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Editorial on the Research Topic

Advanced data-driven uncertainty optimization for planning, operation, 
and analysis of renewable power systems

s

The global energy landscape is undergoing a profound transformation driven by 
the imperative to decarbonize power systems and integrate renewable energy at an 
unprecedented scale. This transition, while essential for achieving climate goals, introduces 
significant technical challenges stemming from the inherent uncertainty, variability, and 
limited inherent stability characteristics of renewable generation. The Research Topic 
“Advanced Data-Driven Uncertainty Optimization for Planning, Operation, and Analysis 
of Renewable Power Systems” addresses these critical challenges by presenting a collection 
of innovative studies that leverage advanced computational intelligence, robust optimization 
frameworks, and adaptive control paradigms to enhance the reliability, resilience, and 
economic efficiency of future power systems.

A predominant focus across the contributions is the development of sophisticated 
methodologies to quantify and manage the uncertainties associated with renewable 
generation and load demand. Moving beyond traditional robust optimization, several 
studies propose data-driven frameworks that harness historical data to construct more 
accurate uncertainty sets. One notable contribution introduces a polyhedral-ellipsoidal 
hybrid uncertainty set for industrial park microgrids, effectively reducing solution 
conservatism while maintaining robustness (Ru et al.). Another significant advancement 
employs a distributionally robust optimization approach grounded in the Wasserstein 
metric, demonstrating remarkable improvements in out-of-sample performance and 
substantial cost reductions compared to conventional methods (Li et al.). Furthermore, the 
integration of transmission and distribution system coordination is addressed through a bi-
level planning model for distributed energy storage, which incorporates Gaussian mixture 
model-based chance constraints to ensure voltage security under extreme weather events 
(Xue et al.).

In the realm of system operation and control, the collected research presents 
groundbreaking strategies to mitigate the impacts of renewable intermittency on 
dynamic performance. The critical issue of frequency stability in low-inertia systems 
is tackled through a novel data-model fusion architecture that synergistically 
combines physics-based modeling with neural network error correction for highly
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accurate frequency nadir prediction (Li et al.,). For real-time 
frequency regulation, an intelligent cloudbased PI controller 
embodies a significant leap beyond conventional control schemes, 
enabling adaptive parameter tuning to maintain stability under 
stochastic wind power fluctuations and load disturbances (Li et al.). 
In voltage control applications, a reinforcement learning paradigm 
utilizing Q-learning and voltage sensitivity analysis demonstrates 
superior capability in coordinating doubly-fed induction generator-
based wind farms for effective voltage support during grid faults 
(Song et al.). Complementing these approaches, a non-linear control 
strategy based on logic bang-bang funnel control provides a robust 
solution for fault current limitation in full-scale converter-interfaced 
wind generators, exhibiting insensitivity to system non-linearities 
and external disturbances (Li et al.).

The proliferation of distributed energy resources necessitates 
innovative frameworks for their coordinated management and 
market integration. Research in this Research Topic introduces 
advanced game-theoretic and optimization models that balance 
economic objectives with technical constraints. A hierarchical 
bi-level optimization model, formulated within a Stackelberg 
game framework and incorporating soft open point technology, 
successfully enhances both economic efficiency and voltage security 
in multi-prosumer distribution systems (Lou et al.). The untapped 
potential of telecommunications infrastructure is harnessed through 
an optimal scheduling model that aggregates base station energy 
storage to provide voltage support services to the distribution 
network, based on accurate load forecasting via long short-term 
memory networks (Sun et al.). Additionally, the strategic integration 
of electric vehicles via vehicle-to-grid technology is formalized 
through a two-stage stochastic programming model that effectively 
resolves load imbalance problems in low-voltage distribution 
networks (Lu et al.).

Economic viability and investment efficiency are paramount 
for the sustainable development of renewable energy systems. 
Contributions in this area include a multiobjective investment 
portfolio optimization model based on data envelopment analysis, 
which identifies Pareto-optimal solutions for grid infrastructure 
planning under high renewable penetration (Wu et al.). For energy 
storage systems, a comprehensive life-cycle revenue model provides 
crucial insights into optimal operational strategies and economic 
end-of-life determination in electricity spot markets (Li et al.). 
The emerging concept of shared energy storage is advanced 
through a planning model based on the adaptive alternating 
direction method of multipliers, which simultaneously enhances 
computational efficiency, protects prosumer privacy, and improves 
renewable energy self-consumption (Zhao et al.).

The integration of diverse power electronic interfaces presents 
new stability challenges that are addressed through several 
pioneering studies. The dynamic interaction between grid-following 
and grid-forming converters during fault conditions is thoroughly 
analyzed, leading to the development of a hybrid fault ride-through 
control strategy that ensures stability through coordinated phase 
angle adjustment and current limitation. For power system analysis 
under uncertainty, a support vector regression-based interval 
power flow prediction method offers a computationally efficient 
solution for real-time assessment in distribution networks with 
high distributed generation penetration (Liang et al.). Addressing 
the fundamental need for accurate frequency response modeling, a 

generalized system frequency response model incorporating virtual 
synchronous machine technology enables comprehensive analysis 
of frequency dynamics in renewable-rich power systems (Song 
et al.). Finally, system security is further enhanced through a two-
stage transient stability assessment model that integrates ensemble 
learning with cost-sensitive classification, significantly improving 
assessment accuracy for critical samples under renewable energy 
and load fluctuations (Lei et al.).

In synthesizing these contributions, this Research Topic 
demonstrates the transformative potential of data-driven 
optimization and intelligent control methodologies in addressing 
the multifaceted challenges of modern power systems. The collected 
research not only provides immediate solutions to pressing 
operational problems but also establishes foundational frameworks 
for the future development of resilient, efficient, and sustainable 
energy infrastructures. As the global energy transition accelerates, 
we anticipate that these advancements will inspire continued 
innovation and collaboration across disciplines, ultimately paving 
the way for a secure and decarbonized energy future.
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AADMM based shared energy
storage planning for resilience
improvement of renewable
energy stations
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Pengfei Gao and Ruixiao Zhang
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The exponential proliferation of renewable energy has resulted in a significant
mismatch between power supply and demand, especially during extreme events.
This incongruity presents challenges in efficiently harnessing renewable energy
and enhancing the resilience of the power grid. To address this issue, this paper
proposes shared energy storage (SES) planning based on the adaptive alternating
direction method of multipliers (AADMM). The objective is to fully leverage SES,
enhance the local consumption level of renewable energy, ensure power grid
resilience, and reduce operational costs. First, to ensure the effective utilization of
SES while minimizing initial investment and construction costs, a planning model
for SES is formulated. Secondly, to maximize the benefits for multiple prosumers
within the renewable energy and SES station, a profit maximization model for
multiple prosumers is established. Lastly, to guarantee the privacy security of SES
and multi-prosumers while optimizing computational efficiency, a distributed
computing model for SES based on AADMM is developed. The results of the
example show that the proposed model can not only reduce the cost of 47.96
CNY, but also increase the power self-sufficiency rate by 21.86%. In addition,
compared with the traditional distributed optimization, the number of iterations
of AADMM is increased by 47.05%, and the computational efficiency is increased
by 54.67%. In addition, market prices have a great impact on energy trading, and
the impact of market pricing on the operation of the park is not considered in our
current research. In this case, our future research aims to consider how to price
reasonably between prosumers and between prosumers and SES, so as to realize
the stable participation of each subject in the energy market.

KEYWORDS

renewable energy, shared energy storage, planning, distributed optimization, resilience

1 Introduction

With the continuous advancement of the “dual-carbon” goals, China’s photovoltaic
(PV) has experienced rapid development, with large-scale integration into the user-side
becoming a future trend (He et al., 2021; Li R. et al., 2024). However, the intermittent and
fluctuating characteristics of PV output poses challenges to the stable operation of
traditional power grids (Peterssen et al., 2024). Generally, two-part electricity pricing is
adopted in PV and energy storage integrated industrial parks. The two-part electricity price
can guide prosumers to use electricity during the trough period, so as to smooth the load
curve of the power system, reduce the peak load of the system, and improve the stability and
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power supply capacity of the power system. Energy storage can
utilize the peak-valley price difference to store energy, alleviate the
impact of PV output fluctuations, and promote the local
consumption of PV (Yan et al., 2023). Therefore, the two-part
tariff has significant advantages in reducing power supply costs
and promoting the rational application of resources.

Existing energy storage business modes are primarily divided into
distributed energy storage and shared energy storage (SES) (Abdalla
et al., 2023). However, the high initial investment costs and longer
payback periods of distributed energy storage impose significant
economic pressure on both producers and consumers. Additionally,
existing distributed energy storage systems often operate in a “self-
storage, self-use” mode, leading to substantial idle energy storage
resources on the user-side and revealing significant issues of
investment inefficiency, thus failing to achieve maximum utilization
efficiency of energy storage systems (Li and Okur, 2023; Wald et al.,
2023; Ji et al., 2024). In contrast, SES can complement the load demands
of multiple prosumers, enhancing the efficiency of energy storage
utilization and fostering a cooperative and mutually beneficial
relationship between SES and prosumers (Zhu et al., 2023; Aghdam
et al., 2023; Alfaverh et al., 2023). Moreover, SES can distribute the
initial investment and construction costs among multiple prosumers,
thereby reducing the initial investment risks for each participant.
Therefore, promoting energy sharing between SES and prosumers
has become the core strategy to enhance the energy efficiency and
economic viability of energy parks (Ruan et al., 2024; Xie et al., 2024).

PV and energy storage integrated stations typically comprise
multiple prosumers. Existing studies on SES often focus on the
centralized optimization of SES and prosumers. For instance, in
(Tercan et al., 2022), authors targeted communities by optimizing
the capacity of distributed SES on the user-side based on energy
sharing, with the objective functions of minimizing investment
payback periods and line losses. In (Li L. et al., 2024), industrial
parks with different electricity consumption characteristics were
analyzed. It investigates energy interaction mechanisms between
decentralized SES and multiple industrial users, with the
optimization configuration of distributed SES aiming to
maximize the overall net profit of multiple users. Additionally, a
centralized optimization and scheduling model for multiple parks
through electric-thermal mutual aid was proposed in (Liu Z. et al.,
2023), effectively improving the overall energy utilization efficiency
and operational economics by coupling different energy sources.

In the SES model, information security issues involving various
prosumers pose a significant challenge. A widely adopted approach to
address such challenges is the alternating direction method of
multipliers (ADMM). Each prosumer can use ADMM to
independently solve their respective objective utility functions. The
Lagrange multipliers are updated based on the constraints, achieving
interactive power balance among multiple prosumers, and SES within
the PV storage park. For instance, in (Maneesha and Swarup, 2021), the
ADMM algorithm was employed to solve a proposed model for the
operation of multiple microgrids and obtain global interactive power
quantities. Authors in (Sun et al., 2024) introduced an optimized model
for combined transmission and distribution units, considering the state
of charge constraints for energy storage. This model was decomposed
into transmission unit combination models and distribution network
economic dispatch models based on distributed optimization theory,
with ADMM used for iterative solving. While these studies utilizing

ADMM address privacy concerns between participants, they do not
fully guarantee the solution efficiency of distributed optimization (Chen
et al., 2017). In the process of solving the traditional ADMM, due to the
different initial values of the penalty factor, the number of iterations is
too numerous and the iteration time is too lengthy. In order to solve the
above problems, some literatures propose an adaptive ADMMmethod
to improve the solution efficiency, and the adaptive ADMM improves
the distributed convergence speed by changing the penalty factor of
each iteration. For example, Zhao et al. (2024) proposes a novel ADMM
with adaptive penalty parameter to hedge against wind fluctuation,
which further ensures improves the sensitivity of the penalty parameter.
Cui et al. (2020) adopts the ADMMwith adaptive penalty parameters to
solve the energy cooperation between prosumers and community
energy storage to improve the convergence performance. The
adaptive ADMM (AADMM) promotes the convergence of variables
by dynamically adjusting the penalty parameter during the iteration
process, thus effectively reducing the dependence of ADMM on the
initial value and avoiding the problem of slow convergence caused by
improper penalty factor.

To address these issues, this paper proposes a research approach
for photovoltaic and energy storage integrated park with SES
planning based on the adaptive alternating direction method of
multipliers (AADMM). Firstly, an SES capacity planning model is
established to ensure the economic feasibility of SES configuration.
Secondly, to maximize the benefits for multiple prosumers, an
economic model for multiple prosumers is developed based on
two-part electricity pricing. Subsequently, AADMM is applied to
perform distributed optimization on the established SES capacity
planning model and the economic benefit model for multiple
prosumers. Finally, simulation verification is conducted in a
photovoltaic storage park containing multiple prosumers.

2 Planning of SES under multiple
PV stations

Independently configuring energy storage for each prosumer
entails challenges such as high configuration costs, low energy
storage utilization efficiency, and a reduced on-site consumption
rate of new energy sources (Zhang et al., 2024). In contrast, when
multiple prosumers with diverse load demands collaborate with SES,
they can enhance the on-site consumption level of renewable energy,
thereby reducing the operational costs of the PV station integrated
park microgrid. Figure 1 illustrates the operational framework of
SES in the PV integrated park studied in this paper.

The PV storage park includes N prosumers, each of which is
equipped with a separate PV system, and the prosumers and SES are
connected to the grid. On the premise that the PV system of the
prosumer can meet its own load demand, the excess PV output can
be sold to the power grid to increase its own income or stored in the
SES for subsequent use; when the prosumer’s PV system cannot
meet its own load demand, energy can be purchased from SES or
power grid (Zhang et al., 2018). SES is charged during the period
when the PV output of prosumers is more and the load demand is
less. Discharge in the period of low PV output, high load demand
and high electricity price. Therefore, the cost of purchasing
electricity from the power grid by the prosumers due to their
insufficient PV power generation is reduced. At the same time,
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the distributed intelligent controller is embedded in the equipment
of the energy system, so that the prosumers and SES can control
their own energy supply and demand, perform local two-way
communication and realize distributed optimization calculation.

2.1 Planning model of SES

In the context of a two-part electricity pricing mechanism, this
paper establishes a SES planning model for multiple PV stations
with the objective of minimizing overall costs. The approach
involves three main steps: initially constructing an optimization
configuration model for SES, developing a model aimed at
maximizing the benefits of prosumers, and finally, formulating a
collaborative SES planning model for PV stations under cooperative
conditions.

The configuration of SES entails rational planning to maximize
its efficiency and benefits. The objective function Fes for optimizing
the configuration include transaction cost with the grid C1, initial
installation cost C2, and operational cost C3. The specific calculation
formula is as follows:

Fes � min C1 + C2 + C3[ ] (1)

Regarding transaction costs with the grid, a two-part electricity
pricing mechanism is adopted. This mechanism includes both an
energy charge based on actual electricity consumption and a
demand power charge based on the user’s maximum monthly
demand power. SES engages in arbitrage by charging during
periods of low electricity prices and discharging during periods
of high prices. By shifting load demands, the user’s demand is
reduced, consequently lowering costs for the consumer and
enhancing the benefits of SES. Therefore, the transaction cost C1

between SES and the grid can be expressed as follows:

C1 � ∑
h∈H

λbhq
b
hΔH +Qmax qbh{ } (2)

where λbh, Q, H, ΔH are respectively the time-of-use price, demand
power price, dispatching period, and dispatching interval. qbh
denotes the power bought from superior grid at time h.

The initial installation cost of SES, denoted as C2, primarily
comprises capacity and power costs (Wang YX. et al., 2024;Wang D.
et al., 2024). These two components constitute the main expenses for
the initial installation of the SES system and can be expressed
as follows:

C2 � λeErate + λpPrate (3)

where λe, λp are respectively the unit capacity and power costs, and
Erate, Prate represent maximum rated capacity and power,
respectively.

As for operation and maintenance cost of SES, it is closely
associated with the charging and discharging power of the system.
Variations in SES charging and discharging power directly impact
the frequency and complexity of maintenance. Therefore, the
operational cost of SES C3 can be expressed as follows:

C3 � ∑
h∈Η

Com qchh + qdish( )ΔH (4)

where Com denotes unit power operation and maintenance cost
coefficient of SES, and qchh , qdish are respectively the charge and
discharge power of SES at time h.

In the process of planning SES, to ensure the stable operation
of the PV station, certain inherent constraints must be satisfied
(Ma et al., 2022; Jiao et al., 2021). These constraints include
the following:

0≤ qchh ≤ q ch
max

0≤ qdish ≤ q dis
max

qbh ≥ 0

qchh q
dis
h � 0

SoCh � 1 − ρ( )SoCh−1 + ηchqchh
Erate

− ηdisqdish

Erate
( )ΔH

Erate � γPrate

0.2≤ SoCh ≤ 1

SoC0 � SoCH

qchh + qbh � qdish

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

FIGURE 1
SES operating framework of multiple PV stations.
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Equation 5 represent the charging and discharging power
constraints of the SES, where q ch

max and q dis
max denote the

maximum charging and discharging power of SES, respectively.
Equation 5 signifies the non-negativity constraint on the power
absorbed by SES from the upper grid. Equation 5 represents the state
of charge constraint, indicating that SES cannot simultaneously
charge and discharge. Equation 5 describes the state of charge for
SES, determined by the charging and discharging power at the
current time and the state of charge at the previous time. Here, SoCh

and SoCh−1 represent the state of charge for SES in time periods h
and h-1, respectively. ρ is the self-discharge coefficient, indicating
the proportion of energy loss per hour, while ηch and ηdis represent
the charging and discharging efficiencies of SES, respectively.
Equation 5 represents the energy rate constraint for SES, where γ

is the energy rate coefficient. Equation 5 indicates that the remaining
energy of SES should be between 0.2 and 1 to extend the lifespan of
SES. Equation 5 states that the charging and discharging quantities
of SES should remain consistent within an optimization cycle H.
Equation 5 represents the power balance constraint for SES. For this
problem, without loss of generality, let (qch*h qdis*h qb*h ) denote the
optimal solution of Fes.

2.2 SES planning for multiple PV
prosumers sharing

For prosumer n, its operational cost, denoted as Fpv, encompass
the transaction costs of buying and selling electricity within time
period h. Utilizing the two-part pricing mechanism, the operational
cost can be calculated as follows:

Fpv � min ∑
h∈H

λbhp
b
n,h − λshp

s
n,h( )ΔH + Qmax pb

n,h{ } (6)

where pb
n,h and p

s
n,h respectively represent the power bought and sold

by prosumer n to the grid at time h.
In order to ensure that the prosumers can stably participate in

the operation of the optical storage park, the following constraints
need to be met (Zhang et al., 2022; Liu J. et al., 2023).

pb
n,h ≥ 0

ps
n,h ≥ 0

pb
n,hp

s
n,h� 0

pload
n,h + ps

n,h − pb
n,h � ppv

n,h

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

where Equation 7 represent the non-negativity constraints on the
power bought and sold by prosumer n within time period h.
Equation 7 ensures that prosumer n cannot purchase and sell
electricity at the same time. Equation 7 represents the power
balance constraint, where pload

n,h is the load demand of prosumer n
at time h, and ppv

n,h is the PV output power of prosumer n at time h.
Without loss of generality, let ( pb*

n ps*
n ) denote the optimal solution

of Fpv.
In order to reduce the operational cost of PV prosumers and

optimize SES configuration, collaboration between prosumers and
SES is essential. A planning model for minimizing the costs of PV
prosumers needs to be established. Here, pe

n,h represents the energy
transferred to SES by prosumer n at time h, and qen,h represents the
energy received by SES from prosumer n at time h. τn denotes the
payment made by prosumer n to SES, while πn represents the fee

accepted by SES from prosumer n. The energy-sharing configuration
mechanism determines the amount of energy transferred between
prosumers and SES, while the payment mechanism ensures a fair
and mutually agreed upon cost-sharing for the exchanged energy. In
the process of solving the SES planning for multiple PV prosumers
sharing model, the energy sharing constraint shown in Equation 8
and the energy payment mechanism shown in Equation 9 need to be
satisfied, as mentioned in (Wu et al., 2024).

pe
n,h � qen,h (8)
τn � πn (9)

where Equation 8 ensures that the energy sharing plan between
prosumers and SES is consistent, that is, the energy transmitted to
SES by prosumers at the same time h is the same as the energy
obtained by SES from prosumers. Similarly, Equation 9 ensures that
the prosumer’s payment to SES is consistent with the payment
obtained by SES from the prosumer at time h.

Firstly, according to Equations 1–5 and Equations 6–9, we can
know the respective cost functions of SES and prosumers when they
do not cooperate. Then, according to the payment mechanism of
prosumers and SES shown in Equation 9, the overall objective
function of SES and prosumers when they cooperate is as follows:

minC � C1 + C2 + C3 − ∑
n∈N

πn

+ ∑
h∈H

λbhp
b
n,h − λshp

s
n,h( )ΔH + Qmax pb

n,h{ }( ) + ∑
n∈N

τn

(10)
SES needs to meet the following constraints when cooperating

with prosumers:

qchh + qbh � ∑
n∈N

qen,h + qdish

pload
n,h + ps

n,h � ppv
n,h + pb

n,h + pe
n,h

⎧⎪⎨⎪⎩ (11)

Furthermore, Equation 9 ensures that ∑
n∈N

τn − ∑
n∈N

πn � 0,

meaning the sum of payments between PV prosumer stations
and SES does not impact the overall energy costs of the entire
PV stations. This implies that, in the proposed energy cooperation
model, individual interests are not contradictory to societal interests.
By optimizing the objective function while satisfying these
constraints, the model presented in this paper aims to achieve
the most effective energy cooperation strategy that minimizes
costs for both SES and PV prosumers simultaneously.

3 Distributed optimization model based
on AADMM

Assuming xn � [pb
n ps

n p
e
n] represents the decision variable

vector for PV prosumer n, and y � [qchh qdish qbh q
e
h] represents the

decision variable vector for SES. To avoid the exposure of private
information and reduce the computational and communication
burden associated with centralized optimization methods, this
paper presents distributed computing to optimize the SES
planning model in sharing of PV prosumers.

ADMM is a distributed algorithm used for solving large-scale
convex optimization problems in statistics, machine learning, and
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related fields. It offers the advantage of privacy preservation during
distributed optimization scheduling. Each prosumer and SES
individually solves their respective objective utility functions,
achieving interactive energy balance among multiple prosumers
and SES within the PV stations. Therefore, to solve the problem
via ADMM, the augmented Lagrangian of the SES planning model
according to Equation 10 is formulated:

L x, y, δ( ) � Fec
es + Fec

pv +
1
2
α ∑

n∈N
pe
n − qen +

δ

α

�������
�������
2

2
(12)

where let Fec
es � C1 + C2 + C3 − ∑n∈Nπn represents the SES cost of

cooperation with prosumers, and Fec
pv � ∑h∈H((λbhpb

n,h −
λshp

s
n,h)ΔH + Qmax pb

n,h{ }) +∑n∈Nτn denotes the prosumers cost
of cooperation with SES. α and δ represent the penalty
parameters and dual multiplier vectors associated with the
coupling constraint (8).

Based on the principles of ADMM, the iterative optimization of
Equation 12 is carried out (Chen et al., 2024; Zhang et al., 2021). The
specific iteration equation is as follows:

xn k + 1( ) � argminLα xn, yg k( ), δ k( )( )
y k + 1( ) � argminLα xn k + 1( ), y, δ k( )( )
δn k + 1( ) � δn k( ) + α pe

n k + 1( ) − qen k + 1( )( )
⎧⎪⎨⎪⎩ (13)

where xn(k + 1) � [pb
n(k + 1), ps

n(k + 1), pe
n(k + 1)] represents the

decision variable vector for PV prosumer n in the (k+1)th
iteration, y(k + 1) � [qchh (k + 1), qdish (k + 1), qbh(k + 1), qeh(k + 1)]
represents the decision variable vector for SES in the (k+1)
th iteration.

According to the definition of ADMM, by giving dual residual ε1
and primal residual ε2, its convergence criteria are:

pe
n k + 1( ) − pe

n k( )���� ����22 ≤ ε1
pe
n k + 1( ) − qen k( )���� ����22 ≤ ε2

⎧⎨⎩ (14)

In summary, the distributed solution steps for the SES planning
under multiple PV prosumers sharing model based on ADMM are
as follows:

Step 1: Initialization: Set the maximum number of iterations kmax,
set the iteration count k = 1, set the convergence accuracy
ε1, ε2, and set the penalty factor α.

Step 2: Iterative Solution: Utilize Equation 12 to solve the SES
planning model for PV prosumers. Employ Equation 13 to
iteratively calculate the energy transferred from
prosumers to SES, denoted as pe

n,h, and the energy
received by SES from the PV power station, denoted
as qen,h.

Step 3: Convergence Check: Use Equation 14 for convergence
testing. If the convergence criterion is met, terminate the
computation and output the results. Otherwise, set k =
k+1, proceed to step 2 for the next round of iterative
optimization, and continue until convergence.

Step 4: Output Results: x*
n and y* represent the optimal solutions

for prosumers and SES, respectively.

In general, the ADMM algorithm is highly sensitive to the
choice of penalty parameters, manifested as follows: when the

penalty parameter is small, the convergence of Lagrange
multipliers is slow, and when it is large, the convergence
speed of decision variables is fast. This sensitivity can lead to
issues such as excessive iteration counts and prolonged iteration
times due to the different initial values chosen for the penalty
parameter during the solution process. Therefore, this paper
proposes an adaptive adjustment of the penalty parameter size
to regulate the convergence speed of Lagrange multipliers and
decision variables, aiming to reduce the number of iterations
and convergence time in distributed computing. In summary,
the adaptive update scheme based on adaptive AADMM is
as follows:

α k + 1( ) �
1/]α k( ), ψ k + 1( )���� ����< θ ø k + 1( )‖ ‖
]α k( ), ψ k + 1( )���� ����> 1/θ ø k + 1( )‖ ‖
α k( ), otherwise

⎧⎪⎨⎪⎩
s.t.

ψ k + 1( ) � p k + 1( ) − q k + 1( )
ø k + 1( ) � −α k( )q k + 1( ) − q k( ){

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(15)

where k represents the iteration count, while υ and θ denote the
adaptive coefficients. Specifically, the adaptive coefficients v � 3, θ �
0.8.

In summary, the flow chart of distributed optimization model
based on AADMM for SES planning for multiple PV prosumers
sharing is shown in Figure 2.

FIGURE 2
Distributed optimization model based on AADMM
computational flowchart.
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4 Simulation and discussion

4.1 System description and parameter
settings

This paper introduces data from five prosumers within a time
range of 7:00–19:00, covering a period of 12 h. The load demand
curve for prosumers is depicted in Figure 3A, while Figure 3B
illustrates the PV output power (Liu et al., 2017). The electricity
purchase price from the grid follows a two-part pricing system,
where valley periods are 0:00 - 8:00 with electricity price 0.37CNY/
kWh, flat periods are 12:00 - 17:00/21:00 - 24:00 with electricity
0.82CNY/kWh, and peak periods are 8:00 12:00/17:00 - 21:00 with
electricity price 1.36CNY/kWh. The demand power charge is
38 CNY per month, and the on-grid power is 0.3CNY/kWh. The
unit capacity cost of SES is 0.650 CNY/kWh, the unit power cost of

SES is 0.245 CNY/kW, SES unit power operational cost is 0.1 CNY/
kW, with charging and discharging efficiencies of 0.94 and 1.05, and
an energy rate coefficient of 0.3. When using the AADMM
algorithm for solution, the algorithm’s iteration precision is set to
0.0001, the penalty parameter is α(1) � 0.1, and the initial
judgments are xn(1) � (pb*

n , p
s*
n , 0), y(1) � (qch*h , qdis*h , qb*h , 0),

and δ = 0.

4.2 Simulation results

When prosumers do not engage in energy cooperation with SES,
the net load curve of prosumer is depicted in Figure 4A. When the
PV output power of prosumers satisfies the load demand, the excess
PV output is sold to the grid. However, when the PV output power is
insufficient to meet the load demand, electricity needs to be

FIGURE 3
Load and PV characteristics of prosumers. (A) Load curve of prosumers. (B) PV output power of each prosumer.

FIGURE 4
Net load curves of prosumers with andwithout cooperative. (A)Net load curves of prosumers without cooperative. (B)Net load curves of prosumers
with cooperative.
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purchased from the superior grid to fulfill the demand. In this
scenario, the utilization efficiency of PV is low, and it fails to achieve
maximum energy efficiency and local consumption of PV power,
which is easy to cause the power grid reverse heavy overload.

In the energy cooperation mode, SES stores the surplus energy
from prosumers’ high PV output, sells excess PV output to the grid
after reaching maximum SES capacity, and shares energy with
prosumers during periods of low PV output. The on-grid power
of PV under energy cooperation between prosumers and SES is
illustrated in Figure 4B. Through collaborative energy sharing, the
PV grid power for prosumers significantly decreases. For instance, at
13:00-15:00, prosumer 2 has high PV output and low load demand,
leading to the surplus PV output being sold to the grid. Overall,
energy cooperation redistributes excess PV output to SES, achieving
on-site consumption of PV power, and ensuring the resilience
operation of the distribution network.

Table 1 presents a comparison of the economic cost for SES and
prosumers under non-cooperative and cooperative modes. It is
observed that SES, through peak-valley price arbitrage and on-
site consumption of PV power, reduces the costs of the PV
prosumers and increases the self-sufficiency. The self-sufficiency
rate of prosumers increases from 71.05% to 92.91%, and the
comprehensive electricity cost decreases from 1090.78 CNY to
1042.82 CNY. This implies that more PV power is locally
consumed by prosumers, reducing reliance on traditional power
plants, achieving “self-production and self-consumption,”
improving energy utilization efficiency, and reducing the overall
operational cost, ultimately maximizing energy efficiency. Figure 5
shows the power balance curve of prosumer 1 with or without
cooperation. As shown in Figure 5, when there is no cooperation,

user 1 can only trade with the power grid, which increases the
dependence on the power grid and cannot carry out peak-valley
arbitrage. When user 1 cooperates with SES, the user can transfer the
excess power to SES.

In the energy cooperation mode, the optimal energy-sharing
curve among prosumers is illustrated in Figure 6. Prosumer 4, with
low PV output and high load demand, absorbs energy to meet the
demand. Other prosumers store surplus energy in SES during
periods of high PV production for subsequent self-load demands.
The SES planning model for the PV station optimizes SES
operational scheduling strategies, taking SES state of charge as an
optimization parameter to maximize economic benefits. Based on
the provided data, the optimal SES capacity configuration is
determined to be 333.50 kWh. Taking prosumer 2 as an
example, the power optimization results are shown in Figure 7A.
When its own PV output cannot meet the load demand, prosumer
2 needs to purchase electricity from the grid or SES. On the contrary,

TABLE 1 Comparison of economic benefits of PV prosumers.

Non-cooperative Cooperative

Self-consumption (%) 71.05% 92.91%

Operational cost (CNY) 1,090.78 1,042.82

FIGURE 5
Power balance curve of user 1 with or without cooperation. (A) Non-corrperative. (B) Corrperative.

FIGURE 6
Net load curve of prosumer with SES sharing.
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when its own PV output remains after meeting the load demand,
prosumer 2 sells the remaining electricity to the grid or transmits it
to SES for use by other prosumers. The SES charging and
discharging power, along with the state of charge curve, are
depicted in Figure 7B. The SES state of charge pattern
corresponds to the time-of-use pricing periods, with discharging
occurring during peak pricing hours (8:00 -9:00 and 18:00 -19:00)
and coinciding with peak pricing periods. Charging occurs during
standard pricing hours (13:00 -17:00) and aligns with non-peak
pricing periods. The state of charge curve follows the “low charge,
high discharge” characteristic typical of SES.

This paper presents AADMM to iteratively solve the SES
planning for multiple PV prosumers sharing. A comparison
between ADMM and AADMM algorithms is presented in
Table 2. The following conclusions can be drawn from Table 2.
Firstly, different penalty parameter selections require varying
iteration counts and time to achieve the same algorithmic
accuracy. Hence, the initial choice of the penalty parameter can
impact the algorithm’s iteration count and time. Secondly, for the
proposed model in this paper, smaller initial penalty factors result in
better convergence performance. The adaptive penalty parameter
proposed in AADMM significantly reduces both the iteration count
and iteration time compared to the fixed penalty parameter.
Furthermore, the algorithm’s improvement varies with different
parameter initializations. For both ADMM and AADMM, a value
of 0.3 is a preferable parameter choice. The adaptive penalty
parameter in AADMM accelerates the algorithm’s convergence
process during the iterative stage. For instance, with a value of
0.3, the algorithm converges after 28 iterations. The convergence

curves for residual errors at different time steps are illustrated in
Figure 8A. At the same time, as shown in Figure 8B, taking prosumer
2 at 15: 00 as an example, as the number of iterations increases, the
power transmitted by the prosumer 2 to the SES and the power
received by the SES from prosumer 2 gradually tend to be consistent,
reaching a global optimum. In addition, in order to show the
influence of different penalty factor initial values on AADMM,
this paper shows the iterative effect at α = 0.3, 0.5. As shown in
Figures 9, 10, regardless of the initial value of the penalty factor,
AADMM can self-adjust and ultimately achieve global optimization.
This corresponds to Figure 8 and Table 2.

5 Conclusion

In order to investigate the impact of SES on prosumers, enhance
prosumer self-sufficiency, reduce the operational cost, and
simultaneously ensure privacy protection and expedite
optimization calculations, this paper proposes a research
methodology for PV prosumers with SES sharing based on
AADMM. Simulation results indicate that: 1) The SES planning
for multiple PV prosumers sharing model proposed in this paper
can significantly reduce the cost of the optical storage park and
increase the electricity self-sufficiency rate of the prosumers in the
park. Compared with the optical storage park without SES, the cost
is reduced by 47.96 CNY, and the electricity self-sufficiency rate is
increased by 21.86%. 2) SES planning can make full use of energy
storage resources, so that the prosumers in the optical storage park
can reduce the cost of purchasing electricity from the grid and

FIGURE 7
Optimization results of prosumer 2 and charging/discharing of SES under sharing. (A) Prosumer 2. (B) SES.

TABLE 2 Convergence comparison between ADMM and A-ADMM.

Initial α � 0.1 α � 0.3 α � 0.5

ADMM AADMM ADMM AADMM ADMM AADMM

Iters 28 26 58 25 102 35

Times(s) 65.93 45.87 152.41 57.25 247.02 71.24
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improve the self-sufficiency rate of electricity. 3) The distributed
optimization algorithm of AADMM is used to solve the SES
planning for multiple PV prosumers sharing model. Compared
with ADMM, the number of iterations and computational

efficiency are increased by 47.05% and 54.67% on average. This
method improves the convergence speed of the algorithm while
ensuring the stability of the algorithm, and can effectively protect the
privacy of each prosumer and SES.

FIGURE 8
Convergence curves based on AADMM for the proposed model (α(1) � 0.1).

FIGURE 9
Convergence curves based on AADMM for the proposed model (α(1) � 0.3).

FIGURE 10
Convergence curves based on AADMM for the proposed model (α(1) � 0.5).
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In order to increase the electricity self-sufficiency rate of
prosumers and reduce the operating cost of the optical storage
park, this paper proposes the SES planning for multiple PV
prosumers sharing model based AADMM. However, P2P trading
can be carried out between prosumers to achieve energy sharing in
the park and promote the local consumption of PV. Therefore, the
P2P trading between prosumers will be the research direction of the
coordinated operation of prosumers in the park in the future. In
addition, market prices have a great impact on energy trading, and
the impact of market pricing on the operation of the park is not
considered in our current research. In this case, our future research
aims to consider how to price reasonably between prosumers and
between prosumers and SES, so as to realize the stable participation
of each subject in the energy market.
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Cloud model-based intelligent
controller for load frequency
control of power grid with
large-scale wind power
integration

Dexin Li, Xiangyu Lv, Haifeng Zhang*, Xiangdong Meng,
Zhenjun Xu, Chao Chen and Taiming Liu

Electric Power Research Institute, State Grid Jilin Electric Power Co., Ltd., Changchun, China

The intermittent and fluctuating nature of active power output from wind power
significantly affects the Load Frequency Control (LFC) in a power grid based on
active power balance. To address this issue, this paper proposes a cloud-based
intelligent PI controller designed to enhance the performance of LFC in smart
grids with large-scale wind power integration. By using the error and the rate of
change of error as the antecedent inputs of the cloud model-based controller
and the tuning values of P and I as the consequent outputs of the cloud model,
adaptive online tuning of the PI parameters is achieved. Based on the control rules
of LFC in interconnected power grids and considering the uncertainty of wind
power’s active power output, the membership cloud parameters are designed,
which effectively solves the problems of poor parameter robustness in traditional
PI control and significant human influence on membership degrees in Fuzzy PI
control. A simulation model of a dual-area interconnected power grid with wind
power for LFC was built using Matlab/Simulink. Two typical disturbances, namely
random fluctuations inwind power and sudden increases/decreases in load, were
simulated. The simulation results demonstrate that the cloud model-based
intelligent PI controller designed in this paper can effectively track the
frequency variations caused by random fluctuations in wind power and
exhibits strong robustness.

KEYWORDS

wind power, power grid, cloud model, load frequency control (LFC), dynamic
performance

1 Introduction

In an interconnected power grid, load frequency control is an important technical
means to ensure the safe, reliable, stable, and economical operation of the system (Bevrani
H, 2009). With the continuous improvement in society’s requirements for power quality,
supply security, and reliability, the expansion of interconnected power grid scale, and the
rapid development of new energy sources, traditional load frequency control methods face
serious challenges and struggle tomeet the performance requirements of LFC (Liang Y et al.,
2024). Among these challenges, large-scale wind power, as the fastest-growing renewable
energy source, has already demonstrated significant social and environmental benefits
(Ratnam K et al., 2020). However, unlike conventional forms of power generation, the
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primary energy source for wind power (i.e., wind energy) is difficult
to predict and control accurately. Therefore, integrating large-scale
wind power into the grid imposes higher demands on load frequency
control in interconnected power grids (Liu et al., 2017; Liu
et al., 2024).

Traditional LFC employs classical PI/PID control (Tan, 2010).
However, with the integration of high-penetration renewable energy
sources, the system’s uncertainties are further increased. The PI/PID
controllers based on linear control theory struggle to meet the control
requirements of the new type of interconnected power system that
exhibits strong nonlinear characteristics. Novel LFC control strategies
have been continuously proposed, such as robust control methods based
on linear matrix inequality design (Rerkpreedapong et al., 2003; Ojaghi
and Rahmani, 2017), disturbance-insensitive sliding mode control
methods (Wei M et al., 2021; Huynh et al., 2024; Tummala et al.,
2018)), model predictive control methods with rolling optimization
strategies (Qi X et al., 2022; Jia Y et al., 2019; Jun Zhou et al., 2024;
Liu et al., 2016), and AI-based control methods (Zhang Y et al., 2022;
Cam and Kocaarslan, 2005; Yan and Xu, 2020; Wadi et al., 2024). These
controlmethods partially compensate for the shortcomings of traditional
FLC, but they rely on precise mathematical models, have high control
costs, and pose difficulties in design and implementation.

The cloud model, based on statistical and fuzzy mathematics,
provides a unified representation of the fuzziness and randomness
between linguistic values of uncertainty and precise numerical
values. It achieves a natural transformation of uncertainty
between qualitative concepts and their quantitative counterparts
(Li D et al., 2009; Wang G et al., 2014). Currently, cloud model
theory has been successfully applied in intelligent control and
performance evaluation of large-scale systems. Based on a
thorough analysis of LFC control characteristics in an
interconnected power grid with high penetration wind power,
this study proposes an intelligent PI control strategy using cloud
model. The main contributions of this paper are as follows:

1) The antecedent membership cloud functions were separately
constructed for Area Control Error (ACE) and its rate of
change, as well as the consequent membership cloud functions
for the proportional parameter P and integral parameter I of
the PI controller. Based on this, a cloud-based intelligent
controller for LFC was designed. Compared to traditional
fuzzy control, the proposed cloud-based LFC intelligent
controller in this paper achieves faster frequency control
speed and higher efficiency.

2) A simulation model for LFC in a two-area interconnected
power grid with high penetration wind power was built in the
Matlab/Simulink environment. Two typical power disturbance
events, namely random wind power fluctuation and sudden
load change, were simulated. The simulation results were
compared and analyzed against the LFC control effect based
on Fuzzy PI control. This validation confirms the effectiveness
and robustness of the intelligent PI controller based on the
cloud model.

The remainder of this paper is organized as follows: Section 2
establishes the LFC model for interconnected power grid with wind
power. Then, the cloud model-based intelligent PI controller for
LFC is developed in Section 3. Section 4 tests the effectiveness of the

proposed intelligent PI controller. The conclusions are given
in Section 5.

2 Load frequency control model for
interconnected power grid with
wind power

The power system achieves tracking of generation power to load
power by sensing frequency variations, thereby maintaining power
balance and frequency stability in the grid. After the large-scale
integration of wind power, the fluctuation in its active power output
has, to some extent, affected the power balance state of the grid and
increased the difficulty of active-power frequency control in the system.

Although multi-area power systems are strongly coupled and
time-varying, LFC was designed for small fluctuations and
perturbations. At this point, the system operates near a stable
point, allowing for the establishment of its model using low-
order linear transfer functions (Bevrani H, 2009).

In this study, the LFC model of a power system incorporating
wind power is established based on conventional thermal power
units, as shown in Figure 1. Before conducting a detailed derivation,
the following explanations are provided for this model.

1) The objective of LFC (Load Frequency Control) in
interconnected power systems is to maintain the system
frequency and the power exchange between regions within
a normal range. Based on this objective, the frequency
deviation Δf(t) and the power deviation on the tie line
ΔPtie,i(t) are usually linearly combined to form a variable
called Area Control Error ACE(t), which serves as the
control signal in the LFC problem. The ACE(t) being zero
is considered a criterion for measuring the stability achieved in
the control area. Therefore, the ACE for the ith area, ACEi(t),
can be defined as Equation 1:

ACEi t( ) � ΔPtie,i t( ) + βiΔf i t( ) (1)
where, βi is the frequency deviation coefficient. Δfi(t) and ΔPtie,i(t)
represent the frequency deviation and tie line power deviation for
the ith area, respectively.

2) The LFC system of conventional thermal power units
consists of components such as a governor, non-reheat
steam turbine, generator, load, tie line, and controller.
Each component in the different areas is represented by
an equivalent multi-machine dynamic response using a
single-machine model. When there is a change in the
load or an external disturbance in a specific area, the
controller receives control input signals and issues
control commands to adjust the position of the governor
valve. This regulates the steam flow into the turbine, thereby
changing the turbine’s output power, affecting the
generator’s input power, and adjusting the active power
output of the generator to achieve the control objective.

3) After meeting the set load demand in each area, the excess
electricity generated by the wind power units connected to
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each area is considered an energy-bounded external disturbance
signal. In order to suppress the randomness of this disturbance, a
distributed structure is formed by sharing and coordinating
control information among partially interconnected controllers
based on sparse optimization results. The system suppresses load
variations and random disturbances by actively adjusting the
control loop of the thermal power units.

The model described in Figure 1 can be represented by a set of
differential equation, as shown in Equation 2.

Δ _f i t( ) � 1
2His

−DiΔf i t( ) +∑n

k�1ΔPmk,i t( ) − ΔPtie,i t( ) − ΔPL,i t( ) − ΔPwind,i t( )( )
Δ _Pmk,i t( ) � 1

Tchk,i
−ΔPmk,i t( ) + ΔPgk,i t( )( )

Δ _Pgk,i t( ) � 1
Tgk,i

− 1
Rk,i

Δfi t( ) − Δpgk,i t( ) + αk,iui t( )( )
Δ _Pwind,i t( ) � 1

TW ,i
−ΔPwind,i t( ) + ΔPw,i t( )( )

Δ _Ptie,i t( ) � 2π ∑N
j�1,j ≠ i

Tij Δf i t( ) − Δf j t( )( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

FIGURE 1
LFC model for the ith area in multi-area power grid with wind power.

FIGURE 2
Double condition cloud generator.
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where, His represents equivalent inertia of area i; Tchk,i represents
turbine time constant; Tgk,i represents governor time constant; TW,i

represents wind generator time constant; αk,i represents generator
ramp rate factor; ΔPmk,i represents the change in mechanical power
of the kth generators in the ith area; ΔPL,i represents the fluctuation
in active load power; ΔPwind,i represents wind power deviation in the
ith area; ΔPW,i represents the fluctuation of wind power; ΔPgk,i
represents regulating valve position deviation; ui represents the
control variable, which refers to the output of the LFC controller.
As shown in Equation 3, the output of the LFC controller can be
represented as a function of ACE (Wood AJ et al., 1996):

ui t( ) � f i ACEi t( )( ) (3)

3 Cloud model-based intelligent PI
controller for LFC

3.1 Cloud model theory

Cloud model, based on probability theory and fuzzy
mathematics, uses natural language to describe the bidirectional
conversion of quantitative and qualitative information, reflecting the
correlation between randomness and fuzziness (Kavousi-Fard A
et al., 2016; K. Zhou et al., 2024).

Definition: Let E be a quantitative domain on precise numerical
values, and F be a qualitative concept on the quantitative domain
E. If a quantitative value x is a random realization of the
qualitative concept F, and x has a stable tendency with a
certainty degree μ(x)∈ [0, 1], where μ: E → [0, 1], ∀x∈E,
x→μ(x), the distribution of x on the domain E is called a
cloud, and each x is considered a cloud droplet.

The cloud model uses three numerical characteristics to reflect
the overall properties of a concept. These three numerical
characteristics (Li D et al., 2009) are the Expected Value (Ex),
Entropy (En), and Hyper Entropy (He).

The solution of the three numerical variables, i.e., the formation
of the cloud model, requires the collection of a certain number of
cloud droplet samples. By collecting multiple samples, the more

FIGURE 3
The structure of cloud PI controller for LFC.

TABLE 1 Cloud model inference rules table.

Cloud
inference

E

NB NS ZE PS PB

Ec NB NB NS ZE PS PB

NS NS NS ZE PS PS

ZE ZE ZE ZE ZE ZE

PS PS PS ZE NS NS

PB PB PS ZE NS NB

TABLE 2 Membership of the cloud characteristic parameters.

Qualitative concepts E EC ΔKP&ΔKI

Ex En He Ex En He Ex En He

NB −0.1 0.025 0.003 −2.45 0.5 0.005 −0.05 0.005/3 0.0002

NS −0.04 0.02 0.002 −1.2 0.5 0.005 −0.002 0.002/3 0.00015

ZE 0 0.01 0.001 0 0.5 0.005 0 0.00033 0.00004

PS 0.04 0.02 0.002 1.2 0.5 0.005 0.002 0.002/3 0.00015

PB 0.1 0.025 0.003 2.45 0.5 0.005 0.05 0.005/3 0.0002
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samples collected, the more accurate the obtained cloud model will
be, and quantitative input preprocessing should be performed. Ex,
En, and He can be obtained through statistical analysis of the
research object’s sample data using Equation 4.

Ex � �x � 1
n
∑n

i�1xi

En �



π

2

√
1
n
∑n

i�1 xi − Ex| |

He �







s2 − E2

n

√
�





















1

n − 1
∑n

i�1 xi − �x( ) − E2
n

√

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

This process of obtaining a cloud model composed of three
numerical variables essentially refers to the statistical analysis of the
sample data.

The cloud model has similarities with fuzzy mathematics, but it
also has its unique aspects, particularly in how it handles
uncertainty. The cloud model was proposed based on probability
theory and fuzzy mathematics, aiming to address the uncertain
transition between qualitative concepts and quantitative
descriptions. Compared to fuzzy mathematics, the cloud model
not only considers fuzziness but also incorporates randomness,
providing a more comprehensive approach to uncertainty. The

FIGURE 4
The Membership cloud diagram.
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cloud model describes the quantitative representation of qualitative
concepts through the numerical characteristics of clouds, while
fuzzy mathematics primarily deals with fuzziness, which pertains
to intermediate transitions between categories of things. The
successful application of the cloud model demonstrates its unique
advantages in decision analysis, intelligent control, and other areas
of complex systems, as it better simulates the uncertainty and
fuzziness inherent in human thinking.

3.2 Rule inference of cloud model

The key to cloud model application lies in the generation of
cloud droplets, and the algorithm for generating cloud droplets is
called a cloud generator (CG). The cloud generator includes a
forward cloud generator and a backward cloud generator (Wang
G et al., 2014).

The forward cloud generator is responsible for generating cloud
droplets (drop (x, μ)) based on the numerical characteristics of the
cloud (Ex, En, He), which represents a mapping from qualitative to
quantitative. On the other hand, the backward cloud generator is a
conversion model that transforms quantitative values into
qualitative concepts. The specific algorithm of the cloud
generator can be found in the reference (Wang G. et al., 2014).

In control engineering, rules like “perception-action” represent
logical causal relationships between concepts. Cloud models can be
used to construct qualitative rule generators for control logic.
Perception serves as the antecedent of control rules and can have
one or more conditions. Action, on the other hand, represents
detailed control actions and serves as the consequence of control
rules. Both perception and action have a certain degree of
uncertainty in practical engineering.

In the domain E1, for a specific point y, the cloud generator can
generate a certainty distribution drop (y, μ), indicating the degree of
certainty that point a belongs to the qualitative concept F1. In this case,
the cloud generator is referred to as the antecedent cloud generator CGA.

If a certainty value μ is given, where μ∈ [0, 1], the cloud generator
can be used to generate a cloud droplet distribution on the concept
F2 in the domain E2 that satisfies the specified certainty. In this case,
the cloud generator is referred to as the consequent cloud
generator CGB.

It is possible for a two-dimensional spatial domain to construct
both a two-dimensional antecedent cloud generator and a
consequent cloud generator, as shown in Figure 2.

FIGURE 5
Load disturbance in Area 1 and Area 2.

FIGURE 6
Control performance under load disturbance. (A) Frequency
responses. (B) Tie-line active power responses. (C) ACE responses.
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3.3 Design of parameter self-tuning
intelligent PI controller based on
cloud model

The central idea of LFC is to ensure the stable operation of system
frequency and the exchange of power between areas according to
planned values. However, in practical applications, due to the
uncertainty of system operation, the randomness of disturbance
variations, and the uncertainty in the mapping relationship between
input deviations and controller outputs, LFC faces severe challenges.
Cloud models can effectively address the uncertainty relationship
between determinism and quantification. Therefore, by combining
the cloud model with conventional PI controllers, the cloud-based
PI controller can provide new opportunities for the LFC.

By using ACE (Area Control Error) and its rate of change as inputs
to the antecedents of the cloud model rules and using the tuning values
of P (Proportional) and I (Integral) as outputs of the entire system, a
cloud model system with dual inputs and single output applicable for
LFC is constructed, as shown in Figure 3. By sampling ACE, both ACE
and its rate of change are input into the controller. Under the
assumption that the three numerical characteristics of the cloud
model are known when the antecedent of a rule is triggered by a
certain input, it will randomly generate a certainty level μ. This certainty
level then stimulates the consequent generators CGP and CGI, resulting
in two sets of cloud droplets, drop (P, μ) and drop (I, μ), which represent
the tuning values of P and I, respectively.

In traditional methods, the tuning of parameters P and I is
mainly based on accumulated operational experience in industrial
production. When selecting linguistic variable values, we need to
consider both the flexibility and specificity of control rules, as well as
the simplicity and feasibility of control. Therefore, based on the
reference of operational experience, we will use five linguistic
variable values, namely “Positive Big (PB), Positive Small (PS),
Zero (ZE), Negative Small (NS), and Negative Big (NB)”. The
maximum membership degree for each linguistic value is “1”.
The range of variations for ACE and its rate of change together
form a two-dimensional domain, which is then combined with the
range of variations for △P and △I to create two independent
biconditional cloud rule inference generators. These generators
are used to dynamically tune the parameters P and I in real-time
during the control process.

The cloud model inference rules applied to load frequency
control are shown in Table 1.

Based on operational experience, the control rules for self-tuning
the PI controller using cloud model parameters can be expressed in
linguistic terms.

Region 1: ACE (Area Control Error) E = NB (Negative Big)
indicates that the actual value deviates significantly from the set
value, indicating a large error. Since the rate of change of ACE EC =
PB (Positive Big) indicates a rapidly increasing trend in the positive
direction. Therefore, no adjustment is made to the output at this
time, and the output value U = ZE (Zero), which corresponds to the
last row of the first column in the cloud control Table 1.

Region 2: The E = NS (Negative Small) indicates that the actual
value deviates slightly from the set value. In this case, if EC = ZE
(Zero), which means the rate of change of the error has no changing
trend, the output value is required to decrease accordingly. The
output value U = NS (Negative Small). This corresponds to the
second column in the third row of cloud control Table 1.

Region 3: E = PS (Positive Small) indicates that the actual value is
slightly lower than the set value. In this case, if EC = NB (Negative
Big), the speed error will be changed from PS to NS. Consequently,
the output U = NS (Negative Small) accordingly.

After formulating cloud inference rules, the cloud intelligent
controller for LFC can be designed using a cloud generator. It mainly
consists of four parts: input fuzzification, cloud inference rules,
cloud inference, and output defuzzification, as shown in Figure 3.

In addition to inputting cloud inference rules in advance, the
cloud intelligent controller requires the definition of the input and
output variable domains. Three numerical variables (Ex, En, andHe)
can be obtained by using statistical tools based on the prior data
accumulated from the input and output variables during the
operation or simulation process of the controlled object.

4 Simulation and analysis

4.1 Simulation model and parameters

To validate the effectiveness of the cloud model-based intelligent
PI controller proposed in this paper for LFC, a simulation model for
load frequency control with wind power generation was built in the
Matlab/Simulink based on a two-area LFC control model.

The cloud intelligent controller utilized in the simulation
process of this paper adopts the cloud inference rules shown in
Table 1. Combining multiple simulation processes under different
control performances, based on the changes in the values
corresponding to ACE and the P and I parameters, the fuzzy
membership parameters corresponding to the input and output
variables of the controller were obtained for five qualitative concepts
(Jalali N et al., 2020). The numerical variables (Ex, En, and He) are
shown in Table 2, and the corresponding membership cloud
diagrams are shown in Figure 4.

4.2 Performance analysis under load step
disturbance

In order to validate the control performance of the proposed
cloud-based controller under significant load impacts, load step
disturbances of 0.04 p.u. and 0.05 p.u. were respectively set in

FIGURE 7
Wind power fluctuations in Area 1 and Area 2.
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Area 1 and Area two at 10s and 50s, as shown in Figure 5. Both
conventional PI control and Fuzzy PI control which was designed
based on reference (Cam and Kocaarslan, 2005), were
simultaneously employed. The time-domain responses of
frequency deviation, ACE (Area Control Error), and interval
transmission power deviation are shown in (Figures 6A–C),
respectively.

From Figure 6, it is evident that the proposed cloud-based
intelligent PI controller and Fuzzy PI controller exhibit
significantly better control performance than the traditional PI
control. Notably, no oscillations were observed during the
frequency recovery process, which can be attributed to the
adaptive adjustment of the P and I parameters of the cloud
intelligent PI controller and Fuzzy PI controller. Furthermore,
compared to the Fuzzy PI control, the proposed cloud-intelligent
PI controller exhibits significant advantages in terms of the speed of
frequency and ACE recovery.

4.3 Performance analysis under wind power
fluctuations

In order to further validate the adaptability of the proposed
cloud-based intelligent PI control in frequency control of power
systems with wind generation, wind power generation was
introduced in Area 1 and Area 2. Based on considering the
aggregation effect of wind farms, a wind power sequence was
generated. The deviation between the actual wind power and the
predicted value is shown in Figure 7. Using the LFC model
established in this study, simulations were conducted on the
dynamic frequency response of a two-area system under the
stochastic wind power fluctuations shown in Figure 8A). The
time-domain responses of the transmission power deviation are
shown in Figure 8B).

By observing the dynamic frequency response curves of the
simulated results and the wind power fluctuation characteristics

FIGURE 8
Control performance under wind power fluctuations. (A) Frequency responses. (B) Tie-line active power responses.
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shown in Figure 7, it can be observed that the LFCmodel established
in this study effectively reflects the impact of stochastic fluctuations
in active power output from large-scale wind farms on the dynamic
response of the LFC.

As seen from Figures 8A, B), when there are stochastic
fluctuations in the active power output of wind farms, the
proposed cloud-based intelligent PI control in this study can
effectively track the wind power fluctuations and provide optimal
control signals for the AGC units in the region to adapt to the
stochastic fluctuations in wind power, which, in turn, ensures that
the system frequency and ACE fluctuate within a smaller range. On
the other hand, both the Fuzzy PI and conventional PI control
strategies lag behind the cloud PI control in terms of frequency
recovery speed and fluctuation range, and they are unable to track
the stochastic variations in wind power effectively.

In conclusion, the proposed cloud-based intelligent PI controller
in this study is effective in handling uncertain wind power
integration and exhibits better control performance than the
Fuzzy PI control strategy. The cloud-based intelligent PI control
proposed in this study is not only effective in handling typical load
disturbances but also capable of tracking the stochastic fluctuations
in wind power. This further validates the adaptability and robustness
of the proposed cloud based intelligent PI control for LFC.

5 Conclusion

This paper designs a cloud-based intelligent PI controller based
on the cloud model theory, combined with the LFC characteristics of
interconnected power grids. It achieves load frequency control in
interconnected power grids with high wind power penetration. The
designed cloud-based intelligent controller does not rely on the
mathematical model of the control system. It can be designed and
implemented based on the characteristics of the controlled system
and prior experience. The design process is intuitive and
straightforward, without the need for tedious formula derivation.
The cloud-based intelligent controller exhibits strong robustness
against the uncertainty of wind power and outperforms traditional
fuzzy controllers in terms of tracking time, frequency fluctuation
suppression, and interval control deviation.

The three numerical characteristics, namely expectation,
entropy, and hyper-entropy, directly affect the control
effectiveness of the cloud-based intelligent controller. Further
research is still needed to optimize these characteristic
parameters based on the characteristics of the controlled system.
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A low voltage load balancing
distribution method considering
street information and V2G
technology application
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The low-voltage distribution network (LVDN) is the final stage in delivering
electric energy from power plants to consumers, and its operational condition
greatly impacts many power users. While medium-voltage and high-voltage
distribution networks can be managed through intelligent digital systems, load
imbalance issues in LVDNs often rely on planners’ experience, leading to
significant limitations. With advancements in electric vehicle (EV) charging
technology and vehicle-to-grid (V2G) technology, where EVs act as
distributed energy storage units, bidirectional energy exchange between
vehicles and the grid can now contribute to LVDN operation. This paper
proposes a low-voltage load distribution planning method that integrates
street information and V2G technology. A two-stage stochastic programming
mixed-integer model is developed to tackle load imbalance in LVDNs, with the
planning scheme derived from solving this model. A case study is presented to
verify the effectiveness of the method, demonstrating that incorporating V2G
technology enhances load distribution accuracy and reduces reliance on manual
planning, improving network stability and operational efficiency.

KEYWORDS

low-voltage distribution network (LVDN), load balancing distribution, two-stage
stochastic programming, street information, vehicle to grid (V2G)

1 Introduction

The low-voltage distribution network (LVDN) directly serves basic electricity users,
acting as a crucial link between power production and power consumption. With the
increasing integration of new energy sources and the introduction of advanced power
equipment, the LVDN is experiencing significant transformations (Guo et al., 2023). In
actual LVDN, load conditions are dynamic and subject to constant fluctuations due to
various unpredictable factors, such as customer behavior, weather conditions, and public
events. These variations make load imbalance an inherent challenge in such networks
(Yan and Saha, 2012). As urban development accelerates, the phenomenon of “village in
the city” becomes more prevalent, leading to concentrated and disorderly power loads,
with pronounced regional load differences. Effective distribution network planning can
mitigate load imbalance issues. LVDN planning primarily involves designing distribution
transformers and low-voltage lines to form a radial network with the lowest total cost
(Díaz-Dorado et al., 2001). Scheidler et al. (2018) highlights that while a large amount of
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data is available for analysis in LVDNs, planning typically relies on
the expertise of experienced planners. Utilizing intelligent
planning methods can enhance the robustness of planning
schemes, but the quality of the database information poses a
significant challenge. Wang et al. (2015) employs the traditional
manual planning method, gathering LVDN information for
analysis to develop a distribution network planning scheme.
This approach considers both the investment in grid
transformation and the reduction of grid loss rates. Mateo et al.
(2018) focuses on planning low-voltage feeder-level integrated
distribution networks by collecting data from 79 large European
distribution system operators (DSOs). However, these feeder-level
distribution networks only encompass three-phase balanced urban
and semi-urban low-voltage distribution networks. In Díaz-
Dorado et al. (2001), a minimum Euclidean distance tree is
employed to plan low-voltage radial distribution networks while
considering voltage drop constraints and line losses. However, this
method does not address the issue of load imbalance in the
distribution network. Carpinelli et al. (2017) employs an
intelligent planning method, utilizing multi-objective
optimization to address load imbalance in LVDNs, thereby
enhancing power quality and energy efficiency. In LVDNs,
cables are typically laid along streets (Moon and Kim, 2017).
Díaz-Dorado et al. (2003) focuses on planning rural power
grids with fewer nodes, considering the connection between
transformers and power grids but not the street layout.
Verheggen et al. (2016) proposes a low-voltage distribution
network planning method that accounts for both the laying of
cables along streets and the inclusion of distributed generation.
Similarly, Navarro and Rudnick (2009) considers the user street
layout and uses a heuristic algorithm to divide the planning area
into smaller sections for local analysis and optimization, ultimately
optimizing the entire area. Also considers the user street layout and
uses a heuristic algorithm to divide the planning area into small
areas for local analysis and optimization, and finally optimizes the
whole area. The aforementioned three papers focus exclusively on
typical power system loads.

With the rapid development of clean energy, the number of
electric vehicles (EVs) is also increasing rapidly. Studies have
shown that EV charging behavior significantly impacts the
power grid, causing issues such as current and voltage
imbalance, line loss, and feeder overload (Boribun, 2019). For
some distribution facilities, peak load may only be reached for a
few hours a year. However, uncontrolled electric vehicle charging
behavior often exacerbates these load peaks and negatively impacts
transformer lifespan (Wu and Sioshansi, 2017). By implementing
orderly charging, which involves controlling the timing and
amount of EV charging load, the operation of the distribution
network can be improved, and peak demand on the network can be
reduced (Benetti et al., 2014). Sangob and Sirisumrannukul (2021)
proposes an LVDN planning method based on sequential particle
swarm optimization (PSO). This method aims to mitigate the
impacts of large-scale EV usage by implementing ordered charging
of EVs. Tan et al. (2016) employs a two-level planning method to
minimize grid load differences by adjusting the EV charging load.
Ordered charging of EVs can enhance system operation by shifting
the load to off-peak hours. Moreover, if EVs can function as energy
storage and participate in the adjustment of distribution network

operations, peak load can be further reduced (Mets et al., 2011). EV
batteries are increasingly popular as small to medium-sized energy
storage solutions due to their relatively high energy density, lack of
geographical restrictions, and low maintenance requirements
(Pimm et al., 2018). When a large number of EV batteries are
combined to act as energy storage and can send power back to the
grid during peak hours, this is referred to as Vehicle-to-Grid (V2G)
technology (Crozier et al., 2020). V2G technology has
demonstrated significant potential in balancing electricity
supply and demand (Han et al., 2012). For instance, Soares
et al. (2011) proposes a particle swarm optimization (PSO)
algorithm to address the optimal scheduling of energy
resources, including V2G resources.

Stochastic programming is a significant branch of
mathematical programming, used for modeling optimization
problems that involve uncertain parameters (Shapiro and
Philpott, 2007). The two-stage stochastic programming with
recourse cost is the most common type, where decisions and
related variables are divided into two stages (Mavromatidis
et al., 2018). The first stage is typically referred to as the tactical
level, involving long-term decisions that influence development
over an extended period. The second stage, known as the
operational level, involves more specific, shorter-term decisions.
The first-stage decision must be made before the uncertain
parameters are realized. Once these parameters are determined,
they often differ from the expected values considered during the
first stage. Consequently, the second stage incurs a recourse cost
due to these differences, and the goal is to minimize this cost
through second-stage decisions. Tan et al. (2014) adopts a two-
stage stochastic programming method to plan the distribution
network, taking into account distributed resources. Wu and
Sioshansi (2017) uses a two-stage stochastic programming
method to flexibly schedule EV charging times, leveraging
distributed resources to mitigate the impact of load peaks on
transformers.

In summary, LVDN planning is often closely linked to street
information. However, due to data limitations and challenges in
integrating and utilizing information, planners typically rely on
limited data and design based on experience or use heuristic
algorithms for support. The increasing adoption of EVs has
added complexity, as their charging patterns significantly
affect distribution network operations. The deployment of
smart detection devices has improved data acquisition and
utilization in LVDN. Nonetheless, current research falls short
in integrating diverse information from these networks and using
intelligent optimization methods to align long-term planning
with operational scheduling while optimizing load distribution.
Therefore, the paper proposes a low voltage load balancing
distribution method considering street information and V2G
technology applications. The proposed method employs a two-
stage stochastic programming approach, the corresponding
theory is illustrated in Figure 1. In the first stage, a load
distribution optimization model that incorporates street
information and electrical topology is established, focusing
primarily on long-term load distribution planning and related
constraints. In the second stage, a scheduling model utilizing
V2G technology is created further to enhance the operational
status of the distribution network.
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The main contributions of this paper are as follows.

1) This study contributes to the planning of low-voltage distribution
networks by integrating the original load distribution with optimal
load combination strategies. We propose a method to reallocate
load combinations to new access nodes through analytical
modeling, taking into account street orientation to determine
the most efficient and cost-effective load planning pathways.

2) The approach integrates two-stage adjustments for both long-
term planning and dispatch. Utilizing the pseudo load curve
acquisition method, it collaboratively addresses issues such as
large load fluctuations, heavy overloads in the distribution
network, and load imbalance, from both planning and
dispatching perspectives.

2 Distribution network modeling

In the LVDN, most distribution lines are low-voltage overhead
lines, and the road network is highly coupled with the power grid.
Therefore, this paper integrates electrical lines in the LVDNwith street
information, forming what is termed the Road-Grid Coupling
Network (RGCN). The primary method for optimizing load
distribution in the LVDN involves removing the load from the
original line, laying low-voltage overhead lines along the street, and
reconnecting the removed load to the new line. Key issues in this
process include selecting the most appropriate load combination (LC)
for adjustment and choosing the adjustment path with the lowest cost.

2.1 Road-grid coupling modeling

First, the street and electrical topology information related to the
LVDN will be collected through the distribution operator systems
(DSOs), as shown in Table 1. This table summarizes the key
information required for modeling the RGCN. After collecting
street direction information, the start and end nodes of the
streets and the intersections of each street are anchored, and the
streets are connected to establish a highway network connection
model; for electrical topology information, the main focus is on the
distribution and direction of electrical lines, and the line node
locations are determined according to actual conditions, while
the access locations of each user in the line are determined; for
users, if smart meters are installed, the load data in the smart meters
is read; if smart meters are not installed, the total electricity
consumption information is collected for pseudo-load curve
acquisition.

The cost of laying overhead lines is assessed for each street by the
DSOs. This is represented by a cost coefficient ci, which is used to
determine the most cost-effective planning route.

Finally, a weighted directed topological graph of the LVDN is
created. The method for assigning weights to each edge in the
directed graph is described in Equation 1.

wi � ci · li (1)

Where wi is the weight of the i-th street, ci is the cost coefficient
of the i-th street, and li is the length of the i-th street.

2.2 Pseudo load profile determination

The LVDN includes numerous users, making it impractical and
costly to install intelligent electric meters for every user.
Consequently, obtaining pseudo load profiles for low-voltage
users depends on data from a limited number of users equipped
with intelligent electric meters. In this paper, for users without
intelligent electric meters, pseudo load profiles are utilized to

FIGURE 1
Theoretical schematic diagram of the proposed method.

TABLE 1 Road-grid coupling network concern information table.

Parameter Description

Street Orientation The directional layout of streets

Electrical Topology The configuration and connections of electrical lines

Customer Access node in the grid and historical load data
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approximate their actual power consumption curves (Gahrooei
et al., 2017).

First, all loads are categorized based on the electricity
consumption characteristics of the users. Collect electricity usage
data from all users with intelligent electric meters. After cleaning the
data and filling in any gaps, cluster the typical load patterns for
various load types in different scenarios according to their load types
and contexts. Additionally, mark the probability of each pattern’s
occurrence. For loads without intelligent electric meters, assign a
typical load pattern to each load based on its type and context. For
example, if there are 100 A-type loads, and the clustering results for
A-type loads in scenario-I show three load patterns (a, b, c) with
occurrence probabilities of 50%, 30%, and 20%, respectively, then
approximately 50, 30, and 20 of the 100 loads will be assigned to load
patterns a, b, and c, respectively, in scenario-I. The flow chart
illustrating the pseudo load profile acquisition method is shown
in Figure 2.

3 Two-stage stochastic
programming modeling

In the method proposed in this paper, the process is divided into
two stages. The first stage is the planning stage, which spans a longer
period and focuses primarily on replanning the existing load in the
LVDN to mitigate issues of heavy overload and load imbalance
through a limited number of load distribution adjustments. The
second stage is the dispatching stage, which has a shorter period and
mainly involves using V2G technology to manage EVs within the
distribution network, further alleviating the problems of heavy
overload and load imbalance.

This chapter addresses modeling in two distinct stages: long-
term operation and short-term scheduling. After developing the
models, a solver is utilized to derive collaborative planning and
scheduling solutions. Ultimately, this approach aims to alleviate
operational issues in the LVDN by integrating both long-term
planning and short-term scheduling strategies.

3.1 Planning stage modeling

Through analysis of real-world projects, it is observed that the
LVDN typically only redistributes load combinations (LCs) at the
feeder endpoints. In the planning process, we begin with the load at
the feeder’s end, then select themost appropriate LCs along the feeder.
This LC is subsequently reconnected to the most suitable node within
the distribution network, which is not always the terminal node.

