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Editorial on the Research Topic

External Factors Influencing Stem Cells’ Pluripotency, Senescence, and 
Differentiation

s

Introduction

Stem cells have the unique capacities for self-renewal and differentiation into multiple 
types of functional cells, which are critical for regenerative medicine and tissue engineering 
(Ireland and Simmons, 2015). Their fate, such as whether they self-renew, differentiate, or 
enter senescence, is tightly regulated not only by intrinsic genetic and epigenetic factors but 
also by a complex array of extrinsic factors. In particular, external factors, including the 
microenvironment, receptor-ligand interactions, and mechanical forces, play critical roles 
in maintaining stem cell pluripotency, directing differentiation, and preventing or inducing 
senescence (Zhang et al., 2022; Sun et al.). Aberrant regulation of these extrinsic factors often 
leads to the loss of normal stem cells and other functional cells, or promotes the formation of 
unwanted cells, such as cancer stem cells or malignant cancer cells (Ponomarev et al., 2022).

This Research Topic compiles the latest research on external factors that regulate 
stem cell pluripotency, senescence, and differentiation. It emphasizes that understanding 
the complex regulation of these extrinsic factors is crucial for optimizing stem cell 
therapies and preventing abnormalities like cancer by integrating recent research, innovative 
methodologies, mechanistic insights, and future therapeutic strategies to improve outcomes.

Regulation of microenvironment, metabolism, and 
senescence by external factors

Several studies focus on how the cellular environment and metabolic factors govern 
stem cell senescence. Sun et al. emphasize the role of the external microenvironment cues,
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such as extracellular matrix (ECM) components, mechanical 
stimuli, and oxidative stress, in regulating mesenchymal stem 
cell (MSC) senescence. They underscore that the aging process 
can be modulated by altering these external factors. Zheng et al. 
focus on how advanced glycation and products (AGEs), known to 
accumulate in diabetic and aged tissues, contribute to accelerated 
senescence and reduced differentiation potential through oxidative 
damage and inflammatory pathways. Using Drosophila as a 
model, Yan et al. demonstrate the potential of anti-diabetic drugs 
like dapagliflozin to mitigate intestinal stem cell aging through 
downregulation of MAPK signaling, suggesting pharmacological 
avenues for rejuvenating aged stem cells. Huang et al. explore the 
regenerative effects of MSC-conditioned medium (MSC-CM) in a 
diabetic wound model. They show that MSC-CM can promote tissue 
regeneration by influencing cytokine and chemokine signaling 
pathways, illustrating how paracrine signals serve as powerful 
external factors. All these findings underscore the intricate interplay 
between the metabolic conditions, pharmacological agents, and 
inflammatory signals in modulating stem cell longevity and
functionality.

Differentiation pathways shaped by 
microenvironment and signaling

Another group of studies emphasizes how external cues direct 
stem cell differentiation toward specific lineages. Zhang et al. 
investigate the effect of the preconditioning p38 MAPK pathway 
on synovium-derived stem cells undergoing chondrogenesis. 
The study reveals that this preconditioning produces divergent 
outcomes depending on the ECM conditions, reflecting the 
context-dependent nature of signal interpretation. Nagalingam 
et al. reveal key pathways affected during the transition of human 
induced pluripotent stem cell (iPSC)-derived cardiac fibroblasts to 
myofibroblasts as demonstrated by using integrated transcriptomic 
and metabolomic profiling. Khaveh et al. identify key driver genes 
that mediate the phenotypic stability and differentiation of porcine 
MSCs, emphasizing the complex interplay between external signals, 
cell-matrix interactions, and lineage commitment. These studies 
collectively highlight the critical role of the external signals, in 
guiding stem cell differentiation.

Epigenetic and ligand-mediated 
modulation of stem cell fate

Recent work underscores the potential of small molecules, 
ligands, and epigenetic modifiers to influence stem cell fate 
and plasticity. Bae et al. provide an in-depth review of histone 
modification and its role in maintaining pluripotency and 
reprogramming in stem cells, with potential applications for cancer 
stem cell therapy. The authors propose that extrinsic signals can 
dynamically alter chromatin states, thereby modulating stem cell 
identity. Brown investigates retinoic acid receptor (RAR) signaling 
and its regulatory role in cell fate decision-making, suggesting that 
exogenous retinoic acid acts as a powerful switch in stem cell 
differentiation. Liu et al. expand their landscape by introducing 
ginsenosides, bioactive compounds from ginseng, as natural 

modulators capable of guiding stem cell behavior. These studies 
collectively point to the promising application of external small 
molecules and epigenetic modifiers to precisely reprogram stem cell 
identities.

Integrative perspective and clinical 
implications

Overall, the authors also emphasize the clinical challenges 
related to genetic instability, reprogramming fidelity, and safety 
in therapeutic applications. Collectively, this body of work 
reveals a complex but increasingly decipherable framework of 
how external signals integrate with intrinsic cellular networks 
to regulate stem cell behavior. Despite these hurdles, the 
growing understanding of this intricate framework offers 
promising avenues for advancing regenerative therapies and 
disease modeling by enabling precise modulation of stem cell
functions.

Conclusion

This Research Topic collectively advances our understanding 
of how external factors shape stem cell identity and fate. From 
metabolic stressors and inflammatory cytokines to mechanical 
forces and small-molecule ligands, the external environment plays 
an indispensable role in directing stem cell responses. In conclusion, 
controlling stem cell fate is not solely an intrinsic endeavor and 
requires a deep understanding of how the external environment 
communicates with stem cells to modulate their identity, potential, 
and regenerative capabilities.
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Retinoic acid receptor regulation
of decision-making for cell
differentiation

Geoffrey Brown*
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All-trans retinoic acid (ATRA) activation of retinoic acid receptors (RARs) is crucial
to an organism’s proper development as established by findings for mouse
foetuses from dams fed a vitamin A-deficient diet. ATRA influences decision-
making by embryonic stem (ES) cells for differentiation including lineage fate.
From studies of knockoutmice, RARα and RARγ regulate haematopoiesis whereby
active RARα modulates the frequency of decision-making for myeloid
differentiation, but is not essential for myelopoiesis, and active RARγ supports
stem cell self-renewal and maintenance. From studies of zebrafish embryo
development, active RARγ plays a negative role in stem cell decision-making
for differentiation whereby, in the absence of exogenous ATRA, selective agonism
of RARγ disrupted stem cell decision-making for differentiation patterning for
development. From transactivation studies, 0.24 nM ATRA transactivated RARγ
and 19.3 nM (80-fold more) was needed to transactivate RARα. Therefore, the
dose of ATRA that cells are exposed to in vivo, from gradients created by cells that
synthesize and metabolize, is important to RARγ versus RARα and RARγ activation
and balancing of the involvements in modulating stem cell maintenance versus
decision-making for differentiation. RARγ activation favours stemness whereas
concomitant or temporal activation of RARγ and RARα favours differentiation.
Crosstalk with signalling events that are provoked by membrane receptors is also
important.

KEYWORDS

retinoic acid receptors, vitamin A, stem cells, differentiation, haematopoiesis

Introduction

Vitamin A is required for the early development of many organs, including the eye,
forelimbs, heart, hindbrain, posterior body axis, somites, and spinal cord (Clagett-Dame and
Knutson, 2011; Berenger andDuester, 2022). ATRA, themost active metabolite of vitamin A,
controls gene expression via the transcriptional activation of the three RAR types RARα,
RARβ, and RARγ. They, as a heterodimer with retinoid X receptor, bind to target gene
retinoic acid response elements (RAREs) to drive transcription when ATRA binds to RARs.
When ATRA is absent, DNA-bound RAR/RXR heterodimers are associated with
corepressors which with recruited histone deacetylases maintain a condensed chromatin
and repress gene expression (Chambon, 1996).

A key question was does the transcription action of ATRA depends entirely on RARs? To
answer, investigators developed RARα, RARβ, and RARγ triple knockout murine embryonic
stem (ES) cell lines and examined genome-wide transcription following treatment with
ATRA for 24 and 48 h (Laursen and Gudus, 2018). ATRA did not affect the genome-wide
transcriptional profile of the triple knockout ES cells. By contrast to wild type cells,

OPEN ACCESS

EDITED BY

Mustapha Najimi,
Université catholique de Louvain,
Belgium

REVIEWED BY

Istvan Szatmari,
University of Debrecen, Hungary
Gufa Lin,
Tongji University, China

*CORRESPONDENCE

Geoffrey Brown,
g.brown@bham.ac.uk

SPECIALTY SECTION

This article was submitted to Stem Cell
Research,
a section of the journal
Frontiers in Cell and Developmental
Biology

RECEIVED 08 March 2023
ACCEPTED 27 March 2023
PUBLISHED 04 April 2023

CITATION

Brown G (2023), Retinoic acid receptor
regulation of decision-making for
cell differentiation.
Front. Cell Dev. Biol. 11:1182204.
doi: 10.3389/fcell.2023.1182204

COPYRIGHT

© 2023 Brown. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Review
PUBLISHED 04 April 2023
DOI 10.3389/fcell.2023.1182204

7

https://www.frontiersin.org/articles/10.3389/fcell.2023.1182204/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1182204/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1182204/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1182204&domain=pdf&date_stamp=2023-04-04
mailto:g.brown@bham.ac.uk
mailto:g.brown@bham.ac.uk
https://doi.org/10.3389/fcell.2023.1182204
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1182204


proliferation was not affected by ATRA, the induction of
differentiation markers (Cyp26a1, Hoxa1, Cdx1, Stra8,
CoupTF1 and Meis1) was abrogated, and the repression of stem
cell markers (Nanog, Oct4, Zfp42, Sox2, Klf4, and Sall4) was
perturbed. Cyp26a1 and Hoxa1 are RARγ target genes (Kashyap
et al., 2011; Kashyap et al., 2013) and ATRA failed to induce their
expression within RARγ knockout and RARβ and RARγ double
knockout cells (Laursen and Gudus, 2018). The transcriptional
effects of ATRA and the capacity to decrease pluripotency
markers, induce differentiation, and drive growth arrest are
dependent on RARs. Even so, the biological functions of vitamin
A and ATRA include non-genomic effects (Tanoury et al., 2013).

This review examines the roles of RARs in stem cell decision-
making for cell differentiation from information gained from
knockout mice and in vitro studies of ES cells and
haematopoietic stem cells (HSCs). Regarding HSCs, various
findings have challenged a longstanding model for how HSCs
‘choose’ to differentiate towards a mature cell type. Though new
principles are still a matter of debate they are highly pertinent to
consideration of how RARs influence HSC decision-making. In the
conventional model of haematopoiesis, the progeny of HSCs
undergoes a series of stepwise commitment decisions that
eventually restrict intermediate progenitors to a single cell
lineage. But HSCs can affiliate directly to a cell lineage as they
are a heterogeneous population of cells as evidenced by the existence
of megakaryocyte, erythroid, and macrophage lineage biased/
affiliated HSCs [reviewed in Brown, 2020]. HSCs “choose” to
develop along a pathway from a continuum of all options
(Ceredig et al., 2009). Their differentiation is a continuous
process that lacks a definite point of commitment (Velten et al.,
2017) because trajectories are broad and flexible and HSCs and
progenitors that have adopted a lineage fate can still veer towards an
alternative fate (Nestorowa et al., 2016). Cytokines play a key role in
orchestrating lineage affiliation because erythropoietin and
macrophage colony stimulating factor instruct erythroid and
myeloid fate within HSCs, respectively (Grover et al., 2014;
Mossadegh-Keller et al., 2013). Granulocyte colony-stimulating
factor and macrophage colony-stimulating factor instruct
granulocyte and macrophage fate within bipotent progenitors,
respectively (Rieger et al., 2009; Metcalf and Burgess, 1982).
Crosstalk between ATRA- and membrane receptor-provoked
events has been known for some time from the negative cross-
modulation between RARs and the activator protein 1 (AP-1), which
regulates gene expression in response to cytokines (Nicholson et al.,
1990). AP-1 has been implicated in the regulation of the
erythropoietin-driven survival/proliferation of erythroid cells
(Jacobs-Helber et al., 1998).

Findings from studies of the
development of embryonic cells

Findings for RAR null mutant mice confirmed the importance of
vitamin A to embryonic development and addressed whether RARs
are essential transducers of ATRA signalling in vivo. The defects
seen for double null mutant mice recapitulated the congenital
malformations seen in foetuses from dams fed a vitamin
A-deficient diet, and these null mutant mice displayed additional

abnormalities (Lohnes et al., 1994). Deletion of the whole RARα led
to death of >90% of the homozygotes before the age of 2 months, but
the mice failed to display any of the vitamin A deficiency-associated
lesions other than testis degeneration. Mice null for the predominant
RARα1 isoform appeared to be normal (Lufkin et al., 1993). Mice
lacking all forms of RARβ developed normally (Luo et al., 1995), and
mice lacking the most abundant RARβ2 isoform appeared to be
normal (Mendelsohn et al., 1994). Mice null for all isoforms of RARγ
exhibited deficient growth, early lethality, squamous metaplasia of
the seminal vesicles and prostate, and male sterility, and RARγ2 null
mice appeared to be normal (Lohnes et al., 1993). There is a degree
of functional redundancy among the RARs. In keeping, RARγ null-
cells failed to differentiate in vitro in response to ATRA and express
several ATRA-induced genes and re-expression of RARγ or
overexpression of RARα restored differentiation potential and
target gene activation. RARβ restored target gene activation but
poorly restored differentiation potential. ATRA-activation of Cdx1,
Gap43, Stra4, and Stra6 was specifically impaired within RARγ-null
cells pointing to a distinct subset of target genes for RARγ and for
other RARs (Taneja et al., 1995).

Embryonic stem (ES) cells are competent regarding the
production of all the cell types and ATRA has been used to
obtain different cell types from mouse ES cells grown as
monolayers or as hanging drops to form embryoid bodies. Cells
resembling male germ cells spontaneously arise from embryoid
bodies and treatment with 2 μM ATRA, with or without
testosterone, significantly increased the expression of male germ
cell lineage-associated genes. (Silva et al., 2009). The findings for the
generation of neuronal cells vary according to the cells and
conditions used. ATRA activates transcription of the Hoxa1 gene
in ES cells and monolayer cultures of Hoxa1−/− ES cells treated with
ATRA expressed genes that are associated with embryonic brain
development at a lower level than wild type cells. The reintroduction
of exogenous Hoxa1 was needed for 5 μM ATRA-induced ES cell
neuronal differentiation (Martinez-Ceballos and Gudas, 2008).
Other investigators reported that 1 μM ATRA enhanced the
efficiency of differentiation of ES cells into neural precursor cells
(Li et al., 2019) and that this conversion required both fibroblast
growth factor and the elimination of signals for other fates (Ying
et al., 2003). Neural precursor cells have been efficiently derived
from ES cells without the addition of ATRA by using a three-
dimensional culture system followed by two-dimensional
derivation. The investigators used fibroblast growth factor and
the B27 medium supplement containing retinyl acetate, which is
a natural form of vitamin A (the acetate ester of retinol) and a
precursor in ATRA metabolism (see below regarding the
importance) (Yoon et al., 2021). A 100 nM concentration of
ATRA has been used to induce the expression of mesodermal
marker genes within mouse ES cells (Oeda et al., 2013).

The use of a pharmacological amount of ATRA (1—5 μM) to
differentiate ES cells is a concern. The affinities of ATRA for RARα,
RARβ, and RARγ are 9 nM, 3 nM, and 10 nM, respectively (Idres
et al., 2002), and the physiological concentration of ATRA in tissues
is ~1—10 nM (Czuba et al., 2020). ES cells are usually cultured in
medium plus either foetal calf serum or the B27 supplement (Amit
and Itskovitz-Elder, 2002; Sadhananthan and Touson, 2005) and
they differentiate into cells that arise from the three germ cells layers.
Medium with 10% foetal calf serum contains 50 nM all-trans-retinol
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and the level of ATRA in the serum of humans and other
mammalians is ~ 4–14 nM (Baltes et al., 2004). As mentioned
above, the B27 supplement contains retinyl acetate and ES cells
cultured in the B27 supplemented medium synthesized ATRA and
their differentiation towards neural precursor cells (expressing Sox1)
was reliant on ATRA produced endogenously (Engberg et al., 2010).
ATRA was not measurable and to demonstrate the need for
neuronal differentiation the investigators either removed retinyl
acetate from the B27 supplemented medium, inhibited the
enzymes that catalyse the synthesis of ATRA, or used the pan-
RAR antagonist AGN193109 to block the activity of RARs and
neural differentiation was prevented. For retinyl acetate deprived
cells, neuronal differentiation was restored by the addition of 1 nM
ATRA. When ATRA signalling was inhibited, there was change of
fate from neuronal to mesoderm and Nodal signalling had repressed
neuronal development in a Wnt-dependent manner. The
investigators concluded that a neuronal to mesoderm fate switch
depends on active Nodal-, Wnt-, and FGF signalling. It is well-
documented that signalling via Nodal, a transforming growth factor
β-related factor, and Wnt glycoproteins stimulation of complex
intracellular signalling cascades play roles during organogenesis
and ES cell differentiation (Schier and Shen, 2000; Takenaga
et al., 2007; Koyima and Habas, 2008; Sokol, 2011).

The roles of individual RARs within mouse ES cells have been
examined by homologous recombination disruption of the Rara and
Rarg genes (Tanoury et al., 2014). ES cells were cultured as cellular
aggregates and treated with 2 μM ATRA to generate neuronal cells.
ES cells lacking RARα became neural progenitors, giving rise to
neurons, cells lacking RARγ failed to do so, and RARγ2 rescued lines
gave rise to neurons pointing to a role for RARγ2 in ES cell neuronal
development. From comparison of ATRA-induced gene expression
by wild type and the RARγ2 restored cells and RT-qPCR
experiments, the investigators showed that RARγ2 regulates a
small number of genes, exemplified by meis homeobox 2 (Meis2),
left right determination factor 1 (Lefty1), hepatocyte nuclear factor
1 homeobox B (Hnf1b), arginase 1, and the homeobox (Hox) genes
Hoxa3, and Hoxa5. RARs are phosphorylated in response to ATRA
and the importance of phosphorylation of RARγ2 was investigated
by expressing forms of RARγ2 that had beenmodulated in phospho-
acceptor sites. For ATRA-mediated neuronal differentiation, gene
expression that was controlled by phosphorylation of
RARγ2 included that of Meis2, Lefty1, Hnf1b, and gastrulation
brain homeobox 2. The genes targeted by phosphorylated
RARγ2 depicted atypical DR7 retinoic acid response elements in
addition to canonical DR2 and DR5 elements and the
phosphorylated form of RARγ2 was recruited by DR7 and
DR5 elements in response to ATRA. RARα1 was phosphorylated
in vitro and in vivo by protein kinase A and phosphorylation at the
site is involved in dibutyryl cAMP modulation of the differentiation
of F9 embryonal carcinoma cells (Rochette-Egly et al., 1995).

