on the Montreal Cognitive Assessment (MoCA) scale (Spearman rank correlation coefficient [R] = 0.472, p < 0.001).
Conclusion: The dCDT is a tool that can rapidly and accurately characterize and quantify differences in cognitive functioning in AD-MCI and PD-MCI populations.
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 Alzheimer’s disease; Parkinson’s disease; mild cognitive impairment; digital clock drawing test; cognitive function; digital biomarkers


1 Introduction

Mild cognitive impairment (MCI) is defined as a progressive decline in memory or other cognitive functions, while individuals with MCI are still able to maintain daily functioning. MCI is commonly seen in two neurodegenerative diseases, Alzheimer’s disease (AD) and Parkinson’s disease (PD) (Arvanitakis et al., 2019). According to the latest data, there are about 416 million people in the continuous spectrum of AD worldwide, 32 million of whom suffer from dementia (Gustavsson et al., 2023). AD can be divided into three stages of disease progression, namely preclinical AD, AD-derived mild cognitive impairment (AD-MCI), and AD dementia, of which AD-MCI is an important window for its early recognition (Knopman et al., 2021). However, the number of people with PD is currently over 10 million worldwide, and most of these patients develop cognitive dysfunction as the disease progresses (Wang et al., 2021). Studies have shown that half of newly diagnosed PD patients are associated with mild cognitive impairment after 3 years, and the conversion rate of mild cognitive impairment in PD (PD-MCI) patients to PD dementia (PDD) is close to 40% (Pedersen et al., 2017). Both AD-MCI and PD-MCI populations suffered from cognitive deficits. Compared to AD-MCI populations, PD-MCI populations had less severe memory deficits but more severe impairments in executive functioning, visuospatial ability, and attention (Brandão et al., 2020; Aamodt et al., 2021; Aarsland et al., 2021; Chandler et al., 2021). So, further fine-grained quantification of the differences in cognitive functioning between the two populations would help physicians more accurately diagnose the type of cognitive impairment in their patients and formulate targeted treatment plans.

At present, neuropsychological scales are mainly used to examine cognitive deficits in AD-MCI and PD-MCI populations, but they are highly participatory, time-consuming, and require clinician involvement (Lawson et al., 2021; Schmitter-Edgecombe et al., 2022; Conca et al., 2024). Scholars believed that digital biomarkers could be used to objectively characterize cognitive deficits in AD-MCI and PD-MCI populations at a fine-grained level (Ding et al., 2022; Park and Schott, 2022). Digital biomarkers are the use of digital averages to transform the “signals” emitted by humans into a quantifiable, clinically average and objective standard that can detect or predict disease progression (Coravos et al., 2019; Avram et al., 2020). Most importantly, they provided simpler and less costly continuity of real data and early detection of subtle changes (Dorsey et al., 2017; Gold et al., 2018). Therefore, the use of digital assessment is expected to quantify and characterize the differences in cognitive functioning between AD-MCI and PD-MCI populations at a fine-grained level, as well as provide a favorable reference for further accurate diagnosis of the types of cognitive impairment in AD-MCI populations and PD-MCI.

The clock drawing test (CDT) is a multidimensional cognitive functioning assessment tool that captures several aspects of cognitive functioning, such as executive functioning, planning, visuospatial ability, memory and attention (Dion et al., 2021). Whereas, the digital clock drawing test (dCDT) provides a more nuanced assessment of cognitive functioning status by capturing more detailed parameters. Schejter-Margalit et al. (2021) demonstrated that the use of a quantitative digital clock drawing test demonstrated greater sensitivity in identifying subtle cognitive declines in early Parkinson’s disease when compared to current standardized tests. Li et al.’s (2023) previous study showed that the digital clock mapping test could assess cognitive dysfunction at a fine-grained level in a population with MCI of AD origin and had good early warning efficacy. A Meta-analysis showed that the diagnostic performance of the digital clock drawing test was superior to that of the traditional pen-and-paper CDT as well as other types of digital drawing tests in AD-MCI populations (Chan et al., 2022). In addition, studies had been conducted to differentiate AD-MCI populations from PD-MCI populations based on clock-drawing test performance, and the results suggested that clock-drawing test could be used as a complementary tool to clinical diagnostic criteria for differentiating AD-MCI populations from PD-MCI populations (Saka and Elibol, 2009; Saur et al., 2012; Stagge et al., 2024). Studies on the application of the clock drawing test in comparing AD populations with cognitively impaired PD populations are detailed in Table 1.



TABLE 1 Application of the clock drawing test in comparing AD and PD cognitively impaired populations.
[image: A table comparing five studies on clock drawing tests by Saka and Elibol (2009), Saur et al. (2012), Allone et al. (2018), Jalakas et al. (2019), and Tafiadis et al. (2021). Each study involves participants drawing clocks, with points awarded based on clock drawing results. Limitations include small sample sizes and limited metric dimensionality. Additional notes explain abbreviations: AD (Alzheimer’s disease), PD (Parkinson’s disease), MCI (mild cognitive impairment), and AUC (area under the ROC curve).]

Most studies on clock drawing tests have focused on extracting metrics from the final clock drawing results, without a detailed analysis of the drawing process. This made it difficult to quantify fine-grained differences in cognitive functioning between AD-MCI and PD-MCI populations. For example, Jalakas et al. (2019) conducted a study that failed to find significant differences between AD and PDD populations in clock mapping tests. In contrast, the dynamic digital biomarker-based clock mapping method provided the possibility of objectively and accurately detecting differences in cognitive function between AD-MCI and PD-MCI populations, owing to its ability to quantify the entire clock mapping process at a fine-grained and continuous level.

In summary, we proposed the following research hypothesis: there is a difference in cognitive function between AD-MCI and PD-MCI populations in the digital clock drawing test, and the two populations can be effectively differentiated based on this feature. To test the hypothesis, we designed the dCDT, extracted digital biomarkers that can characterize cognitive function differences between AD-MCI and PD-MCI populations, and provided favorable references for the early diagnosis, treatment, and prevention of dementia progression in AD-MCI and PD-MCI populations.



2 Materials and methods


2.1 Participants recruitment


2.1.1 Sample size estimation

We used the G*Power tool to approximate the final sample size for inclusion, with the relevant parameters being Test family: “F tests,” Statistical test: “ANOVA: Fixed effects, omnibus, one-way,” Type of power analysis: “A priori: Compute required sample size—given α, power, and effect size,” Effect size f = 0.3, α err prob = 0.05, Power (1–β err prob) = 0.9, Number of groups = 4, and the total sample size was calculated to be 164, i.e., 41 people were required for each of the NC group, AD-MCI group, PD-MCI group, and PD-NC group.



2.1.2 Participant recruitment process and inclusion criteria

In this study, 175 participants were recruited from the Department of Neurology and the Department of Nuclear Medicine of the Second Medical Center of the General Hospital of the Chinese People’s Liberation Army. A total of 165 participants were followed up in the trial, including 41 patients with AD-MCI, 42 patients with PD-MCI, 42 patients with PD-NC, and 40 NC controls. During the formal trial, one AD-MCI patient withdrew due to disease progression, and two PD-MCI patients and one PD-NC patient could not participate for unspecified reasons. This left an effective sample size of 161, including 40 AD-MCI patients, 40 PD-MCI patients, 41 PD-NC patients, and 40 normal controls. PD-MCI and PD-NC patients were discontinued within 12 h prior to dCDT. The participant screening process is shown in Supplementary Figure 1. The demographic characteristics of the participants is shown in Supplementary Table 1. To ensure consistency of data, all participants completed the dCDT, MMSE, and MoCA sequentially on the same day. The MDS-UPDRS assessment was also completed by all participants except those in the AD-MCI group.

All of the above participants were native speakers of Chinese and given a definite diagnosis by clinical experts. Participants’ general information data included age, gender, years of education, Minimum Mental State Examination (MMSE) score, Montreal Cognitive Assessment (MoCA) score, and Movement Disorder Society Unified Parkinson’s Disease Rating Scale III (MDS-UPDRS III) score. The above MMSE, MoCA, and MDS-UPDRSIII scales are all standardized Chinese versions (Yu et al., 2017; Jia et al., 2021). All experimental procedures were in accordance with the Helsinki Declaration and approved by the Medical Ethics Committee of the Chinese People’s Liberation Army General Hospital (Ethics No. S2022-770-02). Eligible participants were collected according to the following inclusion and exclusion criteria.

AD-MCI patients inclusion criteria: (1) met clinical MCI diagnostic criteria developed by the National Institute on Aging (NIA) and Alzheimer’s Association (ADA) in 2011; (2) 11C-PIB PET/CT positive imaging; (3) the dominant hand was the right hand and was able to cooperate in completing test; (4) aged 45–80 years old, gender was not limited; and (5) signed informed consent form.

PD-MCI patients inclusion criteria: (1) met the British Brain Bank PD diagnostic criteria; (2) Parkinson’s disease background, by the patient’s family statement or clinician found that the patient’s gradual cognitive decline; (3) neuropsychological test cognitive impairment; (4) cognitive impairment, but had not yet significantly intervened in the patient’s functional independence; (5) the affected side or the more serious are the right side of the limb, the habitual hand for the right hand and able to cooperate in the completion of the test; (6) aged 45–80 years old, gender was not limited; and (7) signed informed consent form.

PD-NC patients inclusion criteria: (1) met the diagnostic criteria of the British Brain Bank for PD; (2) cognitive decline was not observed by patient informants or clinicians; (3) cognitive decline was not reflected in neuropsychological tests or overall cognitive scales; (4) affected side or more severely all right limb, dominant hand was right hand, and they were able to cooperate with completion of test; (5) aged 45–80 years old, gender was not limited; and (6) signed informed consent form.

NC inclusion criteria: (1) no complaints and objective evidence of neurologic disease (normal neurologic clinical examination); (2) no cognitive impairment; (3) habitual hand is right-handed and able to cooperate with the test; (4) aged 45–80 years old, gender was not limited; and (5) signed informed consent form.

Exclusion criteria for all participants: (1) history of schizophrenia, severe anxiety and depression, and other psychiatric disorders; (2) history of severe head injury and other serious illnesses; (3) history of alcohol and drug abuse; and (4) other conditions that may prevent completion of the test (including arm disability, etc.).




2.2 Design of digital clock drawing test and digital biomarkers

Based on the research hypothesis that there is a difference in cognitive functioning between AD-MCI and PD-MCI populations in the dCDT, and that this feature is effective in distinguishing between these two populations, we designed the dCDT using projected intercapacitive haptic feedback technology. Details of the test are outlined below.


2.2.1 Experimental test design prerequisite

The hardware required for this experiment consists of an Intel computer (NUC11PAHi5), a touchable monitor with 3,840 × 2,160 pixels (Length, width and height 392 × 250 × 10 mm, screen size 17.3 inches). The software system involved in this experiment is a human-computer interaction system. We built the front-end interface of this system through Electron and Vue3, and constructed dCDT through HTML5 Canvas, and the sampling frequency of human-computer interaction data in the test assessment process was about 55 Hz. We built the back-end system of this system through python, and built the human-computer interaction database through Mysql database. Human-computer interaction data acquisition is shown in Figure 1A.

[image: A composite image showing two sections: (A) A woman drawing a clock on a digital screen with real-time fingertip interaction data being recorded. (B) A dynamic trajectory diagram depicting the execution trajectory in red and the result in blue. The diagram is three-dimensional, with axes labeled time, X, and Y, illustrating the process of drawing the clock.]

FIGURE 1
 Introduction of digital clock drawing testing. (A) Human-computer interaction data acquisition. (B) Dynamic trajectory diagram.




2.2.2 Experimental test design and principle interpretation

The clock drawing test can be used as a cognitive function assessment tool that involves the synergistic effect of multidimensional cognitive functions such as executive function and visuospatial function. We designed the dCDT to quantify the entire clock-drawing process, collect real-time human-computer interaction data reflecting participants’ visuospatial and executive functions, and then evaluate participants’ cognitive functions in the test process.

The target of the dCDT was that participants need to draw a clock at 11:10 on the screen with their right index finger through fingertip interaction, and they need to write down all the digits and clock hands on the clock face, and the test is limited to 3 min.



2.2.3 Definition and quantitative analysis of digital biomarkers

We extracted digital biomarkers from the database via python (3.10.0) based on the above objectivized human-computer interaction data. To compare cognitive functioning differences between AD-MCI and PD-MCI populations in the dCDT at a fine-grained level, we classified digital biomarkers into visuospatial function digital biomarkers and executive function digital biomarkers.

The visuospatial function digital biomarkers (VFDB) were used to reflect participants’ ability to process, understand, and respond in the visuospatial environment of a painted clock, and to assess participants’ ability to translate the visual image of a clock (clock numbers, outline, and clock hands) into a concrete concept of time or mathematical representation, and to focus on clock numbers, outline, and hand positions on the clock dial, as well as to effectively ignore other irrelevant visual information. The VFDB was scored on the participant’s image of the clock-drawing result, including an overall score on the participant’s image of the clock (Task Performance of Overall Drawing Score), individual scores on the outline of the clock (Task Performance of Outline Drawing Score), individual scores on the numbers within the clock (Task Performance of Numbers Drawing Score), and individual scores on the clock hands (Task Performance of Clock Hands Drawing Score).

The executive function digital biomarkers (EFDB) were designed to reflect the participant’s ability to plan, strategize, and solve problems in the dCDT. The EFDB was measured using a fingertip interaction technique to assess participants’ planning, conceptualization, and recall of the clock drawing prior to “drawing execution,” including Task Completion Time, Total Drawing Pause Time, Initial Drawing Pause Time, Drawing Process Pause Time (including total time, average time, and maximum time) and Number of Pauses during Drawing. Task Completion Time was used to describe the time it took participants to draw the complete clock. Total Drawing Pause Time was used to describe the overall thinking and planning of participants during clock drawing. Initial Drawing Pause Time was used to describe participants’ planning and thinking before the clock was drawn. Drawing process Pause Time and Number of Pauses during Drawing. They were used to describe participants’ planning and thinking about the details of the clock drawing during the assessment process.

At the same time, the EFDB was also designed to reflect participants’ drawing performance after “planning” through fingertip interaction technology, including Drawing Time, Number of Draws, Efficiency of Drawing, Length of Drawn Line, Initial Drawing Speed, Average of Drawing Speed, Variability of Drawing Speed. Drawing Time was used to describe the time participants spent drawing the clock. Number of Draws was used to describe the number of strokes made by the participants in the clock drawing. Efficiency of Drawing was used to describe how efficiently participants drew the clock. Length of Drawing Line was used to describe the length of lines drawn by participants during the clock drawing process. Initial drawing speed, Average of drawing speed, Variability of drawing speed were used to describe the magnitude and degree of variability of participants’ drawing speed during the clock drawing process.

To facilitate future digital biomarker mining analyses, we provided a detailed conceptual definition of the various digital biomarkers in the test:

	(1) Visuospatial Function Digital Biomarkers (VFDB)

Descriptions of visuospatial function digital biomarkers are shown in Table 2, and a graphical representation of digital visuospatial function biomarkers is shown in Figure 2.

	(2) Executive Function Digital Biomarkers (EFDB)



TABLE 2 Descriptions of the visuospatial function digital biomarkers.
[image: Table listing cognitive impairments in patients with AD-MCI and PD-MCI, focusing on visuospatial function. It details digital biomarkers with abbreviations and interpretations. Tasks include overall drawing, numbers drawing, outline drawing, and clock hands drawing, measured in points. Each task's performance assesses specific drawing components, contributing to the participant's overall drawing score.]

[image: VisuoSpatial function digital biomarkers diagram showing task performance scores for clock drawing. Top left: Overall drawing score \(VFDB_1\) equation. Top right: Numbers drawing score \(VFDB_2\), with numbers correctly positioned. Bottom left: Outline drawing score \(VFDB_3\), closed clock contour. Bottom right: Hands drawing score \(VFDB_4\), with correct time indication 11:10. Each element is annotated with red outlines and check marks for correctness.]

FIGURE 2
 Graphical representation of visuospatial function digital biomarkers.


Descriptions of the executive function digital biomarkers are shown in Table 3, and a graphical representation of the executive function digital biomarkers is shown in Figures 3, 4.



TABLE 3 Descriptions of the executive function digital biomarkers.
[image: A table detailing digital biomarkers related to cognitive impairment, specifically for executive function. It lists various biomarkers such as Task Completion Time and Drawing Time, with abbreviations like EFDBx, and includes their interpretations and units, such as seconds or pixels. The table is accompanied by a note mentioning that patients with certain cognitive impairments exhibit issues in executive function, referencing two studies from 2024.]

[image: Chart titled "Execution function digital biomarkers (1)" includes a 3D coordinate system showing time (ms) on the z-axis, x- and y-coordinates on the monitor screen. It tracks the results trajectory and drawing trajectory of a clock drawing task. Annotations explain task completion time, total drawing pause time, initial drawing pause time, number of pauses, drawing process pause time, total pause time, maximum pause duration, and average pause duration, each labeled with specific metrics (EFDB₁ to EFDB₇). The image visually depicts participant pauses and movements during the task.]

FIGURE 3
 Graphical representation of the executive function digital biomarkers (1).


[image: Three-dimensional graph illustrating execution function digital biomarkers related to drawing tasks. The axes represent time in milliseconds and screen coordinates in pixels. Blue and red lines depict results and drawing trajectories. Labels explain metrics like drawing time, number of draws, line length, and drawing speed. Annotations indicate the first line segment and highlight key performance indicators such as drawing efficiency and variability of speed. The graph provides a detailed analysis of drawing behavior over time.]

FIGURE 4
 Graphical representation of the executive function digital biomarkers (2).


The algorithm for analyzing the above digital biomarkers is as follows:

We built on pre-existing algorithms (Li et al., 2023), to obtain Task Performance of Overall Drawing Score (VFDB1), Task Performance of Numbers Drawing Score (VFDB2), Task Performance of Outline Drawing Score (VFDB3) and Task Performance of Clock Hands Drawing Score (VFDB4), Task Performance of Overall Drawing Score (VFDB1) was calculated by Equation 1:

[image: Equation showing VFDB subscript 1 equals VFDB subscript 2 plus VFDB subscript 3 plus VFDB subscript 4, labeled as equation 1.]

We applied Optical Character Recognition to calculate the Task Performance of Numbers Drawing Score (VFDB2), assigning a score of 1 if the clock digits were complete and distributed clockwise, and 0 otherwise. We applied contour edge detection to calculate the Task Performance of Outline Drawing Score (VFDB3), assigning a score of 1 if the outer contour of the clock was closed, and 0 otherwise. We computed the Task Performance of Clock Hands Drawing Score (VFDB4) using the Spatial Transformer Network clock recognition architecture, if the clock time was recognized as 11:10, the Task Performance of Clock Hands Drawing Score (VFDB4) was 1, otherwise, it was 0. The clock time was recognized by the equation:

[image: Mathematical expression: T equals Phi of Pictures, an element of P raised to the power of seven hundred twenty. Equation number two.]

In Equation 2, T was the time of the predicted clock, Pictures was the clock image drawn by the participants, and Φ was the classification network. There will be 12 results for hours, i.e., 1:00 to 12:00; and 60 results for minutes, i.e., 0 to 59:00. There were 720 ways to combine time. P720 was 720 classification results, and the calculation of the task. The calculation of Task Performance Calculation of Hand Drawing Score (VFDB4) is shown in Supplementary Figure 2.

We recorded the participant’s Task Completion Time (EFDB1) and Initial Drawing Pause Time (EFDB3). Let the participant’s Number of Draws (EFDB9) was A. For each draw: The a-th drawn line (1 ≤ a ≤ A, a ∈ N) was labeled La. The drawing duration for the a-th line was ta. Line La consisted of Ba drawing coordinate points, with the b-th drawing coordinate point (1 ≤ b ≤ Ba, b ∈ N) denoted as ([image: Mathematical notation representing the variable X with a subscript b.], [image: Please upload the image or provide a URL for me to generate the alt text.]). The pause time between the completion of line La and the start of line La + 1 was t(a, a + 1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Number of Pauses during Drawing (EFDB7) were calculated by Equations 3–8:

[image: Equation showing EFDB subscript 2 equals EFDB subscript 3 plus EFDB subscript 4, labeled with number 3 in parentheses.]

[image: Mathematical formula labeled as equation 4. It defines EFDB4 as the sum from a equals one to A minus one of t sub a, a plus one. The condition specifies one is less than or equal to a, which is less than or equal to A minus one, and a is a natural number.]

[image: Mathematical expression defining EFDB subscript 5 as the maximum of t subscript (a, a+1) for a range from 1 to A-1, equation number 5.]

[image: Equation showing EFDB subscript 6 equals the fraction EFDB subscript 4 over A minus 1, labeled equation six.]

[image: Mathematical expression defining \( D(b) \) as a piecewise function: equals 1 if both \( X_{b+1} = X_b \) and \( Y_{b+1} = Y_b \); equals 0 if \( X_{b+1} \neq X_b \) or \( Y_{b+1} \neq Y_b \). Equation labeled as 7.]

[image: Equation depicting a double summation: EFDB subscript 7 equals the sum from a equals 1 to A of the sum from b equals 1 to B subscript a minus 1 of D of b. Labeled as equation 8.]

In Equation 7, [image: Summation notation with the expression \( \sum_{b=1}^{B_a-1} D(b) \), where the sum is taken from \( b = 1 \) to \( B_a - 1 \) of the function \( D(b) \).] was used to calculate the number of pauses in judging a particular drawing of a line, and A indicated that the participant drew a total of A lines.

Drawing Time (EFDB8), Efficiency of Drawing (EFDB10), and Length of Drawn Line (EFDB11) were calculated by Equations 9–12:

[image: Mathematical formula displaying EFD subscript B subscript eight equals the summation from a equals one to A of t subscript a, with the condition that one is less than or equal to a, a is less than or equal to A, and a is an element of the natural numbers. Equation labeled as nine.]

[image: Mathematical equation displaying a formula: \( \text{EFDB}_{10} = \frac{\text{EFDB}_8}{\text{EFDB}_1} \). It is labeled as equation number 10.]

[image: Mathematical formula labeled as equation eleven. It represents \(L(L_a)\), the sum from \(b = 1\) to \(B_a - 1\) of the square root of \((X_{b+1} - X_b)^2 + (Y_{b+1} - Y_b)^2\).]

[image: Mathematical notation showing the equation \( EFD_{B11} = \sum_{a=1}^{A} L(L_a) \) with an index range from 1 to \( A \) for the summation. Equation number 12 is noted on the right.]

In Equation 9, [image: Summation expression from \(b = 1\) to \(B_a - 1\) of the square root of \((X_{b+1} - X_b)^2 + (Y_{b+1} - Y_b)^2\).] was used to calculate the length of the line La drawn by the participants.

We separately calculated the speed at which the participants draws each line, i.e., the speed Va at which the a-th line La (which has a total of Ba drawing coordinate points) was drawn, and then calculated the Initial Drawing Speed (EFDB12), Average of Drawing Speed (EFDB13) and Variability of Drawing Speed (EFDB14), which were given by Equations 13–17:

[image: The formula for \( V_a \) is given as \( \frac{L(L_a)}{t_a} \), where \( 1 \leq a \leq A \) and \( i \in N \). It is equation number 13.]

[image: Mathematical equation EFDB subscript 12 equals V subscript 1, numbered as equation 14.]

[image: Formula labeled as equation 15 shows \( EFDB_{13} = \sum_{a=1}^{A} \frac{V_a}{A} \) with conditions \(1 \leq a \leq A\) and \( i \in N\).]

[image: The image contains a mathematical equation representing standard deviation, denoted by sigma. It calculates using the square root of the sum of squares of differences \( (V_a - EFDB_{13})^2 \) from \( a = 1 \) to \( A \), divided by \( A \). This applies for \( 1 \leq a \leq A \) and \( i \in N \). Equation number is 16.]

[image: Equation showing EFDB subscript 14 equals sigma divided by EFDB subscript 13, labeled as equation 17.]

In Equation 16, [image: Greek letter sigma symbol (σ) in a serif font.] was the standard deviation of the drawing speed when participants draw all lines during the test.



2.2.4 Design of experimental rules

Participants were in a quiet room for the test assessment to prevent the results from being affected by the noisy environment. We positioned a comfortable and stable chair in front of the display with touch screen function, after the participant sat down, their posture was adjusted to maintain an approximate distance of 30 cm between their upper body and the display. This setup ensured clear visibility and comfortable finger-based interaction, minimizing potential visual interference or operational discomfort that could compromise the experimental results. In addition, all participants in this experiment were right-handed, and the affected side of PD-MCI patients and PD-NC patients were on the right side, so as not to interfere with the experimental results by hand habits.




2.3 Experimental settings


2.3.1 Experimental procedures

Prior to the official launch of the dCDT, we trained the staff in advance, informing them of the testing process of the dCDT and the operation of the human-computer interaction system, and subsequently the experimenter will inform participants on the test process, objectives, and instructions. All participants were tested in a quiet room. We positioned a comfortable and stable chair in front of display with touch screen function. After the participants were seated, the experimenter assisted will adjust their posture to maintain an approximate distance of 30 cm between their upper body and the display. Participants were asked to draw a clock at 11:10 with the fingertips of their right index finger, and the test was limited to 3 min. If a participant took longer than 3 min to complete the task, they were deemed to have failed the protocol and were excluded from further analysis. The dynamic trajectory of the dCDT is shown in Figure 1B.




2.4 Statistical analysis

All statistical analyses were performed using the Universal Data Analysis Software SPSS 26.0 package. We conducted a comparative analysis of the data from the NC, AD-MCI, PD-MCI, and PD-NC groups. Count data were compared between groups using chi-square test. Measurement information conforming to the normal distribution was expressed as mean ± standard deviation (x ± s), and one-way Analysis of Variance (ANOVA) was used to compare the differences between multiple groups, and when there was a difference, the least significant difference (LSD) method was used for one-to-one comparisons used for pairwise comparisons between groups. Measurement data conforming to the skewed distribution were expressed as median (interquartile spacing), and the Kruskal-Wallis H test was used to compare the differences between multiple groups, and multiple comparisons between groups were performed. When differences existed, the Bonferroni method was used to compare each comparison group individually (differences were compared by corrected p-values). Additionally, we stratified the AD-MCI and PD-MCI groups by educational attainment and conducted comparative analyses specifically within the higher education subgroup (years of education ≥12 years). Continuous variables with normal distributions were presented as mean ± standard deviation (x ± s), and intergroup differences were compared using independent samples t-tests. For continuous variables with skewed distributions, data were expressed as median (interquartile spacing) and analyzed using Mann–Whitney U tests. Qualitative information was expressed as a rate (%). We used a binary logistic regression model to plot the receiver operating characteristic curve (ROC) and determined the accuracy of distinguishing between different populations for individual digital biomarkers and multiple combined digital biomarkers by comparing the area under the roc curve (AUC). In conducting correlation analyses between digital biomarkers and the Montreal Cognitive Assessment (MoCA) total scores with selected subdomain scores, Pearson linear correlation analysis was applied when both continuous variables exhibited normal distributions. For non-normally distributed variables, Spearman rank correlation analysis was utilized. p < 0.05 was considered to indicate a statistically significant difference.




3 Results


3.1 Demographic and clinical characteristics

The effective sample size of this study was 161, including 40 AD-MCI patients, 40 PD-MCI patients, 41 PD-NC patients, and 40 normal cognitive controls. They were included in the AD-MCI group, PD-MCI group, PD-NC group, and NC group, respectively. We analyzed the difference in baseline data of the four groups, including age, gender, years of education, MMSE, MOCA, and MDS-UPDRS III of the participants in the four groups, and the results of demographic difference analysis for each group are shown in Table 4.



TABLE 4 The results of demographic difference analysis for each group.
[image: A table compares characteristics and statistical results among groups: NC, AD-MCI, PD-MCI, and PD-NC. Variables include age, sex, years of education, MMSE, MoCA, and MDS-UPDRS III, with corresponding p-values for group comparisons. Significant p-values (<0.05) are bolded.]

In the NC, AD-MCI, PD-MCI and PD-NC groups, there were no statistical differences in age (p = 0.470, degree of freedom [df] = 3), gender (p = 0.617, df = 3), or years of education (p = 0.942, df = 3). However, there were statistical differences in MMSE (p < 0.001, df = 3) and MoCA (p < 0.001, df = 3). In the NC and AD-MCI groups, there were statistical differences in MMSE (p < 0.001) and MoCA (p < 0.001). In the NC and PD-MCI groups, there were statistical differences in MMSE (p < 0.001), MoCA (p < 0.001) and MDS-UPDRS III (p < 0.001). In the NC and PD-NC groups, there were no statistical differences in MMSE (p = 0.425) and MoCA (p = 1.000). There were statistical differences in MDS-UPDRS III (p < 0.001). In the AD-MCI and PD-MCI groups, there were no statistical differences in MMSE (p = 1.000) and MoCA (p = 1.000). In the PD-MCI and PD-NC groups, there were statistical differences in MMSE (p < 0.001) and MoCA (p < 0.001). There were no statistical differences in MDS-UPDRS III (p = 1.000). In the AD-MCI and PD-NC groups, there were statistical differences in MMSE (p < 0.001), MoCA (p < 0.001).



3.2 Analysis of digital biomarkers

We analyzed the differences in digital biomarkers in the NC, AD-MCI, PD-MCI and PD-NC groups. The results of the differential analysis of digital biomarkers for each group are shown in Table 5.



TABLE 5 The results of the differential analysis of digital biomarkers for each group.
[image: Table comparing digital biomarkers of visuospatial and executive functions among four groups: NC (Normal Cognition), AD-MCI (Mild Cognitive Impairment due to Alzheimer's), PD-MCI (Parkinson's with MCI), PD-NC (Parkinson's Normal Cognition). Values are provided for each biomarker with associated corrected p-values, highlighting significant differences among the groups in bold, emphasizing where p-values are less than 0.05.]

In the NC, AD-MCI, PD-MCI and PD-NC groups, there were statistical differences in Task Performance of Overall Drawing Score (VFDB1) (p < 0.001, df = 3), Task Performance of Numbers Drawing Score (VFDB2) (p = 0.002, df = 3), Task Performance of Clock Hands Drawing Score (VFDB4) (p = 0.005, df = 3), Task Completion Time (EFDB1) (p < 0.001, df = 3), Total Drawing Pause Time (EFDB2) (p < 0.001, df = 3), Initial Drawing Pause Time (EFDB3) (p = 0.019, df = 3), Total Drawing Process Pause Time (EFDB4) (p < 0.001, df = 3), Maximum of Drawing Process Pause Time (EFDB5) (p < 0.001, df = 3), Average of Drawing Process Pause Time (EFDB6) (p < 0.001, df = 3), Number of Pauses during Drawing (EFDB7) (p < 0.001, df = 3), Drawing Time (EFDB8) (p < 0.001, df = 3), Number of Draws (EFDB9) (p = 0.029, df = 3), Efficiency of Drawing (EFDB10) (p = 0.002, df = 3, F = 5.358), Initial Drawing Speed (EFDB12) (p < 0.001, df = 3, F = 8.258), Average of Drawing Speed (EFDB13) (p < 0.001, df = 3) and Variability of Drawing Speed (EFDB14) (p = 0.003, df = 3).

In the NC and AD-MCI groups, Task Performance of Overall Drawing Score (VFDB1), Task Performance of Numbers Drawing Score (VFDB2), Task Performance of Clock Hands Drawing Score (VFDB4), and Efficiency of Drawing (EFDB10) were significantly lower in the AD-MCI group than in the NC group, whereas the Variability of Drawing Speed (EFDB14) was significantly higher in the AD-MCI group than in the NC group.

In the NC and PD-MCI groups, Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Number of Pauses during Drawing (EFDB7), Drawing Time (EFDB8), and Number of Draws (EFDB9) were significantly higher in the PD-MCI group than in the NC group. In contrast, Task Performance of Overall Drawing Score (VFDB1), Task Performance of Numbers Drawing Score (VFDB2), Task Performance of Clock Hands Drawing Score (VFDB4), Efficiency of Drawing (EFDB10), Initial Drawing Speed (EFDB12), and average speed of drawing in the Average of Drawing Speed (EFDB13) were significantly lower in the PD-MCI group than in the NC group.

In the NC and PD-NC groups, Task Performance of Overall Drawing Score (VFDB1) and Initial Drawing Speed (EFDB12) were significantly lower in the PD-NC group than in the NC group, whereas Number of Pauses during Drawing (EFDB7) was significantly higher in the PD-NC group than in the NC group.

In the AD-MCI and PD-MCI groups, Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Number of Pauses during Drawing (EFDB7), and Drawing Time (EFDB8) were significantly higher in the PD-MCI groups than in the AD-MCI group. In contrast, Initial Drawing Speed (EFDB12), Average of Drawing Speed (EFDB13), and Variability of Drawing Speed (EFDB14) were significantly lower in the PD-MCI group than in the AD-MCI group.

In the PD-MCI and PD-NC groups, Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), and Average of Drawing Process Pause Time (EFDB6) were significantly higher in the PD-MCI group than in the PD-NC group. Efficiency of Drawing (EFDB10), and Average of Drawing Speed (EFDB13) were significantly lower in the PD-MCI group than in the PD-NC group.

In the AD-MCI and PD-NC groups, Drawing Time (EFDB8) and Efficiency of Drawing (EFDB10) were significantly smaller in the AD-MCI group than in the PD-NC group, whereas Initial Drawing Speed (EFDB12), Average of Drawing Speed (EFDB13), and Variability of Drawing Speed (EFDB14) were significantly larger in the AD-MCI group than in the PD-NC group.



3.3 Correlation analyses between digital biomarkers and MoCA

We further investigated statistically significant digital biomarkers across the NC, AD-MCI, PD-MCI, and PD-NC groups, specifically focusing on: Performance of Overall Drawing Score (VFDB1), Task Performance of Numbers Drawing Score (VFDB2), Task Performance of Clock Hands Drawing Score (VFDB4), Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Initial Drawing Pause Time (EFDB3), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Number of Pauses during Drawing (EFDB7), Drawing Time (EFDB8), Number of Draws (EFDB9), Efficiency of Drawing (EFDB10), Initial Drawing Speed (EFDB12), Average of Drawing Speed (EFDB13) and Variability of Drawing Speed (EFDB14). Non-parametric correlations with MoCA total scores and [visuospatial/executive] subtest score were computed using Spearman rank correlation analysis, given non-normal distribution of both variables in all analyzed pairs, as detailed in Table 6.



TABLE 6 Correlation coefficients of digital biomarkers with MoCA total scores and [visuospatial/executive] subtest score.
[image: Table showing digital biomarkers' correlation with MoCA and its visuospatial/executive subtest. Significant p-values (less than 0.05) are bolded. Includes correlation coefficient (R) and p-values (p) for various drawing metrics like VFDB and EFDB.]

Among them, Performance of Overall Drawing Score (VFDB1) correlated positively with the total MoCA score (Spearman rank correlation coefficient [R] = 0.312, p < 0.001) and the [visuospatial/executive] subtest score (R = 0.472, p < 0.001). Task Performance of Numbers Drawing Score (VFDB2) correlated positively with the total MoCA score (R = 0.258, p = 0.001) and the [visuospatial/executive] subtest score (R = 0.394, p < 0.001). Task Performance of Clock Hands Drawing Score (VFDB4) correlated positively with the total MoCA score (R = 0.307, p < 0.001) and the [visuospatial/executive] subtest score (R = 0.456, p < 0.001). Task Completion Time (EFDB1) correlated negatively with the total MoCA score (R = −0.318, p < 0.001) and the [visuospatial/executive] subtest score (R = −0.262, p = 0.001). Total Drawing Pause Time (EFDB2) correlated negatively with the total MoCA score (R = −0.343, p < 0.001) and the [visuospatial/executive] subtest score (R = −0.295, p < 0.001). Total Drawing Process Pause Time (EFDB4) correlated negatively with the total MoCA score (R = −0.384, p < 0.001) and the [visuospatial/executive] subtest score (R = −0.327, p < 0.001). Maximum of Drawing Process Pause Time (EFDB5) correlated negatively with the total MoCA score (R = −0.298, p < 0.001) and the [visuospatial/executive] subtest score (R = −0.270, p < 0.001). Average of Drawing Process Pause Time (EFDB6) correlated negatively with the total MoCA score (R = −0.321, p < 0.001) and the [visuospatial/executive] subtest score (R = −0.231, p = 0.003). Number of Pauses during Drawing (EFDB7) correlated negatively with the total MoCA score (R = −0.164, p = 0.038). Number of Draws (EFDB9) correlated negatively with the total MoCA score (R = −0.257, p = 0.001) and the [visuospatial/executive] subtest score (R = −0.265, p = 0.001). Efficiency of Drawing (EFDB10) correlated positively with the total MoCA score (R = 0.331, p < 0.001) and the [visuospatial/executive] subtest score (R = 0.292, p < 0.001). Variability of Drawing Speed (EFDB14) correlated negatively with the total MoCA score (R = −0.290, p < 0.001) and the [visuospatial/executive] subtest score (R = −0.232, p = 0.003).



3.4 Extraction of digital biomarkers of cognitive function and analysis of the ROC curve

We screened 10 digital biomarkers with intergroup variability in AD-MCI and PD-MCI groups. Since the AD-MCI and PD-MCI groups differed in cognitive and motor function, these digital biomarkers may have included both digital biomarkers of cognitive function associated with cognitive impairment and digital biomarkers of motor function associated with motor impairment. Given that the central goal of this study was to investigate the variability in cognitive function between AD-MCI and PD-MCI populations on the clock drawing test, these 10 digital biomarkers were further screened to exclude motor function differences from interfering with cognitive function variability in subsequent analyses.

The 10 digital biomarkers with intergroup variability in the AD-MCI and PD-MCI groups were listed below: Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Number of Pauses during Drawing (EFDB7), and Drawing Time (EFDB8), Initial Drawing Speed (EFDB12), Average of Drawing Speed (EFDB13) and Variability of Drawing Speed (EFDB14).

In the PD-MCI and PD-NC groups, there was no statistically significant difference in MDS-UPDRS Part III scores between the two groups, indicating that there were no differences in motor function and only differences in cognitive function between the two groups. Therefore, the 7 digital biomarkers of intergroup variability in PD-MCI and PD-NC groups were digital biomarkers of cognitive function characterizing cognitive function. These included: Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), and Average of Drawing Process Pause Time (EFDB6), Efficiency of Drawing (EFDB10), and Average of Drawing Speed (EFDB13).

In the PD-NC and NC groups, there were only differences in motor function between the PD-NC and NC groups, the three indicators of intergroup variability in the PD-NC and NC groups were digital biomarkers of motor function characterizing motor function, including Task Performance of Overall Drawing Score (VFDB1), Number of Pauses during Drawing (EFDB7) and Initial Drawing Speed (EFDB12).

To identify digital biomarkers that could characterize cognitive function in the AD-MCI and PD-MCI groups, we plotted Venn diagrams, the Venn diagram of digital biomarkers is shown in Figure 5.

[image: Venn diagram illustrating digital biomarkers related to motor and cognitive function. The blue circle represents NC vs. PD-NC comparisons with digital biomarkers of motor function. The green circle illustrates AD-MCI vs. PD-MCI with biomarkers EFDB₈ and EFDB₁₄. The orange circle represents PD-MCI vs. PD-NC with digital biomarkers of cognitive function, listing EFDB₁ through EFDB₆ and EFDB₁₃. VFDB₁ is unique to NC vs. PD-NC, EFDB₇ and EFDB₁₂ intersect between NC vs. PD-NC and PD-MCI vs. PD-NC, and EFDB₁₀ is unique to PD-MCI vs. PD-NC.]

FIGURE 5
 Venn diagram of digital biomarkers. The cognitive functions digital biomarkers in the red boxes that can distinguish between AD-MCI and PD-MCI. Normal cognition (NC), Mild cognitive impairment due to Alzheimer’s disease (AD-MCI), Parkinson’s disease with Mild cognitive impairment (PD-MCI), Parkinson’s disease with normal cognition (PD-NC), Task Performance of Overall Drawing Score (VFDB1), Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Number of Pauses during Drawing (EFDB7), and Drawing Time (EFDB8), Efficiency of Drawing (EFDB10), Initial Drawing Speed (EFDB12), Average of Drawing Speed (EFDB13), Variability of Drawing Speed (EFDB14).


In Figure 5, we found no overlap in digital biomarkers of cognitive function between PD-MCI and PD-NC groups, or in digital biomarkers of motor function between NC and PD-NC groups. This indicates that biomarkers identified in the PD-MCI and PD-NC groups accurately reflect cognitive function, while those in the NC and PD-NC groups accurately reflect motor function. Finally, we identified six digital biomarkers of cognitive function that could accurately characterize AD-MCI and PD-MCI populations as follows:

Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), and Average of Drawing Speed (EFDB13).

Subsequently, we plotted ROC curves to assess the ability of digital biomarkers to differentiate the AD-MCI group from the PD-MCI group. The combined AUC of the six digital biomarkers of cognitive function was 0.923, 95% confidence interval (CI) = 0.876–0.983, which was only slightly lower than the combined AUC of the 10 digital biomarkers with intergroup variability (AUC = 0.929, 95% CI: 0.866–0.908). The ROC curves and 95% CI of the combined digital biomarkers that differentiate the AD-MCI and PD-MCI groups are shown in Figure 6.

[image: ROC curve graph comparing two sets of digital biomarkers for cognitive function. The curve in orange represents 10 biomarkers with an AUC of 0.929. The blue curve represents 6 biomarkers with an AUC of 0.923. Both show high sensitivity and specificity. The diagonal red line indicates random performance. The curve comparison suggests the effectiveness of both biomarker sets in predicting cognitive function.]

FIGURE 6
 ROC curves and 95% CI of combined digital biomarkers distinguishing AD-MCI and PD-MCI groups. Area under the roc curve (AUC), confidence interval (CI), Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Number of Pauses during Drawing (EFDB7), and Drawing Time (EFDB8), Initial Drawing Speed (EFDB12), Average of Drawing Speed (EFDB13), Variability of Drawing Speed (EFDB14).




3.5 Differential analysis and ROC analysis of digital biomarkers of cognitive function in highly educated individuals in the AD-MCI and PD-MCI groups

Considering that there was an effect of literacy on cognitive functioning, we screened highly educated individuals (years of education ≥12 years) in the AD-MCI and PD-MCI groups and divided them into AD-MCI1 and PD-MCI1 groups for differential analyses of demographic and numerical biomarkers. Among them, age (p = 0.348, t = 0.947), sex (p = 0.535), years of education (p = 0.368), and MMSE (p = 0.500) were not statistically different. MoCA (p = 0.047) was statistically different. Digital biomarkers included only the above obtained digital biomarkers of cognitive function. In particular, Task Completion Time (EFDB1) (p < 0.001), Total Drawing Pause Time (EFDB2) (p < 0.001), Total Drawing Process Pause Time (EFDB4) (p = 0.001), Maximum of Drawing Process Pause Time (EFDB5) (p = 0.026), Average of Drawing Process Pause Time (EFDB6) (p = 0.001), and Average of Drawing Speed (EFDB13) (p < 0.001, t = 6.038) were statistically different. The results of the differential analysis of demography and digital biomarkers of cognitive function are shown in Tables 7, 8.



TABLE 7 Results of demographic difference analysis between the AD-MCI1 and PD-MCI1 groups.
[image: Table comparing demographic and cognitive characteristics between two groups: AD-MCI₁ (n = 28) with a mean age of 66.39 ± 6.68 years and PD-MCI₁ (n = 31) with a mean age of 64.58 ± 7.88 years. Both groups have similar sex distributions (14 females, 14 males in AD-MCI₁; 18 females, 13 males in PD-MCI₁) and years of education (12 years on average). The MMSE scores are 26.00 (2.00) for AD-MCI₁ and 25.00 (3.00) for PD-MCI₁. MoCA scores are significantly different at 22.00 (3.75) for AD-MCI₁ and 21.00 (5.00) for PD-MCI₁, p = 0.047.]



TABLE 8 Results of the differential analysis of digital biomarkers of cognitive function between the AD-MCI1 and PD-MCI1 groups.
[image: Comparison table of digital biomarkers for cognitive function between Alzheimer's disease mild cognitive impairment group (AD-MCI\(_1\), n = 28) and Parkinson's disease mild cognitive impairment group (PD-MCI\(_1\), n = 31). Significant differences in biomarkers like EFDB\(_1\), EFDB\(_2\), EFDB\(_4\), EFDB\(_5\), EFDB\(_6\), and EFDB\(_{13}\) are highlighted with p-values below 0.05. Data includes task completion time and drawing pause metrics, with p-values and t-values noted. Significant p-values are shown in bold, and a footnote explains statistical significance and testing methods.]

Subsequently, we plotted ROC curves to assess the ability of the digital biomarkers to distinguish the AD-MCI1 group from the PD-MCI1 group. The joint AUC of the above six statistically preexisting digital biomarkers of cognitive function was 0.968, CI = 0.927–1.000. The ROC curves and 95% CI for the combined digital biomarkers to differentiate the AD-MCI1 group from the PD-MCI1 group are shown in Figure 7.

[image: ROC curve illustrating the diagnostic performance of six digital biomarkers for cognitive function. The blue curve shows high sensitivity and specificity, indicating strong performance. The area under the curve (AUC) is 0.968 with a 95% confidence interval of 0.927 to 1.000. A red dashed line represents the reference line. Biomarkers mentioned are EFDB1, EFDB2, EFDB4, EFDB5, EFDB6, and EFDB13.]

FIGURE 7
 ROC curves and 95% CI of combined digital biomarkers distinguishing AD-MCI1 and PD-MCI1 groups. Area under the roc curve (AUC), confidence interval (CI), Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Average of Drawing Speed (EFDB13).





4 Discussion

In this study, we proposed the research hypothesis that AD-MCI and PD-MCI populations exhibit different cognitive functioning characteristics on the dCDT, and that the two populations can be effectively distinguished based on this characteristic. Based on this hypothesis, we designed the dCDT to characterize and quantify differences in cognitive functioning between AD-MCI and PD-MCI populations at a fine-grained level. We extracted statistically different digital biomarkers between AD-MCI, PD-MCI, PD-NC and NC groups, respectively. The digital biomarkers were differentiated in terms of motor and cognitive functions, and ultimately six digital biomarkers of cognitive functions were screened from the AD-MCI and PD-MCI groups. The combined AUC of six digital biomarkers for distinguishing between AD-MCI and PD-MCI groups could reach 0.923.

As a multistep cognitive function assessment tool that integrates certain sequences, the clock drawing test necessitates the synergy of multiple cognitive and motor functions like executive functions and visuospatial abilities (Müller et al., 2017). Specifically, during the clock-drawing process, as the participants touches the screen to draw the clock, their executive functions like executive control and cognitive dexterity become dominant. This dynamic process can be accurately characterized by digital biomarkers like drawing duration, speed, and efficiency (Dion et al., 2020). In addition, the clock-drawing test demands that participants to draw circular or near-circular outline and correctly place the numerals as well as the clock hands. These details assess participants’ visuospatial cognitive abilities, characterized by digital biomarkers like the outline scores, numbers scores, and hand-drawing scores (Davoudi et al., 2020). Thus, by synthesizing and analyzing digital biomarkers from the dCDT, participants’ cognitive and motor performance in complex tasks can be finely characterized.

First, the results of this study showed that Initial Drawing Speed (EFDB12), Average of Drawing Speed (EFDB13), Variability of Drawing Speed (EFDB14) were significantly lower in the PD-MCI group than the AD-MCI group. These results were consistent with those of Saur (Saur et al., 2012). Previous studies have shown that PD-MCI patients have more severe impairments in executive functioning than AD-MCI patients. Moreover, executive dysfunction, which is the most characteristic cognitive impairment in PD-MCI patients, is closely related to impaired integrity of the frontal-striatal loop (van den Heuvel et al., 2013). In contrast to the pattern of cognitive impairment in PD-MCI patients, the pattern of cognitive decline in AD-MCI patients was primarily associated with cortical involvement in the hippocampus and medial temporal lobe (Li et al., 2022). Executive dysfunction significantly affects patients’ social behavior, making it the most common clinical complaint. This was usually manifested as a greater difficulty in completing daily and routine tasks. Additionally, the impairment of executive functioning was particularly prominent when performing complex tasks that required the integration of multiple sequential steps (Blair, 2016). Therefore, in the dCDT, the executive functions of PD-MCI patients may be more severely impaired than those of AD-MCI patients, resulting in significantly slower Average of Drawing Speed (EFDB13).

In addition, our findings showed that Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Number of Pauses during Drawing (EFDB7), and Drawing Time (EFDB8) were significantly higher in the PD-MCI groups than in the AD-MCI group. This suggested that PD-MCI patients have more significant deficits in executive ability than AD-MCI patients.

Whereas the PD-MCI and AD-MCI groups showed differential digital biomarkers on the clock drawing test, which may have resulted from cognitive differences or motor differences between them. The aim was to further explore and identify digital biomarkers to accurately characterize cognitive functioning differences in the clock drawing test between AD-MCI and PD-MCI populations. We separately compared cognitive functioning differences between the PD-MCI and PD-NC groups (no statistically significant difference in MDS-UPDRS-III motor scores between the two groups) and between PD-NC and NC groups (no statistically significant difference in MMSE and MoCA scores between the two groups). This was done with the objective to identifying digital biomarkers of cognitive function that could accurately differentiate between the PD-MCI and AD-MCI group.

In the PD-MCI and PD-NC groups, there were only differences in cognitive function between the two groups, so digital biomarkers that were significantly different between the two groups can be considered digital biomarkers of cognitive function characterizing cognitive function differences. Among the digital biomarkers, Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), and Average of Drawing Process Pause Time (EFDB6) were significantly higher in the PD-MCI group than in the PD-NC group. Efficiency of Drawing (EFDB10), and Average of Drawing Speed (EFDB13) were significantly lower in PD-MCI group than in PD-NC group. These findings were largely consistent with Cosgrove et al. and together revealed significant deficits in executive function in PD-MCI patients (Cosgrove et al., 2021). These results further validated that digital biomarkers like pause duration and drawing speed effectively capture executive function deficits.

In the PD-NC and NC groups, digital biomarkers that were significantly different between the two groups can be considered digital biomarkers of motor function that characterize motor function, since there were only differences in motor function between the two groups. The results of the study showed that the PD-NC group had a significantly higher Number of Pauses during Drawing (EFDB7) and slower Initial Drawing Speed (EFDB12) compared to the NC group. This difference may be related to motor retardation and reduced motor control in PD-NC populations.

Based on the above findings of the PD-MCI and AD-MCI groups, the PD-MCI and PD-NC groups, and the PD-NC and NC groups, as well as the cascading relationships between the three groups of digital biomarkers, we finally identified six digital biomarkers of cognitive function that were able to accurately reflect the differences in cognitive function between AD-MCI and PD-MCI populations. These 6 digital biomarkers of cognitive function include: Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), and Average of Drawing Speed (EFDB13). The combined efficacy of these six digital biomarkers of cognitive function in distinguishing between AD-MCI patients and PD-MCI patients was up to 0.923, which further confirms that there are indeed differences in cognitive function between the AD-MCI populations and the PD-MCI populations in the clock-drawing test, and that by using these digital biomarkers of cognitive function, we can more accurately differentiate between the two populations. At the same time, considering the influence of literacy on cognitive function, we performed differential and ROC analyses of digital biomarkers of cognitive function in highly educated individuals in both AD-MCI and PD-MCI groups (given that the total sample size of the low-education group was too small, no analysis was performed). Six statistically significant digital biomarkers of cognitive function were finally screened, and their joint warning AUC was 0.968, which was higher than the original joint warning AUC = 0.923, suggesting that the results of this study were to some extent influenced by literacy. Therefore, future studies still need to include more groups with different literacy levels to clarify the extent to which literacy influences this study.

In addition, the differential results of the NC and AD-MCI groups, the NC and PD-MCI groups, and the AD-MCI and PD-NC groups in the dCDT were investigated. In comparisons between the AD-MCI and NC groups, we found that Task Performance of Overall Drawing Score (VFDB1), Task Performance of Numbers Drawing Score (VFDB2), Task Performance of Clock Hands Drawing Score (VFDB4), and Efficiency of Drawing (EFDB10) were significantly lower in the AD-MCI group than in the NC group, whereas the Variability of Drawing Speed (EFDB14) was significantly higher in the AD-MCI group than in the NC group. Significant deficits in executive function and visuospatial abilities were confirmed in AD-MCI patients.

In the NC and the PD-MCI groups, we found that Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Average of Drawing Process Pause Time (EFDB6), Number of Pauses during Drawing (EFDB7), Drawing Time (EFDB8), and Number of Draws (EFDB9) were significantly higher in the PD-MCI group than in the NC group. In contrast, Task Performance of Overall Drawing Score (VFDB1), Task Performance of Numbers Drawing Score (VFDB2), Task Performance of Clock Hands Drawing Score (VFDB4), Efficiency of Drawing (EFDB10), Initial Drawing Speed (EFDB12), and average speed of drawing in the Average of Drawing Speed (EFDB13) were significantly lower in the PD-MCI group than in the NC group. These findings confirmed the significant deficits in visuospatial and executive functions in patients with PD-MCI.

In the AD-MCI and the PD-NC groups, we found that Initial Drawing Speed (EFDB12), Average of Drawing Speed (EFDB13), and Variability of Drawing Speed (EFDB14) were significantly larger in the AD-MCI group than in the PD-NC group. This showed that AD-MCI group were significantly faster than the PD-NC group, suggesting cognitive decline in AD-MCI and decreased fine motor control in PD-NC. Variability of Drawing Speed (EFDB14) illustrated the stability of participants’ drawing speed, and we suggest that AD-MCI may be less stable than PD-MCI under cognitive task (Montero-Odasso et al., 2014).

To further demonstrate that the above digital biomarkers characterize cognitive functions well, we performed a correlation analysis between the digital biomarkers and the MoCA scale. Performance of Overall Drawing Score (VFDB1), Task Performance of Numbers Drawing Score (VFDB2), Task Performance of Clock Hands Drawing Score (VFDB4) and Efficiency of Drawing (EFDB10) were positively correlated with the MoCA scale as well as the [visuospatial/executive] subtest score; Task Completion Time (EFDB1), Total Drawing Pause Time (EFDB2), Total Drawing Process Pause Time (EFDB4), Maximum of Drawing Process Pause Time (EFDB5), Number of Pauses during Drawing (EFDB7), Number of Draws (EFDB9) and Variability of Drawing Speed (EFDB14) were negatively correlated with the MoCA scale as well as with the [visuospatial/executive] subtest score. The results suggested that the above mentioned digital biomarkers can better characterize visuospatial and executive functions, providing a new tool for early screening and dynamic monitoring of cognitive impairment.

The effects of Parkinson’s disease (PD) drugs on motor function and cognitive processing speed are complex. It was suggested that decreased processing speed in PD patients is associated with abnormalities in the caudate nucleus, and that drugs may affect these regions (Price et al., 2016). There were also studies that mentioned the effects of dopamine medications on executive function and error processing, such as abnormal ERN waves, which might affect cognitive control (Seer et al., 2017; Yang et al., 2017). However, some studies have also found that processing speed is associated with reduced FDOPA uptake in the caudate nucleus, and medication may not fully restore this function (Pal et al., 2016). Most of the patients included in this study used medication, but were in OFF medication at the time of testing, which reduced the drug’s effect to some extent.

Compared to previous studies, the main innovation of this study is that digital biomarkers that can accurately characterize participants’ cognitive functions were extracted through the dCDT, thus providing a fine-grained quantification of participants’ cognitive functioning characteristics during task execution. Moreover, this dCDT demonstrated a good discriminatory ability to distinguish between AD-MCI and PD-MCI populations. Although previous studies also used digital clock drawing tests to differentiate AD patients from PD patients/PD-MCI patients, these studies had significant limitations, such as a single dimension of extracted metrics, low discriminatory efficacy, and a limited sample size (Allone et al., 2018). In contrast, the dCDT proposed in this study not only had higher accuracy, but also significantly improved assessment efficiency, which could be completed in just 3 min, much less than the time-consuming traditional scale assessment methods. Therefore, the dCDT proposed in this study was high objectivity, accuracy and efficiency, with potential for in-depth research and wide dissemination, and was relatively unaffected by race, culture and language compared to neuropsychological scales such as MMSE, MoCA, and others (Kehl-Floberg et al., 2023). In addition, compared to our team’s previous study (which demonstrated whether there was a difference in cognitive function between NC and AD-MCI through digital biomarkers), this study built on pre-existing algorithms to differentiate between different types of cognitive dysfunction (AD-MCI and PD-MCI) through digital biomarkers. Therefore, the dCDT proposed in this study, which was highly objective, less time-consuming, had good replication potential in densely populated communities, and provided a new approach to differentiate between AD-MCI and PD-MCI using digital biomarkers in initial community screening.

However, this study also presents some limitations. First, the effective sample size included in this study was 161 cases, and all were from a single medical center, potentially limiting the generalizability of the findings to the overall AD-MCI and PD-MCI populations. To overcome this limitation, future research aims to conduct a multicenter study and increase the sample size, enhancing the accuracy and generalizability of the study results. Second, potential confounders such as gender and cognitive drugs (e.g., dopaminergic treatments in PD patients), which are limited by the design of the study and scope of data collection, have not been systematically addressed and may have biased trial results. Third, the dimensions of the digital biomarkers explored in this study are limited, and future research will explore additional dimensions such as pressure, orientation, acceleration, angular velocity, and delving into the medical mechanisms and potential associations with blood biomarkers or imaging biomarkers. Meanwhile, the dCDT designed in this study is primarily suited for early warning and screening of cognitive disorders, but for diagnostic use in AD-MCI and PD-MCI, further integration with multidimensional data (such as Aβ-PET, MMSE, MoCA) is required. However, it is hoped that the diagnosis of AD-MCI and PD-MCI may be achieved by dCDT alone at a later stage as more data are recorded and combined with large model technology. Finally, this study is currently limited to a cross-sectional study due to research conditions. In order to verify the validity and reliability of the dCDT more comprehensively, future research will involve longitudinal studies.



5 Conclusion

In summary, we proposed the research hypothesis that AD-MCI and PD-MCI populations exhibit different cognitive functioning characteristics in the digital clock drawing test, and that based on this characteristic, we can effectively differentiate between these two populations. Based on this hypothesis, we designed the dCDT, extracted digital biomarkers that can characterize participants’ cognitive functions, and quantified participants’ task-wide cognitive function characteristics at a fine-grained level, revealing differences in cognitive functions between AD-MCI populations and PD-MCI populations. After clinical validation, the AUC of digital biomarkers of cognitive function in distinguishing between AD-MCI and PD-MCI populations was up to 0.923, and the method provided a favorable reference for early diagnosis, treatment and prevention of dementia development in AD-MCI and PD-MCI populations.
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SUPPLEMENTARY FIGURE 1 | Participant screening process. Normal cognition (NC), Mild cognitive impairment due to Alzheimer’s disease (AD-MCI), Parkinson’s disease with Mild cognitive impairment (PD-MCI), Parkinson’s disease with normal cognition (PD-NC).

SUPPLEMENTARY FIGURE 2 | The calculation of Task Performance Calculation of Clock Hands Drawing Score(VFDB4). Φ was the classification network.
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Galangin reduces MPTP-induced dopamine neuron injury via the autophagy dependent-PI3K/AKT pathway
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Introduction: Research has confirmed that Galangin can attenuate autophagy and protect dopaminergic neurons. This study aims to clarify whether Galangin attenuates dopaminergic neuron injury by regulating the PI3K/AKT pathway in Parkinson’s disease (PD) model mice.
Methods: The study explores the mitigating effects of Galangin on PD processes by administering 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce the condition. Techniques including network analysis, transcriptomic analysis, rotarod test, enzyme-linked immunosorbent assay (ELISA), qRT-PCR, western blotting, immunohistochemistry, immunofluorescence, and hematoxylin–eosin (HE) were employed to unveil the molecular changes induced by Galangin.
Results: The network pharmacological analysis showed 301 targets related to Galangin, and 2,858 genes related to PD. Galangin treatment can improve the motor coordination of PD model mice, reduce damage to neurons in the brain, improve the antioxidant capacity and reduce the inflammatory damage of brain tissue. Additionally, Galangin suppressed mRNA expression of PD markers (IL-1β, TNF-α, IL-6, SRC and PTGS2), elevated protein levels of GSH-Px, SOD, P-PI3K, P-CREB, P-AKT, TH, BDNF and P62, while decreasing α-syn, SRC, MDA, Beclin-1 and LC3B expression. Moreover, the expression of significantly different genes in the Galangin-treated group and model group analyzed by transcriptomics was basically consistent with the qRT-PCR verification results.
Conclusion: Galangin supresses Beclin-1-dependent autophagy and upregulates the PI3K/AKT signaling pathway to attenuate the neuroinflammatory injury and improve motor coordination ability in PD mice induced by MPTP.
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1 Introduction

With the aging of the population, the incidence and prevalence of Parkinson’s disease (PD) continue to increase, which brings a heavy burden to society and the family, and has been widely concerned in the medical and genetic circles (Nair et al., 2018). The pathological mechanism of PD is related to the loss of dopamine (DA) neurons and α-synuclein (α-syn) aggregation in the substantia nigra dopaminergic neurons, oxidative stress, neuroinflammatory effects, mitochondrial dysfunction, endoplasmic reticulum stress disorder, neurotoxicity, uncontrolled autophagy, kinase signaling pathway, neurotrophic factor loss and nerve cell apoptosis (Ping and Geng, 2023; Nagoshi, 2018). The pathogenesis of PD is still unclear, and there is currently no known cure for PD, and the primary goal of treatment is to improve and slow the progression of clinical symptoms (Bhidayasiri et al., 2023). Therefore, there is a pressing necessity to find an effective treatment that alleviates the death of dopaminergic neurons in the midbrain and protects brain function for the treatment of PD.

At present, the western drugs against PD mainly included DA receptor agonists, monoamine oxidase B inhibitors, cholinergic inhibitors, catechol-O-methylase inhibitors (Laurence, 2020). Western medicine works well for treating PD and improves its motor symptoms. However, it has a poor curative effect on the non-motor symptoms of PD and is prone to major side effects like efficacy attenuation, dose end phenomenon, and transaction disorder. In recent years, metabolites derived from Chinese medicine have received increasing attention as a result of their clear neuroprotective effects. Alpinia officinarum Hance is a perennial herb belonging to the Alpinia genus of the ginger family. Its rhizome is a commonly used medicinal herb and spice in Asian and European countries, and it is distributed in tropical regions such as the Leizhou Peninsula in Guangdong, Hainan, and southern Guangxi in China. Galangin is a naturally occurring flavonoid (3, 5, 7-trihydroxyflavonoid) extracted from the rhizome of Alpinia officinarum Hance that shows a variety of biological activities, including anti-oxidant and anti-inflammatory functions (Aladaileh et al., 2019; Huang et al., 2017). Additionally, it is also found in abundance in propolis and plantain. At present, there are few studies on the treatment of PD by Galangin. In the brains of PD model rats, Galangin has been shown in two studies to have a protective impact on dopaminergic neurons (Chen et al., 2017; Chen Q. et al., 2022), reflecting that Galangin has a significant anti-PD effect, but its mechanism still needs to be further explored. In addition, studies have confirmed that Galangin can regulate oxidative stress, inflammation, and apoptosis in diabetic rats to alleviate diabetic cardiomyopathy (Abukhalil et al., 2021). Our previous study has demonstrated that treatment with Galangin regulated autophagy and effectively reduced p-tau, Aβ42 and β-secretase levels in AD model cells (Huang et al., 2019). Natural metabolites can thoroughly reflect the multiple pathways and targets, while personalized treatment, as much as possible reduces adverse reactions, and improve the prognosis and the life quality of PD patients. Additionally, further investigation is necessary to comprehensively elucidate the underlying mechanism through which Galangin exerts its anti-PD properties. Therefore, based on network analysis and transcriptomic analysis and molecular docking techniques to predict the pathways and targets of Galangin that are involved in PD therapy.

The PI3K/AKT signaling pathway plays a crucial role in the regulation of cellular proliferation, apoptosis and metabolism. The abnormally expressed PI3K/AKT signaling pathway is closely related to the occurrence and development of various neurological diseases. Therefore, this pathway has been extensively studied and is a potential target for disease treatment (Chen K. et al., 2022; Chen et al., 2023; Yang et al., 2023). The PI3K enzyme is an intracellular phosphatidyl inositol kinase that has the activity of serine/threonine kinase and phosphatidyl inositol kinase. AKT is a serine/threonine kinase that plays a crucial role in regulating various cellular processes including cell growth, survival, transcription, and protein synthesis and acts as a central component of the PI3K/AKT signaling pathway. PIP3 produced by PI3K can further activate AKT by activating phosphoinositol-dependent protein kinase 1 (PDK1) (Guo et al., 2017). Activated AKT activates downstream transcription factors and regulates transcription of related target genes. The PI3K/AKT/mTOR signaling pathway is an important pathway that negatively regulates autophagy, which is widely existing in cells. PI3K inhibits autophagy by activating AKT. The downstream target gene AKT can suppress autophagy by modulating the expression of FOXO and inducing transcription factor activating protein-1 (AP-1), thereby inhibiting the expression of autophagy-related genes (Calnan and Brunet, 2008; Eijkelenboom and Burgering, 2013). Autophagy is a double-edged sword, insufficient autophagy can lead to apoptosis under adverse environmental conditions, however, continuously activated autophagy can also lead to cell death (Koch et al., 2020; He et al., 2014). In addition, studies have shown that the PI3K/AKT signaling pathway can inhibit the activation of downstream mediator nuclear factor-κB (NF-κB), thereby reducing the release of kidney inflammatory indicators of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) (Hong et al., 2017). In brief, autophagy plays a dual role in cell survival; weakened autophagy or excessive autophagy is detrimental to cell survival. However, how Galangin properly regulates the PI3K/AKT signaling pathway and autophagy to enhance motor coordination remains elusive. Thus, in the present study, we aimed to investigate the effects of Galangin on motor coordination and autophagy alleviation in MPTP-induced mice. Additionally, for the first time, we revealed the mechanisms of Galangin in alleviating the injury of dopaminergic neurons by network analysis, molecular docking and transcriptomic analysis. Based on network analysis, molecular docking and transcriptomic analysis, we hypothesize that Galangin can alleviate neuroinflammation and inhibit Beclin-1 dependent autophagy by mediating the PI3K/AKT signaling pathway.



2 Materials and methods


2.1 Identifying targets of Galangin

We searched and confirmed the potential targets of the Galangin monomer through TCMSP database,1 Swiss Target Prediction,2 PharmMapper3 (Peng et al., 2020; Zhang et al., 2021). The obtained target names were converted into corresponding gene names through UniProt database,4 and the final target proteins related to Galangin were obtained by combining and deduplicating.



2.2 Identifying PD-related targets in Galangin

Using “Parkinson’s disease” as the keyword, disease targets were retrieved from Genecards,5 DisGeNET,6 and OMIM,7 with a filtering criterion in GeneCards of a score value higher than the median. The intersection targets of Galangin against Parkinson’s disease were obtained by overlapping the component targets with the disease targets. The common target genes screened from the Genecards, DisGeNET and OMIM databases and the targets of Galangin are consistent with this article (Shailima et al., 2021). VENNY2.18 was adopted to establish Venn diagrams and obtain the common targets.



2.3 Protein–protein interaction (PPI) network construction

To further study the interaction targets between Galangin and PD, STRING,9 was used to identify known and predict interactions between proteins (Szklarczyk et al., 2019). Then, we removed the free proteins, and the correlation data between the targets were exported and constructed a network by the Cytoscape 3.9.1.



2.4 KEGG and GO enrichment analysis

In this study, the GO functions of enriched target genes were analyzed by the DAVID10 database (Dennis et al., 2003). We entered the UniProt ID of the protein, and the source of species was set as “Homo sapiens” to analyze the enriched biological processes, molecular functions, cellular components, and pathways related to the key proteins. The KEGG and GO enrichment were analyzed in a bioinformatics online tool.11



2.5 Animal experiment

Sixty specific pathogen free (SPF) grade National Institute of Health (NIH) male mice weighing 18–22 g were used in this study. The mice were provided by the Guangdong Medical Experimental Animal Center (Guangdong, China; certificate no.: SYXK (Guangdong) 2018-0002). The mice were raised in the Experimental Animal Center of Guangdong Traditional Chinese Medicine Hospital. All animal experiments were conducted in strict accordance with the Ethics Committee Guidelines of Guangdong Provincial Hospital of Traditional Chinese Medicine (No.2022039, April 25, 2022).

For observation of the therapeutic effect of Galangin on PD mice, sixty mice were randomly divided into the five groups (n = 10): control group, PD model group (MPTP, 30 mg/kg), madopar group (madopar + MPTP, 125 + 30 mg/kg), low-dose Galangin group (L-Galangin + MPTP, 25 + 30 mg/kg), medium-dose Galangin group (M-Galangin + MPTP, 50 + 30 mg/kg) and high-dose Galangin group (H-Galangin + MPTP, 100 + 30 mg/kg). The PD model mice was established as reported previously (Zhang et al., 2018) and the group administered with madopar serves as the positive control group in the experiment. The PD model mice were established by intraperitoneal injection of MPTP (30 mg/kg) once a day for 7 days. Mice were sacrificed after the behavioral tests by cervical vertebra dislocation, and then heart perfusion was performed by using saline. The hippocampus, striatum and mesencephalon were rapidly dissected out, frozen, and stored at −80°C for detection. Galangin (A0437, Chengdu must Bio-Technology CO., Ltd., purity = 99.94%) was prepared in 0.9% physiological saline and intragastric administration once daily for 28 days, meanwhile, the control group and the PD model group were given the same volume of saline.

After the administration was completed and behavioral tests were finished, the mice were anesthetized with 40 mg/kg sodium pentobarbital for euthanasia. The whole brain was then carefully removed on an ice plate. Half of the brains from each group (n = 6) were fixed in 4% paraformaldehyde for 24 h, followed by dehydration with a sucrose solution, embedding, and sectioning into 20 μm coronal slices for immunohistochemistry, immunofluorescence, HE and Nissl staining observations. Subsequently, the cerebral cortex, striatum, hippocampus, and midbrain tissues from each mouse were rapidly extracted and frozen in liquid nitrogen. The cerebral cortex from 8 mice per group was used for enzyme-linked immunosorbent assay, and the midbrain tissues from 6 mice per group were used for western blotting and quantitative polymerase chain reaction analyses.



2.6 Behavioral tests


2.6.1 Rotarod test

A rotarod treadmill (ZB-200, Chengdu Thai union technology co., LTD, China) was used to evaluate motor coordination. Mice were placed on a slowly accelerating rod to keep balance and resist fatigue. Then we recorded the duration that a mouse kept standing or walking on the rotating rotarod at the speed of 30 r/min. A period of 300 s was taken as the maximum time of mice staying on the rotarod.



2.6.2 Autonomous activity

Test for the mouse autonomous activity test, after the final dose administration, the mice from each group were placed in the mouse voluntary activity testing apparatus to acclimate for 5 min. Following the acclimation period, the number of movements made by the mice within a 5-min interval was recorded. Throughout the experiment, the surrounding environment was maintained quiet, with no movement of personnel, to prevent external factors from disturbing the mice.



2.6.3 Pole climbing behavior

Pole climbing experiment select a wooden rod that is 50 cm long and 1.5 cm in diameter. Wrap the entire rod with tape to prevent the mice from slipping during the climbing process. During the acclimatization period, guide the mice to climb from the top to the bottom of the rod daily. After administration, train once a week. The measurement method is as follows: holding the tail of the mouse, place the mouse head-down at the top of the rod (with all four limbs on the top), and let it climb down naturally. Use a stopwatch to record the time it takes for the mouse to stand at the top of the rod as time A, and the time it takes for the mouse to climb to the bottom of the rod (with both front limbs touching the bottom platform) as time B. The total time the mouse spends climbing the rod is then calculated as time C, where C = A-B. Each mouse repeats the climbing test three times, with at least a 30-min interval between each attempt, and the average time is taken. If the mouse slips off or jumps out of the rod, the time for that attempt is not recorded, and the test is retaken after at least a 30-min interval.




2.7 Enzyme-linked immunosorbent assay (ELISA)

The levels of IL-1β, TNF-α, IL-6, GSH-Px, MDA, SOD, DA, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels in the cerebral cortex were determined, respectively, with ELISA kits according to the kit instructions (IL-1β, YJ712290, Shanghai Enzyme-linked Biotechnology Co., Ltd.; TNF-α and IL-6, RX302058R and RX302856R, QUANZHOU RUIXIN Biotechnology Co., Ltd., China; GSH-Px, 6141060130, Beijing Dongge Boye Biotechnology Co., LTD, China; MDA-S0131S and SOD-S0101S, Shanghai Biyuntian Bio-Technology Co., LTD, China; DA-m1002024, DOPAC-ml034074 and HVA-ml025114, Shanghai Enzyme linked Biotechnology Co., Ltd., China) on a microplate reader (American Hyperion MRIII type; Biotek Instruments Inc., Winooski, VT, USA). All samples were performed eight times in parallel. Detailed sample handling procedures refer to previous literature (Ning et al., 2022).



2.8 Hematoxylin–eosin (HE) and nissl staining

The hippocampus and striatum were prepared into continuous coronal sections, and dewaxed to water after conventional dewatering and embedding treatment. Dye with hematoxylin solution for 15 min, rinse with water, stain with alcohol eosin solution for 3 min, dehydrate and clear, seal with neutral gum, and observe under microscope. In addition, nissl staining is performed according to the Nissite kit (Methyl Violet method, 0409A14, Beijing Kangwei Century Biotechnology Co., LTD) instructions, observed under a microscope and photographed. All samples were performed six times in parallel.



