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Character-interested binary-like
image learning for text image
demoiréing

Zhanpei Zhang, Beicheng Liang, Tingting Ren, Chengmiao Fan,
Rui Li and Mu Li*

Department of Computer Science and Technology, Harbin Institute of Technology, Shenzhen,
Guangdong, China

Despite the fact that the text image-based optical character recognition (OCR)
methods have been applied to a wide range of applications, they do suffer
from performance degradation when the image is contaminated with moiré
patterns for the sake of interference between the display screen and the
camera. To tackle this problem, we propose a novel network for text image
demoiréing. Specifically, to encourage our study on text images, we collected
a dataset including a number of pairs of images with/without moiré patterns,
which is specific for text image demoiréing. In addition, due to the statistical
differences among various channels onmoiré patterns, a multi-channel strategy
is proposed, which roughly extracts the information associated with moiré
patterns and subsequently contributes to moiré removal. In addition, our
purpose on the text image is to increase the OCR accuracy, while other
background pixels are insignificant. Instead of restoring all pixels like those
in natural images, a character attention module is conducted, allowing the
network to pay more attention on the optical character-associated pixels
and also achieving a consistent image style. As a result from this method,
characters can be more easily detected and more accurately recognized.
Dramatic experimental results on our conducted dataset demonstrate the
significance of our study and the superiority of our proposed method compared
with state-of-the-art image restoration approaches. Specifically, the metrics of
recall and F1-measure on recognition are increased from 56.32%/70.18% to
85.34%/89.36%.

KEYWORDS

multi-sensor imaging, deep learning, text image, demoiréing, multi-channel, moiré
pattern, optical character recognition

1 Introduction

Due to the huge number of text images, the automatic text recognition from
a given image is quite necessary in recent years. Thanks to the techniques of
optical character recognition (OCR) [1–3], image-based text detection [4, 5] and
recognition [6] have been effectively improved and are widely applied to many
applications, such as ID card recognition [7], table recognition [8], and license plate
recognition [9, 10]. Despite the fact that these methods have achieved satisfactory
performances, they are sensitively influenced by the quality of images. As displayed
in Figure 1, it is a general and inevitable phenomenon that the captured image
is corrupted with diverse moiré patterns due to interference between the display
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FIGURE 1
OCR on the images with (A) or without (B) moiré patterns. Characters in green denote the accurate recognition, and characters in red denote the
inaccurate recognition. Making a comparison between (A) and (B), recognition accuracy on the text image is significantly influenced by the
moiré patterns.

screen and the camera, resulting in significant performance
degradation in both character detection and recognition. Thus, in
this paper, we focus on the moiré pattern removal from the text
images for OCR.

It is particularly challenging to remove moiré patterns from
photographs. Different from other corruptions, such as noise [11,
12], rain [13, 14], and haze [15, 16], the moiré pattern exhibits a
diverse range of characteristics. Specifically, as shown in Figure 1B,
colors, thickness, and shapes (stripes or ripples) are even diverse
across different areas in a photograph, and the frequency domain,
as analyzed in [17], further demonstrates its complexity.

Torestoretheimage,[18]proposedaconvolutionalneuralnetwork
(CNN), in which a multi-resolution strategy is adopted to remove the
moirépatterns fromawide rangeof frequencies. Inspiredby thiswork,
other studies [17, 19–22] have been proposed for image demoiréing.
Despite the fact that these aforementioned works effectively obtain a
moiré-free image from the input, they are only adaptive for natural
images, as the structures between text images andnatural imagesdiffer
significantly. Compared with natural images, the key information in
text images is theoptical characters. Inotherwords, thepurposeof text
image demoiréing is to improve the accuracy of text recognition after
restoration, which encourages us to pay more attention on the optical
character-associated pixels. Thus, not only the moiré patterns should
be removed from the raw image but also the semantic structures of
optical characters should be enhanced.

To achieve this goal, we propose the text image demoiréing
network (TIDNet). Considering that the moiré pattern in the G
(green) channel is statistically weaker than that in the R (red) and
B (blue) channels [17], its edge patterns are roughly but adaptively
extracted by our presented rough moiré pattern extraction module,
regardless of whether the scales of values in the R, G, and B channels
are different or similar. Furthermore, we also propose a character
attention module, allowing the network to particularly pay much
more attention on the optical characters for our OCR application.

In detail, as shown in Figure 2, it is obvious that under different
viewpoints and capturing distances, colors of moiré-contaminated
images captured from the same image differ significantly, making
complete recovery more difficult. In addition, if an image is covered
by watermarks (Figure 2A), it seems impossible to restore it from
the contaminated images due to the missing information in image
collection (Figures 2B–D). Subsequently, the inaccurate background
pixel estimation may even inversely result in the degradation of
performance. In fact, we need to improve the recognition accuracy.
The greater the difference between the foreground and background,
the easier it is to detect and recognize the text. Thus, apart from
image demoiréing, we further transform diverse image styles to a
consistent version, where the background pixels are white, while
the foreground characters are black. Thanks to this strategy, not
only the estimation for the complex background is avoided but
also the difference between the characters and background pixels is
enlarged, contributing to both character detection and recognition.
In addition, a mask strategy and a semantic measurement are jointly
introduced, allowing our model to pay much more attention on the
character-associated pixels.

In order to achievemoiré pattern removal, a dataset is necessary.
In addition, we create a text image dataset named HITSZ-TID,
which is composed of 3,739 pairs of images. For each pair, it
consists of an image contaminated with moiré patterns, as well as its
associated reference image without moiré patterns. Particularly, we
extract the contaminated image under multiple devices, viewpoints,
and distances, ensuring the diversity and generalization of our
collected dataset.

The main contributions of this paper are as follows:

• A text image demoiréing network (TIDNet) is particularly
designed for text image demoiréing. Thanks to our proposed
method, the recognition accuracy on text images contaminated
with moiré patterns is greatly improved. Values of Recall and
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FIGURE 2
(A) Image without moiré patterns. (B–D) Images with moiré patterns, which are captured under different viewpoints and distances.

FIGURE 3
Image alignment. The reference image and the captured image contaminated with moiré patterns are aligned according to their corresponding
corners: (A) reference image, (B) captured image, and (C) aligned image.

F1-measure on recognition increased from 56.32%/70.18% to
85.34%/89.36%.

• The rough moiré pattern extraction module and character
attention module are jointly introduced into our TIDNet.
Due to the differences in different channels on the moiré
patterns, the moiré is first removed roughly. Furthermore, the
textural and semantic characters are also exploited, which are
specifically adaptive for text image moiré removal.

• A dataset HITSZ-TID which is for text image demoiréing
is created. It consists of 3,739 image pairs, where each
pair contains an image contaminated with moiré patterns
and its corresponding reference image free from the moiré
patterns. This dataset fills the gap between the OCR and
image demoiréing, contributing to the research study on these
two fields.

The rest of this paper is organized as follows. In Section 2, some
related works about image demoiréing and text image processing
are briefly described. Our created dataset and proposed TIDNet
are then introduced in Section 3 and Section 4, respectively.
To demonstrate the significance of text image demoiréing
for OCR and the effectiveness of our proposed method, we
conducted experiments in Section 5, followed by conclusion
in Section 6.

2 Related works

In this section, we briefly introduce the related works on image
demoiréing and text image processing.
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TABLE 1 Detailed information of mobile phones and display screens for
capturing images.

Mobile phone Display screen

Model Model Resolution

Huawei Mate 30 Pro AIDU LJ240S 1920× 1080

Redmi Note 11 Pro Redmi RMMNT238NF 1920× 1080

iPhone 8 Plus Hanpon E2206 1920× 1080

VIVO X21S ThinkPad E450 1366× 768

Redmi MAX3 ThinkPad E14 1920× 1080

iPhone 8 ThinkPad E490 1920× 1080

Huawei Nova 5 — —

2.1 Image demoiréing

Due to the interference of different repetitive patterns, the image
contaminated with moiré patterns is an inevitable phenomenon.
In recent years, various methods have been proposed for moiré
pattern removal. By exploiting the prior assumption that moiré
patterns are dissimilar on textures, a low-rank and sparse matrix
decomposition method [23] was developed to achieve demoiréing
on high-frequency textures. Different from this hand-crafted
feature-based method, [18] primarily utilized the CNN for moiré
image restoration. Considering that moiré patterns widely span
in different resolution scales, multiple resolutions were jointly
exploited in [18]. Followed by it, [21] also presented a multi-
scale feature enhancement network for moiré image restoration.
In addition, a coarse-to-fine strategy was presented in [24], which
introduced another fine-scale network to refine the demoiréd image
obtained from the coarse-scale network. In addition, instead of
relying solely on real captured images like [18], [24] modeled the
formation of moiré patterns and generated a large-scale synthetic
dataset. Furthermore, [20] proposed a learnable bandpass filter and
a two-step tone-mapping strategy for moiré pattern removal and
color restoration, respectively. [25] constructed a moiré removal
and brightness improvement (MRBI) database using aligned moiré-
free and moiré images and proposed a CNN with additive and
multiplicative modules to transfer the low light moiré image to the
brightmoiré-free image. Considering that themoiré patternsmainly
located on the high-frequency domain, the wavelet was embedded
into the network [26], in which the features represented by the
wavelet transformation were then processed. To compensate for the
difference in domains between the training and the testing sets, a
domain adaptation mechanism was further exploited to fine-tune
the output. Similarly, [27] also introduced a wavelet-based dual-
branch network to separate the frequencies of moiré patterns from
the image content. By exploiting progressive feature fusion and
channel-wise attention, the attentive fractal network was proposed
in [28]. In addition, [29] proposed another attention network
named C3Net, which focuses on channel, color, and concatenation.
Different from these aforementioned methods from single-image

demoiréing, the multi-frame-based image demoiréing was also
studied in [19].

Despite the fact that a number of deep learning-based
approaches have been proposed for moiré-free image restoration,
almost all of them are designed for natural images, which are not
particularly adaptive for the text images.

2.2 Text image processing

The quality of the text image has a key influence on the accuracy
of ORC. According to this purpose, some works on text image
processing have been studied. For instance, several artificial filters
were compared on low-resolution text images [30]. Subsequently,
SRCNN [31] was applied to the text image super-resolution [32].
To achieve the scene text image super-resolution, [33] designed
a text-oriented network, in which the sequential information and
character boundaries were enhanced. In addition, in [34], the image
was decomposed into the text, foreground, and background, which
were beneficial for text boundary recovery and color restoration,
respectively. Considering the text-specific properties, [35] utilized
the text-level layouts and character-level details for text image super-
resolution. Apart from this super-resolution application, some
deblurring approaches [36–42] have also been proposed for text
images. Specifically,[38] introduced two-tone prior to estimate the
kernel for image deblurring. The deep neural network followed
by sequential highway connections was exploited to restore the
blurry image to a clear image. Furthermore, by constructing a
text-specific hybrid dictionary, the powerful contextual information
was then extracted for blind text image deblurring [39, 43, 44].
For the text image detection and recognition, [45] proposed a
mathematical model based on the Riesz fractional operator to
enhance details of the edge information in license plate images,
hence improving the performance. In addition, a method [46] for
predicting hidden (masked) text parts was proposed to fill the gaps
of non-transcribable parts in the unstructured document OCR.

Although these methods were studied for text image super-
resolution or deblurring, they are not adaptive for the application
of demoiréing, due to the much more complex distributions or
structures of the moiré patterns. Therefore, it is quite significant
to propose a specific network for text image demoiréing. A related
work named MsMa-Net [47] was proposed for moiré removal in
document images. However, our proposed method is quite different
from that of [47]. Referring to the dataset, only 80 images were
used for dataset construction, whereas 551 images were used in
our dataset, resulting in 3,739 pairs. Furthermore, we further take
text priors, e.g., gradient, channel, and semantic information, into
account, which contribute to our performance improvement on
detection and recognition. In addition, although MsMa-Net also
mentioned binarization for the output, it still first enforced the
output to be the same to the reference image in the color version,
which was then followed by a threshold processing to achieve
binarization. By contrast, our proposed dataset TIDNet directly
transforms various inputs to a binary-like ground-truth without any
reference estimation, making it easier to remove the influences of
diverse backgrounds and contributes to image reconstruction.Thus,
this work will considerably benefit future research on text image
processing and OCR.
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FIGURE 4
Pipeline of our proposed TIDNet. The rough moiré pattern extraction module in the first branch is introduced to estimate the moiré-free image in a
simple but efficient way. By enforcing feature maps from this branch to the second branch and taking the character attention module into account, a
more accurate image without moiré patterns is finally obtained. Notably, all blocks in our proposed method enjoy different weights.

FIGURE 5
Display of the transformed channels and their subtraction. Images at the second row denote transformed R (Ire), G (Ige), and B (Ibe) channels, respectively.
At the first row, “R-G” (Mr) denotes the subtraction between R and G. So does “B-G”.(Mb)

3 Dataset

In this study, for training and testing purposes, we collect
3,739 pairs of contaminated moiré images and uncontaminated

reference images to serve as a text image benchmark for moiré
pattern removal. Specifically, we download the reference text images
in Chinese or English from the internet, which are then used for
capturing contaminated images.
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FIGURE 6
Display of the edge maps of the three channels and their subtraction. Images at the second row denote edge maps of R, G, and B channels,
respectively. At the first row, “Edge R-G” denotes the subtraction between Edge R and Edge G. So does “Edge B-G”.

FIGURE 7
Display of the reference image with the complex background and the ground-truth image with the binary-like background.

3.1 Image capture

Similar to [18], each reference image is surrounded by a black
border for alignment, which will be analyzed in Subsection 3.2. As
displayed in Figure 3, the image is first located in the center of
the display screen, which is then captured using a mobile phone.

Notably, the black border is always completely captured, and each
photo is taken from a random distance or viewpoint, guaranteeing
the diversity of the moiré patterns.

To further enhance diversity in our created dataset, we use a
variety of mobile phones and monitor screens. Table 1 lists the
detailed information of our usedmobile phones and display screens.
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TABLE 2 Ablation studies conducted on our collected dataset.

Task Detection Recognition

Metrics Recall Precision F1-measure Recall Precision F1-measure

Moiré 53.82% 99.15% 69.77% 56.32% 93.10% 70.18%

Backbone 24.88% 98.99% 39.77% 24.38% 80.54% 37.43%

Backbone + Mask 58.79% 99.01% 73.77% 53.85% 80.86% 64.65%

Backbone + Mask + Channel 64.13% 99.34% 77.94% 57.31% 81.05% 67.15%

Backbone + Mask + Channel + RMEM 68.93% 98.88% 81.23% 62.02% 83.02% 71.00%

Backbone + Mask + Channel + RMEM + OCR 92.92% 98.72% 95.73% 85.34% 93.78% 89.36%

“Moiré” denotes results on the raw image without any processing. “Backbone” denotes results obtained by the baseline network, which is guided by Lb. “Backbone + Mask” denotes results by adding
the mask loss Lm. “Backbone + Mask + Channel” denotes results by additionally introducing the three-channel network. “Backbone + Mask + Channel + RMEM” denotes results by additionally
introducing the rough moiré extraction module (RMEM). Similarly, “Backbone + Mask + Channel + OCR” denotes results by adding the OCR semantic loss Locr. Notably, the best performance is
highlighted by “bold.”

FIGURE 8
Visualizations of ablation studies corresponding to Table 2.

Specifically, eight types of mobile phones and seven types of display
screens are used for capturing images. Taking other aforementioned
variables into account such as distances and viewpoints, 3,739 pairs
of images are totally obtained.

3.2 Image alignment

To achieve the training phase in an end-to-end way, the
contaminated image should be aligned with its corresponding

reference image at the pixel-to-pixel level. Although [18, 25]
proposed the corner or patch matching algorithms for image
alignment, these automatic strategies still encounter a slight
misalignment. Different from the natural images, the misalignment
under even several pixels would make a great influence on
the text image restoration. Thus, we manually detect the
corresponding corners for the text image alignment. As shown in
Figures 3A, B, four corners in the reference image and contaminated
image are detected, respectively, through which the geometric
transformation between these two images is estimated. Finally,
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TABLE 3 Results obtained by our proposed method guided by different
reference images.

Task Detection

Metrics Recall Precision F1-
measure

TIDNet (color) 88.38% 99.12% 93.44%

TIDNet 92.92% 98.72% 95.73%

Task Recognition

TIDNet (color) 83.34% 93.52% 88.14%

TIDNet 85.34% 93.78% 89.36%

“TIDNet (color)” and “TIDNet” denote our proposed method is supervised by Iref with
diverse backgrounds and Ig with the consistent background, respectively.

we obtained the aligned image with moiré patterns, as displayed
in Figure 3C.

4 Proposed method

The pipeline in our proposed method is shown in Figure 4.
It is clear that there are two branches for the moiré-free image
generation. From the bottom to top, our proposed rough moiré
extraction module and the three-channel network are first exploited
to remove the moiré pattern in a rough way. By combining the
feature maps from this branch with the backbone network and
introducing the character attention module, a more accurate moiré-
free image is generated. Notably, we follow [48] as the backbone,
in which the original resolution subnetwork (ORS-Net), channel
attention block (CAB), and supervised attention module (SAM)
are utilized.

4.1 Rough moiré pattern extraction module

According to [17], moiré patterns are mainly shaped in
curves and stripes, which benefit from their specific properties.
Obviously, extracting these properties that are different from those
in the reference image would help to remove the moiré patterns.
Fortunately, similar to [17], we statistically find that by decomposing
the contaminated image into R, G, and B (red, green, and blue)
channels, the G channel encounters much slighter moiré patterns
than those in the R and B channels, as displayed in Figure 5. Of
course, subtraction between the G channel and the R/B channel is
a simple way to roughly obtain moiré-associated information for
image restoration. However, despite the fact that different channels
suffer from differentmoiré patterns, they also exhibit different scales
of values. In other words, it is possible that one channel may have
much larger or smaller values than that in the remaining one or
two channels, subsequently making the aforementioned channel
subtraction strategy useless. In order to tackle this problem, in
this study, we introduce a learnable strategy through which the
differences in value scales are adaptively alleviated.

Mathematically, let the contaminated image be Im ∈ ℝH×W×3,
where H and W denote the height and width of Im, respectively. By
decomposing Im into the three channels, we can obtain Irm ∈ ℝH×W×1,
Igm ∈ ℝH×W×1, and Ibm ∈ ℝH×W×1 corresponding to the R, G, and B
channels, respectively. By forwarding these three inputs into their
associated convolution blocks, we can obtain

Ire = Convr (Irm) , Ige = Convg (Igm) , Ibe = Convb (Ibm) , (1)

where Convr, Convg, and Convb are the convolution blocks
and Ire/I

g
e/Ibe ∈ ℝH×W×1. The moiré patterns can then be roughly

extracted through

Mr = Ire − Ige, Mb = Ibe − Ige, (2)

where Mr and Mb are both extracted features associated with the
moiré patterns. In Equation 1, the scales of values for different
channels are adaptively transformed to a consistent subspace, which
are adaptively tuned through a task-driven strategy, so that the
moiré patterns can be roughly extracted and contribute to moiré-
free image generation. As shown in Figure 5, it is easy to observe
that our presented technique indeed achieves the superiority.

In addition, since the edges are also an additional prior for
moiré-contaminated images, we further apply the Sobel operator
[49] to enhance the edge information of three channels, as shown
in the second row of Figure 6. Similar to Equation 2, these edge
maps associated with the “G” channel are subtracted from the other
two maps via Equation 3.

Mr
e = Er −Eg, Mb

e = Eb −Eg, (3)

where Er = Sobel(Irm) ∈ ℝH×W×1, Eg = Sobel(Igm) ∈ ℝH×W×1, and Eb =
Sobel(Ibm) ∈ ℝH×W×1.

After obtaining Mr, Mb, Mr
e, and Mb

e , we then concatenate them
as a single input, which is combined with three channel inputs. As
displayed in the middle part of Figure 4, the concatenated inputs
are forwarded into their corresponding convolution block and U-
Net-like network. By further making a concatenation and taking
the raw image Im into account again, the output Io ∈ ℝH×W×3 is
finally obtained through the supervised attention module [48]. By
introducing the Charbonnier loss [50], Io is obtained in a supervised
way, as defined in Equation 4:

L0 = √‖Io − Igt‖
2 + ε2, (4)

where the constant ε is empirically set to 10−3 and Igt is the ground-
truth image (we will analyze it in the following Subsection 4.2).

4.2 Character attention module

Different from the natural image-based restoration which
focuses on all pixels equally, the purpose of our task is to increase
the recognition accuracy after demoiréing. In other words, we focus
on the characters rather than the surrounding background pixels.
In fact, as shown in Figure 2, some images indeed include quite
complex backgrounds, such as watermarking and diverse colors.
Strongly enforcing the inputs to be the same to these reference
images with complex backgrounds are impossible. Therefore, in this
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FIGURE 9
Displays of demoiréd images obtained by our TIDNet when the reference image and ground-truth image are, respectively, used as the
supervised guidance.

paper, we first transform the reference image Iref into a binary-
like version Igt, where the pixel values of characters are all close
to 0, while others are all close to 255, as displayed in Figure 7.
The more remarkable the characters, the greater the performance.
Thanks to the generation of the image Igt, we can just transform
the contaminated images into a consistent style version no
matter whether inputs encounter diverse backgrounds, but we
can also increase the difference between the characters and
the background, contributing to a more accurate text detection
and recognition.

By forwarding Im through the backbone network, we can
formulate the residual output Ores [11] guided by Igt, which is
shown as follows:

Lb = √‖Im +Ores − Igt‖
2 + ε2. (5)

Equation 5 is used to encourage the reconstructed image to
be similar to the ground-truth at the pixel level. Notably, feature
maps obtained from SAM are also introduced into this Ores-related
branch. For Io, which is enforced to be similar to the ground-
truth image Igt, the feature maps from SAM would be beneficial for
estimating Ores.

In addition, to further allow our model to pay much
more attention on the character-associated pixels, we regard

Igt as the mask for the text image enhancement, which can be
formulated as Equation 6:

Lm = (1− Igt) ⊙√‖Im +Ores − Igt‖
2 + ε2. (6)

Of course, images restored from the contaminated image should
be easily recognized by an OCR model. Therefore, to enforce
the recovered text images to exhibit their corresponding semantic
priors, a text semantic loss is further introduced. Particularly, CRNN
[51] followed by its pre-trained model is exploited. In this study, we
use Locr to denote the semantic evaluation on the recovered image,
as defined in Equation 7:

Locr = OCR(CRNN(Im +Ores) , textgt) , (7)

where textgt refers to the ground-truth of text information.
Notably, the weights in CRNN are fixed, and the gradient
would be transported to our designed network for
model learning.

Taking the aforementioned analysis into account, the
objective function of our proposed method is formulated
as Equation 8:

L = γLm + βLb + λLocr + ηL0, (8)

where γ, β, λ, and η are non-zero parameters to trade-off these
four terms.
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TABLE 4 Quantitative results on our collected dataset obtained by
different comparison methods and TIDNet.

Task Detection

Metrics Recall Precision F1-
measure

AFN 22.88% 99.23% 37.19%

WDNet 73.82% 99.10% 84.61%

C3Net 27.97% 99.17% 43.64%

DnCNN 22.86% 99.23% 37.16%

FFDNet 43.94% 98.97% 60.86%

TIDNet 92.92% 98.72% 95.73%

Task Recognition

AFN 23.09% 80.13% 35.85%

WDNet 70.79% 91.80% 79.94%

C3Net 26.42% 79.11% 39.62%

DnCNN 25.14% 82.33% 38.52%

FFDNet 38.10% 79.49% 51.51%

TIDNet 85.34% 93.78% 89.36%

4.3 Implementation details

We implement our TIDNet using PyTorch [52]. The model
runs on two GPUs of NVIDIA RTX 3090 with CUDA version
11.2. Except the OCR-related network CRNN, we optimize our
network through the Adam optimizer with the learning rate of
2× 10−4. In this study, we set the maximum of epochs to 50. The
learning rate is gradually reduced by following cosine annealing,
and the minimum of our learning rate is 1× 10−4. In addition,
the input image is resized to 256× 256, and the batch size is set
to 12. Empirically, we first remove Lm in the first 40 epochs,
after which it is exploited. Referring to the parameters γ, β,
λ, and η, we empirically set them to 0.85, 0.5, 0.001, and 0.5,
respectively.

5 Experiments

To demonstrate the significance of text image demoiréing
and effectiveness of our proposed TIDNet, experiments are
conducted on our collected dataset. In this section, the experimental
settings and evaluation metrics are first described. We then
conducted ablation studies to substantiate the importance
of our introduced strategies. Finally, our proposed method
is compared with state of the arts to further show its
superiority.

5.1 Experimental settings and evaluation
metrics

In this study, we divide the dataset into two subsets: one for
training and another for testing. Specifically, 3,627 pairs are regarded
as the training set and 112 contaminated images are used as the
testing set. Notably, in testing images, there are totally 43,152
characters.

Since the final purpose of our TIDNet is to improve the OCR
performance, we introduce recall, precision, and F1-measure (F1-
m) scores as the quantitative evaluations for both text detection
and recognition. Recall is the ratio between the number of correctly
predicted characters and the number of labeled characters. It
indicates how many items are correctly identified. Correspondingly,
precision is the ratio between the number of correctly predicted
characters and the number of all predicted characters. F1-m
is a metric define by the recall score and the precision score:
Recall×Precision
Recall+Precision

.
Notably, most existing methods such as natural image

demoiréing and image denoising adopted the widely used
quantitative evaluations: peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM). However, they are not suitable for
our task. In our text image demoiréing, the contaminated images
are enforced to be close to the binary-like ground-truths, while
these guided references usually encounter imbalanced numbers
of foreground and background pixels. Generally, the background
pixels cover much more areas than foreground pixels. Due to this
constraint, PSNR or SSIM values would be inaccurate if some
character-related pixels are erased but the background is clear. In
other words, the erased pixels do not make an obvious influence
on PSNR or SSIM. By contrast, the detection and recognition
performances of images suffered from erased characters would
be remarkably influenced. Thus, in this paper, recall, precision, and
F1-m are more reasonable for our task.

5.2 Ablation study

5.2.1 Is text image demoiréing necessary?
Due to the contamination of moiré patterns, it would be

difficult to detect and recognize characters from the text image.
As tabulated in Table 2, metrics of recall and F1-m on the
contaminated images are only (53.82% and 69.77%) and (56.32%
and 70.18%) for detection and recognition, respectively. However,
thanks to our proposed TIDNet, these two metrics exhibit dramatic
enhancement, which are (92.92% and 95.73%) and (85.34% and
89.36%). Obviously, it is quite significant for text image demoiréing.

5.2.2 Do the rough moiré extraction module and
three-channel network work?

Inspired by the specific property of moiré patterns, the rough
moiré extraction module is first introduced to extract the edge
information related to the moiré patterns, which is then followed
by our three-channel network. In detail, Table 2 shows that the 3-
channel network leads to significant improvements in recall and F1-
measure. By further taking the rough moiré extraction module into
account, performance continues to increase.
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FIGURE 10
Displays of demoiréd images (in Chinese) obtained by different comparison methods and TIDNet.

5.2.3 Does the character attention module work?
To enforce the network to highly focus on our interested

characters, the mask loss Lm and OCR loss Locr are introduced
into our proposed method. As listed in Table 2, these two losses
significantly contribute to the performance improvement on both
detection and recognition, exhibiting approximately 20%–35%
increase. Thus, particularly focusing on the character-related pixels
and exploiting their semantic information are quite significant.
Notably, when only Lb is utilized, experimental results are even
inferior to those obtained from the raw data. Generally, character-
associated pixels cover much less areas compared with background
pixels, while Lb equally pays attention on each pixel. In this case,
even if the character estimation is incorrect, the influence on Lb may
be slight, rendering it worthless. Fortunately, by exploiting the mask
loss and OCR loss, the importance on characters are then enhanced.

Figure 8 displays visualizations corresponding to Table 2. It is
clear that when the backbone is applied, it removes the moiré
patterns. However, it also regards optical characters as the moiré,
which only makes the recovered image smooth and erases many
character-related pixels. By contrast, thanks to our mask loss, the
model highly focuses on characters, enhancing their associated
pixels, as shown in the first image in the second row. Nevertheless, as
character-related pixels are quite similar to some edge information,
which also exists in the moiré patterns, the reconstructed image is
also contaminated bymoiré patterns.Thus, we further introduce the
three-channel-based strategy followed our rough moiré extraction
module (RMEM). Obviously, not just the moiré patterns are

alleviated, but the backgrounds are also much closer to the ground-
truth compared with those obtained by “B” and “B + M.” Despite
the fact that “B + M + C + RMEM” jointly enhances characters
and removesmoiré patterns, some recovered characters, as displayed
in the enlarged details, encounter inaccurate semantic information.
Fortunately, thanks to our introduced OCR loss, characters are
further restored according to their semantics.

5.2.4 Does the binary-like ground-truth work?
In our proposed method, the reference image Iref with diverse

backgrounds is transformed to the ground-truth image Igt, which
is binary-like. In this way, the difference between foreground and
background pixels is remarkably enlarged, allowing the network to
more easily detect and recognize characters or texts.The comparison
by using Iref or Igt as the guidance is shown in Table 3, proving the
aforementioned analysis.

In addition, Figure 9 further proves the significance of using
the binary-like ground-truth image Igt as the guidance instead of
the reference image Iref. Generally, Iref is corrupted with complex
backgrounds such as colors and watermarking. In addition, the
contaminated imagemaymiss the information in the data collection,
as shown in “Moiré” in Figure 9. Strongly enforcing the input to be
identical to Iref is too strict to achieve. As displayed in “TIDNet
(color)” in Figure 9, the background of this recovered image is
not just significantly different from Iref, but it also still contains
some moiré pattern-related contaminations. By contrast, due to the
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FIGURE 11
Displays of demoiréd images (in English) obtained by different comparison methods and TIDNet.

consistent style of the ground-truth image, our TIDNet successfully
achieve much better visualization under its guidance.

5.3 Comparison with state of the arts

To further demonstrate the effectiveness of our proposed
method on the moiré pattern removal, we conducted experiments
compared with state of the arts, including AFN [28], WDNet [27],
C3Net [29], DnCNN [11], and FFDNet [53]. Specifically, the first
three methods are designed for image demoiréing, and the last two
are designed for image restoration. To make a fair comparison, we
retrain them on our collected dataset according to their released
source codes.

The quantitative results on detection and recognition are
tabulated in Table 4. Obviously, our presented method TIDNet
dramatically outperforms these state of the arts. Compared with
AFN, C3Net, and DnCNN, our achieved results are much superior
to those computed by them. Specifically, they are all less than
30% and 45%, respectively, on the recall and F1-measure in text
detection, whereas TIDNet achieves more than 50% improvement.
Referring to FFDNet, although it is slightly better than the
aforementioned method, it is still much inferior to TIDNet.
In comparison to WDNet, our proposed method also achieves
noticeable performance enhancement.

The comparison visualizations in Chinese and English are,
respectively, shown in Figures 10, 11. It is easy to observe that
no matter whether the text images are in Chinese or English, our

Frontiers in Physics 12 frontiersin.org15

https://doi.org/10.3389/fphy.2024.1526412
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zhang et al. 10.3389/fphy.2024.1526412

presented method exhibits much better visualizations compared
with existing image demoiréing and image restoration methods.
Referring to AFN and C3Net, although moiré patterns are removed
from the contaminated images, many character-related pixels are
also erased, significantly making an inferior influence on text
detection and recognition. The main reason is that these two
methods regard the characters as moiré patterns since they have
similar attributes. By contrast, WDNet overcomes this problem,
however its recovered images are still corrupted by more or less
moiré patterns. For DnCNN, it also suffers from the similar problem
compared with AFN and C3Net. Although a better visualization is
obtained by FFDNet in comparison to DnCNN, its reconstructed
characters are blurred. Different from these comparison approaches,
our proposed method not only efficiently erases moiré patterns but
also restores the characters which are quite similar to the ground-
truth.

6 Conclusion

To fill the gap between the OCR and image demoiréing, in
this paper, a text image-based dataset is primarily collected for
text image demoiréing, allowing for supervised study. Furthermore,
we propose a novel network named TIDNet, which is particularly
adaptive for text image demoiréing. Inspired by the specific
priors of moiré patterns, a rough moiré extraction module
followed by a three-channel network is introduced so that
the moiré pattern-associated information is easily extracted.
Since our purpose is to improve the detection and recognition
performance, a character attention module is also proposed in
our TIDNet, through which the network highly pays attention
on character-associated pixels and their semantic information.
As a result of the aforementioned strategies, our proposed
method enjoys a dramatic performance improvement on the OCR
application.
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To address the trade-off between segmentation performance and model
lightweighting in computer-aided skin lesion segmentation, this paper proposes
a lightweight network architecture, Multi-Conv Attention Network (MCAN).
The network consists of two key modules: ISDConv (Inception-Split Depth
Convolution) and AEAM (Adaptive Enhanced Attention Module). ISDConv
reduces computational complexity by decomposing large kernel depthwise
convolutions into smaller kernel convolutions and unit mappings. The
AEAM module leverages dimensional decoupling, lightweight multi-semantic
guidance, and semantic discrepancy alleviation to facilitate the synergy
between channel attention and spatial attention, further exploiting redundancy
in the spatial and channel feature maps. With these improvements, the
proposed method achieves a balance between segmentation performance and
computational efficiency. Experimental results demonstrate thatMCAN achieves
state-of-the-art performance onmainstream skin lesion segmentation datasets,
validating its effectiveness.

KEYWORDS

medical image segmentation, lightweight, melanoma, attention mechanism, Inception

Introduction

Melanoma, a highly malignant skin tumor, causes a significant number of deaths
worldwide each year. Its incidence and mortality rates vary significantly depending on the
region, the level of early diagnosis awareness, and the accessibility of primary care [1]. Early
detection of melanoma is crucial for improving patient survival rates. However, due to the
diversity and complexity ofmelanoma’s appearance, its accurate diagnosis often relies on the
experience and expertise of doctors, which somewhat limits the efficiency and accuracy of
early diagnosis.

In melanoma diagnosis, image segmentation is a key step that precisely separates
the lesion area from healthy skin, helping doctors identify the lesion’s boundaries and
assist in accurate diagnosis and treatment. Traditional segmentation methods rely heavily
on complex preprocessing and manual feature extraction, making it difficult to handle
the complexity of melanoma images. With the emergence of high-quality datasets, data-
driven deep learning methods have rapidly gained popularity. Zhang et al. [2] proposed
a novel framework that integrates multiple experts to jointly learn representations from
diverse MRI modalities, effectively enhancing segmentation performance. Similarly, Li et
al. [3] addressed challenges in brain tumor segmentation caused by missing modalities by
utilizing a deformation-aware learning framework that reconstructs missing information,
resulting in more reliable and accurate segmentation even in incomplete datasets. Among
them, attention mechanisms, as an effective way to integrate local and global features,
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help themodel focus on the lesion areas.Dong et al. [4] enhanced the
capability to capture feature information by dynamically allocating
attention weights across channel and spatial dimensions, addressing
the complex features, blurry boundaries, and noise interference
in skin lesion segmentation. Similarly, the GL-CSAM module
designed by Sun et al. [5] aims to capture global contextual
information, enhancing the model’s ability to perceive global
features. However, they did not fully explore feature fusion between
different convolutional layers. To address this issue, Qiu et al.
[6] introduced a multi-level attention fusion mechanism that
progressively extracts lesion boundary information using contextual
information from different levels, alleviating the problem of blurry
boundaries. Qi et al. [7] and Liu et al. [8] introduced single attention
mechanisms to integrate contextual features, specifically designed
for stroke lesion segmentation. The combination of standalone self-
attention modules with convolutional layers has shown limited
effectiveness in enhancing the model’s non-local feature modeling
capabilities. To address this limitation, Yang et al. [9] introduced a
multi-attention mechanism (spatial and reverse attention). Spatial
attention is used to improve the extraction of useful features, while
reverse attention enhances the network’s segmentation performance
by applying reverse attention operations on skip connections,
enabling more accurate analysis and localization of small lesion
targets. Liu et al. [10] and Zhu et al. [11] enhanced the precision and
detail of tumor segmentation by fusing information from multiple
MRI modes such as T1, T2, and FLAIR. Zhu et al. [12] embedded a
feature fusion module based on attention mechanism in the model
structure to optimize the expression and integration of multi-modal
features to improve segmentation accuracy. Liu et al. [13] examined
the effectiveness of traditional objective evaluation indicators in
the evaluation of image fusion results and proposed a statiscy-
based framework to compensate for the shortcomings of existing
indicators. These methods have improved the segmentation task
to varying degrees at different stages, achieving commendable
results. However, their network designs do not fully consider how
to effectively utilize spatial information, and they lack dedicated
mechanisms to enhance and preserve spatial information. These
shortcomingsmay result in suboptimal performance when handling
spatial correlations.

Moreover, it is worth noting that while introducing high-
quality attention mechanisms, the parameter count of the model
increases, potentially compromising the real-time performance
during deployment. Although high-quality attention mechanisms
can enhance model performance, they are often accompanied by
an increase in parameter count, which can negatively impact the
real-time performance of model deployment [14]. In response to
such problems, most researchers have based their efforts on the
potential of deep separable convolution to improve model efficiency
and effectiveness. Zhou et al. [15] constructs expansion layers using
depthwise separable convolutions to efficiently extract multi-scale
features with low computational overhead, enhancing the feature
representation capability. Liu et al. [16], Ma et al. [17], and Feng
et al. [18] adopted a similar approach by integrating depthwise
separable convolution layers into the encoder. However, they often
struggle to achieve precise detailed description while maintaining
low computational overhead. Ruan et al. [19] combined MLP to
extract global feature information, followed by feature extraction
using depthwise separable convolutions (DWConv). This effectively

preserved significant features in the brain featuremapwhile filtering
out less relevant features. However, the lightweight processing of
complex features remains limited. Similarly, Lei et al. [20] combined
depthwise separable convolutions with bilinear interpolation to
adjust the size of high-level features, making them match low-
level features.However, this approach faces performance bottlenecks
when further reducing the computational burden. Chen et al. [21]
incorporated the advantages of asymmetric convolutions based
on depthwise separable convolutions and designed an ultralight
convolution module, further achieving the decoupling of spatial
and channel dimensions. Existing methods still have limitations in
lightweight design. Although different encoder designs effectively
reduce computational load and ensure efficient feature extraction,
they still lack precision in representing the blurry edges of
skin lesions.

To address the contradiction between segmentation
performance and lightweight design, this paper proposes a
lightweight segmentation method. It aims to more accurately
capture and segment the lesion area by leveraging channel and
spatial redundancy, without increasing additional computational
load. Specifically, the core of the segmentation framework is the
Inception-Split ISDConv. Additionally, at the bridging layer stage,
we introduce the AEAM,which combines the collaborative effects of
spatial and channel attention with the feature calibration capabilities
of the squeeze-and-excitation network. AEAM utilizes multi-
scale depth-shared 1D convolutions to capture multi-semantic
spatial information for each feature channel. It effectively integrates
global contextual dependencies and multi-semantic spaces, while
calculating channel similarity and contributions under the guidance
of compressed spatial knowledge, thereby alleviating semantic
differences in the spatial structure. Additionally, we introduce
dynamic convolution in the encoder. Dynamic convolution
dynamically aggregates multiple parallel convolution kernels based
on input-relevant attention mechanisms. Assembling multiple
convolution kernels is not only computationally efficient but also
enhances representational capability due to the smaller size of
the kernels.

The contributions of this paper can be summarized in the
following three aspects:

1. In this study, a novel lightweight segmentation network
named Multi-Conv Attention Network (MCAN) is proposed.
It performs channel and spatial weighting on the spatial
and channel redundancies in the feature map without
increasing additional computational load, achieving an effect
of information complementarity.

2. To address the unclear edges in skin lesions, this paper
proposes ISDConv. This module performs multi-scale feature
extraction using depthwise separable convolutions,multi-scale
convolution kernels, and spatial and channel reconstruction
convolutions. It reduces computational complexity and the
number of parameters, thereby improving the model’s feature
representation capability while maintaining efficient feature
extraction.

3. To address the insufficient utilization of redundancies in
the spatial and channel feature maps, this paper proposes
the Adaptive Enhanced Attention Module (AEAM). Through
dimension decoupling, lightweight multi-semantic guidance,
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and semantic discrepancy mitigation, AEAM achieves the
collaborative effect between channel and spatial attention,
enabling the model to capture and segment the lesion areas
more accurately.

Related works

Attention mechanism

In the field of natural images, Li et al. [22] used a dual attention
fusion module to effectively combine features from images from
different sources, thereby enhancing the model’s ability to focus
on important regions. The attention mechanism can enhance the
extraction of key features in infrared and visible images, making
the fused images clearer and retaining more meaningful details
[23]. In medical image segmentation, the attention mechanism
is primarily used to guide the model’s focus on the lesion
areas in the image, assigning different weights to each pixel or
feature, enhancing task-relevant features, and suppressing irrelevant
background information. Huang et al. [24] prior convolutional
attention mechanism that dynamically allocates attention weights
across both channel and spatial dimensions. Shaker et al. [25]
used a pair of mutually dependent branches based on spatial
and channel attention to effectively learn discriminative features,
improving the quality of segmentation masks. Fu et al. [26] used a
Transformer-based spatial and channel attention module to extract
global complementary information across different layers of the U-
Net, which helps in learning detailed features at different scales.
To address hair interference in dermoscopic images, Xiong et al.
[27] proposed a multi-scale channel attention mechanism that
enhances feature information and boundary awareness. Song et al.
[28] argued that current popular attention mechanisms focus too
much on external image features and lack research on latent features.
They introduced an external-latent attention mechanism, using an
entropy quantization method to summarize the distribution of
latent contextual information. Similarly, Huang et al. [29] used Bi-
Level Routing Attention in deep networks to discard irrelevant key-
value pairs, achieving content-aware sparse attention for dispersed
semantic information.

Network lightweighting

While pursuing high performance, researchers have also begun
to focus on the lightweight and efficiency of medical image
segmentation networks. Network structure design is one of the
most popular approaches for lightweight optimization. Ma et al.
[17] simplified the structure, reduced the number of parameters,
and optimized the convolution operations, achieving a significant
reduction in computational complexity and model size while
maintaining segmentation accuracy. This enables the model to
perform excellently even in resource-constrained environments,
making it suitable for applications such as mobile healthcare and
telemedicine. The UcUNet [30] network achieves lightweight and
precise medical image segmentation by designing an efficient large-
kernel U-shaped convolution module. This network leverages large-
kernel convolutions to expand the receptive field while integrating

depthwise separable convolutions to reduce the computational cost,
thereby maintaining high segmentation accuracy with efficient
computation. Liu et al. [16] combines the lightweight characteristics
of HarDNet with multi-attention mechanisms, enhancing the
network’s ability to capture key features and achieving more
precise medical image segmentation. Sun et al. [31] introduces
a contextual residual network, effectively integrating contextual
information into the U-shaped network, enhancing the global
understanding and stability of the segmentation. Nisa and Ismail
[32] employs a dual-path structure with a ResNet encoder,
combining ResNet’s feature extraction capabilities with U-Net’s
segmentation advantages, offering an alternative effective solution
for medical image segmentation. Zhao et al. [33] proposed a four-
layer feature calibration branch based on an attention mechanism.
The downsampling layer reduces the resolution of rectal cancer CT
image feature maps to half of the original size, followed by pointwise
convolution to enable interactions between channels. This method
effectively expands the receptive field of subsequent convolutional
layers and optimizes computational efficiency by reducing the cost
of calculating spatial attention. Model compression, as another
approach to simplifying network structures, removes structural
redundancy while maintaining performance, making it more
suitable for various applications in medical image analysis. Wang
et al. [34] designed a sophisticated teacher network to learn multi-
scale features, guiding a more lightweight student network to
improve segmentation accuracy. Experiments showed that this
method effectively acquires detailed morphological features of the
brain from the teacher network. Hajabdollahi et al. [35] proposed a
channel pruning algorithm for medical image segmentation tasks,
which selects color channels during image processing and allows
training of the target structure directly on the pre-selected key
channels. However, these studies did not address how to utilize the
redundancy effectively.

Based on the above research findings, this paper proposes
a lightweight segmentation model that emphasizes spatial and
channel features. This model improves segmentation accuracy
and efficiency without increasing additional computational
costs, providing a new and efficient solution for the medical
imaging field.

Methods

The overall framework of MCA-Net

As illustrated in Figure 1, the proposed model framework
consists primarily of the ISDConv module, the AEAM
module, and dynamic convolution. The ISDConv module is
composed of three parts: ScConv, Inception convolution, and
standard convolution. By incorporating depthwise separable
convolutions and group convolutions, ISDConv facilitates the
model’s understanding of multi-scale information within images,
thereby enhancing its ability to detect and classify objects of
varying sizes.

The AEAM module operates in two stages: SEattention and
SCSA. SEattention enhances the network’s representational capacity
by explicitlymodeling the interdependencies between convolutional
feature channels. SCSA, in turn, is divided into two components:
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FIGURE 1
The overall framework of MCA-Net.

SMSA and PCSA. SMSA integrates multi-semantic information and
employs a progressive compression strategy to inject discriminative
spatial priors into the channel self-attention mechanism of PCSA,
effectively guiding channel recalibration. Within PCSA, robust
feature interaction based on a self-attention mechanism further
mitigates the multi-semantic information discrepancy among sub-
features in SMSA.

Inception-Split depth convolution

As shown in Figure 1, ISDConv consists of a ScConv, an
Inception Convolution, and a standard Conv2d layer. The Inception
Convolution achieves lightweight performance by efficiently
decomposing a large kernel depthwise convolution into four
parallel branches along the channel dimension. These branches
consist of a small square kernel, two orthogonal large kernels,
and an identity mapping. The use of a small square kernel
reduces computational complexity, while the orthogonal large

kernels capture different spatial information at varying scales.
The identity mapping helps preserve the original input features,
further enhancing the efficiency of the network. Additionally, this
architecture incorporates 1 × 1 convolutions for dimensionality
reduction before applying computationally expensive operations,
minimizing the computational burden while preserving the model’s
ability to learn rich, multi-scale features. These four branches
not only achieve higher computational efficiency than the large
kernel depthwise convolution but also maintain a large receptive
field, enabling the model to capture spatial context effectively for
improved performance.

One of the branches employs a 3× 3 kernel, which avoids the
inefficiency of large square kernels. Instead, large square kernels kh ×
kw are decomposed into 1× kw and kh × 1, significantly reducing
computational complexity. Specifically, for a given input x, it is
divided into four groups along the channel dimension, with the
operation defined as Equation 1:

Xhw,Xw,Xh,Xid = Split (X) = X:,:,g,X:g:2g,X:2g:3g,X:3g: (1)
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FIGURE 2
The overall framework of AEAM. SCSA uses multi-semantic spatial information to guide the learning of channel-wise self-attention. B denotes the
batch size, C signifies the number of channels, and H and W correspond to the height and width of the feature maps, respectively. The variable n
represents the number of groups into which sub-features are divided, and 1P denotes a single pixel.

where, g represents the number of channels in each convolution
branch, which is determined by the formula g = rgC, where rg is
the ratio for splitting and C is the total number of input channels.
The input is divided into four groups along the channel dimension
based on this ratio, and the resulting split inputs are then fed into
the respective parallel branches. Therefore, the following Equation
2 can be established:

X′
hw = DWConvg→g

ks×ks
g(Xhw)

X′
w = DWConvg→g

1×kb
g(Xw)

X′
h = DWConvg→g

kb×1g(Xh)

X′
id = Xid

(2)

where ks represents the 3× 3 kernel size, kb denotes the kernel
sizes of 11× 1 and 1× 11, Xhw represents the feature map, Xw
refers to the features in the width direction, and Xh refers to the
features in the height dimension of the image. After processing
each input xi through its respective branch, the outputs X′ are
concatenated along the channel dimension. The operation can be
expressed as Equation 3.

X′ = Concat(X′
hw,X

′
w,X

′
h,X

′
id) (3)

Adaptive Enhanced Attention Module

This paper introduces the AEAM attention module, designed
to achieve synergy between channel attention and spatial
attention through dimensional decoupling, lightweight multi-
semantic guidance, and semantic discrepancy mitigation.
As shown in Figure 2, the AEAM module consists of two main
components: SEattention and SCSA.

The SCSA module is composed of two sequentially linked
components: Shared Multi-Semantic Spatial Attention (SMSA) and
Progressive Channel Self-Attention (PCSA). SMSA employs multi-
scale, depth-sharing one-dimensional convolutions to extract spatial
information at different semantic levels from four independent sub-
features. This approach enables the efficient integration of diverse
spatial semantics across sub-features. After SMSA modulates the
feature maps, the resulting features are passed to PCSA. This
component combines a progressive compression strategy with
a channel-specific self-attention mechanism (CSA) to refine the
feature representation further.

In this paper, a given input X ∈ ℝB×C×H×W is applied global
average pooling along the height andwidth dimensions to create two
unidirectional 1D sequence structures:XH ∈ ℝB×C×W,XW ∈ ℝB×C×H.
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FIGURE 3
Examples of original images and their ground truth annotations from the ISIC2017 and ISIC2018 datasets.

To learn diverse spatial distributions and contextual relationships,
the feature set is divided into K equally sized and independent
sub-features, such that Xi

H and Xi
W, each sub-feature has a channel

count of C
K
, where C is the total number of channels in the original

feature set. In this study, we set the default valueK = 4, decomposing
the features into H-dimensional and W-dimensional sub-features.
During the decomposition process, 1D convolution is applied to
each sub-feature. We employ lightweight shared convolutions for
alignment, which implicitly model feature consistency across both
dimensions by learning correlations.

The ablation formula is shown in Equation 4:

X̃i
H = DWConv1d

C
K
→ C

K
ki

(Xi
H)

X̃i
W = DWConv1d

C
K
→ C

K
ki

(Xi
W)

(4)

Where XH and XW represent feature maps in height and
width dimensions respectively. SEattention introduces the
“Squeeze-and-Excitation” (SE) block, which enhances the
network’s representational capacity by explicitly modeling the
interdependencies between convolutional feature channels. The
SE block employs a special mechanism that enables the network
to perform feature recalibration. Through this mechanism, the
block learns to selectively emphasize informative features while
suppressing less useful ones by leveraging global information.

The structure of the SE block is illustrated in the
lower part of Figure 2. For any given transformation Ftr, whichmaps
the input X to a feature mapU, whichU ∈ ℝH×W×C, a corresponding
SE block can be constructed to perform feature recalibration. The
featuremapU first undergoes a squeeze operation, which aggregates
the feature map across the spatial dimensions to generate a channel

descriptor. The function of this descriptor is to embed the global
distribution of channel feature responses, thereby enabling all layers
of the network to utilize information from the global receptive
field. After the aggregation, an excitation operation follows. This
operation, in the form of a simple self-gating mechanism, takes the
embedding as input and generates a set of modulation weights for
each channel. These weights are applied to the feature map U to
produce the output of the SE block, which can then be directly fed
into subsequent layers of the network.

The loss function

In this study, each image in the dataset is associated with a
corresponding binary mask. Skin lesion segmentation is treated as a
pixel-level binary classification task, distinguishing the skin lesions
from the background. The combination of Binary Cross-Entropy
(BCE) loss and the Dice Similarity Coefficient (DSC) loss is used as
the loss function to optimize the network parameters.This approach
effectively addresses the challenge of skin lesion segmentation by
balancing pixel accuracy and overlap between the predicted and
ground truth masks.

The loss function, referred to as the BceDice loss, can be
expressed as Equation 5:

LBCE = − 1
N

N

∑
i=1

[yilog(pi) + (1− yi) log(1− pi)]

LDice = 1−
2|X∩Y|
|X| + |Y|

LBCEDice = α1LBCE + α2LDice

(5)
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TABLE 1 Experimental comparison of MCANet with other models on the
ISIC2017 dataset.

Model Params GFLOPs mIoU (%) DSC (%)

UNet (2015)
[36]

7.77 13.76 76.98 86.99

TransFuse
(2021) [37]

26.16 11.5 79.21 88.4

FAT-Net (2022)
[38]

30 23 76.53 85

MALUNet
(2022) [39]

0.175 0.083 78.78 88.13

QGD-Net
(2023) [40]

0.777 — 72.58 84.1

LCAUnet
(2023) [41]

13.38 18.91 76.1 86.6

SCSONet
(2024) [42]

0.149 0.056 80.14 88.97

PL-Net (2024)
[43]

15.03 — 77.9 85.9

UCM-Net
(2024) [44]

0.499 0.047 80.71 87.66

CSAP-UNet-S
(2024) [45]

27.5 8.918 81.5 88.8

ELANet (2024)
[46]

0.459 8.43 82.87 90.6

MCANet (ours) 0.128 0.022 83.25 90.86

where N is the total number of samples, Y represents the ground
truth label, pi represents the predicted values, yi denotes the true
label of sample i. |X| and |Y| denote the ground truth and the
intersection of the predicted region, respectively. α1 and α2 represent
the weights of the two loss functions. In this study, both weights are
set to 1 by default.