Lessons from studies of ES cells are as follows. RARγ2 plays a
role in ATRA-induced ES cell neuronal differentiation by either
regulating the expression of specific genes or closing “unwanted”
options regarding a proposed need. A physiological level (nM) of
ATRA influences decision-making for differentiation including
lineage fate. Endogenously produced ATRA plays a key role
because vitamin A signalling is, in essence, driven by the
intracellular ATRA concentration. In general, evaluation of the

effect of treating cells with ATRA is confounded by all-trans-
retinol or retinyl acetate in medium (Czuba et al., 2020) because
of the need to take into consideration cryptic ATRA signalling from
endogenous synthesis. Moreover, when epidermal keratinocytes
were cultured in medium supplemented with 5% foetal calf
serum, which contained 25 nM all-trans retinol and ATRA was
undetectable, the level of all-trans retinol led to an intracellular level
of ATRA of 25—50 nM (Randolph and Simon, 1997). This is well
within the range of ATRA for activation of RARs. Growth factor-
provoked signalling events are important to ES cell differentiation
and RAR phosphorylation allows the relay of information from cell-
surface receptor-provoked kinase cascades. Additionally, ATRA
provoked non-transcription effects within differentiating mouse
embryonic stem cells include the rapid and transient activation
of kinase cascades [reviewed in Rochette-Egly, 2015].

Findings for RARα and haematopoietic
cell differentiation

The RARα gene is expressed in almost all adult tissues, and
expression of the major isoform RARa1 is also ubiquitous (Leroy
et al., 1991). During haematopoiesis, RARα is expressed by HSCs
and their differentiating offspring. Mouse lineage-negative,
c-kit–positive, Sca-1–positive (LKS+) cells, that contain HSCs,
and lineage-negative, c-kit–positive, Sca-1– negative (LKS−) cells,
that lack HSCs, expressed RARα (Purton et al., 2006). RARα,
particularly RARα2, expression increased dramatically during
myeloid differentiation as seen for the induced differentiation of
FDCP mixA4 mouse progenitor cells (Zhu et al., 2001). In addition
to controlling homeostasis, RARs control the functional activity of
some of the mature blood cells regarding the production of
inflammatory cytokines [reviewed in Duong and Rochette-Egly,
2011]

A role for RARα in myeloid differentiation is well established
(Collins, 2002). ATRA promotes the differentiation of promyeloid
cell lines and normal myeloid progenitors and findings for the
human promyeloid cell line HL-60 established a role for RARα
in neutrophil differentiation. HL-60 cell differentiate towards
neutrophils in response to treatment with ATRA (Breitman et al.,
1980) and macrophages when treated with 1α,25-dihydroxyvitamin
D3 (1,25D) to activate the vitamin D receptor (VDR) (Mangelsdorf
et al., 1984). HL-60 cells undergo a low rate of spontaneous
neutrophil differentiation because around 3%–10% of cells are
more mature myelocytes, metamyelocytes, and banded and
segmented neutrophils. A 1 μM concentration of ATRA
promoted neutrophil differentiation with 90% of the cells
terminally maturing, and 100 nM was effective. The identification
of a PML-RARα fusion transcript in the cells from patients with
acute promyelocytic leukaemia (de The et al., 1990) focused
attention on RARα playing a key role during HL-60 neutrophil
differentiation. Retroviral vector-mediated transduction of a single
copy of RARα into an ATRA-resistant HL-60 subclone restored
ATRA sensitivity for differentiation (Collins et al., 1990). Similarly,
RARα agonism, by using AGN195183, was sufficient to promote
HL-60 cell differentiation towards neutrophils (Brown et al., 2017).
As mentioned above, G-CSF directs normal granulocyte/
macrophage progenitors towards neutrophils (Rieger et al., 2009)
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and co-operates with ATRA to promote HL-60 differentiation
towards neutrophils. Treatment of HL-60 cells with 10 nM
ATRA led to a low level of neutrophil differentiation,
differentiation was rapid and effective when 10 nM ATRA was
combined with 30 ng/ml G-SCF, and G-CSF alone had no effect.
A low dose of ATRA had rendered HL-60 cells responsive to the
action of G-CSF (Sakashita et al., 1991; Bunce et al., 1994).

The influence of ATRA on neutrophil differentiation is
particularly well-documented. ATRA and RARα also promote
monocyte differentiation as shown from studies of the
promyelocytic cell line NB4 and myeloblast blast-like cell line
KG-1 (Brown et al., 2017). These cells express RARα and do not
express RARγ. For NB4cells, 100 nM of the RARα agonist promoted
neutrophil differentiation (40% CD11b+/CD14-ve cells) and
treatment with 10 nM 1,25D led to a low level of monocyte
differentiation (CD11b+/CD14+ve and ~6%). The combined use
of 100 nM of the RARα agonist and 10 nM 1,25D increased the level
of monocyte differentiation (to ~50%). KG-1 cells differentiated
towards neutrophils to a very small extent (~5%) in response to
100 nM of the RARα agonist and 10 nM 1,25D did not have a
significant effect. Like NB4 cells, there was a significant level of
monocyte differentiation (18%) when KG-1 cells were treated with
the RARα agonist and 1,25D. RARs interact with several other
nuclear receptors (Chambon, 1996) and the rationale to the
interplay between the actions of the RARα agonist and 1,25D is
that ATRA activation of RARα within NB4 and KG-1 cells
upregulated the expression of a transcriptional variant of VDR
that originates in exon 1a. KG-1 cells expressed RARα protein at
a high level which in the absence of ATRA had repressed
transcription of the VDR gene. The receptor interplay is complex
and linked to cell status because ATRA downregulated VDR mRNA
for HL-60 cells differentiating towards neutrophils in response to
ATRA (Marchwicka et al., 2016).

For normal human bone marrow myeloid progenitor cells,
ATRA supported their differentiation towards neutrophils but
not towards erythrocytes (Gratas et al., 1993). Findings from
in vitro cultures of cells from null mutant mice suggested roles
for RARα1 and RARγ in neutrophil maturation (Labrecque et al.,
1998). This was normal within myeloid colonies that were grown in
methylcellulose from the bone marrow cells harvested from
RARα1 and RARγ knockout mice. Neutrophil differentiation
within myeloid colonies from cells harvested from the
RARα1 and RARγ double knockout mouse was blocked at the
myelocyte stage. The differentiation of cells within erythroid and
macrophage colonies was not affected. The distribution of
neutrophils, macrophage, and erythroid colonies was the same
for cells from the wild type mice and the RARα1, RARγ, and
compound null mutants, suggesting that lineage choice was not
affected by a lack of RARα1 and/or RARγ. By contrast, various
studies have reported that ATRA-mediated enhancement of
myeloid-colony growth associates with a reduced production of
colonies containing cells of other lineages, suggesting an influence of
ATRA on multipotent cells [reviewed in Collins, 2002].

The influence of ATRA on primitive mouse haematopoietic cells
was different to that seen for myeloid progenitor cells. Like ES cells,
mouse LSK + cells, which are enriched for HSCs, differentiate
spontaneously in liquid suspension culture and treatment with
1 μM ATRA delayed their differentiation. LSK + cells were

allowed to differentiate for 7 days and then treated with 1 μM
ATRA. The effect of ATRA on committed progenitor cells
arising from the cultured LSK + cells was as seen for normal
human bone marrow myeloid progenitor cells and HL-60 cells.
There was a markedly decreased level of colony-forming cells and
enhanced neutrophil differentiation which was attributed to
enhanced maturation of committed granulocyte/monocyte
progenitors (Purton et al., 1999).

Dormant mouse HSCs metabolize all-trans retinol to ATRA in a
cell-autonomous manner (Cabezas-Wallscheid et al., 2017) and the
aldehyde dehydrogenases (ALDHs), a family of oxidoreductases,
convert retinaldehyde into ATRA. The importance of endogenous
retinoid metabolism to cultured mouse HSCs (CD34− LSK+) was
investigated by using diethylaminobenzaldehyde to inhibit ALDH
activity. This impeded HSC differentiation leading to a ninefold
expansion of HSCs, as measured by cells that were able to
reconstitute lethally irradiated mice (Muramoto et al., 2010).
Targeted siRNA of ALDH1a1 in HSCs revealed that this ALDH
was the target of diethylaminobenzaldehyde inhibition. Similarly,
inhibition of ALDH activity led to expansion of human HSCs that
were able to repopulate NOD/SCID mice (Chute et al., 2006). From
these studies, ALDH regulates HSC differentiation whereby the
conversion of retinaldehyde into ATRA promotes HSC
differentiation. Cyp26b1 is generally viewed as an enzyme that
limits the effects of ATRA on cells by metabolising ATRA to 4-
oxo-retinoic acid. A recent omics analysis revealed that the
maintenance of mouse HSCs was reliant on the production of 4-
oxo-retinoic acid and transmission of 4-oxo-retinoic acid-mediated
signalling via RARβ (Schonberger et al., 2022). 4-oxo-retinoic acid
activates the three RARs and the level required for activation of
RARβ is lower than that for RARα and RARγ (EC50 values of 33 nM,
8 nM, and 89 nM, respectively) (Idres et al., 2002).

Purified human lineage-, CD133+, CD34+ cells are enriched for
HSCs and the role of RARα was investigated by treating these cells
with antagonists. Cell production peaked at day 20 for control
cultures and viable cells then declined rapidly. The pan-RAR
antagonist AGN194310 treated cultures were maintained for up
to 55 days, with 4-fold more cells by day 40. Both cultures produced
mostly neutrophils and monocytes, in equal ratios, with the
antagonist treated cultures generating more of the two mature
cell types (as to the increased cumulative cell number) (Brown
et al., 2017). AGN194310-provoked increased myeloid cell
production by HSCs is in keeping with neutrophil numbers were
strikingly increased in mice treated with AGN194310 (Walkley et al.,
2002) and that vitamin A deficiency in mice caused a systemic
expansion of myeloid cells (Kuwata et al., 2000). CD11b+
differentiated myeloid cells appeared and immature myeloid cells
declined at the same rates in both control and AGN194310 treated
cultures. Switching-off RARs had not slowed down myeloid
cell differentiation and instead there was enhanced expansion of
lineage-, CD133+, CD34+ cells and colony-forming progenitors
within the AGN194310 treated cultures. Antagonism of RARα,
by AGN195183, was sufficient for the enhanced expansion of
lineage-, CD133+, CD34+ cells and antagonising RARγ did not
lead to this enhancement. At first sight it seems paradoxical that
antagonism of all RARs had delayed human HSCs differentiation
and that agonism of all RARs (with ATRA) had delayed mouse LSK
+ cell differentiation (see above). The two cell populations are
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different regarding their heterogeneity and the culture conditions
used were different. Otherwise, the findings point to complex actions
for RARα and RARγ. A lack of active RARα (RARα antagonism) had
delayed the differentiation of human lineage-, CD133+, CD34+ cells
whereas the presence of activated RARγ (ATRA agonism) may have
interfered with the differentiation of the mouse LSK + cells (see also
later).

From studies of haematopoiesis, active RARα plays a role to
enhance neutrophil differentiation of mouse progenitor cells and
human HSCs and promyeloid cell lines. The role of RARα is to
modulate/regulate rather than being essential for myelopoiesis
(Kastner and Chan, 2001). For example, the terminal
differentiation of cultures of human HSCs towards neutrophils
and macrophages was unaffected when RARα was antagonised.
For these cells, antagonism of RARα did not alter the relative
proportions of neutrophils versus macrophages generated nor
appeared to accelerate the terminal maturation of immature
myeloid cells. Instead, active RARα positively modulated the
frequency of decision-making for differentiation to favour
differentiation. In other words, unliganded interferes with gene
expression for differentiation which is promoted when ATRA or
a specific RARα agonist is bound (Kastner and Chan, 2001; Collins,
2002). G-CSF is a key regulator of granulopoiesis and, like RARα,
was dispensable. The combined action of these agents was
investigated by conditional deletion of RARα on a G-CSF
receptor-null background and treating G-CSF receptor null mice
with the pan-RAR antagonist AGN194310 (referred to as
NRX194310); granulopoiesis persisted in these mice (Chee et al.,
2013). To differentiate or not is a multifactorial decision and the
following section examines the extent to which RARγ plays a role in
decision-making for cell differentiation.

Findings for RARγ and cell
differentiation

Unlike RARα, the distribution of RARγ is very restricted and
specific spatial and temporal distributions of RARγ during mouse
embryogenesis led to the proposal that RARγ plays a role in early
morphogenic events (Ruberte et al., 1990). During haematopoiesis,
RARγ is selectively expressed by hematopoietic stem cells and
primitive progenitors (Purton et al., 2006). In keeping with a
restricted expression of RARγ within primitive cells, the binding
sites for RAR/RXR dimers within undifferentiated F9 embryonal
carcinoma cells coincided with loci that are targeted by transcription
factors that are important to pluripotency (SOX2, NANOG, and
POU5f1) (Chatagnon et al., 2015).

A special consideration to the role of RARγ versus that of RARα
is the level of ATRA that cells are exposed to influences whether
RARγ or RARγ together with RARα are transactivated within cells.
The concentration of ATRA that is needed to activate RARγ is
substantially lower than that required for activation RARα. A
0.24 nM level of ATRA transactivated RARγ whereas 19.3 nM
(80-fold more) was needed to transactivate RARα (Brown et al.,
2017). By contrast, the best ATRA induction of transcription was
obtained for RARα which was 10-fold higher than that for RARγ, as
seen from the fold-induction of luciferase activity from a RARE-tk-
Luc reporter plasmid in the presence of each RAR (Idres et al., 2002).

The increased fold induction by RARα suggests a greater efficiency
to inducing transcription as governed by the interaction of the
ligand-activated receptor complex with response elements.

The nature of the genes that are regulated by RARγ is germane to
consideration of a role for RARγ. Comparison of ATRA-induced
events within the wild type and RARγ null ES cells showed that
RARγ is essential for ATRA-induced epigenetic marks at gene
promoters, chromatin remodelling, and transcriptional activation.
ATRA activation of RARγ greatly increased the transcript levels of
genes that encode regulators of ATRAmetabolism within cells. They
were the genes encoding stimulated by retinoic acid 6 (Stra6),
lecithin:retinol acyltransferase (LRAT), cellular retinoic acid
binding protein 2 (CRABP2), and cytochrome p450 26A1
(CYP26A1) (Kashyap et al., 2013). Retinol-binding protein 4
(RBP4) transports all-trans retinol (vitamin A) in the blood for
transfer into cells which is mediated by binding to Stra6. LRAT
converts all-trans retinol into retinyl esters for storage,
CRABP2 delivers ATRA to the nucleus and RARs, and
CYP26A1 catabolises ATRA to polar metabolites for elimination.
RARγ expression by stem cells might autoregulate a low ATRA
content by virtue of ATRA activation leading to the diversion of
“excess” all-trans retinol into retinyl esters for storage and elevated
CYP26A1 expression increasing ATRA breakdown. These controls
on ATRA-driven RAR events may be an important “housekeeping”
function to stem cell stemness. From the studies of ATRA-regulated
genes in the early zebrafish embryo, CYP26A1 was identified as one
of the most robust genes regarding ATRA regulation, even when
ATRA availability is drastically reduced (Samarut et al., 2014), and,
as above, RARγ is transactivated by sub nMATRA. A proposal from
the zebrafish studies was also that RARγ subtypes appeared to play
roles in the basal regulation of ATRA-responsive gene expression
with RARα subtypes playing roles in the transcriptional response of
cells to ATRA. (Samarut et al., 2014).

The above considerations point to active RARγ promoting stem
cell maintenance and stemness. Indeed, RARγ plays a critical role in
balancing HSC self-renewal/maintenance versus differentiation
(Purton et al., 2006). The bone marrow of RARγ knockout mice
had markedly reduced numbers of HSCs, measured as
transplantable repopulating cells per femur, and the numbers of
mature myeloid progenitors were increased. Ex vivo activation of
RARγ, by ATRA, promoted the self-renewal of HSCs because loss of
RARγ abrogated the capacity of ATRA to enhance the maintenance
of HSCs in culture. Regarding stem cell stemness, a much more
undifferentiated phenotype was seen for primitive haematopoietic
precursors that were retroviral-mediated transduced to overexpress
RARγ whereas primitive precursors that overexpressed RARα
differentiated predominantly to granulocytes.

As considered above, RARγ2 has a role in specifying ES cell
neuronal differentiation which might relate to either a positive
influence or the proposed need for the elimination of other fates
(Ying et al., 2003). Studies of zebrafish embryos revealed a negative
role for active RARγ in cell differentiation. RARγ transcripts are
restricted to primitive cells at the later stages of the zebrafish
embryo. At 24 h post fertilisation they were restricted to
mesodermal and neural crest stem and progenitor cells, in the
head area, in the lateral plate mesoderm, and in the pre-somitic
mesoderm of the tail bud. Transcripts were still visible in the tail bud
at 48 h post fertilisation (Hale et al., 2006). Zebrafish embryos were
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treated at 4 h post fertilisation (hpf) with 10 nM of the RARγ-
selective agonist AGN205327. This dose of the agonist is close its
binding affinity for RARγ (an ED50 of 32 nM). Treatment led to the
development of viable fish that were substantially abnormal. There
were substantial changes to headmorphology, associated with loss of
cranial bones and tissue, a reduced antero-posterior axis length, due
to somite loss, and heart abnormalities that led to oedema.
Regarding the loss of cranial bones and anterior line ganglia, the
prevalence of Sox-9 neural crest cells was not affected other than a
slight decrease in the head region. The agonist prevented caudal and
pectoral fin formation and Tbx5a progenitors that form the pectoral
fin were present in the bud region. The lack of pectoral outgrowth,
provoked by the RARγ agonist at 4 hpf, was reversed by the addition,
at 23 h post fertilization, of a RARγ antagonist, to reverse the action
of the RARγ agonist, or wash out of the RARγ agonist at 23 h. The
experiments were performed in E3 medium (for zebrafish embryos)
which is a balanced salt solution. Therefore, and in the absence of
exogenous ATRA, agonising RARγ had disrupted stem cell decision-
making for differentiation for the patterning of zebrafish
development. The option for fin development had been sustained
within bud stem cells as to the reversibility of the action of the RARγ
agonist (Wai et al., 2015). Regarding reversibility, it is noteworthy, as
mentioned above, that RARγ regulates ATRA-induced chromatin
epigenetic marks for gene expression within ES cells (Kashyap et al.,
2013).