In Figures 3A, B show the LCs that allow replanning and that do
not allow replanning, respectively. For example, in Figure 3A, black
nodes 2, 3, and five represent nodes located at the end of the feeder,
and the loads they connect to are the ones subject to replanning.
Taking node-2 as an example, during the planning process, we can
select loads LD1-LD3 (as shown in the red frame-1 in Figure 3A).
Alternatively, we can select up to k loads as an LC for planning (as
shown in the red frame-2 in Figure 3A).

However, we cannot plan the load in the middle of the feeder (as
shown in the red frame-1 in Figure 3B), nor can we select loads LD1-
LD3 and then add LDk as an LC (as shown in the red frame-2
in Figure 3B).

In the planning stage, the key decision is to determine the node
of each load connected to the distribution network. For each load
within the distribution network, using the j-th load Pload

j as an
example, we define a decision vector shown as Equation 2:

x⊤j � ρj1, ρj2, · · ·, ρjn[ ] (2)

where the elements ρjn are all binary variables, and n is the number
of nodes in the distribution network.

When making planning decisions, our goal is to minimize the
total cost of the plan. The cost is calculated using the method shown
as Equation 3. The cost matrix C is derived from the weighted
directed topology graph developed in Chapter 2. To calculate the
cost of each potential planning path for the loads, the Dijkstra
shortest path algorithm is employed.

f1 � ∑m
j�1
∑n
i�1
ρji · Cji (3)

Where, Cji represents the cost of replanning the j-th load from
the original node (assumption to be the k-th node) to the new i-th
node. If k = i, then Cji = 0, indicating that the j-th load has not been
replanned, and the cost is 0.

In LVDN, to avoid the formation of a closed power supply loop
that could compromise safety in unexpected situations, the power
supply network is typically designed to be radial. Consequently,
users obtain power from only one node in the distribution network.
This constraint is expressed as shown in Equation 4:

∑n
i�1
ρji � 1, ∀j ∈ ΩLD (4)

FIGURE 2
Flowchart of pseudo load profile acquisition method.
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where ΩLD is the set of all loads, and n is the total number of
distribution network nodes. When ρji = 1, it means that the j-th load
access node is the i-th node in the distribution network.

Since all loads are already connected to the distribution network,
readjusting the distribution of all loads is not feasible. During the
planning stage, typically only a portion of the loads at the end of the
distribution network can be redistributed. The constraint that needs
to be met is shown in Equation 5, indicating that there is an upper
limit on the number of loads that can be replanned:

∑m
j�1

1 − x⊤j · xj( )≤ n adj
max (5)

where n adj
max means the upper limit number, and m means the

number of loads. If the access node of the j-th load in the
distribution network is redistributed, then constraint (Equation
6) needs to be satisfied:

x⊤j · xj � 0 (6)

Otherwise, constraint (Equation 7) must be met:

x⊤j · xj � 1 (7)

According to the above research results, the load connected to
non-terminal nodes must adhere to the following constraint
(Equation 8):

x⊤j · xj � 1, j ∉ ΩE.N. (8)

where ΩE.N. is the set of all end nodes.
For an end node (assuming it is node-i), two auxiliary decision

variables are defined, as shown in Equations 9, 10:

A⊤
i � ai1, ai2, · · ·, ain[ ] (9)

B⊤
i � bi1, bi2, · · ·, bik[ ] (10)

where ain and bik are both binary variables, k is the total number of
users connected to the end node-i; A⊤

i is used to assist in the
decision-making process for planning the users connected to end
node-i, and B⊤

i helps determine the LC selection for planning end

node-i. These variables must satisfy the constraints shown in
Equations 11, 12:

∑n
i�1
ahi � 1, ∀h ∈ ΩE.N. (11)

∑k
z�1

bhz ≤ 1, ∀h ∈ ΩE.N. (12)

where, if ahi = 1, it indicates that the LC from the end node-h is
replanned to the node-i; if bhz = 1, it signifies that the z loads at the
end of end node-i are replanned as an LC; if all bhz values are 0, it
means that the load connected to this node is not replanned. The
detailed usage of these two auxiliary variables will be elaborated in
the second stage.

In LVDN, it is generally preferable to connect customers to the
nearest point in the distribution network. If the connection point is
too far from the customer’s geographical location, it can lead to
cross-power-supply issues, which are detrimental to the operation
and management of the power grid. Therefore, when redistributing
the load, it is essential to follow the principle of proximity planning,
as shown in Equation 13:

∑n
i�1
ρji ·Dji ≤Rmax, ∀j ∈ ΩLD (13)

where Dji represents the Euclidean distance from the j-th load to the
i-th node, according to the weighted directed topological graph
obtained in Chapter 2. Rmax denotes the maximum allowable
distance between the load location and the access node.

3.2 Operational stage modeling

During the operation stage, the primary objective is to utilize
V2G technology to manage the charging load of EVs efficiently. This
helps reduce the peak-to-valley difference in load and alleviate load
imbalance. The decision variable in this stage is the EV charging load
xs·k·t, which operates on a smaller time scale. The subscripts

FIGURE 3
Example diagram of Load Combinations(LCs).
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represent the charging load index, scenario, and time, respectively.
Each scenario contains sn sampling points, as illustrated in Figure 4.

In low-voltage distribution networks, significant load differences
between feeders exacerbate load imbalance within the regional grid.
Therefore, during project operation and maintenance, it is essential
to maintain uniform load rates across feeders. The article defines the
degree of load imbalance as the difference between the maximum
and minimum instantaneous load rates of all feeder outlets in the
distribution network at any given time. A substantial degree of load
imbalance typically signals that certain feeders are overloaded.
When this imbalance surpasses a specified threshold, it can lead
to increased transformer heating, elevated power losses, a higher
failure rate, even voltage fluctuations, and reduced equipment
lifespan. The calculation method for the degree of load imbalance
is defined as Equation 14:

η � σs·t·max − σs·t·min (14)
where σs·t·max and σs·t·min are the maximum and minimum values of
all feeder load rates in scenario-s, at time t.

At this stage, the optimization goal is to minimize the
mathematical expectation of the degree of load imbalance across
all scenarios, as shown in Equation 15, where βs is the probability of
the scenario-s occurring, and sn is the number of typical scenarios.

f2 � ∑sn
s�1
βs ·

1
tn
∑tn
t�1

σs·t·max − σs·t·min( ) (15)

To facilitate the calculation of the load power at the end node
(assuming node-i), auxiliary decision variables Pi·out·s·t, Pi·rest·s·t, and
Y┬
i·s·t (shown as Equation 16) are introduced here:

Y⊤
i·s·t � ys·t

i1 , y
s·t
i2 , · · ·, ys·t

ik[ ] (16)
where Pi·rest·s·t is the remaining load value of end node-i in scenario-s
at time t, and the role of Y┬

i·s·t is to assist in calculating the load values
planned from end node-i to another node, specifically the value of
Pi·out·s·t. The element values ofY┬

i·s·t are obtained by accumulating the
load values in order from far to near, according to the distance of the
load’s access to the end node before replanning. For example, the
value of ys·t

i1 is the load value of the last load of end node-i (such as
LD1 in Figure 3A) in scenario-s at time t; and the meaning of ys·t

i2 is
the sum of the load values of the last two loads (such as LD1 and LD2
in Figure 3A) in scenario-s at time t, and so on. These three auxiliary
variables must satisfy the constraints in Equations 17, 18:

Pi·out·s·t � ∑k
z�1

ys·t
iz · biz, ∀i ∈ ΩE.N. (17)

Pi·out·s·t + Pi·rest·s·t � ys·t
ik (18)

where, according to the previous description, ys·tik is the total load
value of the end node-i in scenario-s at time t, before planning.

Based on the above analysis, the calculation method for node
power in the distribution network is shown as Equation 19:

Pload
s·i·t �

Pi·rest·s·t + ∑nE.N.

z�1
Pz·out·s·t · azi, i ∈ ΩE.N.

∑m
j�1
ρji · PLD

s·j·t + ∑nE.N.

z�1
Pz·out·s·t · azi, otherwise

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(19)

where nE.N. is the total number of end nodes.
To ensure the distribution network’s safe and stable operation,

the lines’ maximum instantaneous power should remain below the
safety threshold, and the network should not operate under heavy
overload conditions for extended periods. The constraints are shown
in Equation 20:

Ps·ij·t ≤ μ · Pij
N

∑t0+Tmax

t�t0
Ps·ij·t ≤ 0.8 · Pij

N · Tmax

⎧⎪⎪⎨⎪⎪⎩ ,∀ij ∈ ΩL,∀s ∈ Ωs (20)

where Ps·ij·t represents the instantaneous power of the line at time t in
the s-th scenario; PN ij is the rated power of line-ij, μ is the safety
threshold parameter, Tmax is the maximum allowable continuous
overload time, ΩL is the set of all lines, and Ωs is the set of
all scenarios.

At the same time, the distribution network should meet the
power balance constraints during operation, as shown in
Equation 21:

Ps·i·t·in � Pload
s·i·t + Ps·i·t·out

Ps·i·t·in � ∑
z

Ps·zi·t,∀z ∈ Ωin

Ps·i·t·out � ∑
k

Ps·ik·t,∀k ∈ Ωout

∀i ∈ ΩN,∀s ∈ Ωs

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(21)

when ignoring line losses, at any time t, the power flowing into
any node (e.g., node-i) Ps·i·t·in should be equal to Pload

s·i·t (the sum of
the total load of the users connected to this node) plus Ps·i·t·out
(the power flowing out of the node). Ωi·in is the set of starting
nodes of the lines flowing into node-i, Ωi·out is the set of ending
nodes of the lines flowing out of node-i, ΩN is the set of
all nodes.

When using V2G technology for load scheduling, to ensure the
safe operation of the EV charging pile, its maximum charging and
discharging power should meet the requirements specified in
Equation 22:

−Pd·max ≤ xs·k·t ≤Pc·max (22)

FIGURE 4
Schematic diagram of scenario sampling.
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where Pc·max and Pd·max are the maximum charging and discharging
power of the charging pile, respectively.

Since users’ willingness to participate in the V2G plan varies
across different periods, the proportion of users participating in the
V2G plan at different times is not completely consistent. Here, we
define the auxiliary decision variable PV2G, which represents the
charging load of the user group participating in the V2G plan. This
variable satisfies Equation 23:

xs·k·t � 1 − αs·t( )Xs·k·t + PV2G
s·k·t (23)

Where Xs·k·t is the load value when EVs are charged in an
unordered manner, and αs·t is the proportion of users participating
in the V2G plan at scenario-s at time t. Additionally, for users in the
V2G plan, the maximum charging and discharging power
constraints must also be met, as shown in Equation 24:

δ1 · αs·t ·Xs·k·t ≤PV2G
s·k·t ≤ δ2 · αs·t ·Xs·k·t (24)

where δ1 and δ2 are the maximum charging and discharging power
safety thresholds of V2G users respectively.

To ensure the safety of EV charging and battery life, and to
prevent excessive current changes from impacting the power grid
and batteries, the power change rate should also be controlled when
scheduling EV loads, as shown in Equation 25:

PV2G
s·k·t − PV2G

s·k· t−1( )
∣∣∣∣∣ ∣∣∣∣∣≤ ε · Pc·max (25)

where ε is the maximum allowed charging rate.
For EV users, it is necessary to charge their vehicles to the

specified capacity before their desired time. Therefore, in the
scheduling plan, the total charging amount constraint must be
met, as shown in Equation 26:

∑tend
t�t0

xs·k·t � ∑tend
t�t0

Xs·k·t (26)

where t0 and tend are respectively the start and end times of the
scheduling plan.

3.3 Modeling summary

Based on the theory of two-stage stochastic programming
method, the model established in this chapter includes
constraints (4)–(5), (13)and (20)–(26). The objective function of
the model is shown in Equation 27:

minf � λ1f1 + λ2f2 (27)
where λ1 and λ2 are respectively the weight coefficients of the two-
stage objectives.

When the model is solved, the values of the decision variables x⊤j
and EV charging load xs·k·t are transformed into the
planning method.

4 Case study

Themodel established in this paper is a large-scale mixed integer
programming model, containing both integer and continuous

variables. The commercial solver Gurobi is used to solve the
problem. The computer specifications are: Intel Core™ i5-
13500H, 2.60 GHz, 16 GB of memory.

4.1 Case overview

This paper uses a low-voltage distribution transformer in an
urban village in Guangzhou City as an example. Figures 5, 6 are the
electrical topology of the distribution network transformer and the
road network coupling diagram respectively. The blue nodes in
Figure 6 represent customers, and the red squares indicate
distribution transformers.

The load exhibits characteristics typical of a residential area,
including four categories: residential load, small commercial
load, distributed photovoltaic (PV), and EV charging loads.
Due to factors such as charging prices and limited charging
pile capacity, most EVs charged during working hours follow
a “charge-and-go” pattern. This means the owner starts charging
immediately after connecting the car to the charging pile and
leaves once the EV is charged to meet mileage requirements or
the owner’s departure time limit. Fewer users participate in the
V2G plan during these hours. However, for users who charge
during late night to next morning, the end time of charging is
more flexible, and the proportion of users participating in the
V2G plan is relatively high.

To more clearly demonstrate the continuous dispatch effect
of V2G from late night to the next morning, this article takes 8:
00 a.m. as the starting point, the scenario time scale is 24 h a day,
and the sampling frequency is 15 min. For residential, small
commercial, and EV charging loads, the load curve is closely
related to whether the day is a weekday or not. Their clustering
results on weekdays and non-working days show obviously
different characteristics, as shown in Figures 7A–C. PV is
closely related to weather conditions. Therefore, the
clustering results of different scenarios according to weather
conditions are shown in Figure 7D. From the results, we can see
that PV output is larger on sunny days, smaller on cloudy or
rainy days, and relatively smaller on cloudy days, with random
fluctuations.

According to the pseudo load profile acquisition approach
proposed in Chapter 2, the load profiles of all loads in the
distribution network are obtained as shown in Figure 8. In this
paper, PV output is regarded as loads with negative values, and all
PV output is considered to be absorbed.

4.2 Case analysis

According to the scenarios generated above, the degree of load
imbalance in the area before replanning reached 26.38%. In both
working day and non-working day scenarios, the degree of load
imbalance at 10:00 p.m. is significantly higher. In the working day
scenario, the instantaneous degree of load imbalance can reach
43.71%, which is very unfavorable for the safe and stable operation
of the regional distribution network.

Applying the method proposed in this paper (referred to as
method 1), the load planning scheme for the region is obtained as
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follows: load-63, 64, and 65 at the end of feeder-3 are adjusted to
feeder-2, and load-77 and 78 at the end of feeder-2 are adjusted to
feeder-1. The schematic diagrams of the load adjustment positions
and paths are shown in Figures 9, 10.

Take EV load No. 39 as an example, the optimization results of EV
charging load considering V2G technology are shown in Figure 11.
During certain high-load periods, EVs connected to the distribution

network act as energy storage, transmitting energy back to the
distribution network. As night falls, most residential and commercial
loads decrease significantly. During this period, EV charging demand
rises to fulfill charging requirements. By early morning, residential and
commercial loads begin to increase again. By this time, most EVs have
completed charging, leading to a gradual decrease in EV load. This
sequence achieves a staggered operation of various loads.

FIGURE 5
Electrical topology diagram of LVDN.

FIGURE 6
Diagram of road-grid coupling network(RGCN).
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FIGURE 7
Clustering results of loads.

FIGURE 8
Pseudo load profiles of all loads.
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FIGURE 9
Planning scheme diagram 1.

FIGURE 10
Planning scheme diagram 2.
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After optimizing the distribution network in the region
according to the plan mentioned above, the comparison of the
degree of load imbalance is shown in Figure 12. It can be seen that
the degree of load imbalance has significantly decreased across
different scenarios, especially around the 22:00 period in the
non-working day scenario. The load imbalance phenomenon has
been greatly alleviated, and the overall degree of load imbalance has
dropped to 4.66%, demonstrating a significant effect.

If we only consider adjusting the distribution of loads in the
distribution network without applying V2G technology (referred to as
method 2), the resulting planning scheme would need to adjust load
48 alongwith loads 63, 64, and 65 to feeder 2. In this case, the degree of
load imbalance can only be reduced to 6.87%. The planning cost and
the degree of load imbalance would be higher than method 1.

If we ignore street information and only optimize network flow
(referred to as method 3), the planning scheme involves adjusting
load-1, 2, 3, and 4 to feeder-2, and adjusting load-64 and 65 to feeder-
1. This optimizes the degree of load imbalance to 4.11%. However, the

replanning routes in this scheme are longer and the planning cost is
higher. Compared to the case where street information is considered,
the decrease in the degree of load imbalance is insignificant. The
overall economic benefits of this scheme are lower, and it can easily
cause cross-power-supply issues, increasing management difficulty.
The comparison of the three methods is shown in Table 2.

The method proposed in this paper comprehensively considers
street information and the application of V2G technology. It achieves
a relatively good adjustment in the degree of load imbalance at the
lowest cost, offering high efficiency and economic benefits.

5 Conclusion

Aiming at the current problem of load imbalance in Low Voltage
Distribution Networks (LVDN), this paper proposes a load-balanced
distribution method that considers street information and the
application of V2G technology. Its outstanding features include the

FIGURE 11
EV charging load optimization diagram.

FIGURE 12
Comparison of the degree of load imbalance.
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incorporation of LVDN street information and the adoption of a two-
stage stochastic programming approach. Themethod proposed in this
paper effectively integrates long-term planning with short-term
dispatching strategies in the distribution network. By optimizing
user access nodes and incorporating V2G technology, this
approach significantly mitigates the degree of load imbalance in
the LVDN with minimal and more judicious adjustments.
However, the load profiles used in this method are pseudo load
profiles. If more accurate load profiles of all users can be obtained, the
effectiveness of this method can be further enhanced.
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This paper proposes a fault current limiting scheme (FCLS) for full-scale wind
power generators based on logic bang-bang funnel control (LBFC). Different
from the convention methods such as frequency droop control and sliding
control, which design the control strategy according to the specific fault
currents, LBFC is able to restrict various fault current within acceptable range
in the shortest time, and it is robust to system nonlinearities and external
disturbances. The control signal of the LBFC is bang-bang with the upper
and lower limits of control variables. In the model of full-scale wind power
generators connecting with the power grid, LBFC is designed to control the
switches of inverter bridges when over-current is detected, and a vector
controller is applied during the normal operation. Time-domain simulations
were conducted with PSCAD, and the performance of LBFC was validated.

KEYWORDS

bang-bang funnel controller, fault current limiting, switching control, wind turbine
generator, wind turbine

1 Introduction

Energy transition brings great challenges to the stable operation of the power grid.
The transient stability of large-scale wind power penetrated power systems (WPPS)
is increasingly influenced by the dynamics of wind power plants (Wang et al., 2015).
Renewable power sources are connected to power grids through flexibly controlled power
electronics inverters (Liu et al., 2017), which introduce completely different dynamics into
power grids in comparison with synchronous generators (SGs) (Li et al., 2020). Under
an extreme event, an effective control system of wind power generators can enhance the
reliability of wind power generation and prevent wind farms from tripping, which helps to
alleviate the power unbalance and improve the transient stability of large scale WPPSs. The
reliability of future renewable energy generation is the major challenge for the development
of renewable power sources (Enslin, 2016; Wu et al., 2023). To ensure that the power system
can operate stably and has strong anti-disturbance ability. Much research has been done to
meet these expectations and challenges.

The concept of Frequency Droop Control was initially introduced in Chandorkar et al.
(1993) for regulating the operation of parallel-connected inverters in autonomous
AC power grids. This control scheme involved determining the frequency
and magnitude of the inverter voltage vectors using active power-frequency
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FIGURE 1
Wind power generation system.

droop and reactive power-voltage droop characteristics, as outlined
in Behera and Saikia (2022); Silva et al. (2022). The primary
objective of this approach was to make the parallel-connected
inverters mimic the load-sharing behavior of traditional SGs to
maintain a stable frequency and voltage in the external power
grid (Li et al., 2021). However, it was observed that this frequency
and voltage droop method exhibited a sluggish and oscillatory
transient response (Guerrero et al., 2004).

To address these limitations, a phase angle droop control
mechanism was introduced in Marwali et al. (2004) for the
management of autonomously operating inverter-interfaced power
grids. In this strategy, the regulation of the phase angle of the
inverter voltage vector, as opposed to the system frequency, was
accomplished by employing an active power-phase angle droop
characteristic. This was done to ensure the proper distribution of

loads among the parallel-connected inverters. An examination of
the small-signal stability of inverter-interfaced power grids with
phase angle droop controllers was carried out in Marwali et al.
(2007), which affirmed the necessity of substantial angle droop gains
for maintaining appropriate load sharing, especially in situations
of system weakness. However, it’s important to note that elevated
droop gains can have an adverse impact on the overall stability of
the system.

Furthermore, various nonlinear control techniques, such
as fuzzy control (Jabr et al., 2011), sliding mode control
(Martinez et al., 2012), and model predictive control Liu and
Kong (2014) have also been applied for the integral control of
the wind turbine. To ease the uncertainty and volatility caused by
high penetration of renewable energy, the robustness and demand
defence of grid were researched (Wang et al., 2024). Although
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FIGURE 2
Schematic of a PMSG.

these nonlinear control methods have superior robustness to the
nonlinearity and parameter uncertainty of the WPPS in contrast
with linear control schemes, none of them has ever employed the
maximumcontrol energy of the converters of the permanentmagnet
synchronous generator (PMSG) in its control law.

In terms of improvements at the algorithmic aspect, some
novel methods were used to study the stability of renewable
energy generation (Chen L. et al., 2024; Liu et al., 2024). A method
of combining multi-step reconfiguration with many-objective
reduction is applied to deal with the power loss and load
peak–valley fluctuation in distribution network (Li J. et al., 2024).
Based on the neural network of dynamic recognition and auto-
reservoir (Liu J. et al., 2023), the load fluctuation can be predicted.
In addition, methods such as artificial intelligence and deep
reinforcement learning have also been applied to study the
potential of renewable power systems in terms of operation
(Li et al., 2023; Li Y. et al., 2024).

Combining the advantages of linear and nonlinear control
methods and exploring the potential of the already existing control
systemof the PMSG, bang-bang control scheme is employed here for
the integral control of the PMSG to enhance the transient stability
of large-scale WPPSs (Chen X. et al., 2024). The bang-bang control
scheme has ever been used for the excitation control of synchronous
generators in Kobayashi and Ichiyanagi (1978). The bang-bang
control law is derived by solving the canonical equation of the
system’s Hamiltonian, which, in turn, necessitates the computation
of the Hamiltonian’s derivatives. Yet, the need for precise system
parameters and the intricate nature of the Hamiltonian have
unquestionably impeded its implementation within extensive power
systems (Chen et al., 2023). A bang-bang funnel controller (BBFC)
is proposed for the nonlinear system having arbitrary known
relative degree (Liberzon and Trenn, 2013). Apart from the existing
researches, the design of the BBFC does not require the detailed

system information, and the system nonlinearity, uncertainty and
the impact of external disturbances are considered (Liu et al., 2016b;
Liu Y. et al., 2023). It involves logic calculation only, which facilitates
its application in the computationally burdened control systems
(Kang et al., 2015). Based on the advantages of inherently robust
nature due to its model-free design, a LBFC of PMSG is proposed
in this paper for limiting the fault current (Chen X. et al., 2024).

The contributions of the fault current limit method proposed in
this paper can be summarized as follows:

• The proposed BBFC method is performed in nature
coordinates with simple structure based on logical module.
And it inherently robustness due to its model-free design,
which brings convenience to its application.
• Benefit from the characteristics of logical switches, BBFC

method has a natural advantage in fault current limiting and
operates without the utilization of angular information from
phase lock loop (PLL), rotational transformation.

To summarise, the paper is structured as follows. Section 2
introduces the model of PMSG and describes the type 4 wind
turbine model in PSCAD. Moreover, the LBFC for fault current
rejection is derived in Section 3. Comparative simulation results of
the test system under the combination of LBFC and vector control
alone under the disturbance of current fault scenarios are given
in Section 4. Based on the results of the time-domain simulation,
conclusions are drawn in Section 5, followed by the Appendix.

2 Modelling of wind turbine system

In a full-scale wind power generator, the stator of the PMSG is
connected to the grid through a back-to-back converter, machine-
side converter (MSC) and grid-side converter (GSC), as shown in
Figure 1. During operation, changes in wind speed lead to variations
in the rotor speed of the generator. The output frequency of the
stator winding depends on the rotor speed. To ensure the rated
frequency of the three-phase voltages and currents generated by
the wind power generator, it is necessary for the MSC to convert
alternating current into direct current, which is then converted
back into rated frequency alternating current by the GSC, thereby
achieving variable-speed constant-frequency operation. For the
control aspect, vector control is used for both the MSC and GSC
to achieve current decoupled control. The outer loops of MSC are
active power loop and AC voltage loop. The outer loops of GSC
are dc voltage loop and reactive power loop. Both sides introduced
the PLL to obtain synchronous phase angle. And the switching
logic can also be obtained in Figure 1. The wind turbine is a core
component in the energy conversion of the full-scale wind power
generator. This section models the wind power generation (WPG)
system comprised of the mathematical models of the wind turbine
and the PMSG.

2.1 Model of wind turbine

A wind turbine consists of several components capable of
converting kinetic energy into electrical energy. The blades on the
wind turbine can convert wind energy into mechanical energy,
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FIGURE 3
Topology of the three-phase full-bridge inverter.

TABLE 1 Parameters of WPG system.

Parameter Value Parameter Value Parameter Value

freq 60 Hz Kp_ω 0.5 Lfilter1 0.335 mH

Sbase 200 MVA Kp_pitch 10 Vdc_base 1.45 kV

Vbase 33 kV Ki_pitch 0.01 Rfilter2 0 Ω

Vsource 230 kV VratedPM 0.69 kV IqrefMin −1.5 p.u

N 100 IqrefMax 1.5 p.u xq 1.11 p.u

Rfilter1 1.332 Ω IdrefMax 1.5 p.u IdrefMin −1.5 p.u

Cfilter1 700 uF ρ 1.2kg/m3 vω 10 m/s

R 50 m xd 0.55 p.u ε+0 0

xkd 0.62 p.u xkq 1.175 p.u φ+0 0.3

FIGURE 4
The scheme of LBFC.

which is then transmitted through the drive system to the generator,
where it is further transformed into electrical energy. Therefore, the
wind turbine is a primary and critical component of a WPG system,
directly impacting the efficiency of wind power generation.

According to aerodynamic principles, it is possible to express the
airflow power as Equation 1.

Pw =
1
2
ρAv3w (1)

where ρ represents air density, under normal conditions, ρ =
1.2kg/m3; A denotes swept area; vw is wind speed.

The blades capture wind power can be expressed as Equation 2.

Pm =
1
2
ρAv3wCp (2)

where Cp denotes wind energy utilization coefficient. According to
the Betz limit, the maximum theoretical value of this coefficient
is 0.59. The sweep area A of the wind turbine is only related to
the physical size of the wind motor, air density is equal to 0.2
generally. Under the wind speed is given, the wind energy utilization
coefficient Cp determines the power obtained by wind turbine.

When the blade rotates, the ratio of the tip speed to the
input wind speed is defined as the tip speed ratioλ. λ can be
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FIGURE 5
The description of the switching logic.

FIGURE 6
Structure of the type 4 wind turbine model.

indicated as Equation 3.

λ =
ωmR
vw

(3)

where ωm represents the angular velocity of the blade, R represents
blade radius.

For variable pitch wind turbine, Cp can be expressed as
Equation 4.

Cp (λ,β) = 0.5176(
116
λi
− 0.4β− 5)e−

21
λi + 0.0068λ (4)

where β represents pitch angle, λi is determined by Equation 5.

1
λi
= 1
λ+ 0.08β

− 0.035
β3 + 1

(5)

Through computing Pm, according to Equation 6, the output
torque of wind turbine is obtained and inputs into the PMSG.

Tm =
Pm
ωm

(6)

2.2 Modelling of PMSG equivalent model

PMSGuses permanentmagnetmaterial to replace the excitation
winding, and the permanent magnet generates rotor excitation,

which is a brushless motor. Since there is no rotor winding, its size
and weight are greatly reduced, and there is no rotor winding loss.

Figure 2 shows the equivalent model of PMSG. The time
domain model of PMSG in the stationary coordinate system can
be represented by voltage equation, flux equation and rotor motion
equation. The three-phase stator winding voltage equation can be
described as Equation 7.

{{{{
{{{{
{

usa = Rsisa + pψsa

usb = Rsisb + pψsb

usc = Rsisc + pψsc

(7)

where usa,usb,usc represent three-phase winding phase voltage;
isa, isb, isc represent three-phase winding phase current; ψsa,ψsb,ψsc
denote three-phase winding flux linkage; p = d

dt
. Three phase

winding flux equation can be written as Equation 8.

[[[[

[

ψsa

ψsb

ψsc

]]]]

]

=(

Laa Lab Lac
Lba Lbb Lbc
Lca Lcb Lcc

)
[[[[

[

isa
isb
isc

]]]]

]

+
[[[[

[

ψ fa

ψ fb

ψ fc

]]]]

]

(8)

where Laa,Lbb,Lcc are three-phase winding inductance; Mab =
Mba,Mac =Mca,Mbc =Mcb denotemutual inductance between three
phase windings; ψ fa,ψ fb,ψ fc denote the flux linkage between the
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FIGURE 7
Dynamics of WPG system in steady operation.

FIGURE 8
Dynamics of WPG system obtained in the case when three-phase current fault happened on bus 1 under vector control. (A) Three-phase voltages
measured on bus 1. (B) Three-phase currents measured on bus 1. (C) Active power output of WPG system. (D) Reactive power output of WPG
system on bus 1.
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FIGURE 9
Dynamics of WPG system obtained in the case when three-phase current fault happened on bus 1 under the switching control of vector control and
BBFC. (A) Three-phase voltages measured on bus 1. (B) Three-phase currents measured on bus 1. (C) Active power output of WPG system. (D) Reactive
power output of WPG system on bus 1.

rotor and the stator, which can be described as Equation 9.

[[[[

[

ψ fa

ψ fb

ψ fc

]]]]

]

= ψ f

[[[[[

[

cos θ

cos(θ− 2π
3
)

cos(θ+ 2π
3
)

]]]]]

]

(9)

According to the theory of permanent magnet motor, the motor
motion equation can be written as Equation 10.

J
dωm

dt
= Te −Tm −Bmωm (10)

where Tm represents input mechanical torque, which can be
acquired in (6), Te denotes mechanical torque of PMSG; Bm = 0 is
coefficient of rotational viscosity.

In the static coordinate system, the uneven air gap leads to
the asymmetry of the fixed rotor magnetic field structure, and
the projection of the rotor flux on the three-phase stator winding
is related to the rotor position Angle. The mathematical model
of the synchronous motor is a set of nonlinear time-varying
equations related to the instantaneous position of the rotor, which is

difficult to analyze and control. After Park transformation, the stator
winding is equivalent to the d and q axis winding and the rotor
winding are relatively stationary, so that the inductance parameters
of the d and q axes become fixed, and the stator voltage, current and
flux vector are all constant direct flow that is relatively stationary
with the rotor. In PSCAD, the modeling of WPG system can be
realized by applying coordinate transformation.

3 Fault current limiting control

3.1 Logical-based bang-bang funnel
control (LBFC) design

The three-phase full-bridge inverter’s topology is described in
Figure 3, and all of the symbols utilized in the subsequent LBFC
design process are defined in Table 1.

Obviously, the states of SjP and SjN are reversed, let SjP serves
as the working state of the switches on j− phase and rewrite it as Sbj ,
Sbj ∈ {0,1}.Then the three-phase invertermodelling in this paper can
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FIGURE 10
Dynamics of WPG system obtained in the case when three-phase current fault happened on bus 2 under the switching control of vector control. (A)
Three-phase voltages measured on bus 1. (B) Three-phase currents measured on bus 1. (C) Active power output of WPG system. (D) Reactive power
output of WPG system on bus 1.

be written as follows Equation 11.

{{{{{
{{{{{
{

LfilterpiLj = VdcS
b
j + uON −RfilteriLj − vj

CfilterpuCj = iLj − ij

uON = −
Vdc

3
(Sba + S

b
b + S

b
c)

(11)

whereuON denotes the voltage between pointO andN,uCj represents
the filter capacitor voltage. The output current of the inverter would
need to be controlled in this paper. As a result, the differential
Equation 11 has to be stated in general linear single-input, single-
output (SISO) form (Liberzon and Trenn, 2013). Then iLj is both the
system’s output yj and one of the state variables, which have been
set as Xj = [iLj,uCj]. The control variable of the system is defined as
uj = S

b
j . Thus the j− phase system in the inverter can be given by

Equations 12, 13.

{
{
{

pXj (t) = F(Xj) +G(Xj)uj (t)

yj (t) = hj (t)
(12)

where

F(xj) =
[[[

[

− 1
Lfilter
(Rfilterx1 +

Vdc
3 Sbk +

Vdc
3 Sbl + vj)

1
Cfilter
(x1 − ij)

]]]

]

G(xj) =
[[

[

2Vdc

3Lfilter
0

]]

]
hj (t) = x1 (t)

(13)

where k and l indicate the two phases aside from j− phase, their
operation states Sbk and Sbl are treated as constant variables during
discussing j− phase to allow the independence of logic switching
control for each phase.

The order of the LBFC varies depending on the relative degree
r of the system. Specifically, the relative degree of control objective
hj(t)with respect to system’s input uj(t) is to differentiate output hj(t)
until input uj(t) explicitly appears in hrj (t), namely, as Equation 14.

.h(r)j (t) = L
r
Fhj (t) +LGLr−1

F hj (t)uj (t) (14)
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FIGURE 11
Dynamics of WPG system obtained in the case when three-phase current fault happened on bus 2 under the switching control of vector control and
LBFC. (A) Three-phase voltages measured on bus 1. (B) Three-phase currents measured on bus 1. (C) Active power output of WPG system. (D) Reactive
power output of WPG system on bus 1.

whenLGLr−1
F hj(t) ≠ 0 holds.Thus, the approach for determining the

relative degree of system (12) is shown in Equation 15.

hj(
1) (t) = LFhj (t) +LGhj (t)uj (t)

= −
Rfilter

Lfilter
x1 (t) −

VdcS
b
k +VdcS

b
l + 3vj

3Lfilter

+
2Vdc

3Lfilter
uj (t)

(15)

Therefore, it has r = 1 and the first-order LBFC would be adopted
here. The switching logic of the first-order LBFC can be simply
defined as Equation 16.

q (t) = G (e (t) ,φ+0 − ε
+
0 ,φ
−
0 + ε
−
0 ,q (t−))

= G (e (t) ,e,e,q (t−))
= [e ≥ e∨ (e > e∧ q (t−))]

q (0−) ∈ {true, false}

(16)

where q(t) ∈ {true, false},having q(t−) ≔ limε→0q(t− ε), is the
switching logic’s output deduced by the tracking error e(t) = iLji.
The chosen funnel boundaries are shown by φ±0 , ε

±
0 represent the

safety distances, and the upper trigger e and lower trigger e are
made up of these two. The BBFC enables to limit the fault current in

the funnel through logical switching control. The funnel boundaries
can be obtained by several simulation trials, combining with the
limit value of current. In most instances, the value of ε±0 is set as 0.
The scheme of LBFC in PSCAD can be described by Figure 4.

On the basis of Lghji(t) =
2Vdci
3Lfilter
> 0, the control law of

the LBFC designed to suppress the inverter outlet currents
is given as Equation 17.

Sbj (t) =
{
{
{

0, ifq(t) = true

1, ifq(t) = false
(17)

3.2 Switching strategy design

The state-dependent strategy T , depicted in Figure 1, is the
foundation uponwhich the switching control scheme created for the
overcurrent suppression of the PMSM power system operates. It is
explained in Figure 5.

Assume that following a short-circuit malfunction at the system,
the absolute value of any j− phase current at the inverter’s outlet is
|ej(t)|.Then the switching strategy is stated as that the inverter bridge
arm switching control switches from the GSC Control to LBFC if
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T1 is satisfied and switches from the LBFC to the GSC Control
on condition that T2 is satisfied, where T1 and T2 are illustrated
as follows (Liu et al., 2016a):

T1:{|ej(t)| ≥ ϖ},T2: {The switching frequency of the control signal
generated by ad LBFC reaches its maximum} ∨ {Signal for fault
clearance, it can be Vtj > τ}where ϖ,τ are design parameters of the
switching strategy of the system, Vtj is the three phase voltage of the
short-circuit point.

4 Simulation verifications

PMSG power system is a part of WPG system. In order to
verify the effectiveness of fault current rejection through LBFC,
time domain simulations of the system considering electromagnetic
transients were performed in PSCAD. In the test system, the
simulation time is set to 3 s, three-phase current faults happened
in 1.5 s on bus 1 and bus 2 separately, and faults were cleared after
90 ms, the type 4 wind turbine model is shown in Figure 6. At the
WPG system outlet A, a multimeter is used to measure the voltage,
current, active power and reactive power of the turbine output. The
voltage and current aremeasured by unit value, and the active power
and reactive power are measured by named value. The result when
the system runs stably is displayed in Figure 7.

4.1 A three-phase current fault occurred on
bus 1 of the WPG system at 1.5 s

On bus 1 at t = 1.5s, a three-phase current fault occurred.
Figures 8, 9 display the dynamics of WPG system. Where the WPG
system in Figure 9 is equipped with LBFC during current fault,
and system in Figure 8 is only under the vector control. Due to
the current fault of three-phase, the magnitudes of bus voltages
dropped, and the three-phase voltages measured on bus 1 are shown
in Figures 8A, 9A. Fault was cleared after 90 ms. During the current
fault time, the short-circuit currents of the system without LBFC
reached 3 times the nominal current value, as shown in Figure 8B.

In contrast, the switching control of vector control and LBFC
had an optimizing effect on WPG system during fault time. When
the short-circuit current was up to the switching criterion ϖ, the
inverter bridge arm switching control was switched from the vector
control to the LBFC, which in turn controlled the current the set
boundary values φ−0 to φ+0 , as seen in Figure 9B, which represented
that BBFC was able to control the fault current. Furthermore, with
the magnitudes of bus voltages declined, the active power both in
Figures 8C, 9C decreased. As presented in Figures 8D, 9D, WPG
system’s reactive power output fluctuated following the voltages’
volatility when system converted from LBFC to vector control.

4.2 A three-phase current fault occurred
on bus 2 of the WPG system at 1.5 s

Similarly, three-phase-to-ground fault occurred on bus 2 at
1.5s. The dynamics of WPG system were displayed in Figures 10,
11. When a three-phase current fault occurred at 1.5s, the three-
phase voltages decreased and were close to zero during the fault

time, as seen in Figures 10A, 11A. WPG system in Figure 10
utilized vector control only, while system in Figure 11 employed
the switching control of vector control and LBFC. The results
were the same as above content, LBFC could operate effectively,
it could control the fault current of WPG system, as displayed in
Figures 10B, 11B. The fault was cleared after 90 ms, when the system
switched from LBFC to vector control, and voltage and current
oscillations occurred during this process, which also caused active
and reactive power fluctuations, as seen in Figures 10C, D and
Figures 11C, D.

5 Conclusion

This paper has proposed a FCLS for the full-scale wind power
generators based on LBFC. The GSC is controlled in a switched
manner with the LBFC and a vector controller. When fault currents
are detected, the control system of GSC switches from vector
controller to LBFC, which generates independent control signals for
the three-phase bridge arms.

Simulation results, obtained in the case when bus 1 and bus
2 happen three-phase-to-ground current fault on the test system,
have verified that switching control in conjuction with the LBFC
could enhance the dynamics of system during fault and restrain
the fault current effectively. LBFC’s fault current rejection avoided
prolonged overcurrent, reduced the pressure on the power grid
under the fault. In contrast to the original Type 4 wind turbine
model in PSCAD, the switching control in conjuctionwith the LBFC
couldmaintain the three-phase fault current at a low value, about 0.5
times the rated value, where 3 times the rated value without LBFC.
Meanwhile, considering the simple structure and excellent ability of
limiting fault current, LBFC could be applied into the area of PV
system, electrochemical energy storage system and flywheel energy
storage system, which helps to reduce the harm of overcurrent
to the system. With the switching from LBFC to vector control
after fault disappeared, the WPG system would experience an
oscillation, leading to the fluctuation of voltage and current in a short
time, which is also the inspiration for the future study considering
the harmonic stability of the co-ordinated control of vector
control and LBFC.

In terms of the difficulties of practical application, the
communication delays will put forward potential challenges
for the implementation of the LBFC. The sensor accuracy
can also impact the performance of the LBFC, and the error
of current measurement weakens the effectiveness of the
controller.
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Coordinated scheduling of 5G
base station energy storage for
voltage regulation in distribution
networks

Peng Sun, Mengwei Zhang*, Hengxi Liu, Yimin Dai and Qian Rao

College of Electrical and Information Engineering, Hunan University, Changsha, China

With the rapid development of 5G base station construction, significant energy
storage is installed to ensure stable communication. However, these storage
resources often remain idle, leading to inefficiency. To enhance the utilization of
base station energy storage (BSES), this paper proposes a co-regulation method
for distribution network (DN) voltage control, enabling BSES participation in grid
interactions. In this paper, firstly, an energy consumption prediction model based
on long and short-term memory neural network (LSTM) is established to
accurately predict the daily load changes of base stations. Secondly, a BSES
aggregation model is constructed by using the power feasible domain maximal
inner approximation method and Minkowski summation to evaluate the charging
and discharging potential and adjustable capacity of BSES clusters. Subsequently,
a BSES demand assessment and optimal scheduling model for low voltage
regulation in DN is developed. This model optimizes the charging and
discharging strategies of BSES to alleviate low voltage problems in DN. Finally,
the simulation results effectively verify the feasibility of the proposed optimal
scheduling method of BSES for voltage regulation in DN.

KEYWORDS

5G base station energy storage, aggregation, distribution network, voltage regulation,
optimal scheduling

1 Introduction

In recent years, advancements in new energy technologies have progressed rapidly, and
the proportion of new energy sources such as wind energy and solar energy has been
increasing. The landscape of large-scale new energy consumption remains unclear,
necessitating urgent adjustments in flexible resource allocation. As the best flexible
resource, energy storage can control the input and output of power and energy at
different time scales, thereby improving the stability and operation characteristics of
high-proportion new energy power systems, promoting flexible dispatching of power
grids, and solving the adverse effects of large-scale grid-connected clean energy.
However, its widespread adoption is impeded by high costs. Meanwhile, China has
clearly proposed to speed up the development of new infrastructure. Operators of 5G
base stations have invested in constructing numerous communication facilities and
configured extensive energy storage batteries to ensure the stability and reliability of
communication. However, the growing strength and stability of the distribution system
have significantly enhanced the energy supply reliability of 5G base stations, making the
redundant 5G BSES devices idle for a long time. Therefore, considering the unique backup

OPEN ACCESS

EDITED BY

Minghao Wang,
University of Macau, China

REVIEWED BY

Xu Xu,
Xi’an Jiaotong-Liverpool University, China
Jiapeng Li,
Xi’an Jiaotong University, China

*CORRESPONDENCE

Mengwei Zhang,
2464152664@hnu.edu.cn

RECEIVED 23 August 2024
ACCEPTED 13 September 2024
PUBLISHED 25 September 2024

CITATION

Sun P, Zhang M, Liu H, Dai Y and Rao Q (2024)
Coordinated scheduling of 5G base station
energy storage for voltage regulation in
distribution networks.
Front. Energy Res. 12:1485135.
doi: 10.3389/fenrg.2024.1485135

COPYRIGHT

© 2024 Sun, Zhang, Liu, Dai and Rao. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 25 September 2024
DOI 10.3389/fenrg.2024.1485135

52

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1485135/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1485135/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1485135/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1485135/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1485135&domain=pdf&date_stamp=2024-09-25
mailto:2464152664@hnu.edu.cn
mailto:2464152664@hnu.edu.cn
https://doi.org/10.3389/fenrg.2024.1485135
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1485135


power supply requirements of energy storage resources at
communication base stations, it is urgent to investigate the
influence of the communication load characteristics on the
backup power demand and deeply explore the schedulable
potential of the backup energy storage. This will enable the
efficient utilization of idle resources at 5G base stations in the
collaborative interaction of the power system, fostering mutual
benefit and win-win between the power grid and the
communication operators.

The research on 5G base station load forecasting technology can
provide base station operators with a reasonable arrangement of energy
supply guidance, and realize the energy saving and emission reduction of
5G base stations. Currently, the research primarily focuses on statistical
learning methods and machine learning techniques (Shang et al., 2022).
In (Morosi et al., 2013), the exponential smoothing technique is used to
predict the traffic in all coverage areas of the base station. In (Pan et al.,
2015), a Block Regression (BR) model for base station traffic prediction
considering the time correlation of base station load is proposed.
Although the proposed model boasts low complexity and the
mathematical formula is clear and easy to understand, it suffers from
poor scalability as it constructs only a single model for all base stations.
Moreover, the prediction results using these statistical learning models
are not satisfactory when dealing with long-term problems, especially
when predicting violently fluctuating base station network traffic data
(Cheng et al., 2023). For the machine learning load forecasting model, a
neural network load forecasting trainingmethod based on themaximum
correntropy criterion (NTPMCC) is proposed in (Qu et al., 2013). This
method takes into account the nonlinear characteristics of network load,
but the overall improvement in prediction accuracy is moderate.
Reference (Qu et al., 2019) introduces a base station load forecasting
model that leverages spatio-temporal characteristics. To achieve this, a
clustering algorithm based on artificial neural networks is employed to
establish specific models for various types of base stations. Additionally,
in reference (Stolojescu-Crisan, 2012), the StationaryWavelet Transform
(SWT) method is introduced during the data preprocessing stage. This
method is combined with the Auto-Regressive Integrated Moving
Average (ARIMA) model and Artificial Neural Networks (ANNs) to
accomplish the load forecasting tasks. While the above-mentioned base
station load forecasting method cannot shield the interference caused by
the drastic fluctuation of 5G base station load data, which leads to a large
static error in the prediction results, so there is an urgent need to study a
more efficient and applicable base station load prediction method to
effectively improve the base station load prediction accuracy.

Addressing the efficient utilization of flexible resources in 5G base
stations, literature (Ye, 2021; Yin et al., 2022) proposes installing
photovoltaic systems to enhance energy storage capabilities.
However, for the existing 5G base stations that have been
completed, the measure of reinstalling photovoltaic devices is
difficult to implement. Several scholars have proposed a dynamic
clustering method of energy storage utilizing virtual power plant
technology to address the challenge that the energy storage of
communication base stations with a large number and wide
distribution is difficult to schedule (Suo et al., 2022; Yang et al.,
2020). Nevertheless, the energy storage model is too simplified, and
the spatial and temporal differences between BSES are ignored in order
to improve the solution efficiency. Other studies have deeply explored
the adjustable capacity of energy storage, and proposed energy storage
resource aggregation optimization methods (Yang et al., 2023; Yu et al.,

2023). Reference (Sajjad et al., 2016) pointed out that the idea of
describing the feasible region of energy storage resource cluster
operation can be divided into two kinds: top-down and bottom-up.
Among them, top-down refers to the direct construction of the feasible
region of cluster operation through data analysis and probabilistic
modeling. From bottom to top, it refers to describing the feasible
domain of a single resource first, and then aggregating multiple
independent operating domains into a unified whole. Following a
top-down approach, reference (Sajjad et al., 2016) estimates the
flexibility level according to the probability of changing the collective
behavior of aggregated users. Reference (Ma et al., 2013) developed a
flexibility standard based on reinforcement learning methods to
distinguish different load types, thereby assessing the total
adjustment potential of resources. The current mainstream research
tends to be bottom-up, considering the shortcomings of complexity,
uncertainty, high computational cost and poor interpretability in
constructing feasible regions directly through data analysis and
probabilistic modeling. Following a bottom-up approach, reference
(Müller et al., 2019) pointed out that the flexibility of each resource
is mathematically regarded as a feasible region bounded by polytope,
and the essence of the flexibility aggregation problem is the Minkowski
sum of polytope provided by all flexible resources. However, the above
method is not feasible in practical solution. As the dimension of the
polyhedron increases, both the number of vertices and the permutations
and combinations grow exponentially. This results in a phenomenon
known as dimension explosion (Barot and Taylor, 2017; Althoff et al.,
2010), significantly escalating the computational complexity of
Minkowski summation. In (Müller et al., 2019), the zonotope set
was proposed to aggregate distributed resource flexibility. The
internal approximation method of the power feasible region ensures
the feasibility of themodel solution, but it also entails varying degrees of
flexibility loss. The above research focuses on aggregating multiple
flexible resources in the power system, but does not systematically
investigate aggregation methods as backup resources for BSES.
Therefore, it is necessary to thoroughly consider the characteristics
of the standby power supply of the BSES resources, conduct in-depth
research on its dynamic aggregation method, and quantitatively
evaluate the power adjustment ability of the BSES cluster.

Research on 5G BSES in the power system focuses on integrating
with the operation and dispatching of the DN (Li et al., 2022). The
primary objective is to support the DN in integrating new energy
consumption (Liang et al., 2023), peak shaving, valley filling (Yang
et al., 2023), and optimizing economic dispatching (Chai et al., 2014).
In (Jia et al., 2023), research focuses on mobile energy storage
technology aimed at enhancing the consumption of distributed
energy within station areas, which improves the consumption rate
of new energy and ensures the stable and reliable operation of the DN
in the station area. Reference (Zhang et al., 2023) proposed a model to
optimize the energy storage configuration of 5G base stations. The
objective is to alleviate the pressure of peak load on the power grid by
minimizing the total investment over the battery system’s entire
lifecycle. Reference (Han et al., 2021) proposed a Stackelberg game
collaborative optimization method for DN and 5G mobile network
based on demand response. The DN operator (DNO) acts as the
leader, selecting an optimal interactive electricity price to reduce peak-
valley differences in net load. Themobile network operator (MNO), as
a follower, adjusts its energy costs by responding to the electricity price
set by the DNO. In (Zhou and Xu, 2021), the mobile BSES system is
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used to provide local reactive power support. A day-ahead reactive
power scheduling model is proposed, considering the system and the
conventional reactive power compensation device, aimed at
minimizing the node voltage deviation in the active DN. The
above research works have established methods for BSES to
participate in DN optimization and dispatch from different
perspectives, but there is a lack of research related to making full
use of BSES resources to participate in voltage regulation of DNs.

In summary, the existing research on 5G BSES lacks a BSES co-
regulation method based on aggregation technology for voltage
regulation of DNs. Therefore, in order to fill the above research
gaps, this paper firstly proposes a BSES aggregation model taking
into account the base station energy consumption prediction, and
then proposes a BSES co-regulation method for the voltage
regulation of base stations in distribution grids, which makes full
use of the large amount of idle energy storage resources in 5G base
stations and realizes the mutual benefits of telecommunication
operators and power grids. The main contributions of this paper
are as follows.

• The specific composition of 5G base station energy
consumption is analysed, and a 5G base station energy
consumption prediction model based on long short-term
memory (LSTM) is constructed.

• Considering the power supply characteristics of BSES backup
supply, we constructed a BSES aggregation model taking into
account the energy consumption prediction of 5G base stations,
and quantitatively evaluated the maximum adjustable capacity
and charging/discharging potential of BSES.

• A BSES co-regulation method based on BSES aggregation
technology for voltage regulation of DNs is proposed to
quantitatively assess the minimum energy storage
regulation capacity required for voltage regulation of DNs
and optimize the charging and discharging strategy of each
BSES based on the balanced charge state scheduling method of
energy storage.

The rest of this paper is organized as follows: In Section 2, it
proposes a method for predicting 5G base station energy
consumption using LSTM and constructs a BSES aggregation
model considering this prediction. In Section 3, it proposes a
coordinated control method of BSES for low voltage governance
of DN based on BSES aggregation technology. In Section 4,
simulations are performed on a real distribution network test
system. The conclusion is put forward in Section 5.

2 BSES aggregation method
considering energy consumption
prediction

2.1 5G base station energy consumption
analysis and prediction model

2.1.1 5G base station energy consumption model
To meet the communication requirements of large capacity and

low delay, the commissioning of new equipment has significantly
improved the performance of 5G base stations compared with the

previous generation base stations. At the same time, the new
equipment has altered the power load characteristics of base
stations. In the 5G technology framework, the 5G base station
comprises macro and micro variants. The micro base station
serves indoor blind spots with minimal power consumption. The
macro base station exhibits greater potential for demand response.
This section primarily analyzes the current mainstream commercial
5G macro base stations.

The load of a 5G base station primarily consists of
communication equipment and auxiliary components. The
communication equipment mainly includes Active Antenna Unit
(AAU) and Base Band Unit (BBU). AAU is a combination of radio
frequency unit and antenna array of 5G base station. Its main
functions include converting baseband digital signal into analog
signal, modulating it into high frequency radio frequency signal, and
then amplifying it to enough power to be transmitted through the
antenna. AAU is the most energy-consuming equipment in 5G base
stations, accounting for up to 90% of their total energy consumption.
Auxiliary equipment includes power supply equipment, monitoring
and lighting equipment. The power supply equipment manages the
distribution and conversion of electrical energy among equipment
within the 5G base station. During main power failures, the energy
storage device provides emergency power for the
communication equipment.

A set of 5G base station main communication equipment is
generally composed of a baseband BBU unit and multiple RF AAU
units. Equation 1 serves as the base station load model:

PBS � Pmain + Pstatic (1)
where PBS is base station load; Pmain is the base station main
equipment load power and Pmain � PBBU + n · PAAU, PBBU is the
baseband unit power, n is the number of active antenna elements,
PAAU is the active antenna unit power and its size is mainly related to
the base station communication load; Pstatic is the base station
auxiliary equipment load power, including the base station
environment equipment, transmission equipment and monitoring
equipment load power, and the power remains constant.

The load change of base station mainly depends on the
communication behavior of users, exhibiting significant time
correlation and random fluctuations. As a special deep recurrent
neural network, the LSTM network can basically smooth the
interference caused by fluctuation to the training model, making
it suitable for base station energy consumption prediction with large
fluctuations in time series data.

2.1.2 LSTM-based energy consumption prediction
model for 5G base stations

The LSTMmodel is an advanced extension of the Recurrent Neural
Network (RNN)model, specifically designed to handle sequence data. It
addresses the long-term dependency problem, enabling it to better
capture long-term dependencies in sequence data. This allows the
model to effectively learn patterns and features in temporal data.

According to the energy consumption characteristics of the base
station, a 5G base station energy consumption prediction model
based on the LSTM network is constructed to provide data support
for the subsequent BSES aggregation and collaborative scheduling.
The prediction flow chart is shown in Figure 1, and the specific
prediction process is as follows.
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Step (1) The data is collected and preprocessed. After deleting the
abnormal data, the data is normalized according to Equation
2. Then, the processed data set is divided into training set and
test set according to a certain proportion.

Pbs � P − Pmin

Pmax − Pmin
(2)

where Pbs is the normalized historical input data; P is the historical
input data before normalization; Pmin is the minimum value of the
historical input data before normalization; Pmax is the maximum
value of the historical input data before normalization.

Step (2) The LSTM model is created and the training set sample
data is imported into the LSTM load forecasting model
for training. The specific LSTM model principle can be
referenced in (Fu, 2020).

Step (3) The test set sample data is imported into the trained
model for 5G base station load forecasting, and

compared with the actual 5G base station load to
calculate the evaluation index of the model. The root
mean square error eRTS, average relative error eAR,
maximum relative error eMR and relative error eR are
used as the evaluation indexes of prediction effect. The
calculation formula is as Equations 3–6:

eRTS �
������������
1
n
∑n
i�1

yi − ŷi( )2
√

(3)

eAR � 1
n
∑n
i�1

yi − ŷi

yi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ (4)

eMR � max
yi − ŷi

yi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣( ) (5)

eR � yi − ŷi

yi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (6)

where yi is the actual load value; ŷi is the load prediction value; n is
the number of data sets.

2.2 BSES aggregation method

2.2.1 Operational model of individual BSES
The feasible domain of a single BSES power can be described as:

Fj � pES
j ∈ RT

EES
j,t � δjEES

j,t−1 + pES
j,tΔt,∀t ∈ τ

−pES,−
j,t ≤pES

j,t ≤p
ES,+
j,t ,∀t ∈ τ

EES,−
j,t ≤EES

j,t ≤EES,+
j,t ,∀t ∈ τ

∣∣∣∣∣∣∣∣∣∣∣∣∣
⎧⎪⎪⎨⎪⎪⎩

⎫⎪⎪⎬⎪⎪⎭ (7)

where pESj is the output power of the BSES j at each moment in the
time period T, while pESj � [pES

j,1, p
ES
j,2,/, pES

j,T]; EES
j,t is the battery

residual energy state of the BSES j at time t; δj is the self-discharge
efficiency of the BSES j; pES

j,t is the input power of the BSES j at time t,
pES
j,t > 0 indicates charging, pES

j,t < 0 indicates discharging,; is
charging/discharging intervals for BSES j; τ � 1, 2,/, T{ },
denotes a moment in time T; pES,−

j,t is the maximum discharge
power of the BSES j; pES,+

j,t is the maximum charge power of the BSES
j; EES,−

j,t is the value of the minimum energy state allowed for the
BSES j at time t, with respect to the load size and minimum supply
time at time t, EES,−

j,t � t dminP
d
t , P

d
t is the predicted power of the base

station energy consumption at time t, is the minimum power supply

FIGURE 1
Flowchart of 5G base station load prediction based on LSTM.

FIGURE 2
The principle of the maximum inner approximation method in
the feasible domain of aggregation power.
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time of the base station load, and the general minimum power
supply time is 3 h; and EES,+

j,t is the maximum energy state value of
the BSES j allowed at time t.

To facilitate the derivation of the subsequent equations,
Equation 7 can be written in the following compact form, as
illustrated in Equation 8.

Fj � pES
j ∈ RT

∣∣∣∣∣Mjp
ES
j ≤Nj{ } (8)

where Mj, Nj are expressed as Equations 9, 10, respectively:

Mj � diag I( ); diag −I( );A−1
j Bj;−A−1

j Bj( ) (9)
Nj � pES,+

j ; pES,−
j ;EES,+

j − A−1
j Cj;−EES,−

j + A−1
j Cj( ) (10)

where I � [1, 1,/, 1]T ∈ RT×1, where pES,+j , pES,−j , EES,+
j ,

EES,−
j ∈ RT×1, represent maximum charging power vector, the

maximum discharging vector, the maximum energy state vector
and the minimum energy state vector of the BSES j in T period,
respectively. Aj, Bj, Cj are expressed as Equations 11-13,
respectively:

FIGURE 3
Topology of 22-node distribution network system.

TABLE 1 Line parameters.

Line Length (km) Resistance (Ω/km) Reactance (Ω/km) Current capacity (A)

0–10 13.173 0.13 0.358 503

10–16 4.176 0.91 0.38 90

16–18 1.364 0.91 0.38 90

10–20 4.266 0.91 0.38 90

20–22 4.635 0.91 0.38 90

FIGURE 4
Load curve of each node.
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Aj �

1 0 0 / 0
−δj 1 0 / 0
0 −δj 1 / 0

..

. ..
. ..

.
1 ..

.

0 0 0 / 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

Bj � diag I( )Δt (12)
Cj � δjE

ES
j,0, 0, 0/, 0[ ]T (13)

whereAj, Bj ∈ RT×T, Cj ∈ RT×1. δj is the self-discharge efficiency of
the BSES j. EES

j,0 is the initial capacity state of energy storage.

2.2.2 BSES aggregation model
To reduce decision-making complexity at the distribution

network operator level, BSES aggregators need to aggregate the
operational feasible regions of all BSES units to form the operational

feasible region of the BSES cluster. The aggregated operational
feasible region represents the adjustable range of the flexible
resources when all BSES units are simultaneously controlled. The
mathematical essence of the feasible region aggregation problem is
the Minkowski sum (M-Sum). The aggregation calculation process
is as follows.

The expression for the aggregated power when the number of
BSES units is N is presented in Equation 14.

pagg
i,t � ∑N

j�1
pES
j,t ,∀t ∈ τ (14)

The aggregated feasible domain F can be expressed as
Equation 15:

F � ∪
j∈N

Fj (15)

where ∪ is denoted as Minkowski summation; N : � [1, 2,/N].
However, when the number of energy storage units in the base

station is high, the number of sets and dimensions involved in the
operation increases, and the planes describing the boundary of the
feasible domain increase exponentially, which leads to the difficulty of
the Minkowski summation and makes the solution of its aggregated
power feasible domain non-computable. Therefore, in order to reduce
the computational complexity, this paper adopts an aggregated power
feasible domain maximal inner approximation method (Zhao et al.,
2017), whose principle schematic is shown in Figure 2.

The feasible region aggregation problem is characterized by large
computational scale and strong temporal coupling. The exact feasible
region of the aggregate is often difficult to compute and typically
requires approximation of the feasible region for individual objects
first. Initially, a basic power feasible regionF0 is selected and subjected
to scaling and translation to fit the power feasible regions of each BSES
unit. Then, the Minkowski sum is performed. This method effectively
addresses the computational complexity of the aggregated feasible
region. The fitted power feasible region is represented as Equation 16:

FIGURE 5
Convergence of training set error for 5G base station energy
consumption prediction.

FIGURE 6
5G base station load forecast for three consecutive days.
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φjF0 + μj � yj

∣∣∣∣∣yj � φjξ + μj,∀ξ ∈ F0{ } (16)

where φj is the scaling factor; μj is the translation factor,
μj ∈ RT, RT denotes the T-dimensional real number space;
yj denotes the power feasible domain of the BSES at each
moment; ξ denotes the baseline power feasible domain at
each moment.

The expression of F0 is as follows:

F0 � PES
0 ∈ RT

EES
0,t � δ̂EES

0,t−1 + pES
0,tΔt,∀t ∈ τ

−p̂ES,−
0,t ≤pES

0,t ≤ p̂
ES,+
0,t ,∀t ∈ τ

Ê
ES,−
0,t ≤EES

0,t ≤ Ê
ES,+
0,t ,∀t ∈ τ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
⎧⎪⎪⎨⎪⎪⎩

⎫⎪⎪⎬⎪⎪⎭ (17)

where δ̂, p̂ES,−
0,t , p̂ES,+

0,t , Ê
ES,−
0,t , Ê

ES,+
0,t are the average values of the

corresponding parameters for all BSES.
Equation 17 can be written in a compact form, as show in

Equation 18:

F0 � pES
0 ∈ RT

∣∣∣∣M0p
ES
0 ≤N0{ } (18)

where Μ0 and N0 are expressed as Equations 19, 20, respectively:

M0 � diag I( ); diag −I( );A−1
0 B0;−A−1

0 B0( ) (19)
N0 � p̂ES,+

0 ; p̂ES,−
0 ; Ê

ES,+
0,t − A−1

0 C0;−ÊES,−
0,t + A−1

0 C0( ) (20)

where B0 � Bn, A0’s expression is as Equation 21:

A0 �

1 0 0 / 0
−δ̂ 1 0 / 0
0 −δ̂ 1 / 0
..
. ..

. ..
.
1 ..

.

0 0 0 / 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (21)

where A0 ∈ RT×T. δ̂ is the average values of self-discharge efficiency
of all BSES.

Scaling and translation of F0 is used to fit each BSES power
feasible domain Fn, when φj is maximum, the fitted BSES power
feasible domain Fj is optimal, and the optimal parameters φ*

j and μ
*
j

can be obtained by solving the optimization problem as shown in
Equation 22:

maximize
φj ,μj

φj

s.t. φjF0 + μj ⊂ Fj

φj ≥ 0

(22)

Let ϕj � 1
φj
, ηj � −ϕjμj, based on Farkas’ theorem, the above

optimization problem expression can be transformed into
Equation 23:

minimize
ϕj,ηj ,G

ϕj

s.t. GM0 � Mj

GN0 ≤ ϕjNj +Mjηj

(23)

By solving the above optimization problem, the parameters φj

and μj can be obtained, so that the feasible domain of BSES
aggregation power can be obtained as Equation 24:

Fagg � pagg
t ∈ RT

Eagg
i,t � δiE

agg
i,t−1 + pagg

i,t Δt,∀t ∈ τ
−pagg,−

i,t ≤pagg
i,t ≤pagg,+

i,t ,∀t ∈ τ
Eagg,−
i,t ≤Eagg

i,t ≤Eagg,+
i,t ,∀t ∈ τ

∣∣∣∣∣∣∣∣∣∣∣
⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭ (24)

where each boundary parameter is expressed as Equations 25-28:

pagg,−
i � φp̂ES,−

0 − μ (25)
pagg,+
i � φp̂ES,+

0 + μ (26)
Eagg,−
i � φÊ

ES,−
0 − A−1Bμ (27)

Eagg,+
i � φÊ

ES,+
0 + A−1Bμ (28)

where φ � ∑
j∈Ωi

φ*
j, μ � ∑

j∈Ωi

μ*j; Ωi denotes the set of BSES belonging

to aggregator i.

3 5G BSES co-regulation method for voltage
regulation in DNs

This chapter aims to study 5G BSES participation in DN
coordinated scheduling methods for optimal operation in low-
voltage scenarios. It first establishes a DN model and introduces

FIGURE 7
Charging and discharging potential of aggregated energy storage
for 10 base stations over 24 time periods.

FIGURE 8
Energy state boundaries of aggregated energy storage for
10 base stations over 24 time periods.
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a quantitative assessment method for low-voltage regulation
demand, which guides base station operators in coordinating
with the DN. The chapter then proposes a cooperative
scheduling method for BSES, optimizing its charging and
discharging strategies to regulate DN voltage and improve grid
safety and stability.

3.1 DN modeling

3.1.1 DN topology model
Since the DN is a radial structure, the DN topology containing

N nodes is defined as G � (N , E), where N � 1, 2, ..., N{ } and E
represent the set of nodes and the set of lines, respectively. The
substation is denoted as node 0. In addition to the substation, each
node i has a unique parent node πi and a set of child nodes directly
connected to it, which are denoted by Ci. Without loss of
generality, the node index is encoded in such a way that the
index of each node is always greater than the index of its

parent node, πi < i. In addition, the line pointing from a node
πi to node i is labeled as line i. Therefore, the branch numbering
E � 1, 2, ..., N{ } can be consistent with the node numbering. Let A0

be an N × (N + 1) dimensional node association matrix. It can be
expressed as Equation 29:

A0
ij �

−1 j � i
1 j � πi

0 j ≠ i, πi

⎧⎪⎨⎪⎩ (29)

where if j � πi, A0
ij = 1 indicates that node j is the parent of node i

and there is a line connecting node i to node j. If A0
ij = 0, it indicates

that node j is not the parent of node i. A0 is divided into two parts, a
and A, where a represents the first column of A0, which is the
correlation matrix of node 0. A is a full-rank matrix, and therefore A
is invertible.

3.1.2 DN branch-circuit current modeling
For a radial DN, the following tidal equations are used to

represent the branch-circuit tidal models (Li et al., 2019).

FIGURE 9
Voltage amplitude of BSES before participation in dispatch for 24 time periods.

FIGURE 10
Voltage amplitude after participation of BSES in dispatch for 24 time periods.
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Pi − P2
i + Q2

i

V2
πi

ri + pi � ∑
j∈Ci

Pj ∀i ∈ N /0 (30)

Qi − P2
i + Q2

i

V2
πi

xi + qi � ∑
j∈Ci

Qj ∀i ∈ N /0 (31)

V2
πi
− V2

i � 2 riPi + xiQi( ) − r2i + x2
i( )P2

i + Q2
i

V2
πi

∀i ∈ ε (32)

Equations 30, 31 represent the active and reactive power balance
at node i, respectively, and Equation 32 represents the voltage link
between two neighboring nodes, Where pi and qi denote the active
and reactive power injected at node i, respectively; Pi and Qi denote
the active and reactive power circulating on branch i, respectively; ri
and xi denote the resistance and reactance of line i, respectively; and
Vπi and Vi denote the voltage magnitude of the parent node and the
child node i, respectively.

Since the original branch-current models (30)–(32) are non-
convex, the convex optimization solution method cannot be directly
applied. To ensure the efficient solution of the problem, after
approximating, and neglecting the higher terms of the equations,

the linear branch-current model can be obtained as shown in
Equations 33–35.

Pi − ∑
j∈Ci

Pj � −pi ∀i ∈ N /0 (33)

Qi − ∑
j∈Ci

Qj � −qi ∀i ∈ N /0 (34)
Vπi − Vi � riPi + xiQi ∀i ∈ ε (35)

3.2 BSES demand assessment model for
voltage regulation in DNs

3.2.1 Objective function
When the distribution network system experiences excessive

load, certain nodes may encounter low voltage issues. These issues
can be addressed by aggregators scheduling the charging and
discharging actions of 5G BSES, effectively adjusting the flexible
active load of the 5G base stations. From the perspective of the power
grid, the aim is to resolve low voltage problems with minimal energy
storage adjustment requirements. Therefore, the objective function
is to minimize the energy storage adjustment demand F at each node
of the base station over a day, as shown in Equation 36.

F � ∑T�24
t�1

∑Ne

i�1
pagg
i,t

∣∣∣∣ ∣∣∣∣ (36)

where T is 24 time periods in a day;Ne denotes the number of node’s
aggregated energy storage (AES); pagg

i,t denotes the output power of
node i’s AES in time period t.