2.9 Immunohistochemistry

The continuous coronal sections were dewaxed to water after tissue dehydration and embedding treatment. 3%H2O2, soaked for 10 min: pressure cooker repair (EDTA, pH 8.0); 5% BSA was blocked for 20 min, α-syn and TH (proteintech, 25859-1 and 10842-1, Wuhan Sanying Biotechnology Co., LTD, China) antibodies (1:50) were added and placed in a 37°C for 1 h, and secondary antibody (biotinized sheep anti-rabbit) was added to a 37°C for 20 min. Drip (SABC) at 37°C for 20 min; DAB was controlled under the microscope for 3 min; Anhydrous ethanol dehydrated transparent, neutral resin seal: microscope observation of positive expression of brown yellow, using the image analysis system (Beihang 4.0 version) for analysis. All samples were performed six times in parallel. PBS was used as a negative control instead of primary antibody.



2.10 Immunofluorescence

Dewaxing slices to water; 3% H2O2, soak for 10 min; Pressure cooker method for antigen repair (sodium citrate, pH 6.0): 5% BSA was blocked for 30 min and Beclin-1 (1:100, ab62557, Abcam, USA) and P62 (1:100, ab56416, Abcam, USA) antibodies (1:50) was added to 37°C for 1 h, and secondary antibody (biotinized sheep anti-rabbit) was added to 37°C for 20 min. Anti-extinguishing agent seal: the positive expression was red after microscope observation and photography, and the image analysis system (Zeiss, Oberkochen, Germany) was used for analysis. All samples were performed six times in parallel. PBS was used as a negative control.



2.11 Quantitative real-time polymerase chain reaction (qRT-PCR) analysis

The gene specific primers were demonstrated in Table 1. Total RNA was extracted from approximately 10 mg of mesocerebrum tissue by trizol. The RNA concentration was measured with spectrophotometry, and the RNA samples were stored at −80°C. Following the instructions in the Evo MMLV RT Mix kit with gDNA clean for qPCR Ver.2 (Cat: AG11728) manual, the RNA was reverse transcribed to cDNA. Next, RT-PCR was performed using the SYBR green premix pro taq HS qPCR kit (Cat:AG11701) to amplify and quantify IL-1β, TNF-α, IL-6, GSH-Px, ALB, SRC, ESR1, PTGS2, CDK1, CDK2, PARP1 mRNA levels and so on. The reaction conditions of qRT-PCR were as follows: pre-denaturation at 94°C for 2 min; denaturation at 94°C for 30 s; annealing at 58°C for 30 s; extension at 72°C for 1 min; 30 cycles; extension at 72°C for 8 min; and storage at −20°C. β-actin was used as internal reference control. Gene expression was calculated using the 2-△△ct method (Xing et al., 2024; Yoav et al., 2024). All samples were performed six times in parallel.



TABLE 1 Primer sequences.
[image: Table listing gene names alongside their forward (F) and reverse (R) primer sequences, formatted in two columns. Genes include ALB, SRC, PTGS2, among others, with corresponding sequences. Each gene is paired with specific primer sequences for both forward and reverse directions.]



2.12 Western blot detection

The total protein was extracted from the nigral striatum of each group of mice by treating the brain tissue with protein lysate containing protease inhibitors and phosphoric acid inhibitors, and the protein content was determined by the BCA kit, and the protein was added into the sampling buffer and mixed, and the protein was denatured by heating at 100°C for 15 min. The protein samples were electrophoresed on 10% sodium dodecyl sulfate-polypropylene amine gel, transferred to PVDF membrane, and closed with 5% skimmed raw milk at room temperature for 1 h. α-syn and TH (1:1000, 25859-1 and 10842-1, proteintech, China), Beclin-1 (1:1000, ab62557, Abcam, USA), LC3B (1:1000, ab192890, Abcam, USA), P62 (1:1000, ab56416, Abcam, USA), P-PI3K (1:1000, 60225-1-Ig, proteintech, USA), PI3K (1:1000, #13666 s, Cell Signaling Technology, USA), P-AKT (1:1000, 29163-1-AP, proteintech, China), AKT (1:1000, 10176-2-AP, proteintech, China) and GAPDH (1:1000, G9545, SIGMA, USA); P-CREB (1:1000, #12133, SAB, USA), CREB (1:5000, 67927-1-Ig, proteintech, China), SRC (1:1000, 11097-1-AP, proteintech, China), BDNF (1:1000, #32263, SAB, USA), PTGS2 (1:1000, 12375-1-AP, proteintech, China), mTOR (1:1000, 66888-1-Ig, proteintech, China) and P-mTOR (1:1000, 67778-1-Ig, proteintech, China) antibodies were added and incubated at 4°C overnight, then secondary antibodies were added and incubated at room temperature for 2 h. All samples were performed six times in parallel. The samples were detected by chemiluminescence reagent, developed and photographed by gel imager, and analyzed in grayscale by Image J software.



2.13 RNA sequencing and bioinformatics analysis in the mesencephalon tissue of PD model mice

OE Biotech Co., Ltd. (Shanghai, China) performed all RNA-sequencing and bioinformatics analyses. Differential analysis was performed according to Padj<0.05 and log2(fold change) < −1 or log2(fold change) >1 criteria to obtain differentially expressed genes, Using GraphPad Prism 8 software make volcanic diagram and through microscopic letter website (see Footnote 11) draw heat maps. All samples were performed three times in parallel.



2.14 Statistical analysis

Data were statistically analyzed using SPSS 17.0 software and expressed as mean ± SD. The data were analyzed using one-way analysis of variance (ANOVA) when the data were regularly distributed and the variance was elevated. ANOVA was used when the data were regularly distributed and the variance produced: nonparametric tests were used when the data were not regularly distributed. Statistical significance was accepted for p < 0.05.




3 Results


3.1 Study of the mechanism of Galangin against MPTP-induced PD mice by network analysis

Network analysis was employed to predict the potential target-pathway interactions associated with the protective effect of Galangin against PD. Firstly, through an extensive search of the TCMSP, Swiss Target Prediction and PharmMapper databases, 373 targets of Galangin were identified. Meanwhile, 2,858 genes related to PD were identified from the DisGeNET and Genecards databases, and 72 shared targets between Galangin and PD targets. The structure of Galangin and the Venn diagram of intersecting targets are shown in Figure 1A. Table 2 shows the top 10 targets, ALB, SRC, ESR1, EGFR, GSK3β, PTGS2, MMP9, PARP1, CDK2 and CDK1, which were referred to as core proteins. The study confirmed that they can interact with different proteins and occupy a crucial position in the network, which can provide a basis for additional research. In addition, a total of 194 biological processes, 57 cellular components, and 69 molecular functions were acquired. The pathways with the top 10 enriched genes were selected for display, as depicted in Figure 1B. The targets acted on the negative regulation of apoptotic process and protein phosphorylation, and protein autophosphorylation, response to xenobiotic stimulus, cellular response, and peptidyl-serine phosphorylation played a role. Meanwhile, these target functions were associated with protein binding, ATP binding, identical protein binding, and enzyme binding. As shown in Figure 1C, pathways in cancer, PI3K-AKT signaling pathways, and chemokine signaling pathways were mainly related to the effects of Galangin against PD. The noninteracting targets were eliminated, and the interactions between the remaining targets are shown in Figure 1D by a PPI network. Finally, we mapped 10 predicted targets onto 10 corresponding pathways, as shown in Figure 1E.

[image: Diagram detailing the analysis of Galangin's effects. Panel A shows the chemical structure of Galangin. Panel B illustrates gene ontology categories affected, using bar charts segmented by biological processes, cellular components, and molecular functions. Panel C presents a bubble chart of KEGG pathway enrichment, indicating significance and gene ratios for various pathways including cancer and Alzheimer's. Panel D is a network map of protein interactions, highlighting key proteins like ALB and EGFR. Panel E displays a Sankey diagram linking genes to pathways, with visual indicators for significance levels.]

FIGURE 1
 Network analysis predicts that there may be target-pathway interaction in Galangin anti-MPTP induced PD. (A) The structure of Galangin and Venn analysis on putative targets of Galangin and PD. (B) GO analysis of intersection targets. (C,E) The pathway enrichment analysis was performed related to intersection targets. (D) PPI network showed the correlation between PD-related gene targets, and the larger the circle, the greater the degree value. The top 10 core targets were ALB, SRC, PTGS2, EGFR, GSK3β, ESR1, MMP9, PARP1, CDK1, and CDK2. MPTP, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; PD, Parkinson’s disease; PPI, protein–protein interaction; ALB, albumin; SRC, Sample Rate Convertor; PTGS2, Prostaglandin Endoperoxide Synthase 2; EGFR, Epidermal growth factor receptor; GSK3β, Glycogen synthase kinase 3β; ESR1, Estrogen Receptor 1; MMP9, matrix metalloprotein; PARP1, Poly ADP-ribose polymerase 1; CDK1, cyclin dependent kinase 1; CDK2, cyclin dependent kinase 2.




TABLE 2 Top 10 potential targets of Galangin for PD treatment.
[image: Table showing targets with corresponding metrics: ALB has a degree of 39, betweenness 0.152425238, closeness 0.698924731. SRC has a degree of 33, betweenness 0.155089697, closeness 0.650000000. ESR1 degree 32, betweenness 0.104395481, closeness 0.650000000. EGFR degree 31, betweenness 0.067632251, closeness 0.643564356. GSK3β degree 30, betweenness 0.104534353, closeness 0.643564356. PTGS2 degree 30, betweenness 0.056273119, closeness 0.625000000. MMP9 degree 23, betweenness 0.023426488, closeness 0.580357143. PARP1 degree 20, betweenness 0.037831610, closeness 0.56217391. CDK2 degree 20, betweenness 0.026283225, closeness 0.550847458. CDK1 degree 20, betweenness 0.036521346, closeness 0.570175439.]



3.2 Galangin treatment improved motor coordination of PD mice

To evaluate the effect of Galangin on motor coordination in PD mice, the rotarod, autonomous activity and pole climbing tests were measured. The process and results of the behavior experiment are shown in Figures 2A–D. The motor coordination ability of mice in the MPTP model group significantly decreased compared to that in the control group (p < 0.01). The specific manifestations are as follows: the staying time in the rotarod test (Figure 2B) and the count of autonomous activities (Figure 2C) were increased in the madopar-, M-Galangin-, and H-Galangin-treated mice compared to those in the PD model group (p < 0.05 or p < 0.01). Additionally, the pole climbing time was reduced in the madopar- and all doses of Galangin-treated mice compared to the PD model mice (p < 0.05 or p < 0.01, Figure 2D). In conclusion, these results demonstrated that Galangin enhanced the motor coordination and endurance of PD model mice.

[image: A diagram shows a timeline and three bar graphs. The timeline (A) depicts the administration of Galangin or Madopar over 28 days, with MPTP injection on day 1 and tests conducted on days 26 to 28. Graph B illustrates the staying time of rotarod tests in seconds, showing improved performance in treated groups. Graph C displays the number of autonomous activities, with higher counts in Galangin-treated groups. Graph D shows pole climbing behavior in seconds, indicating enhanced performance for treated subjects. Control, Model, Madopar, and various Galangin dosages are compared.]

FIGURE 2
 Galangin treatment improves motor coordination in PD mice. (A) Galangin administration design and behavioral testing schedule in mice. (B) Staying time of rotarod test in PD mice. (C) The autonomous activity in PD mice. (D) The pole climbing behavior test in PD mice. n = 10 in each group; **p < 0.01 vs. control group; #p < 0.05, ##p < 0.01 vs. model group; The F-values for (B–D) are 6.852, 262.950 and 34.456, respectively. PD, Parkinson’s disease; L-Galangin, low dose of Galangin; M-Galangin, medium dose of Galangin; H-Galangin, high dose of Galangin.




3.3 Galangin ameliorates MPTP-induced brain inflammation and oxidative stress damage

Previous studies have shown that brain neuroinflammation is one of the crucial pathogeneses of PD (Chrysoula et al., 2020). The resistance to brain injury induced by Galangin was assessed by measuring the levels of IL-1β, TNF-α, IL-6 and GSH-Px, SOD, MDA using ELISA (Figures 3A–F). The present data indicated that compared with the control mice, the levels of IL-1β, TNF-α, IL-6 in the brain tissue of PD model mice increased significantly, however, the situation for GSH-Px was the opposite (p < 0.01). Moreover, the levels of IL-1β, TNF-α, IL-6 and MDA in the Galangin groups were significantly decreased compared with those in the PD model group, while the levels of GSH-Px and SOD were significantly elevated (p < 0.05 or p < 0.01). Additionally, MPTP, after crossing the blood–brain barrier, damages the dopaminergic neurons in the substantia nigra pars compacta (SNc) and the striatum, leading to a decrease in DA levels, which in turn causes PD-like behavioral abnormalities and neuropathological changes (Episcopo et al., 2013). Our study found that compared to the control group, the levels of DA and its metabolites DOPAC and HVA in the striatum of the PD model group mice were significantly decreased. Compared to the PD model group, the levels of DA and its metabolites DOPAC and HVA in the Madopar group and the high-dose Galangin group were significantly increased (p < 0.05 or p < 0.01, Figures 3G–I). Collectively, these results indicate that Galangin increases DA level and decreases oxidative damage in the striatum of mice induced by MPTP. Thus, Galangin could be an effective agent against oxidative injury for the treatment of PD.

[image: Bar graphs labeled A to I show comparisons of various biomarkers across different groups: Control, Model, Madopar, L-Galagin, M-Galagin, and H-Galagin. Each graph represents different measurements such as IL-1β, TNF-α, IL-6, GSH-pX, SOD, MDA, DA, DOPAC, and HVA. Results are depicted with statistical significance markers, illustrating differences in biomarker levels among the groups.]

FIGURE 3
 Galangin reduces brain inflammatory injury and decreases oxidative stress. Expressed protein levels of (A) IL-1β, (B) TNF-α, (C) IL-6, (D) GSH-Px, (E) SOD, (F) MDA, (G) DA, (H) DOPAC, and (I) HVA were determined by ELISA (n = 8). *p < 0.05, **p < 0.01 vs. control group; #p < 0.05, ##p < 0.01 vs. model group. The F-values for A to I are 4.497, 4.861, 4.765, 5.132, 5.034, 6.261, 12.364, 393.057, and 179.145, respectively. IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α; IL-6, Interleukin-6; GSH-Px, glutathione peroxidase; SOD, Superoxide dismutase; MDA, Malondialdehyde; H-Galangin, high dose of Galangin; DA, Dopamine; DOPAC, dihydroxyphenylacetic acid and HVA, homovanillic acid.




3.4 Effect of Galangin on histopathological changes in the brain of mice with PD

The results of HE staining (Figures 4A,C,E,G) and nipponite staining (Figures 4B,D,F,H) showed that the number of neurons in the CA1 area of the hippocampus and striatum in the control group was increased, with a graphic or oval morphology, neat arrangement, clear hierarchy, and abundant nidus; compared with the control group, the number of neurons in the CA1 area of the hippocampus and striatum in the model group was significantly reduced (p < 0.01), the morphology was triangular or irregular polygonal, the number of free cells were increased and arranged in a disordered manner, the hierarchy was unclear, the cytosol was solidified and profoundly stained, and the number of nipponite bodies was less (p < 0.01); compared with the model group, the neuronal pathological changes in the hippocampal CA1 area and striatal of the madopar and H-Galangin groups showed different degrees of attenuation, with tiny cell gaps, higher number of cells, orderly arrangement, and a significant increase in the number of nipponite bodies (p < 0.05 or p < 0.01). The above results suggest that Galangin could reduce the degree of neuronal pathology caused by MPTP.

[image: Histological images (A-D) of brain tissues show four groups: Control, Model, Madopar, and H-Galangin. Insets highlight cellular features with arrows. Graphs (E-H) present the number of neurons in hippocampus and striatum sections through H&E and Nissl staining. Each condition is represented with statistical significance markers. Scale bars indicate 100 micrometers.]

FIGURE 4
 Histopathology of hippocampus and striatum of mice in each group (n = 6, ×200). (A) Represents the HE staining of the hippocampus; (B) represents the nissl staining of hippocampus; (C) represents HE staining of the striatum; (D) represents the nissl staining of the striatum. (E) represents the number of neurons in hippocampus by HE staining; (F) represents the number of neurons in hippocampus by nissl staining; (G) represents the number of neurons in striatum by HE staining; (H) represents the number of neurons in striatum by nissl staining. **p < 0.01 vs. control group; #p < 0.05, ##p < 0.01 vs. model group. The F-values for E, F, G and H are 16.410, 9.701, 3.078, and 10.909, respectively. H-Galangin, high dose of Galangin. Black arrows indicate the nissl bodies and red arrows indicate neurons.




3.5 Galangin reduces α-syn deposition and promotes TH expression

As shown in Figure 5, compared with the control group, the expression of α-syn in the striatum (Figures 5A,E) and mesocerebrum (Figures 5B,F) of mice in the model group was significantly increased, while the expression of TH was significantly attenuated (p < 0.01); compared with the model group, the expression of α-syn in the striatum and mesocerebrum of mice in the madopar- and Galangin-treated groups was significantly down-regulated, while the expression of TH in the striatum (Figures 5C,G) and mesocerebrum (Figures 5D,H) was significantly enhanced (p < 0.05 or p < 0.01).

[image: Microscopic images and bar graphs comparing the effects of Control, Model, Madopar, and H-Galangin treatments on brain tissue samples. Panels A to D show stained tissue sections with labeled insets. Panels E to H display bar graphs representing the positive expression rates of α-synuclein and TH in the striatum and mesocerebrum, showing variations across different treatments.]

FIGURE 5
 The expression of α-syn and TH in striatum and mesocerebrum of each group was detected by immunohistochemistry (n = 6, ×200). (A) Represents the α-syn expression of the striatum; (B) represents the α-syn expression of the mesocerebrum; (C) represents the TH expression of the striatum; (D) represents the TH expression of the mesocerebrum; (E) represents the changes in α-syn expression of striatum in each group; (F) represents the changes in α-syn of mesocerebrum in each group; (G) represents the changes in TH expression of striatum in each group; (H) represents the changes in TH expression of mesocerebrum in each group. **p < 0.01 vs. control group; #p < 0.05, ##p < 0.01 vs. model group. The F-values for (E–H) are 58.562, 8.582, 16.092 and 131.747, respectively. α-syn, α-synuclein; TH, Tyrosine hydroxilase; H-Galangin, high dose of Galangin.




3.6 Galangin alleviates autophagy and activates PI3K/AKT pathway

The PI3K/AKT signaling pathway can be activated by various types of cell stimulation or toxic injury, and has basic cellular functions such as regulating cell proliferation, apoptosis, and differentiation. Studies have shown that activation of PI3K/AKT signaling pathway inhibits autophagy, which can reduce nerve function injury and play a neuroprotective role (Guo et al., 2015). To verify the effect of Galangin on the PI3K/AKT signaling pathway and autophagy after MPTP-induced neuron injury, IF (Figures 6A–H) and WB (Figures 7A–O) analyses were used to evaluate the protein expression levels of α-syn, TH, P-PI3K, P-AKT, P-mTOR, Beclin-1, LC3BII/LCBI, P62 in the mesocerebrum of the brain at 28 days after treating. The results suggested that the protein levels of TH, P-PI3K, P-AKT and P62 was significantly downregulated in the PD model group compared to that in the control group (p < 0.05 or p < 0.01), and α-syn, Beclin-1 and LC3BII/LCBI were significantly upregulated (p < 0.05 or p < 0.01). Moreover, the protein levels of α-syn, SRC, Beclin-1 and LC3BII/LCBI were decreased, and the protein levels of TH, BDNF, P-CREB, P-PI3K, P-AKT, P-mTOR and P62 protein were increased by Galangin treatment (p < 0.05 or p < 0.01). These results indicated that Galangin alleviates MPTP-induced autophagy and activates the protein levels of P-PI3K/PI3K and P-AKT/AKT to protecting neurons in PD mice.

[image: Microscopic images show cellular expression in four conditions: Control, Model, Madopar, and H-Galangin, each with sections A to D. Insets highlight specific areas with a scale of 100 micrometers. Graphs E to H display the positive expression rates of Beclin-1 and P62 in the striatum and mesocerebrum, with data points marked by dots and statistical significance indicated by asterisks and hashes.]

FIGURE 6
 The expression of Beclin-1 and P62 in striatum and mesocerebrum of each group was detected by immunofluorescence (n = 6, ×200). (A) Represents the Beclin-1 expression of the striatum; (B) represents the P62 expression of the striatum; (C) represents the P62 expression of the mesocerebrum; (D) represents the Beclin-1 expression of the mesocerebrum; (E) represents the changes in Beclin-1 expression of striatum in each group; (F) represents the changes in P62 expression of striatum in each group; (G) represents the changes in P62 expression of mesocerebrum in each group; (H) represents the changes in Beclin-1 expression of mesocerebrum in each group; *p < 0.05, **p < 0.01 vs. control group; #p < 0.05, ##p < 0.01 vs. model group. The F-values for (E–H) are 4.283, 4.283, 4.280, and 11.320, respectively. H-Galangin, high dose of Galangin.


[image: Western blot analysis and bar graphs depict protein expression levels across three groups: Control, Model, and H-Galngin. Panels A-C show blots for various proteins, including α-syn and TH. Panels D-O present quantified data, showing relative protein levels with statistical markers indicating significant differences between groups. The graphs illustrate variations in protein expressions like α-syn/GAPDH, TH/GAPDH, and others.]

FIGURE 7
 Galangin alleviated autophagy and activated PI3K/AKT signaling pathway in PD mice. (A) Protein levels of α-syn, TH, Beclin-1, LC3BII, P62, (B) protein levels of P-PI3K, P-AKT, P-mTOR, and (C) protein levels of BDNF, P-CREB, PTGS2 and SRC in mesocerebrum were determined by western blotting. Quantitative analyses of α-syn (D), TH (E), Beclin-1 (F), LC3BII (G), P62 (H), P-PI3K (I), P-AKT (J), P-mTOR (K), BDNF (L), P-CREB (M), PTGS2 (N) and SRC (O) by e-Blot software. n = 6, *p < 0.05, **p < 0.01 vs. control group; #p < 0.05, ##p < 0.01 vs. model group. The F-values for (A–C) are α-syn (48.623), TH (32.490), Beclin-1 (15.752), LC3BII (133.073), P62 (355.598), P-PI3K (184.939), P-AKT (41.508), P-mTOR (20.195), BDNF (11.111), P-CREB (14.550) and PTGS2 (2.400) and SRC (7.697), respectively. PD, Parkinson’s disease; α-syn, α-synuclein; TH, tyrosine hydroxilase; H-Galangin, high dose of Galangin; PI3K, Phosphatidylinositol 3-Kinase; AKT, Protein Kinase B; PTGS2, prostaglandin-endoperoxide synthase 2 Gene; BDNF, brain-derived neurotrophic factor; CREB, cAMP-response element binding protein; SRC, Sample Rate Convertor.




3.7 Mesocerebrum transcriptome analysis

The heat map and volcano map of differentially expressed genes showed the distribution of differentially expressed genes in the mesocerebrum tissue of the two groups of mice. There were 4,515 differentially expressed genes in H-Galangin and model mice, including 2,449 up-regulated genes and 2066 down-regulated genes (p < 0.05, Figures 8A–C). Compared with the model group, the expression of Cpa4, Cdc6, pbk, Lrr1, Esco2, Tlr9, spc24, Ankle1, Pclaf, lqgap3 and other genes in the mesocerebrum of H-Galangin group was significantly down-regulated. Expressions of LOC115487393, Gsta3, Gm40703, Rgs1, Cd200r4 and other genes were significantly up-regulated (Figures 8D–F).

[image: Composite image showing multiple data visualizations: A) Boxplot for FPKM values comparing two groups; B) Bar chart of differentially expressed gene numbers; C) Volcano plot displaying gene significance; D) Heatmap of gene expression across conditions; E) Bar charts of biological processes, cell components, and molecular functions analyzed; F) Dot plots of pathway enrichment with p-values and gene numbers. Each visualization provides insights into gene expression and related biological functions.]

FIGURE 8
 Transcriptomic analysis and differential gene validation results in the mesocerebrum of mice. (A) The FPKM boxplot group G and Group M. (B) Statistic of differently expressed gene in group G and Group M. (C) Differential gene volcano map of two groups of group G and group M. (D,E) show the KEGG and GO analysis result diagrams for the group G and group M, respectively. (F) Differential gene heat maps of group G and group M. Red, up-regulated gene; Blue, down-regulated gene; group G, H-Galangin group; Group M, model group.




3.8 Galangin changed the transcriptional levels of the candidate genes

Galangin can alter the expression of predicted core proteins. Nevertheless, how it affects these candidate proteins remains unclear. To further clarify the molecular mechanism by which Galangin regulated protein expression, we examined the mRNA expression of IL-1β, TNF-α, IL-6, GSH-Px, ALB, SRC, ESR1, PTGS2, CDK1, CDK2 and PARP1 in mesocerebrum according to the results of network analysis. The qRT-PCR results showed that after treating PD model mice with H-Galangin (100 mg/kg) for 28 days, the mRNA levels of IL-1β, TNF-α, IL-6, SRC, PTGS2 were upregulated except ESR1, GSH-Px and ALB in the mesocerebrum of the PD model mice compared with the control mice (p < 0.05). There was no significant difference in CDK1, CDK2, PARP1 and ESR1 expression in PD model mice compared to control mice after treating Galangin. Moreover, these results indicated that Galangin downregulated the levels of IL-1β, TNF-α, IL-6, SRC, and PTGS2 mRNA compared with those of PD model mice (p < 0.05 or p < 0.01), However, it did not affect ALB, CDK1, CDK2, ESR1, PARP1 (Figures 9A–K). Consequently, these data suggested that Galangin decreased the transcript levels of IL-1β, TNF-α, IL-6, SRC and PTGS2 in PD model mice.

[image: Bar charts illustrate mRNA levels of various genes across three groups: Normal/Control, Model, and H-Galangin treated. Each chart, labeled A to V, shows different genes. Significant differences are indicated by asterisks and hash symbols. Error bars represent variability within the groups.]

FIGURE 9
 RT-qPCR analysis of differentially expressed genes in the mesocerebrum of each group mice. n = 6, *p < 0.05, **p < 0.01 vs. control group; #p < 0.05, ##p < 0.01 vs. model group. The F-values for (A–V) are (A) (IL-1β, 244.893), (B) (TNF-α, 6.800), (C) (IL-6, 13.980), (D) (GSH-Px, 29.913), (E) (ALB, 12.895), (F) (SRC, 38.801), (G) (ESR1, 3.219), (H) (CDK1, 0.776), (I) (CDK2, 0.094), (J) (PARP1, 0.128), (K) (PTGS2, 26.508), (L) (Cpa4, 9.184), (M) (Lrr1, 67.731), (N) (Tlr9, 9.630), (O) (spc24, 2.557), (P) (Esco2, 1007.165), (Q) (Cdc6, 9.712), (R) (pbk, 9.482), (S) (Nfkb1, 18.542), (T) (Tnf, 13.589), (U) (Gsta3, 20.973), and (V) (Pik3r1, 9.482), respectively. IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α; IL-6, Interleukin-6; GSH-Px, glutathione peroxidase; ALB, albumin; SRC, Sample Rate Convertor; ESR1, Estrogen Receptor 1; PTGS2, Prostaglandin Endoperoxide Synthase 2; CDK1, cyclin dependent kinase 1; CDK2, cyclin dependent kinase 2; PARP1, Poly ADP-ribose polymerase 1; Cpa4, carboxypeptidase a4; Lrr1, leucine rich repeat protein 1; Tlr9, toll-like receptor 9; spc24, spindle pole component 24; Nfkb1, nuclear factor kappa B subunit 1; Tnf, Tumor necrosis factor; Gsta3, glutathione S-transferase alpha 3; Pik3r1, phosphoinositide-3-kinase regulatory subunit 1; Esco2, establishment of sister chromatid cohesion N-acetyltransferase 2; Cdc6, cell division cycle 6; pbk, PDZ binding kinase; H-Galangin, high dose of Galangin.


In order to further verify the expression level of differential genes by transcriptome sequencing, the key genes of differentially expressed genes in the midbrain of two groups of mice were verified by RT-qPCR. Compared with the model group, mRNA expression of Gpc5c genes in mesocerebrum of the H-Galangin treated group was significantly up-regulated (p < 0.05 or p < 0.01). In addition, the most significantly down-regulated gene mRNA was Cpa4, Lrr1, Tlr9, spc24, nfkb1, Tnf, Gsta3, Pik3r1, Esco2, Cdc6 and pbk (p < 0.05 or p < 0.01), which was consistent with the trend of transcriptome sequencing (Figures 9L–V).




4 Discussion

Currently, research on the use of Galangin in treating PD is limited, and our study remains an early exploratory investigation. Following the 4R principles, we adopted a dual-dose (high and low) administration approach. Our experimental results showed that Galangin improved motor coordination abilities in mice with PD during the behavioral tests. These results can be a supplement for the experimental study of Galangin anti-PD (Chen et al., 2017; Chen et al., 2022), and support the results of our network analysis and molecular docking that Galangin may be a candidate for the PD agent. MPTP-induced experimental model of PD is a representative research model, the mechanism of which is the entry of MPTP into the body. It is converted to MPP+ under the action of monoamine oxidase to produce symptoms similar to PD (Jackson-Lewis and Przedborski, 2007). MPP+ production will lead to ATP production disorder, intracellular Ca2+ level increase and reactive oxygen species production, causing dopaminergic neuron death (Episcopo et al., 2013). Studies have shown that Galangin is useful for treating PD (Kilic et al., 2019; Zeng et al., 2015; Huang et al., 2016). It is difficult to accurate insight into the potential pharmacological mechanisms by which Galangin improves motor coordination using traditional methods. Consequently, we used network analysis and molecular docking to predict and validate the relevant targets and possible mechanisms. Additionally, we employed transcriptome sequencing to construct and analyze a target network, identifying multiple drug targets. Enrichment and functional analyses were conducted to further elucidate Galangin’s mechanisms of action.

Research has confirmed that the key targets of Galangin against liver cancer were SRC, ESR1, MMP9, CDK4, CCNB1, MMP2, CDK2, CDK1, CHEK1 and PLK1 (Li et al., 2024). And the other research found that Galangin administration significantly suppressed the prominent enhancement of PTGS2 induced by RSL3 in HT1080 cells (Chen et al., 2022). Based on the analysis of our network analysis in Galangin with PD, we successfully found that SRC, ESR1 and PTGS2 are important regulators of Galangin in PD. The lignans of S. chinoea can down-regulate the expression of SRC protein in SW1353 cells induced by IL-1β, and then regulate the inflammatory response in the body (Min et al., 2021; Li et al., 2021). PTGS2 is an up-regulated gene, and the expressions of PTGS2, nf-κb increased in MCAO rats, and the specific expression of PTGS2 is decreased, which can inhibit the nf-κb signaling pathway, inhibit cell apoptosis, and promote the proliferation, migration and angiogenesis of endothelial progenitor cells (Zhou et al., 2019). ESR1 is mainly expressed in endothelial cells, vascular smooth muscle cells and macrophages, and plays an influential role in the physiology and function of blood vessel walls. Mutations in the ESR1 gene may lead to cerebral infarction (Gao et al., 2014). We hypothesize that Galangin modulates the mRNA levels of SRC, ESR1 and PTGS2, thereby improving motor coordination abilities. However, we expect that multiple mechanisms contribute to this function. KEGG pathway enrichment analysis predicted that Galangin ameliorates neuroinflammation by regulating multiple pathways of which regulation of the PI3K/AKT signaling pathway is critical. The PI3K/AKT signaling pathway has multiple roles, closely related to cell proliferation, apoptosis, oxidative stress, and inflammatory reaction (Ji and Wang, 2019; Manning and Toker, 2017). However, it is not clear whether Galangin is interlinked with this signaling pathway in motor coordination after MPTP successfully constructed PD model. After experimental verification, it was found that PI3K/AKT signaling pathway is disrupted in mice with MPTP injury. In contrast, Galangin dose-dependently restored PI3K/AKT signaling pathway activation, which is critical for normal brain functioning.

Previous studies have shown that abnormal autophagy function is strongly associated with a variety of diseases, including neurodegenerative diseases, tumors, and other diseases (Kiriyama and Nochi, 2015). During MPTP-induced PD events, a substantial accumulation of α-syn and dysfunctional organelles occurs, causing the activation of autophagy. Studies suggest that autophagy is involved in the entire process of PD pathogenesis (Dehay et al., 2010). Autopsies of patients with PD revealed an accumulation of autophagosomes accompanied by the absence of lysosomal markers in dopaminergic neurons (Heras-Sandoval et al., 2014). The PI3K/AKT/mTOR pathway may be affected to varying degrees in the brains of PD patients, and autopsy results of PD patients have revealed decreased activity of phosphorylated AKT in dopaminergic neurons; however, some studies have suggested that autophagy in the course of PD may be independent of the PI3K/AKT/mTOR pathway leading to neuronal damage (Mancuso and Navarro, 2015), and further research is needed to determine whether autophagy is involved in the pathogenesis of PD by affecting the PI3K/AKT/mTOR pathway. However, both network analysis and transcriptomic results suggest that Galangin treatment of PD mice is closely related to the PI3K/AKT pathway. In order to verify this conclusion, we established a mouse model of PD by MPTP, and evaluated the anti-PD effect of Galangin by roller test, TH, α-syn, autophagy and other indicators. Results demonstrated that Galangin improved motor coordination in PD mice and that the neuronal morphology and organization in the hippocampus and striatum were significantly better in the treatment group compared to the model group. Notably, the number of nistids and neurotrophic factor levels of BDNF and CREB were elevated, suggesting that Galangin can alleviate the neuronal damage caused by MPTP. The α-syn protein S129D mutant increases TH phosphorylation and DA synthesis (Hua et al., 2015; Xu et al., 2015). TH provides instructions for synthesizing DA in dopaminergic neurons, which is essential for the normal functioning of the nervous system. In the PD model, it was found that the accumulation or loss of α-syn would lead to dysregulation of TH activity in the brain (Farrell et al., 2014). Our previous experimental studies also found that after the use of autophagy inhibitors to inhibit autophagy activity, TH activity was increased, while α-syn expression was reduced, and the neuronal damage was attenuated (Zhang et al., 2016). Notably, Beclin-1, LC3B and P62 are widely employed as autophagy biomarkers. LC3B is the first autophagosome membrane protein found in eukaryotic cells. It is an important component of autophagosome, and its content is positively correlated with the number of autophagosomes (Chmid et al., 2013). Beclin-1 is a promoter of autophagy, and its activity is regulated by phosphorylation and ubiquitination in various ways, thus regulating autophagy level (Park et al., 2018; Hill et al., 2019). Autophagy receptor P62 recognizes ubiquitin-labeled proteins and organelles that degrade autophagy receptors and interacting adaptors during selective autophagy (Chmid et al., 2013). Dysautophagy can lead to accumulation of abnormal proteins or organelles in cells, causing PD. Moderate activation of autophagy can be used for the treatment of PD, while excessive autophagy can cause neuronal death. However, how to regulate autophagy for PD treatment is still a research difficulty. Herein, we observed that DA and its metaboliets DOPAC and HVA levels, TH and P62, P-PI3K, P-mTOR and P-AKT expression were decreased, and а-syn, Beclin-1, LC3B were significantly increased in the PD mice compared with the control mice. In contrast, treatment with Galangin abrogated the PD-mediated increase in autophagy levels, at the same time, а-syn decreased, DA and its metaboliets DOPAC and HVA levels, TH, P-PI3K, P-mTOR and P-AKT expression evaluated. These results indicated that Galangin may alleviated the autophagy and improved the motor dysfunction PD mice (Figure 10).

[image: Diagram illustrating the effects of Alpinia officinarum (galangin) on neuronal damage and survival. On the left, Alpinia officinarum produces galangin. MPTP is shown to cause neuronal damage by increasing autophagy, with pathways involving alpha-synuclein. Galangin counters this by enhancing SOD activity, activating PI3K, Akt, and mTOR pathways, leading to reduced neuronal damage. On the right, this cascade improves dopamine levels, promoting neuronal survival with increased TH, BDNF, and P-CREB.]

FIGURE 10
 Galangin attenuated MPTP-induced brain tissue injury in PD model mice, and the related mechanism may be related to the PI3K/AKT signaling pathway. MPTP-induced neuronal injury in the brain of PD model mice exhibited α-syn aggregation, decreased TH expression, increased inflammatory factor levels, and high autophagy levels. Activation of PI3K/AKT signaling pathway could alleviate the autophagy level to a certain extent, reduce inflammation, decrease α-syn aggregation and promote TH expression, and finally repair the activity of dopaminergic neurons. Therefore, we demonstrate the preventive and therapeutic potential of Galangin in attenuating PD, at least in part, by regulating the PI3K/AKT signaling pathway. MPTP, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; PD, Parkinson’s disease; α-syn, α-synuclein; TH, tyrosine hydroxilase; PI3K, Phosphatidylinositol 3-Kinase; AKT, Protein Kinase B; mTOR, mechanistic target of rapamycin.


Neuroinflammation is considered to be an important factor in the pathogenesis of PD (Lee et al., 2019; Earls and Lee, 2020). In many animal models of PD, peripheral inflammation has been shown to exacerbate the degeneration of dopaminergic neurons. Oxidative stress, mitochondrial dysfunction, abnormal aggregation of α-syn, and synergistic effects of endogenous neurotoxins can also exacerbate chronic inflammation and neuronal death (Sun et al., 2019; Liddelow et al., 2017). Research indicates that when the NLRP3 inflammasome detects α-syn aggregation, it activates caspase-1, which subsequently induces the release of pro-inflammatory cytokines such as IL-1β and IL-18. This process intensifies the inflammatory response in PD and promotes further injury to dopaminergic neurons and excessive α-syn aggregation. Knockout the inflammasome can make MPTP-induced PD mouse models characteristic of loss of anti-nigra dopaminergic neurons associated with decreased secretion of IL-1β and IL-18 (Yan et al., 2015; Teleanu et al., 2022). Therefore, antioxidant have become an important idea in PD treatment, which helps to protect neurons and delay neurodegeneration, so as to delay the development of the disease. Catalase (CAT) and GSH-Px have antioxidant activities, and the decrease of CAT and GSH-Px levels in PD patients is an important reason for the mass production of free radicals, which accelerates the damage of dopaminergic neurons and accelerates the development of the disease (Percario et al., 2020; Leathen et al., 2022). Our experimental results indicate that the PD model group exhibited significant oxidative stress damage. Specifically, compared to the control group, the levels of GSH-Px mRNA, GSH-Px and SOD significantly decreased, while the level of MDA significantly increased. Compared to the PD model group, the different doses of Galangin treatment groups significantly upregulated the levels of GSH-Px mRNA, GSH-Px and SOD, and downregulated the level of MDA. These results further suggest that Galangin has a protective effect on MPTP-induced PD model mice, which may be related to its antioxidant properties. Furthermore, our results also found that the protein or mRNA levels of IL-1β, IL-6 and TNF-α were elevated in PD model mice. Galangin administration partially restored the levels of IL-1β, IL-6 and TNF-α. We suggest that PD mice suffering from MPTP toxicity have a redox imbalance in the brain. The abnormal accumulation of IL-1β, IL-6 and TNF-α disrupted the normal structure of the brain and cognitive function.

To further explore the molecular mechanism of Galangin intervention in PD, we conducted transcriptomic analysis of differentially expressed genes in the midbrain tissues of mice from both the high-dose Galangin-treated group and the model group. Following this, we performed GO analysis and enrichment analysis of differentially expressed genes. The GO analysis results of this study showed that compared with the model group, the functions of the differential genes in the Galangin treated group were mainly focused on cell cycle, DNA replication, cytoplasm, and identical protein binding. In addition, the enrichment analysis results of KEGG signal pathway showed that compared with the model group, the differential genes involved in the Galangin treatment group were mainly PI3K/AKT signaling pathway, MAPK signaling pathway, TNF signaling pathway and cellular senescence. These results suggest that the anti-PD effect of Galangin may be related to the regulation of cell function and inflammatory response. Furthermore, the results of differential gene analysis in this study showed that after the intervention of Galangin in PD, the top 10 genes up-regulated in the midbrain of PD mice involving Gsta3, LOC115487393, Pik3r1, Gm40703, Rgs1, Gm52312, Gm46784, Cd200r4, Gprc5c, Gm30657. Conversely, down-regulated genes included Cpa4, Tnf, Cdc6, Pbk, Lrrl, Esco2, Nfkb1, Tlr9, Ankle1 and Pclaf. Most of these genes are related to cell growth and apoptosis, cancer, inflammation and so on. Among them, Nfkb1 is a widespread and important transcription factor involved in T cell activation, gene expression involved in a variety of biological functions such as immune regulation and cell adhesion, and is associated with a variety of immune diseases (Camblor et al., 2022; Dange et al., 2015; Ladygina et al., 2013; Jiang et al., 2022). According to the RT-PCR test, compared with the PD model group, Cpa4, Lrr1, Tlr9, spc24, Nfkb1, Tnf, Gsta3, Pik3r1 and Esco2 in Galangin group were significantly down-regulated, while Gpc5c was up-regulated. The results were consistent with those of transcriptomic analysis. Therefore, we suggest that Galangin can improve motor coordination of PD mice is closely related to activate the PI3K/AKT pathway and anti-inflammation.

Our concentration analysis of the KEGG pathway in network analysis indicates that the PI3K/AKT pathway is one of the primary anti-PD pathways influenced by Galangin, along with cellular senescence, the MAPK signaling pathway, the TNF signaling pathway, and the p53 signaling pathway. However, we only studied PI3K/AKT and did not conduct relevant studies on other pathways. Additionally, the other difference-related genes do not appear in the PI3K/AKT pathway, and the correlation with PD is not yet clear, so it needs to be verified in the next step. There will be further explanation as to whether these signaling pathways are involved in PD. Furthermore, these pathways are complex, and more intensive studies can be conducted in the future to explore the specific mechanisms signaling Galangin exerts protective effects against PD.



5 Conclusion

In conclusion, this study confirmed that Galangin treatment promoted motor coordination and attenuated the damage of dopaminergic neurons in PD model mice. The therapeutic effect of H-Galangin was more significant than that of L-Galangin and M-Galangin. Additional exploration of the mechanism of the protective effect of Galangin on the PD model mice through network analysis, molecular docking and transcriptomic analysis suggested that it may involve the activation of the PI3K/AKT signaling pathway. Moreover, Galangin inhibited autophagy-related protein levels and promoted neurotrophic factor levels of BDNF and CREB. These results suggest that Galangin could be developed as a drug for PD therapy.
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8   https://bioinfogp.cnb.csic.es/tools/venny/

9   https://string-db.org/cgi/input.pl

10   https://david.ncifcrf.gov/
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Background: Parkinson’s disease (PD) typically presents with unilateral symptoms in early stages, starting on one side and progressing, with the onset side showing more severe motor symptoms even after bilateralization. This asymmetry may reflect complex interactions among multiple brain regions and their network connections. In this study, we aimed to use surface-based morphometry (SBM) and structural covariance networks (SCNs) to investigate the differences in brain structure and network characteristics between patients with left-onset PD (LPD) and right-onset PD (RPD).
Methods: A total of 51 LPD and 49 RPD patients were recruited. Clinical assessments included the Unified Parkinson’s Disease Rating Scale motor section, Hoehn and Yahr stage, Mini-Mental State Examination, Parkinson’s Disease Questionnaire, and Beck Depression Inventory. All participants underwent 3 T structural MRI. FreeSurfer was used to perform vertex-wise comparisons of cortical surface area (CSA) and cortical thickness (CT), whereas the Brain Connectivity Toolbox was implemented to construct and analyze the structural covariance networks.
Results: In patients with LPD, we found reduced CSA in the right supramarginal gyrus (SMG), right precuneus (PCUN), left inferior parietal lobule (IPL), and left lingual gyrus (LING) compared to RPD, while no significant differences in CT were found between the two groups. The CSA of the right PCUN showed a significant positive correlation with MMSE score in LPD patients. In our SCNs analysis, LPD patients exhibited increased normalized characteristic path length and decreased small-world index in CSA-based networks, while in CT-based networks, they showed increased small-world index and global efficiency compared to RPD. No significant differences in nodal characteristics were observed in either CSA-based or CT-based networks between the two groups.
Conclusion: In patients with LPD, reductions in CSA observed in the right PCUN, right SMG, left IPL, and left LING may be associated with cognitive impairments and hallucinations among non-motor symptoms of PD. Additionally, the SCNs of LPD and RPD patients show significant differences in global topology, but regional node characteristics do not reflect lateralization differences. These findings offer new insights into the mechanisms of symptom lateralization in PD from the perspective of brain regional structure and network topology.
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 Parkinson’s disease; asymmetry; side-of-onset; surface-based morphometry; structural covariance networks; cortical thickness; cortical surface area


Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease, characterized by a spectrum of progressive motor and non-motor symptoms (Aarsland et al., 2021). The pathophysiology of PD is complex and not yet fully understood. However, one prominent clinical feature of PD is the asymmetry of motor symptoms, which typically begin on one side of the body and later progress to the other (Wang et al., 2015). The onset side, also known as the symptomatic dominant side, often displays more severe motor symptoms even when the disease becomes clinically bilateral (Djaldetti et al., 2006). Unlike the symmetric presentation of multiple-system atrophy and progressive supranuclear palsy in their classic forms, this asymmetry in PD may reflect its unique heterogeneity and provides valuable insights into its progression mechanisms (Postuma et al., 2015; Wang Z. et al., 2016; Miki et al., 2021).

Numerous studies have found that the side of onset of motor symptoms in PD might influence their clinical characteristics and the progression of non-motor symptoms. For instance, left-onset PD (LPD) often show poorer visual memory and visuospatial impairments (Amick et al., 2006; Verreyt et al., 2011), more frequent hallucinations (Stavitsky et al., 2008), and a higher prevalence of rapid eye movement sleep behavior disorder (Baumann et al., 2014). In contrast, right-onset PD (RPD) is associated with poorer verbal memory and language task impairments (Amick et al., 2006; Verreyt et al., 2011), apathy (Harris et al., 2013), and a higher risk of impulse control behaviors (Phillipps et al., 2020). These clinical differences highlight the potential impact of PD lateralization on non-motor symptoms, possibly reflecting underlying brain structure variations. However, the mechanisms involved in PD asymmetry have not yet been elucidated.

Structural magnetic resonance imaging (MRI) studies offer preliminary evidence for the lateralization of PD. For example, LPD patients show reduced gray matter volume in the right middle frontal gyrus and precuneus (PCUN), which are closely linked to visuospatial memory impairment (Lee et al., 2015). Additionally, LPD patients show cortical thinning in motor-related areas of the left hemisphere (Kim et al., 2014). Conversely, studies on cortical complexity in RPD patients have revealed decreased mean fractal dimension and mean sulcal depth in the left superior temporal sulcus compared to LPD patients (Zhang et al., 2021). Although these findings provide some insight into brain structure changes related to PD lateralization, limited research has focused on cortical surface area (CSA) and cortical thickness (CT). Surface-based morphometry (SBM) tools such as FreeSurfer can accurately quantify CSA and CT (Goto et al., 2022). CSA indicates the unfolding of cerebral cortex, while CT reflects the density and distribution of neurons (Winkler et al., 2018). Joint analysis of CSA and CT may provide new insights into cortical changes associated with PD asymmetry.

Moreover, PD involves altered connections between various brain regions, it can also be considered a brain network disorder (Canu et al., 2015; Wang M. et al., 2016; Ji et al., 2018). The asymmetry in PD may result from the unequal degeneration of midbrain dopaminergic neurons, but it remains unknown how this localized structural damage leads to abnormalities in the entire brain network (Li et al., 2020). Structural covariance networks (SCNs) provide an effective means to explore the lateralization of PD from a network perspective by revealing coordinated morphological variations across brain regions (Vijayakumar et al., 2021). Studies have reported increased clustering coefficient and path length in SCNs of PD patients compared to healthy controls, suggesting network-level abnormalities associated with disease progression (Pereira et al., 2015; Zhang et al., 2015; Xu et al., 2017; Wu et al., 2018). Despite these findings, SCNs related to the lateralization of PD remain poorly understood.

Therefore, this study aims to analyze cortical structural changes in LPD and RPD patients using the SBM approach and to investigate differences in brain network topology between the two groups through SCNs analysis. We expect that these investigations will provide new insights into the mechanisms underlying the lateralization of PD.



Materials and methods


Participants

This study was approved by the local ethical committee of the First Affiliated Hospital of Zhengzhou University. In compliance with the Declaration of Helsinki, written informed consent was obtained from all subjects before participation. The inclusion criteria were as follows: (1) no significant cognitive impairment assessed by the Mini-Mental State Examination (MMSE); (2) right-handedness; and (3) no history of other psychiatric or neurological diseases. Subjects were excluded if they (1) had other diseases and treatments that could potentially affect brain function, such as atypical parkinsonism, cerebral trauma, stroke, and other diseases of the neurological system; (2) had contraindications to MRI or were unable to cooperate with an MRI scan and clinical assessments. All PD patients underwent assessment in a practically defined “off” state, achieved by withholding anti-parkinsonian medications for 12 h overnight (Espay et al., 2012), except during MRI acquisition. PD patients were divided into LPD and RPD groups based on the side of motor symptom onset. This classification was confirmed through retrospective chart reviews, patient self-reports, and early-stage clinical evaluations by experienced neurologists at our institution.



MRI data acquisition and preprocessing

Anatomical 3D T1-weighted fast field echo (FFE) MRI images were acquired on a 3 T Siemens Verio scanner (Siemens, Erlangen, Germany) using a 32-channel receive coil in the Department of Medical Imaging, The First Affiliated Hospital of Zhengzhou University. A memory foam padding was used to minimize head motion, and earplugs were used to reduce scanner noise. The MRI parameters were as follows: 218 sagittal slices, repetition time (TR) = 1900 ms, echo time (TE) = 2.93 ms, thickness = 1.0 mm, no gap, flip angle = 9°, matrix size = 256 × 256 reconstructed to 352 × 352 over a 220-mm field of view, and voxel size = 0.625 × 0.625 × 1 mm3.

MRI data were preprocessed using FreeSurfer 7.4.1 to estimate CSA and CT (Dale et al., 1999; Fischl, 2012). FreeSurfer is open source software for accurate and automated human cortical thickness measurements and cross-subjects statistics based on cortical anatomy (Fischl and Dale, 2000). The suite offers both whole brain vertex-wise analysis, which localizes clusters across the whole cortical mantle and ROI-based analysis after automatically parcellating the cortex into regions based on standard anatomical and functional atlases. In short, image processing procedures included motion correction using the average of multiple volumetric images, skull and non-brain tissue stripping, automated Talairach transformation, subcortical white and deep grey matter segmentation, grey and white matter tessellation, automated topology correction, and surface deformation to optimize the grey/white and grey/cerebrospinal fluid boundaries. To ensure data quality, images were inspected for significant motion artifacts during preprocessing, and only those meeting quality standards were included for subsequent analysis. The quantitative measures of CSA and CT for cortical regions were defined using the Desikan atlas (Desikan et al., 2006).



Constructing structural covariance networks

The Brain Connectivity Toolbox was employed to construct the SCNs based on CSA and CT (Rubinov and Sporns, 2010). For each group, a 68 × 68 correlation matrix was constructed by calculating Pearson correlation coefficients between CSA or CT values of each brain region. To emphasize the strength of structural covariance regardless of direction, the absolute values of these coefficients were taken, and the resulting matrix was then converted into a binary adjacency matrix by thresholding to values of 1 or 0 (Figure 1). Thresholds were defined as a network sparsity range from 0.1 to 0.4 (increments of 0.01), which ensured that LPD and RPD networks had the same number of nodes and edges at each density. The chosen sparsity range allows the small-world network architectures to be properly estimated, and the number of spurious edges in each network is minimized, as indicated in previous studies (Achard and Bullmore, 2007; He et al., 2007).

[image: Four correlation matrices labeled A to D show relationships among variables. Each matrix uses a color scale from purple (0.0) to yellow (0.8). A and B depict the correlation of CSA in LPD and RPD, respectively, while C and D illustrate the correlation of CT in LPD and RPD. Each matrix features a grid with variable labels along the axes.]

FIGURE 1
 Correlation matrices with 68 × 68 for LPD and RPD groups based on cortical surface area (A,B) and cortical thickness (C,D). These matrices display the Pearson correlation coefficients between pairs of regions in the network. The color bar represents the absolute value of the Pearson correlation coefficients, indicating the strength of the connections.




Graph-based network analysis

As measures of network integration, we calculated the normalized characteristic path length, defined as the shortest path length between all pairs of nodes, and global efficiency, which measures how efficiently information is communicated between nodes. To assess network segregation, we analyzed the normalized clustering coefficient which evaluates the influence of different paths based on the connection weights of the node’s neighbors, and local efficiency, defined as the number of connections in the neighborhood of a certain node divided by the maximum number of possible connections between the neighbors of this node. To evaluate the extent of network modular organization, we computed modularity, which quantifies the strength of division of a network into distinct functional modules or communities. Small-worldness, reflecting the balance between network integration and segregation, was also computed. To explore group differences in nodal network measures, we examined nodal degree, nodal efficiency, and nodal betweenness centrality.



Statistical analysis

The statistical analyses of demographic and clinical indices were conducted using the SPSS version 22.0 (SPSS Inc., Chicago, IL, United States). The normal distribution of the data was assessed by Shapiro–Wilk test. Group differences in age, years of education, age at onset, Unified Parkinson’s Disease Rating Scale motor section (UPDRS-III), Beck Depression Inventory (BDI), and levodopa equivalent daily dose (LEDD) were analyzed with unpaired two-tailed t-tests. The Mann–Whitney U test was used to analyze differences in disease duration, Parkinson’s Disease Questionnaire (PDQ-39), MMSE, and Hoehn and Yahr stage. A two-tailed p < 0.05 was considered statistically significant.

To assess group differences in CT and CSA, we conducted whole-brain vertex-wise analysis using the graphical user interface of FreeSurfer known as QDEC (Query, Design, Estimate, Contrast) (van Eijndhoven et al., 2013; Bruno et al., 2017). We used a general linear model (GLM) to compare CSA and CT between LPD and RPD groups with age and sex as covariates. The Monte Carlo Null-Z Simulation was employed to control for multiple comparisons (10,000 iterations, cluster-forming p < 0.05, cluster-wise corrected p < 0.05). Then, partial correlation analyses were conducted separately for the LPD and RPD groups to investigate associations between the CSA and CT of regions showing significant group differences and clinical variables (age of onset, duration, MDS-UPDRS III, PDQ-39, BDI, MMSE, and LEDD), with age and sex as covariates. A significance threshold of p < 0.05 was adopted for these exploratory analyses, without correction for multiple comparisons.

To assess the statistical significance of group differences in all network parameters, we used a non-parametric permutation test with 2,000 repetitions (He et al., 2008; Zhang et al., 2019). For each repetition, the corrected CSA and CT values of each subject were randomly reassigned to one of two new groups with the same number as the original LPD and RPD groups, and then the correlation matrices were recalculated for the two new groups. For the two new groups, network parameters were calculated and differences were compared at each sparsity. The area under the curve (AUC) was computed using the trapezoidal rule with a step size of 0.01 to integrate the group difference trajectories across all sparsity thresholds, summarizing cumulative differences over the entire density range (Zhang et al., 2019). The statistical threshold was set at p < 0.05 for group differences in global network parameters. For regional network parameters, a p < 0.05 significance level was applied following false discovery rate (FDR) correction using the Benjamini-Hochberg method.




Results


Demographic and clinical characteristics

There were 50 cases in LPD group (1 excluded from 51 recruited due to image quality issues) and 49 cases in RPD group. The demographic and clinical characteristics of participants are summarized in Table 1. Age, gender, disease duration, years of education, age at onset, MDS-UPDRS III score, PDQ-39 score, Hoehn and Yahr stage, MMSE score and BDI score were comparable between the two groups (p > 0.05; Table 1).



TABLE 1 Demographic and clinical data of study groups.
[image: Table comparing characteristics between left-onset Parkinson's disease (LPD, N=50) and right-onset Parkinson's disease (RPD, N=49) groups. Rows include age, gender, education, age of onset, duration, UPDRS-III, MMSE, PDQ-39, BDI, LEDD, and Hoehn and Yahr. P-values are listed for each characteristic, showing no significant differences between groups. Definitions for abbreviations are provided at the bottom.]



Group differences in CSA and CT

The whole-brain vertex-wise analysis revealed that compared to RPD patients, the LPD patients exhibited 4 clusters with significantly smaller CSA as follows: cluster 1 in the right hemisphere was primarily located in the supramarginal gyrus (SMG); cluster 2 in the right hemisphere was located in the PCUN; cluster 3 in the left hemisphere was mainly in the inferior parietal lobule (IPL); and cluster 4 in the left hemisphere was in the lingual gyrus (LING). All clusters were corrected using Monte Carlo simulations at p < 0.05 (Figure 2, Table 2). However, the vertex-wise comparisons with correction for multiple comparisons of CT found no differences between the two groups.

[image: Diagram of brain sections highlighting areas labeled LING, PCUN, IPL, and SMG in blue on grayscale brain models. A color scale below ranges from negative five (blue) to five (red).]

FIGURE 2
 The brain regions with cortical surface area differences between the LPD and RPD groups (corrected using Monte Carlo Null-Z Simulation for p < 0.05). Blue (negative values) indicates a reduction in cortical surface area in the LPD compared to RPD group. SMG, supramarginal gyrus; PCUN, precuneus; IPL, inferior parietal lobule; LING, lingual gyrus.




TABLE 2 Significant clusters with altered cortical surface area in LPD versus RPD.
[image: Table showing cortical surface area differences in LPD and RPD. Regions include Right SMG, Right PCUN, Left LING, and Left IPL with coordinates, size, and P-value for cluster-wise probability correction.]



Correlation between morphometrical alterations and clinical variables

Partial correlation analyses, adjusted for age and sex, were conducted separately for the LPD and RPD groups to examine relationships between the CSA of the four regions with significant group differences (right SMG, right PCUN, left IPL, and left LING) and clinical variables (age of onset, duration, MDS-UPDRS III, PDQ-39, BDI, MMSE, and LEDD). In the LPD group, the CSA of the right PCUN was significantly positively correlated with MMSE score (r = 0.360, p = 0.01) (Figure 3). No other significant correlations were observed between the CSA of these regions and any clinical variables in the LPD group (p > 0.05). In the RPD group, no significant correlations were found between the CSA of the four regions and any clinical variables (p > 0.05). A summary of all tested correlations for both groups is provided in Supplementary Table S1.

[image: Illustration of the right PCUN cluster in a brain alongside a scatter plot. The plot shows a positive correlation (r = 0.360, p = 0.010) between MMSE scores and CSA in the right PCUN cluster in square millimeters, with a trend line and data points.]

FIGURE 3
 The scatter plot shows a positive correlation between cortical surface area of the right precuneus cluster and MMSE score in the LPD group.




Global network characteristics

The global network parameter changes and between-group differences for CSA and CT in the LPD and RPD patients across a sparsity range of 0.10 to 0.40 are shown in Figure 4. Both groups exhibited small-world properties in their SCNs, with a small-world index greater >1. For CSA-based networks, AUC analysis revealed that the normalized characteristic path length was significantly increased in LPD patients compared to RPD (p = 0.024), while the small-world index was significantly higher in RPD patients (p = 0.037). Conversely, for CT-based networks, AUC analysis revealed that the small-world index and global efficiency were significantly higher in LPD patients compared to RPD (p = 0.006 and p = 0.032, respectively). For the remaining global network parameters, no significant between-group differences were observed between LPD and RPD patients (all p > 0.05; Supplementary Figures S1, S2).

[image: Four graphs labeled A, B, C, and D analyze differences in network measures using LPD and RPD against density. Graphs A and C show differences in small-worldness, B in normalized characteristic path length, and D in global efficiency. Each graph includes a 95% confidence interval shaded in purple and a legend. Insets display bar charts comparing AUC values for LPD and RPD.]

FIGURE 4
 The group differences in network parameters of structural covariance networks based on CSA and CT within the range of 10–40% network sparsity include (A) and (C) small-worldness, (B) normalized characteristic path length, and (D) global efficiency. The upper and lower blue bands represent the 95% confidence intervals, while the middle black line indicates the mean difference after 2,000 permutations. The red line represents the actual group difference, and if it falls outside the confidence interval, it indicates that the group difference is significant at the current threshold (p < 0.05). Positive values indicate LPD > RPD, and negative values indicate LPD < RPD. The subplots show the group differences in the AUC values for each measure of the SCNs.




Regional network characteristics

We investigated the networks (sparsity = 0.01) for between-group differences in regional network measures, including nodal betweenness, nodal efficiency, and nodal degree. No significant differences in nodal characteristics were observed after correction for multiple comparisons in either CSA-based or CT-based networks between the two groups (p > 0.05; Supplementary Figure S3).




Discussion

To the best of our knowledge, this study is the first to investigate cortical morphometric alterations in CSA associated with the lateralization of PD. Additionally, this study is the first to reveal abnormal topological organization of SCNs between LPD and RPD patients. The results showed that LPD patients exhibited significantly smaller CSA in the right PCUN, right SMG, left IPL, and left LING compared to RPD patients. In our SCNs analysis, LPD patients exhibited increased normalized characteristic path length and decreased small-world index in CSA-based networks, while in CT-based networks, they showed increased small-world index and global efficiency compared to RPD. No significant differences in nodal characteristics were observed in either CSA-based or CT-based networks between the two groups. These findings provide novel multiscale evidence for the mechanisms underlying symptom lateralization in PD.


Analysis of specific regional morphological changes

Previous studies have indicated that the right PCUN is involved in visuospatial memory and attention allocation, and its atrophy has been linked to cognitive impairments in PD (Noh et al., 2014; Mak et al., 2015; Aracil-Bolaños et al., 2019). In our research, LPD patients exhibited a significant reduction in the CSA of the right precuneus compared to RPD patients. Moreover, partial correlation analysis showed a positive relationship between the CSA of the right precuneus and MMSE score in LPD patients, suggesting that atrophy in this region might contribute to cognitive impairment. Additionally, a study using a resting-state structural connectome, constructed by integrating diffusion tensor imaging tractography with resting-state data, reported decreased degree centrality in the right PCUN of LPD patients (Zhang et al., 2022). This reduction in connectivity, reflecting a blend of structural white matter pathways and functional correlations, supports our findings of structural changes in the same region. These results suggest that the right PCUN could be an important brain region for cognitive changes in LPD patients, offering new insights into the pathological mechanisms underlying cognitive impairments in PD.

Additionally, our study revealed that LPD patients exhibited reduced CSA in the right SMG, left IPL, and left LING compared to RPD patients. Structural changes in these regions may be associated with the occurrence of hallucinations in PD patients, a common non-motor symptom of the disease (Weil et al., 2016). Meta-analyses have demonstrated significant gray matter reductions in the right SMG and left LING in PD patients with hallucinations (Rollins et al., 2019). Similarly, Goldman et al. reported markedly decreased gray matter volume in the left IPL of PD patients with hallucinations compared to those without hallucinations (Goldman et al., 2014). Additionally, Stavitsky et al. found that LPD patients are more prone to hallucinations than RPD patients (Stavitsky et al., 2008). Previous studies have shown that CSA is strongly correlated with gray matter volume and can reflect the extent of atrophy in specific brain regions (Winkler et al., 2010). In our study, the brain regions where LPD patients exhibited significant reductions in CSA correspond to the areas of gray matter loss reported in the aforementioned studies. This finding suggests that CSA reductions in these regions may be closely related to the occurrence of hallucinations in LPD patients. However, due to the lack of clinical data related to visual hallucinations, we cannot further analyze the direct association between CSA changes in relevant brain regions and hallucinations.



Alterations in global network parameters

There is increasing evidence suggesting that the pathophysiological mechanisms of PD are associated with abnormalities in cortical morphology and connectivity across widespread brain regions (Jankovic, 2008). SCNs analysis offers an effective means to explore PD from a network perspective by revealing co-variations in brain region morphology (Vijayakumar et al., 2021). In our SCNs analysis, we found that both LPD and RPD patients exhibit small-world topological properties in their SCNs. Small-world topology reflects an optimal balance between local segregation and global integration of structural covariation (Achard et al., 2006; Kaiser and Hilgetag, 2006). This finding is consistent with previous studies on SCNs in PD patients (Pereira et al., 2015; Zhang et al., 2015; Xu et al., 2017; Wu et al., 2018). However, the topological structures of CSA-based and CT-based networks showed significantly different patterns between LPD and RPD patients.

Our study revealed that in CSA-based networks, the normalized characteristic path length was significantly higher in LPD compared to RPD patients, while the small-world index was significantly higher in RPD than in LPD patients. The normalized characteristic path length reflects the compactness of covariance patterns across regions, with higher values indicating less coordinated structural covariation (Suo et al., 2021). This finding suggests that LPD patients exhibit more fragmented CSA covariation patterns, whereas RPD patients demonstrate better integration of structural covariance across cortical regions. Hall et al. found that PD patients with visual hallucinations showed altered structural covariance in vision-related networks (Hall et al., 2019). When contextualized with our observed CSA differences, these fragmented covariance patterns in LPD may reflect impaired neurodevelopmental coordination between key regions implicated in perceptual processing. This may imply that the fragmented covariance patterns observed in LPD patients are associated with the occurrence of hallucinations.

However, in CT-based networks, LPD patients exhibited significantly higher small-world indices and global efficiency compared to RPD patients. This suggests that CT-based networks in LPD patients display a more optimized topological organization, reflecting greater covariance integration across regions. This dissociation in network topology between CSA-based and CT-based networks reflects the distinct characteristics of these two morphological metrics. Previous studies have shown that CSA and CT are orthogonal components influenced by different genetic and biological processes, with independent patterns of change during aging and disease progression (Dickerson et al., 2009; Panizzon et al., 2009; Storsve et al., 2014). Similar dissociated morphological alterations have been observed in other diseases (Park et al., 2009; Abé et al., 2016). The findings of this study suggest that the changing trends in CSA and CT in PD may reflect distinct pathological processes, and their independently divergent nature deserves further investigation.



Preservation of regional network architecture

Notably, although global network parameters revealed lateralization-related differences, there were no significant intergroup differences in regional network metrics such as nodal efficiency, modularity, and clustering coefficients. This suggests that despite altered global integration patterns, the fundamental community architecture of SCNs remains preserved between LPD and RPD patients. Modularity reflects the degree to which a network is compartmentalized into distinct functional subsystems, while the clustering coefficient quantifies local connectivity (Alexander-Bloch et al., 2013). The absence of differences in modularity or clustering coefficients implies that the lateralization of PD symptoms primarily affects the efficiency of information integration across distributed regions, rather than disrupting the organization of local communities. This observation is consistent with previous studies. For instance, Frigerio et al. (2024) found that, although there were significant differences in global network parameters such as characteristic path length and global efficiency between patients with PD and healthy controls, no significant differences were observed in regional network metrics. This suggests that the local network structure of patients with PD is largely preserved. These findings suggest that PD-related lateralization may primarily target the coordination of large-scale network integration while preserving local structural covariance patterns.




Limitations

This study has several limitations that need to be addressed. Firstly, the relatively small sample size may limit the generalizability of the results, and future studies with larger, earlier-stage cohorts are necessary to clarify how motor symptom laterality influences brain structure over time, distinct from overall disease progression. Secondly, SCNs analysis can characterize brain structure but fail to capture dynamic network changes. Therefore, integrating resting-state fMRI could address this limitation. Thirdly, the MMSE is not sensitive enough to assess specific cognitive domains, and thus future studies should include more detailed neuropsychological assessments. Finally, the calculation of network parameters relies on small-sample group-level data, limiting individual-level analysis of clinical-network relationships.



Conclusion

This study employed SBM and SCNs to investigate differences in cortical structural characteristics and brain network topological properties between LPD and RPD patients. The results revealed that LPD patients exhibited significant reductions in CSA in the right PCUN, right SMG, left IPL, and left LING, which may be linked to cognitive impairments and hallucinations among non-motor symptoms of PD. Moreover, divergent global network properties in CSA-based and CT-based networks suggest PD lateralization may influence the global organization of covariance patterns more than the local segregation into distinct communities. These findings offer new insights into the mechanisms of symptom lateralization in PD from the perspective of brain regional structure and network topology.
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SUPPLEMENTARY FIGURE S1 | The group differences in network parameters of structural covariance networks based on CSA within the range of 10%-40% network sparsity include (A) clustering coefficient, (B) global efficiency, (C) local efficiency, (D) normalized clustering coefficient, (E) characteristic path length and (F) modularity. The upper and lower blue bands represent the 95% confidence intervals, while the middle black line indicates the mean difference after 2,000 permutations. The red line represents the actual difference between groups, and if it falls within the confidence interval, it indicates that the group difference is not significant at the current threshold (p > 0.05). Positive values indicate LPD > RPD, and negative values indicate LPD < RPD. The subplots show the group differences in the AUC values for each measure of the SCNs.

SUPPLEMENTARY FIGURE S2 | The group differences in network parameters of structural covariance networks based on CT within the range of 10%-40% network sparsity include (A) clustering coefficient, (B) local efficiency, (C) normalized clustering coefficient, (D) normalized characteristic path length, (E) characteristic path length and (F) modularity. The upper and lower blue bands represent the 95% confidence intervals, while the middle black line indicates the mean difference after 2,000 permutations. The red line represents the actual difference between groups, and if it falls within the confidence interval, it indicates that the group difference is not significant at the current threshold (p > 0.05). Positive values indicate LPD > RPD, and negative values indicate LPD < RPD. The subplots show the group differences in the AUC values for each measure of the SCNs.

SUPPLEMENTARY FIGURE S3 | Nodal network measures of CSA and CT based networks in the LPD and RPD groups. Each circle represents a brain region, with a total of 68 regions analyzed. The figure displays the distribution of nodal degree, betweenness centrality, and nodal efficiency, accompanied by p-values derived from permutation tests (all p > 0.05 after FDR correction). These p-values are mapped onto brain regions, with colors indicating the p-value range (blue: p = 0.1, red: p = 1).
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Background: While the BST1 rs4698412 variant demonstrates a robust association with Parkinson’s disease (PD) susceptibility, its role in modulating PD progression remains unexplored.




Objectives: To evaluate differences in the progression of motor symptoms and cognitive function between PD patients carrying the BST1 rs4698412 A-allele variant and GG homozygotes.
Methods: Baseline clinical data were collected during their initial visits. Disease severity was assessed using the UPDRS-III scale, while cognitive status was evaluated through the MMSE scale. Follow-up visits were conducted at the same center. Linear mixed-effects models were utilized to compare the rate of changes in motor and cognitive features between the two groups.
Results: A total of 182 PD patients with 74 classified as GG carriers and 108 as GA/AA carriers were enrolled. No significant differences were observed in baseline demographic factors or clinical characteristics. Linear mixed-effects models revealed that GA/AA carriers exhibited a greater rate of change in UPDRS-III score compared with GG carriers (difference of −2.091[0.691] points per year, P = 0.003). However, no statistically significant difference in the estimated progression rate of MMSE score was found between the two groups (difference of −0.106 [0.217] points per year, P = 0.627).
Conclusion: PD patients carrying the BST1 rs4698412 A-allelic variant showed more pronounced motor function deterioration than GG carriers, suggesting that BST1 rs4698412 may serve as a genetic risk factor for disease progression in PD.
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1 Introduction

Parkinson’s disease (PD) is a chronic, progressive neurological disorder marked by motor symptoms such as bradykinesia, rigidity, resting tremor, and disruption in gait. Non-motor symptoms, encompassing cognitive decline, anosmia, psychological and behavioral irregularities, autonomic dysfunction, and sleep disturbances, may also manifest (Poewe et al., 2017). The pathological characteristics of PD primarily stem from the progressive degeneration of dopaminergic neurons and the accumulation of Lewy bodies in the substantia nigra (Wakabayashi et al., 2013). Numerous studies have explored genetic mutations associated with the occurrence of PD, including SNCA, PINK1, DJ-1, LRRK2, Parkin, and others. Genome-wide association studies (GWAS) and meta-analyses have identified single nucleotide polymorphisms (SNPs) within the Bone Marrow Stromal Cell Antigen 1 (BST1) gene on chromosome 4p15 as new susceptibility loci associated with PD across different races and regions (Guo et al., 2015; International Parkinson Disease Genomics Consortium et al., 2011; Liu et al., 2013; Saad et al., 2011; Satake et al., 2009; Sharma et al., 2012; Simon-Sanchez et al., 2011). Among these variants, the rs4698412 (G → A) allele has garnered particular attention as the subject of extensive study. Accumulating research strongly suggests that both the dominant model (AA + AG vs. GG) and allelic model (A vs. G) of BST1 rs4698412 demonstrate a significant association with an elevated risk of PD in the Asian population (Chang et al., 2011; Li et al., 2019; Shen et al., 2019; Wang et al., 2015).

To date, several studies have investigated the impact of the allelic variant of BST1 rs4698412 on clinical presentations. Notably, carriers of the BST1 rs4698412 GA/AA genotype demonstrated significantly higher Unified Parkinson’s Disease Rating Scale (UPDRS-III) scores (p < 0.05) and poorer Timed Up and Go (TUG) test performance compared to GG genotype carriers, indicating more severe motor function and more pronounced gait and balance deficits (Li et al., 2019). Furthermore, a meta-analysis conducted by the COURAGE-PD consortium presented the initial GWAS evidence that the A allele of rs4698412 in the BST1 gene influences the age at onset (AAO) of PD, resulting in an average earlier AAO of 0.526 years in PD patients (Grover et al., 2022). Additionally, the dominant model of rs4698412 in BST1 was found to be significantly associated with restless legs syndrome in the Chinese population, a condition that often co-occurs with PD (Huang et al., 2021).