Controls on stem cell decision-making

The maintenance of stem cells is crucial to an organism to meet
the need to replace any damaged and worn-out cells throughout life.
The controls that ensure a pool of stem cells are likely to be multiple,
and, therefore, rigorous. The presence of active RARγ regulates the

maintenance of stem cell stemness because pluripotency genes are
direct targets of RARγ. A sub-nM concentration of ATRA is
sufficient for transactivation of RARγ. A higher level of ATRA is
needed to transactivate RARα, to favour decision-making for
differentiation. Stem cells may protect themselves from
differentiation that is favoured by RARα activation, by a higher
level of ATRA, by means of RARγ-mediated upregulation of the
expression of LRAT, for the storage of all-trans retinol, and CYP26,
for the degradation of ATRA (Figure 1). Regarding a low
intracellular level of ATRA within stem cells, it has been
proposed that ES cells do not have all the enzymes that are
needed to metabolise all-trans retinol into ATRA (Chen and
Khillan, 2010; Khillan, 2014). Instead, all-trans retinol has been
proposed to play a role in promoting the self-renewal of ES cells by
the direct activation of the phosphoinositide 3 kinase/Akt signalling
pathway via insulin-like growth factor-1.

ATRA was used at a dose that activates RARα and RARγ for
in vitro differentiation of the cells considered above. Studies have
examined the effect of treating P19 and F9 embryonal carcinoma
cells with a combination of the synthetic RARα- and RARγ-selective
agonists Am80 and CD666, respectively (Roy et al., 1995). As seen
for ATRA activation of RARα and RARγ, treatment of P19 cells with
non-selective concentrations of AM80 and CD666, for activation of
both RARα and RARγ, induced expression of the Stra1, Stra2,
CRABPII, RARβ and Hoxa-1 genes. Stra1, Stra2, and CRABPII
were not induced when Am80 and CD666 were used separately
at a receptor-selective concentration, and the induction of RARβ and
Hoxa-1 was substantially reduced. The combined use of receptor-
selective concentrations of AM80 and CD666 led to inductions.

FIGURE 1
Controls on stem cell stemness Active RARγ is required for the
maintenance ofHSCs, for zebrafish embryos activation disrupted stem
cell decision-making for differentiation for the patterning of
development, and RARγ plays a role in regulating pluripotency
genes. Genes that regulate the intracellular level of ATRA are
expressed upon RARγ transactivation whereby lecithin:retinol
acyltransferase (LRAT) converts all-trans retinol to retinyl esters for
storage and cytochrome p450 26A1 (CYP26 A1) catabolizes ATRA. A
sub nM intracellular level is sufficient to transactivate RARγ.

FIGURE 2
Controls on decision making for differentiation. For cell
differentiation, ATRA is used at a dose that activates RARα and RARγ. As
for ATRA, concomitant treatment of P19 and F9 embryonal carcinoma
cells with RARα and RARγ agonists at receptor-selective
concentrations favoured differentiation, whereas each agent when
used alone failed to promote differentiation. Crosstalk with other
signalling events is important, for example, fibroblast growth factor
(FGF) for ES cells and the lineage instructive haematopoietic cytokines.
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Similarly, P19 cells differentiated when treated with Am80 and
CD666 when each agonist was used at a non-selective
concentration, they failed to do so when each agonist was used at
a receptor-selective concentration, and the combined use of
receptor-selective concentrations of Am80 and CD666 led to
differentiation The findings for F9 cells were similar other than
the combinations of compounds appeared to be less efficient. The
differentiation provoked by the combined use of agonists at
receptor-selective concentrations was viewed as an additive/
synergistic action and support to functional redundancy
regarding RARα and RARγ. Alternatively, from these studies and
the potent differentiating effects of ATRA the concomitant or
temporal activation of both RARα and RARγ favours decision-
making for differentiation in a more complex manner. Regarding
complexity, RAR/RXR binding elements can distinguish
pluripotency-from differentiation-associated genes which appears
to be mediated by different sets of regulatory regions, with DR0-
containing regions favoured in undifferentiated and DR5-enriched
in differentiated cells (Chatagnon et al., 2015).

There are additional controls on decision-making for
differentiation that include signalling events that are provoked
by, for example, FGF for ES cells and the hematopoietic
cytokines that instruct cell lineage (Figure 2). The importance of
cytokines is emphasised by studies of HSCs derived from ES cells.
Human HSCs (CD34+) cells were efficiently derived from ES cells by
coculture with OP9 bone marrow stromal cells. When isolated cells
were cultured on MS-5 stromal cells with the addition of stem cell
factor, Flt-3 ligand, interleukin 7 (IL-7), and IL-3 they generated
granulocytes, macrophages, B-cell, and natural killer cells (Vodyanik
et al., 2005). Similarly, the treatment of human ES cells with a
combination of cytokines and bone morphogenic protein-4
promoted the differentiation of hematopoietic progenitors. The
cells generated included colony-forming units for granulocytes,
macrophages, and erythrocytes together with multipotent colony-
forming units (Chadwick et al., 2003).

RARα and RARγ controls on decision
making and cancer

Cancer is a decision-making process whereby cancer stem cells
(CSCs) generate the hierarchy of developing cells to sustain a
cancer (Dick, 2008). CSCs appear to arise largely from the
malignant transformation of a tissue-specific stem cell and are,
therefore, immortal [reviewed in Brown, 2022]. Often, the progeny
of CSCs undergoes partial differentiation and belongs to a cell
lineage; cancers are categorized according to the resemblance of
the bulk cells to a cell type. Support to the lineage restriction of the
progeny of CSCs has been provided by the findings from
transgenic mice whereby restriction of an oncogenic insult to
HSCs/haematopoietic progenitors led to restriction of the
lineage options of CSCs or introduced a bias (Gonzales-Herrero
et al., 2018).

A role for the fusion gene PML-RARα in the pathogenesis of
acute promyelocytic leukaemia is well established (de The et al.,
1990). For nine acute promyelocytic patients, fusions have been
described between RARγ and the genes for PML, NUP98,
CPSF6 and NPM1, and these patients failed to respond to

ATRA except for the one patient with the PML-RARγ fusion
(Conserva et al., 2019). A recent global study identified
34 patients with RARγ rearrangements, the partner genes were
diverse, and the rearrangement conferred a poor prognosis (Zhu
et al., 2023).

From the importance of RARγ to decision-making by stem cells,
we might expect RARγ to be an oncogene. RARγ overexpression has
been reported for good proportions of patients with
cholangiocarcinoma, clear cell renal cell carcinoma, colorectal
cancer, ovarian cancer, and pancreatic ductal adenocarcinoma.
For cholangiocarcinoma, overexpression was associated with poor
differentiation and metastasis to lymph nodes and contributed to
multidrug resistance. Findings suggested that the role of RARγ is
mediated via activation of the Akt/NFκB and Wnt/B-catenin
pathways and upregulation of P glycoprotein (Huang et al.,
2013). RARγ and RARβ were upregulated in clear renal cell
carcinoma, as seen from a bioinformatics analysis and the use of
quantitative PCR (Kudryavtseva et al., 2016). For colorectal cancer,
RARγ overexpression was linked to multidrug resistance with
knockdown leading to downregulation of multi-drug resistance
1 and suppression of the Wnt/β-catenin pathway (Huang et al.,
2017). High expression on ovarian cancer was a predictor of poor
overall survival outcomes and has been linked to accelerated disease
progression via the regulation of cell proliferation (Xiu et al., 2022).
Overexpression of RARγ in pancreatic ductal adenocarcinoma tissue
and high-grade precancerous lesions was linked to a poor patient
prognosis and blocking RARγ signalling supressed the proliferation
of cancer cells (Yamakowa et al., 2022). For the above carcinomas, a
common denominator was that a high level of expression of RARγ
was linked to a poor prognosis. Targeting RARγ to treat disease is a
promising prospect because for prostate cancer, agonism of RARγ
stimulated the growth of and colony formation by prostate cancer
cell line cells and antagonising led to necroptosis of the cell line
colony forming CSC-like cells and patients’ cells (Petrie et al., 2022).
The pan-RAR antagonist AGN194310 was also effective in ablating
the formation of neurosphere-like structures by the CSCs of two
paediatric patients’ primitive neuroectodermal tumours and a
paediatric patient’s astrocytoma and killed the progeny of CSCs
(Brown and Petrie, 2012). The extent to which increased expression
of RARγ and imbalance to the levels of expression of RARγ and
RARα had led to the development of the above carcinomas by
deregulating the behaviour of CSCs is still unclear. Overexpression
of RARγmay play a role to maintain CSCs or to restrict these cells to
a particular cell lineage. The latter is an intriguing consideration in
view of the role of RARγ2 in ES neuronal differentiation and perhaps
the need to eliminate other fates (Ying et al., 2003), agonising RARγ
interfered with patterning for zebrafish development (Wai et al.,
2015), and the need for RARγ for chromatin epigenetic marks
(Kashyap et al., 2013). Regarding epigenetic marks, RARγ was
identified as the predominant mediator of ATRA-mediated
signalling within ES cells for activation of the Hoxa and Hoxb
gene clusters. It was required for broad epigenomic organisation and
necessary for the gene-specific removal of the polycomb repressive
mark H3K27me3 during ES cell differentiation. Hox gene cluster
reorganisation was triggered by RARγ located at the Hoxa1 3´-
RARE and deletion of the RARγ binding site within the Hoxa1
enhancer attenuated epigenomic activation of Hoxa and Hoxb gene
structures (Kashyap et al., 2011).
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Perspectives and conclusion

Distinct ATRA gradients and boundaries, from cells that
synthesize and metabolize, are important to patterning
embryogenesis, but there does not appear to be a linear
relationship between dose and phenotype (Bernheim and
Meilhac, 2020). Gradients and the dose of ATRA that stem cells
and their progeny are exposed is relevant to decision-making
because sub nM ATRA is sufficient to activate RARγ with RARα
activation needing substantially more. Stem cells are equipped to
store and degrade ATRA and seem unable to synthesize which may
provide protection from ATRA-modulation of the frequency of
decision-making for differentiation. RARγ activation is important to
the maintenance of HSCs and their stemness and activation, in the
absence of active RARα, interfered with decision-making by
zebrafish embryonic stem cells for differentiation. The level of
ATRA that is used routinely to drive the differentiation of ES
cells and other cells, which express both RARγ and RARα,
activates both RARα and RARγ and concomitant or temporal
activation of these receptors favors differentiation. Stem cell
differentiation is a continuous and progressive process which
might favour a temporal interaction(s), but whether concomitant
or temporal is yet unclear. Expression of RARγ decreases as stem
cells differentiate leaving RARα to exert a sole influence on the
progression of differentiation.

The roles of RARα and RARγ are modulatory, rather than
obligatory, which raises the question what is nature of the events
that are being modulated. Signalling via growth factors and
hematopoietic cytokines provide a further input to ES cell and
HSC decision-making for cell differentiation, respectively. That
stem cell differentiation is a progressive and gradual process
presumably requires learning and memory of the events that are
provoked by growth factors/cytokines. There is evidence to support
integration of ATRA signalling with how cells learn from the events
that are provoked by growth factors because CRABP1 delivers
ATRA to the CYP26 family members for degradation and such
dampens the sensitivity of ES cells to growth factors to affect their
learning and memory (Nagpal and Wei, 2019). An intriguing
possibility is whether RARα and/or RARγ are modulatory by
virtue of influencing the retention or loss of cell learning and
memory for stemness and decision-making for differentiation.
The epigenome has been proposed as the judge, jury, and
executioner of stem cell fate (Tollervey and Lunyak, 2012). As
above, RARγ is needed for ATRA-induced chromatin epigenetic
marks [Kashyap et al., 2012], and memory/learning are written
within the epigenome by marks.

Presently, we know how RARs work as heterodimers with
RXRs, how they bind to response elements, that they repress
gene expression in the absence of ligand and drive expression
when ligand is bound, and that the RAR subtypes can regulate
sub-sets of genes. However, the more complete picture regarding
how all of this modulates the specification of cell lineage and/or
the switch from stem cell maintenance to the onset of
differentiation is still a complex and unresolved puzzle.
Considerations include the extent to which ATRA is
synthesized endogenously, which though cryptic is at a
physiological level, the provision of ATRA by neighbouring
cells including from gradients, which is again physiological,
whether RARα and/or RARγ are activated, and crosstalk with
other cytokine-provoked signalling cascades including
phosphorylation of RARs.
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Ginsenosides on stem cells fate
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Academy of Sciences Changchun, Changchun, Jilin, China

Recent studies have demonstrated that stem cells have attracted much attention
due to their special abilities of proliferation, differentiation and self-renewal, and
are of great significance in regenerative medicine and anti-aging research. Hence,
finding natural medicines that intervene the fate specification of stem cells has
become a priority. Ginsenosides, the key components of natural botanical
ginseng, have been extensively studied for versatile effects, such as regulating
stem cells function and resisting aging. This review aims to summarize recent
progression regarding the impact of ginsenosides on the behavior of adult stem
cells, particularly from the perspective of proliferation, differentiation and self-
renewal.

KEYWORDS

ginsenosides, stem cells, proliferation, fate specification, differentiation, self-renewal

1 Introduction

Panax ginseng (Panax ginseng C. A. Mey.), is a perennial herb of the Araliaceae family
(de Oliveira Zanuso et al., 2022). This plant is widely cultivated in East Asia, particularly in
China, Japan, and South Korea, due to its characteristic of being both a food and a medicine
(Ichim and de Boer, 2020). Ginseng contains ginsenosides, polysaccharides, proteins,
polypeptides, amino acids and other chemical components, among which ginsenosides
are the main medicinal components (Lee et al., 2019). Currently, around 200 types of
ginsenosides have been reported (Ratan et al., 2021). Based on the classification of
ginsenosides by glycoside type, ginsenosides generally be compartmentalized into two
categories: dammarane-type tetracyclic triterpene and oleanane-type pentacyclic
triterpene saponins (Hou et al., 2021). Dammarane-type ginsenosides are the primary
types and biologically active components of ginsenosides, which are divided into
protopanaxadiol (PPD) types (including ginsenosides Ra1, Ra2, Ra3, Rb1, Rb2, Rb3, Rc,
Rd, Rg3, Rh2, F2, compound K, malonyl-Rb1, malonyl-Rb2, malonyl-Rc and malonyl-Rd,
etc.) and protopanaxatriol (PPT) types (including ginsenosides Re, Rf, Rg1, Rg2, F1 and Rh1,
etc.) (Pan et al., 2018). In contrast, oleanane-type ginsenosides (including Ro, Rh3, Ri, etc.)
are rare in ginseng species (Zhang H. et al., 2022). The experimental pharmacological
research of ginsenosides have shown that the number of sugar residues contained in the
branched, the position of glycosides, and their stereoselectivity all affect the pharmacological
activity of ginsenoside monomers (Piyasirananda et al., 2021; Yousof Ali et al., 2021; Ali
et al., 2022). Oral administration of ginsenosides is the major approach, but they are not
easily absorbed by themselves with low bioavailability (Won et al., 2019). On the contrary, a
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large number of enzymes or gut microbiota can convert ginsenosides
into deglycosylated products with a higher bioavailability and
pharmacological activity that can be easily absorbed by human
body (Yang L. et al., 2020). Ginsenosides have been found to
possess a range of pharmacological effects, such as anti-aging (de
Oliveira Zanuso et al., 2022), anti-tumor (Wong et al., 2015),
hematopoietic recovery (He et al., 2021), promotion of
osteogenesis (Wu et al., 2022), and neuroprotection (Rokot et al.,
2016). In clinical trials, ginsenosides have been beneficial to the
treatment of acute ischemic stroke, cancer, and chronic kidney
disease, and can prompt oxidative stress or inflammation caused
by exercise challenges (Table 1). Although ginsenosides exhibit
various positive physiological activities, this review will focus on
the relationship between ginsenosides and stem cells.

Stem cells, encompassing both adult stem cells and embryonic
varieties, are essential for developing human tissues and maintaining
homeostasis (Zakrzewski et al., 2019). Their unique properties of self-
renewal, high proliferation, and differentiation into multiple lineages
make them attractive for a variety of applications, such as cell
replacement as well as tissue and organ renewal in regenerative
medicine (Brassard and Lutolf, 2019), exploration of regulatory
mechanisms during embryonic development (Weatherbee et al.,
2021), therapy for various diseases (Sinenko et al., 2021), the
establishment of disease models (Sterneckert et al., 2014) and drug
screening and development (Kumar et al., 2021). Notably, the fate
specification of stem cells (proliferation, differentiation and self-
renewal) is involved in the regulation of the body’s biological
process. An imbalance in fate specification can lead to the
emergence and progression of aging or even disease (Chandel et al.,
2016). Excessive proliferation of stem cells can lead to the development
of tumors and cancers (Najafi et al., 2019), while impaired self-renewal
and differentiation of stem cells can limit the potential of tissue and
organ regeneration and damage repair, such as in the case of aging and
nervous system injury (De et al., 2021; Sivandzade and Cucullo, 2021).
Consequently, understanding the regulation of stem cells fate is
indispensable for the prevention of aging and many diseases. The
stem cell niche refers to the microenvironment that maintains the
proliferation, differentiation and self-renewal of stem cells (Hicks and
Pyle, 2023). Stem cells can receive signals from the ecological niche and
respond accordingly, which plays an important role in supporting and
coordinating the activities of stem cells (Chacón-Martínez et al., 2018).
Ginsenosides inhibit inflammatory responses and reduce oxidative
stress to improve the stem cells niche (Hu et al., 2015; Wu et al.,

2020). Also, ginsenosides can promote stem cell proliferation,
differentiation into specific cell types, or self-renewal, thus regulating
stem cell function (He et al., 2019; He and Yao, 2021). In this review, we
summarize the effects of various ginsenosides on adult stem cells,
especially mesenchymal stem cells (MSCs), hematopoietic stem cells
(HSCs), neural stem cells (NSCs) and cancer stem cells (CSCs), thereby
elucidating the underlying mechanisms of ginsenosides in regulating
fate specification of stem cells.