3.2.2 Restrictive condition
3.2.2.1 Linear branch flow model

Pi,t − ∑
j∈Ci

Pj,t � −pi,t ∀i ∈ N /0 (37)

Qi,t − ∑
j∈Ci

Qj,t � −qi,t ∀i ∈ N /0 (38)
Vπi ,t − Vi,t � riPi,t + xiQi,t ∀i ∈ ε (39)

Equations 37-39 represent the linear power flow constraints of the
line where pi,t and qi,t denote the active and reactive power injected
into node i at time t; Pi,t andQi,t denote the active and reactive power
circulating on branch i at time t; ri and xi denote the resistance and
reactance of line i; Vπi ,t and Vi,t denote the voltage magnitude of the
parent node and the child node i at time t, respectively.

3.2.2.2 Nodal power balance constraints

pi,t � −pd
i,t − pagg

i,t (40)
qi,t � −qdi,t (41)

Equation 40 ensures the load active power balance of node i;
Equation 41 ensures the load reactive power balance of node I, where
pd
i,t and q

d
i,t denote the load active power and reactive power of node i

at time t respectively; pagg
i,t denote the AES output power of node i

at time t.

FIGURE 11
24 time periods of AES regulation requirements at each node.

FIGURE 12
Charging and discharging of internal BSES at node 22 for
24 time periods.
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3.2.2.3 Node voltage constraints

V
i
≤Vi,t ≤ �Vi (42)

Equation 42 ensures that the node voltage of the DN does not
exceed the limit. Where V

i
and �Vi are the maximum and minimum

values allowed for the nodal voltage, respectively.

3.2.2.4 Line transmission power capacity constraints

P2
i,t + Q2

i,t ≤ S2i,t (43)

where Si,t is denoted as the maximum value of the apparent power
allowed to flow through branch i. In order to facilitate the solution, it
is necessary to linearize the line transmission power capacity
constraint, as shown in Equation 44. Equation 44 ensures that
the transmission power of the DN line does not exceed the limit.�

2
√ − 1( )Pi,t + Qi,t ≤ Si,t�
2

√
Pi,t −

�
2

√ − 2( )Qi,t ≤
�
2

√
Si,t�

2
√

Pi,t +
�
2

√ − 2( )Qi,t ≤
�
2

√
Si,t�

2
√ − 1( )Pi,t − Qi,t ≤ Si,t
− �

2
√ − 1( )Pi,t + Qi,t ≤ Si,t

− �
2

√
Pi,t −

�
2

√ − 2( )Qi,t ≤
�
2

√
Si,t

− �
2

√
Pi,t +

�
2

√ − 2( )Qi,t ≤
�
2

√
Si,t

− �
2

√ − 1( )Pi,t − Qi,t ≤ Si,t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

3.2.2.5 The power and energy state constraints of the AES

Eagg
i,t � δiE

agg
i,t−1 + pagg

i,t Δt (45)
−pagg,−

i,t ≤pagg
i,t ≤pagg,+

i,t (46)
Eagg,−
i,t ≤Eagg

i,t ≤Eagg,+
i,t (47)

Equations 45-47 indicates the operational constraints of AES where
Eagg
i,t denotes the residual energy state of the AES i at time t; δi denotes

the self-discharge efficiency of the AES i; Δt denotes the charging or
discharging time period of the AES; pagg,+

i,t denotes the maximum
charging power of the AES; pagg,−

i,t denotes the maximum discharging
power of the AES; Eagg,+

i,t denotes the maximum permissible energy
state value of the AES i at time t; Eagg,−

i,t denotes the minimum
permissible energy value of the AES i at time t.

3.3 Cooperative scheduling model of BSES
for voltage regulation in DNs

Building on the BSES demand assessment model for low voltage
regulation in distribution networks, the power adjustment demand for
aggregated BSES at each network node has been calculated. However,
the individual BSES output at each node remains unknown. To address
this, an optimized scheduling model is proposed, which balances the
state of charge and optimizes BSES charging and discharging strategies
to mitigate low voltage issues in the distribution network.

3.3.1 Objective function
Charging and discharging is carried out with the goal that the

SOC of each base station’s energy storage state of charge is close to

0.5 after scheduling, to realize the fair distribution of power among
each base station’s energy storage resources, as shown in Equation 48.

F � ∑N
j�1
∑T
t�1

SOCES
j,t − 0.5

∣∣∣∣∣ ∣∣∣∣∣ (48)

where N denotes the number of BSES inside the node; T denotes the
BSES scheduling time period; SOCES

j,t �
EES
j,t

EB
j
denotes the SOC state of

BSES j inside the node at time t, EES
j,t denotes the remaining energy

state of BSES j inside the node at time t, and EB
j denotes the rated

capacity of BSES j inside the node.

3.3.2 Restrictive condition
3.3.2.1 Energy storage energy balance constraints

The sum of the node’s internal BSES energy should be balanced
with the node’s AES energy value, as described in Equation 49.

∑N
j�1
EES
j,t � Eagg

i,t (49)

3.3.2.2 Energy storage energy state constraints

EES
j,t � δj · EES

j,t−1 + pES
j,tΔt (50)

EES,−
j,t ≤EES

j,t ≤EES,+
j,t (51)

Equation 50 illustrates the relationship between the energy stored in
BSES j and its input power, Equation 51 shows the upper and lower
bounds of energy stored in BSES j where δj denotes the self-
discharge efficiency of the BSES j; pES

j,t denotes the output power
of the BSES j at time t; Δt denotes the BSES charging or discharging
time period; EES,−

j,t denotes the minimum energy state value allowed
by the BSES j at time t; and EES,+

j,t denotes the maximum energy state
value allowed by the BSES j at time t.

3.3.2.3 Energy storage power balance constraints

∑N
j�1
pES
j,t � pagg

i,t (52)

−pES,−
j,t ≤pES

j,t ≤pES,+
j,t (53)

Equation 52 ensures the power balance of AES, Equation 53 enforces
the lower and upper bounds to the power input of BSES jwhere pES,+

j,t

indicates the maximum charging power of the BSES; pES,−
j,t indicates

the maximum discharging power of the BSES j.

4 Simulation results

4.1 System data

To validate the effectiveness of the proposed method, a
simulation analysis was conducted using a 22-node distribution
network in a specific region. The network topology is shown in
Figure 3, and the line parameters are listed in Table 1. The nodes are
uniformly distributed, with the maximum and minimum node
voltages set at 1.05 p. u and 0.95 p. u, respectively. The typical
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daily load curve is depicted in Figure 4. In this region, the
communication base stations are equipped with energy storage
systems with a rated capacity of 48 kWh and a maximum
charge/discharge power of 15.84 kW. The self-discharge
efficiency is set at 0.99, and the state of charge (SOC) is allowed
to range between a maximum of 0.9 and a minimum of 0.1.

4.2 5G BSES energy consumption prediction
model results and analysis based on LSTM

The training and test datasets were imported into the LSTM-
based load forecasting model for 5G base stations. The error
convergence for the training and test datasets is shown in
Figure 5, while the load forecasting for the test dataset samples is
illustrated in Figure 6. The root mean square error (RMSE) for the
test dataset samples was calculated to be 0.22 kW, with an average
relative error of 0.06. As seen in Figure 5, the loss function value
converges to a minimum after 24 training epochs. Figure 6 indicates
that the model accurately reflects the load data trends over time,
demonstrating good tracking performance. In summary, these
results validate that the LSTM load forecasting model performs
well in predicting the load data of 5G base stations.

4.3 Results and analysis of BSES aggregation

The simulation results for the aggregated power feasible region
of 10 BSES units are shown below. Figures 7, 8 illustrate the charging
and discharging potential and the energy state boundaries of the
aggregated 10 base stations over 24 time periods in a day. The
adjustable capacity of the aggregated energy storage is influenced by
factors such as individual BSES parameters and the load size of the
base stations, resulting in temporal fluctuations. The charging and
discharging potential is related to the charge/discharge power
parameters of each storage unit. The minimum energy state of
the aggregated storage is associated with the base station load size,
while the maximum energy state is linked to the rated capacity
parameters of each storage unit. Therefore, the proposed BSES
aggregation model can quantitatively assess the charging and
discharging potential and the adjustable capacity of the
controllable BSES group, providing data support for the
subsequent participation of BSES in coordinated scheduling with
the distribution network.

4.4 Validation results of 5G BSES co-
regulationmethod for DN voltage regulation

4.4.1 Validation results of a BSES demand
assessment model for DN voltage regulation

Based on the distribution network branch power flow model
presented in this paper and utilizing existing data, the voltage
magnitudes at each node of the distribution network were
calculated before the participation of BSES in the scheduling
across multiple time scales. Figure 9 illustrates the voltage
magnitudes at each node of the distribution network over
24 time periods before BSES participated in the scheduling. As

shown in the figure, low voltage phenomena (voltage magnitude per
unit value less than 0.95, indicated by the green sections) occur at
certain times at the end nodes of the distribution network.

Using the BSES demand assessment model proposed in this
paper, and combining it with existing data, the voltage
magnitudes at each node of the distribution network and the
energy storage adjustment requirements for low voltage
mitigation were calculated after the participation of BSES in
the scheduling across multiple time scales. Figure 10 shows
the voltage magnitudes at each node of the distribution
network over 24 time periods after the BSES participated in
the scheduling. As depicted in the figure, the coordinated
scheduling of BSES effectively improves the voltage
magnitudes at the end nodes, achieving low voltage
mitigation. The multi-time scale adjustment requirements of
the aggregated BSES power for low voltage mitigation in the
distribution network nodes are shown in Figure 11.

4.4.2 Validation results of an optimal scheduling
model for BSES for voltage regulation in DNs

Based on the BSES optimization scheduling model proposed in
this paper and utilizing existing data, the coordinated scheduling of
BSES at each node was calculated. Taking node 22 as an example for
the analysis of internal BSES coordination, Figure 12 illustrates the
charging and discharging conditions of BSES at node 22 over 24 time
periods. The figure shows that the model can achieve coordinated
scheduling of BSES, optimizing the charging and discharging
strategies of the energy storage units and effectively managing
low voltage issues.

5 Conclusion

In this paper, a BSES aggregation method that takes into
account both the base station energy consumption and the
backup power characteristics of BSES is proposed.
Furthermore, with the goal of fully utilizing the energy storage
resources of 5G base stations, a BSES co-regulation method for
voltage regulation in DNs is proposed. The feasibility of the
proposed method is verified by case analysis, and the following
conclusions can be drawn.

• The 5G base station energy consumption prediction model
based on LSTM proposed in this paper takes into account the
energy consumption characteristics of 5G base stations. The
prediction results have high accuracy and provide data
support for the subsequent research on BSES aggregation
and optimal scheduling.

• The BSES aggregation model proposed in this paper, which
considers the prediction of base station energy
consumption, accurately and quantitatively evaluates the
power adjustability and adjustable capacity of BSES
clusters, and enables the centralized management and
scheduling of massive BSES.

• The BSES optimization scheduling model constructed in this
paper for voltage regulation of DNs further exploits the
dispatchable potential of BSES to participate in DN synergy
and interaction. It addresses the low-voltage problem of the
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DN and improves the security and stability of the grid while
ensuring a sufficient and stable backup supply for 5G
base stations.
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A support vector
regression-based interval power
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distribution networks with DGs
integration
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In distribution networks with distributed generators (DGs), power generation and
load demand exhibit increased randomness and volatility, and the line parameters
also suffer more frequent fluctuations, which may result in significant state shifts.
Existing model-driven methods face challenges in efficiently solving uncertain
power flow, especially as the size of the system increases, making it difficult to
meet the demand for rapid power flow analysis. To address these issues, this
paper proposes an SVR-based interval power flow (IPF) prediction method for
distribution networks with DGs integration. The method utilizes intervals to
describe system uncertainty and employs Support Vector Regression (SVR) for
model training. The input feature vector consists of the intervals of active power
generation, load demand, and line parameters, while the output feature vector
represents the intervals of voltage or line transmission power. Ultimately, the
SVR-based IPF prediction model is established, capturing the linear mapping
relationship between input data and output IPF variables. Simulation results
demonstrate that the proposed method exhibits high prediction accuracy,
strong adaptability, and optimal computation efficiency, meeting the
requirements for rapid and real-time power flow analysis while considering
the uncertainty in distribution networks with DGs integration.

KEYWORDS

data-driven method, interval power flow, support vector regression, distribution
network, distributed generators

1 Introduction

1.1 Motivation

In the context of widespread integration of distributed generators (DGs) such as wind
and photovoltaic (PV) power into distribution networks, power generation exhibits
uncertainty due to the inherent volatility and randomness of wind and solar. In
addition, load demand and line parameters also exhibit uncertainty which is caused by
user consumption behaviors and environmental factors, respectively. These issues caused
the power flow state in the system to undergo rapid and intricate changes. Considering these
uncertainties, uncertain power flow (PF) methods are proposed by researchers. However,
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most existing uncertain PF methods are model-driven. As the
system scale increases, the model complexity grows, leading to a
significant reduction in computational efficiency, which fails to meet
the requirements for rapid assessment of system states in
distribution networks. Improving the computational efficiency of
uncertain PF analysis can provide assurance for real-time
monitoring and dispatching of distribution systems, ensuring
stable and efficient operation. There is an urgent need for
efficient and rapid methods for uncertain PF analysis in
distribution networks that can effectively address system
uncertainty.

1.2 Focus and potential

This paper focuses on addressing the computational efficiency
issues of uncertain PF, primarily in two aspects: describing system
uncertainty using intervals and employing data-driven methods for
PF prediction, enabling real-time interval power flow (IPF)
calculations in distribution systems. The potential of this research
lies in its ability to significantly enhance the real-time monitoring
and operational capabilities of distribution networks with integrated
DGs. By addressing the limitations of existing model-driven
uncertain PF methods, the proposed approach could lead to
more efficient PF analysis, particularly in the face of the
increasing penetration of renewable energy sources (RES). This
has offered a scalable solution for real-time PF analysis in
increasingly complex and uncertain environments.

1.3 Preceding research

Commonly used methods for handling uncertainty currently
include robust, probabilistic, and interval methods. Among them,
the robust method is mainly used for optimization (Zheng et al.,
2024), such as energy management under the uncertainty of
renewable energy generation and electric vehicles (EVs) (Tan
et al., 2024). When calculating power flow, the probabilistic
method and interval algorithm are more frequently employed,
which are called probabilistic power flow (PPF) and interval
power flow (IPF). IPF has the advantages of simple modelling
and high security compared with PPF. Existing IPF methods
primarily consist of iterative approaches (Mori and Yuihara,
1999; Barboza et al., 2004) and optimization techniques (Zhang
et al., 2017; 2018; 2023). For iterative approaches, the Interval
Newton iteration was first employed. To avoid solving the
equations in the Interval Newton method, the Krawczyk method
was introduced. The interval problem was broken down into
multiple sub-intervals, and each sub-interval was solved
iteratively using the Krawczyk method (Mori and Yuihara, 1999).
The Interval Newton iteration framework was combined with the
Krawczyk operator in (Barboza et al., 2004), enhancing convergence
performance. The introduction of the Affine Algorithm (AA)
(Vaccaro et al., 2010) increased the efficiency and accuracy of
solving interval nonlinear equation systems. The convergence of
the Krawczyk-Moore iteration was enhanced by introducing AA,
and the correlation issues of interval computation were addressed.
Optimization methods, which avoid iteration and convergence

problems, have gained widespread attention in recent years. The
optimization model for the IPF solution was constructed by
converting intervals into affine forms (Zhang et al., 2017),
improving the efficiency of solving IPF. An optimization scenario
method (OSM) was improved to solve IPF (Zhang et al., 2018),
directly obtaining the range of power flow variables through the
optimization models. In IPF analysis for distribution networks, the
rise of AA has led to a trend of combining it with the Distflowmodel,
including solving the affine Distflowmodel using forward-backward
substitution (Cheng et al., 2023; Lyu et al., 2023) and directly
establishing AA-based IPF optimization models (Leng et al.,
2020; Cao et al., 2024). However, existing uncertainty analysis
based on physical models suffers from the drawback of increased
computational complexity, resulting in lengthy processing times,
making it challenging to meet the power grid’s demand for swift
power flow computations.

Due to the advancements in computer and digital
communication technologies, data acquisition in power systems
has made significant progress. The deployment of Wide Area
Measurement Systems (WAMS) has enabled the reliable
collection of high-precision, wide-area synchronized electrical
quantities, including voltage, current, phase angles, et al. This
progress has fostered the development of data-driven power flow
analysis methods, providing a solution to the issue of low efficiency
in traditional model-driven power flow analysis (Fu et al., 2024). A
data-driven linear PF model incorporating the support vector
regression (SVR) and ridge regression (RR) algorithms was
proposed in (Li et al., 2023). Similarly, a linear regression model
was solved by RR to suppress the effect of data collinearity in (Chen,
Y. et al., 2022). In distribution networks, the single-phase PF model
is often considered. For instance, a data-driven single-phase linear
PF model was introduced in (Xing et al., 2021). A data-driven
convex model for hybrid AC/DC microgrids operation involving bi-
directional converters was proposed in (Liang et al., 2023).
Nevertheless, distribution power systems (DPSs) are generally
unbalanced and it is still necessary to study linear three-phase
distribution PF models. A data-driven-aided linear three-phase
PF model for DPSs considering the imbalance was constructed in
(Liu, Y. et al., 2022), and a data-driven piecewise linearization for
distribution three-phase stochastic power flow was proposed in
(Chen, J. et al., 2022), mitigating the errors of model-based PF
linearization approaches. To overcome the challenge of obtaining
accurate results with linear model-based data-driven methods, an
approach with high adaptability to the nonlinearity of PF was
proposed based on the thought of Koopman operator theory
(Guo et al., 2022). What’s more, a risk-free method was
proposed in (Dong et al., 2022) to accelerate AC power flow with
machine learning-based initiation, reducing the PF computation
time. To tackle the challenges of the hidden measurement noise in
the data-driven PF linearization, the problemwas transformed into a
regression model where the structure of the PF equations was
exploited (Liu et al., 2020). Besides, the local load fluctuation
suppression and its interaction with distribution system should
also be addressed which brings the exact necessity towards the
power flow prediction (Khalid et al., 2022; Rehman et al., 2024).
Also, here the role of ancillary services and renewable energy
integration should also be addressed towards covering the
intermittency (Musleh et al., 2019; Sun et al., 2020). In some
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cases, the database may not possess the envisioned completeness and
appropriateness. There is a trend that combines the physical model-
driven and data-driven. This can make up for the issues arising from
incomplete data (Xing et al., 2022; Liu et al., 2021). A hybrid physical
model-driven and data-driven approach for linearizing the power
flow model was proposed in (Tan et al., 2020), and the linearized
errors are obtained by the partial least squares regression-based
data-driven approach. In the condition of lack of data, physical
model parameters are introduced to assist the data-driven training
process (Shao et al., 2023), and a highly scalable data-driven
algorithm for stochastic AC-OPF that has extremely low sample
requirements was presented in (Mezghani et al., 2020). To enhance
the performance and generalization ability of the data-driven model,
a physics-guided neural network was proposed to solve the PF
problem by encoding different granularity of Kirchhoff’s laws, and
system topology into the rebuilt PF model (Hu et al., 2021). The
fusion of robust principles with data-driven approaches has also
enhanced the precision of data-driven methods. The worst-case
errors were probabilistically constrained through distributionally
robust chance-constrained programming (Liu, Y. et al., 2022; Chen
et al., 2020). It also allows guaranteeing the linearization accuracy for
a chosen operating point. In addition, a more comprehensive
summary and discussion of existing data-driven PF linearization
was presented in (Jia and Hug, 2023). For data-driven methods,
support vector machine (SVM) is widely used due to its strong
robustness and generalization ability, particularly excelling in
scenarios with small samples and high dimensionality. Addressed
to the N-k1-k2 cascading outages, the researchers employ SVM for
classifier training, enabling the fast, reliable, and robust computation
of active and reactive power flows (Xue and Liu, 2021). The SVM is
utilized for optimal power flow with small-signal stability
constraints in (Liu, J. et al., 2022), achieving high computational
efficiency and economic benefits.

Although data-driven PF methods have made significant
advancements, combining data-driven approaches with
uncertainty still presents challenges. On the one hand, data-
driven methods require a large amount of real or simulated data,
which is what uncertain PF lacks. Historical data is difficult to
obtain, and generating simulated data often incurs higher costs
compared to deterministic PF. On the other hand, effectively
integrating uncertainty into data-driven models is a challenge, as
these uncertainties are often high-dimensional, increasing the
complexity of modeling. In response, interval approaches offer
the advantages of simple modeling and high simulation accuracy,
while SVR can handle high-dimensional data, making it suited to the
requirements. Therefore, this paper adopts interval modeling to
represent uncertainties and selects SVR as the data-driven approach.

1.4 Contribution

This paper is dedicated to improving the computational efficiency
of IPF in distribution networks to achieve real-time analyses,
providing essential support for the rapid response of uncertain
distribution systems with DGs integration. To this end, a method
for IPF prediction in distribution networks based on SVR is proposed
by combining data-driven methods with interval approaches.
Accordingly, the research makes the following contributions.

Firstly, an IPF model for distribution networks based on the
OSM is established considering system uncertainty as intervals. In
addition to the uncertainty of power generation and load demand,
the uncertainty of line parameters is also considered in this model.
Due to environmental variations, the parameters of network lines
exhibit a certain level of uncertainty. This consideration improves
the accuracy of the model.

Secondly, an IPF prediction model is constructed using SVR
based on the interval dataset generated by simulation. Different
from traditional data-driven models, this model is a multi-output
model that separately outputs the upper and lower bounds of the
power flow results. This interval result fully considers various
uncertainties in the distribution system, as the model is trained
with these uncertainties incorporated.

Thirdly, the established SVR-based IPF prediction approach has
been demonstrated to have high prediction accuracy and
computational efficiency. The effectiveness of this approach is
validated through studies on both IEEE 33bw and IEEE 69 cases.
The IEEE 33bw case is primarily used to evaluate the model’s
accuracy, while the IEEE 69 case is mainly used to analyze the
model’s computational efficiency.

The IPF model for distribution networks is introduced in
Section 2. The training and prediction algorithm through SVR is
introduced in Section 3. The procedure of the method is introduced
in Section 4. The case studies are conducted in Section 5, and
conclusions in Section 6.

2 Construction of IPF model for
distribution networks

2.1 Distflow formulation

The relaxed Distflowmodel for the radial distribution network is
expressed as Equations 1–4. Before constructing the model, it is
customary to assume that the transmission lines do not involve
parallel grounding branches and to specify that the direction of
current and power flow from node i to node j is positive.

vj � vi − 2 rijPij + xijQij( ) + r2ij + x2
ij( )lij, ∀ i, j( ) ∈ B (1)

P2
ij + Q2

ij ≤ lijvi5
2Pij

2Qij

lij − vi

�����������
�����������
2

≤ lij + vi (2)

∑
k:j→k

Pjk − ∑
i:i→j

Pij − rijlij( ) � pj, ∀j ∈ D (3)

∑
k:j→k

Qjk − ∑
i:i→j

Qij − xijlij( ) � qj, ∀j ∈ D (4)

The model is the branch power flow model after convex
relaxation, where Equation 1 is the voltage equation, Equation 2
is the power equation at the sending end of the branch, Equations 3,
4 are the power balance equation. B and D are the set of branches
and nodes. We set that lij � |Iij|2 and vi � |Vi|2, where Vi is the
voltage vector of node i, and Iij is the current vector flowing through
branch (i, j). rij is the resistance and xij is the reactance of
transmission line. Pij and Qij are the active and reactive line
transmission power from node i to node j, respectively. Note that
more than one upstream and downstream branch is connected to
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node j. pj and qj are the injection active and reactive power of node j,
respectively, which are equal to the power generation minus the load
demand, i.e., pj � pG

j − pL
j .

2.2 Modelling of IPF based on distflow

In active distribution networks with DGs integration, the output
of distributed generators and flexible loads both exhibit a certain
degree of uncertainty, which has a significant impact on the safe and
stable operation of the distribution networks. Therefore, it is
essential to consider these uncertainties. In this paper, the
interval approach is utilized to describe uncertainties, ensuring
the security of system operation. Additionally, the network
parameters, including line resistance and reactance, may
experience variations due to external environmental factors. To
make the model more practical, the uncertainties of these
parameters are considered simultaneously during modelling.

In the interval approach, the active power generation and load
demand, as well as line parameters are represented in interval form,
and the interval results for variables such as voltage and line
transmission power can be obtained. Representing the interval
form in χ̂, where χ̂ � [χ , �χ], the IPF model based on Distflow for
distribution networks can be expressed as Equations 5–8.

v̂j � v̂i − 2 r̂ijP̂ij + x̂ijQ̂ij( ) + r̂2ij + x̂2
ij( )l̂ij, ∀ i, j( ) ∈ B (5)

2P̂ij

2Q̂ij

l̂ij − v̂i

������������
������������
2

≤ l̂ij + v̂i, ∀ i, j( ) ∈ B (6)

∑
k:j→k

P̂jk − ∑
i:i→j

P̂ij − r̂ij l̂ij( ) � p̂j, ∀j ∈ D (7)

∑
k:j→k

Q̂jk − ∑
i:i→j

Q̂ij − x̂ijl̂ij( ) � q̂j, ∀j ∈ D (8)

where p̂j � p̂G
j − p̂L

j , q̂j � qGj − q̂Lj . p̂
G
j and qGj are the active and

reactive power generation, respectively. p̂L
j and q̂

L
j are the active and

reactive load demand, respectively.
The IPF model based on Distflow can draw inspiration from the

principles of OSM for its solution. In this approach, the interval
uncertainties of the IPF model are regarded as variables that vary in
their interval bounds, and the desired variables are set as the
objective functions. Thus, it involves transforming the resolution
of a set of interval nonlinear equations into variable optimization
problems. The core of OSM is based on the Extreme Value Theorem
through which we can get two points of conclusions. We simplify
Equations 5–8 as h(x) � [h , �h] where [h , �h] are interval input data
and x are the variables of the IPF model. The first point is that there
is a fixed x corresponding to an arbitrary scenario ξ ∈ [h , �h] in the
power flow calculation. The second point is that there exists a special
scenario ξi

min (ξi
max) for each single variable xi making xi minimum

(maximum) for all scenarios ξ ∈ [h , �h]. The minimum and
maximum are denoted as ximin and xi

max, and the interval
[xi

min, xi
max] is the solution of xi under the input data [h , �h].

From the two points of conclusions, the solution for IPFmodel is
reduced to find ξi

min and ξi
max for each variable xi by establishing the

minimum and maximum optimization models Equation 9 of power
flow variables.

min max( )xi

s.t.
h x( ) � ξ
h ≤ ξ ≤ �h{ (9)

Taking the variable vi in distribution networks, for example,
solving the IPF model Equations 5–8 can be transformed into
solving the optimization model Equation 10, and the model can
be solved through commercial solvers such as CPLEX.

min max( ) vi, ∀i ∈ D
2Pij

2Qij

lij − vi

�����������
�����������
2

≤ lij + vi, ∀ i, j( ) ∈ B

vj � vi − 2 rijPij + xijQij( ) + r2ij + x2
ij( )lij, ∀ i, j( ) ∈ B

∑
k:j→k

Pjk − ∑
i:i→j

Pij − rijlij( ) � pj, ∀j ∈ D

∑
k:j→k

Qjk − ∑
i:i→j

Qij − xijlij( ) � qj, ∀j ∈ D

pG

j
− �pL

j ≤pj ≤ �pG
j − p

L

j
, ∀j ∈ D

qGj − �qLj ≤ qj ≤ qGj − q
L

j
, ∀j ∈ D

x
ij

l
ij

( )≤xij lij( )≤ �xij
�lij( ), ∀ i, j( ) ∈ B

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

It can be succinctly described as searching for a specific scenario
ξi
min (ξi

max) among all uncertain scenarios of the distribution network,
which can minimize (maximize) the voltage magnitude |Vi| at node i,
so as to obtain the voltage interval [Vi

min, Vi
max]. Naturally, the

objective function vi of Equation 10 can also be replaced with
active power transmission Pij or reactive power transmission Qij.

3 IPF prediction method for distribution
networks based on SVR

As the system scale increases, the efficiency of model-driven IPF
analysis significantly decreases, which does not meet the current
demands for rapid PF computations in distribution networks.
Therefore, the data-driven approach has garnered attention for
achieving faster IPF computations. The SVR has been opted for
in this research due to its advantages of handling high-dimensional
data, which is aligned with the characteristics of IPF analysis.

3.1 Construction of eigenvectors in IPF

In the typical SVR framework, the model is designed for single-
output problems. However, in the context of IPF models, situations
may arise where some nodes attain their maximum values while
others reach their minimum values within the same input scenario
since both input data and output variables are represented as intervals.
Therefore, the SVRmodel for IPF is fundamentally a multiple-output
problem. Corresponding to the same input scenario, the situation
where different nodes attain either maximum or minimum values
may vary. In such cases, training the SVR model based on the specific
input and a singular minimum (or maximum) output would lead to a
significant decrease in model accuracy. Based on this, the feature
vectors in IPF model are established.

The well-constructed feature vectors are crucial prerequisites for
ensuring the effectiveness of data-driven model learning. In the
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analysis of extensive historical state data for distribution networks
with DGs, it is essential to determine the input and output features
for the IPF analysis at first. Given that the primary characteristic of
distribution networks with DGs is the uncertainty of renewable
power generation and load demand, which significantly impacts IPF
analysis results, the sequence of renewable power generation and
load demand for the distribution system is selected as the input
eigenvector of the SVR model, and the sequence of node voltages
and active line transmission power, which is indicative of power flow
results, is selected as the output feature vector.

3.1.1 Construction of input eigenvector adapted to
variations in source-grid-load

The uncertainty of source, grid, and load is represented in
interval form for the IPF model. Therefore, the values in the input
eigenvector should be intervals distinguishing from conventional
eigenvectors. However, directly using interval values for training
poses challenges such as computational complexity, model misfit,
and difficulty in interpreting learning patterns. To address these
issues, it is necessary to identify relevant parameters that can
characterize interval features, such as interval midpoints and
interval radii, to replace interval values during training. The
midpoint of the interval is the operating point of generator,
which reflects the randomness of generator output. The interval
radius can reflect the fluctuation degree of uncertain data.
Therefore, the interval midpoint of source and radius of source-
grid-load data is used to construct the input eigenvector instead of
interval values.

Take the renewable active power generation p̂G
j � [pG

j
, �pG

j ] as an
example, the relationships Equations 11, 12 exist in the interval.

pG

j
� pG

0,j − ΔpG
j , �p

G
j � pG

0,j + ΔpG
j (11)

ΔpG
j � σ · pG

0,j (12)

where pG
0,j represents the interval midpoint, ΔpG

j is the interval
radius, σ is the fluctuation coefficient. The pG

0,j and ΔpG
j can

characterize the features of the renewable active power
generation interval. For a certain distribution network, the value
of the input eigenvector can be changed by changing the midpoint
pG
0,j or the fluctuation coefficient σ. Besides, the active and reactive

load demands, and line parameters follow the similar principle.
The eigenvector for source includes the sequence of renewable

active power generation ΔpG � ΔpG
1 ,ΔpG

2 , . . . ,ΔpG
M{ } and

pG0 � pG
0,1, p

G
0,2, . . . , p

G
0,M{ }, which for load includes the sequences

of active and reactive load demand ΔpL � ΔpL
1 ,ΔpL

2 , . . . ,ΔpL
D{ },

ΔqL � ΔqL1 ,ΔqL2 , . . . ,ΔqLD{ }, and which for grid includes the
sequences of line parameters Δr � Δr1,Δr2, . . . ,ΔrB{ },
Δx � Δx1,Δx2, . . . ,ΔxB{ }. According to this, the input
eigenvector adaptable to variations in source-grid-load can be
formulated as follows:

X in � ΔpG, pG0 ,ΔpL,ΔqL,Δr,Δx[ ] (13)
where M is the number of DGs, D is the number of nodes, B is the
number of branches.

3.1.2 Construction of output feature vector
When conducting PF analysis, it is essential to consider the

output features that can reflect power system quality and

stability. In power flow results, node voltage or line
transmission power can be used to evaluate system stability.
Therefore, the node voltage is selected as output features in
this paper. In IPF model, node voltages are represented as
interval values, so that the output features of the SVR training
model are essentially intervals. However, training the model
directly with interval values as the output vector may lead to
issues such as model complexity and low interpretability. To
address the issues, it is preferable to choose upper and lower
bounds that characterize interval features as the output feature
vector. This involves establishing the SVR model with two output
nodes. According to this, the output feature vector in IPF can be
constructed as Equation 14.

Y out1 � Vmin, Y out2 � Vmax (14)
Certainly, we can also construct the output feature vector as

presented in Equation 15 to obtain the predictive results of line
transmission power.

Y out1 � Pij,min, Y out2 � Pij,max (15)

3.2 Modelling of SVR-based IPF prediction

Support Vector Machine (SVM) is a binary classification
algorithm, and its fundamental model is a linear classifier that
maximizes the margin in the feature space. The objective of SVM
learning is to find a hyperplane that separates the samples, guided
by the principle of maximizing the margin. This ultimately
translates into solving a convex quadratic programming
problem. The variant of SVM used in this research for IPF
prediction is SVR, specifically designed for solving regression
problems. The principle of SVR is presented in Figure 1. SVR
can be categorized into three types according to the linear
separability of the training data, including Linear Hard ε-SVR,
Linear ε-SVR, and ε-SVR.

The original data for IPF analysis is considered linearly non-
separable. Therefore, this paper selects the ε-SVR model to
explore the connection between the input and output of the

FIGURE 1
The principle of SVR.
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IPF for distribution systems. Based on the constructed feature
vectors in IPF, the ε-SVR model for IPF prediction is established
as follows.

According to the description in 3.1, the training data set of themodel
can be obtained as T � (Xin,Yout1,Yout2)1, (Xin,Yout1,Yout2)2, . . . ,{
(Xin,Yout1,Yout2)N} Xin ∈ Rd. Then divide the training data set into
two groups T1 � (Xin,Yout1)1, (Xin,Yout1)2, . . . , (Xin,Yout1)N{ } and
T2 � (Xin,Yout2)1, (Xin,Yout2)2, . . . , (Xin,Yout2)N{ }, and two SVR
training models Equations 16, 17 can be built for the minimum and
maximum outputs depending on each group of training data.

min
ωl ,bl

1
2
ωl‖ ‖2 + C∑N

i�1
ξ i + ξ*i( )

s.t. ωl · X in( ) + bl − Yout1| |≤ ε + ξ,

ξ i, ξ
*
i ≥ 0, i � 1, 2, . . . , N

(16)

min
ωu,bu

1
2
ωu‖ ‖2 + C∑N

i�1
ξ i + ξ*i( )

s.t. ωu · X in( ) + bu − Yout2| |≤ ε + ξ,

ξ i, ξ
*
i ≥ 0, i � 1, 2, . . . , N

(17)

where ωl and ωu are the normal vectors, bl and bu are constants, ξi,
ξ*i are the slack variables, C is the penalty factor, and C > 0. ε
represents the distance swept by the hyperplane across the regions
on either side, and the “ε-band” includes all training points of each
training data set.

3.3 Solving of SVR-based IPF
prediction model

The SVR training models are solved in this section. To reduce
the complexity of solving, the models Equations 16, 17 can be

transformed into Equations 18, 19 through applying the Lagrangian
function and choosing an appropriate kernel function K(x, x′).

min
αl *( )∈R2N

∑N
i,j�1

αl,i* − αl,i( ) αl,j* − αl,j( )K X in,i,X in,j( )
+ε∑N

i�1
αl,i
* + αl,i( ) −∑N

i�1
Yout1,i αl,i

* − αl,i( ),
s.t. ∑N

i�1
αl,i − αl,i

*( ) � 0,

0≤ αl,i, αl,i
* ≤C, i � 1, 2, . . . , N (18)

min
αu *( )∈R2N

∑N
i,j�1

αu,i* − αu,i( ) αu,j* − αu,j( )K Xin,i,X in,j( )
+ε∑N

i�1
αu,i
* + αu,i( ) −∑N

i�1
Yout2,i αu,i

* − αu,i( ),
s.t. ∑N

i�1
αu,i − αu,i

*( ) � 0,

0≤ αu,i, αu,i
* ≤C, i � 1, 2, . . . , N (19)

where αl,i, αl,i* , αu,i, αu,i* are the Lagrange multipliers corresponding to
the inequality constraints. The optimization problems can be
solved by commercial solvers. The optimal solutions are attained
as �αl � (�αl,1, �αl,1* ,/, �αl,N, �αl,N* )T�αu � (�αu,1, �αu,1* ,/, �αu,N, �αu,N* )T,
respectively. Then the decision functions are constructed as (20)
and (21), and the corresponding �bl and �bu can be calculated by
Equations 22, 23, respectively. It is noted that �b is calculated
differently depending on �αj or �α*k.

f min x( ) � ∑N
i�1

�αl,i
* − �αl,i)K X in,i, x( ) + �bl( (20)

f max x( ) � ∑N
i�1

�αu,i
* − �αu,i)K Xin,i, x( ) + �bu( (21)

FIGURE 2
The structure of SVR training model for IPF prediction.
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�bl � Yout1,j −∑N
i�1

�αl,i
* − �αl,i)K X in,i,Xin,j( ) + ε(

�bl � Y out1,k −∑N
i�1

�αl,i
* − �αl,i)K X in,i,Xin,k( ) − ε( (22)

�bu � Yout2,j −∑N
i�1

�αu,i
* − �αu,i)K X in,i,Xin,j( ) + ε(

�bu � Y out2,k −∑N
i�1

�αu,i
* − �αu,i)K Xin,i,X in, k( ) − ε( (23)

The structure of SVR training model for IPF prediction can be
depicted as shown in Figure 2.

According to Figure 2, the minimum and maximum values of
the power flow results, that is the interval results [Vmin,Vmax] or
[Pij,min,Pij,max] for IPF prediction in the distribution network, are
obtained based on the corresponding linear mapping relationships
for any given input eigenvector.

4 The procedure of SVR-based IPF
prediction method

In the SVR-based IPF prediction method for distribution
networks, the first step involves establishing an IPF model for
generating the initial sample database through simulation. The

FIGURE 3
The flow chart of SVR-based IPF prediction method.
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database includes intervals for node injections of active and reactive
power, intervals for line parameter fluctuations, and corresponding
intervals for node voltage. The data are then processed to construct
the input and output feature vectors. Subsequently, the SVR training
model is established, and the formulation of linear decision function
can be determined by solving the model. Finally, when given a
specific input eigenvector, the interval results for power flow
variables can be predicted according to the decision function.
The detailed procedure of SVR-based IPF prediction is expressed
as follows and the flow chart is presented in Figure 3.

Step1. Data Generating. Generate a diverse set of initial samples
according to the established IPF model Equations 5–8
through simulation, where each set comprises the interval
of active and reactive node power injection fluctuations,
the interval of line parameter fluctuations, and the
associated node voltage intervals.

Step2. Data Preprocessing. Select and extract features from the
initial samples, and construct the input and output feature
vectors Equations 13, 14 for each set of data in the
database according to Section 3.1. To ensure the
accuracy of model training, normalize the input data.
Then select 80% of the database as the training set and
20% of the database as the testing set.

Step3. IPF Prediction Model Construction. Set the parameters C,
ξi, ξ

*
i , and ε. Then, obtain T1 and T2 from the training

dataset, and build SVR-based IPF prediction models
Equations 16, 17 depending on T1 and T2, respectively.
Meanwhile, experiment with different kernel functions
K(Xin,i, x) and select the one that yields the best results.

Step4. IPF Prediction Model Solving. Transform the constructed
models Equations 16, 17 into Equations 18, 19, and the
parameters αl,i, αl,i*, αu,i, αu,i*, bl, and bu can be obtained by
solving Equations 18, 19. Then construct the linear
decision functions Equation 20, 21 for predicting the
minimum and maximum value of power flow variables,
respectively.

Step5. Model Evaluation. Based on the testing dataset, evaluate
the performance of the model using appropriate metrics,
such as mean absolute error (MAE) and root mean square
error (RMSE). Then determine if the metrics meet the

requirements. If the metrics meet the expectations,
proceed to step6; otherwise, adjust the parameters C, ξi,
ξ*i , ε and return to step 3.

Step6. Interval Power Flow Prediction. Give the independent and
specific input eigenvector X, so that obtain the
corresponding minimum voltage value Vmin and
maximum voltage value Vmax through substituting X
into the decision functions and De-normalization.
Finally, the predicted interval results [Vmin,Vmax] can
be yielded.

5 Case studies

The performance of the proposed SVR-based IPF prediction
method is tested on IEEE 33bw and IEEE 69 distribution networks
on an Intel(R) Core(TM) i5 PC, 2.50 GHz processor with 8 GB
RAM. The algorithm is implemented in MATLAB. The IEEE 33bw
case is primarily used to validate the accuracy of the established
IPF prediction model and its adaptability to various system
fluctuations. Meanwhile, the IEEE 69 case is employed to verify
the efficiency and real-time capability of the proposed algorithm in
predicting IPF of the distribution network.

5.1 IEEE 33bw case study

The IEEE 33bw case is illustrated in Figure 4, and the case has
been enhanced to include eight distributed renewable energy
sources. All parameters are valued according to the per unit (p.u.)
system of analysis, with 10 MVA chosen as the basic power of the
test case. The detailed original power generation data for these
eight DGs are presented in Table 1. The voltage limits of all buses
except the slack bus are constrained to [0.9,1.1].

5.1.1 Evaluation of the model
The active power generation fluctuation ranges of DGs are

assumed to be ±20% of the original data, which is also assumed
on the active and reactive load demand, that is the set the fluctuation
coefficient σ1 � 0.2. Meanwhile, considering the slight fluctuations
in distribution network line parameters under both internal and

FIGURE 4
The topology of enhanced IEEE 33bw distribution network.

Frontiers in Energy Research frontiersin.org08

Liang et al. 10.3389/fenrg.2024.1465604

71

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1465604


external conditions, assume the fluctuation range is ±10% of rij and
xij, that is σ2 � 0.1. Within these ranges, 1,500 sets of initial data are
randomly generated through simulation for the distribution
network, where 1,200 sets are training sets, and 300 sets are
testing sets. In the model training process, the parameters of SVR
model are set to be C = 5,000, ε � 0.0001, ξi � 1. The kernel function
is selected as K(xi, xj) � xT

i xj.
To evaluate the model’s performance comprehensively and

objectively, the indices of mean absolute error (MAE), root mean
square error (RMSE), mean absolute percentage error (MAPE) and

R2 for the testing sets are calculated in this paper. They are defined
as Equations 24–27. Using these metrics together helps to avoid
biases introduced by a single metric, enhancing the robustness of
the evaluation.

MAE � 1
n
∑n
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣ (24)

RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2
√

(25)

FIGURE 5
The evaluation results of RMSE, MAE and MAPE for the SVR-based IPF prediction model.

FIGURE 6
The voltage interval results obtained by SVR, OSM and MCS for IEEE 33bw case in Scenario 1.
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MAPE � 1
n
∑n
i�1

yi − ŷi

yi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (26)

R2 � 1 −
∑n
i�1

yi − ŷi( )2
∑n
i�1

yi − �yi( )2 (27)

where n is the number of samples, yi is the observed values, ŷi is
the corresponding model-predicted value, and �y is the mean of

the observed values. The evaluation results of the indices for the
SVR-based IPF prediction model in IEEE 33bw case are
presented in Figure 5.

It can be observed from Figure 5 that the value of the evaluation
indices is ideal. For the lower and upper bounds of each node
voltage, the RMSE evaluation results are within the range
[4.7 × 10−5, 6.4 × 10−5], the MAE evaluation results are within
the range [3.6 × 10−5, 5.2 × 10−5], and the MAPE evaluation
results are within the range [3.6 × 10−5, 5.3 × 10−5], all of which

FIGURE 8
The voltage interval results obtained by SVR, OSM and MCS for IEEE 33bw case in Scenario 2.

FIGURE 7
The active line power interval results obtained by SVR, OSM and MCS for IEEE 33bw case in Scenario 1.
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are relatively small. Besides, the value of R2 can reach above
0.95 for both lower and upper bounds of each node voltage.
These support the notion that the model’s predicted values
exhibit minimal deviation from the true values, indicating a
strong fit of the model to the testing sets, which confirms
the superior performance of the established SVR-based IPF
prediction model.

5.1.2 Comparison with the OSM and MCS
To validate the accuracy and adaptability of the SVR-based IPF

prediction model, three scenarios were designed to conduct the
proposed method compared with the OSM (Zhang et al., 2017) and
MCS. The forward-backward substitution is employed in MCS for
solving general distribution network power flow. The three
operating scenarios are described as follows.

FIGURE 10
The voltage interval results obtained by SVR, OSM and MCS for IEEE 33bw case in Scenario 3.

FIGURE 9
The active line power interval results obtained by SVR, OSM and MCS for IEEE 33bw case in Scenario 2.
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Scenario 1: The same operating points, and the different
fluctuation ranges;

Scenario 2: The different operating points, and the same
fluctuation ranges;

Scenario 3: The different operating points, and the different
fluctuation ranges,

where the settings of these scenarios are changed based on the
training data. The operating points represent the original active power
generation pG0 , and the fluctuation ranges are set by changing the
fluctuation coefficients σ1 and σ2. They represent the randomness and
volatility of uncertain data in distribution networks.

5.1.2.1 The simulation under scenario 1
In Scenario 1, the original active power generation data was the

same as that in Table 1, and the fluctuation coefficients were set as

σ1 � 0.1, σ2 � 0.05. Thus, a new set of input eigenvector Xin,I was
introduced. The parameters of SVR model were set to be C = 5,000,
ε � 0.0001, ξi � 1, and the MCS was conducted with a sample size of
10,000 to ensure a high accuracy level. The simulation results under
this scenario are demonstrated as follows.

The voltage interval results obtained by the SVR, OSM andMCS
for IEEE 33bw case are presented in Figure 6, and the active line
transmission power interval results are presented in Figure 7.
Additionally, in Figure 6, the voltage interval boundary values of
node No. 7 and No. 8 obtained by SVR and OSM are compared with
the results of MCS sampling for a more intuitive presentation. It can
be observed from Figure 6 that the voltage interval results obtained
by SVR are very close to those acquired by the OSM, and the voltage
interval range obtained by SVR andOSM is larger than that obtained
by MCS. This is to be expected, because the initial data for SVR

FIGURE 12
The topology of enhanced IEEE 69 distribution network.

FIGURE 11
The active line power interval results obtained by SVR, OSM and MCS for IEEE 33bw case in Scenario 3.
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model training is generated through OSM, and the OSM takes into
consideration of the extreme scenarios that are ignored by the MCS
method. It can be seen from Figure 7 that the interval ranges of
active line transmission power obtained by the three methods are
relatively close. This is because the line transmission power is related
to power generation, load demand, and line parameters, and the

Distflow model for the distribution network is linear, so that the
active line power results obtained by different methods are close
under the same interval input values. The simulation results indicate
that the established SVR-based IPF prediction method possesses
high predictive accuracy and performs a strong adaptability to
different fluctuations.

FIGURE 14
The active line power interval results obtained by SVR, RF, OSM and MCS for IEEE 69 case.

FIGURE 13
The voltage interval results obtained by SVR, RF, OSM and MCS for IEEE 69 case.
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5.1.2.2 The simulation under scenario 2
In Scenario 2, the original active power generation data was

listed in Table 2, and the fluctuation coefficients were set as σ1 � 0.2,
σ2 � 0.1. Thus, a new set of input eigenvector Xin,II was introduced.
The parameters of SVR model and the sample size of MCS remain
the same as (I).

The interval bound results obtained by the SVR, OSM, andMCS
for the voltage magnitudes of nodes and the active transmission
power of branches for IEEE 33bw case in Scenario 2 are presented in
Figures 8, 9, respectively. Similarly, the voltage interval boundaries
of nodes No. 4 andNo. 5 are selected in Figure 8 for comparison with
the MCS sampling results. The SVR is observed to have acquired a
similar voltage range to OSM, which is wider than that of MCS. The
active line power interval bounds acquired by SVR are close to that
obtained by OSM and MCS. These results show that the proposed
method also has high precision under scenario 2, which proves that
the SVR-based IPF prediction model can adapt to different
operating points.

5.1.2.3 The simulation under scenario 3
In Scenario 3, the original active power generation data was the

same as that in Table 2, and the fluctuation coefficients were set as
σ1 � 0.1, σ2 � 0.05. Thus, a new set of input eigenvector Xin,III was
introduced. The parameters of SVR model and the sample size of
MCS remain the same as (I). The simulation results under this
scenario are demonstrated as follows.

Scenario 3 was set up to verify the accuracy of the proposed
algorithm when the operating points and fluctuation ranges change
simultaneously. The interval bounds of voltage and active line power
obtained by SVR, OSM, and MCS in Scenario 3 are presented in
Figures 10, 11. Besides, the voltage boundaries of nodes No. 6 and
No. 7 obtained by SVR and OSM are also compared with the MCS
sampling results in Figure 10. It can be observed that the voltage
ranges obtained by SVR and OSM are still very close, which are more
conservative than those obtained by MCS. The active line power
ranges acquired by the three methods remain close. The simulation
results are expected. Furthermore, compared to scenario 2, the
voltage and active line power interval ranges obtained by the
three methods are both smaller. This is because the fluctuation
ranges are reduced while the operating points remain still. The
simulation in scenario 3 validates that the proposed algorithm can

maintain high prediction accuracy under different operating points
and fluctuation ranges.

In summary, based on simulations under different scenarios, the
proposed SVR-based IPF prediction model can adapt to various
operational states and environmental fluctuations. In different
operating scenarios, this method achieves prediction accuracy
comparable to the OSM which is model-driven. Besides, the SVR
method provides a more conservative interval range than MCS,
which ensures distribution system security under high-dimensional
uncertainty. It demonstrates high computational accuracy and
strong adaptability of the proposed approach.

5.2 IEEE 69 case study

The IEEE 69 case is applied to validate the efficiency of the
proposed SVR-based IPF prediction method. The distribution
network is enhanced to include eight DGs. The topology of
enhanced IEEE 69 case is presented in Figure 12 and the original
active and reactive power generation of DGs are shown in Table 3. All
parameters are valued in p.u., and the base power is set to 10 MVA.
The voltage limits of all nodes except the slack bus are constrained
to [0.9, 1.1].

In IEEE 69 case, 500 sets of training data were generated under
the condition of fluctuations with σ1 � 0.2, σ2 � 0.1. The model
training parameters were set as C = 5,000, ε � 0.0001, ξi � 1, and the
kernel function is selected as K(xi, xj) � xT

i xj. After the model was
trained, the predictions were conducted under Scenario 3 as defined
in Section 5.1.2. To further validate the model’s applicability, the
generator operating points were randomly selected within ± 30% of
the original active power generation data. What’s more, the
fluctuation coefficients for power generation and load demand
were set to σ1 � 0.3, and the fluctuation coefficient for line
parameters was set to σ2 � 0.15, which aims to assess the model’s
adaptability under expanded fluctuation ranges. This case was
carried out with SVR, OSM, and MCS as well.

To further demonstrate the advantage of the proposed SVR-
based IPF method, this case additionally incorporated the Random
Forest (RF) method for interval power flow prediction. To balance
both prediction accuracy and efficiency, the parameters for training
the RF model were set as follows: the number of decision trees was

TABLE 2 The original power generation data of DGs for IEEE 33bw case in
Scenario 2 (p.u.).

Bus
number

Active power
generation PG

Reactive power
generation QG

2 0.0720 0.0600

4 0.0545 0.0500

7 0.0490 0.0440

15 0.0355 0.0380

21 0.0320 0.0340

25 0.0515 0.0500

28 0.0335 0.0320

32 0.0405 0.0450

TABLE 1 The original power generation data of DGs for IEEE 33bw
case (p.u.).

Bus
number

Active power
generation PG

Reactive power
generation QG

2 0.0800 0.0600

4 0.0570 0.0500

7 0.0510 0.0440

15 0.0420 0.0380

21 0.0380 0.0340

25 0.0600 0.0500

28 0.0400 0.0320

32 0.0490 0.0450
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set to 100, the minimum leaf size was set to 5, and the model was
configured as a regression model. Besides, the system uncertainty
parameters were consistent with those described above. Considering
the above all, the simulation results are presented in Figures 13, 14.

Figures 13, 14 show the voltage interval ranges and active line
transmission power ranges, respectively. The voltage bounds of
nodes No. 13 and No. 14 obtained by SVR, RF and OSM are
depicted in Figure 13 compared with the MCS samples. It can be
observed that under large-scale fluctuations, the voltage ranges
obtained by the SVR and OSM are relatively close, and the error
precision is determined to be 0.001 upon calculations. The error is
mainly attributed to the insufficient size of the training dataset,
which can be mitigated by increasing the number of training
samples. However, the two methods yield very close active
transmission power ranges with high prediction accuracy.
Furthermore, compared to the MCS, SVR and OSM obtain wider
voltage ranges, as explained in 5.1.2. This case study validates the
adaptability of the proposed method to different networks and their
ability to handle large fluctuation ranges.

Comparing the SVR method proposed in this paper with the RF
method, the SVR method achieves higher prediction accuracy. It is
evident that the prediction error using the RF method is relatively
large, with an error precision of only 0.01, which shows a significant
deviation from the interval results obtained by the OSM. Additionally,
the interval obtained by the RF method is narrower, possibly because
the predictions of the trees in the model are more concentrated and
less flexible in handling extreme cases. Meanwhile, for the RFmethod,
improving prediction accuracy requires increasing the number of
decision trees, but this comes at the cost of increased computation
time. Through multiple experiments, the accuracy gain from adding
more decision trees was found to be negligible.

To validate the efficiency of the proposed method, the
computation time of the algorithm compared to RF and OSM is
shown in Table 4. The computation time includes the total time for
solving voltage and line transmission power. It is noticeable that the
online computation speed of the SVR-based IPF prediction method
and RF prediction method is significantly faster than the OSM.
Meanwhile, the online computation speed of SVR is also faster
than that of RF. Besides, the offline training of SVR and RF
requires more time compared to the OSM computation, and the
offline training times of SVR and RF are comparable. However, the

training and OSM both require significant amounts of time, which
increases as the number of system nodes grows. In contrast, the online
computation time of SVR is minimally affected by the system scale,
and predictions are conducted based on the trained results in practical
applications, so that the online computation time is more crucial.

The comparison demonstrates that the proposed SVR approach
achieves a significant improvement in computational efficiency over
model-driven approaches and is more suitable for large-scale
systems. Additionally, the SVR approach has advantages over the
RF method in both computational accuracy and efficiency,
demonstrating that it is more suitable for IPF analysis compared
to other data-driven methods. In summary, the proposed SVR
approach is more suitable for rapid and real-time PF analysis of
distribution networks with DGs.

6 Conclusion

To address the uncertainty in PF and overcome the efficiency
challenges faced by traditional model-driven methods, an SVR-
based IPF prediction method for PF analysis in distribution
networks is proposed through combining data-driven methods
with interval theory. This method considers uncertainty as
intervals and employs SVR for model training. The training data
is generated through simulation of the established IPF model for
distribution network including the intervals of node power
injections, line parameters, and the minimum/maximum PF
variables. Then the input and output feature vectors for IPF are
constructed and the multi-output SVR-based IPF prediction model
is established based on the training dataset. To assess the
performance of the proposed method, several simulations are
conducted both on IEEE 33bw case and IEEE 69 case.

The simulation results show that the proposed method has a good
performance. Firstly, the evaluation metrics are calculated to
demonstrate the method’s high accuracy. Additionally, the proposed
method is compared with OSM and MCS in three different scenarios,
showcasing robust adaptability across different distribution network
cases, operating points, and input data fluctuation ranges. The
comparison of interval results obtained by SVR prediction and
OSM demonstrates that the SVR approach can achieve prediction
accuracy comparable to that of model-driven methods. Meanwhile, the
comparative analysis of computation time with the OSM and RF
demonstrates that the proposed approach significantly improves
computational efficiency compared to model-driven approaches and
offers better prediction accuracy and efficiency compared to other data-
driven methods. In conclusion, the proposed method exhibits superior
computational efficiency and accuracy, meeting the requirements for

TABLE 3 The original power generation data of DGs for IEEE 69 case (p.u.).

Bus
number

Active power
generation PG

Reactive power
generation QG

2 0.0500 0.0400

7 0.0370 0.0300

12 0.0410 0.0340

24 0.0320 0.0280

34 0.0280 0.0240

45 0.0400 0.0400

49 0.0300 0.0220

59 0.0390 0.0350

TABLE 4 The computation time of SVR prediction method, RF prediction
method, and OSM for IEEE 69 case.

Online computation
time/s

Offline training
time/s

SVR
prediction

0.0162 501.58

RF prediction 2.18 553.36

OSM 317.55 —
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handling power flow uncertainty and achieving real-time rapid PF
analysis in distribution networks.
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Introduction: This paper constructs a revenue model for an independent
electrochemical energy storage (EES) power station with the aim of analyzing
its full life-cycle economic benefits under the electricity spot market.

Methods: The model integrates the marginal degradation cost (MDC), energy
arbitrage, ancillary services, and annual operation and maintenance (O&M) costs
to calculate the net profits of the EES power station. Using an iterative
optimization approach, we determine the optimal MDC and analyze the
economic end of life (EOL) for different types of EES power stations.

Results: By examining real-world examples from the California energy market,
we find that the full life-cycle benefits of an EES power station peak when its MDC
is optimal, at $45/MWh-throughput. Under these conditions, the economic and
physical EOL of commercial/industrial EES power station is 9 years, while the
economic EOL of residential-grade EES power station is 8 years, which is shorter
than their physical EOL of 9 years.

Discussion: The study further indicates that the economic life of an EES power
station is influenced by multiple factors, and operators need to determine the
optimal economic EOL to maximize revenue based on battery degradation
characteristics, market conditions and operational strategy.

KEYWORDS

electricity spot market, electrochemical energy storage, profit model, energy arbitrage,
economic end of life

1 Introduction

With the global energy structure transition and the large-scale integration of renewable
energy, research on energy storage technologies and their supporting market mechanisms
has become the focus of current market domain (Zhu et al., 2024). Electrochemical energy
storage (EES) not only provides effective energy storage solutions but also offers new
business opportunities and operational strategies for electricity market participants. At
present, the configuration of energy storage projects mainly focuses on the source-side
renewable energy configuration and independent energy storage applications.

In some areas, energy storage is applied in the frequency regulation market transactions
in the form of an integrated system (Zhang and Wang, 2021), (Liang et al., 2021). From the
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perspective of specific practices, energy storage is primarily bundled
with thermal power, wind power, and photovoltaic in the form of a
consortium to participate in market transactions in the early stages
(Chen et al., 2021), (Zhu et al., 2022). However, due to the small scale
of EES devices in integrated systems, their effectiveness in achieving
time-shifting of electrical energy and promoting peak shaving and
valley filling is limited (Wang et al., 2024). With the rapid
development of renewable energy, the power system urgently
needs independent energy storage to participate in the electricity
market (He et al., 2022). Independent EES systems, with their fast
response and efficient charging and discharging characteristics,
bring new vitality and opportunities to the electricity spot
market, especially in promoting the integration of renewable
energy, improving system reliability, and optimizing energy
utilization efficiency.

From the perspective of top-level design, EES will recover most
of its revenue through the electricity market, especially the spot
market. The operation mechanism involves industrial and
commercial users obtaining the electricity prices for each time
period of the following day based on the clearing results of the
day-ahead electricity market. Combining the capacity, cycle
efficiency of the EES power station, and the load forecast for the
next day, the charging and discharging plan of the power station is
formulated. During the low price periods, the EES power station acts
as an electricity demand-side participant, purchasing electricity
from the grid at relatively lower prices to charge the batteries
and store cheap electricity (Sakti et al., 2017), (Xu et al., 2018).
During the peak price periods, which usually coincide with the peak
load periods, the EES power station switches to an electricity supply-
side participant, with the storage batteries supplying electricity to the
load and outputting to the grid, realizing peak load shifting and
obtaining price difference revenue from peak-valley price arbitrage
(Padmanabhan et al., 2020; Hesse et al., 2019; Fares and Webber,
2018). Through the flexible operation of the above-mentioned dual
roles, the EES power station can earn arbitrage profits from the
fluctuations of intraday power load and spot prices, becoming an
important profit-increasing entity in the electricity spot market. Cui
et al. (2021) and his partner proposed an optimal operation strategy
with the goal of maximizing the expected revenue by considering the
operating cost of the storage device and the prediction deviation of
the new energy generation, so as to avoid the loss of revenue caused
by the prediction deviation. For the problem of bidding strategy in
the integrated system electric energy spot market, the researchers
propose a spot declaration strategy aiming at maximising the
expected benefits, which is applied to the electric energy spot
market trading (Schram et al., 2020).

When rare high price differentials become part of the revenue, a
longer calendar life may be more beneficial for energy arbitrage than
an extended cycle life (Kumtepeli et al., 2020). In addition, EES
power stations can also utilize their flexible and fast charging and
discharging regulation capabilities to provide backup services,
frequency regulation, and other ancillary services to the power
grid, obtaining service revenue by participating in the bidding of
the electricity ancillary service market or signing long-term
agreements, which becomes an important way for the
commercialized operation of EES power stations.

The core elements of an EES power station are energy
transmission, battery management, and potential application

scenarios in the power system. As an independent entity
participating in the electricity spot market, the EES power
station gains revenue during the battery energy transmission
process. This paper aims to construct a revenue model for an
independent EES power station that comprehensively considers
the above factors to analyze its economic benefits in the
electricity spot market. By studying the profit model of EES
power stations in the electricity spot market, under limited
battery life and different electricity price fluctuations, the
owners and operators of EES power stations consider the
marginal degradation cost (MDC) and annual operation and
maintenance (O&M) costs. At the same time, they optimize the
battery charging and discharging plan through operational
decisions to extend battery life and improve the revenue of the
EES power station. This research provides a new perspective for
the operators of EES power stations, helping them better
understand the economic potential of the EES station and
formulate corresponding operation strategies to maximize
revenue. Furthermore, this research also contributes to
promoting the healthy development and market application of
EES technology.

2 Methods

2.1 EES power station profit model

As an independent market entity, the EES power station needs to
interact and collaborate with the power grid and users through
electricity market mechanisms and technical means to ensure
project revenue. The business model of an independent EES
power station participating in the electricity market transactions
is shown in Figure 1. Currently, energy storage only participates in
the market as a spot price taker, usually reporting quantity without
reporting price. From the declaration perspective, energy storage
only needs to declare the next day’s charging and discharging
dispatch curve in the day-ahead market. On the operation day,
the charging and discharging are arranged according to the actual
cleared power plan, and the actual clearing depends on the power
grid dispatch arrangement. Theoretically, the power grid will
prioritize dispatching according to the energy storage declaration
curve, and the actual charged and discharged electricity is settled at
the spot price.

Based on the analysis of the main revenue and operating costs of
the EES power station, and combining the short-term dispatch and
long-term decision models, this paper adopts an itemized method to
calculate the net operating revenue of the EES power station over its
entire life cycle. The mathematical formula of the model is as follows
(1)--(8):

RESSmax � max
x

RESS � max
x

∑
t≤T

δtRt x( ) (1)

R*
t � maxRt Pt( ) � max

Pt∈F
RM Pt( ) − CBD

t Pt( ) + As − Cfix

� max
Pt∈F

∑ Πh pdis
h − pcha

h( )[ ] − ∑
h∈ t+Δt( )

μt pcha
h + pdis

h + φ( ) + As

− Cfix

(2)
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dt � ∑
θ

2ztηt,θθ + φ (3)

s.t. ∑
t≤T

dt x( )≤Ḏ (4)

dt x( )≥φ (5)
Sc � 1 − ζ( ) Sc−1 + pcha

h ηt Ht( ) − pdis
h /ηt Ht( ) (6)

Ht+1 � Ht −
�H −H( )dt

Ḏ
(7)

0≤pdis
h , pcha

h ≤Pt (8)

Formula 1 utilizes the exponential discount factor (δt) and the
short-term benefits (Rt) of the EES power station to achieve the optimal
long-term revenue of the EES power station under the electricity spot
market, δt = (1+r)-α, where r represents the discount rate, and α is the
number of years the battery is used. Formula 2 calculates the short-term
net revenue (R*

t ) of the EES power station by using the difference
between the revenue and cost items of the EES power station, without
considering the real-time market electricity deviation and using a daily
settlement and monthly reconciliation method. The revenue items
include market revenue, RMt (battery charging and discharging
revenue) and ancillary service revenue As (i.e., battery reserve
revenue), while the cost items include the total battery degradation
cost CBD

t and the fixed operation and maintenance cost of the EES
power station Cfix The degradation degree of the EES power station
battery in period t is obtained through the sum of battery cycle
degradation and calendar degradation (Formula 3), where Et
represents the battery capacity within time t, and 2Et represents the
total energy of charging and discharging in a cycle process. Formulas 4,
5, as boundary conditions, respectively limit the degradation and usage
of the EES power station during operation to be less than the total usage
before the end of the battery’s physical life, and the total degradation

amount in period t does not exceed the calendar degradation value of
the battery. Formulas 6, 7 respectively represent the state of charge
(SOC) and state of health (SOH) functions of the EES power station
battery, both of which are related to the energy, battery capacity, and
charging and discharging efficiency of the EES power station. Formula 8
is the boundary condition for the power generation and charging
amount of the EES power station.

2.2 Parameter settings

We utilize the net revenue model of the EES power station to
simulate the life-cycle operation of the energy storage power station and
analyze the main revenue items of the EES power station under the
electricity spot market. The main parameters and data used in the
analysis case are as follows: We use the local marginal prices and non-
spinning reserve service prices of the California Independent System
Operator (CAISO) in 2018 to represent the price situation for each year
during the battery’s life cycle, with an average peak-valley price
difference of about $32/MWh. The power station adopts LFP
battery energy storage, with an initial battery charging and
discharging efficiency of 95% and no self-discharge effect, i.e., a self-
discharge rate of 0. Assuming that after operating 2000 cycles at 100%
depth of discharge, the capacity retention rate of the energy storage
power station is about 80% of the original battery (Ecker et al., 2014), at
which point the battery energy efficiency is low, and the battery is
considered to have ended its physical life. The average calendar
degradation of the energy storage power station is estimated to be a
1% capacity loss per year (Schuster et al., 2016; Keil et al., 2016).
Independent EES power stations require 24 h staffing, and labor
operation and maintenance costs and equipment maintenance costs
are relatively high. The annual operation and maintenance costs for

FIGURE 1
Graphical illustration of the business model for participation of EES plants in electricity market trading.

Frontiers in Energy Research frontiersin.org03

Li et al. 10.3389/fenrg.2024.1469594

83

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1469594


large-scale industrial-grade EES power stations and commercial and
industrial EES are $16/kW-year and $27/kW-year, respectively (Chen
et al., 2023; He et al., 2020).

3 Results

3.1 Battery life and SOH

Figure 2 demonstrates the SOH trend of battery over time,
considering different marginal degradation cost (MDC) values. As
the battery inevitably experience cycling degradation and
performance degradation with increasing charge-discharge cycles, its
SOH also shows a decreasing trend with the increase in the usage time.
However, from the figure, we can observe that the larger the value of
MDC, the slower the SOH decline and the longer the physical life of the
battery. When MDC = 0, that is, without considering the degradation
cost of the battery, the SOH of the battery has dropped to below 80% in
about 2 years. In contrast, when MDC = 65, the battery’s SOH can still
remain above 85% after 10 years of use. This indicates that considering
MDC in the operational optimization of EES power stations and
moderately controlling charge-discharge power can effectively extend
battery life. Therefore, MDC is also considered an opportunity cost that
characterizes the long-term future value of EES power stations. In other
words, if theMDC is relatively large in the battery’s full life-cycle, future
benefits may be higher. However, it is not the case that the higher the
MDC is the better. Excessively high MDC can lead to reduced battery
utilization, potentially decreasing EES benefits. Thus, it is necessary to
seek a balance between prolonging the battery life and increasing the
battery utilization to select the optimal MDC value.

3.2 Full life-cycle benefits of EES

We utilize an EES revenuemodel to evaluate the life-cycle profits
of EES power stations. To determine the optimal MDC value, we

employed an iterative optimization approach. We simulated the EES
power station’s operation over its lifetime for a range of MDC values
from $0 to $100/MWh-throughput, in increments of $5/MWh-
throughput. For each MDC value, we calculated the total life-cycle
revenue using our comprehensive model. Figure 3 illustrates the
relationship between different MDCs and the profitability of EES
power stations. As the MDC increases, the life-cycle revenue of EES
power station rises sharply. When the MDC value increases from
0 to around $45/MWh-throughput, the revenue grows rapidly. This
indicates that within this range, the higher the MDC, the stronger
the EES power station’s profitability. The profits reach its peak when
the MDC value is approximately $45/MWh-throughput, which
represents the optimal operating point for maximizing the EES
power station’s life-cycle earnings. This optimal value was identified
as the MDC that resulted in the highest total revenue in our
simulations. When the MDC exceeds $45/MWh-throughput,
profits begin to decline slowly. Excessively high MDC lead to
accelerated battery degradation, shortened battery life and
reduced overall profitability. Therefore, as the MDC value
becomes increasingly large, approaching $100/MWh-throughput,
earnings begin to decrease dramatically.

For independent EES power stations, the profitability can be
realized by the way of auxiliary service (specifically referring to
reserve services in this context) in addition to the energy arbitrage
through the participation of EES in the electricity trading in the
spot market. As shown in Figure 2, at the optimal MDC ($45/
MWh-throughput), the battery’s SOH decreases to 80% in the
ninth year. Figure 4 illustrates the profitability of an EES power
station over its entire life-cycle under optimal MDC conditions.
The graph shows that the station’s profitability is highest in the
early stages of the project. Initially, energy arbitrage revenue is
$29.9/kW, and reserve services contribute $14.0/kW, resulting in a
total revenue of $43.9/kW. Energy arbitrage accounts for a larger
proportion of the revenue at this stage. However, as the EES power
station operates over its life-cycle, battery degradation intensifies,
causing a steady decline in energy arbitrage revenue. Ancillary

FIGURE 2
Physical life of batteries at different marginal degradation costs.
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services, being less affected by battery degradation, maintain
relatively stable demand and prices for reserve service capacity.
Consequently, the total annual revenue shows a downward trend.
By the eighth year, energy arbitrage revenue decreases to $16.9/
kW, while reserve services contribute $15.2/kW, resulting in a total
revenue of $32.0/kW.