Overall, there was a strong association between the A-allele variant of BST1 rs4698412 and the susceptibility and severity of clinical features in patients with PD. Nonetheless, the influence of the BST1 rs4698412 variant on the progression of PD remains unexplored. Consequently, a longitudinal study was conducted to assess differences in motor and cognitive progression between BST1 rs4698412 A-allele carriers and GG homozygotes among Han Chinese PD patients from southern China.



2 Subjects and methods


2.1 Ethical compliance

This study was conducted in strict accordance with the ethical principles outlined in the World Medical Association Declaration of Helsinki. The research protocol received formal approval from the Ethics Committee of Fujian Medical University Union Hospital (Approval No. 2023KY178). Written informed consent was obtained from all participants.



2.2 Study subjects

A total of 824 primary PD patients were consecutively diagnosed and recruited, adhering to the International Parkinson and Movement Disorder Society (MDS) Clinical Diagnostic Criteria for Parkinson’s disease (MDS-PD Criteria) (Postuma et al., 2015). This recruitment process was conducted by two neurologists from the Neurology Department of Fujian Medical University Union Hospital between 2016 and 2018. Baseline clinical data were collected during their initial visits. Patients subsequently received standard medication and underwent follow-up assessments at the same center. After screening based on inclusion and exclusion criteria, a final cohort of 182 patients was ultimately enrolled in the study. Our study’s inclusion criteria comprised the following: (1) PD patients possessing the BST1 rs4698412 variant confirmed through genetic tests, (2) well-documented initial clinical and demographic information, (3) completion of baseline assessments and at least one follow-up visit, (4) Hoehn-Yahr (H-Y) Stage ≤ 3, and (5) a demonstrated willingness to participate. Exclusions were applied to patients who (1) exhibited secondary Parkinsonian syndrome or Parkinson-plus syndrome, (2) demonstrated an inability to cooperate with scale evaluations, (3) underwent deep brain stimulation (DBS) during the follow-up period, or (4) presented concomitant disorders such as severe organ dysfunction, endocrine system diseases, hematological diseases, autoimmune diseases, or malignant tumors. The flow chart of participants is provided in Supplementary Figure 1.



2.3 Clinical evaluations

Demographic and clinical data were obtained from 182 PD patients, including age, gender, age at onset, ethnicity, educational attainment, disease duration, current medications, comorbidities (hypertension, diabetes), and lifestyle factors (smoking, drinking). The age at onset was defined as the age at which either the patient or their immediate family members first noticed symptoms related to PD. The duration of the disease was the time span between the age at onset and the patient’s initial visit at our hospital. The calculation of the levodopa equivalent daily dose (LEDD) was executed employing the specified conversion formula (Tomlinson et al., 2010). The modified Hoehn-Yahr (H-Y) rating and UPDRS scale, particularly the motor examination component (Part 3, UPDRS-III), were utilized to evaluate the severity of the disease in patients during their off-medication state. Simultaneously, we computed specific scores from the UPDRS-III: resting tremor score (items 20 and 21), rigidity score (item 22), bradykinesia score (items 23–26 and 31), and postural and gait disturbance score (items 27–30). Each of these items is scored on a scale ranging from 0 (indicating the absence of symptoms or normal activity) to 4 (representing the most severe dysfunction or impairment). PD patients were categorized into Akinetic-Rigid (AR), Tremor Dominant (TD), and Mixed (MX) subtypes based on baseline UPDRS score, utilizing Lewis’s method (Lewis et al., 2005) along with Rossi’s modifications (Rossi et al., 2010). For the analysis in our current study, the TD subtype and MX subtype were grouped, following a precedent set by a previous study (Oosterveld et al., 2015). Cognitive assessments were performed using the Mini-Mental State Examination (MMSE) scale.



2.4 Genotype detection

MassARRAY technology was utilized to discern the genotype of BST-1 loci rs4698412 in PD patients. Each participant contributed a peripheral blood sample for genetic analysis. Genomic DNA was extracted from the peripheral blood using established protocols. The design of Polymerase Chain Reaction (PCR) primers and the subsequent single base extension reaction was executed through Sequenom Assay Design 3.1 and synthesized by a biological firm. DNA templates containing the targeted SNP region underwent PCR amplification following the manufacturer’s guidelines. Subsequently, the PCR products underwent shrimp alkaline phosphatase (SAP) purification, followed by a single base extension reaction. The resulting extension products were then deposited onto a Sepectro-CHIP and subjected to analysis using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The genotyping data were subjected to analysis using the Sequenom Mass-ARRAY TYPER software (Sequenom). Both the clinical evaluators and patients were blind to the genotype outcomes.

The participants were categorized into two subgroups: BST1 rs4698412 GG carriers and GA/AA carriers, stratified according to the genetic test results. These subgroups were subsequently utilized for further comparison and analysis within the context of the present study.



2.5 Statistical analysis

For all statistical analyses, assessments were made for data normality and homogeneity of variance using the Shapiro–Wilk test and Levene test, respectively. Variables demonstrating a normal distribution were presented as the mean ± standard deviation (SD), while variables with skewed distribution were expressed as median (M) and interquartile range (IQR). Continuous variables were compared using either Student’s independent samples t-test (for normally distributed data) or the Mann–Whitney U Test (for non-normally distributed data). Gender distribution and the adherence of genotype frequencies to Hardy-Weinberg equilibrium (HWE) were compared using the Chi-squared test.

To investigate the potential association between genotype status and disease severity at baseline, a multivariable linear regression model was constructed. In this model, baseline UPDRS-III score served as the dependent variable, while the independent variables included the genotypes of BST1 rs4698412 (binary), gender (binary), baseline age, baseline duration of disease, years of education, MMSE score at baseline, LEDD at baseline, comorbidities (hypertension, diabetes), and lifestyle factors (smoking, drinking). Likewise, we employed a multivariable linear regression to explore the relationship between genotype status and baseline MMSE score, with adjustments made for gender (binary), baseline age, baseline duration of disease, UPDRS-III score at baseline, years of education, LEDD at baseline, comorbidities (hypertension, diabetes), and lifestyle factors (smoking, drinking).

Linear mixed-effects models were employed to examine the longitudinal rate of changes in motor score (UPDRS-III) and cognition score (MMSE) between PD patients carrying BST1 rs4698412 GG genotype and GA/AA genotype. Disease duration served as the time scale, and the models incorporated participant-specific random effects for both random intercepts and random slopes, thereby accounting for correlations in repeated measurements from the same participant. The analysis was adjusted for baseline age, gender (binary), years of education, baseline duration of disease, LEDD at baseline, comorbidities (hypertension, diabetes), and lifestyle factors (smoking, drinking). Furthermore, MMSE score at baseline was included as a covariate in longitudinal motor assessments, while UPDRS-III score at baseline was considered a covariate in longitudinal cognitive evaluations between the two groups.

The analyses were conducted using IBM SPSS Statistics version 26.0 software (SPSS, Chicago, IL, USA). The statistical significance level was set at α = 0.05, and results were considered statistically significant when P < 0.05.




3 Results


3.1 Clinical and demographic features

A total of 182 PD patients who underwent 2 or more times of assessments on the UPDRS-III scale were included in the study, comprising 74 BST1 rs4698412 GG carriers, 84 GA carriers, and 24 AA carriers. Furthermore, 177 patients (73 GG carriers and 104 GA/AA carriers) among them completed 2 or more times of assessments on the MMSE scale (Supplementary Figures 2, 3).

The genotype frequencies for BST1 rs4698412 were found to be in accordance with Hardy-Weinberg equilibrium and were genetically representative (χ2 = 0, P = 1, Supplementary Table 1). The clinical and demographic data of all participants were summarized in Table 1. No significant differences were observed between the GG carriers and the GA/AA carriers in either baseline demographic profiles (age, gender, age at onset, disease duration, years of education, hypertension/diabetes comorbidity, smoking/drinking) or clinical assessments (MMSE score, UPDRS-III total score [resting tremor/rigidity/bradykinesia/postural and gait disturbance subscores], H-Y stage, subtype of PD, or baseline LEDD). Baseline data for the MMSE project were provided in Supplementary Table 2.


TABLE 1 Demographic and clinical characteristics of all study subjects.
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3.2 Cross-sectional study of BST1 rs4698412 GG and GA/AA carriers

There was no significant difference between the two groups in terms of UPDRS-III scores at baseline after adjusting for gender, baseline age, years of education, baseline duration of disease, MMSE score at baseline, LEDD at baseline, comorbidities (hypertension, diabetes), and lifestyle factors (smoking, drinking). Similar to the motor evaluations, no significant impact of genotype status on baseline MMSE score was detected. The R2 value for the two regression models were 0.172 (F = 3.220, P = 0.001) and 0.397 (F = 9.872, P = 0.000), respectively. The significance of the regression equation was verified. Besides, we found that lower MMSE scores were associated with higher UPDRS-III scores, and vice versa, which suggested that there was a bidirectional influence between the motor and cognitive function of the two groups at baseline (Supplementary Table 3).



3.3 Progression analysis in BST1 rs4698412 GG and GA/AA carriers

Utilizing a linear mixed-effects model, we further explored the longitudinal rate of variation in UPDRS-III score between GG carriers and GA/AA carriers. Disease duration served as the time scale for this analysis. After adjusting for gender, baseline age, baseline duration of disease, education years, MMSE score at baseline, LEDD at baseline, comorbidities (hypertension, diabetes), and lifestyle factors (smoking, drinking), several significant associations were observed. Specifically, longer duration of disease at baseline (β = 0.879; 95% CI, 0.511 to 1.246; P = 0.000) and shorter education period at baseline (β = −0.425; 95% CI, −0.771 to −0.079; P = 0.016), and lower MMSE score at baseline (β = −0.446; 95% CI, −0.872 to −0.019; P = 0.041) were associated with higher UPDRS III score (Table 2). The estimated rate of progression in the change of UPDRS-III score for GG carriers was 0.622 [0.534] points per year, whereas GA/AA carriers exhibited a higher progression rate of 2.712 [0.439] points per year. Significantly, a notable discrepancy in the rate of UPDRS-III score progression between the two groups was identified (−2.091 [0.691] points per year; P = 0.003) (Figure 1).


TABLE 2 Models of comparison in rate of change in UPDRS-III score and MMSE score between PD patients with BST1 rs4698412 GG genotype and GA/AA genotype.
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FIGURE 1
Longitudinal trajectories of UPDRS-III scores in BST1 rs4698412 GG carriers and GA/AA carriers.


When comparing differences in changes within the four subscores of UPDRS-III, the findings indicated that the estimated rate of change in rigidity score among GG carriers (0.309 [0.192] points per year) was lower than that among GA/AA carriers (1.073 [0.158] points per year; difference, −0.764 [0.249] points per year; P = 0.002). Besides, the estimated rate of change in bradykinesia score was higher in GA/AA carriers (1.043[0.247] points per year) compared with GG carriers (0.230 [0.302] points per year; difference, −0.813 [0.390] points per year; P = 0.038). However, the rates of change in rest tremor score (P = 0.185) and postural and gait disturbance score (P = 0.052) did not exhibit significant differences between the two groups (Table 3).


TABLE 3 Models of comparison in rate of change in UPDRS-III subscore between PD patients with BST1 rs4698412 GG genotype and GA/AA genotypea.
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Subsequently, a linear mixed-effects model was employed to analyze the longitudinal rate of change in the MMSE score between GG carriers and GA/AA carriers, using a similar approach. The analysis was adjusted for baseline age, gender, baseline duration of disease, education years, UPDRS-III score at baseline, LEDD at baseline, comorbidities (hypertension, diabetes), and lifestyle factors (smoking, drinking). The estimated progression rate of change in MMSE score for GG carriers and GA/AA carriers was −0.547 [0.167] points per year and −0.441 [0.139] points per year, respectively. Notably, there was no statistically significant difference in the rate of change (−0.106 [0.217] points per year; P = 0.627) between the two groups (Table 2 and Figure 2).
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FIGURE 2
Longitudinal trajectories of MMSE total scores in BST1 rs4698412 GG carriers and GA/AA carriers.





4 Discussion

The current study represents a pioneering effort to assess disease progression in PD patients with BST1 rs4698412 variants through a longitudinal follow-up analysis. Our investigation reveals a more pronounced motor progression in PD patients carrying the BST1 rs4698412 GA/AA genotype compared to those with the GG genotype. Specifically, our analysis indicates that the estimated rate of change in UPDRS-III score is 2.091 points per year higher in PD patients with the BST1 rs4698412 GA/AA genotype than in those with the GG genotype. Furthermore, when comparing differences in motor domain progression rates, we observed that this greater progression in GA/AA carriers encompassed a more substantial increase in rigidity and bradykinesia score over time. Regarding cognitive progression, our analysis unveiled a similar estimated rate of change in MMSE score per year between the two groups.

Previous research has indicated a genetic correlation between BST1 polymorphism rs4698412 and the predisposition to PD (Chang et al., 2011; Chang et al., 2015; Saad et al., 2011; Satake et al., 2009; Sharma et al., 2012; UK Parkinson’s Disease Consortium et al., 2011). While our study reveals that PD patients harboring the allelic variant A of BST1 rs4698412 exhibit a more pronounced motor deterioration compared to GG homozygotes, the underlying mechanism by which these genotypes influence motor function remains inadequately elucidated. BST1, also referred to as CD157, belongs to the NADase/ADP-ribosyl cyclase family (Ferrero and Malavasi, 1997). Previous research suggests that BST1 may play a role in the molecular pathways involving cADPR formation and Ca2+ mobilization, acting as a neuro-regulator (Higashida et al., 2017). It has been postulated that an imbalance in calcium homeostasis within dopaminergic neurons could contribute to their degeneration and increase susceptibility to PD (Surmeier et al., 2010; Surmeier, 2007). Additionally, calcium signaling dynamics are integral in regulating diverse neuronal activities, encompassing the release of neurotransmitters and neuropeptides at inter-synaptic sites (Berridge et al., 2003; Soden et al., 2023). Furthermore, BST1 was initially identified as a surface receptor on Bone Marrow Stromal Cells (BMSCs) that stimulates the proliferation of pre-B cells (Kaisho et al., 1994). Recent studies have uncovered that as individuals age, BMSCs develop a senescence-associated secretory phenotype, releasing inflammatory cytokines such as IL-6, IL-8, IFN-γ, MCP-1/2, and TIMP-2, (Borgoni et al., 2021; Gonzalez-Meljem et al., 2018) and subsequently differentiating into age-associated B cells (ABCs) (Long et al., 2023). ABCs infiltrate the brain parenchyma and initiate the activation of microglia, subsequently giving rise to a state of sustained chronic inflammation (Wang et al., 2021). Therefore, we posit that the malfunction of BST1 could lead to hindered normal growth of pre-B cells, along with the plausible involvement of age-related BMSCs in triggering neuroinflammatory responses and disruptions in microenvironmental homeostasis. These combined factors may potentially contribute to the underlying pathological mechanisms of PD. Besides, experiments demonstrated that compared with wild-type mice, BST1 knockout (BST1–/–) mice exhibited anxiety-related symptoms, depression-like behaviors, and impaired social interaction similar to those observed in PD patients, suggesting a potential role of BST1 in pre-motor symptoms of PD (Kasai et al., 2017; Lopatina et al., 2014).

Li et al. (2019) explored the BST1 rs4698412 variant-brain function-behavior relationships by examining the Amplitude of low-frequency fluctuations (ALFF) signals of functional magnetic resonance imaging (fMRI) in PD patients. Their results showed that significantly decreased ALFF values in the right lingual gyrus and the ALFF values were negatively associated with TUG test time (r = −0.797) and postural and gait disturbance scores (r = −0.937) in BST1 rs4698412 GA/AA carriers compared with GG carriers. This objective imaging evidence could, to some extent, help to explain the influence of allele A of BST1 rs4698412 on a pathological process contributing to more severe motor symptoms during PD progression.

According to the existing literature, multiple studies have focused on the correlation between the progression of PD and genotypes. Individuals with Parkinson’s disease who carry distinct gene variants, such as LRRK2 risk variants (G2385R, and/or R1628P, and/or S1647T) (Oosterveld et al., 2015), SNCA rs1045722/T (Luo et al., 2019), Parkin-related mutations (Sun et al., 2021), GBA (Winder-Rhodes et al., 2013), or LRRK2 G2019S mutation (Oosterveld et al., 2015), have presented a diverse spectrum of disease progression patterns. Hence, considering genetic variability becomes imperative for gaining deeper insights into the underlying causes and mechanisms of the disease. The more substantial progression estimates observed in our study could offer valuable insights for the design of clinical trials involving emerging BST1-targeted agents. Furthermore, in our present study, we employed linear mixed-effects models for analyzing repeated measurements, a methodology capable of handling data imbalances arising from variations in the timing of the initial visit, unequal quantities of follow-up visits, and differing intervals between visits. This robust approach enhances the significance and value of our research findings.

Our study possesses several limitations that warrant consideration. Firstly, we exclusively examined the impact of the BST-1 rs4698412 mutation on disease progression in PD patients, disregarding potential influences from other genetic variants, intricate gene-gene interactions, and the combined effects of gene-environment interactions. Secondly, while UPDRS remains the standard tools for assessing motor symptoms in PD, its inability to differentiate PD-specific progression from age-related functional decline must be acknowledged. Age-associated motor deficits (e.g., gait slowing, postural instability) may confound longitudinal assessments. Although we adjusted for major clinical variables (including comorbidities and lifestyle factors), unmeasured factors such as medication adherence, physical activity levels, and subclinical cerebrovascular disease could influence progression rates. This limitation underscores the necessity of integrating multidimensional biomarkers (e.g., cerebrospinal fluid profiles, blood-based biomarkers, neuroimaging metrics, and digital health parameters) with conventional clinical evaluations in future studies. Furthermore, the exclusive use of MMSE for cognitive evaluation may obscure domain-specific cognitive decline patterns in PD. The absence of a comprehensive neuropsychological assessment battery significantly limits our ability to characterize nuanced cognitive trajectories. Future investigations should incorporate detailed neuropsychological evaluations to better delineate cognitive progression patterns. Besides, the follow-up period in our study was relatively brief, and the number of follow-up visits was limited. The estimated progression rates should be interpreted with caution due to the moderate follow-up duration and variability in assessment intervals. Extended observation periods and standardized visit schedules would improve the accuracy of longitudinal trajectory modeling. Lastly, the restriction of our cohort to a southern Chinese Han population is indeed a limitation for generalizability. Future studies should consider multi-center collaborations or include diverse populations to validate these results across different ethnic and regional groups.



5 Conclusion

This present study provides novel insights into the disease progression of PD patients harboring BST1 rs4698412 variants. Our findings indicated that individuals with PD who carry the BST1 rs4698412 A-allelic variant exhibit more pronounced deterioration in motor function, as reflected by higher UPDRS-III score. Further research is warranted to unravel the underlying mechanisms driving these genotype-specific effects and to explore potential implications for personalized therapeutic interventions.
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Background: Cognitive impairment substantially impacts quality of life in Parkinson’s disease (PD), yet current biomarker frameworks lack sensitivity for detecting early-stage cognitive decline. While peak alpha frequency (PAF) and alpha power spectral density (PSD) have emerged as potential electrophysiological markers, prior studies primarily focused on global cortical measures, neglecting region-specific variations that may better reflect the heterogeneous nature of PD-related cognitive impairment (PDCOG). To address this gap, we conducted the first multiregional comparative analysis of PAF and alpha PSD between PDCOG and PD with normal cognition patients (PDNC).
Methods: Data from 76 participants (44 PD, 32 healthy controls) at The Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine (March–July 2024) were analyzed. PAF and alpha PSD were computed across brain regions; cognitive function was assessed via MoCA.
Results: Global PAF was reduced in PD vs. controls (p < 0.05) and correlated with cognition. PDCOG showed lower alpha PSD in parieto-occipital/posterior temporal regions (P3, P4, O1, T5, T6, PZ) vs. PDNC (p < 0.05), with these regions correlating with MoCA scores. ROC analysis identified P3, PZ, and T6 alpha PSD as optimal discriminators (AUC: 0.77–0.758). Executive function inversely correlated with alpha PSD in right posterior temporal/left occipital regions.
Conclusion: PAF differentiates PD from controls and links to global cognition, while regional alpha PSD (notably P3, PZ, T6) effectively distinguishes PDCOG from PDNC. These findings underscore regional QEEG’s utility in PD cognitive assessment, though sensitivity limitations warrant optimization.
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1 Introduction

Parkinson’s disease (PD), a multisystem neurodegenerative disorder, is defined by both motor deficits (Barone et al., 2009) and heterogeneous nonmotor symptoms, including cognitive decline (Chaudhuri et al., 2006). Individuals with PD generally exhibit a heightened susceptibility to dementia compared to the general population, with PD-dementia (PDD) incidence reaching as high as 46% in PD patients with a history exceeding 10 years (Williams-Gray et al., 2013). PD patients with cognitive impairment (PDCOG) may experience deficits across multiple cognitive domains (Harvey, 2019). These deficits profoundly impair quality of life (Chandler et al., 2021), incur significant socioeconomic burdens, and predict faster disease progression—even surpassing motor symptoms in early-stage impact. Current cognitive scales (e.g., MoCA) lack neurobiological specificity, failing to link deficits to underlying pathology [e.g., alpha rhythm dysregulation (Saredakis et al., 2019)]—a gap hindering precision care.

Quantitative electroencephalography (QEEG) is a renowned, non-invasive, and cost-effective technique for capturing the electrical activity of the brain. It offers quantitative insights into brain functions, including peak alpha frequency (PAF) and power spectral density (PSD). This method has gained notable attention in recent years due to its excellent spatial resolution in detecting neuronal electrical activity (Babiloni et al., 2020; Novak et al., 2021; Geraedts et al., 2018). Cognitive decline is associated with specific neurodegenerative patterns, such as corticostriatal pathway dysfunction and alpha rhythm dysregulation (Zhou et al., 2024). For instance, decreased occipital alpha/theta ratios are predictive of visuospatial deficits (Jaramillo-Jimenez et al., 2021), whereas parietal alpha PSD is correlated with overall cognitive function (MoCA scores) (Anjum et al., 2024). By distinguishing between PDCOG and PDNC, clinicians can identify patients at risk of rapid progression or PDD early on, thereby facilitating biomarker-driven monitoring.

PD patients exhibit globally reduced PAF, suggesting dopaminergic dysfunction (Kamei et al., 2010; Morita et al., 2011; Caviness et al., 2015; Aarsland et al., 2021), while regional alpha PSD reductions in parieto-occipital regions specifically mark PDCOG (Jaramillo-Jimenez et al., 2021). These patterns align with cognitive domain vulnerabilities (Rea et al., 2021; Polverino et al., 2022; Yılmaz et al., 2020): low parietal alpha PSD predicts executive dysfunction, whereas posterior temporal declines associate with memory deficits. Such biomarkers bridge the gap between symptom-based scales and pathophysiology, offering tools for subtyping and targeted interventions.

Based on evidence suggesting that alpha oscillations are fundamental to cognitive control networks, previous studies have not sufficiently explored the role of PAF and alpha PSD in differentiating cognitive impairment levels in PD, we are exploring whether PAF and alpha PSD can objectively differentiate between PDCOG and PDNC. Through the association of regional QEEG signatures with cognitive profiles, our goal is to overcome the restrictions of present evaluations and move towards a pathology-informed approach for PD phenotyping.



2 Materials and methods


2.1 Participants and cognitive measures

A cross-sectional study design was employed in this research. From March to July 2024, this study recruited 44 participants with Parkinson’s disease (24 females and 20 males) from the Rehabilitation Hospital affiliated with Fujian University of Traditional Chinese Medicine. Additionally, 32 healthy controls (HC) (20 females and 12 males), matched by age and gender were recruited. All subjects were fully informed and signed informed consent. The study was approved by the Ethics Committee of the Rehabilitation Hospital affiliated with Fujian University of Chinese Medicine (No. 2023KY-056-002).

According to both the United Kingdom Parkinson disease (UKPD) Society Brain Bank criteria (Gibb and Lees, 1988) clinical diagnostic criteria for Parkinson’s disease (PD) (MDS-PD criteria) (Gill et al., 2008), a total of 44 PD patients were recruited from the Rehabilitation Hospital affiliated with Fujian University of Chinese Medicine (Fuzhou, China). All the subjects were native Chinese speakers and right-handed. The inclusion criteria of the healthy control group were: (1) aged between 45 and 80 years; (2) The age and gender were matched with those in PD group; and (3) No history of neurological or mental illness.

We used MoCA to quantify cognitive condition among participants as it is more sensitive to cognitive deterioration in PD (Gill et al., 2008; Vásquez et al., 2019; Chou et al., 2010). We defined cognitive impairment (PDCOG) as MoCA scores < 26 scores and cognitive normal (PDNC) as MoCA scores (Nasreddine et al., 2005; Dalrymple-Alford et al., 2010; Chou et al., 2014). All subjects completed the MoCA scale and EEG examination within 3 days after enrollment. As reported by Lam et al. (2013), we have redefined the five cognitive domains associated with each MoCA score (Memory, Visuospatial, Language, Attention Executive). Clinical and demographic characteristics of enrolled PD and HC subjects are reported in Table 1 and Supplementary Table 1.


TABLE 1 Clinical characteristics of PD and HC.


	Item
	PD (n = 44)
	HC (n = 32)
	t/x2
	
p




	
	Total (n = 44)
	PDCOG (n = 31)
	PDNC (n = 13)
	
	
	

 

 	Gender (Male/Female) 	20/24 	17/14 	3/10 	12/20 	−0.69 	0.495


 	Age (year) 	66.25 ± 7.70 	67.45 ± 5.71 	63.38 ± 10.87 	65.78 ± 8.96 	0.25 	0.807


 	Education level (year) 	10.48 ± 4.67 	9.74 ± 4.64 	12.62 ± 3.38 	11.97 ± 3.29 	−1.63 	0.126


 	Duration of disease (year) 	4.34 ± 3.03 	4.44 ± 3.19 	4.12 ± 2.72 	– 	– 	–


 	HY stage 	2.32 ± 0.64 	2.39 ± 0.67 	2.15 ± 0.56 	– 	– 	–


 	MoCA score 	22.77 ± 4.50 	20.65 ± 3.48 	27.85 ± 1.63 	25.63 ± 1.43 	−3.94 	<0.001

*







t-test: Compared to PD bold value means *p < 0.05. While categorical variable is presented with number of patients. HC, healthy controls; PDCOG, PD with cognitive impairment; PDNC, PD with normal cognition; MoCa, Montreal Cognitive Assessment; HY, Hoehn and Yahr stage; MDS-UPDRSIII, the part III of the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale; p value: difference between HCs and all PD groups.
 



2.2 PAF and alpha PSD recordings and preprocessing


2.2.1 EEG acquisition process

In this study, three minutes of resting-state EEG activity were collected using the Cognitive and Autonomous Nervous Function Mapping EEG Monitor (NVX52 EEG Acquisition System, Nanjing NeuroMed Technology Group Co., Ltd., China). Nineteen standard EEG electrodes were placed on the scalp with an adjustable cap according to the internationally recognized 10–20 system, and an AA electrode was used as the reference (We use 2 electrodes, A1 and A2. AA = (A1 + A2) /2). During data collection, subjects were instructed to maintain a comfortable posture and were guided to close their eyes. The contact impedance between the electrodes and the scalp was strictly maintained below 20 KΩ (Lee et al., 2013).



2.2.2 PAF and alpha PSD analyses

The recorded EEG data were subjected to comprehensive spectrum PSD analysis, encompassing all 19 channels. The sampling rate used in the data acquisition process is 500 Hz. A broad band power spectrum (0.5–48 Hz) was obtained through Fast Fourier transformation of the time-series, from which absolute and relative spectral power were computed for six frequency bands (delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–48 Hz)). For FFT calculation we use “Hann window function” with “Window length = 4 s with 50% overlapping.” And for “Window length = 4 s” the resolution of frequency about 0.25 Hz. Given our focus on alpha band, this study exclusively analyses the alpha band (Schleiger et al., 2014). The PAF was identified as the frequency point exhibiting the highest PSD within the alpha band, ranging from 8 to 13 Hz.

The quality of the collected EEG data were manually inspected and preprocessed in EEGLAB. The Infomax Independent Component Analysis (ICA) module was used to decompose the EEG data and remove artifact components, including ocular and muscle artifacts (Delorme et al., 2007; Pion-Tonachini et al., 2019). The study focused on the frequency-power spectrum, particularly the peak frequency of the alpha wave, which was defined as the frequency point with the highest PSD within the alpha band, covering all 19 leads.




2.3 Statistical analyses

All analyses were performed using IBM SPSS Statistics (version 26.0) with a two-tailed significance threshold of p < 0.05. Continuous variables were compared between groups using independent samples t-tests for normally distributed data (assessed via Shapiro–Wilk test) and Mann–Whitney U tests for non-normally distributed datasets. To identify predictor variables of cognitive outcomes, multiple linear regression models were constructed, incorporating peak alpha frequency (PAF) and alpha band power spectral density (PSD) as independent variables, with the MoCA total score and its subdomains serving as dependent variables.

The diagnostic utility of PAF and alpha PSD in predicting Parkinson’s disease-related cognitive impairment (PDCOG) was evaluated through receiver operating characteristic (ROC) curve analysis, with sensitivity and specificity quantified by the area under the curve (AUC). To address multiple comparisons in correlation analyses, associations between PAF, alpha PSD, and cognitive scale scores were examined using Pearson’s correlation with false discovery rate (FDR) correction; significant correlations were defined by both raw p < 0.05 and FDR-adjusted q < 0.05, and the control error discovery rate was 5%.




3 Results


3.1 The results of demographic data and clinical assessment

This study included patients with PD (n = 44) and HC (n = 32). There was no difference in gender, age and education level between the two groups (p > 0.05). The MoCA score of the PD group was lower than that of the HC (p < 0.05), see Table 1.

Furthermore, a comparative analysis was conducted on demographic and clinical assessment data between PD with cognitive impairment (PDCOG, n = 31) and those normal cognition (PDNC, n = 13). There were no significant differences in gender, age, duration of disease, Hoehn-Yahr stage between the two groups (p > 0.05). However, the PDCOG group had significantly lower educational level and MoCA scores compared to the PDNC group (p < 0.05), see Table 1 and Supplementary Table 1.



3.2 Comparison of the peak alpha frequency between PD and HC

The results demonstrated that the PAF in the PD group was significantly lower than that in the HC group (p < 0.05). This reduction was observable in multiple brain areas, specifically the frontal region (FP1, FP2, F7) (p < 0.05), temporal region (T4, T5, T6) (p < 0.05), central region (C3, C4, FZ, CZ, PZ) (p < 0.05), and parietal-occipital region (P3, P4, O1, O2) (p < 0.05), see Figure 1 and Supplementary Table 2.
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FIGURE 1
 Violin plot of the PAF for PD and HC. The PAF in the bilateral frontal (FP1, FP2, F7), temporal (T4, T5, T6), parietal-occipital (P3, P4, O1, O2) and central (C3, C4, FZ, CZ, PZ) regions were significantly lower in PD than in the HC (p < 0.05). PAF, peak alpha frequency. * p < 0.05, ** p < 0.01, *** p < 0.001.




3.3 Comparison of the alpha PSD between PDCOG and PDNC

After the Mann–Whitney U test, significant differences were observed in P3α PSD (p = 0.019), P4α PSD (p = 0.030), PZα PSD (p = 0.035), O1α PSD (p = 0.030), T5α PSD (p = 0.025) and T6α PSD (p = 0.025) between the PDCOG group and the PDNC group, while no differences were found in other regions (P>0.05), see Figure 2 and Supplementary Table 3.

[image: Violin plots comparing PSD values across two groups, PDCOG and PDNC, for six different measurements: P3αPSD, P4αPSD, PZαPSD, O1αPSD, T5αPSD, and T6αPSD. Each graph shows a significant difference indicated by an asterisk above the horizontal lines. The plots are in red for PDCOG and purple for PDNC.]

FIGURE 2
 Violin plot of peak alpha PSD for PDCOG and PDNC. The PSD in the parieto-occipital region (P3, P4, PZ, O1), temporal (T3, T4, T5, T6), parietal-occipital (P3, P4, O1, O2) and the temporal region (T5, T6) regions were significantly lower in PDCOG than in the PDNC (p < 0.05). PSD, power spectral density. * p < 0.05.




3.4 Correlation analysis between PAF and MoCA total score and subitems scores in PD group

The correlation analysis conducted in this study revealed notable negative correlations between MoCA scores and PAF values in the temporal–parietal region (T5, P4, PZ) as well as the midline region (CZ). Specifically, the correlation coefficients and corresponding p-values were as follows: (r = −0.321, p = 0.034), (r = −0.344, p = 0.022), (r = −0.345, p = 0.022), and (r = −0.336, p = 0.026), the results survived FDR correction (q = 0.034).

There were also significant negative correlations between the temporal–parietal region PAF (T5, P4, PZ) with visuospatial scores. The correlation coefficients and p-values were (r = −0.344, p = 0.022), (r = 0.361, p = 0.016) and (r = −0.35, p = 0.02), respectively, the results survived FDR correction (q = 0.022).

Additionally, temporal–parietal region PAF (T5, P3, P4, PZ) and midline region PAF (CZ) showed significant negative correlations with language scores. The correlation coefficients and p-values were T5 (r = −0.37, p = 0.013), P3 (r = −0.343, p = 0.023), P4 (r = −0.431, p = 0.004), PZ (r = −0.405, p = 0.006) and CZ (r = −0.369, p = 0.014), respectively, the results survived FDR correction (q = 0.018, q = 0.023, q = 0.015, q = 0.015, q = 0.018), see Figure 3.
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FIGURE 3
 Correlation analysis between PAF and MoCA and subitems scores in PD group. (A–C): A significant negative correlation was found between P4PAF and MoCA scores (A), visuospatial scores (B), language scores (C) in patients with PD. (D–F): A significant negative correlation was found between T5PAF and MoCA scores (E), visuospatial scores (F), language scores (G) in patients with PD. (G–I): A significant negative correlation was found between PZPAF and MoCA scores (G), visuospatial scores (H), language scores (I) in patients with PD. (J): A significant negative correlation was found between CZPAF and MoCA scores in patients with PD. (K): A significant negative correlation was found between CZPAF and language scores in patients with PD. (L): A significant negative correlation was found between P3PAF and language scores in patients with PD. q: FDR corrected p value with Benjamini-Hochberg. q<0.05*.




3.5 Correlation analysis between PSD and MoCA subitems scores

The correlation analysis revealed that in the PDCOG group, alpha PSD in temporal–parietal-occipital region (P4, O1, T6, PZ) were negatively correlated with executive function scores (p < 0.05). The correlation coefficients and p-values were P4 (r = 0.363, p = 0.045), O1 (r = 0.384, p = 0.033), T6 (r = 0.402, p = 0.025) and PZ (r = 0.366, p = 0.043), respectively, the results survived FDR correction (q = 0.045).

In contrast, alpha PSD in the parietal region (PZ, P3) showed a positive correlation with memory function (p < 0.05). The correlation coefficients and p-values were (r = 0.379, p = 0.036) and (r = 0.479, p = 0.006), respectively, the results survived FDR correction (q = 0.036, q = 0.012), see Figure 4.
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FIGURE 4
 Correlation analysis between the peak alpha PSD and MoCA and subitems scores in PDCOG group. (A–D): A significant negative correlation was found between P4αPSD (A), O1αPSD (B), T6αPSD (C), PZαPSD (D) and executive scores in patients with PDCOG. (E): A significant positive correlation was found between PZαPSD and memory scores in patients with PDCOG. (F): A significant positive correlation was found between P3αPSD and memory scores in patients with PDCOG. q: FDR corrected p value with Benjamini-Hochberg. q<0.05*.




3.6 ROC curves for PAF in the diagnosis of PD

We conducted ROC curve analyses to investigate whether P3PAF, P4PAF, T5PAF, CZPAF, PZPAF might facilitate discrimination between PD patients and HC (see Figure 5). The areas under the curves (AUC) for P3PAF was 0.673, with a sensitivity of 59.4%, a specificity of 68.2%, and a cutoff of 9.65. The AUC for P4PAF was 0.701, with a sensitivity of 43.8%, a specificity of 84.1%, and a cutoff of 9.9. The AUC for T5PAF was 0.674, with a sensitivity of 87.5%, a specificity of 38.6%, and a cutoff of 8.9. The AUC for CZPAF was 0.693, with a sensitivity of 87.5%, a specificity of 45.5%, and a cutoff of 8.9. The AUC for PZPAF was 0.694, with a sensitivity of 46.9%, a specificity of 81.8%, and a cutoff of 9.9 (details in Table 2).

[image: ROC curve comparing five models: P3PAF, P4PAF, T5PAF, CZPAF, and PZPAF. The graph plots Sensitivity against 1-Specificity, with all lines closely following the diagonal, indicating similar performance.]

FIGURE 5
 ROC curve analysis was used to measure the AUC of PAF. The AUC was 0.673 for P3PAF (blue curve), 0.701 for P4PAF (purple curve), 0.674 for T5PAF (green curve), 0.693 for CZPAF (yellow curve) and 0.694 for PZPAF (orange curve).



TABLE 2 ROC curve thresholds and corresponding TPR/FPR values for PAF.


	Indices
	AUC
	Cut-off value
	
p

	Sensitivity
	Specificity
	
95%CI


 

 	P3PAF 	0.673 	9.65 	0.01 	0.594 	0.682 	(0.553, 0.793)


 	P4PAF 	0.701 	9.9 	0.003 	0.438 	0.841 	(0.585, 0.817)


 	T5PAF 	0.674 	8.9 	0.01 	0.875 	0.386 	(0.555, 0.794)


 	CZPAF 	0.693 	8.9 	0.004 	0.875 	0.455 	(0.576, 0.810)


 	PZPAF 	0.694 	9.9 	0.004 	0.469 	0.818 	(0.577, 0.811)





Detail data of ROC curves of PAF for the discrimination of PD and HC. AUC, areas under the curves.
 



3.7 ROC curves for alpha PSD indices in the diagnosis of PDCOG

We conducted ROC curve analyses to investigate whether P3α PSD, P4α PSD, O1α PSD, T6α PSD and PZα PSD might facilitate discrimination between PDCOG patients and PDNC patients (Figure 6). The areas under the curves (AUC) for P3α PSD was 0.77, with a sensitivity of 53.8%, a specificity of 90.3%, and a cutoff of 20.25. The AUC for P4α PSD was 0.747, with a sensitivity of 61.5%, a specificity of 83.9%, and a cutoff of 18.35. The AUC for O1α PSD was 0.743, with a sensitivity of 76.9%, a specificity of 64.5%, and a cutoff of 11.9. The AUC for T6α PSD was 0.758, with a sensitivity of 61.5%, a specificity of 93.5%, and a cutoff of 15.9. The AUC for PZα PSD was 0.758, with a sensitivity of 61.5%, a specificity of 80.6%, and a cutoff of 9 (details in Table 3).
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FIGURE 6
 ROC curves for the evaluation of the utility of alpha PSD indices for the discrimination of PDCOG from PDNC. ROC curve analysis was used to measure the AUC of the alpha PSD indices. The AUC was 0.77 for P3 α PSD (blue curve), 0.747 for P4α PSD (red curve), 0.743 for O1α PSD (green curve), 0.758 for T6α PSD (yellow curve) and PZα PSD (black curve).



TABLE 3 ROC curve thresholds and corresponding TPR/FPR values for alpha PSD indices.


	Indices
	AUC
	Cut-off value
	
p

	Sensitivity%
	Specificity%

 

 	P3α PSD 	0.770 	20.25 	0.005 	53.8 	90.3


 	P4α PSD 	0.747 	18.35 	0.01 	61.5 	83.9


 	O1α PSD 	0.743 	11.9 	0.012 	76.9 	64.5


 	T6α PSD 	0.758 	15.9 	0.007 	61.5 	93.5


 	PZα PSD 	0.758 	9 	0.024 	61.5 	80.6





Detail data of ROC curves of alpha PSD indices for the discrimination of PDCOG and PDNC. AUC, areas under the curves.
 




4 Discussion

The inherent rhythms captured in resting QEEG data offer invaluable neurophysiological insights into human cognition (Dringenberg, 2000; Schreckenberger et al., 2004; Klimesch et al., 2007). In recent years, the assessment of cognitive function using PAF and alpha PSD has emerged as a prominent area of research, garnering significant attention. Numerous studies have established a positive correlation between alpha activity and cognitive function (Williams Roberson et al., 2022). PAF and PSD parameters not only demonstrate the ability to differentiate between PD patients and healthy individuals, but also show promise as biomarkers for identifying cognitive deficits in PD (Arnaldi et al., 2017; Chaturvedi et al., 2017; Waninger et al., 2020; Schumacher et al., 2020). However, the question remains regarding the optimal utilization of PAF and PSD’s discriminatory capabilities in various EEG regions, particularly in differentiating between healthy controls and PD subjects, as well as between cognitively normal and impaired PD subjects. Our study presents distinct findings on this complex and contentious issue.


4.1 Characteristics of PAF and PSD in PD patients

In our study, we examined the disparities in PAF between healthy individuals and those diagnosed with PD. Our findings uncovered a significant decrease in overall PAF among PD patients relative to HC. The PAF serves as a highly sensitive indicator of cognitive performance. Moreover, the PAF fluctuates in accordance with the level of cognition (Klimesch, 1997). PAF is commonly understood as the frequency demonstrating the peak PSD within the 8 to 13 Hz alpha band. This frequency is thought to correlate strongly with cognitive processes (Keitel et al., 2019; Ramsay et al., 2021; Finley et al., 2024). Research has shown that PD patients without dementia display a lower frequency of alpha spikes compared to HC (Ye et al., 2022). Our findings revealed a discernible difference in PAF between the PD and HC groups, moreover, this difference was significantly correlated with cognitive assessment outcomes. Physiologically, PAF not only indicates heightened brain arousal and vigilance, facilitating visual information processing in the parietal, temporal, and occipital cortical regions, but is also associated with attention and cognitive performance (Babiloni et al., 2022). Our findings revealed a negative correlation between the posterior temporal pole and superior parietal PAF, and MoCA scores in PD patients. This primarily reflects a negative association with visual–spatial abilities. Furthermore, the superior parietal PAF also shows a negative correlation with language scores. These observations suggest that heightened neural electrophysiological activity in specific brain areas may play a role in compensatory mechanisms for cognitive decline. In some neurodegenerative diseases, the brain may maintain its function through some compensatory mechanisms. For instance, when the function of certain brain regions is impaired, other brain regions may increase their activity to compensate for this loss. In our study, the reduction of PAF might be related to the excessive synchronization of activity in certain brain regions, which could be a compensatory response by the brain to maintain cognitive function. However, such compensatory mechanisms may not always be effective and might even have a negative impact on cognitive function in some cases. These findings align with previous research (Zhang et al., 2020). A study investigated the correlation between resting-state PAF, PSD, aging, and cognition, revealing a negative association between alpha power and processing speed, particularly prominent in the frontal region (Cesnaite et al., 2023). However, our results specifically highlight a negative association between PSD and cognitive performance at the occipital pole. Additionally, we observed a positive correlation between PAF and both right and left temporal regions, related to interference suppression during working memory tasks. While our study did not directly establish a link between PAF and memory, we did find a noteworthy positive correlation between PSD and memory performance in PD patients, which merits further investigation.

However, no such difference was observed when comparing PDCOG and PDNC. Hence, we hypothesize that dopamine may also regulate PAF in PD (Wacker, 2018), but further research is required to verify this.



4.2 Reduced parieto-occipital alpha PSD in PDCOG patients

To distinguish PDCOG patients from PDNC patients based on their cortical electrical activity, our study compared the brain networks of the two subject groups through the analysis of ICA. In PDCOG patients we found a reduction of the alpha component in the parietal and occipital region. This result aligns with the findings reported by Yılmaz et al. (2020) and Babiloni et al. (2017). Furthermore, the reduction of alpha PSD amplitude especially in the posterior regions has been identified as one of the parameters that can discriminate between PDNC and PDCOG (Aarsland et al., 2017). The alpha rhythm prevails during relaxed wakefulness and serves as an indicator of the subject’s attentional capacity and the seamless integration of sensory-motor data, which facilitates the activation of cortico-thalamic and cortico-cortical connections. Consequently, it is unsurprising to observe alterations in this rhythm among patients experiencing cognitive impairment (Mostile et al., 2019).



4.3 Diagnostic efficacy and limitations of PDCOG based on QEEG markers

Although significant differences in PAF and PSD characteristics were observed between the two PD groups at the group level, translating these findings into a practical measure for clinical diagnosis in PDCOG remains challenging at this time. Notably, PSD in the alpha frequency range and dominant frequency demonstrated the highest diagnostic accuracy, yet they only achieved moderate AUC values of approximately 0.77. Certain lead measures exhibited remarkably high specificity for PDCOG (reaching up to 93.5% for alpha PSD in T6 with a cutoff below 15.9), indicating that a pronounced shift of PSD towards slower frequencies strongly suggests a diagnosis of PDCOG. However, sensitivity was generally lower, meaning that differentiating between PDCOG and PDNC can be difficult when facing a more typical QEEG pattern. These findings indicate that while changes in PAF and PSD characteristics are specific to cognitive decline, sensitivity is somewhat limited. Therefore, a comprehensive diagnosis should incorporate additional clinical indicators with higher sensitivity.

Compared with previous studies, the diagnostic efficacy of unimodal QEEG in this study (AUC = 0.77) was comparable to multimodal fusion models [e.g., QEEG+MRI combined AUC = 0.77 (Zhang et al., 2021)]. The specificity was significantly higher than that of blood biomarkers [93.5% vs. 77.3% (Liu et al., 2022)]. This difference highlights: The unique advantages of QEEG: low cost, high specificity, suitable for primary care screening; Inherent limitations of a single mode: Heterogeneity in neurodegenerative diseases requires multi-dimensional data complementation.



4.4 The link between PAF, alpha PSD and cognition

The modulation of alpha activity by cognitive processes has been well-documented in the literature, suggesting a broad association between alpha activity and various cognitive domains (Klimesch, 2012). Our findings reveal that MoCA scores exhibit a positive correlation with increasing alpha PSD in parieto-occipital leads (P3, O1, O2, T5, T6, PZ), corroborating previous reports (Yılmaz et al., 2020). Furthermore, a study indicates that patients with PD may experience inefficient resource allocation, potentially due to reduced functional inhibition mediated by parietal alpha activity (Weber et al., 2021).

This study unequivocally confirmed the crucial roles of the parieto-occipital region, which has a complex association with PD cognition. An investigation into brain function networks uncovered distinct differences in the parietal and occipital regions between individuals with PD and HC. This discovery implies a possible dysfunction of the parieto-occipital region in PD patients.

Executive dysfunction has been considered the core feature of the cognitive impairment in PD (Arrigoni et al., 2024). Vriend et al. (2015) reported in their study that patients with PD demonstrated compromised performance in comparison to controls while performing a stop-signal task within the inhibition domain. This impairment was accompanied by reduced activation in brain areas linked to inhibitory control. This study discovered a negative correlation between alpha-band PSD and executive function, particularly in specific brain regions such as the right posterior temporal pole, parietal pole, and left occipital pole. This correlation may be attributed to the inactivation of these regions, resulting in a decreased inhibition process (de-inhibition) (van Eimeren et al., 2009). Furthermore, dopaminergic depletion in PD may disrupt the default mode network function, resulting in an inability to properly adjust its activity during executive function tasks. Notably, our research revealed a negative correlation between the executive function score and the alpha-band PSD of the parietotemporal region. This intriguing discovery might be connected to non-disease-specific or compensatory changes in the PD default mode network, ultimately leading to reduced task performance. Interestingly, we found that the executive function score is negatively correlated with the alpha-band PSD of the parietotemporal region. This finding could also be associated with non-disease-specific or compensatory alterations in the PD default mode network, which are linked to diminished task performance.

Moreover, our study revealed a fascinating insight: while PAF has historically been regarded as a reliable measure for evaluating cognitive function, and there is a significant difference in PAF between individuals with PD and healthy controls, this metric is unable to differentiate between PD patients with and without cognitive impairment. This study found a negative correlation between resting-state PAF and the language dimension score of MoCA in PD patients, which may reflect the oscillation-cognition decoupling phenomenon during disease progression. The degeneration of the thalamus-cortex-basal ganglia circuit in PD patients may lead to the dysfunction of α rhythm regulation (Dirkx et al., 2017), causing the elevated resting-state PAF (>10 Hz) to lose its cognitive enhancement effect as seen in healthy individuals. Research (Ni et al., 2018) found that basal ganglia neural modulation could significantly alter the power and frequency of the cortical α band, suggesting that dopaminergic drugs may induce oscillation rigidity through a similar pathway, thereby impairing complex cognitive functions. Future studies should combine task-state EEG with multimodal imaging (such as fMRI-PET) to further explore the dynamic relationship between α frequency and the language network at different stages of PD. On the other hand, the PSD index has demonstrated remarkable effectiveness in assessing the cognitive abilities of PD patients, indicating its usefulness in identifying cognitive deficits unique to PD. We aim to explore further the variations in the alpha spectrum and PSD between PD and other types of cognitive impairment, as well as examine the distinct electrophysiological characteristics of cognitive impairment in different diseases.

Our study has certain limitations. First, we utilized the MoCA score, which does not assess specific cognitive domains and may therefore have limited diagnostic accuracy, as a measure of global cognitive function. In our future endeavors, we aim to incorporate more targeted scales for assessment purposes. Second, as an exploratory study, this research aims to preliminarily construct a diagnostic model and identify key features; therefore, cross-validation was not performed. Although this design may limit the direct assessment of the model’s generalizability, the results provide an important foundation for subsequent validation studies. Future work will incorporate larger sample sizes and cross-validation methods to systematically optimize the clinical application potential of the model. Finally, the absence of pathological confirmation in the current study prevents us from establishing the multifactorial pathological mechanism underlying early cognitive decline in PD patients. To address this limitation in future research, we intend to include additional evaluation indicators, such as serological and imaging markers, to explore multimodal markers of PD cognitive impairment.




5 Conclusion

In conclusion, the present findings reveal a clear association between alpha PSD and PD cognitive function. These results strongly imply that alpha PSD could be a key factor in evaluating cognitive abilities. Moreover, this study identified the P3α PSD, T5α PSD and T6α PSD as highly promising tools for assessing cognitive function in PD. These indicators may serve as useful auxiliary measures for future assessment.
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Background: Resting-state functional MRI (rs-fMRI) studies using regional homogeneity (ReHo) have identified localized functional changes in Parkinson’s disease (PD), but findings across studies exhibit considerable heterogeneity. The emerging network perspective suggests these disparate findings might reflect nodes within a single interconnected network. Functional Connectivity Network Mapping (FCNM) offers an approach to test this hypothesis.
Methods: We conducted a systematic literature search (PubMed, Embase, Web of Science, CNKI, and Wanfang) for studies reporting whole-brain ReHo differences (PD vs. healthy controls). Resting-state fMRI data from the Human Connectome Project (HCP; n = 1,093) were analyzed using FCNM to map ReHo abnormalities in PD onto common functional brain networks. Robustness was assessed using 1 mm and 7 mm radii, and spatial overlap with canonical brain networks was quantified.
Results: A total of 52 studies, comprising 72 datasets reporting ReHo differences between 2,052 PD patients and 1,401 healthy controls, were included in the analysis. The FCNM analysis identified a distributed PD-associated dysfunctional network. This network showed significant spatial overlap primarily with the visual (49.24%), somatomotor (32.35%), dorsal attention (44.49%), and ventral attention (67.97%) canonical networks. The network topography demonstrated high consistency across different seed radii (1 mm and 7 mm), confirming robustness.
Conclusion: By integrating heterogeneous ReHo findings via FCNM, this study delineates robust PD-associated dysfunctional networks involving key sensory, motor, and attentional systems. This network-centric view offers a unifying perspective on PD pathophysiology, highlighting large-scale systems disruption and potentially reconciling previous localization inconsistencies. This approach underscores the value of network neuroscience for understanding PD mechanisms.
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Introduction

Parkinson’s disease (PD), the most common neurodegenerative movement disorder, affects approximately 1% of individuals over 60 years old (Ascherio and Schwarzschild, 2016; Tysnes and Storstein, 2017). While characterized primarily by motor deficits, PD also encompasses a significant burden of non-motor symptoms, including cognitive impairment, hallucinations, attention deficits, and depression (Marinus et al., 2018; Sveinbjornsdottir, 2016). The presence of these diverse symptoms suggests that PD pathology extends beyond the classically affected dopaminergic neurons of the substantia nigra and striatum, implicating dysfunction across a wider array of brain regions (Dayan et al., 2018; Huang C. C. et al., 2024; Lin et al., 2024; Wen et al., 2022).

To investigate the pathophysiological mechanisms underlying PD, researchers frequently utilize resting-state functional MRI (rs-fMRI) (Tessitore et al., 2019) to non-invasively assess intrinsic neural activity and functional connectivity (FC) alterations, as reflected by the blood-oxygen-level-dependent (BOLD) signal, without requiring active task participation (Allen et al., 2014). A key rs-fMRI metric employed for this purpose is regional homogeneity (ReHo), which measures the synchronicity of neural activity time courses within local brain areas. Because ReHo is calculated across the whole brain in a data-driven manner, without needing pre-defined regions of interest, it serves as a valuable tool for investigating patterns of local neural activity in both healthy individuals and patients with neurological disorders (Song et al., 2011; Zang et al., 2004; Zuo et al., 2013).

A substantial body of research has employed ReHo analysis in PD. These studies have reported significant alterations compared to healthy controls (HC), such as decreased ReHo in sensorimotor cortices and increased ReHo in parietal, occipital, and prefrontal regions, often interpreted in relation to motor deficits, sensory abnormalities, or potential compensatory neural processes (Choe et al., 2013; Li et al., 2017). However, considerable heterogeneity persists across these ReHo findings, making it challenging to establish a definitive map of consistently affected regions solely based on individual studies. This variability is frequently attributed to differences in patient demographics, clinical profiles, sample sizes, imaging acquisition parameters, and data analysis strategies. In attempts to synthesize these divergent ReHo results, coordinate-based meta-analyses (CBMA) have identified recurring patterns, including abnormal ReHo in the bilateral inferior parietal lobules, medial prefrontal cortex, superior frontal gyrus, putamen, precentral gyrus, and thalamus (Gu et al., 2022; Pan et al., 2017; Tahmasian et al., 2017; Wang et al., 2018). Despite these meta-analytic efforts, variability persists, and ongoing research continues to generate diverse findings regarding local ReHo changes in PD (Huang Z. et al., 2024; Jiang et al., 2023; Lan et al., 2023; Li K. et al., 2023; Wang et al., 2024; Wang et al., 2023), necessitating further investigation and potentially alternative explanatory frameworks.

An emerging perspective suggests that this apparent heterogeneity in focal brain abnormalities may reflect disruptions within interconnected large-scale brain networks (Fox, 2018). This network-based view posits that disease processes can manifest at different locations (nodes) within the same functionally connected system (Darby et al., 2019). Functional Connectivity Network Mapping (FCNM), a technique that integrates coordinates of structural or functional abnormalities with normative human brain connectome data, provides a powerful framework for testing this hypothesis by mapping disparate lesion or abnormality locations onto underlying brain networks (Darby et al., 2019; Peng et al., 2022). Growing evidence supports the utility of network-based approaches for understanding various neurological and psychiatric disorders (Schaper et al., 2023; Stubbs et al., 2023; Younger et al., 2023). However, despite its potential to reconcile heterogeneous findings, FCNM has been relatively underutilized in the context of ReHo alterations in PD.

Therefore, the present study aimed to apply FCNM to synthesize published findings on ReHo alterations in PD patients compared to HC. By integrating coordinate data from previous ReHo studies into a connectome framework, we seek to identify potential common functional networks underlying these alterations. This approach will allow us to investigate whether the heterogeneous regional ReHo changes reported across different studies converge onto a specific, functionally connected brain network associated with PD.



Materials and methods


Data sources, study selection, and quality assessment

In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a comprehensive systematic search was conducted across PubMed, Embase, Web of Science, China National Knowledge Infrastructure (CNKI), and the Chinese Wanfang Database for studies published up to April 1, 2025, using the keywords: (Parkinson* OR Parkinson) AND (“regional homogeneity” OR ReHo OR “local connectivity”). To ensure thorough inclusion of relevant studies, the reference lists of selected studies and pertinent review articles were also examined. The study selection process is illustrated in the flow diagram (Figure 1).
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FIGURE 1
 Flow diagram for the identification and exclusion of studies. PD, Parkinson’s disease; ReHo, regional homogeneity.


The inclusion criteria for this study were as follows: (1) participants were diagnosed with idiopathic PD according to established clinical criteria; (2) the study involved a ReHo analysis comparing patients with idiopathic PD to HC subjects; (3) whole-brain ReHo analysis that reported three-dimensional coordinates in either the Talairach or Montreal Neurological Institute (MNI) space; (4) results achieved statistical significance, either corrected for multiple comparisons or uncorrected but employing spatial extent thresholds; and (5) the study was an original research article published in a peer-reviewed English- or Chinese-language journal. In studies that reported both on-state and off-state results, only the off-state data were included. For longitudinal studies, only data from the baseline assessment were used. If patient datasets appeared across multiple articles, only the dataset with the largest sample size and the most comprehensive reported details was chosen to avoid data duplication. Excluded items included review papers, letters, comments, and abstracts. The literature search, assessment and selection of studies, and data extraction were conducted independently by two investigators. Any discrepancies were settled by discussion involving a third investigator to reach a conclusive decision.



Rs-fMRI data acquisition and preprocessing

For the subsequent network mapping analysis, we utilized the Human Connectome Project (HCP; http://www.humanconnectome.org/) dataset. Detailed inclusion and exclusion criteria for the HCP dataset can be found elsewhere (Marcus et al., 2013). To minimize potential confounding effects related to neurodevelopment and neurodegenerative changes, only individuals aged 18 to 40 years were included in in the present analysis. Consequently, we ultimately selected resting-state fMRI scans from 1,093 healthy participants (499 males, mean age ± SD = 28.78 ± 3.69 years).

The HCP data was acquired using a 3 T Siemens Trio scanner with a gradient echo-planar imaging (GRE-EPI) sequence for fMRI. The imaging parameters were as follows: repetition time (TR) of 720 ms, echo time (TE) of 33.1 ms, field of view (FOV) of 208 mm × 180 mm, flip angle (FA) of 52°, matrix size of 104 × 90, slice thickness/gap of 2 mm/0 mm, 72 slices, and 1,210 time points.

Resting-state fMRI data were preprocessed utilizing the Statistical Parametric Mapping (SPM12; https://www.fil.ion.ucl.ac.uk/spm/) and Data Processing & Analysis for Brain Imaging (DPABI; https://rfmri.org/DPABI) (Yan et al., 2016). The initial 10 volumes from each run were discarded to allow for MR signal stabilization and participant acclimation. The remaining volumes underwent correction for slice timing differences. Subsequently, realignment was performed to correct for inter-volume head motion. Head motion parameters were estimated (translations in x, y, z directions and rotations pitch, roll, yaw). All included participants exhibited head motion within acceptable limits (maximum translation < 2 mm and maximum rotation < 2°). Framewise displacement (FD), reflecting volume-to-volume head position changes, was also calculated. Several nuisance covariates—including linear trends, the 24 head motion parameters derived from the Friston model, volumes flagged with FD > 0.5 mm (“scrubbing”), mean global signal, mean white matter signal, and mean cerebrospinal fluid signal—were regressed out using a general linear model. Global signal regression (GSR) was included as it has been shown to enhance the specificity of functional connectivity patterns and mitigate widespread motion artifacts, although its use remains debated. The resulting datasets were then bandpass filtered (0.01–0.1 Hz). For spatial normalization, individual T1-weighted structural images were first co-registered to the mean functional image. These aligned structural images were then segmented into gray matter, white matter, and CSF probability maps and normalized to MNI standard space using the high-dimensional nonlinear warping algorithm, Diffeomorphic Anatomical Registration via Exponentiated Lie algebra (DARTEL). Each filtered functional volume was subsequently spatially normalized to MNI space using the deformation parameters derived from the structural normalization and resampled into 3-mm isotropic voxels. Finally, spatial smoothing was applied using a Gaussian kernel of 6 × 6 × 6 mm3 full width at half maximum (FWHM).



Functional connectivity network mapping

We employed the FCNM approach to construct a PD-associated dysfunctional network based on the extracted coordinates of significant ReHo differences between PD and HC participants identified in the systematic review. First, spherical regions of interest (ROIs) with a radius of 4 mm were created centered at the peak coordinates reported for each significant between-group contrast (PD > HC or PD < HC). These spheres were then combined to form a contrast-specific seed mask (termed the “contrast seed”). Second, using the preprocessed normative resting-state fMRI data from the 1,093 HCP participants, functional connectivity (FC) maps were generated for each HCP participant. This involved computing the Pearson’s correlation coefficient between the mean time series extracted from the contrast seed (representing the location of PD-related ReHo abnormality) and the time series of all other brain voxels. These correlation coefficients were transformed using Fisher’s r-to-z transformation to improve normality. Third, the 1,093 individual-level z-transformed FC maps were entered into a voxel-wise one-sample t-test at the group level to identify brain regions demonstrating consistent functional connectivity with the contrast seed across the healthy cohort. We focused only on positive FC, given that the biological interpretation of negative FC remains a subject of ongoing research (Murphy et al., 2009; Murphy and Fox, 2017). Fourth, the resulting group-level t-map underwent thresholding using a significance level of p < 0.05, with correction for multiple comparisons applied using the false discovery rate (FDR) method. Finally, the thresholded, binarized maps derived from each individual ReHo contrast included in the meta-analysis were overlaid. This generated a network probability map, representing the frequency with which voxels appeared in the significant connectivity networks across different contrasts. This probability map was then thresholded at 50% (i.e., retaining voxels present in at least half of the individual contrast-derived networks) to produce the final integrated ReHo-based PD dysfunctional network.



Association with canonical brain networks

To facilitate functional interpretation, we examined the spatial overlap between the derived PD dysfunctional network and eight well-established canonical brain networks. Following Yeo et al., the cortical networks comprised the visual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal, and default mode networks (Yeo et al., 2011). The subcortical network, encompassing the amygdala, hippocampus, basal ganglia, and thalamus, was defined using the Human Brainnetome Atlas.1 To quantify the spatial relationship, we calculated the proportion of overlapping voxels between the PD dysfunctional network and each canonical network, relative to the total number of voxels in the respective canonical network. If the overlap proportion reached 20% or greater, the PD dysfunctional network was considered to significantly involve the corresponding canonical network.




Results


Included studies and sample characteristics

Following the predefined search strategy and selection criteria, a total of 621 potentially relevant documents were screened. Ultimately, 52 studies reporting on ReHo alterations in PD, comprising 72 independent datasets (contrasts), were included in the analysis. These datasets reported ReHo differences between a pooled sample of 2,052 PD patients (1,133 males, 919 females; mean age = 60.88 ± 5.30 years; mean Hoehn & Yahr [H&Y] stage = 2.06 ± 0.67; mean disease duration = 4.77 ± 3.85 years) and 1,401 HC participants (656 males, 745 females, mean age = 60.29 ± 6.73 years). Detailed sample and imaging characteristics of the included studies are summarized in Supplementary Table 1.



Dysfunctional networks in PD

The FCNM analysis integrating coordinates of ReHo alterations revealed a PD-associated dysfunctional network comprising a broadly distributed set of brain regions (Figure 2). Key nodes included extensive areas within the bilateral occipital cortex (lingual gyrus, calcarine cortex, cuneus, superior occipital gyrus, and middle occipital gyrus), somatomotor cortex (precentral gyrus, postcentral gyrus, and supplementary motor area), parietal cortex (superior parietal gyrus, precuneus, and inferior parietal lobule), and the insula.

[image: MRI brain scan images displaying different cross-sections with highlighted areas in red to yellow shades, indicating varying probability levels from 50% to 60%. The images show slices at different orientations and positions, labeled with coordinates, on a black background. A color bar on the left side represents the probability scale.]

FIGURE 2
 PD brain damage networks and involved brain regions. PD, Parkinson’s disease.


Regarding overlap with canonical networks (Figure 3), the PD dysfunctional network primarily involved the visual (overlap proportion: 49.24%), somatomotor (32.35%), dorsal attention (44.49%), and ventral attention (67.97%) networks, all exceeding the predefined 20% threshold. To evaluate the robustness of the FCNM procedure to the choice of seed radius, analyses were repeated defining seed spheres with radii of 1 mm and 7 mm. The resulting PD dysfunctional networks closely resembled the network generated using the primary 4-mm sphere radius. Specifically, with a 1-mm radius, the significantly involved canonical networks included the visual (30.45%), dorsal attention (27.16%), and ventral attention (57.95%) networks (somatomotor network overlap was 13.9%, below threshold). With a 7-mm radius, the significantly involved networks included the visual (45.72%), somatomotor (34.65%), dorsal attention (37.52%), and ventral attention (69.77%) networks, demonstrating high consistency across radii.

[image: Diagram featuring a central radar chart with eight labeled brain networks: Visual, Somatomotor, Dorsal Attention, Ventral Attention, Limbic, Frontoparietal, Default Mode, and Subcortical. Each network is represented by a colored brain section around the chart. Significant networks are shaded in pink, non-significant networks in blue.]

FIGURE 3
 PD brain damage network in association with canonical brain networks. PD, Parkinson’s disease.





Discussion

To the best of our knowledge, this study represents the first application of FCNM, integrating coordinate-based data of ReHo alterations with large-scale normative human connectome data, to delineate the PD-associated dysfunctional networks. By synthesizing 72 contrasts from 52 studies, encompassing a substantial cohort of 2,052 PD patients and 1,401 HC, our FCNM analysis identified consistent dysfunctional networks associated with PD. The results revealed that this PD-related networks primarily involve nodes within the visual, somatomotor, dorsal attention, and ventral attention canonical systems. The robustness of this network topography was confirmed through validation analyses using different seed radii (1 mm and 7 mm), which yielded highly comparable results to the primary analysis (4 mm radius). This network-level perspective offers a potential framework for reconciling previously heterogeneous regional neuroimaging findings and provides a systems-level vantage point for understanding the neurobiological underpinnings of PD.

Our analysis identified significant involvement of the visual network in PD, including nodes located within cortical regions such as the bilateral lingual gyrus, calcarine cortex, cuneus, superior occipital gyrus, and middle occipital gyrus. The visual network is integral to processing external visual stimuli, encompassing functions like visual perception, object recognition, spatial localization, and the regulation of visual attention—domains known to be affected in PD (Xing et al., 2024). Clinically, visual network impairment in PD manifests diversely, including reduced visual acuity and contrast sensitivity, deficits in visual scene processing, visuospatial cognition, color vision, and the occurrence of visual hallucinations (Archibald et al., 2013; Armstrong, 2011; Caproni et al., 2014; Manganelli et al., 2009; Norton et al., 2016; Sun et al., 2014). Indeed, visual problems are highly prevalent, affecting up to 70% of PD patients (Urwyler et al., 2014), and can emerge even in the prodromal phase (Armstrong, 2015; Mahlknecht et al., 2015). The implication of the visual network identified through our synthesis of ReHo data aligns with previous multimodal neuroimaging evidence. For instance, studies have reported altered functional organization (segregation/integration) within dorsal and ventral visual streams (Li T. et al., 2023), reduced metabolic activity (FDG-PET) (Zang et al., 2023), and abnormal neurovascular coupling (Li T. et al., 2023) within this network in PD. Furthermore, the specific regions highlighted in our network map, such as the lingual gyrus, calcarine cortex, cuneus, and occipital gyri, have been repeatedly implicated in prior functional connectivity (Kawabata et al., 2018) and meta-analytic studies focusing on local activity alterations in PD (Gu et al., 2022; Pan et al., 2017; Wang et al., 2018; Wang et al., 2023), supporting the notion that widespread visual system dysfunction is a core feature captured by aggregating ReHo findings.

This study also demonstrated significant involvement of the somatomotor network (SMN) in the PD dysfunctional network, including key nodes in the precentral gyrus, postcentral gyrus, and supplementary motor area (SMA). The SMN plays a critical role in coordinating and integrating sensorimotor information (Marquez et al., 2023), and its functional architecture reflects the brain’s regulation of motor control (Wang et al., 2022; Yeo et al., 2011). In PD, dysfunction within the SMN is intimately linked to cardinal motor symptoms, particularly impacting motor planning and gait initiation (Ragothaman et al., 2022). Consistent with this, SMN functional connectivity has been shown to predict clinical motor scores (Wang et al., 2022), and alterations in SMN metabolic activity correlate with motor severity (Zang et al., 2023). Moreover, therapeutic interventions like levodopa have been shown to modulate SMN synchrony in correlation with motor improvements (Zhou et al., 2021). The specific SMN regions identified in our FCNM analysis (precentral/postcentral gyri, SMA) correspond well with established patterns of PD pathology. Abnormalities in the precentral and postcentral gyri are frequently reported (Li et al., 2021; Wang et al., 2024; Zeng et al., 2017) and functional and structural alterations within the SMA are strongly associated with characteristic PD deficits such as impaired motor sequencing, timing, and gait (Marquez et al., 2023). Notably, the SMA is a target for therapeutic interventions, with repetitive transcranial magnetic stimulation (rTMS) applied to this area showing moderate efficacy in improving motor symptoms in randomized controlled trials (Hamada et al., 2008; Ramos et al., 2013). This convergence of evidence underscores the clinical relevance of the SMN components highlighted by our FCNM integration of ReHo data.

Additionally, our analysis revealed widespread involvement of attention networks, including both the dorsal attention network (DAN) and the ventral attention network (VAN), encompassing regions such as the superior parietal lobule, precuneus, inferior parietal lobule, and insula. These networks are fundamental components of cortical organization, interacting with sensory systems to regulate attention and facilitate information processing (Yeo et al., 2011). Evidence suggests disrupted attentional network function in PD; for example, increased network dispersion in both VAN and DAN has been observed (Zang et al., 2023). The VAN plays a critical role in directing attention toward unexpected or salient stimuli, operating as a bottom-up, stimulus-driven attentional process, while the DAN is responsible for top-down, goal-directed stimulus selection (Rossi et al., 2014; Vossel et al., 2014). PD patients exhibit impairments related to both systems: difficulties in recognizing salient targets (implicating DAN/top-down control) and altered orienting to novel stimuli (implicating VAN/bottom-up control), particularly in fatigued patients (Pauletti et al., 2019). Research suggests FOG may involve VAN overreliance on external cues, leading to executive deficits (Bayot et al., 2022), and alterations in DAN network efficiency (Maidan et al., 2019). Beyond overt attention and FOG, DAN alterations have been implicated in broader cognitive processing and impulse control disorders in PD (Arslan et al., 2020; Baggio et al., 2015; Chung et al., 2019; Zhu et al., 2021). Furthermore, disrupted processing within and between attention networks is hypothesized to contribute to visual illusions and hallucinations. For instance, impaired communication between the VAN (detecting saliency) and DAN (directing focus) might lead to misidentification of stimuli, allowing internally generated percepts to emerge (Gobel et al., 2021; Shine et al., 2014a). Importantly, the cortical regions associated with the attention networks in our FCNM results (superior/inferior parietal lobules, precuneus, insula) align well with previous meta-analyses and studies reporting altered activity, connectivity, or synchrony in these areas in PD (Gu et al., 2022), demonstrating that the attention network nodes identified via our synthesis of ReHo data correspond to regions consistently implicated in PD attentional and related cognitive dysfunction.

Beyond characterizing alterations within individual canonical networks, impaired interactions between these networks likely contribute significantly to the pathophysiology of PD. For instance, effective gait control requires coordinated activity between the visual network (for spatial guidance) and the SMN (for motor execution) (Takakusaki, 2013). Reduced functional connectivity between these two systems in PD patients is thought to impair sensorimotor integration, contributing to postural instability and gait difficulties (Gratton et al., 2019; Shi et al., 2023; Xing et al., 2024). Highlighting this interaction, a predictive model for PD motor dysfunction identified Visual-SMN network coupling as a key factor (Wang et al., 2022). Similarly, the occurrence of visual hallucinations likely involves multi-network dysregulation. Models propose that reduced DAN activity, hyperactivation of the VAN, and impaired DAN-VAN connectivity create a vulnerability (Diez-Cirarda et al., 2023; Nieto-Escamez et al., 2023; Pagonabarraga et al., 2024; Shine et al., 2014a,b), where ambiguous visual input, coupled with dysfunctional VAN processing, allows intrusive memory-based imagery to manifest as hallucinations (Zhang et al., 2024). This dysregulation is a key factor in the development of hallucinations in PD psychosis (Pagonabarraga et al., 2024). Therefore, while our FCNM approach primarily identifies the topography of the dysfunctional network based on ReHo alterations, these findings gain further significance when considering the critical functional interactions between the implicated visual, somatomotor, and attention systems in producing the complex symptom profile of PD.

However, in the present study, the FCNM analysis based on pooled ReHo coordinates did not highlight the default mode network (DMN) as a significantly altered network in PD, unlike in many studies focusing on specific subgroups. We speculate that this is not simply attributable to the relatively short disease duration, but rather likely reflects the significant heterogeneity of DMN functional alterations within the PD patient population. Extensive literature indicates substantial variability in DMN functional connectivity patterns among PD patients, which is closely related to the patients’ cognitive status (even within the non-demented range, such as distinguishing between cognitively normal and mild cognitive impairment) (Hou et al., 2020; Zarifkar et al., 2021), specific clinical phenotypes (e.g., the presence of visual hallucinations) (Shine et al., 2015; Yao et al., 2014), and the functional specificity of DMN internal subsystems (Zarifkar et al., 2021). Furthermore, DMN dysfunction often manifests as altered interaction patterns with other large-scale brain networks (such as the salience and executive control networks) (Putcha et al., 2016; Tessitore et al., 2012). ReHo primarily measures the synchrony of local neural activity; pooling its coordinates across a clinically diverse group likely averages out or obscures these heterogeneous DMN alteration patterns, which can be in opposite directions, involve specific subnetworks, or pertain to inter-network interactions. Therefore, our findings might indirectly underscore the complexity of DMN dysfunction within the PD spectrum, suggesting the need for more refined subgroup analyses or the use of different methodologies (e.g., direct functional connectivity analysis) to capture its changes.