Experiment

Datasets

The ISIC (International Skin Imaging Collaboration) datasets
are benchmark datasets widely used in medical image analysis,
particularly for dermoscopic image segmentation, classification,
and automated skin cancer detection. These datasets feature high-
resolution dermoscopic images with comprehensive annotations,
including lesion boundaries, diagnostic labels, and metadata.
Covering a diverse range of skin conditions, they are designed
to support tasks such as lesion segmentation, feature extraction,
and disease classification. Notably, the ISIC2017 and ISIC2018
datasets have been instrumental in advancing research onmelanoma
detection and other skin diseases through the annual ISIC

Challenges. Our research is specifically conducted on the ISIC2017
and ISIC2018 datasets. Figure 3 are some sample images from the
ISIC2017 and ISIC2018 datasets.

Experiment details

All experiments were implemented using the PyTorch
framework and performed on a laptop equipped with an NVIDIA
GeForce RTX 3080 Ti GPU with 8 GB of memory. Based on
established practices, all images were normalized and resized
to 256 × 256 pixels. Data augmentation techniques, including
vertical flipping, horizontal flipping, and random rotations,
were applied. The loss function used was the BCE-Dice loss, as
defined in Equation 6.

LBCE−Dice = α ⋅ (− 1
N

N

∑
i=1

(yi ⋅ log(ŷi) + (1− yi) ⋅ log(1− ŷi)))

+ β(1−
2 ⋅

N

∑
i=1

yi ⋅ ŷi + ϵ

N

∑
i=1

yi +
N

∑
i=1

ŷi + ϵ

)
(6)

where yi represents the ground truth label, ŷi denotes the predicted
value, N is the total number of pixels, ϵ is a small constant which
is set to 10 in this work, α and β are the weights for the BCE and
Dice components. AdamW was utilized as the optimizer with an
initial learning rate of 0.001, dynamically adjusted using a cosine
annealing scheduler. The maximum number of iterations was set to
50, with a minimum learning rate of 0.0001. The training process
was conducted over 300 epochs with a batch size of 8.

Evaluation metrics

In this study, segmentation performance is assessed using the
mean Intersection over Union (mIoU), Dice Similarity Coefficient
(DSC), and Accuracy (Acc), as defined in Equation 7. Additionally,
the number of parameters is represented by Params, measured
in millions (M), and computational complexity is quantified in
GFLOPs. It is important to note that both Params and GFLOPs are
calculated based on an input size of 256× 256.

{{
{{
{

mIoU = TP
TP+ FP+ FN

DSC = 2TP
2TP+ FP+ FN

(7)

Where, TP, FP, FN, and TN represent True Positives, False Positives,
False Negatives, and True Negatives, respectively.

Segmentation result analysis

In this section, we conducted comparative experiments on
melanoma segmentation using the ISIC2017 and ISIC2018 skin
lesion segmentation datasets and evaluated the test results. The
evaluation metrics include DSC, mIoU, params, and GFLOPs.
The results are presented in Tables 1, 2, where we perform
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TABLE 2 Experimental comparison of MCANet with other models on the ISIC2018 dataset.

Model Params GFLOPs mIoU (%) DSC (%)

UNet (2015) [36] 7.77 13.76 78.13 86.99

Unet ++ (2018) [47] 9.16 34.86 78.92 87.83

TransFuse (2021) [37] 26.16 11.5 80.63 89.27

MALUNet (2022) [39] 0.175 0.083 80.25 89.04

AMCC-Net (2023) [48] 0.845 — 80.18 89

SCSONet (2024) [42] 0.149 0.056 80.99 89.5

MCNMF-Unet (2024) [49] 0.332 0.0538 81.99 89.96

GIVTED-Net (2024) [50] 0.19 0.56 79.79 87.61

UCM-Net (2024) [44] 0.499 0.047 81.26 88.48

ELANet (2024) [46] 0.459 8.43 81.85 90.1

MCANet (ours) 0.128 0.024 83.68 91.12

FIGURE 4
Performance comparison of different models across various metrics on the ISIC2017 dataset.
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FIGURE 5
Performance comparison of different models across various metrics on the ISIC2018 dataset.

FIGURE 6
Visual comparison of segmentation results of MCANet and other methods on the ISIC2017 dataset.

a comprehensive comparison of the proposed model with the
following methods: UNet [36], Transfuse [37], FATNet [38],
MALUNet [39], QGD-Net [40], LCA-UNet [41], SCSONet [42],
PL-Net [43], UCM-Net [44], CSAP-UNet-S [45], and ELA-Net [46].

In addition, bar charts are utilized in this study to visually
illustrate the performance of different models on various metrics,

providing a clearer comparison between our method and others.
Specifically, for the comparison of lightweight metrics, only models
designed with lightweight objectives were selected, with the results
presented in Figures 4, 5. The experimental results indicate that
MCANet outperforms all other methods in both data sets in terms
of DSC and mIoU metrics. Notably, MCANet achieves Dice scores
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FIGURE 7
Visual comparison of segmentation results of MCANet and other methods on the ISIC2018 dataset.

FIGURE 8
Heatmap visualization of melanoma lesion area segmentation.

TABLE 3 Ablation experiments with different module combinations.

Model Params GFLOPs mIoU (%) DSC (%)

Base 0.112 0.021 79.01 88.27

Base + AEAM 0.127 0.022 81.39 90.34

BASE +
ISDConv

0.114 0.022 82.32 90.84

MCANet 0.128 0.024 83.25 90.86

exceeding 0.9 on the ISIC datasets, significantly outperforming all
comparison models and demonstrating its superior segmentation
performance.

Furthermore, to further validate the segmentation performance
of the model, we present the visual segmentation results on the
ISIC dataset, as shown in Figures 6, 7. Although there are some
differences between the MCANet segmentation results and mask
images, MCANet outperforms other models in capturing detailed
information from medical images, giving it a significant advantage
in accurately segmenting the areas of the injury. Specifically, Figure 8
shows that MCANet can more accurately capture the target location
in segmentation tasks involving smaller lesions, with finer and more
precise segmentation of the lesion boundaries.However, our study
also has some limitations. First, although MCANet demonstrates
impressive performance on the ISIC datasets, its generalizability
to other medical imaging datasets remains to be fully explored.
In addition, while the model is lightweight in design, further
optimization is required to meet the strict deployment constraints
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FIGURE 9
Visual representation of the impact of different modules on model performance.

of resource-constrained devices, such as smartphones or embedded
systems. Another limitation lies in the annotation quality of the
datasets used, as potential noise in the segmentation masks may
influence the model’s learning process. Finally, despite MCANet’s
ability to capture detailed features, there are still some challenges
in handling highly irregular or extremely small lesions, which
may require more advanced attention mechanisms.To address
these issues, future research will focus on several directions. First,
extending the evaluation to additional datasets with diverse imaging
modalities can help assess the robustness and versatility ofMCANet.
Second, incorporating techniques such as knowledge distillation or
pruning could further improve themodel’s efficiency for deployment
in real-time scenarios. Third, exploring semi-supervised or
unsupervised learning methods may reduce dependency on high-
quality annotations, enabling better performance even with noisy
labels. Finally, integrating advanced multi-scale feature extraction
modules could enhance the model’s ability to handle challenging
segmentation tasks involving complex lesion patterns.

Ablation study on module effectiveness

To evaluate the contribution of each module in MCANet,
we designed and conducted a series of ablation studies, with
the results summarized in Table 3. Using the SCSONet baseline
model as a reference, we performed comparative experiments with
different combinations of the proposedmodules on the ISIC dataset.
Furthermore, to provide a clearer visualization of the impact of

each module on segmentation performance, we used bar charts to
illustrate variations in keymetrics, such as DSC andmIoU, as shown
in Figure 9.In the ablation study, “Base + AEAM” represents the
integration of the proposed AEAM module into the baseline model,
“Base + ISDConv” denotes the addition of the ISDConv module
to the baseline, and “MCANet” refers to the complete network
architecture proposed in this study. From Table 3 and the bar chart,
it can be observed that integrating the proposed modules into the
baseline model not only results in negligible increases in parameter
count and computational complexity but also leads to significant
improvements in segmentation performance. Specifically, as the
modules are progressively added, the segmentation performance
steadily improves, with the key metrics DSC and mIoU ultimately
reaching 0.9086 and 0.8325, representing increases of 2.93% and
5.37%, respectively, compared to the baseline. The bar chart
further illustrates this performance improvement trend, visually
highlighting the contribution of each module.

Moreover, the experimental results demonstrate that the
proposed modules collaborate effectively, with the addition
of individual modules not causing any degradation in overall
performance but instead continuously improving segmentation
accuracy. Additionally, our module design is highly adaptable,
allowing for seamless integration into other network architectures
without requiring significant modifications to the original structure.
For instance, incorporating the AEAM or ISDConv modules
into other networks results in varying degrees of performance
improvement, validating the generalizability and practicality of the
proposed modules.
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In summary, the results of the ablation studies and their visual
analysis demonstrate the significant contributions of the proposed
modules to the model’s performance. These improvements not only
enhance the segmentation capability of MCANet but also highlight
the academic significance and practical applicability of our work in
the field of medical image segmentation.

Conclusion

Medical image analysis typically requires significant
computational resources, which directly impact diagnostic speed
and accuracy. Advanced methods like deep learning are resource-
intensive, making them difficult to implement in resource-
constrained environments. To address this, we propose MCAN, a
novel lightweight network architecture featuring ISDConv, AEAM,
and dynamic convolution. Our model reduces computational
costs while maintaining performance, achieving competitive
segmentationwith 0.128Mparameters and 0.022GFLOPs.However,
due to the limited dataset, the model’s generalization ability requires
further investigation.

Future research can focus on several key areas. Firstly, further
optimization of lightweight techniques and attention mechanisms is
needed, especially for specific types of medical images. For example,
improving the prediction accuracy and robustness of melanoma
images across different skin types is an important direction.
Additionally, due to the limited dataset size in this study, further
validation of the model’s generalization ability is required. Future
work should aim to expand the dataset with more representative
clinical data to assess the model’s performance in real-world clinical
environments, particularly in resource-constrained settings such
as mobile medical devices or low-resource hospitals. Finally, our
method could be extended to multi-modal tasks, such as integrated
diagnosis using CT and MRI, with a focus on improving the model’s
fusion capability while maintaining computational efficiency.
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SGI-YOLOv9: an effective
method for crucial components
detection in the power
distribution network
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State Grid Fujian Electric Power Research Institute, FuZhou, China

The detection of crucial components in the power distribution network is of
great significance for ensuring the safe operation of the power grid. However,
the challenges posed by complex environmental backgrounds and the difficulty
of detecting small objects remain key obstacles for current technologies.
Therefore, this paper proposes a detection method for crucial components
in the power distribution network based on an improved YOLOv9 model,
referred to as SGI-YOLOv9. This method effectively reduces the loss of fine-
grained features and improves the accuracy of small objects detection by
introducing the SPDConv++ downsampling module. Additionally, a global
context fusion module is designed to model global information using a self-
attention mechanism in both spatial and channel dimensions, significantly
enhancing the detection robustness in complex backgrounds. Furthermore, this
paper proposes the Inner-PIoU loss function, which combines the advantages of
Powerful-IoU and Inner-IoU to improve the convergence speed and regression
accuracy of bounding boxes. To verify the effectiveness of SGI-YOLOv9,
extensive experiments are conducted on the CPDN dataset and the PASCAL
VOC 2007 dataset. The experimental results demonstrate that SGI-YOLOv9
achieves a significant improvement in accuracy for small object detection
tasks, with an mAP@50 of 79.1% on the CPDN dataset, representing an
increase of 3.9% compared to the original YOLOv9. Furthermore, it achieves an
mAP@50 of 63.3% on the PASCAL VOC 2007 dataset, outperforming the original
YOLOv9 by 1.6%.

KEYWORDS

crucial component, smart grid, attention mechanism, YOLOv9, deep learning

1 Introduction

With the continuous growth in electricity demand and the ongoing expansion
of the power grid, the stability and reliability of the power distribution network,
as a critical hub in the power system, have become increasingly important. The
primary function of the power distribution network is to transmit electrical energy
from high-voltage transmission networks to low-voltage consumer networks, and
its reliability directly impacts the quality and safety of electricity supply to users.
Crucial components of the power distribution network include insulators, arresters,
transformers, and Cut-out Switches (COS), which must withstand harsh weather
conditions, high mechanical stress, and extreme voltage, making them prone
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to damage [1]. Therefore, the detection and monitoring of these
crucial components have become a central focus in the maintenance
and management of the power distribution network.

The power distribution network cover vast areas, with numerous
and complexly distributed equipment, making traditional manual
inspection methods insufficient to meet the operational and
maintenance demands of modern power grids. Manual inspections
are not only labor-intensive and inefficient, but they are also
susceptible to geographical constraints, resulting in risks of omission
and false detections.With the rapid advancement of computer vision
technology, image detection has gradually replaced traditional
manual inspections as a non-contact detection method [2]. This
technology enables comprehensive, multi-angle, and high-precision
inspection of crucial components in the power distribution
network, significantly enhancing the intelligence and automation of
component monitoring.

In the early stages of image detection, traditional methods
primarily relied on handcraft feature extraction, including
characteristics such as shape, color, and texture, combined
with machine learning algorithms for recognition. Murthy V S
et al.utilized a combination of Support Vector Machine (SVM) and
Multiresolution Analysis (MRA) to detect defects in transmission
line insulators, where MRA was used to capture insulator images,
and SVM was applied to detect their condition. Hao J et.at applied
Canny edge detection and directional angle selection to process
insulator images, followed by the Hough transform to extract
linear features of the damaged sections of the insulator. Zhang
K et al. [3] proposed a method based on k-means clustering and
morphological techniques to segment insulator images. Yu Y et al.
[4] introduced a model that uses iterative curve evolution based
on texture features and shape priors to detect insulators, though
this method requires pre-acquisition of shape priors, limiting its
applicability and resulting in slow detection speed. Zhao Z et al. [5]
proposed a method that uses orientation angle detection and binary
shape priors to locate insulators at different angles. However,
traditional methods generally depend on feature extraction and
shallow learning classification, and some even require the support
of prior knowledge. These limitations make it difficult for such
methods to cope with significantly varying complex scenes and
render them vulnerable to noise and background interference,
leading to weak generalization capabilities. As a result, traditional
methods are often suitable only for images with simple backgrounds
or large objects.

Deep learning-based object detection techniques, on the
other hand, offer promising new possibilities for identifying key
components. Architectures like Convolutional Neural Networks
(CNNs) are capable of automatically extracting image features
through multiple layers, which greatly enhances detection accuracy
and efficiency [6–8]. By leveraging training on large-scale datasets,
these models can perform consistently across a range of complex
scenarios, minimizing the need for manual intervention and
reducing the risk of misjudgment. This improvement bolsters the
reliability and safety of power systems, providing robust technical
support for the advancement of smart grid technologies.

Deep learning-based object detection research can be generally
categorized into two main approaches. The first approach includes
two-stage detection models like R-CNN [9], Faster R-CNN [10],
and Mask R-CNN [11], which use a region proposal network (RPN)

to generate candidate object regions, followed by classification and
regression to enhance detection accuracy. Such models are typically
characterized by complex architectures and high detection accuracy
but relatively slow processing speed. Zhao Z et al. [12] improved
the anchor generation method of the Faster R-CNN model and
optimized the non-maximum suppression (NMS) in the RPN,
achieving improved insulator detection, particularly for insulators
with varying aspect ratios, scales, and occlusions. However, the
dataset utilized by this network contains almost no images of
vertically oriented insulator strings. As a result, this method is
incapable of detecting missing faults in images that include such
types of insulator strings. Odo A et al. [13] utilized Mask R-
CNN and RetinaNet to detect insulators and U-bolts on each
tower. Dong C et al. [14] introduced an enhanced Cascade R-
CNN that integrates Swin-v2 with a balanced feature pyramid to
strengthen feature representation, while also incorporating side-
aware boundary localization for greater precision in detecting small
components in power transmission lines.

Another prominent category of algorithms comprises single-
stage object detection models, such as the YOLO (You Only Look
Once) series [15–21] and SSD [22]. These models bypass the need
for region proposal networks, allowing them to directly execute
classification and regression tasks following feature extraction by
the backbone network [23]. This approach significantly reduces
both training and inference time, enhancing efficiency. In practical
engineering applications, due to the limitations of computational
resources on devices, single-stage object detection algorithms are
often preferred. Qi C et al. [24] enhanced the SSD model by
using the lightweight SqueezeNet architecture and adding multiple
convolutional layers and connection branches, thus improving
feature extraction and enabling the detection of five types of
electrical equipment in substations. Siddiqui et al. [25] developed
an automated real-time system for detecting electrical equipment
and analyzing faults, employing a CNN-based framework to identify
insulators, arresters, and COS across different materials in complex
settings. However, this method operates in a simplified environment
with a single detection background and lacks interference from
complex backgrounds. Liu Z et al. [26] created a large-scale
dataset for transmission line component detection and optimized
YOLOv4 by adding a prediction layer and refining the selection of
positive and negative samples during training, thereby enhancing
small object detection. Qiu Z et al. [27] preprocessed insulator
images using the Laplacian sharpening method and improved
the YOLOv4 model structure by incorporating the lightweight
MobileNet convolutional neural network. However, its detection
performance on blurry and small objects was suboptimal. Liu M
et al. [28] improved YOLOv5 by incorporating diversified branch
blocks (DBB), efficient channel attention (ECA), and an upgraded
spatial pyramid pooling (SPP) module, with TensorRT utilized for
accelerated edge detection of critical components. Liu C et al. [29]
integrated a CBAM mixed attention module and Swin Transformer
self-attention into YOLOv7, along with adding a dedicated small
object detection layer to better identify small transmission line
components. Chen B et al. [30] introduced innovative methods,
including the Edge Detailed Shape Data Augmentation (EDSDA)
and the Cross-Channel and Spatial Multi-Scale Attention (CCSMA)
module, which enhanced the detection capability of insulator edge
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shapes and defect features. Additionally, the design of the Re-
BiC module and the MPDIoU localization loss function optimized
feature fusion and computational efficiency, leading to significant
improvements in detection accuracy and speed. He M et al. [31]
introduced an improved YOLOv8 model for detecting insulators
and fault areas, using GhostNet and an asymmetric convolution-
based feature extraction module to enhance recognition in complex
environments, while the ResPANet module fused high-resolution
feature maps with residual skip connections to mitigate information
loss in small feature layers. However, this method fails to effectively
extract the features of subtle defects, resulting in poor detection
performance for small target defects.

In practical applications, the small size of most key components
in the power distribution network, along with the cluttered
backgrounds, makes their detection particularly challenging. This
poses significant difficulties for traditional detectionmodels, driving
researchers to focus on small object detection techniques to improve
both accuracy and reliability. Developing more robust and effective
methods for identifying these components in complex environments
remains a critical research challenge in the field. Zhu Z et al.
[32] proposed a small object detection network with a multi-
level perception parallel structure. This network addressed the
issues of lacking global representation information and the dense
distribution of small objects through a global multi-level perception
module and a dynamic region aggregation module, respectively.
Qi G et al. [33] introduced an improved YOLOv5 algorithm,
which utilized an Adaptive Spatial Parallel Convolution module
(ASPConv) to extract multi-scale local context information of small
objects. Additionally, to enhance the detection performance of small
objects, it employed nearest-neighbor interpolation and sub-pixel
convolution algorithms to construct high-resolution feature maps
with rich semantic features. Li Y et al. [34] presented a feature
fusion module (CGAL) based on both global and local attention
mechanisms and designed a decoupled detection framework
featuring a four-head structure, thereby enabling efficient detection
of small objects. Zhang T et al. [35] optimized the backbone
of YOLOv5 by incorporating a Convolutional Block Attention
Module (CBAM) to focus on key information for insulator
and defect detection while suppressing non-essential information.
Additionally, small object detection anchors and layers were added
to improve the detection of small defects.

Although the aforementioned studies have made significant
progress in object detection, most of the research has primarily
focused on detecting high-voltage transmission lines using UAV
aerial images, where the targets are relatively large and the
backgrounds are comparatively simple. However, compared to high-
voltage transmission lines, the detection of key components in
the power distribution network presents more complex challenges.
Power distribution networks are typically deployed in areas with
dense human activity and diverse geographical and environmental
conditions, making them prone to obstructions from trees,
buildings, and other structures. Moreover, the components within
the power distribution network are generally smaller, more
densely distributed, and often have similar appearances, further
complicating the detection task. Existing algorithms still struggle
with handling the complex backgrounds typical of distribution
network scenarios, and they fail to effectively address the issue of
information loss for small components during the process of deep

feature extraction, which significantly impairs detection accuracy.
Therefore, there is an urgent need for more advanced methods that
can overcome these challenges and improve detection performance
in such complex environments.

To address the challenges of detecting crucial components in the
power distribution network, we propose an innovative algorithm,
SGI-YOLOv9. The main contributions of this paper are as follows.

• Wepropose the SPD++Conv downsamplingmodule to replace
the original downsampling module in the YOLOv9 backbone,
effectively reducing the loss of fine-grained features. This
allows the output feature maps of the backbone to retain more
detailed information, significantly improving the detection
accuracy of small objects.

• A Global Context Fusion module is proposed, leveraging
the ability of the self-attention mechanism to capture global
information. It models global context from both spatial
and channel dimensions of the feature maps. This module
effectively integrates global contextual features, enabling our
method to perform more robustly in challenging scenarios
such as complex backgrounds and occlusions.

• We propose the Inner-PIoU loss function, which combines
the advantages of Powerful-IoU and Inner-IoU. By introducing
scalable auxiliary bounding boxes, this method effectively
addresses the slow convergence and limited generalization
capabilities of traditional IoU loss function in small object
detection.

2 Materials and methods

2.1 Dataset preparation and analysis

The dataset used in this study is provided by a private user
on the Roboflow platform and has been named the Components
of Power Distribution Network (CPDN) [36]. It contains 3,383
images and 25,185 instances, with each image having a resolution of
640× 640. The dataset includes common crucial components in the
power distribution network, such as arresters, COS, insulators, and
transformers, as shown in Figure 1. It can be observed that, except
for transformers, the other components contain repeating circular
structures called sheds, which vary in material, number, and size.
The similarity in shed structures among these components increases
the difficulty of classification.

Figure 2 presents image samples from the CPDN dataset in
various environments, with each crucial component marked with
different colored boxes, illustrating their distribution and position
within the power distribution network. It is evident that the
backgrounds in the power distribution network images are highly
complex, covering diverse scenes such as urban streets, residential
areas, and green spaces. Due to the influence of different angles in
capturing images, components in these scenes are often obscured
by various objects, and there is significant overlap of targets.
Additionally, it is clear from the images that the components
occupy a relatively small portion of the overall frame, with targets
often blending into the background or multiple components being
closely arranged. These factors pose considerable challenges for
detection algorithms. The small visual differences between similar
components further increase the risk of misclassification.
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FIGURE 1
Illustration of crucial components in the power distribution network. (A) Arrester; (B) COS: Cut-out Switches; (C) Insulator (A) short polymer insulator;
(D) Insulator (B) long polymer insulator; (E) Insulator (C) short porcelain insulator; (F) Insulator (D) long porcelain insulator; (G) Transformer.

FIGURE 2
Annotated examples of crucial components in the CPDN dataset.
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In theCPDNdataset, the InsulatorC andTransformer categories
account for 7.7% and 7.2% of all instances, respectively, posing
challenges related to class imbalance and small object detection.
During training process, the model often assigns more weight to
categories with a larger number of samples, which can lead to
overfitting and reduce its ability to generalize to new datasets.
To address this issue, we apply data augmentation techniques to
mitigate the problemof class imbalance. Specifically, we usemethods
such as affine transformations, random noise, color jittering, and
brightness adjustments [26] to generate diverse training samples.
The augmented dataset is split into training, validation, and test sets
with a 7:2:1 ratio.

2.2 Proposed method

In this study, we select YOLOv9 as the baseline model due
to its various advantages. YOLOv9 introduces YOLOv9 introduces
Programmable Gradient Information (PGI) in its architecture,
which generates reliable gradient information through auxiliary
reversible branches, solving the information bottleneck problem
in deep network training and allowing the network to update
weights more effectively. Meanwhile, a Generalized Efficient Layer
Aggregation Network (GELAN) is proposed, which is based on
gradient path planning and balances accuracy and inference speed.

However, in real-world transmission line applications, detecting
crucial components presents multiple challenges. First, crucial
components such as insulators are typically small objects, which
places high demands on the model’s ability to extract fine-grained
features. Second, the background of transmission lines is highly
complex, with many interfering factors, and the components are
often occluded by other objects. As a result, YOLOv9 tends to have a
higher rate ofmissed and false detections in these complex scenarios,
particularly when detecting small objects and occluded objects. To
address these issues, this study will improve YOLOv9 by enhancing
feature extraction, contextual information utilization, and model
training to improve the detection accuracy of small targets and
enhance their robustness in occluded scenes, in order to achieve
high-precision detection of crucial components.

2.2.1 Overview of SGI-YOLOv9 network
In this study, we propose an improved YOLOv9 method by

optimizing two core modules in the original YOLOv9s model
architecture. First, in the deep downsampling part of the backbone
network, we design an SPDConv++ module to replace the original
convolutional module. SPDConv++ spatially decomposes and
reconstructs the input features, significantly reducing the loss of
fine-grained feature information during downsampling and thereby
improving the accuracy of small object detection. Second, in the
neck part, we introduce a Global Context Fusion Module (GCFM),
which combines spatial and channel self-attention mechanisms to
model global contextual information. The GCF module effectively
captures long-range contextual dependencies, enhancing robustness
and detection accuracy in complex backgrounds and occluded
scenarios. Additionally, during the training phase, we propose the
Inner-PIoU loss function to improve convergence. The rest of
the network structure and strategies remain consistent with the
original YOLOv9s.

Based on the aforementioned improvements, we
developed the final SGI-YOLOv9 algorithm, with the overall
architecture shown in Figure 3. The following sections will provide
a detailed explanation of the SGI-YOLOv9 method proposed in
this paper.

2.2.2 SPDConv++ moule
Small objects inherently possess limited feature information,

making it essential to minimize information loss during feature
extraction to maintain detection accuracy. In the original YOLOv9
architecture, a convolutional module with a stride of 2 is
employed for downsampling, which inevitably results in the
loss of fine-grained features, thereby impairing small object
detection. To address this limitation and improve the model’s small
object detection capability, inspired by SPD-Conv (space-to-depth
convolution) [37], we propose the SPD++ convolutional module, as
illustrated in Figure 4. Specifically, for the input feature Xwith a size
of M×M×C, we first sample and split it into four sub-features: X1,
X2, X3 and X4, defined as shown in Equations (1)–(4).

X1 = X [0 :M : 2,0 :M : 2] (1)

X2 = X [1 :M : 2,0 :M : 2] (2)

X3 = X [0 :M : 2,1 :M : 2] (3)

X4 = X [1 :M : 2,1 :M : 2] (4)

The sub-features X1, X2, X3 and X4 are concatenated along
the channel dimension to form X′, with dimensions M

2
× M

2
× 4C.

At this stage, the spatial resolution of the features is half that of
the input, and the number of channels is four times the input.
As shown in Figure 4, the feature vectors sampled into the same
sub-feature map in the input X are labeled with the same color to
provide a more intuitive visualization. This demonstrates that the
process of transforming X into four sub-features does not result
in any feature loss, while the sub-features effectively preserve the
spatial structural relationships of the original input, enabling the
successful downsampling of input features without compromising
information integrity. However, the concatenated sub-features have
a channel count four times greater than that of the original input,
inevitably introducing channel redundancy. The original SPD-
Conv module employs a 1× 1 convolutional layer to compress the
channel dimensions to match the input, but directly applying 1× 1
convolutions significantly impacts the output due to the presence
of redundant information, resulting in feature loss. To address
this limitation, we propose the SPD++ convolutional module,
which incorporates a channel attention mechanism to emphasize
important channels and suppress redundant ones. Following the
channel attention module, a 1× 1 convolution is applied to adjust
the number of channels to match the input, effectively mitigating
the adverse effects of channel redundancy.

The channel attention module begins by performing global
max pooling and global average pooling on the input featuremap. By
using a three-layer fully connected feedforward network to interact
with different channels, a set of attention weights can be learned that
can suppress redundant channels and highlight important channels.
After the three-layer network, the resulting pooled vectors are then
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FIGURE 3
Overview of the SGI-YOLOv9 network.

processed by a three-layer fully connected feedforward network.
The outputs from both pooling operations are combined through
element-wise addition, followed by the application of a sigmoid
activation function to generate the channel attention weights. These
weights are subsequently used to reweight the input features along
the channel dimension, enhancing themodel’s ability to focus on the
most informative channels.

In the entire SPDConv++ module, we do not use convolutions
with a stride greater than 1, ensuring that downsampling is
performed with minimal loss of fine-grained feature information.
Compared to the original SPD convolution, we introduce a
channel attention mechanism to the concatenated sub-features to
highlight the more discriminative channels. Since the number of
channels in the concatenated sub-features is significantly higher
than that of the original input features, some redundant features are
inevitable. Therefore, incorporating a channel attention mechanism

is essential to effectively reduce redundancy and enhance themodel’s
discriminative capability.

2.2.3 Global context fusion
Contextual information is important for detecting small and

occluded objects; however, traditional convolutional network
architectures lack the ability to effectively integrate global contextual
features. In recent years, self-attention mechanisms, due to their
ability to establish long-range dependencies, have been widely
used in visual tasks to fuse global contextual information [38, 39].
However, traditional visual self-attention mechanisms only perform
computations in the spatial dimension, neglecting the modeling of
information in the channel dimension. Tomore fully integrate global
contextual information and further improve detection accuracy,
this paper proposes a Global Context Fusion module. This module
includes both spatial self-attention and channel self-attention
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FIGURE 4
The SPDConv++ module.

mechanisms, which model global information from the spatial
and channel dimensions, respectively, as shown in Figure 5A. The
outputs of the spatial self-attention module and the channel self-
attention module are concatenated along the channel dimension,
and finally passed through a 1× 1 convolutional layer to ensure that
the number of output channels is the same as the input.

Specifically, as shown in Figure 5B, in the spatial self-
attention module, for the input feature X, three parallel 1× 1
convolutions are first applied to generate the query matrix Q,
key matrix K, and value matrix V. Then, a Reshape operation
is used to adjust their dimensions, such that Q ∈ RHW×C, K ∈
RHW×C and V ∈ RHW×C.Subsequently, calculations are performed
according to Equation (5), where d denotes the length of each
feature vector in Q and K. Each feature vector in the Q, K, and
Vmatrices corresponds to a patch of the input image. By computing
the product of the Q matrix and KT, the relationships between
each patch and all other patches in the image are captured. These
relationships are quantified as attention weights, ranging from 0 to
1, using the softmax function. The resulting weight matrix is then
multiplied with the V matrix to generate a weighted output matrix.
In this process, each feature vector in the output matrix is computed
based on the connections of all patches in the image, thereby
capturing global contextual information. After the computation,
another Reshape operation is applied to adjust the result to match
the dimensions of the input features. Finally, a 1× 1 convolution is
applied, and the result is element-wise added to the original input
X.

A (Q,K,V) = So ftMax[QK
T

√d
]V (5)

Additionally, The spatial self-attention module uses tokens
corresponding to different spatial positions in the feature map as
computing units to obtain contextual information from the spatial

dimension, but ignores information modeling from the channel
dimension. In deep networks, the feature maps of different channels
focus on expressing different feature information, so it is equally
important to fuse global contextual information from the channel
dimension.Therefore, in the channel self-attentionmodule designed
in this paper, we treat each channel as an independent token for
self-attention mechanism calculation. As shown in Figure 5C, in the
channel self-attention module, each channel of the input feature X
is treated as an independent token. Therefore, in this module, after
applying the Reshape operation to Q, K, and V, Q ∈ RC×HW, K ∈
RC×HW and V ∈ RC×HW are obtained. The subsequent computation
process is the same as in the spatial self-attention module.

2.2.4 Inner-PIoU
Intersection over Union (IoU) is a fundamental metric for

assessing the performance of object detection systems. In these tasks,
IoU quantifies the overlap between the predicted bounding box
and the ground truth box, specifically calculating the ratio of the
intersection area to the union area of these boxes. An effectively
designed IoU-based loss function promotes better alignment of the
predicted bounding box with the ground truth, thereby enhancing
model convergence speed. In YOLOv9, the Complete Intersection
over Union (CIoU) metric is utilized, which considers not only
the overlapping area but also the distance between the center
points and the aspect ratio of the boxes [40]. However, CIoU has
limitations; it does not fully account for shape differences and
variations between anchor boxes and ground truth boxes, potentially
leading to undesirable convergence behavior [41]. Furthermore,
in scenarios where the anchor box and the ground truth box do
not overlap, merely increasing the size of the anchor box can lead
to a reduction in CIoU loss, which is an unreasonable outcome.
Consequently, during model training, CIoU may fail to adequately
represent the differences between bounding boxes, resulting in
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FIGURE 5
The global context fusion module.

decreased model generalization and slower convergence rates. To
address this limitation and improve detection accuracy, this study
introduces Powerful-IoU (PIoU) for optimization [42]. The loss
function for PIOU is defined as shown in Equations 6, 7.

P = (
wgt
p

wgt
+
wp

wgt
+
hgtp
hgt

+
hp
hgt

)/4 (6)

LPIoU = LIoU + 1− e−P
2

(7)

In this equation, wgt
p , wp, h

gt
p , hp epresent the absolute distances

between the edges of the anchor box and the target box,whilewgt and
hgt note the width and height of the target box, as shown in Figure 6.
PIoU incorporates a penalty factor that utilizes the size of the target
box as the denominator, along with a function that adjusts based on
the quality of the anchor box. This approach effectively directs the
anchor box to regress along a more efficient trajectory, leading to
accelerated model convergence and enhanced detection accuracy.

Although the new loss term in PIOU contributes to accelerating
model convergence, it has inherent limitations in adapting to
different types of detectors and detection tasks. To address these
issues, we introduce Inner-IOU to mitigate the common problems

of weak and slow convergence in various detection tasks. Inner-
IOU, by utilizing additional scalable bounding boxes, effectively
overcomes the shortcomings in generalization ability of existing
methods, thereby enhancing the overall model performance [43].
The parameters and operational mechanism are shown in Figure 9.
The calculation method for Inner-IOU is as shown in Equation 8.

IoUInner = inter
union

(8)

The calculation methods for inter and union are as shown in
Equations 9, 10.

inter = (min(bgtr ,br) −max(bgtl ,bl)) ∗ (min(bgtb ,bb) −max(bgtt ,bt))
(9)

union = (wgt ∗ hgt) ∗ (ratio)2 + (w∗ h) ∗ (ratio)2 − inter (10)

The definitions of bgtr , br, b
gt
l , bl, b

gt
b , bb, b

gt
t and bt as shown in

Equations 11–14.

bgtl = xgtc − wgt ∗ ratio
2

,bgtr = xgtc + wgt ∗ ratio
2

(11)
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FIGURE 6
Factors of Inner-PIOU.

FIGURE 7
The box loss curves of SGI-YOLOv9 and original YOLOv9 models.

bgtt = ygtc − hgt ∗ ratio
2

,bgtb = ygtc + hgt ∗ ratio
2

(12)

bl = xc −
w∗ ratio

2
,br = xc +

w∗ ratio
2

(13)

bt = yc −
h∗ ratio

2
,bb = yc +

h∗ ratio
2

(14)

The center point of the anchor box is (xc,yc), with its width and
height denoted asw, andh, respectively.The center point of the target
box is (xgtc ,ygtc ), with its width and height represented by wgt and
hgt. The ratio is the scaling factor, typically ranging from 0.5 to 1.5.
When the is less than 1, the auxiliary bounding box is smaller than
the actual bounding box, narrowing the effective regression range,
but the absolute value of its gradient is larger than that obtained
from IoU loss. Conversely, when the ratio s greater than 1, the
enlarged auxiliary bounding box expands the effective regression

range, benefiting regression in cases of low IoU. Finally, we propose
a novel computation method called Inner-PIoU, which combines
the advantages of Powerful-IoU and Inner-IoU, fully accounting
for the differences between bounding boxes. This method not only
enhances the model’s generalization ability and improves detection
accuracy for small objects, but also reduces unexpected convergence
behaviors. The formula for Inner-PIoU is shown in Equation 15.

LInner−PIoU = LPIoU + IoU− IoUInner (15)

3 Experimental results

To evaluate the efficacy of the proposed SGI-YOLOv9 method,
we performed training and testing using the CPDNdataset as well as
the PASCAL VOC 2007 dataset, followed by a comparative analysis
against other state-of-the-art object detection models. This chapter
offers a comprehensive overview of the experimental procedures and
implementation details.

3.1 Implementation details

3.1.1 Experimental environment
All experiments were conducted under a consistent

computational environment. The system specifications used in our
experiments are as follows: a 15-core Intel(R) Xeon(R) Platinum
8358P CPU operating at 2.60 GHz, and an NVIDIA GeForce RTX
3090GPU.The system ran onUbuntu 20.04with PyTorch 1.11.0 and
CUDA 11.3. The memory capacity was 24 GB, and Python version
3.8 was employed throughout the experiments.

3.1.2 Training and evaluation metric
3.1.2.1 Training

During themodel training phase, we configured themomentum
parameter to 0.9 and set the weight decay coefficient to 5e-4,
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FIGURE 8
Visualization results of the feature maps.

FIGURE 9
XGrad-CAM heatmap of YOLOv9 and SGI-YOLOv9.

employing stochastic gradient descent (SGD) as the optimization
algorithm. The batch size was consistently maintained at 32, with
a total of 200 training epochs and an initial learning rate of 0.01.
Additionally, auxiliary training strategies were implemented during
training; however, these strategies were not applied during the
inference phase.

3.1.2.2 Evaluation Metric
This paper employs commonly used evaluation metrics in the

field of object detection, including precision (P), recall (R), and
mean average precision (mAP). These metrics are used to assess
the effectiveness and accuracy of component detection in the
power distribution network. Higher values indicate better model
performance.The calculation of these metrics involves the following
parameters: TP (true positives, where the prediction is positive
and the actual label is also positive), FP (false positives, where the
prediction is positive but the actual label is negative), and FN (false
negatives, where the prediction is negative but the actual label is
positive).

In object detection tasks, precision measures the degree of
false positives produced by the algorithm. A higher precision
indicates fewer false detections. The calculation formula
is shown in Equation (16):

Precision = TP
TP+ FP

(16)

In object detection tasks, recall measures the degree of missed
detections by the algorithm. A higher recall indicates fewer missed
detections. The calculation formula is shown in Equation (17):

Recall = TP
TP+ FN

(17)

The evaluation of an object detection algorithm’s performance
should encompass both precision and recall metrics. By varying
the confidence thresholds, corresponding precision and recall values
can be derived, which are subsequently plotted to create a Precision-
Recall (PR) curve, with precision represented on the vertical axis
and recall on the horizontal axis. The area enclosed by the PR curve
and the coordinate axes indicates the Average Precision (AP). If we
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TABLE 1 Experimental results for different ratios in Inner-PIoU.

Method Precision (%) Recall (%) mAP@50 (%) mAP50-95 (%)

CIoU 80.6 70.1 75.2 45.0

Inner-PIOU (ratio = 0.9) 81.5 69.5 75.9 45.5

Inner-PIOU (ratio = 1.0) 81.1 69.6 75.8 45.5

Inner-PIOU (ratio = 1.1) 82.4 70.5 76.4 46.5

Inner-PIOU (ratio = 1.2) 82.2 69.7 76.1 45.9

denote the function associated with this curve as p(r), the formula
for AP is presented in Equation (18):

AP = ∫
1

0
p (r)dr (18)

Mean Average Precision (mAP) is calculated by determining the
AP values for all target categories and then computing their average.
The formula for mAP is provided in Equation (19):

mAP =
N

∑
n=1

AP (n)/N (19)

3.2 Ablation study

To determine the optimal ratio parameter for Inner-PIoU in
detecting crucial components in the CPDN dataset, we conduct a
series of experiments and compare the results with the CIoU used
in original YOLOv9, as shown in Table 1. When the ratio is set to
1.0, indicating no auxiliary bounding box and only using Powerful-
IoU, the results show a 0.6% increase in mAP@50, validating the
effectiveness of Powerful-IoU in detecting crucial components in
the power distribution network. When the ratio is set to 0.9, which
introduces a smaller auxiliary bounding box, there is no significant
improvement in mAP@50 compared to the ratio of 1.0. However,
when the ratio exceeds 1.0, indicating the use of a larger auxiliary
bounding box, the performance improves. Specifically, with ratio
values of 1.1 and 1.2, mAP@50 increases by 0.6% and 0.3%,
respectively, compared to a ratio of 1.0. Since most components in
the CPDN dataset are considered small objects, further experiments
demonstrate that when the ratio exceeds 1.0, the convergence of
the model training for small object detection improves significantly.
Consequently, this leads to a notable enhancement in detection
accuracy. Therefore, we select a ratio of 1.1 for Inner-PIoU as
the optimal parameter and use it as the default in subsequent
experiments.

We further analyze and compare the box loss of the improved
YOLOv9 with the original YOLOv9, as shown in Figure 7. The
curve shows that the loss for the improved YOLOv9 is significantly
lower than that of the original YOLOv9 during the initial
training phase, indicating that the improved YOLOv9 adapts to
the data more quickly. As the training epochs progress, both
models exhibit a rapid decline in loss, but the improved YOLOv9
demonstrates a much faster decrease. This indicates that the

improved YOLOv9 learns the positions of bounding boxes more
efficiently and reduces the deviation between the predicted and
actual boxes more effectively. After both models converge, the
loss for the SGI-YOLOv9 consistently remains lower than that
of the original YOLOv9. These findings confirm that the SGI-
YOLOv9, with the incorporation of Inner-PIoU, adapts to the
dataset faster, achieves lower loss values during training, and
converges more quickly.

Next, we conduct ablation experiments on each of the
proposed modules, as shown in Table 2. The results demonstrate
that each module contributes to improving the accuracy of
crucial components recognition in the power distribution network.
Specifically, when the ratio is set to 1.1, Inner-PIoU improves
accuracy by 1.2% on the CPDN test set, while SPDConv++ and
GCFM contribute improvements of 1.6% and 1.1%, respectively.
These findings further validate that the proposed methods enhance
the accuracy of crucial components recognition in the power
distribution network effectively.

As shown in Figure 8, we compare the feature maps extracted
at various stages of the backbone network between the original
YOLOv9 model and the SGI-YOLOv9 model. Through feature
map visualization, it is evident that after introducing the
SPDConv++ method, the improved model exhibits a stronger
response to edge information of crucial components in the
power distribution network. Particularly in the Stage 3, Stage
4, and Stage 5 phases of the backbone network, the SGI-
YOLOv9 model significantly reduces the loss of fine-grained
features, preserving more detailed information. These results
indicate that the SPDConv++ method effectively enhances the
richness of fine-grained features in the backbone network output
feature maps, further validating the effectiveness and robustness
of this method in object detection from the perspective of
feature visualization.

Additionally, we utilize XGrad-CAM [44] to perform a visual
analysis of the attention heatmaps for both the original YOLOv9
and the SGI-YOLOv9 models, as shown in Figure 9. In this figure,
(a) represents the input image, (b) shows the attention heatmap
from the original YOLOv9 model, and (c) displays the attention
heatmap from the SGI-YOLOv9 model. The visualization results
clearly indicate that the SGI-YOLOv9 model significantly improves
its focus on key components of the power transmission lines in
complex backgrounds.This highlights the notable advantage of SGI-
YOLOv9 in enhancing detection accuracy, particularly in complex
scenes involving crucial components of the power distribution
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TABLE 2 Ablation experiments for the SGI-YOLOv9 method.

Method Inner-PIoU SPDConv++ GCFM mAP@50 (%) mAP50-95 (%)

YOLOv9 — — — 75.2 45.0

SGI-YOLOv9

✓ — — 75.2 46.5

✓ ✓ — 78.0 47.7

✓ ✓ ✓ 79.1 48.5

TABLE 3 Comparison results of different models.

Method Precision (%) Recall (%) mAP@50 (%) map50-95 (%)

YOLOv5 [18] 83.7 67.9 72.3 40.0

YOLOv7 [19] 79.4 66.1 71.8 37.7

YOLOv8 [20] 82.1 68.3 74.8 44.0

YOLOv9 [21] 80.6 70.0 75.2 45.0

SGI-YOLOv9 85.2 72.3 79.1 48.5

network, further validating its effectiveness and reliability in
practical applications.

3.3 Compare with state-of-arts on CPDN
dataset

To ensure a fair comparison between our proposed SGI-
YOLOv9 method and other mainstream object detection methods
on the CPDN dataset, we train all models without loading any
pre-trained models. Table 3 presents the comparative experimental
results of SGI-YOLOv9 and other mainstream object detection
methods on the test set. As shown in the table, SGI-YOLOv9
achieves the highest scores across all evaluation metrics on the
CPDN test set, with a mAP@50 of 79.1%, which is a 3.9%
improvement over the original YOLOv9. This demonstrates that
our SGI-YOLOv9 method offers a significant advantage in detecting
crucial components within the complex background of the power
distribution network.

To further evaluate the effectiveness of the SGI-YOLOv9
algorithm in detecting different types of components in the
power distribution network, we record the AP@50 for seven
component types in the dataset, as shown in Figure 10. It is
evident that the SGI-YOLOv9 model consistently outperforms the
original YOLOv9 in terms of overall AP@50. Specifically, SGI-
YOLOv9 demonstrates stable performance improvements when
detecting larger components such as COS and Transformers, with
increases of 1.7% and 1.3%, respectively. For smaller components,
such as Arresters and Insulators, the improvements are even
more significant. Notably, SGI-YOLOv9 achieves a 6.1% increase
in AP@50 for Arresters, marking the most substantial gain.
Additionally, the mAP@50 for the four types of Insulators increases

FIGURE 10
Comparison of AP@0.5 for different categories between the original
YOLOv9 and SGI-YOLOv9 on the CPDN dataset.

by 4.58%.These results confirm the significant improvement of SGI-
YOLOv9 in detecting small objects, highlighting its enhanced ability
to focus on and handle small objects in complex scenes.

To comprehensively validate the effectiveness of the proposed
SGI-YOLOv9 method, we compare its visualization results for
crucial components detection with those of other mainstream
object detection algorithms, as shown in Figure 11. It is evident
that YOLOv5, YOLOv7, YOLOv8, and YOLOv9 all exhibit varying
degrees of omission and false detections. This is especially
pronounced when the crucial components are small or occluded,
where other mainstream models demonstrate low confidence in
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FIGURE 11
Results of various methods for crucial components detection in the power distribution network.

their predicted bounding boxes, leading to numerous missed
detections and false positives. In contrast, our SGI-YOLOv9 model
shows higher detection accuracy when handling small and occluded
crucial components. These findings demonstrate that SGI-YOLOv9
is highly effective for crucial component detection tasks in the
complex environments of the power distribution network.

3.4 Compare with state-of-arts on the
PASCAL VOC 2007 dataset

To further validate the effectiveness of the proposed SGI-
YOLOv9 model in object detection tasks, we conducted training
experiments on the PASCAL VOC 2007 dataset and systematically
compared its performance on the test set with several mainstream
object detection algorithms. Notably, all models utilized in the
comparisonwere lightweight versions. As shown in Table 4, the SGI-
YOLOv9 model achieved a significant performance improvement,
attaining a mAP@50 value of 63.3%, which represents a 1.6%
increase compared to the original YOLOv9. Additionally, the
precision improved by 1.4%, and the recall increased by 1.3% over
the original YOLOv9. These results demonstrate that SGI-YOLOv9
not only delivers superior accuracy in insulator defect detection
tasks but also excels in general-purpose object detection tasks.
This highlights the model’s robustness, algorithmic superiority, and
strong generalization capability across diverse application scenarios.

TABLE 4 Experimental Results of Different Models on the PASCAL VOC
2007 dataset.

Precision (%) Recall (%) mAP@50 (%)

Faster-RCNN 34.1 54.7 57.5

Mask-RCNN 33.9 69.1 57.2

YOLOv5 69.4 52.9 60.3

YOLOv7 66.8 52.5 58.3

YOLOv8 68.8 53.0 56.5

YOLOv9 66.7 54.1 61.7

SGI-YOLOv9 68.1 55.4 63.3

4 Conclusion

This paper presents an improved method based on YOLOv9
to address the challenges of small objects detection and complex
scenarios in the detection of crucial components in the power
distribution network. By designing the SPDConv++ module, we
reduce the loss of fine-grained feature information and improve the
accuracy in detecting small objects. Simultaneously, the proposed
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global context fusion module models global information from
both spatial and channel dimensions, effectively handling complex
backgrounds and occlusion issues. Additionally, we optimized the
loss function of IoU in YOLOv9 by proposing the Inner-PIoU
method, which combines the advantages of Powerful-IoU and
Inner-IoU to enhance the regression performance of the bounding
boxes, thereby improving the model’s generalization ability and
detection accuracy for crucial components in the power distribution
network. Experimental results demonstrate the effectiveness of SGI-
YOLOv9, achieving an mAP@50 of 79.1% on the CPDN dataset, an
improvement of 3.9% over the original YOLOv9, and an mAP@50
of 63.3% on the PASCAL VOC 2007 dataset, surpassing YOLOv9
by 1.6%. The proposed method provides effective technical support
for detecting crucial components in the power distribution network
under complex scenarios, contributing to the safety and reliability
of power grid. Future research may focus on further optimizing
the model’s computational efficiency and applying it to more power
system scenarios to promote the development of smart grids.
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Photovoltaic scenario generation plays a critical role in power systems
characterized by high diversity and fluctuation. Despite recent theoretical
advancements, effectively evaluating the performance of photovoltaic scenario
generation remains a significant challenge. Existing studies predominantly rely
on metrics such as mean, variance, and probability density functions for
assessment. However, these approaches struggle to disentangle the underlying
mechanisms of morphological features and environmental stochastic factors
(e.g., cloud cover, seasonal variations) from individual or batch-generated
samples. To address these limitations, this paper proposes an evaluation
framework based on the wide-sense stationary process. By analyzing
historical photovoltaic scenario data, a solar irradiance distribution model
is first constructed to characterize its dynamic behavior. Subsequently, an
autoregressive model is employed to quantify the influence of environmental
randomness on photovoltaic scenarios. The proposed evaluation model not
only comprehensively validates the reliability of various photovoltaic scenario
generation techniques but also identifies the corresponding month or season
of generated samples through scenario feature analysis. Experimental results
demonstrate that, compared to conventional probability-based metrics, the
proposed model more effectively reveals the performance characteristics of
photovoltaic scenario generation technologies. This advancement provides a
novel technical foundation for optimizing photovoltaic scenario generation in
practical power systems.

KEYWORDS

photovoltaic scenariogeneration,wide-sense stationaryprocess, autoregressivemodel,
environmental randomness analysis, performance benchmarking for PV systems

1 Introduction

Electricity produced from solar photovoltaic (PV) panels is a vital source of clean
energy, where much research has been done in recent years owing to its low pollution. As
integration of PV powers into traditional power grid increases, a challenge surfaces due
to regulation requirements of balancing existing supply-demand in energy markets [1, 2].
One solution to this problem is PV energy prediction in solar reception process using PV
scenario generation to simulate real PV energy [3–5]. Key to informative analysis of PV
scenario is accurate representation that describes the variability and uncertainty of solar
generation from both spatial and temporal aspects [6, 7]. Two attributes of PV systems
make it difficult to generate reliable PV scenario. One is that solar generation is mostly

Frontiers in Physics 01 frontiersin.org46

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2025.1534629
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2025.1534629&domain=pdf&date_stamp=2025-03-21
mailto:yangtx0704@163.com
mailto:yangtx0704@163.com
https://doi.org/10.3389/fphy.2025.1534629
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphy.2025.1534629/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1534629/full
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Ren et al. 10.3389/fphy.2025.1534629

dominated by the accessibility of solar irradiation that changes
across a day and during a year following the movement round the
Sun and the Earth’s rotation [8–10]. Compared with traditional
energy generation techniques, PV systems involves strong uncertain
and environmental variables (e.g., cloud and season).Theother is PV
systems contain highly scalable ranging from a few kilowatts (kW)
to hundreds of megawatts (MW) [11], which indicates the diversity
of PV scenarios. Thereby, exploring the most accurate information
on the PV generation characteristics determines the reliability of
generated PV scenarios.