In the last year of the battery’s life, all revenues drop sharply,
with total revenue amounting to only $16.6/kW. This trend shows
that, over time, battery degradation increases, the number of charge-
discharge times used for price arbitrage increases, and both battery
capacity and efficiency decrease, forcing the profitability of the
power station to decline. Providing reserve services, however, has
lower requirements for battery performance, needing only to
maintain a certain energy and power reserve, and is thus less
affected by battery degradation.

Therefore, EES power stations should focus on life-cycle
profitability and plan their operational strategies accordingly. In
the early stages of the project, emphasis can be placed on energy
arbitrage to fully utilize battery performance and obtain high
returns. As the battery degradation, the focus should gradually
shift towards increasing the proportion of ancillary services to
maintain a stable income.

3.3 Battery physical and economic life

Depending on the region and type of energy storage project, the
fixed operation and maintenance (O&M) costs for EES
power stations are estimated to range between 0 - $30/kW-year
(Hledik et al., 2018). Figures 5A, B show the relationship between the

FIGURE 3
The relationship between the profits of EES and MDC.

FIGURE 4
Trends in life-cycle profits of EES power stations under different operating models in the spot market.
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life-cycle net revenue and the battery’s SOH for EES projects in the
spot market under different O&M cost levels (16 $/kW-year for
commercial/industrial energy storage, and 27 $/kW-year for
distributed/residential energy storage). As the years of use
increase, the battery capacity irreversibly decreases. When the
SOH drops to 80%, it is typically considered the physical end of
the life (EOL) of battery. He et al. (Ecker et al., 2014) proposed that if
an EES project cannot achieve positive net profits during operation,
this point should be considered the economic end of life for the EES
power station. To analyze the net revenue situation of EES power
stations in the spot market, this paper introduces the concept of the
battery’s economic end of life.

In this case, when the MDC is set at its optimal value ($45/
MWh-throughput), the physical life of the LiFePO4 battery is
9 years. However, from an economic perspective, when the
annual net revenue drops to 0, the continuing operation loses its
economic value even if the battery has not reached the end of its
physical life. In Figure 5A, the commercial/industrial energy storage
scale reaches the end of both its economic and physical life in the
ninth year. For distributed/residential energy storage (Figure 5B),
the economic EOL of the station (8 years) is notably shorter than its
physical EOL (9 years). Higher O&M costs accelerate the decline in
net revenue, causing the battery to lose its economic value before
physical EOL. In other words, in the ninth year, even though the EES

FIGURE 5
Changes in net profit fromCalifornia EES power stations with battery cycle-life for different fixedO&M costs, (A) fixedO&M costs of $16/kW-year for
commercial/industrial energy storage, and (B) fixed O&M costs of $27/kW-year for distributed/residential energy storage. Energy arbitrage and providing
non-spinning reserve.
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power station’s battery can still operate, its revenue is insufficient to
cover the fixed operation and maintenance costs, resulting in no net
profit for the EES power stations. At this point, the battery can be
recycled or repurposed for other economically advantageous
applications. This approach ensures that resources are utilized
efficiently, maximizing the overall economic benefit of the energy
storage system throughout its life-cycle.

4 Discussion and conclusion

EES power stations play a crucial role in power systems. However,
their profitability in the electricity spotmarket faces uncertainties due to
several factors: their limited power generation capacity, constraints in
providing ancillary services, and the current imperfections in electricity
market trading mechanisms. Given these challenges, the key to
improving the economic benefits of small-scale EES power stations
lies in how to promote their active participation in electricity market
trading and maximize their advantages through reasonable scheduling
and flexible operations.

This paper proposes a revenue model for EES power stations to
evaluate their life-cycle profits. The model focuses on the impact of
MDC on the physical EOL of batteries and incorporates annual fixed
O&M costs to illustrate the net revenue of EES power stations under
the electricity spot market. Additionally, the concept of economic
EOL for EES power stations is introduced. Through data analysis,
the paper demonstrates that using the economic EOL as the
operational life for EES power stations is more meaningful than
relying solely on physical EOL metrics.

Energy arbitrage and ancillary services currently represent the
primary and most mature sources of revenue. In a case study of EES
power station arbitrage in the California energy market, it is found
that when the battery completes 2000 cycles and its capacity reduces
to 80% of the original (i.e., physical EOL), the optimal MDC for the
EES power station is $45/MWh-throughput. Under these
conditions, the EES power station achieves its highest life-cycle
revenue. For commercial/industrial-scale EES power station, both
the economic and physical EOL are 9 years. However, for
residential-scale EES power station, the economic EOL is earlier
than the physical EOL, at 8 and 9 years respectively. This indicates
that continuing to operate the residential-scale EES power station in
the ninth year would result in revenues lower than operating costs.

Therefore, operators need to carefully balance battery
degradation characteristics, market conditions, and operational
strategies to determine the optimal economic EOL of residential-
scales. This balance is crucial for making appropriate investment
and operational decisions. By considering these factors, operators
can maximize the economic benefits of their residential-scales while
ensuring they do not operate beyond the point where costs exceed
revenues. This approach allows for more efficient use of resources
and better long-term planning in the rapidly evolving energy storage
market. Future research could explore the impact of emerging

battery technologies on the economic lifespan of EES power
stations. Additionally, investigating the potential synergies
between EES power stations and other grid assets, such as
renewable energy sources or demand response systems, could
uncover new economic opportunities in the evolving
energy landscape.
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Nomenclature

Indices

t Indices for time, typically a day

h Indices for time, typically an hour

Parameters and
constants

φ Calendar degradation of the battery in period t

Cf ix Fixed operation and maintenance costs

Ḏ Total usage before the end of the battery life at 100% charge
and discharge depth

ζ Battery self-discharge rate

�H
H

EES Initial SOH
EES Final SOH

Variables and
functions

dt(x) Degradation of EES power station in period t

RMt(Pt ) Market revenue of EES power station in period t

CBD
t (Pt ) Total battery degradation cost during period t

Πh Regional marginal electricity price

As Ancillary services revenue

zt Remaining capacity of EES power station

θ Depth of charge and discharge

Sc SOC of EES power station

ηt,θ The number of cycles of a storage power station at a certain
charging depth

Ht+1 SOH of EES power station

pchah

pdish

The charging amount of the energy storage system
The discharging amount of the energy storage system

RESS Total revenue of EES power station

δt Discount factor for period t

x Optimal marginal degradation cost

ηt(St ) EES power station charging and discharging efficiency

Pt The charging and discharging amount of the EES power
station during period t

μt Adjusted MD for storage in time period t
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This paper proposes a novel two-stage transient stability assessment (TSA)
model that integrates ensemble learning with cost sensitivity to address the
challenges posed by the integration of renewable energy and load fluctuations.
The model employs CNNs as positive and negative classifiers to initially evaluate
samples, with consistent results output directly. In cases of inconsistency, the
sample is evaluated by a fair classifier, specifically an ELM, trained on critical
samples. This approach significantly enhances the classification performance
and credibility of the fair classifier, especially under imbalanced conditions,
thereby improving the overall efficiency and accuracy of TSA. The proposed
model demonstrates superior performance compared to single-stage models
and other two-stage models, achieving high accuracy and robustness in
transient stability assessment, particularly for critical samples.
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1 Introduction

The development of modern power systems presents new challenges to the safety of
these systems. In recent years, frequent blackouts worldwide have had significant economic
impacts (Wei Zhang and Zhang, 202). Transient stability is crucial to the safe operation
of power systems. Once a disturbance occurs in the power system, early assessment of
transient stability and timely implementation of emergency control measures can protect
the system’s stability (Guo et al., 2023; Meridji et al., 2023; Singh and Chauhan, 2023;
Wang Y. et al., 2023; Zhu et al., 2023). Therefore, it is vital and necessary to design a TSA
model that can quickly and accurately determine whether a power system will become
unstable and infer the type of events that may cause instability.

Classical transient stability methods include time-domain simulation (TDS) and direct
methods. TDS analyzes system stability through detailed modeling. As long as the
component models and network structures are sufficiently accurate, the results are reliable.
However, with the increasing complexity of power systems and rapid changes in electronic
hardware, TDS-based models have become more complex, and their computational
demands have increased, making TDS methods unsuitable for real-time transient stability
assessment.The directmethod, on the other hand, does not require numerical integration of
dynamic processes and can quantitatively analyze system transient stability. However, direct
method models are simple and may face applicability issues in complex power systems.
Additionally, the evaluation results tend to be conservative. As a result, these methods
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currently cannot fully meet the practical needs of online transient
stability assessment. To date, real-world power grids still require
more advanced TSA solutions that can achieve high reliability and
efficiency.

The rapid development of big data offers new ideas for transient
stability assessment. TSA rules can be mined from large volumes
of data using machine learning (ML) methods (Liu et al., 2023;
Li et al., 2024; Shao et al., 2024). Once dynamic information is
received, stability results can be output within milliseconds. After
discovering underlying relationships offline through ML, they can
be easily applied to online TSA. This data-driven approach almost
eliminates online computation time and can effectively predict
system stability.

Modern power systems usually remain stable after most
disturbances due to their robustness. In practical applications,
events causing power system instability are rare. These rare
events lead to significant imbalances between stable (majority
class) and unstable (minority class) transient data distributions.
The imbalance in training data leads to high misclassification
rates in TSA models. Moreover, misjudging the transient stability
of power systems prevents timely responses and corresponding
measures, leading to safety accidents and significant economic
losses. Therefore, addressing the imbalance in training data is not
only crucial for improving TSA accuracy but also has practical
significance.

Existing methods for addressing class imbalance can be
broadly categorized into data-driven and algorithm-driven
approaches. Additionally, traditional data-driven methods attempt
to oversample or undersample the data so that different classes
appear in equal proportions in the training data.Themain drawback
of sampling-based methods is that they may lose important
information in undersampling or overfit the training data in
oversampling. Algorithm-driven methods primarily include cost-
sensitive methods (Wang H. et al., 2023; Chen et al., 2022; Lin et al.,
2022; Wang et al., 2020) and ensemble learning methods (Shen,
2023; Chen and Wang, 2021; Chen et al., 2021; Zhao et al., 2022;
Wu et al., 2020). References (Wang H. et al., 2023) consider the
imbalance in sample distribution in space by dividing samples
into different levels of training sets and training the model using
cost-sensitive approaches. Reference (Shen, 2023) proposes a
comprehensive transient stability state assessment method for
power systems based on machine learning, using multiple classifiers
to alleviate the sample imbalance problem in transient stability
samples. However, its drawbacks are also evident. The ensemble
learning classifiers used are oftenweak classifiers with low resistance
to interference and increased training time. Among these methods,
the application of cost sensitivity in transient stability assessment is
relatively limited. Although it helps mitigate sample imbalance, its
blind use may lead to overfitting and increased misclassification
rates. Applying ensemble learning alone to transient stability
assessment can also mitigate sample imbalance, but due to the large
number of ensemble classifiers, it may result in longer training times
and weaker resistance to interference.

Recently, tomitigate the imbalance in transient stability samples,
references (Chen andWang, 2021;Wang et al., 2020) adopted a two-
stage assessment approach combining cost sensitivity and ensemble
learning. Specifically, three models are used, with two classifiers in

the first stage, each biased towards one class of samples using cost-
sensitive methods. A non-cost-sensitive classifier is then trained
using the same training set as a fair classifier for second-stage
evaluation. Although this approach combines the advantages of
cost-sensitive learning and ensemble learning, it also overcomes
some disadvantages. However, this method lacks credibility, mainly
because the credibility of the fair classifier is low. This is because
hard samples are evaluated by a non-cost-sensitive classifier, and
the evaluation results are directly output. However, since the fair
classifier is not selected based on the characteristics of the input
samples, highly accurate and convincing evaluation results cannot
be generated.

In transient stability assessment, what truly affects
misclassification and missed judgments are the hard samples. In
this study, we propose a two-stage transient stability assessment
model based on the integration of ensemble learning and cost
sensitivity. First, the initial sample set is input into positive and
negative classifiers again, and samples with inconsistent evaluation
results are collected to form a critical sample set. This critical sample
set is used to train the ELM (fair classifier). The model combines
the strengths of cost sensitivity and ensemble learning, greatly
enhancing the credibility of the fair classifier while improving the
overall reliability of the model.

The rest of this paper is structured as follows: Section 2 offers
an overview of the transient stability assessment (TSA) problem
and introduces the proposed two-stage TSAmodel. Section 3 details
the implementation process of the model. Section 4 presents case
studies and evaluates the model’s performance. Finally, Section 5
summarizes the conclusions of the paper.

2 Integrated TSA model

2.1 Transient stability assessment problem

Transient stability assessment (TSA) has become increasingly
important in power systems, with the main challenge being how
to overcome the inherent sample imbalance problem, which is
determined by the robustness of power systems. To address the
imbalance in transient stability samples, a two-stage assessment
method combining cost sensitivity and ensemble learning has
been widely adopted. However, due to the lack of optimization
in the selection of the fair classifier, it is difficult to produce
highly accurate and convincing evaluation results. The model
proposed in this paper addresses the problem of transient stability
assessment under imbalanced samples by considering the difficulty
of classifying critical samples, combining cost sensitivity and
ensemble learning, which greatly enhances the reliability of the
fair classifier and the overall model reliability. Currently, the issue
of sample imbalance in transient stability assessment cannot be
ignored, as stable samples are the majority, unstable samples are
fewer, and critical samples are even rarer. The training model must
fully understand the characteristics of stable, unstable, and critical
samples to classify them correctly. Therefore, solving the sample
imbalance problem is crucial for transient stability assessment.
The two-stage TSA model proposed in this paper aims to achieve
accurate and reliable classification results even under imbalanced
conditions.

Frontiers in Energy Research 02 frontiersin.org91

https://doi.org/10.3389/fenrg.2024.1491846
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Lei et al. 10.3389/fenrg.2024.1491846

2.2 Selection of positive and negative
models and application of cost sensitivity

2.2.1 Selection of positive and negative models
Unlike most previous evaluation model designs, this paper

designs a two-stage transient stability assessment model based
on the integration of ensemble learning and cost sensitivity. The
advantage of this approach is that it can combine the strengths
of various models and effectively overcome the drawbacks of
low accuracy, low effectiveness, and high cost caused by sample
imbalance.

The positive and negative models are the foundational models
in the entire two-stage framework; their results are only valid when
they are consistent. Otherwise, if the results are inconsistent, the
assessment will enter the next stage without directly outputting the
results. Therefore, to maximize the role of the positive and negative
models, cost sensitivity is applied to these models. The positive
model is inclined to evaluate samples as stable, while the negative
model is inclined to evaluate samples as unstable. Under this design,
when the evaluation results of the positive and negative models
are consistent, the input samples must be far from the boundary,
indicating that the samples are either extremely stable or extremely
unstable. In such cases, the positive and negative models require
strong feature extraction capabilities to fully recognize samples
beyond the boundary.

Convolutional Neural Networks (CNNs) possess strong
nonlinear expression and pattern recognition capabilities, making
them suitable for handling complex dynamic processes and
nonlinear problems in power systems (Lee et al., 2023). This
allows CNN-based TSA models to more accurately reflect the
transient stability status of the power system based on input
operational parameters. Compared to traditional time-domain
and direct methods, CNN-based TSA methods offer higher
assessment accuracy and faster computation speed. They can meet
the requirements of online real-time prediction, providing timely
and accurate power system stability analysis results for dispatchers
(Gu et al., 2024). Additionally, CNN models can adapt to different
power system scenarios and demands by adjusting the network
structure and parameters, offering higher flexibility and scalability.
In summary, applying CNNs to power system transient stability
assessment has advantages such as automatic feature extraction,

strong nonlinear processing capabilities, high accuracy, real-time
performance, and applicability to complex systems, making it a vital
tool in power system operation and control. Therefore, we select
CNNas the positive and negativemodels.WithCNN’s strong feature
extraction capabilities, we can effectively handle the characteristics
of stable and unstable sample regions, achieving initial simple
classification. Furthermore, CNN-based methods can directly use
low-level measurement data as input features, extracting multi-
granularity information from measurement data through multi-size
convolution kernels, thereby improving the accuracy of TSA in
power systems (Jin et al., 2023).

For transient stability assessment, reasonable feature selection
is needed to construct samples as input. This paper focuses on
selecting steady-state quantities and fault characteristics for the
forward-looking prediction of transient stability (Ji et al., 2022).
Therefore, bus voltage, generator active and reactive power, and load
active and reactive power are chosen as input features. Relevant
data are obtained from measurements or time-domain simulations
and input into the CNN model. The network structure of CNN
is shown in Figure 1.

Based on the input electrical quantity matrix, the convolutional
layer performs local learning through convolution kernels in the
CNN model. The convolution operation for each convolution
kernel is as Equation 1.

ac,k = f (X ∗Wc,k + bc,k) (1)

where ac,k is the output of the k-th convolutional surface,Wc,k is the
weight matrix corresponding to the k-th convolution kernel,X is the
input matrix, bc,k is the bias term, and f(⋅) is the activation function
(the ReLU function is selected here).

For the pooling layer, this paper adopts max pooling,
as shown in Equation 2.

ap,k =max(aij) , i, j = 1,2,…,n (2)

where ap,k represents the k-th pooling surface, aij is a sub-block of
the output matrix from the previous convolutional layer, and n is the
dimension of the sub-block of the output matrix from the previous
convolutional layer.

FIGURE 1
CNN network structure.
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The calculation formula for the fully connected
layer is as Equation 3.

a fc = f (apW fc + b fc) (3)

In the fully connected layer, a fc represents the output, ap
represents the input, W fc represents the weight matrix, and b fc
represents the bias term. The ReLU function is selected for the
activation function.

The fully connected layer passes the output values to the output
layer, and the expression of the sigmoid function in the output
layer is as Equation 4.

σ (x) = 1
1+ e−x

(4)

where x is the input value and σ(x) is the function output.

2.2.2 Application of cost sensitivity
Typically, the approach to solving quantity imbalance is to assign

higher weights to unstable samples. However, the misclassification
of critical samples still occurs. Another approach is to assign
higher weights to both imbalances simultaneously: first, higher
weights are given to unstable samples, and then higher weights
are assigned to misclassified samples. This approach can lead to
overfitting (Kesici et al., 2023).

In this study, the model is trained by optimizing parameters to
improve the fit to the training samples. The loss function is used to

TABLE 1 Weight coefficient matrix for model parameter modification.

Real label Predicted label

Stable Unstable

Stable C(1,1) C(1,0)

Unstable C(0,1) C(0,0)

FIGURE 2
Elm network structure.

TABLE 2 Scoring table.

λ λ2 = 0 λ2 = 1

λ1 = 0 0 1

λ1 = 1 1 2

TABLE 3 Evaluation process.

λ First stage Second stage Total score

0 1 0 1

1 1 1 2

2 1 0 1

measure the difference between the predicted and actual values, and
the impact of training samples on evaluation rules can be assessed
through the loss function. This cost-sensitive approach makes the
positivemodel inclined to evaluate samples as stable and the negative
model inclined to evaluate samples as unstable.

For the transient stability assessment problem, the
weight correction coefficient for model parameters can be
represented by Table 1.

Where C(1,1) = C(0,0) = 0. C(1,0) and C(0,1) represent the
weight correction coefficients formodel parameterswhenpredicting
stable conditions as unstable and unstable conditions as stable,
respectively. Typically, C(1,0) = C(0,1) = 1.

In different scenarios, the proportion of unstable samples to
stable samples in the training set often differs, which causes the
model trained under imbalanced samples to have a certain bias in its
discriminative results. Therefore, this paper introduces a correction
factor γ to adjust for the imbalance in sample numbers in different
scenarios, as shown in Equations 5, 6.

γ (0,1) = 10 (5)

γ (1,0) =
Ns

Nuns
(6)

where Ns is the number of stable samples in the training set; Nuns is
the number of unstable samples in the training set.

By adjusting the weight correction coefficients during the
evaluation model parameter correction process, the model’s loss
function is as follows:

Gp = −y(l) lny′(l)γ (1,0) − [1− y(l)] ln[1− y(l)]γ (0,1) (7)

Themodel using Equation 7 is the positivemodel. After applying
cost sensitivity, this model tends to evaluate input samples as stable.
Conversely, if the model needs to incline toward evaluating input
samples as unstable, an additional correction factor β is required.
Since the original model tends to evaluate samples as stable due to
sample imbalance, adding the coefficient β ensures that the model
tends to evaluate input samples as unstable. Similarly, it is also
necessary to adjust the imbalance of the number of samples in
different scenarios here, as shown in Equations 8, 9.

θ (0,1) =
Ns

Nuns
(8)
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FIGURE 3
(1) Offline training; (2) Online application.

θ (1,0) = 10 (9)

When β = 1, the evaluation model merely corrects for the
bias introduced by the imbalanced training samples; when β >
1, the model increases its fit to unstable samples, reducing the
misclassification probability for unstable samples.

The reorganized model’s loss function is shown in Equation 10.

Gn = −y(l) lny′(l)θ (1,0) − β[1− y(l)] ln[1− y(l)]θ (0,1) (10)

The negative model applies the loss function from the above
equation to tend toward evaluating input samples as unstable.

2.3 Fair classifier

The fair classifier is used to classify hard samples, which are
samples that the initial simple classification could not correctly
categorize.Therefore, the sample set used to train the fair classifier is
the critical sample set, and the model selection must consider this.

The fair classifier operates in the second stage of the assessment,
requiring high accuracy and interpretability in its results. The
sample set used to train the fair classifier is the critical sample
set, which contains rich data information and high information
entropy, requiring a suitable model to extract these features. For
ELM training, the ideal sample should be data close to the stability
boundary to obtain refined stability rules, allowing for effective
learning of the critical region and a strong ability to correctly classify
hard samples.

Given the above considerations, ELM is chosen as the fair
classifier.Due to the distribution characteristics of the critical sample

set, it matches the training requirements of the ELM model. If the
training samples of ELM are from the critical region, the trained
ELMwill have a strong ability to correctly classify the critical sample
set. ELM is used for training, but not with the original sample set;
instead, it is trained using samples with conflicting evaluation results
from two classifiers with opposing biases.

ELM can randomly select input layer parameters, and then use
the Moore-Penrose generalized inverse to obtain the output layer
weights with the smallest 2-norm. In ELM, only the number of
hidden layer neuron nodes needs to be learned and adjusted, and
the entire process does not require iteration. Figure 2 shows the ELM
network structure.

Specifically, for a dataset (xi,yi) with N samples, where xi ∈ ℝ
n

and yi ∈ ℝ
2, yi is the class label of the i-th sample, and the ELM

output with M hidden layer units is shown in Equation 11.

f (xj) =
m

∑
i=1

βih(wixj + bi) = yj (11)

where j = 1,2,…,N; h is the activation function;wi ∈ ℝ
n is theweight

vector of the i-th unit in the hidden layer; βi ∈ ℝ
2 is the multiplier

of the i-th unit in the hidden layer; and bi ∈ ℝ
1 is the bias of the i-th

unit in the hidden layer.
In ELM, the weight vector wi and the bias bi are randomly

assigned, and the multiplier βi can be obtained based on all the
data through the Moore-Penrose generalized inverse. Therefore,
there is no need for the backpropagation (BP) neural network’s
necessary back-adjustment process (Fuqiang et al., 2023), making
ELM’s calculation speed significantly faster than classification
algorithms based on optimization. This reduction in calculation
time also reduces the online application time of the two-stage
evaluation model (Zhang et al., 2017).
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FIGURE 4
Line diagram of IEEE 39-bus power system.

TABLE 4 Weight coefficient matrix for model parameter modification.

Real label Predicted label

Stable Unstable

Stable TP FN

Unstable FP TN

2.4 Overall evaluation process

After completing all the above designs, the framework for
the proposed two-stage transient stability assessment model is
established. Next, the overall evaluation process is designed.

The model proposed in this study is a two-stage evaluation
model, where the second stage’s evaluation somewhat depends

TABLE 5 Comparison of single-stage and two-stage models.

Model PACC PFD PFA

LSTM 0.9202 0.6535 0.4444

Two-Stage-LSTM 0.9363 0.5644 0.2903

GRU 0.9253 0.6238 0.3968

Two-Stage-GRU 0.9465 0.4257 0.2564

CNN 0.9482 0.3663 0.2727

Two-Stage-CNN 0.9533 0.2376 0.2870

on the results of the first stage. Therefore, it is necessary to
design scoring for the first-stage evaluation results to complete the
evaluation logic of the first and second stages.
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FIGURE 5
Comparison of performance between single-stage and two-stage models. Model performance improvement: two-stage vs. baseline
(LSTM, GRU, CNN).

TABLE 6 Comparison of TCS-ELM with other two-stage models.

Model PACC PFD PFA

TCS-ELM 0.9779 0.1584 0.1053

Two-Stage-CNN 0.9533 0.2376 0.2870

Two-Stage-GRU 0.9465 0.4257 0.2564

Two-Stage-LSTM 0.9363 0.5644 0.2903

Define λ, λ1, λ2, where λ is the total score of the first stage, and λ1,
λ2 are the scores of the positive and negative classifiers, respectively.

To improve efficiency, λ1, λ2 are linked to the output results of
the positive and negative classifiers. If the positive classifier output
is stable (label 1), then λ1 is 1; otherwise, it is 0.

Define λ = λ1 + λ2, the scoring logic is summarized in Table 2.
According to the model logic proposed in this paper, the first-

stage evaluation results are credible, and the evaluation results are
directly output only when the positive and negative classifier outputs
are consistent. This occurs when λ is 0 or 2, meaning the first-stage
evaluation results are reliable, and there is no need for the second-
stage evaluation. If the positive and negative classifier outputs are
inconsistent, the first-stage evaluation results are unreliable, and λ
equals 1, then the process proceeds to the second-stage evaluation.

The overall evaluation process can be simplified
as shown in Table 3.

As shown in Table 3, when the total score is 1, the second-stage
evaluation result is output as the model’s evaluation result. When
the total score is 2, that is, when λ equals 1, the first-stage evaluation
result is credible, and the first-stage evaluation result is output as the
model’s evaluation result.

3 Implementation process of the
integrated TSA model

After selecting a specific example system, transient stability
simulations are performed to collect steady-state data and create the
initial sample set.

Based on the obtained initial dataset, the positive and negative
classifiers are trained separately. After training, the initial dataset
is re-input into the trained positive and negative classifiers for
evaluation, and the critical dataset is organized based on the differing
evaluation results from the positive and negative classifiers.

Since the fair classifier needs to correctly classify critical samples,
ELM is selected as the fair classifier. By training ELMusing the critical
sample set, the ability of ELM to correctly classify critical samples is
greatly enhanced, meeting the requirements of the fair classifier. The
construction of the integrated TSA model is then completed.

When evaluating real-time data obtained from the power
system, the measured data is input into the positive and negative
classifiers for evaluation. If the evaluation results are consistent,
the results are output, completing the assessment; if the evaluation
results are inconsistent, the measured data is input into the fair
classifier, and the evaluation results from the fair classifier are output,
completing the assessment. The specific implementation process
is shown in Figure 3.

(1): Offline Training
(2): Online Application

4 Case analysis

Taking the New England 10-generator, 39-bus system as a
case study, as shown in the Figure 4, the entire bus system is
divided into four regions according to adjacent buses. Four different
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load levels, 80%, 90%, 110%, and 120%, are considered, and each
region is assigned a different load level, resulting in 256 different
power flows,256 different operating modes. The generator output
is adjusted accordingly to ensure the convergence of power flow
calculations. The fault is set as a three-phase short-circuit fault, and
anN-1 scan is performed on the system by sequentially setting faults
on different lines. The fault duration is set to 0.2 s on lines without
transformers, with the fault point located at 50% of the line’s length.
On lines with transformers, the fault point is set at the head section
of the line.

The selection of input features including bus voltage, generator
active power and reactive power, as well as load active power
and reactive power, is indeed widely used in data-driven transient
stability assessment (Li et al., 2021; Du et al., 2021). Bus voltage
reflects the system’s voltage levels and can serve as an early
warning for instability. Generator active power and reactive power
respectively influence frequency stability and voltage regulation.
Load active power affects the system’s energy balance, while load
reactive power is crucial for voltage stability. These features provide
a solid foundation for predictive transient stability assessment.

A total of 11,776 samples are generated. By sampling from these
11,776 simulated samples, the training set, testing set, and validation
set are obtained in a ratio of 8:1:1.

Transient stability assessment in power systems includes two
categories: stable and unstable. The criterion for stability is the
transient stability index (TSI). The details are given in Equation 12.

tTSI =
360° − |Δδmax|
360° + |Δδmax|

(12)

When the maximum rotor angle difference among generators
exceeds 360°, TSI is less than 0, and the system is considered
unstable; when the rotor angle difference is less than 360°, TSI is
greater than 0, and the system is considered stable.

The following indicators are set as in Equations 13–15 to evaluate
the performance of the model:

PACC =
Tp +TN

Tp + Fp +TN + FN
⋅ 100% (13)

PFD =
Fp

Fp +TN
⋅ 100% (14)

PFA =
FN

Tp + FN
⋅ 100% (15)

After the training, the model is tested from the test set, and the
performance test results of the model are obtained. At the same
time, existing Two-Stage models (such as two-stage-LSTM, two-
stage-GRU) are tested, which all use the same neural network (such
as LSTM or GRU) for positive and negative sample classification
and fair classification tasks. The weight coefficient matrix used for
model parameter correction is shown in Table 4. Firstly, transient
stability evaluation experiments were conducted on the single-stage
model and the two-stage model, and the results were recorded
and summarized as shown in Table 5.Vertical comparison shows
that the two-stage method proposed in this paper outperforms the
single-stage method in all indicators, with a significant reduction in
misclassification rates and a marked improvement in classification
accuracy. This validates the effectiveness of the two-stage model
in complex tasks compared to a single model. Figure 5 shows the
bar chart comparison of the performance between single-stage and
two-stage models.Based on these findings, we further explored
the effects of different neural network combinations within the
two-stage framework. As such, this paper proposes the TCS-ELM
model (Two-Stage Cost-Sensitive Ensemble Learning Model), using
CNN for positive and negative sample classification in the first
stage and ELM for fair classification in the second stage, fully
leveraging CNN’s feature extraction strengths and ELM’s efficient
classification capabilities. Table 6 shows the performance testing
results of various two-stage models and the proposed TCS-ELM

FIGURE 6
Comparison of performance between single-stage and two-stage models. Performance comparison of 4 deep learning models.
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model.Results indicate that the proposed TCS-ELM model, by
using CNN in the first stage for stronger feature extraction
capabilities and ELM in the second stage for improved classification
accuracy, outperforms other two-stage models (such as Two-
Stage-LSTM and Two-Stage-GRU) in all indicators, particularly
exhibiting higher accuracy and robustness when handling critical
samples. This demonstrates that the TCS-ELM model combines the
advantages of CNN and ELM in their respective stages, significantly
enhancing overall performance. Figure 6 presents the bar chart
comparison of the performance between TCS-ELM and other
two-stage models.

5 Conclusion

In conclusion, the two-stage transient stability assessment
model proposed in this paper, which leverages a combination
of cost sensitivity and ensemble learning, addresses the
key challenge of sample imbalance while exhibiting robust
classification capabilities, particularly for hard-to-classify samples.
By integrating these advanced techniques, the model demonstrates
exceptional performance, achieving high levels of accuracy
without compromising the reliability and credibility of the
evaluation results.

In contrast to widely used transient stability assessment
methods, thismodel successfully overcomes several of their inherent
limitations. Traditional models often struggle to balance speed,
accuracy, and reliability, particularly in cases where the data
distribution is uneven or where outliers skew the results. The
proposed model not only mitigates these issues but also delivers
rapid assessments, making it highly efficient for real-time or
near-real-time applications. Its ability to provide convincing and
trustworthy evaluations further strengthens its utility in practical
scenarios where precise and timely decision-making is crucial, such
as in power grid operations and other dynamic systems.

By offering a superior balance of speed, accuracy, and evaluation
credibility, this model stands out as a significant advancement
in the field of transient stability assessment, offering a practical
solution that is both scalable and adaptable to diverse operating
conditions.
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As the proportion of renewable energy and power electronics equipment
continues to rise, the level of rotational inertia decreases considerably,
resulting in severe frequency stability challenges to the power grid. It is
of great significance to accurately predict the frequency nadir following a
large disturbance. This paper proposes a novel data-model fusion-driven
approach for the prediction of frequency nadir. As the physics-driven part, a
Simplified Prediction Model (SPM) based on power-frequency polynomial fitting
is developed to quickly produce the frequency nadir. As the data-driven part,
Back Propagation Neural Network (BPNN) is deployed to correct the errors of
the SPM to achieve more accurate results. This serial integration scheme not
only obtains the final prediction result with higher accuracy, but also meets
the computational efficiency requirements of online prediction. Compared with
existing integration-driven methods, SPM only focuses on the active power-
frequency characteristics of the system, which retains the most critical effects
and greatly reduces the dependence of BPNN on sample data quality. Case
studies on a modified IEEE 39-bus system verify the effectiveness of the
proposed approach.

KEYWORDS

low inertia, frequency nadir, frequency stability, frequency response, renewable energy

1 Introduction

In order to realize the “dual carbon” development strategy, it is urgent to accelerate the
construction of a new power system. With the large-scale integration of clean and low-
carbon energy resources such as wind power and photovoltaic generation, the power system
with synchronous machines as the main body has gradually evolved to the system with
renewable energy as the main body, showing an increasingly decrease trend of rotational
inertia level, and the system’s frequency response capability is weakened remarkably.
Consequently, the frequency stability of the power system is facing severe challenges under
large power disturbances.

Frequency is one of the basic indicators to describe the operating state of the
power system. The frequency nadir consists of the maximum frequency deviation
and the frequency nadir time. It is not only the key indicator to judge whether the
frequency is out of the limit, but also regarded as the decision-making basis for
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appropriate frequency regulation control. It is very important
to quickly and reliably predict the frequency nadir
for frequency stability evaluation and control of large
power systems (Hatziargyriou et al., 2021).

At present, there are three typical methods to predict the
frequency nadir following disturbances: time-domain simulation
method, simplified model based method, and data-driven method.
The time-domain simulation is the most common used method for
analyzing the frequency response of a power grid, which builds
a time-domain model of each element of the system (including
different generation unitswith nonlinear control links), and converts
it into a series of differential algebraic equations to iteratively
calculate the accurate numerical solutions of each state quantity
of the power grid (Wen et al., 2023). Common time-domain
simulation software includes PSASP, PSD-BPA, DIgSILENT/Power-
Factory and PSS/E, etc. However, the time-domain simulation
method is often time-consuming when analyzing large-scale power
systems, which is more suitable for offline analysis of power grid
planning and accident recurrence, but not for real-time online
analysis of power grids with strong timeliness requirements. The
simplified model method usually solves the dynamic process of the
frequency response by retaining the rotor equation of motion and
the governor model, such as the average system frequency (ASF)
model (Chan et al., 1972) and the system frequency response (SFR)
model (Anderson and Mirheydar, 1990; Liu et al., 2020; Egido et al.,
2009) decouple power and frequency by breaking the frequency
closed loop, and the analytical calculation of the frequency nadir
is realized; Shen et al., 2021; Wang et al., 2022b propose multi-
machine equivalent SFR models and derive their closed-form
solutions to solve the frequency response of power systems with
two or three regions. In summary, the simplified model is suitable
for online analysis scenarios with high speed requirements, but
the prediction accuracy needs to be further improved. With the
rapid popularization of wide area measurement system (WAMS)
in power grids, Phasor Measurement Unit (PMU) and Supervisory
Control AndDataAcquisition (SCADA) systems can obtainmassive
amounts of information about the operation of the power grid in
real time,makingmachine learning based on data analysis more and
more widely used in the power system (Kamruzzaman et al., 2021;
Yi et al., 2021; Bo et al., 2022). Data-driven method can effectively
deal with the nonlinear and complex problems of physical models,
and provide new solutions for the establishment of frequency
models of complex power systems solutions. However, its prediction
accuracy is heavily dependent on the quantity and quality of sample
data, the generalization ability is insufficient and the prediction
results often lack interpretability.

In order to meet the practical needs of the power system,
the simplified model can be combined with data-driven methods,
integrating the advantages of both methods, so as to improve
the overall performance and be suitable for solving complex
physical problems. Feng et al., 2021 discusses the feasibility of
integrating model-driven methods and data-driven methods for
online frequency stability evaluation. Han et al. (2022) embeds
frequency-response related physics in gated recurrent unit neural
networks through the basic input eigenquants and the embedded
physical knowledge, new input eigenquants are formed and used for
model training. However, how to efficiently combine the accurately

modeled frequency response model and the data-driven model to
achieve complementary advantages remains to be studied.

In this paper, the problemof frequency nadir prediction of a high
proportion of renewable energy power systems under large power
deficit is studied. Due to the computing speed requirements for real-
time applications, a Simplified Prediction Model (SPM) based on
system frequency response equivalent is developed. Compared with
the traditional frequency response model (Yang et al., 2022), the
SPM uses polynomials of different orders to fit the power frequency
characteristics of each frequency modulation resource, including
synchronous generator, renewable energy, load, and HVDC, so as
to analyze and calculate the maximum deviation of the frequency
and the frequency nadir time, which has the advantages of low
identification difficulty, simple form, and less required information.
Therefore, the SPM is selected to be a physical-driven link in this
paper to ensure the high computational speed of the fusion model.

The complexity of the data model is positively correlated with
the predicted effect, and at the same time, higher requirements
are put forward for the quality of data samples. Since this paper
only focuses on the active power-frequency characteristics of the
power system, in the serial ensemble approach, the role of the data
model is to correct the predictions of the physical model, rather
than to fit the complex physical mechanisms of the entire power
grid. As a shallow neural network, BPNN (Back Propagation Neural
Network) has good self-learning, self-adaptive, nonlinear mapping,
and generalization capabilities. Therefore, in order to ensure the
feasibility and accuracy of the integration-driven method, BPNN is
used as the part of the data model.

The serial ensemble method (Wang et al., 2019) is implemented to
introduce the SPM to obtain the initial prediction results, which can
ensure the prediction efficiency and reduce the dependence of the data
model on sample data.TheBPNN is deployed to correct the error of the
initial prediction results of the physical model. Simulation results on a
modified IEEE 39-bus system show that the data-model fusion-driven
method can predict the frequency nadir with high accuracy and speed,
and provide more reliable indices and basis for the frequency stability
analysis and control of the power system.

2 SPM modeling and analytical
solution

The frequency response characteristics of the power system
with a high proportion of renewable generation are mainly affected
by the synchronous generators, load frequency characteristics,
auxiliary frequency control strategies of renewable energy units and
HVDC links. According to the respective power-frequency response
characteristics, the modeling and analysis of each type of frequency
modulation resources are explained in this section.

2.1 Power-frequency characteristics of
synchronous generators

The mechanical power output curve of a typical synchronous
generator governor under power step disturbance can be simply
divided into three sections according to its change characteristics,
namely, the fast change section, the constant velocity change section,
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and the steady-state output section. The generator governor changes
the output power by changing the prime mover valve, so as to
suppress the unbalanced power, and finally restore the frequency
to a quasi-steady state. The complete curve change process can be
represented by the following higher-order polynomial (Equation 1):

ΔPG( f) = K
0
G +K

1
G
dΔ f
dt
+K2

G(
dΔ f
dt
)

2
+K3

G(
dΔ f
dt
)

3
+ ... +Kn

G(
dΔ f
dt
)
n

(1)

where ∆PG is the mechanical power deviation output by the
synchronous generator governor;K0

G,K
1
G, andK

2
G are the polynomial

coefficients related to the rate of change of each order.
For synchronous generator governors, the higher the order of

the above polynomials, the more accurate the power-frequency
response characteristic curve of the generator governor in
this scenario can be described. However, at the same time,
the introduction of higher-order polynomials will bring more
cumbersome workload to frequency stability online evaluation,
which will seriously slow down the computational speed. For the
frequency nadir, the corresponding time coordinates are often
located in the uniform velocity change segment, so only the first
two curve change links need to be accurately modeled.

Taking the GS-TB type governor in the PSD-BPA software
as an example, given a load disturbance of 35 MW, the system
frequency deviates. The actual response curve of the governor
and its polynomial fitting curves of different orders are compared
as shown in Figure 1. It can be seen that the second-order
polynomial can accurately fit the power output curve of the governor
within the time scale from the moment of fault occurrence to
the frequency nadir. Therefore, the second-order polynomial is
utilized to describe the active power frequency characteristics of the
generator governor before the frequency nadir is reached, and the
expression is:

ΔPG( f) = K
0
G +K

1
G
dΔ f
dt
+K2

G(
dΔ f
dt
)

2
(2)

2.2 Power-frequency characteristics of the
active participation of renewable energy
units in frequency regulation

Under the conventional control strategy, renewable energy units
do not actively participate in the frequency regulation, which
leads to a significant reduction in the inertia of the system and a
weakening of the frequency control capability. Many studies have
been conducted to improve the control strategy to enable them
to participate in the support of the power grid frequency. To this
end, most of the current renewable energy stations achieve auxiliary
frequency response by implementing measures such as virtual
synchronous control, virtual inertia control, and droop control. The
purpose of these control schemes is to enable the renewable energy
stations to simulate the characteristics of the frequency response
of synchronous generators through the control of power electronic
inverters and algorithms.The active power-frequency characteristics
of a renewable energy unit considering virtual inertia and droop
control can be expressed as:

ΔPR( f) = KdΔ f +Kv
dΔ f
dt

(3)

where Kd is the equivalent droop coefficient of the renewable
energy unit, and Kv is the equivalent virtual inertia
coefficient.

2.3 Frequency characteristics of the load

When the frequency changes, the active power absorbed by
the load from the grid also changes, which is the frequency
characteristic of the load. In the dynamic process prior to the
frequency reaches its nadir following the disturbance, the power-
frequency dynamic characteristics of the load can be simplified
as follows:

ΔPL( f) = K
1
pΔ f +K

0
p (4)

where∆PL is the power deviation of the active load of the system;K0
P

and K1
P are the frequency-dependent load factors of each order.

2.4 Frequency characteristics of the HVDC
frequency limiter

For the high proportion of renewable energy grids, the frequency
characteristics can be improved by suppressing the change of
electromagnetic power of the generator through the fast and
controllable function of HVDC power, reducing the deviation
between the generator and the mechanical power. An HVDC
frequency limiter can be used to respond to the frequency deviation
of the grid and automatically modulate the HVDC power. When
the power for HVDC modulation preparation is sufficient, the
power-frequency dynamic characteristics can be expressed by the
following formula:

ΔPFLC( f) = KmΔ f +∫KIΔ fdt (5)

where ∆PFLC is the power deviation of the HVDC modulator of the
system; Km is the frequency-dependent gain factor, KI is the integral
coefficient. The role of the integration link is mainly reflected in the
reduction of the steady-state frequency deviation, and this paper
only focuses on the maximum frequency deviation in the frequency
response process, and the role of integration control FLC can be
ignored. As a result, the power response of FLC control can be
further simplified, as shown in Equation 6.

ΔPFLC( f) = KmΔ f (6)

2.5 Polynomial fitting of power–frequency
characteristics

For the power system with a high proportion of renewable
energy generation, this paper mainly focuses on the stage when
the frequency drops to the nadir under the high power shortage,
according to the rotor swing equation:

2Hsys
d f(t)
dt
= ΔPm − Pd −DsysΔ f(t) (7)
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FIGURE 1
The active power-frequency characteristic curve and its fitting results of the GS-TB type governor.

where Hsys and Dsys are the equivalent inertia and damping
constants of the system, Δf is the frequency deviation, Pd is the
active disturbances suffered by the system, and ΔPm is the active
output of the resources participating in the primary frequency
modulation.

Substituting Equations 2–6 into Equation 7, the following
equation can be obtained:

Δ f = a(
dΔ f
dt
)

2
+ b

dΔ f
dt
+ c,Δ f ∈ [0,Δ fmax] (8)

Where

a =
K2
G

Dsys +K
1
p −Kd −Km

,b =
K1
G +Kv − 2Hsys

Dsys +K
1
p −Kd −Km

,c =
K0
G −K

0
p

Dsys +K
1
p −Kd −Km

(9)

From the above equations, it can be seen that the rate of
change of the system frequency with time and the frequency
deviation show a second-order polynomial relationship before
the system frequency falls to the nadir, which provides a
theoretical basis for the subsequent identification of system
parameters and online fitting prediction of the frequency.
Although Equation 8 does not explicitly include the relevant
variables of renewable energies, it can be seen from Equation 9
that the polynomial parameters identified by the measurement
data actually reflect the virtual inertia control and droop
control characteristics of renewable energies, and the changes
in the operation mode and inertia level of the system
are also reflected by the parameters of the second-order
polynomial.

2.6 Simplified frequency nadir prediction
model

Considering that when the frequency of the system reaches the
extreme point, there will be dΔ f/dt = 0. According to the correlation
properties of the quadratic function, to meet the above conditions,
the function image corresponding to Equation 8 must be symmetric
with respect to the y-axis, and one obtains (Equation 10):

b = 0 (10)

The frequency nadir can thus be solved by:

Δ fmax = c (11)

Further analysis of the above quadratic function can be
rewritten as (Equation 12):

√
a
Δ f − c

dΔ f = dt (12)

For the left and right integrals, one obtains (Equation 13):

t = 2√−ac−√a(Δ f − c) (13)

The time of the frequency nadir can be calculated by:

tnadir = 2√−ac (14)

Equations 11, 14 are the SPM’s expressions proposed in this
section. Since it can reflect the characteristics of various frequency
modulation resources, the model is suitable for power systems with
a high proportion of renewable generation.
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FIGURE 2
Structure diagram of the BPNN algorithm.

3 BPNN modeling and feature
selection

3.1 BPNN algorithm

BP neural network, is a multilevel feedforward network
structure trained on an error backpropagation algorithm. It adjusts
the network weights by passing information forward layer by layer,
comparing it to the desired output at the output layer, and then
propagating the error backwards to each layer until the preset
accuracy requirements are achieved (Wang et al., 2022a). The
network topology is shown in Figure 2.

A two-layer feed-forward network with sigmoid hidden
neurons and linear output neurons (fitnet), can fit multi-
dimensional mapping problems arbitrarily well, given consistent
data and enough neurons in its hidden layer. BPNN can
obtain the best training results by continuously adjusting
the number of neurons in the hidden layer. Considering
that the input and output of SPM-BPNN are the maximum
frequency deviation and their corresponding time, the number
of neurons in the hidden layer is finally determined to be 4 after
simulation tests.

3.2 Feature extraction

For the data-driven model, it is necessary to analyze
the key factors affecting the frequency nadir in combination
with the dynamic process of frequency response to select
the eigenvalues, and the frequency response characteristics
of the power system are mainly related to the active
disturbance amplitude and the physical parameters
of the frequency modulation unit.

The essential reason for the dynamic change of system frequency
is that there is a power imbalance in the system, which leads to an
imbalance between electromagnetic torque and mechanical torque,
and ultimately leads to a change in motor speed. Therefore, the
active power deficit of the system is a key factor affecting the
frequency nadir.

For synchronous generators, the inertia, as a measure
of the magnitude of inertia, reflects the rotor energy
of the generator set, that is, the difficulty of changing
the rotor state. Therefore, the equivalent inertia constant
of the system is also a key factor influencing the
frequency nadir.

Conventional generator units have the capability of primary
frequency modulation, and can also participate in the frequency
response when the renewable energy station imposes a
specific control strategy. Therefore, the basic parameters of
the governor, the virtual inertia coefficient and the equivalent
droop coefficient are also the key factor influencing the
frequency nadir.

In the process of HVDC FLC participating in frequency
modulation, with the increase of frequency deviation, the
rapid increase of HVDC power can correspondingly increase
the electromagnetic power of the unit, thereby eliminating
the unbalanced power, significantly suppressing the high-
frequency deviation amplitude, and improving the frequency
recovery characteristics. Therefore, the basic parameters of the
HVDC frequency modulator are also factors that affect the
frequency nadir.

Based on the above analysis, it is necessary to select key
variables as input features of BPNN. For the physical data
fusion model, BPNN only needs to correct the initial prediction
results of the SPM, so its input features can only be the
frequency nadir obtained by the SPM.
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FIGURE 3
SPM-BPNN fusion modeling scheme.

4 SPM-BPNN fusion modeling

The serial scheme is used to fuse the SPM with the BPNN
model to construct the SPM-BPNN model to achieve the purpose
of complementing each other’s advantages. Figure 3 shows the
schematic diagram of the SPM-BPNN integrated modeling, which
includes both offline training and online application.

4.1 Offline training

During offline training, the physical parameters, power deficit,
and actual frequency nadir of the generation units are obtained
from the frequency historical data or simulation data. The SPM
quickly obtains the initial frequency nadir according to the physical
parameters and power deficit of the frequency modulation units,
and takes it as the input feature of the BPNN, and the actual
frequency nadir as the output feature. The input and output
features are normalized and fed into the BPNN for offline training.
Finally, the trained BPNN model is used to calculate the frequency
nadir online.

4.2 Online application

In the online calculation, the power deficit of the system can
be measured by the WAMS and the physical parameters of the
generation units can be accessed online. Based on these parameters,
the SPM can compute the initial results. Then, the trained BPNN
model is used to correct the initial results to obtain the final
frequency nadir point. As the operating scenarios of the power
system change, the parameters of the physical model also need to
be updated accordingly.

5 Case studies

5.1 Case system introduction

In order to verify the effectiveness and accuracy of the SPM-
BPNN fusion model proposed in this paper, a modified IEEE 39
bus system is introduced. The reference frequency is 50 Hz, and its
topology is shown in Figure 4, which includes seven synchronous
generator units, three renewable energy stations, one feed-inHVDC,
and 6,148.6 MW load. All renewable energy stations participate in
the frequency response, and the total penetration ratio is 27.9%.

The simulation is carried out using the MATLAB/Simulink
simulation platform. By randomly sampling the system parameters
and invoking Simulink for simulation, a large number of data
samples that meet the requirements of the data model can be
generated. The actual value of the frequency nadir following
perturbation is taken as the output, and the dataset is divided into
training samples and test samples according to a certain proportion.
The training samples are used to complete the learning of BPNN, and
finally the frequency feature predictionmodel driven by data-model
fusion is obtained.

5.2 The selection of the active
power-frequency characteristic fitting time
window

For various working conditions in the online prediction process,
the parameters of SPM need to be identified online based on the
measurement data, so the accuracy of the prediction is affected by
the long time window of the data. However, due to the differences
between the working conditions, the offline determination of
the input data time series length is not the optimal choice
for some online working conditions (Yan and Xu 2019). If the
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FIGURE 4
The improved IEEE 39-bus system topology diagram.

input data is too short, the prediction method will not obtain
enough transient information, and the prediction accuracy will be
reduced. If the input data takes too long, the forecasting method
will collect “redundant” information, resulting in a decrease in
forecasting speed.

In order to solve this problem, taking the data sample obtained in
this simulation as an example, the occurrence time of the maximum
frequency deviation of COI frequency obtained by the simulation
is statistically analyzed. In the low-frequency scenario, the time

range is 0.98–4.9s (the system disturbance time is t = 0 s), so
the length of the effective data input of the model should not
exceed 0.98s. Considering the single run time of the SPM-BPNN
(0.01413s on average) and the control reaction time that needs to
be reserved for emergency control measures (e.g., low-frequency
load shedding), the predictionmodel proposed in this paper chooses
to collect the disturbance moment (500 ms) and the previous data
to fit the active power-frequency characteristics of the system, and
then achieves a mapping relationship with the real frequency nadir
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FIGURE 5
The prediction error comparison of Δfmax.

FIGURE 6
The prediction error comparison of frequency nadir time.

TABLE 1 The performance indices and comparison of Δfmax.

SPM BPNN SPM-BPNN

MAPE (%) 0.1067 0.3258 0.0630

RMSE (Hz) 0.0563 0.1043 0.0185

MAE (Hz) 0.0364 0.0817 0.0141

through the correction of BPNN. The selection of a shorter time
window can ensure the efficiency of online prediction, and strive
for more time for the system’s frequency emergency control and
low-frequency load shedding.The introduction of BPNN can ensure
high calculation accuracy and make the prediction results more
convincing.

TABLE 2 The performance indices and comparison of frequency
nadir time.

SPM BPNN SPM-BPNN

MAPE (%) 0.3003 0.1928 0.0632

RMSE (s) 0.9286 0.5725 0.1679

MAE (s) 0.7130 0.4344 0.1316

5.3 Result analysis

The proposed SPM-BPNN model is compared with the SPM
model and the BPNN model in terms of prediction speed and
prediction accuracy.

The prediction time of SPM, BPNN and SPM-BPNN models
are 1.47 ms, 13.61 ms and 14.13 ms. Compared with a single
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data or physical model, the SPM-BPNN model proposed in
this paper does not have significant advantages in prediction
speed, but it can still predict the frequency nadir online at a
faster speed.

In the field of machine learning, the performance of
regression models is usually evaluated by three metrics: Mean
Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), and Root Mean Square Error (RMSE). In this paper,
these three indicators are used to evaluate the prediction
accuracy of the SPM-BPNN model and the existing SPM and
BPNN models.

As shown in Figures 5, 6, the prediction accuracy of SPM-
BPNN is significantly higher than that of a single SPM or BPNN
model. As shown in Tables 1, 2, the performance indicators
of the SPM-BPNN model are much smaller than those of
other models, which indicates that even under different working
conditions and disturbance scenarios, the prediction accuracy
can be maintained, and the requirements for sample data are
reduced, and the interpretability and generalization ability are
stronger than those of the single data model, and has great
robustness.

From the accuracy evaluation results in Tables 1, 2, it can be
seen that the frequency prediction model driven by data-model
fusion proposed in this paper has better performance than the
two sub-models in various evaluation indicators. The results of
Figures 5, 6 show that the average absolute error of SPM-BPNN
is 61.26%, 82.74%, 81.54% and 69.7%, respectively, compared with
single SPM and BPNN. The serial method is used to fuse the two
sub-models, which effectively improves the accuracy of frequency
prediction.

Generally speaking, when the prediction results of the sub-
model are more accurate, the SPM-BPNN model can also get
better prediction results, but when the prediction accuracy of
some samples is poor due to the small number of training
samples of BPNN, SPM-BPNN can give full play to the advantages
of model and data fusion, effectively modify the prediction
results, and greatly reduce the prediction error. However, this
does not mean that BPNN is not suitable for the prediction of
transient frequencies in power systems. Therefore, choosing the
right data model is the key to improve the performance of the
fusion model.

6 Conclusion

In this paper, a frequency nadir prediction method based
on SPM and BPNN is proposed, which implements the serial
integration scheme to combine SPM and BPNN to achieve the
purpose of complementing each other’s advantages. Simulation
results show that the proposed approach can not only improve
the frequency nadir prediction accuracy, but also ensure that the
prediction efficiency meets the requirements of online calculation.
Constrained by the inherent limitations of analytical methods,
this paper only focuses on major influencing factors of the
frequency response and ignores minor factors such as reactive
power-voltage characteristics, more in-depth study related to this
issue can be conducted in future work. We will further investigate
the effective combination of different integration methods and

different data models to achieve more accurate prediction of
the frequency response. It is worth noting that the frequency
prediction method proposed in this paper only predicts the extreme
value of the center frequency of inertia following the disturbance
of the power system. In the next step, the dynamic frequency
characteristics of various nodes in the power system can be
predicted, so as to study the spatial distribution characteristics
of the frequency following a disturbance, and use this as the
basis to implement more efficient distributed frequency emergency
control measures.
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The uncoordinated integration of numerous distributed resources poses
significant challenges to the safe and stable operation of distribution
networks. To address the uncertainties associated with the intermittent output
of distributed power sources, we propose a multi-objective planning strategy for
distribution networks based on distributionally robust model predictive control
(MPC). Initially, an error fuzzy set is established on a Wasserstein sphere using
historical data to enhance out-of-sample performance. Next, a multi-objective
optimization framework is constructed, balancing returns and risks, and is
subsequently converted into a single-objective solution using value-at-risk
conditions. This is followed by the implementation of multi-step rolling
optimization within the model predictive control framework. We have
linearized the proposed model using the linearized power flow method and
conducted a thorough validation on an enhanced IEEE 37-node test system.
Distributionally robust optimization (DRO) has been shown to reduce costs by a
significant 29.16% when compared to an RO method. Moreover, the energy
storage capacity required has been notably reduced by 33.33% on the 29-node
system and by 20% on the 35-node system. These quantified results not only
demonstrate the substantial economic efficiency gains but also the enhanced
robustness of our proposed planning under the uncertainties associated with
renewable energy integration.

KEYWORDS

distributionally robust optimization, model predictive control, uncertainty, distribution
network planning, distributed resources

1 Introduction

With the advancement of new power system construction, distribution networks are
evolving toward source-network-load-storage integration and collaborative interaction
(Castro et al., 2024). The integration of large-scale distributed photovoltaic (PV)
systems with uncertain output transforms distribution networks from radial passive
structures into multi-power structures. This shift complicates power flow management
and significantly impacts operational characteristics, leading to increased planning
challenges (Zhang et al., 2023a; Esfahani et al., 2024). Addressing the capacity and
scientific management of distributed power supplies and energy storage devices has
thus become a research hotspot.
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Many scholars have explored distribution network planning
(Wang et al., 2024a; de Lima et al., 2024). For example, Pan
et al. (2023) propose a collaborative planning method for
distribution network and multi-energy systems, balancing multi-
agent interests and improving analysis and calculation efficiency.
Chen et al. (2017) introduce a multi-objective programming model
based on game theory, considering the interests of source-grid-load
multi-agents in a power market environment and using a particle
swarm optimization algorithm for iterative optimization. Wang
et al. (2022) propose a framework that considers energy storage
allocation and bi-level planning of the distribution network, and the
results show that this framework achieves low carbon emissions and
improved economics. Subbaramaiah and Sujatha (2023) propose a
multi-objective distribution network planning scheme that reduces
power losses and identifies optimal wind power locations. However,
these studies do not account for the impact of intermittent
distributed PV output, potentially overestimating the system’s
risk resilience.

Scholars have increasingly recognized the pivotal role of energy
storage in addressing the challenges of integrating high levels of
renewable energy sources (Liu et al., 2023; Ma et al., 2024). For
instance, Zheng et al. (2023) introduce an optimization framework
for energy storage allocation in distribution networks with a
significant penetration of photovoltaic (PV) systems. This
approach addresses the source-load imbalance and voltage
regulation issues, thereby reducing power losses and operational
costs. Another notable contribution is made by Zhang et al. (2024),
who present a method for the concurrent optimization of battery
storage configuration and distribution network operations. The
study demonstrates that energy storage can effectively smooth
power fluctuations and enhance the network’s resilience to fault
disturbances. Through planning, the capacity of energy storage in
the distribution network can increase the local consumption rate of
renewable energy, reduce the system operating costs, and reduce the
impact of PV uncertainty on the distribution network (Ba-swaimi
et al., 2024; Li et al., 2024a). However, the above literature does not
consider the risk assessment component in the energy storage
configuration process.

Methods such as stochastic optimization, robust optimization,
and distributionally robust optimization (DRO) are commonly used
to address the uncertainty in high-proportion renewable energy
predictions. Stochastic optimization assumes prediction errors
follow specific probability distributions and uses manageable
probability constraints (Wang et al., 2024b; Zhang et al., 2022; Li
et al., 2024b). Robust optimization finds optimal solutions under
worst-case scenarios, often resulting in overly conservative
outcomes. DRO, on the other hand, uses real data to generate
fuzzy sets and estimate distribution parameters, making it more
suitable for complex, high-dimensional, multi-constraint problems
(Skalyga et al., 2023). However, these constraints can turn the
problem into a non-convex, nonlinear stochastic optimization
challenge. Thus, a comprehensive approach that considers both
economic benefits and operational safety is required. DRO focuses
on establishing fuzzy sets with a flexible and diverse optimization
framework. The Wasserstein distance, a measure of the difference
between probability distributions, accurately describes similarities
and differences by considering shape and weight information (Lu
and Zhou, 2024).

Based on this analysis, the main contributions of this study are:
(1) We consider energy storage capacity configuration and use a
radius-controllable Wasserstein ball to construct a fuzzy set that
achieves good out-of-sample performance, mitigating data
overfitting and use distributed robust methods to balance
robustness and economy. (2) Utilizing conditional value at risk
(CVaR), we define optimization objectives for operation cost and
constraint violation risk, transforming the multi-objective problem
into a single-objective solution. (3) In order to reduce the error in PV
forecasting, we implement rolling optimization within the model
predictive control (MPC) framework.

2 Distributionally robust multi-
objective model based on a
Wasserstein sphere

2.1 Fuzzy set model based on a
Wasserstein ball

Currently, there are two primary methods to model
constraint distribution in distributionally robust optimization
(DRO). One method involves moment-based fuzzy sets, such as
unimodality (Zhang et al., 2021), symmetry (Wang et al., 2024c),
and directional derivatives (Jiao et al., 2021), where fuzzy sets are
defined as confidence intervals based on goodness-of-fit tests.
The other method treats the fuzzy set as a ball in probability
space, with the radius determined by metrics such as the
Wasserstein metric, Kullback–Leibler divergence, and
Prohorov metric.

Among these, theWasserstein distance is particularly effective in
measuring differences between two probability distributions. By
considering both the shape and weight information of the
distributions, it accurately captures the similarities and
differences between them. In this paper, we construct fuzzy sets
using the Wasserstein metric to achieve better out-of-sample
performance and enhanced flexibility with radius control.
Esfahani et al. (2024) demonstrated the effectiveness of data-
driven Wasserstein metrics in solving distributed robust
optimization re-representation problems. Inspired by this, our
study employs the Wasserstein ball to construct fuzzy sets
derived from limited prediction error data, thus achieving
controllable data sets. Assuming the uncertainty set is a
polyhedron, the prediction error ξ constitutes the data set
Π � ξ ∈ RNξ : Hξ ≤dξ{ }, as shown in Equation 1:

EQ ‖ ξ ‖[ ] � ∫
Π
‖ ξ ‖ Q dξ( )<∞, (1)

where ‖ · ‖ represents the norm, and EQ[·] denotes the expectation
operation under the Q distribution. The Wasserstein distance dw is
defined to represent the distance of all probability distributions Q of
data setΠ in spacem(Π). Let F be the set of all Lipschitz continuous
functions f, and the constant is less than or equal to 1. The
Wasserstein distance, as articulated by Equation 2, is a metric
that grows with the number of samples, causing the fuzzy set to
contract and ultimately converge to the true distribution. This
convergence offers a more accurate and realistic portrayal of PV
uncertainty (Skalyga et al., 2023). The Wasserstein distance
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∀Q1, Q2 ∈ m(Π) between the empirical distribution dw and the true
distribution is calculated as follows:

dw Q1, Q2( ) � maxf∈F
∫Πf ξ( )Q1 dξ( )
−∫Πf ξ( )Q2 dξ( )⎡⎣ ⎤⎦. (2)

The Wasserstein metric quantifies the minimum “distance”
required to morph one probability distribution into another. The
fuzzy set is delineated by encompassing all distributions within a
controllable Wasserstein radius centered on the uniform
empirical distribution derived from the training dataset, like
Equation 3.

P̂
Ns � Q ∈ m Π( ): dw P̂

Ns
, Q( )≤ γ{ }, (3)

where P̂
Ns

contains all distributions P̂
Ns in a Wasserstein sphere

with radius γ centered on the uniform empirical distribution. By
adjusting the radius γ, the ball contains a true distribution P with a
specified confidence level and good performance guarantee.

2.2 System optimization objective

The optimization goal of the system is to seek the balance
between the operation cost and risk of the distribution network.
Therefore, the objective function includes the sum of the
operating cost function Jcost and the violation constraint risk
function Jrisk, namely Equation 4:

f � Jcost + Jrisk. (4)

1) The operating cost function Jcost is calculated as follows, as
expressed in Equation 5:

Jcost � Cbuy − Csell + Cpre + Ccur + Ccar, (5)

where Cbuy, Csell, Cpre, Ccur, and Ccar are electricity purchase cost,
electricity sales income, operation, and maintenance cost,
abandoned light cost, and carbon subsidy cost, respectively.
The specific equations are expressed as Equations 6, 9
respectively

Cbuy − Csell � ∑
n∈N

at1,n Pt
l,n + Pt

B,n − 1 − αtn( )Pt
av,n[ ]

+ ∑
n∈N

at2,n Qt
l,n − Qt

av,n[ ]
+ ∑

n∈N
at3,n 1 − αtn( )Pt

av,n − Pt
l,n − Pt

B,n[ ], (6)

where Pt
l,n and Qt

l,n respectively represent the active and reactive
power load of t bus n ∈ N at the moment, N � (1, 2, 3,/, n)
indicates the bus set, Pt

av,n and Qt
av,n are the available active and

reactive power generated by PV, respectively, and Pt
B,n denotes the

charging and discharging power of the energy storage. The power
reduction factor αtn ∈ [0, 1] is used to prevent the overvoltage hazard
caused by high PV penetration. at1,n and a

t
2,n represent the active and

reactive power purchase prices, respectively, and at3,n refers to the
active power sale price.

Cpre � ∑
n∈Nav

aavP
t
av,n + ∑

n∈NB

aBP
t
B,n, (7)

where n ∈ Nav and n ∈ NB are the buses where the PV and
energy storage are located, respectively; aav and aB are
respectively the maintenance costs of unit power PV and
energy storage.

Ccur � ∑
n∈Nav

at4,n αtnP
t
av,n[ ], (8)

where at4,n represents the cost of discarding light.

Ccar � ∑
n∈N

at5,nP
t
av,n, (9)

where at5,n denotes the government’s carbon subsidy unit price for
PV power generation.

2) The violation constraint risk function Jrisk is computed
as follows:

The risk function Jrisk related to constraint violation
encompasses the sum of the CVaR of the set of network and
device constraint functions. This approach is supported by
recent research in the field of energy systems and
distribution network planning, as evidenced by Ren et al.
(2024) and Chen et al. (2024). Specifically defined by Fan
et al. (2023) and Zhang et al. (2023b), the CVaR measure is
used to quantify the tail risk imposed by uncertainties,
providing a more comprehensive assessment of risk than
traditional measures

Jtrisk � ∑Nl

i�1
CVaRβ

P li xt, ut, ξt( )[ ], (10)

where Nl is the constraint set, and β ∈(0, 1] represents the CVaR
confidence level of the random variable ξt under the P distribution.
The specific details will be derived in the next section.

2.3 System constraints

2.3.1 PV output constraint
The distributed PV is connected to the distribution

network through the inverter, and the relationship curve of
the active and reactive power output characteristics is shown
in Figure 1.

The relationship between the adjustable reactive power of the
PV inverter on bus n ∈ N and the inverter capacity Fav,n can be
expressed as follows, namely Equation 11:

���������������������
1 − αtn( )Pt

av,n[ ]2 + Qt
av,n( )2

√
≤Fav,n, n ∈ N. (11)

The reactive power output is limited by the power factor angle θn
to be Equation 12

Qt
av,n

∣∣∣∣ ∣∣∣∣≤ tan θn( ) 1 − αtn( )Pt
av,n[ ], n ∈ N, (12)

where the power factor angle θn of PV is also limited by
0< cos(θn)≤ 1.
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2.3.2 Energy storage constraints

Dt+1
es,n � Dt

es,n + ηcP
t
Bc,n

T − 1
ηd
Pt
Bd,n

T, n ∈ N, (13)

where Equation 13 demonstrates the state-of-charge constraints for
energy storage. T indicates the duration interval of (t, t + 1]; Dt

es,n

denotes the state of charge of the energy storage device on the bus n;
ηc and ηd are the charging and discharging efficiency, respectively.
Pt
Bc,n

and Pt
Bd,n

represent the charging and discharging power stored
at moment t, respectively. The charge/discharge power also satisfies
Pt
Bc,n

Pt
Bd,n

� 0. The inequality constraints of energy storage capacity
and power limit are Equation 14:

Des,n
min ≤Dt

es,n ≤Des,n
max, PB,n

min ≤Pt
B,n ≤PB,n

max, (14)

where Des,n
min and Des,n

max are the minimum and maximum capacities
of energy storage equipment, respectively; PB,n

min and PB,n
max represent

respectively the impulse and discharge power limits.

2.3.3 Distribution network model
Suppose that the distribution network with N buses,

N � 1, 2, 3,/, n, Γ ⊂ N × N represents the line connection
matrix. Let Vt

i ∈ C and Iti ∈ C denote the voltage and current at
node i at time t, i ∈ N, V t � [Vt

1, V
t
2,/, Vt

N]T ∈ CN, and
It � [It1, It2,/, ItN]T ∈ CN. Let zij ∈ Z represent the impedance
between node i and node j, then the line admittance
yij � 1/zij � gij + jbij, where gij ∈ G and bij ∈ B represent the
conductance and susceptance between nodes, respectively. The
bus bar is modeled using the Pi model, and the matrix yij of the
admittance Y ij ∈ CN×N can be expressed as Equation 15:

Y ij �
∑
l~i

yil + yii, i � j

−yij, i, j( ) ∈ Γ
0, i, j( ) ∉ Γ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (15)

where l ~ i means that the node i is connected to j. According to
Kirchhoff’s law and Ohm’s law, It � Y ijV t. Network complex power
injection can be expressed as follows:

St � V t It( )* � diag V t( ) YV t( )*, (16)

where the superscript “*” represents the conjugate operation, and the
complex power St � [St1, St2,/, StN]T can be decomposed into Sti �
Pt
i + jQt

i in the rectangular coordinate, where Pt
i and Qt

i represent the
active power and reactive power injected by the node, respectively.