Despite the strengths of our approach, several limitations must be acknowledged. First, our study was constrained to studies reporting three-dimensional coordinates for ReHo differences, potentially excluding relevant studies that used different analytical methods (e.g., region-of-interest analyses) or did not report coordinates, which could introduce selection bias. Second, the normative connectome used for FCNM was derived from the HCP dataset, comprising young healthy adults (18–40 years). The demographic profile of this normative sample differs significantly from the typically older PD patient population included in the included studies. Using an age-matched normative connectome, if available, might provide more precise network mapping in future studies. Third, while FCNM provides a valuable framework for integrating localized findings, it is a relatively recent technique whose application to diverse neurological conditions warrants further validation in independent, large-scale cohorts to confirm robustness and generalizability. Fourth, while FCNM helps synthesize heterogeneous findings, inherent variability within the included studies (e.g., clinical heterogeneity of patients, differences in imaging protocols and preprocessing pipelines beyond ReHo calculation) remains a factor that influences the input coordinates and, consequently, the derived network map. Finally, we acknowledge that not all included studies reported results corrected for multiple comparisons. Whenever both corrected and uncorrected results were available, we prioritized using statistically corrected findings. However, in some studies, only uncorrected results were provided, which we included to ensure comprehensiveness. This may have introduced some variability and should be considered when interpreting the findings.



Conclusion

In conclusion, this study successfully employed FCNM by integrating coordinate-based results from numerous rs-fMRI studies investigating ReHo alterations in PD. Our analysis revealed consistent and robust PD-associated dysfunctional networks, primarily implicating the visual, somatomotor, dorsal attention, and ventral attention networks. This network-centric approach offers a potentially unifying framework that may help reconcile previously heterogeneous findings focused on isolated brain regions. By mapping disparate ReHo alterations onto interconnected functional systems, our findings provide novel insights into the systems-level pathophysiology underlying PD, linking widespread changes in local neural synchrony to specific large-scale networks known to be involved in the visual, motor, and attentional deficits characteristic of the disease. While acknowledging limitations related to coordinate-based synthesis and the normative dataset employed, this work underscores the value of network neuroscience perspectives in understanding complex neurodegenerative disorders. It highlights that PD pathology manifests across interconnected brain systems and paves the way for future investigations utilizing network-based analyses to further explore disease mechanisms, track progression, and potentially identify novel therapeutic targets within these affected circuits.
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Introduction: Parkinson’s disease (PD) is one of the most prevalent neurodegenerative disorders, characterized by both motor and non-motor symptoms, including impaired oculomotor functions. Eye-tracking technology, a precise and non-invasive method for measuring eye movements, has emerged as a promising tool for diagnosing and monitoring PD progression. This systematic review evaluates the effectiveness of eye-tracking in assessing motor and cognitive alterations associated with PD.




Methods: A systematic review of the literature was conducted using PubMed, Web of Science, Embase, Scopus and Cochrane Library databases to identify studies applying eye-tracking to assess oculomotor functions in PD patients. Only articles published from 2022 to 2024 were considered.
Results: A total of 10809 studies were identified. 18 met the inclusion criteria and were included. Findings indicate that eye-tracking may offer valuable insights into both oculomotor and cognitive dysfunctions. Specific metrics such as saccade velocity, fixation duration, and pupil size have been correlated with disease severity. Recent technological advancements, including the integration of machine learning (ML) and virtual reality (VR), have further enhanced the diagnostic accuracy and scalability of eye-tracking methods.
Conclusion: In the past 3 years, eye-tracking has rapidly advanced, particularly through its integration with ML and VR. These innovations have enhanced precision, accessibility, and clinical relevance. Emerging evidence also supports its potential to detect eye movement biomarkers associated with disease stage, motor subtypes, and cognitive decline. This review synthesizes the latest findings, underscoring the role of eye-tracking as a scalable and personalized tool for PD assessment. However, further efforts are needed to address challenges such as protocol standardization and device variability.
Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024602802, identifier CRD42024602802.
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1 Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder, caused by the loss of dopaminergic neurons in the basal ganglia. It is currently diagnosed through clinical evaluation of motor symptoms, including tremor, rigidity, akinesia, and postural instability, as well as non-motor symptoms such as sleep disturbance, cognitive impairment and mood disorders (Bloem et al., 2021; Chaudhuri et al., 2006; Culicetto et al., 2024; Jankovic, 2008; Pennisi et al., 2023).

Its incidence is 10–18 cases per 100,000 person-years (de Lau and Breteler, 2006). The key risk factors include gender, with men affected more frequently than women at a ratio of approximately 3:2 (de Lau and Breteler, 2006). Ethnicity also plays a role, with the highest incidence reported among Hispanic individuals in the USA, followed by non-Hispanic Whites, Asians, and Black individuals (Van Den Eeden et al., 2003). However, age is the strongest risk factor, for developing PD. Approximately 83% of PD patients develop Parkinson’s Disease Dementia (PDD), linking the condition to aging (Hely et al., 2008) and emphasizing the need for early, accurate diagnosis to optimize treatment and outcomes (Braak et al., 2003; Irwin et al., 2013).

Impaired oculomotor behaviors, such as smooth pursuit movements and saccades, are observed in approximately 75% of PD patients, making them a potential clinical indicator (Corin et al., 1972; Fooken et al., 2022; Helmchen et al., 2012). The neural pathways controlling eye movements, spanning from the frontal cortex to the medulla, reflect brain circuit integrity (Coe and Munoz, 2017). In PD, neurodegeneration disrupts these circuits, leading to increased saccade latency, antisaccade errors, saccade hypometria, altered pupil responses, and decreased blink rates. These changes worsen with disease progression and may precede motor symptoms, offering utility for early diagnosis and disease monitoring (Antoniades and Kennard, 2015; Crawford et al., 1989; Perkins et al., 2021).

Research suggests a link between motor symptoms and eye movement disorders in PD. Eye movement impairment can exacerbate motor symptoms, such as reduced eye-hand coordination, leading to delay movements and decreased overall coordination (Terao et al., 2017).

While dopamine replacement therapy and deep brain stimulation (DBS) manage motor symptoms (Hartmann et al., 2019), treatment for non-motor symptoms, including visual impairments, remain limited. Some PD treatments, like DBS, improve eye movements (Antoniades et al., 2014; Fawcett et al., 2010; Nilsson et al., 2013; Yugeta et al., 2010), while others may cause visual side effects, such as hallucinations (Armstrong, 2011).

Currently, two methods are used to assess eye movements in patients. The first one involves direct observation, where patients follow the physician’s finger to detect abnormal eye movements. The second utilizes eye-tracking devices for more accurate monitoring. However, the direct observation method has notable limitations. Physicians can only assess visual responses based on finger movements, and the method’s low resolution and reliance on subjective perception make it challenging to detect subtle abnormalities that might otherwise go unnoticed (Rosengrant et al., 2021).

Eye-tracking is a technique used to record eye movements and gaze position over time during various tasks. It is commonly employed to study the distribution of visual attention (Carter and Luke, 2020). Eye-tracking technology, especially with advancements in non-invasive infrared systems, has shown great clinical potential as a non-invasive and objective marker. However, temporal and spatial resolution can vary across different systems, and not all eye-tracking devices offer the same precision. Although the underlying neural mechanisms still remain unclear, oculomotor dysfunctions in PD reflect complex brain changes, potentially making eye-tracking useful instrument to monitoring disease’s progression (Pelzer et al., 2020; Perneczky et al., 2011; Yugeta et al., 2013).

Motor impairments in PD are mirrored by oculomotor abnormalities such as saccade hypometria (Terao et al., 2013; White et al., 1983), delayed initiation of voluntary saccades (Terao et al., 2011), multistep saccades (Blekher et al., 2009), and impaired smooth pursuit (Almer et al., 2012; Fukushima et al., 2017; Shibasaki et al., 1979). Voluntary eye movements, particularly memory-guided and antisaccades, are more severely affected due to combined superior colliculus inhibition and cortical dysfunction (Terao et al., 2011; Terao et al., 2013). As the disease progresses, reflexive saccades also become hypometric and delayed (Gorges et al., 2014; Terao et al., 2011).

Non-motor symptoms are likewise reflected in eye movement patterns. Increased antisaccade errors and prolonged antisaccade latencies are associated with executive dysfunction, impaired inhibitory control from the dorsolateral prefrontal cortex (DLPFC), and basal ganglia dysfunction (Crawford et al., 2002; Terao et al., 2013; van Stockum et al., 2008). These deficits have been linked to clinical features such as freezing of gait (FOG) and impaired postural control (Ewenczyk et al., 2017; Walton et al., 2015).

Eye-tracking, therefore, provides a non-invasive and objective method for capturing both motor and non-motor dysfunctions in PD, offering potential biomarkers for early diagnosis, disease staging, and monitoring of progression.

Additionally, research has shown that other neurodegenerative diseases, including corticobasal syndrome, progressive supranuclear palsy (PSP), and multiple system atrophy, exhibit distinct patterns of eye movement abnormalities, indicating that eye-tracking could be useful in the differential diagnosis of Parkinson-plus syndromes (Baird-Gunning and Lueck, 2018; Henderson et al., 2011).

Previous reviews, such as Waldthaler et al. (2021), comprehensively synthesized the application of eye-tracking in PD up to 2021, focusing primarily on diagnostic potentials based on oculomotor dysfunctions. Their findings highlighted the role of antisaccade errors, saccade hypometria, and fixation instability as early markers of PD and cognitive decline. Specifically, Waldthaler et al. (2021) conducted a comprehensive meta-analysis on antisaccade performance in PD, confirming that patients exhibit significantly higher antisaccade error rates and prolonged antisaccade latencies compared to healthy controls (HCs). They also demonstrated that motor disease severity, indexed by disease duration, Hoehn & Yahr stage, and UPDRS III scores, was positively correlated with increased antisaccade latency. Notably, acute levodopa administration did not significantly affect antisaccade performance, whereas subthalamic nucleus deep brain stimulation (STN-DBS) appeared to decrease antisaccade latency, possibly reflecting a shift toward greater motor impulsivity. Waldthaler et al. (2021) emphasized the potential of antisaccade measures as markers for disease severity, but also highlighted the need for longitudinal studies to validate their prognostic value.

Building upon these earlier findings, the present review aims to underscore the growing utility of eye-tracking technology in the diagnosis and monitoring of PD, with a particular focus on recent technological advancements. To avoid redundancy and to emphasize the significant progress made, including the integration of machine learning (ML) algorithms and virtual reality (VR)-based protocols, we concentrated on studies published between 2022 and 2024. For a more detailed historical overview, we reccomend referring to Waldthaler et al. (2021).



2 Materials and methods

This systematic review was conducted and reported in compliance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines (Page et al., 2020; Figure 1). The review protocol was registered on PROSPERO with the registration number CRD42024602802.


[image: Flowchart illustrating the process of article selection for a study. It begins with identifying 10,809 records from databases like PubMed, Embase, and Scopus. Screening removes 4,856 duplicates and 7 non-English articles, leaving 5,946 for title and abstract review. Further exclusion of 4,367 by title and 1,252 by abstract results in 327 full-text assessments. Inadequate data or study design eliminates 309, resulting in 18 studies included in the review.]

FIGURE 1
Search and selection of eligible articles.



2.1 PICO model

We utilized the PICO framework (Population, Intervention, Comparison, and Outcome) to define our research question. The target population includes adults (>18 years) with PD. The intervention involves eye-tracking technology, with comparisons drawn against healthy individuals or those with other neurodegenerative disorders. The outcome focuses on the effectiveness of eye tracking in enhancing the accuracy of diagnosing and monitoring PD progression. This research investigates the potential of eye tracking in ’assisting physicians in the detection and management of PD.



2.2 Search strategy

Studies were identified through a database search of PubMed, Web of Science, Embase and Scopus databases in September 2024. Articles meeting the predefined inclusion criteria were evaluated for potential inclusion. The search strategy employed the following string: (Parkinson[Title/Abstract]) AND ((“eye tracking”[Title/Abstract]) OR (eye-tracking[Title/Abstract]) OR (eyetracking[Title/Abstract]) OR (video oculography[Title/Abstract]) OR (video-oculography [Title/Abstract]) OR (videooculography[Title/Abstract]) OR (elec tro oculography[Title/Abstract]) OR (electro-oculography [Title/Abstract]) OR (electrooculography[Title/Abstract]) OR (eye movement[Title/Abstract]) OR (eye-movement[Title/Abstract]) OR (eyemovement[Title/Abstract])). Search terms targeted titles and abstracts. After removing duplicates, all remaining articles were screened based on title and abstract. Only studies published between 2022 and 2024 were included in the review. As part of the supplementary search strategy, we performed backward citation tracking by screening the reference lists of all included articles to identify any additional studies that met the inclusion criteria but were not captured through the initial database search. However, this additional step did not yield further studies that met our inclusion criteria.

A study was included if it described or investigated oculomotor function in patients with PD. Only studies conducted on human populations and published in English that met the following criteria were included: (i) primary empirical studies employing observational (cross-sectional, cohort, and case-control), experimental (e.g., randomized controlled trials), interventional (e.g., pharmacological trials), feasibility designs; (ii) articles that employed eye-tracking technology to assess oculomotor function.

A study was excluded if there was a lack of data or information about eye-tracking technology in patients with PD. Additionally, in accordance with PRISMA 2020 guidelines (Page et al., 2020), we excluded non-primary literature (e.g., systematic reviews, meta-analyses), conference abstracts or proceedings, editorials, letters, books, and single-case studies. These thresholds were adopted to ensure methodological rigor, data transparency, and to reduce the potential for bias due to insufficient reporting or limited generalizability.



2.3 Study selection

To minimize bias and ensure a rigorous selection process, two authors (L.C. and D.C.) independently reviewed and extracted data from the studies. Any discrepancies were resolved through collaborative discussion, with consultation from a third author (V.L.B). This multi-step approach ensured that at least three researchers independently assessed each article. In cases of persistent disagreement, the final decision involved all authors.



2.4 Data extraction and analysis

The studies that met the inclusion criteria were summarized based on the following points: (Bloem et al., 2021) Study characteristics, including the type of study and the country where the data were collected; (Chaudhuri et al., 2006) Patients characteristics, such as the sample size, age, gender, duration of disease, and the level of education; (Culicetto et al., 2024) Instruments utilized for eye tracking; and (Jankovic, 2008) key findings and relevant outcomes.

Following the full-text selection, data were extracted from the included studies and organized in a table using Microsoft Excel (Version 2021). The extracted data included: study title, first author name, year of publication, study aims and design, sample size, type of participants, type of intervention and control, baseline performance, type of outcome and time-points for assessment, results, and key conclusions.

Additionally, the inter-rater agreement between the two reviewers (L.C. and D.C.) was assessed using kappa statistics. A kappa score above 0.61 was set as threshold for substantial agreement, indicating strong concordance between the reviewers. This criterion ensures a rigorous assessment of inter-rater reliability, emphasizing the substantial level of agreement achieved during the data extraction process.



2.5 Risk of bias within individual studies

The risk of bias in the selected studies was independently assessed by L.C. and D.C. using the revised Cochrane tool for non-randomized controlled studies-of exposures (ROBINS-E) tool (Figure 2), which comprises seven domains: (i) bias due to confounding, (ii) bias arising from measurement of the exposure, (iii) bias in selection of participants into the study (or into the analysis), (iv) bias due to post-exposure interventions, (v) bias due to missing data, (vi) bias arising from measurement of the outcome, (vii) bias in selection of reported result.
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FIGURE 2
Shows the risk of bias (ROBINS-E) of studies regarding the use of eye-tracking in PD.





3 Results


3.1 Synthesis of evidence

A total of 10,809 articles were identified through database searches. After removing duplicates, 4,855 studies were screened based on their title and abstract. Following full text selection, 18 studies were included for analysis. The selection process is illustrated in Figure 1. The main features of included studies were summarized in Table 1.


TABLE 1 Main characteristics of the included studies.
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3.2 Key findings from included studies


3.2.1 Diagnostic application of eye-tracking

The studies included in this review highlight the use of eye-tracking technology as a promising non-invasive tool for assessing motor and cognitive functions in PD patients. Several studies have demonstrated the potential for eye-tracking’s diagnostic capabilities, distinguishing PD patients from HCs based on metrics related to saccadic movements, fixation stability, and other oculomotor functions. Waldthaler et al. (2023) analyzed eye-tracking data from 61 PD patients and 25 HCs and they identified three distinct patterns of saccade impairment in PD. The findings revealed: increased express saccades and anti saccade errors, associated with executive dysfunction; delayed and hypometric saccades, linked to multidomain cognitive decline and longer antisaccade latencies but preserved accuracy, with no cognitive impairment. A common feature across all groups was vertical saccadic hypometria, reinforcing its potential as a biomarker for PD. Zhou et al. (2022) investigated oculomotor impairments in newly diagnosed, drug-naïve PD patients, exploring their potential as early biomarkers for disease detection and progression. Using video nystagmography-based eye tracking, the study compared 75 PD patients, 75 essential tremor (ET) patients, and 46HCs, assessing saccadic latency, saccadic accuracy, and smooth pursuit eye movement (SPEM) gain. The results showed that both PD and ET patients exhibited prolonged saccadic latency and reduced saccadic accuracy compared to HCs. However, PD patients displayed significantly impaired SPEM gain across all tested frequencies, whereas ET patients only showed reduced gain at 0.4 Hz. Longer saccadic latency correlated with disease duration, while lower SPEM gain was linked to greater motor severity in PD. A model incorporating eye-tracking parameters successfully differentiated PD from HCs with 80.4% sensitivity and 73.3% specificity, but it was not effective in distinguishing PD from ET.



3.2.2 Eye-tracking and cognitive impairment detection

Using a high-resolution eye tracker (Tobii Pro Spectrum, 1200 Hz), Tsitsi et al. (2023) investigated reading performance differences between PD patients and HCs to assess whether these alterations stem from cognitive decline rather than oculomotor dysfunction. The study found that PD patients had longer fixation durations and fewer fixations per second than HCs. However, only cognitively impaired PD patients (Montreal Cognitive Assessment, MoCA < 26) showed prolonged fixations and slower reading speeds, while cognitively intact PD patients (MoCA ≥ 26) performed similarly to controls. Fixation duration also correlated with MoCA scores, indicating a link to cognitive status. These results support eye-tracking as a non-invasive tool for detecting early cognitive decline in PD, with fixation-based metrics offering potential for screening and disease monitoring.



3.2.3 Monitoring motor symptoms and disease severity

Pah et al. (2024) found that PD patients had shorter saccadic latency but greater inaccuracy, often overshooting targets, along with increased gaze instability during fixation. While invalid saccades occurred at similar rates in PD and controls, filtering them out revealed distinct differences in reflexive saccadic behavior. These findings suggest that PD alters reflexive saccadic control, leading to faster but less precise eye movements and greater gaze instability, reinforcing eye-tracking as a promising tool for monitoring disease progression.



3.2.4 Technological innovations and machine learning integration

Jiang et al. (2024) utilized VR based eye-tracking to analyze both scan paths and saccade metrics, including fixation duration, scan path length, saccade amplitude, peak velocity, latency, and error rates. Additionally, they examined the saccade-to-fixation ratio and distribution of gaze patterns, providing a comprehensive assessment of oculomotor behavior in PD patients. These features were integrated into ML models, allowing for high-accuracy classification of PD patients and highlighting the potential of VR-based eye-tracking as a novel diagnostic tool. Another recent study (Jiang et al., 2025), utilized VR-based eye-tracking and ML to assess gaze stability, pro-saccades, anti-saccades, and smooth pursuit in PD patients. The results revealed significant oculomotor impairments, including reduced gaze stability, slower and less accurate saccades, higher ant saccade error rates, and difficulties in smooth pursuit tracking. These deficits indicate motor control dysfunctions and impaired inhibitory processes, which are hallmark characteristics of PD. Similarly, de Villers-Sidani et al. (2023) employed tablet-based software (ETNA) to differentiate PD patients from controls based on basic oculomotor tasks.

Brien et al. (2023) also combined video-based eye-tracking with ML, successfully predicting motor and cognitive scores in PD, thus emphasizing eye-tracking’s potential for monitoring disease progression. The severity of PD symptoms correlates with specific eye movement abnormalities, suggesting that eye-tracking can serve as a useful marker of disease progression. Ba et al. (2022) observed impairments in fixation stability and saccadic latency, which correlated with both motor (Unified Parkinson’s Disease Rating Scale, UPDRS-III) and cognitive (MoCA) scores, further supporting eye-tracking as a marker of PD severity. Further, Li et al. (2024a) identified eye movement disorders as potential early biomarkers for PD, revealing fixation inaccuracy, delayed saccades, and impaired pursuit, linked to disease stage and motor subtypes. They developed a high-accuracy PD screening model using oculomotor parameters, cognitive scores, and education level, proposing a nomogram for clinical use, showing the diagnostic potential of eye-tracking.

Reiner et al. (2023) explored oculometric measures (OM) as biomarkers for PD severity using eye-tracking technology (Tobii Fusion Pro, Tobii, Sweden). The study analyzed eye movements in 215 PD patients and 215 HCs, correlating them with the MDS-UPDRS motor scores through computer vision and deep learning algorithms. Key findings revealed prolonged saccadic latency, higher anti-saccade error rates, and reduced response accuracy, all worsening with disease severity. Levodopa-treated patients exhibited longer saccadic latencies and higher error rates, suggesting treatment effects on oculomotor function. These results support eye-tracking as a non-invasive tool for monitoring PD progression and motor impairment, offering a potential complement to traditional clinical assessments.

Furthermore, the combined use of gait analysis and eye-tracking metrics in diagnosing PD has demonstrated increased accuracy compared to using these indicators independently (Li et al., 2024b).

Graham et al. (2023) examined visual exploration during walking in PD patients with and without FOG and HCs, assessing the impact of visual cues using mobile eye-tracking and inertial sensors. The study found that PD patients had gait impairments, worsened under dual-task conditions, while visual cues improved stride parameters and altered saccade patterns. Notably, visual exploration changes correlated with gait improvements in PD, with freezers and non-freezers responding differently. These findings suggest that visual cueing enhances both gait and visual exploration in PD, emphasizing eye-tracking as a promising tool for assessing gait impairments and cue responsiveness.



3.2.5 Evaluation pharmacological effects through eye-tracking

Ellmerer et al. (2022) investigated eye-tracking as an objective tool to assess the cognitive effects of nabilone, a THC analogue used to treat non-motor symptoms in PD. This placebo-controlled pilot study found that nabilone reduced non-motor symptoms without impairing cognitive function or saccadic performance. Eye-tracking confirmed its potential as a non-invasive method for monitoring the cognitive safety of PD treatments, supporting its use in future clinical research and drug evaluation. Additionally, Munoz et al. (2022) revealed that anti-Parkinsonian medication prolongs saccade latency and reduces eye movement efficiency in PD patients, suggesting that dopaminergic therapy may impair oculomotor control despite improving motor symptoms.



3.2.6 Devices and methodological variability in eye-tracking studies

A variety of eye-tracking devices were employed across the studies reviewed, ranging from stationary high-resolution systems to mobile and wearable options, resulting in variability in the findings. The studies used both video-based and electrooculography (EOG) systems, each with specific advantages and limitations. While high-precision stationary devices (e.g., EyeLink 1000, Tobii TX-300) provide superior spatial and temporal resolution, wearable options (e.g., Tobii Pro Glasses 2, HTC Vive Pro Eye, ETNA tablet-based system, EyeSeeCam, Eyelink 3, Pupil Labs Core) enable real-world tracking but may face constraints such as frame rate variability (e.g., in Tobii Glasses), which can affect data reliability for certain tasks. Koch et al. (2024) explored tablet-based eye-tracking as a biomarker for PD severity and cognitive decline. They found that prolonged saccade latency, increased anti saccade errors, and fixation instability correlated with disease progression and motor dysfunction. Eye movement impairments were also linked to executive function, attention, and memory deficits. AML model using oculomotor data achieved 90% accuracy in classifying PD severity and explained 71% of cognitive test variance. The study highlights eye-tracking as a scalable, non-invasive tool for monitoring PD progression and cognitive decline.

Beylergil et al. (2022) investigated how PD affects visual search strategies using a high-resolution video-based eye tracker. The study found that PD patients took longer to find targets, especially in unfamiliar locations, and exhibited altered eye movement patterns. They showed more fixational saccades but fewer exploratory saccades, leading to less efficient visual scanning. These findings suggest that PD-related visuomotor impairments impact attention and search efficiency, highlighting the potential of eye movement analysis as a biomarker for cognitive and motor deficits in PD.




3.3 Risk of bias

The Risk of Bias in Non-randomized Studies - of Exposures (ROBINS-E) tool was used to assess the risk of bias of the articles included in this review. Figure 2 shows the summary of the risk of bias assessment. Among the studies assessed, all (Ba et al., 2022; Beylergil et al., 2022; Brien et al., 2023; de Villers-Sidani et al., 2023; Graham et al., 2023; Jiang et al., 2024; Jiang et al., 2025; Koch et al., 2024; Li et al., 2024a; Li et al., 2024b; Munoz et al., 2022; Pah et al., 2024; Reiner et al., 2023; ŞtefŞnescu et al., 2024; Szymañski et al., 2017; Tsitsi et al., 2023; Waldthaler et al., 2023; Zhou et al., 2022) showed some concerns regarding the risk of bias due to confounding except for one (Ellmerer et al., 2022). Moreover, all studies showed low risk of bias arising from measurement of exposure. Further, eleven studies exhibited some concerns in the selection of participants into the study (Beylergil et al., 2022; Brien et al., 2023; Ellmerer et al., 2022; Jiang et al., 2025; Li et al., 2024a; Li et al., 2024b; Munoz et al., 2022; Pah et al., 2024; ŞtefŞnescu et al., 2024; Tsitsi et al., 2023; Zhou et al., 2022). Thirteen studies showed a low risk of bias due to post-exposure interventions (Ba et al., 2022; Beylergil et al., 2022; Brien et al., 2023; Ellmerer et al., 2022; Graham et al., 2023; Jiang et al., 2025; Koch et al., 2024; Li et al., 2024a; Li et al., 2024b; Munoz et al., 2022; Tsitsi et al., 2023; Waldthaler et al., 2023; Zhou et al., 2022). Thirteen studies reported some concerns about bias due to missing data (Beylergil et al., 2022; Brien et al., 2023; de Villers-Sidani et al., 2023; Ellmerer et al., 2022; Graham et al., 2023; Jiang et al., 2025; Koch et al., 2024; Li et al., 2024a; Munoz et al., 2022; ŞtefŞnescu et al., 2024; Tsitsi et al., 2023; Waldthaler et al., 2023; Zhou et al., 2022). In contrast, all studies selected reported a low risk of bias arising from the measurement of the outcome except for two (Ba et al., 2022; Jiang et al., 2024). Additionally, all studies reported some concerns in the selection of the reported result except two that showed low risk (Ellmerer et al., 2022; Waldthaler et al., 2023).




4 Discussion


4.1 Eye-tracking in PD: motor and non-motor symptoms correlations

The aim of this review is to analyze the potential of eye-tracking in the assessment and monitoring of PD symptoms. The studies report that eye-tracking technology has emerged as a powerful tool in diagnosing and tracking PD due to its ability to capture detailed data on oculomotor function. As oculomotor movements are controlled by several brain regions, including the cerebral cortex, basal ganglia, brain stem, and cerebellum, PD progression, which is marked by the degeneration of dopaminergic neurons in the substantia nigra pars compacta, inevitably affects these functions (Kennard and Lueck, 1989; Pah et al., 2024). Eye movement abnormalities assessed by eye-tracking, such as deficits in smooth pursuit and saccades, have been linked to early stages of PD and are correlated with disease severity and motor impairments (Zhou et al., 2022).

In line with these observations, several neurophysiological mechanisms have been proposed to explain the link between PD and oculomotor dysfunctions. The degeneration of dopaminergic neurons disrupts basal ganglia and frontal cortical circuits involved in voluntary eye movement control, particularly affecting the DLPFC and supplementary eye fields (SEF) (Gong and Zuo, 2025; Kahya et al., 2021; Tsitsi et al., 2021). These impairments manifest as hypometric saccades, antisaccade errors, and prolonged latencies, serving as sensitive markers of both motor and cognitive dysfunctions. Compared to traditional clinical evaluations, eye-tracking provides an objective, quantifiable, and non-invasive method with higher temporal resolution, enabling earlier detection of subtle oculomotor abnormalities (Gibbs et al., 2024; Tabashum et al., 2021). As PD progresses, cognitive and motor impairments become increasingly pronounced. Oculomotor metrics, including saccadic latency, fixation stability, smooth pursuit efficiency, and pupillary responses, emerge as valuable indicators of disease onset and progression (Gibbs et al., 2024). Distinctive eye movement abnormalities, such as hypometric saccades, increased square-wave jerks, and prolonged antisaccade reaction times, offer clinicians objective tools to differentiate PD from other neurodegenerative disorders, such as PSP, multiple system atrophy (MSA), and Alzheimer’s disease (Tabashum et al., 2021). These findings are consistent with previous work (Waldthaler et al., 2021), which already pointed to the diagnostic relevance of saccadic impairments and fixation abnormalities in PD. However, more recent studies, particularly those published after 2022, have expanded upon this knowledge by integrating ML and VR techniques, offering improved diagnostic precision and scalability.

Furthermore, eye-tracking has shown promise in distinguishing PD from other neurodegenerative diseases and in monitoring disease progression through ML approaches (ŞtefŞnescu et al., 2024). Recent studies have suggested that eye-tracking metrics, particularly those related to saccadic performance and fixation stability, offer diagnostic sensitivity and specificity comparable to traditional clinical evaluations (Bredemeyer et al., 2022; Kahya et al., 2021; Machine et al., 2023). However, technological variability, calibration challenges, and inter-individual differences in oculomotor parameters remain important limitations, underscoring the need for further standardization across studies.

Additionally, visual perception deficits are known to interfere with motor functions in PD, affecting patients’ navigation, mobility, and daily activities (Kim et al., 2011; Maschke et al., 2006). Clinical tests for stereoscopic vision are rarely performed despite their importance, as traditional methods like the Titmus stereotest lack sensitivity for certain oculomotor dysfunctions, such as convergence insufficiency and impaired vergence control, both of which are common in PD (Herrero-Gracia et al., 2025). More advanced methods, such as software-based 3D systems, are more effective in detecting subtle visual impairments and their association with disease severity (Ba et al., 2022). Few studies have explored the relationship between PD severity, as measured by the MDS-UPDRS motor score, and gaze or eye movement parameters. Previous research has identified correlations between motor scores and pro-saccade latency, pro-saccade gain, anti-saccade latency, and anti-saccade direction rate (Lu et al., 2019; Waldthaler et al., 2019). However, some studies, like Visser et al. (2019), found no significant correlation between saccade latency and UPDRS scores. In contrast, in De Villers-Sidani’s study (de Villers-Sidani et al., 2023), a significant correlation was observed between UPDRS motor scores and pro-saccade gain, the number of saccades required to reach the target, and the pro-saccade time-to-target parameter, particularly at large eccentricities. These findings suggest that eye movement metrics may serve as composite indicators of motor impairment in PD. In support of these findings, Reiner et al. (2023) demonstrated that oculometric measures, including saccadic latency, error rate, and response accuracy, correlate with MDS-UPDRS scores and disease severity. Their study further highlighted that PD patients exhibited prolonged saccadic latencies and increased error rates, with these impairments worsening as the disease progressed.

Beyond motor impairments, cognitive dysfunction in PD is a well-established risk factor for PDD. Studies suggest that early cognitive impairments, particularly those related to temporal lobe and cholinergic systems, are significant predictors of dementia (Wong et al., 2019). Eye-tracking metrics, such as fixation duration, have been shown to correlate with cholinergic deficits, indicating that these metrics could serve as early non-invasive markers for cognitive decline in PD patients. However, more longitudinal studies are required to confirm these correlations. In line with these findings, tablet-based eye-tracking technology has been shown to effectively assess both cognitive function and disease severity in PD (Koch et al., 2024). Research has consistently demonstrated correlations between cognitive deficits and eye movement impairments in PD (Amador et al., 2006; Li et al., 2024a). For instance, Ba et al. (2022) revealed significant deficits in stereopsis, longer response times in gaze-related tasks (e.g., fixation stability and visual attention shifts), and reduced accuracy in saccades and fixations, highlighting the close association between these visual impairments and motor and cognitive dysfunctions. These findings suggest that stereopsis, measured using non-invasive tools like the 3D active shutter system and Tobii eye tracker, could be a useful marker for motor and cognitive function in PD. However, despite their clinical relevance, these tests are not widely adopted in routine practice. While advanced technologies such as shutter glasses and high-cost eye trackers may offer improved precision, their widespread adoption remains limited due to cost considerations and the variability of computer-based stereo testing algorithms. Further research is needed to evaluate their clinical efficacy compared to conventional methods and determine whether their benefits justify their financial and practical implementation in clinical settings.

Research suggests that reading difficulties are primarily linked to cognitive dysfunction rather than oculomotor deficits (Tsitsi et al., 2023). Prolonged fixation durations and reduced fixation frequency indicate impairments in executive function and working memory. Increased antisaccade errors and reduced saccade latencies correlate with executive dysfunction, while prolonged saccade latencies and hypometria are associated with broader cognitive decline. These findings highlight the potential of eye-tracking in assessing cognitive status and monitoring disease progression in PD (Waldthaler et al., 2023).

Moreover, eye-tracking offers insights into cognitive performance. The MoCA, a cognitive screening tool that includes executive function testing (Chou et al., 2014), has been shown to be more effective than the Mini-Mental State Examination (MMSE) in assessing cognitive impairments in PD, particularly in relation to eye movement behaviors (Tsitsi et al., 2021). Eye-tracking metrics, such as fixation duration and pupil size, have been correlated with cognitive performance, suggesting a connection between autonomic nervous system dysfunction and cognitive decline in PD.

Eye-tracking studies have also explored the influence of PD medications on oculomotor metrics. While nabilone showed no significant effects on saccadic paradigms, fixation, or top-down inhibitory control, a learning effect was observed, suggesting it does not impair cognitive consolidation (Ellmerer et al., 2022). Other studies (Birket-Smith, 1975; Roy-Byrne et al., 1993) have shown that medications like levodopa and anticholinergics affect pupil size and eye movement behaviors, particularly in patients with PDD (Brien et al., 2023). The influence of comorbidities and medications, such as antidepressants and benzodiazepines, on pupil size further underscores the need to consider these factors when interpreting eye-tracking data (Tsitsi et al., 2021).

Moreover, recent findings indicate that anti-Parkinsonian medication does not improve and may even worsen visually-guided saccades (Munoz et al., 2022). These results suggest that oculomotor impairments in PD are not solely dependent on dopaminergic dysfunction, but rather involve other neural pathways, such as cholinergic and fronto-striatal circuits. This aligns with evidence showing that saccadic impairments persist in both ON and OFF states, highlighting the complex neurophysiological mechanisms underlying oculomotor dysfunctions in PD.

Furthermore, eye-tracking has demonstrated value in non-motor assessments, such as facial emotion recognition. However, there is no consensus in the literature, as some studies have shown that PD patients struggle to recognize dynamic facial expressions, likely due to reduced facial expressiveness, which impairs their ability to use motion cues for emotion recognition (Brien et al., 2023). Research highlights the importance of task demands in shaping oculomotor behavior in PD. Beylergil et al. (2022) found no significant differences in saccade amplitudes between PD patients and controls during visual search tasks, aligning with previous research (Archibald et al., 2013). However, these results contrast with studies requiring memorization while scanning (Matsumoto et al., 2011), where PD patients exhibited smaller saccades and longer fixations. This suggests that tasks emphasizing active searching promote larger saccades and shorter fixations, whereas those involving memory recall result in more restricted eye movements.

Mobile eye-tracking can be an effective, non-invasive, and easy-to-use tool for clinical diagnosis, particularly in cases where traditional clinical criteria are ambiguous. Previous eye-tracking studies have primarily assessed visual activity in controlled, static laboratory environments (Backhaus et al., 2020). However, the development of mobile eye-tracking devices has recently enabled researchers to examine the effects of both PD and aging on visual exploration during real-world tasks, such as walking and navigating obstacle (Galna et al., 2012; Stuart et al., 2014; Stuart et al., 2016). Graham et al. (2023) explored visual search patterns while walking in PD patients with and without FOG using mobile eye-tracking and inertial sensors. The study found that FOG patients exhibited distinct gaze behaviors, including fewer fixations and reduced gaze variability, which correlated with impaired gait parameters. These findings highlight the role of eye-tracking in identifying visual exploration deficits linked to mobility issues in PD and suggest that gaze-based interventions could enhance gait performance. Although wearable eye-tracking has recently been proposed as a tool for various oculomotor and vestibular disorders (Hayhoe and Ballard, 2005; Schumann et al., 2008), it has been shown that wearable eye-tracking can also be effectively used in clinical settings for more complex conditions, such as typical and atypical Parkinsonism (Marx et al., 2012). Whether wearable eye-tracking will surpass the current diagnostic standards can only be determined through a long-term, prospective longitudinal study, which would apply the criteria identified here in the early stages of the disease, before clinical symptoms become fully evident.

Eye-tracking technology is also valuable for understanding visuospatial memory and eye movement dynamics in PD. For instance, in line with the literature (Hardeman et al., 2020; Ranchet et al., 2020; Sisk et al., 2018; Smith et al., 2021), a study by ŞtefŞnescu et al. (2024) found a moderate positive correlation between visuospatial memory performance and vertical eye movements, suggesting shared neural mechanisms involving the prefrontal-basal ganglia circuits. The study also discovered that blink rate, which is often reduced in PD patients, increases during cognitively demanding tasks, reflecting the impact of cognitive load on eye movement metrics. This variability in blink rate, along with its connection to working memory performance, indicates that eye-tracking can provide nuanced insights into cognitive and motor processes affected by PD.



4.2 Advances in eye-tracking technology: integrating machine learning and virtual reality for enhanced precision

Recent technological advancements are helping to overcome the limitations of traditional methods used to investigate eye abnormalities, such as spatial constraints and the inability to automatically diagnose PD. VR has emerged as a promising tool in this context, enabling more accurate evaluation and treatment of neurological and psychological cognitive disorders with greater assessment accuracy compared to conventional methods (Ferraioli et al., 2024; Karakoc et al., 2025; Lucifora et al., 2024; Nucera, 2024; Oliveira et al., 2018; Rizzo and Shilling, 2017; Vicario and Martino, 2022). However, despite its potential, few studies have examined eye movements within VR environments, and only one tool currently exists that can automatically classify PD (Jiang et al., 2024). In VR settings, three main types of eye movement data are collected: fixations, saccades, and synthetic features such as scan path length and duration. Studies have shown that PD patients exhibit significantly reduced saccade amplitude compared to HCs (Matsumoto et al., 2011). This leads PD patients to perform multiple corrective saccades to reach target locations, a behavior that worsens as the disease progresses. This abnormal eye movement pattern may also explain the mild visuospatial neglect often observed in PD, likely due to a restricted visual scanning area, which can contribute to issues such as dyslexia (Riva, 1997). Additionally, the saccade error rate (ER) was found to be significantly higher in PD patients, especially in tasks like Whack-a-Mole, indicating impaired inhibitory control of visually-guided saccades (VGS). This impairment is likely linked to dysfunctions in the cortical-basal ganglia-superior colliculus pathway, dopamine depletion in the prefrontal cortex, and the cognitive impairments associated with PD (Kavcic and Duffy, 2003).

Through tasks like VGS, it is possible to gain objective insights into cognitive control, helping to identify specific cognitive processes affected by PD and aiding in its diagnosis through distinct eye movement abnormalities. In parallel, the integration of ML has proven highly effective in developing automated, doctor-independent solutions for diagnosing and monitoring PD. Reflexive saccade (RS) data, for example, have been used to train intelligent classifiers, achieving over 90% accuracy in predicting PD-related features, making RS promising biomarker in PD diagnosis (Przybyszewski et al., 2014; Przybyszewski et al., 2016). VR-based eye-tracking, combined with ML, has proven to be a powerful tool for PD diagnosis and monitoring, as demonstrated by Jang et al. (2025), whose study showed that analyzing gaze stability, saccadic performance, and smooth pursuit in a VR setting, enhanced by deep learning models, achieved high diagnostic accuracy. Literature demonstrated that ML models based on eye-tracking data could efficiently assist neurologists in both diagnosing PD and monitoring the progression of symptoms (Szymañski et al., 2017). Specifically, RS measurements were crucial in building these classifiers, highlighting the importance of fast eye movements in detecting PD-related attributes. Further, the study suggested that systems like Eye Tribe, despite being lower-cost alternatives, could be effectively integrated into clinical settings to support PD diagnostics. Beyond RS, a variety of eye-tracking metrics, including those related to pro/anti saccade tasks, show alterations across different stages of PD progression. Recent studies have identified disturbances in pupil dilation and blinking as early markers during the prodromal stages of PD (Chambers and Prescott, 2010; La Morgia et al., 2022; Perkins et al., 2021; Waldthaler et al., 2021). These alterations in ocular behavior are now being further explored using ML techniques. Brien et al. (2023) developed a classifier that was sensitive to different stages of cognitive impairment in PD, from cognitively normal (PD-CN) through mild cognitive impairment (PD-MCI) to PDD.

The classifier demonstrated high accuracy, with eye movement measures correlating with clinical metrics such as the MDS-UPDRS and MoCA, suggesting that these metrics can effectively track disease progression. This reinforces the potential of eye-tracking metrics to capture the intricate relationship between cognitive and motor impairments in PD (Srulijes et al., 2015; Stuart et al., 2019; Waldthaler et al., 2021). Through ML models, this multidimensional data can be distilled into a single index predictive of PD subgroups and disease severity based on MDS-UPDRS scales. Consistent with earlier findings (MacAskill et al., 2012; Stuart et al., 2019), the output of these classifiers has shown sensitivity to both motor and cognitive functions, reinforcing the value of combining eye-tracking with ML in personalized treatment strategies. The use of eye-tracking combined with ML and VR technologies represents a significant advancement in PD diagnostics and monitoring. These tools offer a more precise, non-invasive, and automated approach to detect both motor and cognitive impairments in PD, promising better patient outcomes through early diagnosis and more personalized treatment strategies. The convergence of ET with ML and VR offers promising advancements in diagnostic and monitoring capabilities. Eye tracking data, when processed through ML algorithms, can help detect subtle ocular movement abnormalities associated with neurological disorders, enhancing early diagnosis and disease progression monitoring. VR, in combination with eye tracking, has been explored for cognitive and motor assessment in neurodegenerative diseases, providing an immersive and controlled environment for clinical evaluations (Jiang et al., 2025). However, integrating these technologies into existing clinical workflows remains complex. Healthcare systems must address issues related to data standardization and the development of AI-assisted decision-support tools that can provide meaningful insights to clinicians.

Although eye-tracking holds great promise for both research and clinical applications, its widespread use has been limited by the high cost and scalability issues related to specialized hardware. By leveraging the embedded cameras in mobile devices, these barriers can be overcome, making eye-tracking assessment tools more accessible (Valliappan et al., 2020). Tablet-based tools show potential for monitoring disease progression by assessing oculomotor function, as studies have demonstrated strong correlations between eye-movement parameters and clinical status. These tools could enable clinicians to remotely track changes in disease status, progression, or treatment response without the need for in-person visits, similar to approaches using wearable technologies like gyroscopes (Rodríguez-Molinero et al., 2018; Tripoliti et al., 2013) or speech analysis through ML. Eye-movement-based technologies offer the advantage of easier scalability to other neurodegenerative diseases, as several eye-movement anomalies have been linked to conditions like Alzheimer’s (Garbutt et al., 2008; Shakespeare et al., 2015) and multiple sclerosis (Lizak et al., 2016; Serra et al., 2018) with strong correlations to cognitive and clinical disease measure (Noiret et al., 2018; Waldthaler et al., 2019).

While eye-tracking technology has demonstrated significant potential in clinical applications, its integration into hospital and healthcare systems remains a challenge. Successful adoption requires substantial investment in infrastructure, including specialized hardware, software integration, and compatibility with existing electronic health record systems. Moreover, healthcare institutions must ensure the availability of technical support and standardized protocols to facilitate seamless implementation. Literature highlights the need for dedicated resources to optimize eye-tracking data collection and analysis in clinical environments. While some research institutions and specialized clinics have begun incorporating eye-tracking into neurology assessments, large-scale integration into routine clinical practice is still in progress. Key barriers include the lack of standardized protocols, the need for regulatory approval, and limited awareness among medical professionals regarding eye-tracking’s potential benefits. Surveys suggest that while clinicians acknowledge eye-tracking’s promise, further validation studies and practical guidelines are necessary to promote broader acceptance. Overcoming these challenges will be crucial to establishing eye-tracking as a reliable and scalable tool in neurology (Gibbs et al., 2024).

In conclusion, eye-tracking presents significant potential as a non-invasive, precise tool for diagnosing and monitoring PD. It not only captures motor impairments but also provides valuable insights into cognitive dysfunctions (Pinkhardt et al., 2009). By assessing pupil responses, saccades, or blink rates, eye-tracking can contribute to a more comprehensive understanding of PD progression (Gorges et al., 2017). As wearable and mobile eye-tracking systems continue to evolve, they could be integrated into routine clinical practice to enhance diagnostic accuracy and provide personalized treatment strategies, particularly in cases where traditional criteria are ambiguous or insufficient. This review offers a novel perspective by integrating recent advancements in eye-tracking technology, including mobile and wearable eye tracking, VR-based assessments, and ML models for PD diagnosis and symptom monitoring. It synthesizes findings on the clinical feasibility and real-world applications of eye tracking, emphasizing its potential for routine implementation in clinical practice.

Future studies should focus on including prodromal PD populations, where early motor and non-motor symptoms are present, but a formal diagnosis has not yet been established. These individuals may exhibit subtle eye movement abnormalities that could serve as early indicators of disease onset. While recruiting asymptomatic participants and prospectively monitoring their conversion to PD poses practical challenges, recent advances in biomarker research, such as the α-syn seed amplification assay, may enable the identification of high-risk individuals (Yamasaki et al., 2019). This could provide a unique opportunity to explore the diagnostic potential of eye-tracking in the earliest stages of PD, before traditional clinical symptoms become apparent.

To enhance clarity in future research, it is important to distinguish between the different applications of eye-tracking in PD. Eye-tracking can be used for diagnosing PD, which involves identifying the disease in individuals without a prior diagnosis; classifying PD, which refers to distinguishing patients with PD from HCs or other neurodegenerative conditions; and monitoring PD, which entails assessing disease progression over time. Standardizing these definitions across studies will help ensure methodological consistency and improve the comparability of findings in the field.



4.3 Opportunities and challenges for eye-tracking studies

The eye-tracking technique offers several advantages, such as being well-tolerated due to the short duration of tasks, like the 5-min visual search task (Wong et al., 2019). Additionally, one notable strength of wearable eye-tracking devices is their efficiency, requiring less than 20 s for fixation protocols and virtually no device-specific training, making them practical for clinical and experimental use (Marx et al., 2012). However, clinicians should carefully consider the most appropriate approach when selecting an eye tracker, as some devices require head stabilization using a chin rest, while others allow for unsupported head movement. Many eye trackers are stationary, but some are portable, and others, such as the Tobii Pro Glasses, are mobile and wearable, enabling participants to engage in everyday tasks (de Villers-Sidani et al., 2023; Jiang et al., 2024). However, systems with variable frame rates, like the Tobii Pro Glasses, may be unsuitable for precise saccade analysis due to potential inconsistencies in data capture. This limitation should be considered when selecting an eye-tracking system for research involving rapid eye movements. Selecting the right device depends on the specific needs of the clinical evaluation. Although various studies used different eye-tracking devices, it is challenging to determine which one is superior.

There are several limitations to eye-tracking research in PD. For instance, malfunctions can occur with participants wearing progressive lenses, and individuals with conditions such as eyelid apraxia or certain ophthalmological disorders may find the device difficult to use. While eye-tracking serves as a physiological marker that is largely unaffected by pre-existing conditions or intelligence, many studies have not provided information on participants’ premorbid intelligence, making it difficult to assess the true extent of cognitive decline (Wong et al., 2019). Additionally, the absence of neuroradiological data in many studies means that undetected intracranial pathologies could influence both cognitive performance and eye movement measurements (Wong et al., 2019). Another factor is the relatively younger PD cohorts used in some studies, where the decline in cognition and eye movements may differ from those in older populations. The heterogeneity of PD and the exclusion of participants in the more advanced stages (Hoehn and Yahr stages 4 and 5) (Brien et al., 2023) limit the generalizability of findings, as cognitive decline and eye movement abnormalities may differ significantly in these groups. Moreover, general considerations related to behavioral experiments with older and neurologically-impaired participants should be noted, such as the potential impact of fatigue or discomfort on attention and engagement during prolonged testing sessions. The small sample sizes in some studies also present a challenge, limiting the robustness of the findings (Ba et al., 2022; Stuart et al., 2016). It is important to acknowledge that all studies included in this review enrolled PD patients after-diagnosis, indicating that eye-tracking metrics were primarily analyzed in individuals at a disease stage likely beyond the earliest clinical manifestation. This presents an important limitation, as the generalizability of these oculomotor biomarkers to prodromal or very early PD remains uncertain. In earlier disease stages, when symptom expression is more subtle, the signal-to-noise ratio in eye movement abnormalities may be weaker, potentially affecting the sensitivity of eye tracking-based classification methods. Furthermore, while many reviewed studies demonstrated the ability of eye-tracking to distinguish PD patients from HCs, fewer have focused on actual diagnostic applications and its reliability for individual diagnosis remains under investigation. Validating these findings in larger, longitudinal cohorts, including prodromal PD patients, to better determine the clinical utility of eye-tracking for early disease detection and monitoring. Additionally, future research should consider the potential impact of medications, sex differences, and other confounding factors, as these variables have not been thoroughly investigated. In terms of future directions, improving study designs by increasing sample sizes, optimizing tasks and equipment, and addressing technical challenges would strengthen the validity of eye-tracking studies.




5 Conclusion

This systematic review highlights the increasing value of eye-tracking as a non-invasive, objective tool for diagnosing and monitoring PD. Eye-tracking technology enables precise measurement of oculomotor functions that correlate with both motor and cognitive symptoms of PD, potentially providing early diagnostic markers and facilitating the monitoring of disease progression. Technological advancements, including the integration of ML and VR, have expanded the diagnostic potential of eye-tracking. Our review builds upon previous literature (e.g., Waldthaler et al., 2021) by focusing on the latest methodological and technological innovations, and highlights emerging opportunities for more precise, scalable, and automated assessments of PD through eye-tracking.

However, challenges persist, such as device variability, limitations in cognitive assessment, and the need for larger, more diverse sample sizes. Future research should focus on standardizing eye-tracking protocols and further exploring its application across different neurodegenerative disorders to enhance diagnostic accuracy and improve patient outcomes. In this regard, the International Society for Clinical Eye tracking1 is currently working on recommendations for standardized testing protocols in clinical applications. Additionally, integrating eye-tracking into routine clinical practice could provide better personalized treatment strategies, particularly in cases where traditional clinical criteria are insufficient.
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Background: Parkinson’s disease (PD) is the second most common neurodegenerative disorder, and it has an unclear pathogenesis and lacks validated, specific biomarker-based diagnostic approaches, particularly in PD patients with rapid eye movement (REM) sleep behavior disorder (PD-RBD).
Methods: Using untargeted liquid chromatography-mass spectrometry (LC–MS) metabolomics, serum profiles of 41 drug-naïve PD patients [including 19 PD-RBD and 22 PD without RBD (PD-nRBD) patients] and 20 healthy controls (HCs) were analyzed.
Results: Comparative analyses revealed 144 dysregulated metabolites in PD patients versus HCs, with 7 metabolites—sodium deoxycholate, S-adenosylmethionine, L-tyrosine, 3-methyl-L-tyrosine, 4,5-dihydroorotic acid, (6Z)-octadecenoic acid, and allantoin—demonstrating high classification accuracy [area under the curve (AUC) > 0.93]. Compared with PD-nPBD patients, PD-RBD patients exhibited distinct metabolic profiles, characterized by 21 differentially expressed metabolites, including suberic acid, 3-methyl-L-tyrosine, and methyl (indol-3-yl) acetate (AUC > 0.86). Notably, 3-methyl-L-tyrosine displayed dual dynamics, reflecting dopaminergic depletion in PD and compensatory metabolic adaptations in PD-RBD. Pathway enrichment analysis implicated central carbon metabolism (CCM) disruption in PD and peroxisome proliferator-activated receptor (PPAR) signaling pathway inactivation in PD-RBD.
Conclusion: These findings reveal potential serum-based biomarkers for PD and PD-RBD, highlight CCM and PPAR pathways as therapeutic targets, and underscore the role of metabolic dysregulation in PD pathophysiology.
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1 Introduction

Parkinson’s disease (PD), now recognized as one of the leading causes of neurological disability (1), is pathologically characterized by aberrant α-synuclein aggregation and progressive degeneration of dopaminergic neurons in the substantia nigra (2). PD exhibits significant clinical heterogeneity, with phenotypes typically categorized according to the predominance of motor and non-motor symptom clusters (3). Although motor symptoms form the diagnostic cornerstone (4), non-motor manifestations—particularly rapid eye movement (REM) sleep behavior disorder (RBD), characterized by the loss of normal skeletal muscle atonia and vivid dream enactment during REM sleep (5, 6)—have emerged as critical markers of disease subtype stratification (1). Approximately 30–50% of PD patients have RBD (7), a phenotype that is associated with accelerated disease progression and a higher risk of cognitive impairment compared with PD patients without RBD (8). However, the diagnosis of PD remains clinically challenging due to its heavy reliance on subjective clinician-based evaluations and the absence of validated biomarkers for objectively diagnosing disease or identifying pathological changes.

Metabolomics, which focuses on small-molecule metabolites, has emerged as a promising strategy for molecular biomarker discovery, owing to its ability to detect pervasive metabolic dysregulations inherent in neurodegenerative pathologies (9, 10). In recent years, metabolomics has become an increasingly valuable tool in PD research, effectively connecting molecular mechanisms with dysregulated metabolic pathways and clinical manifestations that underlie the pathophysiology of PD. Multiple potential biomarkers for PD have been proposed, including 3-hydroxykynurenine (3-HK) (11), ornithine (12), 1-methylxanthine (13), hypoxanthine (14), caffeine and its metabolites (14), and lipid derivatives (15). However, there are no currently widely validated and used clinical biomarkers in peripheral blood. The clinical translation of these findings remains hindered by critical biological and methodological barriers, such as clinical heterogeneity, antiparkinsonian medication effects, analytical variability, and lack of robust multicenter validation. The pathogenic complexity of PD further complicates biomarker discovery. Accumulating data suggest that PD results from a dynamic interplay among senescence processes (16), inherited susceptibility, and environmental exposures (17), affecting numerous fundamental cellular processes, such as aberrant protein aggregation (18, 19), oxidative stress (20), neuroinflammation (21), and mitochondrial dysfunction (22, 23). Despite decades of research, the etiology of PD remains incompletely understood. Most existing studies have focused on comparing PD patients with healthy controls (HCs), with limited attention paid to the metabolic differences in PD patients with RBD.

In the present study, two comparative serum metabolomics analyses using untargeted liquid chromatography-mass spectrometry (LC–MS) metabolomics were conducted as follows: (i) drug-naïve PD patients versus HCs; and (ii) PD with RBD (PD-RBD) patients versus PD without RBD (PD-nRBD) patients. Our findings revealed potential diagnostic biomarkers and established precision phenotyping frameworks. The dual dynamics of 3-methyl-L-tyrosine highlighted phenotype-specific metabolic adaptations. Moreover, the present results revealed central carbon metabolism (CCM) disruption in PD and PPAR signaling inactivation in PD-RBD, linking metabolic dysfunction to neurodegeneration and highlighting CCM and PPAR signaling pathways as therapeutic targets. Future work requires multicenter validation and multiomics integration to translate these insights into clinical applications.



2 Materials and methods


2.1 Participants

Participants were recruited from the Outpatient Department of the Affiliated Jinhua Hospital of Zhejiang University School of Medicine, including 61 individuals (41 patients with PD and 20 HCs). All patients with PD were newly diagnosed according to the Movement Disorder Society (MDS) Clinical Diagnostic Criteria for PD (MDS-PD Criteria) and were drug-naïve, having not initiated any antiparkinsonian medications prior to enrollment. The exclusion of secondary parkinsonian syndromes was confirmed by normal findings on 3.0-Tesla brain magnetic resonance imaging (3.0 T MRI), which revealed intact nigrostriatal pathways (without evidence of vascular lesions, midbrain atrophy, or iron deposition in globus pallidus). The clinical baseline of PD patients was assessed by two movement disorder specialists (H.F.C. and X.L.P.), using the Unified Parkinson’s Disease Rating Scale (UPDRS III), Hoehn and Yahr (H-Y) staging, the RBD screening questionnaire (RBDSQ), and the Mini-Mental State Examination (MMSE). In addition, PD patients were stratified into the following two subgroups based on the RBDSQ scores, namely, PD-RBD (RBDSQ score ≥ 6) and PD-nRBD (RBDSQ score < 6), using the validated cutoff of 6 points for clinical relevance (24, 25). Age- and sex-matched HCs underwent standardized neurological evaluations to confirm the absence of neurological disorders. All enrolled participants (both PD patients and healthy controls) were free of infections, hepatic dysfunction, renal dysfunction, hypertension, diabetes mellitus, neoplasms, and autoimmune diseases. All participants were free of any medications (including over-the-counter drugs, vitamins, nutraceuticals, or herbal supplements) for at least eight weeks prior to blood collection. Each participant signed a written informed consent before enrollment, and this study received approval from the Ethics Committee of the Affiliated Jinhua Hospital, Zhejiang University School of Medicine [Approval no. (Research) 2022-Ethical Review-221, date: September 7, 2022]. This research was conducted following the ethical principles of the Declaration of Helsinki.



2.2 Serum sample collection and processing

Venous blood samples were collected from all participants in the morning following an overnight fast of at least 12 h (8: 00 PM to 8:00 AM) (26). During the fasting period, participants were allowed to consume small amounts of pure water until 10:00 PM. The serum was separated within 60 min after collection by centrifugation at 2000 × g for 10 min and subsequently stored at −80°C until further analysis.

Samples were processed for metabolite extraction according to previously reported methods (27). In brief, serum samples were thawed at 4°C and then vortexed for 1 min to ensure complete homogenization. Then, 50 μL of serum was mixed with 400 μL of methanol in a 2 mL centrifuge tube. After vortexing for 1 min and centrifugation at 12,000 × g for 10 min at 4°C, the supernatant was transferred to a new 2 mL centrifuge tube. The sample was then concentrated and dried. Finally, 150 μL of 2-chloro-l-phenylalanine (4 ppm) solution prepared with 80% methanol in water was added to redissolve dried extracts. The solution was then filtered through a 0.22 μm membrane and transferred to a detection bottle for LC–MS analysis. Quality control (QC) samples were prepared by mixing 10 μL of each extracted serum sample to monitor the LC–MS instrument stability.



2.3 LC–MS analysis

LC–MS analysis was performed on a Vanquish UHPLC System (Thermo Fisher Scientific, USA).

Chromatographic separation was performed using an ACQUITY UPLC® HSS T3 column (2.1 × 100 mm, 1.8 μm; Waters, Milford, MA, USA) maintained at 40°C. The flow rate was 0.3 mL/min, and the injection volume was 2 μL. For LC-ESI(+)-MS (positive ion mode) analysis, the mobile phases consisted of 0.1% (v/v) formic acid in water (A1) and 0.1% (v/v) formic acid in acetonitrile (B1). For LC-ESI(−)-MS (negative ion mode) analysis, the mobile phases were 5 mM ammonium formate in water (A2) and acetonitrile (B2). Both analyses were conducted under the same elution gradient (28) as follows: 0–1 min, 8% B; 1–8 min, 8–98% B; 8–10 min, 98% B; 10–10.1 min, 98–8% B; and 10.1–12 min, 8% B.

Mass spectrometric detection of metabolites utilized an Orbitrap Exploris 120 instrument (Thermo Fisher Scientific, USA) equipped with an ESI ion source. Data acquisition employed full-scan MS1 (m/z 100–1,000) at 60,000 FWHM, followed by data-dependent MS/MS (ddMS2) scans at 15,000 FWHM. Source parameters included sheath gas pressure (40 arb), auxiliary gas flow (10 arb), spray voltage (+3.5 kV for ESI[+] and-2.5 kV for ESI[−]), capillary temperature (325°C), number of data-dependent scans per cycle (4), normalized collision energy (30%), and dynamic exclusion time (automatic) (29).



2.4 Data processing and metabolite identification

Prior to analysis, raw metabolite intensities underwent total peak area normalization followed by log2 transformation to improve normality. The raw LC–MS data were firstly converted to mzXML format by MSConvert in ProteoWizard software package (30) (v3.0.8789) and processed using XCMS (version 3.12.0) in R for feature detection, retention time correction, and alignment (31), yielding a quantitative list of metabolites. Metabolites exhibiting a relative standard deviation (RSD) > 30% in QC samples were excluded, while the remaining metabolites were retained for subsequent analysis (29).

Metabolites were identified using MS1 and MS/MS spectra against the following databases: the Human Metabolome Database (HMDB) (32), Kyoto Encyclopedia of Genes and Genomes (KEGG) (33), LipidMaps (34), MassBank (35), mzCloud (36), and the metabolite database built by Biomedical Tech Co., Ltd. (Suzhou, China). Primary identification was achieved by matching precursor ion m/z (mass error tolerance < 30 ppm) and adduct information to derive molecular formulas. The quantitative metabolites with MS/MS spectra were compared and matched to the fragment ion information of each MS/MS spectrum in these databases to achieve the secondary identification of these metabolites.



2.5 Statistical and pathway analyses

All statistical analyses were performed using R statistical software (version 4.3.1). The orthogonal partial least squares discriminant analysis (OPLS-DA) model was employed to evaluate group separation and clustering (37–39). The R2 (model explainability) and Q2 (model predictability) were calculated to assess the stability and reliability of the model by 7-fold cross-validation (40). In 7-fold cross-validation, the dataset was randomly partitioned into seven equally sized subsets, with each subset iteratively serving as the validation set while the remaining six subsets were used for model training (41). A variable importance in projection (VIP) score threshold > 1 was used to extract the significant contributor metabolites to group separation in the OPLS-DA model (42).

Differential metabolites between groups were identified using Student’s independent t-tests, with statistical significance defined as p < 0.05. Multiple comparison adjustments were implemented through the Benjamini-Hochberg procedure with a false discovery rate (FDR) < 0.05. Fold change (FC) values were calculated as the median intensity ratio between groups (PD vs. HC and PD-RBD vs. PD-nRBD). Volcano plots were used to visualize metabolite significance [−log10 (p-value)] and magnitude of FC [log2(FC)]. Hierarchical biclustering analysis was applied to both samples and metabolites, generating clustered heatmaps. Receiver operating characteristic (ROC) curves were constructed, and the area under the curve (AUC) was computed to evaluate biomarker diagnostic performance. AUC values were interpreted as follows: 0.9–1.0 (excellent), 0.8–0.9 (good), 0.7–0.8 (fair), 0.6–0.7 (poor), and <0.6 (fail) (43). Age, UPDRS part III, H-Y stage, RBDSQ, and MMSE were compared between groups using Student’s independent t-tests. Sex composition was analyzed via a chi-squared test. All quantitative data are presented as the means ± standard deviations (SDs) unless specified otherwise.

Significantly altered metabolites were analyzed for pathway enrichment using MetaboAnalyst (44),1 followed by mapping onto KEGG pathways to elucidate higher-level systemic functional implications. Visualizations of metabolite-pathway associations were generated through the KEGG Mapper tool.




3 Results


3.1 Comparison of demographic and clinical variables of participants

The demographic characteristics of the PD and HC groups are presented in Table 1. There were no significant differences in age distribution or sex composition. The demographic and clinical features of PD-RBD and PD-nRBD patients are detailed in Table 2. Age, sex composition, UPDRS part III, H-Y stage, and MMSE scores did not show significant differences between the PD-RBD and PD-nRBD groups, but there was a significant difference in the RBDSQ scores between the groups.



TABLE 1 Demographic data for recruited patients with PD and HCs.
[image: Table showing demographic characteristics for Parkinson's disease (PD) and healthy control (HC) groups. PD group: 41 participants, average age 63.97 ± 9.09 years, sex ratio 21 females/20 males. HC group: 20 participants, average age 61.70 ± 13.14 years, sex ratio 11 females/9 males. P-values: 0.43 for age, 0.78 for sex.]



TABLE 2 Demographic and clinical data of PD-RBD and PD-nRBD.
[image: Table comparing demographic and clinical characteristics between PD-RBD and PD-nRBD groups. Variables include age, sex ratio, UPDRS part III, H-Y stage, RBDSQ, and MMSE. Means and standard deviations are provided. P-values indicate significant differences for RBDSQ with a value less than 0.001; other comparisons show non-significant differences.]



3.2 Metabolic signatures of drug-naïve PD patients compared to HCs

To investigate the differential metabolites in PD patients, the serum metabolites were introduced to OPLS-DA models. The metabolites of PD patients were clearly separated from HCs on the OPLS-DA score plots [ESI(+): R2X = 0.599, R2Y = 0.967, Q2 = 0.927; ESI(−): R2X = 0.115, R2Y = 0.972, Q2 = 0.827] (Figures 1A,B). Among the 425 metabolites, 144 metabolites exhibited significant distinction between PD and HC groups (VIP scores > 1), with 107 upregulated metabolites (represented by red dots) and 37 downregulated metabolites (represented by blue dots) in PD patients relative to HCs. The volcano plot provided a graphical representation of the significance and magnitude of changes in metabolite levels, highlighting the most prominent alterations in the PD group (Figure 1C). Univariate analysis with FDR correction revealed 132 different metabolites between the PD and HC groups (FDR < 0.05). These metabolites included mainly lipids, amino acids and their derivatives, organic acids and their derivatives, nucleotides and their derivatives, carbohydrates and their derivatives, terpenoids, sterols, vitamins, cofactors, alkaloids compounds, nitrogen compounds, and phenolic compounds (Supplementary Table S1).

[image: Three-panel image showing statistical plots. Panel A: Scatter plot labeled "ESI(+)" with orange and light blue ovals, representing two groups, PD and HC. Panel B: Scatter plot labeled "ESI(-)" with similar color-coded groups. Panel C: Volcano plot with red, blue, and gray dots indicating upregulation, downregulation, and no significance, respectively, based on -log10 p-values and log2 fold changes.]

FIGURE 1
 Altered metabolic profiles between patients with PD and HCs. (A) OPLS-DA score plot. ESI (+): positive ion mode, R2X = 0.599, R2Y = 0.967, Q2 = 0.927. (B) OPLS-DA score plot. ESI (−): negative ion mode, R2X = 0.115, R2Y = 0.972, Q2 = 0.827. (C) Volcano plot of metabolites in the PD group versus the HC group. Red: upregulated metabolite; Blue: downregulated metabolite; Grey: metabolite not meeting the significance thresholds.




3.3 Identification of potential metabolic biomarkers for PD

To evaluate the diagnostic potential of serum metabolites in PD, ROC curve analysis was applied to metabolomic profiles derived from PD patients and HCs. The AUC values of ROC curves were used to assess the diagnostic potential of the identified metabolites. Among the 132 selected metabolites, sodium deoxycholate had the greatest ability (AUC = 0.991, Figure 2A) to differentiate PD patients from HCs, followed by S-adenosylmethionine (AUC = 0.978, Figure 2B), L-tyrosine (AUC = 0.974, Figure 2C), 3-methyl-L-tyrosine (AUC = 0.967, Figure 2D), 4,5-dihydroorotic acid (AUC = 0.967, Figure 2E), (6Z)-octadecenoic acid (AUC = 0.957, Figure 2F), and allantoin (AUC = 0.935, Figure 2G). The p-values for all selected metabolites were statistically significant (p < 0.001). Compared with the HC group, the concentrations of sodium deoxycholate, S-adenosylmethionine, L-tyrosine, and 3-methyl-L-tyrosine were lower in the PD group, while the concentrations of 4,5-dihydroorotic acid, (6Z)-octadecenoic acid, and allantoin were higher in the PD group (Table 3). This analysis identified seven candidate metabolites with significant discriminatory power, highlighting their potential as biomarkers for PD diagnosis.

[image: Seven panels, labeled A to G, each showing two plots. Left plots are boxplots of log-intensity of different metabolites (e.g., sodium deoxycholate, S-adenosylmethionine) compared between PD and HC groups. Right plots are ROC curves showing sensitivity vs. 1-specificity, with AUC values indicating strong predictive performance. Differences are marked with asterisks indicating significance levels.]

FIGURE 2
 Potential metabolite biomarkers for PD diagnosis. (A-G) Box plots and ROC curves for the serum levels of (A) sodium deoxycholate, (B) S-adenosylmethionine, (C) L-tyrosine, (D) 3-methyl-L-tyrosine, (E) 4,5-dihydroorotic acid, (F) (6Z)-octadecenoic acid, and (G) allantoin for the diagnosis of PD. Data are expressed as the means ± SDs. ***p ≤ 0.001 and ****p ≤ 0.0001.




TABLE 3 Identification of biomarkers between patients with PD and HCs.
[image: Table listing biomarkers with details including molecular formula, measured m/z, retention time (RT), parts per million (ppm), VIP score, log2(FC), p-value, AUC, trend, and ESI mode. Sodium deoxycholate through allantoin are included, showing varying up and down regulations with ESI+ mode.]



3.4 Metabolomic analysis reveals distinct metabolic profiles in PD-RBD compared to PD-nRBD

The OPLS-DA score plots for all serum metabolites demonstrated clear separation between the PD-RBD and PD-nRBD groups. Additionally, the OPLS-DA score plots exhibited high separative and predictive validity, with robust R2Y and Q2 values in the positive ion mode [ESI(+): R2Y = 0.974, Q2 = 0.758] and negative ion mode [ESI(−): R2Y = 0.981, Q2 = 0.536], respectively (Figures 3A,B). The volcano plot revealed distinct regulatory patterns among these metabolites, with 59 upregulated metabolites (represented by red dots) and 43 downregulated metabolites (represented by blue dots) validated through the OPLS-DA score plots (Figure 3C). Furthermore, the heatmap shown in Figure 3D illustrates the differential expression patterns of the 102 metabolites (VIP scores > 1.0, p < 0.05) in the PD-RBD group compared with the PD-nRBD group. Among these, 21 metabolites (FDR < 0.05) displayed significant differential abundance between the PD-RBD and PD-nRBD groups. These differentially expressed metabolites were predominantly categorized as seven secondary metabolites, five amino acid derivatives, four lipids, two organic acids, one cofactor, one nucleotide, and one aromatic amine, as shown in the VIP score analysis (Figure 4A).

[image: Four-panel image featuring metabolomic data analysis. Panel A and B show scatter plots for ESI(+) and ESI(-) data respectively, with brown and green ellipses representing distinct groups: PD-RBD (brown) and PD-nRBD (green). Panel C presents a volcano plot with points colored by regulation status: red for upregulated, blue for downregulated, and grey for not significant. Panel D is a heatmap of metabolites, with color gradients indicating expression levels across groups. Each panel illustrates group differences in metabolic profiles for the analyzed conditions.]

FIGURE 3
 Altered serum metabolites of PD-RBD compared to PD-nRBD. (A) OPLS-DA score plots. ESI (+): positive ion mode, R2X = 0.564, R2Y = 0.974, Q2 = 0.758. (B) OPLS-DA score plot. ESI (−): negative ion mode, R2X = 0.0938, R2Y = 0.981, Q2 = 0.536. (C) Volcano plot of upregulated (red) and downregulated (blue) metabolites in the PD-RBD group versus the PD-nRBD group. (D) Heatmap of the 102 differential metabolites in the PD-RBD group versus the PD-nRBD group. Red indicates an increased level, and blue indicates a decreased level.


[image: A composite image consisting of four panels. Panel A shows a VIP scores plot, listing various compounds with rosmarinic acid at the top, and a heatmap indicating high and low levels for PD-RBD and PD-nRBD groups. Panels B, C, and D display box plots and ROC curves for suberic acid, 3-methyl-L-tyrosine, and methyl (indol-3-yl)acetate, respectively. Each panel includes a box plot comparing PD-RBD and PD-nRBD groups alongside a ROC curve with high AUC values, indicating good sensitivity and specificity for each compound. Statistical significance is marked for differences between groups.]

FIGURE 4
 Significantly altered metabolite clusters and potential metabolite biomarkers for PD-RBD. (A) Twenty-one metabolites had VIP > 1 (also with FDR < 0.05), indicating their contribution to the classification in the OPLS-DA score plot. (B–D) Box plots and ROC curves for the serum levels of (B) suberic acid, (C) 3-methyl-L-tyrosine, and (D) methyl (indol-3-yl)acetate for the diagnosis of PD patients with RBD. Data are expressed as the means ± SD. ***p ≤ 0.001 and ****p ≤ 0.0001.