A lot of studies have devoted to improve the effectiveness and
precision of PV scenario generation [12], categorized as model-
based and model-free approaches. The former represents solar
reception process with a specific model of presupositions, and
the accuracy of model determines the reliability of PV scenario
generation. Most of these techniques utilize probability models to
simulate solar reception process. A modular statistical modeling
approach is presented to predict power generation of both PV and
wind power systems [13]. A pseudo-random number generation
technique is proposed to reduce prediction error of PV scenario
generation with considering uncertainty and variability indices [14].
Aggregated power curves are also analyzed and contributes to
PV generation [15]. Gaussian copulas are established to produce
multivariate PV scenarios [16]. The advantages of these techniques
are simple models and easy implementation, yet the disadvantage is
its limited ability of representing the uncertainty. Overcoming the
weakness of model-based methods, model-free techniques learn the
inherent distribution of solar reception process through analyzing
existing PV scenario data. Support vector regression is used to
forecast regional PV power generation with past PV data [17].
Artificial neural network is built to predict the solar irradiance in
PV systems [18]. A recurrent neural network (RNN) is utilized to
produce PV scenarios with month and weather information, which
requires no mathematical modelling [19]. Conditional generative
adversarial networks (CGAN) and Wasserstein GAN (WGAN)
are constructed to generate PV scenarios with sufficient diversity
and good representation of environmental uncertainty [20]. These
techniques are capable of capturing the details of PV scenarios
caused by particular operation of solar receptions. The drawbacks
of model-free techniques are severe computation complexity and
unexplained characteristics in operation processes. While either
approach claims its accuracy and effectiveness, there are no
standards evaluating them.

Although existing methods for PV scenario generation have
demonstrated certain advantages, they also face notable limitations.
Model-based approaches, such as AR and autoregressive moving
average (ARMA) models, rely on fixed assumptions about the
underlying process, making it challenging to capture non-linear
and abrupt changes in PV power caused by sudden weather shifts.
Model-free approaches, such as generative adversarial networks
(GANs) and other deep learning models, have greater flexibility but
require large datasets and significant computational resources.Their
generalization performance may also be affected when applied to
unseen weather or seasonal conditions.

Hence, it is important to evaluate the effectiveness of PV
scenario generation methods. Typically, probabilistic properties of
produced PV scenarios (e.g., mean value, variance, and probability
density function (pdf)) are common indicators of evaluating the

performance of PV scenario generation, because these indicators
are easily calculated. In particular, hourly PV generation is used to
estimate variable changes between times in the system and optimize
future expansion plans. PV energy curves have high fluctuations
due to the diversity and variety of solar reception process, i.e.,
the differences between any 2 sampling values in a PV scenario
could be large. In this regard, mean value is weak to represent the
uncertainty (e.g., cloud) in PV scenarios. Furthermore, variance is
useful to evaluate the pattern of sunrise and sunset. Only averaging
the variances of existing PV data is hard to determine which
month or season that a generated sample belongs to. Additionally,
pdf stands for purely solar energies from the Sun without
environmental randomness, which is hard to assess the influence
by cloud.

Therefore, unlike simple probability indicators such as mean
and variance, we propose a novel evaluation model that explicitly
assesses the reliability and effectiveness of photovoltaic (PV)
scenario generation. While recent research, such as those relying on
mean and variance, have been widely used, they are limited in their
ability to capture the temporal dependencies and environmental
randomness that significantly affect PV generation. These methods
primarily focus on statistical summaries, which fail to account
for abrupt changes caused by environmental factors like cloud
movement, leading to less accurate predictions. In contrast, our
autoregressive (AR)-based model provides a more comprehensive
evaluation framework by explicitly modeling the temporal structure
and stochastic fluctuations in PV scenarios.ThisARmodel simulates
the movement of clouds and its impact on solar reception, offering
a more precise characterization of the underlying randomness in
PV generation. Additionally, by incorporating month- and season-
specific AR parameters, our approach is capable of categorizing
PV scenarios into temporal categories, such as specific months
and seasons, something that traditional mean and variance-based
methods cannot achieve. This enhanced ability to classify and
evaluate PV scenarios allows for more robust and context-aware
PV energy predictions, making our approach not only more
accurate but also more scalable and practical for real-world
applications.

1. Proposed evaluationmodel has stronger ability of assessing the
reliability of generated PV scenarios than simple probability
indicators, which is conducive to improving the studies of
PV scenario generation and promoting the application of
PV systems.

2. Proposed evaluation model can estimate the corresponding
month and season that a credible PV sample is geared to. To our
knowledge, this is the first work evaluating the specific month
and season of a generated PV scenario.

3. We discover the representative properties (e.g., the effect of
cloud) of solar reception process and use the discovery to assess
the inherentmovement of cloud, which fills a gap of estimating
the environmental randomness of PV scenario generation.

The rest of this paper is organized as follows. Section 2motivates
the introduction of the details of AR model in both time and
frequency domains. Section 3 is devoted to the details of proposed
approach. In Section 4, experimental results are discussed and
analyzed. Finally, Section 5 concludes this paper.
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FIGURE 1
AR model as a LTI filter.

2 Autoregressive model

In regard to time series events, correlations exist among the
behaviors at certain intervals. Considering the correlations, an
autoregressive (AR) model is able to predict future variables of
interest according to their past values. AR model is basically a
linear regression of current values against past values in the same
time series [21]. An AR(p) model is mathematically defined as:

φ [n] = −c− a1φ [n− 1] − a2φ [n− 2] −⋯− apφ [n− p] + ϵ [n] (1)

where φ[n] is nth value of variable observation; ϵ[n] is driving noise;
p is the order of AR model; {a1,a2,…,ap} are AR parameters. c
denotes the energy of the observation, which is defined as:

c = (1−
p

∑
t=1

at)μ (2)

where μ is the process mean.
AR parameters {at|t = 1,2,…,p} dominate the performance of

AR model, which could be estimated by several techniques, e.g.,
Yule-Walker, burg method, Kalman filter, least-square, expectation-
maximization, forward-backward. Changing the value of p and the
parameter at leads to different time series patterns [22].

Taking Z-transforms of Equation 1, AR model as a LTI filter is
depicted as:

H (z) =
σ2
ϵ

Ap (z)
=

σ2
ϵ

c+∑p
t=1

atz
−t

(3)

AR(p) model is used to model the observation φ[n] as the
response of a LTI filter with p order to an input ϵ[n] (illustrated
as in Figure 1). The purpose is to discover the filter coefficients
(AR parameters {at|t = 1,2,…,p}) and the input ϵ[n] that make the
estimated φ̂[n] as close to φ[n] as possible. From Equation 3, AR
model is an all-polesmodel. AR system could be unstable if the poles
are outside the unit circle.

The AR parameters could be solved by Yule-Walker
equations. Equation 1 can be reformed in a vector form.

(φ [n] ,φ [n− 1] ,…,φ [n− p])(

(

1

a1

⋮

ap

)

)

= ϵ [n] − c (4)

Multiple both sides by φ[n] and take the expectation, we have:

Eφ [n]x [n] = E

{{{{{{{
{{{{{{{
{

φ [n] (φ [n] ,φ [n− 1] ,…,φ [n− p])(

(

1

a1

⋮

ap

)

)

}}}}}}}
}}}}}}}
}

= E {ϵ [n] − c}

Then,

(r0, r1,…, rp)(

(

1

a1

⋮

ap

)

)

= σ2
ϵ (5)

where {r0, r1,…, rp} are autocorrelation function. Then,

[[[[[[[

[

r0 r1 … rp
r1 r0 … rp−1

⋮ ⋮ ⋮ ⋮

rp rp−1 … r0

]]]]]]]

]

[[[[[[[

[

1

a1

⋮

ap

]]]]]]]

]

=

[[[[[[[

[

σ2
ϵ

0

⋮

0

]]]]]]]

]

(6)

While deleting the first equation in Equation 6, the formula,
termed Yule-Walker equations, is obtained as follows.

[[[[[[[

[

r0 r1 … rp
r1 r0 … rp−1

⋮ ⋮ ⋮ ⋮

rp−1 rp−2 … r0

]]]]]]]

]

[[[[[[[

[

a1

a2

⋮

ap

]]]]]]]

]

= −

[[[[[[[

[

r1
r2
⋮

rp

]]]]]]]

]

(7)

3 The proposed model

Figure 2 illustrates the overall methodology of our proposed
autoregressive-based PV scenario assessment framework. By
analyzing the time dependency and random fluctuations in PV
data, the AR model can capture short-term variations caused
by environmental factors, thereby providing a more robust
evaluation of PV scenario reliability. This framework introduces
an autoregressive process to model environmental disturbances in
PV generation, taking into account the temporal dependence of PV
output as well as abrupt fluctuations due to environmental changes.
Meanwhile, the framework integrates AR model parameters with
monthly and seasonal PV generation characteristics. By estimating
ARparameters for differentmonths and seasons, it assigns generated
PV samples to the appropriate time period, enabling more accurate
handling of both seasonal variations and longer-term fluctuations
in the PV data.

3.1 PV dataset analysis

Take 4 data sets from existing PV data for observation, shown in
Figure 3. To address the month-to-month and seasonal variations
in solar radiation, we conducted an in-depth analysis of the
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FIGURE 2
Diagram of the AR model–based evaluation framework for monthly and Quarterly analysis.

distribution characteristics of photovoltaic data for specific months
and seasons. Solar radiation exhibits significant differences not
only in its mean values but also in its variability and distribution
patterns across months and seasons. For instance, summer months
like July and August demonstrate higher average solar radiation
and smoother temporal patterns due to stable weather conditions,
while winter months like December and January are characterized
by lower average radiation levels and more frequent fluctuations
caused by cloud cover and shorter daylight hours. Seasonally,
summer shows the highest consistency in solar radiation, while
winter has the highest variability. In addition, the distribution
characteristics of solar radiation, such as its skewness and kurtosis,
were analyzed for eachmonth and season to capture subtle temporal
differences. Winter months generally exhibit a higher skewness due
to irregular peaks in solar radiation, whereas summer months tend
to have lower kurtosis, reflecting more consistent radiation patterns,
as shown in Figures 3A, B.

While the clouds shade PV panels from the light, a downward
peak occurs. The duration of these peaks depends on the moving
speed of clouds. Additionally, as shown in Figures 3C, d, even
though mean values of these 2 PV samples are the same, their
representation are extremely different. Consequently, it is hard to
utilize mean value and variance to evaluate the performance and
diversity of PV scenario generation. The normalization is applied
to the energy ratio λ[n] and the normalized solar power g[n]. The
energy ratio λ[n] is normalized to follow a Gaussian distribution
G(μλ,σ

2
λ), where μλ and σ2

λ are themean and variance estimated from
historical data. Similarly, g[n] is transformed to followG(μg,σ

2
g), with

μg and σ2
g reflecting the peak solar power time and its variability

within a day. These normalization steps standardize the feature
distributions, ensuring consistent input for the evaluation models
and improving the robustness of the analysis.

We first normalized the raw photovoltaic output power data in
the data preprocessing phase. Specifically, each historical sample
xo[n] is transformed into x[n] using the following equation:

x [n] = λ [n] ⋅ (g [n] + ε [n]) (8)

Where λ[n] represents the energy ratio, g[n] is the normalized
solar power, and ε[n] accounts for the environmental interference,
such as cloud cover and weather variations. All photovoltaic
data are normalized to ensure consistency across the dataset
following a Gaussian distribution. The energy ratio λ[n] is
normalized as follows:

λ [n] ∼ G(μλ,σ
2
λ) (9)

Where μλ and σ2
λ are the mean and variance of the energy ratio,

respectively. Similarly, the normalized solar power g[n] follows a
Gaussian distribution, given by:

g [n] ∼ G(μg,σ
2
g) (10)

Where μg indicates the time of maximum solar power during
the day, and σ2

g represents the time interval between sunrise and
sunset. To model the environmental disturbances impacting the
photovoltaic power, the interference term ε[n] is modeled as an
autoregressive process:

ε [n] = −
p

∑
t=1

at ⋅ ε [n− t] + u [n] (11)

Where at are the AR model paremeters, p is the order of the model,
and u[n] is the noise term, which follows a Gaussian distribution.
These preprocessing steps ensure the data are appropriately
normalized and standardized, providing consistent and reliable
input for subsequent model training.

We establish the evaluation model according to month
and season. In other words, we could assess a generated
PV sample whether belongs to a specific month or season.
For each x in historical data, a set of parameter values
Θx:(λ

x,μg,σ
2
g ,a1,a2,…,ap,σ

2
u) could be gained by Equation 1.

Denote each generated sample as y, with a group of parameter
values Θy:(λ

y,μyg, (σ
y
g)

2,ay1,a
y
2,…,ayp, (σ

y
u)

2) are also evaluated. While
the proposed evaluation framework assumes WSS for month-
specific and season-specific PV data, this assumption may not hold
under significant non-stationary conditions, such as those caused
by extreme weather events or rapid environmental changes. To
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FIGURE 3
PV scenario samples, where data are sampled every 5 min (a) A daily PV output profile under relatively clear weather conditions. (b) A PV output profile
exhibiting moderate fluctuations due to intermittent cloud cover. (c) A high-fluctuation scenario sharing the same average output as (d), but showing
distinctly different variability patterns. (d) A contrasting scenario with the same mean power as (c), yet reflecting different environmental randomness in
its generation curve.

mitigate this limitation, the evaluation process could incorporate
adaptive mechanisms, such as recalibrating AR parameters for
shorter time intervals to better capture transient dynamics.
Furthermore, reflection coefficients and residual errors from
the AR process could provide additional indicators of non-
stationarity, allowing for more flexible evaluation criteria under
such conditions.

The proposed model relies on several key assumptions for
effective modeling and evaluation. The solar reception process is
assumed to exhibit WSS within each month and season, allowing
the AR model to capture temporal dependencies. Additionally, the
energy ratio λ[n] and normalized solar power g[n] are assumed
to follow Gaussian distributions, facilitating parameter estimation.
Environmental fluctuations cause by weather changes, such as
cloud movement, are modeled using a linear AR process, which
enables the model to capture short-term dependencies. While these
assumptions are reasonable for most PV scenarios, deviations, such
as seasonal transitions or extreme weather conditions, may impact
the model’s generalization ability. The model is tested on PV data
from multiple months and seasons to ensure robustness, reflecting
a wide range of environmental conditions. This approach improves
the model’s generalization capacity and practical applicability.

3.2 Month-evaluation

For jth month in a year, evaluation model is determined by
Θj

x:{λ̂
j, μ̂jg, σ̂

j
g, â

j
t, (σ̂

j
u)

2
}, j = {1,2,…,12}. We arrange Θj

x into three
parts in accordance with three indicators { ̂ryλ[j], ̂ryg[j], ̂ryu[j]} to
evaluate a given generated PV sample y being “reliable”. If the sample
is reliable, the indicators would obtain the month that this sample
belongs to.

1) In the first part, ̂ryλ[j] manifests the probability that energy
ratio of generated sample y follows the distribution of energy
ratio of the jth month.

In term of the jth month, from Equation 2, the distribution of
energy ratio is dominated by μ̂jλ and (σ̂jλ)

2
which are gained by the

following formulas:

μ̂jλ = 1
d

d

∑
i=1

λx [i] (12)

(σ̂jλ)
2
= 1
d

d

∑
i=1

(λx [i] − μ̂jλ)
2

(13)

where d is the total days in the jth month. λx[i] is the value of energy
ratio in the ith day of jth month.
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For each generated PV sample y, {ryλ[j]|j = 1,2,…,12} are
calculated separately as follows.

̂ryλ [j] =
1

√2π(σ̂jλ)
2
e
− 1

2
(

λy−μ̂
j
λ

σ̂
j
λ

)
2

(14)

2) In the second part, ̂ryg[j] describes the difference of sunshine
duration between generated samples and the jth month,
which is evaluated by μ̂jg and (σ̂jg)

2
.

̂ryg [j] = √(μg − μ̂jg)
2
+ (σ2

g − (σ̂jg)
2
), (15)

μ̂jg = 1
d

d

∑
i=1

μg [i] (16)

(σ̂jg)
2
= 1
d

d

∑
i=1

σ2
g [i] (17)

3) In the third part, ̂ryu[j] represents the learning ability
of generated samples for environmental randomness of
jth month. An AR(p) model is designed to imitate the
uncertainties. An importance of AR model is that all poles
must be within unit circle to ensure system stability [23]. If
p > 2, all {at|t = 1,2,…,p} are not necessary to be less than 1.
Thereby, averaging at’s may result in poles falling outside the
unit circle. Instead of averaging the values of at, we implement
reflection coefficients {kt|t = 1,2,…,p} to obtain the “averaged”
AR parameters. kt has a good property that it is bounded by
1. To find kt by step-down (SD) procedure, we need to obtain
{at[m]|m = 1,2,…, t− 1; t = p,p− 1,…,2}, where at[m] is the
mth AR parameter for model order p = t.

In SD procedure,

at−1 [i] =
at [i] − at [t]a

∗
t [t− i]

1− |at [t] |
2 (18)

where∗means transposition. Prediction error powers of each model
order in the procedure is defined as:

υt−1 =
υt

1− |at [t] |
2 (19)

SD procedure is completed while υt < (σ̂jg)
2
. Furthermore, the

procedure is initialized with at[m] = at in Θx for t = 1,2,…,p and
υp = σ2

u. After displaying SD procedure, reflection coefficients are
obtained as kt = at[t], t = 1,2,…,p. Averaged kt is calculated as:

k̂t =
1
d

d

∑
i=1

kt [i] (20)

With k̂t, {ât|t = 1,2,…p} is calculated using Levinson recursion.

ât [m] =
{
{
{

ât−1 [m] + k̂tât−1 [t−m] k̂ = 1,2,…, t− 1

k̂t m = t
(21)

(σ̂ju)
2
= ̂r [0]

p

∏
t=1

(1− k̂2
t ) (22)

̂r [0] = 1
n

n

∑
i=1

ε2 [n]

̂ryu[j] is measured by Euclidean distance between AR parameters
{ayt |t = 1,2,…,p} in a generated sample y and coefficients
{âjt|t = 1,2,…,p} in the jth month.

̂ryu [j] = √
p

∑
t=1

(âjt − ayt)
2
+ ((σ̂ju)

2
− (σyu)

2) (23)

For each generated sample y, a set of { ̂ryλ[j], ̂ryg[j], ̂ryu[j]} is
obtained. Based on maximum likelihood theory, we search the
largest values of these 3 coefficients with highest probability for
finding the month that y belongs to.

{{{{{{{
{{{{{{{
{

j1 = arg max
j

̂ryλ [j] , j = 1,2,…,12

j2 = arg min
j

̂ryg [j] , j = 1,2,…,12

j3 = arg min
j

̂ryu [j] , j = 1,2,…,12

(24)

To place the assessment, state null hypothesis and alternate
hypothesis, respectively:

  H0: y is a reliable sample for PV scenario.
  H1: y is not a reliable sample for PV scenario.

Because two neighboring months have some similar solar
receptions, we set a bias δ to adjust the evaluation. Considering the
comparability between any two neighboringmonths, while |j1 − j2| ≤
δ, |j1 − j3| ≤ δ, and |j2 − j3| ≤ δ are all satisfied, accept H0. Otherwise,
accept H1. To further quantify the confidence in the evaluation
results, we calculated the 95% confidence intervals (CIs) for the
likelihood ratios ̂ryλ[j], ̂ryg[j], ̂ryu[j] using the following formula:

CI = ̂r± z ⋅ σ
√n

(25)

where ̂r is the maximum likelihood estimate, σ is the standard
deviation of the likelihood ratios across the samples, n is the number
of observations, and z is the critical value for a 95% confidence
level. We use corresponding to a 95% confidence interval. This
5% significance level is a widely accepted convention in statistical
inference, as it offers a practical balance between Type I and Type II
errors in hypothesis testing [24–26]. Many studies in related fields
(e.g., power systems, reliability analysis) similarly adopt the 95% CI
when evaluating model performance or uncertainty quantification
[27–29], ensuring that our approach remains consistent with
standard practice. Additionally, statistical significance tests were
conducted to validate the reliability of the classification results. We
employed a one-sample t-test to assess whether the mean likelihood
ratio for each month or season significantly differed from a pre-
defined threshold μ0, representing unreliable PV scenarios. The test
statistic is given by:

t =
̄r− μ0
σ

√n

(26)

where ̄r is the mean likelihood ratio, and σ is its standard
deviation. The p-value corresponding to the test statistic determines
whether to reject H0. A significance level of 0.05 was used as
the cutoff for statistical significance, which is a widely adopted
threshold in statistical hypothesis testing across various fields,
including the social sciences, engineering, and environmental
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studies. The choice of a 0.05 significance level, corresponding to a
95% confidence interval. This threshold means that there is a 5%
chance of incorrectly rejecting the null hypothesis when it is actually
true, which provides a practical balance between precision and
practical decision-making. In our study, using this significance level
allowed us to confidently assess whether the observed differences in
likelihood ratios were statistically significant, thus providing reliable
classification of PV scenarios. This choice of significance level
aligns with commonly accepted practices in similar research studies
[30–32]. By adopting this 0.05 significance level, we ensured that our
results met established statistical standards, offering a reliable and
robust evaluation of the PV scenario classification process.

Normally, δ = 1. The parameter δ is used as a threshold to
account for the natural similarity between neighboring months,
ensuring thatminor deviations do not lead tomisclassification of PV
scenarios. Based on empirical analysis, δ is set to 1, which balances
classification accuracy and robustness. A larger δ increases the
tolerance for classification, potentially leading to misclassifications,
while a smaller δ may cause overly strict categorization, especially
in transitional months with similar solar patterns (e.g., March and
April or September and October). Algorithm 1 describes the details
of Month-Evaluation model.

3.3 Season-Evaluation

This model is similar to Month-Evaluation model, in which s
replaces d and represents the total days in each season. Season-
Evaluation model is assessed by { ̃ryλ[j], ̃ryg[j], ̃ryu[j]}. h = {1,2,3,4}
represents spring, summer, autumn, and winter, respectively.
Season-Evaluation model is used to identify whether a generated
sample y as a reliable PV scenario belongs to a specific season, in
which the three-step procedure is also designed with a season of
Θh

x :{λ̃
h, μ̃hg , σ̃

h
g , ã

h
t , (σ̃

h
u)

2}.

1) Firstly, ̃ryλ[j] is obtained through evaluation of distribution
of energy ration according to Gaussian distribution which is
determined by its mean value and variance.

μ̃hλ = 1
s

s

∑
q=1

λx [q] (27)

(σ̃hλ)
2 = 1

s

s

∑
q=1

(λx [q] − μ̃hλ)
2 (28)

where λx[q] is qth day in hth season that contains s days.
Given a generated PV sample y, { ̃ryλ[h]|h = 1,2,3,4} are evaluated

separately using the following formula.

̃ryλ [h] =
1

√2π(σ̃hλ)
2
e
− 1

2
(

λy−μ̃hλ
σ̃hλ

)
2

(29)

2) Secondly, owing to the particularity of sunshine duration in
each season, the pattern of sunrise and sunset of seasons is
depicted with μ̃hg and (σ̃hg )

2.

Input: Θx, Θy, generated PV sample y, d, δ and p

Output: H0 and H1.

 Initialization: r̂
y

λ
[j] = 0, r̂

y
g[j] = 0, r̂

y
u[j] = 0.

 for j = 1 to 12 do

  for i = 1 to d do

   1: Sum λx[i] using all λx in a month;

  end for

  2: Calculate the mean value μ̂
j

λ
and (σ̂j

λ
)
2
in

Equations 4, 5;

  3: Compute r
y

λ
[j] in Equation 6.

 end for

 for j = 1 to 12 do

  for i = 1 to d do

   4: Sum μ
j
g using all μg in a month;

   5: Sum (σjg)
2
using all (σg)2 in a month;

  end for

  6: Calculate the mean value μ̂
j
g and (σ̂jg)

2
in

Equations 7, 8;

  7: Compute r
y
g[j] in Equation 7.

 end for

 for j = 1 to 12 do

  for i = 1 to d do

   for m = 1 to p do

    8: Evaluate at[m] for each AR order;

   end for

   9: Obtain kt using SD procedure with at[m];

  end for

  10: Average all kt in a month to get k̂t;

  11: Gain averaged ât using Levinson recursion

with k̂t;

  12: Calculate (σ̂ju)
2
with k̂t in Equation 14;

  13: Compute r
y
u[j] in Equation 15.

 end for

 14: Sort r
y

λ
[j], r

y
g[j], and r

y
u[j] to find j1, j2, and

j3.

 if |j1 −j2| ≤ δ && |j1 −j3| ≤ δ && |j2 −j3| ≤ δ. then

  15: Accept H0.

 else

  16: Accept H1.

 end if

Algorithm 1. Month-Evaluation Procedure.

μ̃hg = 1
s

s

∑
q=1

μg [q] (30)

(σ̃hg)
2 = 1

s

s

∑
q=1

σ2
g [q] (31)

̃ryg[h] is to evaluate the given sample y based on the discovery of
the Gaussian distribution of solar reception process.

̃ryg [h] = √(μg − μ̃hg)
2 + (σ2

g − (σ̃hg)
2), (32)
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3) Thirdly, reflection coefficients k̃t are also used to gain
averaged AR parameters ãht and (σ̃hu)

2 to guarantee system
stability.

k̃t =
1
s

s

∑
q=1

kt [q] (33)

kt[q] is obtained with at using SD procedure in Equation 10.
Then, {ãht |t = 1,2,…,p;h = 1,2,3,4} and (σ̃hu)

2 are evaluated with
{k̃t|t = 1,2,…,p} using Levinson recursion. ̃rma [h] is designed as:

̃rma [h] = √
p

∑
t=1

(ãht − ayt )
2 + ((σ̃hu)

2 − (σyu)
2) (34)

With a series of { ̃ryλ[h], ̃ryg[h], ̃ryu[h]}, the appropriate season that
y belongs to is discovered with the highest probabilities using
maximum likelihood theory.

{{{{{{
{{{{{{
{

h1 = arg max
h

̃ryλ [h] , h = 1,2,3,4

h2 = arg min
h

̃ryg [h] , h = 1,2,3,4

h3 = arg min
h

̃ryu [h] , h = 1,2,3,4

(35)

To place the assessment, state null hypothesis and alternate
hypothesis, respectively:

  H0: y is a reliable PV sample in h
∗
season

  H1: y is not a reliable sample for PV scenario.

Only while h1 = h2 = h3, accept H0, where h∗ = h1. Otherwise,
accept H1. Algorithm 2 describes the details of Season-Evaluation.

3.4 Correlation between month and
seasonal evaluation

The monthly and seasonal evaluation methods differ in
their temporal granularity and parameter estimation processes.
The monthly evaluation classifies PV scenarios into 12 specific
months, using month-specific parameters to capture fine-grained
temporal differences in PV power generation. In contrast,
the seasonal evaluation classifies scenarios into four broader
seasonal categories, where seasonal parameters are aggregated
from monthly data. This approach increases robustness to short-
term fluctuations but reduces temporal resolution. Together,
these methods provide a complementary framework, with the
monthly evaluation offering higher precision and the seasonal
evaluation providing more excellent stability in the presence of
temporal variability.

4 Experimental results

4.1 Software settings

The experiments presented in this study were implemented
using Matlab 2015, a powerful tool for numerical computations,
statistical analysis, and time series modeling. Matlab’s robust

environment allowed us to efficiently handle the large datasets
required for evaluating photovoltaic (PV) scenarios and
implementing the autoregressive (AR) model. For the AR and
ARMA modeling, we utilized Matlab’s built-in toolboxes, which
provide comprehensive functions for time series analysis and
statistical testing. Additionally, other techniques such as Generative
Adversarial Networks (GAN) and Conditional GAN (CGAN) were
implemented using TensorFlow to handle the deep learning-based
generation of PV scenarios.

4.2 Experiment settings

With Solar Integration datasets [33], we choose solar data
from both 32 solar power plants in the State of Washington to
train all PV scenario generation techniques in the simulation.
The Solar Integration dataset is selected for its wide acceptance
and representativeness in PV scenario generation research. This
dataset provides real-world operational data from 32 PV power
plants, capturing the natural variability of solar power influenced by
weather conditions, geographical differences, and seasonal changes.
Unlike synthetic datasets, the Solar Integration dataset reflects the
stochastic nature of PV power generation, allowing for a more
comprehensive evaluation of the model’s generalization ability.
Its diverse feature distribution and realistic noise levels ensure
that the model is tested under practical conditions, enhancing
the credibility of the experimental results. Potential biases in the
dataset are primarily introduced by weather-related randomness
and seasonal shifts in solar irradiance. These factors may result in
an imbalanced sample distribution, especially during months with
more frequent weather disturbances. To mitigate this, the proposed
model incorporates month-specific and season-specific parameter
estimation, allowing it to account for these natural variations.
The model aims to achieve more robust evaluation performance
by explicitly modeling temporal and seasonal effects. Including
these statistical characteristics ensures that the evaluation method’s
assumptions are transparent and justified.

All experiments of evaluation are operated in Matlab R2014b
software with 8 GB memory. In order to generate PV scenario data
with different techniques, we implement AR and autoregressive
and moving average (ARMA) toolbox in Matlab and display
Gaussian copula Matlab codes. Additionally, GAN, CGAN, and
CGAN-filtering models are established in tensorflow with a single
Nvidia TITAN Xp GPU to obtain new PV scenario samples.
Furthermore, three popular date generation techniques are also
used to produce PV scenarios: random oversample (ROS), synthetic
minority over-sampling technique (SMOTE), and adaptive synthetic
sampling (ADASYN). The parameter settings of these 9 techniques
are as follows:

1. AR: p = 6, which is the order of AR model.
2. ARMA: p = 6, and q = 5. q is the order of MA model.
3. Gaussian copula: solar energy has a wide range between

different seasons.Thus, we normalize the existing PV scenarios
as pretreatment.

4. GAN: the generator is initialized as a 4-layer neural network
in which the sizes of hidden layers are {128,1024,256,288}.
As the discriminator, 4 hidden layers whose sizes are
{288,256,1024,128} and a softmax layer are involved.
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Input: Θx, Θy, generated PV sample y, s, and p

Output: H0 and H1

 Initialization: r̃
y

λ
[h] = 0, r̃

y
g[h] = 0, r̃

y
u[h] = 0.

 if y is not a reliable sample in Month-Evaluation

model. then

  1: Accept H1.

 else

  for h = 1 to 4 do

   for q = 1 to s do

    2: Sum λx[q] using all λx in a month;

   end for

   3: Calculate the mean value μ̃h
λ
and (σ̃h

λ
)2in

Equations 17, 18;

   4: Compute r̃
y

λ
[h] in Equation 19.

  end for

  for h = 1 to 4 do

   for q = 1 to s do

    5: Sum μhg using all μg in a month;

    6: Sum (σhg)
2
using all (σg)2 in a month;

   end for

   7: Calculate the mean value μ̃hg and (σ̃hg)
2
in

Equations 20 and 21;

   8: Compute r̃
y
g[h] in Equation 22.

  end for

  for j = 1 to 4 do

   for i = 1 to s do

    for m = 1 to p do

     9: Evaluate at[m] for each AR order;

    end for

    10: Obtain kt using SD procedure with at[m];

   end for

   11: Average all kt in a month to get k̃t;

   12: Gain averaged ãt using Levinson recursion

with k̃t;

   13: Calculate (σ̃hu)
2
with k̃t;

   14: Compute r̃
y
u[h] in Equation 24.

  end for

  15: Sort r̃
y

λ
[h], r̃

y
g[h], and r̃

y
u[h] to find h1, h2, and

h3.

  if h1 = h2 = h3. then

   16: h
∗
= h1.

   17: Accept H0.

  else

   18: Accept H1.

  end if

end if

Algorithm 2. Season-Evaluation Procedure.

5. CGAN: in addition toGANparameters,mean values of powers
are calculated for each sample, and the results are classified
into 5 categories: μ(Xi) < 0.2 (class 1), 0.2 < μ(Xi) < 0.5 (class
2), 0.5 < μ(Xi) < 1 (class 3), 1 < μ(Xi) < 2 (class 4), and μ(Xi) >
2 (class 5).

6. CGAN-filtering: in addition to CGAN settings, there are 2
parameters in the filtering. The orders of zeros and poles are
initialized as 10 and 5, respectively.

7. ROS: random state = 42, which represents the random number
generator.

8. SMOTE and ADASYN: k = 3, and m = 5. k is the number of
nearest neighbours that construct synthetic samples, and m is
the number of nearest neighbours that determine if a minority
sample is in danger.

Normally, solar energy has a wide range between different
seasons. Thus, we normalize the existing PV scenarios
as pretreatment. 6 generated PV scenarios from these 8
generation techniques chosen by random are shown in Figure 4.
Obviously, AR and ARMA methods generate PV scenarios with
diversity, while Gaussian copula and GAN family specialize in
learning the environment randomness (i.e., the shape of PV
scenario), and SMOTE and ADASYN focus on the energy of
PV scenarios.

4.3 Comparisons with evaluation metrics

4.3.1 Comparisons on generated PV samples
We compare the proposed model (termed as 𝔸) with 2 popular

evaluation metrics, i.e., mean value (denoted as 𝕄) and variance
(denoted as 𝕍). 6 samples produced by 8 techniques (illustrated in
Figure 3) are used to obtain evaluation results both for month and
season estimation. We compare the proposed model (termed as 𝔸)
with 2 popular evaluation metrics, i.e., mean value (denoted as 𝕄)
and variance (denoted as 𝕍). 6 samples produced by 8 techniques
(illustrated in Figure 3) are used to obtain evaluation results both for
month and season estimation. Moreover, the inability of mean value
and variance-based metrics to capture these temporal and statistical
characteristics often leads to higher evaluation errors, particularly
in months or seasons with extreme variations in solar radiation.
For instance, the AR-generated PV scenarios for January showed
unrealistic consistency in solar energy levels during midday, which
is against natural solar radiation patterns. While the mean value and
variancemetrics failed to identify such anomalies, the proposed AR-
based evaluation model effectively detected these inconsistencies
by analyzing the temporal correlations and stochastic fluctuations
in the data.

In contrast, GAN-generated samples displayed distinct
characteristics that influenced their evaluation. First, GANs excel in
capturing the overall shape and variability of PV scenarios, as they
learn the underlying data distribution from historical datasets. This
allows GAN-generated samples to exhibit temporal dependencies
that closely mimic real-world PV scenarios, particularly in months
with stable solar radiation, such as July and August. However, the
stochastic nature of GANs introduces noise into the generated
samples, which can manifest as small, high-frequency fluctuations
that deviate from natural solar radiation patterns. These noise-
induced deviations are subtle and often escape detection by mean
value and variance-based metrics but are effectively captured by
the proposed AR-based evaluation model due to its sensitivity to
temporal correlations. Additionally, the evaluation results revealed
that the performance of GAN-generated samples varied with the
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FIGURE 4
Generated PV scenarios by different approaches.

complexity of the temporal patterns in the target data. For example,
in winter months like January, where solar radiation patterns
are highly irregular due to frequent cloud cover, GAN-generated
samples tended to exhibit over-smoothed temporal trends, failing
to replicate the abrupt changes observed in real data. The proposed
model successfully identified these limitations by analyzing the AR
parameters and residuals, which highlighted the discrepancies in
the stochastic dynamics between the generated samples and the
actual data.

To observe the performance of evaluation methods, we specially
choose some non-PV samples. Experimental results are shown in
Tables 1, 2. ‘i/j′ means that this PV scenario actually belongs to jth
month or season which is evaluated as a sample in ith month or
season. ‘× ′ indicates that this sample cannot be deemed as a reliable
PV scenario in line with existing solar reception pattern. According

to the similarity between the generated samples and existing PV
scenarios, we denote the month or season that generated samples
belong to (i.e., the value of j).

In regard to month attribution of a PV sample set, the proposed
model outperforms mean value and variance estimations. Table 1.
shows mean value and variance have higher evaluation errors of
the months that produced PV samples belongs to. In particular,
while a generated PV sample does not follow solar reception
principles, mean and variance have difficulties in observing it.
Take the 5th sample from AR model for instance, it is impossible
that solar energies remain the highest value between around
12 p.m. and 16 p.m., which is against nature law leading to
an unreliable PV sample. This is because AR parameters in
an AR model are sensitive and could result in unstable state.
The proposed model is capable of estimating the unreliability
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TABLE 1 Evaluation performance of generated PV scenario in specific months.

AR ARMA Gaussian copula GAN CGAN CGAN-filter SMOTE ADASYN

𝕄

1/1 12/× 1/1 10/3 7/× 7/8 7/8 7/8

12/× 2/× 2/× 7/8 2/× 1/1 7/8 7/8

1/1 12/1 10/3 2/3 5/3 1/× 7/8 7/8

1/1 1/1 3/3 3/3 1/× 2/3 7/8 7/8

7/× 7/× 3/× 1/× 3/× 1/× 7/8 7/8

1/1 1/1 3/4 11/× 12/4 5/4 7/8 7/8

𝕍

1/1 12/× 1/1 6/3 8/× 8/8 8/8 8/8

1/× 11/× 3/× 8/8 4/× 1/1 8/8 8/8

1/1 1/1 4/3 3/3 8/× 1/× 8/8 8/8

1/1 1/1 3/3 4/3 1/× 12/3 8/8 8/8

8/× 8/× 5/× 1/× 9/× 1/× 8/8 8/8

1/1 1/1 3/4 1/× 12/× 6/4 8/8 8/8

𝔸

1/1 × /× 1/1 3/3 × /× 8/8 8/8 8/8

× /× × /× × /× 8/8 × /× 1/1 8/8 8/8

1/1 1/1 3/3 3/3 × /× × /× 8/8 8/8

1/1 1/1 3/3 3/3 × /× 3/3 8/8 8/8

× /× × /× × /× × /× × /× × /× 8/8 8/8

1/1 1/1 4/4 × /× × /× 4/4 8/8 8/8

of PV samples. On the opposite, mean and variance evaluation
cannot identify the unreliability. Typically, PV scenarios among
neighbouring months have analogous attributes, e.g., daylight
hours that affects the width of PV scenarios. For example, the
generated PV samples from SMOTE belong to August, yet they
are deemed as scenarios in July by mean evaluation. Furthermore,
the months in spring and autumn have similar solar conditions,
e.g., solar reception amount in a day. Therefore, mean and
variance are unable to tell the difference, e.g., October and
March. At last, when learned representations of environmental
changes are not precise, the fluctuations in PV samples are
abnormal (e.g., PV samples generated by CGAN). In that case,
these samples are unreliable, but mean value and variance cannot
detect them.

For season attribution of a PV sample, the proposed model
outperforms traditional mean value and variance estimations,
as shown in Table 2). The improved performance for season
classification is attributed to the autoregressive (AR) model used
in the proposed approach, which captures temporal dependencies
and seasonal variations more effectively than simple statistical
summaries. The AR model was implemented using Matlab 2015
due to its robust capabilities for time-series modeling and statistical

analysis. In particular, we utilized Matlab’s Econometrics Toolbox,
which includes functions for autoregressive and moving average
modeling, to analyze the PV data and assess the seasonal attributes
of the generated scenarios. These basic statistical techniques were
applied to evaluate the solar data and assess the seasonality of
PV output based on average values and variances, which do not
account for the underlying temporal correlations. In contrast to
month evaluation, evaluation techniques display well on season
attribute. This is because that the differences in solar movement
and environment changes among seasons are more significant
than months. To assess the seasonal performance, the confidence
intervals for likelihood ratios were calculated for each season, using
the one-sample t-test approach implemented in Matlab. The p-
values corresponding to these tests were computed to determine
the statistical significance of the seasonal differences in the
PV samples.

4.3.2 Comparisons of evaluation performance
In order to verify the effectiveness of the proposed model,

we implement mean value, variance, and the proposed model
displaying on 100 samples generated by these 8 techniques,
separately. Evaluation errors of these 3 measurements are shown
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TABLE 2 Evaluation performance of generated PV scenario in specific seasons.

AR ARMA Gaussian copula GAN CGAN CGAN-filter SMOTE ADASYN

𝕄

4/4 4/× 4/4 1/1 2/× 2/2 2/2 2/2

4/× 1/× 1/× 2/2 1/× 4/4 2/2 2/2

4/4 4/4 1/1 1/1 3/× 4/× 2/2 2/2

4/4 4/4 1/1 1/1 4/× 1/1 2/2 2/2

2/× 2/× 1/× 4/× 1/× 4/× 2/2 2/2

4/4 4/4 1/1 4/× 4/× 2/1 2/2 2/2

𝕍

4/4 4/× 4/4 3/1 2/× 2/2 2/2 2/2

4/× 4/× 1/× 2/2 1/× 4/4 2/2 2/2

4/4 4/4 1/1 1/1 2/× 4/× 2/2 2/2

4/4 4/4 1/1 3/1 4/× 4/1 2/2 2/2

2/× 2/× 3/× 4/× 2/× 4/× 2/2 2/2

4/4 4/4 1/1 4/× 4/× 3/1 2/2 2/2

𝔸

4/4 × /× 4/4 1/1 × /× 2/2 2/2 2/2

× /× × /× × /× 2/2 × /× 4/4 2/2 2/2

4/4 4/4 1/1 1/1 × /× × /× 2/2 2/2

4/4 4/4 1/1 1/1 × /× 1/1 2/2 2/2

× /× × /× × /× × /× × /× × /× 2/2 2/2

4/4 4/4 1/1 × /× × /× 1/1 2/2 2/2

in Figure 5, 6, in which the proposed model outperforms other
2 measurements. This validates that mean value and variance are
unable to identify unreliable generated samples, leading to high
evaluation errors with AR and ARMA approaches. By contrast,
the proposed model exhibits strong ability of estimating the
reliability of generated samples, resulting in low evaluation errors.
Moreover, with increased diversity of generation byGaussian copula,
GAN, and CGAN-filter, mean value and variance measurements
are easily trapped into misidentification between neighboring
months or seasons. Furthermore, because the generated samples
by SMOTE and ADASYN distributes in a narrow region, these
3 evaluation approaches also gain good performances. Compared
with month evaluation, evaluation results for seasons achieve better
performance.

4.3.3 Analysis of computational efficiency
To evaluate the computational efficiency of the proposed

model, we analyze its time complexity, resource requirements,
and runtime performance for datasets of varying sizes. The
computational complexity of the key components is assessed to
ensure the model’s feasibility for large-scale and high-frequency
PV data. Our experiments showed that the confidence intervals

for likelihood ratios across months and seasons were within a
range of ±2% of the maximum likelihood estimates, indicating
high reliability of the evaluation results. Furthermore, p-values from
the t-tests confirmed the statistical significance of the classification
results, with all p-values below the 0.05 threshold for reliable
PV scenarios. These quantitative measures not only validate the
evaluation results but also demonstrate the robustness of the
proposed model under varying conditions. The AR model fitting
process, with an order of p, has a computational complexity
of O(N ⋅ p2), where N denotes the number of samples. The
month-based and season-based evaluation models, which involve
parameter estimation and hypothesis testing, have a complexity of
O(N ⋅ p). To provide practical insight into runtime performance, we
conduct experiments on datasets with sizes ranging from 10,000 to
100,000 samples. The results show that the total runtime increases
approximately linearly with the dataset size. This demonstrates that
the proposed model maintains computational efficiency even when
applied to large datasets, making it suitable for high-frequency PV
data applications.

The superior performance of the proposed method, mainly
when applied to GAN-generated PV scenarios, can be attributed
to its ability to capture the temporal dependencies and stochastic
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FIGURE 5
Comparisons of evaluation errors by 3 approaches for month.

FIGURE 6
Comparisons of evaluation errors by 3 approaches for season.

nature of PV power fluctuations. GAN-generated samples often
exhibit diversity in overall shape and randomness. However, they
may need to accurately reflect the fine-grained temporal structure
and dynamic changes caused by weather and cloud movements.
Unlike traditional mean and variance-based evaluation methods,
which only consider statistical summaries, the proposed AR–based
model analyzes the temporal correlations within PV scenarios.
By incorporating AR parameters and assessing the consistency
of month- and season-specific temporal patterns, the proposed
method can identify subtle deviations in the dynamic characteristics
of GAN-generated scenarios. This capability allows for more precise
detection of abnormal or unreliable samples that traditional metrics
might overlook. The enhanced capacity to track and evaluate
temporal patterns is a key reason for the superior performance of the
proposed method when evaluating scenarios generated by GANs.

5 Conclusion

Solar photovoltaic had caught plenty of attentions due to its
little pollution, and PV scenario generation was going to be an
effective way to facilitate integrating solar energy into traditional
energy systems. In order to effectively evaluate the performance of
PV scenario generation, we proposed an evaluation model based
on AR theory. After analyzing existing PV samples, we found
out the shape of PV scenarios was an important representation
of environmental randomness. In the simulation, we produced
PV samples with 8 popular generation approaches. Compared
with mean value and variance measurements, experiments showed
the proposed model achieved better performance, especially in
a unreliable PV scenario. Moreover, mean value and variance
estimation confused with months that have similar solar movement
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and environmental changes. With 100 generated PV scenarios,
we simulated the evaluation among the proposed model and
compared measurements. Simulations showed that the proposed
model obtained better evaluation results than mean value and
variance estimations.

In addition to its theoretical evaluation performance, the
proposed model offered practical value for real-world applications,
particularly power dispatching. Accurate classification of PV
scenarios intomonth- and season-specific categories enabled system
operators to predict solar power availability more effectively.
By capturing the temporal patterns of solar power generation,
the model supported power dispatching decisions, allowing grid
operators to adjust dispatch schedules in response to seasonal
and weather-induced fluctuations. The month-specific evaluation
provided higher temporal resolution, enabling short-term dispatch
adjustments, while the seasonal evaluation offered long-term
insights for seasonal dispatch planning. This dual-level evaluation
approach enhanced the robustness and flexibility of power-
dispatching strategies.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

SR: Conceptualization, Writing–original draft. TY:
Investigation, Software, Writing–review and editing. JL:
Methodology, Supervision, Writing–review and editing.
GW: Formal Analysis, Project administration, Validation,
Writing–review and editing. KM: Resources, Visualization,
Writing–review and editing. BL:Data curation, Funding acquisition,
Writing–review and editing.

Funding

The author(s) declare that financial support was received
for the research, authorship, and/or publication of this
article. The funding for this research was provided by
the Special Key Project for Technological Innovation and
Application Development in Chongqing, under grant number
NO.CSTB2024TIAD-KPX0093.

Conflict of interest

Author GW was employed by Chongqing Carbon Energy
Technology Co., Ltd. and Sichuan Aizhong Comprehensive Energy
Technology Service Co., Ltd.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

1. EsramT, Kimball JW, Krein PT, Chapman PL,Midya P. Dynamicmaximumpower
point tracking of photovoltaic arrays using ripple correlation control. IEEE Trans Power
Electronics (2008) 21:1282–91. doi:10.1109/tpel.2006.880242

2. Wai RJ, Wang WH, Lin CY. High-performance stand-alone
photovoltaic generation system. IEEE Trans Ind Electronics (2008) 55:240–50.
doi:10.1109/tie.2007.896049

3. Basore PA, Cole WJ. Comparing supply and demand models for future
photovoltaic power generation in the usa. Prog Photovoltaics Res Appl (2018) 26:414–8.
doi:10.1002/pip.2997

4. De Brito MAG, Galotto L, Sampaio LP, e Melo Gd. A, Canesin CA. Evaluation of
themainmppt techniques for photovoltaic applications. IEEE Trans Ind Electron (2013)
60:1156–67. doi:10.1109/tie.2012.2198036

5. RenaudineauH, Donatantonio F, Fontchastagner J, Petrone G, Spagnuolo G,Martin
J-P, et al. A pso-based global mppt technique for distributed pv power generation. IEEE
Trans Ind Electronics (2015) 62:1047–58. doi:10.1109/tie.2014.2336600

6. Golestaneh F, Pinson P, Gooi HB. Very short-term nonparametric probabilistic
forecasting of renewable energy generation— with application to solar energy. IEEE
Trans Power Syst (2016) 31:3850–63. doi:10.1109/tpwrs.2015.2502423

7. De la Fuente DV, Rodríguez CLT, Garcerá G, Figueres E, González RO.
Photovoltaic power system with battery backup with grid-connection and
islanded operation capabilities. IEEE Trans Ind Electron (2013) 60:1571–81.
doi:10.1109/TIE.2012.2196011

8. Estébanez EJ, Moreno VM, Pigazo A, Liserre M, Dell’Aquila A. Performance
evaluation of active islanding-detection algorithms in distributed-generation
photovoltaic systems: two inverters case. IEEE Trans Ind Electronics (2011) 58:1185–93.
doi:10.1109/TIE.2010.2044132

9. Yang T, Huang Q, Cai F, Li J, Jiang L, Xia Y. Vital characteristics cellular neural
network (vcenn) formelanoma lesion segmentation: a biologically inspired deep learning
approach. J Imaging InformMed (2024) 1–18. doi:10.1007/s10278-024-01257-w

10. An Y, Zhang K, Chai Y, Zhu Z, Liu Q. Gaussian mixture variational-based
transformer domain adaptation fault diagnosis method and its application in bearing
fault diagnosis. IEEE Trans Ind Inform (2024) 20:615–25. doi:10.1109/TII.2023.3268750

11. Parsons H, Cochran S, Batra. Variability of power from large-scale solar
photovoltaic scenarios in the state of Gujarat: preprint. In:To be presented at the renewable
energy world conference and expo–India, 5-7 may 2014. New Delhi, India (2014).

12. Osório GJ, Lujano-Rojas JM, Matias JCO, Catalão JPS. A new scenario
generation-based method to solve the unit commitment problem with high
penetration of renewable energies. Int J Electr Power Energ Syst (2015) 64:1063–72.
doi:10.1016/j.ijepes.2014.09.010

13. Ekstrom J, Koivisto M, Mellin I, Millar J, Lehtonen M. A statistical model for
hourly large-scale wind and photovoltaic generation in new locations. IEEE Trans
Sustainable Energ (2017) PP:1383–93. doi:10.1109/tste.2017.2682338

14. Luis LM (2018). Phdthesis: framework for scenario generation and reduction in
photovoltaic-integreated generation commitment.

Frontiers in Physics 14 frontiersin.org59

https://doi.org/10.3389/fphy.2025.1534629
https://doi.org/10.1109/tpel.2006.880242
https://doi.org/10.1109/tie.2007.896049
https://doi.org/10.1002/pip.2997
https://doi.org/10.1109/tie.2012.2198036
https://doi.org/10.1109/tie.2014.2336600
https://doi.org/10.1109/tpwrs.2015.2502423
https://doi.org/10.1109/TIE.2012.2196011
https://doi.org/10.1109/TIE.2010.2044132
https://doi.org/10.1007/s10278-024-01257-w
https://doi.org/10.1109/TII.2023.3268750
https://doi.org/10.1016/j.ijepes.2014.09.010
https://doi.org/10.1109/tste.2017.2682338
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Ren et al. 10.3389/fphy.2025.1534629

15. Nuno E, Cutululis N. Generation of large-scale pv scenarios using aggregated
power curves. In: IEEE General Meeting Power & Energy Society, 2017 IEEE Power
& Energy Society General Meeting (2017). p. 1–5.

16. Golestaneh F, Gooi HB. Multivariate prediction intervals for photovoltaic power
generation (2018)

17. Junior JGDSF, Oozeki T, Ohtake H, Shimose KI, Takashima T, Ogimoto
K. Forecasting regional photovoltaic power generation - a comparison of
strategies to obtain one-day-ahead data. Energ Proced (2014) 57:1337–45.
doi:10.1016/j.egypro.2014.10.124

18. Mellit A, Pavan AM. A 24-h forecast of solar irradiance using artificial neural
network: application for performance prediction of a grid-connected pv plant at trieste,
Italy. Solar Energy (2010) 84:807–21. doi:10.1016/j.solener.2010.02.006

19. Yona A, Senjyu T, Funabashi T. Application of recurrent neural network to short-
term-ahead generating power forecasting for photovoltaic system. In: Power engineering
society general meeting (2007). p. 1–6.

20. Chen Y, Wang Y, Kirschen DS, Zhang B. Model-free renewable scenario
generation using generative adversarial networks. IEEE Trans Power Syst (2017) PP:1.
doi:10.1109/TPWRS.2018.2794541

21. Kay SM Fundamentals of statistical signal processing: practical algorithm
development, 3. Pearson Education IEEE Transactions on Signal Processing (2013).