3 Multi-objective planning based
on DROMPC

3.1 Dynamic characteristics with MPC

Consider Nd grid-connected devices, including a traditional
generator, an inverter-based distributed power supply, and time-
varying load. Energy storage devices, such as batteries and plug-in
electric vehicles, can be used both as generators and as loads. The
power flow of each controllable device is modeled by a discrete linear
dynamic system as follows Equation 17:

xd
t+1 � �A

d
xd
t + �B

d
ud
t , (17)

where the state variable xd
t ∈ Rnd of the device d at the time t, the

dynamic matrix �A
d ∈ Rnd×nd , and the coefficient input matrix

�Bd ∈ Rnd×md of the control variable udt ∈ Rmd . The first element of
xdt corresponds to the output power of device d to the distribution
network at t time.

Let the control domain be H; then, the matrix form of system
evolution can be expressed as Equation 18:

xdt � Ad
t x

d
0 + Bd

t u
d
t , (18)

where xdt is the state vector, xdt � [xd1 , xd
2 ,/, xd

t ]⊤ contains all the
state variables in the control domain; udt denotes the control matrix,
and udt � [ud0 , ud1 ,/, udt−1]⊤. The calculation formulas of Ad

t and Bd
t

can be expressed as Equation 19:

Ad
t �

�A
d

�A
d( )2
..
.

�A
d( )t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,B

d
t �

�B
d 0 / 0

�A
d �B

d �B
d

/ 0
..
. ..

. ..
. ..

.

�A
d( )t−1 �Bd

/ �A
d �B

d �B
d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (19)

3.2 Linearized approximate power flow

In this paper, the linearization method of literature (Alizadeh
and Capitanescu, 2022) is used to linearize the power flow model
shown in Equation 16. In a balanced, symmetrical distribution
network, the common coupling point connected to the power
grid is denoted as node 0, serving as the bus set that connects
the load and the distributed generator.

The complex form of the node voltage is Vt
n � |Vt

n|ej∠Vt
n , and the

node injection current is expressed as Itn � |Itn|ej∠Itn , where |Vt
n| and

|Itn| correspond to the root mean square value, and ∠Vt
n and ∠Itn are

the relative phase angles of voltage and current, respectively. The
node 0 denotes the slack node, and the other nodes are the PQ nodes
that inject complex power. The admittance matrix can be
divided into

FIGURE 1
Distributed PV active and reactive power output characteristics.

Frontiers in Energy Research frontiersin.org04

Li et al. 10.3389/fenrg.2024.1478040

113

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1478040


It0
It

[ ] � y00 �y⊤

�y Y
[ ] V0

V t[ ], (20)

where V0 is the slack bus voltage; It0 is the current injected into the
slack bus at time t; y00 is the self-admittance of the slack node; �y
indicates transfer admittance.

The injection power presented in Equation 20 can be formulated
as follows:

St � diag V t( ) Y* V t( )* + �y* Vt
0( )*( ). (21)

Assuming that �V � | �V |∠θ is a preset nominal voltage value, and
ΔVt represents the difference between the actual voltage and the
nominal voltage, the voltage can be expressed as V t � �V + ΔV t.
Then, Equation 21 becomes Equation 22:

St � diag �V + ΔV t( ) Y* �V + ΔV t( )* + �y*V0
*( ). (22)

Ignoring the influence of the higher-order term
diag(ΔV t)Y*(ΔV t)*, the power constraint equation is
transformed into Equation 23:

ΛΔV t +Φ ΔV t( )* � St + Ψ, (23)
where
Λ � diag(Y* �V* + �y*V0

*);
Φ � diag( �V)Y*,Ψ � −diag( �V)(Y* �V* + �y*V0

*)。
Given Λ � 0N×N and ψ � 0N, the nominal voltage is

�V � Y−1 �yV0, and the linearized power is expressed as
St � diag( �V)Y*(ΔV t)*. The voltage deviation becomes
Equation 24:

ΔV t � Y−1diag−1 �V*( ) St( )*. (24)

Let ZR be the real part of the impedance and ZI be the imaginary
part of the impedance, then Y−1 � (G + jB)−1 � ZR + jZI. Taking
M and N as the active and reactive component coefficients,
respectively, ΔV t is expanded in the form of rectangular
coordinates as Equation 25:

M � ZRdiag
cos θ( )

�V
∣∣∣∣ ∣∣∣∣( ) − ZIdiag

sin θ( )
�V
∣∣∣∣ ∣∣∣∣( )( ),

N � ZIdiag
cos θ( )

�V
∣∣∣∣ ∣∣∣∣( ) − ZRdiag

sin θ( )
�V
∣∣∣∣ ∣∣∣∣( )( ).

(25)

The voltage amplitude is approximately equal to
| �V | + R(ΔV t), R(·) represents the real part operation, and I

indicates the unit matrix. Referring to the linear relationship
between voltage and power, the voltage amplitude is finally
expressed as Equation 26:

V t pt, qt[ ] � M I − diag αt
n{ }( )Pt

av,n +NQt + �V
∣∣∣∣ ∣∣∣∣. (26)

The voltage constraint is shown in Equation 27:

V t pt, qt[ ] − Vmax ≤ 0,Vmin − V t pt, qt[ ]≤ 0, (27)
where Vmin and Vmax are the matrix forms of the lower
limit Vmin and the upper limit Vmax of the line voltage,
respectively.

3.3 DROMPC for distribution
network planning

In this paper, the device constraints and voltage constraints
under different times and nodes can be summarized as follows:

ER V t pt, qt[ ] − Vmax ≤ 0[ ]
ER Vmin − V t pt, qt[ ]≤ 0[ ]
ER Tt

dx
d
t + Ut

du
d
t + Zt

dξt − ωd ≤ 0[ ],
⎧⎪⎨⎪⎩ (28)

where R[·] denotes the general transformation from inequality
constraints to random form. Tt

dx
d
t + Ut

du
d
t + Zt

dξt − ωd ≤ 0 contains
various local constraints of grid-connected equipment; Tt

d, U
t
d, and

Zt
d are the coefficient matrices of equipment state variables, control

variables, and uncertain errors, respectively. ωd is a local constraint
parameter. In this paper, CVaR is used to re-describe the voltage
affine constraints, and the remaining constraints are evaluated by
sample average.

Define an affine constraint set Vt containing Nl Equation 28,
where each affine constraint can be expressed as Equation 29:

Ct
o yt, ξt( ) � �A yt( )[ ]

o
ξt + �B yt( )[ ]o, (29)

where Cto(·) is the o, o � 1,/, Nl affine constraint in Vt.
The decision variable yt includes the PV reduction variable
αtn and the controllable device setting point. The CVaR
constrained at confidence level β in A Vt is calculated as
follows Equation 30:

inf
κto

Eξt Ct
o yt, ξt( ) + κto[ ]+ − κtoβ{ }≤ 0, (30)

where κto is an auxiliary variable. The expected operation in the
above equation can be restated as Equation 31:

�Qt

o � max
k�1,2

〈�aok yt( ), ξt〉 + �bok κto( )[ ]. (31)

Because the result is the maximum of two affine functions, the
expression is convex in yt for each fixed ξt. The risk objective shown
in Equation 10 is expressed by the distributionally robust
optimization form of CVaR as follows Equation 32:

Ĵ
t

risk � ∑H
t�1
∑Nl

o�1 sup
Qt∈P̂t

Ns

EQt max
k�1,2

〈�aok yt( ), ξ̂t〉 + �bok κto( )[ ]. (32)

The above multi-objective DRO is equivalently restated as
a single-objective quadratic programming using the method
of Lin et al. (2023). The objective is to minimize the total worst-
case CVaR of the function and affine constraints. The specific form
of the subproblem of MPC is as follows Equation 33:

inf
ϖ1,n ,ϖ2,n ,
yt ,κ

t
o

∑H
t�1

E Ĵ
t

cost[ ] + sup
Qt∈P̂t

Ns

∑Nl

o�1
EQt �Qt

o][ }⎧⎪⎨⎪⎩
⎧⎪⎪⎨⎪⎪⎩

� inf
ϖ1,n ,ϖ2,n ,
yt ,κ

t
o ,

λto ,s
t
io ,ς

t
iko

∑H
t�1

E Ĵ
t

cost[ ] +∑Nl

o�1
λoγt +

1
Ns

∑Ns

i�1
stio⎛⎝ ⎞⎠⎧⎨⎩ ⎫⎬⎭

s.t. (�bok κto( ) + 〈�aok yt( ), ξ̂ it〉≤ stio ‖ ςtiko
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−�aok yt( )‖∞ ≤ λtoς
t
iko ≥ 0

1
Ns

∑Ns

i�1
1 − αt

n( )P̂t,i

av,n[ ]2[

+ Qt
n( )2 − �S

2
n + ϖt

1,n]+ ≤ϖt
1,nβ

1
Ns

∑Ns

i�1
tan θn( ) 1 − αtn( )P̂t,i

av,n[ ][
−Qt

n

∣∣∣∣ ∣∣∣∣ + ϖt
2,n]+≤ϖt

2,nβ

Equations 13( ) − 14( ), (33)
where ϖt

1,n, ϖt
2,n, and κto are auxiliary variables of CVaR, λ

t
o, s

t
io, and

ςtiko are auxiliary variables of distributionally robust Wasserstein
sphere reconstruction (Dong et al. (2024)). The power factor
constraint and apparent power constraint are processed by
sample average.

4 Simulation and discussion

4.1 System description and
parameter settings

To verify the effectiveness of the proposed optimization
framework, we conducted simulations using the improved IEEE
37-bus system, with network parameters derived from Reference
Chen et al. (2023). The modified network is a single-phase

equivalent network, as shown in Figure 2, and includes 21 PV
inverters. Table 1 lists their positions and capacities. Figure 3
displays the total available PV power and total load demand
throughout the day. The energy storage charge and discharge
efficiency are set at 90%.

In this verification case, the upper and lower limits of voltage
optimization are set to Vmin � 0.95 p.u. and Vmax � 1.05 p.u.,
respectively. The power factor is set to 0.9. The optimization
decision interval is set to 5 min. The remaining parameters are
shown in Table 2. Aiming at the difficulty and complexity of solving
the distributed robust optimization problem, the cvx convex
optimization toolbox is called in MATLAB for calculation.

4.2 Simulation results

Table 3 now includes a comprehensive comparison of energy
storage planning results using the DRO-based MPC method
proposed in this paper, along with the RO and SO methods for
the 29th and 35th nodes. The table provides specific numerical
values for the energy storage configurations obtained through each
method. Table 4 presents a detailed comparison of operating costs
under various strategic planning methods. The table now includes
exact figures for the maximum, mean, and standard deviation of
total operating costs for each method.

The quantified results, as shown in Table 3, indicate that the use
of the DROmethod leads to a 29.16% reduction in cost compared to
the RO method, with energy storage capacities reduced by 33.33%
and 20% on the 29- and 35-node systems, respectively. Furthermore,
Table 4 reveals that the DROmethod achieves maximum, mean, and
standard deviation values of total operating costs that are 12.5%,
0.75%, and 51.3% lower than those obtained using the RO method,
respectively.

These improvements are attributed to the DRO method’s
ability to utilize real data, offering more flexible and reliable
planning support. This approach avoids the excessive
conservatism and economic sacrifices associated with the RO
method, which adopts a worst-case distribution strategy, and
the SO method, which, despite using a preset probability
distribution for energy storage capacity configuration, lacks
adaptability in actual scheduling.

The SO, RO, and DROmethods are used for optimization under
the same planning scheme. Figure 4 shows the system operation cost

FIGURE 2
Curves of available PV power and total load demand.

TABLE 1 Location and capacity of PV and energy storage.

Node PV(kW)/ES(kWh) Node PV(kW)/ES(kWh) Node PV(kW)/ES(kWh)

4 150/- 17 360/- 30 360/-

7 300/- 20 450/- 31 500/-

9 300/100 22 150/- 32 330/250

10 600/100 23 500/- 33 500/-

11 660/- 26 300/- 34 450/-

13 360/- 28 500/50 35 450/-

16 600/- 29 300/- 36 450/200
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from 10:00 to 15:00 for each method. Table 3 presents the
maximum, minimum, average, and standard deviation of the
system operation costs under these different methods. The results

indicate that the proposed method outperforms the traditional RO
method in terms of operation cost and demonstrates better
economic efficiency. Although the proposed method is less
economical than the SO method, it has a smaller skewness,
leading to smoother system operation under uncertainty.

Figure 5 shows the operating voltages under the three
planning strategies. It is evident that under the SO method,
high uncertainty impacts lead to voltage limit violations due
to excessive emphasis on economic factors, significantly reducing
system robustness. The proposed method considers worst-case
planning results by solving the distribution cluster containing the
empirical distribution, aligning better with the modeling of
uncertain outputs from different renewable energy sources,
and thus offers stronger robustness than traditional stochastic
optimization.

In summary, the DRO-based MPC method proposed in this
paper effectively balances the relationship between economic
efficiency and robustness. The proposed planning
comprehensively addresses the probability of prediction errors.
The average reduction in PV power achieved with this strategy is
645.510 kW, providing an effective control approach for managing
significant deviations in PV predictions. Although ensuring voltage
security and stability, the proposed strategy increases the average
power reduction by 36.851%, thereby enhancing the distribution
network’s robustness in handling the uncertainties associated with
renewable energy predictions.

Table 5 presents a comparative analysis of system costs and PV
consumption rates under two scenarios for the IEEE 37-node
system. “Case 1” includes energy storage configuration, while
“Case 2” does not. The data clearly show that including energy

FIGURE 3
Improved IEEE 37-node test system.

TABLE 2 System parameters

Parameter Value Parameter Value Parameter Value

at1,n 0.6 CNY/kW at4,n 0.6 CNY/kW aB 0.04 CNY/kW

at2,n 0.6 CNY/kW at5,n 0.2 CNY/kW β 0.01

at3,n 0.4 CNY/kW aav 0.06 CNY/kW

TABLE 3 Energy storage configuration under different strategic planning schemes.

Method 29-Node 35-Node Cost/104CNY

RO 300 kWh 150 kWh 48

SO 150 kWh 80 kWh 26

DRO 200 kWh 120 kWh 34

TABLE 4 Comparison of operating costs under different strategic planning schemes.

Method Total operating cost/104CNY

Minimum value Maximum value Mean value Standard deviation

RO 76.26 110.73 92.08 7.60

SO 72.21 91.35 80.96 4.04

DRO 79.28 96.91 85.16 3.70
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storage leads to a 2.85% reduction in system cost and a 1.2% increase
in the PV in-situ consumption rate.

Figure 6A illustrates the purchased and sold power from the
substation for the IEEE 37-node system. Figure 6B depicts the
charging and discharging patterns of the energy storage system.
These figures demonstrate how excess PV output is stored during
periods of low demand and utilized during high demand, effectively
performing peak-shaving and load-balancing functions that
enhance the economic efficiency and reliability of the
distribution network.

4.3 The influence of different
Wasserstein spheres

To illustrate the impact of the Wasserstein sphere radius on
planning results, various radius values are used to compare the
total operational costs. As shown in Table 6, increasing the radius
of the Wasserstein sphere results in a broader coverage of
uncertainties by the fuzzy set. This broader coverage leads to
more conservative decision-making, which in turn raises
operating costs but results in a smoother operational mode.
Consequently, the proposed method allows for more flexible
control of robustness and economic efficiency by adjusting the
radius of the Wasserstein sphere.

5 Conclusion

This paper introduces a multi-objective planning approach for
DRO power systems utilizing MPC to tackle the uncertainty
challenges posed by high levels of renewable energy integration
in distribution networks. The proposed method offers a flexible
balance between economic efficiency and operational robustness.
The key quantitative conclusions drawn from our analysis are:

(1) The DRO-MPC approach significantly mitigates the impact
of uncertainty from large-scale distributed PV output on

FIGURE 4
Operating costs under different strategic planning.

FIGURE 5
Operating voltage under different strategic planning.

TABLE 5 Results of total operating cost and PV consumption rate on the
IEEE 37-node system.

Total operating cost/
104CNY

Local consumption
rate/%

Case 1 34 98.48

Case 2 35 97.31
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distribution network planning. It enhances economic
efficiency and maintains system robustness, reducing costs
by 29.16% compared to the RO method. Additionally, the
energy storage capacity is optimized, resulting in a 33.33%
reduction on the 29-node system and a 20% reduction on the
35-node system.

(2) By transforming the computationally intensive multi-
objective problem into a streamlined single-objective
solution, our method overcomes the limitations inherent in
traditional multi-objective optimization approaches.

(3) The planning scheme’s adaptability is further enhanced by the
variable radius of the Wasserstein sphere, allowing for greater
flexibility and tailored responses to different
operational scenarios.
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FIGURE 6
Optimal operation results of the IEEE 37-inode system.

TABLE 6 Impact of different Wasserstein sphere radii on planning results.

γ Total operating cost/104CNY

Minimum value Maximum value Mean value Standard deviation

0 78.76 96.63 84.84 3.76

0.001 79.28 96.91 85.16 3.70

0.002 79.68 97.58 85.92 3.57
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As the penetration level of renewable energy is continuously growing, it is
essential for transmission and distribution system operators to collaborate on
optimizing the siting and sizing of distributed energy storage to enhance the
operational flexibility and economic efficiency. Given the frequent occurrence
of extreme weather in recent years, the planning should also account for
such factors. Hence, a planning method of distributed energy storage with
the coordination of transmission and distribution systems considering extreme
weather is proposed. Firstly, a Gaussian mixture model-based chance constraint
is established to describe the uncertainty of wind and solar power, ensuring high
confidence that the bus voltage of the distribution system is within a safe range.
Secondly, aiming to maximize the social welfare, a bi-level planning model for
distributed energy storage is developed. The upper-level addresses the siting and
sizing issues of distributed energy storage, while the lower-level characterizes
the day-ahead clearing problem of power market. By leveraging Karush-Kuhn-
Tucker (KKT) conditions and linearization techniques, the bi-level model is
transformed into a single-level mixed integer linear programming model that is
easier to solve. Finally, numerical analysis is conducted on a modified IEEE 24-
node system combined with two IEEE 33-node systems. The case study verifies
the effectiveness of the proposed model.

KEYWORDS

transmission and distribution coordination, bi-level optimization, energy storage sizing
and siting, market clearing, uncertainty, extreme weather

1 Introduction

Global climate change and the rapid development of new energy technologies
have introduced significant challenges to the safe and stable operation of power grids.
Energy storage, as a flexible resource, plays a crucial role in ensuring the stability
of power systems. In recent years, the trend toward clean power generation has
gained prominence (Li, H. et al., 2021). With the increasing integration of distributed
wind and photovoltaic power, the configuration of an appropriate amount of energy
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storage on the distribution network side has emerged as a critical
issue. To enhance the operational flexibility and economic efficiency
of the power system, while also leveraging the benefits of energy
storage on the distribution network side, it is essential for the
transmission system operator (TSO) and the distribution system
operator (DSO) to collaborate closely in optimizing the siting and
sizing of distributed energy storage.

The key to promoting renewable energy consumption through
energy storage lies in optimizing the location and scale of energy
storage systems. Work in (Tang et al., 2022) developed a location
and capacity model for energy storage aimed at minimizing bus
voltage fluctuations, energy storage investment costs and load
fluctuation; Works (Fernández-Blanco et al., 2016; Pandžić et al.,
2014) employed lossless DC power flow to approximate the
transmission network while disregarding distribution network
constraints. However, energy storage resources are typically
situated within the distribution system and provide services to
both transmission and distribution systems; Work in (Yao et al.,
2022) introduced a joint planning method for transmission and
storage that takes into account the complementarity of wind and
solar energy, thereby enhancing the consumption levels of these
renewable sources; Work in (Hua et al., 2020) proposed a control
strategy for battery energy storage that considers the feasible
domain of wind power acceptance to improve both the transmission
and consumption; Work in (Zhao et al., 2022) established an
optimization planning model for distributed energy storage in
active distribution networks, utilizing an error scenario simulation
method to mitigate the impact of photovoltaic output randomness
on energy storage configuration planning. Notably, these studies
have not established a unified framework for coordinating
transmission and distribution to optimize energy storage
investment planning.

Numerous studies have addressed the dual-sided uncertainties
associated with renewable energy generation and load. Work in
(Peker et al., 2018) introduced a two-stage stochastic programming
model aimed at jointly optimizing transmission line and energy
storage investment; Work in (Li et al., 2024) proposed a bi-
level optimization model for the siting and sizing of distributed
electrochemical energy storage, utilizing typical day scenarios
while accounting for the uncertainties in to renewable energy
output; Work in (Qian et al., 2020) considered the impact
of wind power and photovoltaic output uncertainties on new
energy bases' power transmission, modeling the operational
characteristics of these bases, DC channels and receiving power
grids separately, and suggested a stochastic planning method
for DC transmission of new energy bases based on scenario
analysis. Work in (Li et al., 2019) developed a multi-objective
optimization cooperative planning model for renewable energy and
energy storage, taking into consideration reliability and renewable
energy penetration. Work in (Wang et al., 2024) introduced a
novel interval power flow (NIPF) method based on a hybrid
uncertain set, which effectively addresses input data uncertainties,
including active power generation from renewable sources (such
as wind and photovoltaic) and load demand. Some studies have
insufficient descriptions of the predicted output of renewable
energy, which makes it difficult to fully reflect the output range of
renewable energy, or are often too conservative in order to cover the
output range.

In the context of power grid planning influenced by extreme
weather, work in (Li et al., 2023) proposed a multi-level planning
method for energy storage power stations within distribution
networks, which accounts for the spatiotemporal correlation
of compound natural disasters; Work in (Ma et al., 2020)
introduced a power grid resilience evaluation index and developed
a bi-level planning model for the location and capacity of
flexible resources during typhoon disasters, with the objective
of optimizing both the index and economic outcomes.; Work
in (Yuan et al., 2016) presented a novel flexible distribution
system planning model based on two-stage robust optimization
aimed at minimizing the total load reduction during natural
disasters; Work in (Wang et al., 2023) proposed a new method
for the location and capacity planning of energy storage systems
based on extreme scenarios. Some studies focus solely on power
grid planning under extreme scenarios, neglecting a comprehensive
consideration of the impacts of both conventional and
extreme scenarios.

Despite the extensive research on the planning and operation
models of distributed energy storage in conjunction with renewable
energy, several research gaps remain: 1) The investment planning
of distributed energy storage is seldom addressed within a unified
TSO-DSO framework. 2) The uncertainty associated with the
forecast error of renewable energy generation on a typical day
is often overlooked. 3) Many of these planning models fail to
comprehensively consider the effects of conventional scenarios
and extreme weather events. To address these deficiencies, this
paper introduces a bi-level planning model for distributed energy
storage that incorporates the influence of extreme weather on
transmission and distribution coordination. The upper model
aims to minimize the investment and operational costs for the
DSO, while the lower model seeks to maximize social welfare,
thereby modeling the electricity market clearing at the transmission
network level. This model effectively leverages distributed energy
resources and flexibility at both the distribution and transmission
network levels.

The main contributions of this paper are as follows.

1) Unlike traditional methods for configuring energy storage
in distribution networks, this study establishes a storage
investment planning decision model for distributed
renewable energy across multiple distribution networks,
incorporating the collaborative participation of DSO and TSO
in the market.

2) The planning model fully accounts for the uncertainty
associated with renewable energy, modeling the forecast error
of daily renewable energy generation using a Gaussianmixture
model in conjunction with a chance constraint method.

3) In contrast to conventional planning methods that rely
on typical days, this research considers the impact
of extreme weather on planning; extreme weather
scenarios are extracted based on a robustness framework
that incorporates both maximum and minimum
model parameters.

The organization of this paper is as follows: Section 2 introduces
the bi-level programming model for distributed energy storage
under the coordination of transmission and distribution. Section 3
presents a solution to the bi-level optimization problem. Case
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studies are discussed in Section 4, followed by conclusions
in Section 5.

2 Model structure and problem
formulation

2.1 Stochastic bi-level investment model

Theproposed bi-level optimizationmodel for distributed energy
storage planning is illustrated in Figure 1. The upper level addresses
the location and scale of energy storage within the distribution
network, aiming to minimize the total investment and operational
costs. The lower level focuses on the day-ahead power market
clearing problem, which seeks to maximize social welfare, defined
as the load benefit minus the generator costs, while adhering
to the constraints of the transmission network. Furthermore, the
upper-level problem establishes the operational framework for
the distribution network and the power transactions with the
upstream power grid, with the power transaction decisions serving
as input parameters for the lower-level problem. The lower-level
problem subsequently provides feedback on market clearing results,
including dispatch and pricing, which are utilized in the upper-
level problem to compute the expected market income for all users
associated with the distribution network.

To account for the effects of extreme weather, particularly the
prevalence of typhoons, this study emphasizes scenario robustness.
Historical data has been employed to categorize a year into four
conventional scenarios and one extreme weather scenario, based on
adjustments to the wind and solar output sequences during typhoon
conditions.The corresponding outputs for wind and solar energy are
specified, with their uncertainties characterized through prediction
error and modeled using the chance constraint method. Investment
planning is conducted for a single target year following the static
investment analysis method (Liu et al., 2017), while operational
decisions are optimized for each representative day.

2.2 Upper-level problem: Siting and sizing
of distributed energy storage

The upper problem minimizes the total cost of the distribution
network over the course of the year, which includes both the
annual energy storage investment cost (Cinv,a) and the annual
distribution network operation cost, as demonstrated in (1).
The latter encompasses the electricity cost (∑ω∈ΩC

DN
ω ) associated

with the distribution network’s transactions with the upstream
transmission network and the operating costs (∑ω∈ΩC

oper
ω ) of

distributed energy resources (DERs):

minXU ∑
ω∈Ω
(CDN

ω +C
oper
ω ) +Cinv,a (1)

In this context, Equation 2 details the calculation of the
distribution network in conjunction with the upstream grid, while
Equations 3, 4 outline the operating costs of DERs and the
annualized investment cost of energy storage, respectively.

CDN
ω = πω ⋅ ∑

i∈Nm
∑
t∈H
(λitω ⋅ (p

+
itω − p

−
itω)) (2)

FIGURE 1
A bi-level planning model for distributed energy storage in
transmission and distribution coordination.

Coper
ω = πω ⋅ ∑

i∈Nm
(∑

t∈H
(∑

i∈Bes
i

ces ⋅ (disintω + chintω) + ∑
i∈Bw

i

cw

⋅ ̃gwintω + ∑
i∈Bpv

i

cpv ⋅ ̃gpvintω)) (3)

Cinv,a = ∑
i∈Nm
( ∑

n∈Bes
i

(Ce,a ⋅Ke
in +C

p,a ⋅Kp
in)) (4)

Where: πω represents the number of typical days; Nm represents
the set of transmission network nodes connected to the distribution
network; H represents the scheduling time range; Bw

i and Bpv
i

respectively represent the bus set of wind power and photovoltaic
power generation devices installed on the distribution network.
Due to geographical restrictions, Bes

i represents the bus set eligible
for installing energy storage devices in the distribution network i
(Bw

i ,B
pv
i ,B

es
i ⊆ Bi,∀i ∈ Nm); Ω represents a group of typical days; λitω

represents the node marginal price of the transmission network bus
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connected to the root node of the distribution network; chintω/disintω
represent the charging/discharging power of energy storage; ̃gwintω
and ̃gpvintω respectively represent the output power of wind power and
photovoltaic units; p−itw represents the amount of electricity injected
from DSO to TSO, and p+itw vice versa; Ke

in and Kp
in respectively

represent the energy and power capacity of energy storage; cw, cpv

and ces respectively represent the operating costs of wind power,
photovoltaic and energy storage devices.

Equation 2 represents the electricity transaction cost associated
with the distribution network’s participation in the day-ahead
electricity market. Equation 3 outlines the operating cost of DERs
on a typical day ω, while the annualized investment cost of energy
storage is detailed in (4). Notably, the parameters Ce,a and Cp,a are
the annualized costs using the net present value method, calculated
as follows (Pandžić et al., 2014):

Ca = C ⋅
Γ ⋅ (1+ Γ)Λ

(1+ Γ)Λ − 1
(5)

Where: Γ is the annual discount rate; Λ is the equipment life.
Investment decisions (Ke

in,K
p
in) are constrained by geography

and technology, with certain capacity constraints and available
investment budget constraints:

0 ≤ Ke
in ≤ K

e
in,∀i ∈ N

m,n ∈ Bes
i (6)

0 ≤ Kp
in ≤ K

p
in,∀i ∈ N

m,n ∈ Bes
i (7)

ρ ⋅Kp
in = K

e
in,∀i ∈ N

m,n ∈ Bes
i (8)

Cinv ≤ Cinv (9)

Where: Ke
in and Kp

in represent the energy and power capacity
of the maximum energy storage device that can be installed,
respectively; ρ represents the energy-to-power ratio of the energy
storage device; Cinv represents the energy storage investment cost,
and Cinv represents the energy storage investment budget.

Equations 6, 7 delineate the energy and power limitations for
the areas (nodes) within the distribution network eligible for energy
storage installation, while Equation 8 restricts the energy-to-power
ratio of the energy storage device. Equation 9 indicates that the total
investment cost must not exceed the allocated investment budget.

In addition, due to the operational characteristics of energy
storage, its dispatch operation is subject to specific constraints on
a typical day ω.

0 ≤ disintω,chintω ≤ K
p
in,∀i ∈ N

m,n ∈ Bes
i , t ∈H,ω ∈Ω (10)

disintω ≤Φ ⋅wintω,∀i ∈ N
m,n ∈ Bes

i , t ∈H,ω ∈Ω (11)

chintω ≤Φ ⋅ (1−wintω),∀i ∈ N
m,n ∈ Bes

i , t ∈H,ω ∈Ω (12)

wintω ∈ {0,1},∀i ∈ N
m,n ∈ Bes

i , t ∈H,ω ∈Ω (13)

SOEintω = SOEin0ω −
t

∑
τ=1
(disinτω/η

d − chinτω ⋅ η
c),

∀i ∈ Nm,n ∈ Bes
i , t ∈H,ω ∈Ω (14)

0 ≤ SOEintw ≤ K
e
in,∀i ∈ N

m,n ∈ Bes
i , t ∈H,ω ∈Ω (15)

SOEinTω ≥ β ⋅ SOEin0ω,∀i ∈ N
m,n ∈ Bes

i ,ω ∈Ω (16)

Where: SOEintω represents the energy state of the energy storage
device; Φ is a large constant.

Equations 10–13 delineate the charge and discharge state of
the energy storage device. The binary variable wintω represents the
operating state of the energy storage device, taking a value of one
during discharge and 0 during charging. Equation 16 indicates that
the energy state of the energy storage device at the end of the
scheduling period must be no less than β times of its energy at the
beginning.

The output from distributed power sources, such as
photovoltaics and wind power, is significantly influenced by
climatic conditions. This influence is particularly pronounced
during extreme weather events, where the output from wind
and solar sources can become markedly abnormal and irregular.
Consequently, the output from these sources exhibits increased
volatility and uncertainty. To capture these effects, this article
presents predicted outputs for wind and solar power under both
normal and extreme scenarios, derived from historical data. It is
important to note that the likelihood of extreme scenarios occurring
is considerably lower. The chance constraint method is employed
to strike a balance between conservatism and optimism, with the
uncertainty in wind and solar power output characterized by the
variability of prediction errors. Therefore, the outputs from wind
power and photovoltaics should satisfy the following sufficiency
conditions:

̃gwintω = g
w
intω +Δ ̃g

w
intω,∀n ∈ B

w
i ,∀i ∈ N

m, t ∈H,ω ∈H (17)

gwintω =Witω ⋅K
w
in,∀n ∈ B

w
i ,∀i ∈ N

m, t ∈H,ω ∈H (18)

Pr(Δgw−intω ≤ Δ ̃g
w
intω ≤ Δg

w+
intω) ≥ ℏ

w,∀n ∈ Bw
i ,∀i ∈ N

m, t ∈H,ω ∈H
(19)

̃gpvintω = g
pv
intω +Δ ̃g

pv
intω,∀n ∈ B

pv
i ,∀i ∈ N

m, t ∈H,ω ∈H (20)

gpvintω = η
pv ⋅ Iitω ⋅K

pv
in ,∀n ∈ B

pv
i ,∀i ∈ N

m, t ∈H,ω ∈H (21)

Pr(Δgpv−intω ≤ Δ ̃g
pv
intω ≤ Δg

pv+
intω) ≥ ℏ

pv,∀n ∈ Bpv
i ,∀i ∈ N

m, t ∈H,ω ∈H
(22)

Where: Kw
in and Kpv

in are the installed capacity of wind power and
photovoltaic power generation respectively.

Equation 17 indicates that the output of wind power ( ̃gwintω)
consists of the predicted value (gwintω) and the predicted error (Δ ̃gwintω).
Equation 18 determines the size of the predictedwind power output,
where Witω is the wind intensity coefficient (Baringo and Conejo,
2011). The size of the wind power output prediction error is limited,
and its probability in the interval [Δgw−intω; Δg

w+
intω] must be greater

than the given confidence level (ℏ), as shown in Equation 19.
Equations 20, 21 describe the photovoltaic output, which is similar
to wind power, where the predicted value of photovoltaic output is
calculated based on the photovoltaic energy output coefficient (Iitω)
and the photovoltaic panel output efficiency (ηpv) (Xu et al., 2020),
and ℏpv is the confidence level.
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Thepower flow of the distribution network adopts the linearized
Distflow model, which is widely used in distribution systems. The
complete model is shown in Equations 23–29.

∑
k∈Ωi

d(n)

fpi(nk)tω = ∑
k∈Ωi

p(n)

fpi(jk)tω −Dintω + ̃g
w
intω + ̃g

pv
intω + disintω − chintω,

∀i ∈ Nm,n ∈ Bi, t ∈H,ω ∈Ω
(23)

∑
k∈Ωi

d(n)

fqi(nk)tω = ∑
k∈Ωi

p(n)

fqi(jk)tω − δ
d
in ⋅Dintω + δ

w
in ⋅ ̃g

w
intω + δ

pv
in ⋅ ̃g

pv
intω,

∀i ∈ Nm,n ∈ Bi, t ∈H,ω ∈Ω
(24)

Ṽintω = Ṽijtω − 2 ⋅ (ri(jn) ⋅ f
p
i(jn)tω + xi(jn) ⋅ f

q
i(jn)tω),∀i ∈ N

m,n ∈ Bi, t ∈H,ω ∈Ω (25)

∑
k∈Ωi

d(n0)

fpi(n0k)tω
= p+itω − p

−
itω,∀i ∈ N

m,n ∈ Bi, t ∈H,ω ∈Ω (26)

( fpi(nk)tω)
2
+ ( fqi(nk)tω)

2
≤ ( fSi(nk))

2
,∀i ∈ Nm, (nk) ∈ LDi , t ∈H,ω ∈Ω (27)

Ṽin0tw = V0,∀i ∈ N
m, t ∈H,ω ∈Ω (28)

Pr(V0 −ΔV ≤ Ṽintw ≤ V0 +ΔV) ≥ ƛ,∀i ∈ Nm,n ∈ Bi/n0, t ∈H,ω ∈Ω (29)

Where: fpi(nk)tω and fqi(nk)tω represent the active and reactive
power flowing through the branch nk of the distribution network i in
a typical day ω, respectively; Ωi

d/p(n) represents the set of rear/front
nodes connected to the distributionnetwork noden;Vintω represents
the square value of the voltage amplitude of the distribution network
nodes; Dintω represents the load of each node in the distribution
network; δd/w/pv are the parameters for converting active power into
reactive power.

The branch power flow equations are presented in (23)–(25).
The voltage difference between the buses at both ends of the node
branch is related to the active and reactive power flows of the
branch, as shown in Equation 25. The active power balance in the
transmission line connected to the root node of the distribution
network (i.e., the node linked to the transmission network) is n0
shown in Equation 26. Equation 27 sets the apparent power capacity
of the line ( fSi(nk)), which is a quadratic inequality constraint and
can be linearized by polygonal interior approximation (Akbari
and Bina, 2014). The bus voltage limit is shown in Equations 28,
29. It should be noted that V0 is the reference voltage. If the
bus is the root bus, the bus voltage is set to the reference
voltage, as shown in Equation 28. Otherwise, the bus voltage should
be within the given interval specified in Equation 29, and the
chance constraint ensures the system voltage safety with a high
probability (ƛ).

Equations 30, 31 impose limits on the amount of electricity
that the distribution network can trade with the upstream grid, in
accordance with the capacity of the substations that connect the
transmission grid and the distribution grid. The binary variable hitω
ensures that the distribution network can either supply power to or
draw power from the transmission grid during specific time periods
within a typical day ω, as shown in Equation 32.

0 ≤ oitω ≤ hitω ⋅ pi,∀i ∈ N
m, t ∈H,ω ∈Ω (30)

0 ≤ bitω ≤ (1− hitω) ⋅ pi,∀i ∈ N
m, t ∈H,ω ∈Ω (31)

hitω ∈ {0,1},∀i ∈ N
m, t ∈H,ω ∈Ω (32)

Where: oitω/bitω represents the quantity provided/bid by the
distribution network to the power market; pi represents the capacity
of the substations connecting the distribution network to the
upstream transmission network.

Finally, the decision variable set (XU) of the upper-
level problem includes the investment variables and the
distribution network scenario-related operation phase variable
set, namely, XU = {Ke

in, ̃g
w
intω, ̃g

pv
intω,oitω,bitω,disintω,chintω,wintω,

SOEintω, f
p
i(nk)tω, f

q
i(nk)tω,Vintω}.

2.3 Lower-level problem: Day-ahead
electricity market clearing problem

The underlying problem is the day-ahead electricity market
clearing problem at the transmission network level, which is
performed on each typical day with the goal of maximizing social
welfare, as shown in Equations 33–41.

minXL
ω∑
t∈H
(∑
i∈Ng

cgit ⋅ p
g
itω − ∑

i∈Nd

cdit ⋅ p
d
itω + ∑

i∈Nm
(c−it ⋅ p
−
itω − c
+
it ⋅ p
+
itω)),∀ω ∈Ω

(33)

−pgitω + p
d
itω − p
−
itω + p
+
itω +∑

j≠i
yij ⋅ (θitω − θjtω) = 0; (λitω),∀i ∈ N

g, t ∈H,ω ∈Ω

(34)

0 ≤ pgitω ≤ p
g
i ;(ϕ

g
itω,ϕ

g
itω),∀i ∈ N

g, t ∈H,ω ∈Ω (35)

RDi ≤ p
g
itω − p

g
i(t−1)ω ≤ RUi; (ϕ

grd
itω ,ϕ

gru
itω),∀i ∈ N

g, t > 1,ω ∈Ω (36)

RDi ≤ p
g
itω − p

g
i0ω ≤ RUi; (ϕ

grd
itω ,ϕ

gru
itω),∀i ∈ N

g, t = 1,ω ∈Ω (37)

0 ≤ pditω ≤ p
d
i ;(ϕ

d
itω,ϕ

d
itω),∀i ∈ N

d, t ∈H,ω ∈Ω (38)

0 ≤ p−itω ≤ oitω;(ϕ
p−
itω,ϕ

p−
itω),∀i ∈ N

m, t ∈H,ω ∈Ω (39)

0 ≤ p+itω ≤ bitω;(ϕ
p+
itω,ϕ

p+
itω),∀i ∈ N

m, t ∈H,ω ∈Ω (40)

−Tij ≤ yij ⋅ (θitω − θjtω) ≤ Tij;(ϕ
l
(ij)tω,ϕ

l
(ij)tω),∀(ij) ∈ L

T, i < j, t ∈H,ω ∈Ω

(41)

Where: XL
ω = {p

g
itω,p

d
itω,p
−
itω,p
+
itω,θitω} is the set of decision

variables for the lower-level problem, mainly the scenario-related
operation phase variables of the transmission network; Nd and
Ng respectively represent the set of transmission network nodes
connecting load aggregators and conventional generators; LT

represents the set of branches of the transmission network; c↓it and c
↑
it

are the supply and demand quotations of the distribution network,
respectively, cgit is the quotation of the generator, cdit is the quotation
of the load aggregator; pgitω represents the active output power of the
conventional generator; pgitω represents the active power required by
the load aggregator.
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TSO clears the day-ahead electricity market for each typical
day by minimizing social costs, as shown in Equation 33. The
power flow of the transmission network adopts the DC power flow
model. Equation 34 represents the power balance of the distribution
network node. Equation 35 imposes a limit on the maximum
output active power of conventional generators, while Equation 38
restricts themaximum active power required by the load aggregator.
Equations 36, 37 detail the ramping capabilities of conventional
generators. The power trading volume between the transmission
and distribution networks is constrained to a specific range, as
indicated in Equations 39, 40. Equation 41 establishes a limit on the
active power flow within the transmission line. Additionally, the
dual variables associated with each constraint are presented after
the semicolon, with the voltage phase angle of the reference bus
set to zero.

In summary, the upper model transfers the power trading
decision between the transmission and distribution networks to the
lower model, which in turn provides feedback on the node prices
for each time period of the day. Based on these node prices at the
boundary of the transmission and distribution networks, energy
storage systems optimize their charging and discharging strategies
by purchasing electricity (charging) during low-price periods and
selling electricity (discharging) during high-price periods. This
approach enhances economic benefits and regulates the system,
ultimately leading to a reduction in the operational costs of the
distribution network.

2.4 Typical day scene generation of wind
and solar output

2.4.1 Conventional typical day scene generation
The selection of scenarios in this paper is based on actual annual

intra-day output data for wind and solar power, resulting in a total
of 365 scenarios. The large number of scenarios can significantly
increase computational load, leading to lower solution efficiency and
reduced flexibility. Therefore, it is essential to reduce the original
scenarios to obtain typical output scenario data for wind and
solar, ensuring both the diversity of scenarios and the efficiency of
model solving.This study employs theK-means clustering algorithm
to achieve this reduction and obtain typical output scenarios for
wind and solar.

The scenario reduction process based on the K-means clustering
algorithm is as follows.

1) Select K initial cluster centers from all samples;
2) Assign data points: Calculate the distances from the

remaining data points to each cluster center and
assign each data point to the cluster center with the
closest distance;

3) Update the cluster center: Recalculate the cluster center point
based on the assigned data points, establishing it as the new
center of the cluster;

4) Iteration: Repeat the above steps until the cluster center no
longer changes.

2.4.2 Generation of typical daily scenarios for
extreme weather considering robustness

Conventional scenarios may not adequately capture the impact
of extreme weather on wind and solar output. Given the significant
influence of typhoons on renewable energy generation and to reduce
model complexity, it is necessary to establish a separate typical day
scenario for typhoon extreme weather. Additionally, a single wind
field model (Batts model) is used, without considering the coupling
effects of typhoons with associated disasters, such as the coupling of
typhoons with rainstorm events (Zhang et al., 2024).

Batts model is a relatively mature wind field model. This paper
uses the Batts model to estimate the real-timemaximumwind speed
in the typhoon-affected area. The parameters of the initial pressure
difference, typhoon moving speed and typhoon moving direction
probability distribution in themodel are estimated empirically in the
literature (Liu et al., 2020). The typhoon center pressure difference
and typhoon moving speed should obey the log-normal probability
distribution, and the typhoon moving direction should obey the
binormal distribution, as shown in Equations 42–44.

f(ΔH) = 1
ΔHσ1√2π

exp(−
(ln ΔH− μ1)

2

2σ2
1
) (42)

f(vT) =
1

vTσ2√2π
exp(−
(ln vT − μ2)

2

2σ2
2
) (43)

f(θ) = α
σ3√2π

exp[−
(θ− μ3)

2

2σ2
3
]+ 1− α

σ4√2π
exp[−
(θ− μ4)

2

2σ2
4
] (44)

Where:ΔH is the initial pressure difference between the typhoon
center and the periphery; vT is the typhoon translation speed; θ is the
typhoon translation direction angle; in this paper, set μ1 = 2.9001, σ1
= 0.627, μ2 = 2.6680, σ2 = 0.5185, μ3 = 73.3392; μ4 = 7.2084, σ3 =
22.5891, σ4 = 70.3532, and α = 0.503.

The wind and solar output rules under typhoon weather are
set as follows: when a typhoon occurs, the photovoltaic output
level at each moment is randomly reduced to half or less than
that in normal weather. The specific proportional coefficient (RT

t )
is obtained by sampling according to the uniform distribution, as
shown in Equations 45, 46; the wind power output level at each
moment is related to the real-time maximum wind speed in the area
affected by the typhoon. When the maximum wind speed exceeds
the set wind turbine cut-out wind speed, the wind power output
is reduced to 0, as shown in Equation 47. If it does not exceed the
cut-out wind speed, it will not be affected.

RT
t ∼ U(0,0.5) (45)

̃Ppv,Tt = P
pv
t ×R

T
t (46)

̃Pw,Tt = 0 (47)

The calculation formula for the real-time maximum wind speed
is shown in Equation 48. The derivation process can be found in
(Liu et al., 2020) and will not be repeated here. After sampling the
initial pressure difference ΔH, typhoon translation speed vT and
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typhoon movement direction from Equations 42–44, the maximum
wind speed at each moment can be calculated by substituting the
coastline angle of the typhoon-affected area φ into (48).

νrmax
(t) = 6.029√0.75ΔH− 0.508[1+ sin(φ− θ)t] + 0.5νT (48)

The wind and solar power output sequence correction method
under typhoon weather described in Equations 45–47, the actual
annualwindandsolarpoweroutputdata is corrected, and365possible
wind and solar power output sequence data under typhoon weather
canbeobtained. Inorder to reflect the robustnessof extremescenarios,
this paper takes the amountof electricitypurchasedby thedistribution
network to the transmission network as an indicator to find the worst
scenario as a typical daily scenario of typhoon extreme weather.

The extreme scenario set is formed by a series of wind and
solar output scenarios corrected by the wind and solar output
sequence under typhoon weather, which is recorded as E. Auxiliary
variables are introduced ξ to represent the power purchased by the
distribution network under the worst scenario, and the auxiliary
problem is solved to obtain the worst scenario of wind and solar
output under typhoon weather, which is as follows:

min ξω = ∑
i∈Nm
∑
t∈H
(bitω − oitω),∀ω ∈ E (49)

ξ =max ξω,∀ω ∈ E (50)

Where: ξω is the auxiliary variable introduced for the auxiliary
problem, which represents the minimum power purchase required
for the normal operation of the distribution network based on
the existing wind and solar installed capacity under the extreme
scenario ω.

The auxiliary problem is framed as a bi-level optimization
problem in the form of max-min. The constraints governing this
problem are the real-time operational constraints of the distribution
network, specifically outlined in Equations 17–32, with Equation 23
requiring substitution with the following

∑
k∈Ωi

d(n)

fpi(nk)tω = ∑
k∈Ωi

p(n)

fpi(jk)tω −Dintω + ̃g
w
intω + ̃g

pv
intω (51)

In addition, it should be noted that the auxiliary problem
constraints are a set of extreme scenarios ω ∈ E.

To summarize, the steps to ascertain the worst-case scenario for
wind and solar power output during typhoonweather are as follows.

1) The actual annual data is processed using the wind and
solar power output sequence correction method tailored for
typhoonweather, resulting in an initial set of extreme scenarios
for wind and solar power output.

2) By substituting this set of extreme scenarios into the auxiliary
problem, we can derive the auxiliary variable corresponding
to these extreme scenarios and subsequently identify the worst
scenario associated with the auxiliary variable.

2.5 Overall model structure

In summary, the proposed complete model is as follows:

min
XU∪XL
∑
ω∈Ω
(CDN

ω +C
oper
ω ) +Cinv,a (52a)

s.t.(6) − (41) (52b)

Where: XU = {Ke
in, ̃g

w
intω, ̃g

pv
intω,oitω,bitω,disintω,chintω,wintω,

SOEintω, f
p
i(nk)tω, f

q
i(nk)tω,Vintω} represents the set of decision variables

of the upper optimizationmodel, including investment variables and
distribution network scenario-related operation phase variables;
XL = {pgitω,p

d
itω,p
−
itω,p
+
itω,θitω,∀ω} represents the decision variables

of the lower optimization model, which are the scenario-related
operation phase variables of the transmission network.

The upper optimization goal is to minimize the total investment
and operation cost of the distribution network, and the participating
entity is the distribution network; the lower optimization goal is to
maximize social welfare, and the participating entities are power
generators, load aggregators and distribution networks. The power
transactions and capital transactions between the upper and lower
participating entities are shown in Figure 2:

Obviously, the proposed model represents a bi-level
optimization problem that cannot be solved directly. Additionally,
the chance constraint poses significant challenges. Consequently,
the subsequent section will demonstrate how to convert the
chance constraint and the objective function into a tractable
mixed-integer linear programming (MILP) formulation. This
transformation will allow the bi-level optimization problem
to be reformulated as a single-level optimization problem,
effectively handling its nonlinear terms and yielding a directly
solvable MILP problem.

3 Solutions

The original problem cannot be addressed directly. This
section will outline the methodology for transforming the bi-level
optimization problem into a MILP problem. First, a Gaussian
mixture model will be employed to express the opportunity
constraints associated with renewable energy as deterministic
constraints. Second, voltage will be articulated as a function of
random power injection, with the inherent uncertainty in voltage
being characterized by the output of renewable energy. This
approach will convert the voltage-related opportunity constraints
into deterministic constraints. Finally, the KKToptimality condition
will be utilized to reformulate the bi-level optimization problem into
a single-level problem. Subsequently, the complementary relaxation
conditions and the remaining bilinear terms will be linearized into
linear termsusing theBigMmethod andduality relations, ultimately
resulting in the transformation of themodel into a single-layerMILP
framework.

3.1 Chance-constrained deterministic
representation

3.1.1 Opportunity-constrained conversion of
renewable energy output based on GMM
3.1.1.1 Forecasted output distribution of renewable
energy

As mentioned above, the uncertainty of wind and solar power
output can be characterized by the uncertainty of prediction
error. Affected by the central limit theorem, the prediction
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FIGURE 2
Electricity trading and capital trading chart.

FIGURE 3
Schematic diagram of the dual IEEE 33-node power distribution test system (yellow indicates photovoltaic resources and blue indicates wind power
resources).

TABLE 1 Nodes suitable for energy storage installation.

Suitable distribution
network nodes

Distribution network 1 5 8 16 21 22 28

Distribution network 2 1 2 8 15 25 30

error is described by Gauss Mixed Model (GMM). The random
vector X = [X1,t,X2,t,⋯,Xk,t]

Τ is used to represent the output
power prediction error of k renewable energy sources at time t.

Then the probability density function (PDF) of X can be
expressed by GMM (Wang et al., 2016):

fX(x) =
M

∑
m=1

πmNm(x|μm,σm) (53)

M

∑
m=1

πm = 1,πm > 0 (54)

Nm(x|μm,σm) =
exp{−1/2(x − μm)

Τσ−1m (x − μm)}

(2π)K/2|σm|
1/2

(55)

Where: ∑ = {πm,μm,σm|m = 1,2,…,M} represents the
parameter set of the Gaussian mixture model, where the Gaussian
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TABLE 2 Distribution overview of renewable energy (MW).

Distribution network 1 Distribution network 2

Wind power
node 11 16 18 19 21 6 25 27 29 31

capacity 10.5 0 0 0 10 20 20 0 0 4

Photovoltaic power
node 16 22 24 26 30 1 2 7 17 25

capacity 0 2 8 20 8 10 10 4 10 4

FIGURE 4
Weighted average of load, predicted wind power and PV intensity under conventional scenarios.

FIGURE 5
Changes of maximum wind speed in typhoon-affected areas.

mixture model is composed of Gaussian components; πm represents
the weight of each Gaussian distribution; Nm(x|μm,σm) represents
themthmultivariate Gaussian component, whose mean vector is μm
and the covariance matrix is σm.

By adjusting the parameter set∑, GMMcan characterize different
types of non-Gaussian correlated random variables. Therefore, GMM
is suitable for modeling the uncertainty in the output distribution
of renewable energy. Specifically, based on the historical data of the
prediction error of the active output of wind power and photovoltaic
power, the parameter set ∑ can be obtained, and then the Gaussian
mixture distribution of the prediction error can be obtained.

3.1.1.2 Opportunity-constrained conversion of wind and
solar output

Assume that the random variable Y = ax = [a1,…,ar,…ak]X,
if a = [0,…,1,…0] (ar = 1), then Y = Yr represents the output
power of the rth renewable energy source. Generally speaking, the
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FIGURE 6
Predicted wind and solar power output power and its confidence interval under nor-mal circumstances.

FIGURE 7
Predicted wind and solar output power along with their confidence intervals under extreme weather conditions.

linear combination of multivariate Gaussian distribution variables
also obeys Gaussian distribution. Therefore, the probability density
function of the random variable Y is:

fY(y) =
M

∑
m=1

πmNm(y|aμm,aσma
Τ) (56)

The cumulative distribution function (CDF) of the Gaussian
distribution can be calculated as follows:

CDFY(y) = ∫
ζ≤y

fY(ζ)dζ =
M

∑
m=1

ωm ⋅ norm.cd f( fm(y)) (57)

CDF(·) in the interval [−∞, ∞], so it can be calculated using
the binary search method CDF−1(·). On this basis, the equivalent
transformation of the chance constraints Equations 19, 22 is given:

CDF−1Δgwintω ⁢ (
1− ℏw

2
) ≤ Δ ̃gwintω ≤ CDF

−1
Δgwintω
⁢ (1+ ℏ

w

2
),

∀i ∈ Nm,n ∈ Bw
i , t ∈H,ω ∈Ω (58)

CDF−1
Δgpvintω
⁢ (1− ℏ

pv

2
) ≤ Δ ̃gpvintω ≤ CDF

−1
Δgpvintω
⁢ (1+ ℏ

pv

2
),

∀i ∈ Nm,n ∈ Bpv
i , t ∈H,ω ∈Ω (59)

Therefore, the opportunity constraints related to renewable
energy output are transformed into deterministic constraints
through the Gaussian mixture model.

3.1.2 Opportunity-constrained conversion of
voltage
3.1.2.1 Node injection power represents node voltage

Equation 29 implicitly relies on uncertainty. In order to interpret
(29) in a straightforward way, the voltage should be reformulated as
an expression related to the random injected power. Existing studies
have shown that in the LinDistFlow model, the node voltage of the
radial distribution system is linearly related to the injected power
of all nodes.

The amount of active/reactive power (pinintω/q
in
intω) injected into

each node of the distribution network is equal to the total output
power of local renewable energy minus the load, and the injected
active (or reactive) power is equal to the power outflow of the node.
For this purpose, Equations 23, 24, 26 are restated as shown in
Equations 60–64:

pinin0tω
= p+itω − p

−
itω + ̃g

w
in0tω
+ ̃gpvin0tω
+ disin0tω − chin0tω

−Din0tω,∀i ∈ N
m, t ∈H,ω ∈Ω (60)
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TABLE 3 Technical parameters and cost parameters of conventional units.

Generator
number

Transmission
network node

Maximum
output (MW)

Maximum
up/down ramp

(MW/h)

Initial output
(MW)

Price (€/MWh)

G1 1 152 120 76 43.488

G2 2 152 120 76 43.488

G3 7 350 350 0 51.93

G4 13 591 240 0 71.037

G5 15 60 60 0 54.099

G6 15 155 155 0 9.468

G7 16 155 155 124 9.468

G8 18 400 280 240 4.923

G9 21 400 280 240 4,923

G10 22 300 300 240 0.9

G11 23 310 180 248 9,468

G12 23 350 240 280 26,901

FIGURE 8
Sitting and sizing of energy storage.

pinintω = ̃g
w
intω + ̃g

pv
intω + disintω − chintω −Dintω,∀i ∈ N

m,

n ∈ Bi/n0, t ∈H,ω ∈Ω (61)

qinintω = δ
w
in ⋅ ̃g

w
intω + δ

pv
in ⋅ ̃g

pv
intω − δ

d
in ⋅Dintω,∀i ∈ N

m,

n ∈ Bi, t ∈H,ω ∈Ω (62)

pinintω = ∑
k∈Ωi

p(n)

fpi(jk)tω − ∑
k∈Ωi

d(n)

fpi(nk)tω,∀i ∈ N
m,n ∈ Bi, t ∈H,ω ∈Ω

(63)

qinintω = ∑
k∈Ωi

p(n)

fqi(jk)tω − ∑
k∈Ωi

d(n)

fqi(nk)tω,∀i ∈ N
m,n ∈ Bi, t ∈H,ω ∈Ω

(64)

The injected power of the distribution network also
considers the root node (n0). Therefore, the voltage can be
restated as an expression related to the random injected power,
as shown in Equation 65.

Ṽintω −V0 =∑j∈Besi
(zesjintω ⋅ (disijtω − chijtω)) +∑j∈Bwi

(zwjintω ⋅ ̃g
w
ijtω + z

′w
jintω ⋅ δ

w
ijtω ⋅ ̃g

w
ijtω)

+∑
j∈B

pv
i
(zpvjintω ⋅ ̃g

pv
ijtω + z

′pv
jintω ⋅ δ

pv
ijtω ⋅ ̃g

pv
ijtω) −∑j∈Bi

(zdjintω ⋅Dijtω) ,

∀i ∈ Nm,n ∈ Bi, t ∈H,ω ∈Ω
(65)
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TABLE 4 Specific configuration of energy storage.

Distribution network 1 Distribution network 2

Node Energy storage
capacity (MWh)

Node Energy storage
capacity (MWh)

5 10 1 0

8 0 2 0

1 6 0 8 20

21 0 15 20

22 0 25 20

28 0 30 17.65

Where: zwjintω, z
pv
jintω and zdjintω are distribution coefficients related

to the distribution network structure and power flow.
Therefore, the voltage safety constraint directly related to

uncertainty is expressed as shown in Equation 66.

Pr
{
{
{

−ΔV ≤∑
j∈Besi
(zesjintω ⋅ (disijtω − chijtω)) +∑j∈Bwi

(zwjintω ⋅ ̃g
w
ijtω + z

′w
jintω ⋅ δ

w
ijtω ⋅ ̃g

w
ijtω)

∑
j∈B

pv
i
(zpvjintω ⋅ ̃g

pv
ijtω + z

′pv
jintω ⋅ δ

pv
ijtω ⋅ ̃g

pv
ijtω) −∑j∈Bi

(zdjintω ⋅Dijtω) ≤ ΔV
}
}
}

≥ ƛ,∀i ∈ Nm,n ∈ Bi, t ∈H,ω ∈Ω
(66)

3.1.2.2 Voltage opportunity constrained conversion
As shown in Equation 66, voltage can be expressed by node

injection power. Equations 58, 59 show that the opportunity
constraints related to renewable energy output can be transformed
into deterministic constraints, and the uncertainty implicit in
node injection power comes from the output of renewable energy.
Therefore, in order to ensure that the probability of the voltage
amplitude within the safety interval is greater than the given
confidence level (ƛ), it is only necessary to ensure that the output
of renewable energy meets the requirements of the confidence level,
and Equation 66 can be restated as Equation 67.

−ΔV ≤

{{{{{{
{{{{{{
{

∑j∈Besi
(zesjintω ⋅ (disijtω − chijtω)) −∑j∈Bi

(zdjintω ⋅Dijtω)+

∑j∈Bpvi
((zpvjintω + z

′pv
jintω ⋅ δ

pv
ijtω) ⋅ (g

pv
ijtω +CDF

−1
Δgpvintω
(1− ƛ1/2)))+

∑j∈Bwi
((zwjintω + z

′w
jintω ⋅ δ

w
ijtω) ⋅ (g

w
ijtω +CDF

−1
Δgwintω
(1− ƛ1/2)))

}}}}}}
}}}}}}
}

≤ −ΔV,∀i ∈ Nm,n ∈ Bi, t ∈H,ω ∈Ω
(67)

Therefore, the chance constraint Equation 29 is transformed into
a deterministic constraint.

3.2 KKT optimality condition

KKT conditions are widely used to solve nonlinear models.
The lower-level market clearing problem is a linear programming

problem, in which the stationary condition is obtained by taking the
first order derivative of the lower-level decision variables based on
the Lagrangian function of the lower-level problem. For example,
(pditω):

−cdit + λitω −ϕ
d
itω +ϕ

d
itω = 0,∀i ∈ N

d, t ∈H,ω ∈Ω (68)

The same is true for the remaining variables, with Equation 68
representing all stationary conditions. Similarly, the feasibility
condition and complementary slack condition are obtained by
taking constraint Equation 38 as an example:

0 ≤ ϕditω⊥p
d
itω ≥ 0,∀i ∈ N

d, t ∈H,ω ∈Ω (69a)

0 ≤ ϕditω⊥− p
d
itω + p

d
itω ≥ 0,∀i ∈ N

d, t ∈H,ω ∈Ω (69b)

The symbol ⊥ represents complementarity. The same is true
for the other constraints. Equation 69 refers to all complementary
relaxation conditions.

The nonlinearity caused by the complementary relaxation
condition is linearized using the largeMmethod (Wang et al., 2011).
Taking Equations 69a, 69b as an example, they can be restated as the
following constraints:

0 ≤ ϕditω ≤M ⋅ b
d,1
itω,∀i ∈ N

d, t ∈H,ω ∈Ω (70a)

0 ≤ pditω ≤M ⋅ (1− b
d,1
itω),∀i ∈ N

d, t ∈H,ω ∈Ω (70b)

0 ≤ ϕditω ≤M ⋅ b
d,2
itω,∀i ∈ N

d, t ∈H,ω ∈Ω (70c)

0 ≤ −pditω + p
d
itω ≤M ⋅ (1− b

d,2
itω),∀i ∈ N

d, t ∈H,ω ∈Ω (70d)

Where: bd,1itω and bd,2itω are binary variables; M is a large constant.
For simplicity, Equation 70 is used to refer to the constraints

after all feasibility conditions and complementary slack conditions
are processed by the big M method.

In order to deal with the nonlinearity in the objective
function related to the expression of (2), the linear programming
duality theorem can be used to obtain the following expression,
as shown in (71):

CDN
ω = πω ⋅ ∑

t∈H
(∑
i∈Ng
(cgit ⋅ p

g
itω +ϕ

g
itω ⋅ P

g
i

+ϕgrditω ⋅RDi +ϕ
gru
itω ⋅RUi) + ∑

i∈Nd

−(cdit ⋅ p
d
itω +ϕ

d
itω ⋅ P

d
itω)+ ∑

i<j,(i,j)∈L
(Tij ⋅ϕ

l
(ij)tω

+Tij ⋅ϕ
l
(ij)tω)) (71)

The final model is as follows:

min
XU∪XL
∑
ω∈Ω
(CDN

ω +C
oper
ω ) +Cinv,a (72a)

s.t.(6) − (18), (20) − (21), (23) − (28),

(30) − (32), (34), (58) − (59), (67) − (68), (70)
(72b)
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FIGURE 9
Power balance of distribution networks under a typical day.

FIGURE 10
Power balance of distribution network under extreme weather conditions.

4 Case study

4.1 Example setup

The modified IEEE 24 node transmission network was
combined with two IEEE 33 node distribution networks for testing.
The root nodes of the two distribution networks were connected
to nodes 4 and 9 of the transmission network respectively. The
distribution system is shown in Figure 3. The energy storage
investment occurs in the two distribution networks, and renewable
energy is also distributed on the distribution networks.

Table 1 lists the distribution network nodes suitable for energy
storage investment. The distribution profile of renewable energy is
shown in Table 2. The load and renewable energy generation profile
is based on the actual annual data of a certain place. Wind power
and photovoltaic are located in two different locations of the place.
Based on the K-means clustering algorithm, the annual wind and
solar power output data are processed to obtain 4 typical days of
conventional scenarios. Figure 4 describes the weighted average of
the conventional scenario of load, wind power and photovoltaic

output. Let themaximumwind speed of the wind turbine be 30 m/s.
Based on the typhoon model, the maximum wind speed change
in the typhoon-affected area is obtained, as shown in Figure 5.
It can be seen that the wind turbine was in a shutdown state in
the first 14 h. Then, based on the wind and solar power output
sequence correction method under typhoon weather, the worst
scenario under typhoon weather is obtained with the maximum
power purchase of the distribution network as the indicator, as
shown by the solid line in Figure 7.

The prediction output error is simulated based on the Gaussian
mixture model, and 1,000 samples are analyzed for each prediction
value. The predicted wind power and photovoltaic output power
and their confidence intervals under a conventional scenario and
an extreme scenario are shown in Figures 6, 7, respectively. In the
case studied, the confidence level ℏ and ƛ are set to 90%. The safety
interval of the square of the voltage amplitude is [0.81, 1.21].

Assume that the investment cost of energy storage is Ce =
20€/kW and Cp = 500€/kW, the operating costs of wind power,
photovoltaic power and energy storage are = 3.5€/MW, = 2.5€/MW,
= 0.5€/MW respectively, cw the service cpv life of energy ces storage
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FIGURE 11
Transmission network load intensity and average electricity price.

FIGURE 12
Comparison of energy storage planning with and without considering
extreme weather scenarios.

FIGURE 13
Comparison of energy storage planning with and without extreme
weather scenarios.

FIGURE 14
Voltage fluctuations at nodes (distribution network 1) throughout a
typical day.

is 15 years, and the annual discount rate is 5% (Λ = 15, Γ =
0.05). For each distribution network node eligible for energy storage
installation, themaximum installed capacity is set toKe

in = 20 MW h.
The charging and discharging efficiency of the energy storage device
is ηc = ηd = 0.93. The initial charging state of the energy storage
device is assumed to be 50%, and at the end of the day, the charging
state is at least 10% (β = 0.1). The technical parameters and cost
parameters of the conventional unit are shown in Table 3.The power
factor of wind power and photovoltaic power generation is assumed
to be 0.95, and the efficiency of photovoltaic panel output is. ηpv =
0.95 The maximum power that can pass through the connection
point pi (substation) between the transmission network and the
distribution network is = 46 MW. The purchase price of renewable
energy on the distribution networkwhen participating in themarket
is c+it = 450 €/MW, otherwise c−it = 0 €/MW to ensure that it can
always be cleared in the day-ahead electricity market. Finally, the
total budget for energy storage investment is set to Cinυ = 20 ⋅ 106 €,
and the locational marginal price (LMP) is calculated by the market
clearing model.

4.2 Siting and sizing decisions

The planning results of energy storage site selection and scale
are shown in Figure 8, and the specific configuration is shown
in Table 4. It can be seen that the energy storage investment
on distribution network 2 is higher than that on distribution
network 1. This is mainly because distribution network 2 has
better wind resources (see Figure 4) and has larger wind power
and photovoltaic installed capacity. Therefore, its renewable energy
generation is much larger than that of distribution network 1, and
the corresponding energy storage investment will also be larger.

The energy storage investment on distribution network one is
only distributed in node 5, because node 5 is the intersection of
the branches where nodes 11, 26 and 40 are located, and it is also
the only branch flowing to the root node. Installing energy storage
here can effectively alleviate the congestion of the line. The energy
storage investment in Distribution Network 2 is solely distributed
at nodes 8, 15, 25, and 30, with no energy storage investment at
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nodes one and 2. This planning combination is mainly determined
by the distribution of renewable energy generation, load distribution
and grid structure. Node 25 has the largest wind power installed
capacity and a lot of photovoltaic capacity, which determines that
the energy storage investment of node 25 should be large. The nodes
near nodes 8 and 15 are equipped with large-capacity wind power
or photovoltaic units, and node 31 adjacent to node 30 has a large
load. Therefore, it is reasonable to invest a lot of energy storage
in these three nodes, which can effectively alleviate the congestion
of adjacent nodes and lines. Nodes one and 2 are adjacent to the
root node of the distribution network, which are mainly responsible
for receiving or sending the transaction electricity between the
distribution network and the upstream power grid, so there is no
urgent need for energy storage.

The investment cost of the energy storage decision is 90.57 ⋅ 105

€, the annualized investment and operating cost of the distribution
network is 32.57 ⋅ 105 €, and the annualized generation cost of the
thermal power units is 154.0 ⋅ 106 €. TSO benefit from renewable
energy because expensive transmission-level electricity production
is replaced by low-cost renewable energy units in the generation
mix.More specifically, the annualized generation cost of the thermal
power units (the generation cost without renewable energy is
158.31 ⋅ 106 €) has decreased by 2.72%, while it has decreased
by 0.042% relative to the case without energy storage, because
the capacity of energy storage is small relative to the load of
the transmission network, so the degree of reduction is not very
significant.

4.3 Overview of clearing electricity prices
and system operation

The power balance of the distribution network in a normal
scenario and extreme weather is shown in Figures 9, 10 respectively.
Compared with the normal scenario, the output of photovoltaic
and wind power is partially limited by extreme weather, and the
distribution network needs to purchase more electricity to meet
energy demand.

The load demand intensity and average electricity price in the
region on a typical day are shown in Figure 11. For the electricity
market, at the clearing price level, the amount of electricity that
users are willing and able to purchase is exactly equal to the amount
of electricity that the power generation side is willing and able to
supply. Generally speaking, the power generation costs of various
thermal power units are different, and the bids participating in the
bidding are also different.

Therefore, when the user side demand is certain, the bids are
usually won in order from small to large. When the load demand is
small, the average electricity price in the area is also relatively small.

4.4 Impact of extreme weather scenarios
on energy storage planning

In order to demonstrate the impact of extremeweather scenarios
on energy storage planning, the following two scenarios are set up
for analysis.

1) Scenario 1: Extreme weather scenarios are not considered in
energy storage planning;

2) Scenario 2: Consider extreme weather scenarios in energy
storage planning.