2 Transport and metabolism in stem
cell niche of ginsenosides

The stem cell niche refers to the microenvironment at a specific
location in a tissue or organ, which provides the necessary support
and regulation for stem cells to maintain their proliferation,
differentiation and self-renewal capabilities (Chacón-Martínez
et al., 2018). The niche consists of stromal cells and the factors
they secrete, such as adhesion molecules, soluble factors (cytokines,
growth factors, metabolites, and nutrients), and matrix proteins. In
addition, physical factors such as calcium ions and oxygen
concentration also influence the characteristics of the stem cell
niche. Recently the transport and metabolism of prototypical
ginsenosides or ginsenoside metabolites in various types of stem
cell niches have received extensive attention. ATP-binding cassette
(ABC) transporters (especially ABCB1 and ABCG2) are clinically
important transporters and drug efflux pumps, and their expression
affects the differentiation activities of NSC stem cells (Lin et al.,
2006). Specifically, downregulation of ABCB1 (also known as
P-glycoprotein, p-gp) or ABCG2 (BCRP) expression promotes
the differentiation of NSCs into astrocytes or neurons (Lin et al.,
2006). Ginsenosides and their metabolites (CK, PPD, and PPT) have
been studied to be potential inhibitors of p-gp and BCRP (Jin et al.,
2006; Li et al., 2014). Those findings suggest that ginsenoside
metabolites may antagonize ABC transporter expression, thereby
benefiting NSC differentiation. Furthermore, overexpression of
ABC transporters in CSC supports drug resistance (Li et al.,
2010). The inhibition of ginsenosides on the efflux effect of ABC
transporters may be one of the means to promote the sensitivity
of CSCs to chemotherapeutic drugs. In addition, the enzymes
involved in drug metabolism are mainly cytochrome P450
(CYP450), including CYP2C9, CYP3A4, etc. The inhibition of
CYP450 prolongs the metabolism time of the drug in the body

TABLE 1 Clinical efficacy of ginsenosides.

Component Application Effect Mechanism References

Rd AIS neuroprotection microglial proteasome activity and sequential
inflammation↓

Zhang et al.
(2016)

Rg3 AL anti-angiogenic PI3K/Akt and ERK1/2 pathways↓ Zeng et al. (2014)

Rb1 CKD alleviate kidney dysfunction oxidative stress and inflammation↓ Xu et al. (2017)

Rg1 sports challenge reduce oxidative damage and inflammation TBA activity↓ and TNF-α mRNA↓ and IL-10
mRNA↑

Hou et al. (2015)

Rg1 exercise
resistance

induces immune stimulation and reduces skeletal
muscle aging

p16INK4a and MPO mRNA levels↓ Lee et al. (2021)

AIS, acute ischemic stroke; AL, acute leukemia; CKD, chronic kidney disease.
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and increases the blood drug concentration. CYP450 is highly
expressed in the bone marrow niche (HSC living environment)
(Zhang Y. et al., 2013). The competitive inhibition of ginsenoside
metabolites (CK, PPD, and PPT) on the activity of liver drug
enzymes (CYP2C9, CYP3A4) may be the reason why they reside
in the bone marrow niche and exert their pharmacological effects,
thereby regulating HSC function (Liu et al., 2006). Recently, the
transport of ginsenosides in the NSC niche was found that the
active transport of ginsenoside Rb1 to brain microvascular
endothelial cells, the cellular component of the NSC niche,
was dependent on the glucose transporter GLUT1 (Wang
et al., 2018). This finding suggests that upregulation of
GLUT1 can increase the bioavailability of ginsenosides in
NSCs and their niche. In the future, more in vivo experiments
are needed to screen and verify the key enzymes/proteins related
to the transport and metabolism of ginsenosides in stem cells and
niches, which will help the uptake of ginsenosides by stem cells.

3 Effects of ginseng on different types
of stem cells

Stem cells are pluripotent cells with the capacity for self-renewal,
self-replication, and differentiation into multiple cell types in a
suitable microenvironment, which are divided into two forms
according to developmental stages: embryonic stem cells and
adult stem cells. Considering that embryonic stem cells are
subject to ethical restrictions, are prone to self-differentiation,
and may have abnormal karyotypes after many passages, the
research on the effect of ginsenosides on stem cells mainly
focuses on adult stem cells (Scott and Reijo Pera, 2008). Adult
stem cells, including hematopoietic, neural, and mesenchymal stem
cells, are slow-dividing and quiescent cells with low proliferative
rates and are the source of adult tissue (Gurusamy et al., 2018).
Additionally, adult tissue stem cells can turn into cancer stem cells
(White and Lowry, 2015), in solid tumors, the acquisition of cancer

TABLE 2 Changes and effects of ginsenosides on the physiological behavior of various stem cells.

Cell
type

Derive Saponins Effect Targets/pathways References

CSCs colon 20(R)-Rg3 stemness and EMT↓ SNAIL signal axis↓ Phi et al. (2019b)

colon Rd stemness and EMT↓ EGFR signal axis↓ Phi et al. (2019a)

colon CK stemness and cancer metastasis↓ Nur77-Akt feedforward signaling↓ Zhang et al. (2022b)

lung Rk1/Rg5 EMT↓ Smad and NF-κB/ERK↓ Kim et al. (2021)

breast Rg3 stemness and self-renewal↓ Akt mediated self-renewal↓ Oh et al. (2019)

skin/liver Rh2 cell growth↓ Autophagy↑; β-catenin↓ Liu et al. (2015b), Yang et al. (2016)

ovarian Rb1 self-renewal↓ Wnt/β-catenin↓ Deng et al. (2017)

LSCs CD34(+) CD38(−)
LSCs

Rg1 proliferation↓ and cellular
senescence↑

SIRT1/TSC2↑;p16INK4a↑ and hTERT↓ Tang et al. (2020a), Tang et al. (2021)

MSCs human adipose Rg1 proliferation↑ and adipogenic
differentiation↑

Adipocytokine↑, IL-17↓ Xu et al. (2022)

bone marrow Rg1 aging↓ NRF2 and Akt↑; GSK-3β
phosphorylation ↓ and Wnt↓

Wang et al. (2020b), Wang et al.
(2021)

bone marrow Rg1 osteogenic differentiation↑ GR/BMP-2↑ Gu et al. (2016)

bone marrow Rg1 oxidative stress-induced apoptosis↓ PI3K/Akt↑ Hu et al. (2016)

bone marrow Rb1 migration↑ SDF-1/CXCR4 axis and PI3K/Akt↑ Liu et al. (2022b)

bone marrow 20(S)-Rb2 Dex-induced apoptosis↓ GPR120↑, Ras-ERK1/2↑ Gao et al. (2015)

human umbilical
cord

Rg1 proliferation↑ and differentiation to
NSCs↑

Wnt/β-catenin↓ and Notch↓ Xiao et al. (2022)

muscle Rb1 oxidative stress and mitochondrial
dysfunction↓

NF-κB↓ Dong et al. (2022)

HSCs Sca-1(+) HSC/
HPCs

Rg1 HSCs aging↓ SIRT6↑, NF-κB↓; SIRT1-FOXO3 and
SIRT3-SOD2↑; oxidative stress↓ and
Wnt/β-catenin↑; p16(INK4a)-Rb and
p19(Arf)-p53-p21(Cip/Waf1)↓; p53-
p21-Rb signal↓

Chen et al. (2014), Yue et al. (2014),
Tang et al. (2015), Li et al. (2016), Cai
et al. (2018), Tang et al. (2020b), Zhou
et al. (2020b), Wang et al. (2022a)

NSCs - Rg1 aging↓ Wnt/β-catenin↓; Akt/mTOR↓ Chen et al. (2018), Xiang et al. (2019)

- 20(S)-PPD proliferation↓ and differentiation↑ cell cycle↓, autophagy↑ Chen et al. (2020)

endogenous CK neurogenesis↑ LXRα↑ Zhou et al. (2020a)

CK, Compound K.
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stem cells phenotype can be achieved through epithelial-
mesenchymal transition (EMT) (Shibue and Weinberg, 2017).
The wide application of stem cells in regenerative medicine has
attracted much attention. At first, stem cells were transplanted into
the human body to repair damaged tissues, utilizing their potential
for self-replication and multi-directional differentiation (Giri et al.,
2019). Furthermore, advancements in stem cells reprogramming
technology have led to increased use of stem cells for the restoration
of aging cells, that is, stem cells can restore proliferate, differentiate,
and self-renewal ability to delay the aging process (Alle et al., 2021).
Recently, stem cells were suggested as a promising therapeutic
option for various diseases, including but not limited to
neurodegenerative diseases, cancer, stroke, myocardial ischemia
(Yamashita and Abe, 2016; Michler, 2018; Sivandzade and
Cucullo, 2021; Yin et al., 2021). Meanwhile, ginsenosides have
been proven to slow the pathological process of these diseases
and improve the condition (Huang et al., 2019; Wang R. et al.,
2020; Yang JE. et al., 2020; Yao and Guan, 2022). In recent times,
research studies have demonstrated the significant regulatory impact
of ginsenosides on the self-renewal, differentiation, and proliferation
of stem cells, thereby highlighting their potential for clinical use in
improving the field of stem cells research (Table 2).

3.1 Mesenchymal stem cells

Mesenchymal stem cells (MSCs) are the progenitors of
numerous cell types and have the capacity to proliferate and
differentiate into a variety of cell lineages such as osteoblasts,
adipocytes, myoblasts, and others (Xie et al., 2020).

3.1.1 Effect on differentiation of MSCs
Ginsenosides have shown the potential to induce differentiation

of MSCs in vitro, especially in inducing osteogenic differentiation,
which is the consequence of expressing or activating genes/
transcription factors and signaling pathways related to osteogenic
differentiation (He et al., 2019). The role of BMP-2/Smad pathway in
MSCs osteogenic differentiation has been fully confirmed (Aquino-
Martínez et al., 2017). As an indispensable growth factor for driving
osteogenic differentiation, BMP-2 can activate the intracellular
Smad pathway to form Smad complexes that enter the nucleus
and promote the expression of the osteogenic transcription factor
RUNX2 (Wang et al., 2017). Such the BMP-2/Smad signaling
pathway can be activated by ginsenoside Rg1 to promote
osteogenic differentiation of bone marrow mesenchymal stem
cells (BMSCs), which is mediated by glucocorticoid receptor
(GR) nuclear translocation (Gu et al., 2016). In addition, the
Wnt/β-catenin signaling pathway is a key pathway that regulates
the osteogenic differentiation of MSCs by regulating the localization
of β-catenin, thereby regulating the expression of downstream
osteogenesis-related proteins and genes. GSK-3β is an
intermediary of the Wnt/β-catenin signaling pathway, and its
high activity negatively affects the stability and transcriptional
activity of β-catenin, blocks the activation state of the signaling
pathway, and thus regulates the function and fate of stem cells.
Currently, researchers believe that ginsenosides regulate the
osteogenic differentiation of MSCs by regulating the Wnt
signaling pathway. For instance, ginsenoside Rg1 can regulate the

differentiation capacity of MSCs, stimulate bone and cartilage
formation, by inhibiting the phosphorylation of GSK-3β and
reducing the excessive activation of the Wnt/β-catenin pathway
in aging cells (Wang Z. et al., 2020). Conversely, ginsenoside
compound K (CK) (the main metabolite of original propanediol
ginsenoside in gut bacteria) activates the Wnt/β-catenin signaling
pathway in vitro and promotes the expression of the downstream
Wnt target gene Runx2 (osteogenic transcription factor), inducing
the osteogenic differentiation of rat bone marrow-derived
mesenchymal stem cells (rBMSCs) (Ding et al., 2022). In view of
the fact that ginsenosides have two sides to the regulation of Wnt/β-
catenin signaling pathway in promoting osteogenic differentiation of
MSCs, that is, they show differences in different states (aging or
normal) of MSCs. Future detailed functional exploration of
individual members of the Wnt/β-catenin pathway will help to
understand its regulatory mechanism.

Adipose tissue-derived MSCs (ADSCs) are also quite common
in clinical practice. Ginsenoside Rg1-promoted cartilage gene
expression in ADSCs in vitro induces cartilage phenotype
differentiation (Xu et al., 2015; Guo et al., 2023). Co-
administration of ginsenoside Rg1 and platelet-rich fibrin elevates
cytokines (VEGF, HIF-1α) in human ADSCs niche and promotes
soft tissue regeneration (Xu et al., 2016). Ginsenoside Rg1 can also
improve the ADSC niche mediated by adipokine and IL-17 signaling
pathways, and promote the adipogenic differentiation of human
ADSCs (Xu et al., 2022). These results indicate that ginsenoside may
expand MSCs by regulating MSC niche.

3.1.2 Effect on the proliferation and differentiation
of MSCs in the aging process

Oxidative stress is the key contributor to the aging of stem cells
(Chen et al., 2017). Ginsenoside Rg1 has been proven to promote
superior antioxidant and anti-inflammatory capabilities, which can
promote BMSC proliferation and improve the anti-aging
hematopoietic microenvironment (Hu et al., 2015). Similarly, the
senescence-associated secretory phenotype (SASP) resulting from
DNA damage and oxidative damage associated with the aging of
MSCs can be inhibited by ginsenoside Rg1, which promotes MSC
proliferation by enhancing its antioxidant capacity, the activation of
Nrf2 and PI3K/Akt is required for this process to occur (Wang et al.,
2021). Ginsenoside Rg2 activates AMPK-mediated autophagy
restores pig MSCs proliferation and inhibits oxidative stress-
induced replicative senescence in pig MSCs (Che et al., 2023).
Ginsenoside Rg3 mainly enhances the biogenesis ability of
mitochondria and antioxidant function by promoting Ca2+

concentration properly, thus improving proliferation and
differentiation potential and preventing human MSCs from aging
(Hong et al., 2020). These results suggest that administration of
ginsenosides may be a promising approach to counteract MSC aging
by intervening in oxidative stress-related pathways (Figure 1).

3.2 Neutral stem cells

During central nervous system (CNS) development, neural stem
cells (NSCs) are capable of generating neurons, astrocytes, and
oligodendrocytes (Vieira et al., 2018). Recently, the use of neural
stem cells therapy has emerged as a novel approach to treating
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diverse neurological disorders and is an ideal approach for treating
neurodegenerative diseases and CNS injuries (Liu Y et al., 2020).

3.2.1 Effect on proliferation and differentiation of
NSCs

Ginsenoside Rg1 increases the activity of NSE, a neuron
biomarker, in transplanted NSCs, implying neuron-like
differentiation (Li et al., 2015). Similarly, the key to
ginsenoside Rb1 regulating the progression of
neurodegenerative diseases is to increase the levels of
biomarkers such as Nestin (marking NSC), GFAP (marking
astrocytes) and NSE in Alzheimer’s disease (AD) rat models,
and promote NSC proliferation and differentiation into
astrocytes and neurons (Zhao et al., 2018). However, high
levels of NSE have been shown to induce nerve injury and
neuroblastoma, and the specific mechanism of how
ginsenoside promotes NSE expression to exert neuroprotective
effects needs to be further elucidated. Even though most
ginsenosides are difficult to penetrate the blood-brain barrier
due to their large molecular weight, their neuroprotective effects
have been confirmed by a large number of experimental studies
(Xie et al., 2018). The underlying mechanism may involve in
improving the niche of NSCs. Nerve growth factor (NGF), a
neurotrophic factor in the NSCs niche, can induce the
differentiation of NSCs derived from the brain (Regalado-
Santiago et al., 2016). Ginsenoside Rg1 precisely acts as an
analog of NGF, attenuating oxygen and glucose deprivation-
induced nerve injury and promoting proliferation and glial-
like differentiation of cortical NSCs (Gao et al., 2017).

3.2.2 Effect on proliferation and differentiation of
NSCs in the aging process

Recently, the function of WNT/β-catenin in the CNS has been
studied and dysregulation of its signaling can lead to the production
and aggregation of β-amyloid (Aβ) (Aghaizu et al., 2020). Ginseng
total saponins extract and its intestinal metabolite 20(S)-
protopanaxadiol (PPD) jointly induce the phosphorylation of
GSK-3β (ser9), activate the Wnt/GSK-3β/β-catenin pathway to
promote NSC proliferation and differentiation, thereby
improving cognitive impairment in AD by replacing damaged
neurons (Lin et al., 2020; Lin et al., 2022). However, in LiCl-
induced NSC senescence, ginsenoside Rg1-dependent
downregulation of phosphorylated GSK-3β expression interfered
with the activation of the Wnt/β-catenin pathway, thereby
promoting NSC proliferation and delaying senescence (Xiang
et al., 2019). Screening potential Wnt/GSK-3β/β-catenin -targeted
activators/inhibitors in ginsenosides will help ginsenosides promote
the development of stem cell regenerative medicine and anti-aging
drugs in nerves field.

Aging leads to a decline in the capacity of NSCs to enter the cell
cycle efficiently (Audesse and Webb, 2020). Genes involved in cell
cycle regulation play an essential role in the stability and activation
of NSCs (Roccio et al., 2013). Ginsenoside Rg1 targets Akt/mTOR to
downregulate the levels of cell cycle arrest-related proteins (p53, p16,
p21, and Rb) in NSCs, promoting NSC proliferation and alleviating
D-galactose-induced NSC aging (Chen et al., 2018). 20(S)-PPD
induces autophagy and cell cycle arrest, and promote NSC from
a proliferative state to a differentiated state and helps to repair
neurons in age-related neurodegenerative AD (Chen et al., 2020).

FIGURE 1
Ginsenosides resist oxidative stress, regulate MSC proliferation and differentiation, and alleviate MSC aging. SASP, senescence-associated secretory
phenotype.
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This suggests that further understanding of the molecular
mechanism by which ginsenosides alleviate NSC aging requires a
deeper study of upstream signaling pathways and regulators that
affect the cell cycle to maintain the continued health of NSCs.