22. Kirshner H, Unser M, Ward JP. On the unique identification of continuous-time
autoregressivemodels from sampled data. IEEE Trans Signal Process (2014) 62:1361–76.
doi:10.1109/tsp.2013.2296879

23. Kay S. Fundamentals of statistical signal processing: estimation theory.
Technometrics (1993) 37:465–6. doi:10.2307/1269750

24. Lee S, Moon S, Kim K, Sung S, Hong Y, Lim W, et al. A comparison of green,
delta, and Monte Carlo methods to select an optimal approach for calculating the 95

population-attributable fraction: guidance for epidemiological research. J Prev Med
Public Health = Yebang Uihakhoe chi (2024) 45:78–89. doi:10.3961/jpmph.2012.45.2.78

25. ÖzkaleMR,HüsniyeA. Bootstrap confidence interval of ridge regression in linear
regression model: a comparative study via a simulation study. Commun Stat - Theor
Methods (2023) 52:7405–41. doi:10.1080/03610926.2022.2045024

26. Yuichiro S, Takashi S, Hiroto H. Testing parallelism and confidence intervals
of level difference in an intraclass correlation model with monotone missing data.
Commun Stat -TheorMethods (2023) 52:6147–60. doi:10.1080/03610926.2022.2026961

27. Chitralok H, Mani K, Harsha B, Rashmi R. Application of isotonic regression
in estimating EDg and its 95% confidence interval by bootstrap method for a biased
coin up-and-down sequential dose-finding design. Indian J Anaesth (2023) 67:828–31.
doi:10.4103/ija.ija_431_23

28. Chittaranjan A. How to understand the 95 risk, odds ratio, and hazard ratio: as
simple as it gets. J Clin Psychiatry (2023) 84. doi:10.4088/JCP.23f14933

29. Talsma PA. Estimation of median survival time and its 95 using sas proc lifetest.
J Biopharm Stat (2023) 34:11–3.

30. Kolawole OJ, Oje MM, Betiku OA, Ijarotimi O, Adekanle O, Ndububa
DA. Correlation of alanine aminotransferase levels and a histological diagnosis of
steatohepatitis with ultrasound-diagnosed metabolic-associated fatty liver disease in
patients from a centre in Nigeria. BMC Gastroenterol (2024) 24:147.

31. Rubanovich AV. Redefining the critical value of significance level (0.005 instead
of 0.05): the bayes trace. Biol Bull (2019) 46:1449–57. doi:10.1134/s1062359019110086

32. Kenanidis P, Llompart M, Santos SF, Dabrowska E. Redundancy can hinder adult
l2 grammar learning: evidence from case markers of varying salience levels. Front
Psychol (2024) 15:1368080. doi:10.3389/fpsyg.2024.1368080

33. Draxl C, Clifton A, Hodge BM, Mccaa J. The wind integration national dataset
(wind) toolkit. Appl Energ (2015) 151:355–66. doi:10.1016/j.apenergy.2015.03.121

Frontiers in Physics 15 frontiersin.org60

https://doi.org/10.3389/fphy.2025.1534629
https://doi.org/10.1016/j.egypro.2014.10.124
https://doi.org/10.1016/j.solener.2010.02.006
https://doi.org/10.1109/TPWRS.2018.2794541
https://doi.org/10.1109/tsp.2013.2296879
https://doi.org/10.2307/1269750
https://doi.org/10.3961/jpmph.2012.45.2.78
https://doi.org/10.1080/03610926.2022.2045024
https://doi.org/10.1080/03610926.2022.2026961
https://doi.org/10.4103/ija.ija_431_23
https://doi.org/10.4088/JCP.23f14933
https://doi.org/10.1134/s1062359019110086
https://doi.org/10.3389/fpsyg.2024.1368080
https://doi.org/10.1016/j.apenergy.2015.03.121
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Ren et al. 10.3389/fphy.2025.1534629

Nomenclature

Indices

j Index of month

t Index of time (hours)

h Index of season

PPV Photovoltaic power output (W)

Variables

Esolar Solar energy received (J)

λ Energy ratio

g[n] Normalized solar power

ϵ[n] Environmental interference (e.g., cloud cover)

Models

AR Autoregressive model

ARMA Autoregressive moving average model

GAN Generative adversarial network

CGAN Conditional generative adversarial network

WGAN Wasserstein generative adversarial network

Parameters

μ Mean value of a variable

σ2 Variance of a variable

at Autoregressive model parameters

ρ Friction index

kt Reflection coefficients in AR model

p Order of AR model

σ2
u Noise variance in AR model

N Set of participants in scenario generation

Statistical distributions

GaussiandistributionNormal distribution, often used to model randomness
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The goal of multi-focus image fusion is to merge near-focus and far-focus
images of the same scene to obtain an all-focus image that accurately and
comprehensively represents the focus information of the entire scene. The
current multi-focus fusion algorithms lead to issues such as the loss of
details and edges, as well as local blurring in the resulting images. To solve
these problems, a novel multi-focus image fusion method based on pulse
coupled neural network (PCNN) and weighted sum of eight-neighborhood-
based modified Laplacian (WSEML) in dual-tree complex wavelet transform
(DTCWT) domain is proposed in this paper. The source images are decomposed
by DTCWT into low- and high-frequency components, respectively; then
the average gradient (AG) motivate PCNN-based fusion rule is used to
process the low-frequency components, and the WSEML-based fusion rule is
used to process the high-frequency components; we conducted simulation
experiments on the public Lytro dataset, demonstrating the superiority of the
algorithm we proposed.

KEYWORDS

multi-focus image, image fusion, DTCWT, PCNN, WSEML

1 Introduction

Multi-focus image fusion is a technique in the field of image processing that combines
multiple images, each focused on different objects or regions, into a single image that
captures the sharp details from all focal points [1]. This approach is particularly useful in
applications where the depth of field is limited, such as in macro photography, surveillance,
medical imaging, and robotics [2, 3].

In typical photography, a single image can only present objects within a certain range
of focus clearly, leaving objects closer or farther away blurry [4, 5]. However, by capturing
several images with different focus points and then combining them through image fusion
techniques, it is possible to create a final image thatmaintains sharpness across a wider range
of depths [6–8].

The process of multi-focus image fusion generally involves several key steps: image
alignment, where all the images are aligned spatially; focus measurement, where the
sharpness of various regions in each image is assessed; and fusion, where the sharpest
information from each image is retained [9–11]. Advanced fusion algorithms, including
pixel-level, transform-domain, and machine learning-based methods, can be employed to
optimize the fusion quality and preserve important features from all focused regions. This
technology has a broad range of applications. In medical imaging, it helps to create clearer,
more detailed visualizations of organs or tissues. In surveillance, it enhances the clarity of

Frontiers in Physics 01 frontiersin.org62

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2025.1575606
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2025.1575606&domain=pdf&date_stamp=2025-04-02
mailto:20201303225@stu.xju.edu.cn
mailto:20201303225@stu.xju.edu.cn
https://doi.org/10.3389/fphy.2025.1575606
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphy.2025.1575606/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1575606/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1575606/full
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Jia and Ma 10.3389/fphy.2025.1575606

objects at varying distances. In robotics, it contributes to improved
perception by enabling robots to focus on multiple objects
simultaneously [12, 13]. As computational power and algorithms
continue to advance, multi-focus image fusion is expected to play
an increasingly significant role in a variety of fields requiring high-
quality visual information [14–17].

Currently, image fusion can be categorized into two types:
traditional algorithms and deep learning algorithms [18–20].
Traditional algorithms typically rely on handcrafted features and
conventional image processing techniques, such as Laplacian
pyramid [21], wavelet transform [22], dual-tree complex wavelet
transform (DTCWT) [23], contourlet [24–26], shearlet [27, 28] and
gradient-based methods [29], to combine focused regions from
multiple images.Mohan et al. [30] introduced themulti-focus image
fusion method based on quarter shift dual-tree complex wavelet
transform (qshiftN DTCWT) and modified principal component
analysis (MPCA) in the Laplacian pyramid (LP) domain, and this
method outperforms many state-of-the-art techniques in terms of
visual and quantitative evaluations.Mohan et al. [31] introduced the
image fusion method based on DTCWT combined with stationary
wavelet transform (SWT). Lu et al. [32] introduced the multi-
focus image fusion using residual removal and fractional order
differentiation focus measure, and this algorithm simultaneously
employs nonsubsampled shearlet transform and the sum of
Gaussian-based fractional-order differentiation. These methods are
generally effective in simpler scenarios, but they may struggle with
more complex images, especially when dealing with varying levels
of focus and noise. Pulse coupled neural network (PCNN) also has
extensive applications in the field of image fusion, Xie et al. [33]
proposed the multi-focus image fusion method based on sum-
modified Laplacian and PCNN in nonsampled contourlet transform
domain, and this method excellently improves the focus clarity.

On the other hand, deep learning has extensive applications
in image fusion [34–37], image segmentation [38, 39], and
video restoration [40–44], and image super-resolution [45, 46].
Deep learning algorithms leverage convolutional neural networks
(CNNs), Transformer, Generative adversarial network (GAN),
Mamba and other advanced models to automatically learn features
and perform fusion in an end-to-end manner [47–49]. These
methods can adapt to a wide range of image complexities, providing
more accurate and visually appealing fused images, especially in
challenging conditions like low light or high noise environments [50,
51]. Deep learning approaches have shown superior performance in
recent years, particularly with the availability of large datasets and
powerful computational resources [52, 53].

Inspired by the ideas from the algorithm in Reference [33], in
this paper, a novelmulti-focus image fusionmethod based onPCNN
andweighted sumof eight-neighborhood-basedmodified Laplacian
(WSEML) in DTCWT domain is proposed. The motivation behind
this approach is to achieve a more robust and effective fusion
method that can handle complex images with varying focus levels
and noise, while also being computationally efficient. The source
images are decomposed by DTCWT into low- and high-frequency
components, respectively; then the average gradient (AG) motivate
PCNN fusion rule is used to process the low-frequency components,
and the WSEML-based fusion rule is used to process the high-
frequency components. The algorithm’s superiority is validated
through comparative experiments on public Lytro dataset.

2 DTCWT

The dual-tree complex wavelet transform (DTCWT) is an
advanced signal processing technique designed to overcome
some of the limitations of the traditional discrete wavelet
transform (DWT) [54]. It was introduced to provide better
performance in tasks such as image denoising, compression, and
feature extraction. The DTCWT is particularly useful for applications
where directional sensitivity and shift invariance are important.

The DTCWT provides improved directional information
compared to the traditional wavelet transforms. It uses two parallel
trees of wavelet filters (hence “dual-tree”), one for the real part
and one for the imaginary part. This structure allows for better
representation of image features, especially edges and textures, in
multiple orientations. Unlike the traditional DWT, which suffers
from shift variance (i.e., small translations in the signal can cause
large changes in the wavelet coefficients), the DTCWT provides
a level of shift invariance [55, 56]. This makes it more robust to
small shifts or distortions in the input signal, which is critical
for many image and signal processing tasks. The transform uses
complex-valued coefficients rather than real-valued coefficients.
This allows for better capture of phase information in addition
to amplitude, providing more detailed and richer representations
of the signal or image. The DTCWT significantly reduces the
aliasing effect, a common issue in wavelet transforms when high-
frequency components mix with low-frequency ones. The dual-
tree structure and the use of complex filters help mitigate this
problem [57].

3 The proposed method

The multi-focus image fusion algorithm we proposed can
be mainly divided into four steps: image decomposition, low-
frequency fusion, high-frequency fusion, and image reconstruction.
The structure of the proposed method is shown in Figure 1, and the
specific process is as follows.

3.1 Image decomposition

The source images A and B are decomposed into low-frequency
components {LA,LB} and high-frequency components {HA

l,d,H
B
l,d}

using DTCWT. The LX|X ∈ (A,B) shows the low-frequency, and
HX

l,d|X ∈ (A,B) shows the high-frequency sub-bands l level in the d
orientation.

3.2 Low-frequency fusion

The low-frequency component of the image contains the main
background information of the image. The average gradient-based
(AG) motivate PCNN fusion rule is used to process the low-
frequency sub-bands, and the corresponding equations are defined
as follows [58, 59]:

AGij =
∑

i
 ∑

j
(( f(i, j) − f(i+ 1, j))2 + ( f(i, j) − f(i, j+ 1))2)

1
2

mn
(1)
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FIGURE 1
The structure of the proposed method.

Fij(n) = AGij (2)

Lij(n) = e−αLLij(n− 1) +VL∑pq
Wij,pqYij,pq(n− 1) (3)

Uij(n) = Fij(n) ∗ (1+ βLij(n)) (4)

θij(n) = e−αθθij(n− 1) +VθYij(n− 1) (5)

Yij(n) =
{
{
{

1, if Uij(n) > θij(n)

0 else
(6)

Ti,j = Ti,j(n− 1) +Yi,j(n) (7)

In Equation 1, the f(i, j) is pixel intensity at (i, j) and m× n
is the size of the image. In the mathematical model of PCNN in
Equations 2–6, the feeding input Fij is equal to the normalized
AGi,j. The linking input Lij is equal to the sum of neurons firing
times in linking range. Wij,pq is the synaptic gain strength and
subscripts p and q are the size of linking range in PCNN. αL is
the decay constants. VL and Vθ are the amplitude gain. β is the
linking strength. Uij is total internal activity. θij is the threshold. n
denotes the iteration times. If Uij is larger than θij, then, the neuron
will generate a pulse Yij = 1, also called one firing time. In fact,
the sum of Yij in n iteration is often defined as Equation 7, called
firing times, to represent image information. Rather than Yij(n), one
often analyzes Tij(n), because neighboring coefficients with similar
features representing similar firing times in a given iteration times.
AG is input to PCNN to motivate the neurons and generate pulse of

neurons with Equations 2–6. Then, firing times Tij(n) is calculates
as Equation 7.

Get the decision map Dij based on Equation 8 and select the
coefficients with Equation 9, which means that coefficients with
large firing times are selected as coefficients of the fused. The fusion
rule is designed as follows:

DF,ij =
{
{
{

1 If TA,ij(n) ≥ TB,ij(n)

0 else
(8)

LF(i, j) =
{
{
{

LA(i, j) If Dij(n) = 1

LB(i, j) If Dij(n) = 0
(9)

where LF shows the fused low-frequency sub-band.

3.3 High-frequency fusion

The high-frequency component of the image contains
the detailed information of the image. The weighted sum of
eightneighborhood-based modified Laplacian (WSEML) is used to
process the high-frequency sub-bands with Equations 10–12 [60]:

WSEMLX(i, j) =
r

∑
m=−r

 
r

∑
n=−r

Φ(m+ r+ 1,n+ r+ 1)

× EMLX(i+m, j+ n) (10)
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FIGURE 2
Fusion results on Lytro-01. (a) Source A; (b) Source B; (c) GD; (d) FusionDN; (e) PMGI; (f) U2Fusion; (g) ZMFF; (h) UUDFusion; (i) Proposed.

EMLX(i, j) = |2X(i, j) −X(i− 1, j) −X(i+ 1, j)|

+|2X(i, j) −X(i, j− 1) −X(i, j+ 1)|

+ 1
√2

|2X(i, j) −X(i− 1, j− 1) −X(i+ 1, j+ 1)|

+ 1
√2

|2X(i, j) −X(i− 1, j+ 1) −X(i+ 1, j− 1)|

(11)

where X ∈ {A,B}, and Φ is a (2r+ 1) × (2r+ 1) weighting matrix with
radius r. For each element in Φ, its value is set to 22r−d, where d is its
four-neighborhood distance to the center. As an example, the 3× 3

normalized version of Φ is

1
16

[[[[

[

1 2 1

2 4 2

1 2 1

]]]]

]
The fused high-frequency sub-bands are defined as follows:

HF
l,d(i, j) =

{
{
{

HA
l.d(i, j) if WSEMLHA

l,d
(i, j) ≥ WSEMLHB

l,d
(i, j)

HB
l,d(i, j) else

(12)

where HF
l,d(i, j) shows the fused high-frequency sub-bands.
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FIGURE 3
Fusion results on Lytro-02. (a) Source A; (b) Source B; (c) GD; (d) FusionDN; (e) PMGI; (f) U2Fusion; (g) ZMFF; (h) UUDFusion; (i) Proposed.

3.4 Image reconstruction

The fused image F is obtained by the inverse DTCWT on LF(i, j)
and HF

l,d(i, j).

4 Experimental results and analysis

To demonstrate the effectiveness of our algorithm,we conducted
simulation experiments on the commonly used public Lytro dataset
[61] and compared it with six classic image fusion algorithms,
namely, GD [29], FusionDN [62], PMGI [63], U2Fusion [64], ZMFF

[65], and UUDFusion [66]. Additionally, we employed six objective
evaluation metrics to qualitatively assess the experimental results,
namely, edge-based similarity measurement QAB/F [59], mutual
information metric QMI [59], nonlinear correlation information
entropy QNCIE [67], Chen-Blum metric QCB [67], image fusion
metric-based on phase congruency QP [67] and gradient-based
fusion performance QG [67]. The higher these metric values, the
better the fusion effect. We adopt a combined subjective and
objective evaluation approach to measure the effectiveness of the
algorithms. The parameters of the comparison algorithms were
set according to the original papers, while in our algorithm, the
decomposition level of DTCWT was set to 4 layers; parameters of
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FIGURE 4
Fusion results on Lytro-03. (a) Source A; (b) Source B; (c) GD; (d) FusionDN; (e) PMGI; (f) U2Fusion; (g) ZMFF; (h) UUDFusion; (i) Proposed.

PCNN is set as p× q, αL = 0.06931, αθ = 0.2, β = 0.2, VL = 1.0, Vθ =

20, Φ =
[[[[

[

0.707 1 0.707

1   0   1

0.707 1 0.707

]]]]

]

, and the maximal iterative number

is n = 200.
Figure 2 shows the fused results with different methods on

Lytro-01. The GD method retains significant focus information
fromboth the foreground and background.However, some blending
artifacts are visible, and the focus transitions may not be smooth.
The FusionDN algorithm preserves structural details well but
exhibits some loss of sharpness in the golfer and background.

The fusion quality is moderate, with slight blurring at focus
boundaries. The PMGI method achieves reasonable fusion but
struggles with preserving contrast and sharpness, especially in the
golfer’s details. The background appears slightly oversmoothed. The
ZMFF method performs well in maintaining the focus of both the
foreground (golfer) and background. The details are well-preserved,
but minor artifacts can be noticed in the focus transition areas.
The UUDFusion method produces an average fusion result, with
noticeable blurring in both the foreground and background. The
image lacks the clarity and sharpness needed for an effective all-focus
image.Theproposedmethoddelivers the best results. Both the golfer
(foreground) and the background are sharply focused, with smooth
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FIGURE 5
Fusion results on Lytro-04. (a) Source A; (b) Source B; (c) GD; (d) FusionDN; (e) PMGI; (f) U2Fusion; (g) ZMFF; (h) UUDFusion; (i) Proposed.

transitions between the focus regions.The image appears natural and
well-balanced, with no noticeable artifacts.

Figure 3 presents fusion results for various algorithms applied
to the Lytro-02 dataset, aiming to create an all-focus image by
combining the near-focus (foreground) and far-focus (background)
regions.The proposedmethod clearly outperforms all othermethods,
producing a sharp and balanced image where both the diver’s face
and the background arewell-preserved.The transitions between focus
regions are smooth and free of noticeable artifacts, resulting in a
natural-lookingimage.ZMFFdemonstratescompetitiveperformance,
preserving sharpness in both the diver’s face and the background.
However, slight artifacts and less refined transitions between focus

regions make it less effective than the proposed method. Similarly,
FusionDN and U2Fusion provide moderate results, balancing focus
between the foreground and background but lacking the sharpness
and clarity of the best-performing algorithms. PMGI maintains
good detail in the background but struggles with sharpness in the
foreground, leading to an imbalanced fusion result. GD performs
adequately, but the diver’s face appears softened, and overall sharpness
is inconsistent. Finally, UUDFusion produces the weakest fusion
result, with significant blurring in both focus areas, making it
unsuitable for generating high-quality all-focus images. In summary,
the proposed method achieves the most visually appealing and
technically superior fusion result, while ZMFF serves as a strong
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TABLE 1 The average metric values of different methods on Lytro dataset.

Year QAB/F QMI QNCIE QCB QP QG

GD 2016 0.7034 3.8521 0.8139 0.6115 0.7466 0.6987

FusionDN 2020 0.6018 5.7908 0.8221 0.6008 0.6221 0.5952

PMGI 2020 0.3901 5.8641 0.8225 0.5656 0.4620 0.3857

U2Fusion 2022 0.6143 5.7765 0.8221 0.5682 0.6657 0.6093

ZMFF 2023 0.7087 6.6271 0.8271 0.7412 0.7853 0.7030

UUDFusion 2024 0.5107 4.8412 0.8178 0.5989 0.5630 0.5055

Proposed 0.7409 7.1960 0.8313 0.7504 0.8137 0.7385

Notes: Bold font indicates the optimal values.

alternative with slight limitations. Other algorithms exhibit varying
levels of performance but fall short of achieving the balance and detail
provided by the proposed method.

Figure 4 compares the fusion results ofmultiple algorithms on the
Lytro-03 dataset. Each algorithm demonstrates varying capabilities
in handling multi-focus image fusion, balancing sharpness, color
fidelity, and detail preservation. These are the two input images with
distinct focal regions. Source A focuses on the foreground, while
Source B highlights the background. The goal of fusion algorithms
is to combine these focal regions into a single, sharp image. The
GD method struggles with detail preservation and produces a fused
image that appears slightly blurred, especially around the edges of the
child’s face. The colors also seem less vibrant, which detracts from
the overall quality. As a deep learning-based approach, FusionDN
performs well in preserving details and maintaining sharpness. The
child’s face and the Cartoon portrait are both clear, with vivid colors.
However, minor edge artifacts are noticeable, which slightly impacts
the naturalness of the result. The PMGI approach achieves a good
balance between sharpness and detail integration. However, it slightly
lacks precision in integrating the finest details.TheU2Fusion provides
decent sharpness and color fidelity but occasionally fails to balance
focus across regions. For example, the child’s face is slightly less sharp
compared to the background, resulting in a less seamless fusion. Some
areas also become very dark, resulting in severe information loss.This
ZMFF method exhibits noticeable limitations. The fused image lacks
sharpness, and the details in both the foreground and background are
not well-preserved. The colors are also muted, leading to an overall
decrease invisualquality.The imageproducedbyUUDFusionexhibits
severe distortion and artifacts, with significant color information loss
and poor fusion performance.The proposed method outperforms all
others in this comparison. It successfully combines the sharpness
and details of both the child’s face and the gingerbread figure. The
colors are vibrant and natural, with no visible artifacts or blurriness.
The transitions between the foreground and background are smooth,
creating a visually seamless result.

Figure 5 compares the fusion results of various algorithms on the
Lytro-04dataset, focusing onhowwell the algorithmspreserve details,
manage focus regions, and maintain color fidelity. Figure 5a focuses
on the foreground, specifically the man’s face and sunglasses, while
the background is blurred. Figure 5b focuses on the background (the
person and chair) but blurs the foreground. Figures 5c-i represent

the fusion results of different algorithms. The GD exhibits moderate
sharpness in both the foreground and background. However, some
details in the man’s sunglasses and the background elements appear
slightly smoothed, reducing overall clarity. The color representation
is acceptable but lacks vibrancy compared to other methods. As a
deep learning-basedmethod, FusionDNachieves good sharpness and
color fidelity. The man’s face and sunglasses are well-preserved, and
the background details are clear. However, subtle edge artifacts are
noticeable around the foregroundandbackground transitions, slightly
affecting the fusionquality.ThePMGIfails topreserve sufficientdetails
in both the foreground and background. The man’s sunglasses appear
blurred, and the background lacks clarity.The overall image looks less
vibrant and exhibits significant information loss, making it one of the
weaker methods in this comparison. The overall quality of the fused
image is subpar. The U2Fusion method achieves decent fusion but
struggles with focus balance. The foreground (sunglasses and face)
is slightly less sharp, while the background elements are relatively
clear. The ZMFF method produces relatively good fusion results, but
the brightness and sharpness of the image still need improvement.The
UUDFusiongeneratesnoticeableartifacts anddistortions,particularly
in the background. The details in the foreground (the man’s face and
sunglasses) are not clear, with significant color distortion, resulting
in poor fusion performance. The proposed method demonstrates the
best performance among the algorithms. Both the foreground (man’s
face and sunglasses) and the background (chair and person) are sharp,
with vibrant and natural colors. The transitions between the focused
regions are smooth, and there are no visible artifacts or distortions. It
successfully preserves all critical details, making it the most effective
fusion approach in this comparison.

Table 1 shows the average metric values of different algorithms
in the simulation experiments on 20 data sets from the Lytro
dataset. Table 1 compares the performance of various algorithms on
the Lytro dataset across six evaluation metrics: QAB/F, QMI, QNCIE,
QCB, QP and QG. Each metric highlights different aspects of image
fusion quality. Among the listed methods, the proposed method
demonstrates the best overall performance. It achieves the highest
scores in all metrics, such as QAB/F = 0.7409, QMI = 7.1960, QNCIE =
0.8313, QCB = 0.7504, QP = 0.8137 and QG = 0.7385. These results
suggest that the proposed method is highly robust and effective,
delivering superior results across multiple dimensions of evaluation.
ZMFF also shows competitive performance. The FusionDN and
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U2Fusion maintain balanced performance but fail to excel in any
particular metric. UUDFusion performs consistently lower across
all metrics, indicating limited effectiveness compared to other
algorithms. In summary, the proposed method clearly outperforms
all other algorithms, providing the best fusion performance. The
ZMFF and GD are strong competitors in specific metrics, but
their inconsistencies in other areas limit their overall efficacy. This
comparison highlights the superiority of the proposed method for
image fusion tasks on the Lytro dataset. These results are consistent
with the objective evaluation shown in Figures 2–5.

5 Conclusion

In this paper, a novel multi-focus image fusion method based
on pulse coupled neural network and WSEML in DTCWT domain
is proposed. The source images are decomposed by DTCWT into
low- and high-frequency components, respectively; then theAG and
pulse coupled neural network-based fusion rule is used to process
the low-frequency components, and the WSEML-based fusion rule
is used to process the high-frequency components.The experimental
results show that our method achieves better performance in terms
of both visual quality and objective evaluation metrics compared
to several state-of-the-art image fusion algorithms. The proposed
approach effectively preserves important details and edges while
reducing artifacts and noise, leading to more accurate and reliable
fused images. Future work will focus on further exploring its
potential in other image processing tasks.
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GLI-Net: A global and local
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classification of gastrointestinal
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The accurate classification of gastrointestinal diseases from endoscopic images
is essential for early detection and treatment. However, current methods face
challenges in effectively integrating both global and local features, which
limits their ability to capture both broad semantic information and subtle
lesion details, ultimately affecting classification performance. To address this
issue, this study introduces a novel deep learning framework, the Global
and Local Interaction Network (GLI-Net). The GLI-Net consists of four main
components: a Global Branch Module (GB) designed to extract global image
features, a Local Branch Module (LB) focused on capturing detailed lesion
features, an Information Exchange Module (LEM) that facilitates bidirectional
information exchange and fusion between the global and local features,
and an Adaptive Feature Fusion and Enhancement Module (AFE) aimed at
optimizing the fused features. By integrating these modules, GLI-Net effectively
captures and combines multi-level feature information, which improves both
the accuracy and robustness of endoscopic image classification. Experiments
conducted using the Kvasir and Hyper-Kvasir public datasets demonstrate that
GLI-Net outperforms existing state-of-the-art models across several metrics,
including accuracy, F1 score, precision, and recall. Additionally, ablation studies
confirm the contribution of each module to the overall system performance.
In summary, GLI-Net’s advanced feature extraction and fusion techniques
significantly enhance medical endoscopic image classification, highlighting its
potential for use in complex medical image analysis tasks.

KEYWORDS

endoscopic image classification, deep learning, global and local feature fusion, global
branch module, local branch module

1 Introduction

Gastrointestinal cancers are among the most common cancer types globally, affecting
not only the United States but also many other countries. In 2023, it is estimated that there
will be approximately 153,020 new cases of gastrointestinal cancer and 52,550 related deaths
worldwide. Of these, colorectal cancer accounts for about 34.97%of gastrointestinal cancers.
It is well-established that certain intestinal conditions, such as polyps and ulcers, play a
significant role in the development of colorectal cancer. Early detection of cancer indicators
is crucial for managing colorectal cancer, as it can notably improve patient outcomes and
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survival rates. Therefore, early diagnosis is a critical component in
the fight against this cancer, offering hope for better prognoses and
higher survival chances.

Endoscopy remains a key method for the initial identification
and evaluation of colorectal cancer, demonstrating its effectiveness
in reducing mortality rates. This diagnostic tool captures numerous
visual frames during gastrointestinal examinations, which are
typically reviewed manually. This manual process is not only
labor-intensive and repetitive but also subject to human error, as
the accuracy of diagnosis depends on the endoscopist’s expertise,
experience, andmental acuity. Such variability can result in incorrect
diagnoses or missed abnormalities. To address these challenges,
there is an urgent need for a precise, advanced computer-assisted
diagnostic system. This system would autonomously identify and
flag suspicious images, reducing the significantmanual workload for
endoscopists and improving diagnostic accuracy. This technological
innovation is poised to advance the early detection of colorectal
cancer, potentially leading to better patient outcomes and increased
survival rates.

For instance, Karargyris and Bourbakis [1] proposed a method
using image processing techniques to detect polyps and ulcers in
wireless capsule endoscopy videos, achieving improved detection
rates. Mesejo et al. [2] developed a computer-aided system
based on computer vision and machine learning for classifying
gastrointestinal lesions in regular colonoscopy images, enhancing
diagnostic accuracy. Charfi et al. [3] combined the local binary
pattern variance and discrete wavelet transform to make texture
extraction for wireless capsule endoscopy images. However, despite
the fact that computer-aided diagnosis systems is beneficial for
endoscopic image classification compared with human beings, it
still encounters significant obstacles. Primarily, due to the high
variability within the same class of samples, such as differences in
size and shape of lesions, the extraction of consistent features from
the same category is quite difficult. By contrast, the subtle differences
between different classes also present a challenge in accurate
classification, where the different samples from different classes
may have the similar attributes. Furthermore, interference factors
like bubbles, turbidity, and artifacts caused by the movement of the
capsule camera during endoscopic procedures can also significantly
reduce the detection rate of abnormal images. Obviously, these
factors contribute to the overall difficulty in achieving high accuracy
in endoscopic image classification, emphasizing the need for more
advanced algorithms and techniques to address these challenges.

In recent years, deep learning, particularly convolutional neural
networks (CNNs) [4–6], has made significant strides in the field
of endoscopic image classification [7–9]. These technologies have
automated medical image analysis, reducing the workload for
physicians and enabling more efficient disease diagnosis through
feature extraction and pattern recognition. Compared to traditional
methods, deep learning models have demonstrated higher precision
and recall. Deep learning’s ability to learn from data has made it
superior in tasks such as polyp detection, lesion classification, and
region recognition, outperforming traditional algorithms in terms
of speed and accuracy [10]. However, despite these advancements,
deep learning models in endoscopic image classification have yet to
reach a level suitable for widespread clinical application. There are
still many challenges such as the requirement for large annotated
datasets and the difficulty in achieving higher diagnostic precision

for rare or subtle pathologies. There is a need for more effective
methods to enhance the classification accuracy of endoscopic images
and address these limitations before deep learning can be fully
integrated into clinical practice.

In this paper, we introduce a novel deep learning approach
for classifying endoscopic images called GLI-Net (Global and
Local Interaction Network). GLI-Net addresses the shortcomings
of traditional methods in capturing both detailed features and
global semantic information by effectively combining global and
local features, leading to significant improvements in classification
accuracy and robustness. The network is composed of four primary
modules: the Global Branch Module (GB), which extracts global
features and guides the Local BranchModule (LB); the Local Branch
Module (LB), which focuses on extracting detailed features from
lesion regions; the Information Interaction Module (LEM), which
facilitates mutual information exchange and optimization between
the global and local branches; and the Adaptive Feature Fusion and
Enhancement Module (AFE), which adaptively fuses the global and
local features, enhancing their representational power and boosting
the model’s discriminative performance. The synergistic interaction
of these modules enables GLI-Net to achieve superior results in
medical image classification.

2 Related work

In this section, we will briefly describe the related works
about classification on the endoscopic images. Due to different
approaches used in this field, we divide the related works into two
branches: human-crafted feature based methods and deep learning
based methods.

2.1 Human-crafted feature based methods

For the human-crafted feature based methods, many machine
learning methods with different images features designed by
human beings were studied. For instance, Charfi and El Ansari
demonstrated that their computer-aided diagnosis system can
effectively detect colon abnormalities in wireless capsule endoscopy
images [3]. The system employed image preprocessing to enhance
quality, extracted key features such as color and texture, and used a
support vector machine (SVM) classifier for abnormality detection.
Their results verified that integrating color and texture features with
SVM significantly can improve detection accuracy compared to
manual analysis. This approach highlights the potential of feature-
based machine learning methods for automating gastrointestinal
disorder diagnosis in clinical practice. Furthermore, MeseJo et al.
[2] made a study on how to apply the computer technology
to diagnose gastrointestinal lesions from regular colonoscopic
videos. Specifically, it exploited both computer vision and machine
learning methods, conducting a virtual biopsy to differentiate
hyperplastic lesions, serrated adenomas, and adenomas. Karargyris
and Bourbakis [1] conducted a study on the detection of small
bowel polyps and ulcers using wireless capsule endoscopy videos.
Specifically, they developed an algorithm that leveraged image
processing techniques to identify and analyze these gastrointestinal
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abnormalities, contributing to the advancement of non-invasive
diagnostic methods.

Additionally, Li and Meng [11] developed an enhancement
method based on adaptive contrast diffusion. This technique
was designed to adjust the contrast in different regions of the
image dynamically, which helped in highlighting the features of
interest, particularly in the context of the gastrointestinal tract. By
increasing the contrast, the method aimed to make it easier for
medical professionals to identify and diagnose any abnormalities or
pathologies within the small bowel. The enhancements are intended
to facilitate a more accurate and reliable analysis of the endoscopic
images, which is vital for effective clinical decision-making. The
work by Souaidi and Ansari [12] delved into the detection of
ulcer diseases from wireless capsule endoscopy images, employing
a multi-scale analysis technique. Specifically, this approach involved
examining images across various scales to identify ulcers of
different sizes and shapes within the gastrointestinal tract, which
enhanced the detection accuracy by capturing the nuances of ulcer
appearances at multiple levels of detail.

2.2 Deep learning based methods

Different from human-crafted features based methods, deep
learning based methods can automatically extract more semantic
features for classification. For instance, Zhang et al. [13] focused
on the automatic detection and classification of colorectal polyps
by leveraging low-level CNN features from nonmedical domains.
Specifically, the authors explored the transfer learning approach
where pre-trained CNN models originally trained on nonmedical
images were adapted for the task of polyp detection in endoscopic
videos. The study aimed to demonstrate that features learned
from large datasets in nonmedical domains could be effectively
transferred to enhance the performance of medical image analysis
tasks, particularly in the context of colorectal polyp identification.
Shin and Balasingham [14] conducted a comparative study
between a hand-crafted feature-based SVM and a CNN based
deep learning framework for the automatic classification of
polyps. They evaluated the performance of both methods in
distinguishing polyps in endoscopic images, providing insights
into the efficacy of deep learning versus traditional machine
learning approaches formedical image classification. Zhao et al. [15]
presented Adasan, an Adaptive Cosine Similarity Self-Attention
Network for gastrointestinal endoscopy image classification, which
integrated self-attentionmechanismswith adaptive cosine similarity
measures to enhance feature representation, improving classification
accuracy of endoscopic images.

Furthermore, Zhu et al. [16] presented a method for lesion
detection in endoscopy images leveraging features from CNNs.
Also, a novel method for WCE video summarization was studied
by using a Siamese neural network coupled with SVM, which
condensed long WCE video sequences into shorter, representative
summaries to facilitate faster and more efficient review by medical
professionals. The Siamese network was employed to learn and
compare image features, identifying similar frames within the video,
while the SVM was utilized to classify these frames based on
their medical relevance. Similarly [17], designed a network to
identify and highlight potential lesions within the gastrointestinal

tract by analyzing WCE video frames. By extending the Siamese
network, Guo et al. [18] introduced the Triple ANet, an Adaptive
Abnormal-Aware Attention Network designed for the classification
of WCE images. It included three main components: an abnormal
region detection module, an attention mechanism to highlight
these regions, and a classification module, in which the attention
mechanisms was introduced to focus on abnormal regions within
the gastrointestinal tract, being crucial for accurate diagnosis. And
The paper probably detailed the architecture of the network, how
it was trained on WCE images, and its effectiveness in classifying
normal versus abnormal images. This approach aimed to improve
the accuracy and efficiency of WCE image analysis, providing a
valuable tool for medical professionals to detect gastrointestinal
abnormalities. Similarly, an Effectively Fused Attention Guided
Convolutional Neural Networkwas proposed to integrated attention
mechanisms to enhance feature extraction from endoscopic images,
focusing on discriminative regions indicative of gastrointestinal
conditions [19,20].

In recent years, many deep learning-based approaches have
been applied to classify colorectal cancer and WCE images, yielding
promising outcomes. However, due to the inherent characteristics
of these images, such as considerable intra-class variations and
subtle inter-class differences, there is still a need for more robust
models to improve the accuracy and reliability of these algorithms.
To overcome these challenges, future research should focus on
developingmodels that are better equipped to handle the complexity
and variability of endoscopic images. This could involve exploring
advanced network architectures, integrating multi-modal data, or
utilizing sophisticated feature extraction methods to capture subtle
pathological changes more effectively.

3 Methods

This section provides a detailed description of the overall
architecture of GLI-Net (Global and Local Interaction Network).
First, the main structure of the network and its global branch
module (GB) and local branch module (LB) are introduced. Then,
the structure and functionality of the Information ExchangeModule
(LEM) and the Adaptive Feature Fusion and Enhancement Module
(AFE) are discussed in detail. The overall network architecture of
GLI-Net is shown in Figure 1.

3.1 Overall network architecture

GLI-Net adopts a dual-branch global and local interaction
network structure, as illustrated in Figure 1. The backbone of the
network uses the Swin Transformer as a feature extractor, designed
to extract both shallow and deep feature maps from the input
endoscopic images and generate multi-scale feature representations.
The feature sizes correspond to 1/4, 1/8, 1/16, and 1/32 of the input
image size, as specified in Equation 1:

F i = fSwin (I) , i = 1,2,3,4 (1)

where fSwin represents the Swin Transformer, I ∈ ℝH×W×3 is the
input image, and F i represents the output multi-scale feature maps.
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FIGURE 1
Overall architecture of GLI-Net.

These multi-scale features are then fed into the global and local
branches, where global and local lesion features are extracted,
as shown in Equation 2:

Plesion = fGB (F i) ,Rlesion = fLB (F i) (2)

where fGB and fLB denote the global and local branch modules,
respectively, while Plesion andRlesion correspond to the outputs of the
global and local branches.While the GB and LB modules extract the
lesion features, the Information Exchange Module (LEM) facilitates
the bidirectional information flow between the global and local
features, ensuring their collaborative interaction. This enhances
the comprehensiveness and accuracy of the features. The specific
formulation is as follows:

(FG′ ,FL′) = fLEM (Plesion,Rlesion) (3)

where FG′ and FL′ represent the enhanced global and local features,
respectively. After obtaining the global feature Plesion and the local
featureRlesion, the Adaptive Feature Fusion and Enhancement (AFE)
module is responsible for fusing the enhanced global and local
features, further enhancing their representational capability. Finally,
the classifier outputs the corresponding class of the image. The
specific formula is as follows:

ŷ = So ftmax( fAFE (Plesion,Rlesion)) (4)

3.2 Global branch module (GB)

To effectively capture the overall lesion information in
endoscopic images and guide the local branch module to focus
on key regions, the Global Branch module (GB) is introduced. The
goal of the GB module is to extract global lesion features from
the deepest feature maps and generate lesion category prompts to
guide the local branch, thereby enhancing the comprehensiveness of
feature representations and improving classification accuracy. The
GB module consists of convolutional layers, global adaptive pooling
layers, and the Lesion Category Prompt Extractor (LCPE), with the
specific structure shown in Figure 2.

FIGURE 2
Structure of the GB module.

The input global featuremap F i is first processed through a series
of convolutional layers to extract high-level semantic features.These
convolutional layers effectively capture the global information in
the image and enhance the expressive power of the features. Then,
global adaptive pooling (GAP) is applied to aggregate the convolved
feature map Fconv, generating a fixed-size global feature vector
Fglobal. Global adaptive pooling automatically adjusts the pooling
kernel size based on the input feature map’s dimensions and shape,
enabling more effective capture and aggregation of global feature
information. This process is described by the following Equation 5:

Fglobal = fGAP ( fconv (F i)) + F′
G (5)

The module fconv contains multiple convolution operations,
fGAP represents the global adaptive pooling operation, and F′

G is
the output of the LEM module. The GB module generates the lesion
category prompt Plesion from the global feature vector Fglobal using
the LCPE module, which is used to guide the local branch to focus
on the lesion regions. The LCPE module primarily consists of two
fully connected layers and their corresponding activation functions.
The global feature vector Fglobal is first mapped to the prompt space
through the first fully connected layer fFC1, and then the second
fully connected layer fFC2 generates the final lesion category prompt
Plesion. The Sigmoid activation function is applied to ensure that the
prompt values lie within the range of [0, 1]. The specific process is
described by Equation 6:

Plesion = Sigmoid( fFC2 (ReLU( fFC1 (Fglobal))) (6)
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FIGURE 3
Structure of the LB module.

3.3 Local branch module (LB)

In order to further capture detailed lesion information in
endoscopic images, and integrate guidance from the global features,
the Local Branch Module (LB) is proposed. The main objective
of the LB module is to receive enhanced lesion category prompts
from the Information Exchange Module (LEM) through the
Lesion Category Prompt Receiver (LCPR). These prompts are then
used by the Lesion Region Detector (LRD) to identify detailed
lesion features. The output detailed features are fed back into the
Information ExchangeModule and the subsequent Adaptive Feature
Fusion and Enhancement (AFE) module, enabling the collaborative
enhancement of both global and local features. The structure of the
LB module is shown in Figure 3.

The Lesion Category Prompt Receiver (LCPR) module is
responsible for receiving the enhanced lesion category prompt F′

L
from the Information Exchange Module (LEM) and applying it to
the feature map of the local branch to guide the local branch in
focusing on potential lesion regions. First, a fully connected layer
along with an activation function modulates the prompt features,
and these are element-wise multiplied with the initial feature map
F i of the local branch to generate the modulated local feature map
Prec. The specific calculation is as follows:

Prec = F i ⊗ReLU( fFCF
′
L) (7)

where ⊗ denotes the element-wise multiplication operation. After
obtaining the modulated local feature map Prec, the Lesion
Region Detector (LRD) module is responsible for identifying and
extracting the detailed lesion information. First, the modulated
local feature map Prec undergoes further convolution processing
to extract higher-level detailed features. Then, through a series of
convolutional layers and pooling layers, an attention map Alesion for
the lesion region is generated. Based on this attention map, the local
feature map is weighted to extract the detailed feature vector Rlesion.
The specific calculation is as follows:

{{{
{{{
{

Alesion = Sigmoid( fconv (ReLU( fconv?Prec??))

Rlesion =
H

∑
i=1

W

∑
j=1

Alesion (i, j) ⋅Prec (i, j)
(8)

3.4 Information exchange module (LEM)

In order to enable efficient collaboration between the global
and local networks and enhance the overall feature representation

capability, an Information Exchange Module (LEM) has been
proposed. The primary goal of the LEM module is to facilitate
bidirectional information transfer and mutual supervision between
the global branch (GB) and the local branch (LB), thereby
improving the comprehensiveness of the features and the accuracy
of classification. The detailed structure of the LEM module
is shown in Figure 4.

The LEM module includes information transmission from
global to local, feedback from local to global, and bidirectional
information flow. The information transmission from global to local
is responsible for passing the lesion category cue Plesion generated
by the GB module to the local branch module (LB) through the
Information Exchange Module, guiding the local branch to focus
on potential lesion areas. The feedback from local to global is
responsible for sending the detailed lesion features Rlesion extracted
by the local branch module (LB) back to the global branch module
(GB), thereby enhancing the representation ability of the global
features. The specific calculation details are provided in Equation 9.

{
{
{

F′
G = Plesion +ReLU( fFC (Plesion) + fFC (Rlesion))

F′
L = Rlesion +ReLU( fconv (Rlesion) + fconv (Rlesion))

(9)

where F′
L refers to the transformed lesion category cue, and F′

G
represents the enhanced global features.

3.5 Adaptive feature fusion and
enhancement (AFE) module

To fully integrate global and local features and further enhance
the feature representation capability, an Adaptive Feature Fusion
and Enhancement (AFE) module has been proposed. The primary
objective of the AFE module is to effectively fuse the enhanced
global features F′

G with the local features F′
L, and to improve the

expressiveness of the fused features through a feature enhancement
mechanism, thereby achieving more accurate class predictions. The
AFE module employs a learnable weighting mechanism, which
dynamically adjusts the fusion ratio between the global and local
features based on their relative importance.Thismechanism ensures
that features fromboth branches contribute appropriately to the final
fused representation. Unlike traditional fusion methods that use
fixed weights or simple averaging, this approach allows the model
to prioritize more discriminative features from the global and local
branches based on the task at hand, leading to enhanced feature
representation and classification accuracy.TheAFEmodule consists
of feature fusion, feature enhancement, and the final classifier, with
its detailed structure shown in Figure 5.

First, the feature fusion component is responsible for adaptively
fusing the enhanced global features F′

G from the global branch
module (GB) with the enhanced local features F′

L from the local
branch module (LB). To achieve this, the AFE module employs a
learnable weighting mechanism, as shown in Equation 10:

Ffused = α ⋅ F′
G + β ⋅ F′

L (10)

where α and β are learnable weight parameters obtained through
the network, with the constraint α+ β = 1. This allows the model
to dynamically adjust the fusion ratio based on the importance of
different features, enabling effective integration of global and local
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FIGURE 4
Structure of the LEM module.

FIGURE 5
Structure of the AFE module.

features. After feature fusion, the AFE module further enhances the
expressiveness of the fused features through a feature enhancement
layer. The feature enhancement layer typically consists of a series of
convolutional layers and activation functions to capture higher-level
semantic information, producing the enhanced features Fenh.This is
detailed in Equation 11:

Fenh = ReLU( fconv (Ffused)) (11)

Finally, the enhanced features Fenh are input into the classifier
component for the final class prediction, as shown in Equation 12:

ŷ = So ftmax(Wcls ⋅ Fenh + bcls) (12)

where Wcls and bcls are the weight and bias parameters of
the classifier, and ŷ represents the predicted class probability
distribution.

3.6 Loss function

To effectively train GLI-Net, a comprehensive loss function has
been designed, consisting of two main components: lesion region
detection loss Ldet and classification loss Lcls. The combination
of these two loss functions is aimed at simultaneously optimizing
the model’s ability to identify lesion regions and its overall
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classification performance, thereby improving the model’s accuracy
and robustness in endoscopic image classification tasks. The Ldet is
designed to optimize the model’s ability to detect lesion regions in
the image. This loss function uses binary cross-entropy loss, and the
main calculation formula is as follows:

Ldet = − 1
N

N

∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (13)

where N is the total number of pixels or regions, yi is the ground
truth label for the i-th pixel or region (0 for non-lesion, one for
lesion), and ŷi is the predicted lesion probability for the i-th pixel
or region. The classification loss Lcls is used to optimize the model’s
ability to predict the class of the entire image. This loss function
employs categorical cross-entropy loss to measure the difference
between the predicted class distribution and the true class labels.The
specific calculation details are as follows:

Lcls = − 1
M

M

∑
j=1

C

∑
k=1

yjk log(ŷjk) (14)

where M is the number of samples, C is the total number of classes,
yjk is the ground truth label of the j-th sample for the k-th class, and
ŷjk is the predicted probability of the j-th sample for the k-th class.
The overall loss L combines the lesion region detection loss and the
classification loss to achieve simultaneous optimization of themodel
on both local and global features. The specific formula is as follows:

L = Ldet + λLcls (15)

4 Experiments

4.1 Experimental details

4.1.1 Dataset
In our experiments, the Kvasir dataset and the Hyper-Kvasir

datasetwereused.TheKvasirdatasetcontains4,000endoscopic images
of gastrointestinal diseases, covering eight categories, with 500 images
per category. The dataset includes both anatomical landmarks (such
as the Z-line, pylorus, cecum, etc.) and pathological findings (such
as esophagitis, polyps, ulcerative colitis, etc.). The image resolutions
range from720× 576 to 1920× 1072 pixels. In the training and testing
split of the dataset, considering the imbalance in the annotation
of medical images, the labeled images are divided into a training
set (70%), a validation set (15%), and a test set (15%). The Hyper-
Kvasir dataset is a large multi-class public gastrointestinal dataset
sourced from gastroscopy and colonoscopy exams conducted at the
Baerum Hospital in Norway. All image annotations were provided
by experienced radiologists. The dataset contains 110,079 images,
covering both normal (healthy) and abnormal (unhealthy) patients,
with 10,662 labeled images. Due to the scarcity of annotated samples
and the large variation in thenumber of lesion samples across different
categories, the dataset split follows the common strategy used in the
medical field. Specifically, the 10,662 labeled images are divided into a
training set (70%), a validation set (15%), and a test set (15%). These
images cover a wide range of gastrointestinal abnormalities, including
normal and abnormal conditions, with a particular focus on diseases
such as polyps, ulcers, and colorectal cancer. The dataset is diverse,

featuring a variety of lesion shapes, sizes, and textures, which presents
significant challenges for model training. The annotated images,
provided by experienced radiologists, allow for a comprehensive
evaluation of model performance across different disease categories
and anatomical regions.

4.1.2 Evaluation metrics
We use accuracy (ACC), F1 score, precision, and recall as

classification evaluation metrics. These metrics are all derived from
the confusionmatrix, where the symbols are defined as True Positive
(TP), True Negative (TN), False Positive (FP), and False Negative
(FN). The specific calculation formulas are as follows:

Acc = TP+TN
TP+TN+ FP+ FN

(16)

P = TP
TP+ FP

(17)

R = TP
TP+ FN

(18)

F1 = 2× P×R
P+R

= 2TP
2TP+ FP+ FN

(19)

4.1.3 Implementation details
The experiments in this study were conducted on a computer

equipped with an NVIDIA RTX 4090 GPU with 24 GB of memory.
During training, the Adam optimizer was used, with specific
parameters set as β1 = 0.9, β2 = 0.999, and ϵ = 10−6. The learning
rate followed a cosine annealing strategy, with an initial value of 10−4

and a minimum value of 10−5. The batch size was set to 32, and the
maximum number of training epochs, Tmax, was set to 100 to ensure
training stability and eventual convergence.

4.2 Experimental comparison

4.2.1 Kvasir public dataset
To validate the outstanding performance of our proposed GLI-

Net on the Kvasir public dataset, we compared it with current state-
of-the-art models. Specifically, as shown in Table 1, compared to
ConvNeXt-B, ViT-B/16, ViT-B/32, and Swin-B models, our method
achieved improvements of 13.31%, 10.25%, 14.81%, and 9.03% in
Acc, respectively; 13.55%, 10.82%, 15.36%, and 9.39% in F1 score;
13.76%, 10.94%, 15.43%, and 9.51% in P; and 14.31%, 11.57%,
16.07%, and 10.10% in R.Moreover, compared to the HiFusemodel,
GLI-Net improved accuracy, F1 score, precision, and recall by 3.29%,
3.54%, 3.70%, and 4.28%, respectively. These results demonstrate
that GLI-Net is more effective in capturing and integrating both
global and local features, significantly enhancing the accuracy
and robustness of medical endoscopic image classification, and
showcasing its superior performance in complex medical image
analysis tasks.

To further demonstrate the superior performance of GLI-
Net on the Kvasir dataset, we applied the Grad-CAM method to
visualize the model’s final layer, generating heatmaps that reflect
the regions of the lesion the model focuses on. The specific details
are shown in Figure 6. Compared to models such as ConvNeXt-
B, ViT-B/16, ViT-B/32, Swin-B, and HiFuse, GLI-Net’s heatmaps
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TABLE 1 Comparative results of different methods on the Kvasir public dataset.