As shown in Figure 12, the energy storage planning under
the two scenarios is shown. It can be seen from the figure
that although the energy storage planning of the distribution
network under the two scenarios is generally similar, in scenario
2, the energy storage capacity of node 30 in distribution network
2 is increased by 3.09 MW compared with scenario 1, that
is, the total energy storage capacity of scenario 2 is greater
than that of scenario 1. This is because considering the greater
uncertainty and growth in electricity demand brought about by
extreme weather scenarios, increasing energy storage capacity helps
maintain power balance. However, due to the low probability of
extreme weather scenarios, the increase in energy storage capacity
is relatively small relative to the change in the overall energy
storage plan.

In addition, the investment cost of energy storage planning in
scenario one is 87.37 ⋅ 105 €, and scenario 2 increases by 3.66%
compared to scenario 1. Therefore, in energy storage planning, if
decision makers pay attention to the impact of extreme weather, this
may lead to higher costs, but the increase in energy storage capacity
will improve flexible adjustment capabilities, thereby ensuring
power reliability.

4.5 Impact of transmission and distribution
coordination on energy storage planning

In order to demonstrate the impact of transmission and
distribution coordination on energy storage planning, the following
two scenarios are set up for analysis.

1) Scenario 1: The transmission and distribution grid conducts
electricity trading at a fixed price;

2) Scenario 2: Determine the transaction price of
transmission and distribution network based on the
proposed model.

By comparing scenarios with fixed transmission and
distribution network transaction prices, it demonstrates the
role of transmission-distribution coordination mechanisms in
dynamically changing transaction prices, thereby affecting the
investment planning for energy storage. Figure 13 compares
the energy storage planning under the two scenarios. The
results show that the energy storage scale increases by 3.47 MW
when the distribution network participates in the market
bidding mechanism under the transmission and distribution
coordination compared with the fixed transaction electricity
price. This is mainly because under the transmission and
distribution coordination mechanism, the electricity price will
change dynamically according to market demand and supply
conditions. This potential economic return encourages more
energy storage investment, resulting in an increase in the scale
of energy storage.

For example, under a fixed electricity price, the total
investment and operating cost of the distribution network
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is 32.70 ⋅ 105 €, which is 0.40% higher than that under
the transmission and distribution coordination condition. It
is precisely because under a fixed electricity price, energy
storage cannot use electricity price fluctuations to optimize
charging and discharging strategies, resulting in a slight
increase in overall operating costs. On the contrary, under
the transmission and distribution coordination mechanism,
energy storage can dynamically adjust according to market
demand and supply conditions to achieve higher economic
benefits, thereby reducing the total operating cost of the
distribution network.

4.6 Fluctuation of voltage at distribution
network nodes

Figure 14 shows the variation of the square of the
voltage amplitude at all nodes of distribution network one
during a day.

The square of the minimum and maximum voltage amplitudes
during the day is 0.8744p.u. and 1.0691p.u. Since all voltages are
within the safety range, network security is guaranteed. Therefore,
in the case studied, the voltage security constraint has little effect on
the planning and operation results.

5 Conclusion

Based on the TSO-DSO coordination framework, this paper
establishes a distributed energy storage investment problem model
considering extreme weather. Distributed energy storage power
stations are installed in multiple distribution networks to obtain
greater social welfare and renewable energy utilization. A stochastic
bi-level investment planning model is established. The KKT
condition, strong duality theory and linearization technology are
used to transform the bi-level model into a single-level MILP
model that is easy to solve. A chance constraint method based
on a Gaussian mixture model is proposed to deal with the
uncertainty of renewable energy power. This method can strike
a balance between conservatism and optimism. A case study
based on the transmission and distribution network system is
carried out to verify the proposed model and method. The
results show that the model considers the impact of extreme
weather scenarios and optimizes the energy storage planning
of the distribution network. Compared with not considering
extreme weather, although the energy storage investment cost
increases by 3.66%, it helps to improve the system’s flexible
adjustment ability; considering the transmission and distribution
collaborative conditions, the total investment and operation cost of
the distribution network is reduced by 0.40%. In future research
work, it is possible to consider adding system reliability indicators
to improve the model, and consider studying more efficient solution
methods to deal with the situation where the model is complex
and difficult to solve due to the increase in extreme weather
scenarios.
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System frequency response
model and droop coefficient
setting considering renewable
energy participation in frequency
regulation

Yuyan Song, Yongjie Zhang, Shuai Zhang, Fang Liu, Yunche Su
and Yang Liu*

State Grid Sichuan Electric Power Company, Sichuan, China

The highly uncertain and uncontrollable power output of renewable energy
sources (RES), when integrated into power systems at high penetration levels,
reduces system inertia and introduces uncertain changes in system structure,
parameters, and frequency response characteristics. This renders traditional
frequency regulation analysis methods and frequency response models
inapplicable, lacking a generalized model to describe renewable energy’s
participation in frequency regulation. Thus, this paper proposes a method
where RES utilize suitable means to reduce load, thereby contributing to
frequency regulation. Furthermore, employing Virtual Synchronous Machine
(VSM) technology, these renewable energy units emulate the inertia and
droop characteristics of Synchronous Generators (SG), enabling their
equivalent modeling alongside traditional generators within a single-machine
aggregate model. An SFR (System Frequency Response) model integrating
renewable energy’s frequency regulation has been established. This model
enables the analysis of the relationships between the system’s equivalent
droop coefficient and the frequency nadir, nadir time, and quasi-steady-state
point. Furthermore, the required equivalent droop coefficients are proposed for
various sending-end system capacities and operating conditions. Finally, the
model’s validity and accuracy are confirmed through a modified WSCC 4-
machine 10-bus system, offering theoretical underpinnings for stable system
operation and optimized operational planning.

KEYWORDS

renewable energy sources, SFR, droop coefficient, WSCC, VSM

1 Introduction

Compared to traditional synchronous systems, the extensive integration of high-
proportion electronic RES has substituted for some SG, resulting in a gradual reduction
in system inertia and relatively weaker frequency regulation capability due to the decoupling
characteristics of renewable energy power electronics and their maximum power tracking
mode. In addition, the application of UHV large-capacity cross-regional DC transmission
has blocked the cross-regional inertia support and power response under disturbances,
seriously deteriorating the system frequency stability under large disturbances (Shi et al.,
2018a; Ahmadi and Ghasemi, 2014; Wright et al., 2019; Lin et al., 2023). In interconnected
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power systems, frequency stability is an important indicator
reflecting power quality, mainly representing the balance state of
active power in power systems (Xue et al., 2024; Yin et al., 2024;
Grebla et al., 2020; Mei et al., 2024). In traditional power systems,
frequency control is primarily achieved by regulating the active
power output of generator sets, enabling the system’s generation
power to follow changes in system load power, thereby achieving
active power balance across the entire system. This function is
commonly referred to as LFC (Load Frequency Control) (Wu
et al., 2023a). However, in power systems with a high penetration
of renewable energy, the uncertainty of renewable energy output
becomes a critical factor affecting the active power balance of the
system (Wu et al., 2023b). Compared to traditional load
disturbances, renewable energy output disturbances are more
severe and highly unpredictable, posing challenges to the current
load frequency control techniques, which lack suitable
representation and handling of this uncertainty. The integration
of high proportions of renewable energy inevitably has adverse
effects on the quality and stability of frequency control (Zhixuan
et al., 2024). Furthermore, renewable energy units exhibit
significantly different frequency response characteristics from
traditional energy units. Their replacement of traditional units
leads to uncertain changes in system structure, parameters, and
frequency response characteristics, further complicating frequency
control (Rongpeng and Yang, 2024).

In response to the aforementioned issues regarding frequency
response characteristics arising from the high integration of
renewable energy, extensive research has been conducted by
scholars both domestically and internationally. In Reference
(Altaf et al., 2022), the study of the system’s frequency dynamic
response through the ASF (Average System Frequency) is proposed.
This model equates all generators in the system to a single-machine
model while retaining the original turbine-governor systems of each
unit. However, as the number of generators continues to increase,
the proliferation of turbine-governor systems limits the applicability
of this method. Building upon the ASF model, Reference (Quan and
Pan, 2017) further simplifies the turbine-governor systems through
equivalent aggregation, thereby approximating the entire power grid
as a single-machine model with a centralized load model. The SFR
model significantly reduces the order of the frequency response
analysis model, enabling the calculation of analytical solutions for
maximum frequency deviations and corresponding times under
given disturbances. It is currently the most commonly used
model for frequency response analysis. Reference (Xiaolin et al.,
2021) established a two-stage distributionally robust unit
commitment model for power systems with wind farms, based
on the ASF model and its simplified SFR model, considering
virtual inertia control and droop control of wind farms.
Reference (Fan et al., 2020) employed the system SFR model to
analyze the impact of key frequency control parameters, including
inertia time constant, frequency regulation deadband, and governor
droop, on system frequency response characteristics. Reference (Bo
et al., 2020) developed an SFR model incorporating wind turbine
integration, derived dynamic frequency quantification metrics, and
constructed a unit commitment optimization model for wind-
integrated systems considering dynamic frequency constraints.
Reference (Malekpour et al., 2021) integrated wind power virtual
inertia control into the traditional SFR model and analyzed its effect

on system frequency response. Reference (Chang-gang et al., 2009)
proposed a power system frequency dynamic analysis method based
on the DC power flow method, which ignores the impact of reactive
power-voltage variations on frequency dynamics and uses the DC
power flow method to describe the system network flow equations,
considering only generator motion equations and turbine-governor
dynamics, with iterative integration methods to calculate post-
disturbance system frequency dynamics. Reference (Banarkar
et al., 2006) established equivalent models for SG, wind farms,
and loads, using wind power fluctuations and frequency
deviations as input and output variables, respectively, thereby
simplifying a multi-machine system to a single-machine system.
This enabled the establishment of a frequency-domain transfer
function between system power fluctuations and frequency
deviations, which was then used to analyze system frequency
dynamics with the SFR model. Reference (Nguyen et al., 2015)
quantitatively analyzed the impact of wind power integration on
system equivalent inertia and damping constants. Through the
modification of traditional SFR model parameters, it proposed an
SFR model that considers wind power integration and derived the
corresponding time-domain expression for maximum frequency
deviation. Reference (Shi et al., 2018b) introduced an analytical
method to aggregate a multi-machine SFR model into a single-
machine model. Validation studies demonstrated that the proposed
aggregated SFR model accurately represents the multi-machine
SFR model.

This paper based on the mechanism of traditional thermal
power unit inertia and primary frequency regulation (PFR) for
system frequency adjustment, employs the SFR method to
analyze the impact of various factors on system frequency
dynamic characteristics after the participation of renewable
energy units in frequency regulation. Considering the
involvement of renewable energy units in frequency regulation,
the SFR model is improved to derive expressions and correlations
for the initial rate of frequency change, maximum frequency
deviation, and steady-state frequency deviation. Through
theoretical analysis, the mechanism of operating conditions
influencing the frequency regulation capability of renewable
energy units and system frequency dynamic behavior is revealed.
The effectiveness of this improved SFR model is verified through
simulations on the modified WCSS 4-machine 10-bus system.

2 Frequency response model

The frequency response characteristic of a power system refers
to the variation in system frequency under unbalanced power
conditions. This characteristic is influenced by factors such as the
magnitude of the disturbing power, the inertia of prime movers, and
the regulation characteristics of governors.

Under conditions that do not lead to power angle instability or
voltage instability, the impact of reactive power and voltage
variations can be neglected to focus on the primary relationship
between frequency and active power, highlighting the main
influencing factors. To reduce the computational burden and
complexity of frequency dynamic analysis, this paper, based on
the premise of a unified frequency across the entire grid, disregards
spatial frequency variations and power angle stability issues. It
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aggregates the rotor motion equations of all generators in the system
into an equivalent single-generator model with centralized loads,
thereby deriving the system’s SFR.

2.1 SFR of prime mover and governor

The rotor motion equation of a synchronous generator describes
the variation in rotor speed under unbalanced torque when
fluctuations occur in the mechanical power output by the prime
mover or the electromagnetic power output by the synchronous
machine. It can be expressed as:

ΔPm − ΔPe � 2Hsys
dΔf
dt

(1)

where ΔPm is the mechanical power output of the prime mover; ΔPe
is the electromagnetic power output of the synchronous machine; Δf
is the frequency variation (since the frequency f is directly
proportional to the rotor angular velocity ω, for a more intuitive
representation of the power-frequency relationship, the frequency
deviation Δf will be used as a substitute for the angular velocity
variation Δω; Hsys represents the equivalent inertia time constant of
the generator set:

Hsys �
∑n
i�1
HiSi

∑n
i�1
Si

�
∑n
i�1
HiSi

SB SG( )
(2)

where n represents the number of synchronous units in the system,
Si and Hi are their respective rated capacities and inertia time
constants, while SB(SG) denotes the total rated capacity of
conventional SG. The system load’s response to frequency
deviations is primarily encapsulated in the load damping
constant D. When a frequency deviation occurs, the variation in
load power is given by:

ΔPL � DΔf (3)
where ΔPL represents the power variation of frequency-sensitive
loads, and D is the load damping constant. Applying Laplace
transforms to Equations 1 and 3 yields the equivalent model of
the generator and load, as illustrated in Figure 1A. Figure 1B depicts
the simplified version of this model.

Traditional thermal power generation units employ steam
turbines as their prime movers, and the mechanical power output
of the prime mover can be controlled by adjusting the valve opening
of the steam turbine. The process of loading and unloading the

steam chamber and inlet pipe takes a certain amount of time.
Therefore, the process of load-frequency control through
regulating the steam flow passing through the steam turbine
using control valves can be represented by an inertial element
with a time constant Tt, as shown in Figure 2. The value of the
time constant Tt typically ranges from 0.2 to 0.3 s.

To distribute loads among multiple generator set reasonably, the
governor system should be capable of reducing rotational speed
when load power increases. This regulating characteristic can be
achieved using an integral element with steady-state feedback, as
illustrated in Figure 3.

In the figure, R represents the equivalent droop coefficient of the
generator set, which physically signifies the ratio between the
frequency variation and the change in generator output power.
By simplifying Figure 3 and combining it with Figure 2, we obtain

FIGURE 1
(A) actual model. (B) equivalent model. Equivalent model of load and traditional generator.

FIGURE 2
Equivalent model of prime motor.

FIGURE 3
Equivalent model of governor with droop control.

FIGURE 4
Equivalent model of governor and prime motor.
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the equivalent model of the prime mover and governor as shown in
Figure 4, where Ts = 1/(KmR) represents the inertia time constant of
the governor.

2.2 Frequency regulation-capable SFR
for RES

From Equations 1–3, it is evident that during active power
disturbances in a power system containing synchronous machines,
the system frequency undergoes an abrupt change. The generator
sets, due to their rotational inertia, can provide energy proportional
to the rate of frequency change, offering transient support to the
system frequency. Larger inertia time constants of the generator set
result in the release of more rotational kinetic energy. However,
renewable energy systems such as wind and solar power generation
are typically characterized by low inertia, and their output power is
decoupled from the grid frequency, rendering them incapable of
responding to frequency variations. With a high penetration of these
renewable sources into the power system, the overall system inertia
inevitably decreases, reducing the rotational inertia available to
counter frequency changes and leading to degradation of
frequency dynamic performance.

The VSM technology enables renewable energy interfaces, such
as converters, to mimic the virtual inertia characteristics of
synchronous machines by appending control loops. The basic
working principle involves adjusting the output power of
renewable energy units in response to frequency deviations
during system disturbances, thereby equipping them with the
capability to respond to frequency variations. Analogous to the
rotational inertia effect of synchronous machines, the variation in
output power of renewables through virtual inertia control in
response to frequency changes is given by:

ΔPe1 � Kd
dΔf
dt

(4)

where ΔPe1 is variation in output power of renewable energy units
under virtual inertia control, where kd represents the virtual inertia
coefficient. Applying the Laplace transform to Equation 4 yields the
SFR of renewables equipped with virtual inertia characteristics, as
depicted in Figure 5.

To achieve a reasonable load distribution among multiple
generator sets, traditional energy sources, under the influence of
droop-equipped governors, exhibit a characteristic where output
power increases with load increase. In contrast to rotational inertia,
which provides transient support to the system frequency, the droop
characteristic of generator sets reduces the steady-state error in
system frequency after disturbances. The droop rate of generator
sets can be expressed by Equation 5:

R %( ) � ωNL − ωFL

ω0
( ) (5)

The magnitude of PFR capability in generator sets is intimately
tied to their droop rates. When integrating low-inertia sources such
as large wind farms or photovoltaic power stations into the grid, they
are typically required to possess a certain level of PFR capability. By
leveraging VSM technology to control the inverters of renewable
energy interfaces, RES can exhibit a similar droop characteristic to
traditional energy sources during frequency variations. In contrast
to virtual inertia control, which can instantly respond to frequency
changes, inverters executing droop control for frequency regulation
require a certain time delay. Compared to the governor dynamics of
traditional energy sources, the SFR of RES with droop characteristics
is illustrated in Figure 6.

Where KR is the droop control coefficient of RES, also known as
the PFR gain, is denoted as TR, which represents the droop control
time constant. ΔPe2 signifies the variation in output power of
renewable energy units under the influence of droop control.

2.3 SFR considering the integration RES

After renewable energy units acquire virtual inertia and droop
characteristics similar to synchronous machines through VSM
technology, these converter-based power sources can be
aggregated with synchronous machines into a single-machine
equivalent model. The SFR that considers the frequency
regulation capability of renewables is depicted in Figure 7.

FIGURE 5
Frequency response model of RES under virtual inertia control. FIGURE 6

Frequency response model of RES under droop control.

FIGURE 7
SFR model considering frequency control capability of
renewable energy.
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Where KRES and Km represent the proportions of actual output
power contributed by renewable energy units and thermal power
units, respectively, to the total system generation.

Without considering the virtual inertia provided by non-
synchronous power sources, after replacing synchronous units
with non-synchronous power sources of equal capacity, the
system equivalent inertia time constant based on the total rated
capacity of the system can be expressed by Equation 6:

HSYS
′ �

∑n−m
i�1

HiSi

∑n−m
i�1

Si + SB NSG( )
�
∑n
i�1
HiSi − ∑n

i�m+1
HiSi

∑n−m
i�1

Si

� HSYS − ΔH (6)

where ΔH represents the equivalent inertia time constant of the
synchronous units that have been replaced by non-synchronous
power sources.

From an energy perspective, replacing synchronous units with
non-synchronous power sources of equal capacity directly
reduces the number of conventional synchronous units in
operation. Consequently, the total rotational kinetic energy of the
system decreases as the number of synchronous units
diminishes, leading directly to a reduction in the system’s
equivalent inertia level.

Under the premise of not considering the participation of
asynchronous power sources in PFR, after replacing synchronous
units with asynchronous power sources of equal capacity, the
mechanical power gain coefficient of steam turbines, Km can be
expressed by Equation 7:

Kms
′ � SB s( )′

SB SG( )′ + SB NSG( )
� SB s( ) − ΔSB s( )

SB SG( )
� Kms − ΔKms (7)

where ΔSB(s) refers to the capacity of hydraulic turbines and steam
turbines that have been replaced by non-synchronized power
sources. ΔKms represents the variation in the mechanical power
gain coefficient for hydraulic turbines and steam turbines.

Accordingly, the equivalent droop coefficient of the system, R′
can be expressed by Equation 8:

1
R′ �

1
Rsys

− 1
Rs
ΔKms � 1

Rsys
− 1
ΔR (8)

whereΔR represents the variation in the equivalent droop coefficient
of the system after it has been partially replaced by non-synchronous
power sources.

In summary, since the total system capacity remains unchanged,
replacing synchronous units with non-synchronous power sources
of equal capacity directly alters the number of conventional
synchronous units in operation. Consequently, the number of
prime movers and governors of generating units decreases
accordingly, leading to a gradual weakening of the frequency
regulation capability of the governor system of generating units.
Therefore, when synchronous units are replaced by non-
synchronous power sources, the equivalent droop coefficient R′
of the system gradually increases, which is equivalent to reducing the
system’s PFR capability.

The SFR shown in Figure 7 can be further simplified, and by
letting HSYS = Hsys + Kd, the rotational inertia of conventional units

and the virtual inertia of renewable energy units can be aggregated
into the overall system inertia. Consequently, the SFR can be
expressed as:

Where Tsys represents the equivalent response time constant of
the system, and K denotes the participation factor of renewable
energy in frequency regulation, as shown in Equation 9.

K � 1 − kSG + kRE (9)
where kSG is the replaced portion of synchronous machines is
denoted as the proportion of substitution, and kRE represents the
proportion of power electronic sources that provide both inertia
and frequency regulation (if power electronic sources do not
provide frequency regulation, then kRE = 0). At this point, the
equivalent inertia of the system is HSYS, and the equivalent droop
coefficient is K/R. For simplicity, this equivalent model is used in
subsequent analysis to investigate the impact of PFR parameters
on the system.

3 The relationship between frequency
variation and model parameters

3.1 SFR considering the integration RES

Based on the SFR derived in the previous section from Figure 8,
the transfer function from load disturbance to frequency variation
can be expressed by Equation 10:

Δf � ω2
n

K D + R−1( )[ ] 1 + TSYSs( )Pd

s s2 + 2ζωn + ω2
n( )[ ] (10)

Where ωn and ζ represent the undamped natural frequency and
damping ratio, respectively, and their expressions are shown in
Equation 11:

f2
n �

DR + K

2HSYSRTSYS

ζ � 2HSYSR + DR + K( )TSYS

2 DR + K( )[ ]fn

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(11)

Assuming the magnitude of the disturbance is ΔP, applying
the Laplace inverse transform to Equation 10 yields the
expression of the system frequency response in the time
domain, enabling the further derivation of evaluation
parameters for the dynamic characteristics of system
frequency, as shown in Equation 12.

FIGURE 8
Simplified SFRmodel considering frequency control capability of
renewable energy.
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Δf t( ) � RΔP
DR + K

1 + αe−ζωnt sin ωrt + ϕ( )[ ]
ωr � ωn

�����
1 − ζ2

√

α �
�������������������
1 − 2TSYSζωn + T2

SYSω
2
n

1 − ζ2

√

ϕ � arctan
ωrTSYS

1 − ζfnTSYS
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(12)

At t = 0, the maximum rate of change of frequency (RoCoF) can
be obtained. Based on the above analysis, it can be concluded that:

dΔf
dt

∣∣∣∣∣∣∣t�0 �
ΔP

2HSYS +K
(13)

At t = ∞, the quasi-steady-state frequency deviation of the
system can be obtained.

Δfset � Δf ∞( ) � ΔP
D +K/R

(14)

Using typical parameters from the reference (Banarkar et al.,
2006) as the model’s parameters, and under a power disturbance of

10% of the synchronous generator capacity, the system frequency
response curves are compared after wind turbines replace SG at
different proportions, as shown in Figure 9.

From Figure 9A, it can be observed that as the proportion of
wind power replacing SG increases (K decreases), the maximum
frequency deviation, the maximum rate of change of frequency,
and the quasi-steady-state frequency deviation all exhibit an
increasing trend. Thus, all three evaluation indicators of
system frequency response deteriorate, undoubtedly indicating
that wind power integration has a negative impact on system
frequency response characteristics, and this negative impact
becomes more severe with an increasing proportion of wind
power integration.

Figure 9B demonstrates that variations in HSYS affect the
magnitude of the system frequency rate of change post-
disturbance. A smaller HSYS results in a larger frequency rate of
change throughout the PFR process, including an increased
maximum value at the initial moment of the disturbance,
consistent with the formula for calculating the maximum
frequency rate of change given in Equation 13. Additionally,
HSYS significantly influences the system’s frequency nadir, with a
smaller HSYS leading to an earlier occurrence of the nadir and a
larger maximum frequency deviation at this point.

According to Figure 9C, changes in D primarily impact the
system maximum frequency deviation. A smaller D results in a
larger maximum frequency deviation. While Equation 14 indicates
that D also influences the quasi-steady-state frequency deviation,
this effect is generally limited due to the typically small damping
coefficients in power systems.

Finally, Figure 9D shows that variations in R affect the quasi-
steady-state frequency deviation. A larger R delays the
occurrence of the frequency nadir and leads to a larger
maximum deviation at this point, as well as a larger quasi-
steady-state frequency deviation.

3.2 The requirement of the droop coefficient

According to above section, the K and R significantly influence
the Δfset. Thus, the relationship between K, R, and Δfset needs to be
further establish to control the value of Δfset under different
conditions of K by adjusting R.

According to Equation 14, the R can be calculated by:
Equation 12:

R � KΔfset

ΔP − ΔfsetD
(15)

It can be seen that the governing coefficient is directly
proportional to K, while it is inversely prwxoportional to ΔP and
D. Assuming a permissible quasi-steady-state frequency deviation of
Δfset = 0.2 Hz, the required droop coefficient R of the system is
dependent on K, the integration of power electronic sources, and the
active power disturbance ΔP. When the frequency regulation
contribution of power electronic sources in the system decreases,
an increase in the droop coefficient is necessary. Conversely, a larger
active power disturbance requires a reduction in the equivalent
droop coefficient to stabilize the system frequency.

FIGURE 9
(A)Change K. (B)ChangeHSY. (C)ChangeD. The characteristic of
system frequency response.
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Finally, a flowchart is given by Figure 10 to obtain the equivalent
droop coefficient R based on the proposed SFR in this paper.

4 Case studies

In this chapter, the test case employs the WSCC 4-machine 10-
bus system, with a simulation model built on PSCAD to validate the
effectiveness of the proposed SFR. The RES are modeled as common
Direct-Drive Wind Turbines, as depicted in Figure 11. Generators 1,
2, 3, and Wind Turbines have a rated capacity of 20 MVA each. The
system load is 75MW, and the system’s equivalent inertia constant is
4s. The system feeder line, transformer, load, and frequency
regulation parameters are shown in Tables A1–A3. The system
equivalent original droop coefficient R is set as 3%, with a renewable
energy frequency regulation contribution ratio K = 1 and equivalent
damping constant D is set as 1.

4.1 Performance of the proposed SFR

In order to verify the accuracy of the proposed SFR model, the
active power disturbances of the load increase are respectively set

as 8 MW, 12 MW, 16 MW (accounting for 10%, 15%, 20% of the
system capacity separately) in PSCAD simulation model and SFR
model. The frequency response curves and the errors between
the PSCAD and SFR are respectively shown in Figure 12
and Table 1.

From the above figure and table, it can be observed that the
output of the SFR model closely matches the results of the time-
domain simulation under various load increment scenarios. Even in
the case of 20% load increment, which caused a frequency drop of
0.46Hz, the error in the minimum frequency value was only 2.377%.
These simulation results convincingly demonstrate the effectiveness
of the proposed SFR model.

4.2 Performance of the droop coefficient
adjustment

When the system suffers a 20% active power disturbance
(18 MW), to maintain the quasi-steady-state deviation Δfset =
0.23 Hz, substituting parameters into Equation 15 yields a
equivalent droop coefficient of 1.4%. As shown in Figure 13,
which compares the frequency response curves before and after
the adjustment, by appropriately modifying the droop coefficient,
the quasi-steady-state deviation Δfset can be maintained at 0.23 Hz
even under larger active power disturbances.

Under the scenario that the proportion of new energy
sources participating in frequency regulation decreases, the
overall frequency regulation capability of the system declines,
leading to a shift in the demand for the droop coefficient.

FIGURE 10
Flowchart of the droop coefficient Setting.

FIGURE 11
Modified WSCC 4-machine 10-bus system .

FIGURE 12
(A) 10% active power disturbance. (B) 15% active power
disturbance. (C) 20% active power disturbance. Comparison results of
system frequency response.
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Keeping the power disturbance scenario in IV.A unchanged, the
proportion of wind turbines participating in frequency
regulation K is set to 0.5 and the simulation results are
shown in Figure 14.

Compared to the 10%-power-disturbance original waveform in
IV.A, the decrease in K results in a deterioration of the system
frequency stability, manifested by enlarged frequency fluctuations
and an increase in Δfset. To keep the Δfset to its initial value of
0.23 Hz, substituting the relevant parameters into Equation 14,
yields a required R of 1.4%. As shown in Figure 14, upon adjusting R
using the proposed method, Δfset is successfully reinstated to meet
the original specification in IV.A, despite the reduction in K.
However, due to the diminished participation of wind turbines in
frequency regulation, the frequency fluctuation profile exhibits
greater deviations compared to the original waveform.

To verify the impact of D on frequency regulation effectiveness,
keeping the 10%-power-disturbance scenario outlined in Section 4.1
unchanged, the equivalent damping constant D is set to 0.5 and the
simulation results are shown in Figure 15. According to Equation 15,
the ΔfsetD is much smaller than ΔP, so the impact of ΔfsetD can be
ignored, the droop regulation coefficient calculated by Equation 15
has not changed significantly. Thus, the droop coefficient doesn’t
need to be adjusted with the change of D.

5 Conclusion

This paper focuses on power systems with a high penetration of
RES. A SFR is established to investigate the frequency response
characteristics and the selection of droop coefficient post RES
integration. The key contributions and innovations of this work
are summarized as follows:

(1) For RES systems equipped with virtual inertia, an
SFR model is established, which incorporates the
participation of RES in frequency regulation. This SFR
model is utilized to analyze the impact of various
system equivalent parameters on frequency regulation.
Through theoretical derivation, the relationship
between the system’s governing coefficient, renewable
energy penetration rate, and frequency disturbances is
established, revealing the required droop coefficient
under different frequency disturbance and RES
penetration rate.

(2) The accuracy of the proposed SFR model is
experimentally validated, confirming its ability to
accurately reflect the changes in system parameters
such as larger power disturbances or variations in the
RES participation ratio in frequency regulation. This
ensures that the calculated governing coefficient
effectively responds to these changes, maintaining the
frequency regulation results within the operational
requirements of the power system.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

TABLE 1 Error between the PSCAD model and SFR model.

Load increase 8 MW (10%) 12 MW (15%) 16 MW (20%)

Lowest frequency point 0 Hz 0.001 Hz 0.002 Hz

steady-state frequency value 0.001 Hz 0.002 Hz 0.002 Hz

FIGURE 13
Comparison results after changing R.

FIGURE 14
Comparison results after changing K.

FIGURE 15
Comparison results after changing D.
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Appendix

TABLE A1 Feeders parameter.

Number R/pu X/pu B/pu

5–6 0.01 0.085 0.088

5–7 0.017 0.092 0.079

6–8 0.032 0.161 0.153

7–10 0.039 0.17 0.179

8–9 0.0085 0.072 0.0745

9–10 0.0119 0.1008 0.1045

TABLE A2 Transformers parameter.

Number X/pu Ratio Capacity

1 0.0576 16/230 100

2 0.0625 16/230 80

3 0.0586 16/230 80

TABLE A3 Loads parameter.

Number P/MW Q/MW

6 30 11

7 20 7

9 25 8

TABLE A4 Speed control parameters of steam turbines.

Generator Rs/pu Ts/s Tt/s

1 0.04 0.025 0.1

2 0.04 0.025 0.1

3 0.04 0.025 0.1
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Nomenclature

Abbreviations

RES Renewable Energy Sources

RoCoF Rate of Change of Frequency

SFR System Frequency Response

SG Synchronous Generators

VSM Virtual Synchronous Machine

Symbols

D Load damping constant

Δf Frequency variation

Δfset Steady-state frequency deviation

Hi Respective inertia time constants

Hsys Generator’s equivalent inertia time constant

HSYS Equivalent inertia time constant for SFR

kd Virtual inertia coefficient

kRE Proportion for RES

kRE Proportion for SG

Km Gain coefficient for SG

KR Droop control coefficient for RES

KRES Gain coefficient for RES

n The number of synchronous units

ΔPe Electromagnetic power output

ΔPe1 Power output variation for RES

ΔPL Power variation of frequency-sensitive loads

ΔPm Mechanical power output

R Equivalent droop coefficient

SB(SG) total rated capacity of SG

Si Respective rated capacities

Ts Inertia time constant for SG

Tsys Equivalent response time constant for SFR

Tt Time constant for SG

Δω Angular velocity variation
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grid-tied converters with
grid-following and grid-forming
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When the Grid-Following (GFL) and the Grid-Forming (GFM) converters are
hybrid-connected to the grid, they are coupled through the grid impedance.
During grid faults, the transient characteristics of the two converters become
more complex due to this coupling. If one of the converters experiences stability
issues, it affects the other, making fault ride-through challenging. Amathematical
model for the hybrid grid-connected system of the two converters is first
established to analyze the existence conditions of the equilibrium point. Using
the phase-plane method, the mutual influence mechanism during faults is
revealed. Subsequently, a method to adjust the GFM phase angle based on
the degree of voltage sag is proposed, which also improves the phase-locked
loop (PLL) of the GFL. The influence of GFL current injection is considered to limit
the GFM fault current, thereby achieving hybrid fault ride-through control. Finally,
the simulation verifies the effectiveness of the proposed control strategy. The
results show that the proposedmethod can adjust the phase angle to support the
grid, ensuring that the GFM outputs more reactive current within the maximum
allowable current range. Meanwhile, the GFL injects current according to grid
guidelines, effectively preventing overcurrent and phase angle instability of the
converters.

KEYWORDS

grid-following converter, grid-forming converter, hybrid grid-connected system,
stability, hybrid fault ride-through control

1 Introduction

With the implementation of carbon peaking and carbon neutrality policies, the
development and application of renewable energy have progressively become essential
pathways toward achieving green, low-carbon, and sustainable development goals (Huang
et al., 2024). The share of non-synchronous generation in power systems is steadily
increasing, resulting in high proportions of renewable energy and power electronic
devices becoming defining features of modern power systems (Gu and Green, 2023). A
high proportion of new energy and power electronic equipment has become a notable
characteristic of power systems. In order to provide the system support, a serial of the
control is implemented into the Inverter-Based Resources (IBR). In general, the control of
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the IBR can be classified into the GFL and GFM. It is worth noting
that using GFL as themain grid - connected devices does not provide
sufficient inertia and damping for the system, resulting in a further
decrease in system inertia, which jeopardizes the safe operation of
the power system. GFM, which possess the characteristics of a
synchronous generator, have garnered widespread attention.
Compared to GFL, they can effectively function as a voltage
source, allowing them to regulate system voltage and frequency
and provide necessary inertia and damping support. Nevertheless,
GFL still have advantages that GFM cannot replace. On the other
hand, the current new energy power stations are equipped with GFL,
making it impractical to replace them all with GFM. Therefore, a
feasible alternative is to modify some of the already installed
converters to grid-forming control. This implies that in future
power systems, both grid-following and GFM will coexist (Zhao
and Flynn, 2022).

Both GFL and GFM converters achieve frequency and voltage
support functions. However, due to their different roles in the power
system, their transient responses will also differ (Wei et al., 2024).
The GFL behaves as a controlled current source, which uses the PLL
to detect the grid state on the frequency and voltage and then
accordingly provides a passive support (Kim et al., 2024). While the
GFM behaves as a controlled voltage source, of which mechanism is
similar with the power-angle transients of the synchronous
generator and thus, which naturally can provide an active
support (Zhang et al., 2023). In the event of a grid fault, a
synchronous generator can inject 6 to 8 times its rated current
(pu) to support the grid (Taul et al., 2020). However, the overcurrent
tolerance of converters is relatively low.Without proper control, this
could lead to disconnection of renewable energy generation
equipment from the grid or damage to the converters. To
address this, IEEE standard 2,800–2022 provides detailed
technical requirements for renewable energy generation
equipment regarding fault ride-through capabilities (IEEE, 2022).
Currently, research mainly focuses on the transient processes of
single GFL or single GFM converters during fault ride-through, with
an emphasis on the control of fault current and power angle. For
GFL, Zhang and Schuerhuber (2023) enhances system stability
during grid faults and improves post-fault recovery performance
by adjusting current injection via PLL frequency feedback. However,
the steady-state operating points and stability become challenging to
predict. Xu et al. (2021), by removing the frequency feedback loop
and employing frequency-locking techniques, fixes the PLL
frequency to maintain its output at the state of the previous
moment. Nonetheless, this approach struggles to meet the
requirements of grid codes. He et al. (2021) suggests locking only
the integral part of the PLL during faults, but this method fails when
there is no equilibrium point after the fault. Gao et al. (2023) adjusts
the ratio of active to reactive current to match the grid impedance
ratio, which helps ensure the existence of a post-fault equilibrium
point. However, this approach still falls short of adhering to grid
codes. For GFM, Li et al. (2022) highlights that under fault
conditions, grid-forming control may need to switch to grid-
following control. A backup PLL is essential for achieving
seamless transitions, but stability issues may arise, particularly in
weak grid environments. However, this process requires a backup
PLL andmay face stability issues in weak grid environments. Xi et al.
(2022) adopt a current limiting method in the current loop of the

converter’s double closed-loop control to limit fault currents. Lu
et al. (2023) introduces virtual impedance in the current control loop
(CCL) to dynamically adjust the voltage compensation value,
effectively limiting high-frequency transient overcurrent. Zheng
et al. (2023) enhances the low voltage ride-through (LVRT)
strategy by incorporating current reference limitation
functionality within the current control loop, successfully
constraining the peak value of short-circuit currents. However,
the above methods turn the voltage source into a current source,
making power control difficult, reducing stability, and potentially
causing instability. Chen et al. (2020) proposes a strategy using
voltage limiting to control fault current, locking the reactive voltage
droop, and calculating the reference voltage based on the maximum
allowable current. For hybrid grid-tied converters (HGCs), that is,
GFL and GFM are coupled with each other through the grid
impedance and integrated into the same power system. Cheng
et al. (2022) analyzes the transient voltage angle stability of GFL
and GFM converters. Tian et al. (2023) studies the impact of steady-
state operating points and control parameters of GFL and GFM
modes on islanded microgrid stability and proposes a virtual
impedance design methodology to enhance system stability.
However, there are relatively few studies on the fault ride-
through problem under the hybrid grid conditions where
converters based on GFM and GFL controls coexist. In fact,
during faults, the cooperation between converters with different
control strategies can provide better service to the grid.

To overcome the aforementioned limitations, this study
introduces a hybrid fault ride-through control strategy aimed at
improving the issue of fault ride-through during symmetrical
voltage dips when low voltage faults occur in the grid. The main
contributions of this strategy are as follows:

• A hybrid grid-tied system model consisting of GFL and GFM
converters operating in parallel is developed in the context of
their coexistence in power systems. Transient stability analysis
is performed to investigate the coupling effects between the
two converters through grid impedance.

• The phase plane trajectories of the GFL and GFM converters
under fault conditions are plotted to visually illustrate the
dynamic characteristics of both converters during faults. This
approach reveals how the mutual coupling between GFM and
GFL influences system stability.

• A fault ride-through strategy is proposed, which involves
adjusting the GFM power angle based on the degree of
voltage dip and incorporating this adjustment into the GFL
to improve its PLL. Additionally, the strategy considers the
impact of GFL current injection and imposes fault current
limitations on the GFM, achieving coordinated fault ride-
through control for the hybrid system.

• A hybrid grid-tied system model, integrating GFL and GFM
converters, is constructed in Matlab/Simulink. The output
characteristics of GFL and GFM converters during faults are
analyzed, and the proposed fault ride-through control strategy
is validated through simulation experiments.

The structure of this paper is organized as follows: Section 2
constructs the basic model of the grid-following/grid-forming
converter HGS. Section 3 analyzes the interaction mechanism
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between GFL and GFM when a low-voltage fault occurs in the
power grid. Section 4 proposes a GFM power angle control
considering the influence of GFL current injection and a
hybrid fault ride-through control strategy based on an
improved grid-forming phase-locked loop. During the fault
period, this strategy can not only ensure the power angle
stability and limited fault current of the GFM but also enable
the GFL to inject current in accordance with the grid guidelines.
Section 5 verifies the correctness and effectiveness of the
proposed control strategy through simulation.

2 The connection of grid-forming and
GFL with the system

2.1 Main circuit system topology

The research object of this paper is the parallel system of grid-
following and GFM, as illustrated in Figure 1. In this parallel system,
the DC-side power of the two converters can be supplied by
photovoltaic panels, wind turbines, energy storage devices, or
other sources. However, since the focus of this study lies in the
characteristics of the converters on the AC side, the structure of the
DC-side power sources is disregarded.

The fundamental concept of the HGS system is to combine
grid-following and grid-forming control strategies in parallel,
thereby integrating the respective characteristics of these two
control approaches. The grid-following converter employs a
PLL for synchronization control, and its control structure
includes sampling, the PLL, inner current control loops, and
a PWM generator. In contrast, the grid-forming converter

adopts a more mature Virtual Synchronous Generator (VSG)
control strategy. Its control circuit primarily consists of active
power and reactive power loops, coordinate transformation,
dual-loop voltage and current control, and PWM signal
modulation. The two converters are connected to the main
power grid via PCC.

In Figure 1, VDC is a constant DC voltage; Rf1, Lf1, Rf2, and
Lf2 are the filter resistances and filter inductances for the GFL
and GFM converters, respectively; Cf2 is the filter capacitor for
the GFM converter; R1, L1, R2, and L2 are the line resistances and
line inductances for the GFL and GFM converters, respectively;
Rg and Lg represent the line resistance and inductance between
the PCC and the grid; Upcc is the voltage at the PCC; iabc1 and
iabc2 are the converter-side currents for the GFL and GFM
converters, respectively; uabc1 and uabc2 are the output
voltages for the GFL and GFM converters, respectively; Vg is
the grid voltage.

2.2 Grid-following converter based on
current control

The control system of the GFL is shown in Figure 2. The core of
the GFL control strategy is the PLL, and its control structure is
shown in Figure 3. The PLL synchronizes the generating unit with
the grid by estimating and tracking the phase of the grid voltage
uabc1. The outer-loop power control compares the reference values
with the actual values to generate an error signal, which serves as the
reference for the inner-loop current control. The inner-loop current
control generates modulation signals, which are then processed by
the PWM stage.

FIGURE 1
Parallel topology of grid-connected converters with GFL and GFM.
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The mathematical model of the PLL can be expressed as follows:

dθpll
dt

� ωpll

dωpll

dt
� kiuq1 + kp

duq1

dt

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)

In Equation 1: θpll is the output phase angle of the PLL; ωpll is the
output angular frequency of the PLL; ud1 and uq1 are the d-axis and
q-axis voltages of the grid-connected point, respectively; ki and kp
are the proportional and integral gains of the PI controller. θpll is
used as the angle for the Park transformation, achieving decoupled
control of active and reactive power by aligning uabc1 with the d-axis,
ensuring that uq1 = 0.

The PLL is used to provide the reference angle for the Park
transformation. By aligning uabc1 to the d-axis, such that uq1 = 0,
decoupled control of active and reactive power is achieved. This
ensures precise power regulation and synchronization of the system
with the grid.

idref � kp p Pref − PGFL( ) + ki p Pref − PGFL( )/s
idref � kp udc Udcref − Udc( ) + ki udc Udcref − Udc( )/s

⎧⎨⎩ (2)

iqref � kp−uo Uoref − UGFL( ) + ki−uo Uoref − UGFL( )/s
iqref � kp−q Qref − QGFL( ) + ki−q Qref − QGFL( )/s

⎧⎨⎩ (3)

In Equations 2, 3, idref and iqref represent the d-axis and q-axis
reference currents, respectively. kp_p and ki_p, kp_udc and ki_udc,
kp_uo and ki_uo, and kp_q and ki_q are the proportional and
integral gains of the respective PI controllers. Pref denotes the
active power reference value, and Qref represents the reactive
power reference value. Udcref is the reference value for the DC-
side voltage, while Uoref is the reference value for the PCC voltage.
Finally, UGFL indicates the output voltage magnitude of the
GFL converter.

The mathematical model of the inner current loop can be
expressed as follows:

umd � uGFLd + kp i idref − id( ) + ki i idref − id( )/s − ωLf iq
umq � uGFLq + kp i iqref − iq( ) + ki i iqref − iq( )/s + ωLf id

⎧⎨⎩ (4)

In Equation 4, umd and umq represent the d-axis and q-axis
components of the modulation signal, respectively. kp_i and ki_i are
the proportional and integral gains of the PI controller, respectively.
Lfiq and Lfid denote the decoupling control terms.

2.3 Grid-forming converter based on
VSG control

The control part of a VSG includes an active power loop, a
reactive power loop, dual voltage-current control loops, and PWM
signal modulation. The core of the control is the active and reactive
power loops. VSG achieves synchronization with the grid by
mimicking the rotor characteristic equations of a synchronous
generator. Consequently, a grid-forming converter based on
virtual synchronous generator control possesses the external
characteristics of a synchronous generator. The schematic
diagram is shown in Figure 4.

The control system of GFM converter is shown in Figure 5. The
voltage control, current control, and PWM generator of the GFM
converter are consistent with those of the grid-following converter.

The GFM converter achieves control over its output active and
reactive power through the active power loop and reactive power
loop. The mathematical model of the active power loop under VSG
control can be expressed as follows:

dθvsg
dt

� ωvsg

J
dωvsg

dt
� Pset − P − Dp ωvsg − ωn( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (5)

In Equation 5: θvsg is the output phase angle of the VSG; ωvsg is
the derivative of θvsg; Pset is the input mechanical power; P is the
output active power of the VSG; ωn is the nominal angular
frequency; J is the moment of inertia; and Dp is the damping
coefficient.

The active power loop adjusts θvsg to regulate the output active
power P of the VSG, ultimately ensuring that P = Pset.

FIGURE 2
The control system of the GFL.

FIGURE 3
Schematic diagram of phase locked loop.
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The mathematical model of the reactive power loop can be
expressed as:

U ref � U0 + kq Qref − Q( ) (6)

In Equation 6: Uref is the output voltage of the VSG; U0 is the set
value of the output voltage; kq is the droop coefficient of the reactive
power loop; Qref is the reactive power reference value; and Q is the
output reactive power of the VSG.

The reactive power loop adjusts the output voltage reference
value based on the output reactive power.

3 Mathematical modeling of HGS

3.1 The mathematical model and transient
characteristics of the grid-
connected system

The bandwidth of the current loop in the GFL is significantly
larger than the bandwidth of the PLL. By ignoring the dynamic
process of the current loop, the GFL can be approximated as a
current source. Similarly, in the GFM, the adjustment speed of the
inner voltage and current loops is much faster than that of the active
and reactive power loops. By neglecting the dynamic process of the
inner voltage and current loops, the GFM can be approximated as a
voltage source (Li et al., 2021). Circuit impedance is considered

negligible, and the phase angle of the grid voltage is taken as the
reference angle (Gursoy et al., 2023).The equivalent circuit diagram
of Figure 1 is shown in Figure 6.

In this figure, I1 is the RMS value of the output current of the
current-controlled converter; U1 is the RMS value of the output
voltage of the GFL; θpll is the phase angle difference between the PLL
and the grid, corresponding to the power angle of a synchronous
generator, and for convenience, it will be referred to as the power
angle hereafter; φ1 is the phase angle difference between voltage U1

and current I1;U2 is the RMS value of the output voltage of the GFM;
δvsg is the power angle of the GFM; Vg is the RMS value of the
grid voltage.

According to the superposition theorem, the PCC voltage
Upcc∠δpcc in Figure 6 can be expressed in the stationary reference
frame as:

Upcc∠δpcc � jk1I1∠ δpcc + φ1( ) + k2U2∠δvsg + k3Vg∠0° (7)

In Equation 7: k1 � ωpll
L2Lg
L2+Lg; k2 �

Lg
L2+Lg; k3 � L2

L2+Lg.
The point where the PLL measures the voltage is U1∠δpll, which

can be expressed as:

U 1∠δpll � jk4I1∠ δpll + φ1( ) + k2U2∠δvsg + k3Vg∠0° (8)

In Equation 8: k4 � ωpllL1 + ωpll
L2Lg
L2+Lg.

Transforming Equation 8 to the dq rotating reference frame
based on the PLL, the q-axis voltage of U1 can be obtained as:

uq1 � k4id1 + k2U2 sin δvsg − δpll( ) − k3Vg sin δpll (9)

In Equation 9: typically, δvsg, δpll∈[0,π/2].
Comparing Equation 9 with the case of a single GFL connected

to the grid, it can be observed that the q-axis voltage uq1 of the GFL
has an additional impedance drop coupling term (Paquette and
Divan, 2015). The magnitude of this coupling term is related to k2,
U2, δvsg, and δpll, indicating that the power angle of the PLL is also
influenced by the GFM power angle δvsg.

From Figure 6, the single-phase output complex power of the
GFM can be expressed as:

_S2 � U2∠δvsg
U2∠δvsg − Upcc∠δpcc

jX2
( )p

(10)

In Equation 10, X2 = ωn L2, where ωn is the nominal
angular frequency.

Substituting Equation 7 into Equation 10, we obtain:

FIGURE 4
Virtual synchronous machine control schematic diagram.

FIGURE 5
The control system of GFM converter.
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P2 � k3U2Vg

X2
sin δvsg − k1U2I1

X2
cos δvsg − δpll − φ1( ) (11)

Q2 � U2
2 − k2U2

2

X2
− k3U2Vg

X2
cos δvsg − k1U2I1

X2
sin δvsg − δpll − φ1( )

(12)
From Equations 11, 12, it can be seen that the GFL affects both

the active power loop and the reactive power loop of the GFM.
Compared to the single machine case, an additional active power
coupling term and a reactive power coupling term are introduced.
The magnitude of this impact is related to k1、U2、I1、X2、δvsg,

δpll, and φ1. The power angle of the GFM is also influenced by the
output current I1 of the GFL. By calculating the three-phase active
power using Equation 11 and substituting it into Equation 5, it can
be obtained that the GFM in steady state satisfies Equation 13.

Pset − 3
k3U2Vg

X2
sin δvsg + 3

k1U2I2
X2

cos δvsg − δpll − φ1( ) � 0 (13)

In summary, the transient analysis model of the HGS can be
obtained, as shown in Figure 7. It can be seen that the integration of the
GFL adds a power coupling term to the GFM; similarly, the GFM adds
an impedance drop coupling term to the GFL (Zhang et al., 2024).

3.2 Transient stability analysis considering
coupling effects

Setting Equation 9 to 0, the condition for the PLL to have an
equilibrium point can be obtained as:�����������������������������������

k2U2

k4
( )2

+ k3Vg

k4
( )2

+ 2
k2k3U2Vg

k24
cos δvsg

√√
≥ id1 (14)

When the GFM operates stably, δvsg ∈[0, π/2]. If id1 > k2U2+k3Vg

k4
,

then Equation 14 cannot be satisfied, and there is no equilibrium

FIGURE 6
HGS equivalent circuit diagram.

FIGURE 7
Transient analysis model of HGS.
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point for the PLL. If id1 ≤
k2U2+k3Vg

k4
, then Equation 14 can be satisfied,

and an equilibrium point exists for the PLL.
From Equation 13, it can be seen that the presence of I1 increases

δvsg, reducing the stability margin of the GFM. Themagnitude of δvsg

is directly proportional to k1, U2, and I1, and inversely proportional
to X2. If I1 is too large, it may cause the initially stable GFM to lose
power angle stability. If the GFM loses power angle stability due to a
fault or other reasons, its output angle δvsg increases indefinitely. As

FIGURE 8
Phase portrait of different id1 of GFL. (A) The phase plane of the GFL under fault conditions. (B) The phase plane of the GFM under fault conditions.

FIGURE 9
Phase portrait of different Pset of GFM. (A) The phase plane of the GFL under fault conditions. (B) The phase plane of the GFM under fault conditions.

FIGURE 10
Voltage vector diagram. (A) Based on the GFM rotating coordinate system. (B) Based on the GFL rotating coordinate system.
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indicated by Equation 14, when δvsg = 2kπ + π, k∈Z, the impact on
the PLL is maximized, leading to two possible situations: ① If
Equation 14 is not satisfied, the GFL becomes unstable. ② If
Equation 14 is satisfied, since δvsg increases indefinitely, Equation

9 remains in a state of adjustment and cannot stabilize or converge
to 0, indicating that the GFL becomes unstable.

Therefore, transient instability in the GFM will trigger a chain
reaction, causing transient instability in the GFL.

FIGURE 11
HGS transient power angle control.

FIGURE 12
HGS fault current control.
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From Equation 13, the GFM has a steady-state point when the
following condition is satisfied:�������������������������������������������������
9

k3U2Vg

X2
( )2

+ 9
k1U2I1
X2

( )2

− 18
k1k3U2

2VgI1
X2

2

sin δpll + φ1( )
√√

≥Pset

(15)
When the GFL operates stably, δpll ∈ [0, π/2] and φ1 ∈ [-π/2, 0]. If

Pset > 3 k3U2Vg+k1U2I1
X2

, Equation 15 cannot be satisfied, and there is no
equilibrium point for the GFM. If Pset ≤ 3 k3U2Vg+k1U2I1

X2
, then

Equation 15 can be satisfied, and an equilibrium point exists
for the GFM.

From Equation 9, it can be seen that when δvsg > δ pll, δ pll increases,
and the stability margin of the GFL decreases. When δvsg < δpll, δpll
decreases, and the stability margin of the GFL increases. When δvsg =
δpll, the coupling term is zero, and δpll is not affected by the GFM. If the
GFL loses synchronization stability due to a fault or other reasons, the
PLL will have no equilibrium point, causing the power angle δpll to
increase indefinitely, thereby affecting the GFM. There are two possible
scenarios:① If Equation 15 is not satisfied, the GFM becomes unstable.
② If Equation 15 is satisfied, due to δpll increasing indefinitely, Equation
13 remains in a state of adjustment and cannot converge to zero,
indicating that the GFM becomes unstable.

Therefore, when the GFL experiences transient instability, the
increase in its output phase also causes the GFM to experience
transient instability.

In summary, it is essential to ensure the simultaneous stability of
both converters; instability in either one will affect the stability of
the other.

Additionally, during grid voltage sag, the GFM, being a voltage
source type, can experience transient overcurrent and steady-state
overcurrent. Under fault conditions, the circuit satisfies:

L2 + Lg( ) di2F
dt

� u2F − νgF − Lg
di1
dt

(16)

In Equation 16: i2F is the instantaneous value of the GFM output
current during a fault; u2F is the instantaneous value of the GFM
output voltage during a fault; vgF is the instantaneous value of the
grid voltage during a fault; i1 is the instantaneous value of the output
current of the current-controlled converter.

From Equation 16, it can be seen that the presence of the GFL
can reduce the fault current of the GFM.

During a fault, reducing the GFL output current id1 not only
ensures the existence of the PLL equilibrium point, but also, as seen
from Equation 9, the reduction of id1 can slow down the acceleration
process of the GFL output ωpll during the fault, thereby reducing the
deviation ofωpll. Since the inertia of the GFM is much larger than the
equivalent inertia of the GFL, the increase rate of δvsg is slower than
that of δpll during a fault. Additionally, because the fault duration is
short, during the fault, (δvsg − δpll) ∈ [-π/2, 0] (Cheng et al., 2022).
For purely active power output, φ1 = 0, and the reduction in id1 is
much greater than the change in the cosine function, so the effect of

FIGURE 13
Fault ride-through control flowchart.
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the cosine function can be ignored. Therefore, when id1 is reduced,
the power coupling term in Equation 11 is also reduced. From
Equation 5, it can be seen that this also helps to slow down the
acceleration of the GFM output ωvsg during the fault, reducing the
deviation of ωvsg. The phase plane diagram of the HGS under
different id1 conditions during a fault is shown in Figure 8.

From Figure 8, it can be observed that reducing the active
current of the GFL can slow down the acceleration process of
both the GFL and GFM during a fault, thereby improving the
synchronization stability of the two converters. Moreover, the
smaller the id1, the better the synchronization stability of the two
converters; conversely, the larger the id1, the worse the
synchronization stability of the two converters.

During a fault, reducing the input mechanical power Pset of the
GFMnot only ensures the existence of theGFM’s equilibriumpoint but,
as shown in Equation 5, also slows down the acceleration process of the
GFM’s output ωvsg during the fault, reducing the deviation of ωvsg. A
decrease in Pset during a fault causes the δvsg of the GFM, which has
inertia, to increase more slowly than δpll. The smaller the Pset, the slower
the increase of δvsg, the larger the | δvsg − δpll |, and the smaller the
impedance drop coupling term in Equation 9, resulting in a smaller
deviation of the GFL’s outputωpll. The phase plane diagram of the HGS
under different Pset conditions during a fault is shown in Figure 9.

From Figure 9, it can also be seen that reducing the input
mechanical power Pset of the GFM can similarly slow down the
acceleration process of both the GFM and GFL during a fault, thereby
enhancing the synchronization stability of the two converters.
Moreover, the smaller the Pset, the better the synchronization
stability of the two converters; conversely, the larger the Pset, the
worse the synchronization stability of the two converters.

4 Fault ride-through control of the HGS

During a low voltage sag fault in the grid, the HGS faces three
issues: power angle instability caused by the power imbalance
between the GFM and GFL; outputting reactive current in
compliance with grid codes to support the grid; and the risk of
overcurrent due to the large short-circuit current of the GFM, which
threatens power electronic equipment.

From the previous analysis, it is known that reducing id1 and Pset
during a grid fault helps ensure the existence of the equilibrium
points of the GFL and GFM, and simultaneously enhances the
transient stability of both converters. However, the conditions for
the existence of the equilibrium points of both converters are
coupled through the GFL power angle δpll, the GFL output
current I1, the GFM power angle δvsg, and the GFM output
voltage U2. Directly controlling the power angles by adjusting id1
and Pset is quite challenging. Therefore, this paper first determines
the values of the GFM power angle δvsgF, the fault currents I1F and I2F
during the fault, and then calculates the required VSG output voltage
U2F and mechanical power PsetF based on the power angles.

4.1 Equations transient power angle control

During a grid fault, while maintaining power angle stability, the
GFM power angle δvsgF is adjusted based on the extent of the grid
voltage sag to modify the reactive component of the output current
during the fault, thereby supporting the grid. The adjustment rules
are as follows:

δvsgF �

VgF

Vg
δ02 , 0.2< VgF

Vg
< 0.9

0 ,
VgF

Vg
≤ 0.2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(17)

In Equation 17, δ 0 2 is the power angle of the GFM before the
fault;VgF is the RMS value of the grid phase voltage after the fault.
During the fault, by adjusting Pset, we can control the power angle of
the GFM, making it reach δvsgF under the corresponding VgF.

According to Equation 14, the equilibrium point of the PLL is
not only related to the output current id1 but also affected by the
inductances L1, L2, and Lg. Therefore, by adjusting only the current,
especially in a weak grid environment, it is impossible to ensure the
existence of the equilibrium point. Hence, the output phase angle
θvsg of the GFM is transmitted to the PLL. However, under this
circumstance, the PLL becomes an open-loop system with a steady-
state error, making it impossible to precisely alignŮ1with the d-axis.

From Figure 10A, it can be seen that there is a fixed angular
difference φ between Ů1 and the d-axis dGFL of the GFL. Therefore,
the angle of the GFL needs to be adjusted by adding a fixed angle φ
on the basis of θvsg. This can be obtained by measuring the deviation
of uq1 and applying PI control.

θpll � θvsg + ϕ

ϕ � kpuq1 + ki ∫ uq1

⎧⎪⎨⎪⎩ (18)

Using Equation 18, an improved PLL based on the grid-forming
model can be obtained, which can also precisely align U1 with the
d-axis of the two-phase rotating coordinate system of the GFL, as
shown in Figure 10B. At this point, the active power and reactive
power of the GFL are decoupled.

The PsetF during the fault can be obtained as:

PsetF � 3
k3U2VgF

X2
sin δvsgF − 3

k1U2I1
X2

cos ϕ + φ1( ) (19)

TABLE 1 Parameters of HGS.

Parameter Value

DC bus voltage (VDC/V) 800

Grid voltage amplitude (Vg/V) 311

Grid angular frequency [ωg/(rad/s)] 314

GFL line inductance (L1/mH) 3.2

GFM line inductance (L2/mH) 3.2

Grid inductance (Lg/mH) 4

GFM moment of inertia [J/(kg/m2)] 5

GFM active power damping coefficient (Dp) 130

GFM reactive power droop coefficient (kq) 0.01
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After introducing the input mechanical power adjustment
loop in the GFM and adopting the improved PLL based on the
grid-forming model in the GFL, the control block diagrams of
the GFM and GFL are shown in Figure 11. In this case, as long
as the GFM remains stable, the stability of the GFL can
be ensured.

4.2 Fault current control

4.2.1 Steady-state current control
Although the GFM is stabilized by adjusting the input

mechanical power, this does not effectively suppress the

overcurrent phenomenon. Even though the presence of the
GFL can reduce the fault current of the GFM, the GFM may
still generate a significant fault current when there is a substantial
drop in grid voltage. Therefore, when the fault current I2F exceeds
1.5 times the rated current, the control of the GFM fault current
I2F is as follows:

I2F � 1.5I2n (20)
In Equation 20: I2n is the rated value of the GFM output current.
Since the GFL is a current source type, it will not generate

steady-state overcurrent during a fault. However, to support the
grid, it needs to output reactive current. The adjustment rules for the
output current of the grid-following type are as follows:

FIGURE 14
Output waveform under symmetrical fault of grid. (A) Power angle curve. (B) Grid-Following output current. (C) Grid-Forming output current. (D)
Grid-Following output power. (E) Grid-Forming output power.
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Iq1F �

0 ,
VgF

Vg
≥ 0.9

−1.5 0.9 − VgF

Vg
( )I1n , 0.2≤

VgF

Vg
< 0.9

−1.05I1n ,
VgF

Vg
< 0.2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Id1F �

��������
I21n − I2q1F

√
,
VgF

Vg
≥ 0.2

0 ,
VgF

Vg
< 0.2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(22)

In Equations 21, 22: I1n is the rated value of the GFL output
current;Id1F is the d-axis output current of the GFL during a fault;
Iq1F is the q-axis output current of the GFL during a fault.

Based on Equations 17, 21, 22, the values of δvsgF, Iq1F, and Id1F
are obtained, respectively. From Equations 7, 9, 11, 20, the following
system of equations can be derived:

A − k3Vg( )2 + B2 − 2 1.5X2I2n( )2 � 0
k4id1F − k2U2F sinϕ − k3Vg sin δvsgF + ϕ( ) � 0
PsefF � C sin δvsgF − D cos ϕ + φlF( )

⎧⎪⎨⎪⎩ (23)

In Equation 23: φ1F � arctan(Iq1F
Id1F
); I1F � ���������

I2d1F + I2q1F
√

;A �
U2F cos δvsgF + k1I1F sin(δvsgF + ϕ + φ1F) − k2U2F cos δvsgF; B � U2F

sin δvsgF − k1I1F cos(δvsgF + ϕ+ φ1F) − k2U2F sin δvsgF;C � 3 k3U2FVg

X2
.

Equation 21 can be solved using numerical methods to obtain
the output voltage U2F of the GFM and the input mechanical power
PsetF during a fault. Since the reactive power loop adjusts the output
voltage command, this may lead to inaccurate fault current control.
Therefore, during a fault, the reactive power loop is locked, and the
calculated U2F is used to replace the output of the
reactive power loop.

4.2.2 Steady-state current control
The transient current of the GFL is small and has a minimal

impact on the system, so it can be neglected. However, the transient
current of the GFM is relatively large, and adjusting the reference
voltage of the reactive power loop alone is not effective. If left
unchecked, it can damage transistors.

Therefore, transient virtual impedance is used to suppress
transient overcurrent. The threshold current Ith for the virtual
impedance is set slightly above 1.5 times I2n. When the detected
fault current exceeds Ith, the virtual impedance is activated;
otherwise, the virtual impedance remains inactive. By combining
the virtual impedance with the adjustment of the reactive power
loop, the output voltage of the GFM can be expressed as:

U ref � U2F − I2FZv (24)

In Equation 24: Zv is the virtual impedance.
The overall current control block diagram is shown in Figure 12:

4.3 Fault ride-through control process
for HGS

The fault ride-through control process is illustrated in Figure 13.
The system operates under normal conditions, monitoring Vg to
determine whether a fault has occurred. In the event of a ground
fault, the value of Vg decreases.

When the grid voltage drops above a specified threshold, the
transient current is evaluated to determine whether it exceeds the
current-limiting threshold, thereby deciding whether to activate
transient virtual impedance control. If the grid voltage falls below
the threshold, transient power angle control is first applied to the
hybrid system. Using Equations 17, 21, 22, the fault power angle of
the GFM converter and the reference current for the GFL converter
are determined. Subsequently, the value of PsetF is calculated
according to Equation 19.

Next, the fault current of the GFM converter is monitored. If the
current exceeds the transient current-limiting threshold, both the
reactive power loop and transient virtual impedance control for the
GFM converter are activated. If the current only exceeds the steady-
state current-limiting threshold of the GFM converter, only the
reactive power loop control is applied.

Once the reactive power loop control is engaged in the GFM
converter, the previously determined GFM fault power angle and
GFL reference current are used to calculate PsetF and U2F according
to Equation 23. When Vg recovers above the threshold value, the
hybrid system transitions back to the normal control strategy.

FIGURE 15
Change the reference value of the inverter. (A) Changing Grid-Following reference current. (B) Changing Grid-Forming input mechanical power.
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5 Case study

To verify the theoretical analysis and the proposed fault ride-
through control strategy, a hybrid grid-connected model of grid-
following and GFM, as shown in Figure 1, was built in Matlab/
Simulink. The system parameters are listed in Table 1.

5.1 Output characteristics of GFM and GFL
during fault conditions

When the three-phase grid voltage drops to 0.5, the output
currents and power angles of the GFM and GFL are shown in

Figure 14. The simulation duration is set to 3 s, with a fault occurring
at 0.5 s and clearing at 2 s. As seen in Figure 14, during the fault, the
power angles of both the GFM and GFL increase indefinitely. The
output currents of the two converters are affected by the power
angles, resulting in oscillations. Since the GFM is a voltage source
type, its maximum current amplitude reaches three times its rated
operating value. The output active and reactive power of both
converters also experience oscillations.

Figure 15A shows the power angle curves of both converters
when the d-axis current reference value I *d1 of the grid-following
converter is changed from 1 pu to 2.5 pu at 0.5 s and restored to 1 pu
at 2 s. Figure 15B shows the power angle curves of both converters
when the input mechanical power Pset of the grid-forming converter

FIGURE 16
Output waveform under transient power Angle fault ride-through control only. (A) Grid-Forming output voltage. (B) Power angle curve. (C) Grid-
Following output current. (D) Grid-Forming output current. (E) Grid-Following output power. (F) Grid-Forming output power.
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is changed from 1 pu to 3 pu at 0.5 s and restored to 1 pu at 2 s. Based
on the output power angles, it can be seen that the occurrence of
power angle instability in the GFL immediately causes power angle
instability in the GFM. Similarly, the occurrence of power angle
instability in the GFM immediately causes power angle instability in
the GFL. This verifies the analysis of the mutual influence between
the two converters mentioned earlier.

5.2 Verification of the proposed fault ride-
through control strategy

Figure 16 shows the output waveforms when the grid voltage
symmetrically drops to 0.4 pu at 0.5 s and rises back to 1 pu at 2 s.

During the fault, transient power angle control is applied to the
HGS, and both the GFL and GFM remain stable after a brief
transient process. As seen in Figure 16B, during the fault, by
adjusting the input mechanical power Pset of the GFM and using
the improved PLL based on the grid-forming model for the GFL,
the power angles of both converters can be kept stable. However,
as shown in Figure 16D, the transient current output by the GFM
is too large, and the steady-state current also exceeds 1.5 pu,
approaching 2 pu. From Figure 16F, it can be seen that this is due
to the excessive reactive current output by the GFM. Although
reactive current can support the grid, there is still a risk of
damaging transistors. Therefore, it is necessary to suppress
transient and steady-state overcurrents through fault
current control.

FIGURE 17
Output waveform under transient power Angle and current fault ride-through control. (A) Grid-Forming output voltage. (B) Power angle curve. (C)
Grid-Following output current (D) Grid-Forming output current.(E) Grid-Following output power. (F) Grid-Forming output power.
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Figure 17 shows the waveforms of the HGS when transient power
angle and fault current control are implemented as the grid voltage
symmetrically drops to 0.4 pu. Similarly, the GFL and GFM remain
stable after a brief transient process. As shown in Figure 17D, during the
fault, by reducing the output voltage of the GFM, the GFM’s output
current is precisely controlled to 1.5 pu. Thanks to the virtual
impedance, the transient current is also effectively suppressed. As
depicted in Figure 17E, the GFL, while remaining stable, is able to
provide reactive current in accordance with grid codes, supporting the
grid. After the fault is cleared, both converters can return to their pre-
fault operating state after a brief transient process.

Figure 18 presents the waveforms of transient power angle and
fault current control for the HGS system during a symmetrical grid
voltage dip to 0.6 pu. Similarly, both the GFL and GFM converters
remain stable after a brief transient process. As shown in Figure 17C,
during the fault, the output current of the GFM converter is below
1.5 pu, in contrast to the scenario where the grid voltage
symmetrically drops to 0.4 pu. This reduction is attributed to the
implementation of virtual impedance, which effectively suppresses
transient currents. As depicted in Figure 17D, the GFL converter,
while maintaining stability, provides reactive current in compliance
with grid codes, thereby supporting the grid. After the fault is

FIGURE 18
Transient power angle and fault current waveforms under fault ride-through control. (A) Grid-Forming output voltage. (B) Grid-Following output
current. (C) Grid-Forming output current. (D) Grid-Following output power. (E) Grid-Forming output power.
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cleared, both converters recover to their normal operating
conditions following a brief transient period.

6 Conclusion

This paper analyzes the transient stability of HGS with
parallel GFL and GFM, and proposes a fault ride-through
control strategy considering the interactive effects between
GFL and GFM. By establishing a mathematical model of the
HGS, the dynamic coupling mechanism between GFM and GFL
is revealed, and the fault ride-through problem under
symmetrical voltage drops is studied. The main conclusions
are as follows:

1) Through the transient stability analysis of the HGS with parallel
GFL and GFM, demonstrating that the two are mutually coupled
through the grid impedance. The instability of one converter will
lead to the instability of the other converter. During a fault,
reducing the id1 of GFL or the Pset of GFM can simultaneously
improve the transient stability of both converters.