3.2.3 Effect on transdifferentiation of NSCs
NSCs can also differentiate from other stem cells with

transdifferentiation capability, such as MSCs (Feng et al., 2014).
It was previously demonstrated that ginsenoside Rg1 promotes the
differentiation of transplanted bone marrow mesenchymal stem
cells (BMSCs) into neurons and glial cells (Bao et al., 2015). A
recent report has shown that ginsenoside Rg1 regulates miRNA-124
expression in vitro to promote neural differentiation of mouse
adipose stem cells (ADSCs) (Dong et al., 2017). Ginsenoside
Rg1 promotes the neural phenotype differentiation of human
ADSCs by activating the expression of NSC niche components
including growth associated protein-43 (GAP-43), neural cell
adhesion molecule (NCAM), and synapsin-1 (SYN-1) (Xu et al.,
2014). In addition, ginsenoside Rg1 promotes the differentiation of
human umbilical cord mesenchymal stem cells (hUCMSC) into
NSCs by downregulating genes involved in the Wnt/β-catenin and
Notch signaling pathways, including GSK3β, β-catenin, Notch1, and
Hes1 (Xiao et al., 2022). However, the transdifferentiation capability
of NSCs is still doubted since the possible contamination by other
tissue stem cells or embryonic stem cells in those studies.

3.3 Hematopoietic stem cells

HSCs have self-renewal potential and can differentiate into
various hematopoietic progenitor cells (HPC) and produce

specific blood cell types to maintain the stability of the entire
hematopoietic system (Zhao and Li, 2015).

3.3.1 Effect on proliferation of HSCs
External supplementation of HSCs is widely used to reconstruct

damaged bone marrow (Ju et al., 2020). Bone marrow suppression
and extramedullary hematopoiesis are often caused by the side
effects of chemotherapy drugs (such as cyclophosphamide; CY)
used by cancer patients, making stimulation of hematopoiesis, a
critical issue in the context of cancer therapy in clinical practice
(Wang et al., 2009; Ahlmann and Hempel, 2016; Hou et al., 2017).
Ginsenosides relieve CY-induced myelosuppression by activating
HSC proliferation (Figure 2). HSCs expansion in the bone marrow is
strictly regulated by the HSCs niche (Pinho and Frenette, 2019).
Multiple signal molecules are involved in HSCs-niche interactions,
such as Ca2+ sensitive receptor (CaSR), and three cytokines,
including granulocyte-macrophage colony stimulatory factors
(GM-CSF), erythropoietin (EPO) and thrombopoietin (TPO), are
essential for HSC proliferation (Szade et al., 2018). CaSR has been
demonstrated that regulates calcium ion levels to maintain calcium
homeostasis and plays critical regulatory roles in the retention and
colonization of HSCs after transplantation (Cho et al., 2020; Uslu
et al., 2020). Such the CaSR can be activated by ginsenoside Rg1 to
relieve CY-induced inhibition of the proliferation of Lin-Sca-1+c-
Kit + HSCs and CD3+ in mouse bone marrow and peripheral blood,
restoring bone marrow function (Xu et al., 2012). Another study
found that ginsenosides Re and Rk3 compensated hematopoietic
function by increasing the secretion of cytokines (GM-CSF, TPO,
EPO) to restore HSC proliferation. (Han et al., 2019). In addition,
the compensatory hematopoiesis of the spleen is the key means to
restore the normal hematopoietic function of the bone marrow.

FIGURE 2
The targets of ginsenosides promoting HSC proliferation and stimulating bone marrow hematopoiesis at the molecular level. CY,
cyclophosphamide; CaSR, Ca2+ sensitive receptor; GM-CSF, granulocyte-macrophage colony stimulatory factors; EPO, erythropoietin; and TPO,
thrombopoietin.
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Ginsenoside Rg1 treatment of CY-induced myelosuppressive mice
can improve bone marrow hematopoietic activity by improving the
spleen niche and promoting the proliferation and homing of c-Kit +
HSCs in the spleen (Liu HH. et al., 2015). As mentioned above, the
niche may be an important target for ginsenosides to regulate HSC

proliferation and assist recovery from myelosuppression. It is
necessary to focus on whether the effects of ginsenosides on
other cellular components in the stem cell niche feed back to the
stem cells so that we can more fully understand the regulatory
mechanisms of ginsenosides on stem cell fate specification.

FIGURE 3
Molecular mechanism of ginsenosides affecting HSC differentiation and self-renewal ability to resist HSC aging.
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3.3.2 Effect on differentiation and self-renewal of
HSCs in the aging process

Research indicates that HSC aging is linked to body aging since it
impairs the self-renewal and differentiation ability of stem cells,
resulting in decreased hematopoietic and immune function, and
ultimately leading to tissue and organ structure and function
deterioration throughout the body (Han et al., 2019). Therefore,
it is meaningful to study the mechanism of HSC aging to elucidate
the aging mechanism of the body. Ginsenoside Rg1 resisted HSC
senescence to restore self-renewal and multi-differentiation abilities
(Figure 3). Excessive ROS generated by oxidative stress may be the
main mediator of stem cell senescence induced by excessive
activation of Wnt/β-catenin signaling pathway (Zhang DY. et al.,
2013). The proto-oncogene c-myc and cyclin D1 are target genes
downstream of the Wnt pathway, and their overexpression may
cause DNA damage and induce oxidative stress senescence (Shang
et al., 2023). Ginsenoside Rg1 acts as a Wnt/β-catenin signal
transduction inhibitor to inhibit Wnt target genes (such as cyclin
D1 and c-myc) regulated by TCF/LEF transcription factors, thereby
delaying LiCl and D-galactose-induced Sca-1 + HSC/HPC oxidative
damage cascades restore their differentiation characteristics (Li et al.,
2016; Wang et al., 2022a).

Cell cycle arrest is another main cause of HSC aging (Mohrin
et al., 2015). Ginsenoside Rg1 antagonizes lead acetate, t-BHP,
radiation, and d-galactose by repressing some key genes in the
cell cycle regulator signaling pathway (p53-p21-Rb, p16INK4a-Rb, and
p53-p21Cip/Waf1)-induced HSC senescence, improving HSC self-
renewal capacity (Chen et al., 2014; Yue et al., 2014; Li et al.,
2016; Cai et al., 2018).

Sirtuins alter protein activity and stability through lysine
deacetylation is another important factor in regulating the
cellular aging process (Lasigliè, 2021). The sirtuins SIRT1, SIRT3,
and SIRT6 are key regulators of HSC lifespan (Wang et al., 2016;
Fang et al., 2020; Wang et al., 2022b). Activation of SIRT6 by
ginsenoside Rg1 inhibits NF-κB through H3K9 deacetylation, slows
down t-BHP-induced Sca-1+HSC/HPC senescence, and enhances
self-renewal and multi-differentiation abilities (Tang et al., 2015).
Ginsenoside Rg1 activates SIRT3 to trigger deacetylation to enhance
SOD2 activity and accelerate ROS clearance, slow down D-gal-
induced Sca-1+HSC/HPC senescence, and promote HSC self-
renewal and multi-differentiation ability (Zhou Y. et al., 2020).
Ginsenoside Rg1-mediated SIRT1-FOXO3 promotes Sca-1+HSC/
HPCmulti-differentiation and self-renewal (Tang et al., 2020b), and
inhibits gamma-ray-induced Sca-1+HSC/HPC senescence, which is
dependent on deactivation of SIRT1/SIRT3 Acetylation (Tang et al.,
2020a).

Overall, the mechanisms of ginsenoside in reducing HSCs aging
mainly involve Wnt/β-catenin, cell cycle, and sirtuins-mediated
senescence signaling pathway.

3.4 Cancer stem cells

CSCs exhibit qualities of stem cells and cancer cells, contributing
to tumor growth, metastasis formation, and recurrence (Tanabe,
2022). CSCs initiate and maintain cancer initiation and progression
based on stemness characteristics, namely, self-renewal and
abnormal proliferation/differentiation (Eun et al., 2017).

3.4.1 Effect on proliferation and self-renewal of
CSCs

Wnt/β-catenin signaling is the main signaling pathway that
promotes cancer cell stemness (Katoh and Katoh, 2022).
Ginsenoside Rh2 inhibits cutaneous squamous cell carcinoma
(SCC) proliferation by reducing the number of Wnt target gene
Lgr5+ cells by inhibiting β-catenin signaling (Liu S. et al., 2015).
Ginsenoside Rg3 and Rh2 reduced the self-renewal capacity of
glioblastoma stem cells (GSC) by inhibiting the expression of
transcription factor LCF1 and downstream Wnt target genes
(c-myc, CCND1) of Wnt/β-catenin signaling (Ham et al., 2019).
Notably, the anti-CSC capacity of Rh2 is better than that of
ginsenoside Rg3, which supports that ginsenoside metabolites
with fewer sugar groups have stronger anticancer activity.

Accumulating evidence indicates that EMT activation is
abnormally high in CSCs, and there is a strong correlation
between CSC stemness and EMT regulation (Tanabe et al.,
2020). Recently, many studies have reported that ginsenosides
exert anticancer effects by inhibiting EMT (Dai et al., 2019; Cai
et al., 2021; Li et al., 2021). Ginsenoside Rg3R has been shown to
reduce self-renewal in colorectal cancer cells (CRC) by targeting
the SNAIL signaling pathway and modulating EMT features (Phi
et al., 2019b). Ginsenoside Rk1/Rg5 inhibited EMT and self-
renewal ability of A549 cells and reduced A549 stemness, which
was dependent on the inhibition of TGF-b1-mediated
downstream signaling pathways, including Smad2/3, NF-κB,
ERK1/2, p38 MAPK and JNK (Kim et al., 2021). In addition,
the hypoxic niche is the main place to maintain the stemness
characteristics of CSCs. Nur77 is highly expressed in the hypoxic
niche in a mouse model of colon cancer. Ginsenoside CK, as a
Nur77 ligand target, prevents the Nur77-Akt activation circuit
and inhibits CSCs proliferation and stemness (Zhang M. et al.,
2022).

In summary, the regulation of ginsenosides on CSC stemness
(especially self-renewal ability) involves a variety of signaling
pathways. The key to solving the problem of targeted therapy is
to further study whether these pathways exist independently or
interact, which will be the key of tumor therapy in the context of
ginsenoside.

3.4.2 Effect on proliferation and self-renewal of
CSCs in the aging process

One subtype of CSC, leukemia stem cells (LSCs), is a crucial
origin of leukemia due to its high proliferation and abnormal growth
(Chavez-Gonzalez et al., 2017). Inducing LSCs aging can reduce the
number of LSCs, thus reducing the incidence of leukemia (Liu W.
et al., 2022). Ginsenosides mainly induce the aging of LSCs by the
following signals, slowing down or inhibiting the development of
leukemia.

One of the mechanisms by which ginsenosides induce
senescence in LSCs is their inhibitory potential for proliferation
and self-renewal, involving deacetylation mediated by SIRT1 (one of
the sirtuins members). Ginsenoside Rg1 downregulates the
expression of SIRT1/TSC2 in CD34+CD38-LSCs, significantly
increases the level of senescence marker SA-β-Gal, and reduces
the unit of mixed colony-forming (a marker of proliferation ability),
and reduces cell renewal and proliferation ability to induce LSCs
senescence (Tang et al., 2020a).
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Telomere is another pathway that ginsenosides participate in
regulating the proliferation and self-renewal of LSCs to induce
senescence. LSCs have relatively short telomeres, but they show
higher levels of telomerase activity compared with normal cells. This
enhanced telomerase activity may be an adaptive mechanism aimed
at maintaining the continuous replication of LSCs and promoting
leukemia development (Kuo and Bhatia, 2014). A recent study
found that ginsenoside Rg1 inhibited CD34+CD38-LSCs
proliferative activity, increased expression of telomere damage
effector p16INK4a, and decreased human telomerase reverse
transcriptase (hTERT, catalytic subunit of telomerase) to induce
its replicative senescence for the treatment of leukemia (Tang et al.,
2021). The above findings suggest that ginsenoside Rg1 inhibits the
ability of LSCs to self-renewal and proliferation, and its targeted
therapy based on the intervention of LSCs senescence is a valuable
direction for healing leukemia in the future.

Noteworthy, we observed that the effects of ginsenosides on CSC
and normal stem cell fate are asymmetric (inhibit CSC self-renewal,
promote normal stem cell proliferation/differentiation), which may
have multiple reasons. First, CSCs of various origins overexpress the
glucose transporter GLUT1 (Maliekal et al., 2022). Due to their steroidal
structure, ginsenosides have the property of recognizing GLUT carriers
on tumor cell membranes (Chen et al., 2022). Ginsenoside Rh2 inhibits
GLUT1-mediated aerobic glycolysis in tumor cells, and its role as a
tumor energy blocker may be responsible for the inhibition of CSC self-
renewal (Liu X Y et al., 2020). Second, ginsenoside Rb1 and its
deglycosylated product compound K also decreased the expression
of drug efflux pumps (ABCG2 and P-glycoprotein), inhibiting the
resistance of CSCs to chemotherapeutic drugs (Deng et al., 2017). In
addition, ginsenosides, as signal transduction regulators of the Wnt/β-
catenin pathway, participate in the regulation of stem cell fate
specification, with opposite effects on CSCs and normal stem cells.
The regulation of ginsenosides on Wnt/β-catenin is mainly through
regulating the activity of the intermediate GSK-3β to mediate the signal
transmission triggered by β-catenin degradation/nuclear translocation,
including the inhibition/activation of downstream transcription factors
(TCF/LEF) and Wnt target genes (CCND1, c-myc, Lgr5), thereby
affecting the function and fate of stem cells (Sferrazza et al., 2020).
We speculate that ginsenosides inhibit CSC and stimulate normal stem
cell proliferation/differentiationmay be due to the different functions of
Wnt target genes in CSC and normal stem cells. However, further
verification in vivo or clinical experiments is needed to support this
point of view. In conclusion, ginsenosides show potential as anticancer
drugs, but further research and clinical trials are currently needed to
determine their efficacy and safety.

3.5 Other kinds of adult stem cells

Although the effects of ginsenosides on other types of adult stem
cells are not well understood, existing findings suggest a potential
multifunctional regulatory capacity. For example, Ginsenoside Rd
can stimulate the proliferation of intestinal stem cells (marked by
Bmi and Msi-1) in rat inflammatory bowel disease model and
promote the differentiation into intestinal epithelial cells expressing
CDX-2, thereby restoring intestinal function (Yang et al., 2020).
Ginsenoside Rg1 promotes the odontogenic differentiation of human
dental pulp stem cells (hDPSCs) by upregulating osteogenesis-

promoting factors, including bone morphogenetic protein-2 (BMP-
2) and fibroblast growth factor 2 (FGF2) (Wang et al., 2014). In
addition, PPT induced the proliferation and differentiation of sperm
stem cells and resisted busulfan-induced reproductive toxicity in male
mice (Ji et al., 2007). These findings suggest that ginsenosides have a
wide range of effects, contributing to tissue repair and regeneration, and
holding potential for the treatment of various diseases. Strengthening
the study of the molecular mechanism of ginsenosides on other types of
adult stem cells will help its clinical application.

4 Conclusion

This review gives an overview of the fate specification effects of
ginsenosides on adult stem cells from the perspective of physiology
(including aging states) and pathology. However, currently most of
studies we reviewed are based on in vitro model and we still lack
knowledge of how ginsenosides affect stem cell proliferation and
differentiation or relieve dysfunctions in those processes in vivo and
whether ginsenosides have considerable value in clinical practice. To
figure out such limitations and the great potential of ginsenosides in
tissue repair, cell replacement and disease treatment, more research
(especially in vivo studies in distinct species) should be done to unravel
the underlying mechanism of ginsenosides in proliferation,
differentiation and self-renewal of different stem cell types.
Considering the continuous proceeding of research on ginsenosides
and proliferation as well as differentiation processes in various stem
cells, we believe the promise of ginsenosides in regenerative medicine
and healthy aging will be attested soon.
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Cellular microenvironment:
a key for tuning mesenchymal
stem cell senescence

Wenyang Sun, Jiacheng Lv, Shu Guo* and Mengzhu Lv*

Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China

Mesenchymal stem cells (MSCs) possess the ability to self-renew and differentiate
into multiple cell types, making them highly suitable for use as seed cells in tissue
engineering. These can be derived from various sources and have been found to
play crucial roles in several physiological processes, such as tissue repair, immune
regulation, and intercellular communication. However, the limited capacity for cell
proliferation and the secretion of senescence-associated secreted phenotypes
(SASPs) pose challenges for the clinical application of MSCs. In this review, we
provide a comprehensive summary of the senescence characteristics of MSCs and
examine the different features of cellular microenvironments studied thus far.
Additionally, we discuss the mechanisms by which cellular microenvironments
regulate the senescence process of MSCs, offering insights into preserving their
functionality and enhancing their effectiveness.

KEYWORDS

mesenchymal stem cells, tissue engineering, SASPs, cellular senescence, cellular
microenvironment

1 Introduction

Over the past decade, there has been significant progress in the field of stem cell-based
regenerative therapeutics and ex vivo disease models. This progress has been achieved by
leveraging the pluripotent and immunological features of stem cells. Mesenchymal stem cells
(MSCs), which are adult non-hematopoietic mesodermal stem cells, were first isolated from
bone marrow in 1968. (Friedenstein et al., 1968). MSCs offer numerous advantages over
other types of stem cells in terms of therapy and applications. These versatile cells can be
derived from various sources such as bone marrow, umbilical cord, placenta, fat, cartilage,
skin, lungs, and dental pulp. (Pittenger et al., 2019; Liu Yajun et al., 2022). Previous research
has shown that genetic alteration of MSCs and gene delivery are both feasible and practical
(Damasceno et al., 2020; Zhou et al., 2023). The immunological flexibility of MSCs makes
them highly effective in regulating and improving the inflammatory microenvironment.
(Zhuang et al., 2022). To date, treatments using MSCs and their extracellular vesicles (EVs)
have demonstrated beneficial effects in a variety of diseases, such as osteoarthritis (OA)
(Greif et al., 2020; Kim et al., 2020; Rizzo et al., 2023), diabetic mellitus (DM) (Sun F. et al.,
2022; Yang et al., 2022), Crohn’s disease (CD) (Garcia-Olmo et al., 2022; Huang et al., 2022),
systemic lupus erythematosus (SLE) (Zhang Mingchao et al., 2022), myocardial infarction
(MI) (Czosseck et al., 2022), acute respiratory distress disorder (ARD) (Jackson et al., 2016;
Qiao et al., 2021) and graft-versus-host disease (GVHD) (Harrell et al., 2022). In 2006, the
International Society for Cellular Therapy (ISCT) proposed minimal criteria to defineMSCs.
These criteria include: i. MSCs should adhere to plastic under standard culture conditions; ii.
MSCs should express CD105, CD73, and CD90, while not expressing CD45, CD34, CD14 or
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CD11b, CD79 or CD19, and HLA-DR surface markers; and iii.
MSCs should demonstrate the ability to differentiate into three
different lineages: osteogenic, lipogenic, and chondrogenic.
(Dominici et al., 2006; Mareschi et al., 2006).