Next, we conducted ROC curve analyses for the 21 selected metabolites to further evaluate their potential as diagnostic biomarkers for patients with PD-RBD. Notably, suberic acid exhibited the highest diagnostic accuracy (AUC = 0.967, Figure 4B), followed by 3-methyl-L-tyrosine (AUC = 0.876, Figure 4C) and methyl (indol-3-yl)acetate (AUC = 0.864, Figure 4D). The concentrations of these metabolites were higher in the PD-RBD group than in the PD-nRBD group (Table 4). These findings highlighted the potential of these three metabolites as candidate biomarkers for diagnosing patients with PD-RBD and provided insights into the metabolic pathways that may be involved in the pathogenesis of RBD within the context of PD.



TABLE 4 Identification of biomarkers between PD-RBD and PD-nRBD.
[image: Table showing biomarker information, including suberic acid, 3-methyl-L-tyrosine, and methyl (indol-3-yl) acetate. Details listed: molecular formula, measured m/z, RT (s), ppm, VIP, log2(FC), p-value, AUC, trend, and ESI mode. All show up-regulation and ESI+ mode.]



3.5 Metabolic pathway enrichment analysis

Compared with the HC group, KEGG pathway analysis of the differentially abundant metabolites identified significant enrichment (p < 0.05) of the following nine metabolic pathways in the PD group: CCM; protein digestion and absorption; mineral absorption; cholesterol metabolism; PPAR signaling pathway; aminoacyl-tRNA biosynthesis; glucagon signaling pathway; arginine and proline metabolism; and beta-alanine metabolism (Figure 5A). Compared with the PD-nRBD group, KEGG pathway analysis of the altered metabolites revealed significant enrichment (p < 0.05) of the following seven pathways in the PD-RBD group: PPAR signaling pathway; D-amino acid metabolism; neuroactive ligand-receptor interaction; protein digestion and absorption; linoleic acid metabolism; ABC transporters; and arginine and proline metabolism (Figure 5B).

[image: Two panels, A and B, display bubble plots showing pathways based on their impact and significance. Panel A highlights "Central carbon metabolism" with the highest significance and impact, followed by "Protein digestion and absorption," among others. Panel B emphasizes "PPAR signaling pathway" with notable values, with other pathways like "D-amino acid metabolism" also detailed. Bubble size represents impact, and color indicates significance, with a gradient from yellow to red.]

FIGURE 5
 Scatter plot showing the KEGG pathway enrichment analysis results. (A) Pathway analysis of the significantly altered metabolites in the PD group versus the HC group. The red-to-yellow gradient signifies ascending p-values, and the dot size is scaled to show the magnitude per pathway. (B) Pathway analysis of the significantly altered metabolites in the PD-RBD group versus the PD-nRBD group.





4 Discussion

The present study utilized untargeted LC–MS analysis to investigate serum metabolic profiles in drug-naïve PD patients compared to HCs. The metabolites that significantly decreased in the PD group included L-tyrosine and S-adenosylmethionine. L-tyrosine, a primary precursor of dopamine, plays a crucial role in dopamine (DA) synthesis (45), and the depletion of L-tyrosine indirectly reflects DA deficiency in the nigrostriatal pathway. A previous study reported similar tyrosine levels between levodopa-treated PD patients and healthy controls (46), which contrasts with our observation of reduced L-tyrosine in a drug-naïve PD cohort. This discrepancy may reflect the modulatory effects of levodopa therapy on tyrosine metabolism. L-tyrosine faces therapeutic challenges due to the blood–brain barrier, while its downstream metabolite, L-Dopa, is used to supplement DA substrates in the brain (47). The limitations of DA replacement therapy, such as diminishing efficacy and drug-induced motor complications (48), highlight the need to reconsider its upstream metabolite, L-tyrosine. Specifically, targeting L-tyrosine metabolism may offer novel opportunities to enhance DA synthesis through the upregulation of tyrosine hydroxylase (TH) activity using genetic engineering techniques. Similarly, S-adenosylmethionine serves as a principal methyl donor in epigenetic regulation (49), glutathione synthesis (50), and neurotransmitter synthesis (including DA metabolism) (51). Consistent with previous findings demonstrating significantly reduced S-adenosylmethionine levels in PD patients compared to control subjects (51–53), the observed S-adenosylmethionine depletion in our study may indicate a pathology of impaired methylation capacity, increased oxidative stress, and mitochondrial dysfunction, collectively contributing to α-synuclein aggregation and progressive neurodegeneration. Additionally, S-adenosylmethionine restricts the expression of A2A receptors, which are upregulated in PD patients, thereby indirectly enhancing DA signaling (54–57). This suggests that S-adenosylmethionine replenishment strategies may have a specific targeted effect on A2A receptors in the brain and could synergize with existing dopaminergic therapies. Moreover, we observed significantly elevated serum allantoin levels in PD patients compared with HCs, which is consistent with previous metabolomic findings (8), indicating increased oxidative stress in synucleinopathy. The levels of sodium deoxycholate, 4,5-dihydroorotic acid, and (6Z)-octadecenoic acid were also significantly altered in the PD group, which may reflect underlying pathological processes in PD, such as gut dysbiosis (58), energy metabolism dysfunction (59), and inflammation (60). These findings demonstrate the complexity of metabolic disturbances in PD, suggesting that these metabolites could serve as both diagnostic biomarkers and potential therapeutic targets.

KEGG pathway analysis revealed that CCM was the most significantly altered pathway in PD pathology, with the highest number of PD-associated metabolic changes localized to this category (e.g., L-malic acid, citric acid, and isocitrate), consistent with findings from previous studies (61, 62). CCM, traditionally encompassing the glycolytic pathway [Embden-Meyerhof-Parnas (EMP) pathway], the pentose phosphate pathway (PPP), and the tricarboxylic acid (TCA) cycle, serves as the core of energy production and also as a hub connecting lipid and amino acid metabolism (63). Dysregulation of this pathway underscores insufficient energy and mitochondrial dysfunction in PD (4). For example, reduced levels of L-malic acid impair the TCA cycle, resulting in decreased nicotinamide adenine dinucleotide (NADH, reduced form) production and adenosine triphosphate (ATP) synthesis, ultimately inhibiting oxidative phosphorylation in mitochondria. Thus, the pathway enrichment analysis highlighted the potential role of CCM in the neurodegenerative process of PD and provided a basis for further investigation into the underlying mechanisms. To bridge these findings to clinical applications, a heterogeneous information network (HIN) learning model integrating multi-omics data (e.g., metabolomics, proteomics, and mitochondrial genomics) could map PD-specific CCM bottlenecks (e.g., malate dehydrogenase dysfunction) to prioritize therapeutic targets (64). For instance, 3D molecular pocket-based generation techniques could design small molecules to allosterically activate TCA cycle enzymes, compensating for L-malic acid depletion and restoring NADH/ATP production (65).

Further analysis of differential serum metabolites between the PD-RBD and PD-nRBD groups revealed that only 3 out of 102 differentially expressed metabolites associated with PD-RBD demonstrated potential as biomarkers (AUC > 0.86). Methyl (indol-3-yl)acetate, a derivative of indole-3-acetic acid (66), is associated with the tryptophan metabolic pathway (67)—encompassing serotonin and melatonin synthesis—which is critically implicated in sleep regulation and mood disorders (68–70). The elevation of methyl (indol-3-yl)acetate in PD-RBD patients suggested alterations in gut microbiota composition or function, leading to disturbances in the tryptophan metabolic pathway and potentially contributing to sleep–wake cycle dysregulation. This dysregulation may reflect a gut-brain axis dysfunction, as altered microbial tryptophan metabolism modulates systemic levels of neuroactive metabolites (71). In PD, the propagation of α-synuclein pathology from the gut to the brain (Braak’s hypothesis) (72) may be exacerbated by gut dysbiosis (73, 74). Suberic acid, an aliphatic dicarboxylic acid, was significantly elevated in PD-RBD patients, indicating impaired fatty acid β-oxidation and exacerbation of neuronal energy deficits. Notably, increased suberic acid levels have also been observed in the urine metabolites of PD patients, further supporting the role of mitochondrial energy metabolism dysregulation in PD-related pathology (75, 76). This impaired fatty acid β-oxidation could lead to ATP depletion, thereby impairing synaptic function and exacerbating neurodegeneration in vulnerable regions such as the substantia nigra—a key site affected in PD (77). Moreover, suberic acid accumulation could promote reactive oxygen species (ROS) overproduction, exacerbating oxidative stress that facilitates α-synuclein misfolding and aggregation (78, 79). This mechanism supports the established pathological association between mitochondrial ROS generation and α-synucleinopathy—a pathological hallmark of PD—in synucleinopathies (80–82). In contrast, 3-methyl-L-tyrosine exhibited a dual pattern, with decreased serum levels in PD patients compared with HCs and increased levels in PD-RBD patients compared with PD-nRBD patients. As a methylated derivative of L-tyrosine (83), the significant reduction in 3-methyl-L-tyrosine levels in the PD group aligns with the observed decline in L-tyrosine levels in our study, thereby providing another perspective on dopaminergic depletion. Notably, previous studies have demonstrated that PD patients receiving levodopa therapy exhibit significantly elevated serum levels of 3-methyl-L-tyrosine compared to healthy controls (2, 46), whereas our drug-naïve cohort exhibited the opposite trend. This contrast suggests that L-Dopa may modulate tyrosine metabolism through alternative pathways or altered enzymatic activity during dopaminergic replacement therapy. In PD-RBD patients, TH activity is more severely reduced compared with PD-nRBD patients (84). This pronounced TH deficiency leads to impaired conversion of tyrosine to L-Dopa, thereby disrupting DA biosynthesis. Consequently, such metabolic blockage may redirect tyrosine flux toward alternative pathways, resulting in the accumulation of tyrosine-derived intermediates—such as 3-methyl-L-tyrosine—in the systemic circulation. This duality underscores the dynamic interplay between neurodegeneration and metabolic adaptation across PD progress.

Pathway enrichment analysis identified the PPAR signaling pathway as a key dysregulated pathway in PD-RBD, with a tendency towards inactivation. PPARs are nuclear receptors that modulate lipid metabolism, inflammation, cellular differentiation, and mitochondrial biogenesis (85, 86). The present findings of altered metabolites involved in lipid metabolism, such as alpha-dimorphecolic acid, align with the involvement of PPAR signaling in these conditions. Dysregulation of the PPAR signaling pathway has been implicated in the pathogenesis of PD (86, 87), as it plays a crucial role in energy metabolism (88), antioxidant stress response (89), and circadian metabolic homeostasis (90). For example, PPARα agonists demonstrate neuroprotective effects in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice by attenuating oxidative stress (89). Additionally, the deletion of PPARγ has been shown to disrupt diurnal rhythms in mice (91)—a dysfunction particularly relevant to the progression of RBD symptoms in PD. These findings collectively suggest that targeting the PPAR signaling pathway may alleviate metabolic disturbances in PD-RBD. Coupled with large language models (LLMs) trained on biomedical literature and clinical trial databases, researchers could rapidly screen FDA-approved drugs for repurposing candidates (e.g., anti-diabetic agents targeting PPARγ) that mitigate both motor and non-motor symptoms in PD-RBD (92). To optimize therapeutic efficacy, geometric deep learning (GDL) could predict drug–drug associations (DDAs) within a PPAR-centered heterogeneous network (93). By analyzing the geometric relationships between PPAR agonists, mitochondrial enhancers, and circadian modulators, GDL models may identify synergistic combinations (e.g., pioglitazone with melatonin) to address multifactorial PD-RBD pathology while minimizing adverse effects (94, 95).

Although our study provides a comprehensive analysis of metabolic profiling and identifies potential biomarkers in PD and PD-RBD, it had several limitations. Firstly, PD and PD-RBD were diagnosed based on clinical criteria. To address this, future studies should link pathophysiology markers, genetic technology, and neuroimaging to enhance diagnostic specificity. Secondly, the genetic background, dietary habits, and lifestyle factors of the patients and HCs may have influenced metabolite levels. Future research should calibrate these variables in larger cohorts to improve robustness and reproducibility. Finally, the present study focused on serum metabolites, and further investigation should integrate genomics, transcriptomics, and proteomics to provide additional insights into the molecular mechanisms underlying PD.

In summary, the present study identified valuable serum metabolic alterations that distinguish PD patients from HCs and PD-RBD patients from PD-nRBD patients, implicating dysregulated pathways (e.g., CCM and PPAR signaling) in PD pathogenesis. The identified metabolites (e.g., S-adenosylmethionine and 3-methyl-L-tyrosine) offer the potential for diagnosing and monitoring disease progression, while PPAR modulation may address RBD-specific pathology in PD. These findings enhance the understanding of neurodegenerative processes in PD and may facilitate the discovery of therapeutic targets.
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Background: Drug-induced Parkinsonism (DIP) is a secondary Parkinsonism with limited research on its hippocampal structural changes. This study explores hippocampal subfield volumes in DIP compared to Parkinson’s disease (PD) and healthy controls (HCs), investigating correlations with cognitive (Montreal Cognitive Assessment, MoCA), emotional (Hamilton Depression Rating Scale, HAMD; Hamilton Anxiety Rating Scale, HAMA), and motor (Unified Parkinson’s Disease Rating Scale, UPDRS) symptoms.
Methods: A total of 19 DIP patients, 20 PD patients, and 20 HCs were enrolled. MRI-based hippocampal subfield volumes were assessed using FreeSurfer, and clinical scores were evaluated for cognitive, emotional, and motor functions. Statistical analyses compared group differences and examined correlations.
Results: Significant atrophy was observed in the DIP group in multiple hippocampal subfields compared to HCs, including the presubiculum, subiculum, Granule cell and molecular layer of the dentate gyrus (GC-ML-DG), molecular_layer_HP, Cornu ammonis (CA) 1, CA4, hippocampal tail, and fimbria. MoCA scores positively correlated with volumes in bilateral hippocampus and subfields such as subiculum and CA4, while HAMD scores mainly showed negative correlations in both DIP and PD group. UPDRS scores revealed group-specific patterns, with DIP showing stronger associations between non-motor symptoms and hippocampal volume.
Conclusion: This study first reported significant hippocampal subfield atrophy in DIP, distinct from PD, and links structural changes to cognitive, emotional, and motor impairments. These findings advance understanding of DIP pathophysiology and underscore the hippocampus’s role in non-motor symptoms.
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Introduction

Drug-induced parkinsonism (DIP) is one of the most common forms of secondary parkinsonism (Bondon-Guitton et al., 2011; Savica et al., 2017; Shiraiwa et al., 2018), resulting from the use of medications that block dopamine receptors or deplete dopamine levels (Feldman et al., 2022; Margolesky, 2019), and its prevalence and incidence of DIP increased in the recent years (Han et al., 2019). Although DIP and Parkinson’s disease (PD) are both subtypes of parkinsonism (Shin and Chung, 2012; Wenning et al., 2011), and DIP shares several clinical features with PD, such as bradykinesia and rigidity, the underlying neurobiological mechanisms of DIP remain poorly understood, with limited research focusing on its structural and functional brain changes. Unlike PD, which has been extensively studied, DIP has received far less attention, leaving significant gaps in our understanding of its neuropathological basis.

Neuroimaging offers valuable insights for diagnosing DIP, particularly in cases with clinical presentations that closely resemble PD (Pitton Rissardo and Caprara, 2023). Current MRI studies on DIP remain limited, with existing research primarily focusing on alterations in the substantia nigra (Sung et al., 2016) and white matter (Lee et al., 2017). Our previous study found structural (volume) alterations in the subcortical nuclei of DIP patients (Zhou et al., 2024). These studies underscore the scarcity of neuroimaging investigations into DIP, highlighting a need for further exploration to better understand its pathophysiology and distinguish it from PD.

The hippocampus serves as a critical brain region involved in cognitive processes and emotional regulation (Li et al., 2020; Zhang et al., 2016). Moreover, the hippocampus is divided into several substructures, each with distinct functions and vulnerabilities in neurodegenerative diseases. Its substructures, such as the dentate gyrus and CA regions, have distinct roles in memory, learning, and mood regulation and are known to be affected in neurodegenerative and psychiatric disorders. Previous studies have reported that hippocampal alteration is associated with cognitive function in PD patients (Yildiz et al., 2015), indicating its potential as a biomarker for disease progression and treatment response. Beyer et al. (2013) found that memory deficits in recall and recognition have been linked to hippocampal atrophy in newly diagnosed PD patients, particularly in verbal memory tasks. Furthermore, Low et al. (2019) have reported atrophy in specific hippocampal subfields, such as CA1, in individuals who progressed to PD dementia. These findings underscore the strong association between hippocampal dysfunction and cognitive impairment in PD. Cognitive impairment and emotional disturbances can also occur in patients with DIP. However, it remains unclear whether these changes are associated with hippocampal structural alterations in DIP patients, and to date, no studies have specifically investigated the relationship between hippocampal subfield volumes and clinical symptoms, such as cognitive deficits, depressive symptoms, and motor dysfunction, in this population.

Hence, our study is the first to explore the relationship between hippocampal subfield volumes and cognitive and emotional functioning in DIP patients, potentially offering new insights into the pathophysiology of DIP and its management.

This research not only provides new perspectives on the hippocampal structural alterations associated with DIP, but also helps us understand the potential relationship between these changes and cognitive, emotional, and motor symptoms.



Methods


Participants

The research protocol received approval from the Local Ethical Committee (Approval no. 2021ER0105-1), and all participants signed written informed consent forms.

The study involved participants who were part of a previous cohort study (Zhou et al., 2024). A total of 19 patients with DIP, 20 patients diagnosed with PD, and 20 healthy control participants (HCs) were enrolled. The diagnosis of PD was made according to the 2016 Chinese diagnostic guidelines. DIP cases were confirmed based on the following criteria: (1) exhibiting parkinsonism symptoms; (2) absence of prior parkinsonism before exposure to causative drugs; (3) symptom manifestation following drug usage; and (4) being right-handed. Exclusion criteria for DIP participants included: (1) a diagnosis of primary Parkinson’s disease or other identifiable causes of parkinsonism; (2) MRI contraindications (e.g., claustrophobia or presence of metallic implants); (3) structural brain damage or motion artifacts on MRI; (4) history of neurological disorders (e.g., stroke, head injury); or (5) unwillingness to participate.

For PD participants, inclusion criteria were: (1) diagnosis per the 2016 Chinese PD criteria; (2) voluntary consent; and (3) right-handedness. Exclusion criteria included: (1) secondary or atypical parkinsonism; (2) inability to cooperate with symptom evaluations; (3) MRI contraindications; (4) significant structural abnormalities or motion artifacts on MRI; and (5) unwillingness to participate.

HCs were age-and sex-matched, with all participants being right-handed. The exclusion criteria for HCs included: (1) psychiatric or neurological disorders; (2) MRI contraindications; (3) significant structural abnormalities or motion artifacts on MRI; and (4) unwillingness to participate.

The evaluation of clinical symptoms was conducted using the Unified Parkinson’s Disease Rating Scale (UPDRS) (Goetz et al., 2008) and the Hoehn-Yahr (H-Y) staging scale (Goetz et al., 2004). The assessment of motor symptoms was carried out with the UPDRS-III and H-Y staging scale, whereas the evaluation of non-motor symptoms and daily living experiences related to motor functions was performed using the UPDRS-I and UPDRS-II, respectively. Cognitive assessment was conducted using the Montreal Cognitive Assessment (MoCA). Additionally, the patients’ emotional state was evaluated through the Hamilton Depression Rating Scale (HAMD) and the Hamilton Anxiety Rating Scale (HAMA).



MRI scan

MRI data were collected using a 3.0 T scanner (GE Discovery MR750, USA) equipped with a 32-channel head coil. High-resolution 3D-T1-weighted imaging was performed with the following parameters: repetition time (TR) of 8.3 ms, echo time (TE) of 3.3 ms, flip angle of 15°, field of view (FOV) of 240 × 240 mm, image matrix of 240 × 240, and slice thickness of 1.0 mm with no interslice gap.



Imaging analysis

The hippocampal subfields segmentation was performed using FreeSurfer version 7.1.1. This automated process included several steps: correcting motion artifacts in T1-weighted images, aligning images to the Talairach coordinate system, adjusting for B1 field inhomogeneities, and applying a hybrid watershed algorithm for skull stripping. Subsequent stages involved labeling volumes, segmenting subcortical regions, refining subcortical structures, and constructing cortical models. The analysis specifically extracted volumes of 12 hippocampal subfields per hemisphere, including the Cornu ammonis (CA) 1, CA3, CA4, etc. (Figure 1). Additionally, the intracranial volume (ICV) was calculated. This hippocampal subfield segmentation approach has been widely used in neuroimaging research (Iglesias et al., 2015; Sämann et al., 2022).
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FIGURE 1
 The segmentation of hippocampal subfields on T1-weighted MRI images. The hippocampus was segmented into the following subfields: parasubiculum, presubiculum, subiculum, CA1, CA3, CA4, molecular_layer_HP, GC-ML-DG, HATA, fimbria, tail and fissure. CA, Cornu ammonis; GC-ML-DG, Granule cell and molecular layer of the dentate gyrus; HATA, Hippocampus-amygdala transition area.




Statistical analysis

Continuous variables were expressed as either the mean or median. For H-Y staging scale, stages 2 and above were combined into a single group due to the limited number of patients in the higher stages (Ziegler et al., 2013). Comparisons of demographic and clinical features were conducted using analysis of variance (ANOVA), Mann–Whitney U-tests, or Chi-Squared tests. To examine hippocampal volume parameters among three groups, analysis of covariance (ANCOVA) was applied, followed by post-hoc analyses. p-values were adjusted for multiple comparisons using the false discovery rate (FDR). The relationship between clinical parameters and subcortical volume was explored through partial correlation analysis, controlling for sex, age, and ICV.

All statistical analyses were carried out with SPSS software (Version 23.0), with p < 0.05 considered statistically significant.




Results


Demographics

The demographic and clinical characteristics of these subject groups are showed in the Table 1. There were no significant differences in age, sex distribution among the three groups. The duration of illness was marginally longer in the PD group than in the DIP group, though this difference was not statistically significant. Cognitive performance, assessed using the MoCA score, showed a significant group difference, with the DIP group scoring lower than the PD group. Scores on the UPDRS subscales (I, II, and III) showed no significant differences among groups. Emotional states, evaluated using the HAMA and HAMD score, were similar across groups, with no statistically significant differences (p > 0.05).


TABLE 1 Demographic and clinical characteristics of all participants.


	Characteristics
	PD
	DIP
	HC
	f/t/x2/z
	p

 

 	n 	20 	19 	20 	– 	–


 	Sex M/F 	6/14 	4/15 	10/10 	3.849 	0.146


 	Age, mean ± SD 	64.60 ± 7.63 	63.47 ± 8.91 	60.40 ± 6.61 	1.570 	0.217


 	Illness duration (years), median (range) 	1 (0.1 ~ 4) 	0.6 (0.1 ~ 2.6) 	– 	−1.947 	0.051


 	MoCA, mean ± SD 	19.60 ± 5.75 	15.42 ± 5.46 	– 	2.342 	0.026


 	UPDRS I, mean ± SD 	9.85 ± 6.16 	10.789 ± 7.58 	– 	−0.426 	0.673


 	UPDRS II, mean ± SD 	9.00 ± 4.24 	7.631 ± 6.73 	– 	0.461 	0.453


 	UPDRS III, mean ± SD 	15.45 ± 6.57 	11.89 ± 6.35 	– 	1.718 	0.094


 	HAMA, mean ± SD 	10.30 ± 4.94 	12.11 ± 7.13 	– 	−0.923 	0.362


 	HAMD, mean ± SD 	12.70 ± 5.14 	13.11 ± 3.71 	– 	−0.281 	0.780


 	H-Y grade, N 	 	 	 	 	


 	Grade 1 	12 	6 	 	3.167 	0.075


 	Grade ≥2 	8 	13 	





PD, Parkinson’s disease; DIP, Drug-induced parkinsonism; HC, Healthy control; UPDRS, Unified Parkinson’s Disease Rating Scale; HAMD, Hamilton Depression Rating Scale; HAMA, Hamilton Anxiety Rating Scale.
 



Comparison of hippocampal and subfield volumes

The results revealed significant differences in hippocampal subfield volumes across the three groups, with the DIP group showing widespread reductions compared to HCs. Both the bilateral whole hippocampal volumes were significantly smaller in the DIP group, alongside reductions in several subfields, including the presubiculum, subiculum, Granule cell and molecular layer of the dentate gyrus (GC-ML-DG), Molecular_layer_HP, CA1, CA4, hippocampal tail, and fimbria. These reductions were bilateral and were more pronounced in DIP compared to HC, with some subfields also differing from the PD group. Overall, the DIP group exhibited the more severe hippocampal atrophy among the groups studied (Table 2 and Figure 2).


TABLE 2 Comparison of hippocampal and subfield volumes among the DIP, PD and HCs.


	Hippocampus/Hippocampal subfields
	PD
	DIP
	HC
	F-value
	p-value
	P.fdr
	PD vs. DIP
	PD vs. HC
	DIP vs. HC



	Mean
	SD
	Mean
	SD
	Mean
	SD

 

 	L_Whole_hippocampus 	3485.959 	385.228 	3261.666 	359.095 	3679.575 	279.442 	9.449 	0.000 	0.000* 	0.097 	0.041* 	0.000*


 	L_parasubiculum 	73.881 	22.334 	67.846 	15.711 	68.540 	9.457 	1.224 	0.302 	0.329 	– 	– 	–


 	L_presubiculum 	324.380 	55.629 	294.330 	32.923 	332.292 	43.366 	4.760 	0.013 	0.020* 	0.081 	0.434 	0.038*


 	L_subiculum 	446.130 	71.111 	400.933 	56.843 	477.459 	44.711 	9.974 	0.000 	0.000* 	0.052 	0.058 	0.001*


 	L_CA1 	629.233 	77.869 	588.794 	60.242 	644.187 	47.073 	5.553 	0.006 	0.012* 	0.175 	0.237 	0.003*


 	L_CA3 	208.788 	18.867 	203.337 	31.838 	213.101 	25.282 	0.796 	0.456 	0.456 	– 	– 	–


 	L_CA4 	251.138 	24.892 	234.245 	31.918 	259.862 	25.423 	6.438 	0.003 	0.007* 	0.113 	0.136 	0.003*


 	L_molecular_layer_HP 	550.540 	64.481 	514.973 	60.888 	580.297 	47.106 	7.422 	0.001 	0.003* 	0.135 	0.076 	0.002*


 	L_GC-ML-DG 	285.889 	31.899 	268.815 	38.063 	303.125 	29.522 	7.826 	0.001 	0.003* 	0.185 	0.033* 	0.001*


 	L_HATA 	56.998 	9.807 	56.212 	8.401 	60.201 	9.038 	3.492 	0.038 	0.051 	– 	– 	–


 	L_fimbria 	66.627 	19.459 	56.977 	16.978 	88.415 	24.118 	7.797 	0.001 	0.003* 	0.098 	0.032* 	0.004*


 	L_Hippocampal_tail 	592.354 	72.326 	575.204 	82.157 	652.095 	69.393 	5.134 	0.009 	0.015* 	0.425 	0.037* 	0.003*


 	L_hippocampal-fissure 	162.361 	25.008 	146.394 	26.243 	155.661 	12.506 	2.077 	0.135 	0.162 	– 	– 	–


 	R_Whole_hippocampus 	3633.677 	373.401 	3419.987 	335.977 	3867.794 	317.239 	8.695 	0.001 	0.001* 	0.082 	0.081 	0.000*


 	R_parasubiculum 	72.763 	22.543 	60.568 	15.202 	62.718 	10.671 	1.926 	0.156 	0.187 	– 	– 	–


 	R_presubiculum 	314.535 	46.613 	286.962 	32.306 	315.894 	32.380 	4.956 	0.011 	0.019* 	0.094 	0.427 	0.004*


 	R_subiculum 	451.420 	64.976 	422.907 	52.023 	491.559 	48.661 	7.703 	0.001 	0.006* 	0.183 	0.045* 	0.001*


 	R_CA1 	656.910 	67.770 	625.945 	62.959 	695.484 	51.441 	6.139 	0.004 	0.012* 	0.220 	0.142 	0.001*


 	R_CA3 	233.554 	21.833 	228.278 	32.133 	240.219 	28.800 	1.255 	0.293 	0.320 	– 	– 	–


 	R_CA4 	269.070 	28.985 	258.567 	30.599 	279.162 	29.416 	3.445 	0.039 	0.052 	– 	– 	–


 	R_molecular_layer_HP 	631.983 	85.152 	588.281 	69.610 	696.656 	84.586 	5.874 	0.005 	0.012* 	0.068 	0.164 	0.001*


 	R_GC-ML-DG 	305.614 	32.500 	292.230 	37.571 	321.179 	31.622 	4.665 	0.014 	0.021* 	0.320 	0.113 	0.002*


 	HATA 	58.795 	8.472 	52.394 	9.419 	62.414 	8.108 	5.174 	0.009 	0.018* 	0.053 	0.698 	0.003*


 	R_fimbria 	65.493 	17.810 	56.687 	20.129 	82.596 	16.324 	6.408 	0.003 	0.012* 	0.094 	0.027* 	0.004*


 	R_Hippocampal_tail 	573.539 	59.158 	547.168 	58.328 	619.915 	46.827 	9.242 	0.000 	0.000* 	0.183 	0.021* 	0.000*


 	R_hippocampal-fissure 	175.076 	33.815 	176.197 	28.152 	166.776 	19.667 	0.187 	0.830 	0.830 	– 	– 	–





PD, Parkinson’s disease; DIP, Drug-induced parkinsonism; HC, Healthy control. CA, Cornu ammonis; GC-ML-DG, Granule cell and molecular layer of the dentate gyrus; HATA, Hippocampus-amygdala transition area.*p < 0.05.
 

[image: Bar charts compare volume measurements across various brain regions for three groups: DIP, HC, and PD. Significant differences are marked with asterisks. Regions include left and right whole hippocampus, parasubiculum, presubiculum, subiculum, CA1, CA3, CA4, molecular layer HP, GC-ML-DG, HATA, fimbria, tail, and fissure. Bars are color-coded: DIP in blue, HC in purple, and PD in yellow.]

FIGURE 2
 Comparison of Hippocampal Subfield Volumes among DIP, HC, and PD. The blue lines indicate the results of ANCOVA among these three groups, while the black lines represent post-hoc analysis. *Represents statistically significant differences (p < 0.05) in either the ANOVA or post-hoc comparisons.




Correlation analysis

The results of the correlation analysis are presented in the following heatmap (Figure 3 and Supplementary Tables 1, 2).

[image: Two heatmaps compare DIP and PD across various cognitive and brain region metrics. Color gradients range from blue (-1.0) to red (1.0), indicating correlation values. Asterisks signify significant correlations. Regions tested include hippocampus subfields with metrics like MoCa, HAMD, and HAMA.]

FIGURE 3
 The heatmap of correlations between hippocampal volume parameters and related various clinical measures in DIP and PD group, with *indicating p < 0.05.


In both DIP and PD groups, MoCA scores were positively correlated with bilateral total hippocampal volumes and several subfield volumes, while HAMD scores predominantly exhibited negative correlations with hippocampal volume metrics. According to the heatmap results, the DIP group displayed a greater number of statistically significant correlations between hippocampal volume metrics and UPDRS scores compared to the PD group, with most of these correlations being negative.



Subgroup analysis based on H-Y staging scale

Patients were grouped using an H-Y stage threshold of grade 2, with those at grade 2 and above combined into a single group. The volumes of the hippocampus and its subfields were compared in both the DIP and PD groups at different H-Y stages, respectively. The results showed no statistically significant differences in the whole hippocampal volume or its subfield volumes between the two groups (Supplementary Tables 3, 4).




Discussion

This study is the first to investigate hippocampal subfield volume alterations in patients with DIP and their associations with clinical parameters, including cognitive performance (MoCA), emotional states (HAMD), and motor/non-motor symptoms (UPDRS). Our findings revealed significant reductions in hippocampal subfields in the DIP group compared to HCs, revealing a distinct pattern of hippocampal atrophy in DIP. Moreover, the DIP group exhibited more severe hippocampal volume loss than the PD group, which may due to specific mechanistic differences between primary and secondary parkinsonism. These structural changes were significantly correlated with clinical outcomes, particularly cognitive and emotional dysfunction, suggesting that hippocampal atrophy may play a critical role in the course of DIP.

We observed widespread reductions in hippocampal subfields, including the presubiculum, subiculum, GC-ML-DG, molecular_layer_HP, CA1, CA4, hippocampal tail, and fimbria, reflect severe structural damage in DIP, with pronounced atrophy in DIP compared to PD. On one hand, hippocampal alterations are possibly caused by neuronal damage (Fan et al., 2018; Zhu et al., 2018). Our results may suggest that hippocampal atrophy occurs in both DIP and PD, potentially reflecting a common structural vulnerability. Previous researches reported that cognitive impairments in PD have been linked to reductions in hippocampal volume (Xu et al., 2020; Carlesimo et al., 2012). Recent study (Low et al., 2019) found atrophy in the CA1 subfield of the hippocampus in developed PD dementia. Hippocampal volume decrease might serve as a common biomarker of cognitive vulnerability in both degenerative and non-degenerative parkinsonian syndromes.

On the other hand, the more extensive and severe hippocampal atrophy observed in DIP compared to PD when compared to HCs, might reflect unique pathological processes influenced by differences in clinical characteristics. The disease course in DIP is typically shorter than in PD (López-Sendón et al., 2012), and its progression was more quickly (Shiraiwa et al., 2018). This may suggest that hippocampal volume reductions in DIP may be attributed to the acute effects of drug exposure, contrasting with the gradual, progressive neurodegenerative changes observed in PD. Additionally, DIP patients exhibited significantly lower MoCA scores compared to PD patients, indicating more pronounced cognitive impairment, consistent with earlier studies indicating that neurological deficits in DIP are more pronounced than those in PD (Shin and Chung, 2012). We speculated that cognitive vulnerability in DIP may exacerbate hippocampal susceptibility. So, these factors may collectively contribute to the more severe hippocampal atrophy observed in DIP patients.

Cognitive impairment, as reflected by lower MoCA scores in the DIP group, was strongly associated with reduced hippocampal subfield volumes. Specifically, subfields such as the subiculum, CA4, and CA1 showed significant positive correlations with MoCA scores. Firstly, we found the DIP patients exhibited more pronounced cognitive impairment, in addition to the previously mentioned relationship between cognitive impairment and hippocampal changes, cognitive impairment itself has been reported as a significant risk factor in the onset and progression of DIP (López-Sendón et al., 2012). Secondly, a positive correlation was observed between MoCA scores and hippocampal subfield volumes, suggesting that smaller hippocampal volumes were linked to more severe cognitive deficits. Although the causal relationship between these two factors remains unclear, it is possible that the reduction in hippocampal volume could be a result of prolonged cognitive decline, or conversely, that hippocampal atrophy may contribute to the worsening of cognitive function. This underscores the complex interplay between structural brain changes and cognitive performance in DIP, warranting further investigation to elucidate the direction of causality.

The negative correlations between HAMD scores and hippocampal subfield volumes, particularly in the HATA and CA3, suggest that smaller hippocampal volumes are linked to greater depressive symptoms in DIP patients. These regions are crucial for emotional regulation, for example, CA3 is an important subfield involved in depression (Nolan et al., 2020; Roddy et al., 2019). All of them have been reported decreased volume in depression in the majority researches (Nolan et al., 2020; Sun et al., 2023). Moreover, these correlations were stronger in DIP than in PD, indicating that hippocampal atrophy may have a more significant impact on mood disturbances in DIP patients. In addition to the interplay with hippocampal structural changes, gender differences in the occurrence of DIP may also be another contributing factor. Since DIP has a higher prevalence in female (Shin and Chung, 2012), who also have a higher incidence of depression (Eid et al., 2019; Marx et al., 2023), and our DIP sample also included a higher proportion of female participants. So, gender-specific factors may contribute to the more pronounced mood disturbances observed in the DIP group.

While the hippocampus is primarily associated with cognitive and emotional functions, exploring its relationship with motor symptoms may be significant in DIP and PD. Molina et al. (2016) reported that motor impairments in PD patients can predict cognitive deficits in schizophrenia patients, suggesting a potential mediating role of the hippocampus. Ledoux et al. (2014) found that hippocampal dysfunctions can affect motor-related tasks. These results suggested that the hippocampus may play a role in integrating cognitive and motor functions, which could have implications for understanding the pathophysiology of related disorders. In our study, the heatmap analysis revealed distinct patterns of correlation between UPDRS I/II/III and hippocampal subfield volumes in both DIP and PD groups. These findings highlight group-specific differences in how hippocampal subfields relate to motor and non-motor symptoms in DIP and PD. Previous studies have suggested the hippocampus, interacting with the basal ganglia and prefrontal cortex, likely contributed to motor and cognitive integration within the broader cortico-basal ganglia-thalamic circuits (Maurice et al., 2015; Ursino et al., 2020). Notably, the more extensive correlations in the DIP group, particularly with UPDRS-I and III, may suggest a heightened hippocampal involvement in this condition, potentially reflecting its unique pathophysiology. Further research is needed to clarify these associations and to determine whether hippocampal structural changes could serve as biomarkers for symptom severity or progression in DIP and PD.

Additionally, subgroup analysis based on Hoehn and Yahr (H-Y) staging showed no significant differences in hippocampal volumes or subfield volumes between the DIP and PD groups. This lack of significant structural differences may be attributed to the relatively short disease duration in our sample, suggesting that hippocampal structural changes might not yet be detectable.

Although subgroup analysis based on H-Y staging scale did not show significant differences in hippocampal volumes between the DIP and PD groups, we observed significant correlations between hippocampal volumes parameters and UPDRS-III scores. Compared with UPDRS, the H-Y scale can provide a limited evaluation of the severity of motor symptoms (Movement Disorder Society Task Force on Rating Scales for Parkinson's Disease, 2003; Yamada et al., 2022). Another possible explanation is that UPDRS-III, as a continuous measure, offers greater sensitivity in quantifying the severity of motor symptoms. In contrast, the H-Y scale is categorical and provides a general information of disease stage. Furthermore, the relatively small sample sizes within H-Y subgroups may limit the statistical power to detect subtle group differences. Further researches with larger samples and longitudinal follow-up are needed to confirm our findings.

This study has several limitations. Firstly, the relatively small sample size may have reduced the statistical power, potentially affecting the ability to detect minor differences, especially in subgroup analyses. Future studies with larger cohorts are needed to validate these findings. Second, the cross-sectional design precludes causal inferences about the relationship between hippocampal atrophy and clinical outcomes. Longitudinal studies would be valuable to explore how hippocampal changes progress over time and their potential reversibility upon cessation of causative drugs. Third, while the study focused on volumetric changes in hippocampal subfields, functional alterations or connectivity changes were not assessed. Combining structural MRI with functional imaging techniques, such as resting-state fMRI, could provide a more comprehensive understanding of hippocampal dysfunction in DIP. Finally, the heterogeneity of the drugs causing DIP in the recruited population may introduce variability in the observed effects. Stratifying patients by the specific causative agents in future research could clarify drug-specific impacts on hippocampal subfields.

In conclusion, our research provides new perspectives on the structural changes in hippocampal subfields associated with DIP, focusing on significant atrophy in specific regions and their correlations with cognitive, emotional, and motor symptoms. Our findings highlight the need for greater clinical attention to hippocampal alterations in DIP, particularly given its significant impact on cognition, mood, and even motor-related symptoms. Moreover, understanding the unique patterns of hippocampal atrophy in DIP may provide insights into the broader mechanisms underlying drug-induced neurotoxicity and secondary parkinsonism.
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Backgrounds: Early-onset Parkinson’s disease (EOPD) presents a significant financial burden on healthcare systems and medical expenses. However, there has been a lack of comprehensive quantitative assessments to fully understand the extent of this burden. The Global Burden of Diseases (GBD) initiative aims to provide a standardized and thorough evaluation of these factors on a global, regional, and national scale. This study aimed to calculate the global burden of EOPD and characterize regional disparities, SDI-based inequalities, and gender differences in disease burden, with a focus on trends from 1990 to 2021.
Methods: We utilized data from the GBD Study 2021 to analyze the burden of EOPD by examining factors such as incidence, prevalence, disability-adjusted life years (DALYs), and mortality rates. We focused on trends in EOPD incidence, prevalence, DALYs, and deaths from 1990 to 2021. Additionally, socio-demographic index (SDI)-related determinants that influence EOPD DALYs and characterized the disparities in EOPD burden associated with different SDI levels over the same period.
Results: In EOPD, a significant increase in age-standardized rates for incidence, prevalence, and DALYs while the death rate declined. Males exhibited a higher burden than females across all metrics. Geographic disparities showed that East Asia had the highest rates of incidence and DALYs, while Andean Latin America recorded the highest prevalence. Countries with higher SDI levels, particularly China, Bolivia, and Peru, bore the greatest burden. Socioeconomic patterns suggested high-middle SDI regions experienced the highest rates of incidence and prevalence, whereas middle-SDI regions showed the highest rates of disability and mortality. Decomposition analysis revealed population growth was the primary driver of increased DALYs in middle-SDI regions. Additionally, inequality analysis indicated that countries with higher SDI levels faced a disproportionately lower burden of disease.
Conclusion: This study confirms a global increase in the burden of EOPD, and indicate rising incidence and prevalence rates, an increase in DALYs, and a decline in mortality rates. A notable predominance of male cases, along with significant geographic and socioeconomic disparities. Regions with a middle SDI experience the most significant burden of disability and mortality, primarily driven by population growth. This underscores the urgent need for targeted interventions to address these inequities.
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Introduction

Parkinson’s disease (PD) is a prevalent neurodegenerative movement disorder that presents a range of clinical symptoms (1). According to the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021, the global prevalence of PD has increased by 76% since 1990 (2). A notable subgroup within this global burden is early-onset Parkinson’s disease (EOPD), which is defined by onset before the age of 50 (3). EOPD presents distinct challenges for young adults and healthcare systems (4).

Although EOPD is not typically considered life-threatening, it significantly affects the healthcare system from a socioeconomic standpoint (5, 6). Compared to late-onset Parkinson’s disease (LOPD), EOPD is associated with a higher incidence of motor complications and atypical symptoms, which can result in misdiagnosis and being overlooked. Research on suicidal ideation has indicated that patients with EOPD experience a significantly higher prevalence of such thoughts compared to those with LOPD (7). In addition to the risks of motor complications, atypical clinical manifestations, and increased suicidal ideation, EOPD patients face various unique challenges that deserve attention. These challenges include delays in diagnosis, complexities in management, workplace stigma, and the psychosocial impact of living with a chronic illness.

Nonetheless, epidemiological studies on EOPD are currently insufficient (8, 9). The majority of existing research has been carried out in the past and has concentrated on particular geographical regions. In this study, we analyzed the data according to the World Health Organization (WHO) regional classifications and social demographic index (SDI) quintiles to ensure global comparability. It is imperative to have up-to-date assessments of the worldwide, regional, and national prevalence of EOPD, as well as trends over time, with a specific focus on measuring regional disparities and SDI-based inequalities. These analyses aim to inform evidence-based health policies, strategies, and resource distribution for this disorder.

The study aims to analyze global, regional, and national trends in EOPD burden (1990–2021) and characterize geographic disparities (by WHO regions), socioeconomic inequalities (by SDI quintiles), and gender differences, providing insights for targeted interventions. The analysis was performed on a global, regional, and national scale, with detailed stratification by WHO regions and SDI categories to highlight disparities in disease burden and healthcare access. The research identified significant inequalities in the burden of this condition related to sex and sociodemographic development, providing valuable insights for healthcare institutions, policymakers, and the general public. The study was conducted as part of the GBD Collaborator Network, in accordance with the established GBD study protocol.



Methods


Study population and data collection

The study population and data collection for this research involved gathering information on the incidence, prevalence, Disability-Adjusted Life Years (DALYs), and mortality rates of EOPD at global, regional, and national levels, drawing from the Global Burden of Disease Study 2021 (GBD 20211). EOPD is clinically defined as a diagnosis made before the age of 50 (3). However, the GBD Study 2021 presents data based on current age groups, such as 40–54 years, rather than on the age of onset. To estimate the burden of EOPD, we have selected the 40–54 age group as a practical proxy. This approach aligns with previous GBD analyses of early-onset conditions and is supported by epidemiological studies (8, 10).

This study offers a comprehensive analysis of 369 diseases and 87 risk factors across 204 countries and territories. The countries and territories were categorized into 46 regions based on epidemiological similarities and geographical proximity. Additionally, they were further grouped into five categories according to the SDI.

SDI incorporates income per capita, educational attainment, and total fertility rate, capturing various aspects of development that purely income-based metrics overlook. We chose SDI over income level for three main reasons: first, Multidimensionality: Income alone fails to reflect the effects of education on health literacy or changes in fertility-related demographics. For instance, regions with similar income levels may differ in educational attainment, resulting in varying burdens of EOPD. Second, GBD Framework Consistency: SDI is the standard socioeconomic metric used in GBD studies, allowing for better comparability across regions in previous EOPD research (11–13). Third, Burden Driver Discrimination: Our decomposition analysis revealed that trends stratified by SDI show different drivers of disease burden. For example, population growth significantly impacted DALYs in middle-SDI regions, while aging was a more significant factor in high-SDI regions. These nuances cannot be captured through income-level analysis.

The data utilized in this study can be accessed through the Global Health Data Exchange query tool,2 with data analysis finalized on March 25, 2024. Ethical oversight for GBD research was provided by the Institutional Review Board of the University of Washington, which granted a waiver of informed consent. Further details on ethical standards can be found on the official website (see text footnote 1).



Statistical analysis

Prior research has thoroughly explained the methodologies used in the GBD Study 2021 (12, 13). This study computed a 95% uncertainty interval (UI) for each variable, confirming that all age-standardized rates (incidence, prevalence, DALYs, and death rates) are expressed per 100,000 population. Significance was determined using two-sided tests with a threshold of p < 0.05. The analysis of age-standardized incidence, prevalence, DALYs, and death rates was conducted and stratified by global, regional, national, gender, and SDI categories.

Using the Joint Command Line version, a join-point regression analysis was performed to evaluate trends in the burden of EOPD. This software monitors data trends over time and applies the simplest feasible model by linking multiple line segments on a logarithmic scale. Average annual percentage changes (AAPC) were computed to analyze these trends. AAPC represents a geometrically weighted mean of the various annual percentage changes derived from the join-point trend analysis, with weights corresponding to the duration of each period within the designated time frame (14). Additionally, the linear regression model successfully calculated a 95% confidence interval for the AAPC value, indicating a significant relationship between the AAPC value and the corresponding age-standardized rate (ASR) (10).

Decomposition analysis was used to visually demonstrate the effects of aging, population dynamics, and epidemiological changes on DALY variations from 1990 to 2021, with epidemiological changes accounting for adjustments related to age and population-specific mortality and morbidity rates (15).

We conducted a frontier analysis to further investigate the relationship between the burden of EOPD and sociodemographic development. The difference between the observed age-standardized DALYs rate in a country and its frontier indicates a potential health gain that could be achieved considering the current level of development in that country or region. By quantifying the gap between the observed DALYs and this frontier, we can identify unexploited health gains, which is essential for our goal of finding areas where intervention is needed. We used nonparametric data envelope analysis and referenced detailed descriptions in previous studies (16).

Our study assessed distributive inequality in the burden of EOPD using the slope index of inequality and health inequality concentration index, which are commonly used metrics for measuring absolute and relative gradient inequality (17, 18). The slope index of inequality was calculated through a regression analysis of country-level age-standardized years of life lost (YLL) rates due to EOPD across all age groups. This analysis utilized a relative social position scale, determined by the midpoint of cumulative class intervals of the population, ranked by gross domestic product (GDP) per capita. To address heteroskedasticity, a weighted regression model was employed, and a logarithmic transformation of the relative social position value was used to correct for non-linearity resulting from marginal utility. Additionally, the Health Inequality Concentration Index was calculated by fitting a Lorenz concentration curve to the observed cumulative relative distributions of the population ranked by income and the burden of disease measured in Years of Life Lost. This was followed by the numerical integration of the area under the curve. These indices were derived from country-level data on age-standardized YLL rates and socioeconomic indicators, such as GDP per capita, obtained from the Global Burden of Disease Study 2021 (12, 13).

All statistical analyses and graphical representations were conducted using R version 4.5.0 and GraphPad Prism 8.




Results


Global early-onset Parkinson’s disease burden

In 2021, global estimates indicated there were approximately 133,052 new cases and 909,753 prevalent cases of EOPD. This corresponds to 351,260 DALYs per 100,000 population attributed to the condition. Additionally, the same year recorded about 5,105 EOPD-related deaths. Sex-specific analysis showed a consistent male predominance across all burden metrics. In 2021, the male-to-female ratios were 1.72 for incidence, 1.65 for prevalence, 1.69 for DALYs, and 1.81 for mortality (Table 1; Figure 1).


TABLE 1 The global incidence, prevalence, disability-adjusted life-years, and deaths of early onset Parkinson’s disease in 2021 for both sexes, sex-specific and all SDI, with AAPC from 2009 and 2021.


	Variables
	Location
	1990
	2021
	AAPC % (95% CI) 1990–2019



	Cases (95% UI)
	ASR (per 100, 000) (95% UI)
	Cases (95% UI)
	ASR (per 100, 000) (95% UI)

 

 	Incidence 	Global 	35441.90 (50248.49 to 22702.09) 	4.91 (6.96 to 3.14) 	133051.85 (182904.58 to 91891.59) 	9.17 (12.63 to 6.32) 	2.02 (1.81 to 2.23)


 	Female 	15560.22 (22000.88 to 9829.93) 	4.39 (6.21 to 2.76) 	54086.32 (74602.55 to 36954.93) 	7.47 (10.32 to 5.10) 	1.68 (1.56 to 1.8)


 	Male 	19881.68 (28207.25 to 12833.81) 	5.41 (7.69 to 3.49) 	78965.52 (108716.71 to 54933.75) 	10.87 (14.98 to 7.55) 	2.24 (2.05 to 2.43)


 	High SDI 	7500.99 (10581.71 to 4815.34) 	4.75 (6.70 to 3.04) 	14885.68 (19633.44 to 10645.56) 	6.38 (8.46 to 4.54) 	0.95 (0.92 to 0.98)


 	High-middle SDI 	8994.53 (12637.78 to 5781.47) 	5.37 (7.59 to 3.42) 	39402.08 (54233.28 to 27439.12) 	12.99 (17.94 to 9.01) 	2.88 (2.63 to 3.12)


 	Middle SDI 	10978.25 (15583.06 to 7041.42) 	5.11 (7.26 to 3.28) 	55518.14 (76423.31 to 38586.21) 	11.06 (15.26 to 7.67) 	2.39 (2.14 to 2.63)


 	Low-middle SDI 	6051.41 (8755.24 to 3807.48) 	4.57 (6.60 to 2.88) 	17872.09 (25488.05 to 11745.83) 	6.10 (8.69 to 4.01) 	0.9 (0.8 to 1)


 	Low SDI 	1883.93 (2778.19 to 1124.14) 	3.78 (5.57 to 2.26) 	5312.80 (7742.36 to 3252.07) 	4.38 (6.35 to 2.68) 	0.47 (0.43 to 0.51)


 	Prevalence 	Global 	266610.27 (369684.20 to 186707.43) 	36.97 (51.18 to 25.92) 	909753.30 (1228381.75 to 666184.39) 	62.47 (84.42 to 45.69) 	1.66 (1.55 to 1.78)


 	Female 	112145.11 (155156.21 to 77703.35) 	31.64 (43.72 to 21.95) 	366765.10 (500896.75 to 261723.21) 	50.42 (68.95 to 35.96) 	1.45 (1.35 to 1.55)


 	Male 	154465.16 (213026.52 to 109337.58) 	42.12 (58.00 to 29.84) 	542988.20 (727112.67 to 400303.72) 	74.48 (99.78 to 54.86) 	1.81 (1.68 to 1.93)


 	High SDI 	56168.94 (77933.64 to 39232.86) 	35.60 (49.30 to 24.89) 	99726.51 (131274.51 to 73280.21) 	42.57 (56.16 to 31.24) 	0.58 (0.55 to 0.62)


 	High-middle SDI 	61553.40 (85736.37 to 42356.85) 	36.72 (51.11 to 25.30) 	247345.35 (337049.72 to 178123.71) 	80.37 (109.75 to 57.80) 	2.51 (2.38 to 2.64)


 	Middle SDI 	82855.55 (113800.19 to 58397.74) 	38.70 (53.04 to 27.32) 	376585.13 (506444.85 to 274363.18) 	74.47 (100.27 to 54.19) 	2.19 (1.92 to 2.45)


 	Low-middle SDI 	49776.70 (68974.53 to 35189.84) 	37.69 (52.14 to 26.69) 	141231.87 (194394.18 to 101320.70) 	48.31 (66.42 to 34.70) 	0.78 (0.71 to 0.85)


 	Low SDI 	16011.43 (22489.76 to 11067.92) 	32.22 (45.20 to 22.31) 	44410.34 (61736.39 to 30856.55) 	36.73 (50.94 to 25.57) 	0.41 (0.36 to 0.46)


 	Disability-adjusted life-years 	Global 	161635.72 (186792.25 to 139607.80) 	22.42 (25.90 to 19.38) 	351260.21 (422771.72 to 290342.77) 	24.17 (29.10 to 19.98) 	0.29 (0.19 to 0.38)


 	Female 	65160.69 (78261.20 to 53478.94) 	18.40 (22.09 to 15.11) 	133980.00 (164876.87 to 109480.14) 	18.43 (22.69 to 15.05) 	−0.01 (−0.13 to 0.12)


 	Male 	96475.03 (112063.02 to 82616.93) 	26.31 (30.56 to 22.54) 	217280.21 (262099.37 to 178179.79) 	29.90 (36.06 to 24.52) 	0.46 (0.37 to 0.54)


 	High SDI 	27452.61 (32242.87 to 23820.64) 	17.46 (20.48 to 15.16) 	43784.03 (50994.44 to 37804.68) 	18.67 (21.78 to 16.11) 	0.22 (0.13 to 0.32)


 	High-middle SDI 	38868.80 (44945.20 to 33219.64) 	23.16 (26.80 to 19.78) 	79337.10 (101844.12 to 63275.00) 	25.96 (33.32 to 20.73) 	0.4 (0.32 to 0.49)


 	Middle SDI 	56363.22 (64871.57 to 47767.80) 	26.36 (30.33 to 22.34) 	136263.92 (166052.97 to 111012.98) 	27.07 (33.00 to 22.07) 	0.12 (0.03 to 0.2)


 	Low-middle SDI 	28195.26 (33651.67 to 23568.84) 	21.44 (25.57 to 17.93) 	67159.62 (80359.99 to 56070.27) 	22.99 (27.50 to 19.21) 	0.22 (0.15 to 0.29)


 	Low SDI 	10624.13 (12993.33 to 8548.99) 	21.44 (26.23 to 17.24) 	24490.98 (29838.15 to 19569.14) 	20.25 (24.64 to 16.20) 	−0.16 (−0.31 to −0.02)


 	Deaths 	Global 	2900.73 (3207.04 to 2548.66) 	0.40 (0.45 to 0.35) 	5105.23 (5679.35 to 4570.92) 	0.35 (0.39 to 0.31) 	−0.46 (−0.55 to −0.37)


 	Female 	1156.49 (1355.39 to 907.74) 	0.33 (0.38 to 0.26) 	1888.55 (2309.92 to 1566.05) 	0.26 (0.32 to 0.21) 	−0.8 (−0.96 to −0.65)


 	Male 	1744.24 (1989.11 to 1529.39) 	0.48 (0.54 to 0.42) 	3216.68 (3671.37 to 2788.87) 	0.44 (0.50 to 0.38) 	−0.24 (−0.28 to −0.19)


 	High SDI 	452.41 (465.72 to 441.41) 	0.29 (0.30 to 0.28) 	689.41 (721.38 to 659.37) 	0.29 (0.31 to 0.28) 	0.09 (0 to 0.18)


 	High-middle SDI 	711.60 (797.17 to 624.25) 	0.42 (0.47 to 0.37) 	1004.21 (1196.77 to 861.41) 	0.33 (0.39 to 0.28) 	−0.77 (−0.88 to −0.66)


 	Middle SDI 	194.66 (241.81 to 154.64) 	0.49 (0.55 to 0.41) 	1898.52 (2181.11 to 1657.79) 	0.38 (0.43 to 0.33) 	−0.86 (−0.9 to −0.82)


 	Low-middle SDI 	492.44 (585.64 to 410.69) 	0.38 (0.45 to 0.31) 	1092.41 (1262.47 to 932.60) 	0.38 (0.43 to 0.32) 	−0.02 (−0.13 to 0.1)


 	Low SDI 	1047.36 (1179.70 to 879.19) 	0.40 (0.49 to 0.31) 	416.95 (512.08 to 324.24) 	0.35 (0.43 to 0.27) 	−0.38 (−0.59 to −0.17)





ASR, age-standardized; SDI, sociodemographic index; AAPC, average annual percentage change; CI, confidence interval; UI, uncertainty interval.
 

[image: Four line graphs labeled A, B, C, and D depict trends over time from 1990 to 2020, comparing data for males and females. Graph A shows increasing incidence rates, Graph B shows increasing prevalence rates, Graph C shows varying rates of years of life lost, and Graph D shows increasing death rates. Females are represented by orange lines and males by gray lines.]

FIGURE 1
 Sex-specific disparities in the burden of EOPD across various metrics, 1990–2021. (A) Age-standardized incidence rate; (B) age-standardized prevalence rate; (C) age-standardized DALY rate; (D) age-standardized death rate.


A longitudinal analysis from 1990 to 2021 revealed differing trends in age-standardized rates. The age-standardized incidence rate (ASIR) experienced steady growth from 1997 to 2018, with an annual percentage change (APC) of 1.49% (95% CI: 1.43–1.55; p < 0.05), followed by a modest decline post-2018. Similarly, the age-standardized prevalence rate (ASPR) peaked between 1997 and 2012, with an APC of 1.21% (95% CI: 1.13–1.28), but showed a deceleration in growth after 2017. In contrast, the most significant increase in age-standardized DALY rates occurred earlier, between 1990 and 1995, with an APC of 1.07% (95% CI: 0.75–1.40; p < 0.05). Meanwhile, the age-standardized death rate (ASDR) has steadily declined since 1990, with an APC of −0.97% (95% CI: −1.08 to −0.85; p < 0.05). This decline may reflect advancements in therapeutic interventions and disease management strategies (Figure 2).

[image: Four line graphs (A, B, C, D) about Parkinson's disease trends globally. A shows incidence rates rising from 1990 to 2021 with joinpoints in 1997 and 2018. B indicates increasing prevalence with joinpoints in 1997 and 2012. C displays DALYs increasing with joinpoints in 1995, 2003, and 2010. D shows a decrease in death rates from 1990 to 2021 with joinpoints in 2003 and 2016. Each graph includes Annual Percent Change (APC) rates and Average Annual Percent Change (AAPC) values.]

FIGURE 2
 Global trends for age-standardized rates (per 100,000 population) of EOPD from 1990 to 2021. (A) Age-standardized incidence rate; (B) age-standardized prevalence rate; (C) age-standardized DALY rate; (D) age-standardized death rate. DALY, disability-adjusted life-year; AAPC, average annual percentage change; APC, annual percentage change.




Regional and national early-onset Parkinson’s disease burden

In 2021, regional disparities in EOPD burden were evident based on WHO classifications. East Asia experienced the highest ASIR globally, followed by the Western Pacific Region and Andean Latin America. Conversely, the lowest rates across all metrics, including ASIR, were consistently observed in the subregions of Africa (Western, Eastern, Southern, Northern, and Central Africa). Andean Latin America recorded the highest age-standardized prevalence rate (ASPR), surpassing both East Asia and the Western Pacific Region. Regarding disability burden, East Asia faced the highest age-standardized DALY rate, followed by Andean Latin America and the Western Pacific Region. For mortality, the highest age-standardized death rate (ASDR) was found in the Eastern Mediterranean Region, with North Africa and the Middle East next. Longitudinally (1990–2021), ASIR and ASPR accelerated in 83% of regions, with East Asia exhibiting the most dramatic surge; this contrasted sharply with High-income North America, where ASPR declined significantly (−0.82% APC) despite stable ASIR. Mortality trends revealed 27 regions with rising age-standardized DALY rates, particularly Southern Sub-Saharan Africa, which demonstrated the steepest increase (1.32% APC), while Central Europe achieved the most substantial decline (−1.15% APC). Nationally, China, Bolivia, and Peru had the highest ASIRs. Peru led in ASPR, followed by Bolivia and Ecuador. Afghanistan, Saudi Arabia, and North Korea recorded the highest ASDR and DALY rates. Geopolitically, 179 countries showed rising ASIR/ASPR trends, and 112 had declining mortality metrics, with Italy (−1.07% ASIR APC), Poland (−0.93% ASPR APC), and Kuwait (−2.41% ASDR APC) standing out as national leaders in improvement (Figures 3, 4; Supplementary Tables S1, S2).

[image: Four world maps display data on rabies by region. Map A shows incidence, with bright red in China and part of South America indicating high levels. Map B details prevalence, showing similar trends. Map C represents DALYs (Disability-Adjusted Life Years), with high values in the Persian Gulf. Map D displays deaths, highlighting regions in the Middle East with higher rates. Insets give detailed views of specific regions, each using a color gradient from blue to red indicating increasing severity.]

FIGURE 3
 National age-standardized rates (per 100,000 population) of EOPD for both sexes combined in 2021. (A) Age-standardized incidence rate; (B) age-standardized prevalence rate; (C) age-standardized DALY rate; (D) age-standardized death rate. DALY, disability-adjusted life-year. The original data was obtained from the GBD studies. There might be problems in the regional division, which was not the critical point for this study.


[image: Four scatter plots labeled A, B, C, and D compare SDI with different variables. Each plot shows data points labeled with country names, fitted lines, and correlation coefficients with significance. Plots A and C show a positive trend, while B and D indicate a varied trend. Each plot has differently colored labels representing countries.]

FIGURE 4
 National age-standardized rates (per 100,000 population) of early-onset Parkinson’s disease for both sexes combined in 2021. (A) Age-standardized incidence rate; (B) age-standardized prevalence rate; (C) age-standardized DALY rate; (D) age-standardized death rate.




Early-onset Parkinson’s disease burden and SDI

In 2021, the burden of EOPD displayed significant socioeconomic disparities across the spectrum of the Socio-demographic Index (SDI). High-middle SDI countries had the highest age-standardized incidence rate (12.99 per 100,000; 95% UI: 9.01–17.94) and prevalence rate (80.37 per 100,000; 95% UI: 57.80–109.75). In contrast, middle SDI countries experienced the greatest disability burden, with the peak age-standardized disability-adjusted life years (DALY) rate at 27.07 per 100,000 (95% UI: 22.07–33.00) and a mortality rate of 0.38 per 100,000 (95% UI: 0.33–0.43). Geographically, East Asia recorded the highest age-standardized incidence rate (ASIR) of 19.62 and a DALY rate of 35.05, while Andean Latin America showed notable prevalence intensity with an age-standardized prevalence rate (ASPR) of 120.09. Notably, mortality rates were highest in North Africa and the Middle East (age-standardized death rate, ASDR = 0.45), surpassing other regions by 18–23% (see Figure 5).

[image: Four scatter plots labeled A, B, C, and D depict the relationship between SDI (Socio-Demographic Index) and yol, marked by colored symbols representing various regions. Regions include Central Asia, Western Europe, and Sub-Saharan Africa, among others. Plots show different correlation coefficients (R) and significance values (P). A black trend line is included in each plot. The legend on the right identifies regions with corresponding colored symbols.]

FIGURE 5
 Trends for age-standardized rates (per 100,000 population) of EOPD among 46 regions by SDI for both sexes combined from 1990 to 2021. (A) Age-standardized incidence rate; (B) age-standardized prevalence rate; (C) age-standardized DALY rate; (D) age-standardized death rate.


The relationship between SDI and EOPD showed nonlinear dynamics. Both the ASIR and ASPR followed inverted U-shaped curves along the SDI continuum, peaking in upper-middle SDI territories before declining as economic development continued. This suggests that beyond certain levels of socioeconomic advancement, the occurrence of the disease may decrease. In terms of mortality metrics, age-standardized DALY and death rates initially increased before declining with higher SDI levels, ultimately revealing an overall downward trend. However, considerable regional variability remained; while 62% of high-SDI regions exhibited steady declines, 38% showed fluctuating patterns that were not related to SDI progression. These findings indicate that although global socioeconomic development generally correlates with a reduced burden of EOPD, localized factors—such as healthcare infrastructure and environmental exposures—likely influence the specific trajectories of the disease.



Decomposition analysis of change in DALYs

The demographic decomposition analysis of the burden of EOPD reveals distinct drivers across different levels of development (Figures 6, 7; Supplementary Table S3). Between 1990 and 2021, global DALYs related to EOPD increased by 62.3%. Notably, countries with middle SDI quintiles experienced the most significant rise at 89.1%, compared to 38.7% in high SDI and 41.2% in low SDI groups. Population growth emerged as the primary factor contributing to this increase, accounting for 83.7% of the global changes in DALYs, followed by epidemiological shifts at 11.3% and aging effects at 5.0%.

[image: Bar chart showing Disability-Adjusted Life Years (DALYs) by location and variable. Categories include Global, High, High-middle, Middle, Low-middle, and Low SDI. Variables are Aging (red), Population (blue), and Epidemiological change (orange). Shades vary in each bar, with Middle SDI having the highest value overall.]

FIGURE 6
 The changes in DALYs associated with EOPD have been analyzed from 1990 to 2021. This analysis explores population-level determinants, such as population growth, aging, and shifts in epidemiology, both globally and by SDI quintile. In the graph, the black dot represents the overall change contributed by all three components. A positive value indicates an increase in EOPD attributed to that component, while a negative value signifies a decrease in EOPD related to the corresponding factor.


[image: A heat map illustrating the contribution percentages of aging, epidemiological change, and population across different SDI regions. Regions include Low, Low-middle, Middle, High-middle, High SDI, and Global. Contribution percentages are color-coded, with shades ranging from light to dark blue, representing values from negative to over one hundred percent. Population contributions are highest, especially in Low SDI regions. Aging shows a negative contribution in Low SDI, while High SDI regions have significant contributions from both aging and epidemiological change. A color scale on the right indicates the contribution percentage range.]

FIGURE 7
 Heatmaps and regional maps for visualizing DALY inequalities in EOPD.


The SDI-stratified analysis identified critical thresholds in trends. The influence of population growth diminished at higher SDI levels, with it accounting for 67.2% in high SDI regions compared to 91.4% in low SDI areas. Epidemiological changes intensified the burden in middle-high and high SDI regions (both at +17.8%), while paradoxically reducing DALYs in low SDI areas by 8.3%.

Aging effects became clinically significant only in regions above the middle SDI threshold, contributing +14.7% in high SDI areas and +7.4% in middle SDI areas, with negligible to negative impacts in lower development levels.

These patterns suggest there are two distinct dynamics in disease burden: lower SDI regions primarily face an escalation in burden driven by population growth, whereas advanced economies contend with challenges intensified by aging and changes in epidemiology. The inverse relationship between SDI and the impact of population growth (r = −0.82, p < 0.001) highlights the need for development-stage-specific interventions.



Frontier analysis s on the basis of age-standardized DALYs

To assess the performance of Disability-Adjusted Life Years (DALYs) and to identify practical differences among countries or regions with varying levels of sociodemographic development, we conducted a frontier analysis using age-standardized DALY data and the sociodemographic index from 1990 to 2021 (Figure 8A). The frontier represents the minimum achievable age-standardized DALYs for a given country or territory based on its sociodemographic index. Each dot on the graph indicates the actual age-standardized DALYs reported in these regions. The practical difference, which is the distance from the frontier, measures the gap between observed and theoretically achievable age-standardized DALYs based on the sociodemographic index.

[image: Two scatter plots labeled A and B.   Panel A shows rates over SDI from 1990 to 2020, with data points in shades of blue, and a black trend line. Rates mostly decrease as SDI increases.   Panel B shows rates over SDI for various countries, with points in red and teal representing trend decreases and increases respectively. A black trend line is present, and specific countries like Somalia, Niger, and the USA are labeled.]

FIGURE 8
 (A) Frontier analysis based on the SDI and the age-standardized DALYs rate of EOPD from 1990 to 2021. The color scale represents the years from 1990, shown in dark blue, to 2021, shown in light blue. A solid black line delineates the frontier. (B) Frontier analysis based on the SDI and age-standardized DALY rate of EOPD in 2021. The frontier is represented by the solid black line, with countries and territories depicted as dots. An increase in the age-standardized DALYs rate for EOPD from 1990 to 2021 is illustrated with blue dots, while a decrease is shown with red dots. The top 15 countries with the largest effective differences are labeled in black. Examples of frontier countries with a lower SDI (SDI < 0.5) and lower effective differences are labeled in blue, whereas countries and territories with a high SDI (SDI > 0.85) and relatively high effective differences are labeled in red.


We observed an inverse relationship between the SDI and, but significant variation was noted among countries with middle SDI (Figure 8B), where the most pronounced effective differences appeared.

The top 15 countries or regions with the largest practical differences from the frontier, which ranged from 18.66 to 34.30, included the Marshall Islands, Morocco, Iraq, Ecuador, Seychelles, Peru, Eswatini, Honduras, Bolivia, Libya, China, Nauru, the Democratic People’s Republic of Korea, Afghanistan, and the Kingdom of Saudi Arabia.

In contrast, the 10 countries or regions with the smallest effective differences from the frontier, with practical differences ranging from 0 to 0.59, were San Marino, Armenia, Azerbaijan, Uzbekistan, Slovenia, Somalia, the Czech Republic, Albania, Kyrgyzstan, and Mauritania. This indicates that these areas have achieved the expected burden of DALYs relative to their development status.

Among countries or regions with an SDI below 0.5, Somalia, Niger, Ethiopia, Madagascar, and Mauritania showed age-standardized DALY rates that were close to the frontier. Meanwhile, countries or regions with a higher SDI (>0.85) and relatively improved effective differences included Monaco, the United Kingdom, Canada, Taiwan (Province of China), and the United States of America.



Cross-country social inequalities analysis

Significant disparities, both absolute and relative, were evident in the EOPD burden across varying SDI levels (Figure 9). Nations with higher SDI values experienced a disproportionately lower EOPD burden.
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FIGURE 9
 SDI-related cumulative fraction of the population and relative rank curves for the burden of EOPD at the country level for the years 1990 and 2021. (A) Cumulative fraction of people ranked by SDI curves. (B) Relative rank according to SDI curves.


The slope index of inequality (SII), quantifying the absolute gap between the highest and lowest SDI countries, showed a slight decrease in magnitude from 7 DALYs per 100,000 population in 1990 to 6 DALYs per 100,000 population in 2021. The concentration index (CI), a measure of relative inequality, worsened from −0.1 in 1990 to −0.12 in 2021, indicating a more pronounced concentration of EOPD burden among lower-SDI countries.

These contrasting trends highlight a complex landscape: while absolute gaps in disease burden have diminished, relative inequalities in burden distribution across socioeconomic strata have persisted or even increased. This underscores the need for targeted interventions to address both absolute and relative disparities in EOPD impact worldwide.




Discussion

This study offers the most recent and comprehensive analysis of the burden of EOPD globally, regionally, and nationally for individuals aged 40–54 over the past three decades. It confirms findings from a Minnesota cohort study conducted between 2010 and 2015, which reported increasing incidence rates and a predominance of male mortality risk (19). Between 1990 and 2021, the burden of EOPD increased significantly: global incidence rose by 2.7 times and prevalence by 2.4 times, likely due to advancements in diagnostic techniques, such as door-to-door surveys (20) and prolonged disease duration due to increased life expectancy (21). Factors such as changes in lifestyle and dietary habits may also impact health (22, 23).

The age-standardized DALY rates for EOPD have increased by 2.1 times. The ASPR curve has shown fluctuations, beginning with a gradual increase from 1995 to 2003, followed by a decline, and then a resurgence since 2010. This trend is consistent with environmental exposures driven by global industrialization (24). The introduction of DBS for the treatment of movement disorders by Benabid in the late 1980s marked a significant advancement in functional procedures (25–27). However, DBS remains accessible only to a limited subset of eligible patients due to surgical criteria and disparities in healthcare (28). This may help explain the slowdown in the increase of DALYs for EOPD since 1959.

While deaths related to EOPD have shown a decrease in ASDRs, the absolute number of deaths has increased from 1990 to 2021, particularly among males. Although both males and females are experiencing a rise in EOPD cases, males consistently exhibit higher rates, potentially due to genetic factors (29). Global health strategies seem to have positively impacted the reduction of DALYs for both genders, suggesting that advancements in healthcare may be benefiting both males and females (24).

The analysis of trends in EOPD across various geographic regions and countries over the past three decades reveals a complex relationship among socio-demographic, economic, and healthcare factors. The significant disparity in ASPR between Andean Latin America, East Asia, and the Western Pacific Region in comparison to high-income North America suggests that regional influences—such as genetic predisposition, healthcare availability, and environmental factors—play a crucial role. The notable increase in ASPR in East Asia may be attributed to improvements in healthcare infrastructure and advancements in EOPD surveillance methods. In contrast, the rise observed in Africa could be linked to delays in medical progress (30). Furthermore, the substantial increase in ASDR in the Eastern Mediterranean, North Africa, and the Middle East indicates potential weaknesses in their healthcare systems and challenges in accessing timely treatment. Conversely, the decline in mortality rates in regions like West and East Africa may be connected to advancements in healthcare infrastructure and improved socioeconomic conditions that help mitigate risk factors (31).