2) During a fault, the GFM adjusts the power angle according to the
extent of the grid voltage drop and modifies the output voltage
while considering the impact of the current injected by the GFL
when limiting current. This approach can effectively suppress
short-circuit overcurrent and maintain power angle stability. The
GFL uses an improved PLL based on grid-forming control, which
can effectively prevent GFL instability and inject current into the
grid in accordance with grid codes.

3) Considering the interactive effects of GFL and GFM, a fault
ride-through control strategy applicable to the HGS is
proposed. By setting a threshold current Ith slightly greater
than 1.5 I2n in the GFM, virtual impedance is introduced when
the detected fault current exceeds Ith, effectively suppressing
transient overcurrent.

4) The transient current of the GFM is relatively large. By setting
a threshold current Ith slightly greater than 1.5I2n in the GFM,
virtual impedance is introduced when the detected fault
current exceeds Ith, effectively suppressing transient
overcurrent. This approach addresses the shortcomings of
reactive voltage reference adjustment alone, which is less
effective and risks damaging transistors.

This study preliminarily explores the interaction mechanisms
and fault ride-through control for GFL and GFM converters under
symmetrical faults. However, the transient processes and fault
control strategies under asymmetrical faults are more complex.
Future work will focus on control strategies for asymmetrical
fault conditions.
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In flexible distribution systems, the strong uncertainty of generation and load
demand poses challenges for energy interaction and resource coordination.
However, existing energy interaction strategies generally focus only on
economic benefits, neglecting safety performance, and are insufficient to
ensure the reliable operation of the system. To address these issues, this
paper proposes an energy interaction strategy for multi-prosumer flexible
distribution systems, considering the economic benefits of all parties and the
voltage safety of the system. First, a multi-agent energy interaction framework
based on the Stackelberg game is established, and a bi-level optimization model
for the distribution network operator and prosumers is constructed. Second, the
paper innovatively introduces soft open point-based power flow control
technology into the energy trading market. Then, the KKT conditions, dual
theory, linearization, and relaxation techniques are applied to transform the
original bi-level game problem into a single-level mixed-integer second-order
cone programming problem, improving computational efficiency. Finally, the
improved IEEE 33-bus distribution system is simulated and compared with two
other scenarios. The results show that the proposed strategy can significantly
improve the economic and safety performance of the energy interaction system,
optimize the power flow distribution, and effectively enhance power quality. The
approach offers a promising solution to the growing challenges of managing
distributed energy resources in the context of flexible and reliable grid operation.

KEYWORDS

energy interaction, multiple-prosumer, soft open point, Stackelberg game,
KKT condition

1 Introduction

With the proposal of the “dual carbon” goal, the widespread access of distributed energy
and flexible resources has significantly increased the participation of prosumers in the
power market (Yang et al., 2024). Under this background, the operation mode of power
distribution system is changing to multi-direction and multi-agent. Flexible distribution
systems refer to advanced distribution networks that integrate multiple energy resources
and flexible control technologies and are capable of dynamic reconfiguration and real-time
power flow adjustment to adapt to changing demand and supply conditions (Li et al., 2023).
By incorporating advanced control strategies, flexible distribution systems have the
potential to significantly enhance energy interaction capabilities, increase renewable
energy utilization, and provide strong support for system stability.
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Prosumers play a crucial role in reducing energy costs and
promoting renewable energy. Under coordinated feed-in tariffs,
prosumers can engage in energy trading with the distribution
network (DN) to maintain energy supply-demand balance,
thereby providing new support for enhancing the flexibility and
reliability of power systems (Seppälä and Järventausta, 2024).
However, as the share of prosumers in distribution systems
continues to grow, energy interactions among multiple entities
are becoming increasingly complex. The presence of intermittent
demand response (DR) introduces additional challenges to
maintaining power system balance. Consequently, there is an
urgent need for more advanced strategies to effectively regulate
and manage multi-agent energy interactions, ensuring the stability,
economic efficiency, and flexibility of distribution networks.

Existing energy interaction methods for multiple prosumers can
be broadly categorized into two types: direct control and regional
market-based control (Manchalwar et al., 2024). Direct control, also
referred to as prosumer-to-grid control, involves the upper-level
grid directly accessing information from individual prosumers and
directly managing all controllable resources for energy interaction as
needed. While this method is straightforward in operation, it suffers
from drawbacks such as transaction congestion, poor privacy
protection, and limitations on prosumers’ autonomy. In contrast,
regional market-based control is a distributed control approach
based on local energy trading markets and can be viewed as
prosumer-to-distribution network operator (DNO) control.
Under this framework, the DNO has pricing authority, and
prosumers can adjust their flexible resources proactively based on
the DNO’s pricing signals, thereby autonomously determining
energy exchange while indirectly influencing the DNO’s pricing.
This method balances the interests of all participants by
coordinating dispersed prosumers to form a regional platform for
energy generation and consumption, achieving resource sharing and
preserving prosumer autonomy. Moreover, it offers excellent
scalability. For instance, various approaches such as distributed
trading mechanisms for demand-side energy interaction (Lou
et al., 2023), optimization methods targeting models, solution
techniques, and information transmission (Hou et al., 2022),
dual-chain implementation methods for electricity rights trading
(Gao et al., 2024), and multi-agent deep learning-based energy
management techniques (Miyamoto et al., 2020) have been
explored. Although these studies have achieved significant
progress in energy interaction among multiple prosumers, they
also exhibit notable limitations. Lou et al. (2023); Hu et al.
(2022); Gao et al. (2024) neglect power quality issues and fail to
account for voltage regulation, which may impact system stability.
Similarly Miyamoto et al. (2020), focuses solely on power
optimization without integrating economic considerations in
market energy trading and distribution network regulation,
potentially limiting the economic benefits for participants.

Economic efficiency and system security are two critical
concerns for users, operators, and power grids. In practical
applications, economic and security objectives often conflict with
each other. For instance, prioritizing the economic benefits of
transactions between prosumers and the distribution network
operator (DNO) may compromise the reliability and safety of
system operations, potentially leading to severe voltage violations
or excessive utilization of grid assets (Tao et al., 2024). Moreover, the

autonomous nature of prosumers, coupled with intermittent and
concentrated power usage patterns, can result in imbalances
between generation and consumption. This imbalance often
causes power flow discrepancies across feeders, leading to
frequent feeder power fluctuations and increased system losses
(Liu et al., 2024). As a result, transaction control strategies that
balance economic efficiency and system security have become a
prominent research focus. Examples include transaction control
algorithms based on attention mechanisms (Zheng et al., 2021),
scheduling methods leveraging double-agent Q-learning (Liu et al.,
2023), and game-theoretic scheduling strategies (Xiao et al., 2024;
Guan and Hou, 2024; Zheng et al., 2024). These studies, through
either deep learning algorithms or game-theory-based approaches,
have demonstrated the ability to enhance DNO revenues, reduce
prosumers’ electricity costs, stabilize system operations, and
maximize social welfare. However, they have not adequately
addressed the challenge of handling surplus energy, leaving room
for further improvement in energy management strategies.

The concept of “clearing price” has been widely discussed in
recent studies (Izadi and Rastegar, 2024; Meng et al., 2024;
Mohammadreza et al., 2024; Wu et al., 2024), where game-
theoretic methods have been applied to achieve economic
dispatch and system regulation within energy communities (Izadi
and Rastegar, 2024). For instance, one study explored economic
coordination and regulation using game theory (Meng et al., 2024),
while another incorporated energy clearing and voltage regulation
through a leader-follower (Stackelberg) game-based pricing
mechanism to realize mutual benefits for the DNO and
prosumers. By leveraging “clearing price” as an interaction signal
within the Stackelberg game framework, these approaches facilitate
communication between the upper-level leader (DNO) and lower-
level followers (prosumers). This methodology prioritizes internal
transactions in local energy markets, effectively managing surplus
energy, promoting local energy utilization, and ensuring the
system’s economic efficiency. Additionally, the focus on price and
power exchange as communication variables ensures robust user
privacy protection (Mohammadreza et al., 2024). Despite their
ability to enhance system revenues and operational security, these
strategies lack consideration of active regulation in the distribution
network (DN). Addressing this gap is essential to further improve
system reliability and operational flexibility.

Network reconfiguration has been proposed as a method to
adjust the topology of distribution networks (DN) for power flow
optimization (Liang et al., 2024; Ashrafi et al., 2024), aiming to
reduce power losses, lower operational costs, and prevent voltage
violations. However, this approach is constrained by the operating
frequency of tie switches, the need for more advanced control
devices. Multi-Terminal Soft Open Points (MOP), are power
electronic devices designed for efficient power transmission in
electric power systems (Deakin et al., 2022; Taher et al., 2024; Li
et al., 2024). MOP actively regulates active and reactive power on
connected feeders, optimizes power flow distribution, and improves
resource allocation, thereby increasing the flexibility and reliability
of the network. Studies have demonstrated that MOP outperforms
traditional network reconfiguration in power flow regulation and
offers greater adaptability compared to conventional Soft Open
Points (SOP) (Deakin et al., 2022), as it enables simultaneous
control and optimization of multiple branch lines, providing
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more versatile power distribution capabilities. Nevertheless, research
and applications of MOP in the context of energy interaction remain
limited, suggesting significant potential for further exploration
in this area.

Therefore, based on the analysis of the aforementioned
background, this paper comprehensively considers the energy
interaction strategy between the DNO and multiple prosumers in
a flexible distribution system. This strategy involves factors such as
energy storage system (ESS) charging and discharging, MOP active
regulation, DR, internal pricing, and voltage stability. A game-
theoretic energy interaction model and strategy for multi-
prosumer distribution systems are proposed, and mathematical
methods such as Karush-Kuhn-Tucker (KKT) conditions are
utilized to simplify the model solution process. The KKT
conditions are a set of mathematical optimization conditions
widely used in optimization problems to characterize the
solutions of constrained nonlinear programming (Dempe and
Franke, 2019). Unlike traditional iterative methods, which
typically require extensive computation and data exchange
between decision-making layers, the KKT-based transformation
simplifies the optimization process by reducing the bi-level
optimization problem to a single-layer form. This approach not
only enhances computational efficiency but also ensures privacy by
limiting the exchange of sensitive data.

This paper proposes a multi-agent energy interaction strategy
based on MOP to solve the balance between economic benefits and
operational security, so as to promote the construction of new power
systems. Through the comparison with the existing research, the
innovation of this paper is as follows:

1) A multi-agent energy interaction framework based on the
Stackelberg game is developed in this study. Unlike most
research that focuses solely on economic aspects without
considering system security, or existing studies that
prioritize voltage regulation without addressing flexible
resource allocation, this work establishes an interaction
framework that considers economic benefits, power quality,
and demand response. This framework simultaneously
addresses the economic and security issues of the DNO-
multi-prosumer distribution network. Furthermore, in terms
of power flow optimization for the distribution network (DN),
this study introduces MOP for the active regulation of active
and reactive power on the connected feeders, which not only
reduces network losses but also prevent voltage over-limit rate,
further enhancing the system’s economic efficiency
and security.

2) Different from most traditional approaches that use iterative
methods to solve the Stackelberg bi-level optimization model
for price determination, this study employs KKT conditions,
dual theory, linearization techniques, relaxation methods, and
the Big-M method to transform the bi-level model into a
single-level mixed-integer second-order cone programming
(MISOCP) problem. This transformation allows for solving
the model using commercial solvers, thereby improving
solution efficiency.

The remainder of this paper is organized as follows: Section 2
introduces the energy interaction framework for the DNO-multi-

prosumer distribution system; Section 3 develops the DNO-
prosumer optimization model based on the Stackelberg leader-
follower game; Section 4 applies KKT conditions, linearization,
and relaxation techniques to transform the bi-level model into a
single-level model; Section 5 provides case studies and analysis;
Section 6 presents the conclusion.

2 Energy interaction framework for
multiple consumer distribution systems

2.1 Energy market interaction framework

An energy market interaction framework that considers energy
management issues between DNO and multiple prosumer is shown in
Figure 1. The figure includes the high-voltage (HV) grid, which provides
the required electrical energy and receives excess energy, the local energy
interactionmarket that distributes electrical energy and transmits energy
demand and price signals, and two key participants: the DNO, which
serves as an intermediary for transactions between the HV grid and
prosumers, and the photovoltaic prosumers who generate and consume
their own electricity.

FIGURE 1
Energy market interaction framework.
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As the energy interaction intermediary, the DNO acts as the
operator of the distribution network (DN) and the internal price
setter. Its responsibilities include: 1) overseeing the operation of the
distribution network to ensure system safety and stability while
meeting high-quality power requirements from users; 2)
participating in the energy market and engaging in energy
transactions with the HV grid to balance supply and demand
when internal imbalances occur; 3) coordinating internal energy
transactions by dynamically setting internal transaction prices based
on economic and safety considerations, referencing users’ electricity
demand and feed-in tariffs, and allocating internal energy to
improve consumption capacity.

As the main participants in the energy market, prosumers
consist of photovoltaic (PV) systems, loads (both fixed and
flexible), and energy storage systems (ESS). Among these, flexible
loads, also referred to as transferable loads, are controllable loads
that do not affect basic living needs, enabling demand response. This
allows prosumers to adjust their loads based on the transaction
prices set by the DNO and develop their own electricity
consumption strategies. Additionally, to enhance the network

optimization level of the DNO, Multi-Terminal Soft Open Points
(MOP) are installed within the distribution network (DN).

2.2 Energy interactive game framework

As shown in Figure 2, this paper explores a bi-level energy
trading framework based on the Stackelberg game, which shows the
leader-follower relationship between DNO and prosumers, and both
play interest games with exchanged power through clearing prices.

The upper-level leader, the DNO, can determine the operational
strategy of the MOP and the internal clearing prices based on time-
varying grid prices, feed-in tariffs, the exchange power between
prosumers and the DNO, and the operational status of the
distribution network (DN), aiming to maximize social welfare.
Meanwhile, the lower-level follower, the prosumer, can adjust its
electricity consumption and ESS charging/discharging strategy
according to the clearing prices set by the DNO, and determine
the exchange power with the DNO, in order to minimize its
own costs.

FIGURE 2
Energy interactive game framework.
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It can be observed that this is a bi-directional decision-making
problem, where the clearing price and exchange power serve as the
communication bridge between the upper and lower levels. The
DNO sets the clearing price based on the exchange power with the
prosumers, while prosumers respond to the DNO’s clearing price by
determining their own energy scheduling plans. Therefore, although
the DNO holds priority in the decision-making process, it must take
into account the demand response (DR) of each prosumer, thus
forming a leader-follower game of interests.

In summary, the proposed energy market interaction and game
framework effectively solves the complexity of energy trading in
flexible distribution networks involving multiple production-
consumers. By integrating dynamic clearing prices, DR, and
MOP-based network optimization, bidirectional coordination
between DNO and prosumers is achieved, ensuring joint
achievement of economic and operational objectives.

3 Energy interaction model of
distribution system for
prolific consumer

This chapter develops an energy interaction model based on the
aforementioned framework. First, the objective of minimizing the
DNO’s operational costs is defined, along with the constraints for the
distribution network (DN) operation. Next, the cost minimization
objective for prosumers is outlined based on their characteristics, and
the corresponding operational constraints are established. Finally, for the
bi-level game problem, instead of using the traditional iterative methods,
which are cumbersome, the study employs KKT conditions, the Big-M
method, second-order cone relaxation techniques, and dual theory to
transform the bi-level optimization model into a single-level model.

3.1 Optimization model of distribution
network operator

3.1.1 Optimization objective
The DNO, as the coordinator between the grid and users, has the

core objective of maximizing social welfare. This is specifically
manifested in minimizing the transaction costs between the
DNO, the HV, and prosumers, reducing network losses and
voltage fluctuations in the DN, and enhancing the economic
efficiency and stability of the system. Therefore, the objective
function of the DNO can be expressed as:

minFDNO � ao fGrid + floss − finc( ) + bvfvd (1)

fGrid � ∑NT

t�1

Xt −Wt

2
gt
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2
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rijI2t.ij +∑
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∑NN

i�1
Pmop,loss
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(2)

Equation 1 represents the general form of the DNO optimization
objective function, which is a linear weighted combination of
operational costs and voltage deviation minimization. Where, ao
and bv are the weight coefficients (Yang et al., 2023), which represent
the relative importance of each element in the objective, with their
sum being equal to 1; fGrid and finc represent the transaction costs
incurred between the DNO andHV, as well as the total revenue from
transactions between the DNO and the prosumers, respectively. floss

refers to the network loss cost of the DN, while fvd represents the
total voltage deviation. Equation 2 provides detailed expressions for
each component, where Xt and Wt denote the purchase and sale
prices of electrical energy between the DN and the HV grid,
respectively; gt represents the net load of the DN, with gt

indicating a positive value when the DN purchases energy from
the HV grid and gt indicating a negative value when the DN sells
energy to the HV grid; Closs refers to the cost coefficient associated
with network losses; rij and xij represent the resistance and
reactance of branch; It.ij denotes the current flowing through
branch ij at period t; Pmop,loss

t,i accounts for the active power loss
generated by the MOP during period t; NT, NN, and NP represent
the total time periods, total nodes, and total number of prosumers in
the DN, respectively; Δt denotes the time interval;Ωl refers to the set
of all branches; λt represents the clearing price in the internal energy
trading market at period t; Pp

t,n denotes the net load of the nth
prosumer at period t, which corresponds to its exchange power with
the DN; Ut.i is the voltage of bus i at period t; ~Uref is the reference
voltage of the buses.

3.1.2 Constraint condition
3.1.2.1 Network constraints of the DN

The DN is modeled using the widely adopted Distflow
branch model.

∑
ji∈Ωb

Pt,ji − rjiI
2
t,ji( ) + Pt,i � ∑

ik∈Ωb

Pt,ik (3)

∑
ji∈Ωb

Qt,ji − xjiI
2
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Qt,ik (4)

U2
t,i − U2

t,j − 2 rijPt,ij + xijQt,ij( ) + r2ij + x2
ij( )I2ij � 0 (5)

I2t,ijU
2
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t,ij + Q2
t,ij (6)

Pt,i � PPV
t,i + PMOP

t,i − PL
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t,i

+ Pess,c
t,i − Pess,d

t,i( ) (7)

Qt,i � QMOP
t,i − QL

t,i (8)

Equations 3, 4 represent the active and reactive power balance
for the branch, where Pt,ji andQt,ji are the active and reactive power
flowing through branch ij at time t, Pt,i and Qt,i are the active and
reactive power injected at bus i at time t. Equations 5, 6 represent the
voltage and branch current level constraints at bus i at period t.
Equations 7, 8 represent the active and reactive power balance at the
bus, where PPV

t,i , P
VSC
t,i , QVSC

t,i are the active and reactive power
injected into bus i at period t by the PV and MOP, respectively.
PL
t,i and PL,move

t,i are the fixed and transferable loads of the prosumer
at period t, with a positive value indicating an increase in load
demand and a negative value indicating a decrease. Pess,c

t,i and Pess,d
t,i

represent the charging and discharging power of the ESS at period t
at bus i.
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3.1.2.2 Security constraints of the DN
DN During normal operation, the bus voltage and branch

current cannot exceed the safety limit.

U2 ≤U2
t,i ≤ �U

2 (9)
I2t,ij ≤ �I

2 (10)

where, U and �U are the upper and lower limits of voltage of buses
respectively; �I is the maximum current limit of the branch.

3.1.2.3 Operation constraints of MOP
The ideal MOP of 4 feeder lines is shown in Figure 3, and PVSC

t,i in
the figure is the power of the feeder connected to MOP flowing to
MOP. It can be seen that it is determined by the feeder selection
switch state bi and the active power PVSC

t,i transmitted by VSCi, that
is, MOP controls PVSC

t,i and QVSC
t,i by controlling these two variables,

and then controls the active and reactive power of the
connected feeder.
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Equations 11–13 represent the power balance constraints, where
�PVSC
t,i denotes the active power on the DC side of the VSC at bus i at

period t, PVSC
t,i represents the actual transmitted active power ofVSCi at

period t, Pmop,loss
t,i is the active power loss of MOPi at period t, AVSC

i

represents the loss coefficient of VSCi, and ΩVSC denotes the set of
VSCs. Equations 14–17 describe the MOP capacity constraints, where
SLn represents the power transmission capacity of the branch n
connected to the MOP, SVSCi denotes the capacity of VSCi, QVSC

t,i is
the actual reactive power transmitted byVSCi at period t, �Q

VSC
i denotes

the reactive power output limit of VSCi, and Nm represents the total
number of branches connected to the MOP.

3.1.2.4 Price constraint
When determining the clearing price, the DNO must consider

the responses of the prosumers. To encourage prosumers to actively
participate in the internal energy market and ensure that they do not
bypass the DNO to trade directly with the HV grid, the clearing price
must satisfy certain constraints.

λt
min ≤ λt ≤ λt

max (18)
1
T
∑T
t�1
λt ≤

1
T
∑T
t�1
Xt (19)

Equation 18 specifies that λt must remain within the upper and
lower bounds λtmax and λtmin to prevent excessive pricing, which could
discourage prosumers from purchasing electricity and thereby affect
their normal daily activities. Equation 19 ensures that the average
clearing price does not exceed the average price of purchasing electricity
from the HV grid, thereby protecting the interests of users.

3.2 Optimization model of prosumer

3.2.1 Optimization objective
Prosumers can respond to the clearing price set by the DNO by

adjusting their electricity usage plans and energy storage utilization
in the internal energy trading market, with the objective of
minimizing their operational costs. Accordingly, the objective
function for an individual prosumer is formulated as follows:

min Jn � ∑T
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p
t,nΔt +∑T
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n PL,move

t,i( )Δt
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Equation 20 represents the general formulation of the prosumer’s
optimization objective. The first term corresponds to the cost of
participating in energy transactions, the second term represents the
utility cost associated with load adjustments, and the third term
accounts for the degradation cost of ESS operation. where vDiscn

denotes the sensitivity coefficient of the prosumer n to load
variation discomfort, ηess,c and ηess,d represent the charging and
discharging efficiencies of the ESS, respectively, and ldeg indicates the
degradation coefficient of the ESS. Equation 21 is the exchanged power
between the prosumer and DNO, where a positive value represents the
transmission power from DNO to the prosumer.

FIGURE 3
MOP Topology view.
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3.2.2 Constraint condition
3.2.2.1 Constraints of ESS

ESS must meet the relevant constraints of energy storage, charge
and discharge power

0≤Pess,c
t,i ≤ uess

t,e P
c,rat
e

0≤Pess,d
t,i ≤ 1 − uess

t,e( )Pd,rat
e

{ (22)

St,e � St−1,e + Pess,c
t,i ηess,c

Capess
e

− Pess,d
t,i

Capess
e ηess,d

( )Δt (23)

Se
min ≤ St,e ≤ Se

max (24)
S1,e � SNT,e (25)

Equation 22 defines the charging and discharging power constraints
of the ESS, where uesst,e represents the operational state of the ESS e at
period t (1 for charging, 0 for discharging), Pc,rat

e and Pd,rat
e are the

maximum charging and discharging powers of the ESS e, respectively.
The constraints Equations 23, 24 are expressed as the energy storage
constraints of the ESS. where St,e represents the current energy stored in
the ESS e at period t, while St−1,e represents its energy level at the
previous period step, with the two having a recursive relationship. Semin

and Semax denote the lower and upper bounds of the ESS’s energy
storage, and Capess

e represents its maximum capacity. Constraint
Equation 25 is expressed as the equality between the initial energy
storage S1,e and the final energy storage SNT,e of the ESS.

3.2.2.2 Constraints on demand response
Prosumers can adjust their electricity demand based on the

clearing price set by the DNO; however, to ensure their basic living
needs, the following constraints must be satisfied:

Lmin ≤PL,move
t,i ≤ Lmax (26)

∑NT

t�1
PL,move
t,i � 0 (27)

Equation 26 indicates that the adjustment of the prosumer’s
transferable load cannot exceed the specified range [Lmin, Lmax].
Constraint Equation 27 shows that the total load demand of the
prosumer remains constant throughout the day.

4 Processing and transformation of
the model

The optimization objective and constraints in the above model
contain numerous nonlinear functions, which cannot be solved by
existing commercial solvers. Therefore, in this section, linearization
methods and second-order cone relaxation techniques are applied to
process the model, converting it into a mixed-integer second-order
cone programming (MISOCP) model. At the same period, to
simplify the model’s solution process, the bi-level optimization
model is converted into a single-level optimization model.

4.1 Linearization

4.1.1 Processing of quadratic terms
Due to the nonlinear forms, such as current and voltage

squared, in Equations 2–6, 9, 10, vt,i and lt,ij are used to replace

U2
t,i and I2t,ij. The transformed function looks like

Equations 28–34:

floss � Closs ∑NT

t�1
∑
ij∈Ωl

rijlt.ijΔt +∑NT

t�1
∑NN

t�1
PVSC,loss
t,i Δt⎛⎝ ⎞⎠ (28)

∑
ji∈Ωb

Pt,ji − rjilt,ij( ) + Pt,i � ∑
ik∈Ωb

Pt,ik (29)

∑
ji∈Ωb

Qt,ji − xjilt,ij( ) + Qt,i � ∑
ik∈Ωb

Qt,ik (30)

vt,i − vt,j − 2 rijPt,ij + xijQt,ij( )
+ r2ij + x2

ij( )lt,ij � 0
(31)

lt,ijvt,i � P2
t,ij + Q2

t,ij (32)
U 2 ≤ vt,i ≤ �U

2 (33)
lt,ij ≤ �I

2 (34)

4.1.2 Handling of absolute value terms
Due to the absolute value term of the voltage deviation

in Equation 2, an auxiliary variable Auxt,i is introduced
to linearize it. The converted function is shown in
Equations 35–38:

fvd � ∑NT

t�1
∑NN

i�1
Auxt,i (35)

Auxt,i ≥ 0 (36)
Auxt,i ≥ ~U

2

ref − vt,i (37)
Auxt,i ≥ vt,i − ~U

2

ref (38)

4.2 Second-order cone transformation

Even after linearization in Equation 32, quadratic nonlinear
terms in the form of lt,ijvt,i still exist. Therefore, further processing is
required, and the convex relaxation of the function is expressed
as follows:

2Pt,ij

2Qt,ij

lt,ij − vt,i

�����������
�����������
2

≤ lt,ij + vt,ij,∀t (39)

Similarly, Equation 14 also contains quadratic nonlinear
terms, and the transformed second-order cone constraint is
as follows:

PVSC
t,i( )2 + QVSC

t,i( )2 ≤ 2 SVSCt,i�
2

√ SVSCt,i�
2

√ (40)

Equation 41 is defined to verify the constraint effect. If the
gap value is sufficiently small, it is considered that the accuracy
after relaxation is reasonable, which also means that the initial
model can be transformed into a model that can be solved by
commercial solvers using the two processing methods
described above.

gap � lt,ij −
P2
t,ij + Q2

t,ij

vt,i

��������
��������∞ (41)
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4.3 Transformation of two-layer model

Based on the Stackelberg leader-follower game, and combining
the above framework and model, the following bi-level optimization
problem is formulated:

Upper level: minFDNO;
Subject to: Equations 7, 8, 11–13, 15–19, 29–31, 33, 34, 36–40;
Variables: λt, PVSC

t,i , QVSC
t,i , lt,ij, vt,i, Auxt,i

λt ↓↓ PP
t,n ↑↑

Lower level: min Jn;
Subject to: Equations 22–27;
Variables: PP

t,n, P
L,move
t,i , Pess,c

t,i , Pess,d
t,i , St,e;

For the two-layer optimization model, the traditional
iterative method is adopted, and the solving process is
relatively complicated.

Furthermore, considering user privacy and security, and to
avoid unnecessary information exchange between prosumers and
the DNO, this paper applies the KKT conditions to transform the
above bi-level model, thereby improving computational
efficiency and protecting user privacy.

Let μ be the dual variable for the inequality constraints of the
lower-level optimization problem, and λ be the dual variable for the
equality constraints of the lower-level optimization problem. As
shown in Equations 42, 43, the general form of the KKT condition
obtained by the transformation is:

∇L � PL,move
t,i , Pess,c

t,i , Pess,d
t,i , St,e, μi, λi( ) � 0 (42)

0≤ μ ⊥ g x( )≥ 0 (43)
where, ∇L is the Lagrange function written using the KKT
conditions (Zhu et al., 2022), g(x)≥ 0 representing the
inequality constraints in the optimization problem. The
specific expression is as follows:

1) Introduce the optimization objectives and
constraints of the lower prosumers to write the
Lagrange function:

∇L � ∑T
t�1
∑N
n�1

λt PL
t,i + PL,move

t,i − PPV
t,i +∑Ne

e�1
Pess,c
t,i − Pess,d

t,i( )⎡⎣ ⎤⎦Δt +∑T
t�1
∑N
n�1

vDisc
n PL,move

t,i Δt

+∑T
t�1
∑N
n�1

∑Ne

e�1
ldeg Pess,c

t,i ηess,c + Pess,d
t,i

ηess,d
( )Δt

−∑T
t�1
∑N
n�1

∑Ne

e�1
μess,c1,t,nP

ess,c
t,i − μess,c2,t,n Pess,c

t,i − uess
t,e P

c,rat
e( )[ ]

−∑T
t�1
∑N
n�1

∑Ne

e�1
μess,d1,t,n P

ess,d
t,i − μess,d2,t,n Pess,d

t,i − 1 − uess
t,e( )Pd,rat

e[ ]{ }

+∑T
t�1
∑N
n�1

∑Ne

e�1
μS1,t,n Semin − St,e( ) + μS2,t,n St,e − Semax( )[ ]

+∑T
t�1
∑N
n�1

μL,move
1,t,n Lmin − PL,move

t,i( ) + μL,move
2,t,n PL,move

t,i − Lmax( )[ ]

+∑N
n�1

λ1,n ∑T
t�1
PL,move
t,i

⎛⎝ ⎞⎠ +∑N
n�1

∑Ne

e�1
λ2,n S1,e − ST,e( )

+∑T−1
t�1

∑N
n�1

∑Ne

e�1
λ3,t,n St,e − St−1,e − Pess,c

t,i ηess,cΔt
Capess

e

− Pess,d
t,i

ηess,dCapess
e

Δt( )[ ]

(44)

2) Taking the partial derivative with respect to ∇L yields the
equality constraint:

∂L
∂PL,move

t,i

� λtΔt + vDisc
n Δt − μL,move

1,t,n + μL,move
2,t,n + λ1,n � 0 T ∈ 1, t[ ]

(45)
∂L

∂Pess,c
t,i

� λtΔt + ldegη
ess,cΔt − μess,c1,t,n + μess,c2,t,n − λ3,t,nη

ess,cΔt/Capess
e � 0 t ∈ 1, T − 1[ ]

λtΔt + ldegη
ess,cΔt − μess,c1,t,n + μess,c2,t,n � 0 t � T

{
(46)

∂L
∂Pess,d

t,i

�
−λtΔt + ldegΔt

ηess,d
− μess,d1,t,n + μess,d2,t,n − λ3,t,nΔt

ηess,dCapess
e

� 0 t ∈ 1, T − 1[ ]

−λtΔt − ldegΔt
ηess,d

− μess,d1,t,n + μess,d2,t,n � 0 t � T

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(47)

∂L
∂St,e

�
−μS1,t,n + μS2,t,n + λ2,n − λ3,t,n � 0 t � 1
−μS1,t,n + μS2,t,n + λ3,t−1,n − λ3,t,n � 0 t ∈ 2, T − 1[ ]
−μS1,t,n + μS2,t,n − λ2,n + λ3,t−1,n � 0 t � T

⎧⎪⎨⎪⎩ (48)

∂L
∂λ1,n

� ∑T
t�1
PL,move
t,i � 0 (49)

∂L
∂λ2,n

� S1,e − ST,e � 0 (50)

∂L
∂λ3,t,n

� St,e − St−1,e − Pess,c
t,i ηess,c

Capess
e

+ Pess,d
t,i /ηess,d
Capess

e

Δt � 0 t ∈ 1, T − 1[ ]
(51)

3) The inequality constraint is constructed by large M method

Since the complementary slack variables in the KKT condition
have nonlinear terms of the form μigi(x) � 0, a Boolean variable ε
and a maximum positive number M are introduced to construct the
following linear inequalities:

0≤Pess,c
t,i ≤ εess,c1 M

0≤ μess,c1,t,n ≤ 1 − εess,c1( )M{ t ∈ 1, T[ ] (52)

0≤ uess
t,e P

c,rat
e − Pess,c

t,i ≤ εess,c2 M
0≤ μess,c2,t,n ≤ 1 − εess,c2( )M{ t ∈ 1, T[ ] (53)

0≤Pess,d
t,i ≤ εess,d1 M

0≤ μess,d1,t,n ≤ 1 − εess,d1( )M{ t ∈ 1, T[ ] (54)

0≤ 1 − uess
t,e( )Pd,rat

e − Pess,d
t,i ≤ εess,d2 M

0≤ μess,d2,t,n ≤ 1 − εess,d2( )M{ t ∈ 1, T[ ] (55)

0≤ St,e − Semin ≤ εS1M
0≤ μS1,t,n ≤ 1 − εS1( )M{ t ∈ 1, T[ ] (56)

0≤ Semax − St,e ≤ εS2M
0≤ μS2,t,n ≤ 1 − εS2( )M{ t ∈ 1, T[ ] (57)

0≤PL,move
t,i − Lmin ≤ εL,move

1 M
0≤ μL,move

1,t,n ≤ 1 − εL,move
1( )M{ t ∈ 1, T[ ] (58)

0≤Lmax − PL,move
t,i ≤ εL,move

2 M
0≤ μL,move

2,t,n ≤ 1 − εL,move
2( )M{ t ∈ 1, T[ ] (59)

4) Single layer optimization model

Substituting Equations 45–51 into Equation 44 can be obtained
as follows:
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∇L � ∑T
t�1
∑N
n�1

λt PL
t,i − PPV

t,i( )Δt −∑T
t�1
∑N
n�1

μess,c2,t,nu
ess
t,e P

c,rat
e −∑T

t�1
∑N
n�1

μess,d2,t,n 1 − uess
t,e( )Pd,rat

e

+∑T
t�1
∑N
n�1

μS1,t,nSe
min −∑T

t�1
∑N
n�1

μS2,t,nSe
max +∑T

t�1
∑N
n�1

μL,move
1,t,n Lmin −∑T

t�1
∑N
n�1

μL,move
2,t,n Lmax

(60)
Equation 60 is combined with the upper DNO optimization

objective Equation 1 to obtain the optimization objective of the
single-layer optimization model as shown in Equation 61:

minF � ao fGrid + floss + fswitch −∑T
t�1
∑N
n�1

λt PL
t,i − PPV

t,i( )Δt⎡⎣ ⎤⎦ + bvfvd+

∑T
t�1
∑N
n�1

μL,move
1,t,n Lmin − μL,move

2,t,n Lmax( )
+∑T
t�1
∑N
n�1

−μess,c2,t,nu
ess
t,e P

c,rat
e − μess,d2,t,n 1 − uess

t,e( )Pd,rat
e[ ]

+∑T
t�1
∑N
n�1

μS1,t,nSe
min − μS2,t,nSe

max[ ]

(61)

Subject to: Equations 7, 8, 11–13, 15–19, 29–31, 33–34,
36–40, 45–59;

Variables: λt, PVSC
t,i , QVSC

t,i , PP
t,n, P

L,move
t,i , Pess,c

t,i , Pess,d
t,i , St,e;

By the above methods, the two-layer game optimization problem
has been transformed into a single-layer optimization problem.

5 Simulation and analysis

To verify the accuracy and feasibility of the proposed model,
programming was implemented using MATLAB R2021b software.
The optimization was solved in a 64-bit Windows environment,
utilizing the YALMIP toolbox and the Gurobi solver. The hardware
environment for optimization calculations was an Intel(R)
Core(TM) i9-13900 K @ 3.00 GHz processor with 128 GB
of memory.

5.1 Parameter setting

In the simulation tests, the modified IEEE-33 bus distribution
system is used for analysis, which includes five prosumers with PV
systems. Among them, the prosumers at buses 10 and 29 are
equipped with ESS, as shown in Figure 4. The whole DN
contains five PVS, two ESS and one four-feeder MOP. The
relevant parameters are shown in Table 1, and the other bus
branch parameters are the standard IEEE-33 bus system.

The DNO is set from the HV power purchase price reference
(Qiao et al., 2025), and the DNO selling price is set to 400 ¥/MWh,
without considering the reactive power influence of renewable

FIGURE 4
Diagram of the improved IEEE 33-bus system.

TABLE 1 IEEE 33-bus test system related parameters.

Entity Device Location Parameter

Prosumer 1 PV Bus 2 Power: 500 kW

Prosumer 2 PV Bus 10 Power: 500 kW

ESS Bus 10 Power: 0.5 MWh, Capacity: 0.2 MW, efficiency: 0.95

Prosumer 3 PV Bus 14 Power: 400 kW

Prosumer 4 PV Bus 21 Power: 400 kW

Prosumer 5 PV Bus 29 Power: 300 kW

ESS Bus 29 Power: 0.5 MWh, Capacity: 0.2 MW, efficiency: 0.95

DN MOP Bus 12, 22, 18, 33 Capacity: 0.75WVA
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energy. Other parameter Settings are shown in Table 2 (Yang
et al., 2023).

The PV output and load demand forecast of each prosumer are
shown in Figures 5A, B.

5.2 Results and analysis

In the energy trading market, DNO, as the leader, has the pricing
power, and the settlement price determined is shown in Figure 6.

As followers, prosumer adjust their electricity consumption
strategies according to the internal settlement price. The
transferable load of each prosumer is shown in Figure 7A, and
the total exchange power with DNO is shown in Figure 7B. The
charging and discharging power of ESS1 connected to prosumer 2 is
shown in Figure 8A, and the energy storage of each ESS is shown
in Figure 8B.

As observed from Figures 5–8, the formulation of the electricity
consumption strategy of the prosumer is affected by the clearing
price set by the DNO, which is specifically shown as follows:

Between 0:00 and 5:00, with zero PV output and low prosumer
loads, prosumers purchase electricity to maintain normal operations.
Clearing prices remain high due to economic principles but are capped
by time-of-use pricing. During this period, the ESS charges and the
prosumer increases the transferable load. From 3:00 to 5:00, as the
electricity price decreases, the ESS charging increases, resulting in a
sharp rise in the exchanged power. Between 6:00 and 8:00, the PV
generation and consumer load gradually rise, but the supply is still
insufficient, leading to an increase in the clearing price. At the same
time as the ESS discharges, the prosumer reduces the transferable load,
which reduces the exchanged power. Between 9:00 and 10:00, higher
PV generation and less load can achieve energy balance through
energy interaction and resource adjustment without purchasing
DNO, thus achieving price reduction and zero exchanged power.
From 11:00 to 13:00, peak PV output exceeds demand, enabling
prosumers to charge ESS, consume transferable loads, and sell
surplus energy to the DNO. Exchange power becomes negative,
and clearing prices drop to the minimum limit. Between 14:00 and
17:00, as PV generation and load are reduced, the supply temporarily
meets the demand and maintains the minimum price. After that, the
energy internal supply exceeds the demand leading to the clearing
price increase, prompting the prosumer to reduce the load and the ESS
discharge, so that the exchange power is positive. From 18:00 to 20:00,
insufficient PV generation and gradually rising electricity demand lead
to the maximum clearing price. The prosumer reduces the transferable
load and the ESS discharges, at which point, the exchanged power
reaches its peak. Between 21:00 and 24:00, demand remains high, but
prices stabilize due to time-of-use pricing. Prosumers remaining
transferable loads and discharge surplus ESS energy, reducing costs
and exchange power as load demand declines.

The voltage situation of each bus within 24 h of the test system is
shown in Figure 9. It can be seen that the per unit voltage value of

TABLE 2 Parameter settings.

Parameter Value Parameter Value

Δt 1 h �U 1.05p.u

ao 0.833 U 0.95p.u

bv 0.167 ~Uref 0.97 p.u.,1.03p.u

Closs 0.08 λtmin Wt

ldeg 2.7$/MWh λtmax Xt

FIGURE 5
Initial data of each prosumer: (A) PV output; (B) Load demand.
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each bus is within the expected range (0.96 p.u.–1.04p.u.), which
meets the safety of the system operation.

The gap value of 24 h is shown in Figure 10. Combined with the
definition of Equation 41, it can be found that the gap value of each
time period is at the level of 10-6, so it can be proved that convex
relaxation is accurate.

5.3 Scenario comparison and analysis

In order to verify the effectiveness and superiority of the proposed
strategy, the following three scenarios are set in this section:

Scenario 1: Only the economy of the system is considered, and
safety issues such as MOP power flow optimization,
power loss, and voltage deviation are not considered.

Scenario 2: The adjustment of MOP is not considered in the
proposed strategy.

Scenario 3: The strategy presented in this article.

As can be seen in Figures 11A, B and Figures 12 A, B, the voltage
quality of scenario 3 is better than that of the comparison scenario,
indicating that the proposed strategy can improve the stability of the
system. Moreover, the action of MOP is consistent with that of
energy storage, which indicates that MOP can optimize the power

FIGURE 6
Clearing price.

FIGURE 7
Load regulation strategies of prosumer: (A) Changes in transferable loads; (B) Exchange power.
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flow distribution and improve power quality by adjusting the active
and reactive power of the connected feeders.

The test results are compared as shown in Table 3, including
the system power loss cost (floss, including line power loss
and MOP power loss), the converted voltage deviation cost
(fvd), the total operating cost of DNO (FDNO), the total
operating cost of the prosumer (Jn) and voltage over-limit
rate. The voltage compliance range specified in this paper is
0.95p.u.–1.05p.u.

As shown in Table 3, the daily total operating cost of the DNO
in Scenario 1, which considers only economic benefits, is $13.95,
representing a reduction of approximately 83.9% compared to
$86.72 in Scenario 3. However, the voltage deviation cost
increases from $0.13 to $104.21, an increase of nearly

800 times, and the voltage over-limit rate increases from 0%
to 26.39%. This indicates that in scenarios where safety
performance is not considered, all controllable resources are
allocated to maximize profits. While this approach effectively
reduces system operating costs, it leads to significant grid
fluctuations, poor power quality, and substantial safety risks,
which are detrimental to the reliable operation of the system.

Compared to Scenario 2, Scenario 3 introduces the MOP,
which increases the power loss cost of the MOP by $30.94.
However, both network loss and voltage deviation costs are
reduced, resulting in a decrease in the total operating cost of
the DNO from $193.04 to $86.72, a reduction of approximately
55.1%. Moreover, the voltage over-limit rate is reduced from

FIGURE 8
ESS control strategy: (A) Charge and discharge power of ESS1; (B) Energy storage of each ESS.

FIGURE 9
Voltage profiles of all 33 nodes. FIGURE 10

Gap value.
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65.03% to 0. This demonstrates a significant improvement in
both economic efficiency and operational safety.

In summary, the proposed strategy not only addresses the
energy transaction challenges in multi-prosumer distribution
systems and ensures the economic benefits of all participants but
also enhances the safety performance of the system. Additionally, it
provides a novel solution for promoting local renewable energy
utilization and optimizing energy interactions.

6 Conclusion

This study investigates the energy interaction challenges in
flexible distribution systems with multiple prosumers. By
analyzing the factors influencing the economic benefits of the
DNO and prosumers, as well as the network security of the DN, a
Stackelberg game-based energy interaction strategy for multi-
prosumer distribution systems is proposed, considering both

FIGURE 11
Comparison of voltage per unit value: (A) Maximum voltage; (B) Minimum voltage.

FIGURE 12
Power output of MOP: (A) The output of active power; (B) The output of reactive power.
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economic and safety aspects. Unlike previous studies, this
strategy not only addresses the economic issues between the
DNO and prosumers but also optimizes DN operation by
regulating the MOP, ensuring system operational safety and
improving power quality. Additionally, the original bi-level
energy interaction model is transformed using KKT
conditions, enhancing computational efficiency. The main
conclusions are as follows:

1) Different from traditional energy interaction models for
multi-prosumer distribution systems, this paper proposes a
novel energy interaction strategy based on game theory,
considering the interests of all participants and the
operational safety of the system. This strategy not only
maximizes the benefits for all parties but also promotes
the local utilization of PV energy while protecting
user privacy.

2) The influencing factors in the energy interaction process
were analyzed, and the MOP was introduced into the
energy trading market. Different from traditional
interaction models that focus solely on the coordination
between the DNO and prosumers, this strategy also
considers power flow regulation in the DN. Although
the introduction of MOP increases device costs, it
significantly reduces power losses across the system,
improves power quality, and ensures the long-term
operation of the system.

3) Different from traditional iterative methods for solving bi-level
energy interaction game models to determine transaction
prices, this paper employs KKT conditions, dual theory,
linearization methods, and relaxation techniques to
transform the bi-level optimization model, simplifying the
solution process.

This study focuses on exploiting the potential of game theory
in enhancing energy interaction in flexible distribution systems
and innovating the introduction of interconnected devices to
improve the regulation performance of distribution networks,
but voltage overruns still exist. Therefore, future research should
be oriented to dynamic uncertainty and real-time operation,
and explore data-driven based intelligent control to further
optimize energy trading, improve scalability, and ensure
reliable grid operation.
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TABLE 3 Test data comparison.

Test result Scenario 1 Scenario 2 Scenario 3

floss ($) Line 9,560.51 209.19 72.00

MOP 0 0 30.94

fvd ($) 104.21 2.96 0.13

FDNO ($) 13.95 193.04 86.72

Jn ($) 2,704.10 2,700.75 2,712.97

Voltage over-limit
rate

65.03% 26.39% 0%
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This paper proposes an investment efficiency-oriented strategy for power grid
infrastructure planning with high penetration of renewable energy sources.
First, a multi-objective investment portfolio optimization model based on data
envelopment analysis is proposed to improve the cost efficiency of power
grid infrastructure planning. Then, an evolutionary algorithm based on super-
efficiency hyperplane projection transformation is developed to obtain the
optimal Pareto frontier of themulti-objective investment portfolio. Furthermore,
a super-efficiency envelope model with non-radial relaxation variables is
formulated to identify an optimal investment efficiency-oriented solution from
the Pareto frontier set. Comparative case studies have been implemented to
demonstrate the superior performance of the proposed strategy for investment
efficiency enhancement of power grid infrastructure planning.

KEYWORDS

cost efficiency, investment portfolio, power grid planning, renewable energy, multi-
objective optimization

1 Introduction

Modern power grids are gradually being dominated by various renewable energy
sources due to global low-carbon and environmental concerns (Yi et al., 2023). The
integration of renewable energy into the grid will bring about an increase in the cost
of various infrastructure investment categories because of its intermittent, volatile, and
regional characteristics (Guo et al., 2023; Saxena and Shankar, 2024; Fu et al., 2022;
Sha et al., 2023). Faced with mounting operational expenses and constrained investment
capacities, power gridsmust devise portfolio optimization strategies tominimize costs while
maximizing investment returns (Lu et al., 2022). The investment portfolio in power grid
infrastructure is a dynamic, sequentially coupled, multi-objective discrete combinatorial
optimization problem (Liu et al., 2023). Traditional infrastructure investment portfolio
decisions that focus on maximizing a single benefit objective are inadequate for meeting the
demands of high-quality development in power grids (Yan et al., 2022; Garifi et al., 2022;
Ma et al., 2020; Guelpa et al., 2019). Therefore, this study provides practical models and
algorithms for grid infrastructure investment planning oriented to maximize investment
efficiency.

The main contributions of this work can be twofold, as follows: (1) a multi-
objective cost efficiency-oriented investment portfolio optimization model based on
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FIGURE 1
Multi-objective cost efficiency-oriented investment portfolio optimization model.

data envelopment analysis is proposed for power grid infrastructure
planning, and a transformation matrix based on the LASSO
regression model is established with the goal of reducing
the complexity of the portfolio optimization, representing
the relationship between the amount of investment and
benefits. (2) An evolutionary algorithm based on super-
efficiency hyperplane projection transformation is developed
to obtain the optimal Pareto frontier of the multi-objective
investment portfolio, and a super-efficiency envelope model
with non-radial relaxation variables is formulated to identify
the optimal investment efficiency-oriented solution from the
Pareto frontier set.

2 Multi-objective cost
efficiency-oriented investment
portfolio optimization model

With the increase in investment demand and the concurrent
decrease in investment capacity, it has become crucial for grid
operators to prioritize investment efficiency when developing
annual investment plans (Wu et al., 2022). Thus, it is necessary
to establish a multi-objective cost efficiency-oriented investment
portfolio optimization model that considers constraints such as
investment capacity, power supply reliability (Cao et al., 2024a),
energy conservation, and emission reduction. An investment
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TABLE 1 Parameter settings of the investment portfolio optimization model.

Parameter Value Parameter description

Xmax 27.6 billion yuan Maximum investment capacity

M 100 Population size

τc 0.9 Population crossover probability

τv 0.1 Population mutation probability

N 200 Iteration times

ςmin
L,N−1 98.80% Lower limit value of N-1 line passing rate

Nmin
GZ 1.2% Lower limit value of the heavy overload equipment reduction rate

rmin 2.10 MVA/MW Lower limit value of the capacity–load ratio

rmax 2.45 MVA/MW Upper limit value of the capacity–load ratio

Smin
a 2.9 MVA per household Lower limit value of the average household power distribution capacity

Smax
a 3.1 MVA per household Upper limit value of the average household power distribution capacity

Cmin 184.2 yuan/kWh Lower limit value of transmission and distribution cost per unit of electricity

Emin
c 65,000 tons Lower limit value of standard coal saved

Emin
r 165,000 tons Lower limit value of pollutant emission reduction

efficiency-oriented model is formulated based on data envelopment
analysis (DEA) by mapping power grid investment portfolios
to efficiency indicators (Lee and Chen, 2024; Xu et al., 2024).
Then, three investment efficiency objective functions are formulated
through this approach: safety investment efficiency, economic
investment efficiency, and green investment efficiency of power grid
infrastructure investment, as outlined in Equation 1:

{{{{{{{{{
{{{{{{{{{
{

F1 =max
usafY saf

vsafX

F2 =max
uecoY eco

vecoX

F3 =max
ugreYgre

vgreX

s.t. 

J

∑
j=1

ujYj

I

∑
i=1

viXi

≤ 1

uj ≥ 0,vi ≥ 0,Xi ≥ 0

, (1)

where usaf, ueco, and ugre, respectively, represent the output weight
vector of infrastructure investment safety, economic, and green
effectiveness indicators, which can be calculated by the combination
of the analytic hierarchy process (Deng andWang, 2020;Wang et al.,
2017) and the entropy weighting method (Li et al., 2024; Qin et al.,
2024); vsaf, veco, and vgre represent the input weight vector of the
investment scale of infrastructure portfolio categories; X represents
the vector of the investment scale of infrastructure portfolio
categories, and X = [X1,X2,⋯,Xi,⋯,X7]

T; Y saf, Y eco, and Ygre,

respectively, represent the vector of the values of infrastructure
investment safety, economic, and green effectiveness indicators,
which can be calculated by the LASSO regressionmodel (Tibshirani,
2011). The multi-objective cost efficiency-oriented investment
portfolio optimization model is shown in Figure 1.

Several constraints have been introduced into the model to
ensure that investments in grid infrastructure are rationalized
(Yang et al., 2024). Constraint (2) stipulates that the total investment
across all infrastructure drivers should not exceed the maximum
investment capacity of the grid. The N-1 line passing rate ςL,N−1
and heavy overload equipment reduction rate NG are used to reflect
the degree of improvement in power reliability. In addition, the
capacity–load ratio r and average household power distribution
capacity Sa are used to reflect the limitation to power supply
capacity. Transmission and distribution cost per unit of electricity
C is selected to limit the profitability of the company. The amount
of saved standard coal Ec and pollutant emission reduction Er are
chosen to reflect the effect of energy saving and emission reduction.
Constraints are shown in Equations 2–4:

I

∑
i=1

Xi ≤ Xmax, (2)

[[[[[[[[[[[

[

ςmin
L,N−1
Nmin

GZ
rmin

Smin
a
Cmin

Emin
c

Emin
r

]]]]]]]]]]]

]

≤

[[[[[[[[[[[

[

ςL,N−1
NG
r
Sa
C
Ec
Er

]]]]]]]]]]]

]

=

[[[[[[[[[[[

[

0 0.41 0 0 0 0.15 0
0 0.12 0 0 0 0 0
0 0.15 0 0.08 0.12 0 0

0.15 0.10 0 0.18 0 0.05 0
0 0.29 0 0 0.76 0 0.19

0.52 0.02 0.20 0.12 0 0 0.28
0.71 0.09 0.20 0.03 0 0.16 0.51

]]]]]]]]]]]

]

[[[[[[[[[[[

[

X1
X2
X3
X4
X5
X6
X7

]]]]]]]]]]]

]

,

(3)
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FIGURE 2
Power grid investment portfolios under different schemes.

[

[

rmax

Smax
a

]

]
≥ [

[

r

Sa
]

]
= [

[

0 0.15 0.08 0.12 0

0.15 0.10 0.18 0 0.05
]

]

[[[[[[[[[[

[

X1

X2

X4

X5

X6

]]]]]]]]]]

]

,

(4)

where Xmax represents the maximum scale of annual infrastructure
investment of the company; ςmin

L,N−1 represents the lower limit value
of the line N-1 passing rate; Nmin

GZ represents the lower limit value
of the decline rate of heavy overload equipment solved; rmax and
rmin, respectively, represent the upper and lower values of the
capacity–load ratio; Smax

a and Smin
a , respectively, represent the upper

and lower values of the average household power distribution
capacity; Cmin represents the lower limit value of the cost of
transmission and distribution of electricity per unit of electricity;
Emin

c represents the lower limit value of the saved standard coal; Emin
r

represents the lower limit value of pollutant emission reduction. X1
represents the investment in improving power access capacity; X2
represents the investment in enhancing the transmission capacity;
X3 represents the investment in enhancing the flexibility capability;
X4 represents the investment tomeet the growing load;X5 represents
the investment in improving the level of digitization; X6 represents
the investment in optimizing the grid structure; X7 represents the
investment in new models and new formats.

3 Evolutionary algorithm for power
grid investment efficiency
maximization

An evolutionary algorithm based on super-efficient hyperplane
projection transformation (EASEHPT) is proposed to optimize
multiple objectives within the model. The proposed algorithm

is based on the principle of the NSGA-III algorithm (Deb and
Jain, 2014), which selects sub-generation grid portfolio populations
by calculating the integrated distance of non-dominated portfolio
populations. Then, the grid portfolio populations are sorted
according to the integrated distance, and populations that perform
better in the same class will be retained. The optimal solution
is selected from the Pareto efficiency frontier set of the multi-
objective infrastructure portfolio through the super-efficiency
selection strategy. The multi-objective evolutionary algorithm
is shown in Figure 1.

This study compares all portfolio individuals in a new
population with a size of 2M after the genetic evolution operation,
according to three optimization objectives, F1, F2, and F3, to achieve
a Pareto non-dominated hierarchical sorting. Moreover, the single-
objective optimal solution set is chosen to construct the spatial
hyper-efficiency plane. Then, the Pareto non-dominated solution
of the grid infrastructure investment portfolio is projected to the
hyper-efficiency plane (Chen et al., 2021). The general expression
for the super-efficiency plane of the three objectives is shown in
Equation 5:

a1 ⋅ f 1 + a2 ⋅ f 2 + a3 ⋅ f 3 = 1, (5)

where (a1,a2,a3) denote the unit normal vector of the super-
efficiency plane; (f 1, f 2, f 3) denote the extreme point vector. The
ideal individuals ( f1,min, f2,min, f3,min) are extracted and converted
to zero vectors (Chen et al., 2020), and the target individuals are
normalized and projected onto the super-efficient plane is shown in
Equations 6, 7:

f
k
i =

f ki − f
k
i,min

f ki,max − f
k
i,min

, (6)

̂f ki =
f
k
i

3

∑
i=1

f
k
i

, (7)
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TABLE 2 Investment efficiency and convergence effect of the solution set under different schemes.

Scheme Safety
investment
efficiency

Economic
investment
efficiency

Green
investment
efficiency

Comprehensive
investment
efficiency

Inverse
generational
distance

Spacing

Scheme 1 1.18 1.21 1.77 1.43 0.5374 0.1493

Scheme 2 1.50 0.76 1.62 1.33 — —

Scheme 3 1.09 1.13 1.48 1.26 0.7226 0.2041

where f
k
i denotes the ith normalized target value under the kth

grid infrastructure investment portfolio solution; ̂f ki denotes the
intercept of the ith target in the super-efficiency plane under the
kth grid infrastructure investment portfolio solution; f ki,max and
f ki,min, respectively, denote the maximum and minimum values
of the ith target under the kth grid infrastructure investment
portfolio solution.

In this paper, the integrated distance is introduced to evaluate
the super-efficiency and equilibrium performance of solutions.
Assuming that the coordinates f

k
of the kth portfolio solution and

its projection point ̂f k in the super-efficiency plane are ( f
k
1 , f

k
2 , f

k
3 )

and ( ̂f k1 , ̂f
k
2 , ̂f

k
3 ), and the coordinates of the intersection point with

the new production frontier plane ̃f k in the super-efficiency plane
are ( ̃f k1 , ̃f

k
2 , ̃f

k
3 ), and the coordinates of the reference pointRck in the

super-efficiency plane are (rck1 , r
ck
2 , r

ck
3 ); then, the calculationmethod

of the equilibriumdistanceDk
b, the super-efficiency distanceDk

se, and
the integrated distance D̃k is shown in Equations 8–10:

Dk
b = ‖ ̂f

k,Rck‖
2
, (8)

Dk
se = ‖ ̃f

k‖
2
− ‖f

k
‖
2
, (9)

D̃k = wk
b ⋅

Dmax
b −D

k
b

Dmax
b −D

min
b

+wk
se ⋅

Dk
se −D

min
se

Dmax
se −D

min
se
, (10)

whereDk
b denotes the Euclidean distance (Cao et al., 2024b) between

the projection point of the kth grid infrastructure portfolio solution
on the super-efficiency plane and the nearest super-efficiency plane
reference point. The smaller the value of Dk

b, the higher is the
balance of the investment portfolio solution regarding the three
target efficiency values. Dk

se is the Euclidean distance between
the kth investment portfolio solution and the new production
frontier. The bigger the value of Dk

se, the higher the efficiency;
wk

b and wk
se, respectively, indicate the weighting coefficients of

balanced performance and super-efficiency performance of the
kth infrastructure investment portfolio solution; Dmax

b , Dmin
b , Dmax

se ,
and Dmin

se , respectively, represent the maximum and minimum of
all equilibrium and super-efficiency distance values calculated in
the solution set of the grid infrastructure investment portfolio
frontiers. The integrated distance D̃k serves as an indicator
of the quality of the investment solution, with larger values
reflecting superior performance.

In this paper, a super-efficient envelope model with non-radial
relaxation variables is introduced to select the optimal solution from
the Pareto efficient frontier set of the multi-objective infrastructure
investment portfolio. In this model, the relaxation variable is used to
measure the deviation between the solution and the hyper-efficiency
plane. Specifically, s−i denotes the relaxation variable of the scale of
the ith type of infrastructure investment portfolio, and s+j denotes
the relaxation variable of the value of the jth type of investment
benefits. When s−i > 0, it means that there is a lot of waste in the
investment portfolio. When s+i > 0, it means that the output of the
investment portfolio can be further improved. When the relaxation
variable is zero, it means that the investment portfolio is optimal.
Therefore, the optimal investment efficiency-oriented solution can
be identified from the resulting Pareto frontier set. It can be found
that a smaller value of s−i + s

+
j in the solution indicates higher

overall efficiency.

min 
1− 1

I
∑I

i=1
s−i
Xio

1+ 1
J
∑J

j=1

s+j
Yjo

s.t. 
M

∑
l=1,l≠o

Xilλl − s
−
i ≤ Xio i = 1,2, ..., I

M

∑
l=1,l≠o

Yjlλl − s
+
j ≥ Yjo j = 1,2, ..., J

M

∑
l=1,l≠o

λl = 1 λl, s
−
i , s
+
j ≥ 0

, (11)

where I denotes the total number of infrastructure portfolio
categories in the population individuals; J denotes the total
number of investment effectiveness indicators in the population
individuals;Xio denotes the investment scale of the ith infrastructure
portfolio category of the oth population individual; Yjo denotes
the jth construction effectiveness value of the oth population
individual; Xil denotes the investment scale of the ith infrastructure
portfolio category of the lth population individual; Y jl denotes
the jth construction effectiveness value of the lth population
individual; λl denotes the impact factor of the lth population
individual. Because of the existence of bilinear variable division
terms in Equation 11, it cannot be solved directly, so this paper
adopts the simplex method and pairwise planning to linearize
the model by introducing the transformed variables d, S−i , S+j ,
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and Λl. Let d = 1/(1+ΣJ
j=1(s
+
j /Yjo)/J); then, Equation 11 can be

expressed as follows:

min d− 1
I
∑I

i=1

s−i d
Xio

s.t.

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

1 = d+ 1
J
∑J

j=1

s+j d

Yjo
M

∑
l=1,l≠o

Xilλl − s
−
i ≤ Xio i = 1,2, ..., I

M

∑
l=1,l≠o

Yjlλl − s
+
j ≥ Yjo j = 1,2, ..., J

M

∑
l=1,l≠o

λl = 1 λl, s
−
i , s
+
j ≥ 0

. (12)

Let S−i = s
−
i d, S
+
j = s
+
j d, and Λl = λld; then, Equation 12 can be

transformed into Equation 13:

min d− 1
I
∑I

i=1

S−i
Xio

s.t.

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

1 = d+ 1
J
∑J

j=1

S+j
Yjo

S−i = s
−
i d,S
+
j = s
+
j d,Λl = λld

M

∑
l=1,l≠o

XilΛl − S
−
i ≤ Xiod i = 1,2, ..., I

M

∑
l=1,l≠o

YjlΛl − S
+
j ≥ Yjod j = 1,2, ..., J

. (13)

Through the above processing, the fractional planning problem
is transformed into a general linear planning problem so as to obtain
the optimal solution of the Pareto frontier solution.

4 Case studies

To validate the proposed model, taking a provincial power grid
in central China as an example, three comparison schemes are
established: scheme 1 uses the method proposed in this paper to
select the optimal investment portfolio. Based on scheme 1, scheme
2 changes the super-efficiency selection strategy into a fuzzy multi-
attribute decision-making method to obtain the optimal investment
portfolio. Scheme 3 uses theNSGA-III algorithm formulti-objective
optimization and combines the fuzzy multi-attribute decision-
making method to select the optimal investment portfolio (Yu et al.,
2019; Wang et al., 2024; Hussain et al., 2024). The parameter settings
of the multi-objective cost efficiency-oriented investment portfolio
optimization model are shown in Table 1. Power grid investment
portfolios under different schemes are shown in Figure 2. The
comparative results under different schemes are shown in Table 2.

The proposed scheme prioritizes power infrastructure
investments on the transmission capacity and flexibility capability
enhancements. It can be seen from Figure 2 that the investment
portfolio obtained from scheme 2 prioritizes optimizing the grid
structure, and the investment portfolio obtained from scheme 3
prioritizes enhancing the transmission capacity and meeting the
growing load. It can be found from the analytical results that
scheme 1 demonstrates superior performance on the comprehensive

investment efficiency while maintaining the balanced performance
in all efficiency indicators. Compared to scheme 3, the lower
inverse generational distance and spacing in scheme 1 indicate
that the solution set is close to the ideal Pareto front and has
a better distribution of solutions. This is because the proposed
algorithm employs a super-efficiency DEA model to rank these
population individuals through equilibrium distances so that
the better individuals can be selected from the non-dominated
population individuals. Additionally, the algorithm utilizes a super-
efficiency envelopment model to extract optimal solutions from the
Pareto frontier set. As a result, the power grid investment portfolio
achieves higher comprehensive efficiency while maintaining the
balanced performance in all efficiency indicators.

The power grid investment portfolio obtained from scheme 2
demonstrates a stronger emphasis on safety investment efficiency
while exhibiting notably lower economic investment efficiency and
inferior comprehensive investment efficiency compared to those of
scheme 1. These results stem from the decision making of scheme
2 to improve safety benefits for the goal of protecting people’s
livelihood and policies, and it easily leads to the lack of investment
in enhancing economic benefits, resulting in the reduction in
the comprehensive investment efficiency of power grids. Although
scheme 3 shows relatively balanced performance in all indicators, all
its investment efficiency indicators are lower than those of scheme 1.
Moreover, the inverse generational distance and spacing of scheme
3 are significantly higher than those of scheme 1, indicating that its
solution set is far away from the ideal Pareto frontier set.

5 Conclusion

In this paper, an investment efficiency-oriented strategy is
proposed to improve the overall investment efficiency for power
grid infrastructure planning with high penetration of renewable
energy sources. The following are the key findings of this study:
1) the proposed investment portfolio model prioritizes enhancing
the transmission capacity and flexibility capability of power grids
with proportions of 31.35% and 22.62%, respectively, and thus,
the system investment efficiency can be enhanced with renewable
energy accommodation enhancement. 2) The proposed EASEHPT
algorithm can improve the overall investment efficiency by 11.9%
compared to traditional methods, and the obtained Pareto front
solution set of themulti-objective investment portfolio exhibits both
diversity and optimality.
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A coordinated control strategy
for active transient voltage
support in DFIG-based wind
farms

Song Yuyan, Liu Yang*, Zhang Yongjie, Zhang Shuai,
Wang Xiaodi, Liu Fang and Su Yunche

State Grid Sichuan Economic Research Institute, Chengdu, China

During the implementation of active voltage support in wind farms, coordinating
the operation of multiple wind turbines presents significant challenges. The
dynamic response of the entire wind farm becomes complex during grid faults,
making it difficult to achieve coordinated voltage support across different
wind turbines. To address this, a coordination control strategy for doubly fed
wind farms is here proposed which is based on Q-learning informed by the
sensitivity of voltage. First, a method for calculating the voltage sensitivity of
DFIG-based wind farms is introduced, utilizing the arbitrary polynomial chaos
approach. Additionally, the operational constraints of wind farms are defined
based on the average short-circuit ratio of reactive power. The voltage support
characteristics of multi-machine wind farms under grid fault conditions are
then thoroughly explored. Subsequently, an improved Q-learning algorithm is
developed, based on the sensitivity of voltage. This algorithm aids in optimizing
the control commands, thus enhancing the effectiveness of the voltage support
system. Finally, adopting this voltage sensitivity as the basis for the coordinated
control commands and applying the improved Q-learning algorithm as the
implementation mechanism, a coordinated control strategy for active voltage
support in DFIG-based wind farms is proposed. Simulation results demonstrate
that the proposed control strategy can provide effective active voltage support
during grid faults.

KEYWORDS

active voltage support, Q-learning, reactive power voltage sensitivity, DFIG-basedWind
farm, coordinated control

1 Introduction

The ongoing transition of renewable energy from a supplementary to a primary
power source is crucial for energy transformation (Global Wind Energy Council, 2022;
Global Wind Energy Council, 2020). Currently, wind power has been extensively deployed
on a large scale and substantial capacity. The large-scale integration of wind energy
significantly alters the voltage dynamics of power systems, leading to frequent and
extensive voltage fluctuations. During grid faults, abrupt voltage changes can precipitate
large-scale disconnection incidents in wind farms, posing a significant threat to the
safe and stable operation of the power grid (Chengmao et al., 2023; Mathis, 2023;
Liu et al., 2020; Liu and Cheng, 2021).
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To enhance the voltage of the point of common coupling
(PCC) during faults, reactive power compensation devices
(Kafshgari et al., 2019; Abulanwar et al., 2016; Bian et al., 2015),
including capacitor reactors, on-load tap-changing transformers,
and SVCs are employed. However, challenges persist, such as
high construction and maintenance costs, insufficient dynamic
reactive capacity during faults, and inadequate control strategies
(Abulanwar et al., 2016). Consequently, active voltage support
technology for wind farms has attracted considerable research
(Hu et al., 2016; Ouyang et al., 2019).

Doubly fed induction generators (DFIGs), a pivotal model
in the contemporary wind power generation industry, possess
the capability to decouple active and reactive power outputs
(Llrab et al., 2020; Liu and Cheng, 2021; Zhang et al., 2020).
This characteristic makes DFIG-based wind turbines an important
measure for improving the reactive power operational environment
of wind farms (Ouyang et al., 2019; Yujun et al., 2018). A variable
droop control scheme for reducing PCC voltage fluctuations is
proposed in Li et al. (2018). While previous studies have optimized
the reactive power injected into the grid by DFIG-based wind
farms, the transient operational characteristics necessitate further
exploration.

A two-stage voltage control method for wind farms with energy
storage systems (ESSs) is proposed in Peng et al. (2024) to enhance
the reactive power support capability of wind farms. However, due
to the addition of ESSs, the construction cost of wind farms has
increased, and the complexity of their transient characteristics will
further increase. A wind farm power control strategy based on
model predictive control was proposed by Zhao et al. (2017) and
Zhang et al. (2023), which optimized the reactive power capacity
of wind farms by adjusting the active power output. However,
the coordinated control characteristics among multiple WTs have
not been considered. Self-allocation strategies were introduced in
Botong et al. (2023) for distributing reactive power output among
multiple wind turbines (WTs) within a wind farm. Distributed
voltage control architectures for wind farms were introduced by
Ahmidi et al. (2012) to coordinate the reactive power output among
multiple WTs. An optimization operation framework for WTs was
proposed in Bhyri et al. (2024) to enhance the reactive power output
capability of wind farms during fault crossing. However, the reactive
power operating limitations of each WT were not considered in the
these studies.