However, as MSCs undergo senescence, they also undergo a
transition from an anti-inflammatory to a pro-inflammatory factor
phenotype. This shift can reduce the immunomodulatory potential
of MSCs and significantly limit the effectiveness of stem cell therapy.
Moreover, senescent MSCs alter the cellular microenvironment
surrounding them through the secretion of senescence-associated
secreted phenotypes (SASPs), the generation of reactive oxygen
species (ROS), and the remodeling of the extracellular matrix
(Liu J. et al., 2022; Siraj et al., 2023). These changes induce
senescence in non-senescent MSCs. As a result, stringent criteria
may be necessary for creating high-quality MSCs for therapeutic
applications and obtaining large quantities of high-purity MSCs
from patients can be challenging. (Zhang Y. et al., 2021).

Efforts to enhance the efficiency of cell therapy must address
the negative effects of senescence in MSCs. Multiple factors
contribute to the senescence of MSCs, including cell-intrinsic
regulatory mechanisms related to DNA damage, telomere
shortening, and epigenetic modifications. Additionally, the
cellular microenvironment in which MSCs reside plays a
significant role in influencing their senescence-related
behaviors. The cellular microenvironment refers to the local
region consisting of neighboring cells and non-cellular
components. It provides structural support and signaling that
are crucial for maintaining the homeostasis and functionality of
MSCs(Choi et al., 2014; Papait et al., 2020; Liu J. et al., 2022; Pei
et al., 2023). Creating an appropriate cellular microenvironment
is also essential for advancements in tissue engineering and
regenerative medicine. The state and function of MSCs can be
influenced by changes in the cellular microenvironment during
various physiological and pathological conditions (Papait et al.,
2020; Liu J. et al., 2022; Tan et al., 2022). The current body of
literature does not provide a comprehensive overview of the
impact of the cellular microenvironment on senescence in
MSCs. As a result, the objective of this paper is to compile
and summarize the effects and mechanisms of different
cellular microenvironments on the senescence and behavior of
MSCs. Additionally, this paper will explore potential avenues for
future research in this field.

2 Characteristics of MSCs senescence

Cellular senescence is a physiological state that manifests as a
stable cell cycle stagnation (Herranz and Gil, 2018). The discovery
can be traced back to the 1960s, when Haflick and Moorhead
experimentally cultured and observed human fibroblasts’ inability
to divide indefinitely. This phenomenon is known as the ’Hayflick
limit’. (Hayflick and Moorhead, 1961). Senescent cells are
characterized by heightened intracellular expression of
senescence-related genes, such as p16 and p53 (Hernandez-
Segura et al., 2018), as well as senescence-associated β-
galactosidase (SA-β-gal). Additionally, they further induce the
surrounding cells and microenvironment into senescence through
paracrine effects. (Di Mitri and Alimonti, 2016).

Previous research has demonstrated that the presence and
elimination of senescent cells have a beneficial effect on
maintaining the microenvironment and organ function in the
human body over a short period of time. However, the long-term
accumulation of senescent cells can have the opposite effect and
contribute to the development of age-related diseases (ARDs) (Yin
Yujia et al., 2021). Cellular senescence is also a contributing factor to
individual aging, a gradual decline in physiological function.
Previous studies have demonstrated the effectiveness of Senolytics
in eliminating senescent cells and addressing ARDs such as
cardiovascular diseases, metabolic diseases, and frailty (Zhu et al.,
2015; Chaib et al., 2022). For instance, the application of ABT-263 as
a pretreatment for synovial MSCs has proven to be successful in
eliminating senescent cells and enhancing the outcomes of patients
with OA (Miura et al., 2022). Lopez-Otin et al. (Lopez-Otin et al.,
2013) identified nine hallmarks of aging, including DNA damage,
telomere attrition, epigenetic modification, loss of proteostasis,
mitochondrial failure, cellular senescence, nutrition sensing,
intracellular communication, and stem cell exhaustion. Cellular
senescence and stem cell exhaustion are the main mechanisms of
aging. In this section, we will focus on the characteristics of MSCs’
senescence.

2.1 Cell cycle arrest

Unlike cells in a quiescent state, senescent cells are metabolically
active but arrested in the G1/S phase of the cell cycle. This arrest is
primarily caused by activation of the p53/p21CIP1 signaling pathway
or the p16INK4A/Rb oncogenic pathway (Kamal et al., 2020; Engeland,
2022). p53, a tumor suppressor gene, promotes genomic stability by
inducing cell cycle arrest and apoptosis (Chen, 2016). It also plays a
significant role in cellular senescence and aging (Hafner et al., 2019).
In p53-induced senescent MSCs, the expression of p53-regulated
downstream miRNAs (such as miR-34a/b/c, miR-29, miR-145, and
miR-192) increases, with miR-34a showing the strongest association
with p53. Overexpression of miR-34a in MSCs inhibits osteogenic
differentiation and accelerates senescence (Xia et al., 2021).
Interestingly, the expression of p16INK4A is elevated in P3 MSCs
overexpressing miR-34a, while the expression of p21WAF1/CIP
remains largely unchanged, suggesting different mechanisms for
replicative senescence (Pi et al., 2021). Apart from p53-dependent
miRNAs, other miRNAs also play distinct roles in MSC senescence.
For instance, miR-200c-3p inhibits the p53/p21 axis and enhances the
transcription of stemness-related genes (Nanog, Oct4, and Sox2)
(Anastasiadou et al., 2021).

2.2 Morphological and biological changes

There is a strong correlation between the morphology and
function of MSCs. Previous studies have shown that larger MSCs
have similar ATP levels and SA-β-gal activity as those obtained
from older individuals (Liu J. et al., 2020). On the other hand,
smaller MSCs resemble those obtained from younger
individuals, suggesting that cell size could be used as a
potential indicator to evaluate the level of senescence in
MSCs (Block et al., 2017; Zhai et al., 2021). Senescent MSCs
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undergo a transformation from their typical spindle shape to an
enlarged, irregular, flattened form (Li et al., 2017). As the
number of passages increases, the shape of human adipose-
derived stem cells (ADSCs) changes, with the emergence of
pseudopod structures in the 10th generation and a ’fried egg’
morphology in the 15th generation. Additionally, prolonged
culture significantly reduces cell density in the same
magnification field, while the cell diameter gradually increases
(Truong et al., 2019).

2.3 Senescence-associated-β-galactosidase

Senescence-associated-β-galactosidase (SA-β-gal) was initially
discovered by Dimri et al., in 1995 (Dimri et al., 1995). Since
then, it has emerged as the most extensively utilized biomarker
for identifying senescent cells, both in vitro and in vivo. SA-β-gal
activity is highly correlated with senescent cells and is not detectable
in quiescent or differentiated cells. The level of SA-β-gal is associated
with the amount of lysosomes inside cells (Lozono-Torres et al.,
2019), and the increase in size and volume of lysosomes is primarily
due to the presence of lipofuscin, a marker for senescent cells (Vida
et al., 2017). Aspirin (2-Acetoxybenzoic acid) therapy was found to
effectively reduce the number of SA-β-gal-positive cells in replicative
senescent bone marrow stem cells (BMSCs). Additionally, there was
a significant decrease in the expressions of p16, p53, and p21, and the
blue staining of BMSCs nuclei was also reduced (Liu X. P. et al.,
2022).

2.4 Colony-forming ability

The ability of a single cell to proliferate ex vivo for more than
six generations and its progeny to form a population of cells is
commonly referred to as a ’colony’ or ’clone.’ The colony
formation rate serves as an indicator of the cell’s ability to
survive independently. Colony-forming ability is considered a
significant characteristic of cell stemness, and MSCs tend to lose
their colony-forming ability as their proliferation decreases and
they enter senescence (Ridzuan et al., 2016). In a study conducted
by Kapetanou et al., proteasomal changes associated with
senescence were observed in late-passaged (p40) human
mesenchymal stem cells (hMSCs). The researchers found a
decrease in the expression of the β5 subunit, which was
closely linked to the poor proliferative potential of hMSCs.
However, when β5 was overexpressed in Wharton’s jelly-
derived mesenchymal stem cells (WJ-MSCs), the senescence-
associated proteasomal alterations were rescued. This
overexpression of β5 not only enhanced the stemness and
proliferative capacity of late-passaged MSCs, but it also
resulted in a decrease in proteasomal oxidative protein
modifications and intracellular ROS levels (Kapetanou
Marianna et al., 2017). Furthermore, it has been demonstrated
that the ability of MSCs to form colonies is also influenced by
telomere length (Guerrero et al., 2021) and the consistent
expression of proto-oncogenes, such as B cell lymphoma 3
(Bcl-3) (Wang Fuxiao et al., 2022).

2.5 Differentiation bias

The ability of MSCs to differentiate into three lineages is a
distinguishing characteristic, and an imbalance in the
differentiation into osteogenic and lipogenic lineages is a
problem associated with MSC senescence. MSCs in the bone
marrow (BM) microenvironment show reduced proliferative
capacity and increased SA-β-gal activity, which are linked to
age-related osteoporosis and fractures. Additionally, there is a
decrease in osteogenic differentiation and an increased tendency
towards lipogenic differentiation (Yi et al., 2021). Bcl-3, an
inhibitor of NF-κB that plays a role in maintaining Wnt/β-
catenin signaling and promoting osteogenic differentiation
while inhibiting lipogenic differentiation in BMSCs, is
considered a crucial target for treating age-related
osteoporosis (Chen Xi et al., 2020; Jing et al., 2022).

In recent years, researchers have postulated that several
miRNAs affect biological characteristics in MSCs through
various signaling pathways (Yang et al., 2021). One such
miRNA, miR-204, has been found to be significantly increased
in senescent cells and has regulatory effects on SASPs factors such
as IL-6 and MMP-3 (Kang et al., 2019). Additionally, it has been
observed to inhibit the osteogenic differentiation of BMSCs by
regulating RUNX2 (Huang et al., 2010). Another important
discovery is the role of the long noncoding RNA zinc finger
antisense 1 (ZFAS1) in governing the osteogenic development of
BMSCs through the ZFAS1-miR-499-EPHA5 axis. This finding
suggests that targeting ZFAS1 could be crucial in the treatment of
osteoporosis in the elderly, as BMSCs with ZFAS1 knockdown
exhibit increased osteogenic differentiation and decreased
lipogenic differentiation (Wu et al., 2022). Shen J. et al. (Shen
et al., 2020)further discovered that miR-483-3p stimulates
lipogenic differentiation in ADSCs and inhibits the
IGF1 pathway, leading to senescence in ADSCs.

2.6 Metabolic alterations

Senescence is closely associated with disturbances in the
maintenance of metabolism. As cells become senescent,
several neutral amino acids such as valine, isoleucine, and
glycine can be utilized as alternative energy sources to
maintain energy homeostasis (Yi et al., 2020). Metabolomic
analysis has revealed changes in glycerophospholipid
metabolism, taurine and hypotaurine metabolism, glycerolipid
metabolism, drug metabolism-cytochrome P450, and drug
metabolism-other enzymes in senescent BMSCs(Chen et al.,
2019; Yu X. et al., 2022). Lipid metabolism was found to be
inhibited. Genes related to lipid metabolism, such as Scd, Scd2,
Dgat2, Fads2, and Lpin1, were downregulated. Scd2, the most
significant differentially expressed gene (DEG), may be involved
in altering the biomembrane of senescent cells. In
Scd2 overexpressing BMSCs, there was a significant reduction
in SA-β-gal activity, and the expression of senescence-associated
genes was suppressed. However, there have been limited reports
on the roles and mechanisms related to Scd2 (Yu Xiao et al.,
2022).
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2.7 Phenotypic changes

During senescence, there are no significant differences in the
expression of certain surface markers such as CD105, CD73, and
CD90. However, other surface markers such as CD106, CD146,
and STRO-1 are linked to senescence in MSCs and their
expressions are downregulated during senescence. For example,
MSCs derived from the BM of multiple sclerosis (MS) patients
showed senescence-related characteristics such as reduced
amplification capability and decreased STRO-1 expression
(Redondo J. et al., 2018). The improved effectiveness of
CD146+ MSCs in treating myocardial infarction (MI) may be
attributed to lower levels of ROS(Zhang et al., 2019). On the other
hand, replicative senescence enhances CD26 expression. MSCs
with high CD26 levels have a decreased capacity for
immunosuppression and proliferation compared to MSCs with
low CD26 levels (Psaroudis et al., 2022).

SASPs were initially discovered and described by Coppe et al. in
senescent fibroblasts and epithelial cells (Coppe et al., 2008). During
senescence, cells produce unique secretions known as SASPs, which
play a role in maintaining the senescent phenotype. SASPs
consist of various components including inflammatory and
immunomodulatory factors (e.g., IL-6, IL-7, and IL-8),
chemokines (e.g., MCP-2 and MIP-3a), growth factors (e.g.,
GRO, HGF, and IGFBPs), cell surface receptors (e.g., ICAMs,
uPAR, and TNF receptors), matrix metalloproteinases, and
survival factors (Acosta et al., 2008; Acosta et al., 2013; Basisty
et al., 2020). In replicative senescent MSCs, there is a significant
increase in the levels of SASPs-associated proteins IL-6, IL-8, and
MCP-1, with IL-6 showing the highest increase. The development of
senescence in MSCs is attributed to enhanced autophagic activity
(Bernard et al., 2020), which is closely linked to the upregulation of
FOX3a levels and subsequent increase in IL-6 and IL-8 expression
(Zheng et al., 2023). However, other SASPs-related proteins such as
MIP-1α, MMP-2, MMP-3, IL-1α, and IL-1β were not found to be
altered in association with senescence based on relevant studies
(Marote et al., 2023).

Researchers have discovered that SASPs promote senescence in
MSCs by suppressing B cell-specific Moloney murine leukemia virus
Integration site 1 (Bmi-1). The expression of Bmi-1 was found to be
downregulated in the senescence environment and reducing Bmi-1
levels decreased the proliferation rate of MSCs. Among the various
standard components of SASPs that were tested and compared, IL-
1α showed the highest impact on downregulating Bmi-1 (Zheng
et al., 2021).

When investigating ways to mitigate senescence in MSCs caused
by SASPs, researchers discovered that WNT/β-catenin signaling
inhibits the paracrine effects of SASPs. Additionally, Wnt3a was
found to have a positive effect on cell proliferation. Furthermore, it
was observed that the combination of SASPs inhibitory factors
FGF2 and Wnt3a may have a more significant anti-senescent
effect (Lehmann et al., 2022). Moreover, in radiation-induced
senescent cells, the levels of SASPs factors such as IL-1α, IL-6,
MMP-3, resistin, lipocalin, and IGFBP-6 were significantly
increased. These factors disrupted the colony-forming ability and
multidirectional differentiation of BMSCs through paracrine effects.
However, the adverse effects were alleviated when JAK1 inhibitors
were used (Xu et al., 2021) (Figure 1).

3 Mechanisms of mesenchymal stem
cell aging

According to Al-Azab M et al. (Al-Azab et al., 2022), the five
main hallmarks of MSC senescence are damage to genetic material,
non-coding RNA and exosomes, loss of protein homeostasis,
intracellular signaling pathways, and mitochondrial dysfunction.
In this section, we will summarize the relevant research progress.

3.1 Damage to genetic material

Damage to genetic material can occur through telomere
shortening, DNA damage, and epigenetic alterations.

3.1.1 Shortened telomere
Telomeres, which are non-coding regions at the ends of

chromosomes, consist of thousands of identical sequence repeats
(Blackburn and Gail, 1978; Moyzis et al., 1988). During lagging
strand synthesis, DNA polymerase is unable to fully replicate the
3′end of double-stranded DNA (Watson, 1972). Telomere depletion
plays a role in regulating the senescence of MSCs through downstream
signaling of the oncogene repressor protein p53 and inhibiting
mitochondrial metabolic activity via the peroxisome proliferator-
activated receptor gamma (PPARγ) coactivator 1α/β (PGC-1α/β)
(Sui et al., 2016). MSCs obtained from telomerase knockout animals
exhibit impaired replicative capacity and may even lose the ability to
differentiate completely, even in early passages (Liu et al., 2004; Pignolo
et al., 2008; Yang Y. K. et al., 2018). The average length of telomeres in
MSCs is dependent on the age of the tissue donor in early-passage
MSCs(Li et al., 2017). Previous research has indicated that the average
length of telomeres in early cultures of MSCs ranges from 11–13 to
9–10 kb (Parsch et al., 2004; Bonab et al., 2006). Other studies have
shown that during in vitro expansion, there is a rapid aging process,
resulting in approximately 100 bp of telomere shortening every two
passages. Senescence in MSCs is typically observed when the telomere
length reaches 10 kb, although a different study reported a length of
6.8 ± 0.6 kb in senescent cells (Oja et al., 2018; Liu J. et al., 2020). The
potential of using telomere length measurement as a biomarker in
assessing the senescence of MSCs holds significant promise. Telomere
shortening stands as one of the best-characterized mechanisms
triggering cell senescence, and it can be expedited by the presence of
oxidative stress (Jiang et al., 2023). The activation of the catalytic subunit
of telomerase (known as hTERT) has been found to effectively impede
the progression of senescence, resulting in a notable decrease in
aneuploidy levels and the preservation of ploidy-controlling genes’
regulation (Estrada et al., 2013). Hence, the close association
between telomere length and MSC senescence implies that telomere-
based examinations possess the potential to serve as valuable tools in
diagnosing and managing cellular senescence (Bernadotte et al., 2016).

3.1.2 DNA damage
DNA damage can result in two outcomes. The first outcome

involves the inaccurate repair of DNA damage, which can give rise to
mutations or chromosomal aberrations, ultimately culminating in
the development of cancer. The second outcome is persistent DNA
damage that hinders replication and transcriptional processes,
causing cellular dysfunction, cellular senescence, and apoptosis
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(Ou and Schumacher, 2018; Banimohamad-Shotorbani et al., 2020).
Among these outcomes, the accumulation of endogenous ROS plays
a crucial role in DNA damage (Canli et al., 2017). As the number of
passages increases, the accumulation of ROS and the aggravation of
DNA damage can be observed in MSCs. Conversely, the expression
of DNA repair-related proteins such as Ku70, Ku80, Rad 51, PAR,
and 116 kDa PARP1 decreases with cell passages. The transcription
factor PBX1 can mitigate ROS-mediated DNA damage and inhibit
the senescence and apoptosis of MSCs(Wang Yuan et al., 2021).
Consequently, comprehending the intricate molecular mechanisms
driving MSC senescence is imperative to enhance the curative
impact of MSCs and create viable approaches to impede or
potentially revert the dysfunction of aged MSCs. This, in turn,
holds promise for revitalizing individuals’ holistic welfare and
alleviating age-associated diseases (Weng et al., 2022).