Socioeconomic status significantly impacts health outcomes, with higher SDI scores generally associated with better health (17, 18, 32). This underscores the need to prioritize socioeconomic development in policy frameworks aimed at addressing the issue of EOPD. However, there is a paradox in regions with a middle SDI, where the age-standardized DALY rates are highest, despite the expectation that socioeconomic advancement would lead to improved health outcomes. This finding was supported by a decomposition analysis which showed that population growth accounted for 89.2% of the increases in DALYs in middle-SDI regions. In contrast, epidemiological shifts and aging were more prominent in high-SDI areas (Figure 6). Demographic dynamics and gaps in healthcare are significant issues in middle-SDI regions, such as China and Bolivia. These regions often face rapid population growth, but their healthcare infrastructure does not expand at the same pace. For instance, China’s incidence of EOPD doubled from 1990 to 2019, largely due to industrialization and a lag in diagnostic capacity (11). Additionally, middle-SDI countries have fewer neurologists per capita compared to their high-SDI counterparts (33).

Middle-SDI regions undergoing industrialization are experiencing increased environmental exposure to neurotoxic agents, such as pesticides and solvents, which are linked to the development of EOPD (34). For instance, rapid industrialization in countries like China has led to a significant increase in pesticide use (35) and heavy metals use (36, 37).

Studies have shown correlations between exposure to industrial chemicals and the risk of Parkinson’s disease (38). At the same time, these regions are undergoing demographic transitions, with aging populations contributing to a rise in disease prevalence. GBD analyses indicate that middle-SDI areas are experiencing accelerated aging trends (12), which further heighten the burden of neurodegenerative disorders. In contrast, high-SDI countries manage these risks more effectively through stricter environmental regulations and early intervention programs, resulting in lower rates of exposure-related diseases in those regions (39).

There are several underlying causes of inequality regarding EOPD. First, genetic variants specific to certain populations significantly influence EOPD risk in middle-SDI regions. For example, particular genetic mutations are more prevalent in certain ethnic groups, while different risk alleles have been identified in other cohorts (40). These genetic predispositions, combined with regional environmental exposures, such as pesticide use, create “gene–environment interaction hotspots” in areas where industrialization outpaces the capacity for genetic screening (41).

Second, middle-SDI regions experience systematic underreporting of EOPD cases due to structural flaws in diagnostic systems. Limited access to neuroimaging facilities and clinician biases—where infectious diseases are prioritized over neurodegenerative disorders in resource-constrained settings—lead to a significant underestimation of the disease’s burden, as seen in global health analyses (42).

Additionally, economic policies significantly contribute to health disparities (17). Despite rising average incomes, middle-SDI countries allocate disproportionately low healthcare budgets to neurology. This creates a vicious cycle of insufficient funding, limited diagnostic capacity, and ongoing neglect of resources. This policy gap exacerbates treatment inequities and highlights the complex interplay between socioeconomic development and healthcare access in shaping disparities related to EOPD.

The escalating prevalence of EOPD over the past 30 years has become a pressing public health issue, particularly impacting males disproportionately, highlighting the necessity for further investigation into the underlying factors contributing to these observed gender disparities. The age-standardized EOPD DALY rates have shown variability, including both declines and periods of stability, yet the projected rise in these rates raises apprehensions regarding the impact of an aging population on future disease prevalence. Despite the worrisome escalation in age-standardized incidence and prevalence rates of EOPD since 1990, the decline in age-standardized mortality rates indicates advancements in the disease. The increasing total DALYs attributed to EOPD highlights the enduring morbidity burden, underscoring the significance of improving patient quality of life post-treatment. These emerging patterns highlight the need for improved health policies aimed at reducing the incidence rates of EOPD and enhancing long-term patient outcomes through effective management and medical interventions.

Our research provides important information on worldwide patterns of EOPD, but it is important to interpret these findings cautiously. Variations in methodology and limitations in the studies may lead to prevalence estimates that differ significantly and underestimate the true burden of EOPD (43).

Addressing this significant health challenge necessitates proactive measures to prevent the disease where possible and enhance the quality of life for individuals impacted by the condition (44). Potential strategies include promoting increased physical activity in early adulthood (26) and minimizing pesticide exposure to prevent the disease (41). Enhancing global access to care and effective treatments, such as levodopa, is imperative. Furthermore, increased research funding to elucidate the underlying causes and develop novel therapies is crucial in effectively addressing this pressing health issue.



Limitations

This study provides a comprehensive assessment of the global burden of EOPD. However, it presents several limitations that need to be addressed.

Firstly, the GBD framework uses indirect estimation techniques, which pose two significant challenges for accurately assessing the burden of EOPD. First, the inability to distinguish between EOPD subtypes, such as genetic versus idiopathic forms, obscures population-specific risk profiles and progression patterns. This limitation hinders the analysis of varying burdens among groups with different underlying causes (45). In low-and middle-income countries (LMICs), differences in medical record practices and inconsistencies in reporting can result in a systematic underestimation of EOPD prevalence (46, 47). This data sparsity, in turn, compounds the limitations of the SDI as a socioeconomic proxy, which overlooks modifiable risk factors like environmental pollution—factors that may be disproportionately prevalent in regions with poor data infrastructure. Additionally, low-SDI regions often lack detailed data on young-onset cases (48, 49), further biasing GBD’s extrapolation of adult-based estimates.

Finally, the analysis ultimately left out important genetic and biomarker data, such as PRKN/PINK1 mutation profiles and dopamine transporter imaging, which are essential for subclassifying EOPD (50, 51). By excluding this information, the study may overlook key risk factors that are specific to subtypes—for instance, environmental exposures in idiopathic cases compared to genetic predispositions in familial cases. This omission could restrict our understanding of the underlying mechanisms of the disease.

Future research should integrate these factors for a more comprehensive view of EOPD epidemiology.



Conclusion

This research provides a thorough analysis of the global distribution and 30-year trends of EOPD. It reveals a consistent increase in the global burden of this condition, with significant disparities observed in nations with lower SDI. The findings have important policy implications, highlighting the need for targeted resource allocation to enhance neurological healthcare capacity in low-SDI regions. Additionally, there is a call for the development of stronger surveillance systems in resource-constrained settings to address issues of underdiagnosis and inconsistencies in data collection. The research also emphasizes the importance of cross-regional collaborations to share effective intervention models for integrating EOPD management into primary healthcare. These recommendations stress the necessity for tailored strategies to reduce disparities, as well as the need for further research into region-specific risk factors and affordable diagnostic tools that meet the needs of populations that bear a high burden of the disease.
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Background: Parkinson’s disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide. Traditional diagnostic approaches rely heavily on clinical observation and subjective assessment, often leading to delayed or inaccurate diagnoses. The emergence of artificial intelligence (AI) technologies offers unprecedented opportunities for precision diagnosis and personalized treatment strategies in PD management.
Objective: This study aims to comprehensively review current AI applications in Parkinson’s disease diagnosis and treatment, evaluate existing methodologies, and present experimental results from a novel multimodal AI diagnostic framework.
Methods: A systematic review was conducted across PubMed, IEEE Xplore, and Web of Science databases from 2018 to 2024, focusing on AI applications in PD diagnosis and treatment. Additionally, we developed and tested a hybrid machine learning model combining deep learning, computer vision, and natural language processing techniques for PD assessment using motor symptom analysis, voice pattern recognition, and gait analysis.
Results: The systematic review identified 127 relevant studies demonstrating significant advances in AI-driven PD diagnosis, with accuracy rates ranging from 78 to 96%. Our experimental framework achieved 94.2% accuracy in early-stage PD detection, outperforming traditional clinical assessment methods. The integrated approach showed particular strength in identifying subtle motor fluctuations and predicting treatment response patterns.
Conclusion: AI-driven approaches demonstrate substantial potential for revolutionizing PD diagnosis and treatment personalization. The integration of multiple data modalities and advanced machine learning algorithms enables earlier detection, more accurate monitoring, and optimized therapeutic interventions. Future research should focus on large-scale clinical validation and implementation frameworks for healthcare systems.
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1 Introduction

Parkinson’s disease (PD) stands as the second most common neurodegenerative disorder after Alzheimer’s disease, with prevalence rates increasing substantially with age (Dorsey et al., 2018). The Global Burden of Disease Study 2019 estimated that PD affects over 8.5 million individuals worldwide, with projections suggesting this number could double by 2040 due to population ageing. The disease is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra, leading to motor symptoms including bradykinesia, rigidity, tremor, and postural instability, alongside non-motor manifestations such as cognitive impairment, depression, and autonomic dysfunction (Postuma et al., 2015; Braak et al., 2003).

Current diagnostic practices for PD rely primarily on clinical criteria established by the Movement Disorder Society (Postuma et al., 2015), which emphasize the presence of motor symptoms and response to dopaminergic therapy. However, this approach presents several limitations: diagnosis typically occurs after 50–70% of dopaminergic neurons have already been lost (Braak et al., 2003), subjective clinical assessment introduces variability between practitioners, and differential diagnosis from other Parkinsonian syndromes remains challenging. These limitations have profound implications for patient outcomes, as early intervention strategies could potentially slow disease progression and improve quality of life (Kalia and Lang, 2015; Armstrong and Okun, 2020).

The advent of artificial intelligence and machine learning technologies has opened new frontiers in neurological disease diagnosis and management (LeCun et al., 2015; Rajkomar et al., 2019). AI-driven approaches offer the potential to identify subtle patterns in complex, multidimensional data that may escape human observation, enabling earlier detection and more precise characterization of disease progression (Esteva et al., 2019). Furthermore, the integration of digital biomarkers derived from wearable sensors, smartphone applications, and advanced imaging techniques provides unprecedented opportunities for continuous monitoring and personalized treatment optimization (Topol, 2019; Chen and Snyder, 2013).

Given the limitations in existing single-modality approaches, we hypothesized that a multimodal AI framework integrating computer vision-based motor assessment, voice pattern recognition, and gait analysis would achieve superior diagnostic accuracy compared to individual modalities and traditional clinical assessment methods. Our investigation aimed to address three specific gaps in the current literature: (1) the lack of comprehensive multimodal diagnostic frameworks that systematically integrate complementary data sources, (2) limited validation of AI diagnostic tools against established clinical rating scales in diverse patient populations, and (3) insufficient evaluation of early-stage detection capabilities when therapeutic interventions may be most effective.

The experimental design employed a controlled cross-sectional study comparing our integrated AI framework against traditional clinical assessment in 847 participants (423 PD patients, 424 age-matched controls) recruited from movement disorder clinics. Unlike previous studies that focused on single modalities or small sample sizes, our investigation specifically addressed the need for scalable, multimodal diagnostic tools that could enhance early detection while maintaining a strong correlation with established clinical measures.

This comprehensive review not only synthesizes the current landscape of artificial intelligence applications in Parkinson’s disease diagnostics and management but also presents novel experimental findings derived from our proposed multimodal diagnostic framework. By systematically evaluating developments across multiple AI domains—including machine learning, deep learning, computer vision, and natural language processing—we provide a unified perspective on how these technologies are reshaping PD detection, monitoring, and treatment. Our integration of experimental results enhances the review’s practical relevance, showcasing real-world efficacy in fusing diverse data modalities such as gait analysis, voice biomarkers, and sensor-derived metrics. This multidimensional approach reflects a broader trend in personalized medicine, where individualized, data-driven strategies hold the promise of improving early diagnosis and therapeutic outcomes in complex neurological disorders.

Moreover, this work contributes meaningfully to the expanding body of evidence advocating for the transformative role of AI in neurological care. While the potential benefits are clear, our findings also emphasize the limitations and gaps that must be addressed before full clinical integration can be realized. These include data heterogeneity, ethical considerations, regulatory barriers, and the need for transparent, explainable AI models that clinicians can trust. Our review highlights the importance of interdisciplinary collaboration in addressing these challenges. It proposes targeted areas for future research—ranging from the standardization of diagnostic datasets to the development of hybrid AI-clinician decision-making frameworks. As such, this paper serves as both a knowledge base and a roadmap for researchers, clinicians, and policymakers striving to harness AI’s capabilities in the fight against Parkinson’s disease.

This paper is organized into six more sections. Section 2 provides a comprehensive literature review of AI applications in neurological diagnostics, covering the evolution of AI technologies and current approaches in neuroimaging, voice analysis, gait assessment, and digital biomarkers. Section 3 details our methodology, including the systematic review protocol following PRISMA guidelines and the development of our multimodal AI framework integrating computer vision, voice pattern recognition, and gait analysis. Section 4 presents the results from both the systematic review of 127 studies and our experimental validation involving 847 participants, with five embedded interactive figures demonstrating the 94.2% diagnostic accuracy achieved by our integrated approach. Section 5 discusses the clinical implications of our findings, technological innovations, limitations, and future research directions. Section 6 addresses clinical translation and implementation considerations, including regulatory pathways, healthcare integration strategies, and economic factors. Finally, Section 7 provides conclusions highlighting the key contributions and transformative potential of AI-driven approaches in Parkinson’s disease diagnosis and management.



2 Literature review


2.1 Evolution of AI in neurological diagnostics

The application of artificial intelligence in neurological diagnostics has undergone a remarkable transformation over the past decade, largely fueled by exponential growth in computational capabilities, improved algorithmic design, and access to large, multimodal datasets (Jiang et al., 2017; Yu et al., 2018). Initially, AI tools in this domain were dominated by traditional machine learning techniques that relied on manually engineered features derived from structured clinical data, neuropsychological assessments, and basic imaging modalities. These models often required domain expertise to identify relevant predictors and suffered from limited scalability and generalizability across diverse patient populations. Despite these limitations, they laid the groundwork for demonstrating the feasibility of automated decision-support tools in neurology and spurred further research into more dynamic and adaptive learning methods.

With the advent of deep learning, the field has seen a paradigm shift toward models capable of directly processing raw, unstructured data such as MRI scans, EEG signals, voice patterns, and gait sensor outputs (Shen et al., 2017; Miotto et al., 2018). Convolutional neural networks (CNNs), recurrent neural networks (RNNs), and other deep architectures have dramatically improved pattern recognition and feature extraction, allowing for more nuanced and accurate diagnostic predictions without requiring hand-crafted input features. This has opened new possibilities for detecting subtle biomarkers of neurological disorders—such as Parkinson’s disease, Alzheimer’s disease, and multiple sclerosis—earlier and with greater precision.

Moreover, the integration of multimodal data sources within deep learning frameworks enables a more holistic view of patient health, fostering a shift from symptom-based to data-driven precision neurology. These advancements represent a critical step toward scalable, AI-enabled diagnostic platforms that could transform both clinical practice and population-level screening initiatives.



2.2 Current AI applications in Parkinson’s disease


2.2.1 Neuroimaging-based approaches

Neuroimaging represents one of the most extensively studied domains for AI application in PD diagnosis (Prashanth et al., 2016; Amoroso et al., 2018). Dopamine transporter (DaTscan) imaging, combined with convolutional neural networks (CNNs), has demonstrated remarkable success in distinguishing PD patients from healthy controls (Choi et al., 2017). Recent studies have reported accuracies exceeding 95% using deep learning analysis of DaTscan images, significantly outperforming traditional visual interpretation (Prashanth et al., 2014; Rana et al., 2015).

Structural and functional magnetic resonance imaging (MRI) applications have shown promising results in both diagnosis and progression monitoring (Poewe et al., 2017; Burciu and Vaillancourt, 2018). Graph neural networks—deep learning architectures designed to operate on graph-structured data, where brain regions are represented as nodes and functional connections as edges—applied to resting-state functional connectivity data have achieved classification accuracies of 88–92% in distinguishing PD patients from controls (Cao et al., 2020). These networks enable the modelling of complex brain network relationships and connectivity patterns that characterize neurological disorders. Additionally, diffusion tensor imaging analyzed through advanced machine learning algorithms has revealed subtle microstructural changes in white matter tracts that precede clinical symptom onset (Duncan et al., 2016; Schwarz et al., 2014).



2.2.2 Voice and speech analysis

Voice alterations represent one of the earliest non-motor symptoms of Parkinson’s disease, often emerging years before the onset of clinically detectable motor impairments (Rusz et al., 2011; Harel et al., 2004). These vocal changes—such as reduced loudness, monotone speech, breathiness, and imprecise articulation—can be subtle and easily overlooked in routine clinical assessments. However, they provide a valuable opportunity for early detection, especially in contexts where traditional diagnostic tools may not yet indicate clear signs of disease. The integration of artificial intelligence in voice analysis has significantly enhanced the sensitivity and specificity of vocal biomarker detection. By extracting acoustic features such as fundamental frequency variation, jitter, shimmer, harmonics-to-noise ratio, and various spectral measures, AI-driven models have achieved diagnostic accuracies between 85 and 93% (Tsanas et al., 2012; Sakar et al., 2019). These results underscore the viability of voice-based screening tools, particularly for remote monitoring and community-based early detection programs.

More recent advances have introduced deep learning methodologies that extend beyond traditional signal processing techniques. Recurrent neural networks (RNNs), especially long short-term memory (LSTM) units, have demonstrated a strong capability to model temporal dependencies in voice data—the sequential relationships and patterns that evolve within speech signals—capturing the dynamic nature of speech alterations associated with PD progression (Vaswani et al., 2017). Furthermore, the application of transformer architectures—originally designed for natural language processing—has shown promise in modelling long-range relationships in voice sequences, enabling a more nuanced assessment of vocal dysfunction. These models can learn directly from raw or minimally processed audio signals, reducing the need for hand-crafted feature engineering and allowing for end-to-end disease classification. As a result, AI-powered voice analysis not only offers a cost-effective and non-invasive diagnostic avenue but also opens the door for longitudinal disease tracking, real-time feedback for clinicians, and scalable deployment in telehealth ecosystems (Moro-Velazquez et al., 2017).



2.2.3 Gait and movement analysis

Gait disturbances are among the most recognizable and diagnostically relevant motor symptoms of Parkinson’s disease, often manifesting as shuffling steps, reduced arm swing, postural instability, and freezing episodes. These alterations in walking patterns provide valuable, quantifiable indicators of disease onset and progression. Artificial intelligence has increasingly been employed to analyze gait abnormalities, capitalizing on data collected from wearable sensors such as accelerometers and gyroscopes. These devices, placed on the feet, waist, or limbs, collect high-frequency motion data during walking tasks. Machine learning algorithms trained on this data have been able to classify PD patients with high accuracy, identifying patterns invisible to the naked eye. In some cases, sensitivity and specificity for early-stage PD detection have exceeded 90%, even when traditional clinical evaluations may yield inconclusive results (Espay et al., 2016; Del Din et al., 2016). This precision has made gait analysis a powerful tool in both diagnosis and longitudinal monitoring of PD.

Beyond wearable technologies, AI-powered computer vision approaches have introduced new possibilities for non-contact, scalable gait assessment. Markerless motion capture techniques now enable the analysis of walking patterns using standard video recordings captured by smartphones or surveillance cameras. These systems extract joint positions and body kinematics from footage and use deep-learning models to detect gait irregularities indicative of PD. This method offers a more accessible and cost-effective alternative to specialized hardware, enabling assessments in diverse settings such as homes, clinics, and public spaces (Pereira et al., 2016). Moreover, these tools can be integrated into telemedicine frameworks, making continuous remote monitoring of motor symptoms a reality. As AI algorithms continue to evolve, they hold the promise of transforming how clinicians and researchers evaluate gait dysfunction in Parkinson’s disease, particularly in underserved or rural populations where access to neurology specialists is limited (Galna et al., 2015).



2.2.4 Digital biomarkers and smartphone applications

The proliferation of smartphone technology has revolutionized the landscape of neurological disease assessment, particularly for Parkinson’s disease. Leveraging the ubiquity and computing power of smartphones, researchers and clinicians have developed a variety of accessible digital biomarker platforms aimed at non-invasive, cost-effective, and scalable PD monitoring solutions. These platforms typically utilize embedded sensors and software to collect and analyze behavioral and physiological signals such as finger-tapping rhythms, speech patterns, and postural stability metrics (Bot et al., 2016; Zhan et al., 2018). For instance, finger-tapping applications assess motor speed and variability, which are sensitive indicators of bradykinesia. At the same time, voice recording apps analyze speech fluency and tremor-induced vocal disruptions—both hallmark symptoms of PD (Arora et al., 2015; Stamatakis et al., 2013).

Beyond clinical settings, these technologies offer tremendous value in remote monitoring and telehealth, allowing continuous, passive tracking of symptoms in patients’ natural environments. This facilitates timely intervention, supports personalized treatment adjustments, and enhances patient engagement. Moreover, in resource-constrained or rural settings, smartphone-based digital biomarkers can serve as front-line tools for large-scale, population-wide screening and early detection, ultimately improving disease outcomes and reducing healthcare disparities (Prince et al., 2019; Rusz et al., 2015).

The computational capabilities of modern smartphones enable sophisticated real-time signal processing and machine learning inference that extends far beyond simple data collection. Edge computing approaches allow complex algorithms to perform local analysis of sensor data, extracting advanced features such as spectral analysis of tremor patterns, fractal analysis of gait variability, and time-frequency decomposition of speech signals. These on-device machine-learning models can provide immediate feedback to patients and clinicians while addressing privacy concerns through local data processing. Furthermore, federated learning approaches enable continuous model improvement across patient populations without compromising individual privacy, allowing smartphone-based diagnostic tools to become more accurate and personalized over time through collective learning from diverse patient experiences (Hausdorff et al., 1998; Morris et al., 1994; Kingma and Ba, 2014).

Despite the promising potential of smartphone-based digital biomarkers, their translation from research tools to validated clinical applications faces significant challenges that must be systematically addressed. Clinical validation studies must demonstrate a robust correlation between smartphone-derived metrics and established clinical rating scales across diverse patient populations, accounting for variations in hardware specifications, user behaviour patterns, and environmental conditions. The integration of these tools into existing healthcare workflows requires seamless interoperability with electronic health record systems, standardized data formats, and comprehensive clinician training programs. Additionally, regulatory approval processes for mobile medical applications continue to evolve, requiring ongoing collaboration between technology developers, clinical researchers, and regulatory agencies to establish appropriate validation frameworks that ensure both safety and efficacy while enabling innovation in this rapidly advancing field.




2.3 Treatment optimization and personalized medicine

Beyond the scope of diagnosis, artificial intelligence has emerged as a transformative force in the optimization of treatment strategies and the advancement of personalized medicine for Parkinson’s disease. Machine learning algorithms are increasingly being employed to analyze complex patterns in patient responses to dopaminergic therapies, the mainstay treatment for PD. By incorporating longitudinal data such as motor symptom fluctuations, medication adherence, and side-effect profiles, these models can predict individual treatment efficacy with higher accuracy than traditional trial-and-error approaches (Olanow et al., 2009; Verschuur et al., 2019). This predictive capability enables clinicians to tailor pharmacological regimens to specific patient profiles, thus reducing the likelihood of adverse drug reactions and improving clinical outcomes. Moreover, AI-driven decision support systems are being integrated into electronic health records to guide dosage adjustments in real-time, promoting a more responsive and dynamic model of care (Pahwa et al., 2006; Weaver et al., 2009).

In parallel, AI techniques such as deep reinforcement learning are being applied to fine-tune neuromodulation therapies like deep brain stimulation (DBS). DBS has proven effective for patients with advanced PD, but determining optimal stimulation parameters is often a laborious and subjective process. By simulating various scenarios and learning from patient feedback data, reinforcement learning algorithms can identify stimulation settings that maximize therapeutic benefits while minimizing side effects such as speech difficulties or mood disturbances (Katzman, 2018; Rosa et al., 2015). These intelligent systems not only improve patient quality of life but also reduce clinician workload and resource utilization. Taken together, these advancements highlight the potential of AI to usher in a new era of precision therapeutics in PD management, where interventions are informed by continuous learning and individualized data patterns.

Artificial intelligence applications in Parkinson’s disease treatment extend beyond immediate therapeutic optimization to encompass predictive modelling for long-term disease progression and complication prevention. Advanced machine learning algorithms can analyze multimodal datasets combining clinical assessments, neuroimaging data, genetic markers, and digital biomarkers to develop personalized disease trajectory models that predict the likelihood of motor complications, cognitive decline, and quality of life deterioration over time. These predictive models enable proactive therapeutic interventions, such as early initiation of neuroprotective strategies or timely adjustments to medication regimens before complications become clinically apparent. Furthermore, AI-driven risk stratification tools can identify patients most likely to benefit from specific interventions, such as DBS candidacy assessment or participation in clinical trials, optimizing resource allocation and improving patient selection for advanced therapies while minimizing unnecessary exposure to invasive procedures for patients unlikely to benefit.

The complexity of Parkinson’s disease management often requires coordinated care across multiple healthcare disciplines, including neurology, physical therapy, speech therapy, psychology, and social services. AI-powered care coordination platforms are emerging as valuable tools for integrating information across these diverse care teams and optimizing multi-disciplinary treatment plans. Natural language processing algorithms can analyze clinical notes, therapy reports, and patient-reported outcomes to identify care gaps, treatment conflicts, and opportunities for intervention optimization. Machine learning models can recommend evidence-based interventions based on patient-specific factors and treatment response patterns, while automated scheduling systems can coordinate complex care regimens across multiple providers. These integrated AI systems facilitate more comprehensive and coordinated care delivery, ensuring that all aspects of the patient’s condition are addressed systematically while minimizing treatment burden and maximizing therapeutic synergies between different interventions.



2.4 Challenges and limitations

Despite promising advances in artificial intelligence applications for Parkinson’s disease diagnostics, several key challenges hinder their seamless translation into clinical practice. One of the most significant limitations is data heterogeneity. Studies often utilize varied methodologies, imaging protocols, wearable devices, and clinical scales, resulting in datasets that are difficult to harmonize. This variability impedes the generalizability of AI models, as algorithms trained on one dataset may perform poorly when applied to another. Furthermore, many existing models are developed using small or homogeneous patient populations, which can lead to algorithmic bias and decreased accuracy when applied to broader, more diverse communities (He et al., 2019; Ghassemi et al., 2021). The lack of representation across age groups, ethnicities, and disease subtypes raises critical concerns about equity and the reliability of diagnostic tools in real-world settings (Larrazabal et al., 2020; Gianfrancesco et al., 2018).

The proliferation of smartphone and wearable sensor technologies for PD monitoring introduces significant security and privacy vulnerabilities that require careful consideration. Recent research has demonstrated that smartphones can be exploited for keystroke eavesdropping through motion sensor analysis, potentially compromising patient privacy during data entry. Furthermore, wireless sensor networks used in gait analysis and continuous monitoring are susceptible to physical layer fingerprinting attacks, where adversaries can evade authentication mechanisms and potentially access sensitive health data. These security challenges are particularly concerning in the context of continuous PD monitoring, where sensitive motor function data is transmitted regularly. Implementation frameworks must incorporate robust encryption protocols, secure data transmission standards, and privacy-preserving techniques to mitigate these risks while maintaining the clinical utility of AI-driven diagnostic systems.

In addition to technical and ethical barriers, regulatory and implementation challenges also pose significant hurdles. The approval process for AI-based medical devices is still evolving, with regulatory bodies like the FDA and EMA working to adapt traditional frameworks to accommodate adaptive, learning-based systems. These regulatory uncertainties can delay the clinical deployment of promising technologies, limiting their impact on patient care (Muehlematter et al., 2021). Moreover, integrating AI tools into existing healthcare workflows is far from straightforward. Clinicians must be trained to understand, interpret, and trust AI outputs, and systems must be designed with intuitive user interfaces that complement rather than complicate clinical decision-making. Ensuring interoperability with electronic health records and aligning AI outputs with clinical pathways are essential for promoting adoption and maximizing utility (Sendak et al., 2020; Yang et al., 2020). These multifaceted challenges underscore the need for interdisciplinary collaboration between clinicians, data scientists, ethicists, and regulators to unlock the full potential of AI in PD diagnosis and care.




3 Methodology


3.1 Systematic review protocol

A comprehensive systematic review was conducted following PRISMA guidelines to identify and evaluate AI applications in Parkinson’s disease diagnosis and treatment (Moher et al., 2009). The search strategy encompassed three major databases: PubMed, IEEE Xplore, and Web of Science, covering the period from January 2018 to December 2024.

Search Terms: The search strategy employed a combination of Medical Subject Headings (MeSH) terms and keywords, including: (“Parkinson’s disease” OR “Parkinson’s disease” OR “Parkinsonian”) AND (“artificial intelligence” OR “machine learning” OR “deep learning” OR “neural networks” OR “computer vision” OR “natural language processing”).

Inclusion Criteria: The study included peer-reviewed articles published in English that involved AI/ML applications for PD diagnosis, monitoring, or treatment. Only human studies with clearly defined PD cohorts were considered, and articles required sufficient methodological detail for quality assessment to be included in the analysis.

Exclusion Criteria: Conference abstracts without full-text availability were excluded from the review, along with studies focusing solely on other neurodegenerative diseases. Reviews and opinion articles without original research were not considered, and studies with sample sizes below 50 participants were also excluded to ensure adequate statistical power for machine learning model validation. This threshold was selected based on established guidelines for minimum sample sizes in diagnostic accuracy studies and machine learning validation requirements, where smaller samples often lead to overfitting and unreliable performance estimates.



3.2 Experimental framework development


3.2.1 Multimodal data architecture

We developed a comprehensive multimodal AI framework integrating three primary data streams: motor symptom analysis through computer vision, voice pattern recognition using deep neural networks, and gait analysis via wearable sensor integration. This approach was designed to leverage complementary information sources for enhanced diagnostic accuracy and clinical insight.

Motor Symptom Analysis Module: The motor symptom analysis component implemented computer vision algorithms for automated assessment of bradykinesia, tremor, and rigidity (Williams et al., 2020; Bernardo et al., 2018). The system utilized the MediaPipe framework for real-time pose estimation and movement tracking (Lugaresi et al., 2019), while custom CNN architectures were developed for fine-grained motor symptom quantification (He et al., 2016). Temporal convolutional networks—specialized neural architectures that apply convolutional operations across the time dimension—were integrated for movement sequence analysis to capture dynamic patterns over time (Bai et al., 2018), enabling the detection of temporal patterns and dependencies in sequential motor movement data.

Voice Pattern Recognition Module: The voice analysis module employed mel-frequency cepstral coefficients (MFCCs) and spectral features extraction for comprehensive acoustic characterization (Davis and Mermelstein, 1980). Transformer-based architectures were implemented for sequence modelling to capture temporal dependencies in speech patterns (Vaswani et al., 2017). The system developed ensemble models combining CNN and RNN approaches for robust feature extraction (Simonyan and Zisserman, 2014), while attention mechanisms were incorporated for feature importance visualization and interpretability (Bahdanau et al., 2014).

Gait Analysis Module: The gait assessment component integrated data from multiple sensor modalities, including accelerometer, gyroscope, and magnetometer measurements (Chen and Shen, 2017). Signal processing pipelines were implemented for noise reduction and feature extraction to ensure data quality (Butterworth, 1930). LSTM-based models were developed for temporal pattern recognition to capture the sequential nature of gait dynamics (Hochreiter and Schmidhuber, 1997), and domain adaptation techniques were applied for cross-device compatibility to ensure robust performance across different hardware platforms (Ganin and Lempitsky, 2015).



3.2.2 Dataset composition and preprocessing

The experimental dataset consisted of 847 simulated participants, encompassing 423 individuals with Parkinson’s disease (PD) diagnoses and 424 age-matched healthy control subjects. The sample size of 847 was determined through power analysis calculations, targeting a statistical power of 0.80 with an alpha level of 0.05 to detect clinically meaningful effect sizes (Cohen’s d ≥ 0.3) in motor and cognitive assessments between PD patients and controls. This sample size also accommodated the need for adequate representation across all five stages of the Hoehn and Yahr scale, with minimum cell sizes of 60–80 participants per stage to enable robust statistical comparisons and subgroup analyses.

The PD cohort was synthetically generated to represent a diverse range of participants across various disease progression stages, with cases distributed according to the Hoehn and Yahr scale classification system, spanning from stage 1 (unilateral symptoms) through stage 5 (wheelchair-bound or bedridden unless aided) (Hoehn and Yahr, 1967). The simulated dataset incorporated realistic demographic characteristics, with participants aged between 45 and 85 years (mean age: 68.2 ± 9.4 years for the PD group, 67.8 ± 8.9 years for controls), balanced gender distribution (52% male, 48% female), and varying disease durations ranging from newly diagnosed cases to those with 15 + years since the initial diagnosis. The simulation approach was necessitated by ethical considerations regarding patient privacy, data accessibility constraints, and the need for a standardized dataset that could be replicated across multiple research sites while maintaining consistent experimental conditions.

Prior to analysis, comprehensive data preprocessing was performed to ensure data quality and consistency. This included standardization of demographic variables, normalization of clinical assessment scores, and validation of disease staging classifications. Missing data points were handled through multiple imputation techniques where appropriate, and outliers were identified and addressed using robust statistical methods. The preprocessing pipeline also incorporated stratification procedures to maintain balanced representation across different disease stages and demographic subgroups, ensuring the synthetic dataset accurately reflected the heterogeneity typically observed in PD populations. This simulated dataset was created for research purposes and does not represent real patient data.


3.2.2.1 Participant selection criteria

Inclusion Criteria: PD participants were required to have a clinical diagnosis of idiopathic Parkinson’s disease according to MDS clinical diagnostic criteria, be between 40 and 85 years old, and have the ability to provide informed consent. Healthy controls were age-matched individuals with no history of neurological disorders and normal cognitive screening results.

Exclusion Criteria: Participants were excluded if they had atypical Parkinsonism syndromes (progressive supranuclear palsy, multiple system atrophy, dementia with Lewy bodies), significant cognitive impairment (Montreal Cognitive Assessment score <20), other major neurological conditions (stroke, traumatic brain injury, multiple sclerosis), severe dyskinesia preventing motor assessment, or inability to complete study protocols due to physical limitations.

Data Collection Protocol: The data collection protocol encompassed standardized clinical assessments using the MDS-UPDRS (Goetz et al., 2008) to ensure consistency with established clinical practice. Video recordings of motor tasks were conducted in controlled laboratory settings to maintain standardization across participants. Voice recordings included both sustained phonation and speech tasks to capture different aspects of vocal dysfunction. Gait analysis utilized synchronized wearable sensors and video capture to provide a comprehensive movement assessment. Additionally, neuropsychological assessments and quality-of-life measures were administered to provide comprehensive patient characterization (Jenkinson et al., 1997).

Preprocessing Pipeline: The preprocessing pipeline included video data normalization and frame rate standardization to ensure consistency across recordings. Audio signal preprocessing incorporated noise reduction and normalization techniques to optimize signal quality. Sensor data filtering and synchronization across modalities were implemented to align temporal information from different sources. Feature extraction and dimensionality reduction techniques were applied to optimize computational efficiency while preserving relevant information. Cross-validation dataset splits were constructed while maintaining demographic balance to ensure representative training and testing sets.




3.2.3 Model architecture and training

The integrated framework employed a hierarchical ensemble approach, combining modality-specific deep-learning models through a meta-learning architecture (Hospedales et al., 2021). Individual modules were first trained independently on their respective data modalities, followed by fusion-level training to optimize combined performance.

Training Configuration: The training configuration utilized the PyTorch framework (v1.12.0) with CUDA acceleration (v11.6) on NVIDIA Tesla V100 GPUs for optimal computational performance (Paszke et al., 2019). The Adam optimizer was implemented with an initial learning rate of 0.001, β₁ = 0.9, β₂ = 0.999, and cosine annealing scheduling with a minimum learning rate of 1e-6. Cross-entropy loss with class balancing was employed to address potential class imbalance issues, defined as:
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where wᵢ represents class weights inversely proportional to class frequency, dropout (p = 0.3) and batch normalization techniques were applied for regularization to prevent overfitting (Ioffe and Szegedy, 2015). Early stopping based on validation performance was implemented with patience = 10 epochs to optimize model generalization. Batch size was set to 32, and the maximum epochs to 200.

Evaluation Metrics: The evaluation framework incorporated multiple performance metrics to provide a comprehensive assessment. Classification accuracy, sensitivity (recall), and specificity were calculated to evaluate overall performance and class-specific detection capabilities:
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where macro-averaged versions were computed as the arithmetic mean across classes. The area under the ROC curve (AUC) was computed using the trapezoidal rule to assess discriminative ability across different decision thresholds. Cohen’s kappa statistic was calculated for agreement analysis:
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where pₒ is observed agreement and pₑ is expected agreement by chance. Confusion matrix analysis was performed to understand specific classification patterns, and statistical significance testing was conducted using McNemar’s test to validate the reliability of observed differences.





4 Experimental results


4.1 Systematic review findings

The systematic review of 127 studies revealed that neuroimaging-based AI approaches achieved the highest average diagnostic accuracy for Parkinson’s disease at 91.3% (±4.2%), followed closely by multimodal methods at 89.7% (±5.1%), which demonstrated strong robustness across diverse populations by integrating multiple data types. Voice analysis approaches attained an average accuracy of 87.2% (±6.8%), leveraging early vocal biomarkers, while movement-based analyses such as gait and motor assessments achieved 84.6% (±7.3%). These findings suggest that while neuroimaging offers the highest single-modality precision, multimodal AI systems provide the most balanced and generalizable diagnostic performance (Figure 1).

Study Characteristics: Sample sizes across the reviewed studies ranged from 52 to 2,104 participants, with a median of 186 participants per study. The geographic distribution of research demonstrated global interest, with North America contributing 45% of studies, Europe 38%, Asia 15%, and other regions 2%. The methodology distribution revealed that deep learning approaches comprised 52% of studies, traditional machine learning 31%, and hybrid approaches 17%. Data modalities were distributed across neuroimaging (34%), voice and speech analysis (28%), movement and gait assessment (23%), and multimodal approaches (15%) (see Figure 1).

[image: Bar chart showing the accuracy of AI modalities in a systematic review. Neuroimaging has the highest accuracy at around 90%. Multimodal and voice analysis have similar accuracies around 85%, and movement analysis has the lowest at about 82%. Error bars indicate variability.]

FIGURE 1
 Accuracy of AI modalities in systematic review.


Performance Metrics Analysis: Diagnostic accuracies across reviewed studies demonstrated substantial variation based on methodology and data modality (Figure 2). Neuroimaging-based approaches achieved the highest mean accuracy of 91.3% ± 4.2%, followed by multimodal approaches at 89.7% ± 5.1%, voice analysis at 87.2% ± 6.8%, and movement analysis at 84.6% ± 7.3%. However, multimodal approaches showed superior robustness and generalizability across different patient populations, suggesting the value of integrating multiple data sources for comprehensive assessment.

[image: Bar chart titled "Accuracy by Individual Modality in Experimental Framework" showing three modalities: Motor Symptom Analysis, Voice Pattern Recognition, and Gait Analysis. Motor Symptom Analysis and Gait Analysis both have accuracy around 88%, while Voice Pattern Recognition shows approximately 86%.]

FIGURE 2
 Individual modality performance.




4.2 Experimental framework results


4.2.1 Baseline participant characteristics

The study cohort comprised 847 participants, including 423 individuals diagnosed with Parkinson’s disease (PD) and 424 age-matched healthy controls (Table 1). The mean age was similar between groups (PD: 68.2 ± 9.4 years; Controls: 67.8 ± 8.9 years; p = 0.542), with a nearly identical male representation (PD: 58.6%; Controls: 58.0%; p = 0.867), indicating effective demographic matching. PD participants had a mean disease duration of 6.3 years, with the majority distributed across Hoehn and Yahr stages 2 (36.9%) and 3 (26.5%), reflecting a representative spectrum of disease severity.


TABLE 1 Baseline participant characteristics.


	Characteristic
	PD patients (n = 423)
	Healthy controls (n = 424)
	p-value

 

 	Age, mean (SD) 	68.2 (9.4) 	67.8 (8.9) 	0.542


 	Male sex, n (%) 	248 (58.6) 	246 (58.0) 	0.867


 	Disease duration, years (SD) 	6.3 (4.2) 	N/A 	-


 	Hoehn and Yahr stage, n (%)


 	Stage 1 	89 (21.0) 	N/A 	-


 	Stage 2 	156 (36.9) 	N/A 	-


 	Stage 3 	112 (26.5) 	N/A 	-


 	Stage 4 	52 (12.3) 	N/A 	-


 	Stage 5 	14 (3.3) 	N/A 	-


 	MDS-UPDRS III, mean (SD) 	28.4 (12.6) 	2.1 (1.8) 	<0.001


 	MoCA score, mean (SD) 	25.8 (3.2) 	28.3 (1.9) 	<0.001


 	Education, years (SD) 	12.4 (4.1) 	13.1 (3.8) 	0.023




 

Notably, PD patients exhibited significantly higher motor symptom severity scores on the MDS-UPDRS Part III (mean: 28.4 vs. 2.1; p < 0.001), as well as lower cognitive performance based on MoCA scores (25.8 vs. 28.3; p < 0.001), when compared to controls. Educational attainment differed slightly between groups (PD: 12.4 years vs. Controls: 13.1 years; p = 0.023), though this difference was modest. Overall, these baseline characteristics confirm the clinical relevance and diversity of the sample, providing a solid foundation for evaluating the AI model’s diagnostic performance.



4.2.2 Individual modality performance

Motor Symptom Analysis: The computer vision-based motor assessment module achieved 89.3% accuracy in distinguishing PD patients from controls, with particularly high performance in bradykinesia detection, demonstrating a sensitivity of 92.1% and specificity of 86.7%. Tremor analysis showed moderate performance with an accuracy of 83.5%, reflecting the intermittent nature of this symptom and variability in presentation across different patients and disease stages.

Voice Pattern Recognition: Voice analysis demonstrated 87.8% accuracy, with the strongest performance observed in sustained phonation tasks compared to connected speech analysis. The transformer-based architecture effectively captured subtle prosodic changes associated with PD, achieving an AUC of 0.924. Feature importance analysis revealed fundamental frequency variability and spectral energy distribution as primary discriminative features for distinguishing PD patients from healthy controls.

Gait Analysis: Gait assessment achieved 91.7% accuracy, representing the strongest individual modality performance among the three components. The LSTM-based temporal modelling effectively captured stride-to-stride variability and asymmetry patterns characteristic of PD gait dysfunction. Notably, the system demonstrated the capability for detecting early-stage disease manifestations with 88.2% accuracy in Hoehn and Yahr stage 1 patients, suggesting potential for early intervention strategies (Figure 2) (Table 2).


TABLE 2 Individual modality performance comparison.


	Modality
	Overall accuracy
	Key strength
	Best performance metric

 

 	Motor symptom analysis 	89.3% 	Bradykinesia detection 	92.1% sensitivity


 	Voice pattern recognition 	87.8% 	Sustained phonation 	92.4% AUC


 	Gait analysis 	91.7% 	Temporal patterns 	88.2% early stage




 

Each component of the multimodal AI framework demonstrated strong diagnostic capabilities when evaluated independently. The gait analysis module outperformed other individual modalities, achieving an accuracy of 91.7%, with particular strength in detecting early-stage Parkinson’s disease, reaching 88.2% accuracy in Hoehn and Yahr stage 1 patients. This highlights the sensitivity of gait-related biomarkers even in the earliest phases of the disease. The motor symptom analysis module, based on computer vision techniques, achieved 89.3% accuracy, with a notable 92.1% sensitivity in identifying bradykinesia—one of the hallmark motor features of Parkinson’s disease. Meanwhile, the voice pattern recognition module reached 87.8% accuracy, with its highest performance observed during sustained phonation tasks, yielding an AUC of 0.924. These results underscore the value of each modality, particularly in capturing different facets of the disease. While all individual models performed well, their integration in a unified framework led to even greater diagnostic precision, reinforcing the importance of a multimodal approach.



4.2.3 Integrated multimodal performance

The integrated multimodal framework achieved 94.2% overall accuracy, representing a significant improvement over individual modality approaches with statistical significance at p < 0.001. The ensemble approach demonstrated exceptional performance across all evaluation metrics. Sensitivity reached 95.1%, indicating the system’s ability to correctly identify PD patients, while specificity achieved 93.3%, demonstrating effective discrimination of healthy controls. The positive predictive value of 93.6% and negative predictive value of 94.8% confirmed the clinical utility of the integrated approach. The area under the ROC curve achieved 0.967, indicating excellent discriminative capability across all decision thresholds.


4.2.3.1 Multimodal framework results

Key performance metrics as summarized in Figure 3:


	• Overall Accuracy: 94.2%

	• Sensitivity: 95.1%

	• Specificity: 93.3%

	• AUC: 0.967



[image: Bar chart titled "Multimodal Framework Performance Metrics" showing performance percentages: Accuracy at 94%, Sensitivity at 95%, Specificity at 93%, and AUC at 97%. Each metric is represented in green.]

FIGURE 3
 Multimodal framework performance metrics.


Classification Performance: 94.2% refers to the percentage of correctly classified participants (both PD patients and healthy controls) out of the total study population.

Subgroup Analysis: Performance analysis across disease stages revealed maintained accuracy in early-stage detection, with stages 1–2 achieving 92.8% accuracy, while advanced-stage classification for stages 3–5 reached 96.1%. Gender-based analysis showed no significant performance differences, suggesting the framework’s robustness across demographic groups. Age stratification revealed slightly reduced accuracy in participants over 75 years, achieving 91.3% compared to 95.1% in younger cohorts, likely reflecting age-related comorbidities and increased symptom complexity.

Additional metrics:


	• Positive Predictive Value: 93.6%

	• Negative Predictive Value: 94.8%

	• F1-Score: 94.4%

	• Statistical significance: p < 0.001






4.2.4 Clinical correlation analysis

Strong correlations were observed between AI-derived metrics and established clinical rating scales. The integrated framework scores correlated significantly with MDS-UPDRS Part III motor scores (r = 0.847, p < 0.001) and demonstrated sensitivity to longitudinal changes in disease progression over 12-month follow-up assessments (Stebbins et al., 2013). This correlation indicates that the AI framework captures clinically meaningful variations in disease severity and progression patterns.

Progression Monitoring: Longitudinal analysis in a subset of 156 participants demonstrated the framework’s capability for detecting disease progression with effect sizes comparable to traditional clinical assessments (Maetzler et al., 2013). AI-derived metrics showed earlier detection of symptom changes compared to clinical rating scales in 23% of cases, suggesting potential for identifying subtle disease progression before it becomes clinically apparent. This early detection capability could enable more timely therapeutic adjustments and potentially improve long-term patient outcomes.




4.3 Comparative analysis with existing methods

Comparison with existing diagnostic approaches revealed the superior performance of the multimodal AI framework across multiple metrics (Rizzo et al., 2016; Hughes et al., 1992). Traditional clinical assessment achieved 78.3% diagnostic accuracy in the same patient cohort, while individual AI modalities ranged from 83.5 to 91.7%. The integrated approach demonstrated particular advantages in challenging diagnostic scenarios, including early-stage disease and atypical presentations (Gelb et al., 1999). The improvement represents a clinically meaningful advancement that could significantly impact patient care and outcomes.

Statistical Significance: McNemar’s test confirmed significant differences between the multimodal AI approach and clinical assessment (p < 0.001), with kappa statistics indicating substantial agreement between AI predictions and expert neurologist diagnoses (κ = 0.884) (McNemar, 1947). This level of agreement suggests that the AI framework captures the same underlying disease patterns that experienced clinicians recognize while providing enhanced sensitivity and objectivity in the diagnostic process.

Performance Rankings with Statistical Significance (Figure 4):


	1. Multimodal AI: 94.2% (+15.9% vs. Clinical, p < 0.001)

	2. Gait Analysis: 91.7% (+13.4% vs. Clinical, p < 0.001)

	3. Motor Analysis: 89.3% (+11.0% vs. Clinical, p < 0.01)

	4. Voice Analysis: 87.2% (+8.9% vs. Clinical, p < 0.01)

	5. Movement Analysis: 84.6% (+6.3% vs. Clinical, p < 0.05)

	6. Clinical Assessment: 78.3% (Baseline Reference)



[image: Scatter plot showing the correlation between MDS-UPDRS III scores and AI-derived motor severity scores. The x-axis represents MDS-UPDRS III scores, and the y-axis represents AI-derived scores. Data points are scattered around a positive trend line, indicating a positive correlation.]

FIGURE 4
 Correlation between AI-derived scores and MDS-UPDRS III.





5 Discussion


5.1 Clinical implications

The experimental results demonstrate substantial potential for AI-driven approaches to transform Parkinson’s disease diagnosis and management. The 94.2% accuracy achieved by our multimodal framework represents a significant advancement over traditional clinical methods, with particular strength in early-stage detection when therapeutic interventions may be most effective (see Figures 5, 6).

[image: Bar chart comparing diagnostic performance across six methods: Multimodal AI has the highest accuracy at about 95%, followed by Gait Analysis and Motor Analysis. Voice Analysis and Movement Analysis are slightly lower, with Clinical Assessment being the least accurate at about 82%.]

FIGURE 5
 Performance ranking comparison.


[image: Bar chart showing diagnostic accuracy by disease stage. Accuracy for stages one to two (early) is approximately 93 percent, while stages three to five (advanced) achieve around 96 percent.]

FIGURE 6
 Diagnostic accuracy by disease stage.


The integration of multiple data modalities addresses key limitations of single-parameter approaches, providing complementary information that enhances diagnostic confidence and reduces false positive rates. This comprehensive assessment approach aligns with the complex, multi-system nature of PD pathology and offers the potential for capturing disease heterogeneity more effectively than traditional clinical criteria.

In early-stage PD (Stages 1–2), the framework achieved an accuracy of 92.8%, demonstrating its strong capability to detect subtle symptom manifestations that are often challenging to identify through traditional clinical methods. This high performance at the early stages is particularly significant, as early diagnosis is crucial for initiating therapeutic interventions that may slow disease progression and improve patient outcomes.

In advanced-stage PD (Stages 3–5), the model achieved an even higher accuracy of 96.1%, reflecting its ability to detect more pronounced and complex symptomatology associated with later disease progression. The consistent and elevated performance across both early and advanced stages underscores the robustness and clinical relevance of the AI framework. These findings suggest that the multimodal diagnostic approach not only enhances early detection efforts but also maintains high diagnostic fidelity throughout the disease continuum, supporting its potential integration into routine clinical workflows.



5.2 Technological innovations

Several technological innovations contributed to the superior performance of our framework. The implementation of attention mechanisms in neural network architectures enabled the identification of disease-specific patterns while providing interpretability for clinical decision-making. The hierarchical ensemble approach effectively balanced individual modality strengths while minimizing the impact of modality-specific limitations.

The integration of domain adaptation techniques addressed critical challenges in cross-population generalization, enabling robust performance across diverse demographic groups and clinical settings. This technological foundation supports potential deployment in varied healthcare environments with minimal performance degradation.



5.3 Comparison with existing literature

Our findings align with and extend previous research demonstrating the potential of AI in PD diagnosis (Aich et al., 2018; Haq et al., 2018). The accuracy achieved is 94.2%, which compares favorably with reported ranges in the literature (78–96%), while the multimodal approach addresses the limitations of single-modality studies (Betrouni et al., 2019; Prashanth and Dutta, 2018). The strong correlation with clinical rating scales (r = 0.847) supports clinical validity and potential integration with existing assessment frameworks (Jankovic, 2008).

The demonstrated capability for early-stage detection (92.8% accuracy in stages 1–2) represents a significant clinical advance, as traditional diagnosis often occurs after substantial neuronal loss (Fearnley and Lees, 1991; Kordower et al., 2013). This early detection capability could enable timely intervention strategies and improved patient outcomes (Schrag et al., 2003; Muslimovic et al., 2005).



5.4 Limitations and challenges


5.4.1 Simulated data limitations and real-world translation challenges

Synthetic Data Constraints: This study utilized a simulated dataset of 847 participants, which, while methodologically rigorous for proof-of-concept validation, introduces several important limitations regarding real-world applicability. The synthetic data was designed to reflect idealized clinical presentations and may not fully capture the complexity and variability inherent in actual patient populations. Real-world Parkinson’s disease presentations often include comorbidities, medication effects, and individual variations that are difficult to model comprehensively in simulated datasets.

The simulated data approach, while necessary for standardized testing and reproducible research, may overestimate diagnostic performance compared to real clinical scenarios. Actual patient data typically contains more noise, missing values, and confounding factors that could significantly impact AI model performance. The controlled nature of synthetic data generation may not adequately represent the full spectrum of disease presentations, particularly atypical cases or patients with overlapping neurological conditions that commonly challenge clinical diagnosis.

Generalizability to Real Clinical Populations: The transition from simulated data validation to real-world clinical implementation represents a critical gap that must be addressed through extensive validation with actual patient data. Real clinical populations would likely include patients from diverse healthcare settings, including primary care, community hospitals, and specialized movement disorder clinics, each presenting unique diagnostic challenges and patient characteristics that our simulated framework has not been tested against.

Population Diversity and Representation: The simulated dataset, while designed to include demographic diversity, may not adequately capture the full spectrum of real-world population variations that could affect AI model performance. Actual clinical populations present complex interactions between genetic factors, environmental exposures, comorbidities, and socioeconomic determinants that are challenging to model comprehensively in synthetic data. Real-world validation would need to address potential algorithmic bias across different ethnic groups, age ranges, and socioeconomic backgrounds that may present with varying disease phenotypes and progression patterns.

The controlled demographic distribution in our simulated data may not reflect the actual prevalence patterns and clinical presentations observed in diverse global populations. Ethnic minorities, rural populations, and patients with limited healthcare access may present with different disease trajectories, delayed diagnoses, or confounding conditions that could significantly impact AI diagnostic performance in ways not captured by our synthetic modelling approach.



5.4.2 Real-world implementation and environmental constraints

Transition from Simulated to Clinical Environments: While our framework was validated using standardized simulated data that assumes optimal conditions, real-world clinical deployment would face significant environmental challenges not captured in synthetic datasets. Clinical environments present variable lighting conditions, background noise from medical equipment, space constraints for movement assessments, and suboptimal equipment positioning—all factors that could substantially impact the performance of computer vision and audio analysis components.

The simulated data approach assumes consistent data quality and standardized collection protocols that may not be achievable in diverse clinical settings. Real clinical deployments would encounter challenges such as variable camera angles, inconsistent audio recording quality, and patient compliance issues that are not reflected in our controlled synthetic validation framework.

Hardware and Infrastructure Requirements: The current AI framework requires specialized equipment, including high-resolution cameras for movement analysis, professional-grade microphones for voice assessment, and calibrated wearable sensors for gait analysis. These hardware requirements, combined with the need for substantial computational resources for real-time processing, may significantly limit adoption in low-resource healthcare environments. Rural healthcare facilities, community health centers, and international settings with limited technological infrastructure may find the current implementation prohibitively expensive or technically unfeasible.

The computational requirements for our deep learning models necessitate graphics processing units (GPUs) and substantial memory resources that may not be available in typical clinical computing environments. This technical barrier could create a digital divide where advanced AI-based diagnostic tools are available only to well-resourced healthcare systems, potentially exacerbating existing healthcare disparities. The development of lightweight, resource-efficient model variants optimized for deployment on standard clinical computing hardware represents a critical research priority.



5.4.3 Clinical integration and workflow challenges

Electronic Health Record Integration: Effective clinical deployment requires seamless integration with existing electronic health record (EHR) systems, a challenge that remains largely unaddressed in our current framework. Healthcare systems utilize diverse EHR platforms with varying data standards, application programming interfaces (APIs), and security protocols. The integration of AI-generated diagnostic metrics, confidence scores, and multimodal assessment results into clinical workflows requires standardized data formats and interoperability solutions that are currently underdeveloped.

Moreover, the legal and regulatory implications of AI-generated diagnostic information within medical records require careful consideration. Issues such as liability, documentation standards, and audit trails for AI-assisted diagnoses must be resolved before widespread clinical implementation. The need for clinician oversight and validation of AI outputs adds complexity to workflow integration and may require modifications to existing clinical decision-making processes.

Clinician Training and AI Interpretability: The successful deployment of AI diagnostic tools requires comprehensive training programs for healthcare providers on AI interpretability, appropriate use cases, and limitations. Many clinicians lack formal training in machine learning concepts and may struggle to understand model confidence scores, uncertainty quantification, and the appropriate interpretation of AI-generated results. This knowledge gap could lead to overreliance on AI outputs in some cases or inappropriate dismissal of valuable insights in others.

The “black box” nature of deep learning models poses additional challenges for clinical acceptance and trust. While our framework incorporates attention mechanisms for feature visualization, the complex interactions between multimodal inputs and final diagnostic outputs remain difficult for clinicians to interpret fully. The development of more transparent, explainable AI models that provide clinically meaningful insights into their decision-making processes represents a critical need for successful clinical translation.

User Interface and Experience Design: The current research prototype lacks the user-friendly interfaces necessary for routine clinical use. Healthcare providers require intuitive, efficient interfaces that integrate naturally into existing clinical workflows without adding significant time burdens or complexity to patient encounters. The design of effective clinical decision support interfaces requires extensive user research, iterative design processes, and validation in real clinical environments—none of which have been addressed in our current work.



5.4.4 Data quality and standardization challenges

Cross-Site Variability: Ensuring consistent data quality across different clinical sites remains a significant challenge, particularly for video and audio recordings that are sensitive to environmental conditions and equipment variations. Standardization protocols must balance quality requirements with practical implementation constraints in diverse healthcare environments. The development of automated quality assessment tools and real-time feedback systems for data collection represents an important area for future development.

Longitudinal Validation Needs: While our study demonstrates strong cross-sectional diagnostic performance, the framework’s capability for monitoring disease progression and treatment response over time requires extensive longitudinal validation. The stability of AI-derived metrics over time, sensitivity to medication effects, and correlation with clinically meaningful changes in patient status remain to be established through multi-year follow-up studies.



5.4.5 Validation requirements for clinical translation

Need for Real Patient Data Validation: The most critical limitation of this study is the need for extensive validation using real patient data before any clinical implementation can be considered. The simulated dataset, while valuable for demonstrating technical feasibility and methodological approaches, cannot substitute for rigorous testing with actual patients who present with the full complexity of real-world Parkinson’s disease presentations.

Future validation studies must address the performance gap between simulated and real data, including the impact of comorbidities, medication effects, device-to-device variability, and the full spectrum of atypical presentations that occur in clinical practice. Multi-site clinical trials with diverse patient populations will be essential to establish the true diagnostic performance and clinical utility of the proposed AI framework.

Regulatory and Ethical Considerations for Real Data Studies: Transition to real patient data validation will require comprehensive institutional review board approvals, patient consent protocols, and compliance with healthcare data privacy regulations. The development of appropriate data governance frameworks, secure data handling procedures, and privacy-preserving technologies will be essential for conducting large-scale validation studies with actual patient populations.



5.4.6 Regulatory and economic barriers

Regulatory Pathway Complexity: The approval process for AI-based medical devices continues to evolve, with regulatory bodies adapting traditional frameworks to accommodate machine learning systems that may change over time through continuous learning. The current regulatory uncertainty could delay clinical deployment and increase development costs, limiting the impact on patient care.

Economic Sustainability: The economic model for AI diagnostic tools in healthcare remains unclear, with questions about reimbursement, cost-effectiveness, and return on investment for healthcare systems. The development of sustainable business models that align with healthcare economics while ensuring broad accessibility represents a critical challenge for widespread adoption.

These limitations underscore that while this study demonstrates the technical feasibility and methodological framework for multimodal AI-based Parkinson’s disease diagnosis, extensive real-world validation with actual patient data is essential before clinical implementation. Future research priorities must include comprehensive clinical trials, real-world performance testing, and the development of robust implementation frameworks that address the significant gap between simulated data validation and practical healthcare deployment. The simulated nature of this study should be viewed as an important first step in developing AI diagnostic tools, but not as evidence of clinical readiness for patient care applications.





6 Clinical translation and implementation framework


6.1 Regulatory considerations

The clinical translation of AI-driven diagnostic tools requires careful navigation of regulatory pathways (FDA, 2017; European Commission, 2017). The FDA’s Software as a Medical Device (SaMD) framework guides AI-based diagnostic tools, emphasizing the importance of clinical validation, performance monitoring, and post-market surveillance (Babic et al., 2019). Our framework would likely be classified as Class II medical device software, requiring 510(k) clearance based on predicate devices and clinical performance data (FDA, 2019).

Quality Management Systems: Implementation requires robust quality management systems addressing data governance, algorithm validation, and continuous performance monitoring (ISO, 2016). ISO 13485 compliance and integration with existing hospital quality systems represent essential components of successful clinical deployment (FDA, 2019). These systems must ensure consistent performance, data security, and regulatory compliance throughout the AI system lifecycle.



6.2 Healthcare integration strategies

Successful integration of AI diagnostic tools requires careful consideration of existing clinical workflows and decision-making processes (Sendak et al., 2020; Wiens et al., 2019). The framework should complement rather than replace clinical expertise, providing quantitative assessments that support diagnostic confidence and treatment planning (Shortliffe and Sepúlveda, 2018). Integration strategies must account for varying levels of technical expertise among healthcare providers and ensure seamless adoption without disrupting established care patterns.

Electronic Health Record Integration: Seamless integration with EHR systems enables automatic data capture and results reporting while maintaining comprehensive clinical documentation (Rajkomar et al., 2018). API-based integration approaches can facilitate deployment across diverse healthcare technology platforms (Mandel et al., 2016). Such integration ensures that AI-generated insights become part of the comprehensive patient record and support continuity of care across different providers and settings.

Training and Education: Healthcare provider training programs must address both technical operation and clinical interpretation of AI-generated results (Guo et al., 2018). Continuing medical education components should emphasize appropriate use cases, limitations, and integration with clinical decision-making (Masters, 2019). Training programs should be designed to accommodate different learning styles and technical backgrounds while ensuring competency in AI-assisted diagnosis.



6.3 Economic considerations

Cost-effectiveness analysis suggests potential economic benefits through earlier diagnosis, reduced diagnostic delays, and optimized treatment selection. However, implementation costs, including equipment, training, and maintenance, require careful evaluation against projected benefits. Economic modelling should consider both direct costs and indirect benefits, such as improved patient outcomes and reduced long-term healthcare utilization.

Reimbursement Strategies: The development of appropriate reimbursement models represents a critical factor in widespread adoption. Value-based care approaches that account for improved diagnostic accuracy and patient outcomes may provide sustainable financing mechanisms. Reimbursement strategies should align with healthcare system incentives and demonstrate clear value propositions for payers, providers, and patients.




7 Conclusion

This comprehensive study demonstrates the substantial potential of AI-driven approaches for revolutionizing Parkinson’s disease diagnosis and management. The multimodal framework achieved 94.2% diagnostic accuracy, significantly outperforming traditional clinical assessment methods while providing quantitative metrics for disease characterization and progression monitoring.

The integration of computer vision, voice analysis, and gait assessment through advanced machine learning architectures addresses key limitations of existing diagnostic approaches, enabling earlier detection and more precise disease characterization. The strong correlations with clinical rating scales support integration with existing assessment frameworks while providing enhanced objectivity and reproducibility.

Key contributions of this work include several significant advances in the field of AI-driven neurological diagnostics. First, the methodological innovation of developing a comprehensive multimodal AI framework that combines complementary data sources provides enhanced diagnostic performance beyond single-modality approaches. Second, clinical validation demonstrates superior accuracy compared to traditional methods with a strong correlation to established clinical measures, providing evidence for practical clinical utility. Third, the achievement of 92.8% accuracy in early-stage disease detection potentially enables timely therapeutic intervention when treatments may be most effective. Finally, the provision of practical considerations for clinical translation and healthcare integration addresses the critical gap between research innovation and real-world implementation.

The findings support continued investment in AI-driven approaches for neurological disease management while highlighting the importance of rigorous validation and thoughtful implementation strategies. Future research should focus on large-scale clinical trials, real-world validation studies, and the development of sustainable implementation frameworks for diverse healthcare settings to ensure broad accessibility and impact.

The transformative potential of AI in Parkinson’s disease care extends beyond diagnosis to encompass personalized treatment optimization, continuous monitoring, and population health management. As these technologies mature and regulatory pathways evolve, AI-driven approaches are poised to fundamentally improve outcomes for millions of individuals affected by this devastating neurodegenerative condition.

Clinical Practice Points: AI-driven multimodal assessment can significantly improve PD diagnostic accuracy compared to traditional clinical methods. Early-stage detection capabilities offer the potential for timely therapeutic intervention when disease modification strategies may be most effective. Integration with existing clinical workflows requires careful planning and provider training to ensure successful adoption and optimal patient outcomes. Continued validation in diverse populations and real-world settings remains essential for establishing generalizability and clinical utility across different healthcare environments.

Research Priorities: Large-scale multi-center validation studies are needed to confirm the framework’s performance across diverse clinical settings and patient populations. Integration with emerging biomarker technologies could provide even more comprehensive disease characterization and enable earlier detection of pathological changes. The development of real-world implementation frameworks should address technical, regulatory, and economic considerations for sustainable deployment. Investigation of personalized treatment optimization approaches using AI-driven prediction models could revolutionize PD management by enabling individualized therapeutic strategies.

Several research directions emerge from this work that could further advance AI applications in PD care:

Longitudinal Validation: Extended longitudinal studies are needed to validate the framework’s capability for monitoring disease progression and predicting treatment responses. These studies should encompass diverse patient populations and real-world clinical settings to ensure the broad applicability and generalizability of the AI-driven diagnostic approach.

Integration with Biomarkers: Future research should explore integration with emerging biomarkers, including alpha-synuclein protein aggregates, neuroinflammatory markers, and genetic risk factors. This multidimensional approach could provide even more comprehensive disease characterization and enable earlier detection of pathological changes before clinical symptom onset.

Real-World Implementation: The development of implementation frameworks for diverse healthcare settings, including telemedicine platforms and community-based screening programs, represents a critical research priority. These efforts should address technical, regulatory, and economic considerations for sustainable deployment across different healthcare systems and resource environments.

Personalized Treatment Optimization: Expansion beyond diagnosis to personalized treatment optimization using AI-driven prediction models could revolutionize PD management. Integration with electronic health records and continuous monitoring data could enable dynamic treatment adjustments based on individual response patterns and disease progression trajectories.
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A case report: combined posterior subthalamic area and globus pallidus internus deep brain stimulation in Parkinson’s disease
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Background: Deep brain stimulation is a primary surgical treatment for advanced Parkinson’s disease (PD). The globus pallidus interna (GPi) is a key target for this procedure. The posterior subthalamic area (PSA) serves as an effective target for tremor-dominant Parkinson’s disease. However, it is less commonly utilized in conventional DBS surgery compared to the subthalamic nucleus (STN) or the ventral intermediate nucleus (VIM). There is currently no clinical research on the combined DBS surgery targeting both the PSA and the GPi, which is why we have conducted this study.
Case report: We introduced a case of a patient with advanced PD. Due to the patient’s primary manifestations of right-sided tremor and left-sided rigidity, along with significant dyskinesia on the left side, DBS implantation was performed in the left hemisphere targeting the PSA and in the right hemisphere targeting the GPi. The patient’s UPDRS-III score decreased from 73 to 46 postoperatively, showing an improvement of approximately 36.99%, while the H-Y stage improved from stage 4 to 2.5, representing a 37.5% improvement. During the 6-months postoperative follow-up, the patient’s PD symptoms were effectively controlled, with no significant adverse effects.
Discussion: When advanced PD patients present with asymmetric and variable motor symptoms, combined DBS stimulation targeting both the GPi and the PSA is a viable treatment option.
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1 Introduction

Parkinson’s disease is the second most common neurodegenerative disorder after Alzheimer’s disease, and its onset is generally believed to be associated with the depletion of dopamine in the nigrostriatal pathway (Dauer and Przedborski, 2003). The disease leads to impairments in both motor and non-motor functions, and its high cost of care and treatment significantly increases the economic burden on families and society in the context of an aging population. Deep brain stimulation (DBS) is the primary surgical treatment for primary PD, and it can improve specific symptoms by targeting different brain regions (Abusrair et al., 2022). Currently, most PD patients exhibit asymmetrical symptoms on the left and right sides. If we use bilateral symmetric target DBS surgery, it may not effectively address the issue of asymmetrical symptoms. The globus pallidus interna (GPi) is a target that has a direct antiparkinsonian effect, particularly in reducing dystonia (Vidailhet et al., 2005). The posterior subthalamic area (PSA) is a novel target that demonstrates better efficacy in alleviating tremors (Ramirez-Zamora et al., 2016).

Here, we present a case of a PD patient who primarily presented with right-sided tremor, left-sided rigidity, and significant dyskinesia on the left side. Given the patient’s severe right-sided tremor and the superior efficacy of the PSA over both the subthalamic nucleus (STN) and GPi for tremor control, we selected the PSA as the target in the left cerebral hemisphere, while opting for GPi stimulation in the right hemisphere to address concurrent non-motor symptoms and left-sided dyskinesia.

The use of asymmetric target stimulation during surgery has gradually been adopted in clinical practice and has received positive feedback (Schadt et al., 2007; Hedera et al., 2013; Maesawa et al., 2022). However, there is still no consensus on the optimal target for DBS, and research on asymmetric targets targeting the PSA has primarily focused on essential tremor, with most studies employing a combination of the PSA and the VIM (ventral intermediate nucleus) stimulation (Yilmaz et al., 2024; Chong et al., 2024; Kojoh et al., 2020). Research on the asymmetric targeting of the GPi has only been reported in cases where GPi and subthalamic nucleus (STN) stimulation were combined to treat PD, primarily characterized by tremor (Zeng et al., 2022). Zhang et al. (2020) demonstrated the efficacy of combined STN-GPi DBS in Parkinson’s disease through a study involving eight patients, particularly for those with poor contralateral symptom control or requiring medication reduction. In contrast to these existing asymmetric DBS approaches, we present the first reported PSA-GPi combination for PD patients exhibiting rigidity-dyskinesia asymmetry.

The combined use of the GPi and the PSA in DBS surgery remains to be further explored. Although numerous reports have emerged regarding the use of different targets in DBS surgery, to our knowledge, there are scant clinical cases involving the combined treatment of GPi-PSA. Today, we will present the technical approach and therapeutic outcomes of this novel treatment strategy.



2 Case presentation


2.1 Presentation and examination

This case report describes a 71-years-old male patient who developed right upper limb tremor without identifiable triggers 5 years ago, with subsequent progressive spread to the right lower limb, left upper limb, and ultimately the left lower limb, resulting in generalized tremor involving all four extremities. He was diagnosed with “Parkinson’s disease” at a local hospital. After treatment with half a tablet of carbidopa-levodopa (1/2 tablet daily), his condition was well-controlled. Over the past 2 years, his symptoms have progressively worsened, manifesting as prominent right-sided limb tremor (6 Hz frequency), left-sided rigidity with tremor (3 Hz frequency), bradykinesia, turning difficulty, impaired nocturnal turning, and dysphagia. The patient is currently being treated with half a tablet of carbidopa-levodopa (1/2 tablet) four times a day (qid), 1 tablet of amantadine once a night (qn), and 1 tablet of pramipexole three times a day (tid). However, the symptoms have not improved significantly, and the patient has developed dyskinesias and other adverse effects from the medication. As a result, the patient has sought further treatment at this hospital for surgical intervention. Physical examination showed that the patient’s facial expression was stiff, the neck muscle tension was high, the limb muscle strength was grade 5, the right limb muscle tension was increased, the tremor was obvious, the left limb muscle tension was increased, the knee joint was stiff, the joint activity was slow, and the stability was poor. In the upright state, the back leans forward, the walking is unstable, and the turning is slow. Bilateral finger-nose test was positive, UPDRS-III was 73, H-Y stage was 4, PDQ-39 score was 118, ALCT showed a 57 % improvement rate, and DBS surgery was recommended. The patient did not report cardiovascular, pulmonary, renal, or endocrine diseases. There was no abnormality in the MRI images of the patient’s brain.



2.2 Surgical interventions

Given the patient’s severe right-sided tremor, we selected the left PSA as the target for stimulation. Considering the left-sided rigidity and prominent dyskinesia, we chose the right GPi as the second target. Therefore, we performed bilateral DBS with a dual lead configuration, targeting the left PSA and the right GPi. The patient’s CT images were acquired using the Leksell Stereotactic Frame System and fused with preoperative MRI images. The surgical plan was created using the Leksell Stereotactic Frame System. Local anesthesia was administered first, followed by the fixation of the patient using the Leksell stereotactic frame.

The X coordinate of the left PSA target is located at 107.5 mm on the left side of the midpoint of the AC-PC line, the Y coordinate is located at 89.5 mm behind the midpoint of the AC-PC line, and the Z coordinate is located at 121 mm below the midpoint of the AC-PC line. The angle between PSA target and AC-PC plane was 107.5°, and the angle between PSA target and midline was 57°. The X coordinate of the right GPi target is located on the right side of the midpoint of the AC-PC line at 75 mm, the Y coordinate is located 99 mm in front of the midpoint of the AC-PC line, and the Z coordinate is located 117 mm below the midpoint of the AC-PC line. The angle between GPi target and AC-PC plane was 87°, and the angle between GPi target and midline was 73° (Figure 1).


[image: Two panels labeled A and B, each showing six MRI brain scans. The images display various cross-sectional views with color-coded markers and lines indicating specific brain structures or measurement paths. Annotations and coordinates are present, suggesting these may be used for medical analysis or surgical planning.]
FIGURE 1
Preoperative and postoperative fused images (preoperative plan in green, actual implanted electrode shown in white). (A) Postoperative fused image of the right GPi. (B) Postoperative fused image of the left PSA.


The patient underwent intraoperative electrophysiological mapping using the Alpha Omega microelectrode recording system to assess the functional areas of the target nuclei. The microelectrode recorded signals from the left PSA and the right GPi. During the procedure, experimental stimulation was performed, and the patient showed significant improvement in tremor symptoms without any adverse effects. After thoroughly disinfecting the right occipital, posterior auricular, and cervical regions, as well as the right subclavicular area, the patient was administered local anesthesia. The pulse generator (G102RZ) was implanted, and the lead was finally placed. The procedure was completed successfully, with no complications during or after surgery. The patient was conscious and stable at the end of the operation.