Additionally, a method was proposed in Dong et al. (2020)
to enhance the resilience of turbines to voltage fluctuations by
minimizing the imbalance in power generation among multiple
WTs, while in Huang et al. (2020), voltage support was achieved
by optimizing control parameters and compensating for delays in
wind farm control systems. Coordinated sequence control based
on multi-machine coordination and fault isolation has also been
proposed to enhance the overall reactive support capability of wind
farms (Zhang et al., 2019; Xiao and Heng, 2021). However, the
above studies have not considered the various operational scenarios
and constraints of wind farms, indicating that the applicability of
their control systems requires further research (Tong et al., 2020;
Cai et al., 2024; Zheng et al., 2020).

This paper proposes a novel coordinated control strategy for
active transient voltage support inDFIG-basedwind farms that aims

to optimize the dynamic reactive power response characteristics
of wind turbines and improve the voltage support capability
of wind farms. The main contributions of this paper are as
follows.

(1) A method for calculating the voltage sensitivity of DFIG-
based wind farms utilizing arbitrary polynomial chaos (aPC)
is presented which quantifies the impact of each WT on the
voltage at the PCC.

(2) An operational constraint based on the short-circuit ratio is
established, with the average value of reactive power taken into
consideration, which could effectively prevent excess reactive
power after fault clearance.

(3) An improved Q-learning based on voltage sensitivity (VS-Q)
is innovated; based on this, a coordinated control strategy for
active transient voltage support in DFIG-based wind farms
is proposed to effectively improve the voltage level of wind-
connected power systems during grid faults.

2 Voltage support characteristics and
operational constraints of DFIG-based
wind farms under grid faults

2.1 Reactive power support capacity of
DFIG-based wind farms

When a wind farm implements voltage support, its available
reactive power capacity is obtained by adding the reactive power
output from the wind turbines. The total available reactive power
capacity under current operating conditions, QARC, and the sum of
reactive power capacity increase due to reduced active power output,
QIRC, can be expressed by Equation 1.

QRPC =
G

∑
g=1

Qgre f_AR +
H

∑
h=1

Qhre f_RL
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

QARC

+
K

∑
k=1

Qkre f_SA −Qloss
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

,

QIRC

G+H ≤ N,K ≤ N

(1)

where QRPC is the reactive power support capability of a
wind farm, Qgre f_AR is the reference value for the reactive power
output of the g th WT under current operating conditions, Qhre f_RL
is the reactive power limit of the WT, Qkre f_SA is the reactive
power added when the WT reduces its active power, and Qloss
is the reactive power loss of the wind farm. G represents
the number of WTs that have implemented the active voltage
support but have not yet reached the reactive power output
limit. Under the same operating condition, the number of WTs
that have reached the reactive power limit is H. K denotes the
number of WTs that reduce the active power to increase the
reactive power output, and N is the total number of WTs in
the wind farm.

The reactive power support capability of DFIG-based wind
farms is determined by the reactive capacity of WTs. During the
implementation of voltage support, the use of available reactive
power capacity should be prioritized by a wind farm to prevent WTs
from operating under extreme conditions.
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FIGURE 1
Grid-connected equivalent circuit of the DFIG-farm.

FIGURE 2
An overall coordinated control framework for transient voltage active support in DFIG-based wind farms based on VS-Q.

2.2 Voltage sensitivity of a wind farm based
on aPC

The key to achieving active voltage support for a wind farm
is to adjust the reactive power output of each WT reasonably and
accurately based on the impact of the WTs on the PCC voltage,
which can achieve optimal control effects. The physical significance
of voltage sensitivity can be defined as the influence exerted on the
PCC voltage by the reactive power output of a WT within a wind
farm. Therefore, the voltage sensitivity of wind farms can be utilized
as a predetermined basis for determining the coordinated control

parameters of the active voltage support.The aPCutilizes orthogonal
polynomial expansion to assess the dependence of model outputs
on parameters, enabling the calculation of voltage sensitivity. Thus,
the weighted sum of multivariate orthogonal polynomial bases can
be used to represent the degree to which the PCC voltage of a wind
farm is affected by the reactive power output of theWTs.The voltage
response variation at the PCC can be approximated by the following
polynomial representation:

ϒ(x, t;ω) ≈
M

∑
j=0

cj(x, t)Ψ j(ω), (2)
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FIGURE 3
Flowchart of the coordinated control strategy.

where: ω is the input of the model, representing the reactive
power generated by the wind farm comprising multiple WTs; ϒ is
the output of the model, representing the transient voltage response
of the PCC; M is the number of polynomials, and its value depends
on the number of wind turbines N and the polynomial order d;
cj is a polynomial coefficient used to quantify the dependence of
the model output ϒ on the input parameter ω for each expected
point in space x at time t. The simplified representation of the
multivariate orthogonal polynomial basis of ω is Ψ , which can be
further expressed by Equations 3, 4.

Ψk(ω) =
N

∏
j=1

H
(αrj)
j (ωj),

N

∑
j=1

αrj ≤M, r = 1, ...,N, (3)

[[[[[[[[

[

μ0,j μ1,j ⋯ μk,j
μ1,j μ2,j ⋯ μk+1,j
⋮ ⋮ ⋱ ⋮

μk−1,j μk,j ⋯ μ2k−1,j

0 0 ⋯ 1

]]]]]]]]

]

[[[[[[[[[[

[

H(k)0,j
H(k)1,j
⋯

H(k)k−1,j
H(k)k,j

]]]]]]]]]]

]

=

[[[[[[[[

[

0
0
⋯
0
1

]]]]]]]]

]

, (4)

where Hj is an orthogonal basis parameter, αrj is a multivariate
index that contains the combination information of all possible
products of a univariate polynomial, and the index α is an M × N
matrix. μi,j is the ith original statistical moment of the variable ωi.

The coefficient cj is further evaluated in Equation 2.The formula
configuration focuses on the voltage change at PCC when the
reactive power output of the WT changes, and satisfies the linear
equation system shown by Equation 5.

MΨ(ω)Vc(x, t) = Vϒ(x, t;ω), (5)

where Vc is an M × 1 vector of coefficient cj.The vector
Vϒ contains the model output for each configuration point.
The M × N matrix MΨ contains polynomials evaluated at the
configuration points.

Based on aPC, the analysis of voltage sensitivity in multipleWTs
allows the response variation of the PCC voltage to be expressed on
a normalized polynomial basis. Its mean μΩ and variance σ2

Ω can be
represented by Equation 6. The Sobol index for sensitivity analysis
can be derived from Equations 7–9. The multi-parameter reactive
voltage weighted global sensitivity index within the wind farm is
expressed as Equation 10, reflecting the impact of reactive power
output from multiple WTs on the PCC voltage.

μΩ = c0,σ
2
Ω =

M

∑
j=1

c2j , (6)

Si1,...,is =
∑M

j=1
χjc

2
j

∑M
j=1

c2j
, (7)

STj = ∑
(i1,,,is);j∈(i1,,,is)

Si1,,,is , (8)

χj = {
1, if αkj > 0,∀j ∈ (i1, , , is)

0, if αkj = 0,∀j ∈ (i1, , , is)
, (9)

S2
ωj
=

M

∑
k=0

c2k

αkj −1

∑
i=0
[b
(αkj −1)
i ]

2
P(i)j (ωj), (10)

where Si1,...,is is the Sobol index, which represents the
contribution of variable ωi to the total variance of the output space
ϒ , and STj summarizes all Sobol indices of variable ωi. Formula 10
reflects the impact of reactive power output of multiple WTs within
the wind farm on PCC voltage and can be used as a measure of
voltage sensitivity in wind farms.

2.3 Active support operation constraint of
wind farms based on the average
short-circuit ratio of reactive power

The reactive power output from wind farms may cause grid
overvoltage after a fault is cleared. Therefore, it is essential to
determine themaximum acceptable reactive power output of a wind
farm under any grid disturbance. Constraints for voltage support
and coordinated control can be defined based on the short-circuit
ratio to prevent overvoltage issues in the power system with wind
farms. The equivalent circuit of the power system with wind farms
is shown in Figure 1.

Assuming that the DFIG operates at a constant power factor,
the output power at the PCC can be expressed as Equation 11. The

Frontiers in Energy Research 04 frontiersin.org192

https://doi.org/10.3389/fenrg.2025.1566923
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Yuyan et al. 10.3389/fenrg.2025.1566923

FIGURE 4
Simulation model.

FIGURE 5
Statistical parameters of reactive power output from wind farms. (a) The average value of polynomial coefficients and (b) The standard deviation of
polynomial coefficients.

FIGURE 6
Voltage response surface of the PCC under grid fault based on dual
parameters.

equivalent voltage at the PCC can be represented as Equation 12.
After the grid fault cleared, the WTs gradually restore active
output, at which point the output power at the PCC can be
expressed as Equation 13, and the equivalent voltage of the PCC is
represented as Equation 14.

{{
{{
{

Pwg =
N

∑
i=1

Pci − Pload

Qwg = Qrl = Qr −Qload,
(11)

Upcc = √(Ue +
QwgXe

Ue
)

2

+(
PwgXe

Ue
)

2

, (12)

{{{{
{{{{
{

P″wg =
N

∑
i=1

Pci − Pload −
N

∑
i=1
ΔPci +

N

∑
i=1
ΔP′ci = Pwg −ΔPw +ΔP

′
w

Q″wg = Q
″
r −Qload +

N

∑
i=1
ΔQci −

N

∑
i=1
ΔQ′ci = Q

″
rl +ΔQw −ΔQ

′
w

, (13)
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FIGURE 7
Voltage sensitivity of DFIG-based wind farms based on aPC.

FIGURE 8
Voltage response waveform of a DFIG-based wind farm (PCC voltage drops by 0.1 p. u.).

FIGURE 9
Output power waveform of a DFIG-based wind farm (PCC voltage drops by 0.1 p. u.). (a) active power of the WT and (b) is reactive power of the WT.
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FIGURE 10
Waveform of WT 3. (a) active power of the WT and (b) is reactive power of the WT.

FIGURE 11
Waveform of WT 5. (a) active power of the WT and (b) is reactive power of the WT.

U″pcc = √(U
″
e +

Q″rlXe

U″e
+
ΔQwXe

U″e
−
ΔQ′wXe

U″e
)

2

+(
PwgXe

U″e
−
ΔPwXe

U″e
+
ΔP′wXe

U″e
)

2

,

(14)

where Pwg and Qwg are the active and reactive power outputs
of the wind farm, respectively. Qr is the reactive power output by
the reactive power compensation device, and Qload is the reactive
load at the PCC. Xe is the equivalent reactance of the connected
system. Q″r is the output reactive power of the reactive power
compensation device after the fault cleared. ΔP′ci and ΔQ

′
ci represent

the changes in active and reactive power output of the ith WT
after the fault cleared, respectively. At this time, the active and
reactive power recovery values of the wind farm are ΔP′w and ΔQ′w,
respectively.U″pcc is the equivalent potential of the PCC after the fault
cleared.

The steady-state operating voltage of the system is defined as
1p.u. If the constant component influence of the equivalent potential
at the PCC is ignored and Xe = U

2
e/Scg, the equivalent potential can

be expressed as Equation 15.

U″pcc = 1+
Q″rl
Scg
+
∑N

i=1
ΔQci

Scg
, (15)

where Scg is the short-circuit capacity of the power system
connected by the wind farm. To avoid overvoltage issues in
the power system after fault clearance, the average reactive
power output of all WTs in the wind farm at the moment of
fault clearance is defined as Equation 16. Consequently, the

operational constraint for voltage support coordination in the
wind farm should satisfy Equation 17, which considers the
reactive power characteristics of the wind farm. The proposed
operational constraint enables a more precise evaluation of voltage
support capability during the operation of multiple WTs, which
can guide the allocation of reactive power output under grid
faults. ESCR

Qeve =
1
N

N

∑
i=1
ΔQci, (16)

ESCR >
NScg

0.3Scg −Q
″.
rl

(17)

3 Coordinating the control of the
overall structure

The issue of active voltage support in multiple WT DFIG-
based wind farms can be described as coordinating the reactive
power output of each WT based on their operational differences,
aiming to maximize the wind farm’s reactive support capability.
The voltage support problem under coordinated control in such
wind farms exhibits Markov properties, which can be represented
in the tuple Equation 18.

χ = [S,A,T], (18)
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FIGURE 12
Waveform of WT 8. (a) active power of the WT and (b) is reactive power of the WT.

FIGURE 13
Waveform of WT 12. (a) active power of the WT and (b) is reactive power of the WT.

where: S is the state space of the power systemconnected bywind
farms, represented as S = [s0, s1, s2, ..., sx]; A is the operation space of
multiple WTs in the wind farm, which can be represented as A =
[A0,A1,A2, ...,Ax]; T is the probability of state transition.

Because of the Markov property, the voltage support issue
in multiple WT DFIG-based wind farms can be solved through
Q-learning for coordinated reactive power control under grid
faults. The coordination control framework based on VS-Q
is shown in Figure 2. Based on VS-Q, a coordinated control strategy
for the transient voltage active support of DFIG-based wind farms is
proposed, wherein the voltage sensitivity is utilized to characterize
the impact of each WT on the PCC voltage and the reactive power
output scheme of the wind farm is determined based on Q-learning
to enhance the ability of wind farms to participate in power system
voltage regulation.

4 Coordination control strategy for
voltage support in DFIG-based wind
farms based on VS-Q

The coordination control of active voltage support in
multiple WT DFIG-based wind farms exhibits Markov properties.
Reinforcement learning can effectively derive decision-making
strategies among multiple WTs. Therefore, an improved Q-learning
method based on voltage sensitivity is proposed to achieve active
voltage support for wind farms. The state set of VS-Q is represented

as Equation 19, and the action set is represented as Equation 20.
The reward function is crucial for an agent’s assessment of actions,
fundamentally shaping its decision-making logic (Equation 21).

sx = [Pcx,Qcx,U cx,UPCCx|Pcx = [P1x,P2x, ...,PNx],
Qcx = [Q1x,Q2x, ...,QNx],U cx = [U1x,U2x, ...,UNx]],
x = 1,2,3....

(19)

Ax = [a1,a2, ...,aN]
a1,2,...,N ∈ [Q

ref
c0 ,Q

ref
cAR
,Qref

cRL
,Qref

cSA],
(20)

R =
{{{
{{{
{

λpun

N

∑
i=1

ESCR −
Scg

ΔQci

ESCR
 sx ∉ Scon,

ΔUPCC · λrew sx ∈ Scon

(21)

where x is the environmental state number of the wind farm
connected system and each state set constitutes the state space S
of the environment. Qref

c_0 is the current action taken by the WT to
maintain the existing reactive power output. Qref

c_AR represents the
reactive power output action taken by the WT. Qref

c_RL is the action
taken by the WT to output the reactive power limit. Qref

c_SA is the
action to reduce the active power and increase the reactive power
for the WT. λpun is the penalty coefficient, and λrew is the reward
coefficient. Scon is the feasible state space, which is the set of system
states that satisfy constraints.

Tomaximize voltage support at the PCC using a limited number
of WTs, a multiple WT active voltage support coordination control
based onVS-Q is proposed.This control utilizes amulti-stage action
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FIGURE 14
Voltage response waveform of a DFIG-based wind farm (PCC voltage drops by 0.45 p. u.).

FIGURE 15
Output power waveform of a DFIG-based wind farm (PCC voltage drops by 0.45 p. u.). (a) active power of the WT and (b) is reactive power of the WT.

updating strategy for intelligent agents, allowing for the adjustment
of individual output power and the coordination of reactive power
among multiple machines. In the element selection phase of the
strategy, the action transfer probabilities based on voltage sensitivity
are represented as Equation 22. The element selection strategy
is expressed as Equation 23, and the action updating strategy is
represented as Equation 24. After the agent takes an action, the
expected return of the system state can be expressed as Equation 25.

Pai =

{{{{{
{{{{{
{

Sω1

∑N
k=1

Sωk
 i = 1

Pai−1 +
Sωi
∑N

k=1
Sωk
 i = 2, ...,N,

(22)

ΠA = {
fc(a1|α ∈ (0,1])
fc(ai|α ∈ [Pai−1,Pai] )

 i = 2, ...,N α = rand (0,1] , (23)

ai = {
Qref

c_l+1 β ∈ (0,1− γ], l = 0,1,2
Qref

c_l β ∈ (γ,1], l = 3
 β = rand(0,1], (24)

where fc is the action element selection function used to select
elements that meet the requirements.Qref

c_l is the current action value
of the selected element by the intelligent agent. γ is the action update
factor used to achieve a balance between agent development and
deep learning. Qref

c_1. Q
ref
c_2, and Qref

c_3 correspond to Qref
c_AR, Q

ref
c_RL, and

Qref
c_SA in the action set, respectively. The probability of the system

transitioning fromcurrent state s to next state s′ at themomentwhen

the intelligent agent takes actionA can be expressed as T(s,A, s′). At
this point, the expected return of system state s can be expressed as:

V(s) = R(s) +max
A

ζ∑s′T(s,A, s′)V(s′), (25)

where ζ is the discount factor that satisfies ζ ∈ [0,1], representing
the impact of future rewards on current rewards. The goal of VS-
Q is to find the optimal strategy (Equation 26). The update of the
expected return for state transitions is represented as Equation 27.
Finally, the optimal strategy is obtained in Equation 28.

Π∗(s) = argmax
A
∑s′T(s,A, s′)V∗(s′), (26)

VΠ(s) = VΠ(s) + μ(R(s) + ζVΠ(s′) −VΠ(s)), (27)

Q(s,A) ← Q(s,A) + μ[R(s) + ζmax
A

Q(s′,A) −Q(s,A)]. (28)

Figure 3 shows the implementation process of voltage active
support coordination control for a multiple WT DFIG-based wind
farm based on voltage sensitivity and improved Q-learning.

5 Simulation

This section calculates the voltage sensitivity of a multiple WT
DFIG-based wind farm using MATLAB and develops a detailed
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electromagnetic transientmodel of thewind farmusingPSCAD.The
topology of the wind farm is shown in Figure 4. EachWThas a rated
capacity of 2 MW, and the wind farm accounts for 42.7% of the total
installed capacity of the system.

First, set node 14 of the wind power grid connection system
to experience a three-phase grounding fault at 12 s, lasting for
0.2 s. The statistical parameters of the aPC coefficient, namely the
mean and standard deviation, are shown in Figure 5. Considering
only the WT with the maximum operational difference, the results
are shown in Figure 6. It can be seen that the output reactive
power of the random group increases, and the voltage at the
connection point shows an upward trend, indicating that the wind
turbines significantly enhance the reactive power support of the grid
connection system.

The voltage sensitivity of the wind farm is illustrated in Figure 7.
As shown, there are significant differences in voltage
sensitivity among the WTs due to factors such as geographical
environment, operating wind speed, and the topology structure
of the wind farm.

At node 14 of the wind power grid connection system, a
three-phase ground fault occurred at 12 s, lasting 0.2 s. The voltage
responses at the PCC under various controls (Fortmann et al.,
2008; Kim et al., 2016) are shown in Figure 8, while the active and
reactive power outputs of the wind farm are depicted in Figure 9.
Figures 9–13 compares the active and reactive power output of
different WTs in the wind farm under the proposed control and
existing control (Fortmann et al., 2008; Kim et al., 2016). The
proposed VS-Q enhances the reactive power output level of the
wind farm, raising the average voltage at the grid connection point
during the fault from 0.906 p. u. to 0.9357 p. u., and increasing
the reactive power injected into the grid from 0.0106 p.u. to
1.5176 p. u.

We introduce the increase rate of PCC voltage to characterize the
control effect of different controls on the PCC voltage, specifically
expressed as

ρ =
Ueve

PCC_C −U
eve
PCC_u

Ueve
PCC_u

× 100%, (29)

where Ueve
PCC_u and Ueve

PCC_C are the PCC voltages under the
constant voltage control and the other control effects, respectively.
During the fault period, the increase rates of PCC voltage by
the constant droop control, the adaptive droop control, and the
proposed control were 0.33%, 1.51%, and 3.38%, respectively. The
proposed control can adjust the reactive power output of WTs
according to the actual operational state while avoiding the power
oscillation caused by the adaptive droop control.

To further validate the proposed control, the output active and
reactive power of WTs 3, 5, 8, and 12 during the fault period were
extracted, with their power waveforms shown in Figures 10–13.
The figures indicate that, compared to the other three controls, the
proposed control can output more reactive power during grid faults
and provide voltage support to the grid.

To further verify the control effect of the proposed control
under different fault levels, a three-phase ground fault occurred at
node 16, with a fault duration of 0.2 s. The voltage responses at the
PCC under various control are shown in The voltage responses at
the PCC under various control are shown in Figure 14, while the

active and reactive power outputs under various controls (Proposed
control; Fortmann et al., 2008; Kim et al., 2016) of the wind farm are
depicted in Figure 15.

The calculation results show that the proposed control increases
the average voltage of PCC during the fault from 0.454 to 0.4836
p. u. and increases the reactive power injected into the grid from
0.5442 to 2.2428 p. u. The increase rates of PCC voltage by
the constant droop control, the adaptive droop control, and the
proposed control were 1.41%, 3.47%, and 6.13%, respectively. The
proposed control achieves active voltage support of the wind farm
for the connected system.

6 Conclusion

This study has discussed the voltage support characteristics of
multiple WT DFIG-based wind farms under grid faults. It proposes
a method for calculating voltage sensitivity based on aPC and an
active support operational constraint based on the average short-
circuit ratio. Additionally, a coordination control for active voltage
support based on VS-Q is proposed. Key conclusions include the
following.

1. The aPC-based voltage sensitivity reflects the impact of each
WT on the PCC voltage.

2. The active support constraint accounts for reactive power
output and grid strength, preventing transient overvoltage after
fault clearance.

3. VS-Q coordination control optimizes voltage support using
sensitivity as a directive, enabling intelligent coordination of
reactive power among turbines during grid faults, thereby
enhancing transient voltage stability.
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In order to accurately describe the impact of the volatility and randomness of
renewable energy output power on the operation of industrial park microgrids,
a data-driven robust optimization method for industrial park microgrids is
proposed. Firstly, based on the traditional interval set, the uncertain parameters
of renewable energy output are modeled using a polyhedral set. Then, an
ellipsoidal uncertainty set is established using historical data of renewable
energy output. By connecting high-dimensional ellipsoidal vertices, a data-
driven convex hull polyhedron set is established. Then, the uncertain parameters
are better enveloped by scaling the convex hull set. A data-driven robust
optimization model for industrial park microgrid was further established, and
the column and constraint (C&CG) generation algorithm was used to solve
the model. Finally, simulation comparisons were conducted through examples,
and the results showed that the data-driven industrial park microgrids robust
optimization method can reduce conservatism and improve the robustness of
optimization results, demonstrating the effectiveness of the proposed method.

KEYWORDS

industrial park microgrids, data-driven, robust optimization, convex hull set, column
and constraint generation algorithm

1 Introduction

With the increasingly prominent environmental and climate issues caused by
excessive reliance on traditional fossil fuels, accelerating energy transition and sustainable
development on a global scale has become a widely accepted consensus (Farh et al., 2024).
To address the challenges of energy supply diversity and the intermittency of renewable
energy sources, the industrial park microgrids featuring complementary and coupled forms
of multiple energy supplies has emerged (Ishaq and Dincer, 2024). However, due to the
instability of renewable energy outputs, power generation is affected by various factors
such as climate, weather, and seasons, leading to significant fluctuations in power supply.
These fluctuations can potentially trigger instability or even collapse of the industrial park
microgrids, posing significant challenges to its safety and stability (Poodeh et al., 2025).

Existing research on the industrial park microgrids operation planning focuses on
energy utilization efficiency and enhancing system stability. For instance, in Arooj (2024),
system stability is improved by adopting demand-side response under the premise
of considering flexible resources. In Rezazadeh and Avami (2024), a comprehensive
energy system with detailed power-to-gas conversion and carbon cycling is established
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through the utilization of the carbon tradingmarket. InRahman et al.
(2025), the grid partitioning of the integrated energy system is
optimized by taking into account the characteristics of the load,
thereby achieving cost reduction. Synthesizing these studies, there
is a noticeable lack of consideration given to the uncertainty of
renewable energy output.

To address the issue of uncertainty in renewable energy output,
existing uncertainty optimization methods are mainly categorized
into two types: stochastic optimization methods (Davidsdottir et al.,
2024; Son and Kim, 2024; Aliasghar et al., 2022) and robust
optimization methods (Vulusala and Madichetty, 2018; Stewart
and Bingham, 2016). Robust optimization methods typically
use a set-based approach to describe the distribution range
of uncertain parameters. Unlike stochastic methods, robust
optimization does not require the probability distribution of
uncertain parameters and avoids the high-dimensional problems
introduced by numerous scenarios. Consequently, it has gained
increasing attention in the optimal operation of industrial
park microgrids.

To enhance the reliability of robust optimization results and
describe the correlations among uncertain parameters, recent
studies have employed historical data of uncertain variables
to explore the relationships between the variations of random
variables, leading to the proposal of data-driven uncertainty
sets (Sulaiman et al., 2024; Freitas et al., 2007; Ibraheemi and
Janabi, 2024). For instance (Zhang et al., 2024a), constructed the
uncertainty of photovoltaic power generation using historical data
from smart meters and phasor measurement units to solve the
problem of voltage regulation (Zhang et al., 2024b). constructed
an uncertainty set using historical vehicle travel data to analyze
the impact of large-scale transportation electrification on power
systems (Lorca and Sun, 2015). established a polyhedral uncertainty
set based on historical wind power data for economic dispatch
modeling, analysis, and optimization (Jalilvand-Nejad et al., 2016).
Proposed a correlated polyhedral uncertainty set model by bending
the boundaries of a polyhedral set through mathematical analysis,
building on the polyhedral set approach (Hamed and Rasoul,
2021). further refined the approach of Jalilvand-Nejad et al.
(2016) by constructing a generalized correlated polyhedral
uncertainty set model, allowing the polyhedral set to better
envelop the range of uncertain parameters (Degefa et al., 2015).
Constructed an ellipsoidal set to describe photovoltaic (PV) output
and proposed an affine adjustable robust optimization strategy
for active distribution networks. Although the ellipsoidal set
effectively considers the correlations among uncertain parameters,
its nonlinear structure increases the difficulty of solving the
model. While Lorca and Sun (2015), Jalilvand-Nejad et al. (2016),
Hamed and Rasoul (2021), and Degefa et al. (2015) consider the
correlations within the uncertainty sets, the broader coverage of the
uncertainty sets they establish can lead to increased conservatism
in decision-making.

In addition to polyhedral and ellipsoidal sets, another common
method is constructing uncertainty sets based on extreme scenarios.
In Moradian et al. (2024) and Akter et al. (2025), historical data is
first selected to form the uncertainty set. Then, extreme scenarios
are identified based on the historical data, and convex hull sets
are constructed from these scenarios. An appropriate scaling factor
is introduced to cover all historical data, and finally, a robust

optimization model based on extreme scenarios is established. The
method in Ayene and Yibre (2024) and Bifei et al. (2022) does
not predefine the shape of the uncertainty set but represents it as
the convex hull of historical scenarios. These studies have made
improvements regarding the conservativeness of polyhedral sets.
However, although the uncertainty sets based on extreme scenarios
can address the conservatism issue, they have a large number
of vertices, making them difficult to solve. Therefore, this paper
proposes a data-driven convex hull uncertainty set model. This
model can not only reduce the conservatism of the solution but also
decrease the difficulty of solving.

Against this research backdrop, considering the lack of attention
to uncertain energy inputs in industrial park microgrids, this paper
proposes a data-driven robust optimization method for industrial
park microgrids. First, traditional polyhedral set modeling is
conducted based on interval sets. Then, ellipsoidal sets are
constructed based on historical scenarios, and the vertices of the
ellipsoids are connected to form convex hull polyhedral sets. Finally,
the constructed convex hull set is scaled to cover all historical
scenarios. Furthermore, the data-driven convex hull model is
embedded into the robust optimization model of the industrial
park microgrids. The effectiveness of iu-the proposed method is
verified through a case study of an integrated energy system in a
specific region.

This paper will mainly make contributions in the
following aspects:

1. In view of the current situation that the integrated energy
system insufficiently considers the injection of uncertain
energy sources, a data-driven robust optimization method for
industrial park microgrids is proposed.

2. Aiming at the deficiencies of traditional uncertain set
modeling, traditional polyhedron set modeling is first
carried out on the interval set. Then, an elliptical set is
constructed based on historical scenarios. Subsequently,
the vertices of the ellipse are connected to construct a
convex hull polyhedron set, and all historical scenarios are
covered by scaling, thus establishing a unique data-driven
modeling method.

3. The well-constructed data-driven convex hull set model is
successfully embedded into the robust optimization model of
the industrial park microgrids. Moreover, with the help of an
example of an industrial parkmicrogrid in a certain region, the
effectiveness of the proposed method is verified.

The rest of this article is organized as follows: Section 2
introduces the different uncertain set modeling. The industrial
park microgrid optimization model is introduced in Section 3.
In Section 4, the specific objective function and constraints is
presented. Section 5 studies the robust optimization method for
microgrid in industrial park. Finally, Section 6 concludes.

2 Uncertain set modeling

2.1 Traditional uncertain set modeling

In this paper, the budget uncertainty set U is used to
express the range of fluctuations in the magnitude of PV as
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well as wind power output. The specific expression is shown
in Equation 1:

U =

{{{{{{{
{{{{{{{
{

u = [ ̃PPV
t , ̃P

WT
t ]

z = [zPVt ,z
WT
t ]

̃PPV
t = P

PV,f
t +ΔP

PV,maxzPVt
̃PWT
t = P

WT,f
t +ΔP

WT,maxzWT
t

(1)

where ̃PPV
t and ̃PWT

t denote the actual magnitude of output at
the moment t for PV and wind power, respectively; zPVt and
zWT
t represent the actual output levels of PV and wind power

generation at the moment t respectively. PPV,f
t and PWT,f

t represent
the predicted power output levels of PV and wind energy at
the moment t respectively; ΔPPV,max and ΔPWT,max denote the
maximum fluctuation values of PV and wind power generation,
respectively; u represents the vector set of PV and wind power
output; z stands for the vector set of uncertain variables in PV and
wind power generation.

When there is no spatiotemporal correlation between uncertain
variables, to better represent the range of variation of uncertain
variables, this paper first characterizes them using traditional box
sets and polyhedral sets, as shown below.

2.1.1 Box set
The specific expression for a box set can be given as:

U = {z ∈ RN×1|βzdown ≤ z ≤ βzup} (2)

where RN×1 represents the dimension of the uncertain variable;
zdown and zup represent the maximum and minimum values of
the uncertain variables, with values set to 1 and −1, respectively;
β, which is the adjustment coefficient used to regulate the
conservativeness of the uncertain set, is set to (0,1].

From Equation 2, it can be seen that the box set is merely
an interval representation of the uncertain variable, and under
normal circumstances, the values are often taken at the boundaries.
However, since the extreme conditions corresponding to the
boundary values have a lower probability of occurrence, the box set
fails to accurately representmost other cases.Therefore, a polyhedral
set is often required.

2.1.2 Polyhedral set
The specific expression is shown in Equation 3:

U =
{{{
{{{
{

z ∈ RN×1|||

|

βzdown ≤ z ≤ βzup
N

∑
i
zi ≤ Γ

}}}
}}}
}

(3)

where Γ represents the uncertainty of the polyhedral set of
uncertain variables, used to constrain the range of uncertainty of the
polyhedral set. When the uncertain variables are two-dimensional,
the envelope ranges of the polyhedral sets corresponding to different
matrices Γ are illustrated as shown in Figure 1.

2.2 Data-driven modeling of uncertain set

When there is spatiotemporal correlation among uncertain
parameters, envelope lines can be adopted to represent different sets

FIGURE 1
The impact of uncertainty on polyhedral sets.

based on the scatter plots formed by the historical data of uncertain
renewable energy output. Figure 2 illustrates the difference in
envelope ranges when using box sets and ellipsoid sets.

As can be seen in Figure 2a, the box set envelopes all possible
outcomes of distributed PV and wind power generation. However,
due to the inherent spatiotemporal correlation of distributed PV
at different times and locations, the PV output data predominantly
clusters around the y = x and y = −x function lines. In this scenario,
using a box set to describe the uncertainty of PV output may
lead to overly conservative optimization solutions, since the box
set not only encompasses all possible fluctuations but also covers
areas with low probability of occurrence, which are essentially blank
spaces. Therefore, it is necessary to adopt a more suitable modeling
approach for uncertain sets.

2.2.1 Ellipsoid set
The specific expression is shown in Equation 4:

U = {z ∈ RN×1|(z − c)TΣ−1(z − c) ≤ 1} (4)

where c represents the center point of a high-dimensional
ellipsoid, while Σ ∈ RN×N is a positive definite matrix indicating
the offset direction of the high-dimensional ellipsoid relative to the
coordinate axes.

As illustrated in Figure 2b, the ellipsoid set, similar to the
box set, envelopes all possible outcomes of distributed power
generation. Unlike the box set, however, the ellipsoid set reduces
the envelopment of blank areas with low probability of fluctuation
occurrence, thereby decreasing the conservativeness of the decision
results. However, due to the quadratic form of the ellipsoid set’s
expression, it introduces complexity in the robust optimization
process, increasing the difficulty of the solution.

2.2.2 Generalized convex hull set
Building upon this (Moradian et al., 2024), proposed a

generalized convex hull set, which not only effectively reduces
the conservativeness of optimization outcomes but also avoids the
introduction of quadratic forms during the modeling process. Thus,
based on Moradian et al. (2024), this paper constructs a data-driven
uncertain set, with the modeling process illustrated in Figure 3.

Step (1): Firstly, construct a high-dimensional ellipsoidal
uncertainty set that covers all historical data fluctuations
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FIGURE 2
The envelope range of an uncertain set. (a) Box set. (b) Ellipsoid set.

FIGURE 3
The modeling process for the convex hull uncertainty set (parts (a–d) illustrate key transformation steps).

with minimal volume, as illustrated in Figure 3a. The specific
representation is given by Equation 5, which is:

U e1 = {z ∈ R
N×1|(z − c)TΣ−1(z − c) ≤ 1} (5)

Step (2): On the basis of the original high-dimensional ellipsoid,
perform an orthogonal decomposition of the positive definitematrix
Σ into matrix Σ = PTJP = P−1JP. Rotate and translate the existing
ellipsoid so that its center coincides with the origin of the coordinate
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axes, as shown by the green dashed line in Figure 3b. At this
point, the high-dimensional ellipsoidal uncertainty set becomesU e2,
which is shown in Equation 6:

U e2 = {z
′ ∈ RN×1|(z′)TJ−1(z′) ≤ 1} (6)

z′ = P × (z − c) (7)

where J is a diagonal matrix, denoted as J = diag(λ1…λN); P is a
transformation matrix, representing the offset angle of the matrix.

Given the diagonal matrix J , the coordinates of the
vertices zc,i

′ of the transformed high-dimensional ellipsoid
are shown in Equation 8:

{{{{{{{{
{{{{{{{{
{

zc,1
′ = [1/√λ1,0…0],zc,N+1

′ = −[1/√λ1,0…0]

zc,2
′ = [0,1/√λ2…0],zc,N+2

′ = −[0,1/√λ2…0]

⋮

zc,N
′ = [0,0…1/√λNPV

],zc,2N
′ = −[0,0…1/√λN]

(8)

where mi represents the weight coefficient of the i-th vertex.
Step (3): Due to the high-dimensional linear polyhedral set

obtained from step 2, a small number of data points fall outside the
envelope. Therefore, a scaling process is necessary for the original
set, as shown by the solid lines in Figure 3c. After scaling, the vertices
of the high-dimensional linear polyhedron are shown in Equation 9:

{{{{{{{{
{{{{{{{{
{

kzc,1
′ = [k/√λ1,0…0],kzc,N+1

′ = −[k/√λ1,0…0]

kzc,2
′ = [0,k/√λ2…0],kzc,N+2

′ = −[0,k/√λ2…0]

⋮

kzc,N
′ = [0,0…k/√λN],kzc,2N

′ = −[0,0…k/√λN]

(9)

At this point, the scaled high-dimensional linear polyhedral
uncertainty set Up2 is shown in Equation 10:

Up2 =

{{{{{
{{{{{
{

z′ ∈ RN×1
|||||

|

z′ =
2N

∑
i=1

mikzc,i
′

2N

∑
i=1

mi = 1;  0 ≤mi ≤ 1

}}}}}
}}}}}
}

(10)

where k is the scaling factor, used to adjust the conservativeness
of the high-dimensional linear polyhedral envelope range. The
calculation method for k is detailed in Moradian et al. (2024), thus
there exists a minimum kmin that ensures the scaled polyhedral set
precisely envelops all possible data points. The derivation process
of kmin is shown in Supplementary Appendix SA1. Consequently,
the valid range for k is [0,kmin], and the polyhedral sets formed by
different values of k are illustrated in Figure 4.

The scaling factor influences the degree to which the convex
hull set envelops data points. When k = 1, the convex hull set,
formed by connecting the ellipsoid’s endpoints, does indeed
envelop all historical PV output points. However, it fails to fully
account for certain extreme scenarios, which, while reducing the
conservativeness of the optimization outcomes, compromises the
system’s robustness. By gradually increasing the scaling factor of the
convex hull set until it equals kmin, the set now fully encompasses all
historical output points. Unlike the box set, it minimally envelops

blank areas, thus, while decreasing the conservativeness of the
optimization results, it enhances the robustness of the outcomes
simultaneously.

Step (4): Rotate and translate the scaled high-dimensional
linear polyhedron so that it conforms to the original data points’
range. From Equation 7, it is known that after rotation and
translation, the high-dimensional linear polyhedral uncertainty set
Up1 is shown in Equation 11:

Up1 =

{{{{{
{{{{{
{

z ∈ RN×1
|||||

|

z =
2N

∑
i=1

mi(c + kP
−1zc,i
′)

2N

∑
i=1

mi = 1;  0 ≤mi ≤ 1

}}}}}
}}}}}
}

(11)

In summary, when the box set is used to describe the fluctuation
of photovoltaic output, because it is an interval set, as shown in
the black box square box line in Figure 4. Although it completely
envelopes all the possibilities of photovoltaic output, due to the
existence of a large number of blank areas, the results obtained by
using this set are conservative to a certain extent. When the convex
hull set is used, it is shown in the color diamond box in Figure 4.
Since it is connected by the endpoints of the elliptical set and the
polyhedron set obtained by scaling, it has a good ability to describe
the historical output points of the photovoltaic, and reduces the
envelope of the blank area while completely enveloping. This solves
the disadvantage of high conservatism brought by the box set.

3 Industrial park microgrid
optimization modeling

3.1 Industrial park microgrid system

The power-to-gas industrial park microgrid system is an
integrated system that combines electricity, thermal energy, and gas
energy, typically involving various energy conversion and utilization
technologies, aiming to achieve efficient energy utilization and
complementarity.

The typical power-to-gas industrial park microgrid system
established in this paper consists of the following components, and
the industrial park microgrid system diagram is shown in Figure 5.

Renewable energy facilities, including solar photovoltaic (PV)
systems and wind turbine generation (WT) systems, which
primarily convert renewable energy such as solar and wind power
into electricity to supply electric loads; energy storage facilities,
including battery energy storage systems (ES), heat storage systems
(HS), and cold storage systems (CS), which not only provide energy
to the system but also store excess energy for future use; heating
equipment, such as gas boilers (GB) and excess heat boilers (EH);
cooling equipment, such as absorption refrigerators (AC); and
various energy conversion equipment, including gas turbines (GT),
electroliers (EG), methane reactors (MR), hydrogen storage tanks
(CH), hydrogen fuel cells (HFC), and electric chillers (EC).

3.2 Demand-side response model

In order to better accommodate clean energy and enhance the
stability and economic efficiency of the system, a demand-side
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FIGURE 4
The range of convex hull sets under different values of k.

FIGURE 5
Industrial park microgrid system diagram.

response model needs to be established on the load side. The model
is constructed as follows:

−ξt =
ΔPD

t

ΔρD
t
=
PD,cur
t − P

D
t

ρD,cur
t − ρ

D
t

(12)

T

∑
t=1

Pcur
t =

T

∑
t=1

PD
t (13)

ρcur,max
t ≤ ρcur

t ≤ ρ
cur,min
t (14)

ρcur
t =
{
{
{

ρpeak t ∈ Tpeak

ρvalley t ∈ Tvalley
(15)

where ξt represents the price elasticity coefficient at the moment
t; ΔPD

t represents the change in the demand-side load before and
after the response is implemented at the moment t; Δρt represents

the change in the demand-side electricity price before and after the
response is implemented at the moment t; ρD

t and ρD,cur
t respectively

represent the electricity price before and after the demand side
response is applied at themoment t; ρcur,max

t and ρcur,min
t respectively

represent the upper and lower limits of the electricity price before
and after the demand side response are applied at the moment t;
ρpeak and ρvalley represent the peak and valley power before the
demand-side response is implemented; Tpeak and Tvalley respectively
represent the time periods of peak and valley power after the
demand-side response is implemented. Equation 12 defines the
elastic relationship between electricity price and load. Equation
13 ensures the balance of total electricity consumption before
and after the response. Equation 14 defines the value range of
electricity price. Equation 15 defines the peak and valley values of
electricity price. The modeling of thermal load response follows the
same logic.
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3.3 IDR model

However, the demand-side response model only focuses on
making response strategies for a single type of demand-side
resource, in the power-to-gas industrial park microgrid system,
due to the coordinated operation of multiple energy forms
and equipment, the demand-side response model is difficult to
coordinate the operation ofmultiple types of energy and equipment,
an efficient adjustment model is needed to manage and optimize the
operation of the system. Therefore, this paper adopts the Integrated
Demand Response (IDR) model.

0 ≤ ΔP0,IDR
t ≤ P

IDR
t (16)

PIDR
t ≤ P

IDR
max (17)

whereΔP0,IDR
t represents the change of load when the system adopts

the IDR model, PIDR
t represents the IDR reserve capacity of the load

at themoment t, and PIDR
max represents themaximum value of the IDR

load. Equation 16 defines the range of load change, and Equation 17
specifies the conditions that the load reserve capacity must satisfy.

4 Objective function and constraints

4.1 Objective function

In this paper, we consider the electricity-gas multi-energy
complementarymicrogridmodel that minimizes the integrated cost
of energy purchase cost, operation and maintenance cost, IDR cost,
and standby cost, and is shown in Equation 18:

min  C = Cbuy +Cmain +CSP +CIDR (18)

Equations 19–22 respectively demonstrate the calculation methods
for energy purchase cost, operation and maintenance cost,
Integrated Demand Response (IDR) cost, and standby cost.

Cbuy =
T

∑
t
[(

be
t + s

e

2
PE
t +

be
t − s

e

2
|PE

t |) + b
g
tQ

G
t ] (19)

where Cbuy represents the cost of energy purchased by the system
from the higher grid as well as from the gas grid; PE

t represents
the power of interaction between the system and the grid at time
t. A positive value indicates that power is purchased from the grid,
while a negative value indicates that power is sold to the grid; QG

t
represents the natural gas purchased by the system at time t; be

t and
bg
t represent the price of the electricity and natural gas, respectively,

at the time of purchase at time t; and se represents the price of the
electricity at the time of sale.

Cmain =
N

∑
n

T

∑
t
cnPnt (20)

where cn denotes the number of O&M coefficients of the nth device;
Pnt denotes the output of the nth device at time t.

CSP =
T

∑
t
(c+spP

sp,+
t + c

−
spP

sp,−
t ) (21)

where c+sp and c−sp denote the upward and downward standby cost
coefficients of the grid; Psp,+

t and Psp,−
t denote the upward and

downward standby capacity of the grid at time t, respectively.

CIDR =
T

∑
t
(cIDRP

IDR
t ) (22)

where CIDR denotes the cost factor when the user
participates in IDR.

4.2 Constraint condition

4.2.1 Energy balance constraints
The expression for the electrical power balance of the system

is shown in Equation 23:

PE
t − P

EG
t + η

HFCEPCH,out
t + ηGTEQGT

t + P
WT
t

+PPV
t + P

ES,dis
t − P

ES,ch
t − P

EC
t = P

D,cur
t −ΔP

0,IDR
t

(23)

where PEG
t , PCH,out

t , PWT
t , PPV

t , PES,dis
t , PES,ch

t , PEC
t indicate the size

of the electrolyzer, hydrogen storage tank, distributed wind power,
distributed photovoltaic, battery storage, electric refrigeration
machine at the moment t to consume or send out the size of the
electric energy; QGT

t indicates that the gas turbine at the moment t
of the size of the gas-to-electricity power; ηHFCE indicates that the
electric efficiency of the hydrogen fuel cell; ηGTE indicates that the
gas turbine gas-to-electricity efficiency.

The gas balance expression for the system is shown in
Equation 24:

QG
t + η

MRQMR
t −Q

GT
t −Q

GB
t = 0 (24)

where QMR
t represents the amount of natural gas injected into the

system by the methane reactor at the moment t; QGB
t represents the

amount of natural gas consumed by the gas boiler at the moment
t; and ηMR represents the natural gas generation efficiency of the
methane generator.

The heat balance expression of the system is shown in
Equation 25:

ηEHPEH
t + P

HS,dis
t − PHS,ch

t = P
H
t (25)

where PEH
t represents the thermal power produced by the waste

heat boiler at the moment t; PHS,dis
t and PHS,ch

t represent the thermal
power issued or stored in the heat storage tank at the moment t
respectively; PH

t represents the thermal load of the system at the
moment t; ηEH represents the heat production efficiency of the waste
heat boiler.

The cold balance expression of the system is shown in
Equation 26:

ηACPAC
t + η

ECPEC
t + P

CS,dis
t − P

CS,ch
t = P

C
t (26)

wherePAC
t represents the cold energy power issued by the absorption

chiller at the moment t; PCS,dis
t and PCS,ch

t represent the cold energy
power issued or stored in the cold storage tank at the moment t,
respectively; PC

t represents the cold load of the system at themoment
t; ηAC and ηEC represent the refrigeration efficiency of the absorption
chiller, respectively.
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4.2.2 Energy coupling constraints
Electricity - gas conversion mainly includes two aspects of

electricity hydrogen and hydrogen methanization, the system
of electricity - gas conversion coupling constraints expression
is shown in Equation 27:

ηEGPEG
t −Q

MR
t − P

CH,in
t = 0 (27)

where ηEG represents the efficiency of the electrolyzer to convert
gas; PCH,in

t represents the amount of hydrogen input to the hydrogen
storage tank at the moment t. The system heat-cooling conversion is
mainly to convert part of the system heat power into cold power.

The heat-cooling conversion is mainly to convert part of the
input thermal power of the system into cold power, and the
expression of the coupling constraints of heat-cooling conversion of
the system is as follows

ηHFCHPCH,out
t + ηGBQGB

t + η
GTQGT

t = P
AC
t + P

EH
t (28)

where ηHFCH represents the thermal efficiency of the hydrogen fuel
cell, ηGB and ηGT represent the thermal efficiency of the gas boiler
and gas turbine respectively.

4.2.3 Operation constraints of energy supply
equipment

The operation constraints of each device in the system are
expressed as Equations 29, 30

Pnmin ≤ P
n
t ≤ P

n
max (29)

ΔPnmin ≤ P
n
t+1 − P

n
t ≤ ΔP

n
max (30)

where Pnmin and Pnmax represent the upper and lower limits of the
n-th equipment output, ΔPnmin and ΔPnmax represent the upper and
lower limits of the nth equipment output change in the neighboring
time period.

4.2.4 Energy storage operation constraints

Smt = S
m
t−1 + η

m,chPm,cht −
Pm,dist

ηm,dis
(31)

{{{{
{{{{
{

0 ≤ Pm,cht ≤ P
m,ch
max D

m,ch
t

0 ≤ Pm,dist ≤ P
m,dis
max Dm,dis

t

Dm,ch
t +D

m,dis
t ≤ 1

(32)

Smmin ≤ S
m
t ≤ S

m
max (33)

SmT = S
m
1 (34)

where Smt denotes the size of energy stored in the m-th storage
device at the moment t, Pm,cht and Pm,chmax denote the maximum
charging and discharging power of the m-th storage device at the
moment t, ηm,ch and ηm,dis denote the charging and discharging
efficiency of the m-th storage device, Dm,ch

t and Dm,dis
t denote the

charging and discharging state of the m-th storage device at the
moment t, respectively. Equations 31–34 sequentially define the
dynamic change relationship of the stored energy of energy storage

devices, the constraints on charging/discharging power and status,
the limitation on the range of stored energy, and the closed - loop
condition for the stored energy at the start and end of the period,
regulating the operation process of the energy storage system.

4.2.5 Hydrogen storage tank operation
constraints

Similar to the battery energy storage, the hydrogen storage tank
can also be regarded as an energy storage device.

SCH
t = S

CH
t−1 + η

CH,inPCH,in
t −

PCH,out
t

ηCH,out (35)

{{{{
{{{{
{

0 ≤ PCH,in
t ≤ P

CH,in
max DCH,in

t

0 ≤ PCH,out
t ≤ PCH,out

max DCH,out
t

DCH,in
t +D

CH,out
t ≤ 1

(36)

SCH
min ≤ S

CH
t ≤ S

CH
max (37)

SCH
T = S

CH
1 (38)

where SCH
t represents the amount of hydrogen stored in the

hydrogen storage tank at the moment t, PCH,in
t and PCH,out

t represent
the maximum hydrogen filling and discharging capacities of the
hydrogen storage tank at the moment t, ηCH,in and ηCH,out represent
the hydrogen filling and discharging efficiency of the hydrogen
storage tank, DCH,in

t and DCH,out
t represent the hydrogen filling and

discharging energy state of the hydrogen storage tank at themoment t.
Equations 35–38 sequentially define the dynamic change of hydrogen
storageamount inhydrogenstorage tanks, theconstraintsonhydrogen
charging/discharging power and status, the range of hydrogen storage
amount, and the periodic closed-loop condition.

4.2.6 Power exchange constraints in large power
grids

PE
t + P

sp,+
t ≤ P

E
max (39)

PE
t − P

sp,+
t ≥ P

E
min (40)

where PE
max and PE

min respectively represent the upper and lower
limits of power exchange with the large power grid. Equation 39
defines the upper limit of the power exchange combined with the
upward reserve, and Equation 40 specifies the lower limit of the
power exchange after deducting the upward reserve.

4.2.7 Constraint on reserve capacity
In order to ensure the reasonable reserve capacity of the system,

the constraints are set as Equations 41–43.

0 ≤ Psp,+
t ≤ P

sp,+
max (41)

Psp,−
min ≤ P

sp,−
t ≤ P

sp,−
max (42)

Psp,+
t + P

IDR
t ≥ P

sp,+
min (43)

where Psp,+
max and Psp,−

max respectively represent the maximum values of
upward and downward reserves, and Psp,−

min represents the minimum
value of downward reserves.
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FIGURE 6
Renewable energy forecast output and load size.

4.2.8 Constraint on output of renewable energy
The constraints of renewable energy are as Equations 44, 45.

0 ≤ PWT
t ≤ ̃P

WT
t (44)

0 ≤ PPV
t ≤ ̃P

PV
t (45)

5 Robust optimization method for
microgrid in industrial park

5.1 Robust optimization model
establishment

Let the renewable energy constraint variable of the system
be vector PRE = {PPV

t ,P
WT
t }; the constraint variable of energy

storage equipment be vector PES = {Smt ,P
m,ch
t ,P

m,dis
t }; the constraint

variable of energy supply equipment be vector PE = {Pnt }; the
operation constraint variable of hydrogen storage tank be vector
PCH = {SCH

t ,P
CH,in
t ,P

CH,out
t }; the energy purchase constraint variable

be vector PSP = {PE
t ,Q

G
t ,P

sp,+
t ,P

sp,−
t }; and the IDR constraint variable

be vector PIDR = {ΔP0,IDR
t ,P

IDR
t }. Then, the matrix form of the

robust optimization model for the microgrid in the industrial park
established in this paper is as Equation 46.

min
x
(max

u∈U
min

y∈Ω(x,u)
cTy)

s.t. Ax ≤ d (a)

Gy ≤ h−Ex −Mu (b)

(46)

where x and y are the decision variables of the model, and u
is the uncertain variable. Among them, the first-stage decision
variables x = {Dm,ch

t ,D
m,dis
t },D

m,ch
t , andDm,dis

t represent the charging
and discharging states of the m-th energy storage system; the
second-stage decision variable is y = {PRE,PES,PE,PCH,PSP,PIDR};
the second-stage uncertain variable is u = { ̃PPV

t , ̃P
WT
t }. The constant

matrix A represents the coefficient matrix related to the decision
variable x. The column vector d is a constant and represents

the coefficient vector related to the decision variable x. The
constant matrices G and E represent the coefficient matrices
related to the decision variable y. The column vector h is a
constant vector and represents the coefficient vector related to
the decision variable y. The constant matrix M represents the
coefficient matrix related to the uncertain variable u. Ω(x,u)
is the feasible region of the continuous variable (x,u) when y
is given. cTy represents the objective function of the second
stage, corresponding to Equations 19 and 47 corresponds to the
constraint condition related to the first-stage variable x; (47-b)
corresponds to the constraint condition related to the second-stage
variable y.

For a two-stage robust optimization model like Equation 47,
since it contains both continuous variables and integer variables,
and the second stage of the model contains uncertain parameter
u, it cannot be directly solved. Therefore, this paper uses method
C&CG (Nayak et al., 2025; Michos et al., 2024) to transform it
into a master-slave problem for solution. Among them, the master
problem is to solve the integrated energy optimization model with
the minimum comprehensive cost under the worst case; the sub-
problem is to first solve the integer solution of the master problem
(such as the charging and discharging state of the energy storage
battery), and then optimize the remaining continuous variables to
minimize the comprehensive cost obtained by the system under the
worst case.

5.2 C&CG iterative solution method

The master-slave problem corresponding to Equation 47
is modeled as

MP1:

{{{{{{{
{{{{{{{
{

min
x,y,u
(η)

s.t. Ax ≤ d

Gyl ≤ h−Ex −Mul ∀l ≤ k

η ≥ cTyl ∀l ≤ k

(47)

SP1:
{
{
{

max
u∈U

min
y∈Ω(x,u)

cTy

s.t. Gy ≤ h−Ex∗ −Mu:π
(48)

The main problem MP1 corresponding to Equation 48 is solved
first, at this point, MP1 belongs to the mixed-integer second-order
cone programming problem. After solving the first-stage variable
solution x∗ corresponding to MP1 and the auxiliary variable η
introduced in k+ 1 iterations, which is C&CG-cut.Then, the variable
solution x∗ derived in the first stage is brought into the second
stage subproblem SP1 to find the worst-case scenario ul , where l
is the number of historical iterations and k is the number of current
iterations. Finally, the worst-case scenario ul solved in the second
stage is brought into the main problem MP1 of the first stage and
iterated. Where the last three constraints of Equation 48 are the set
of optimal and feasible cut planes resulting from the previous k
iterations, respectively. π is the dyadic variable of the subproblem
constraints.

5.2.1 Sub-problem solution method
Equation 49 is a max-min optimization problem, therefore, in

this paper, the pairwise theorem is used to convert the inner
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TABLE 1 Operation parameters of each device.

Device type Device parameters Value

EG
Transformation efficiency 0.8

Operation and maintenance cost (Yuan/kWh) 0.01

CH

Capacity (kWh) 20,000

Charging and discharging efficiency 0.95

Upper and lower limits of gas charging and discharging power (kW) 4,000

Initial gas volume 10,000

Operation and maintenance cost (Yuan/kWh) 0.01

GT

Electrical transformation efficiency 0.26

Thermal transformation efficiency 0.68

Operation and maintenance cost (Yuan/kWh) 0.03

GB
Operational efficiency 0.1

Operation and maintenance cost (Yuan/kWh) 0.8

AC
Operational efficiency 0.8

Operation and maintenance cost (Yuan/kWh) 0.03

EH
Operational efficiency 0.8

Operation and maintenance cost (Yuan/kWh) 0.025

EC
Operational efficiency 3

Operation and maintenance cost (Yuan/kWh) 0.03

ES

Capacity (kWh) 5,000

Charging and discharging efficiency 0.9

Upper and lower limits of charging and discharging power (kW) 2,000

State of charge at start” 0

Operation and maintenance cost (Yuan/kWh) 0.02

CS

Capacity (kWh) 5,000

Charging and discharging efficiency 0.9

Upper and lower limits of charging and discharging power (kW) 1,000

Initial capacity (kWh) 0

Operation and maintenance cost (Yuan/kWh) 0.02

HS

Capacity (kWh) 5,000

Charging and discharging efficiency 0.9

Upper and lower limits of charging and discharging power (kW) 1,000

Initial capacity 1,000

Operation and maintenance cost (Yuan/kWh) 0.02
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TABLE 2 The effect of scaling factor k on various costs.

Various costs/dollar k = 0.4 k = 0.6 k = 0.8 k = 1.0 k = 1.2

Operation and maintenance cost
238 236 234 232 231

44.1 62.2 79.4 96.7 21.6

Energy purchase cost
152 153 155 156 157

071.9 636.1 202.1 768 816.3

Standby cost
864 864 864 864 864

0 0 0 0 0

IDC cost
298 298 298 298 304

92.5 92.5 92.5 92.5 24.5

Total cost
214 215 217 218 220

448.5 830.8 214 597.2 002.4

TABLE 3 The influence of the three aggregations on individual costs.

Various costs/$ Cassette set Polyhedral set (%change) Convex packet ensemble (%change)

Operation and maintenance cost 22927.4 22984.8 (+0.25%) 23121.6 (+1.24%)

Energy purchase cost 159509.5 159044.5 (−0.29%) 157816.3 (−1.06%)

standby costs 8,640 8,640 (0.00%) 8,640 (0.00%)

IDR costs 30497.7 30497.7 (0.00%) 30424.5 (−0.24%)

system cost 221574.6 221,167 (−0.18%) 220002.4 (−0.71%)

min problem of Equation 49 into its pairwise form to merge
it into a maximization problem, which is shown in the form
of Equation 50.

max
u,π
−(h−Mu−Ex)Tπ

s.t. c +NTπ = 0

π,τa,τb ≥ 0

(49)

in Equation 50, there exists a bilinear term (Mu)Tπ , which is solved
here by using the outer approximation of the bilinear term. The
master problem MP2 and subproblem SP2 are obtained as shown
in Equations 51 and 52.

SP2:
{{{{
{{{{
{

max
u,π
−(h−Mu−Ex)Tπ

s.t. c +NTπ = 0

π,τa,τb ≥ 0

(50)

MP2:

{{{{{{{
{{{{{{{
{

max
u,π
−(h−Ex)Tπ + β

s.t. c +NTπ = 0

π,τa,τb ≥ 0

β ≤ Gm(u,π),∀m ≤ n

(51)

where MP2 and SP2 are used to solve the upper and lower
bounds of Equation 38, respectively, m is the number of historical

iterations, and n is the number of current iterations. An auxiliary
variable β is introduced to replace the bilinear term in the original
equation, and a bilinear term exists in Equation 52 Gm(u,π) =
(Mu)Tπ. Therefore, it is necessary to use the outer approximation
method for linearization, and the linearization formula is
shown in (53).

Gn(u,π) = (un)Tπn
sp + (u− u

n)Tπn
sp + (π −π

n
sp)

Tun (52)

6 Example analysis

This section is validated using the IEEE-RTS 24 node
example system. To reflect the planning requirements of the
power generation and transmission system, the load will be
increased by 1.4 times. At the same time, 400 MW wind farms
were connected at nodes 3, 6, 15, 18, and 23, respectively.
According to Equation 28, the predicted wind power output
value is about 115 MW, and the fluctuation of wind power
output is ±30% of the predicted value. The typical value of sub
transient reactance for all units is 0.1 (standard value). This
example has two voltage levels, namely, 138 kV and 230 kV,
and the maximum allowable current of the circuit breaker is
31.5 kA and 35 kA, respectively. The abandonment cost and load
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FIGURE 7
(Continued).

shedding cost are $150/(MWh) and $5,000/(MWh) respectively.
This article considers N-1 random faults in power generation
and transmission, and the convergence threshold of the C&CG
algorithm ζ Set to 0.001.

6.1 Example setting

In order to verify the effectiveness of the data-driven industrial
park microgrids robust optimization method established in this
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FIGURE 7
(Continued). Influence of robust adjustment coefficient β on each cost. (a) Influence of robust adjustment coefficient β on O&M costs. (b) Influence of
the robust adjustment coefficient β on the cost of purchased energy. (c) Influence of the robust adjustment coefficient β on standby costs. (d)
Influence of the robust adjustment coefficient β on IDR costs. (e) Influence of the robust adjustment coefficient β on total costs.

paper, this section cites a 24-h operation example of an industrial
park in Hubei Province for verification. The equipment installed
in the industrial park includes wind power, photovoltaic, gas
boiler and waste heat boiler. Absorption chillers, gas turbines,
electroliers, methane reactors, hydrogen storage tanks, hydrogen
fuel cells, electric chillers, energy storage systems, etc. Among
them, the wind power, photovoltaic prediction and load size of
the system are shown in Figure 6. The operating parameters of
each device are shown in. The operating parameters of each
device are shown in Schedule A1. According to the calculation
method given in (Hamed and Rasoul, 2021), the value kmin
here is 1.22.

6.2 Result analysis and verification

6.2.1 The influence of scaling factor k on the
optimization results

The impact of the scaling factor on the robust optimization
of the industrial park microgrid is shown in Table 2. The size of

the scaling factor determines the extent to which the constructed
convex hull set covers historical data. As seen from Table 2, with the
increase of the scaling factor, the system’s operational cost gradually
decreases, while the energy purchase cost continues to increase.This
is because the increase in the scaling factor expands the envelope
range of the convex hull uncertainty set over the historical output
data, meaning that the fluctuation range of renewable energy output
becomes larger,making theworst-case scenariomore likely to occur.
When volatile renewable energies such as distributed photovoltaics
andwind power continuously inject into the distribution network, in
order to maintain supply-demand balance and reduce disturbances
caused by the injection of uncertain energy, the systemneeds to filter
out a large portion of the power injected by distributed photovoltaics
and wind power. This leads to a reduction in the maintenance cost
of photovoltaic and wind power equipment, and as a result, the
overall operational cost decreases. Meanwhile, since the injection of
distributed energy is reduced, more injection power from the grid
is needed to meet the system’s electricity supply, thereby gradually
increasing the energy purchase cost. Reserve cost refers to the
margin cost incurred to account for the system’s response to possible
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random events and depends on the system’s contingency plan for
the worst-case scenario. Therefore, regardless of changes in the
scaling factor, the reserve cost shows little variation. Similar to
the reserve cost, the IDR (Interruptible Demand Response) cost is
an added cost to enhance the system’s stability margin. When the
scaling factor is less than or equal to 1, the convex hull set does not
envelop the extreme worst-case conditions, and thus the IDR cost
remains unchanged. However, when the scaling factor exceeds 1, the
convex hull set covers all possible scenarios, including theworst-case
scenario. To improve the overall efficiency of the system, users need
to appropriately shed load, which results in an increase in IDR cost.

6.2.2 The influence of robust adjustment
coefficient β on the optimization results

Figure 7 demonstrates the influence of the robust adjustment
coefficient β on the results of the robust optimization of the
industrial park microgrid. From the figure, it can be seen that as the
robust adjustment coefficient increases, each of the costs changes
more or less, except for the standby cost, which is unaffected by
system changes, which stays constant at $8640. When the robust
adjustment coefficient of the system is small, the uncertain energy
injected into the system at this time will be approximated as
deterministic energy, the various equipment of the system will
operate stably, and the photovoltaic and wind power equipment
of the system will operate at full efficiency, so the operation and
maintenance cost is the largest, and at the same time, due to the
injection of the deterministic energy, the system purchased energy
from the port decreases, so the system’s purchased energy cost is the
smallest, and with the increase in the robust adjustment coefficient,
this uncertainty energy injection will rise and the amount of energy
purchased by the system from the port will keep on rising, which
in turn leads to the rise of the system’s energy purchase cost and
the decrease of the O&M cost. For the IDR cost, when β ≤ 0.7,
the envelope always fails to cover the extreme conditions for both
the boxed set and the convex packet set with different deflation
multiples, so the IDR cost always stays the same; while when β is
large, at this time, when the deflation multiples k = kmin, the convex
packet set will completely envelope theworst case when the deflation
multiples are large, which will increase the IDR cost at this time,
but due to the fact that the boxed set can not accurately envelope
the distribution of the uncertain parameters, resulting in the blank
area of the envelope. Region, resulting in more blank regions in
the envelope, so the boxed set corresponds to the largest IDR cost
compared to the convex packet set.

As the robust adjustment coefficient increases, the magnitude
of the change in the cost of purchased energy and O&M cost
will remain stable when the convex packet ensemble is used,
specifically, when the deflation multiplier increases from 0.4 to 1.2,
the magnitude of the change in the cost of purchased energy and
O&M cost will be stabilized at the time when the robust adjustment
coefficient is equal to 0.3, 0.4, 0.6, 0.7, and 0.8, which is related to
the renewable energy equipment’s power output situation. When
β is small, the system is poorly adapted to the renewable energy
perturbation and the cost does not change much no matter what

FIGURE 8
Output of each device under three aggregations. (a) Output of
Cassette set equipment. (b) Output of polyhedral set equipment. (c)
Outputs of the convex packet ensemble.
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TABLE 4 Comparative analysis of optimization methods.

Comparison item Scheduling cycle: 24 h Scheduling cycle: 72 h

Convex hull set Scenario-based
stochastic
optimization

Convex hull set Scenario-based
stochastic
optimization

Scheduling time/s 25 65 42 97

kind of ensemble is used, on the contrary, when β is large, the system
is better adapted to the distributed PV perturbation. However, when
the convex packet ensemble is used, the envelope range of the convex
packet ensemble is different due to different deflation multiples.
When the deflation multiplier k = 0.4, the envelope range of the
convex packet ensemble is also smaller. In this case, changing the size
of the robust regulation coefficient β will not significantly affect the
renewable energy output size, so the effect of changing β to a certain
extent on the renewable energy output will be minimal. However,
when the deflation facto k = kmin, the convex packet uncertainty
set will encompass all the historical data, so it will be adjusted
accordingly to the increase of the robust regulation coefficient β,
which will affect the size of the renewable energy output. Since the
purchased energy cost of the system accounts for a large proportion
of the total cost, the trend of the total cost of the system is similar to
that of the purchased energy cost.

6.2.3 The influence of the three aggregations on
individual costs

The effects of the three uncertainty sets on each cost are
further compared when the deflation multiplier k = kmin, the robust
adjustment coefficient β = 1, and the uncertainty Γ = 0.9 are used, as
shown in Table 3. From Table 3, it can be seen that when different
sets are used, the total cost of using the convex packet set is lower
than that of the box set and the polyhedral set, except that the
standby cost remains basically the same. This is due to the fact
that when there is spatio-temporal correlation of the uncertain
parameters, the convex packet ensemble can change the envelope
range of the convex packet ensemble by deflation to make it fit
the distribution region of the uncertain parameters better, which
enhances the robustness of the system and reduces the conservatism.
On the other hand, the polyhedral set changes the envelope of
the polyhedral set by changing the uncertainty, and in order to
encompass the historical data of all renewable energy outputs, the
polyhedral set needs to increase the uncertainty, which enables the
expansion of the envelope of the polyhedral set in an untargeted
manner, although this enhances the robustness of the solution
results, but over-expansion for the sake of a few scenarios of the
data increases the conservatism of the solution instead. The boxed
ensemble, on the other hand, is a preliminary characterization
of the uncertain parameter distribution range, and therefore the
conservativeness and robustness of the solution results are theworst.

6.2.4 Output of each device in three pools
Figure 8 gives the output of each device at the electric power

balance under the three uncertainty sets. From the figure, it can be
seen that in the multi-energy complementary microgrid system, the
individual devices coordinate with each other and work together to

maintain the electric power balance. In the PV big hairy time period
(12–16 h), the system purchases the lowest electric power from the
ports, the polyhedral ensemble is the second, and the box ensemble
is the most when the convex packet ensemble is used, which is the
same as the conclusion obtained in the previous paper, and further
verifies that the use of the convex packet ensemble enhances the
robustness of the solution results and reduces the conservatism.

6.2.5 Computational efficiency analysis
To verify the computational efficiency of the convex hull

uncertainty set, we supplemented simulation analyses comparing
the convex hull set method with scenario-based stochastic
optimization in the revised manuscript. The comparative results
are shown in the table below.

As shown in Table 4, when handling problems of the same
scale, the convex hull set method proposed in this paper exhibits
significant computational efficiency advantages over scenario-based
stochastic optimization. Even as the problem scale increases, the
convex hull set method still outperforms scenario-based stochastic
optimization in computational efficiency.

7 Conclusion

In this paper, a research model of the industrial park microgrids
robust optimization method based on data-driven is constructed
and solved by C&CG algorithm. Finally, by comparing the industrial
park microgrids robust optimization methods under different sets,
the simulation results show that:

1. Compared with the interval set which can only take extreme
conditions at the boundary, the polyhedron set has a better
envelope for the range of uncertain parameters, which makes
the operation result more robust.

2. When the robust adjustment coefficient is the same, the total
system cost of using the convex hull set is 0.71% lower
than that of the box set and 0.53% lower than that of the
polyhedron set. For the convex hull set with different scaling
multiples, this not only increases the envelope of the region
with higher distribution of uncertain parameters, but also
reduces the envelope of the blank region with low probability.
Therefore, compared with the polyhedral set, the industrial
park microgrids robust optimization method using the convex
hull set is less conservative and more robust.

In the future, we will explore the comparative analysis between
convex hull sets and advanced data-driven methods such as
distributionally robust optimization and machine learning-based
uncertainty sets, with a view to providing more comprehensive
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and forward-looking research results for the field of multi-energy
microgrid optimization.
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