3.1.3 Epigenetic alterations
The cellular senescence of MSCs is orchestrated by various

epigenetic modifications, such as the organization of chromatin,
posttranslational modifications of histones, DNA methylation, and
the involvement of non-coding RNAs(Al Aboud et al., 2023; Sun

et al., 2023). In a related study, it was discovered that 46 differentially
regulated genes were identified in BMSCs from both young and
senescent patients after undergoing ex vivo expansion. Out of these
genes, 23 were found to be associated with selective shearing (Peffers
et al., 2016). Other studies have also reported similar findings,
indicating that selective shearing is a characteristic of aging in
MSCs. Additionally, differences in methylation levels can
influence selective shearing, as senescent MSCs exhibit high levels
of hypomethylation or an overall loss of DNA methylation (Bork
et al., 2010; Cakouros and Gronthos, 2020).

3.2 Non-coding RNA and exosomes

RNA serves as a transmitter of genetic information expression and
plays a crucial role as a regulator. Small non-coding RNAs, which have
diverse functions in cells, are involved in regulating important life
processes such as growth and development, gene expression, genome
stability, and cellular senescence. These small non-coding RNAs
(SncRNAs) include various types, such as microRNAs (miRNAs),
small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs),

FIGURE 1
Characteristics of MSCs senescence (A) Cell cycle arrest caused by activation of the p53/p21CIP1 signaling pathway or the p16INK4A/Rb oncogenic
pathway (Kamal et al., 2020); (B)Morphological changes with pseudopod structures appearing in the 10th generation and a "fried egg" morphology in the
15th generation (Truong et al., 2019); (C) Paracrine effects; (D) Loss of colony-forming abilities (Ridzuan et al., 2016); (E) Elevated osteogenic
differentiation and a decreased lipogenic differentiation (Yi et al., 2021); (F) Phenotypic changes; (G)Metabolic alterations (Neutral amino acids such
as valine, isoleucine, and glycine can be used as alternative energy sources tomaintain energy homeostasis (Yi et al., 2020); Inhibited lipid metabolism (Yu
Xiao et al., 2022)) (Created by Biorender. com).

Frontiers in Cell and Developmental Biology frontiersin.org05

Sun et al. 10.3389/fcell.2023.1323678

34

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1323678


P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs),
small interfering RNAs (siRNAs), transfer RNAs (tRNAs), and repeat-
associated siRNAs (rasiRNAs). They function as epigenetic regulatory
molecules in the regulation of cellular senescence inMSCs(Musavi et al.,
2019; Wang S. et al., 2021).

BMSCs were amplified ex vivo and exhibited replicative
senescence, as evidenced by increased SIRT1 mRNA expression
and significantly increased SA-β-gal activity. Additionally, there
were observed differences in gene expression of SncRNAs,
including 203 miRNAs, 46 piRNAs, 63 snoRNAs, 12 snRNAs,
and 7 rasiRNAs in p10 generation BMSCs compared to
p1 generation BMSCs(Xiao et al., 2022).

miRNA is a crucial component of exosomes, which are a type of
EVs that plays a dual role in anti-aging and senescence. It induces
senescence when it is a part of SASPs, but resists senescence when
secreted by young and healthy MSCs(Ahmadi and Rezaie, 2021).
The imbalance between mitochondrial fusion and fission is closely
related to cellular senescence. Liangge He et al. proposed that miR-
311 derived from EVs could be an important indicator of senescence
promotion for diagnosing inflammation and acute senescence in
MSCs(He et al., 2023). Dynamin-related protein 1 (Drp1) mediates
mitochondrial fission, resulting in the formation of small, round
mitochondria. On the other hand, miR-155-5p derived from
senescent MSCs induces mitochondrial fusion and drives normal
MSCs into senescence by inhibiting the Cab39/AMPK signaling
pathway. The senescence of MSCs can be alleviated by using miR-
155-5p inhibitors, although this effect can be partially reversed by
the Drp1 inhibitor Mdivi 1 (Hong et al., 2020). Furthermore, Nampt
plays a key role in the regulation of natural and replicative
senescence in MSCs through the inhibition of NAD-SIRT1
signaling (Ma et al., 2017). The expression of miR-34a increases
in senescent MSCs and directly suppresses Nampt, thereby
mediating the induction of MSC senescence (Pi et al., 2021).

3.3 Dysregulation of protein homeostasis

Protein homeostasis, the balance between protein synthesis and
degradation, is regulated by a protein quality control system
comprising molecular chaperones, ubiquitin proteasomes, and
cellular autophagy. Additionally, the regulation of these signaling
pathways involves mTOR pathways, Hippo signaling, and Rank
signaling (Kapetanou Marianna et al., 2017). During aging,
impairment of cellular function is closely associated with the
imbalance of protein homeostasis, with the loss of proteasome
function playing a central role in this process. Late-passing hMSCs
exhibited senescence-associated proteasomal alterations, including
reduced mRNA and protein expression of several characteristic
proteasomal subunits (such as β1, β2, β5, α4, α7, and Rpt6), as well
as decreased 26 S proteasome activity and increased 20 S proteasome
activity (Chondrogianni et al., 2005; Kapetanou M. et al., 2017).

3.4 Mitochondrial dysfunction

Mitochondria in senescent cells undergo various changes,
including altered metabolic function (Seok et al., 2020), increased
production of ROS, higher mitochondrial mass, decreased

membrane potential (Korolchuk et al., 2017), and subsequent
acceleration of telomere shortening and DNA damage (Chapman
et al., 2019).

Mitochondria function as the cell’s energy factory, producing ATP
and metabolic energy sources through oxidative phosphorylation
(OXPHOS). However, the overproduction of ROS by complexes I
and III of the respiratory chain can lead to cellular senescence in cases of
mitochondrial failure (Ray et al., 2012). Mitochondrial autophagy plays
a vital role in eliminating damaged or dysfunctional mitochondria. One
example of its impact is the varying effect of H2O2 on mitochondrial
autophagy, where prolonged exposure inhibits the process and leads to
apoptosis in BMSCs. This inhibition is associated with the suppression
of Jun N-terminal kinase (JNK), a member of the mitogen-activated
protein kinase (MAPK) family (Fan et al., 2019). Another instance is the
protective effect of curcumin (Cur) on cellular autophagy, which is
essential for maintaining cellular homeostasis and controlling the
senescence of MSCs (Deng et al., 2021).

3.5 Intracellular signaling pathways

3.5.1 IGF-1 pathway
Insulin-like growth factor 1 (IGF-1) plays a crucial role in

processes such as growth and lipid metabolism. Previous research
suggests that when IGF-1 binds to its receptor, it can alleviate
senescence in MSCs. This effect is associated with the activation
of the PI3K/Akt pathway (Tian et al., 2020). The phosphorylation of
AKT and the high expression of SFRP2 further activate the Wnt/β-
catenin pathway, which helps maintain the cellular proliferative
capacity and metabolic functions of MSCs(Lin et al., 2020).
Additionally, other studies have demonstrated that IGF-1 inhibits
its downstream effector proteins (p70S6K and S6) through the Akt/
mTOR pathway. This, in turn, increases cellular autophagy to
prevent MSCs from undergoing apoptosis (Yang Ming et al., 2018).

3.5.2 mTOR pathway
Persistent activation of the growth-promoting mammalian target of

rapamycin (mTOR) pathway has been shown to play a central role in
cellular senescence and individual aging (Johnson et al., 2013). Inhibition
of the mTOR pathway facilitates the delay of replicative senescence and
the maintenance of cell stemness in MSCs(Antonioli et al., 2019). The
protective mechanism mainly involves preventing the accumulation of
intracellular ROS and DNA damage, as well as reducing the expression
of senescence-associated inflammatory cytokines and genes (e.g.,
p16INK4A). Increasing the level of cellular autophagy through selective
inhibition of mTORC1 is an effective way to slow down MSC
senescence. The combination of AMPK activator (5-aminoimidazole-
4-carboxamide ribonucleotide, AICAR) and SIRT1 activator
(nicotinamide, NAM) inhibits mTORC1 activity and delays MSC
senescence. AICAR not only enhances the level of autophagy and
maintains the morphological and proliferative capacity of MSCs but
also preserves mitochondrial homeostasis through the activation of
SIRT1 by AMPK, thereby reducing ROS and increasing the level of
the anti-apoptotic gene Bcl-2 (Khorraminejad-Shirazi et al., 2020).

There are three Hedgehog proteins in mammals: sonic
hedgehog (Shh), Indian hedgehog (Ihh), and desert hedgehog
(Dhh). These proteins are highly conserved across evolution
and species and have significant roles in the development of
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skeletal tissue (Briscoe Therond, 2013). In a separate study
investigating the impact on cell cycle pathways in MSCs, Al-
Azab et al. (Al-Azab et al., 2020) discovered that the Ihh,
hinders the progression of the ROS/PI3K/Akt/NF-B/mTOR/
4EBP1-p70S6K pathway. Furthermore, the study revealed that
when Ihh expression is suppressed, the cell cycle of MSCs is
arrested and then enters a state of senescence.

3.5.3 AMPK pathway
AMP-activated protein kinase (AMPK) is a crucial regulator of

cellular and organismal energymetabolism. Its activation depends on the
energy status and the activity of upstream stimulatory and inhibitory
signaling pathways. However, with aging, AMPK’s reactivity declines,
and its regulatory capacity diminishes (Salminen et al., 2016). FGF21, on
the other hand, can regulate mitochondrial survival by modulating
AMPK activation. This regulation involves increasing protein levels
of p-AMPK and p-Drp1, reducing intracellular ROS levels, and delaying
senescence in BMSCs (Li et al., 2019). Resveratrol also promotes
osteogenic differentiation and delays aging in BMSCs through the
AMPK/ROS signaling pathway (Zhou et al., 2019).

3.5.4 NF-κB pathway
The NF-kB family consists of five transcription factors (p50, p52,

p65, c-REL, and ReIB) that are closely associated with immune and
inflammatory responses (Kim et al., 2019). Numerous data indicate a
strong correlation between p65, SASPs, and their paracrine effects.
Similar levels of p65, IL-6, and IL-8 were observed in both DNA
damage-induced MSCs senescence (DDIS) and treatment-induced
senescence (TIS), as well as in a pro-inflammatory activation (PA)
model in MSCs using TNF-α. This suggests that p65 pathway
activation occurs during cellular senescence and pro-inflammatory
activation inMSCs. Additionally, p65 can enhance the release of small
extracellular vesicles (sEV) by MSCs, which in turn promotes
peripheral cellular aging through a paracrine pathway
(Banimohamad-Shotorbani et al., 2020; Mato-Basalo et al., 2021).

3.5.5 Sirtuins pathway
Sirtuins, a family of NAD-dependent deacetylases, consist of seven

members known as SIRT1–7. These sirtuins have shown high
conservation throughout evolution (Almeida and Porter, 2019).
They play crucial roles in various cellular activities such as cellular
autophagy,metabolism, DNA repair, apoptosis, and cellular senescence.
Among them, SIRT1 is a significant target for extending lifespan and
delaying senescence as it integrates multiple signaling and
transcriptional pathways. Some of the known pathways involved in
this process include the p65-NF-κB pathway, the p53-DNA damage
pathway, the mTOR-cellular autophagy pathway, the AMPK pathway,
the FOXO-DNAdamage and oxidative stress pathway, and the PGC1α-
mitochondrial autophagy pathway (Chen Cui et al., 2020). SIRT3, a
mitochondrial sirtuin, is involved in various metabolic regulations.
Studies have shown that SIRT3 upregulates the expression and
activity of superoxide dismutase 2 (SOD2), which helps inhibit
premature senescence in MSCs induced by natural and oxidative
stress (Ma et al., 2020). On the other hand, senescent MSCs exhibit
downregulation of the NAD/SIRT3 signaling pathway. To counteract
this, supplementation with nicotinamide mononucleotide (NMN), a
precursor of NAD, can upregulate the NAD/SIRT3 signaling pathway
in replicative senescent MSCs. This supplementation improves

mitochondrial function and rescues MSCs from senescence (Wang
Huan et al., 2022).

4 Effects of different cellular
microenvironments on MSCs’
senescence and functions

4.1 Aging microenvironment

The senescent microenvironment is defined by several key
features: impaired fibroblast function, an accumulation of
senescent fibroblasts, disruption of the extracellular matrix’s
integrity, and the initiation of age-related chronic inflammation
(Fane and Weeraratna, 2020; Wang X. et al., 2022; Ye et al., 2023).

The SASPs play a crucial role in the formation of the senescent
microenvironment.While senescent cells and SASPs can have temporary
beneficial effects, such as improving the regeneration and stemness of
keratin-forming cells through brief exposure to SASPs, they can become
problematic as the body ages. Senescent cells tend to accumulate in the
body tissues and cause harm to the organism (Ritschka et al., 2017).
Research has demonstrated that the existence of SASPs is linked to the
emergence of degenerative diseases and cancer. Furthermore, SASPs
contribute to chronic inflammation and hinder tissue repair functions.
Another detrimental effect of SASPs is their paracrine influence, wherein
neighboring cells are transformed into senescent cells through paracrine
action (Xu et al., 2018; Al Suraih et al., 2020; Kowald et al., 2020).
Eliminating senescent cells can decrease the production of SASPs, leading
to a better prognosis for geriatric syndromes and aging-related diseases,
as well as an enhanced organism repair capacity (Pignolo et al., 2020).

Extracellular vesicles (EVs) are significant components of the
senescence microenvironment (Yin Y. et al., 2021). Mesenchymal
stem cell-derived extracellular vesicles (MSC-EVs) are considered a
promising therapeutic tool for immunomodulation and regeneration.
These vesicles, which are nano-sized and enclosed by a membrane,
contain important biomolecules such asmRNAs,microRNAs, bioactive
lipids, and signaling proteins (Massa et al., 2020). The advantages of
MSC-EVs over MSCs include a higher safety profile, lower
immunogenicity, and the ability to traverse biological barriers
(Varderidou-Minasian et al., 2020). Furthermore, the use of MSC-
EVs helps avoid complications associated with stem cell-induced
ectopic tumor formation, entrapment in lung microvasculature, and
immune rejection. However, there are still challenges and barriers to the
clinical translation of MSC-EVs, such as quality control and efficiency
(Huang et al., 2019b; Weng et al., 2021). Additionally, as part of SASPs,
MSC-EVs play a crucial role in promoting cellular senescence due to
their paracrine effect and messaging function (Sun Zixuan et al., 2022).
It is worth investigating further whether senescent MSC-EVs may have
different effects depending on the tissue, age, or context (such as
inflammation or disease). EVs derived from aged myoblasts have
been discovered to induce senescence in primary BMSCs in an ex
vivo setting (Jiang et al., 2023). Furthermore, studies have demonstrated
that both circulating and tissue-derived aged EVs can induce senescence
in MSCs cultured ex vivo (Weilner et al., 2016; Davis et al., 2017).

MSC therapies have shown promising prospects for applications
in cellular and animal experiments. However, the current clinical
outcomes are not satisfactory. Some scholars speculate that the age
of the patient may contribute to this situation (Figure 2). This is
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because, while most cell and animal experiments involve young
individuals as donors and patients, in clinical practice, the elderly are
the primary recipients of MSCs treatment. (Chen Huan et al., 2022).

With aging, elderly individuals often experience a chronic, low
level of subclinical proinflammatory state (Chung et al., 2011; Lin
et al., 2017). This is characterized by an increase in the expression of
proinflammatory cytokines and chemokines in their serum.
Specifically, the proinflammatory cytokine IL-6 shows a
noticeable increase, while the anti-inflammatory cytokine IL-10
decreases significantly. The elevated levels of IL-6 trigger the
activation of JAK/STAT and MAPK pathways, which further
contribute to the aging of MSCs (Peng et al., 2022). Additionally,
studies have shown that MSCs cultured in the extracellular matrices
(ECM) of elderly individuals also exhibit reduced proliferation
potential of BMSCs. This impairment is closely associated with a
decrease in Cyr61/CCN1. However, the exogenous addition of
Cyr61 has been found to help restore the ECM’s response to
IGF-1 signal (Marinkovic et al., 2022).

In addition to the aging of the treated patients themselves, the
extraction of MSCs from aged individuals with premature aging

properties significantly reduces the efficacy of the treatment.
(Yamaguchi et al., 2018).

MSCs derived from aged individuals typically display the
following characteristics: an elevated number of senescent cells,
heightened expression of senescent genes and proteins (such as
p21 and γH2AX), increased SA-β-gal activity, and reduced capacity
for osteogenic, lipogenic, and angiogenic differentiation (Liu et al.,
2017; Chen Xihang et al., 2021). The senescent microenvironment
promotes premature aging and impairs the differentiation ability of
MSCs through several mechanisms. These include upregulation of
CD137 expression, inhibition of Bcl-3 expression (Wang F. X. et al.,
2022), and disruption of Wnt/β-catenin signaling pathway
transmission (Han et al., 2022).

BMSCs derived from aged individuals displayed impaired cell
migration function and downregulation of genes involved in cell
motility, such as DPP4, Egf, Actn3, Rho, Cav1, etc. Additionally, the
reduced number of CD90+ BMSCs was associated with impaired
wound healing ability (Amini-Nik et al., 2022).

Metabolic dysfunction of BMSCs was found to be positively
correlated with senescence. In BMSCs from senescent mice, the

FIGURE 2
Mechanisms of MSCs’ aging. (A) Shortened telomere; (B) DNA damage; (C): Epigenetic alterations (High levels of hypomethylation or an overall loss
of DNAmethylation (Cakouros et al., 2020; Bork et al., 2010)); (D): Non-coding RNA and exosomes (UpregulatedmiR-155-5p (Hong et al., 2020)) (E) Loss
of protein homeostasis (reduced proteasomal subunits; decreased 26 S proteasome activity; increased 20 S proteasome activity (Chondrogianni et al.,
2005; Kapetanou M. et al., 2017)); (F):Mitochondrial dysfunction (overproduction of ROS by complexes I and III of the respiratory chain (Ray et al.,
2012));(G): Intracellular signaling pathways (pathways alleviating senescence: IGF-1,AMPK&SIRT;pathways promoting senescence: mTOR&NF-κB).
(Created by Biorender. com).
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expression levels of critical enzymes for mitochondrial genesis and
glycolysis were reduced, resulting in impaired oxidative
phosphorylation and glycolytic function. Consequently, this
affected the stemness and differentiation potential of BMSCs(Li
et al., 2022).