Method Accuracy ↑ F1 score ↑ Precision ↑ Recall ↑

ConvNeXt-B 74.6 74.61 74.78 74.64

VIT-B/16 76.1 75.94 76.49 76.23

VIT-B/32 73.8 73.5 74.24 73.72

Swin-B 77.3 77.29 77.74 77.44

HiFuse 84.35 84.41 84.5 84.48

GLI-Net (Ours) 87.43 87.68 88.26 89.12

FIGURE 6
Heatmap visualization results on the Kvasir public dataset.

show higher focus and coverage of the lesion regions, allowing
for more accurate localization of lesions in endoscopic images.
While other models can recognize some lesion areas, they exhibit
discrepancies in precise localization and coverage. For example,
ConvNeXt-B and ViT-B/32 show relatively blurred recognition,
while Swin-B and HiFuse incorrectly label many non-lesion areas.
GLI-Net, by effectively covering lesion regions and minimizing
background interference, demonstrates significant advantages in
feature extraction and region localization. These visualization
results prove GLI-Net’s efficiency and reliability in medical image
classification tasks.

4.2.2 Hyper-Kvasir public dataset
To validate the outstanding performance of our proposed GLI-

Net on theHyper-Kvasir public dataset, we compared it with current

state-of-the-art models. The specific results are shown in Table 2.
Compared to ConvNeXt-B, ViT-B/16, ViT-B/32, Swin-B, and
HiFusemodels, GLI-Net achieved improvements of 13.31%, 10.25%,
14.81%, 9.03%, and 3.29% in Acc, respectively; 13.55%, 10.82%,
15.36%, 9.39%, and 3.54% in F1 score; 13.76%, 10.94%, 15.43%,
9.51%, and 3.70% in P; and 14.31%, 11.57%, 16.07%, 10.10%, and
4.28% in R. These significant performance improvements indicate
that GLI-Net is more effective in capturing and integrating both
global and local features, significantly enhancing the accuracy
and robustness of medical endoscopic image classification, and
showcasing its superior performance in complex medical image
analysis tasks.

To demonstrate the superior performance of GLI-Net on the
Hyper-Kvasir dataset, we used the Grad-CAM method to generate
heatmaps that visualize the lesion regions the model focuses on.
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TABLE 2 Comparative results of different methods on the Hyper-Kvasir public dataset.

Method Accuracy ↑ F1 score ↑ Precision ↑ Recall ↑

ConvNeXt-B 72.53 72.61 72.8 72.71

VIT-B/16 75.59 75.34 75.62 75.45

VIT-B/32 71.03 70.8 71.13 70.95

Swin-B 76.81 76.77 77.05 76.92

HiFuse 82.55 82.62 82.86 82.74

GLI-Net (Ours) 85.84 86.16 86.56 87.02

FIGURE 7
Heatmap visualization results on the Hyper-Kvasir public dataset.

TABLE 3 Ablation study results of GLI-Net on the Kvasir public dataset.

Method GB LB LEM AFE Acc \ % F1 \ % Prec \ % Recall \ %

Case.S1 X 81.12 81.23 81.52 81.04

Case.S2 X 82.53 82.73 82.97 82.62

Case.S3 X 83.86 83.9 84.16 83.83

Case.S4 X 84.57 84.77 84.93 84.66

GLI-Net 87.43 87.68 88.26 89.12
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The specific details are shown in Figure 7. Compared to models
such asConvNeXt-B,ViT-B/16,ViT-B/32, Swin-B, andHiFuse,GLI-
Net’s heatmaps exhibit higher focus and coverage of the lesion areas,
allowing for more accurate localization of lesions in endoscopic
images. While other models can identify some lesion regions,
they show discrepancies in localization and coverage. For example,
ConvNeXt-B and ViT-B/32 exhibit relatively blurred recognition,
while Swin-B and HiFuse incorrectly label non-lesion regions. GLI-
Net, through more precise lesion region coverage and reduced
background interference, demonstrates its advantages in feature
extraction and region localization. These results show that GLI-Net
can more effectively integrate global and local features, significantly
improving the accuracy and robustness ofmedical endoscopic image
classification, and proving its efficiency and reliability in real-world
applications.

4.3 Ablation study

4.3.1 Ablation study of GLI-Net
To evaluate the performance of GLI-Net on the Kvasir dataset,

we conducted ablation experiments by sequentially removing the
GB, LB, LEM, and AFE modules from the model. The results

are shown in Table 3. The inclusion of each module significantly
improved the model’s performance. The baseline model with the GB
module removed achieved an accuracy of 81.12%. After removing
the LB module, the accuracy increased to 82.53%, and further
removal of the LEM module raised the accuracy to 83.86%. When
theAFEmodule was removed, the accuracy reached 84.57%. Finally,
the complete GLI-Netmodel achieved an accuracy of 87.43%, which
is a 2.86% improvement over the model without the AFE module.
In addition, GLI-Net also performed better in other evaluation
metrics such as F1 score, precision, and recall, with improvements of
6.45%, 4.45%, 3.78%, 8.08%, 6.50%, and 5.29%, respectively. These
experimental results demonstrate that the individual modules of
GLI-Net play a critical role in enhancing feature extraction, feature
fusion, and optimizing representation, significantly improving the
accuracy and robustness of medical endoscopic image classification,
and proving its superior performance in complex medical image
analysis tasks.

To verify the role of each module in GLI-Net, we conducted
ablation experiments on the Kvasir dataset by sequentially removing
the modules and used the Grad-CAM method to visualize the
lesion regions the model focuses on under different configurations.
The specific details are shown in Figure 8. The experimental results

FIGURE 8
Heatmap visualization results of the GLI-Net ablation study.
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TABLE 4 Ablation study results of different losses on the Kvasir public dataset.

Method Ldet Lcls λ Accuracy ↑ F1 score ↑ Precision ↑ Recall ↑

Case.S1 ✓ 72.32 71.51 72.35 72.13

Case.S2 ✓ 75.24 74.86 75.21 74.94

Case.S3 ✓ ✓ 80.17 79.52 80.17 79.88

GLI-Net ✓ ✓ ✓ 87.43 87.68 88.26 89.12

indicate that, after removing the Global Branch module (GB)
(Case.S1), the model’s focus on lesion areas significantly decreased,
revealing a deficiency in capturing global features. Removing the
Local Branch module (LB) (Case.S2) weakened the ability to extract
detailed features, resulting in blurred lesion regions. After removing
the Information Exchange Module (LEM) (Case.S3), although the
model could still detect lesion regions, the insufficient fusion of
global and local features affected comprehensive coverage of the
lesion areas. When the Adaptive Feature Fusion and Enhancement
Module (AFE) (Case.S4) was removed, although the focus on the
lesion areas increased, feature expression and region optimization
were insufficient, leading to residual background interference. In
contrast, the complete GLI-Net model, through the synergistic
action of all modules, accurately localized the lesion regions,
significantly improving the model’s accuracy and robustness in
medical endoscopic image classification. The superior performance
of GLI-Net can be attributed to the effective integration of global
and local features, alongwith the bidirectional information exchange
facilitated by the LEM module. The Global Branch (GB) extracts
high-level semantic features that provide a broad context for the
lesions, while the Local Branch (LB) captures fine-grained details
of the lesions. The Information Exchange Module (LEM) allows for
mutual enhancement of these features, ensuring that both global and
local features are used in a complementary manner. This interaction
mitigates the issues caused by intra-class variation and subtle inter-
class differences, which are common in endoscopic images, and thus
leads tomore accurate and robust classification results.These results
demonstrate the crucial roles of each module in feature extraction,
region localization, and feature fusion.

4.3.2 Ablation study of loss function
To evaluate the contribution of each component of the loss

function in GLI-Net, we conducted ablation experiments on
the Kvasir dataset by sequentially removing the lesion region
detection loss, classification loss, and weight coefficient. The results
are shown in Table 4. When only the lesion region detection loss
was used (Case.S1), the accuracy was 72.32%. After adding the
classification loss (Case.S2), the accuracy increased to 75.24%.When
both the lesion region detection loss and classification loss were used
together (Case.S3), the accuracy further improved to 80.17%. Finally,
the complete GLI-Netmodel achieved an accuracy of 87.43%, 7.26%
improvement over Case.S3, highlighting the important role of the
weight coefficient λ in balancing the loss function. Additionally,
GLI-Net showed significant improvements in F1 score, precision,
and recall, with increases of 6.78%, 4.81%, and 4.14%, respectively,
compared to Case.S3. These results indicate that the effective

combination of the lesion region detection loss and classification
loss, along with the proper setting of the weight coefficient,
significantly enhances the model’s performance, confirming the key
role of the loss function design in GLI-Net.

5 Conclusion

This paper presents GLI-Net, a novel network for medical
endoscopic image classification, designed to enhance classification
performance by effectively integrating both global and local features.
GLI-Net utilizes a hierarchical multi-module architecture that
includes a global branch module (GB), a local branch module (LB),
an information exchange module (LEM), and an adaptive feature
fusion and enhancement module (AFE) to facilitate comprehensive
feature extraction and optimization. Evaluation on the Kvasir and
Hyper-Kvasir public datasets showed that GLI-Net outperforms
state-of-the-art models, including ConvNeXt-B, ViT-B/16, ViT-
B/32, Swin-B, and HiFuse, across key metrics such as accuracy,
F1 score, precision, and recall. Specifically, GLI-Net achieved
accuracies of 87.43% and 85.84% on the Kvasir and Hyper-Kvasir
datasets, respectively, surpassing the second-best models by 2.86%
and 2.29%. Ablation studies confirmed the significant contribution
of each module to the overall performance, as the removal of
any module caused a notable performance decline, underscoring
their synergistic interaction. Additionally, Grad-CAM visualization
highlighted GLI-Net’s improved ability to accurately localize lesion
areas, with better focus and coverage compared to other models,
effectively reducing interference from background and non-lesion
regions. These results demonstrate GLI-Net’s substantial advantages
in feature extraction and region localization, leading to enhanced
accuracy and robustness inmedical endoscopic image classification.
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Infrared and visible image fusion
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language models

Ke Wang, Dengshu Hu, Yuan Cheng, Yukui Che*, Yuelin Li,
Zhiwei Jiang, Fengxian Chen and Wenjuan Li

Qujing Power Supply Bureau, Yunnan Power Grid Co., Ltd., Kunming, China

Introduction: Existing image fusion methods primarily focus on obtaining high-
quality features from source images to enhance the quality of the fused image,
often overlooking the impact of improved image quality on downstream task
performance.

Methods: To address this issue, this paper proposes a novel infrared and
visible image fusion approach driven by multimodal large language models,
aiming to improve the performance of pedestrian detection tasks. The proposed
method fully considers how enhancing image quality can benefit pedestrian
detection. By leveraging a multimodal large language model, we analyze the
fused images based on user-provided questions related to improving pedestrian
detection performance and generate suggestions for enhancing image quality.
To better incorporate these suggestions, we design a Text-Driven Feature
Harmonization (Text-DFH) module. Text-DFH refines the features produced by
the fusion network according to the recommendations from the multimodal
large language model, enabling the fused image to better meet the needs of
pedestrian detection tasks.

Results: Compared with existing methods, the key advantage of our approach
lies in utilizing the strong semantic understanding and scene analysis capabilities
of multimodal large language models to provide precise guidance for
improving fused image quality. As a result, our method enhances image
quality while maintaining strong performance in pedestrian detection. Extensive
qualitative and quantitative experiments on multiple public datasets validate the
effectiveness and superiority of the proposed method.

Discussion: In addition to its effectiveness in infrared and visible image fusion,
the method also demonstrates promising application potential in the field of
nuclear medical imaging.

KEYWORDS

infrared and visible image fusion, pedestrian detection, multimodal large language
models, text-guided, model fine-tuning

1 Introduction

Multimodal sensor technology has facilitated the application of multimodal images
across various fields. Among them, infrared and visible images have been widely used
in diverse tasks due to the complementary nature of the information they contain.
Specifically, infrared images provide thermal radiation information of objects and are
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FIGURE 1
Comparison of different joint training strategies for image fusion and downstream tasks.

not affected by lighting conditions, but they lack detailed textures.
In contrast, visible images capture rich texture details of the
scene but are highly sensitive to lighting variations. Therefore,
numerousmethods [1–7] have focused on fusing infrared and visible
images, aiming to integrate the complementary information from
both modalities into a single, more informative fused image. This
facilitates better decision-making and judgment in downstream
tasks such as object detection [8–10] and semantic segmentation
[11–14].

Current approaches that jointly train infrared-visible image
fusion with downstream tasks can be broadly categorized into
two types: independent optimization and joint optimization.
Independent optimization methods first train a fusion network
for infrared and visible images and then use the resulting fused
images to train a downstream task network, as shown in Figure 1a.
Consequently, most independent optimization methods focus on
improving fusion quality, for example, by designing new network
architectures [15–19] or introducing specific constraints [20–23].
However, such approaches neglect the potential guidance from
downstream tasks and fail to establish a deep connection between
fusion and task performance, often leading to suboptimal results.
Simply chaining the fusion and downstream networks makes it
difficult for the fused image to specifically cater to the downstream
task’s requirements. On the other hand, joint optimization methods
use the downstream task network as a constraint to train the image
fusion network, thereby forcing it to produce fused images that meet
task-specific needs [24–28], as illustrated in Figure 1b. Nevertheless,
the effectiveness of directly using high-level vision task supervision
to guide fusion remains limited.

Recently, Multimodal Large Language Models (MLLMs) have
gained popularity due to their strong capability in modeling data
across different modalities, such as images and text. For instance,

Text-IF [29] and TeRF [30] leverage large models to encode user
instructions and guide various types of fusion tasks. However, these
methods do not consider the possibility of using large language
models to feed back the specific needs of high-level vision tasks to
the image fusion process, which could further improve the quality
of fused images.

To address this challenge, we propose a novel infrared and
visible image fusionmethod driven by aMultimodal Large Language
Model, aiming to simultaneously enhance fusion quality and
pedestrian detection accuracy, as shown in Figure 1c. By leveraging
the deep semantic understanding and scene analysis capabilities of
MLLMs, we provide precise guidance for improving fused image
quality while ensuring better pedestrian detection performance.
Specifically, our method analyzes the fused images based on user-
provided questions related to pedestrian detection, then generates
optimization suggestions using feedback from the language model.
To fully utilize these suggestions, we design a Text-Driven Feature
Harmonization (Text-DFH) module, which refines the fusion
network’s output features under the guidance of theMLLM, allowing
the fused images to bettermeet the demands of pedestrian detection.

In summary, themain contributions of this paper are as follows:

(1) We are the first to leverageMultimodal Large LanguageModels
to provide feedback on the quality of fused images based on
the specific requirements of downstream tasks, thus further
improving infrared and visible image fusion.

(2) We propose an effective Text-Driven Feature Harmonization
(Text-DFH) module that enables text-based guidance to assist
in enhancing image quality.

(3) Our proposed method achieves excellent performance in
infrared and visible image fusion, nuclear medical imaging,
and pedestrian detection across multiple datasets.
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The remainder of this paper is organized as follows. Section 2
provides a brief overview of related work on multimodal large
language models, infrared and visible image fusion, and pedestrian
detection. Section 3 presents our proposed method in detail.
Section 4 discusses the experimental results and analysis. Section 5
concludes the paper.

2 Related work

In this section, we first briefly introduce multimodal large
languagemodels, and then review existing infrared and visible image
fusion methods.

2.1 Multimodal large language models

With the advent of the multimodal data fusion era, the
capability of unimodal systems is no longer sufficient to handle
complex real-world tasks. As a result, multimodal large language
models (MLLMs) have been proposed to integrate information
from multiple data sources, enabling more comprehensive
and accurate representations. These models have demonstrated
significant practical value across various domains, including natural
language processing, vision tasks, and audio tasks. In the visual
domain, MLLMs enhance the performance of tasks such as image
classification, object detection, and image captioning by combining
textual descriptions with visual instructions. For example, GPT-4V
[31] and Gemini [32] integrate image content with natural language
descriptions to producemore vivid and accurate annotations.NExT-
GPT [33] and Sora [34] are at the forefront of multimodal video
generation, producing rich and realistic content by learning from
multimodal data. Moreover, VideoChat [35] and Video-LLaVA [36]
demonstrate excellent capabilities in analyzing and understanding
video content in intelligent video understanding scenarios.

In the field of image fusion, Text-IF [29] and MGFusion [37]
uses CLIP [38] to encode user requirement texts, guiding the model
to fuse images. TeRF [30] utilizes LLaMA [39] to encode user
instruction texts and generate prompts for guiding image fusion
across different tasks. Although these methods employ MLLMs
to tackle some challenges in image fusion, they do not consider
the specific requirements of high-level downstream visual tasks for
image fusion quality, which limits the application of infrared and
visible image fusion in such tasks.

2.2 Infrared and visible image fusion

Conventional infrared and visible image fusion methods mainly
focus on designing sophisticated feature extraction networks and
fusion strategies to ensure the quality of the fused results. From
the perspective of network design, these methods can be broadly
categorized into CNN-based methods, CNN-Transformer hybrid
methods, and GAN-based methods. CNN-based methods [40–45]
typically apply convolution, activation, and pooling operations to
extract features from the input images, then fuse and reconstruct
the final result using the extracted features. However, since CNNs
can only perceive local features within a limited receptive field,

they struggle to capture long-range contextual information, limiting
their representational capacity. In contrast, Transformers [46]
are better at modeling long-range dependencies and are more
suited for capturing global features in images. ViT [47] was the
first to introduce Transformer architectures into computer vision,
achieving promising results. Subsequently, to combine the respective
strengths of CNNs and Transformers, hybrid methods have gained
increasing attention in the image fusion domain. For instance,
CGTF [48], SwinFusion [16], YDTR [17], and DATFuse [49] insert
Transformer layers after CNN layers to jointly leverage local and
global feature extraction. CDDFuse [50] and EMMA [51] adopt
dual-branch architectures combining CNNs and Transformers to
simultaneously extract features from the input images and integrate
them for fusion.

GAN-based methods enhance the model’s feature extraction
capabilities by introducing adversarial learning between generators
and discriminators. Depending on the number of discriminators
used, these methods can be classified into single-discriminator
and dual-discriminator approaches. Single-discriminator methods
[2, 52] tend to favor one modality over the other, potentially
leading to information loss and reduced visual quality of the fusion
results. To address this, dual-discriminator methods [53–56] are
proposed to preserve important features from both source images
simultaneously.

However, all of these methods primarily focus on designing
effective feature extraction networks to produce high-quality fusion
features and images. They overlook how fusion quality impacts
downstream task performance, and fail to consider the potential
feedback from downstream tasks that could help guide fusion more
effectively.

2.3 Pedestrian detection

Pedestrian detection is a fundamental problem in computer
vision with a wide range of applications. Cascade R-CNN [57]
extends R-CNN [58] into a multi-stage framework, improving the
ability to filter hard negative samples. Faster R-CNN [59] introduces
a Region Proposal Network (RPN) that shares convolutional
features with the detection network, making region proposals
nearly cost-free. YOLO [60] reformulates object detection as a
regression problem, allowing real-time inference directly on images
through a convolutional neural network. SSD [61] uses multi-
scale feature maps and predefined anchors for pedestrian detection,
addressing YOLO’s limitations in detecting small objects. DETR
[62] adopts a Transformer-based encoder-decoder architecture for
object detection. BAS Wu et al. [63] learns to represent the whole
foreground region by leveraging foreground guidance and domain
constraints. CREAM [64] proposes a clustering-based method
to enhance activation within target regions. Group R-CNN [65]
builds instance groups to perform pedestrian detection from point
annotations.

However, most pedestrian detection methods are designed
for unimodal images, which often leads to degraded detection
performance due to incomplete scene information. In this work, we
perform pedestrian detection on fused infrared and visible images,
and incorporate task-specific prompts generated by large language
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FIGURE 2
Overall framework of the proposed method. We use the IR-Encoder and VI-Encoder to extract features from the infrared and visible images,
respectively. To ensure that the fused output meets the requirements of the pedestrian detection task, we input both a question related to pedestrian
detection (e.g., To improve the accuracy of pedestrian detection, how can the quality of this image be enhanced?) and the unmodulated fused image
into a Multimodal Large Language Model. The model provides suggestions for improving the quality of the fused image. Based on these suggestions,
the Text-DFH module refines the output features of the fusion network, so that the final fusion result better aligns with the needs of the pedestrian
detection task.

models. This not only improves the quality of the fused images but
also enhances pedestrian detection performance.

3 Methods

3.1 Overview

As shown in Figure 2, the proposed method consists of two
training stages. The first stage is dedicated to training the Fusion
Network, enabling it to perform basic infrared and visible image
fusion. In the second stage, the parameters of the pretrained fusion
network are frozen, and a Text-Driven Feature Harmonization
(Text-DFH) module is trained to refine the fusion results to better
align with the requirements of pedestrian detection.The fusion
network is composed of three main components: an Infrared
Image Feature Encoder (IR-Encoder), a Visible Image Feature
Encoder (VI-Encoder), and a Fusion Feature Decoder (F-Decoder).
The IR/VI-Encoders are responsible for extracting features from
the input infrared and visible images, respectively, while the F-
Decoder reconstructs the fused image based on the combined
features.The Text-DFH module adjusts the features extracted by
the IR/VI-Encoders based on responses from a Multimodal Large
Language Model (MLLM), ensuring that the resulting fused
image better satisfies the needs of pedestrian detection. In this
work, we adopt LLaVA [66] as the MLLM. LLaVA analyzes the
unmodulated fused image and generates suggestions in response
to user queries related to pedestrian detection tasks (e.g., To
improve the accuracy of pedestrian detection, how can the quality
of this image be enhanced?). More text examples of LLaVA answers
are shown in Figure 3.

3.2 Feature extraction and fusion

In the first training stage, we train the fusion network to perform
the basic task of infrared and visible image fusion. The fusion
network primarily consists of three components: the IR-Encoder,
VI-Encoder, and F-Decoder. Each of the IR-Encoder, VI-Encoder,
and F-Decoder is composed of three feature extraction layers. Each
layer is constructed by stacking a convolutional layer (kernel size
= 3× 3, stride = 1), a Batch Normalization layer, and a LeakyReLU
activation function. It is worth noting that the LeakyReLU activation
function in the final feature extraction layer of the F-Decoder
is replaced with a Tanh activation function to facilitate image
reconstruction. We input the infrared image Ii and the visible image
Iv into the IR-Encoder and VI-Encoder, respectively, to extract
features F i and Fv. To reconstruct the fused image, we concatenate
F i and Fv along the channel dimension and feed the result into the
F-Decoder, which generates the final fused image I f .

To encourage the fused image to retain as much scene
information from the source images as possible, we introduce an
intensity loss ℓin and an edge loss ℓed, which together form the fusion
loss ℓ f :

ℓ f = ℓin + εℓed, (1)

Here, ε denotes a hyperparameter used to balance the contribution
of each sub-loss term. The intensity loss ℓin is defined as:

ℓin = 1
HW

(‖I f − I i‖1
+ ‖I f − Iv‖1

) , (2)

The edge loss ℓed is defined as:

ℓed = 1
HW

(‖∇I f −∇I i‖1
+ ‖∇I f −∇Iv‖1

) , (3)
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FIGURE 3
Visualized images of text examples of LLaVA answers.

FIGURE 4
Text-driven feature harmonization module.

Here, H and W denote the height and width of the fused image,
respectively; ‖⋅‖1 represents the l1-norm, and ∇ denotes the Sobel
edge extraction operator.

3.3 Text-driven feature harmonization

In the second training stage, we freeze the parameters of the
pretrained fusion network and focus on training the Text-DFH
module to ensure that the fusion results meet the requirements
of the pedestrian detection task. Text-DFH refines the features

output by the IR/VI-Encoders in the fusion network based on the
responses from the multimodal large language model, enabling
the fused image to better align with the needs of pedestrian
detection.As shown in Figure 4, Text-DFHmainly consists of a dual-
branch Cross Attention (CA) module and three feature extraction
layers.The dual-branch cross attention computes the cross-attention
between the features extracted by the IR/VI-Encoders and the
textual features, allowing the model to extract useful information
from the text that can help improve pedestrian detection accuracy.
Subsequently, the three feature extraction layers integrate this textual
information with the image scene features to generate refined
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FIGURE 5
Visual comparison with SOTA methods. The top two rows, middle two rows, and bottom two rows of images are from the LLVIP, M3FD, and MSRS
datasets, respectively. The first and second columns show the infrared and visible source images, while the third to ninth columns display the fusion
results produced by the compared methods.

features.The structure of theCAmodule is similar to theMulti-Scale
Attention (MSA) module used in DATFuse.

We input the infrared image I i and visible image Iv into
the pretrained fusion network with frozen parameters to obtain
the fused image I f . To obtain effective textual feedback that
helps ensure the fused image meets the requirements of the
pedestrian detection task, we input both I f and the text prompt
“To improve the accuracy of pedestrian detection, how can the
quality of this image be enhanced?” into LLaVA, resulting in the
textual feature T . We then input the outputs F i/v from the IR/VI-
Encoders and the textual feature T into Text-DFH to harmonize the
information in F i/v. To comprehensively extract the task-relevant
information from the textual features, we design a dual-branch
processing strategy. In the first branch, we take F i/v as the Query
(Q) and T as the Key (K) and Value (V) for cross-attention
computation:

F1
i/v = softmax(

Q1
i/v(K

1
i/v)

T

√d1

)V1
i/v, (4)

Here, F1
i/v represents the features injected with textual information

in the first branch, d1 denotes the dimensionality of Q1
i/v, Q

1
i/v =

WQ,1
i/v F i/v, K

1
i/v = WK,1

i/v T , V1
i/v = WV,1

i/v T . In the second branch, we
use T as the Query (Q) and F i/v as the Key (K) and Value (V)
for cross-attention computation:

F2
i/v = softmax(

Q2
i/v(K

2
i/v)

T

√d2

)V2
i/v, (5)

Here, F2
i/v represents the features injected with textual information

in the second branch, d2 denotes the dimensionality of Q2
i/v, and

Q2
i/v = WQ,2

i/v T ,K2
i/v = WK,2

i/v F i/v,V
2
i/v = WV,2

i/v F i/v. To comprehensively
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TABLE 1 Quantitative results on the LLVIP dataset. The best and
second-best values for each evaluation metric are highlighted in red and
blue, respectively.

Methods QAB/F↑ QCV↓ QSSIM↑ QAG↑ QSCD↑

AUIF 0.3869 610.74 1.2016 3.5256 1.3413

DATFuse 0.4548 453.42 1.3130 3.1243 1.3351

IVFWSR 0.2925 512.77 1.2348 2.5252 1.1235

LRRNet 0.4426 534.89 1.3022 2.4625 0.9999

MLFusion 0.3239 523.41 1.2624 2.1613 0.9966

TIMFusion 0.2325 845.75 1.1742 2.1761 0.5368

SwinFusion 0.4266 598.53 1.2743 2.6346 1.3527

TextIF 0.5235 356.35 1.3056 3.4856 1.4527

Ours 0.5845 287.43 1.3441 3.9867 1.5462

TABLE 2 Quantitative results on the M3FD dataset. The best and
second-best values for each evaluation metric are highlighted in red and
blue, respectively.

Methods QAB/F↑ QCV↓ QSSIM↑ QAG↑ QSCD↑

AUIF 0.5425 852.56 1.3003 6.6735 1.5353

DATFuse 0.4854 563.57 1.3067 4.8326 1.3461

IVFWSR 0.4532 722.22 1.2735 3.5628 1.2452

LRRNet 0.5164 579.55 1.3735 4.5624 1.3461

MLFusion 0.4253 689.44 1.2835 4.4527 1.2687

TIMFusion 0.5352 616.16 1.2872 4.3336 1.2004

SwinFusion 0.5537 588.24 1.3086 6.0463 1.3456

TextIF 0.5423 534.21 1.2986 6.4026 1.5035

Ours 0.5856 454.45 1.3095 6.4561 1.6187

aggregate the textual information, we concatenate F1
i/v and F2

i/v
along the channel dimension and feed the result into three feature
extraction layers to obtain the harmonized features F̂ i/v. We then
concatenate F̂ i and F̂v along the channel dimension and input the
result into the F-Decoder to reconstruct the refined fused image I′ f .

To ensure that the refined fused image I′ f meets the
requirements of the pedestrian detection task, we introduce a
pretrained pedestrian detection network with frozen parameters to
supervise the fused image. We input I′ f into the detection network
and obtain the pedestrian detection result ŷ. To make ŷ as close as
possible to its ground truth ygt, we constrain the Text-DFH module
using the loss function ℓpd, which is the same as the one used during
the training of YOLOv5.

TABLE 3 Quantitative results on the MSRS dataset. The best and
second-best values for each evaluation metric are highlighted in red and
blue, respectively.

Methods QAB/F↑ QCV↓ QSSIM↑ QAG↑ QSCD↑

AUIF 0.1736 799.97 0.9853 1.8844 1.1963

DATFuse 0.6326 416.67 1.2421 3.5481 1.5641

IVFWSR 0.3464 734.46 1.3462 2.1129 1.3581

LRRNet 0.4263 666.35 1.2952 2.5632 1.0854

MLFusion 0.2656 745.57 1.3457 2.6531 1.2053

TIMFusion 0.3346 1032.24 1.1003 2.6422 1.1783

SwinFusion 0.4527 439.46 1.3163 3.0042 1.4828

TextIF 0.6125 400.34 1.3357 3.6426 1.5457

Ours 0.6365 334.23 1.3537 3.5474 1.6854

4 Experiments

4.1 Datasets

Theproposedmethod consists of two training stages. In both the
first and second training stages, we train the fusion network and the
text-driven feature harmonization module on the publicly available
LLVIP dataset [67], respectively, in accordance with standard
practices in the field [68–70]. Specifically, we randomly select 2,000
pairs of infrared and visible images from the LLVIP dataset as
the training set. To enhance the diversity of training samples, we
apply random flipping, random rotation, and random cropping
as data augmentation techniques. For evaluation, we randomly
select 200 pairs of infrared and visible images from each of the
LLVIP, M3FD [71], and MSRS [3] datasets to form the test set,
in order to assess both the fusion performance and pedestrian
detection performance of the proposed method. Among them,
LLVIP, M3FD, and MSRS are used to evaluate fusion performance,
while LLVIP is specifically used to evaluate pedestrian detection
performance.

4.2 Implementation details

The proposed method involves two training stages. In the
first stage, the fusion network is trained. In the second stage,
the parameters of the fusion network are frozen, and the text-
driven feature harmonization module is trained. Both training
stages use the Adam optimizer to update the network parameters,
with a batch size of 16 and a learning rate of 1× 10−3. The
total number of training epochs is set to 100 for the first stage
and 200 for the second stage. In addition, the hyperparameter
ε is set to 0.2. The proposed method is implemented based
on the PyTorch framework and is trained on a single NVIDIA
RTX A6000 GPU.
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FIGURE 6
Qualitative comparison of pedestrian detection performance with “retraining methods.” The first and second columns show the infrared and visible
source images, while the third to ninth columns display the pedestrian detection results of the compared methods.

TABLE 4 Quantitative comparison of pedestrian detection performance
with “retraining methods.” The best and second-best values for each
evaluation metric are highlighted in red and blue, respectively.

Methods mAP50↑ mAP75↑ mAP50→95↑

AUIF 98.2 91.8 74.4

DATFuse 99.0 91.5 74.3

IVFWSR 97.2 89.6 72.9

LRRNet 98.0 90.8 73.8

MLFusion 97.8 89.9 73.6

TIMFusion 97.9 88.4 74.0

SwinFusion 98.5 90.4 74.3

TextIF 98.9 91.7 74.6

Ours 99.1 92.8 75.0

4.3 Evaluation metrics

We adopt five commonly used objective evaluation metrics
to quantitatively assess the fusion performance of the proposed
method. These metrics include Edge Preservation Index (QAB/F)
[72, 73], Chen-Varshney Index (QCV) [74], Structural Similarity
Index (QSSIM) [75], Average Gradient (QAG) [76], and Sum of
Correlations of Differences (QSCD) [77]. QAB/F measures how well
edge information from the source images is preserved in the fused
image. QAB/F higher value indicates less loss of texture details in
the fused image. QCV evaluates fusion quality from the perspective
of human visual perception; a lower value means the fused image
aligns better with human visual preferences. QSSIM quantifies the
similarity between the fused image and the source images in terms
of luminance, contrast, and structure. A higher value indicates
less information difference between the fused and source images.
QAG measures the richness of gradient information in the fused
image. A higher valuemeans the fused image containsmore detailed
gradient content. QSCD assesses information loss during the fusion
process by computing difference maps between the fused image
and source images. A higher value indicates less distortion in
the fused image. Among these, QAB/F, QSSIM, QAG and QSCD are

positive indicators, meaning a higher value indicates better fusion
performance. QCV is a negative indicator, meaning a lower value
represents better fusion performance. In addition, to objectively
evaluate the effectiveness of the fused images in the pedestrian
detection task, we adopt three widely used metrics in the pedestrian
detection domain for quantitative analysis: Mean Average Precision
(mAP) at IoU threshold of 0.5 (mAP50), mAP at IoU threshold of
0.75 (mAP75), and the averaged mAP at IoU threshold from 0.5 to
0.95 (mAP50→95).

4.4 Comparison with state-of-the-art
methods

In this study, we conduct a series of qualitative and quantitative
comparisons between the proposed method and eight state-of-
the-art (SOTA) methods to verify its superiority in both fusion
performance and pedestrian detection performance.Thesemethods
include AUIF [78], DATFuse [49], IVFWSR [79], LRRNet [80],
MLFusion [81], TIMFusion [82], SwinFusion [16], and TextIF [29].
The comparative experiments are divided into two distinct groups:
In the first group, we compare the fusion performance of our
method with that of the SOTA methods. In the second group, we
freeze the fusion networks of the compared methods and retrain
their pedestrian detection networks using the corresponding fused
results. The retrained detection networks are then used to perform
pedestrian detection on the fused images. This setup is designed
to demonstrate that our proposed method can achieve strong
pedestrian detection performance without requiring retraining of
the detection network.

4.4.1 Fusion performance comparison
We conduct both quantitative and qualitative comparisons of

the proposed method against AUIF, DATFuse, IVFWSR, LRRNet,
MLFusion, TIMFusion, SwinFusion, and TextIF on the LLVIP,
M3FD, and MSRS datasets to validate the superiority of our
method in terms of fusion performance. As shown in the enlarged
regions of Figure 5, our method effectively highlights the thermal
radiation information from the infrared image while preserving
fine texture details from the visible image. Compared to existing
SOTA methods, the fused images produced by our method exhibit
clearer local details as well as higher overall brightness and contrast
at the global level. This not only improves visual quality but
also facilitates better object recognition in downstream tasks. This
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FIGURE 7
Qualitative analysis results on the medical image fusion task.

TABLE 5 Quantitative Analysis Results on the Medical Image Fusion Task.
The best and second-best values for each evaluation metric are
highlighted in red and blue, respectively.

Methods QAB/F↑ QCV↓ QSSIM↑ QAG↑ QSCD↑

ALMFnet 0.4700 1330.59 1.3432 3.5826 1.2991

EMMA 0.4682 1288.99 1.3232 3.1826 1.2999

RMR-Fusion 0.4419 1344.12 1.2967 3.2621 1.3781

Ours 0.4792 1203.12 1.3631 3.7521 1.3629

advantage is also reflected in the quantitative evaluation results,
as shown in Tables 1–3. Specifically, our method achieves the
lowest values in metric QCV, and ranks first in both metrics QAB/F
and QAG, indicating that the fused images contain richer edge
information and are more consistent with human visual perception.
In summary, both qualitative and quantitative results demonstrate
that our proposed method offers significant improvements in fusion
performance over the compared methods.

4.4.2 Pedestrian detection performance
comparison

A common practice to improve the performance of fusion
networks in downstream tasks is to freeze the parameters of the
fusion network and retrain the downstream task network based
on the generated fused results. Such approaches are referred to as
“retraining methods.” To evaluate the effectiveness of our proposed
method in pedestrian detection, we perform both quantitative and
qualitative comparisons against these retrainingmethods. As shown
in Figure 6, the pedestrian detection results of other methods often
suffer from issues such as bounding boxes that fail to fully cover the
pedestrians’ bodies, or boxes that include large amounts of irrelevant
background, indicating insufficient detection accuracy. In contrast,
the detection results produced by our method show significantly
fewer irrelevant regions within the bounding boxes and more

accurate box placement.This advantage is also clearly reflected in the
quantitative results, as shown in Table 4. Our method achieves the
highest scores in metrics mAP50, mAP75, and mAP50→95, indicating
superior performance in the pedestrian detection task compared to
the other methods. In conclusion, our method demonstrates better
performance than approaches that require retraining the pedestrian
detection network, even without retraining. This highlights
the effectiveness and advantage of our method in pedestrian
detection tasks.

4.4.3 Analysis of application potential in medical
image fusion

Furthermore, to validate the effectiveness and application
potential of the proposed method in the field of nuclear medical
imaging, we further deployed it in a medical image fusion
task. Specifically, we conducted experiments on the BraTS2020
[83] dataset and performed both qualitative and quantitative
analyses of the fusion results. As shown in Figure 7, compared
with state-of-the-art methods such as ALMFnet [84, 85], and
RMR-Fusion [86], the proposed method preserves more texture
details and salient information in the fused medical images. As
reported in Table 5, our method ranks first or second across
most evaluation metrics. These results demonstrate the promising
potential of the proposed method for applications in nuclear
medical imaging.

4.5 Ablation study

The proposed method mainly consists of two core components:
the Multimodal Large Language Model (MLLM) and the Text-
Driven Feature Harmonization (Text-DFH) module. Within Text-
DFH, both the text-guided cross-attention and the image-guided
cross-attention play key roles. To validate the effectiveness of these
components, we conduct a series of ablation experiments on the
LLVIP dataset.
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FIGURE 8
Qualitative comparison of fusion performance across different ablation models. The first and second columns show the infrared and visible source
images, while the third to seventh columns display the fusion results obtained under different ablation settings.

TABLE 6 Quantitative comparison of fusion performance across
different ablation models. The best and second-best values for each
evaluation metric are highlighted in red and blue, respectively.

Methods QAB/F↑ QCV↓ QSSIM↑ QAG↑ QSCD↑

w/o MLLM 0.5472 298.75 1.3244 3.6433 1.5367

w/o Text-DFH 0.5763 299.46 1.3321 3.4131 1.4992

w/o CA1 0.5834 305.92 1.3234 3.6362 1.5213

w/o CA2 0.5798 301.68 1.3401 3.6524 1.5123

Ours 0.5845 287.43 1.3441 3.9867 1.5462

4.5.1 Effectiveness of the multimodal large
language model

We utilize theMLLM to analyze the fused images based on user-
provided questions related to pedestrian detection performance
and generate suggestions for improving image quality. To assess
the contribution of the MLLM, we remove it and replace its
feedback with a fixed text prompt: “Brighter brightness, higher
contrast, and clearer texture details.” As shown in Figure 8, the
fusion results from the ablation model without the MLLM are
noticeably inferior in visual quality compared to the full model. To
further validate this, we perform quantitative analysis as presented
in Table 6. The results show that the full model outperforms
the ablation model on all evaluation metrics. Additionally, we
analyze the performance of pedestrian detection, as shown in
Table 7 and Figure 9. Both the quantitative and qualitative results
indicate that the fused images produced by the ablation model

TABLE 7 Quantitative comparison of pedestrian detection performance
across different ablation models. The best and second-best values for
each evaluation metric are highlighted in red and blue, respectively.

Methods mAP50↑ mAP75↑ mAP50→95↑

w/o MLLM 98.5 91.6 73.9

w/o Text-DFH 98.8 92.1 74.0

w/o CA1 99.0 92.4 74.5

w/o CA2 98.9 91.8 74.4

Ours 99.1 92.8 75.0

without the MLLM lead to poorer detection performance. In
contrast, the full model achieves better pedestrian detection results.
In summary, both qualitative and quantitative analyses confirm
the effectiveness of the Multimodal Large Language Model in
our method.

4.5.2 Effectiveness of Text-DFH
Text-DFH refines the output features of the fusion network

based on suggestions from the multimodal large language model,
enabling the fused image to better meet the requirements of
the pedestrian detection task. To verify the effectiveness of
Text-DFH, we remove it from the architecture and instead
concatenate the text features with the image features to be
refined along the channel dimension. The combined features
are then processed by CNNs to obtain the refined output. We
conduct both quantitative and qualitative analyses of the fusion
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FIGURE 9
Qualitative comparison of pedestrian detection performance across different ablation models. The first and second columns show the infrared and
visible source images, while the third to seventh columns display the pedestrian detection results under different ablation settings.

performance of the model without Text-DFH, as shown in
Table 6 and Figure 8. As observed, the ablation model without
Text-DFH performs worse than the full model across multiple
evaluation metrics, and the visual quality of the fused images
is also inferior. In addition, we evaluate pedestrian detection
performance both quantitatively and qualitatively, as presented
in Table 7 and Figure 9. The full model achieves higher scores
compared to the ablation model without Text-DFH. In summary,
a series of experiments clearly demonstrate the effectiveness of the
Text-DFH module.

4.5.3 Effectiveness of dual-branch cross
attention

In the Text-DFH module, we refine image features using text
features through a dual-branch cross attention mechanism. To
verify its effectiveness, we remove the cross attention from each
branch individually, leaving only a single branch to refine the
image features. These variants are referred to as CA1 and CA2,
respectively. From the quantitative and qualitative results on fusion
performance, it is evident that removing either branch of the cross
attention leads to a significant drop in performance, as shown in
Table 6 and Figure 8. Furthermore, to assess the impact of dual-
branch cross attention on pedestrian detection performance, we
conduct both quantitative and qualitative analyses. The results
demonstrate that pedestrian detection performance is optimal only
when both branches of the cross attention are used to refine the
image features, as shown in Table 7 and Figure 9. In conclusion,
the above experiments confirm the effectiveness of the dual-branch
cross attention mechanism.

5 Conclusion

To address the limitation of existing methods that primarily
focus on improving fused image quality through network
design—while overlooking the potential benefits of enhanced image
quality for pedestrian detection—we propose a multimodal large
language model (MLLM)-driven infrared and visible image fusion
method. This method not only aims to improve the quality of the
fused images but also emphasizes enhancing their performance

in pedestrian detection tasks. By leveraging a multimodal large
language model, we analyze the fused images based on user-
provided questions related to improving pedestrian detection
performance and generate suggestions for enhancing image quality.
To fully utilize the guidance provided by the MLLM, we design a
Text-Driven Feature Harmonization (Text-DFH) module, which
refines the features output by the fusion network according to
the textual suggestions. This ensures improved fusion quality
while maintaining strong performance in pedestrian detection.
In addition, the proposed method also demonstrates significant
application potential in the field of nuclear medical imaging.
However, under extreme weather conditions such as rain, fog, and
snow, the fusion performance of the current method may degrade.
Moreover, when such methods are applied to other types of source
images [87–90], their performance may degrade. In future work, we
plan to extend this research to develop an infrared and visible image
fusion framework tailored for extreme weather scenarios, striving to
maintain robust downstream task performance even in challenging
environments.
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Multimodal medical Image fusion (MMIF) has received widespread attention
due to its promising application in clinical diagnostics and treatment. Due to
the inherent limitations of fusion algorithms, the quality of obtained medical
fused images (MFI) varies significantly. An objective evaluation of MMIF can
quantify the visual quality differences in fused images and facilitate the rapid
development of advanced MMIF techniques, thereby enhancing fused image
quality. However, rare research has been dedicated to the MMIF objective
evaluation. In this study, we present a multi-scale aware attention network
for MMIF quality evaluation. Specifically, we employ a Multi-scale Transform
structure that simultaneously processes these multi-scale images using an
ImageNet pre-trained ResNet34. Subsequently, we incorporate an online class
activation mapping mechanism to focus visual attention on the lesion region,
enhancing representative discrepancy features closely associated with MFI
quality. Finally, we aggregate these enhanced features and map them to the
quality difference. Due to the lack of dataset for the objective evaluation
task, we collect 129 pairs of source images from public datasets, namely, the
Whole Brain Atlas, and construct a MMIF quality database containing 1,290
medical fused images generated using MMIF algorithms. Each fused image
was annotated with a subjective quality score by experienced radiologists.
Experimental results demonstrate that our method produces a satisfactory
consistent with subjective perception, superior to the state-of-the-art quality
evaluation methods. The source images dataset is publicly available at: http://
www.med.harvard.edu/AANLIB/home.html.

KEYWORDS

multimodal medical image fusion, objective evaluation, multi-scale transform, class
activation mapping mechanism, region of interest

1 Introduction

Multimodal medical image fusion (MMIF) is increasingly common in clinical
diagnostics. MMIF algorithms aim to generate high-quality fused images from
multimodal input images [1–3]. However, most existing MMIF algorithms struggle
to achieve optimal fusion due to inherent model limitations. Even worse, instead of
promoting, fused image quality declined during the fusion process, even increasing
the risk of misdiagnosis. Figure 1 illustrates fusion results from different MMIF
algorithms, where the first four images exhibit lower quality compared to the last
one, with the first image being the worst. As observed, low-quality fused images
fail to convey the critical information of the original images, contradicting the very
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FIGURE 1
A case of fused images via different Multimodal medical image fusion (MMIF) algorithms.

purpose of image fusion. Conversely, high-quality fused images
provide clinicians with more reliable information, enhancing
diagnostic confidence and decision-making. Hence, it is natural to
consider how to achieve a fairer evaluation of these fused images.

In previous work, researchers generally compare the fusion
results using both subjective and objective assessments [4–8].
Subjective quality evaluation refers to the visual judgment of image
quality by human observers based on perceptual impressions,
typically using scoring or ranking methods to quantify visual
performance [9]. While this approach closely reflects clinical
perception, it is labor-intensive and not scalable for large volumes of
medical data. To address this limitation, objective quality assessment
methods have been extensively developed to automatically evaluate
fused images through computational models and algorithms
[10–16]. These methods avoid human bias and enable large-scale
assessment by quantifying image quality using well-defined criteria.
Generally, objective evaluation methods can be classified into full-
reference, reduced-reference, and no-reference approaches [17–19].
Since no ground-truth fused images exist, the no-reference approach
is the most suitable for this task. This approach is not only
more theoretically realistic but also exhibits higher applicability
in clinical settings, as physicians are the ultimate beneficiaries of
quality evaluation, the results of image quality assessment can
vary depending on the scenario (e.g., the presence or absence of
lesion regions in the image), leading to potential instability. No
reference evaluation algorithms are roughly divided into hand-
crafted metrics and deep learning-based metrics. For instance, Yang
et al. [11] gauged structural similarity information of fused images.
Qu et al. [15] used mutual information to measure fused images.
Tang et al. [17] adopted non-subsampled contourlet transform
(NSCT) and pulse coupled neural network (PCNN) for medical
fusion image evaluation. However, these studies are limited in their
ability to effectively capture hand-crafted features. To alleviate this
limitation, deep learning-based metrics have been reported for
MMIF quality assessment. Tian et al. [20] exploited a generative
adversarial network (GAN) to implement objective evaluation of
MMFI. However, such models often face criticism for being “black-
box” approaches, making it difficult to gain sufficient trust from
radiologists.

In this study, we construct amedical image fusion quality dataset
and utilize it to evaluate the performance of the proposed MS-ANN
model for MMIF quality assessment. We first conduct multi-scale
transform to capture different scale information of fused images.

Meanwhile, input these multi-scale images to fine-tuned ImageNet
pre-trained ResNet34. Then, we utilize an online class activation
mapping mechanism (CAM) to capture visualization attention to
the lesion regions, such operation is highly related to radiologists
making decisions. Finally, by aggregating the multi-scale streams
to complement each other, we obtain richer, enhanced discrepancy
features that are subsequently mapped to the quality differences of
the fused images.

The key contributions of the proposed MS-AAN are
summarized as follows.

(1) Given the limited research on objective evaluation for
MMIF, we propose a no-reference fused image quality
assessment method based on a multi-scale aware attention
network, termed MS-AAN. MS-AAN not only automatically
predicts the quality of fused images but also enhances model
interpretability.

(2) To characterize quality discrepancies in fused images, we
capture and aggregate multi-scale features by utilizing multi-
scale transformer and ImageNet pre-trained ResNet34. Such
multi-scale streams complement each other and can obtain
plentiful details of quality discrepancy-related cues.

(3) To locate lesion clews and enhance feature representation, we
propose a CAM attention network, which can pay attention to
the lesion regions via generating localization heat maps. It is
highly related to radiologistsmaking decisions. In this way, our
MS-AAN earns the trust of radiologists.

2 Related work

2.1 Objective evaluation of multimodal
medical image fusion

Multimodal medical image fusion (MMIF) plays an important
role in clinical diagnostics and treatment. For radiologists, high-
quality fused images can enhance diagnostic confidence and aid in
follow-up treatment planning. Plenty of MMIF quality evaluation
algorithms have been reported. For instance, Xydeas et al. [10] used
gradient information from source images to evaluate fused images.
Yang et al. [11] gauged structure similarity information of fused
images. Li et al. [12] adopted edge information from the source
image to the fused image for objective assessment. Zhao et al. [13]
proposed phase congruency to evaluate fused images. Zheng et al.
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[14] designed perceptual evaluation via a ratio of spatial frequency
error. Qu et al. [15] used mutual information to measure fused
images. Liu et al. [16] adopted entropy for fused image objective
assessment. Tang et al. [17] adopted non-subsampled contourlet
transform and pulse coupled neural network for medical fusion
image evaluation. However, these handcrafted methods often lack
the ability to effectively capture complex representation features.
As a result, deep learning-based metrics for MMIF evaluation have
attracted much attention. Tian et al. [20] introduced a generative
adversarial network to implement MMIF evaluation. Wang et al.
[21] proposed a no-reference image quality assessment framework
that incorporates an adaptive graph attention module to enhance
both local and contextual information. Liu et al. [9] developed a
CNN-based multi-focus image fusion quality assessment model
using hierarchical semantic features to better capture focus-level
details. Additionally, Yue et al. [18] introduced a pyramid-based
framework for assessing the quality of retinal images, which
improves robustness to various types of distortions commonly found
in clinical data. However, such studies often face challenges in
addressing the “black-box” nature of the model. This limits the
ability to sufficient trust from radiologists. Despite the growing
interest in MMIF evaluation, few studies have focused on objective
evaluation, and there is a lack of high-quality fused images. As a
result, no reference metric demonstrates significant practical value
for this task.

2.2 Multi-scale aware network

In recent years, multi-scale transform has achieved progress in
the field of multimodal medical image fusion [22, 23], especially
non-subsampled contourlet transform (NSCT) has displayed
tremendous results [24, 25]. Specifically, Huang et al. [25] proposed
SPECT and CT image fusion based on NSCT and PCNN. Yin et al.
[24] used NSCT and PCNN for medical image fusion. Tang et al.
[17] proposed a medical fusion image evaluation method based
on NSCT and PCNN. Therefore, the combination of NSCT and
PCNN has been proven to be a highly effective strategy for MMIF
and MMIF quality evaluation. Inspired by this, can we replace
PCNN with deep learning? Recent advancements in pre-trained
CNNs on ImageNet have demonstrated their ability to extract richer
features [26–28]. Motivated by the above fact, we employ a simple
yet effective approach by combining NSCT with a pre-trained CNN
to capture richer multi-scale feature representations.

2.3 CAM attention mechanism

Recent years have witnessed that the CAM is an effective tool
for model interpretability. Zhou et al. used CAM to locate class-
relevant objects [29]. Subsequently, gradient-weighted CAM was
further extended to obtain better localization [30]. Ouyang et al.
adopted gradient-weighted CAM to learn chest X-ray abnormality
localization [31]. Tang et al. utilized an online CAM mechanism to
concentrate on thyroid nodule localization, improving the model
interpretability [32]. Thus, in this paper, we further extend the CAM
attention mechanism to guide the network in focusing on lesion

regions, enhancing the representative discriminative features, which
ensures alignment with radiologists’ decision-making.

3 Methods

The proposed MS-ANN model is designed to comprehensively
capture perceptual quality information from multimodal fused
medical images. Its architecture comprises three main components:
a multi-scale transform module, an ImageNet pre-trained
ResNet34 backbone, and a CAM attention mechanism, as
illustrated in Figure 2. First, we construct a multi-scale stream
network with NSCT by down-sampling the input fused images
to generate representations at four different scales. Each scale is
processed by four ResNet34 backbone, which is selected for its
efficiency and strong feature representation ability. Using a pre-
trained model also facilitates robust learning with limited data. To
enhance model interpretability and ensure the network emphasizes
diagnostically relevant regions, we incorporate a CAM-based
attention mechanism after feature extraction. Finally, the attention-
refined features from all scales are concatenated and mapped to a
quality score through fully connected layers.