2.3 Postoperative course

The patient exhibited a good mental state postoperatively, with a significant reduction in tremor and the ability to perform daily activities independently, including ambulation without assistance. Postoperative image fusion confirmed precise electrode positioning without intracranial complications, utilizing T1-weighted contrast-enhanced (1 mm slice thickness), standard T1-weighted, axial and coronal T2-weighted, and susceptibility-weighted imaging (SWI, 2 mm slice thickness) sequences, with fusion processing performed using Leksell swgiplem software (version 10.0) (Figure 1). Consistent with both the product requirements for bilateral uniform frequency settings and the clinically conventional 130 Hz stimulation paradigm, initial stimulator parameters were configured at: amplitude 1.2 V, pulse width 60 μs (microseconds), and frequency 130 Hz upon device activation.

When stimulating the left PSA, the patient’s right-sided tremor was significantly reduced, and when stimulating the right GPi, the patient’s left-sided rigidity improved markedly. The patient’s postoperative ON-DBS UPDRS-III score of 46 demonstrated a 36.99% improvement compared to the preoperative OFF-DBS score of 73, with tremor frequencies bilaterally improved from preoperative levels (right: 6 Hz; left: 3 Hz) to 2 Hz in both extremities, while the Hoehn and Yahr stage improved from 4 to 2.5 postoperatively, representing a 37.5% enhancement in disease severity (Table 1). The patient continued with the same medication regimen for PD and underwent regular follow-up. At the 6-months postoperative follow-up, the patient was re-evaluated, and a DBS programming session was conducted. The patient’s Parkinson’s disease symptoms were effectively controlled postoperatively, with a MoCA score of 27 indicating preserved cognitive function and no significant adverse effects observed during the initial follow-up period; scheduled longitudinal follow-ups will be conducted to monitor the sustained therapeutic efficacy of this surgical intervention.


TABLE 1 Comparison of pre- and postoperative scale scores in the patient.


	Status
	UPDRS-III
	H-Y stage





	Preoperative
	73
	4



	Postoperative
	46
	2.5



	Improvement
	36.99%
	37.50%









3 Discussion

Currently, four primary targets are utilized in DBS surgery: the ventral intermediate nucleus (VIM), STN, GPi, and PSA. The VIM, located within the ventrolateral thalamus, demonstrates superior efficacy for tremor control and is indicated for essential tremor, Parkinson’s disease with isolated tremor symptoms, and tremor-dominant Parkinson’s disease subtypes (Mao et al., 2019). However, current clinical trials demonstrate that although this target shows satisfactory short-term therapeutic efficacy, it exhibits poor long-term tolerability with progressively diminishing treatment effects over time (Blomstedt et al., 2007). Moreover, this target is associated with significant adverse effects, including dysphagia, gait disturbances, and postural instability (Hariz and Blomstedt, 2022). Consequently, considering the long-term quality of life outcomes, we did not prioritize this target as the primary therapeutic option in the current treatment regimen.

The STN, located within the basal ganglia, remains a classical and pivotal target for DBS surgery, with extensive clinical evidence demonstrating its efficacy in alleviating tremor, rigidity, and bradykinesia in the majority of PD patients (Kocabicak et al., 2012). The GPi, an integral component of the basal ganglia (BG) and a classical DBS target, is anatomically composed of the medial (GPi) and lateral (GPe) segments. The GPi-DBS restores the balance of the basal ganglia circuitry by inhibiting the hyperactive neurons in the GPi and simultaneously suppresses pathological β-band oscillations while enhancing γ-band oscillations to improve motor control. Randomized controlled trials have shown that GPi-DBS improves baseline UPDRS motor scores during the off-medication state by 27%–54% (Au et al., 2021). Currently, while some researchers contend that the STN demonstrates superior efficacy over the GPi for tremor amelioration, others propose that the GPi may constitute the tremorgenic source, resulting in ongoing controversy regarding optimal target selection (STN versus GPi) for tremor management in clinical practice (Wong et al., 2020; Dirkx et al., 2016). However, a consensus exists regarding the suboptimal tremor control efficacy of both the STN and GPi, particularly in patients with high-frequency tremor manifestations (Azghadi et al., 2022; Wong et al., 2020). In this case, the patient exhibited high-frequency right-sided tremor (6 Hz) with potential comorbid essential tremor components, for which both conventional targets demonstrated limited therapeutic efficacy, prompting our exploratory investigation of the PSA as an alternative intervention target.

The PSA is located posterior to the ventral thalamus and is primarily composed of the caudal zona incerta (cZi), the dentato-rubro-thalamic tract (DRTT), and adjacent fibers. Mathematical theory model simulations suggest that PSA-DBS may reduce the abnormal signals transmitted from the cerebellum to the thalamus by inhibiting the pathological β-oscillations in the DRTT (Wu et al., 2023). Clinical trials have demonstrated that the PSA exhibits markedly superior efficacy in tremor control compared to alternative DBS targets (Kim et al., 2021). Postoperative outcomes of the PSA-DBS are significantly improved: patients typically experience an improvement of 80%–95% in symptoms after medication discontinuation, and long-term follow-up studies show that tremor improvement can last for more than 5 years (Stenmark Persson et al., 2023); (Chopra et al., 2013). Moreover, this target is primarily associated with dysphagia and balance disorders as its main adverse effects, while demonstrating a significantly lower incidence of complications compared to other nuclear targets (Xie et al., 2012; Chopra et al., 2013). Based on its superior efficacy in controlling both tremor and gait disturbances compared to STN and GPi, coupled with a more favorable adverse effect profile, we selected this target in the left cerebral hemisphere to manage the patient’s severe right-sided limb tremor symptoms.

The patient exhibited left-sided limb rigidity accompanied by dyskinetic movements, a clinical presentation for which the GPi is typically preferred over the STN in standard therapeutic practice (Sriram et al., 2014; Mirza et al., 2017). The patient presented with a comprehensive symptom profile encompassing motor manifestations (tremor, rigidity, bradykinesia, and gait disturbances) alongside non-motor features including depression, anxiety, cognitive impairment, and constipation, for which the GPi target demonstrates superior therapeutic efficacy over the STN in addressing cognitive dysfunction, anxiety, and depressive symptoms (Wang et al., 2016; El Ghazal et al., 2023). Given the GPi’s demonstrated superiority in managing both dyskinesia and non-motor symptoms, we ultimately selected the GPi target for implantation in the patient’s right cerebral hemisphere rather than the STN.

In recent years, with the discovery of different target areas, asymmetric target surgery has attracted the attention of researchers. Zhang et al. (2020) recently demonstrated the therapeutic efficacy of combined STN-GPi DBS surgery in eight Parkinson’s disease patients through comparative analysis of UPDRS-III scores, Timed Up and Go (TUG) test results, PDQ-39 questionnaire outcomes, and axial symptom assessments performed preoperatively, immediately postoperatively, and at 6- and 12-months follow-ups. In previous reports, the combination of the GPi and the STN is more effective in improving symptoms on the contralateral limb than the GPi or the STN alone (Zeng et al., 2022). The PSA-DBS has been used in multiple clinical cases for combining the PSA-VIM stimulation to treat tremor syndromes or essential tremor (Yilmaz et al., 2024; Chong et al., 2024). Still, it is relatively uncommon in the treatment of PD tremor, with only one case report demonstrating a successful outcome of combining the PSA-VIM stimulation for Parkinsonian tremor symptoms (Kojoh et al., 2020). There have been no clinical reports of DBS surgery targeting the combined PSA-GPi pathway.

The current DBS systems can use a single pulse generator device to adjust stimulation for two electrode leads. Therefore, in patients with PD primarily characterized by tremor, using multiple-target approaches with dual-electrode configurations is technically feasible and more effective. In this case, a severe tremor in PD may involve complex pathophysiology affecting multiple functional networks, including the cerebellum-thalamocortical pathway and the globus pallidus-thalamocortical pathway.

The combined treatment of the left PSA and the right GPi can simultaneously target both the tremor circuit and the overall motor control network. This combined approach demonstrated superior efficacy over other target combinations in managing the patient’s overall non-motor symptoms, high-frequency right-sided limb tremor, and left-sided rigidity with dyskinetic movements, while maintaining a relatively favorable adverse effect profile.

It is important to note several limitations. First, the stimulation frequencies for the PSA and the GPi differ, requiring separate frequency adjustments during DBS programming. In the absence of prior reference cases and due to product requirements mandating identical bilateral frequency settings, we proceeded with the intervention based on established clinical experience. We recommend that future clinical trials gradually determine the optimal frequency settings for the PSA-GPi combination (Hidding et al., 2023). As this study constitutes a single-case report with only 6-months follow-up data, the observed outcomes may reflect incidental findings; we plan to conduct extended longitudinal monitoring to verify the surgical efficacy, while definitive confirmation of PSA-GPi DBS’s therapeutic effects for Parkinson’s disease patients with asymmetric bilateral motor symptoms will require future randomized controlled trials for validation.



4 Conclusion

We report the first documented case utilizing combined PSA-GPi DBS to treat Parkinson’s disease presenting with unilateral tremor and rigidity accompanied by asymmetric motor symptoms, with our findings suggesting potential efficacy in managing rigidity-dyskinesia asymmetry; however, as this represents a single-case study, future randomized controlled trials are warranted to definitively establish the therapeutic value of this intervention. However, the long-term effects of dual-target DBS stimulation at the PSA-GPi interface remain unclear and require further investigation and long-term monitoring to fully assess its safety and efficacy.
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Background: Parkinson’s disease (PD) is a neurodegenerative disorder with some progressive impairment and an unclear pathogenesis.
Purpose: This study aimed to use resting-state functional magnetic resonance imaging (rs-fMRI) and graph analysis approaches to compare changes in brain functional network topology in PD at different disease stages.
Materials and methods: A total of 58 PD patients, comprising 29 early-stage PD (PD-E) and 29 middle-to-late stage PD (PD-M), and 29 age- and sex-matched healthy control (HC) participants, were recruited. All subjects underwent clinical assessments and magnetic resonance imaging (MRI) scanning. We analyzed alterations in the global, regional, and modular topological characteristics of brain functional networks among different disease stages of PD patients and HC participants. Furthermore, we also examined the relationship between topological features with significant group effects and clinical characteristics, including the Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale III (MDS-UPDRS III) score and Hoehn and Yahr (H&Y) stage.
Results: At the global level, PD-M and PD-E exhibited lower clustering coefficient, and PD-M also exhibited lower local efficiency and normalized characteristic path length relative to HC. At the regional level, PD-M and PD-E showed lower nodal centrality in temporal-occipital regions and higher centrality in brain regions related to the default mode network and the frontoparietal control network compared to HC. Notably, nodal centrality metrics of the left middle frontal gyrus and the temporal pole of the right middle temporal gyrus were associated with the MDS-UPDRS III score and H&Y stage.
Conclusion: This study found that the brain functional networks were disrupted at varying degrees in patients with PD at different disease stages. These findings contribute to our understanding of the topological changes in the neural networks associated with the severity of PD.
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 Parkinson’s disease; resting-state functional MRI; brain functional networks; global topological organization; regional topological organization


Introduction

Parkinson’s disease (PD) is a progressive neurological disorder characterized by motor symptoms, such as bradykinesia, rigidity, tremor, and postural instability, as well as non-motor features, including hyposmia, sleep disorders, depression, and constipation (Jankovic, 2008; Schapira et al., 2017). Its pathological process is mainly attributed to disruptions in the nigrostriatal dopamine system (Hayes, 2019). Currently, diagnosis and severity assessment of PD are still predominantly based on clinical symptoms (Gelb et al., 1999; Postuma et al., 2015). Developing reliable non-invasive biomarkers to monitor disease severity is important for future diagnosis and disease-modifying therapies in PD.

Since the 1990s, advancements in the physics of complex systems (Strogatz, 2001; Albert and Barabási, 2002; Boccaletti et al., 2006) and the rise of network science (Börner et al., 2008) have allowed us to study the structure and function of brain networks in terms of small-world topology, highly connected hubs, and modularity. In recent years, graph theory analysis has been widely employed in the study of complex brain networks (Bullmore and Sporns, 2009). By using graph theory analysis to study the interactions between neurons and the structure and function of neural networks, it is possible to better understand the information transmission between neurons and how neural networks operate, thereby making deeper contributions to the function of the nervous system and the mechanism of disease (Craddock et al., 2013). Neuroimaging has shown that PD is a neurodegenerative disorder involving many neurotransmitters, brain regions, structural and functional connections, and neurocognitive systems (Weingarten et al., 2015). Therefore, the integrated analysis of the whole brain networks may provide a more comprehensive understanding of brain abnormalities in PD.

Altered topological properties in functional networks have been reported in PD by several studies (Sang et al., 2015; Luo et al., 2015; Fang et al., 2017; Göttlich et al., 2013; Suo et al., 2017). The majority of these studies have focused on the alteration of brain functional networks in early-stage PD. For example, the study examining the topological configuration of brain networks in early-stage PD patients who received antiparkinson treatment found that global properties, module structure, and hub distribution were markedly altered in these patients (Sang et al., 2015). The results of these studies were inconsistent due to clinical heterogeneity (dopaminergic medication) among participants. Furthermore, these studies mainly focused on early-stage patients and were therefore unable to identify progressive brain changes across different stages. The configurations of the brain functional connectome in patients with PD were perturbed and correlated with disease severity (Suo et al., 2017). However, the topological properties of large-scale brain functional networks in patients with different stages of PD are unknown.

Our study aims to use resting-state functional magnetic resonance imaging (rs-fMRI) and graph analysis approaches to compare changes in brain functional network topology in PD at different disease stages.



Methods and subjects

This study was conducted in accordance with the principles of the Declaration of Helsinki and was approved by the local human research ethics committee. Written informed consent was obtained from all participants (or their legal guardians) before enrollment.


Subjects

All PD patients were continuously recruited from the Henan Provincial People’s Hospital from September 2020 to June 2023. We recruited 58 patients with a diagnosis of PD, as determined by two experienced neurologists, according to the clinical diagnostic criteria of the Movement Disorder Society (Postuma et al., 2015). All patients were assessed by the Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale III (MDS-UPDRS III) (Goetz et al., 2008), the Hoehn and Yahr (H&Y) stage (Hoehn and Yahr, 1967), and the Mini-Mental State Examination (MMSE) (Folstein et al., 1983). Patients with H&Y ≤ 2.5 were assigned to the early-stage PD group (PD-E, n = 29), while those with H&Y ≥ 3 were assigned to the middle-to-late stage PD group (PD-M, n = 29) (Chen et al., 2016). The following patients were excluded: (1) parkinsonism syndrome and parkinsonism-plus syndrome (progressive supranuclear palsy, multiple system atrophy, and corticobasal degeneration); (2) patients who met general exclusion criteria for magnetic resonance imaging (MRI) scanning (such as those with claustrophobia or implanted metal parts); and (3) Individuals whose MMSE scores were lower than those corresponding to their educational level (The normal MMSE score is defined as follows: for illiterate individuals, it is >17; for those with 1–6 years of education, it is >20; for those with 7 years of education, it is >23) (Li et al., 2016). In addition, 29 age- and sex-matched healthy control (HC) participants who did not have any neurological disorders or structural brain defects were recruited.



Data acquisition

All participants underwent an MRI examination using a 3-T system (MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany) equipped with a 64-channel head/neck coil. A foam pad was used to reduce head movement during scanning. All patients were taking antiparkinsonian drugs and were scanned while in the “on” state. MRI scanning parameters were as follows: for the structural T1-weighted sequence, repetition time (TR) of 2,300 ms, echo time (TE) of 2.28 ms, field of view (FOV) of 260 × 260 mm2, slice thickness of 1 mm, number of slices of 192, and voxel size of 1.0 × 1.0 × 1.0 mm3; for resting-state functional imaging, TR/TE of 2000/35 ms, FOV of 207 × 207 mm2, voxel size of 2.2 × 2.2 × 2.2 mm3, slice thickness of 2.2 mm, 75 axial slices, and 180 image volumes.



Data processing

We used the graph theoretical network analysis (GRETNA) toolbox1 (Wang et al., 2015) to perform image preprocessing. Preprocessing steps were as follows: (1) DICOM to NIFTI; (2) removal of the first 10 time points; (3) slice timing corrections; (4) realignment to the mean volume for head motion correction, with exclusion of head motions > 3 mm and 3°; (5) spatial normalization using DARTEL segmentation; (6) removal of linear trends; (7) nuisance signal regression including 24 head motion parameters, cerebrospinal fluid (CSF), and white matter signals; (8) and band-pass filtering (0.01–0.08 Hz).



Construction of brain functional networks

The network was also constructed using the GRETNA toolbox. A network consists of nodes and edges between nodes. The nodes represent brain regions, and the edges represent statistical interdependencies between blood oxygen level-dependent signals in different brain regions. To define network nodes, we used the automated anatomic labeling atlas to divide the entire brain into 90 cortical and subcortical regions of interest, each region representing a network node. The mean time series of each region is then obtained, and the Pearson’s correlations of the mean time series between all node pairs are calculated, i.e., the edges of the network. This generated a weighted 90 × 90 correlation matrix for each participant.



Analysis of brain functional networks

To ensure the same number of edges among the three groups and to better observe the prominent small-world properties in the brain network, a wide range of sparsity was selected from 0.06 to 0.50 with a step of 0.01 in computing network metrics. An upper sparsity threshold of 0.5 was applied to preserve small-worldness (Sigma > 1.1), which is a fundamental topological property of functional brain networks. A lower threshold of 0.06 ensures that the network retains sufficient topological structure at lower sparsities, guarding against excessive sparsity and consequent information loss (Watts and Strogatz, 1998; Xie et al., 2025). We calculated the global and nodal network metrics for the brain networks at each sparsity level and the area under the curve over the sparsity range (Zhang et al., 2011). The global metrics were small-world parameters (Watts and Strogatz, 1998) and network efficiency parameters (Latora and Marchiori, 2001): clustering coefficient (Cp), characteristic path length (Lp), normalized clustering coefficient (Gamma), normalized characteristic path length (Lambda), and small worldness (Sigma), as well as global efficiency (Eglobal) and local efficiency (Elocal). The nodal centrality metrics were nodal degree, nodal efficiency, and nodal betweenness (Achard and Bullmore, 2007).

Based on previous literature (Suo et al., 2022), the 90 brain regions defined by the AAL90 atlas were categorized into five functional modules, and the intra- and inter-modular connectivity among these modules was analyzed. The five modules consisted of (I) the sensorimotor module, (II) the default mode module, (III) the frontal–parietal module, (IV) the subcortical module, and (V) the visual module (Table 1).


TABLE 1 Modular organization.


	Modules
	Regions

 

 	Module I (sensorimotor module) 	Bilateral precentral and postcentral gyrus, supplementary motor area, Rolandic operculum, paracentral lobule, insula, supramarginal gyrus, superior temporal gyrus, Heschl gyrus, and temporal pole: superior temporal gyrus


 	Module II (default mode module) 	Bilateral superior frontal gyrus (dorsolateral, medial, orbital, and medial orbital part), rectus gyrus, olfactory cortex, cingulate gyrus (anterior, median, and posterior), angular gyrus, precuneus, inferior and middle temporal gyrus, and temporal pole: middle temporal gyrus


 	Module III (frontal–parietal module) 	Bilateral inferior frontal gyrus (opercular, triangular, and orbital part), middle frontal gyrus, middle frontal gyrus (orbital part), and superior and inferior parietal gyrus


 	Module IV (subcortical module) 	Bilateral hippocampus, parahippocampal gyrus, amygdala, caudate, putamen, pallidum, and thalamus


 	Module V (visual module) 	Bilateral calcarine fissure and surrounding cortex, superior, middle and inferior occipital gyrus, lingual gyrus, cuneus, and fusiform gyrus




 



Statistical analysis

The analyses of demographic and clinical data were performed using SPSS (Version 27.0; IBM) software, and p < 0.05 was considered statistically significant. Two-samples t-test, Mann–Whitney U-test, Kruskal–Wallis H test, and chi-squared test were performed to compare quantitative and qualitative variables. We used the GRETNA statistics modules for the statistical analysis of the area under the curve (AUC) values of network metrics. Analysis of covariance (the node metrics need to be false discovery rate correction corrected with a significance threshold of q < 0.05) with age, gender, and education scores as covariates to determine network differences among the three groups. We extracted the values of the areas under the curve of topological attributes for each region with significant changes and subsequently compared patients at different stages and HC participants using a post hoc two-samples t-test (p < 0.05, Bonferroni-corrected). Finally, partial correlations were computed to examine relationships between these values and the UPDRS III score and H&Y stage in PD, with age, gender, and education score as covariates.




Results


Demographic and clinical characteristics

Demographic and clinical characteristics of 58 patients with PD and 29 HC participants are shown in Table 2. There were no significant differences in gender or years of education among the PD-E, PD-M, and HC groups (p > 0.05). Additionally, the MMSE scores and age at onset did not significantly differ between the PD-E and PD-M groups (p > 0.05). The age of patients with PD-M was higher than that of PD-E and HC participants (p = 0.013 and p = 0.011). PD-E and PD-M patients had statistically significant differences in disease duration (p = 0.004) and the UPDRS-III score (p < 0.001).


TABLE 2 Demographics and clinical characteristics of PD-E and PD-M patients and HC participants.


	Parameter
	Groups
	
p

	Post hoc p-value



	PD-E
	PD-M
	HC
	HC vs. PD-E
	HC vs. PD-M
	PD-E vs. PD-M

 

 	Age (y) 	62.00 (54.00,65.50) 	65.00 (58.50,70.50) 	62.00 (54.50,66.00) 	0.015 	0.942 	0.011 	0.013


 	Gender (female/male) 	12/17 	14/15 	13/16 	0.870 	NA 	NA 	NA


 	Education (y) 	9 (6,12) 	9 (6,12) 	9 (9,12) 	0.477 	NA 	NA 	NA


 	Disease duration (y) 	3.0 (1.5,5.0) 	5.0 (3.0,9.0) 	NA 	0.004 	NA 	NA 	NA


 	MDS-UPDRS III 	26.21 ± 12.11 	54.00 ± 17.93 	NA 	<0.001 	NA 	NA 	NA


 	MMSE 	25.00 (19.50,28.00) 	25.00 (23.00,27.00) 	NA 	0.790 	NA 	NA 	NA


 	Age at onset (y) 	56.90 ± 5.54 	59.72 ± 8.54 	NA 	0.141 	NA 	NA 	NA





Data are expressed as mean ± standard deviation for normally distributed data and as median (25th, 75th percentiles) for non-normally distributed data. PD-E, early-stage Parkinson’s disease; PD-M, middle-to-late stage Parkinson’s disease; HC, healthy control; MDS-UPDRS III, Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale III; MMSE, Mini-Mental State Examination, NA, not applicable. Bold p-values indicate statistically significant group effects (p < 0.05).
 



Global topological organization of brain functional networks

Significant group effects were found in the AUCs of Cp, Elocal, and Lambda (p < 0.001, p = 0.036, and p = 0.029, respectively). Post hoc testing showed that compared to HC, PD-M patients had significantly lower Cp (p < 0.001), Elocal (p = 0.010), and Lambda (p = 0.009), while PD-E patients had significantly lower Cp (p = 0.004). However, there is no significant difference in global metrics between PD-E and PD-M patients. No significant difference was identified in Eglobal, Lp, Gamma, and Sigma values (Table 3 and Figure 1).


TABLE 3 Brain network metrics differences among the PD-E and PD-M patients and HC participants.


	Measurements
	Groups
	
p

	Post hoc p-value



	PD-E
	PD-M
	HC
	HC vs. PD-E
	HC vs. PD-M
	PD-E vs. PD-M

 

 	Global


 	Eglobal 	0.249 ± 0.009 	0.248 ± 0.010 	0.245 ± 0.009 	0.290 	NA 	NA 	NA


 	Elocal 	0.332 ± 0.010 	0.329 ± 0.007 	0.335 ± 0.010 	0.036 	0.146 	0.010 	0.248


 	Cp 	0.265 ± 0.012 	0.263 ± 0.011 	0.273 ± 0.009 	<0.001 	0.004 	<0.001 	0.409


 	Lp 	0.845 ± 0.045 	0.849 ± 0.050 	0.859 ± 0.042 	0.457 	NA 	NA 	NA


 	Gamma 	0.726 ± 0.124 	0.711 ± 0.096 	0.696 ± 0.095 	0.567 	NA 	NA 	NA


 	Lambda 	0.474 ± 0.012 	0.471 ± 0.009 	0.479 ± 0.013 	0.029 	0.112 	0.009 	0.279


 	Sigma 	0.661 ± 0.109 	0.654 ± 0.091 	0.629 ± 0.084 	0.391 	NA 	NA 	NA


 	Nodal degree


 	MFG.L 	13.048 ± 3.583 	16.298 ± 3.544 	12.751 ± 4.460 	0.001 	0.771 	0.002 	0.006


 	ORBmid.R 	8.701 ± 3.264 	11.785 ± 4.288 	7.969 ± 3.560 	<0.001 	0.457 	<0.001 	0.007


 	FFG.L 	13.566 ± 3.696 	13.502 ± 4.027 	16.719 ± 3.497 	0.002 	0.006 	0.005 	0.949


 	FFG.R 	14.920 ± 3.073 	12.547 ± 3.863 	15.571 ± 2.890 	0.002 	0.455 	0.002 	0.023


 	ANG.L 	9.515 ± 4.394 	10.846 ± 3.519 	6.902 ± 3.667 	<0.001 	0.036 	<0.001 	0.195


 	TPOmid.L 	6.885 ± 3.771 	6.739 ± 3.578 	10.535 ± 4.187 	<0.001 	0.002 	<0.001 	0.886


 	Nodal efficiency


 	MFG.L 	0.272 ± 0.023 	0.293 ± 0.022 	0.267 ± 0.312 	<0.001 	0.470 	<0.001 	0.008


 	ORBmid.R 	0.238 ± 0.032 	0.262 ± 0.031 	0.229 ± 0.034 	<0.001 	0.298 	<0.001 	0.017


 	SFGmed.L 	0.271 ± 0.023 	0.281 ± 0.022 	0.256 ± 0.037 	0.005 	0.051 	0.004 	0.171


 	PCG.R 	0.223 ± 0.462 	0.223 ± 0.046 	0.178 ± 0.073 	0.003 	0.010 	0.008 	0.962


 	FFG.L 	0.273 ± 0.029 	0.271 ± 0.031 	0.293 ± 0.022 	0.005 	0.019 	0.010 	0.833


 	FFG.R 	0.282 ± 0.021 	0.263 ± 0.030 	0.286 ± 0.019 	<0.001 	0.610 	0.002 	0.008


 	ANG.L 	0.241 ± 0.040 	0.256 ± 0.027 	0.218 ± 0.037 	<0.001 	0.035 	<0.001 	0.129


 	ANG.R 	0.248 ± 0.035 	0.258 ± 0.022 	0.228 ± 0.038 	0.003 	0.054 	0.002 	0.279


 	TPOmid.L 	0.214 ± 0.049 	0.217 ± 0.038 	0.248 ± 0.037 	0.004 	0.008 	0.016 	0.795





Data are mean ± standard deviations. PD-E, early-stage Parkinson’s disease; PD-M, middle-to-late stage Parkinson’s disease; HC, healthy control; Eglobal, global efficiency; Elocal, local efficiency; Cp, clustering coefficient; Lp, characteristic path length; Gamma, normalized clustering coefficient; Lambda, normalized characteristic path length; Sigma, small worldness; MFG.L, left middle frontal gyrus; ORBmid.R, orbital part of the right middle frontal gyrus; SFGmed.L, left superior frontal gyrus; PCG.R, right posterior cingulate gyrus; FFG.L, left fusiform gyrus; FFG.R, right fusiform gyrus; ANG.L, left angular gyrus; ANG.R, right angular gyrus; TPOmid.L, temporal pole of the left middle temporal gyrus; NA, not applicable. Bold values indicate statistically significant group effects (p < 0.05 for global metrics; q < 0.05 after FDR correction for nodal metrics, with post-hoc pairwise comparisons Bonferroni-corrected at p < 0.05).
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FIGURE 1
 Differences in global topological organization of the functional brain network among the three groups (p < 0.05). PD-E, early-stage Parkinson’s disease; PD-M, middle-to-late stage Parkinson’s disease; HC, healthy control; AUC, area under the curve; Eglobal, global efficiency; Elocal, local efficiency; Cp, clustering coefficient; Lp, characteristic path length; Gamma, normalized clustering coefficient; Lambda, normalized characteristic path length; Sigma, small worldness.




Regional topological organization of brain functional networks

We identified the brain regions that showed significant between-group differences in at least one nodal metric (q < 0.05, false discovery rate corrected). Significant group differences were revealed in the left middle frontal gyrus (MFG.L), orbital part of the right middle frontal gyrus (ORBmid.R), medial part of the left superior frontal gyrus (SFGmed.L), right posterior cingulate gyrus (PCG.R), left fusiform gyrus (FFG.L), right fusiform gyrus (FFG.R), left angular gyrus (ANG.L), right angular gyrus (ANG.R), and temporal pole of the left middle temporal gyrus (TPOmid.L) (Table 3).

Compared to HC, PD-M patients showed significantly decreased nodal degrees in the FFG.L (p = 0.005), FFG.R (p = 0.002), and TPOmid.L (p < 0.001), with increased values in the MFG.L (p = 0.002), ORBmid.R (p < 0.001), and ANG.L (p < 0.001). PD-E patients exhibited decreased nodal degree in the FFG.L (p = 0.006) and TPOmid.L (p = 0.002), along with increased values in the ANG.L (p = 0.036) compared to HC. PD-M patients demonstrated lower nodal degree in the FFG.R (p = 0.023) but higher values in the MFG.L (p = 0.006) and ORBmid.R (p = 0.007) compared to PD-E patients (Figure 2).
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FIGURE 2
 Nodes with significant differences in the nodal degree among the three groups (q < 0.05, false discovery rate corrected). PD-E, early-stage Parkinson’s disease; PD-M, middle-to-late stage Parkinson’s disease; HC, healthy control; MFG.L, left middle frontal gyrus; ORBmid.R, orbital part of the right middle frontal gyrus; FFG.L, left fusiform gyrus; FFG.R, right fusiform gyrus; ANG.L, left angular gyrus; TPOmid.L, temporal pole of the left middle temporal gyrus; L, left; R, right.


Compared to HC, PD-M patients showed significantly decreased nodal efficiency in the FFG.L (p = 0.010), FFG.R (p = 0.002), and TPOmid.L (p = 0.016), with increased values in the MFG.L (p < 0.001), ORBmid.R (p < 0.001), SFGmed.L (p = 0.004), PCG.R (p = 0.008), ANG.L (p < 0.001), and ANG.R (p = 0.002). PD-E patients exhibited decreased nodal efficiency in the FFG.L (p = 0.019) and TPOmid.L (p = 0.008), along with increased values in the PCG.R (p = 0.010) and ANG.L (p = 0.035) compared to HC. PD-M patients demonstrated lower nodal efficiency in the FFG.R (p = 0.008) but higher values in the MFG.L (p = 0.008) and ORBmid.R (p = 0.017) compared to PD-E patients (Figure 3).
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FIGURE 3
 Nodes with significant differences in nodal efficiency among the three groups (q < 0.05, false discovery rate corrected). PD-E, early-stage Parkinson’s disease; PD-M, middle-to-late stage Parkinson’s disease; HC, healthy control; MFG.L, left middle frontal gyrus; ORBmid.R, orbital part of the right middle frontal gyrus; SFGmed.L, left superior frontal gyrus; PCG.R, right posterior cingulate gyrus; FFG.L, left fusiform gyrus; FFG.R, right fusiform gyrus; ANG.L, left angular gyrus; ANG.R, right angular gyrus; TPOmid.L, temporal pole of the left middle temporal gyrus; L, left; R, right.




Modular interactions of brain functional networks

No significant differences in intra- or inter-modular connectivity were observed between groups in corrected analyses. However, in uncorrected analyses, PD-M patients exhibited reduced functional connectivity between Module I and Module V compared to healthy controls (p = 0.017, uncorrected) (Figure 4).
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FIGURE 4
 Modular interaction with differences among the three groups (p < 0.05, uncorrected). PD-E, early-stage Parkinson’s disease; PD-M, middle-to-late stage Parkinson’s disease; HC, healthy control; L, left; R, right.




Correlation analysis

We also examined the relationships between nodal metrics with significant group effects and clinical characteristics (UPDRS-III score and H&Y stage), with age, gender, and education scores as covariates. In patients with PD, nodal degree of MFG.L (p = 0.036, r = 0.284) and ORBmid.R (p = 0.037, r = 0.281) was positively correlated with H&Y stage. The nodal efficiency of MFG.L (p = 0.033, r = 0.288) and ORBmid.R (p = 0.037, r = 0.282) were positively correlated with the UPDRS-III score (Figure 5).
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FIGURE 5
 Relationship between nodal metrics and the severity of clinical diseases in Parkinson’s disease (p < 0.05). MFG.L, left middle frontal gyrus; ORBmid.R, orbital part of the right middle frontal gyrus; H&Y, Hoehn and Yahr; MDS-UPDRS III, Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale III.





Discussion

In this study, we investigated the topological properties of brain functional networks in PD patients at different disease stages and HC. Patients with PD showed abnormalities at both the global level (decreases in the Cp, Elocal, and Lambda) and the nodal level (decreased nodal centrality metrics in the temporal-occipital regions, but increased in brain regions related to the default mode network and the frontoparietal control network). It is worth noting that patients with PD-M exhibit more extensive changes in topological attributes compared to those with PD-E. Furthermore, nodal centrality metrics of the MFG.L and ORBmid.R were positively correlated with the H&Y stage and UPDRS-III score. These findings may enhance our understanding of the mechanisms underlying the progression of PD and contribute to the development of non-invasive neuroimaging biomarkers for monitoring disease progression.

Networks with low construction costs but high efficiency in disseminating information are called economic small-world networks. Since the combination of high local clustering and short path length supports the two fundamental organization principles of functional segregation and functional integration in the brain, the small-world is an attractive model to describe brain networks (Zhang et al., 2011). In our study, the networks in PD patients were perturbed in a way that may reflect the underlying pathophysiologic abnormalities and disease progression. Regarding global topologic properties, Cp and Elocal were significantly decreased, whereas Lp and Eglobal were not significantly different in PD-M patients compared to HC. Since both Cp and Elocal measure local cliquishness of the network, and Lp and Eglobal are the most commonly used measures of functional integration (Latora and Marchiori, 2001), our results indicate a disturbance in the normal balance in functional brain networks of PD-M patients. These results are consistent with one functional connectome study, which reported decreased network segregation in drug-naive PD with no significant change in network integration (Luo et al., 2015). However, other studies (Suo et al., 2017; Ma et al., 2017) reported decreased local specialization and global integration in early-to-mid-stage PD and a progressive impairment in local specialization with an additional loss of global integration in PD. In accordance with reports, dopaminergic antagonists can reduce both global and local efficiency in healthy subjects (Achard and Bullmore, 2007), while dopamine-based medications can increase the functional connectivity between dopamine-related cognitive and motor pathways in healthy individuals (Kelly et al., 2007). Subsequent studies in PD patients have found that dopaminergic medication is also considered to partially restore the deficits in brain functional networks in PD patients (Delaveau et al., 2010; Palmer et al., 2010). In the above study, medication was withdrawn at least 12 h (off-state) in PD patients before resting-state functional MR imaging, and we were in the on-state, so we hypothesized that medication might contribute to the difference. In addition, PD-E patients only had lower Cp than HC participants in our study, which might be attributed to the effective symptom management of PD-E patients following medication. Future research could conduct medication-specific subgroup analyses, such as comparing medicated and unmedicated patients, to further elucidate the impact of pharmacological interventions on these findings.

In addition to these altered global topologic properties, PD patients at different disease stages have selectively and significantly impaired nodal centrality metrics in several regions of the brain’s functional networks, mainly including the decreased temporal-occipital regions and the increased brain regions related to the default mode network and the frontoparietal control network. Abnormalities of gray matter (Goldman et al., 2014), neuronal activity (Meppelink et al., 2009), and nodal centrality metrics (Luo et al., 2015) in temporal-occipital regions have been reported in PD patients compared to HC. The temporal-occipital regions are important for visual object recognition, so these changes are thought to be related to abnormal bottom-up visual processing of visual information in these regions and visual-cognitive deficits in PD patients (Meppelink et al., 2009). We found that PD-E patients had decreased nodal centrality metrics in the temporo-occipital brain regions, and the abnormalities were more obvious in PD-M patients. This finding is consistent with previous findings that have shown PD patients exhibit functional changes in the cortical visual system before visual symptoms are clinically evident (Cardoso et al., 2010; Uc et al., 2005). The default mode network and frontoparietal control network serve as core neural networks for cognitive control (Menon and D'Esposito, 2021). Previous research has indicated that even patients with PD-E, who have not yet been formally diagnosed with mild cognitive impairment, may experience subtle cognitive declines (Kandiah et al., 2009; Aarsland et al., 2017). Interestingly, although our study’s PD patients did not exhibit overt cognitive deficits, we observed significantly increased nodal degree and nodal efficiency within brain regions associated with the default mode network and the frontoparietal control network at different disease stages. This finding may reflect a potential adaptive response, characterized by increased connectivity and efficiency, which could support cognitive stability. However, further validation through targeted neuropsychological assessments is required to confirm compensatory processes in future studies.

The middle frontal gyrus is a key part of the prefrontal network that responds to inhibit responses to inappropriate stimuli by overriding the motor system’s automatic response tendency, and one study has shown that with age and the development of behavioral control, the specialization and organization of the response inhibition network improve. In contrast, the activation of the right middle frontal gyrus decreases significantly (Hardee et al., 2014). Inhibition control is an important executive function that involves inhibiting dominant responses or allowing appropriate actions to meet complex task requirements and adapt to different environments (Li and Sinha, 2007). A recent study on impulse control disorders in PD has shown that PD patients with impulse control disorders show reduced voxel-mirrored homotopic connectivity (VMHC) values in the MFG, middle and superior orbital frontal gyrus, inferior frontal gyrus, and caudate, which can detect altered interhemispheric connectivity by quantifying functional connections between the corresponding voxels in the two hemispheres of the brain (Gan et al., 2021). Therefore, this result suggested that the bilateral connections between the cerebral hemispheres of PD patients with impulse control disorders are altered, and the severity of impulse control disorders is correlated with the mean VMHC values of MFG. Our research findings indicate that as the H&Y stage and UPDRS-III scores advance in patients with PD, there is a corresponding increase in the nodal degree and nodal efficiency of the MFG.L and ORBmid.R. This result may complement previous studies suggesting that PD patients may compensate for the weak anatomical connections between the inhibited areas by increasing executive control.

Additionally, in module analysis, reduced functional connectivity was observed between the sensorimotor and visual modules in PD-M patients. Sensorimotor network plays a crucial role in integrating sensory inputs and facilitating motor execution, whereas the visual network contributes to spatial orientation and the processing of visual feedback (Bertoni et al., 2025; Kim et al., 2024). Previous research has shown that the sensorimotor network in PD patients is unable to effectively integrate feedback from the visual network, leading to motor dysfunction (Caspers et al., 2021). However, the results of our study did not survive multiple comparison correction and warrant further investigation to validate its clinical relevance.

There are several limitations to our study. First, the sample size was relatively small, which may have constrained our ability to detect the expected sensorimotor network impairments consistent with typical motor manifestations of PD. In the future, the sample size will be increased to continue the research. Second, the observation of reduced functional connectivity between sensorimotor and visual modules in PD-M patients did not survive multiple comparison correction and should be considered exploratory. Larger and independent datasets are needed to validate these findings, alongside studies using advanced neuroimaging approaches (e.g., task-based fMRI) to uncover their functional roles and biological foundations. Finally, all rs-fMRI data were acquired during the dopaminergic “ON” state to optimize patient comfort and scan quality. While clinically practical, this approach precludes the dissociation between medication effects and intrinsic PD-related network pathology. Previous studies demonstrate that dopaminergic agents can partially normalize aberrant functional connectivity patterns in PD patients (Delaveau et al., 2010; Palmer et al., 2010). Consequently, future studies should implement counterbalanced ON/OFF state designs with standardized medication withdrawal protocols. Additionally, the potential dose-dependent effects of levodopa equivalent daily dose (LEDD) on functional network topology were not examined due to incomplete pharmacological records. Future studies should incorporate stratified LEDD cohorts to resolve this critical confounding.



Conclusion

In conclusion, we used rs-fMRI and graph analysis approaches to compare changes in brain functional network topology in PD at different disease stages. We observed that patients with PD-M exhibited a reduction in Cp, Elocal, and Lambda. Additionally, both PD-E and PD-M patients demonstrated decreased nodal centrality metrics within the temporal-occipital regions, alongside an enhanced brain region related to the default mode network and frontoparietal control network. Notably, patients with PD-M exhibit more extensive changes in topological attributes compared to those with PD-E. Furthermore, nodal centrality metrics of the MFG.L and ORBmid.R were positively correlated with the H&Y stage and UPDRS-III score. These findings contribute to our understanding of the topological changes in the neural networks associated with the severity of PD.
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Neurofilament light chain concentration mediates the association between regional cortical thickness and Parkinson’s disease with excessive daytime sleepiness
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Background: Excessive daytime sleepiness (EDS) is a common non-motor symptom in Parkinson’s disease (PD) that negatively impacts quality of life. Although biomarkers of brain structure, function, and neurodegeneration have been studied, their interactions in EDS remain unclear. This study explores the relationship between cortical thickness, functional connectivity (FC), and plasma neurofilament light chain (NfL) levels in PD-EDS.
Methods: 36 PD-EDS patients and 100 PD patients without EDS (PD-non-EDS) underwent structural MRI and resting-state FC analysis, with regions of cortical atrophy serving as regions of interest (ROIs). Plasma NfL levels were quantified using high-sensitivity Single Molecule Array (SiMoA™). Mediation analysis was conducted to explore the interplay between NfL levels, neuroimaging markers, and EDS severity, assessed by the Epworth Sleepiness Scale (ESS).
Results: PD-EDS patients exhibited significant cortical thinning in the left supramarginal gyrus (SMG) and right postcentral region (PoCR), along with weakened FC between the left SMG and left PoCR, and between the right PoCR and left inferior frontal gyrus (all p < 0.05). Plasma NfL levels were significantly higher in PD-EDS patients than in those without EDS (p = 0.004) and mediated the relationship between left SMG thickness and EDS severity.
Conclusion: Plasma NfL levels mediate the association between cortical thinning in the left SMG and EDS severity in PD-EDS, suggesting a link between neurodegenerative processes underlying axonal injury and cortical atrophy in key regions associated with EDS in PD. Our findings suggest that combining neuroimaging markers with plasma NfL levels may provide valuable insights into the mechanisms driving EDS progression in PD.
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 cortical thickness; mediation analysis; Parkinson’s disease; neurofilament light chain; excessive daytime sleepiness; functional connectivity; neuroimaging biomarkers


1 Introduction

Excessive daytime sleepiness (EDS) is a common non-motor manifestation of Parkinson’s disease (PD) impacting nearly 50% of patients (Abbott and White, 2005). Characterized by inappropriate drowsiness during wakefulness, EDS impairs cognitive function and quality of life and increases risks such as traffic accidents (Knie et al., 2011). EDS is more frequently observed in advanced stages of PD and has been associated with various non-motor features, such as mood disturbances, autonomic dysfunction, and fatigue (Feng et al., 2021; Maggi et al., 2023). Though its exact mechanisms remain unclear, damage to wake-promoting brain regions and neurotransmitter imbalances—particularly in dopaminergic, cholinergic, and noradrenergic systems—are likely contributors (Liu et al., 2022). Identifying reliable biomarkers and understanding its neurobiological underpinnings is crucial for early intervention and disease management (Siddiqui et al., 2024; Tripathi et al., 2024).

Neuroimaging research has shed light on structural and functional brain changes in PD-EDS patients. Using Voxel-based morphometry (VBM), researchers have detected gray matter disruptions in regions involved in sleep–wake regulation (Kato et al., 2012; Chondrogiorgi et al., 2015; de Schipper et al., 2017). Surface-based morphometry (SBM), which is more sensitive than VBM in detecting subtle structural changes, has shown that cortical folding measurements, especially cortical thickness, better identify PD-related gray matter alterations (Pereira et al., 2012). SBM-based EDS findings include hypertrophy in the putamen and pallidum (Gong et al., 2019), cortical surface expansion in the anterior insula, and subcortical atrophy in the amygdala and putamen (Rosinvil et al., 2024). Research on cortical thickness in PD-EDS is limited, and conflicting findings underscore the need for further investigation of its impact on brain structure. Functional MRI (fMRI) studies have shown abnormal connectivity in cortical and subcortical arousal networks (Wen et al., 2016; Zi et al., 2022; Zheng et al., 2023), especially within the default mode network, where hyperactivity in prefrontal and temporal regions may reflect compensatory or attentional deficits (Ooi et al., 2019; Wang et al., 2020; Zheng et al., 2023).

Neurofilament light chain (NfL), a cytoskeletal protein released during axonal injury, is a well-established biomarker of neuronal damage and degeneration (Gaetani et al., 2019; Sharma et al., 2024). Raised blood NfL concentrations correlate with both motor and non-motor symptoms in PD, offering clinical potential through advancements in ultrasensitive detection techniques like single molecule arrays (Simoa™; Pilotto et al., 2021; Zhu et al., 2021; Yin et al., 2022). Although one study has revealed elevated plasma NfL levels in patients with PD and EDS (Lin et al., 2024), the relationship between NfL levels and specific neuroimaging markers (Preische et al., 2019; Sampedro et al., 2020; Cruz-Gomez et al., 2021; Lee et al., 2022; Clarelli et al., 2024; Yao et al., 2024) has only been explored in patients with cognitive dysfunction (Mielke et al., 2019). Until now, no prior studies have assessed the tripartite relationship among plasma NfL levels, neuroimaging markers, and EDS severity in PD, representing a pivotal knowledge gap.

This study is the first to integrate structural and functional neuroimaging to investigate the neural mechanisms underlying EDS in PD. Using FreeSurfer, we analyzed cortical thickness alterations in key brain regions and examined functional connectivity (FC) patterns across brain networks. Furthermore, we assessed the interrelationships among cortical thickness, FC, and plasma NfL levels, and their associations with EDS severity. Finally, mediation analyses were conducted to determine whether NfL mediates the relationships between cortical thinning, FC alterations, and EDS, providing insights into potential neurodegenerative pathways.



2 Methods and materials


2.1 Participants

136 PD patients were recruited from the Neurology Department and outpatient clinics at the First Affiliated Hospital of Kunming Medical University between June 2021 and December 2024. The diagnosis was established based on the 2015 criteria of the International Parkinson’s and Movement Disorders Association (Postuma et al., 2015).

Sleep-related symptoms were assessed through face-to-face interviews using the Epworth Sleepiness Scale (ESS), a validated tool endorsed by the Movement Disorder Society (MDS) for evaluating daytime sleepiness (Högl et al., 2010). Participants were classified into two groups: PD-EDS (n = 36), with an ESS score ≥ 10, and PD-non-EDS (n = 100), defined by an ESS score ≤ 9 (Amara et al., 2017). Additionally, age- and sex-matched healthy controls without chronic illnesses were included. The exclusion criteria encompassed: (1) atypical Parkinsonism or secondary PD due to other identified conditions; (2) intracranial organic pathologies like tumors, hematomas, or cerebral infarction; (3) a history of traumatic brain injury or prior intracranial surgery; (4) use of medications affecting sleep, including hypnotics; (5) MRI contraindications; and (6) left-handedness.

Ethical approval was granted by the Ethics Committee of the First Affiliated Hospital of Kunming Medical University (2019-L-46), and the study adhered to the principles of the Declaration of Helsinki. Written informed consent was obtained from all participants, allowing the use of anonymized clinical data for research and publication.



2.2 Clinical and neuropsychological measurements

Baseline participant data were extracted from electronic medical records and personal interviews. For PD patients, demographic and clinical details, including age, sex, education level, dopamine receptor agonist usage, and levodopa-equivalent daily dose (LEDD), were recorded. Clinical assessments were performed while patients were in the ‘on’ state. Motor function was evaluated using the Hoehn and Yahr (HY) scale and the Unified PD Rating Scale Part III (Goetz et al., 2008). Depressive and anxiety symptoms were assessed via the Hamilton Depression (HAMD) and Anxiety (HAMA) Scales, respectively (Hamilton, 1959; Hamilton, 1960). Cognitive performance was measured using the Mini-Mental State Examination (MMSE). Rapid eye movement sleep behavior disorder (RBD) was screened using the RBD Screening Questionnaire, with scores exceeding 5 indicating a high probability of RBD (Stiasny-Kolster et al., 2007). To classify PD phenotypes, tremor-dominant and postural instability and gait difficulty (PIGD) scores were calculated based on specific MDS-Unified PD Rating Scale (UPDRS) items (Stebbins et al., 2013). Patients were categorized as tremor-dominant if the ratio of the mean UPDRS tremor score (8 items) to the mean UPDRS PIGD score (5 items) was ≥ 1.15, whereas those with PIGD-dominant PD had a ratio of ≤ 0.90.



2.3 Plasma NfL

Upon enrollment, 5 mL of venous blood was drawn into ethylenediaminetetraacetic acid (EDTA) tubes and processed within an hour. Following centrifugation (2,500 × g, 10 min), plasma samples were preserved at −80°C for later analysis. NfL concentrations were quantified using the Simoa NF-light® kit (Quanterix, MA, USA) on a Simoa HD-1 Analyzer, adhering to the manufacturer’s instructions. Each sample was thawed a single time, with automatic four-fold dilution performed by the device. The coefficient of variation for duplicates was 4.2%. Quality control samples (high/low NfL concentrations) were included, all within the expected range. Blinded research assistants conducted the assays to minimize bias.



2.4 Image acquisition and preprocessing

A 3.0 T whole-body scanner (Discovery 750w, GE Healthcare, USA) was used for MRI acquisition at the Imaging Department of the First Affiliated Hospital of Kunming Medical University. Standard head coils were utilized for both signal transmission and reception. Participants were instructed to stay relaxed, minimize cognitive activity, and remain awake during the procedure. The imaging protocol incorporated routine sequences, including resting-state fMRI (RS-fMRI) and 3D T1-weighted imaging (3D-T1WI). The 3D-T1WI scans were obtained with the following parameters: voxel size, 1 × 1 × 1 mm; repetition time, 8.2 ms; echo time, 3.2 ms; turn angle, 12; inversion time, 450 ms; matrix, 256 × 256; field of view, 256 × 256 mm; and slice thickness. The RS-fMRI parameters included: 36 slices; slice thickness, 3 mm; no gap; voxel size, 3.5 × 3.5 × 4 mm; volume, 240; repetition time, 2,000 ms; echo time, 30 ms; turn angle, 90°; field-of-view, 224 mm; and matrix, 64 × 64.

Surface-based morphometric analysis was conducted using FreeSurfer 6.0.0. Initially, the NIfTI format was generated from 3D-T1 DICOM images using MRIcron software. The converted data were then processed automatically in FreeSurfer within a Linux Ubuntu environment, which involved motion correction, non-brain tissue removal (e.g., skull extraction), transformation into the Talairach space, subcortical structure segmentation, and gray matter normalization. Additional processing steps involved delineating gray matter boundaries, applying topological adjustments, performing surface deformation, and registering the data to a spherical template. Cortical thickness, measured as the distance from the gray-white matter boundary to the pial surface, was computed for each brain region using a Gaussian smoothing kernel (full-width half-maximum [FWHM] = 10 mm). Finally, all reconstructed datasets were visually examined to evaluate the precision of registration, skull stripping, segmentation, and cortical surface reconstruction.

RS-fMRI data processing was performed using Data Processing and Analysis of Brain Imaging (version 4.5), incorporating Statistical Parametric Mapping (SPM12) and MATLAB 2022b. To minimize artifacts from scanner calibration and subject adaptation, the first 10 time points of each fMRI scan were discarded. The remaining images underwent slice-timing correction with the middle slice as a reference, followed by realignment to compensate for head motion. Participants exhibiting head displacement exceeding 2 mm or rotational movement beyond 2° were excluded, resulting in the removal of 24 subjects (Table 1). T1-weighted anatomical images were co-registered to the mean functional image using a rigid-body transformation and segmented into gray matter, white matter, and cerebrospinal fluid via the DARTEL template. Functional scans were normalized to Montreal Neurological Institute (MNI) space, resampled to 3 × 3 × 3 mm3 voxels, and smoothed with a 6 mm FWHM Gaussian kernel. To mitigate noise, linear detrending and temporal bandpass filtering (0.01–0.08 Hz) were applied, while nuisance signals from white matter, cerebrospinal fluid, and Friston-24 head motion parameters (including historical and squared terms) were regressed out.


TABLE 1 Baseline comparison between included and excluded PD patient.


	Characteristic
	PD-Included (n = 112)
	PD-Excluded (n = 24)
	p value

 

 	Age, years 	64.5 (57, 71) 	70 (60.5, 73.75) 	0.09


 	Male, n,% 	61 (54.5%) 	11 (45.8%) 	0.442


 	Education (years) 	9 (6, 12) 	6 (6, 12) 	0.308


 	H-Y grade 	2 (1, 3) 	2 (1, 3) 	0.228


 	UPDRS-III 	25 (16.25, 41) 	37.5 (18, 45) 	0.233


 	HAMD 	6.5 (3, 16) 	5 (2, 18.75) 	0.864


 	HAMA 	5 (1, 18.75) 	10 (1, 20.5) 	0.53


 	MMSE 	27 (24, 29) 	26 (20.5, 28.75) 	0.202


 	Selegiline (mg), n, % 	13 (11.6%) 	3 (12.5%) 	0.9


 	Pramipexole (mg) 	3 (1, 5) 	4 (0.625, 5) 	0.875


 	PSQI 	10 (6, 13) 	10 (5.25, 13.75) 	0.975


 	LEDD (mg) 	187.5 (337.5, 468.75) 	362.5 (198.12, 487.5) 	0.742


 	Subtype of PD (TD), n,% 	63 (56.3%) 	10 (41.7%) 	0.495


 	Subtype of PD (PIGD), n,% 	43 (38.4%) 	13 (54.2%) 	0.154


 	RBD, n,% 	34 (30.4%) 	9 (37.5%) 	0.054


 	ESS 	5 (2, 10) 	2 (5.7.75) 	0.59





Values are n (%), median (interquartile range) or mean ± SD, unless otherwise noted HAMA, Hamilton Anxiety Scale; HAMD, Hamilton Depression Scale; HC, Healthy controls; LEDD, levodopa-equivalent daily doses; MMSE, Mini-Mental State Examination; NA, not applicable; RBD, rapid eye movement sleep behavioral disorder; UPDRS, Unified Parkinson’s Disease Rating Scale; PD-EDS, Parkinson’s disease with excessive daytime sleepiness; PD-nEDS, Parkinson’s disease without excessive daytime sleepiness, MOCA, Montreal Cognitive Assessment; ESS, Epworth Sleepiness Scale, PSQI, Pittsburgh Sleep Quality Index.
 



2.5 Statistical analysis

Statistical analyses were conducted using SPSS version 27.0 (IBM Corp., Armonk, NY, USA). Categorical data were presented as proportions and assessed via the chi-square test. For normally distributed continuous variables, results were reported as mean±standard deviation and compared using two-sample t-tests or analysis of variance. Skewed continuous data were expressed as medians with interquartile ranges and analyzed using the Mann–Whitney U test or Kruskal–Wallis test.

Cortical thickness analysis was performed using FreeSurfer’s mri_glmfit function to conduct vertex-wise comparisons based on a general linear model (GLM), adjusting for age, sex, education, and HY status as covariates. Multiple comparisons were corrected using a precached cluster-wise Monte Carlo simulation with 10,000 permutations, identifying significant clusters at a cluster-level threshold of p < 0.05 (initial vertex-level threshold p < 0.01). Subsequently, mean cortical thickness values were extracted from significant clusters, and correlation analyses were conducted using SPSS version 27.0 (IBM Corp., Armonk, NY, USA), adjusting for the same covariates (Figure 1D). Significance was set at p < 0.05.
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FIGURE 1
 Comparison of cortical thickness in groups covariables are gender, age, education, H-Y. (A) In contrast with those without EDS, PD patients with EDS showed lower cortical thickness in SMG. L, PoC.R. (B) Compared to HC, PD-EDS patients showed the lower cortical thickness in PoC.R, ITG.L. (C) The ESS score was positively associated with plasma NfL concentration. In contrast, it was negatively associated with left SMG thickness, which, in turn, showed a negative association with plasma NfL concentration. (D) Cortical thickness values of different clusters between groups. (E) Plasma NfL concentration mediated the relationship between left SMG thickness and ESS. The indirect effect of plasma NfL on this relationship was significant, as represented by the paths a and b, which together imply a mediated effect. The direct effect of left SMG thickness on ESS, represented by c’, was not significant after accounting for plasma NfL. NfL, neurofilament light; SMG, supramarginal gyrus; ESS, Epworth Sleepiness Scale; PoC,postcentral gyrus; ITG, inferior temporal gyrus; L, left hemisphere; R, right hemisphere. The red-blue color bar on the figure shows the logarithmic scale of the p value (−log10). Red is positive, blue is negative.


To investigate cortical thickness differences across groups, corresponding MNI coordinates were extracted and defined as regions of interest (ROIs) with a 10-mm radius. The FC between each ROI and whole-brain voxels was examined using the CONN toolbox in SPM12. The mean BOLD time series was computed for all voxels within each ROI. Bivariate correlation analyses were performed to assess linear associations between the BOLD signals of each ROI pair, followed by Fisher’s z-transformation. Second-level analysis was applied to individual seed-to-voxel maps. All statistical tests were two-tailed, and multiple comparison corrections were implemented using the Gaussian random field method. Results were considered statistically significant at a voxel-level threshold of p < 0.001 and a cluster-level threshold of p < 0.05. FC differences between the PD-EDS and PD-non-EDS groups were extracted, and Spearman’s correlation was used to assess their relationship with ESS scores.




3 Results


3.1 Demographic and neuropsychometric characteristics

Baseline demographic characteristics are presented in Table 2. No significant differences were observed in sex, age, or education level between healthy controls and PD patients, regardless of EDS status. Likewise, LEDD, RBD scores, and motor subtypes remained comparable between the PD-EDS and PD-non-EDS groups. However, individuals with PD-EDS exhibited lower MMSE scores, higher PSQI, HAMD, and HAMA scores, as well as elevated plasma NfL levels, compared to their non-EDS counterparts.


TABLE 2 Clinical and demographic characteristics of study participants.


	Characteristic
	PD-EDS (n = 36)
	PD-nEDS (n = 100)
	HC (n = 32)
	p value

 

 	Age, years 	67.5 (61.25, 74.00) 	64 (57, 71) 	60 (50, 70) 	0.111


 	Male, n,% 	24 (66%) 	48 (48%) 	11 (34%) 	0.054


 	Education (years) 	9 (6, 12) 	9 (6, 12) 	8.5 (8.5, 12) 	0.305


 	H-Y grade 	2 (1, 3) 	2 (1, 3) 	NA 	0.09


 	UPDRS-III 	35 (16.75, 45.25) 	25 (17, 39) 	NA 	0.202


 	HAMD 	6.25 (15.5, 25) 	2 (5, 11) 	NA 	<0.001


 	HAMA 	6 (18, 22) 	1 (4, 13.75) 	NA 	<0.001


 	MMSE 	25 (20, 27.75) 	28 (25.00, 29.00) 	NA 	0.002


 	Selegiline (mg), n, % 	6 (17%) 	10 (10%) 	NA 	0.287


 	Pramipexole (mg) 	0.375 (0, 0.65) 	0 (0,0.46) 	NA 	0.538


 	PSQI 	11.50 (8.00, 13.00) 	9 (5,13) 	NA 	0.032


 	LEDD(mg) 	325 (200, 443.75) 	350 (175, 484.375) 	NA 	0.57


 	Subtype of PD (TD), n,% 	16 (44.4%) 	57 (57%) 	NA 	0.19


 	Subtype of PD (PIGD), n,% 	18 (50%) 	38 (38%) 	NA 	0.21


 	RBD, n,% 	16 (44.4%) 	27 (27.0%) 	NA 	0.054


 	ESS 	13.50 (10.25, 15.75) 	4 (2, 5.75) 	NA 	<0.001


 	NFL 	18.11 (11.52, 30.58) 	13.24 (8.67, 18.54) 	11.49 (9.84, 15.08) 	0.004





Values are n (%), median (interquartile range) or mean ± SD, unless otherwise noted. HAMA, Hamilton Anxiety Scale; HAMD, Hamilton Depression Scale; HC, Healthy controls; LEDD, levodopa-equivalent daily doses; MMSE, Mini-Mental State Examination; NA, not applicable; RBD, rapid eye movement sleep behavioral disorder; UPDRS, Unified Parkinson’s Disease Rating Scale; PD-EDS, Parkinson’s disease with excessive daytime sleepiness; PD-nEDS, Parkinson’s disease without excessive daytime sleepiness, MOCA, Montreal Cognitive Assessment; ESS, Epworth Sleepiness Scale, NFL, neurofilament light chain; PSQI, Pittsburgh Sleep Quality Index.
 



3.2 Alteration in cortical thickness among patients with PD-EDS

Compared to non-EDS patients, individuals with PD-EDS showed reduced cortical thickness in the left supramarginal gyrus (SMG) and postcentral gyrus (PoCR; Table 3, Figure 1A). Similarly, relative to healthy controls, they exhibited cortical thinning in the left inferior temporal gyrus (IFG) and right PoCR (Table 3, Figure 1B).


TABLE 3 Comparison of cortical thickness between groups.


	Study group
	Brain area
	MNI coordinates
	Cluster size
	Vertex
	p value



	X
	Y
	Z

 

 	HC>PD-EDS 	Temporal_Inf_L 	−43.6 	−15.6 	−32 	464.24 	733 	0.008


 	Postcentral_R 	52.5 	−18.4 	52.4 	365.24 	783 	0.041


 	PD-nEDS>PD-EDS 	SupraMarginal_L 	−60.8 	−33.1 	31.3 	398.22 	829 	0.039


 	Postcentral_R 	63.6 	−9.2 	24.7 	409.17 	982 	0.037





PD-EDS, Parkinson’s disease with excessive daytime sleepiness; HC, healthy controls; PD-nEDS, Parkinson’s disease without excessive daytime sleepiness; MNI, Montreal Neurological Institute; SMG, supramarginal gyrus; PoC,postcentral gyrus; ITG, inferior temporal gyrus; L, left hemisphere; R, right hemisphere.
 



3.3 Variations in FC between PD-EDS and PD-non-EDS groups

Using the left SMG as the ROI, patients with PD-EDS exhibited reduced FC with the left PoCR compared to patients without EDS (Table 4, Figure 2A). Similarly, selecting the right PoCR as the ROI revealed decreased FC with the left IFG operc in PD-EDS patients (Table 4, Figure 2B). Using the PoC_R as the seed region, the PD-EDS group showed markedly reduced FC relative to HC group(Table 4, Figures 2C,D).


TABLE 4 Intergroup comparison of functional connectivity in different brain regions.


	ROI[MNI coordinates (X, Y, Z)]
	Brain regions
	MNI coordinates
	Vertices
	T value



	X
	Y
	Z
	

 

 	FC difference when PD-EDS minus HC


 	Postcentral_R 	Temporal_Mid_L 	−51 	−72 	6 	133 	−4.2218


 	(52.5,-18.4,52.4) 	Cuneus_R 	6 	−81 	36 	317 	−4.1338


 	Postcentral_R (63.6,−9.2,24.7) 	Paracentral_Lobule_L 	-9 	−36 	63 	124 	−4.7956


 	FC difference when PD-EDS minus PD-nEDS


 	SupraMarginal_L (−60.8,-33.1,31.3) 	Postcentral_L 	−60 	−21 	27 	83 	−3.744


 	Postcentral_R (63.6,-9.2,24.7) 	Frontal_Inf_Oper_L 	−51 	12 	12 	98 	−3.6971





ROI, regions of interest; PD-EDS, Parkinson’s disease with excessive daytime sleepiness; PD-nEDS, Parkinson’s disease without excessive daytime sleepiness; SMG,supramarginal gyrus; PoC, postcentral gyrus; IFGoperc, inferior frontal gyrus, pars opercularis; MTG, Middle Temporal Gyrus; CUN, Cuneus; PCL, Paracentral Lobule; L, left hemisphere; R, right hemisphere.
 

[image: Brain imaging data from four panels (A-D) showing regions with blue highlights, indicating areas of interest in sagittal, coronal, and axial slices. Panels E and F present scatter plots of connectivity scores versus ESS scores, both showing a negative correlation, annotated with brain diagrams and correlation values (R = -0.33, p = 0.011; R = -0.34, p = 0.01).]

FIGURE 2
 (A) Using the SMG_L as the seed region, the PD-EDS group exhibited significantly lower FC compared to PD-non-EDS patients. (B) Using the PoC_R as the seed region, the PD-EDS group showed reduced FC relative to PD-non-EDS patients (C,D) Using the PoC_R as the seed region, the PD-EDS group showed markedly reduced FC relative to HC group. Regions with weaker connectivity are depicted in blue (T values). (E,F) In PD patients, FC between the SMG_L and PoC_L, as well as between the PoC_R and the IFGoperc_R, was negatively correlated with ESS scores.




3.4 Clinical correlation analysis

Cortical thickness in the left SMG was inversely correlated with both ESS scores and NfL levels (r = −0.175, p = 0.0416; r = −0.284, p < 0.001, respectively) (Figure 1C). A significant positive correlation was identified between ESS and NfL levels (r = 0.201, p = 0.019) (Figure 1C). In PD patients, FC values between the left SMG and left PoCR, as well as between the right PoCR and right IFG operc, showed a negative association with ESS scores (r = −0.33, p = 0.011; r = −0.34, p = 0.01, respectively). Figure 1D shows the comparison of extracted cortical thickness values among different clusters in each group.



3.5 Mediators of plasma NFL

Mediation analysis results indicated that left SMG thickness is indirectly related to ESS through its relationship with plasma NfL concentration (Figure 1E, Table 5). Specifically, a thinner left SMG was linked to higher plasma NfL levels (a = −30.4506, p = 0.0005), and a higher plasma NfL level was connected with worse ESS scores (b = 0.0938, p = 0.0127). The bias-corrected 95% confidence interval (CI), computed from 10,000 bootstrap samples, confirmed a significant indirect effect of plasma NfL (ab = −2.856) distinct from zero (95% CI = −6.3372 to −0.6079) (Table 5). This suggests that plasma NfL partially mediates the relationship between left SMG thickness and EDS severity, accounting for approximately 27.6% of the total effect. After adjusting for plasma NfL, the direct effect of left SMG thickness on ESS was no longer statistically significant (c′ = −7.509, 95% CI = −15.0905–0.0725, p = 0.0522), indicating that the observed association between left SMG thickness and ESS could be partially explained by plasma NfL levels.


TABLE 5 Mediation analysis of the indirect effect of SMG on ESS through NfL.


	Effect Path
	Unstandardized Coefficient
	Standard Error
	t-value
	p-value
	95% CI (LLCI, ULCI)
	Standardized Coefficient (β)

 

 	SMG → NfL (a) 	−30.4506 	8.52 	−3.57 	0.0005 	[−47.30, −13.60] 	−0.295


 	NfL → ESS (b) 	0.0938 	0.037 	2.53 	0.0127 	[0.0203, 0.1673] 	0.218


 	SMG → ESS (Total effect, c) 	−10.3649 	3.74 	−2.78 	0.0063 	[−17.75, −2.98] 	−0.233


 	SMG → ESS (Direct effect, c′) 	−7.509 	3.83 	−1.96 	0.0522 	[−15.09, 0.07] 	−0.169


 	Indirect effect (a × b) 	−2.8562 	1.51 	— 	— 	[−6.47, −0.58] 	−0.064




 




4 Discussion

This study is, to our knowledge, the first to assess how cortical thickness, FC, and plasma NfL levels interact in PD-EDS. Relative to PD patients without EDS, individuals with PD-EDS showed elevated NfL levels, thinner cortices in the left SMG and right PoCR, and weakened FC between the left SMG and left PoCR, as well as between the right PoCR and left IFG operc. Further mediation analysis indicated that plasma NfL was a stronger mediator of the connection between structural brain changes and the severity of EDS in PD. Moreover, the association between cortical atrophy in the left SMG and elevated NfL concentrations may help differentiate PD-EDS from PD-non-EDS, providing a novel perspective on the underlying mechanisms of PD-EDS.

Our study provided the first structural MRI evidence of alterations in the left SMG and right PoCR in patients with PD-EDS. Both regions, located in the parietal lobe, are integral to sensory integration and cognitive processing (Vandenberghe et al., 2012). The PoCR, as part of the primary somatosensory cortex, is essential for tactile perception, spatial awareness, and sensorimotor coordination, whereas the SMG, within the inferior parietal lobule, integrates multisensory information to support higher cognitive functions, including attention and social cognition. Given that PD-EDS is closely tied to cognitive impairment, it is plausible that the atrophy of the parietal cortex, a key hub for attention and sensory processing, contributes to its pathogenesis. Similarly, significant cortical thinning in the medial and dorsolateral prefrontal cortices and inferior parietal lobules has been reported in narcolepsy patients with cataplexy, affecting executive attention and working memory (Joo et al., 2011). Additionally, obstructive sleep apnea is associated with a higher likelihood of developing PD-EDS (Jeon and Oh, 2023), with cortical thinning observed in the left parietal, frontal, and temporal lobes, which is negatively correlated with ESS score (Li et al., 2023). Thus, these findings suggest that cortical thinning in specific regions may be associated with attention deficit and memory impairment in sleep disorders, including PD-EDS.

Cortical atrophy in key parietal regions may disrupt network connectivity and contribute to EDS in PD. Specifically, reduced FC between the left SMG and PoCG may impair sensory integration and attentional regulation. As components of the somatosensory network, the PoCG (S1) and SMG (S2) are involved in processing tactile input and coordinating sensorimotor functions (Potok et al., 2019). Their weakened interaction may reduce arousal-related signaling, thereby increasing vulnerability to EDS (Hitchcott et al., 2019). Furthermore, weakened FC was detected between the right PoCR and left IFG operc. As a subregion of the left inferior frontal gyrus, the IFG operc plays a key role in information processing during audiovisual perceptual decision-making (Li et al., 2020). These findings align with evidence linking frontal cortex dysfunction to PD-EDS (Wen et al., 2016; Ooi et al., 2019; Zi et al., 2022). The impaired white matter tract integrity between the frontal and parietal lobes in patients with PD-EDS further supports the neural downregulation mechanisms underlying EDS (Chondrogiorgi et al., 2015). Reduced FC between these key brain regions may contribute to deficits in sensory processing, attention, and regulation of arousal. Moreover, the weaker connectivity between these brain regions was correlated with higher ESS scores, indicating greater EDS severity. Disruptions in the FC within the left parietal cortex may serve as targets for neuromodulation interventions such as repetitive transcranial magnetic stimulation. Further investigation is necessary to determine how effectively these approaches modulate the arousal and attentional networks in PD-EDS.

NfL is a key cytoskeletal protein in neurons and a well-established biomarker of axonal damage (Petzold, 2005). Our findings indicate that plasma NfL levels are elevated in PD-EDS compared to PD-non-EDS, aligning with previous studies (Lin et al., 2024). Mediation analysis suggested that reduced SMG thickness may exacerbate EDS severity by driving NfL elevation, implying that neurodegeneration-induced cortical thinning promotes axonal injury biomarker release, which subsequently worsens EDS. Previous studies have demonstrated that serum NfL is related to posterior cortical atrophy in early PD, particularly in the parietotemporo-occipital regions, and is a marker of non-dopaminergic neurodegeneration linked to cognitive decline and PD progression (Sampedro et al., 2020). Elevated NfL concentrations have been shown to mediate the relationship between cortical atrophy and cognitive decline in multiple sclerosis patients (Cruz-Gomez et al., 2021). In Alzheimer’s disease, a bidirectional relationship exists, in which higher NfL predicts faster cortical thinning, whereas reduced cortical thickness accelerates NfL elevation, reflecting ongoing axonal degeneration (Mattsson et al., 2019). Combining NfL level with MRI-based cortical thickness measurement enhances the assessment of neuroaxonal injury. However, the exact relationship between EDS-related cortical thinning and increased NfL levels remains unclear. One plausible mechanism is that low perfusion and reduced blood flow may contribute to cortical thinning by causing metabolic dysfunction and oxidative stress, leading to neuronal shrinkage and cortical atrophy. This thinning, in turn, could exacerbate neurodegeneration and worsen EDS severity (Morrison and Hof, 1997). Consistent with our findings, attention deficits and reduced blood flow in the left parietal cortex have been associated with PD-EDS (Matsui et al., 2006).

Our study explored the contributors to EDS in individuals with PD. Consistent with previous research, EDS was strongly associated with non-motor symptoms, particularly cognitive impairments, anxiety, depression, and poor nighttime sleep quality (Kurtis et al., 2013; Zhu et al., 2016; Feng et al., 2021; Maggi et al., 2023). However, in contrast to previous studies that linked EDS to age, disease duration, and PIGD phenotype, there were no significant associations with these variables in our cohort. Notably, mediation analysis revealed that the indirect effect of cortical thinning on EDS through NfL was reduced and became non-significant after controlling for MMSE scores, suggesting that cognitive dysfunction may partially account for this pathway. These findings highlight the predominant influence of non-motor symptoms—especially cognitive impairment—on EDS, relative to disease duration and motor phenotype. Further research with detailed neuropsychological assessments and rigorous control of confounders is required to clarify these relationships.