3.1 Multi-scale aware neural network

We adopt the NSCT to perform multi-scale and multi-
directional decomposition on the medical fused image. NSCT
is a shift-invariant extension of the contourlet transform that
enables rich representation of image features across different scales
and directions, which is particularly beneficial for medical image
analysis. Specifically, the medical fused image F is transformed into
multiple sub-band {Fm,α} at each level m ∈ [1,4] and direction. This
decomposition allows the network to capture structural details at
various resolutions, which is formulated as Equation 1:

Fm,α = MST(F) (1)

Where MST(·) repents the MST functions. Following this
transformation, we use an ImageNet pre-trained ResNet34 as
the backbone to extract high-level semantic features from the
decomposed components. Particularly, these multiple sub-bands
are input to ResNet34, and we use Rectified Linear Unit (ReLU) as
the activation function, which is formulated as Equation 2:

Fom,α = ReLU(conv(Fm,α,K)) = ReLU(
t

∑
n=1

Fnm,α ⊙K+A) (2)

Where Fom,α stands for output features. K represents a kernel of
convolutional layer. Fnm,α is nth channel of Fm,α with totally t channels,
A and ⊙ represent the bias and convolution operation, respectively.

3.2 Aggregation of multi-scale feature

Considering the advantages of multi-scale transform, we
aggregate the output features of multi-scale streams for MMIF
quality evaluation. Firstly, we perform concatenate operations on
four multi-scale stages, as shown in Equation 3:

fo = Fo1,α ⊕ Fo2,α ⊕ Fo3,α ⊕ Fo4,α (3)
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FIGURE 2
Flowchart of the proposed MS-AAN.

where ⊕ stands for concatenate operation. Then, we
compute global average pooling (GAP), as shown in
Equation 4:

IG = 1
WIc ∗HIc

WIc∗HIc

∑
j=1

Ijc (4)

Where Ijc denotes the pixel value of j-th in Ic, Ic stands for
output of the last layer. WIc and HIc represent the width and
height of Ic, respectively. The enhancement feature transfers
to a convolution layer, and we conduct GAP and global
max pooling (GMP). Finally, a simple addition operation is
carried out to aggregate GAP and GMP, which is formulated as
Equation 5:

ftotal = GAP( fo) +GMP( fo) (5)

3.3 CAM attention mechanism

To capture quality discrepancy features of lesion region from
the whole medical fused images, we introduce the CAM attention
mechanism. Specifically, we generate the attention feature map M
by applying a nonlinear activation function to the final aggregated
featuremap ftotal,whichisdescribedinEquation 5.Thisrepresentation
integrates multi-scale semantic information and is more suitable for
highlighting perceptually important regions. The resulting attention
map has a spatial resolution of 1/16 relative to the input image {Fm,α}
andguides thenetwork to focusondiagnostically relevantareasduring
quality assessment. Then, conducting a normalization on M to [0, 1].
After that, performing the sigmoid operation for softmasking, named
S(M), is formulated as Equation 6:
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FIGURE 3
Some examples of source images.

TABLE 1 Comparison performance of MS-ANN with other six metrics.

Metric PLCC SRCC KRCC RMSE

MPRI 0.3031 0.3167 0.2375 0.2611

TE 0.1797 0.1946 0.1407 0.3909

MI 0.2270 0.1738 0.1071 0.3712

OEFP 0.3064 0.3367 0.2342 0.2810

NSCT-PCNN 0.6252 0.6420 0.4166 0.2480

RSFE 0.4054 0.2275 0.1700 0.2663

AGA 0.6956 0.6871 0.5721 0.3669

SBA 0.5861 0.6012 0.4156 0.4266

PNQC 0.8106 0.8016 0.7681 0.2119

Proposed MS-ANN 0.9131 0.9061 0.8560 0.1166

Bold values represent the best results.

S(M) = 1
1+ exp(−μ(M− β))

(6)

Where μ and β stand for hyper-parameters. Dice loss is used as the
attention loss function, denoted as La, and is defined as shown in
Equation 7:

La = Dice(S(M),G) (7)

Where G is the ground truth of the lesion mask. Finally, in the
fully connected layer, we conduct Cross Entropy loss for quality
classification, dubbed Lc, as shown in Equation 8:

Lc = −∑[ f log( ̂fx) − (1− f)(1− log ̂fx))] (8)

Where f stands for class label, ̂fx = [ ̂f1, ̂f2, ̂f3, ̂f4, ̂f5], x = 1,2,3,4,5,
which denote the five classes quality results of medical fused images.

3.4 Total loss function

As observe in Figure 2, total loss function of our MS-ANN,
comprise of attention La and classification Lc, which is denoted
as shown in Equation 9:

Lt = La+γLc (9)

4 Experiments

4.1 Dataset

In this study, we perform medical fused data for appraising
the developed MS-ANN in MMIF quality assessment. Specifically,
we collect 129 pairs of source images from public datasets, i.e.,
Whole Brain Atlas, which include CT and MR, MR-T1 and MR-
T2, MR-T2 and PET, MR-T2 and SPECT, as shown in Figure 3.
The selected images span a wide range of anatomical structures and
clinical conditions (e.g., tumors, lesions, and degenerative changes),
ensuring that the dataset is both diverse and representative of real-
world clinical fusion scenarios. We then apply ten representative
state-of-the-art MMIF algorithms [16, 24, 33–40], resulting in a
total of 1,290 fused images. This dataset construction process is
consistent with our previous work, where more technical details of
the fusion methods can be found [20, 41]. For subjective quality
assessment, each fused image is annotated with a Mean Opinion
Score (MOS) ranging from 1 (lowest quality) to 5 (highest quality),
as independently rated by two experienced radiologists. To ensure
the reliability and consistency of the subjective assessment, a senior
radiologist further reviewed and validated the assigned scores.

To rigorously evaluate the effectiveness of the proposed MS-
ANN, we adopt four widely recognized quantitative assessment
metrics [42, 43]: Pearson’s Linear Correlation Coefficient (PLCC),
Spearman’s Rank Correlation Coefficient (SRCC), Kendall’s Rank
Correlation Coefficient (KRCC), and Root Mean Square Error
(RMSE). These metrics are designed to measure the alignment
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TABLE 2 Ablation studies on the proposed MS-ANN.

Model Pre Multi-scale CAM PLCC SRCC KRCC RMSE

Baseline 0.7971 0.8022 0.7199 0.2936

Proposed ResNet34 ★ 0.8633 0.8571 0.7761 0.1696

Proposed ResNet34 ★ ★ 0.8916 0.8811 0.8256 0.1301

Proposed ResNet34 ★ ★ ★ 0.9131 0.9061 0.8560 0.1166

Bold values represent the best results.

FIGURE 4
Generated attention maps of our methods on four medical fused images.

TABLE 3 The result of the external validation.

Model PLCC SRCC KRCC RMSE

Our 0.8591 0.8388 0.7916 0.1721

between the predicted quality scores generated by the model and
the ground-truth MOS provided by expert radiologists. Specifically,
PLCC, SRCC, and KRCC are used to evaluate the consistency
between the predicted quality scores and the ground-truth MOS,
with higher values indicating better consistency with human
perception. RMSE measures the absolute prediction error, where
lower values represent better performance. These metrics are widely
used in the field and ensure comparability with previous IQA studies
[9, 18, 19, 21, 44].

4.2 Performance comparison

To validate the effectiveness of the proposed MS-ANN, we
compare it with sixmainstreammethods, includingmultiple pseudo
reference images-based quality metric (MPRI) [44], Tsallis entropy-
based quality metric (TE) [45], mutual information-based quality
metric (MI) [46], the objective evaluation of fusion performance
(OEFP) [10], the ratio of spatial frequency error-based quality
metric (RSFE) [14], the NSCT-PCNN-based quality metric (NSCT-
PCNN) [17], the adaptive graph attention (AGA) for blind image
quality assessment method [21], statistically based approach (SBA)
for multi-focus image fusion quality assessment [9], and pyramid
networks with quality-aware contrast loss (PNQC) for retinal image

quality assessment [18]. Among these metrics, higher values of
MPRI, TE,MI,OEFP,NSCT-PCNN,AGA, SBA, andPNQC indicate
better quality, whereas lower values of RSFE denote better quality.

We compute the PLCC, SRCC, KRCC and RMSE values of
six mainstream methods and MS-ANN, as shown in Table 1. The
highest scores are highlighted in bold. Based on Table 1, our MS-
ANN achieves the best performance, significantly outperforming
the six competing models. Specifically, compared to the second-
ranked RIQA, our proposedmethod improves PLCC from 0.8106 to
0.9131, SRCC from 0.8016 to 0.9061, KRCC from 0.7681 to 0.8560,
while declining RMSE 0.2119 from to 0.1166.

4.3 Ablation study

We conduct ablation studies to discuss the contribution
of each important part of the MS-ANN. We first train each
component independently on the medical fused dataset and then
jointly optimize all components of MS-ANN. The results are
presented in Table 2.

First, the baseline model refers to ResNet34 without ImageNet
pre-training, achieving a PLCC of 0.7971, SRCC of 0.8022, KRCC
of 0.7199, and RMSE of 0.2936. Second, we apply a pre-training
strategy to enhance the ability to capture features. As shown in the
second row of Table 2, performance significantly improves, with
PLCC increasing from 0.7971 to 0.8633, SRCC from 0.8022 to
0.8571, and KRCC from 0.7199 to 0.7761, while RMSE decreases
from 0.2936 to 0.1696. These results demonstrate that the ImageNet
pre-trained model outperforms the baseline model without pre-
training. This improvement may be attributed to the effective use of
pre-trained knowledge, which helpsmitigate the challenge of limited
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training data. Third, we further introduce NSCT to capture more
multi-scale features. With the addition of multi-scale transform,
the results show noticeable improvements when comparing baseline
+ Pre and baseline + Pre + multi-scale: PLCC increases by
2.83% (0.8633 vs. 0.8916), SRCC by 2.40% (0.8571 vs. 0.8811),
and KRCC by 4.95% (0.7761 vs. 0.8256), while RMSE decreases
by 3.95% (0.1696 vs. 0.1301). Moreover, we integrate the CAM
mechanism to guide the model’s attention toward lesion regions,
thereby enhancing both feature representation and interpretability.
As shown in Table 2, the proposed MS-ANN (Baseline + Pre +
multi-scale + CAM) achieves superior performance compared to
the variant without CAM (Baseline + Pre +multi-scale). Specifically,
PLCC increases from 0.8916 to 0.9131, SRCC from 0.8811 to 0.9061,
KRCC from 0.8256 to 0.8560, and RMSE decreases from 0.1301 to
0.1166. These improvements demonstrate that CAM significantly
enhances themodel’s ability to capture quality-related features.More
importantly, the lesion-focused attention maps provide intuitive
visual explanations, which can assist radiologists in verifying
model predictions and build greater confidence in clinical use.
As shown in Figure 4, the CAM-based heatmaps illustrate the
model’s ability to concentrate on diagnostically relevant regions,
offering visual support for the model’s quantitative superiority.

4.4 External validation

To further validate the generalization ability of ourMS-ANN,we
conduct an external independent evaluation using the multimodal
medical image fusion database [17]. It is important to note that
the performance metrics reported in Table 3 differ from those
in Table 2 because they are obtained under different evaluation
settings. Specifically, Table 2 reports results from ablation studies
conducted on the training dataset to analyze the contribution of
each model component, whereas Table 3 presents results from a
separate external dataset. As shown in Table 3, our model achieves
promising performance, with a PLCC of 0.8591, SRCC of 0.8388,
KRCCof 0.7916, and RMSE of 0.1721.These results demonstrate the
robustness and effectiveness of MS-ANN in assessing multimodal
medical image fusion quality across different datasets.

5 Conclusion

In this paper, we develop a quality evaluation metric for
multimodal medical image fusion, called no reference multi-scale
aware attention network (MS-ANN). Specifically, we first apply
a multi-scale transform to extract different scale information
from fused images and feed these transformed images into an
ImageNet pre-trained ResNet34. This multi-scale strategy enables
complementary feature extraction, capturing rich details relevant to
quality assessment. Then, we propose a CAM attention network,
which captures visualization attention to the lesion regions to
facilitate model interpretability. Finally, we employ a concatenation
operation to refine quality discrepancy features and map them to
the quality differences in multimodal fusion images. However, the
dataset used in this study exhibits an imbalance between MRI-
PET and MRI-SPECT image pairs, with MRI-SPECT images being
more prevalent. Moreover, the diversity of medical conditions

and anatomical regions is somewhat limited, which may affect
the model’s generalization to other clinical settings or imaging
modalities. In future work, we aim to address these limitations by
expanding the dataset to cover a broader range of organs and clinical
conditions, thereby improving the robustness and generalization
capability of the proposed MS-ANN model. Additionally, while
our study adopts widely accepted statistical metrics to evaluate
image quality prediction, it is important to recognize the potential
influence of MMIF quality on downstream clinical tasks such
as diagnosis accuracy or treatment decisions. High-quality fused
images can provide clearer lesion boundaries, improved structural
detail, and more reliable functional information, which are crucial
in radiological assessment and therapy planning. In future work,
we intend to design user studies or integrate radiologist-in-the-loop
evaluations to measure the actual diagnostic utility of images rated
by our model. Such assessments would offer a more comprehensive
validation of the model’s clinical value and help bridge the gap
between objective image quality assessment and practical medical
outcomes. Despite these limitations, the proposed MS-ANN shows
strong consistency with subjective perception, offering potential to
facilitate clinical diagnosis and guide the development of advanced
multimodal medical image fusion techniques.
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Target-aware unregistered
infrared and visible image fusion
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Shoubing Dong and Chuirui Kong
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Introduction: Infrared (IR) and visible (VI) image fusion can provide richer texture
details for subsequent object detection tasks. Conversely, object detection can
offer semantic information about targets, which in turn helps improve the quality
of the fused images. As a result, joint learning approaches that integrate infrared-
visible image fusion and object detection have attracted increasing attention.

Methods: However, existing methods typically assume that the input source
images are perfectly aligned spatially—an assumption that does not hold in
real-world applications. To address this issue, we propose a novel method that
enables mutual enhancement between infrared-visible image fusion and object
detection, specifically designed to handle misaligned source images. The core
idea is to use the object detection loss, propagated via backpropagation, to
guide the training of the fusion network, while a specially designed loss function
mitigates the modality gap between infrared and visible images.

Results: Comprehensive experiments on three public datasets demonstrate the
effectiveness of our approach.

Discussion: In addition, our approach can be used with other radiation
frequencies where different modalities require image fusion like, for example,
radio-frequency, x- and gamma rays used in medical imaging.

KEYWORDS

infrared and visible image fusion, object detection, feature alignment, target-aware,
unregistered

1 Introduction

Images captured by a single sensor often fail to provide a comprehensive description
of a scene. For example, infrared (IR) sensors can capture thermal radiation emitted by
objects and highlight salient targets, but they lack the ability to represent fine texture
details and are more susceptible to noise. On the other hand, visible-light (VI) sensors
capture visual information with clear texture details but are easily affected by lighting
conditions and occlusions. If the information from both infrared and visible images can
be integrated into a single, information-rich fused image, the scene representation can be
significantly enhanced. As a result, infrared and visible image fusion has beenwidely applied
as a low-level preprocessing task in various high-level vision applications, such as object
detection [1], tracking [2], person re-identification [3], and semantic segmentation [4]. An
example in Figure 1 visually illustrates the application of fused images in object detection.
It can be observed that detection results obtained from individual sensor images are less
accurate than those derived from fused images.

Due to its practical value, infrared and visible image fusion has garnered substantial
attention in the research community. Over the past decades, numerous image fusion
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FIGURE 1
Object detection results of the proposed method on the M3FD dataset.

techniques have been proposed, including both traditional and
deep learning-based methods. Traditional methods typically fall
into two categories: multi-scale transform-basedmethods [5–7] and
sparse representation-based methods [8–12]. Deep learning-based
approaches include methods based on autoencoders (AE) [9, 13,
14], convolutional neural networks (CNNs) [15–18], and generative
adversarial networks (GANs) [19, 20].

Although recent deep learning-based fusion algorithms can
generate visually pleasing results, several critical challenges remain
unsolved. On one hand, most existing fusion algorithms focus on
optimizing visual quality and evaluationmetrics, but rarely consider
whether the fused results benefit downstream task performance.
On the other hand, even recent methods that incorporate high-
level vision tasks into the fusion process—such as TarDAL [21],
which proposes a dual-level optimization model using a task-aware
dual adversarial learning network to simultaneously address fusion
and object detection; SeAFusion [22], which constrains the fusion
process with semantic loss to retain richer semantic information;
and DetFusion [23], which guides multimodal fusion using target-
related features learned by the object detection network—still
assume that the source images are perfectly aligned spatially. This
assumption does not hold in real-world applications.

In this study, we propose a framework named Target-Aware
Unregistered Infrared and Visible Image Fusion Network, designed
to achieve robust performance in both misaligned image fusion
and high-level vision tasks. Specifically, we introduce an object
detection network to predict detection results on the fused image
and construct a detection loss. This loss is then backpropagated to
guide the training of the fusion network, encouraging the fused
image to retain more information useful for object detection.
Additionally, to effectively align unregistered images, we design

a modality consistency loss to reduce the domain gap between
infrared and visible images.

In summary, our main contributions are as follows:

(1) We are the first to unify unregistered image fusion and
object detection within a single framework, breaking
the limitations of object detection in real-world
applications.

(2) We propose a modality consistency loss that
effectively eliminates the domain discrepancy between
infrared and visible images, improving image
registration accuracy.

(3) Our method demonstrates excellent performance in
image alignment, fusion, and object detection across
multiple datasets. And our method can be used with
other radiation frequencies where different modalities
require image fusion like, for example, radio-frequency,
x- and gamma rays used in medical imaging.

The rest of this paper is organized as follows. Section 2 briefly
reviews related work on high-level vision task-driven image fusion
and unregistered infrared-visible image fusion. Section 3 describes
the proposed method in detail. Section 4 presents and discusses the
experimental results. Section 5 concludes the paper.

2 Related work

In this section, we first provide a brief overview of high-level
vision task-driven infrared and visible image fusion methods, and
then review existing approaches for unregistered infrared and visible
image fusion.
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FIGURE 2
Overall framework of the proposed method. We use IR/VI-CFE and IR/VI-SFE to extract common and specific features from the infrared and visible
images, respectively. To obtain the deformation field for spatial correction, the infrared/visible common features are fed into the registration module to
predict the deformation field. This deformation field is then applied to the infrared common/specific features to correct spatial deformation. The
corrected infrared features are concatenated with the visible features and then fed into the image reconstruction head and the object detection head,
respectively, to generate the fused image and the object detection result.

FIGURE 3
Structure of the registration network. The registration network mainly consists of the Channel and Spatial Enhancement Block (CSEB) and the
Multi-Scale Registration Block (MSRB).
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FIGURE 4
Qualitative comparison of fusion results between the Registration + Fusion + Object Detection methods and the proposed method. The first two
columns show the unaligned source images as input. The grid in the first column illustrates the deformation present in the image. Columns 3 to 7
present the fusion results obtained by different methods.

TABLE 1 Quantitative comparison of fusion results between the Registration + Fusion + Object Detection methods and the proposed method.

Methods QCC↑ QAB/F↑ QCV↓ QSSIM↑

DATFuse 0.8303 0.3246 1425.2631 1.2189

TarDAL 0.8317 0.3313 1396.1484 1.2205

YDTR 0.8246 0.3179 1383.2556 1.2133

EMMA 0.8255 0.3341 1399.4075 1.2236

Ours 0.8325 0.3420 1375.5238 1.2271

Bolded values indicate the best performance.

2.1 High-level vision task-driven infrared
and visible image fusion

High-level vision task-driven fusion methods typically
incorporate a semantic segmentation [24–27] or object detection
network [23, 28] after the fusion network, using the loss functions
from these downstream tasks to constrain the fusion results and
improve the quality of the fused image. However, introducing high-
level vision tasks at the fused image level only provides indirect
guidance for the feature extraction network to learn features relevant
to the downstream tasks.

To provide direct task-level guidance at the feature level and
further enhance fusion performance, PSFusion [29] injects semantic
features extracted from a segmentation task directly into the fusion
network. SegMiF [25] feeds the fused result into a semantic
segmentation network to extract semantic features, which are then
interacted with the multimodal image features from the encoder to
enhance the fusion result. MRFS [26] interacts and fuses the source
image features before feeding them into a semantic segmentation
head to enforce semantic supervision, thereby improving the global
scene perception of the fusion network. MetaFusion [28] sends the
fused result into an object detection network to extract features,

which are then combined with the source image features and passed
into a meta-feature generator to guide feature extraction in the
fusion branch.

Although these methods improve fusion performance to some
extent by leveraging downstream high-level tasks, they all assume
that the input images are perfectly aligned in spatial position—a
condition rarely met in real-world applications. In practice, such
methods rely on additional image registration algorithms to achieve
accurate alignment before performing fusion. This not only makes
the fusion quality highly dependent on the registration accuracy
but also significantly increases the complexity of the overall
network design.

2.2 Unregistered infrared and visible image
fusion

To address the problem of unregistered infrared and visible
image fusion, most existing approaches combine registration and
fusion algorithms, i.e., first aligning the inputmisaligned image pairs
and then performing fusion. However, due to the large modality
gap between infrared and visible images, ignoring the adverse
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FIGURE 5
Qualitative comparison of fusion results between the Joint Registration and Fusion + Object Detection methods and the proposed method. The first
two columns show the unaligned source images as input. The grid in the first column illustrates the deformation in the image. Columns 3 to 7 display
the fusion results produced by different methods.

TABLE 2 Quantitative comparison of fusion results between the Joint Registration and Fusion + Object Detection methods and the proposed method.

Methods QCC↑ QAB/F↑ QCV↓ QSSIM↑

IMF 0.8221 0.3119 1477.6932 1.2058

IVFWSR 0.8269 0.3208 1586.8251 1.2115

MURF 0.8315 0.3254 1456.3259 1.2140

SuperFusion 0.8320 0.3396 1399.4521 1.2207

Ours 0.8325 0.3420 1375.5238 1.2271

Bolded values indicate the best performance.

FIGURE 6
Visualization of object detection results using different fusion methods on the M3FD dataset.
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TABLE 3 Quantitative object detection results of different fusion
methods on the M3FD dataset.

Methods mAP50→90↑

DATFuse 53.10

TarDAL 53.20

YDTR 53.80

EMMA 54.20

IMF 52.40

IVFWSR 52.60

MURF 52.20

SuperFusion 53.80

Ours 54.50

Bolded values indicate the best performance.

impact of modality discrepancy on registration can greatly degrade
fusion quality. For instance, ReCoNet [30] adopts this strategy but
produces suboptimal fusion results due to this issue. UMF-CMGR
[31] and IMF [32] consider the effect of modality differences on
registration results. They propose to convert visible images into
pseudo-infrared images via an image generation network and then
performmono-modal registration between the pseudo-infrared and
misaligned infrared images. However, the quality of the generated
image has a direct impact on the final performance of these
methods. Moreover, these methods treat registration and fusion
as two independent tasks, failing to establish a unified framework
where both tasks can benefit each other.

To address this, RFNet [33] and MURF [34] treat image fusion
as a downstream task of registration and improve registration
performance by enhancing the sparsity of the gradient in the
fused result. However, to tackle the modality discrepancy issue
during registration, both methods aim to transform the multimodal
registration into a mono-modal one. Specifically, RFNet uses an
image generation model to produce a pseudo-image with the
same modality as the misaligned one before performing mono-
modal registration, while MURF leverages contrastive learning
to extract modality-invariant features from the input image pair
for registration. Similarly, Super-Fusion [35] extracts modality-
invariant features using shared-parameter encoders and consistency
constraints on the fused result for registration.

Nevertheless, the information carried by modality-invariant
features in infrared-visible pairs is often far less rich than the
complementary information present in the image pair. As a result,
it is difficult to achieve satisfactory cross-modal registration using
only modality-invariant features. In addition, the above methods
all follow a two-stage approach (registration + fusion). This two-
stage strategy greatly limits deployment in practical applications due
to computational constraints. Although RFVIF [36], IVFWSR [37]
and MulFS-CAP [38] attempt to achieve registration and fusion
within a single-stage framework, the types of deformations they
can handle remain limited. Unlike the methods mentioned above,

our approach considers multiple challenges simultaneously: the
impact of modality discrepancy on cross-modal registration, the
deployment limitations of two-stage processing, and the feature
requirements of downstream high-level vision tasks for both
registration and fusion.

3 Methods

3.1 Overview

As shown in Figure 2, the proposed method consists of three
core components: feature extraction, feature alignment and fusion,
and dual-task reconstruction. The feature extraction component is
designed to obtain both modality-specific and modality-common
features from the source images. The feature alignment and fusion
component is used to predict a deformation field, which is then
used to spatially align the infrared-specific and common features.
These aligned features are then fused with the corresponding
visible image’s specific and common features. In the dual-task
reconstruction stage, the fused features are fed into the object
detection head and the image reconstruction head, respectively, to
generate both the object detection result map and the fused image.

3.2 Feature extraction

The main objective of feature extraction is to extract both the
common and specific features of infrared and visible images, in
order to facilitate subsequent cross-modal registration and feature
fusion.This process consists of fourmodules: the IR-Specific Feature
Extraction (IR-SFE) module, the VI-Specific Feature Extraction
(VI-SFE) module, the IR-Common Feature Extraction (IR-CFE)
module, and theVI-Common Feature Extraction (VI-CFE)module.
Among them, the IR/VI-SFE modules are used to extract modality-
specific features from the infrared/visible images, while the IR/VI-
CFE modules are used to extract their common features. Assume
that each sample in the training dataset contains three images: a
pixel-wise strictly aligned infrared image I i, a visible image Iv, and a
deformed infrared image Idi . We feed I i and Idi into the IR-CFE and
IR-SFE, respectively, to obtain the infrared common feature F i, the
deformed infrared common feature Fd

i , the infrared specific feature
F̂ i, and the deformed infrared specific feature F̂d

i . At the same time,
we feed Iv into theVI-CFE andVI-SFE to obtain the visible common
feature Fv and the visible specific feature F̂v.

In the cross-modal registration process, it is usually necessary
to rely on the common information between cross-modal images
to establish pixel-wise correspondences. To reduce the modality
gap between infrared and visible images and thus establish more
accurate pixel-wise correspondences, we introduce a modality
consistency loss ℓc:

ℓc =
1

HWC
‖F i − Fv‖1, (1)

Here, H, W, and C denote the height, width, and number of
channels of the feature maps, respectively, and ‖⋅‖1 represents the
l1-norm. In addition, considering that the goal of image fusion
is to integrate as much complementary information as possible
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FIGURE 7
Ablation study of the core designs.

TABLE 4 Quantitative results of the ablation study on the core designs.

Methods QCC↑ QAB/F↑ QCV↓ QSSIM↑

w/o ℓc 0.8304 0.3469 1339.9062 1.2204

w/o ℓs 0.8313 0.3439 1336.8814 1.2256

w/o Concat Fri and Fv 0.8274 0.3451 1369.4537 1.2114

Ours 0.8325 0.3420 1375.5238 1.2271

Bolded values indicate the best performance.

from cross-modal source images into a single image, we introduce
the modality complementary information loss ℓs to further enrich
the complementary information from the source images in the
fused image:

ℓs = − 1
HWC

‖F̂ i − F̂v‖1
. (2)

3.3 Feature alignment and fusion

Feature alignment corrects the deformation in infrared features
by predicting a deformation field, thereby achieving spatial
alignment between infrared and visible features. This process is
mainly implemented by the registration network. Subsequently, the

aligned infrared features are fused with the visible features to obtain
the fused features. As shown in Figure 3, the registration network
is composed of a Channel and Spatial Enhancement Block (CSEB)
and a Multi-Scale Registration Block (MSRB). The CSEB is mainly
used to enhance the information beneficial to registration at both
the channel and spatial levels, thereby improving the accuracy of
the predicted deformation field. The CSEB consists of six feature
extraction layers and a Global Average Pooling (GAP) layer. Each
feature extraction layer is composed of a convolutional layer with
a kernel size of 3× 3, stride 1, followed by Batch Normalization
(BatchNorm) and a LeakyReLU activation function. The MSRB
is used to predict the deformation field to correct the deformed
infrared features and ensure spatial alignment between the infrared
and visible features. The MSRB adopts a U-Net-like architecture.
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TABLE 5 Quantitative analysis results of the hyperparameter study.

γ λ1 λ2 λ3 QCC↑ QAB/F↑ QCV↓ QSSIM↑

2 10 5 1 0.8235 0.3352 1450.3498 1.2222

2 10 5 10 0.8198 0.3389 1683.8772 1.2195

2 10 1 5 0.8123 0.3321 1502.6641 1.2088

2 10 10 5 0.8260 0.3334 1465.2293 1.2247

2 1 5 5 0.8011 0.3195 1450.3288 1.1954

2 20 5 5 0.8059 0.3248 1529.1245 1.1996

1 10 5 5 0.8144 0.3340 1499.3888 1.2111

5 10 5 5 0.8080 0.3302 1775.1124 1.2020

2 10 5 5 0.8325 0.3420 1375.5238 1.2271

Bolded values indicate the best performance.

TABLE 6 Computational efficiency comparison of four SOTA Joint Registration and Fusion methods, the value is tested on GPU.

Methods FLOPs(G) Size(M) Time(s)

IMF 1724.08 13.30 0.82

IVFWSR 859.43 14.09 0.33

MURF 120.72 1.76 1.18

SuperFusion 65.43 0.14 0.27

Ours 60.12 0.97 0.40

Bolded values indicate the best performance.

We input the deformed infrared common feature Fd
i and

the visible common feature Fv into two CSEBs with unshared
parameters, obtaining the enhanced features F̃d

i and F̃v, respectively.
Taking the enhancement process of Fv as an example, Fv is fed into
three feature extraction layers to generate the spatial enhancement
weights W s

v. To enhance registration-relevant information at the
spatial level, we perform element-wise multiplication between W s

v
and Fv:

Fs
v = W s

v ⊙ Fv, (3)

Here, Fs
v denotes the feature enhanced at the spatial level, and ⊙

represents the element-wise multiplication operation. We feed Fs
v

into three feature extraction layers and a global average pooling
(GAP) layer to obtain feature W c

v for channel-level enhancement.
Then, W c

v is element-wise multiplied with Fs
v to produce the

enhanced feature F̃v, which has been refined at both the spatial and
channel levels:

F̃v = Wc
v ⊙ Fsv, (4)

Similarly, we obtain the deformed infrared common feature F̃d
i

enhanced at both the spatial and channel levels. We concatenate
F̃d
i and F̃v along the channel dimension and feed the resulting

feature into the MSRB to predict the deformation field ϕ. To ensure
the accuracy of the predicted deformation field, we introduce a
registration loss ℓreg:

ℓreg = 1
2HW

‖ϕ−ϕgt‖1
, (5)

Here, ϕgt is the label of ϕ.
We use ϕ to correct Fd

i and F̂d
i respectively, resulting in the

corrected infrared common feature Fr
i and infrared-specific feature

F̂r
i :

Fr
i = ϕ ◦ Fd

i ,

F̂r
i = ϕ ◦ F̂d

i ,
(6)

Here, ◦ denotes the Warp operation, which resamples the deformed
feature maps based on ϕ to correct the deformations within them.
During the fusion process, to minimize information loss, we
concatenate Fr

i , F̂
r
i , Fv, and F̂v along the channel dimension to obtain

the fused feature F f :

F f = [Fr
i , F̂

r
i ,Fv, F̂v] , (7)

Here, [⋅] represents the operation of concatenation along the channel
dimension.
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FIGURE 8
Fusion results of our method on different scenarios.

FIGURE 9
Failure cases of our method on the real-world dataset CVC-14.
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FIGURE 10
Visual comparison on the BraTS2020 dataset.

TABLE 7 Quantitative analysis results on the BraTS2020 dataset.

Methods QCC↑ QAB/F↑ QCV↓ QSSIM↑

MATR 0.7889 0.2901 1345.4510 1.2299

ALMFnet 0.7749 0.2888 1606.5911 1.2155

EMMA 0.7906 0.2853 1568.7139 1.2220

BSAFus 0.7812 0.3001 1436.1287 1.2318

RMRFus 0.7784 0.2992 1409.9831 1.2007

Ours 0.7934 0.3063 1399.5234 1.2454

Bolded values indicate the best performance.
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3.4 Dual-task reconstruction

In the dual-task reconstruction, the fused feature is fed into
both the object detection head and the image reconstruction head
to respectively generate the object detection result map and the
fused image. The dual-task reconstruction primarily consists of
the object detection head and the image reconstruction head.
We adopt YOLOv5 [39] as the object detection head. The image
reconstruction head is composed of three feature extraction layers,
where the LeakyReLU activation function in the final layer is
replaced with a Tanh activation function. The fused feature F f
is input into both the object detection head and the image
reconstruction head to obtain the object detection result map ŷ
and the fused image I f , respectively. To ensure high-quality object
detection results, we introduce the object detection loss ℓob to
constrain the network:

ℓob = cyolov5 (y,ygt) , (8)

Here, cyolov5(⋅) refers to the loss function used during the training
of YOLOv5. In addition, to encourage the fused image to retain as
much shared and complementary information from both infrared
and visible images as possible, we introduce luminance loss ℓb and
gradient loss ℓg, and construct the fusion loss ℓ f accordingly:

ℓ f = ℓb + γℓg, (9)

Here, γ denotes the balancing hyperparameter. The gradient loss ℓg
is defined as:

ℓg = 1
HW

‖∇I f −max(∇I i,∇Iv)‖1
, (10)

Here, ∇ denotes the Sobel operator. The luminance loss ℓb
is defined as:

ℓb = 1
HW

‖I f −max(I i, Iv)‖1
. (11)

Finally, we define the total loss ℓt as follows:

ℓt = ℓc + ℓs + λ1ℓreg + λ2ℓ f + λ3ℓob, (12)

Here, λn(n = 1,2,3) denotes the balancing hyperparameter.

4 Experiments

4.1 Experimental setup

4.1.1 Datasets and implementation details
4.1.1.1 Datasets

Following standard experimental practices in the image fusion
field [40–43], we trained our model on 152 pairs of infrared and
visible images with a resolution of 512× 512 from the RoadScene Xu
et al. [44, 45] dataset. For testing, we used 18 pairs of images from
RoadScene and 17 pairs from M3FD [21]. The misaligned infrared
images were generated by randomly applying a combination of rigid
and non-rigid deformations to the originally well-aligned infrared
images. This type of mixed deformation is applied randomly to the
original aligned images in each epoch to augment the training data.

4.1.1.2 Implementation details
The proposed method was implemented using the PyTorch

framework and trained on a single NVIDIA GeForce RTX 3090
GPU. The model was trained for 150 epochs with a batch size of 8,
a learning rate of 1e-3, and the Adam optimizer was used to update
themodel parameters.The four hyperparameters in the loss function
were set to γ = 2, λ1 = 10, λ2 = 5,and λ3 = 5.

4.1.2 Evaluation metrics
We selected four commonly used image quality evaluation

metrics to objectively assess the quality of the fusion results,
including correlation coefficient (QCC) [46], gradient-based fusion
performance (QAB/F) [47], Chen-Varshney metric (QCV) [48],
and structural similarity (QSSIM) [49]. Metric QCC evaluates the
linear correlation between the fused image and the source images,
reflecting their similarity. Metric QAB/F assesses the amount of edge
information transferred from the source images to the fused image.
Metric QCV takes into account both edge information and human
visual perception. Metric QSSIM quantifies information loss and
distortion in the fused image by comparing it with the source images.
Among thesemetrics, a lower value of indicates better fusion quality,
while higher values of the othermetrics indicate better performance.
In addition, we adopted metric mAP50→90 [50] as the evaluation
metric for the object detection task, where a higher mAP50→90 value
indicates better detection performance.

4.2 Comparison with state-of-the-art
methods

In our experiments, we first compare the proposed method
with two categories of fusion approaches for unaligned infrared
and visible images based on their fusion results. We then compare
the subsequent object detection results obtained using these two
categories of methods. The first category involves registering the
images to be fused, followed by image fusion and then object
detection. We refer to this category as Registration + Fusion +
Object Detection. The second category performs joint training of
registration and fusion to directly handle unaligned images, followed
by object detection. We refer to this as Joint Registration and Fusion
+ Object Detection.

4.2.1 Comparison with registration + fusion +
object detection methods

For the Registration + Fusion + Object Detection methods, we
follow the standard processing pipeline used in prior work. We first
adopt the high-performing registration method CrossRAFT [51] to
align the images to be fused. Then, we apply four advanced infrared
and visible image fusion methods to the aligned results, including
DATFuse [52], TarDAL [21], YDTR [53], and EMMA [54]. Figure 4
shows the visual results of different methods. As seen from the
fusion results, our proposedmethod not only demonstrates stronger
capability in preserving structures and textures but also effectively
avoids distortions and artifacts caused by feature misalignment. In
addition, we performed objective evaluations of the results from
different methods. As shown in Table 1, our method achieves the
best performance across all four evaluation metrics.
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4.2.2 Comparison with joint registration and
fusion + object detection methods

In recent years, joint registration and fusion methods have
attracted significant attention. To demonstrate the superiority of our
approach over these methods, we compared its performance with
four joint registration and fusion methods: IMF, IVFWSR, MURF,
and SuperFusion. Figure 5 presents a qualitative comparison of the
fusion results produced by different methods. It can be observed
that our method exhibits clear advantages in terms of feature
alignment, contrast preservation, and detail retention. In addition,
we conducted quantitative experiments to visually compare the
performance differences. As shown in Table 2, our method achieves
the best performance across all four evaluation metrics.

4.2.3 Performance evaluation on infrared and
visible image object detection

We evaluated the object detection performance of the two
aforementioned categories of methods, as well as the proposed
method, on the M3FD dataset. Figure 6 shows the visualized results
of object detection. In comparison, our proposed method achieves
superior performance. Table 3 presents the quantitative results.
The fused outputs generated by our method help the detection
network achieve the highest object detection accuracy. This further
demonstrates the superior fusion capability of our approach for
object detection tasks.

4.3 Ablation study

The core of the proposed method lies in the losses designed
to eliminate modality differences, namely, losses ℓc and ℓs. In this
section, we conduct ablation studies on these key components to
verify their effectiveness. All experiments are conducted on the
M3FD dataset. From the ablation results, it can be observed that
removing losses ℓc and ℓs leads to a decline in the model’s ability
to correct local deformations, as shown in Figure 7. In addition,
when the shared information is excluded during fusion and only
complementary information is used for concatenation, the visual
quality of the fused image does not deteriorate significantly, but the
objective evaluation results in Table 4 show a noticeable drop in
performance.

4.4 Analysis of hyperparameters

In our proposed method, four main hyperparameters are
defined: λ1, λ2, λ3, which balances different losses, i.e., ℓreg, ℓ f , and ℓob,
and γ, which balances luminance loss ℓb and gradient loss ℓg. During
model training, λ1, λ2, λ3, γ are set to 10, 5, 5, two respectively.

Next, we analyze the impact of variations in these
hyperparameters on model performance. To analyze the impact
of λ1, λ2, λ3 on fusion performance, we perform a search over λ1, λ2,
λ3 values in the ranges of 1–20, 1 to 10, and 1 to 10. The quantitative
evaluation results for both fusion and downstream object detection
are presented in Table 5. As shown in Table 5, the model achieves
optimal performance on fusion when λ1 = 10, λ2 = 5, and λ3 = 5.

To verify the effectiveness of the hyperparameter γ, we fix λ1, λ2
and λ3 to 10, 5, 5 and analyze the model performance as γ varies

from 1 to 5. As shown in Table 5, the model achieves the best fusion
performancewhen γ is set to 2.Therefore, we set the hyperparameter
γ to 2.

4.5 Analysis of computational complexity

As shown in Table 6, a complexity evaluation is introduced to
evaluate the efficiency of ourmethod from three aspects, i.e., FLOPs,
training parameters and runtime. Wherein, for FLOPs calculation,
the size of the input images is standardized to 512× 512 pixels. The
inference time is calculated as the average time taken to process
18 scene images from RoadScene’s test dataset. From Table 6, our
model performs the best in FLOPs, implying that our method
has fast calculation speed and is application-friendly. The average
inference time for our model to fuse two source images is 0.40 s,
only a bit longer than the SOTA method, demonstrating that our
model’s inference speed is relatively fast and acceptable. Besides,
the parameter size of our model is only 0.97M, which can be easily
deployed in practical applications.This indicates the efficiency of our
method, which can serve practical vision tasks well with better visual
performance.

4.6 Analysis of generalization ability

To validate the generalization ability of our method, we
conduct experiments under other scenarios. Fusion results
are shown in Figure 8. From the qualitative results we can see that
our proposed model performs perfectly under other scenarios.

4.7 Analysis of limitation

The proposed method enables mutual enhancement between
infrared-visible image fusion and object detection, specifically
designed to handle misaligned source images, achieving better
experimental results compared to other methods. However, our
approach still has certain limitations. Specifically, since our model is
trained on the generated unaligned dataset, where the deformations
in real-world images cannot be fully included, failure cases appear
under real-world scenarios. As shown in Figure 9, our method fails
to handle deformations under real-world scenarios. Improving the
robustness of our method is vital for future research.

4.8 Further discussion

To validate the effectiveness of the proposed method in the
field of medical imaging, we conduct a comparative study on the
publicly available BraTS2020 Menze et al. [55] dataset. Specifically,
we first employ the state-of-the-art medical image registration
method CorrMLP Meng et al. [56] to align the deformed MRI-
T2 images to the reference MRI-T1 images, and subsequently
apply several advanced fusion methods (including MATR Tang
et al. [57], ALMFnet Mu et al. [58], EMMA Zhao et al. [54],
BSAFus Li et al. [47], and RMRFus Zhang et al. [59]) for image
fusion. As shown in Figure 10, the fusion images generated by the
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proposed method exhibit superior image quality and effectively
correct artifacts and spatial deformations. In contrast, existing
”registration + fusion” methods often introduce noticeable
artifacts when handling unregistered medical images, significantly
degrading the visual quality of the fused images. Furthermore,
as reported in Table 7, the quantitative analysis results further
demonstrate the significant advantages of the proposed method
in terms of fusion performance.

5 Conclusion

This paper proposes a mutual promotion algorithm for infrared
and visible image fusion and object detection, tailored for unaligned
image scenarios. Considering the significant modality differences
between infrared and visible images, we design specific loss
functions to reduce such differences, thereby easing the difficulty
of cross-modality image registration and improving its accuracy.
In addition, we adopt a mutually beneficial learning strategy that
enables the fusion task and the downstream object detection task
to enhance each other, leading to improved quality in both the fused
images and detection results. Extensive qualitative and quantitative
experiments demonstrate the superiority of our method over
existing state-of-the-art approaches. In addition, our approach can
be used with other radiation frequencies where different modalities
require image fusion like, for example, radio-frequency, x- and
gamma rays used in medical imaging.
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Introduction: Multi-sensor fusion has emerged as a transformative approach
in AI-driven behavior planning for medical applications, significantly enhancing
perception, decision-making, and adaptability in complex and dynamic
environments. Traditional fusion methods primarily rely on deterministic
techniques such as Kalman Filters or rule-based decisionmodels. While effective
in structured settings, these methods often struggle to maintain robustness
under sensor degradation, occlusions, and environmental uncertainties. Such
limitations pose critical challenges for real-time decision-making in medical
applications, where precision, reliability, and adaptability are paramount.

Methods: To address these challenges, we propose an Adaptive Probabilistic
Fusion Network (APFN), a novel framework that dynamically integrates multi-
modal sensor data based on estimated sensor reliability and contextual
dependencies. Unlike conventional approaches, APFN employs an uncertainty-
aware representation using Gaussian Mixture Models (GMMs), effectively
capturing confidence levels in fused estimates to enhance robustness against
noisy or incomplete data. We incorporate an attention-driven deep fusion
mechanism to extract high-level spatial-temporal dependencies, improving
interpretability and adaptability. By dynamically weighing sensor inputs and
optimizing feature selection, APFN ensures superior decision-making under
varying medical conditions.

Results: We rigorously evaluate our approach on multiple large-scale medical
datasets, comprising over one million trajectory samples across four public
benchmarks. Experimental results demonstrate that APFNoutperforms state-of-
the-artmethods, achieving up to 8.5% improvement in accuracy and robustness,
while maintaining real-time processing efficiency.

Discussion: These results validate APFN’s effectiveness in AI-driven medical
behavior planning, providing a scalable and resilient solution for next-generation
healthcare technologies, with the potential to revolutionize autonomous
decision-making in medical diagnostics, monitoring, and robotic-assisted
interventions.

KEYWORDS

multi-sensor fusion, AI-driven behavior planning, uncertainty-aware modeling, deep
learning, medical applications
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1 Introduction

The integration of artificial intelligence (AI) in medical
applications has significantly transformed the landscape of
healthcare, offering new possibilities for diagnosis, treatment, and
patientmonitoring [1]. One of the critical challenges inmedical AI is
behavior planning, which requires accurate perception, prediction,
and decision-making capabilities [2]. Multi-sensor fusion has
emerged as a crucial approach to enhance the robustness and
accuracy of AI-driven behavior planning by integrating information
from various sensors, such as cameras, LiDAR, wearable devices,
and physiological monitors [3]. Not only does multi-sensor fusion
improve data reliability by mitigating the limitations of individual
sensors, but it also enables a more comprehensive understanding
of patient states and medical conditions [4]. It facilitates real-time
decision-making in complex environments such as surgical robotics,
rehabilitation systems, and elderly care monitoring. Despite these
advantages, traditional behavior planning approaches often struggle
with data inconsistencies, sensor noise, and dynamic medical
scenarios [5]. To address these limitations, researchers have explored
multiple generations of AI-driven multi-sensor fusion techniques,
evolving from rule-based symbolic AI to data-driven machine
learning methods and, more recently, deep learning and pre-trained
models. This paper reviews the progression of these techniques and
discusses their respective strengths, weaknesses, and applications in
medical behavior planning.

To provide a formal mathematical foundation for multi-sensor
fusion, we define the general state estimation problem. Let the true
environmental state be denoted as (Equation 1):

x ∈ ℝn (1)

where x represents the system state vector. Each sensor i provides
an observation zi ∈ ℝdi , which relates to the true state through the
sensor model (Equation 2):

zi = hi (x) + vi (2)

where hi(⋅) is the observation function for sensor i, and vi
is zero-mean Gaussian noise with covariance matrix Ri. The
posterior distribution of the state given all sensormeasurements Z =
{z1,z2,…,zM} can be obtained using Bayes’ theorem (Equation 3):

p (x|Z) ∝ p (Z|x)p (x) (3)

In our framework, we model this posterior using Gaussian
Mixture Models (GMMs) to account for uncertainty (Equation 4):

p (x|Z) =
M

∑
i=1

βiN (x|μi,Σi) (4)

where βi represents the reliability weight of each sensor, and μi, Σi are
the mean and covariance estimated from each sensor’s observation.

Traditional approaches primarily relied on symbolic AI and
knowledge representation for behavior planning in medical
applications [6]. These methods aimed to encode expert knowledge
into rule-based systems and leveraged logical inference to make
decisions based on multi-sensor inputs [7]. Common techniques
included ontology-based frameworks and expert systems, which
were used to integrate different sensor modalities, ensuring

interpretability and transparency in medical decision-making. For
example, in robotic-assisted surgery, symbolic AI was employed to
model surgical workflows and predict surgeon intentions based on
sensor inputs [8]. In patient monitoring, rule-based systems utilized
physiological sensor data to trigger alerts for abnormal health
conditions [9]. These methods offered advantages such as strong
interpretability and transparency, ensuring the reliability of medical
decision-making. However, they suffered from poor scalability
and limited ability to handle uncertain or incomplete data [10].
The rigid nature of predefined rules restricted their adaptability to
novel medical scenarios, while the reliance on human-engineered
knowledge made system development labor-intensive and difficult
to generalize across different medical domains. As a result,
researchers gradually shifted towards data-driven approaches to
overcome these challenges.

To address the limitations of rule-based AI, data-driven
machine learning techniques were introduced to enable adaptive
behavior planning based on large-scale medical datasets [11].
Machine learning models, such as decision trees, support vector
machines (SVMs), and Bayesian networks, demonstrated improved
flexibility in fusing multi-sensor data by learning patterns
and statistical correlations [12]. These methods were widely
applied in medical applications, such as automated diagnosis,
rehabilitation guidance, and fall detection for elderly patients
[13]. For instance, machine learning-based sensor fusion enabled
personalized patient monitoring by learning from historical
data and predicting potential health risks. Probabilistic models
enhanced the robustness of decision-making by accounting for
sensor uncertainties and environmental variability [14]. Traditional
machine learning approaches often required handcrafted feature
extraction, making them less efficient when handling high-
dimensional sensor data [15]. These models struggled with real-
time processing in complex medical environments, limiting their
applicability in scenarios such as robotic-assisted interventions
and emergency response systems. The emergence of deep learning
and pre-trained models provided a promising solution to these
challenges.

To address the limitations of statistical and machine learning-
based algorithms in feature extraction and data fusion, deep
learning-based algorithms have been widely applied in AI-driven
behavior planning, primarily by leveraging end-to-endmulti-sensor
fusion techniques [16]. This approach offers the advantage of
automatically extracting complex features from raw sensor data,
eliminating the need for manual feature engineering and improving
both accuracy and efficiency [17]. For example, Convolutional
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and
Transformer-based models have been extensively used in medical
applications such as surgical assistance, AI-driven diagnostics, and
patient rehabilitation systems [18]. Deep learning models trained
on multimodal data—including video feeds, biomedical signals,
and environmental sensors—have achieved remarkable success in
predicting patient behaviors and providing personalized treatment
recommendations [19]. Pre-trained models and transfer learning
techniques have enhanced generalization across different medical
settings, reducing the dependence on large labeled datasets [20].
Deep learning approaches also face challenges such as high
computational costs, data privacy concerns, and the need for robust
interpretability in clinical applications. Despite these drawbacks,
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their ability to handle complex, real-time, and large-scale medical
sensor fusion tasks has made them the dominant approach
in the field.

Based on the limitations of previous methods, we propose
a novel AI-driven multi-sensor fusion framework tailored for
behavior planning in medical applications. Our approach aims
to enhance robustness, adaptability, and efficiency by integrating
advanced deep learning techniques with domain-specific medical
knowledge. Unlike traditional symbolic AImethods, our framework
does not rely solely on predefined rules, making it more adaptable
to dynamic medical scenarios. It surpasses conventional machine
learning approaches by leveraging automatic feature extraction and
real-time processing. To address the challenges of deep learning,
our method incorporates explainable AI techniques to enhance
interpretability and ensure clinical trustworthiness. By combining
sensor fusion with reinforcement learning and transformer-based
architectures, our approach achieves superior performance in real-
time medical behavior planning. This framework is particularly
beneficial for applications such as robotic-assisted surgery,
intelligent patient monitoring, and AI-driven rehabilitation, where
precision and adaptability are critical.

• Our method introduces a hybrid deep learning and
reinforcement learning framework, integrating transformer-
based architectures with multi-sensor fusion to improve
decision-making in medical behavior planning.

• Unlike traditional methods, our approach efficiently processes
multimodal sensor data in real-time, making it highly suitable
for diverse medical applications such as elderly care, robotic
surgery, and personalized rehabilitation.

• Experimental results demonstrate that our method
outperforms existing approaches in terms of accuracy,
response time, and robustness, ensuring reliable AI-driven
behavior planning in complex medical environments.

2 Related work

In recent years, multi-sensor fusion has emerged as a critical
technique in enhancing the robustness and accuracy of AI-driven
behavior planning across various medical applications in Table 1.
Early approaches predominantly relied on rule-based symbolic
AI, where expert knowledge was encoded into predefined
rules to interpret multi-sensor inputs. These methods offered
strong interpretability and transparency but lacked scalability
and adaptability in dynamic medical scenarios, especially when
confronted with uncertain or incomplete data. Subsequently,
traditional machine learning techniques, such as decision trees,
support vector machines, and Bayesian networks, were employed
to enable more flexible data fusion by learning patterns from large-
scale medical datasets. While these methods improved adaptability,
they often required manual feature extraction and struggled
with high-dimensional sensor data and real-time processing
constraints. The emergence of deep learning further advanced
multi-sensor fusion by enabling end-to-end learning directly from
raw sensor inputs. Models such as convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and Transformer-
based architectures have been widely adopted in surgical assistance,

patient monitoring, and rehabilitation systems. These models
exhibit remarkable capabilities in extracting complex features
and modeling temporal dependencies; however, they often suffer
from high computational demands, data privacy concerns, and
limited interpretability, which are critical considerations in clinical
settings. Our proposed Adaptive Probabilistic Fusion Network
(APFN) seeks to bridge these gaps by dynamically estimating
sensor reliability, incorporating probabilistic state representations
via Gaussian Mixture Models, and leveraging attention-driven
deep fusion mechanisms. Through this integration, APFN offers
enhanced robustness, real-time processing capabilities, and
improved interpretability, addressing key limitations of existing
methodologies.

2.1 AI-enhanced surgical guidance systems

The integration of multi-sensor fusion with artificial intelligence
(AI) has significantly advanced surgical guidance systems,
enhancing precision and safety in medical procedures. By
amalgamating data from various imaging modalities—such as
preoperative computed tomography (CT) scans and intraoperative
video feeds—AI-driven platforms provide surgeons with real-time,
comprehensive views of the operative field. This fusion enables
accurate tracking of anatomical structures and seamless overlay
of critical information onto live surgical visuals [21]. A notable
example is the system developed by ImFusion, which combines
preoperative 3D imaging data with intraoperative endoscopic video.
Utilizing NVIDIA Holoscan, this system processes multiple data
streams with minimal latency, allowing for the real-time projection
of 3D anatomical models onto live video feeds. This capability
assists surgeons in navigating complex anatomical regions with
enhanced accuracy, potentially reducing the risk of intraoperative
complications. The system employs deep learning models for
stereo depth estimation, optical flow calculation, and segmentation,
ensuring precise alignment and tracking of anatomical structures
during surgery. The integration of these technologies results in a
median frame rate of approximately 13.5 Hz and an end-to-end
latency below 75 milliseconds, meeting the stringent requirements
for real-time surgical applications 22 [22].The fusion ofmulti-modal
imaging data is pivotal in providing surgeons with a comprehensive
understanding of patient anatomy. By overlaying preoperative
imaging data onto intraoperative views, surgeons can visualize
subsurface structures that are not visible to the naked eye, facilitating
more informed decision-making. This approach is particularly
beneficial in minimally invasive and robotic-assisted surgeries,
where the operative field is limited, and precision is paramount
[23]. AI-enhanced sensor fusion systems are designed to adapt
to dynamic surgical environments. They can account for tissue
deformation, patient movement, and other intraoperative changes,
maintaining accurate alignment of overlaid images throughout
the procedure. This adaptability is achieved through advanced
algorithms that continuously analyze and adjust to the incoming
data from multiple sensors, ensuring consistent and reliable
guidance [24]. The development and implementation of such
systems require a multidisciplinary approach, involving expertise
in computer science, biomedical engineering, and clinical practice.
Collaboration between these fields is essential to design systems that
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TABLE 1 Comparison of multi-sensor fusion approaches.

Approach Advantages Limitations

Rule-based Symbolic AI High interpretability; Transparent decision-making Poor scalability; Sensitive to incomplete data;
Labor-intensive rule design

Traditional Machine Learning Learns from data patterns; Improved flexibility Requires manual feature engineering; Limited
real-time processing; High-dimensional data
challenges

Deep Learning-Based Fusion End-to-end learning; Handles complex features; High
accuracy

High computational cost; Data privacy issues; Limited
interpretability

Proposed APFN Framework Adaptive sensor weighting; Probabilistic uncertainty
modeling; Enhanced robustness and real-time
performance; Improved interpretability

Computational complexity remains; Domain
adaptation challenges in diverse medical scenarios

are not only technically robust but also user-friendly and seamlessly
integrable into existing surgical workflows [25]. Ongoing research
and clinical trials are crucial to validate the efficacy and safety of
AI-driven multi-sensor fusion systems, paving the way for their
broader adoption in surgical practice.

2.2 Wearable sensor networks for health
monitoring

Wearable sensor networks, enhanced bymulti-sensor fusion and
AI, have revolutionized health monitoring by enabling continuous,
real-time assessment of physiological and behavioral parameters.
These systems integrate data from various wearable devices—such
as accelerometers, gyroscopes, heart rate monitors, and pressure
sensors—to provide a comprehensive evaluation of an individual’s
health status. The fusion of data from multiple sensors enhances the
accuracy and reliability of health monitoring systems, facilitating
early detection of potential health issues and personalized medical
interventions [26]. A pertinent study demonstrated the efficacy
of a multi-sensor fusion approach in assessing infant motor
patterns. Researchers combined data from pressure sensors, inertial
measurement units (IMUs), and visual inputs to classify infant
movements with high accuracy. The study employed deep learning
techniques to analyze the fused data, achieving a classification
accuracy of 94.5%, which was significantly higher than that
obtained from any single sensor modality. This approach holds
promise for early detection of neurodevelopmental disorders,
enabling timely interventions [27]. In the context of adult health
monitoring, wearable sensor networks are utilized to track a
range of physiological parameters, including heart rate variability,
respiratory rate, and physical activity levels. By integrating data from
multiple sensors, these systems can detect anomalies indicative of
health issues such as cardiac arrhythmias, respiratory disorders, or
decreased mobility. AI algorithms analyze the fused data to identify
patterns and trends, providing actionable insights to healthcare
providers and enabling proactive management of health conditions
[28]. The implementation of wearable sensor networks extends
beyond individual health monitoring to public health applications.
For instance, during pandemics, these systems can be employed
to monitor symptoms and track the spread of infectious diseases

in real-time. Aggregated data from multiple users can inform
public health decisions and resource allocation, contributing to
more effective management of public health crises [29]. Despite
the advancements, challenges remain in ensuring the seamless
integration of data from diverse sensors, maintaining user privacy,
and managing the vast amounts of data generated. Future research
is directed towards developing standardized protocols for data
fusion, enhancing the energy efficiency of wearable devices, and
implementing robust data security measures [30]. The convergence
of multi-sensor fusion and AI in wearable technology continues to
hold significant potential for transforming health monitoring and
personalized medicine.

2.3 Robotic-assisted endoscopic
procedures

Robotic-assisted endoscopic procedures have benefited
immensely from the integration of multi-sensor fusion and AI,
leading to enhanced localization, navigation, and operational
efficiency within the complex environment of the gastrointestinal
(GI) tract. Accurate localization of endoscopic capsules is critical
for effective diagnosis and treatment, and the fusion of data from
multiple sensors addresses the challenges posed by the GI tract’s
dynamic and unstructured nature [31]. A notable advancement in
this domain is the development of EndoSensorFusion, a particle
filtering-based approach that combines data from magnetic sensors
and visual odometry to estimate the pose of endoscopic capsules
[32]. This method incorporates an online estimation of sensor
reliability and a non-linear kinematic model learned by a recurrent
neural network, enabling real-time, accurate localization even in
the presence of sensor noise or failure. Experimental evaluations
using ex-vivo porcine stomach models have demonstrated high
translational and rotational accuracies, underscoring the potential
of this approach in clinical settings [33]. Further enhancing this
field, the Endo-VMFuseNet framework employs deep learning
to fuse uncalibrated, unsynchronized, and asymmetric data from
visual and magnetic sensors [34]. This approach addresses the
limitations of traditional sensor fusion techniques by learning a
unified representation of the sensor data, achieving sub-millimeter
precision in both translational and rotational movements.
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3 Methods

3.1 Overview

Multi-Sensor Fusion (MSF) has become a cornerstone
technique in various domains, including autonomous driving,
robotics, and remote sensing. The integration of multiple sensors
enables systems to exploit complementary information, enhancing
robustness and accuracy beyond what single-sensor approaches can
achieve. This section provides a comprehensive overview of our
proposed methodology, outlining the fundamental principles, the
mathematical formulation, and the novel contributions introduced
in this work.

In Section 3.2, we introduce the preliminaries necessary
to formalize the MSF problem. This includes defining the
sensor models, the fusion architecture, and the mathematical
representations that describe the relationships between different
sensor modalities. A crucial aspect of our formulation is the
consistency and calibration between heterogeneous sensors, which
ensures reliable data integration. In Section 3.3, we present our
novel sensor fusion model, which extends conventional approaches
by incorporating adaptive weighting mechanisms and uncertainty
modeling. Unlike traditional deterministic fusion techniques, our
model dynamically adjusts the contribution of each sensor based on
its estimated reliability. This is particularly important in real-world
scenarios where sensor degradation, occlusion, or environmental
factors may lead to varying sensor performance. In Section 3.4, we
propose a new fusion strategy that refines the integration process
through a learned optimization scheme. By leveraging deep learning
and probabilistic inference, our strategy improves decision-making
by accounting for spatial-temporal correlations across different
sensor streams. The integration of physics-based models with data-
driven learning allows our approach to generalize effectively across
different application domains.

Medical applications present several domain-specific challenges
that strongly motivate the architectural design choices in our
Adaptive Probabilistic Fusion Network (APFN). Multi-sensor
systems in healthcare often integrate heterogeneous modalities,
including wearable physiological monitors, imaging devices,
audio inputs, and environmental sensors, each producing data
streams with different sampling rates, noise characteristics, and
reliability profiles. Traditional fusion frameworks that assume
homogeneous and stationary sensor behavior often fail to capture
these variabilities. Real-world medical environments are highly
dynamic. Patient conditions may change rapidly, sensor occlusions
or disconnections are common, and environmental disturbances
introduce non-stationary noise. These factors demand a sensor
fusion strategy capable of continuously adapting sensor weighting
and uncertainty modeling in real time. APFN addresses this need by
employing reliability-aware sensor weighting based on covariance
and entropy estimations, allowing the system to down-weight
unreliable sensors dynamically. Medical decision-making involves
safety-critical considerations where interpretability and robustness
are essential. APFN incorporates probabilistic state representations
via Gaussian Mixture Models (GMMs), attention-driven deep
fusion for adaptive feature integration, and graph-based feature
propagation to capture complex spatial-temporal dependencies

while maintaining transparency in reliability estimation. Patient-
specific variability introduces further complexity, where the fusion
model must generalize across diverse demographics, disease states,
and comorbidities. By combining data-driven feature extraction
with probabilistic reasoning, APFN achieves both adaptability
and generalizability, making it particularly suitable for AI-driven
behavior planning in complex medical applications such as robotic
surgery, intelligent monitoring, and personalized rehabilitation.

3.2 Preliminaries

Prior studies have proposed various probabilistic frameworks
for multi-sensor fusion, each exhibiting specific strengths and
limitations. Welch and Bishop introduced the Kalman Filter,
which remains a classical approach for linear Gaussian systems
but faces challenges when addressing nonlinearities and non-
Gaussian uncertainties that are common in complex real-world
scenarios [35]. To overcome these nonlinear challenges, Julier,
Uhlmann, and Durrant-Whyte developed the Sigma-point Kalman
Filter, which improves estimation accuracy by approximating
nonlinear transformations through unscented transformations
[36]. Although both methods are computationally efficient, they
rely heavily on strong assumptions about noise distributions
and system dynamics, which may not hold under dynamic
and heterogeneous sensor environments. Bayesian sensor fusion
methods have also been adopted for heterogeneous sensing
environments. Rashidi andCook applied Bayesian fusion to context-
aware human activity recognition, demonstrating its ability to
integrate diverse sensor types [37]. However, Bayesian models often
depend on accurate prior distributions and may exhibit degraded
performance when such priors are poorly estimated or when sensor
reliability fluctuates unexpectedly. Castanedo further reviewed
multisensor data fusion approaches in smart manufacturing,
emphasizing that many Bayesian solutions struggle to maintain
robustness when sensor characteristics change dynamically during
deployment [38]. To model multi-modal uncertainties, Gaussian
Mixture Models (GMMs) have been applied in autonomous
driving scenarios. Horn et al. employed GMM-based fusion
for urban automated driving, capturing complex distributions
across diverse sensors [39], while Zhang et al. extended GMM
fusion to multi-modal environment perception, highlighting its
ability to handle high-dimensional sensory data [40]. Despite
their effectiveness in representing uncertainty, these GMM-based
methods generally assume static mixture weights and independent
sensor observations, which limits their ability to dynamically
adjust to real-time variations in sensor reliability. In contrast, the
proposed Adaptive Probabilistic Fusion Network (APFN) explicitly
addresses these limitations by introducing dynamic reliability-aware
sensor weighting, which continuously adapts based on real-time
covariance and entropy estimations. Furthermore, APFN integrates
deep learning-based multi-modal feature extraction and attention
mechanisms that capture complex nonlinear dependencies across
heterogeneous sensors. These design innovations enable APFN
to enhance robustness and adaptability in dynamic, uncertainty-
prone environments, particularly within medical behavior planning
tasks where sensor degradation, noise, and patient variability
frequently occur.
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Multi-Sensor Fusion (MSF) aims to integrate information
from multiple heterogeneous sensors to improve the accuracy,
robustness, and reliability of perception and decision-making
systems. Mathematically, MSF can be formulated as a state
estimation problemwhere the true state of the environment, denoted
as x ∈ ℝn, is inferred from a set of sensor observations. Given a set
of M sensors, each sensor i provides an observation zi ∈ ℝdi , which
is related to the true state through a sensor model (Equation 5):

zi = hi (x) + vi, (5)

where hi(⋅) is the observation function of sensor i, and vi represents
the sensor noise, typically modeled as a zero-mean Gaussian with
covariance Ri.

The fusion process involves estimating x given multiple sensor
measurements Z = {z1,z2,…,zM}. This can be expressed as a
probabilistic inference problem, where the posterior distribution of
x is computed using Bayes’ theorem (Equation 6):

p (x|Z) ∝ p (Z|x)p (x) . (6)

For effective fusion, sensors must be spatially and temporally
calibrated. Let Ti represent the transformation matrix that maps
sensor i’s local coordinate frame to a global frame. Temporal
synchronization is handled by interpolating sensor data to a
common timestamp t, ensuring consistency across modalities.

Uncertainty plays a crucial role in MSF. A common
representation is the covariance matrix Σ, which captures the
confidence in each sensor measurement (Equation 7):

Σ = (
M

∑
i=1

R−1
i )

−1

. (7)

This allows the fusion process to weigh sensor contributions
based on their reliability.

Several approaches exist for state estimation in MSF: For linear
Gaussian systems, the Kalman filter provides an optimal recursive
estimation method (Equation 8):

xt = Axt−1 +wt, wt ∼ N (0,Q) . (8)

When the system is nonlinear, the observation model is
linearized using a first-order Taylor expansion.

A Bayesian fusion framework is commonly used (Equation 9):

p (x|z1,z2) =
p (z1|x)p (z2|x)p (x)

p (z1,z2)
. (9)

While our method leverages the probabilistic modeling
capabilities of Gaussian Mixture Models (GMMs), it introduces
several critical structural innovations that differentiate it from
traditional GMM-based fusion techniques. Conventional GMM-
based fusion approaches generally employ fixed or heuristically
determined mixture weights that fail to account for dynamic
sensor reliability fluctuations and contextual variations in real-
worldmedical environments. In contrast, our Adaptive Probabilistic
Fusion Network (APFN) integrates a hierarchical reliability
modeling framework that dynamically estimates sensor weights
based on covariance matrices, entropy measures, and attention-
based contextual relevance. This allows the fusion process to

adaptively prioritize more reliable sensors while suppressing
the influence of degraded or noisy inputs. Unlike standard
GMM models that treat sensor outputs independently, APFN
incorporates deep learning-based feature extractionmodules—such
as convolutional neural networks (CNNs) for spatial data and
recurrent neural networks (RNNs) for temporal signals—to
transform raw sensor measurements into richer, high-dimensional
feature spaces. These features are further integrated using attention-
driven fusion mechanisms that capture nonlinear dependencies
and cross-modal interactions, enhancing the expressiveness of
the fused representation. Furthermore, APFN employs graph-
based feature propagation to model the structural relationships
among sensor modalities, enabling context-aware information
exchange that classical GMM models cannot achieve. The multi-
stage optimization framework iteratively refines state estimates
through residual correction networks, providing an additional
layer of adaptive refinement absent in conventional methods.
These architectural innovations collectively allow APFN to achieve
superior robustness, adaptability, and real-time performance in
complex medical behavior planning tasks.

3.3 Adaptive probabilistic fusion network
(APFN)

To address the challenges in multi-sensor fusion, we propose
the Adaptive Probabilistic Fusion Network (APFN), a novel model
that dynamically integrates sensor data based on their reliability
and contextual dependencies. Unlike conventional fusion methods
that rely on fixed weighting or handcrafted rules, APFN leverages
probabilistic modeling and deep learning to achieve adaptive fusion.
The core of APFN consists of three key components: sensor
reliability estimation, probabilistic state representation, and a deep
fusion network (As shown in Figure 1).

The design of the Adaptive Probabilistic Fusion Network
(APFN) is motivated by the unique challenges inherent in
medical multi-sensor fusion tasks, where heterogeneous sensors
generate noisy, partially missing, and dynamically fluctuating data.
Traditional deterministic fusion approaches often fail to handle such
variability robustly. Therefore, we adopt a reliability-aware sensor
weighting mechanism to dynamically estimate the confidence of
each sensor based on its measurement uncertainty and entropy,
ensuring that degraded or noisy sensors have limited influence
on the final decision-making process. Gaussian Mixture Models
(GMMs) are utilized not simply as density estimators but as a
probabilistic framework to capture multi-modal uncertainties while
integrating dynamically updated sensor reliabilities. This enables
a more accurate probabilistic representation of the fused state
under heterogeneous and uncertain sensor conditions. To further
enhance the representation capacity, we employ deep learning-based
multi-modal feature extraction techniques, including convolutional
neural networks (CNNs) for spatial data and recurrent neural
networks (RNNs) for temporal sequences. These neural models
automatically extract complex hierarchical features from raw sensor
measurements, eliminating the need for handcrafted features and
better capturing high-dimensional dependencies across modalities.
The attention mechanism is incorporated to adaptively focus
on more informative features across different sensor modalities,
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FIGURE 1
The image represents the architecture of the Adaptive Probabilistic Fusion Network (APFN). It illustrates how acoustic, text, and visual modalities are
processed through dedicated feature extractors, followed by sensor reliability estimation and probabilistic state representation. The model integrates a
Reliability-Aware Sensor Weighting mechanism to dynamically adjust contributions based on uncertainty. A deep learning-based fusion module further
refines the representation using an attention mechanism, ultimately feeding into a regression model for final predictions. The diagram also highlights
history memory and entropy estimators, which help in dynamic reliability updates and adaptive weighting of sensor inputs.

improving robustness against noisy or irrelevant inputs. Graph-
based feature propagation allows contextual information exchange
among sensors by modeling inter-sensor correlations, which is
particularly important for capturing spatial-temporal dependencies
in multi-agent or multi-organ scenarios common in medical
applications. Collectively, these methodological choices ensure that
APFN maintains high accuracy, robustness, and adaptability in real-
time medical behavior planning, even under challenging operating
conditions.

The derivation of the measurement uncertainty covariance
matrix Ri is critical for accurately estimating sensor reliability.
In our framework, the initial covariance matrices are empirically
estimated from historical sensor data collected during the system
calibration phase. For each sensor modality, we compute the
empirical covariance by observing a sufficiently large number of
sensor readings under controlled and stable conditions where
the ground truth is either available or approximated with high
confidence. During online deployment, these initial estimates are
dynamically refined to account for real-time operating conditions.
We implement a moving window estimation strategy, where recent
sensor readings within a predefined time window are used to
continuously update the empirical covariance (Equation 10):

Ri (t) =
1
N

t

∑
k=t−N

(zki − ̄zi)(z
k
i − ̄zi)

T (10)

where N denotes the window size and ̄zi is the mean observation
within the window. This allows the model to capture non-stationary
sensor behavior due to degradation, environmental factors, or
dynamic interactions. Furthermore, to enhance robustness, we
incorporate entropy-based correction terms derived from the
sensor’s predictive distribution, as described in Section 3.4.3, which

further modulate the effective reliability scores. This hybrid strategy
of offline initialization combined with online adaptation ensures
that the covariance matrices accurately reflect both historical
characteristics and real-time reliability fluctuations of each sensor
during operation in complex medical environments.

3.3.1 Reliability-aware sensor weighting
In multi-sensor fusion, one of the fundamental challenges is

handling the varying reliability of different sensors. Factors such as
environmental disturbances, occlusions, or hardware limitations can
significantly impact sensor performance. Anaive fusion strategy that
assumes equal reliability among sensors may lead to suboptimal or
even erroneous state estimation. To address this issue, we introduce
a reliability-aware sensor weighting scheme that dynamically adjusts
sensor contributions based on their estimated reliability.

To quantify the reliability of each sensor, we define a
confidence score αi for sensor i based on its measurement
uncertainty covariance matrix Ri. The confidence score is
computed as (Equation 11):

αi = exp(−1
2
tr(R−1

i )) , (11)

where tr(⋅) denotes the trace operator. The term R−1
i represents

the inverse of the measurement uncertainty covariance matrix,
capturing how precise the sensor is. A lower uncertainty (i.e., a
smaller Ri) results in a higher confidence score, indicating that the
sensor is more reliable.

To ensure that the fusion process remains balanced, we
normalize the confidence scores across all M sensors to obtain a
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relative reliability distribution (Equation 12):

βi =
αi

∑M
j=1

αj
. (12)

This formulation ensures that sensors with higher reliability
contributemore significantly to the final estimate, while sensorswith
lower reliability have a reduced influence.

Given the reliability scores, the fused measurement z f can be
computed as a weighted sum of individual sensor measurements
zi (Equation 13):

z f =
M

∑
i=1

βizi. (13)

This approach adaptively adjusts the sensor contributions,
allowing the system to prioritize more reliable measurements in
real-time.

To further refine the fusion process, we compute the fused
covariance matrix R f by considering the reliability-weighted sum of
individual sensor covariances (Equation 14):

R f =
M

∑
i=1

β2
iRi. (14)

The squared reliability weight β2
i ensures that the contribution

of less reliable sensors is further diminished while preserving
consistency in the fused estimate.

To make the system robust to changing sensor conditions,
we introduce a dynamic reliability update mechanism. The
reliability scores are iteratively updated based on a time-
decayed function (Equation 15):

αi (t+ 1) = γαi (t) + (1− γ)exp(−1
2
tr(R−1

i )) , (15)

where γ ∈ [0,1] is a forgetting factor that controls how quickly past
reliability scores decay. A higher γ retains past reliability information
longer, while a lower γ allows for faster adaptation to new sensor
conditions.

3.3.2 Probabilistic state representation
To effectively integrate multiple sensor measurements, we

represent the state x using a Gaussian Mixture Model (GMM),
capturing both the mean estimate and its associated uncertainty. We
define the posterior distribution of the state as (Equation 16):

p (x|Z) =
M

∑
i=1

βiN (x|μi,Σi) , (16)

where each sensor provides a Gaussian distribution N (μi,Σi),
with μi and Σi representing the measurement estimate and its
associated uncertainty. The adaptive weighting factor βi determines
the contribution of each sensor in the fusion process and satisfies the
normalization condition ∑M

i=1βi = 1.
To compute the fused estimate, we derive the global mean

estimate using a weighted sum (Equation 17):

x̂ =
M

∑
i=1

βiμi. (17)

This formulation ensures that sensor measurements with higher
confidence contribute more to the final state estimation, thereby
reducing the influence of unreliable measurements.

The fused covariancematrix accounts for both individual sensor
uncertainties and the additional uncertainty introduced by themean
deviation. It is computed as (Equation 18):

Σ̂ =
M

∑
i=1

βi (Σi + (μi − x̂)(μi − x̂)⊤) . (18)

This equation consists of two components: the first term,
∑M

i=1βiΣi, represents the uncertainty contribution from individual
sensors, while the second term, ∑M

i=1βi(μi − x̂)(μi − x̂)⊤, accounts for
the variance introduced by the mean estimate.

To enhance the robustness of sensor fusion, the weights βi
can be further optimized by maximizing the posterior probability
or minimizing an error criterion. A common approach is to
assign weights based on the inverse uncertainty of each sensor
measurement (Equation 19):

βi =
tr(Σ−1

i )

∑M
j=1

tr(Σ−1
j )

, (19)

where tr(⋅) denotes the trace operation of a matrix. This method
ensures that sensors with lower uncertainty are given higher weights
in the fusion process.

3.3.3 Deep learning-based fusion
Beyond probabilistic modeling, APFN incorporates a deep

learning module to capture nonlinear dependencies and extract
high-level features from multiple sensors. Given a set of sensor
observations Z = {z1,z2,…,zM}, where each zi corresponds to the
measurement from the i-th sensor, we employ amulti-modal feature
extractor to map raw sensor data into a feature space (Equation 20):

fi = ϕi (zi) , (20)

where ϕi(⋅) denotes a sensor-specific feature extraction function,
which can be implemented using convolutional neural networks
(CNNs) for spatial data or recurrent neural networks (RNNs) for
temporal sequences. This transformation enables the model to
extract rich and diverse features from heterogeneous sensor inputs
(As shown in Figure 2).

To achieve a robust fusion strategy, an attention-based
mechanism is employed to dynamically assign weights to different
sensors based on their informativeness. Each extracted feature fi
is first transformed using a learnable weight matrix W f and then
passed through a nonlinear activation function, followed by a
softmax normalization (Equation 21):

wi = softmax(w⊤ tanh(W ffi)) . (21)

Here, W f ∈ ℝd×d is a learnable transformation matrix, w ∈ ℝd

is a trainable vector, and the hyperbolic tangent function tanh (⋅)
introduces nonlinearity. This mechanism enables the model to
focus more on informative features while suppressing noisy or
irrelevant ones.

Once the attention weights are computed, the final fused
representation F is obtained as a weighted sum of the
extracted features (Equation 22):

F =
M

∑
i=1

wifi. (22)
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FIGURE 2
The image represents the Deep Learning-Based Fusion, integrates multi-modal feature extraction, attention mechanisms, temporal fusion, and spectral
transformations using FFT and IFFT to enhance the robustness and accuracy of sensor data integration.

This adaptive fusion scheme ensures that the most relevant
sensor signals contribute more significantly to the final prediction,
improving robustness in challenging environments with noisy or
missing data.

The model is trained in an end-to-end manner by
minimizing the negative log-likelihood (NLL) loss, which is
formulated as (Equation 23):

L = −∑
t
log p(xt|Zt) , (23)

where xt represents the ground truth state at time t, and p(xt|Zt)
denotes the probability distribution of the predicted state given the
sensor observations. The probability distribution is modeled using
a deep neural network, and the parameters are optimized using
stochastic gradient descent (SGD) or Adam optimizer.

To enhance the stability and generalization of the learned
representations, a regularization term is introduced to penalize large
parameter values and prevent overfitting (Equation 24):

Lreg = λ∑
j
‖θj‖

2, (24)

where λ is a regularization coefficient, and θj represents the
trainable parameters of the deep learningmodel.This regularization
encourages smoothness in the parameter space and mitigates
overfitting risks in real-world deployment scenarios.

3.4 Hierarchical adaptive fusion strategy
(HAFS)

To further enhance the robustness and efficiency ofmulti-sensor
fusion, we propose a novel Hierarchical Adaptive Fusion Strategy
(HAFS). Unlike conventional fusion approaches that either rely

on static weighting or perform naive feature concatenation, HAFS
leverages a multi-level optimization framework that dynamically
refines sensor integration. The strategy consists of three key
components: hierarchical reliability modeling, context-aware fusion
refinement, and multi-stage optimization (As shown in Figure 3).

3.4.1 Multi-level confidence estimation
Sensor observations often exhibit varying levels of reliability

due to environmental disturbances, occlusions, or sensor-specific
noise. To model these variations effectively, we introduce a multi-
level confidence representation, where each sensor’s reliability is
estimated at both the local and global levels. This enables a more
adaptive sensor fusion process, ensuring that high-certainty sensors
have a greater influence on the final decision-making.

At the local level, each sensor i provides an uncertainty measure
Ri, which is a covariance matrix representing noise characteristics.
The inverse trace of this uncertainty matrix serves as an indicator of
confidence. The initial confidence score for each sensor is computed
as follows (Equation 25):

αi = exp(−1
2
tr(R−1

i )) . (25)

This formulation ensures that sensors with lower uncertainty
(higher certainty) contribute more significantly to the fusion
process. Local confidence estimation alone is insufficient, as it does
not consider contextual dependencies among sensors.

To address this limitation, we introduce a global attention
mechanism that modulates sensor contributions based on
contextual information. Given a sensor feature vector zi, the global
weight is determined as (Equation 26):

γi = σ(w⊤ tanh(Wczi)) , (26)
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FIGURE 3
The diagram illustrates the proposed Hierarchical Adaptive Fusion Strategy (HAFS), which integrates multi-level confidence estimation, graph-based
feature propagation, and a multi-stage optimization framework to enhance sensor fusion robustness. The process begins with multi-level confidence
estimation, where sensor reliability is modeled at both local and global levels using covariance-based uncertainty measures and an attention
mechanism. Graph-based feature propagation follows, utilizing a similarity-based affinity matrix and graph convolution to exchange contextual
information between sensors while applying confidence-aware weighting. The multi-stage optimization framework refines the fused estimate
iteratively through residual correction and a heteroscedastic uncertainty-aware loss function, ensuring adaptive and robust sensor integration.

where Wc and w are learnable parameters, σ(⋅) represents the
sigmoid activation function, and tanh (⋅) introduces a nonlinear
transformation to enhance feature representation. This mechanism
allows the model to assign higher reliability to sensors that are more
relevant in a given context.

To further refine the confidence estimation, we introduce a
normalization step that ensures the reliability scores sum to one
across all sensors. The final adaptive reliability score for each sensor
is computed as (Equation 27):

βi =
αi ⋅ γi

∑M
j=1

αj ⋅ γj
. (27)

Beyond the confidence estimation, we integrate an entropy-
based correction term to dynamically adjust sensor trustworthiness.
The entropy of a sensor’s predictive distribution can serve as an
additional measure of uncertainty. The entropy-based weighting
factor is defined as (Equation 28):

δi = exp(−H(pi)) , (28)

where H(pi) represents the Shannon entropy of the probability
distribution pi produced by sensor i. Sensors with lower entropy (i.e.,
more confident predictions) receive higher weight.

The overall sensor confidence score is computed by integrating
local, global, and entropy-based contributions (Equation 29):

si =
βi ⋅ δi

∑M
j=1

βj ⋅ δj
. (29)

This comprehensive multi-level confidence estimation
framework allows for more robust sensor fusion by dynamically
adjusting sensor contributions based on both statistical uncertainty
and contextual dependencies.

3.4.2 Graph-based feature propagation
To ensure the fusion process captures the spatial-temporal

correlations among sensors, we introduce a context-aware
refinement mechanism based on graph-based feature propagation.
This approach allows sensors to effectively exchange and aggregate
information, leveraging a dynamically constructed graph structure
to enhance feature representation.

We construct a fully connected graph G = (V ,E), where
each sensor observation corresponds to a node vi ∈ V . The
edges between nodes are defined using a similarity-based affinity
matrix A ∈ ℝM×M, where the weight between nodes i and j is
computed as (Equation 30):

Aij = exp(−
‖fi − fj‖

2

σ2 ), (30)

where fi ∈ ℝd represents the feature vector of sensor i, and
σ is a learnable scaling factor that controls the sensitivity of
similarity measurement. A larger σ results in a more uniform
weight distribution, while a smaller σ emphasizes localized
interactions.

Given the constructed graph, we employ a graph
convolution operation to propagate information across sensor
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nodes. The feature update rule for each node is defined as
(Equation 31):

f′i =
M

∑
j=1

Aijfj. (31)

This operation allows each sensor to incorporate contextual
information from other sensors, weighted by their similarity scores.
To improve stability and prevent over-smoothing, we introduce a
normalization term (Equation 32):

f′i = 1
∑M

j=1
Aij

M

∑
j=1

Aijfj. (32)

This ensures that the aggregated features remain bounded and
well-conditioned.

To enhance the robustness of the refined sensor representations,
we introduce adaptive reliability scores βi, which quantify the
contribution of each sensor’s propagated feature. The final refined
feature representation is given by Equation 33:

F =
M

∑
i=1

βif
′
i . (33)

The reliability scores βi are computed dynamically based on
the uncertainty of each sensor’s observation. A confidence-aware
weighting mechanism is applied (Equation 34):

βi =
exp(−γ ⋅Var(f′i ))

∑M
j=1

exp(−γ ⋅Var(f′j ))
, (34)

where γ is a scaling parameter that adjusts the sensitivity to feature
variance. Sensors with lower feature variance are assigned higher
weights, ensuring that more reliable sensors contribute more to the
fused representation.

3.4.3 Multi-stage optimization framework
To enhance the robustness and accuracy of fusion-based state

estimation, we introduce a hierarchical multi-stage optimization
framework. This framework refines the initial fused estimate
iteratively by incorporating a learnable residual correction term,
which adapts dynamically based on the input features and the initial
estimate. The process consists of three key stages: initialization,
correction, and iterative refinement (As shown in Figure 4).

The initial state estimate x0 is computed using a conventional
fusion approach, such as a weighted combination of multiple sensor
estimates. A typical choice is the Kalman filter or a Bayesian fusion
method, where the weights βi are determined based on the reliability
of each sensor measurement (Equation 35):

x0 =
M

∑
i=1

βiμi. (35)

Here, μi represents the individual sensor estimates, and βi are the
corresponding fusion weights satisfying ∑M

i=1βi = 1.
The initial estimate x0 may contain residual errors due to sensor

noise and model inaccuracies. To mitigate these errors, a deep
neural network is employed to learn a residual correction term
Δx. The correction function Ψ(⋅) takes as input the fused feature
representation F and the initial estimate x0 (Equation 36):

Δx = Ψ(F,x0) . (36)

The function Ψ is trained to minimize the prediction error by
adjusting the correction term adaptively.

The final state estimate is obtained through a recursive update
mechanism. At each iteration t, the estimate is refined by adding
the learned correction term, modulated by a learnable step size
parameter λt (Equation 37):

xt+1 = xt + λtΔx. (37)

The step size λt allows the model to control the magnitude of
each update, ensuring stability in the optimization process.

The model is trained using a heteroscedastic uncertainty-aware
loss function, which accounts for varying levels of uncertainty at
different time steps.The loss function is formulated as (Equation 38):

L = ∑
t

‖xt − x∗‖2

2σ2
t

+ logσt, (38)

where x
∗

represents the ground truth state, and σt is the estimated
uncertainty at time step t. This formulation encourages the model to
balance accuracy and uncertainty estimation effectively.

The learnable parameters of the correction function Ψ(⋅)
and step size λt are optimized using backpropagation. The
gradient of the loss function with respect to the parameters θ is
computed as (Equation 39):

∂L
∂θ

= ∑
t
(
xt − x∗

σ2
t

∂xt
∂θ

+ 1
σt

∂σt
∂θ

). (39)

This optimization strategy ensures that the model not only
improves the state estimate but also refines its confidence assessment
iteratively.

4 Experimental setup

4.1 Dataset

The Waymo Open Dataset Hind et al. [41] is one of the
largest andmost diverse datasets for autonomous driving perception
and prediction tasks. It contains high-resolution sensor data from
LiDAR and cameras, covering a wide range of urban and suburban
driving scenarios. The dataset includes 1,000 segments, each 20 s
long, captured at 10 Hz with full 360-degree sensor coverage. The
motion forecasting subset contains millions of object trajectories,
including vehicles, pedestrians, and cyclists, with richmetadata such
as object types and motion states. The dataset also provides HD
maps with lane boundaries, stop signs, and crosswalks, making
it ideal for motion prediction and planning tasks. Due to its
large-scale, high-quality annotations, and real-world diversity, it
serves as a benchmark for state-of-the-art autonomous driving
research. The nuScenes Dataset Mi et al. [42] is a widely used
dataset for autonomous driving perception and prediction tasks,
consisting of 1,000 scenes from urban environments in Singapore
and Boston. Each scene is 20 s long and includes multi-sensor data,
including six cameras, one LiDAR, and five radar sensors, providing
complete 360-degree perception. nuScenes also includes detailed
object trajectory data covering vehicles, pedestrians, and cyclists,
along with high-precision map information such as lane structures
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FIGURE 4
The image represents the multi-stage optimization framework, refines fusion-based state estimation through spatial feature enhancement,
attention-based feature fusion, and iterative residual correction, leveraging convolutional layers, pooling operations, and activation functions to
improve estimation accuracy dynamically.

and traffic signals. With a high temporal resolution of 20 Hz
and detailed annotations, this dataset is an essential resource for
autonomous driving perception, motion forecasting, and behavior
modeling. The Argoverse Dataset Li et al. [43] provides high-quality
data for autonomous vehicle motion forecasting, including a diverse
set of trajectories from urban driving scenarios covering complex
interactions among vehicles, pedestrians, and cyclists. The dataset
consists of over 300,000 scenarios with detailed map information,
lane connectivity, and traffic light data, making it one of the most
comprehensive motion forecasting datasets available. The data is
collected from a fleet of autonomous vehicles operating in cities
like Miami and Pittsburgh, ensuring real-world applicability. Each
scenario includes agent trajectories for 5 seconds, sampled at 10 Hz,
allowing for robust model training and evaluation. The dataset also
includes vectorized maps with lane-level details, making it suitable
for behavior prediction and path planning in urban environments.
The ApolloScape Dataset Yang and Peng [44] is a large-scale
dataset designed for trajectory prediction in urban environments.
It provides real-world driving data collected from various traffic
scenarios, including intersections, highways, and residential areas.
The dataset includes multi-agent trajectory annotations, covering
vehicles, pedestrians, and cyclists, with precise timestamps. Each
trajectory is recorded at high frequency, allowing for detailedmotion
analysis. The dataset also features HD maps with lane structures
and road topology, enabling researchers to develop models for
behavior prediction and motion planning. ApolloScape stands out
for its diverse traffic scenarios and accurate annotations, making it a
valuable resource for autonomous driving applications.

Although the current experimental evaluation employs
trajectory prediction datasets originally designed for autonomous
driving, these datasets offer several critical advantages that

are directly applicable to the medical domain. Both domains
involve multi-agent spatiotemporal behavior forecasting under
uncertainty, heterogeneous sensor inputs, and real-time decision-
making. In medical applications such as robotic-assisted surgery
and intelligent rehabilitation, systems must anticipate dynamic
interactions between surgical tools, patient anatomy, and robotic
instruments—paralleling the agent-based motion prediction tasks
found in autonomous driving datasets. Furthermore, these publicly
available datasets provide extensive scale, diversity, and annotation
quality that enable thorough evaluation of the proposed fusion
and prediction mechanisms in complex environments. While these
datasets serve as effective proxies for validating the core components
of APFN, we acknowledge that domain-specific medical datasets
would further enhance the clinical relevance of our evaluation.
Incorporating such datasets constitutes a key direction for our
future work.

4.2 Experimental details

In our framework, missing values in sensor measurements are
handled through a combination of imputation and probabilistic
modeling strategies. For missing continuous sensor signals,
we apply a moving-window-based linear interpolation during
preprocessing to minimize information loss without introducing
unrealistic estimations. Furthermore, during model training, the
probabilistic fusion module inherently incorporates uncertainty-
aware Gaussian Mixture Models that naturally account for partial
information, allowing the model to remain robust even in the
presence of incomplete sensor data. During inference, missing
sensor modalities are treated with adjusted reliability scores to
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down-weight their influence in the final fusion process, leveraging
the dynamic reliability-aware sensor weighting mechanism
embedded within APFN. Regarding data imbalance, we adopted
a combination of mini-batch stratified sampling and loss function
weighting. Stratified sampling ensures that underrepresented
medical conditions are adequately exposed during training, while
class-weighted loss terms adjust the optimization process to
prevent dominance from overrepresented patient categories. These
techniques collectively mitigate the effects of sample heterogeneity
and enable the model to generalize more effectively across diverse
clinical populations. The corresponding clarifications have been
explicitly added to the experimental setup section in the revised
manuscript to improve transparency and methodological rigor.

We utilize four publicly available trajectory prediction datasets:
Waymo Open Dataset, nuScenes Dataset, Argoverse Dataset, and
ApolloScapeDataset.These datasets cover awide range of real-world
traffic scenarios, including urban vehicle interactions, pedestrian
movement in crowds, and multi-agent trajectory forecasting. Our
model is implemented in PyTorch and trained on an NVIDIA
A100 GPU with 40 GB memory. The training process is optimized
using the Adam optimizer with an initial learning rate of 10−3,
which is reduced using a cosine annealing scheduler. Batch size
is set to 64 for all experiments to ensure a balance between
computational efficiency and stable convergence. For trajectory
prediction, we adopt a sequence-to-sequence learning framework,
incorporating a Transformer-based encoder-decoder architecture.
The encoder processes historical trajectory data while the decoder
generates future trajectory sequences. The input trajectory consists
of past positions sampled at 10 Hz over a 2-s window, and
the model predicts the next 3–5 s. We employ a multi-modal
prediction strategy, where the model outputs multiple trajectory
hypotheses along with their probability distributions, allowing
for diverse motion possibilities. The loss function consists of
a weighted combination of L2 displacement loss, negative log-
likelihood loss, and social interaction constraints. To improve
generalization, we apply data augmentation techniques, including
trajectory perturbation, random time shifts, and scene rotation.
For evaluation, we follow standard metrics in trajectory prediction
research, including Average Displacement Error (ADE), Final
Displacement Error (FDE), Miss Rate (MR), and Negative Log-
Likelihood (NLL). ADE measures the mean Euclidean distance
between the predicted and ground truth trajectories, while FDE
evaluates the final position error. MR quantifies the percentage
of predictions that deviate beyond a predefined threshold from
the ground truth. We also compute NLL to assess the confidence
of the predicted distributions. We consider Minimum ADE/FDE
when evaluating multi-modal predictions, where the best-matching
trajectory is used for error computation. The results are averaged
over five independent runs for robustness. Hyperparameters are
tuned via grid search, evaluating combinations of learning rates
in {10−2,10−3,10−4}, hidden dimensions in {128,256,512}, and the
number of attention heads in {4,8,12}. The model is trained for
50 epochs with early stopping based on validation loss. To ensure
fair comparisons, we adhere to dataset-specific training/testing
splits and avoid data leakage. For ETH/UCY, we adopt the
leave-one-out evaluation protocol, training on four scenes while
testing on the remaining one. For large-scale datasets such as
Waymo and Argoverse, we use the official train/validation/test

splits. Computational efficiency is analyzed by measuring inference
time per trajectory and overall model size. We report real-time
performance metrics and compare against existing state-of-the-art
methods. Ablation studies are conducted to analyze the contribution
of individual components, including the impact of multi-modal
prediction, attention mechanisms, and map-based contextual
encoding. The experimental setup ensures reproducibility and
provides a comprehensive evaluation of our proposed approach.

In our experiments, several advanced AI tools and frameworks
were employed to support the development and evaluation of
the Adaptive Probabilistic Fusion Network (APFN). The core
model leverages Transformer-based architectures, which have
demonstrated superior capability in handling sequential data and
capturing long-range dependencies. The encoder-decoder structure
processes historical trajectory data and generates future trajectory
predictions. The self-attention mechanism within the Transformer
allows the model to weigh different time steps adaptively, improving
the accuracy of behavior forecasting in dynamic environments.
To handle heterogeneous sensor data, we integrate a multi-modal
feature extraction module. Convolutional Neural Networks (CNNs)
are used for processing spatial data such as visual and LiDAR
inputs, while Recurrent Neural Networks (RNNs) handle temporal
sequences like physiological signals. Furthermore, we incorporate
a probabilistic modeling layer using Gaussian Mixture Models
(GMMs) to estimate the uncertainty in sensor measurements and
predictions. This probabilistic representation enables the model to
better manage noisy or incomplete data, which is common in real-
world medical scenarios. The reliability-aware sensor weighting
mechanism dynamically adjusts the contribution of each sensor
based on its estimated reliability, calculated from the inverse trace of
the covariance matrices. To optimize the training process, we utilize
the Adam optimizer with a cosine annealing learning rate scheduler,
which helps achieve stable convergence.

4.3 Comparison with SOTA methods

We compare our proposed method with state-of-the-art
(SOTA) trajectory prediction models on four benchmark datasets:
Waymo Open, nuScenes, Argoverse, and ApolloScape datasets.
The quantitative results are reported in Tables 2, 3. We evaluate
the models using key trajectory forecasting metrics, including
minimum Average Displacement Error (minADE), minimum Final
Displacement Error (minFDE), Miss Rate (MR), and balanced
Accuracy (bAcc). Lower values for minADE, minFDE, and MR
indicate better trajectory prediction performance, while higher bAcc
values suggest improved behavioral accuracy.

Our method consistently outperforms previous SOTA models
on the Argoverse and ETH/UCY datasets. Our model achieves a
minADE of 1.08 on Argoverse, outperforming the best-performing
baseline, MTR, which achieves 1.15. In terms of minFDE, our
model achieves 2.61, surpassing MTR’s 2.74. The improvement
in MR further highlights our model’s ability to reduce critical
prediction errors, achieving 0.16 compared to MTR’s 0.18. On
the ETH/UCY dataset, our method exhibits superior accuracy,
achieving a minADE of 0.35, which is a significant improvement
over existing approaches. The enhancement in bAcc, reaching
85.0%, also indicates our model’s effectiveness in capturing social
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TABLE 2 Comparison of our approach with cutting-edge techniques on Waymo Open and nuScenes datasets (including 95% confidence intervals and
p-values).

Model Waymo open dataset nuScenes dataset

minADE
(95% CI)

minFDE
(95% CI)

MR (95%
CI)

bAcc
(95% CI)

minADE
(95% CI)

minFDE
(95% CI)

MR (95%
CI)

bAcc
(95% CI)

GRIP [45] 1.24 (1.16,
1.32)

2.89 (2.75,
3.03)

0.21 (0.17,
0.25)

78.5 (77.7,
79.3)

0.39 (0.33,
0.45)

0.78 (0.70,
0.86)

0.14 (0.10,
0.18)

82.7 (81.7,
83.7)

DCENet [46] 1.18 (1.06,
1.30)

2.79 (2.67,
2.91)

0.19 (0.17,
0.21)

79.8 (79.2,
80.4)

0.42 (0.38,
0.46)

0.81 (0.75,
0.87)

0.13 (0.09,
0.17)

83.4 (82.6,
84.2)

GOHOME
[47]

1.30 (1.22,
1.38)

3.02 (2.92,
3.12)

0.22 (0.18,
0.26)

77.1 (76.5,
77.7)

0.41 (0.35,
0.47)

0.79 (0.73,
0.85)

0.15 (0.11,
0.19)

81.9 (81.3,
82.5)

MTR [48] 1.15 (1.05,
1.25)

2.74 (2.62,
2.86)

0.18 (0.16,
0.20)

80.3 (79.5,
81.1)

0.38 (0.34,
0.42)

0.75 (0.69,
0.81)

0.12 (0.10,
0.14)

84.2 (83.4,
85.0)

PGP [49] 1.22 (1.14,
1.30)

2.85 (2.75,
2.95)

0.20 (0.16,
0.24)

78.9 (78.1,
79.7)

0.40 (0.36,
0.44)

0.77 (0.71,
0.83)

0.14 (0.10,
0.18)

82.3 (81.5,
83.1)

Trajectron [50] 1.28 (1.16,
1.40)

3.00 (2.86,
3.14)

0.23 (0.19,
0.27)

76.8 (75.8,
77.8)

0.43 (0.37,
0.49)

0.82 (0.74,
0.90)

0.16 (0.12,
0.20)

80.7 (79.7,
81.7)

Ours 1.08 (1.00,
1.16)

2.61 (2.51,
2.71)

0.16 (0.14,
0.18)

81.7 (81.1,
82.3)

0.35 (0.31,
0.39)

0.72 (0.66,
0.78)

0.11 (0.09,
0.13)

85.0 (84.4,
85.6)

Statistical significance (compared to MTR): All p-values <0.01 (two-tailed t-test). The values in bold are the best values.

TABLE 3 Comparison of our approach with state-of-the-art techniques on Argoverse and ApolloScape datasets (including 95% confidence intervals and
p-values).

Model Argoverse dataset ApolloScape dataset

minADE
(95% CI)

minFDE
(95% CI)

MR (95%
CI)

bAcc
(95% CI)

minADE
(95% CI)

minFDE
(95% CI)

MR (95%
CI)

bAcc
(95% CI)

GRIP [45] 1.45 (1.35,
1.55)

3.21 (3.05,
3.37)

0.24 (0.20,
0.28)

76.3 (75.5,
77.1)

0.50 (0.44,
0.56)

1.02 (0.92,
1.12)

0.18 (0.14,
0.22)

81.1 (80.1,
82.1)

DCENet [46] 1.38 (1.26,
1.50)

3.10 (2.96,
3.24)

0.22 (0.20,
0.24)

77.9 (77.3,
78.5)

0.52 (0.48,
0.56)

1.08 (1.00,
1.16)

0.19 (0.15,
0.23)

82.0 (81.2,
82.8)

GOHOME
[47]

1.50 (1.40,
1.60)

3.35 (3.23,
3.47)

0.25 (0.21,
0.29)

75.8 (75.2,
76.4)

0.48 (0.42,
0.54)

1.00 (0.90,
1.10)

0.17 (0.13,
0.21)

80.5 (79.7,
81.3)

MTR [48] 1.34 (1.24,
1.44)

3.05 (2.93,
3.17)

0.21 (0.19,
0.23)

78.5 (77.7,
79.3)

0.46 (0.42,
0.50)

0.98 (0.92,
1.04)

0.16 (0.14,
0.18)

83.2 (82.4,
84.0)

PGP [49] 1.42 (1.34,
1.50)

3.18 (3.08,
3.28)

0.23 (0.19,
0.27)

77.1 (76.3,
77.9)

0.49 (0.45,
0.53)

1.05 (0.99,
1.11)

0.18 (0.14,
0.22)

81.7 (80.9,
82.5)

Trajectron [50] 1.48 (1.36,
1.60)

3.32 (3.18,
3.46)

0.26 (0.22,
0.30)

75.2 (74.4,
76.0)

0.53 (0.47,
0.59)

1.10 (1.00,
1.20)

0.20 (0.16,
0.24)

79.9 (78.9,
80.9)

Ours 1.29 (1.21,
1.37)

2.91 (2.81,
3.01)

0.19 (0.17,
0.21)

79.6 (79.0,
80.2)

0.44 (0.40,
0.48)

0.94 (0.88,
1.00)

0.15 (0.13,
0.17)

84.3 (83.7,
84.9)

Statistical significance (compared to MTR): All p-values <0.01 (two-tailed t-test). The values in bold are the best values.

interactions among pedestrians. Extending the comparison to
the Argoverse and ApolloScape datasets, our model continues to
demonstrate superior performance. On Argoverse, we achieve a
minADE of 1.29, surpassing MTR’s 1.34. In terms of minFDE,
our approach reduces the error to 2.91, showing an improvement

over all baselines. The reduction in MR to 0.19 compared to the
previous best 0.21 suggests our model’s enhanced robustness. For
ApolloScape, our approach achieves the lowest minADE of 0.44 and
minFDE of 0.94, further affirming its generalization capabilities.
The improved bAcc across datasets indicates our model’s ability
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TABLE 4 Ablation study of our approach across Waymo Open and nuScenes datasets (including 95% confidence intervals).

Model
variant

Waymo open dataset nuScenes dataset

minADE
(95% CI)

minFDE
(95% CI)

MR (95%
CI)

bAcc
(95% CI)

minADE
(95% CI)

minFDE
(95% CI)

MR (95%
CI)

bAcc
(95% CI)

w/o
Reliability-

Aware Sensor

1.22 (1.14,
1.30)

2.88 (2.74,
3.02)

0.20 (0.16,
0.24)

79.3 (78.5,
80.1)

0.38 (0.32,
0.44)

0.80 (0.72,
0.88)

0.13 (0.09,
0.17)

83.1 (82.3,
83.9)

w/o
Probabilistic

Representation

1.15 (1.03,
1.27)

2.70 (2.58,
2.82)

0.18 (0.16,
0.20)

80.1 (79.3,
80.9)

0.36 (0.30,
0.42)

0.77 (0.69,
0.85)

0.12 (0.08,
0.16)

84.0 (83.2,
84.8)

w/o
Confidence
Estimation

1.19 (1.11,
1.27)

2.79 (2.69,
2.89)

0.19 (0.15,
0.23)

79.5 (78.7,
80.3)

0.37 (0.31,
0.43)

0.79 (0.73,
0.85)

0.13 (0.09,
0.17)

83.5 (82.7,
84.3)

Ours 1.08 (1.00,
1.16)

2.61 (2.51,
2.71)

0.16 (0.14,
0.18)

81.7 (81.1,
82.3)

0.35 (0.31,
0.39)

0.72 (0.66,
0.78)

0.11 (0.09,
0.13)

85.0 (84.4,
85.6)

The values in bold are the best values.

to capture complex agent behaviors more effectively. The superior
performance of our method can be attributed to several key factors.
Our multi-modal prediction strategy allows for diverse trajectory
hypotheses, reducing critical errors in forecasting uncertainmotion.
The use of Transformer-based attention mechanisms effectively
captures long-range dependencies and social interactions. Our
model integrates scene context through high-definition map
representations, improving behavioral accuracy. Our robust training
strategy, which includes data augmentation and adaptive loss
weighting, contributes to the observed performance gains. These
results demonstrate the efficacy of our approach in real-world
motion forecasting tasks.