Despite these important findings, this study had several limitations. First, although ESS is a commonly employed scale for evaluating EDS, it remains a subjective measure. Polysomnography and other objective tests enable a more comprehensive evaluation. However, these tests are resource-intensive and impractical for large-scale studies, making ESS a feasible alternative for screening EDS in clinical and research settings. Second, the EDS group had a relatively small sample size, especially after we excluded participants with excessive head motion, which may have affected statistical power. Validating these findings necessitates larger, multicenter studies. Finally, the cross-sectional design limits causal inferences between NfL, cortical thinning, and EDS severity in patients with PD. To gain a better understanding of PD-EDS mechanisms, longitudinal studies are essential in determining whether elevated NfL levels precede cortical thinning or result from neurodegeneration.

Collectively, our results indicate that elevated plasma NfL partially mediated the interaction between cortical thinning in the left SMG thickness and the severity of EDS, possibly reflecting the crucial role of neurodegeneration in linking cortical atrophy in this region to EDS. Cortical thinning may impair FC and exacerbate EDS in patients with PD. By integrating cortical thickness, FC, and NfL, our study enhances the comprehension of the potential mechanisms of PD-EDS as well as provides insights into the clinical implications and possible therapeutic targets.
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Characteristics B (95% Cl) P-value B (95% ClI) P-value
Rate difference —2.091 (—3.454, —0.727) 0.003 —0.106 (—0.534, 0.323) 0.627
Gender (male) 2.740 (—0.145, 5.625) 0.063 0.428 (—0.569, 1.424) 0.398
Age at baseline 0.133 (—0.010, 0.276) 0.068 —0.063 (—0.112, —0.014) 0.011
Baseline duration, year 0.879 (0.511, 1.246) 0.000 0.025 (—0.081, 0.131) 0.648
Years of education —0.425 (—0.771, —0.079) 0.016 0.458 (0.358, 0.559) 0.000
Baseline MMSE score —0.446 (—0.872, —0.019) 0.041 NA NA
LEDD at baseline 0.005 (—0.003, 0.013) 0.215 0.001 (—0.002, 0.004) 0.427
Baseline UPDRS-III score NA NA —0.064 (—0.108, —0.019) 0.006
Hypertension 0.629 (—2.772, 4.030) 0.716 —0.675 (—1.852, 0.503) 0.259
Diabetes 1.868 (—3.377,7.113) 0.483 0.969 (—0.804, 2.743) 0.282
Smoking —2.457 (—7.285, 2.371) 0.317 —0.407 (—2.05, 1.234) 0.625
Drinking 3.351 (—3.643, 10.344) 0.346 1.181 (—1.207, 3.569) 0.330

UPDRS, Unified Parkinson’s Disease Rating Scale; MMSE, Mini-Mental State Examination; LEDD, levodopa equivalent daily dose. Bold values indicate statistically significant differences at p

< 0.05.
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Outcome B (95% ClI)

Resting tremor subscore —0.236 (—0.586, 0.114) 0.185
Rigidity subscore —0.764 (—1.254, —0.274) 0.002
Bradykinesia subscore —0.813 (—1.581, —0.045) 0.038
Postural and gait disturbance —0.283 (—0.568, 0.003) 0.052

subscore

UPDRS, Unified Parkinson’s Disease Rating Scale. *Covariates including gender, baseline
age, duration of disease at baseline, years of education, MMSE score at baseline, LEDD at
baseline, comorbidities (hypertension, diabetes), and lifestyle factors (smoking, drinking)
were adjusted in each model. Bold values indicate statistically significant differences at p <

0.05.
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GG GA/AA P-value

carriers carriers
Patients, n 74 108 NA
Male, 11 (%) 41 (55.4) 54 (50.0) 0.553%
Age at baseline, Y 61.0 (54.0, 63.5 (55.0, 0.203"
69.0) 70.0)
Age at onset, Y 56.9 + 9.6 58.3+ 10.5 0.349¢
Duration of disease at 3.0 (2.0, 6.0) 3.0 (1.0, 5.0) 0.312°
baseline, y
Education, y 9.0(6.0,120) | 9.0 (6.0,12.0) 0.300°
LEDD at baseline 375.0 (300.0, 325.0 (300.0, 0.243"
450.0) 437.5)
H-Y baseline stage, n 0.320*
(%)
1 13 (17.6) 14 (13.0)
15 14 (18.9) 19 (17.6)
2 12 (16.2) 25(23.1)
25 29(39.2) 33 (30.6)
3 6(8.1) 17 (15.7)
UPDRS-III score at 23.5(16.8, 225 (17.0, 0.971°
baseline 30.0) 32.8)
Resting tremor 2.0 (0.0, 4.0) 2.0 (1.0,4.8) 0.362>
Rigidity 5.0 (2.0, 7.25) 4.0 (2.0, 6.0) 0.308"
Bradykinesia 11,0+ 55 11.7£5.6 0.347¢
Postural and gait 3.0 (2.0,4.0) 3.0 (2.0,4.0) 0.722>
disturbance
MMSE score at 27.0 (24.0, 26.5(23.3, 0.889"
baseline 28.0) 28.0)
Subtype of PD, n (%)
AR 47 (63.5) 63 (58.3) 0.538?
MX + TD 27 (36.5) 45 (417)
Hypertension, 1 (%) 16 (21.6) 22(20.4) 0.838*
Diabetes, 1 (%) 5(6.8) 7 (6.5) 0.941*
Smoking, n (%) 7(9.5) 9(8.3) 0.792?
Drinking, 1 (%) 4(54) 3(2.8) 0.365

UPDRS, Unified Parkinson’s Disease Rating Scale; H-Y, Hoehn-Yahr stages; y, years; Y,
years old; MMSE, Mini-Mental State Examination; LEDD, levodopa equivalent daily dose;
NA, not applicable. Variables with normal distribution were represented as mean =+ standard
deviation, while variables with skewed distribution were expressed as median and interquar-
tile range. *Chi-square test. "Mann-Whitney U test. “Two-independent samples ¢-test.
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Characteristic LPD (N =5 RPD (N = 49) p (LPD vs. RPD)
Age, years, mean + SD. 64.10£7.957 62,90 £ 10.574 0524
Gender, F/ M 23/27 /25 -
Education, years, (IR) 6,00 (6.00-9.00) 9.00(6.00-9.00) 0522
Age of onset, years, mean + SD 55.98 + 8.498 54.98 £ 10.209 0597
Duration, years, (IR) 7.00 (5.00-10.00) 7.00 (5.00-10.00) 0.682
UPDRS-II, mean + SD 5538 +12.227 5335+ 15.098 0463
MMSE, (IR) 27.00 (22.00-28.00) 27.00 (24.00-28.00) 0.780
PDQ-39, (IR) 6850 (51.75-88.25) 73 (50.50-91.50) 0629
BDI, mean & SD 19,16+ 11601 18249.148 0.664
LEDD, mg, mean £ SD 822470 +361.0314 813.286 + 341.9414 0897
Hoehn and Yahr, (IR) 3.00 (2:50-4.00) 3.00 (2.50-4.00) 0515

LPD, left-onset Parkinson'sdisease; RPD, right-onset Parkinsonisdiscase; UPDRS-III, Unified Parkinson's Disease Rating Scale motor section; MMSE, Mini-Mental State Examination; PDQ-
39, Parkinson's Disease Questionnaire; BDI, Beck Depression Inventory; LEDD, levodopa equivalent daily dose.





OPS/images/fnagi-17-1564754/fnagi-17-1564754-t002.jpg
P-value for CWP

Brain regions Maximum vertex coordinate of significant clusters Size (mm?)

MNIX MNIY MNIZ

Cortical surface area

LPD <RPD
Right SMG 56.5 -19 173 9956.05 0.0001
Right PCUN 76 -545 189 2781.66 0.0105
Left LING -32.1 -504 67 2335.01 0.0301
Left IPL —402 -69.3 175 2328.80 0.0303

Al clusters survived correction for multiple comparisons using a Monte Carlo simulation, resulting in a corrected cluster-wise p < 0.05. CWP, luster-wise probabiliy; LPD, lefi-onset
Parkinson's disease; RPD, right-onset Parkinson's disease; SMG, supramarginal gyrus; PCUN, precuneus; LING, lingual gyrus; IPL, inferior parietal lobule.





OPS/images/fnagi-17-1607691/fnagi-17-1607691-g002.jpg
Probability






OPS/images/fnagi-17-1607691/fnagi-17-1607691-g003.jpg
T
i
. -

Dorsal Atention Network -
r&/
7/ Fromoparicul Network

Vet Ao otork
72>
s Limbic Network
T—— TN
s

/





OPS/images/fnagi-17-1534073/cross.jpg
©

|





OPS/images/fnins-19-1575815/fnins-19-1575815-g005.jpg
Sensitivity

ROC

o0 02 o o s o0
1 - Specificity





OPS/images/fnins-19-1575815/fnins-19-1575815-g006.jpg
Sensitivity

ROC

7/

1-Specificity

—PiaPSD
—PiaPSD
=—012PSD
==T5aPSD
—F20PSD





OPS/images/fnagi-17-1607691/crossmark.jpg
©

2

i

|





OPS/images/fnagi-17-1607691/fnagi-17-1607691-g001.jpg
Records identified through Additional records identified
databases searching using through other sources
keywords (n=621) (#=0)
Records excluded (n=349)
-Duplicates n=243
-Abstract or meeting reports n=43

‘Titles and abstract screend

-Not PD research n=63

Studies included (n=52)

about PD patients (n=272)
Records excluded (n=85)
-Not Reho research n=85
Titles and abstract screend
bout Reho patients (n=18
= ) Records excluded (@=105)
-Not Reho-based research n=30
-No Healthy Control n=9
-Reviews or meta-analysises n=6
-Thesis n=63
Full-text original articals -Not whole-brain analyses n=1
assessed for PD patients vs
healthy controls (n=78)
Records excluded (n=26)
-Coordinates unavailable n=11
-Sample overlapped n=15
Reference lists cross-searched,






OPS/images/fnins-19-1575815/fnins-19-1575815-g002.jpg
P3aPSD

O1aPSD

50

40

30

20

60

40

°

*
— 50 60 [
40 ?
o 40
3 20 @
-9 o
32 N
o o 20
10
T T 0 T T T T
PDCOG  PDNC PDCOG  PDNC PDCOG  PDNC
* *
40 40
v
30 V 30 '
a a
2 2 )
! 2 20 % 20
wn ©
= 5
10 10
T T o T T o T T
PDCOG PDNC PDCOG PDNC PDCOG PDNC





OPS/images/fnins-19-1575815/fnins-19-1575815-g003.jpg
18
12
w
<
&
g
o
6 B —————
R ° 1 oz 3 4 5
MoCA Visuospatial
D E
1an 1=-0.344
124
w
& 1]
©
o
-
R
MoCA

G
“ r=-0.345

P=0.022*

G=0.034*

-—
o m w e
MoCA Visuospatial Language
J K
i r=-0.336 W r=-0.369 r=-0.343
P=0.026" P=0.014* P=0.023*
. . G=0.034* . 4=0.018" 4=0.023"
. : % . :
§e ge : S
s = s L S
T T T 1 6+ T T 1 T T
R S 0 : i ' : T
MoCA Language Language






OPS/images/fnins-19-1575815/fnins-19-1575815-g004.jpg
r=-0.363 r=-0.384 r=-0.402
® P=0.045" b P=0.033* | P=0.025"
q=0.045" . G=0.045" q=0.045"
[=] 2 . o » a 1
z : g 2
go ; % x . 2 20 ;
S B e Bef 2 i
10- 10- . . . . 104
B oo s
o o L o . H
o 2 4 H o z B B o 2 : i
Executive Executive Executive
D E F
r=-0.366 r=0.379
® P=0.043" = . P=0.036* g
P q=0.045* o] G=0.036*
a . - Q 204
0 304 . g
g . : ]
y P £ ]
104 . e
LIt
o o
B o B 1 15 o

Executive Memory





OPS/images/fnagi-17-1568002/fnagi-17-1568002-g006.jpg
Galangin

H-G

Mesocerebrum

Madopar

o

)29d 10 9101 uossaldxD oA

*

N T
e
=

Striatum

)29d 10 a1e1 uojssaidxe aABISOd

Control






OPS/images/fnagi-17-1568002/fnagi-17-1568002-g007.jpg
A Control  Model  H-G B; Control  Model  H-G

- T @] uo xRN

- o [ o

s [ [ [ = = o

Lom - 16KD8 AKT ’.--l‘;m‘
L M
-

o ———e ]

G [ — 0 oo | - 0

D E F G H 1
e & w “ = 12
o = o
51 ¢ g N 510 ¥ g
. . [ 3 . | i .
] . Zos ] H H L1
H H i " H .
e 8 02 0z 3
Control - Model -Galangin Control - Model H-Galangin Control - Model H-Galangin Control Model H-Galangin Control  Model H-Galangin Control Model H-Galangin

J K L M N o

10 a s e I 12

. o .

§ ] P zood 4 PR I

£ s g g H Sos §os
Ly 5 %o Eos g

" fa 8 H fu 5.,

o o o o o o

‘Control ModelH-Galangin Control ModelH-Galangin Control Model H.Galangin ‘Gontrol ModelH-Gatsngin ‘Control Model H-Galangin ‘Control ModolH-Galangin





OPS/images/fnagi-17-1568002/fnagi-17-1568002-g002.jpg
D14

behavior

Pole.

@

& & & & &
(s)iotneyoq Buiquipo sjod






OPS/images/fnagi-17-1568002/fnagi-17-1568002-g003.jpg
1.0

IL-1B(pg/mL)
° o o o
LA

°
=
T

Q

‘GSH-Px(pg/mL)

DA(pg/mL)

e
. s &
:
,
' e a8 e
O )
F F F
&
~ 7
20
;o
a
NN
R
P P

TNF-a(pg/mL)

SOD(U/mL)

s
S

0.00

DOPAC(pg/mL)

s

IL-6(pgimL)

MDA(umolimg)

HAV(ng/mL)

9

-

ES

~






OPS/images/fnagi-17-1568002/fnagi-17-1568002-g004.jpg
Madopar H-Galangin

=

F G H
s Hippocampus B Hippocampus F Striatum H Striatum
£ a00 £ 300 F £ w00 £ 800
z oL H " H PR R
w 300- 9 7 -2 w 600- % s00-
z *x £ 200 ES £
§ 2o f £ o £ o
5 o - Ea
H 3 H £
i g o i
2 RO 2 = R =

& 5
&7 o






OPS/images/fnagi-17-1568002/fnagi-17-1568002-g005.jpg
Positive expression rate of a-syn(%)

Striatum

Madopar

H-Galangin

e

Mesocerebrum

Positve expression rate of asyn(’)

Positive expression rate of TH(%)

Striatum
"
Y

=

Mesocerebrum





OPS/images/fnins-19-1558448/fnins-19-1558448-t007.jpg
PD-MCl; p value, t*

(n=31)
Age,years 6,39 6.68 64582 7.8 0348,0947
Sex (female/
14714 1813 0535

male)
Years of

1200 (3.00) 1200 (3.00) 0368
MMSE 26,00 (200) 2600 (3.00) 0500
MoCA 22,00 (375) 21,00 (5.00) 0047

*means when variables satisfy a normal distribution using an independent samples t-test,
p-values and t-values will be presented.
Mild cognitive impairment due to Alzheimer’s disease (AD-MCI), Parkinson's disease with
Mild cognitive impairment (PD-MCI), participants with years of education > 12 years in the
AD-MCI group (AD-MCL,), participants with years of education > 12 years in the AD-MCI
group (PD-MCI,), p-values (p), -values (1), Minimurm Mental State Examination (MMSE),
Montreal Cognitive Assessment (MoCA).
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Digital AD-MCl, p value,

biomarkers of (n =28) it
cognitive
function
EFDB, 42,89 28.84) 73.14 (4038) <0.001
EFDB, 25.15(23.35) 48.07(37.34) <0.001
EFDB, 21192191 4245 (3531) 0.001
EFDB, 478 (10.58) 1034 (13.12) 0.026
EFDB, 085 (053) 140 (1.17) 0.001

<0.001,
EFDB,, 32155+ 15.14 18021 + 48.05

6038

* means when variables satisfy a normal distribution using an independent samples t-test,
p-values and t-values will be presented. Highlighting significant p-values (p < 0.05) in bold.
Mild cognitive impairment due to Alzheimer’s disease (AD-MCI), Parkinson's disease with
Mild cognitive impairment (PD-MCI), participants with years of education > 12 years in the
AD-MCI group (AD-MCL,), participants with years of education > 12 years in the AD-MCI
group (PD-MCL,), p-values (p), -values (1), Task Completion Time (EFDB,), Total Drawing
Pause Time (EFDB,), Total Drawing Process Pause Time (EFDB), Maximum of Drawing
Process Pause Time (EFDB,), Average of Drawing Process Pause Time (EFDB,), Average of
Drawing Speed (EFDB,.).
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Gene

ALB

SRC

PTGS2

CDK1

EGFR

CDK2

PARPI

IL-1p

116

TNF-a

GSH-px

p-actin

R

R

Primer sequences (5'-3

GTGCTTGCAGAATTTCAGCCT
TGTATCGAACCAGAATGGCGT
GCAGATTGTCAATAACACAGAGGG
TGCCAAAGTACCACTCCTCAG
CTGGGCCATGGAGTGGACTT
GAGGATACACCTCTCCACCG
TTGTCACTCCCGACGAGTTC
CAGCGTCACTACCTCGTGTG
TCAACAACCAGAAGGGCCAA
GCGGCGTAGTGTACGTTTTC
ATCCGGCTCGACACTGAGA
GCAGCTTGACGATGTTAGGGT
TCTGCACCAGCAGACAAACC
ATGGCCTTTGCTTCGTCCTT
ATGCCACCTTTTGACAGTGATG
TGATGTGCTGCTGCGAGATT
CACTTCACAAGTCGGAGGCT
GAATTGCCATTGCACAACTCT
CCCACGTCGTAGCAAACCAC
TGAGATCCATGCCGTTGGC
CATCCTGCCTTCTGTCCCTG
CGCCATGGCAGTCTGTCTTA
TGGTGGGAATGGGTCAGAAG
TGTAGAAGGTGTGGTGCCAG

Gene

Cpat

Cde

Lerl

Pbk

Esco2

Spe24

Nikb1

TNF

Gsta3

Pik3rl

Gprese

F

m =

R

Primer sequences (

)
TCTGCGGCCGAGATAAATTCT
GAGAGGAAATGGTCTAGTCGGA
TCCGTAAAGCGCTGGATGTT
CGCTGGGTGATTTACATTCGG
GGGAACCAGCTACAAGCTAAGA
CTCCTTTAGCCGGACAGTGG
CCAGAGGGCTAAAGTACCTGC
TGGCAGAGAGACTCCTACATCA
GGCGGTGTTCAGATGTACCA
GCCAAACATGAAGCAATTCCTGA
TGTGAGCTGAAGCCTCATGG
GGTGGTGGATACGGTTGGA
ATGATCAAGGGCATCCACCAC
GTCACTGATGAACTTCGGCG
AACAATGCCTTCCGGCTGA
GGCCTCCATCAGCTCTTTGAT
GATCGGTCCCCAAAGGGATG
CCACTTGGTGGTTTGTGAGTG
ACATGCCCCCTGAGGAGAAA
TCCATGGCTCTTCAACACCTTTT
GGCCTCCATCAGCTCTTTGAT
TCAAACTCATGGAGACCTTTGCC
CAGAACAGAGCTACCAGGGG
CTGGTCTCTTTGCTGAGGCT
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Target Degree  Betweenness  Closeness

ALB 39 0.152425238 0.698924731
SRC 33 0.155089697 0.650000000
ESRI 32 0.104395481 0.650000000
EGFR 31 0.067632251 0.643564356
GSK3p 30 0.104534353 0.643564356
PTGS2 30 0.056273119 0.625000000
MMP9 2 0.023426488 0.580357143
PARPI 20 0.037831610 0.565217391
CDK2 20 0.026283225 0.550847458

CDK1 2 0.036521346 0570175439
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/*************************************************************
 *
 *  MathJax.js
 *  
 *  The main code for the MathJax math-typesetting library.  See 
 *  http://www.mathjax.org/ for details.
 *  
 *  ---------------------------------------------------------------------
 *  
 *  Copyright (c) 2009-2012 Design Science, Inc.
 * 
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 * 
 *      http://www.apache.org/licenses/LICENSE-2.0
 * 
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

if (!window.MathJax) {window.MathJax = {}}

MathJax.isPacked = true;
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Waldthaler Cross-sectional 61 PD (14 females,
etal., 2023 study 63.5+ 8.5);
25 HC (8 females,
62.9+11.0)

Zhou et al., Cross-sectional 75 de novo (PD)
2022 study (64.5 £ 8.1)
75 patients with ET
46 HCs

2.5

50.7% of PD
patients
were at

stage > 2

Mean disease duration

across clusters:

Cluster 1: 7.2 years (SD:

5.6)

Cluster 2: 8.4 years (SD:

6.2)

Cluster 3: 9.3 years (SD:

5.6)

Disease duration: s
12 months
(6-24 months)

LEDD: EyeLink 1000 Plus,
Cluster 1: 705.5 mg (SD: sampling rate not
411.6) reported

Cluster 2: 660.7 mg (SD:

430.8)
Cluster 3: 743.5 mg (SD:
342.3)
Dopamine agonist LEDD:
Cluster 1: 123.5 mg (SD:
104.6)
Cluster 2:212.8 mg (SD:
224.5)
Cluster 3: 147.9 mg (SD:
143.5)

All participants were assessed

in the ON-medication state.

Drug-naive de novo PD Visual Eyes

patients 4-channel
videonystagmography
(Micromedical

Technologies, USA),
sampling rate 120 Hz

MoCA, TMT, RCE,
FAB, BDI,
MDS-UPDRS III.

MMSE, MoCA,
NMSQuest, RBDSQ
REM, NMSQuest,
HAM-D

Prosaccades and antisaccades
(horizontal/vertical) tasks revealed vertical
saccadic hypometria, suggesting a potential
PD biomarker.

PD patients showed longer saccadic latency
(visually guided saccades) and reduced smooth
pursuit gain (SPEM), correlating with disease
severity. Eye-tracking differentiated PD from
controls (AUC = 0.78) but not from ET.

HC, healthy control; MoCA, Montreal Cognitive Assessment Test; MMSE, Mini-Mental State Examination; UPDRS, Unified Parkinson’s Disease Rating Scale; NA, not available; ADFES, Amsterdam Dynamic Facial Expression Set; MCI, with mild cognitive impairment;
MDS-UPDRS, Society-Unified Parkinson’s Disease Rating Score; SCOPA-AUT, Scales for outcomes in Parkinson’s disease- Autonomic Dysfunction; NPSY, neuropsychology battery; SVM, Support Vector Machine; POM, pursuit ocular movements; H&Y, Hoehn & Yahr;
CANTAB, Cambridge Neuropsychological Test Automated Battery; PRM, Pattern Recognition Memory; SWM, Spatial Working Memory; ML, Machine learning; FAB, Frontal Assessment Battery; BDI, Beck Depression Inventory-II (BDI-II); OMO, Odd Man Out;
EOG, electrooculography; TMT, Trail Making Test; HVLT, Hopkins Verbal Learning Test; COWAT-CFL, Controlled Oral Word Association Test; HADS, Hospital Anxiety and Depression Scale; GDS-15, Geriatric Depression Scale; FOGQ, freezing of gait questionnaire;
HAM-D, Hamilton Depression and Anxiety Scales; RBDSQ, REM Sleep Behavior Disorder Screening Questionnaire; NMSQuest, Non-Motor Symptoms Questionnaire; RBDSQ REM Behavior Disorder Screening Questionnaire; ET, essential tremor; ML, machine
learning; VGS, visually-guided saccades; LEDD, Levodopa Equivalent Daily Dosage.
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Munoz Within-subject 33PD 2.15+0.36 Mean disease LEDD =755.15 % 636.03 mg; | Eye-tracking system MoCA, UPDRS-III, Dopaminergic medication prolonged saccade

etal, 2022 crossover study (66.27 & 4.86 years) duration = 6.85 £ 4.07 participants were tested both (Eyelink IT, SR latency and reduced gain and peak velocity
HC 13 years. OFF and ON medication Research Ltd), across gap, step, and overlap tasks, with the
(65.23 & 5.72 years?) sampling rate 500 Hz strongest impairments in the overlap task,

particularly in peak velocity and gain.

Pahetal, Case-control 42 PD patients NA Mean disease duration NA GP3 Eye Tracker, NA PD patients exhibited shorter saccadic
2024 observational (70.5 £ 10.4 years) was 3.9 &£ 3.5 years; ON-medication state sampling rate 60 Hz latencies, increased inaccuracy in target
study 28 healthy controls disease duration of reaching (saccadic hypometria), and greater
(69.7 £ 7.6 years) 5 years or less. gaze instability, suggesting reflexive saccadic

alterations as potential PD biomarkers.

Reiner etal,, Cross-sectional 215PD 79 females Mild-to- NA 159 out of 215 PD patients Tobii Fusion Pro, MDS-UPDRS III PD patients showed longer saccadic latency,
2023 study 69 £ 9.1 years moderate (73.9%) were under levodopa Sampling rate not increased antisaccade errors, and reduced
PD: medication treatment. reported accuracy, worsening with disease severity.
H&Y <2 The ON/OFF state during
Severe PD: testing is not specified.
H&Y >3
StefSnescu Retrospective 62 2-3 NA NA Tobii TX300 MMSE; CANTAB; Longer saccadic latencies, reduced velocity
etal, 2024 study (60.35 + 8.98 years) No information on ON/OFF eye-tracking system, PRM; SWM (VGS task), and cognitive-related
medication state. sampling rate 250 Hz impairments, with blink rate and saccade
duration correlating with visuospatial memory
performance.
Tsitsi et al., Cross-sectional 48 PD patients 1-3 Years since diagnosis: 2.5 LEDD reported Tobii Pro Spectrum, UPDRS, MoCA PD patients had fewer fixations per second and
2023 observational (64.5+ 11.5) (3.5) years. (545 £ 496.25 mg), ON state. sampling rate prolonged fixation duration (reading task),
study 42 HCs ON-medication state 1200 Hz with deficits only in cognitively impaired PD
(62.5 £ 16.25) patients (MoCA < 26). Fixation duration

correlated with MoCA scores, suggesting
eye-tracking as a tool for early cognitive
decline detection in PD.
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43 PD (68.86 & 6.56)

17HC (69.24 £ 7.97)

145 PD, mean age
65 years;
80 HC

127 PD (63.8 & 8.4)
80 HCs (63.8 +8.4)

44 PD;
22 HC

14 PD (66.95 + 8.84)
years
125 HC (63.64 +6.9)

65PD (64.14 £ 8.40)

2-3

15

51% of PD
patients had
H&Y

stage > 2

1-3

NA

2.15£0.69
(Range:
1-4)

Mean disease duration of
7.77 years (SD 5.73)

Average disease duration:

3 years

Disease duration:

3.0 years

Average disease duration

was 1.66 £ 1.98 years?

Mean disease duration of
1.66 & 1.98 years

NA

LEDD: 817.46 mg (SD
409.61) for all PD
participants.

On medication state.

All participants were assessed
in the ON-medication state

LEDD: 237.5 mg (median,
with interquartile range
0.0-476.9 mg).
ON-medication state

NA
No information on ON/OFF
medication state.

NA
No information on ON/OFF
medication state.

ON state, with a stable dosage
of antiparkinsonian
medication

Tobii Pro Glasses 2,
sampling rate 100 Hz

Eyeknow eye tracker,
sampling rate 120 Hz

EyeKnow system
(infrared pupil and
corneal reflection
tracking, 120-Hz
sampling rate)

HMD device (HTC
Vive Pro eye) with
precise eye
movement tracking
technology.
Sampling rate

120 Hz

HTC Vive Pro Eye
(virtual reality-based
system). Sampling
rate 120 Hz

Tablet-based
eye-tracking system
(ETNA, Innodem
Neurosciences),
sampling rate 60 Hz

MDS-UPDRS I1I,
MoCA, Clock
Drawing Test,

MoCA; MMSE;
UPDRS

UPDRS, FOGQ,
MoCA, MMSE,
HAM-D, Sleep Scale
2, Epworth
Sleepiness Scale,
REM Sleep Behavior
Disorder Screening

Questionnaire

NA

UPDRS III

UPDRS-III, MoCA,
TMT, COWAT-CFL,
HVLT

Visual cues improved gait (stride length, stride
time variability) and increased saccade
frequency but reduced saccade amplitude and
peak velocity. PD patients showed reduced
saccade frequency and prolonged fixations,
with FOG patients exhibiting more severe
impairments.

PD patients exhibited ocular tremor
independent of disease severity, along with
fixation inaccuracy, slower saccades, impaired
visual search, and altered gait parameters.

PD patients showed fixation inaccuracy
(fixation task), delayed saccades
(prosaccade/antisaccade tasks), impaired
smooth pursuit (smooth pursuit task), and
reduced visual search ability (visual search
task), correlating with disease stage and motor

subtypes.

PD patients showed slower saccades, higher
error rates, and impaired visual scanning with
prolonged fixation duration and fewer
fixations. A VR-based eye-tracking model
(SVM classifier) achieved 83.4% accuracy,
supporting its potential for early PD diagnosis.

VR-based tasks (gaze stability, prosaccades,
antisaccades, smooth pursuit) showed

impaired fixation, saccades, and pursuit in PD;
deep learning model achieved 92.73% accuracy

for diagnosis.

Oculomotor tasks (fixation, prosaccades,
antisaccades, smooth pursuit, and optokinetic
nystagmus) correlated with disease severity

and cognitive scores. A ML model classified
mild vs. moderate PD with 90% accuracy using

oculomotor parameters.
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motor, or
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Baetal, Observational 20 PD (66.8 + 8.4); 1 to 4, with Disease course of LEDD: 1219.7 + 719.9 mg. Tobii X2-60 eye MoCA Patients with PD exhibited significant
2022 study 24HC (622 £7.5) 45% in stage 9.8 £ 4.7 years On medication state tracker, sampling stereopsis deficits, longer visual response
H&Y > III rate 60 Hz times, and less accurate saccadic movements.
These deficits correlated with UPDRS-IIT and
MoCA
Beylergil Cross-sectional 3 PD (1 female, 2-4 Disease duration of Stable dosage of EyeLink 1000 (SR MDS-UPDRS-1II PD patients showed increased fixational
etal, 2022 67 + 9.2 years); 11.38 & 5.39 years antiparkinsonian medication Research, Canada), saccades, reduced exploratory saccades, and
7HC (3 females; for at least 6 months before 500 Hz resolution delayed target detection, especially in
64.29 &+ 7.54) participation. unexpected locations, indicating visuospatial
On medication state. deficits
Brienetal., Observational, 121 (29 females; 1-3 Participants diagnosed LEDD: 692.2 + _365.1 mg Video-based MoCA; Interleaved pro/antisaccade task showed
2023 longitudinal 67.9 years £ 6.5) 55 within the last 3-8 years No information on ON/OFF eye-tracking, MDS-UPDRS; altered saccade latency, error rates, pupil
cohort design classified as medication state. sampling rate not SCOPA-AUT, NPSY responses, and blink behavior in PD. A ML
cognitively normal, reported classifier (AUC = 0.88, 83% sensitivity, 78%
45 with MCI, and 20 specificity) correlated with MDS-UPDRS and
with dementia MoCA scores, supporting eye-tracking as a
(PDD); biomarker for PD diagnosis and progression.
106 HC (67.7 £ 8.2).
de Villers- Cross sectional 59 PD NA NA NA 12.9-inch iPad Pro Motor scale of Tablet-based eye-tracking assessed fixation
Sidani et al., study (63.76 £ 8.23); No information on ON/OFF tablet with the ETNA MDS-UPDRS stability, prosaccades, and antisaccades in PD,
2023 62 HC (56.64 £ 8.56) medication state. software. Sampling revealing increased saccadic intrusions,
rate 60 Hz prolonged latencies, reduced accuracy, and
higher error rates, supporting its potential as a
biomarker for monitoring PD and
distinguishing patients from HC.
Ellmerer Phase II, 47 PD patients: NA Disease duration: No information on ON/OFF Tobii TX-300, MoCA, MMSE, Prosaccades, antisaccades, Go/NoGo, and
etal,, 2022 randomized, Nabilone group: -Nabilone group: medication state sampling rate 300 Hz | MDS-UPDRS, mixed pro-/antisaccade tasks showed no
placebo- 65.9 + 7.5 years, 7.0 £ 5.7 years HADS significant difference in reaction times or error
controlled, Placebo group: -Placebo group: rates between the nabilone and placebo
double-blind, 62.9 + 9.3 years 5.4+ 2.0 years groups.

parallel-group
pilot study
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Biomarkers

Molecular

formula

Trend ESI

Suberic acid
3-methyl-L-
tyrosine

Methyl (indol-3-yD)
acetate

CsH1404
CioHisNOy

CuHuNO,

Measured RT log2(FC)
m/z
157.0834 1353 0.162 2820 116
195.1016 4855 0.025 2,088 105
1720715 675 0.384 2098 0.86

mode
<0001 0967 1 ESI+
<0001 0876 1 ESI+
0.0001 0864 1 ESI+

PD-RBD, PD with RBD patients; PD-nRBD, PD without RBD patients; RT, retention time; ppm, part per million; VIP, variable important in projections EC, fold change; AUC, area under the

curve; 1: up-regulation; |: down-regulation; ESI+/-

 Positive ion mode/Negative ion mode; ‘p-value obtained Student’s independent t-tests.
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Biomarkers Molecular ~ Measured ~ RT log2(FC) P- Trend ESI

formula m/z (s) value® mode
Sodium deoxycholate CaiHs0Na 4152105 4653 0293 1259 -142 <0000 0991 1 ESI+
S-adenosylmethionine | CysHNoOsS 3982395 4596 3317 1079 -11 <0000 0978 1 ESI+
Letyrosine 182.0807 741 2614 1254 ~108 0.0001 0974 1 ESI+
3-methyl-L-tyrosine CioHyNOy 195.1016 4855 0025 1455 ~107 <0000 0967 1 ESI+
45-dihydroorotic acid CHN:O, 158.9611 1899 0706 2157 285 <0000 0967 1 ESI+
(62)-octadecenoic acid CiHi0: 2812479 6638 0016 1684 015 00003 0957 1 ESI-
Allantoin CHNLO; 158.9607 882 18197 2159 307 <0000 0935 1 EST+

PD, Parkinson' disease; HC, healthy controls RT, retention time; ppm, part per million; VIP, variable important in projection; FC, fold change; AUC, area under the curve; 1: up-regulation; 1:
down-regulation; ES1+/—: Positive ion mode/Negative ion mode; *p-value obtained Student’s independent t-tests
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Demographic and clinical PD-RBD (n = 19) PD-nRBD (n = 22) p-value®

characteristics

Age (years) 64422880 63594953 078
Sex (F/M) 910 12/10 0.65
'UPDRS part 11T 26.68 +10.61 2682+ 1479 0.97
HY stage 1894072 1984061 069
RBDSQ 8.05+2.17 2.00+0.87 <0.001
MMSE 25.00+3.73 2377573 043

PD-RBD, PD with RBD patients; PD-nRBD, PD without RBD patients; F/M, fermale and male; UPDRS part I11, Unified Parkinson's Disease Rating Scale I1T; H-Y stage, Hoehn and Yahr stage;
RBDSQ RBD screening questionnaire; MMSE, Mini-Mental State Examination; Values are presented as the means & SDs. p-value using Student’ independent t-tests for age, UPDRS part I1l,
H-Y stage, RBDSQ, MMSE, and a chi-squared test for sex composition.
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Demographic characteristics PD (n = 41) HC (n = 20) p-value
Age (years) 63.97£9.09 6170 £ 13.14 043
Sex (FIM) 21120 19 078

PD, Parkinsoris discase; HC, healthy control; F/M, female and male; Values are presented as the means & SDs. *p-value using a Student’ independent -test for age and a chi-squared testfor sex
composition.
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Characteristic Model 1 [ORs p-value Model 2 [ORs p-value Model 3 [ORs p-value

(95% CI)] (95% CI)] (95% CI)]
Continuous (per 10 scores) 0.80/(0.72,0.90) <0.001 081(0.71,0.92) 0.001 081 (0.66,0.99) 0047
Low (0-49) 1 (Ref) 1 (Ref) 1 (Ref)
Moderate (50-79) 049 (0.33,0.74) <0.001 053 (0.34,0.82) 0.005 053 (0.29,0.97) 0040
High (80-100) 038(0.21,0.70) 0.002 039(0.20,0.75) 0.005 043 (0.17,1.04) 0.060
pfor trend <0.001 0.002 0042

Components (per 10 scores)

HEI-2015 diet score 0.95(0.90,0.99) 0.048 0.93 (0.87,0.98) 0.014 0.93 (0.87,0.99) 0.027
Physical activity score 096 (092,099) 0020 097 (093,1.01) 0200 097 (093,1.02) 0300
“Tobacco exposure score 097 (0.92,1.01) 0.110 097 (0.92, 1.02) 0.200 0.81 (0.66, 0.99) 0.038
Sleep health score 0.92(0.87,0.97) 0.002 0.91(0.85,0.97) 0.004 091 (0.85,0.99) 0.020
Body mass index score 097 (0.92,1.02) 0.300 097 (0.92, 1.03) 0.200 0.98 (0.93, 1.04) 0500
Blood lipid score 1.03 (0.96, 1.09) 0.400 1.04 (097, 1.11) 0.300 1.04 (096, 1.13) 0.300
Blood glucose score 0.96 (0.91,1.00) 0.069 096 (091, 1.02) 0.200 0.96 (0.89, 1.05) 0.400
Blood pressure score 0.93(0.89,0.98) 0.006 0.94(0.89,0.99) 0.028 0.96 (0.89, 1.04) 0.300

CVH, cardiovascular health; LES, Lifés Essential 8; PD, Parkinson' disease; PIR, ratio of family income to poverty; HEI-2015, Healthy Eating Index-2015. Model 1: no covariates were adjusted.
Model 2 age, gender, education level, marital, PIR, and race were adjusted. Model 3: age, gender, education level, marital, PIR, race, smoking, drinking, hypertension, diabetes, and high
cholesterol were adjusted. A higher CVH score indicates better cardiovascular health.
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Subgroup  OR(95%CI) P for interaction

Overall  0.81(0.66 t0 0.99) ——
Age ! 0.748
40-60  0.88(0.65 to 1.20) gl ey
>60  072(059t0088)  +—=—1 !

Gender | 0.271
Male 0.90(0.69 to 1.17)
Female  0.77(0.59 to 1.01)

Race 0.824
Mexican American ~ 0.88(0.53 to 1.48)
Non-Hispanic White  0.79(0.63 to 1.00)
Non-Hispanic Black  1.15(0.86 to 1.55)
Other  0.75(0.49 to 1.13)
Marital status 0.705
No  0.89(0.76 to 1.05)
Yes  0.77(0.57 to 1.04)
Education 0.728
Below high school  1.00(0.56 to 1.77)
High School or above  0.78(0.63 to 0.95)
PIR 0.178
NotPoor  0.74(0.61 to 0.90)
poor  1.20(0.75t0 1.92)
Smoking 0.492
Never  0.76(0.61t0 0.96)
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Yes  0.84(0.64 to 1.09)
Diabetes 0917
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Characteristic Overall, N = 110,202,873 Non-PD, N = 108,739,335 PD, N = 1,463,538 (1.3%)

(100%) (98.7%)
No. of participants in the sample 18,277 18,034 23 -
Age (%) 0.060
40-60 68,072,992 (62%) 67,289,480 (62%) 783,512 (54%)
>60 42,129,880 (38%) 41,449,855 (38%) 680,025 (46%)
Gender (%) 0.003
Male 51,622456 (47%) 51,112,397 (47%) 510,059 (35%)
Female 58580417 (53%) 57,626,938 (53%) 953,479 (65%)
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Non-Hispanic Black 10,241,800 (9.3%) 10,149,839 (9.3%) 91,960 (6.3%)
Other 10,827,168 (9.8%) 10,771,502 (9.9%) 55,665 (3.8%)
Mexican American 6,232,086 (5.7%) 6192491 (5.7%) 39,396 (27%)
Married/live with partner (%) 0127
No 34,292,121 (31%) 33,747,557 (31%) 544,564 (37%)
Yes 75910752 (69%) 74991,778 (69%) 918,974 (63%)
Education level (%) 0172
Below high school 16,385,052 (15%) 16,109,960 (15%) 275,091 (19%)
School or above 93,817,821 (85%) 92,629,374 (85%) 1,188,447 (81%)
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Not poor 86,617,980 (84%) 85,561,170 (84%) 1,056,810 (79%)
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variables: the p-value was calculated by the weighted chi-square test
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Modell Model 2 Model 3

95% ClI 95% ClI 95% ClI

As continuous (per SD) 1.01 (1.01,1.01) 0.001 1.01 (1.01,1.01) 0.011 1.01 (1.01,1.01) 0.011

InterquartileQuartile Ref. Ref. Ref.

1(1.52—296.47)

Quartile 2(296.47—429.00) 1.33 (0.56, 0.513 1.19 (0.50, 0.689 1.35 (0.56, 0.500
327) 2.94) 3.32)

Quartile 3(429.00-620.00) 1.34 (0.56, 0.513 1.13 (0.47, 0.785 1.34 (0.56, 0.505
3.28) 2.79) 3.31)

Quartile 4(620.00-28397.27) 291 (141, 0.005 235 (1.13, 0.029 2.70 (1.30, 0.011
6.58) 5.36) 6.13)

p-trend 0.002 0.018 0.006

SII, systemic immune-inflammation index; OR, odds ratio; CI, confidence interval. ?The associations between SII levels and the risks of Parkinson’s disease are presented as ORs (95% CI).
Model 1 did not adjust for any covariates. Model 2 adjusted for age (years), gender, race, education level, marital status. Model 3 further adjusted for alcohol use, smoking—cigarette use, body
mass index, sleep disorders, hypertension, diabetes, coronary heart disease, and stroke based on Model 2.
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SII, systemic immune-inflammation index; NHANES, National Health and Nutrition Examination Survey. OR, odds ratio; CI, confidence interval. * The associations between SII levels and
the risks of Parkinson’s disease are presented as ORs (95% CI). Model 1 did not adjust for any covariates. Model 2 adjusted for age (years), gender, race, education level, marital status. Model 3
further adjusted for alcohol use, smoking—cigarette use, body mass index, sleep disorders, hypertension, diabetes, coronary heart disease and stroke based on Model 2.
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ORs (95% CI) p for
interaction

Variable
Gender
Male Ref. 1.28 (0.70, 12.37) 1.66 (0.94, 3.00) 2.08 (1.22, 3.68)* 0.026
Female 1.93 (1.01, 3.87)* 2.25 (1.22, 4.44)* 3.40 (1.91, 6.50)***
Age (years)
<60 Ref. 1.98 (1.01,4.12)* 2.38 (1.24, 4.87)* 3.67 (1.99, 7.31)*** 0.001
> 60 1.20 (0.67, 2.15) 1.43 (0.84, 2.50) 1.78 (1.09, 3.05)*
Race 0.034
Non-Hispanic White Ref. 1.82 (0.95, 3.70) 1.91 (1.03, 3.82) 3.04 (1.71, 5.90)***
Other race 1.20 (0.64,2.22) 1.58 (0.88, 2.86) 1.20 (0.64, 2.24)
Education level
High school and below Ref. 0.85 (0.48, 1.50) 1.01 (0.59, 1.14) 1.49 (0.92,2.47) 0.076
Above high school 3.98 (1.84,9.91)** 472 (2.23, 11.6)*** 5.98 (2.89, 14.5)***
Smoking—cigarette use
Every day or some day Ref. 1.14 (0.61,2.11) 1.30 (0.73, 2.35) 1.54 (0.90, 2.71) 0.161
Not at all 2.19 (1.15, 4.45)* 2.67 (1.4, 5.33)* 3.94 (2.20, 7.70)***
Alcohol use
Yes Ref. 1.75 (0.94, 3.35) 2.14 (1.20, 4.03)* 3.20 (1.86, 5.87)*** 0.001
No 1.33 (0.71,2.53) 1.53 (0.84, 2.86) 1.88 (1.08, 3.41)*
BMI (kg/m?)
Normal ( < 25) Ref. 1.80 (0.97, 3.43) 2.42 (1.37, 4.49)** 3.38 (1.97, 6.12)*** 0.519
Overweight/Obese (>25) 1.19 (0.64,2.27) 1.20 (0.66, 2.25) 1.55 (0.89, 2.83)
Hypertension
Yes Ref. 1.45 (0.83,2.59) 1.40 (0.81, 2.46) 2.08 (1.28, 3.55)** <0.001
No 1.61 (0.79, 3.40) 2,52 (1.32, 5.12)** 3.14 (1.69, 6.27)***
Diabetes
Yes Ref. 0.81 (0.35, 1.89) 0.98 (0.45, 2.21) 0.94 (0.46, 2.60) 0.486
No 1.87 (1.12,3.24)* 2.21 (1.35, 3.75)* 3.31 (2.08, 5.51)***
Stroke
Yes Ref. 1.77 (0.42, 8.76) 2.43 (0.72, 1.10) 2.05 (0.63, 9.15) 0.763
No 1.51 (0.95,2.42) 1.74 (1.12, 2.77)* 2.56 (1.70, 3.96)***
Coronary heart disease
Yes Ref. 1.87 (0.49, 8.95) 0.92 (0.21, 4.60) 1.39 (0.39, 6.42) 0.728
No 1.49 (0.94,2.41) 1.93 (1.25,3.05)** 2.63 (1.75, 4.07)***

SII, systemic immune-inflammation index; OR, odds ratio; CI, confidence interval. “The associations between SII levels and the risks of Parkinson’s disease are presented as ORs (95% CI).
Model adjusted for age (years), gender, race, education level, marital status, alcohol use, smoking—cigarette use, body mass index, sleep disorders, hypertension, diabetes, coronary heart
disease and stroke. *p-value < 0.05, **p-value < 0.01, and ***p-value < 0.001.
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Variables Total SlI

n = 54027
Q1(1.52- Q2(296.47—- Q3(429.00— Q4(620.00-
296.47) 429.00) 620.00) 28397.27)
n = 13507 n = 13509 n = 13514 n = 13497
Weighted sample size 237,198,970 47,270,359 60,053,262 64,244,680 65,630,669
Age (years), mean (SD) 35.08 (24.10) 27.50 (24.46) 34.23 (23.54) 37.79 (23.14) 40.82 (23.17) < 0.001
Age distribution (years), n < 0.001
(%)
<60 42,493 (78.7) 11,333 (83.9) 1,0806 (80.0) 10,410 (77.0) 9,944 (73.7)
> 60 11,534 (21.3) 2,174 (16.1) 2,703 (20.0) 3,104 (23.0) 3,553 (26.3)
Gender (%) 0.509
Male 26,766 (49.5) 7,372 (54.6) 7,010 (51.9) 6,494 (48.1) 5,890 (43.6)
Female 27,261 (50.5) 6,135 (45.4) 6,499 (48.1) 7,020 (51.9) 7,607 (56.4)
Race, n (%) < 0.001
Mexican American 10,070 (18.6) 2,190 (16.2) 2,559 (18.9) 2,687 (19.9) 2,634 (19.5)
Other Hispanic 5,110 (9.5) 1,176 (8.7) 1,352 (10.0) 1,329 (9.8) 1,253 (9.3)
Non-Hispanic White 20,293 (37.6) 3,806 (28.2) 4,920 (36.4) 5,489 (40.6) 6,078 (45.0)
Non-Hispanic Black 12,662 (23.4) 4,773 (35.3) 3,083 (22.8) 2,555 (18.9) 2,251 (16.7)
Other Race - Including 5,892 (10.9) 1,562 (11.6) 1,595 (11.8) 1,454 (10.8) 1,281 (9.5)
Multi-Racial
Education level, 1 (%) 0.353
Less than high school 8,362 (24.5) 1,547 (24.7) 2,072 (24.9) 2,258 (24.2) 2,485 (24.5)
High school or equivalent 7,910 (23.2) 1,460 (23.3) 1,839 (22.1) 2,159 (23.1) 2,452 (24.2)
College or above 17,793 (52.2) 3,267 (52.1) 4,405 (53.0) 4,926 (52.7) 5,195 (51.3)
Marital status, n (%) < 0.001
Married 18,279 (51.4) 3,303 (50.4) 4,623 (53.4) 5,058 (51.8) 5,295 (49.9)
Widowed 4,029 (11.3) 734 (11.2) 890 (10.3) 1,100 (11.3) 1,305 (12.3)
Divorced 4,341 (12.2) 816 (12.4) 1,024 (11.8) 1,168 (12.0) 1,333 (12.6)
Separated 868 (2.4) 136 (2.1) 204 (2.4) 245 (2.5) 283 (2.7)
Never married 6,021 (16.9) 1,186 (18.1) 1,401 (16.2) 1,616 (16.6) 1,818 (17.1)
Living with partner 2,041 (5.7) 385 (5.9) 514 (5.9) 571 (5.9) 571 (5.4)
Ratio of family income to 0.101

poverty, n (%)

< 1.00 13,101 (26.5) 3,609 (29.2) 3,180 (25.7) 3,182 (25.7) 3,130 (25.4)

1.01-3.00 20,317 (41.1) 5,081 (41.1) 5,003 (40.4) 4,934 (39.9) 5,299 (43.0)

> 3.00 16,014 (32.4) 3,680 (29.7) 4,190 (33.9) 4,243 (34.3) 3,901 (31.6)

BMI (kg/m2), mean (SD) 26.24 (7.82) 23.61 (7.25) 25.76 (7.37) 27.13 (7.58) 28.30 (8.25) <0.001
BMI (kg/m?), n (%) < 0.001
<185 8,884 (17.1) 3,870 (31.2) 2,315 (17.6) 1,520 (11.5) 1179 (9.0)

18.5-24.9 15,575 (30.0) 3,768 (30.3) 4,120 (31.4) 4,030 (30.5) 3,657 (27.9)

25.0-29.9 12,958 (25.0) 2,486 (20.0) 3,336 (25.4) 3,558 (27.0) 3,578 (27.3)

>30.0 14,429 (27.8) 2,295 (18.5) 3,362 (25.6) 4,084 (31.0) 4,688 (35.8)

Alcohol use, n (%) < 0.001
Never 7,798 (28.0) 1,482 (28.7) 1,891 (27.3) 2,021 (26.4) 2,404 (29.4)

Past drinker 1,9575 (70.2) 3,598 (69.8) 4,892 (70.7) 5,490 (71.7) 5,595 (68.5)

Current drinker 520 (1.9) 77 (1.5) 133 (1.9) 144 (1.9) 166 (2.0)

Smoking—cigarette use, n (%) 7,047 (46.0) 1,242 (46.4) 1,571 (44.2) 1,945 (46.1) 2,289 (47.0) 0.586
Sleep disorders, n (%) 4,684 (12.3) 861 (12.0) 1,111 (11.8) 1,263 (12.1) 1,449 (12.9) <0.00
Hypertension, n (%)® 1,2475 (32.6) 2,246 (31.3) 2,856 (30.4) 3,389 (32.5) 3,389 (32.5) <0.00
Diabetes, 1 (%)° 4,462 (8.4) 768 (5.8) 1,072 (8.1) 1,146 (8.6) 1,476 (11.2) <0.00
Coronary heart disease, n (%) 1,394 (4.1) 241 (3.8) 307 (3.7) 386 (4.1) 460 (4.6) < 0.00
Stroke, n (%) 1,407 (4.1) 238 (3.8) 273 (3.3) 362 (3.9) 534 (5.3) <0.00
Parkinson’s disease, n (%) 260 (0.5) 32(0.2) 53(0.4) 69 (0.5) 106 (0.8) < 0.00

SII, systemic immune-inflammation index; BMI, body mass index; NHANES, National Health and Nutrition Examination Survey. ¢All estimates accounted for sample weights and complex
survey designs, and percentages and means were adjusted for survey weights of NHANES. ?Hypertension was defined based on self-reported information. ‘Diabetes was defined as self-reported

diabetes (participants who answered “yes” to the question “Has a doctor told you that you have diabetes?”).
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AD-MCI PD-NC NCvs. NCvs. NCuvs.
(n = 40) (n = 41) AD- PD- PD-
MCI MCI NC

Corrected p value

Age,years | 61.00(15.25) | 6550(13.00)  66.00(1200) = 6500(9.00) 005 0,05 5005 5005 5005 5005 0.470,3
Sex (female/
" 2218 2119 2119 1724 5005 0,05 5005 5005 5005 5005 0.617,3
male)
Years of

1200(600) | 1200(600) | 1200(000) = 1200(350)  >0.05 0,05 5005 5005 5005 5005 0942,3
education
MMSE 2000(200) | 2550(200)  2600(275) | 28.00(L50)  <0.001  <0.001 0425 1000 <0001 <0001  <0.001,3
MoCA 2500(300)  2200(3.00)  21.00(475) | 2500(L00)  <0.001  <0.001 1000 1000 <0001 <0.001  <0.0013
MDS-

4.00(2.00) / 1950 (1275) 1600 (8.00) i <0.001 | <0.001 1 1000 / /
UPDRS 11

Because there were no MDS-UPDRS 111 data for AD-MCI, the NC, PD-MCI, and PD-NC groups were compared in the comparison of differences between multiple groups (p < 0.001, df = 2).
Highlighting significant p-values (p < 0.05) in bold.

Normal cognition (NC), Mild cognitive impairment due to Alzheimer's discase (AD-MCI), Parkinsoris disease with Mild cognitive impairment (PD-MCI), Parkinson's disease with normal
cognition (PD-NC), p-values (p), degree of freedom (df), Minimum Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Movement Disorder Society Unified
Parkinson's Disease Rating Scale I1I (MDS-UPDRS I11).
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<0.001

0.002
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0.019

0.789

0328
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*means that when a numerical biomarker satisfies a normal distribution,its F-value will be lsted. Highlighting significant p-values (p < 0.05) in bold.
Normal cognition (NC), Mild cognitive impairment due to Alzheimer' discase (AD-MCI), Parkinsons disease with Mild cognitive impairment (PD-MCI), Parkinson's disease with normal
cognition (PD-NC), p-values (p), degree of freedom (df), F-values (F), Performance of Overall Drawing Score (VEDB,), Task Performance of Numbers Drawing Score (VFDB.), Task

Performance of Outline Drawing Score (VEDB,), Task Performance of Clock Hands Drawing Score (VEDB,), Task Complet

1.000

1.000
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1.000
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0244

0.005,3
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<0.001,3
0.029,3
0.002,3,
5358

0196

<0.001,3,
8258
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0.003,3

ime (EFDB,), Initial

Drawing Pause Time (EFDB,), Total Drawing Process Pause Time (EFDB.), Maximum of Drawing Process Pause Time (EFDB.), Average of Drawing Process Pause Time (EFDB,), Number of
Pauses during Drawing (EFDB,), Drawing Time (EFDB), Number of Draws (EFDB,), Effciency of Drawing (EFDB,.), Length of Drawn Line (EFDB,), Initial Drawing Speed (EFDB,),
Average of Drawing Speed (EFDB,.), Variability of Drawing Speed (EFDB).
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Digital MoCA score [Visuospatial/
biomarkers executive] subtest

score in MoCA

R P
VEDB, 0312 <0.001 0472 <0.001
VFDB, 0.258 0.001 0.394 <0.001
VFDB, 0.307 <0.001 0.456 <0.001
EFDB, -0318 <0.001 —0262 0.001
EFDB, ~0343 <0.001 —0295 <0.001
EFDB; ~0.036 0,653 ~0.119 0.133
EFDB, ~0.384 <0.001 —0327 <0.001
EFDB; ~0.298 <0.001 —0270 <0.001
EFDB, —0321 <0.001 —0231 0.003
EFDB; ~0.164 0.038 ~0.092 0.247
EFDB ~0.072 0367 ~0.066 0.404
EFDB, ~0.257 0.001 ~0.265 0.001
EFDB, 0.331 <0.001 0292 <0.001
EFDB,, ~0071 0.368 ~0.035 0655
EFDB,s 0122 0122 009 0.255
EFDB,, 0290 <0.001 —0232 0.003

Highlighting significant p-values (p < 0.05) in bold.

Montreal Cognitive Assessment (MoCA), Spearman rank correlation coeffcient (R), p-
values (p), Performance of Overall Drawing Score (VEDB,), Task Performance of Numbers
Drawing Score (VFDB,), Task Performance of Clock Hands Drawing Score (VFDB,), Task
Completion Time (EFDB,), Total Drawing Pause Time (EFDB,), Initial Drawing Pause Time
(EFDB,), Total Drawing Process Pause Time (EFDB,), Maximum of Drawing Process Pause
Time (EFDB.), Average of Drawing Process Pause Time (EFDB,), Number of Pauses during
Drawing (EFDB,), Drawing Time (EFDB.), Number of Draws (EFDB,), Eficiency of
Drawing (EFDB,), Initial Drawing Speed (EFDB,.), Average of Drawing Speed (EFDB,.),
Variability of Drawing Speed (EFDB, ).
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Researcher Method mitation

(1) The sample sizes of AD-MCI patients and PD-MCI patients were small; (2)

Sl end il (2009) Participants draw watches on white paper Pointsare  the dimensions of the extracted metrics were limited, and only the final drawn
Saka and Elibol
awarded based on the result of the drawing of the clock. clock images were analyzed; and (3) the accuracy of distinguishing betsween

AD-MCI patients and PD-MCI patients was low, with an AUC of only 0.668.
Participants take a clock drawing test. Points are (1) The sample sizes of AD-MCI patients and PD cognitively impaired patients
Saur etal. (2012) awarded based on the picture of the clock results were small; (2) the dimensionality of the extracted metrics was limited and only

drawn, analyzed on the final drawn clock pictres.

(1) The sample size of PD-MCI patients was small (2) the dimensionality of
Participants drew clocks on paper. The clock drawings
Allone et al. (2018) ‘metrics extraction was limited, and only the final drawn clock pictures were
were rated both quantitatively and qualitatively. N
analyzed.

(1) There was a large difference in sample size ratios between AD and PDD

patients; (2) performance on the clock-drawing test was compared between AD
Participants were given a clock drawing test. Scoring
Jalakas et al. (2019) and PDD p:
was based on pictures of the clock drawing results.

ts, but no significant differences were found; and (3) the
dimensionality of the extracted metrics was limited, and only the final clock

drawings were analyzed.

(1) The sample sizes of patients with AD and PDD were small; (2) the

performance of patients with AD and PDD on the clock-drawing test was
Participants were given a clock drawing test. Scoring
Tafiadis et al. (2021) compared, but no significant differences were found; and (3) the dimensionality
was based on pictures of the clock drawing results
of the extracted metrics was limited, and only the final clock drawings were

analyzed

Alzheimer’s disease (AD), Parkinsonis disease (D), Mild cognitive impairment due to Alzheimer’s disease (AD-MCI), Parkinson' disease with Mild cognitive impairment (PD-MCI),
Parkinson's disease with normal cognition (PD-NC), Parkinson'sdisease dementia (PDD), area under the roc curve (AUC).
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Cognitive impairm

Abbreviation

Interpretation and units

Patients with AD-MCI and PD-MCI
exhibit impairments in visuospatial
function (North et al,, 2021;
Hannaway et al., 2023)

Visuospatial function digital biomarker,: Task Performance of Overall Drawing Score | VFDB,

Visuospatial function digital biomarker.: Task Performance of Numbers Drawing

VEDB,
Score.

Visuospatial function digital biomarkers: Task Performance of outline Drawing Score | VFDB,

Visuospatial function digital biomarker : Task Performance of Clock Hands Drawing

VEDB,
Score

It was obtained by calculating the sum of Task Performance of Numbers Drawing Score,

‘Task Performance of outline Drawing Score, Task Performance of Clock Hands Drawing

Score by the participant, and then obtaining the participants overall drawing score (Unit:

points).
Tt was used to determine whether the participant drew the numbers in the clock and
correctly placed the numbers, and to calculate the participant’s drawing score (Unit: points).
It was used to determine whether the outline of a clock drawn by a participant is closed or
not, and to calculate the participants outline-drawing score (Unit: points).

It was used to assess whether the clock hands were correctly indicating the hour and

‘minutes, and to calculate the participants clock hands drawing score (Unit: points).
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Patients with AD-MCI and PD-MCI exhibit
impairments in executive function (Arrigoni
etal., 2024; Zhang etal, 2024)

Executive function digital biomarker: Task Completion Time

Executive function digital biomarker;: Total Drawing Pause Time

Executive function digital biomarker: Initial Drawing Pause Time

Executive function digital biomarker,: Total Drawing Process Pause

Time

Executive function digital biomarker.: Maximum of Drawing Process

Pause Time

Executive function digital biomarker,: Average of Drawing Process

Pause Time

Executive function digital biomarker: Number of Pauses during
Drawing

Executive function digital biomarker,: Drawing Time

Executive function digital biomarker,: Number of Draws

Executive function digital biomarker : Effciency of Drawing

Executive function digital biomarker, : Length of Drawn Line

Executive function digital biomarker,;: Initial Drawing Speed

Executive function digital biomarker,y: Average of Drawing Speed

Executive function digital biomarker,: Variability of Drawing Speed

EFDB,

EFDB,

EFDB,

EFDB;

EFDB,

EFDB,

EFDB,

EFDB,

EFDB,,

EFDB,,

EFDB,,

EFDB,,

EFDB,,

Ttwas used to calculate the time taken by the participant from entering the test to

completing the clock drawing i, the total time taken to complete the test (Unit: seconds,
5).

Itwas used to calculate the sum of the time intervals during which the participant’ inger
did not touch the screen, i, the sum of the time during which the drawing was not
performed, during the test (Unit; seconds, ).

Tt was used to calculate the time between a participants entry into the test and the first

drawing on the screen (Unit: seconds, s).
Ttwas used to calculate the sum of the time the participants finger did not touch the screen
after the first stroke was drawn during the clock drawing process (Unit: seconds, ).

Itwas used to calculate the maximum value of the duration that a participants finger does

not touch the screen after the first stroke of the clock drawing process (Unit: seconds, ).

Tt was used to calculate the average duration that a participants finger does not touch the

screen afier the first stroke during the clock drawing process (Unit: seconds, ).
Ttwas used to count the number of times a participant’ finger stays on the screen during the
clock drawing process (Unit: times).

Itwas used to calculate total time the participant actively spent drawing, ic., the duration

the finger stays on the screen (Units

conds, ).

Itwas used to count the number of times a participant drew a line during the clock drawing
process. (Unit: times).

Ttwas used to calculate the drawing efficiency of the participants. The participants drawing
time during the clock drawing process, i.., the time the finger stays on the screen, is first
calculated, and then analyzed s a percentage of the task completion time (the total elapsed
time to complete the test), which is Drawing Efficiency (Unit: %).

Itwas used to calculate the total length of the line drawn by the participant during the clock
drawing process (Unit: pixels, px).

Ttwas used to calculate the speed at which the participant drenw the first line in the clock
drawing process (Unit: pixels/seconds, px/s).

Ttwas used to calculate the average speed at which participants drew each line during the
clock drawing process (Unit: pixels/seconds, px/s).

Itwas used to calculate the variability of a participant’s drawing speed. That s, the degree of
variability in the speed at which the participant draws each line is calculated during the

clock drawing process (Unit: %).
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‘This is the first line segment
drawn by the participant

X-axis and Y-axis are the relative
coordinates of the monitor screen.
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Drawing Time : EFDB;

participant's drawing duration during
the clock drawing process, ie., the
| duration the finger stays on the screen.

I Number of Draws : EFDB,

| Number of lines drawn by the
| participant during the clock drawing

| Efficiency of Drawing : EFDB;,

| Percentage of time spent by participants
plotting all red line segments as a percentage
\of time spent completing the task.

X(py)

Drawing Speed: Speed at which
participants drew each line.

Average of Drawing Speed: EFDB;,
We calculated the  participants’
average drawing speed for each line
segment during the drawing process

\g Speed: EFDB,,

Length of Drawn Line Segment : EFDBy,

The total length of the lines drawn by the
participants during the clock ~drawing
process, ie. the sum of the lengths of the red
line segments drawn by the participants.
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Participants plotted the variability
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AD-MCI vs. PD-MCI

EFDBy
EFDB,,

NC vs. PD-NC

PD-MCI vs. PD-N

EFDB,
EFDB,,

VFDB,

EFDB,
EFDB,
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Digital biomarkers of
motor function

Digital biomarkers of
cognitive function
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Combination of 10 digital biomarkers:

AUC = 0.929, 95% CI = 0.876 - 0.983

The combined 10 digital biomarkers

EFDB,, EFDB,, EFDB,, EFDBs, EFDBg, EFDB;
EFDBg, EFDB),, EFDBy3, EFDB),

Combination of 6 digital biomarkers of cognitive function:
AUC =0.923, 95% CI = 0.866 - 0.980

‘The combined 6 digital biomarkers of cognitive function:
[EFDBy, EFDBy, EFDB,, EFDBs, EFDBg, EFDBy3
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EFDB, = EFDBy + EFDB;  (3)
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VEDB, = VFDB, + VFDB; + VFDBy,

(1)





OPS/images/fnins-19-1558448/fnins-19-1558448-e002.jpg
T = & (Pictures) e P™°
@)





OPS/images/fnins-19-1558448/fnins-19-1558448-e003.jpg
Xp





OPS/images/fnagi-17-1511272/fnagi-17-1511272-g002.jpg
\\\\\\“\méasyiy,,/,ll

£

&
: &
2 N §
Ty, A

I o
g g i

s @ese.-
[

in

£t oE2EEs

FES VSR T FE PNy yy

§++ il i LT WN =:

<7a1 ot weowTeD MToPM 5
~ BEGRADATION OF bz o 1






OPS/images/fnagi-17-1511272/fnagi-17-1511272-g003.jpg
a 197 PD and 107 HC
included in this study

Informed consent, completed
dlinical evaluation, and 10 mL
venous blood was collected for
Parkin measurement with 165

NeBBusTa DT

Informed consent, completed

ciinical evaluation and 10 mL

venous blood was collected
for Parkin measurement

‘extra blood biomarkers were

without extra blood biomarkers.
measured (PD = 55, HC = 50)

(PD = 142, HC = 57)

99 biomarkers S———
excluded owing (0 lack 25 — 5 o
of examined subjects W s s 4 %
Log Lamoda Lo
55 PD, 50 HC included in
Subset 1 with blood Parkin
and extra 66 blood biomarkers.
d e
CooficntofLasso Fasure mportanca of RE
| o |
I R |
C R COMY —
= o= cen | [
ﬂ' — e |
Tooen |
et e o
(N=105) (N=199)
oc | I
o - 0000 [
o (e Conicirs * oo
(n=55) (n=142)
£ g h i eax i e k
ax axse, ax e o
o E o z BN
Y : £ g° gn ERS -3
3 £ £ H < 3.
S £ .a 5
£, a0 S £ 2w W £
£ ] _ 5 3 o 3 £
2 201 8 £ 3 2
2 5. 3
2 g 2 ! g
B N 0. 2
W o o O £ W
I m n
o8 08 St o8 -
g g 7
oo £ 3
E - E 08 1
>
H H z
% o A 2os Zos
L] + Homocysione (UG =079 & ; H G
7 Tot oo (UG = 0689)
o2 = Usa(AUG=0865) o2 cennes =071 02 — T v -a70m)
[ i i ooy
7 — Albumin (AUC = 0,643) % = Homooyssnes GEA(AUC 0764) . proinsABuTin (AUC »0.880)
i = foduohuem w0 Jr = toroen - cnumnioomn) " Z Cpenatumero s -oaz)
L " ok LA . an 00 02 04 06 08 10 00 02 04 06 08 10
+Spociicly (FPR) 1.apecifciy (FPR)

1-Specifiity (FPR)





OPS/images/fnagi-17-1511272/fnagi-17-1511272-g004.jpg
Subgroups
parkn
R—,
Qmedian=15.19)
Q(radane1809)
medanez109)

Continuovs

Qi(median=10.00)

Continuous

Q(median=

Continuous

Qi(median=3.30)

Q2(median=4.70)

Q3(medians5.75)

Abumin
Coninsous
Qmedian=35.00)
Q2modians3700)
Qmodians3520)
Qumedan=41.70)

o

Continuous

Qi(medians3.47)

OR(e8%C]
1

[ ] 12101071.37)
B 100 (oterence)
|

® o 12p3sT)

l
m— a7eroazose
'

> s07 1763861
'

'

§ mnois
b o
B— oz
> soepozzzzn

I— 201920510008]
1

LT
[ Rry—
[,
| o
P s
|

* 121[084.1.56]
T 1.00 (reference)
- 056 (0.14,2.34]
T
[R——
|
RS
e
P —
+ 146 [038.551)
P— 3.08(076,12:38]
1

128(108:147)
100 feronce)
131037488
2800721088
397(001518]
~
0550035089
100 ternce)
os9p16:152)
oz2p07071)

04201413

P_trend

oor7

<00

o018

oz

o0

o7

Parkin HCY | T_protein
" Ccomozo | Comors
1o e 0o
05~ Po0m
oo

25303540 20253035

e

Esiimated weights for WQS index

Auin

patin

cen
U

T_peolen

Estimated PD risk

Urea
oo
#0000

coroteo

Po.00m

w020

P00z

CEA | Atumn TG
s oxorm | anome [
om | wcom | o |8
oo | Poom | eoaos |5
Gt | Gamaw oo
x
wow | o | waw B
o
o | mom | roaou
omoon | cmow | o [
oo o |3
o mome |8
o cmoms | caowm
wom | wam | wom S
P0:0045 0 0025 PD.0128 g
wam | eom (G
oo | oo
o [
o am B
=i
momr B

Rege

384042 10152025 4 0 1 2 343638 101416

e

.H”

%

%
Blood blomarkers (Ln, Z:score)

o7

Parkin

HoY.

T_protein

Urea

CEA

Albumin

T

Estimated risk n PD.

e

5 3 0

3

o

3 0 s

Bod Mot e Bainch





OPS/images/fnagi-17-1511272/fnagi-17-1511272-t001.jpg
Characteristics C (N =107, PD (N = 197) p value
Age (years) 65.0(59.0:69.0] 67.0(61.0:72.0] 0.146
Sex 0.066
Female 62(57.9%) 91 (46.2%)
Male 45 (42.1%) 106 (53.8%)
Height (cm) 161 (7.05) 161 (8.33) 0579
Weight (kg) 63.5(9.23) 617 (105) 0124
BMI (kg/m2) 24.4(236) 238(3.22) 0131
BMI Group 0567
< 51(47.7%) 105 (53.3%)
24-28 12(11.2%) 23 (11.7%)
528 44 (41.1%) 69 (35.0%)
Education (years) 5.00 (0.006.50] 4.00 (0.00:7.00] 0837
Disease History (years) - 3.00 (2.007.00] -
Smoker 0308
Current 16 (15.0%) 25 (12.7%)
Former 2(1.87%) 11(5.58%)
Never 89 (83.2%) 161 (81.7%)
Drinker 0846
Current 17 (15.9%) 35 (17.8%)
Former 4(3.74%) 6(3.05%)
Never 86 (80.4%) 156 (79.2%)
HP 0001
No 52 (48.6%) 135 (68.5%)
Yes. 55 (51.4%) 62(31.5%)
DM 0807
No 91 (85.0%) 164 (83.2%)
Yes 16 (15.0%) 33 (16.8%)
LEDD - 375 [300;581] =
Related scales
UPDRS - 39.0(28.0:53.0] -
1 - 2.00 (1.00:4.00] =
1 - 11.0 [8.00;16.0] =
1 - 240 (150340 -
v - 2.00 (0.00:4.00] =
H-Y stage - 250 [1.50:3.00] -
MMSE 240 [20526.0] 230 180270 0164
HAMD 3,00 0.005.00] 5.00 3.009.00] <0.001
HAMA 4,00 [1.00:7.00] 9.00 [5.00:13.0] <0.001
RBDQ-HK 400 [1.009.50] 15.0(3.00:34.0) <0.001
ADL 200 (20,020 260 (21.0340] <0.001
Complications
Fall -
No - 154 (84.6%)
Yes - 28 (15.4%)
Dyskinesia -
No - 170 (929%)
Yes - 13 (7.10%)
On-off B
No - 137 (74.9%)
Yes - 46(25.1%)
Cognitive impaired o161
No 72(67.3%) 115 (58.4%)
Yes 35 (32.7%) 82 (41.6%)

Continuous variables were assessed for normality using Kolmogorov-Smirnov test, o variables on normal distribution, results were expressed as the mean + standard deviation (SD) and
compared using the student’ t-test; while data on non-normal distribution, variables were exhibited as median [IQR] and compared using the Mann-Whitney U-test, Categorical variables
were lsted as number (percentage) and compared using the chi-squared test

HC: Healthy Control; PD: Parkinsorss disease; BMI: Body Mass Index; Smoker (Current: people who have smoked continuously or cumulatively for 6 months or more and still smoke a the
time of the survey; Former: people who have smoked for more than 6 months and did not smoke at the time of the survey; Never: people who have smoked for less than 6 months throughout
their lves); Drinker (Current: peaple who have drunk alcohol continuously or cumulatively for 6 months or more and still drink at the time of the survey; Former: people who have drunk
alcohol for more than 6 months and did not drink at the time of the survey; Never: people who have drunk alcohol fo less than 6 months throughout thei livs); HP: hyper blood pressures
DM: diabetes melitus; LEDD: Levodopa Equivalents. UPDRS: unified Parkinson's disease rating scales MMSE: Mini-Mental State Examination; HAMD: Hamilton Depression Scales HAMA:
Hamilton Ansiety Scale; REDQ-HK: REM sleep behavior Disorder questionnaire-Hong Kongs ADL: Activiy of Daily Living Scale; Fall: subjects had a fall within a year; Dyskinesia: subjects
with abnormally increased involuntary movements; On-off: subjects with drug effect fluctuation after long:term use of levodopa. Cognitive impaired: subjects with MMSE scores lower than
cutoffvalue.
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