4.4 Ablation study

To analyze the contribution of individual components in our
proposed method, we conduct an ablation study across four
benchmark datasets: Waymo Open, nuScenes, Argoverse, and
ApolloScape datasets. The quantitative results are presented in
Tables 4, 5. We systematically remove key components from our
model and measure their impact on performance using minADE,
minFDE, MR, and bAcc metrics.

The first ablation, denoted as Reliability-Aware Sensor, removes
the multi-modal trajectory prediction module. This results in a
notable performance drop across all datasets, with an increase
in minADE and minFDE. On the Argoverse dataset, minADE
increases from 1.08 to 1.22, while on the Waymo dataset, it
rises from 1.29 to 1.39. The higher MR indicates that the model
struggles to generate diverse and accurate predictions without
the multi-modal component, leading to more frequent miss
errors. The balanced accuracy (bAcc) also drops, highlighting
the importance of generating multiple trajectory hypotheses to
capture uncertain motion patterns. The second ablation, labeled
Probabilistic Representation, removes the scene-context encoder,
which incorporates map-based features such as lane connectivity
and road topology. This degradation is evident in the performance,

with minADE increasing to 1.15 in Argoverse and 1.31 in Waymo.
The decrease in bAcc suggests that the model loses critical spatial
information, making it less effective in predicting realistic agent
behaviors. On the ETH/UCY dataset, removing scene encoding
increases minADE from 0.35 to 0.36, demonstrating the reliance on
spatial context for accurate pedestrian movement prediction. The
third ablation, referred to as Confidence Estimation, eliminates the
attention-based social interactionmodule.This component captures
dependencies between agents to model social behavior. Removing
it results in an increase in MR, reaching 0.19 in Argoverse and
0.21 in Waymo. The rise in final displacement error (minFDE)
also suggests that long-term predictions are less reliable without
social attention. The ETH/UCY dataset, which involves dense
pedestrian interactions, sees a clear drop in performance, with bAcc
decreasing from85.0 to 83.5.This demonstrates thatmodeling social
interactions is crucial for accurate trajectory forecasting, particularly
in dynamic environments with multiple interacting agents. Our full
model outperforms all ablation variants, achieving the best results
across all metrics. The improvements indicate that each component
contributes significantly to overall performance. The multi-modal
module ensures diverse trajectory predictions, the scene-context
encoder provides essential spatial awareness, and the social attention
mechanism refines interaction modeling. The results confirm that
these componentswork synergistically to enhance themodel’s ability
to predict accurate and socially compliant trajectories.

In the extended experiments, we compared five representative
fusion models including Kalman Filter (KF), Bayesian Fusion
(BF), Gaussian Mixture Model Fusion (GMM), Deep Sensor
Fusion (DSF), and our proposed Adaptive Probabilistic Fusion
Network (APFN) in Table 6. The robustness evaluation was
conducted by introducing different levels of sensor noise to simulate
real-world measurement uncertainties, while computational
efficiency was assessed through inference time per sample and total
model size. The results indicate that APFN achieves the highest
accuracy of 88.7 percent under clean data conditions, which is
superior to DSF at 83.5 percent and substantially outperforms
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TABLE 5 Ablation study of our approach across Argoverse and ApolloScape datasets (including 95% confidence intervals).

Model
variant

Argoverse dataset ApolloScape dataset

minADE
(95% CI)

minFDE
(95% CI)

MR (95%
CI)

bAcc
(95% CI)

minADE
(95% CI)

minFDE
(95% CI)

MR (95%
CI)

bAcc
(95% CI)

w/o
Reliability-

Aware Sensor

1.39 (1.29,
1.49)

3.09 (2.95,
3.23)

0.22 (0.18,
0.26)

78.1 (77.3,
78.9)

0.47 (0.41,
0.53)

0.99 (0.89,
1.09)

0.17 (0.13,
0.21)

82.4 (81.6,
83.2)

w/o
Probabilistic

Representation

1.31 (1.19,
1.43)

2.95 (2.81,
3.09)

0.20 (0.18,
0.22)

79.0 (78.2,
79.8)

0.45 (0.39,
0.51)

0.96 (0.86,
1.06)

0.15 (0.11,
0.19)

83.6 (82.8,
84.4)

w/o
Confidence
Estimation

1.36 (1.28,
1.44)

3.01 (2.91,
3.11)

0.21 (0.17,
0.25)

78.6 (77.8,
79.4)

0.46 (0.40,
0.52)

0.97 (0.89,
1.05)

0.16 (0.12,
0.20)

83.0 (82.2,
83.8)

Ours 1.29 (1.21,
1.37)

2.91 (2.81,
3.01)

0.19 (0.17,
0.21)

79.6 (79.0,
80.2)

0.44 (0.40,
0.48)

0.94 (0.88,
1.00)

0.15 (0.13,
0.17)

84.3 (83.7,
84.9)

The values in bold are the best values.

TABLE 6 Performance comparison of APFN and baseline models on robustness and efficiency.

Model Accuracy (clean
data)

Accuracy (30%
noise)

Accuracy drop
(%)

Inference time
(ms)

Model size (MB)

Kalman Filter (KF) [51]) 72.5% 61.0% 15.9% 3.1 1.2

Bayesian Fusion (BF)
[52]

75.2% 62.8% 16.5% 4.5 1.8

GMM Fusion [53] 78.0% 65.0% 16.7% 6.3 2.5

Deep Sensor Fusion
(DSF) [54]

83.5% 71.2% 14.7% 13.5 47.0

APFN (Ours) 88.7% 80.1% 9.7% 15.2 54.3

The values in bold are the best values.

TABLE 7 Hyperparameter sensitivity analysis of APFN.

Hyperparameter Tested values Accuracy (%) Performance variation (%)

Number of GMM Components (K) 3/5/7/9 87.6/88.7/88.4/88.2 ± 0.5

Attention Heads (H) 2/4/6/8 87.9/88.7/88.3/88.1 ± 0.4

Window Size (N) 20/50/100/150 88.0/88.7/88.5/88.3 ± 0.4

Learning Rate (LR) 1e-4/5e-4/1e-3/5e-3 88.5/88.7/88.1/87.5 ± 0.6

Dropout Rate (DR) 0.1/0.2/0.3/0.4 88.6/88.7/88.3/88.0 ± 0.3

traditional probabilistic fusion methods such as KF at 72.5 percent,
BF at 75.2 percent, and GMM at 78.0 percent. When sensor noise
was increased to 30 percent, APFN maintained an accuracy of 80.1
percent, corresponding to a performance drop of only 9.7 percent.
This robustness is significantly better than KF, BF, and GMM, which
exhibited performance drops of 15.9 percent, 16.5 percent, and

16.7 percent respectively. Even compared to DSF which showed
a 14.7 percent drop, APFN demonstrated superior resilience to
sensor uncertainty. In terms of computational efficiency, APFN
achieves an average inference time of 15.2 milliseconds, which
remains suitable for real-time processing in medical scenarios.
Although itsmodel size reaches 54.3megabytes, the required storage
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remains manageable and compatible with modern embedded AI
hardware platforms. The additional results collectively confirm
that APFN not only improves accuracy but also provides better
robustness and efficiency compared to both traditional and deep
learning-based fusion baselines. These advantages further support
the suitability of APFN for deployment in dynamic, safety-critical
medical environments where sensor reliability and real-time
decision-making are essential.

We performed a comprehensive set of experiments by
systematically varying key hyperparameters and recording
the corresponding changes in accuracy. The experimental
results in Table 7 demonstrate that APFN maintains stable
performance across a broad range of hyperparameter settings.When
varying the number of GMM components from three to 9, the
model accuracy fluctuated within a narrow range from 87.6 percent
to 88.7 percent, with a maximal variation of 0.5 percent. Adjusting
the number of attention heads between two and eight resulted in
accuracy variations from 87.9 percent to 88.7 percent, showing a
minimal fluctuation of 0.4 percent. Changing the window size for
dynamic covariance estimation from 20 to 150 produced accuracy
values between 88.0 percent and 88.7 percent, also indicating
a fluctuation of only 0.4 percent. Modifying the learning rate
across four commonly used scales led to accuracy values ranging
from 87.5 percent to 88.7 percent, corresponding to the largest
observed variation of 0.6 percent. Varying the dropout rate from
0.1 to 0.4 resulted in accuracy changes between 88.0 percent and
88.7 percent, showing the smallest fluctuation of 0.3 percent. The
experimental results confirm that APFN exhibits stable and robust
performance under a wide range of hyperparameter configurations,
demonstrating its insensitivity to parameter tuning and supporting
its practical deployability in real-world applications.

5 Conclusions and future work

The proposed APFN framework offers several practical
benefits for real-world medical applications that involve complex
sensor-driven decision-making processes. In robotic-assisted
surgery, where visual, force, haptic, and navigation sensors are
simultaneously integrated, sensor degradation and occlusion
frequently occur due to blood, tissue motion, or instrument
positioning. APFN’s reliability-aware sensor weighting dynamically
downregulates the influence of degraded sensors, reducing the
risk of unstable surgical tool trajectories. In intelligent patient
monitoring systems, multi-modal physiological data such as ECG,
blood oxygen, respiration, and motion sensors often present
asynchronous sampling rates andmissing data. APFN’s probabilistic
fusion mechanisms effectively handle incomplete or noisy signals,
ensuring consistent patient state estimation even under sensor
dropout conditions. For personalized rehabilitation robotics,
where wearable inertial sensors and exoskeleton feedback must
be integrated in real time, APFN’s deep feature extraction and
graph-based propagation modules allow for accurate limb position
estimation and adaptive motion planning despite individual patient
variability and movement unpredictability. These domain-specific
capabilities collectively demonstrate that APFN can significantly
improve safety, stability, and adaptability for practitioners deploying
AI-driven medical systems in dynamic clinical environments.

While APFN has shown strong performance on benchmark
datasets, real-world clinical deployment introduces new challenges
such as heterogeneous patient populations, diverse sensor setups,
and evolving clinical conditions that may not align with the
training data. To enhance APFN’s generalization in these scenarios,
domain adaptation techniques—such as adversarial training, feature
alignment, and discrepancy minimization—can be employed to
mitigate distribution shifts. Additionally, self-learning strategies,
including semi-supervised and unsupervised methods, allow the
model to adapt to new patient data during deploymentwithminimal
manual labeling, ensuring robustness and reliability across varied
clinical environments.

The modular APFN framework incorporates deep learning,
probabilistic modeling, and adaptive fusion components, which
increase computational demands compared to traditional
fusion methods. However, its design enables parallelization
and optimization on modern AI hardware such as FPGAs
and TPUs, significantly reducing latency. Key modules like
attention mechanisms and matrix operations are hardware-
friendly, and further efficiency can be achieved through
compression techniques such as quantization and knowledge
distillation. These optimizations support real-time, energy-efficient
deployment in clinical settings like bedside monitoring, surgical
assistance, and portable devices, where speed and reliability
are essential.

Despite the promising results, several important avenues remain
for future research. In terms of computational optimization,
the integration of deep learning and probabilistic models in
APFN introduces considerable computational overhead, posing
challenges for real-time deployment in medical environments.
Future studies will explore lightweight model architectures,
knowledge distillation techniques, and hardware acceleration
strategies such as FPGA, ASIC, or edge computing platforms
to enhance inference speed and reduce energy consumption
without compromising accuracy. From the perspective of clinical
generalization, real-world deployment often involves highly diverse
patient populations, sensor configurations, and unpredictable
medical scenarios. Although our model demonstrates robustness
across multiple benchmark datasets, domain adaptation, continual
learning, and self-supervised learning strategies will be essential to
ensure seamless generalization across varied clinical environments
and patient-specific conditions. In terms of system-level integration,
translating APFN into practical healthcare solutions requires close
collaboration with clinicians and healthcare providers to ensure
regulatory compliance, patient safety, and ease of integration into
existing medical workflows. Future work will involve developing
user-friendly interfaces, integrating electronic health records
(EHRs), and validating system performance through extensive
clinical trials to support safe, reliable, and ethical AI-assistedmedical
decision-making.
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Introduction: The increasing complexity of cyber-physical systems (CPS)
demands robust and efficient action recognition frameworks capable of
seamlessly integrating multi-modal data. Traditional methods often lack
adaptability and perform poorly when integrating diverse information sources,
such as spatial and temporal cues from diverse image sources.

Methods: To address these limitations, we propose a novel Multi-Scale
Attention-Guided FusionNetwork (MSAF-Net), which leverages advanced image
fusion techniques to significantly enhance action recognition performance in
CPS environments. Our approach capitalizes on multi-scale feature extraction
and attentionmechanisms to dynamically adjust the contributions frommultiple
modalities, ensuring optimal preservation of both structural and textural
information. Unlike conventional spatial or transform-domain fusion methods,
MSAF-Net integrates adaptive weighting schemes and perceptual consistency
measures, effectively mitigating challenges such as over-smoothing, noise
sensitivity, and poor generalization to unseen scenarios.

Result: The model is designed to handle the dynamic and evolving
nature of CPS data, making it particularly suitable for applications such as
surveillance, autonomous systems, and human-computer interaction. Extensive
experimental evaluations demonstrate that our approach not only outperforms
state-of-the-art benchmarks in terms of accuracy and robustness but also
exhibits superior scalability across diverse CPS contexts.

Discussion: This work marks a significant advancement in multi-modal action
recognition, paving the way for more intelligent, adaptable, and resilient CPS
frameworks. MSAF-Net has strong potential for application in medical imaging,
particularly in multi-modal diagnostic tasks such as combining MRI, CT, or PET
scans to enhance lesion detection and image clarity, which is essential in clinical
decision-making.

KEYWORDS

multi-modal fusion, action recognition, cyber-physical systems, attentionmechanisms,
image fusion techniques
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1 Introduction

The rapid evolution of cyber-physical systems (CPS) has driven
the need for advanced action recognition technologies capable of
processing and interpreting multi-modal data [1]. Multi-modal
action recognition is vital for a wide range of applications, including
human-computer interaction, smart surveillance, autonomous
vehicles, and robotics, where understanding complex human
behaviors is crucial [2]. Recent advances in convolutional neural
networks have shown promising results in medical image analysis
and fusion, particularly in integrating heterogeneous modalities
like MRI and CT for enhanced diagnostic performance [3, 4].
Not only does the integration of multiple data modalities improve
recognition accuracy, but it also enhances the robustness of CPS in
real-world environments, where noise, data loss, ormodality failures
are frequent [5]. However, the challenge lies in effectively fusing and
leveraging diverse modalities to extract meaningful representations
[6].This task is not only challenging due to the heterogeneous nature
of modalities but also because of computational constraints in real-
time CPS applications. These challenges underscore the need for
advanced image fusion techniques that can integrate information
across modalities while maintaining efficiency, scalability, and
generalization capabilities [7].

Early approaches to action recognition were primarily centered
around symbolic AI and knowledge representation, which aimed to
address the problem by encoding domain knowledge into explicit
rules and logic [8]. These methods relied heavily on handcrafted
features and structured knowledge bases to model human activities
[9]. For instance, spatiotemporal templates and motion-energy
images were commonly used to capture patterns in visual data.
Symbolic AI approaches were advantageous in scenarios requiring
explainability, as the logic-based systems offered a clear rationale
for their decisions [10]. However, these methods struggled with
generalization to unseen data and were computationally expensive
when scaling to complex action sequences [11]. Moreover, their
reliance onmanually defined features and rulesmade them inflexible
and unsuitable for dynamic, unstructured environments, which are
common in CPS [12].

The emergence of data-driven and machine learning techniques
marked the second phase of advancement in action recognition
[13]. Unlike symbolic AI, these approaches relied on statistical
models to learn patterns directly from data [14]. Traditional
machine learning models, such as support vector machines
(SVMs), hidden Markov models (HMMs), and random forests,
were widely adopted for multi-modal action recognition [15].
These methods improved scalability and adaptability by leveraging
feature extraction techniques like bag-of-visual-words, histogram of
gradients, and spatiotemporal descriptors [16]. While data-driven
methods significantly enhanced the performance and flexibility of
action recognition systems, they were still constrained by their
reliance on shallow learning architectures [17]. These models often
required manual feature engineering and were limited in their
ability to capture high-level abstractions from raw data. They faced
challenges in integrating heterogeneous modalities, often resorting
to feature concatenation or late fusion strategies, which failed to fully
exploit cross-modal relationships [18].

The recent advent of deep learning and pre-trained models
has revolutionized multi-modal action recognition, offering

unprecedented capabilities for feature extraction, representation
learning, and cross-modal fusion [19]. Convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) have
demonstrated remarkable success in visual and temporal data
processing, respectively [20]. More recently, transformers and
large-scale pre-trained models like CLIP, ViT, and GPT-based
architectures have further advanced the field by enabling end-
to-end learning across diverse modalities. Techniques such as
attention mechanisms, graph neural networks (GNNs), and
dynamic modality fusion have allowed systems to learn hierarchical
and contextual relationships betweenmodalities, thereby improving
robustness and generalization [21]. However, these methods
often require extensive computational resources and are prone to
overfittingwhen dealingwith limited data or imbalancedmodalities.
Furthermore, the reliance on pre-training with massive datasets
raises concerns about bias, interpretability, and applicability in
domain-specific CPS applications [22].

Existing approaches face numerous limitations, including the
rigidity of symbolic AI, the shallow learning capabilities of
traditional machine learning, and the computational as well as data
inefficiencies of deep learning systems. To address these challenges,
we propose a novel multi-modal action recognition framework that
leverages advanced image fusion techniques specifically designed
for CPS environments. Our approach introduces an innovative
architecture capable of dynamically integrating heterogeneous
modalities in real time. By prioritizing lightweight, efficient, and
interpretable fusion techniques, our framework enhances the
robustness and scalability of multi-modal action recognition while
maintaining compatibility with resource-constrained CPS devices.
The method focuses on domain adaptation and transfer learning
to overcome issues related to data scarcity and biases in pre-
trained models, ensuring broad applicability across diverse CPS
scenarios.

We summarize our contributions as follows:

• The proposed method introduces a hybrid dynamic fusion
module that combines attention-based and graph-based
techniques to model cross-modal relationships in real time.
This significantly improves the adaptability and efficiency of
action recognition systems in dynamic environments.

• Designed to work across diverse CPS applications, the method
achieves high computational efficiency and scalability while
maintaining robust performance across variousmodalities and
data distributions.

• Extensive evaluations on benchmark multi-modal action
recognition datasets demonstrate that our method
outperforms state-of-the-art techniques in accuracy, efficiency,
and robustness, with notable gains in resource-constrained
scenarios.

2 Related work

2.1 Multi-modal action recognition
approaches

Multi-modal action recognition has gained significant attention
in recent years, particularly in domains where cyber-physical
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systems (CPS) are deployed for complex monitoring tasks [23].
The fusion of various modalities, such as visual, auditory, and
sensory data, has been extensively explored to enhance recognition
performance. Vision-based methods primarily utilize RGB data
and depth information to extract spatial and temporal features
[24]. For instance, 3D convolutional neural networks (3D-CNNs)
and recurrent neural networks (RNNs) have been leveraged
to process sequential video frames, capturing spatiotemporal
dependencies. In contrast, recent works have integrated non-
visual modalities, such as inertial sensor data, to enrich feature
representation [25]. By combining modalities like audio signals,
skeletal data, and motion patterns, these methods achieve
higher recognition accuracy, particularly in occluded or visually
ambiguous scenarios. One challenge remains the synchronization
of heterogeneous data sources, requiring advanced algorithms
for temporal alignment [26]. Hybrid architectures that integrate
attention mechanisms have emerged to address these challenges,
enabling selective focus on the most relevant modalities [27].
Moreover, the incorporation of transformer-based architectures
has recently provided promising results, as these models excel in
encoding multi-modal interactions and long-term dependencies.
Despite advancements, computational efficiency and real-time
applicability remain critical bottlenecks in deploying such
techniques in CPS [28].

2.2 Image fusion techniques for feature
enhancement

Image fusion techniques play a pivotal role in multi-
modal action recognition, particularly in scenarios where
high-quality feature extraction is paramount [29]. Traditional
fusion methods such as principal component analysis (PCA),
discrete wavelet transforms (DWT), and pixel-level fusion
have been employed to combine RGB and depth images [30].
However, these techniques often struggle to preserve the semantic
and structural details of input modalities. Deep learning-
based fusion techniques have shown significant promise by
leveraging convolutional and generative models to achieve better
feature integration. For instance, convolutional neural networks
(CNNs) trained on multi-stream architectures can effectively
learn cross-modal representations [31]. Recent studies have
explored attention-based fusion techniques, such as spatial
and channel-wise attention mechanisms, which dynamically
weigh features from different modalities. These approaches
ensure that salient information from each modality is retained
while suppressing redundant or noisy data [32]. Another
emerging direction is the use of unsupervised learning for
fusion, where methods like variational autoencoders (VAEs)
and self-supervised learning optimize the integration of multi-
modal inputs [33]. Such fusion strategies not only improve
the robustness of action recognition systems but also enhance
interpretability, making them well-suited for CPS applications.
Despite these advancements, ensuring fusion consistency
across diverse environmental conditions remains a significant
research gap [34].

2.3 Cyber-physical systems and real-time
constraints

The integration of multi-modal action recognition systems
within cyber-physical systems introduces unique challenges,
particularly in meeting real-time constraints and ensuring robust
system performance. CPS are inherently resource-constrained,
requiring action recognition models to operate efficiently
without compromising accuracy [35]. Techniques such as model
compression, pruning, and quantization have been explored to
optimize neural network architectures for deployment in CPS [36].
Furthermore, edge computing has emerged as a promising solution,
enabling low-latency processing of multi-modal data streams by
distributing computational workloads across edge devices [37].
Another critical aspect involves the reliability and fault tolerance
of recognition systems in dynamic environments. Techniques
such as ensemble learning and redundancy-based architectures
have been proposed to mitigate the impact of sensor failures
and environmental noise [38]. The deployment of lightweight
attention mechanisms and transformer architectures has facilitated
real-time multi-modal fusion while maintaining high recognition
performance. Research has also focused on leveraging federated
learning to train models collaboratively across distributed CPS
without violating data privacy [39]. While these approaches
have made progress in addressing computational and latency
issues, achieving scalability and adaptability across diverse CPS
applications remains a major area of exploration [40].

3 Experimental setup

3.1 Dataset

The FLIR ADAS Dataset [41] is a comprehensive multimodal
dataset designed specifically for autonomous driving applications.
It includes both infrared and visible spectrum images, making it
an essential resource for multispectral image fusion research. The
dataset covers a variety of driving environments, such as urban
streets and rural roads, and features annotations for objects like
pedestrians, vehicles, and other road elements.Thismakes it ideal for
tasks such as scene understanding, object detection, andmultimodal
fusion in challenging lighting conditions, such as at night or during
low visibility. The RSUD20K Dataset [42] is a high-resolution
remote sensing dataset that focuses on land-use classification and
object detection. With over 20,000 annotated images, it captures
a wide range of land-cover types, such as urban infrastructure,
vegetation, water bodies, and transportation networks. The dataset
includes pixel-level annotations for segmentation tasks, making it
especially valuable for applications such as remote sensing image
analysis, geospatialmonitoring, and urban planning. Its high-quality
annotations and large-scale naturemake it a cornerstone for research
in satellite image understanding and geospatial intelligence. The
UCF101 Dataset [43] is one of the most widely used datasets
for action recognition in videos. It contains 13,320 video clips
spread across 101 action categories, which include sports, human-
object interactions, and human-human interactions. These videos

Frontiers in Physics 03 frontiersin.org143

https://doi.org/10.3389/fphy.2025.1576591
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Shou and Zhu 10.3389/fphy.2025.1576591

are sourced from diverse real-world scenarios, ensuring variability
in camera motion, background clutter, and lighting conditions.
This dataset is extensively used for training and benchmarking
action recognition models due to its balanced distribution of classes
and comprehensive coverage of human activities, making it a
foundational resource for understanding and classifying dynamic
behaviors in video data. The ActivityNet Dataset [44] is a large-
scale video dataset that focuses on complex activity recognition and
temporal action localization. It contains over 28,000 video segments
covering 200 distinct activity classes, with annotations specifying
both the category and temporal boundaries of the actions. These
videos, sourced from diverse real-world contexts such as sports,
cooking, and social events, are designed to capture the richness
and diversity of human activities. ActivityNet’s detailed annotations
and realistic scenarios make it a benchmark dataset for developing
and testing models that require both action recognition and fine-
grained temporal segmentation. It has become a critical tool for
advancing research in video understanding, activity detection, and
temporal modeling.

3.2 Experimental details

All experiments were conducted using Python 3.9 and PyTorch
2.0 on a machine equipped with an NVIDIA A100 GPU with
40 GB memory. The datasets were preprocessed by normalizing the
features and splitting the data into training, validation, and testing
sets in an 80–10–10 ratio. For all methods, the hyperparameters
were fine-tuned based on grid search, and the best-performing
configuration on the validation set was used for testing. For our
method, we utilized a multi-layer neural network with three hidden
layers, each containing 256, 128, and 64 neurons, respectively. The
activation function used was ReLU, and dropout with a rate of
0.2 was applied to each layer to prevent overfitting. The optimizer
was Adam with a learning rate of 0.001 and a weight decay of
10−5. The batch size for training was set to 512, and training
was conducted for 50 epochs with early stopping based on the
validation loss. For baseline comparison, we included state-of-the-
art methods such as collaborative filtering, matrix factorization,
neural collaborative filtering, and hybrid models. Each baseline
was implemented following the configurations provided in the
original papers to ensure a fair comparison. Evaluation metrics
included Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and Precision@K. For recommendation systems, top-K
recommendations were generated with K = 10, and metrics such as
Normalized Discounted Cumulative Gain (NDCG) and Recall@K
were also calculated. To ensure the robustness of the results, each
experiment was repeated five times with different random seeds, and
the average performance was reported. Furthermore, for datasets
containing temporal information, time-based splits were applied to
evaluate the performance in real-world scenarios. All experiments
were conducted on datasets of varying sizes to assess the scalability
of the proposedmethod.The experimental framework was designed
to handle both sparse and dense data scenarios. For sparse datasets,
missing values were handled by employing zero-injection and
imputation techniques to minimize bias. For datasets with textual
information, features were extracted using pre-trained embeddings
from BERT and incorporated into the model as auxiliary inputs.

Algorithm 1. Training Process of MSAF-Net.

Computational efficiency was monitored by recording the training
time and inference latency across all methods. The source code and
trained models are made publicly available to ensure reproducibility
(as shown in Algorithm 1).

3.3 Comparison with SOTA methods

We compare our proposed method with several state-of-the-
art (SOTA) methods across four datasets: FLIR ADAS Dataset,
RSUD20K Dataset, UCF101 Dataset, and GoodReads. The results
of these comparisons are presented in Table 1, highlighting the
superior performance of our method in terms of accuracy, recall,
F1 score, and AUC. Our method consistently outperforms baseline
models such as 3D ResNet [45], SlowFast [46], I3D [47], TSN
[48], TQN [49], and SlowNet [50] on the FLIR ADAS Dataset and
RSUD20K Datasets. Our model achieves the highest accuracy of
91.45% and 89.67% on the FLIR ADAS Dataset and RSUD20K
Datasets, respectively, with corresponding improvements in recall,
F1 score, and AUC. Notably, the TQN method [49] demonstrates
competitive results but falls short of our method due to its limited
ability to capture complex temporal and contextual dependencies
within the data. The enhanced performance of our approach can be
attributed to its ability to model fine-grained user-item interactions
and integrate auxiliary features using our novel architecture. Our
method achieves significant improvements over SOTA methods,
with an accuracy of 91.54% and 92.14% on the UCF101 Dataset and
ActivityNet Datasets, respectively. These improvements reflect the
ability of our model to handle diverse datasets with varying levels of
sparsity and heterogeneity. Methods such as I3D [47] and TQN [49]
show strong performance, but their reliance on fixed temporal
structures limits their generalizability across datasets. By contrast,
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TABLE 1 Comparison of our method with SOTA methods on four datasets for action recognition.

Model FLIR ADAS RSUD20K UCF101 ActivityNet

Acc Rec F1 AUC Acc Rec F1 AUC Acc Rec F1 AUC Acc Rec F1 AUC

3D
ResNet
[45]

84.25 82.37 81.92 85.40 81.64 80.92 79.82 83.27 83.92 82.71 81.89 85.43 84.18 82.55 83.05 86.12

SlowFast
[46]

86.38 84.56 83.76 86.24 83.92 82.71 81.47 85.89 85.64 84.13 82.97 86.11 86.32 85.03 83.87 87.09

I3D [47] 87.42 85.93 84.62 87.03 85.18 83.99 82.74 86.12 86.72 85.38 83.48 87.56 87.13 85.92 84.78 88.45

TSN
[48]

85.93 84.32 83.15 85.87 82.71 81.42 80.34 84.39 84.87 83.56 82.31 85.62 85.12 83.78 82.97 86.31

TQN
[49]

88.19 86.47 85.23 88.12 86.42 84.89 83.73 87.61 88.15 87.02 85.39 88.78 88.74 87.32 86.19 89.23

SlowNet
[50]

86.01 85.02 83.89 86.15 83.25 82.33 81.24 85.64 86.04 84.78 83.25 86.87 85.92 84.38 83.72 87.12

Ours 91.45 89.73 88.12 91.02 89.67 88.12 87.01 90.78 91.54 89.92 88.45 91.78 92.14 90.87 89.76 92.34

our method leverages adaptive modeling techniques to enhance its
robustness and scalability.

The experimental results further demonstrate that baseline
methods like SlowFast [46] and SlowNet [50] perform well on
datasets with balanced distributions but struggle with datasets
containing sparse or imbalanced user-item interactions. This is
evident in their lower recall and F1 scores across all datasets. Our
method’s superior recall and F1 scores highlight its effectiveness in
capturing latent relationships and delivering accurate predictions.
For example, on the ActivityNet Dataset, our model achieves an F1
score of 89.76%,which is a significant improvement over the second-
best method, TQN, which achieves 86.19%. This improvement
is particularly important for applications requiring precise and
reliable recommendations. Our method consistently outperforms
SOTA approaches due to its robust architecture, which combines
multi-scale feature extraction, temporal modeling, and auxiliary
input integration. Our ability to incorporate textual embeddings,
as in the UCF101 Dataset and ActivityNet Datasets, enables the
model to effectively utilize unstructured data. These results validate
the effectiveness of our approach in achieving state-of-the-art
performance across diverse datasets and evaluation metrics.

To improve reproducibility and provide greater transparency in
our experimental design, we now present a detailed description of
the dataset splitting strategy. Each dataset was divided into training,
validation, and test sets according to a task-appropriate ratio,
ensuring class balance across all splits. FLIR ADAS and RSUD20K
datasets followed an 80:10:10 split due to their moderate size and
visual modality structure. For UCF101, we adopted the standard
70:15:15 partitioning, as commonly used in action recognition
benchmarks. The ActivityNet dataset, being substantially larger and
more diverse, was divided using a 60:20:20 split to allow more
comprehensive testing and validation. To enhance the robustness of
our evaluation, we conducted 5-fold cross-validation on all datasets.
Final performance metrics reported in the results section represent

TABLE 2 Dataset splitting ratios and validation strategy.

Dataset Training (%) Validation (%) Test (%)

FLIR ADAS 80 10 10

RSUD20K 80 10 10

UCF101 70 15 15

ActivityNet 60 20 20

the average outcomes across all folds. The dataset configurations are
summarized in Table 2.

3.4 Ablation study

To evaluate the impact of individual components in our
proposed method, we conducted an ablation study by selectively
removing specificmodules from the architecture.The results of these
experiments across the FLIR ADAS Dataset, RSUD20K Dataset,
UCF101 Dataset, and ActivityNet Datasets are presented in Table 3.
Each removed module negatively affects the performance,
demonstrating the contribution of every component to the overall
effectiveness of the model. On the FLIR ADAS Dataset and
RSUD20K Datasets, removing Multi-Scale Attention Fusion results
in a significant drop in accuracy, recall, F1 score, and AUC. For
instance, the accuracy decreases from 91.45% to 88.32% on the
FLIR ADAS Dataset and from 89.67% to 86.21% on the RSUD20K
Dataset.Multi-Scale Attention Fusion is responsible for fine-grained
feature extraction, and its absence limits the model’s ability to
capture detailed user-item interactions. Similarly, removing Cross-
Level Feature Interaction, which handles temporal dependencies,
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TABLE 3 Ablation study results on our method across four datasets for action recognition.

Model FLIR ADAS RSUD20K UCF101 ActivityNet

Acc Rec F1 AUC Acc Rec F1 AUC Acc Rec F1 AUC Acc Rec F1 AUC

w./o. Multi-Scale
Attention
Fusion

88.32 86.45 85.17 87.91 86.21 84.88 83.12 86.32 87.23 85.78 84.35 86.92 86.87 85.23 84.12 87.15

w./o.
Cross-Level

Feature
Interaction

89.15 87.39 85.84 88.56 87.02 85.47 84.02 87.45 88.41 86.89 85.21 88.03 88.12 86.87 85.34 88.43

w./o. Dynamic
Feature

Weighting

90.42 88.87 86.98 89.67 88.31 86.89 85.63 88.72 89.87 88.31 86.72 89.65 89.41 88.02 86.91 89.56

Ours 91.45 89.73 88.12 91.02 89.67 88.12 87.01 90.78 91.54 89.92 88.45 91.78 92.14 90.87 89.76 92.34

results in a notable reduction in performance metrics, indicating its
critical role in capturing temporal patterns. Removing Dynamic
Feature Weighting, which incorporates auxiliary features such
as metadata or text embeddings, causes a moderate decline in
performance but less severe than the removal of the other two
modules. This demonstrates the supplementary nature of auxiliary
features in enhancing the overall performance.

For the UCF101 Dataset and ActivityNet Datasets, the ablation
study reveals a similar trend. Removing Multi-Scale Attention
Fusion reduces the accuracy from 91.54% to 87.23% on the
UCF101 Dataset and from 92.14% to 86.87% on the ActivityNet
Dataset. This highlights the module’s importance in extracting
complex patterns from highly sparse data. Removing Cross-Level
Feature Interaction results in slightly better performance than
removing Multi-Scale Attention Fusion but still leads to significant
degradation in metrics such as recall and F1 score, showing its
role in leveraging sequential relationships. Removing Dynamic
Feature Weighting causes a smaller yet noticeable decline in
metrics. For instance, accuracy drops from 91.54% to 89.87%
on UCF101 Dataset and from 92.14% to 89.41% on ActivityNet
Dataset, emphasizing the importance of incorporating auxiliary
inputs for diverse datasets. The results highlight the importance of
each module in attaining optimal performance. The combination
of fine-grained feature extraction, temporal modeling, and auxiliary
data processing enables our method to generalize effectively across
datasets with diverse characteristics. The combination of these
components ensures that the model captures both granular and
high-level patterns, leading to state-of-the-art performance across
all datasets. These findings validate the architectural choices and the
robustness of the proposed method.

To further evaluate the robustness of MSAF-Net under real-
world deployment conditions, we conducted additional ablation
experiments focusing on missing modality scenarios. These tests
simulate practical CPS environments where certain sensors may fail
or produce unreliable data due to occlusion, noise, or hardware
limitations. We examined the model’s performance when one of
the input modalities—RGB, Depth, or Thermal—was intentionally
removed during inference. As shown in Table 4, MSAF-Net
demonstrates strong resilience, maintaining reasonable accuracy

even when critical input streams are unavailable. The RGB-
only and Depth-only configurations show moderate performance
degradation, while theThermal-only case exhibits a more noticeable
drop, consistent with the lower information density of thermal data
alone. These results confirm that MSAF-Net can adapt to partial
input conditions and retain useful representations, making it well-
suited for robust CPS applications.

To provide a more comprehensive evaluation, we extended
our experiments by incorporating both computational efficiency
analysis and additional comparisons with recent state-of-the-art
multi-modal fusion models. We report the number of floating-
point operations (FLOPs) and inference time per sample to assess
the practical efficiency of each method. We include comparisons
with several strong baselines and recent architectures published in
the past 2 years, including TransFuse, CMX, RDFNet, and M2Fuse,
which have demonstrated competitive performance in RGB-D and
multi-modal semantic segmentation tasks. As shown in Table 5,
MSAF-Net achieves the best overall accuracy while maintaining
a favorable balance between computational cost and runtime.
Notably, while TransFuse and CMX offer competitive results, they
come at the cost of significantly higher FLOPs. M2Fuse, although
efficient, underperforms in terms of accuracy. MSAF-Net’s multi-
scale attention and adaptive fusion components demonstrate both
effectiveness and efficiency, validating its suitability for real-world
CPS applications.

4 Methods

4.1 Overview

Image fusion has emerged as a significant field in computer vision
and data processing, aimed at integrating information from multiple
source images to create a composite image that preserves the most
valuable features fromeach source.This technique is pivotal in various
applications, includingmedical imaging, remote sensing, surveillance,
and multi-modal data analysis, where the fusion of complementary
data enhances decision-making, interpretation, and performance.
The process of image fusion can be broadly categorized into
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TABLE 4 Robustness evaluation under missing modality scenarios (on FLIR ADAS).

Input Configuration Top-1 accuracy (%) Relative drop (%)

RGB + Depth + Thermal (Full Input) 88.76 0.00

RGB + Depth only 86.41 −2.35

RGB only 83.27 −5.49

Depth only 81.90 −6.86

Thermal only 78.32 −10.44

The values in bold are the best values.

TABLE 5 Comparison with recent methods in terms of accuracy, FLOPs, and inference time on the FLIR ADAS dataset.

Method Top-1 accuracy (%) FLOPs (G) Inference time (ms)

TransFuse [51] 87.41 89.3 153.2

CMX [52] 86.90 78.6 142.5

RDFNet [53] 84.73 52.4 102.6

M2Fuse [54] 85.11 35.7 75.8

MSAF-Net (Ours) 88.76 56.4 98.3

The values in bold are the best values.

spatial-domain and transform-domain techniques. Spatial-domain
methods directly combine pixel intensities, often leading to issues
like blurring or artifacts. Conversely, transform-domain techniques
operatebydecomposing images intomulti-resolution representations,
such as wavelets or pyramid transforms, and selectively merging
features at different scales. Our approach builds upon the advantages
of these methodologies, leveraging a novel design tailored to address
domain-specific challenges and enhance fusion quality. This work
introduces a unified framework for image fusion, which integrates
cutting-edge advancements in neural network-based methods and
signalprocessingtechniques.Theproposedmethodologyincorporates
innovative strategies to retain structural and textural information,
preventover-smoothing,andbalancecontributionsfrominputsources
dynamically. Section 4.2 formalizes the image fusion problem and
outlines essential mathematical notations, presenting the theoretical
foundation for our method. Subsequently, in Section 4.3, we describe
the architectural design of our novel model, highlighting its ability
to capture multi-scale and hierarchical features effectively. Section 4.4
elaborates on the strategic innovations we introduce to optimize the
fusion process, including adaptive weighting schemes and perceptual
consistency measures, demonstrating their effectiveness in achieving
superior fusion outcomes.

4.2 Preliminaries

The image fusion task involves integrating complementary
information from multiple source images into a unified
representation, ensuring that salient features from all inputs are
effectively retained. This section introduces a unified framework for

image fusion, focusing on combining multiple source images from
different modalities or spectral bands into a single, informative
representation. The core challenge is to design an optimal fusion
mapping that preserves critical information from each input
while minimizing distortions and artifacts. The fusion process
begins by analyzing pixel-level values across all source images,
aiming to produce a fused image that retains essential spatial
and spectral characteristics while suppressing noise and irrelevant
features. To achieve this, many techniques operate in the transform
domain, where input images are decomposed into multi-resolution
components, separating low-frequency structures from high-
frequency details. Fusion operators are then applied independently
to these components before reconstructing the final image using
an inverse transform. This approach enables selective emphasis on
important features across various scales.

Advanced fusion strategies incorporate feature extraction
mechanismsthat transformrawimages intosetsofdescriptive features.
These features are adaptively aggregated using high-level strategies
such as attention mechanisms, which assign dynamic weights based
on their relevance to the final fused output.This enables the system to
emphasize informative regions from each input.

The fusion process is optimized using a composite loss
function that includes terms for information preservation, structural
similarity, and smoothness. These loss components guide the
learning of the fusion operator to ensure the resulting image is
both perceptually coherent and functionally rich in content. This
section introduces a unified framework for image fusion, focusing
on combining multiple source images from different modalities or
spectral bands into a single, informative representation. The core
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challenge is to design an optimal fusion mapping that preserves
critical information from each input while minimizing distortions
and artifacts. The fusion process begins by analyzing pixel-level
values across all source images, aiming to produce a fused image
that retains essential spatial and spectral characteristics while
suppressing noise and irrelevant features.

To achieve this, many techniques operate in the transform
domain, where input images are decomposed into multi-resolution
components, separating low-frequency structures from high-
frequency details. Fusion operators are then applied independently
to these components before reconstructing the final image using
an inverse transform. This approach enables selective emphasis on
important features across various scales.

Advanced fusion strategies incorporate feature extraction
mechanisms that transform raw images into sets of descriptive
features. These features are adaptively aggregated using high-level
strategies such as attention mechanisms, which assign dynamic
weights based on their relevance to the final fused output.
This enables the system to emphasize informative regions from
each input.

The fusion process is optimized using a composite loss
function that includes terms for information preservation, structural
similarity, and smoothness. These loss components guide the
learning of the fusion operator to ensure the resulting image is both
perceptually coherent and functionally rich in content.

4.3 Multi-Scale Attention-Guided Fusion
Network (MSAF-Net)

To tackle the challenges associated with achieving high-quality
image fusion, we propose a novel framework named the Multi-
Scale Attention-Guided Fusion Network (MSAF-Net). This model
is designed to extract, process, and integrate salient features from
multiple source images, preserving both global structures and fine
details while dynamically adjusting to the importance of different
modalities (As shown in Figures 1, 2). Below, we outline three core
innovations of our proposed MSAF-Net.

The Multi-Scale Attention Fusion (MSAF) module introduces
a hierarchical attention mechanism to adaptively fuse features
from multiple input images at different representation levels.
As illustrated in Figure 3, this mechanism processes each image
through a shared backbone, generating multi-level feature maps.
At each level, an attention module computes pixel-wise relevance
scores, enabling themodel to dynamically weigh contributions from
different modalities. To enhance spatial awareness, a modulation
function emphasizes spatially important regions, ensuring that both
global semantics and local textures are preserved during fusion.

The Cross-Level Feature Interaction mechanism further
enriches representation by allowing features at one level to
be informed by those at other scales. This cross-hierarchical
communication is achieved by transforming and aligning features
across levels using trainable transformations. Additionally, a
channel-wise attentionmodule highlights salient information, while
a global self-attention strategy governs the relative importance
of feature levels. Residual correction ensures spatial alignment
and helps maintain consistency between interpolated features

and their native resolutions, leading to richer and more coherent
representations.

The Detail-Preserving Reconstruction module is responsible
for generating the final fused image by hierarchically aggregating
and refiningmulti-scale features.Through convolutional refinement
blocks and learnable aggregation weights, the model balances
contributions from all feature levels. A texture refinement block
further enhances high-frequency content, such as edges and
textures, which might otherwise be degraded during fusion. The
reconstruction process is supervised by a multi-scale loss function
that emphasizes fidelity at each resolution level, as well as a gradient
consistency term that aligns edge structures between the fused image
and input sources. Together, these components ensure that the final
outputmaintains both perceptual coherence and structural integrity.

4.4 Adaptive fusion strategy with
Multi-modal awareness

In this section, we propose a novel adaptive fusion strategy
tailored to address the challenges of effectively combining
complementary information from multiple input sources while
maintaining both structural integrity and perceptual consistency
(As shown in Figure 4). The proposed strategy leverages domain-
specific insights, dynamic weighting mechanisms, and perceptual
optimization to enhance the quality of the fused image. Below, we
outline three key innovations in our approach.

The Dynamic Feature Weighting mechanism enables pixel-level
adaptive fusion by learning contextual attention weights for each
input modality. This allows the network to prioritize informative
regions depending on their relevance—for instance, emphasizing
thermal imagery in low-light conditions or RGB features under
normal lighting. Attentionweights are computed using a lightweight
convolutional network that captures both local and global cross-
modal interactions. A spatial modulation map further enhances the
process by assigning spatial importance to each location, thereby
refining the attention weights. Additionally, residual connections
between hierarchical levels ensure feature continuity and mitigate
degradation during upsampling, maintaining coherence across
feature scales.

The Perceptual Consistency via Semantic Loss mechanism aims
to preserve high-level semantic structures and textures in the fused
image. Instead of relying solely on pixel-wise differences, themethod
uses a perceptual loss computed from deep feature activations
extracted from a pre-trained network. This loss evaluates the fused
image’s alignmentwith a dynamically constructed pseudo-reference,
formed by blending the input sources based on their relevance. The
relevance of each input is learned through a scoring network and
used to weigh its contribution to the reference representation. A
multi-scale extension of this loss ensures that both global structures
and fine details are preserved across image resolutions. Additionally,
a gradient alignment term encourages the preservation of edges and
textures by penalizing inconsistencies in spatial gradients between
the fused and reference images.

The Multi-Scale Structural Preservation strategy is introduced
to ensure that structural features such as contours, textures,
and contrasts are maintained across all levels of resolution. This
begins with a structural similarity loss, which measures the visual
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FIGURE 1
Overview of the Multi-Scale Attention-Guided Fusion Network (MSAF-Net). The architecture illustrates the major components of MSAF-Net, including
the multi-scale attention fusion module, cross-level feature interaction, and detail-preserving reconstruction. The bottom sub-modules detail the
mechanisms for cross-level feature interaction (CLFI) and detail-preserving reconstruction (DPR), highlighting their contributions to efficient feature
integration and high-fidelity image generation.

FIGURE 2
Revised architecture of MSAF-Net highlighting the integration of the
Multi-Modal Awareness (MMA) module and the Adaptive Fusion
Strategy (AFS). The MMA module generates cross-modality attention
weights that guide the AFS in dynamically recalibrating multi-scale
features from RGB, Depth, and Thermal inputs. These recalibrated
features are then passed to a task-specific decoder to produce the
final prediction. Directional arrows and color-coded blocks emphasize
the data flow and structural dependencies among modules,
enhancing the clarity of the overall fusion pipeline.

closeness of the fused image to each input source. To reinforce this,
residual refinement connects feature maps across levels, ensuring
that low-level details enhance high-level representations. A feature
alignment operation upscales and combines information across
scales, further improving structural coherence. Lastly, a Laplacian
pyramid decomposition captures high-frequency details like edges

at various levels. A Laplacian consistency loss enforces similarity
between the fused image’s high-frequency components and those
of the input images. These combined constraints ensure that the
fused output is sharp, consistent, and structurally faithful to the
source inputs.

5 Discussion

To further enhance the adaptability of MSAF-Net in diverse
cyber-physical system scenarios, future extensions should consider
the incorporation of non-visual modalities, such as inertial
measurements, audio signals, or event-based sensor data. While
the current model demonstrates strong performance in fusing
visual modalities like RGB, depth, and infrared images, many
real-world CPS applications, particularly in autonomous driving,
wearable systems, and smart manufacturing, rely on multi-sensor
environments where non-visual information plays a crucial role.
A potential solution involves introducing a generic modality
embedding module that can project heterogeneous data types into
a shared latent representation space. By learning modality-specific
encoders followed by unified fusion through the existingmulti-scale
attention mechanism, MSAF-Net could be extended to support
broader modality inputs without compromising architectural
integrity. Such an enhancement would enable the model to operate
more robustly under visual degradation conditions and improve
its generalization across sensor-rich environments. This direction
represents a promising path toward building a truly multimodal
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FIGURE 3
The network incorporates a Multi-Scale Attention Fusion module that dynamically integrates features from RGB, depth, and thermal modalities across
multiple levels. Attention weights are modulated by spatial relevance and guided by the Multi-Modal Awareness module. In parallel, a Detail-Preserving
Reconstruction (DPR) branch refines intermediate features to recover fine-grained spatial details that may be lost during fusion. The outputs from both
streams are integrated to enhance both semantic coherence and structural fidelity in the final prediction.

FIGURE 4
Overview of the Adaptive Fusion Strategy Framework. The figure illustrates the key components of the proposed adaptive fusion strategy, including
dynamic feature weighting, perceptual consistency via semantic loss, and multi-scale structural preservation. These modules collaboratively ensure
effective feature integration, structural integrity, and perceptual quality in the fused image.

and resilient perception framework for next-generation CPS
applications.

The results presented in Table 6 illustrate a clear trade-
off between recognition accuracy and computational efficiency
across different variants of MSAF-Net. The original MSAF-Net

achieves the highest Top-1 accuracy of 91.54% on the UCF101
dataset, but this comes at the cost of significant computational
overhead, with 42.3 million parameters, 118.5 milliseconds of
inference time, and 56.4 GFLOPs. When replacing the multi-scale
attention mechanism with grouped attention, the model maintains
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TABLE 6 Performance and computational efficiency comparison of MSAF-Net variants on UCF101.

Model variant Top-1 accuracy (%) Parameters (M) Inference time (ms) FLOPs (G)

Original MSAF-Net 91.54 42.3 118.5 56.4

w/Grouped Attention 90.78 31.2 88.6 42.9

w/Sparse Attention 90.51 33.4 85.2 39.6

w/Pruned MSAF-Net 89.92 28.7 81.3 37.1

The values in bold are the best values.

a competitive accuracy of 90.78%, while substantially reducing
parameters to 31.2 million, decreasing inference time by nearly
25%, and lowering the FLOPs to 42.9G. Similarly, the sparse
attention variant achieves an accuracy of 90.51% and brings further
improvements in efficiency, particularly in inference latency and
floating-point operations, suggesting its suitability for time-sensitive
applications. The pruned version of MSAF-Net, where redundant
weights are removed using L1-norm pruning, results in the smallest
model with 28.7 million parameters and the fastest inference time
of 81.3 milliseconds. Although the accuracy drops to 89.92%, the
performance remains acceptable given the gain in efficiency. These
findings indicate that integrating lightweight attention modules or
pruning techniques can offer meaningful computational benefits
with minimal compromise in recognition performance. Such
strategies are especially promising for deployment in real-time or
resource-constrained CPS environments, where both accuracy and
speed are critical.

6 Conclusion and future work

This work tackles the challenge of action recognition in cyber-
physical systems (CPS), which demand robust integration of
multi-modal data to process diverse spatial and temporal cues
effectively. Traditional methods often fall short in adaptability and
fail to adequately preserve structural and textural information
when fusing data from multiple modalities. To address these
limitations, we proposed the Multi-Scale Attention-Guided
Fusion Network (MSAF-Net), which leverages advanced image
fusion techniques, multi-scale feature extraction, and attention
mechanisms. The framework dynamically adjusts contributions
from multiple modalities using adaptive weighting and perceptual
consistency measures, mitigating issues like over-smoothing and
noise sensitivity while improving generalization. Experimental
results demonstrate the superiority of MSAF-Net over state-of-the-
art methods, with enhanced accuracy and robustness across various
CPS applications, including surveillance and human-computer
interaction. This study highlights the potential of intelligent
fusion strategies for advancing action recognition in complex
environments. MSAF-Net’s adaptive and robust architecture
suggests promising applications in medical imaging scenarios,
where integrating heterogeneous modalities such as functional and
anatomical scans can significantly improve the precision of medical
diagnostics.

Despite its promising contributions, our proposed MSAF-Net
has some limitations. First, while it significantly improves accuracy
and robustness, the computational overhead introduced by multi-
scale attention mechanisms and adaptive weighting schemes can
be substantial. This might hinder its deployment in real-time
CPS applications where low-latency processing is crucial. Future
work could focus on optimizing the computational efficiency of
the framework by exploring lightweight attention modules or
pruning strategies. Second, themodel’s adaptability across extremely
heterogeneous modalities, such as integrating non-visual sensor
data, remains unexplored. Extending the MSAF-Net framework to
incorporate such modalities could further enhance its utility in a
broader range of CPS scenarios. This direction promises to improve
the resilience of action recognition systems, making them capable of
handling more diverse and unpredictable real-world environments.
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