The adverse effects of MSCs from aged individuals during
treatment are linked to their impaired macrophage recruitment.
This impairment is attributed to altered expression of miRNAs that
regulate this process. Specifically, miR-223-5p expression is
downregulated, while miR-127-3p and miR-125b-5p expression
are increased (Huang et al., 2019a).

The presence of a senescent microenvironment leads to chronic
inflammation, which in turn significantly reduces the number and
function of MSCs (Brunet et al., 2023). In the field of regenerative
medicine, senotherapy research is currently focused on interventions
that target the MSCs microenvironment and senescent stem cells
during in vitro expansion. This research includes studying senolytics
and senomorphic mechanisms and targets, exploring optimal
therapeutic doses and routes of administration, as well as selecting
and applying specific drugs (Wong et al., 2023) (Figure 3).

4.2 Hypoxic/ischemic microenvironment

In vivo, MSCs are commonly exposed to physiological conditions,
encompassing oxygen concentrations that span from 2% to 8%.The
oxygen levels typically observed in culture, around 18.4% O2, can be
deemed as severely hyperoxia forMSCswhen compared to their original
niches (Phelps et al., 2023). Previous studies have examined the impact of
hypoxic microenvironments on the senescence of MSCs, categorizing
them into two groups: ’physiological hypoxia’, which supports MSC
survival (Buravkova et al., 2014), and ’pathological hypoxia’, which
accelerates senescence and apoptosis of MSCs. It is worth noting that
the pathological hypoxic microenvironment is often accompanied by a
lack of blood perfusion, further compromising cell survival.

Hypoxic preconditioning typically involves incubation at (1%–5%)
O2 for 48 h or 72 h, as compared to physiological conditions (21% O2).
Existing studies collectively indicate that hypoxic preconditioning
effectively reverses the senescent state of MSCs primarily by
modulating the cellular autophagy axis and enhancing intracellular
ROS levels. Hypoxia preconditioning increased the expression level of
HIF-1α in BMSCs, thereby enhancing cell viability and reducing the

FIGURE 3
Effects andmechanisms of the agingmicroenvironment onMSCs. (A): Chronic inflammation in the agingmicroenvironment results in an increase in
pro-inflammatory factors, primarily IL-6, and a decrease in anti-inflammatory factors, primarily IL-10. The elevated IL-6 activates the JAK/STAT andMAPK
signaling pathways, ultimately leading to the senescence of MSCs (Peng et al., 2022). (B): Reduction of Cyr61 in ECM decreases the sensitivity of MSCs to
IGF-1 signalling, thereby increasing their vulnerability to senescence (Marinkovic et al., 2022). (C):MSCs derived from senescent individuals exhibit
impaired differentiation capacity in culture. This is primarily attributed to increased CD137 expression, decreased Bcl-3 expression, and inhibition of the
Wnt/β-catenin pathway (Wang F. X. et al., 2022) (Han et al., 2022). (D): The reduction in expression of DPP4, Actn3, Rho, Cav1, and other related genes is
associated with impaired cell migration (Amini-Nik et al., 2022). (E): The impaired therapeutic efficacy of MSCs is linked to the increased expression of
CD90 and miR-223-5p, as well as the impaired recruitment of macrophages due to the decreased expression of miR-127-3p and miR-125b-5p (Huang
et al., 2019a). (F): Inhibition of themTOR and AMPK signaling pathways results in impaired cellular metabolic function, ultimately leading to senescence in
MSCs(Li et al., 2022). (Created by Biorender. com).
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expression of the apoptotic protein caspase3, which leads to an increase
in the transplantation viability of BMSCs under oxidative stress
conditions (Luo et al., 2019). The improved survival rate of BMSCs
after hypoxic pretreatment was attributed to the upregulation of
survival-related genes LPL, PKM, and MAP3K13(Peck et al., 2021).
According to Kim et al. (Kim et al., 2019) their study revealed that
AIMP3 plays a crucial role in delaying the senescence of MSCs under
hypoxic conditions. They also found that overexpression of
AIMP3 inhibits cellular autophagy, which leads to senescence and
dysfunction of MSCs. Additionally, the hypoxic microenvironment
enhances the angiogenic capacity of BMSCs by increasing the
expression of VEGF, a factor downstream of HIF-1α. Furthermore,
BMSCs exhibit increased expression of osteogenic-related genes
(RUNX2 and OCN) and enhanced potential for osteogenic
differentiation (Zhang et al., 2018). Liu et al. (Liu Wei et al., 2020)
discovered that culturing BMSCs under hypoxic conditions resulted in
the increased release and secretion of exosomes and exosome-related
proteins (TSG101, CD9, CD63, and CD81). Furthermore, they found
that MSC-EVs under hypoxic conditions could effectively deliver miR-
216a-5p to microglia. This delivery triggered a cascade reaction
involving TLR4/NF-κB/PI3K/AKT, leading to the conversion of
microglia from M1 to M2 type and subsequently reducing the
associated inflammatory damage.

In contrast to the appropriate physiological hypoxic
microenvironment described above, a pathological hypoxic (and
ischaemic) microenvironment would undoubtedly lead to
premature senescence and apoptosis of MSCs.

Systemic chronic hypoxia is a pathological state characterized by
insufficient systemic oxygen supply. It is closely linked to conditions
such as cyanotic congenital heart disease (CCHD), chronic obstructive
pulmonary disease, chronic mountainous disease, and the development
of pulmonary fibrosis. (Xing et al., 2018). Rehman SU et al. (Rehman
et al., 2017) utilized patients with CCHD as a human disease model of
chronic systemic hypoxia to investigate the conditions and the role of
BM in association with gut microbes, and its effect on BMSCs aging.
The study revealed an association between this phenomenon and an
imbalance in intestinal ecology and the metabolism of d-galactose by
the intestinal microbiota. Cellular senescence could be induced by
d-galactose through the production of large amounts of ROS.
Additionally, a negative correlation was observed between the
concentration of d-galactose and the number of lactobacilli in the
intestine. Upon administering appropriate amounts of Lactobacillus, the
accumulation of d-galactose in rats was reduced, and the deficiency of
BMSCs was significantly restored.

While stem cell transplantation has been shown to aid in
cardiomyocyte repair following acute myocardial infarction (AMI)
(Miao et al., 2017), it is important to note that the survival and
differentiation of MSCs can be influenced by the local
microenvironment. In particular, the ischemic and hypoxic
microenvironment resulting from AMI can lead to a low survival rate
of MSCs post-transplantation (Khodayari et al., 2019). Qi Y et al. (Qi
et al., 2021) investigated the impact of hypoxic and serumdeprivation (H/
SD) conditions on the microenvironment of acute myocardial infarction
(AMI). They observed that under H/SD conditions, the viability and
migration of BMSCs were reduced compared to the normal control
group. They also found an increase in apoptotic cells and the expression
of apoptosis-related proteins Bax and cleaved-caspase3. This effect was
attributed to the increased presence of M1-type macrophages and the

upregulation of M1-type macrophage factors TNF-α and IL-1 in the
H/SD condition. The secretion of TNF-α and IL-1 further increased, and
M1-typemacrophage exosomes inhibited the expression of Bcl-2 protein
and induced apoptosis in BMSCs through miR-222. Moreover, BMSCs
cultured in hypoxic ischemic (HI) environments exhibited reduced cell
migration capacity compared to the normal controls. These cells also
showed impaired cell proliferation, possibly due to the inhibition of the
PI3K/AKT pathway (Chen Xuxiang et al., 2022).

Ischemia/reperfusion (I/R) injury is a significant contributor to
tissue dysfunction, which often leads to organ transplant failure.
When blood flow is interrupted, the kidney experiences hypoxia,
increased oxidative stress, and microvascular dysfunction (Soares
et al., 2019). Additionally, I/R kidney tissue shows elevated levels of
ROS and reduced expression of VEGF in MSCs(Bai et al., 2018;
Najafi et al., 2022).

In the context of the pathological hypoxic and/or ischaemic
microenvironment, there are two primary mechanisms through
which it negatively affects MSCs. Firstly, it regulates the cellular
metabolic capacity. Secondly, it exposes the cells to pro-
inflammatory factors such as TNF-α, IL-1β, and IL-6 for an
extended period. This prolonged exposure to pro-inflammatory
factors leads to apoptosis, necrosis, and autophagic cascades
(Venkatachalam et al., 2009; Oka et al., 2012). Future research could
focus on exploring the targets of hypoxic preconditioning to enhance
the survival of MSCs. Additionally, investigating the effects of
combining hypoxic preconditioning with other drugs could be a
potential direction for further study (Figure 4).

4.3 Microenvironment of immune diseases

Due to their immunomodulatory and tissue repair effects,MSCs are
considered valuable tools for treating immune diseases (Yang et al.,
2023). However, various studies have revealed that MSCs in the
microenvironment of immune diseases undergo senescence-related
alterations. These alterations include reduced cell proliferation
capacity, increased expression of p53 and p16, elevated levels of
ROS and DNA-damage-response (DDR), and impaired
differentiation capacity. These changes are likely associated with the
persistent pro-inflammatory microenvironment created by immune
diseases. In the subsequent discussion, we will explore the effects and
underlying mechanisms of different immunological diseases on MSC
senescence and function.

4.3.1 Systemic lupus erythematosus (SLE)
SLE is a chronic autoimmune disease characterized by an imbalance

in T cell ratios (Wieliczko andMatuszkiewicz, 2017). The progression of
SLE is exacerbated by an imbalance between Follicular helper T cells
(Tfh) and regulatory T cells (Treg) (Lee, 2018). Additionally, the
pathogenesis of SLE involves a deficiency of the cytokine IL-2, which
is a crucial growth and survival factor for Treg cells that play a vital role
in controlling autoimmunity in SLE (Humrich and Tiemekasten, 2016).
Chen X et al. (Chen Xinpeng et al., 2021)discovered increased levels of
LncRNA H19 in the serum and BMSCs of SLE patients. This increased
level inhibited the proliferation and migration of BMSCs and promoted
their apoptosis. Furthermore, lncRNA H19 impaired the immune
properties of BMSCs by reducing the expression level of IL-2, thus
inhibiting the differentiation of Treg cells, and disrupting the balance
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between Treg cells and Tfh cells. Immunomodulatory dysfunction in
SLE-derived BMSCs is linked to the decrease in let-7f expressions.
Research has shown that reduced expression of Let-7f leads to a
decrease in the number of Th17 cells, an increase in the number of
Treg cells, and an elevated rate of apoptosis in BMSCs. This effect is
achieved through the activation of the STAT3 pathway by IL-6. (Geng
et al., 2020).

In addition to altered immunomodulatory functions, hBMSCs
derived from patients with SLE exhibited increased expression of
genes related to SASP and pro-inflammatory cytokines. This
upregulation was mediated by the MAVS-IFNβ axis and resulted
in cellular senescence. The activation of the JAK-STAT signaling
pathway in SLE-derived BMSCs was also found to be closely
associated with premature cellular senescence (Gao and Bird,
2017; Ji et al., 2017). Furthermore, studies have demonstrated
that the inflammatory factor HMGB1 in the SLE bone marrow
microenvironment can induce senescence in MSCs through the
TLR4/NF-κB signaling pathway. However, the HMGB1 inhibitor
ethyl pyruvate (EP) can inhibit HMGB1 and improve lupus
nephritis, leading to a reversal of senescence inMSCs (Ji et al., 2019).

4.3.2 Ankylosing spondylitis (AS)
AS is a common rheumatic disease that affects approximately

0.1%–0.5% of the global population (Ward et al., 2019). MSCs

derived from AS patients exhibit an abnormally increased
capacity for osteogenesis, leading to pathological osteogenesis and
subsequent bone formation (Liu et al., 2019; Ye et al., 2019). The
downregulation of Dickkopf-1 (DKK-1) expression, a crucial
regulator of bone remodeling in spondyloarthropathies, is
observed in MSCs from AS patients. This downregulation is
believed to be caused by IL-17-mediated DKK-1 downregulation,
resulting in the activation of the Wnt pathway and upregulation of
osteogenesis-related genes (RUNX2, OSX, and ALP) (Daoussis et al.,
2022).

The serum microenvironment of patients with AS exhibits
abnormal levels of inflammatory factors (such as TNF-α and IL-17)
and oxidative stress (Zeng et al., 2011). Among these factors,
Advanced Oxidative Protein Products (AOPPs), which are
markers of oxidative stress, are associated with disease activity
and show a positive correlation. AOPPs can induce the
production of ROS and lead to cell cycle arrest. Therefore, it
is hypothesized that targeting AOPPs could be a key approach for
treating AS-induced aging of MSCs(Karakoc et al., 2007; Sun
et al., 2018; Ye et al., 2020).

4.3.3 Inflammatory bowel disease (IBD)
IBD is characterized by Crohn disease (CD) and ulcerative

colitis (UC) (Chang, 2020). MSCs derived from CD are more

FIGURE 4
Effect and mechanisms of physiological and pathological hypoxic microenvironment on MSCs. (A–C) are the effects of normal physiological
hypoxia on MSCs, mostly positive. Hypoxic preconditioning has been shown to impact the function of HIF-α in MSCs. (A) It increases cell survival by up-
regulating the expression of LPL, PKM, MAP3K13, and VEGF(Peck et al., 2021) (Zhang et al., 2018). (B) It inhibits apoptosis by suppressing the expression of
Caspase3(Luo et al., 2019). (C): It inhibits the expression of AIMP3, which helps maintain cellular autophagy and consequently slows down cellular
senescence (Zhang et al., 2018). D-G in the figure illustrate the impact of pathological hypoxic/ischemic microenvironment on MSCs. (D) Patients with
CCHD undergo a reduction in Intestinal microbiota, leading to an increase in D-galactose. This increase in D-galactose can elevate the level of ROS in
MSCs, contributing to cellular senescence (Rehman et al., 2017). (E) The H/SD microenvironment induces the increase of M1-type macrophage and the
related regulatory factor TNF-α and IL-1, while decreasing the secretion of miR-222 from MSCs. This downregulates Bcl-2 and promotes apoptosis (Qi
et al., 2021). (F) The H/I microenvironment hinders the PI3K/AKT pathway in MSCs, thereby suppressing cell proliferation (Chen Xuxiang et al., 2022). (G)
MSCs in I/R encounter elevated ROS levels and downregulation of VEGF, resulting in decreased survival (Bai et al., 2018; Najafi et al., 2022) (Created by
Biorender.com).
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severely impaired in their ability to differentiate and cannot form
cell colonies compared toMSCs derived fromUC(Grim et al., 2021).

The senescence of MSCs is associated with the onset of
inflammation in the lesion area. The presence of pro-inflammatory
cytokines (such as INF-α, TNF-α, and IL-6) and paracrine effects lead to
premature senescence of MSCs and hinder their differentiation into
enterocytes. (Onyiah and Colgan, 2016; Wang et al., 2020). Currently,
the low survival rate of stem cells is a pressing issue that needs to be
addressed. Several approaches have shown promise in improving the
success rate of treatment, including combining stem cell therapy with
surgical treatment, orally delivering stem-cell-loaded hydrogel
microcapsules (SC-HM), and utilizing EVs(Panés et al., 2018;
Alpdundar Bulut et al., 2020; Kim et al., 2022).

4.3.4 Multiple sclerosis (MS)
MSCs derived from patients with multiple sclerosis (MS) exhibit

impaired expansion in vitro culture, as well as accelerated rates of
senescence and telomere loss. These changes are linked to a
reduction in antioxidant capacity, as MS patient-derived MSCs
demonstrate decreased secretion of the antioxidants superoxide
dismutase 1 (SOD1) and glutathione S-transferase p (GSTP).
Additionally, there is a decrease in the expression levels of
Nrf2 and PGC1α, which regulate the secretion of SOD1 and
GSTP. (Redondo et al., 2018b; Redondo et al., 2018c).

4.3.5 Neuromyelitis optica (NMO)
MSCs derived from NMO exhibit impaired proliferative

capacity and increased susceptibility to senescence. This is
accompanied by a significant upregulation of the pro-apoptosis-
related gene Fas and a significant downregulation of the pro-survival
gene Bcl-xl. Platelet-derived growth factor (PDGF) plays a crucial
role in stimulating the proliferation of MSCs and has shown
potential as a cytokine for treating demyelinating diseases.
Specifically, PDGF-BB, the primary growth factor found in bone
matrix (Chen et al., 2015), has been found to effectively enhance
MSC proliferation and counteract premature senescence (Yang
et al., 2019). Further research should investigate the specific
target and conditions of PDGF-BB’s action for potential
therapeutic applications in MSC treatment.

4.3.6 Pulmonary fibrosis
BMSCs obtained from patients with idiopathic pulmonary

fibrosis exhibit senescence characteristics, including reduced
proliferation, trilineage differentiation, and migration capacity.
These characteristics have been linked to the activation of the
NADH-AMPK-p53 regulatory pathway, which results in
mitochondrial dysfunction in BMSCs. Additionally, the paracrine
effects of these cells induce premature senescence in lung fibroblasts.
(Cardenes et al., 2018). The aforementioned study indicates that
enhancing the secretory function of MSCs is a crucial aspect in the
treatment of Pulmonary fibrosis conditions.

4.4 Hyperglycemic microenvironment

Hyperglycemia, oxidative stress, and altered immune responses
are prominent features of the diabetic microenvironment. Previous
studies have shown that these factors contribute to the senescence of

MSCs. (Yin Min et al., 2021). hWJSCs obtained from pregnant
women with gestational diabetes mellitus (GDM) exhibit impaired
osteogenic and chondrogenic differentiation capacity. Additionally,
these hWJSCs show downregulated levels of stemness markers,
telomerase, antioxidant enzymes, and mitochondrial functional
gene expression (ND2, TFAM, PGC1α, and NDUFB9).
Moreover, there is an increase in cell cycle arrest-related factors
(p16, p21, p27) and senescence-related gene p53 in these MSCs. It is
worth noting that their lipogenic capacity remains unaffected (Kong
et al., 2019).

The mechanism of hyperglycemia induced MSCs aging
primarily involves a shift in the metabolic pattern of MSCs from
glycolysis to oxidative phosphorylation. This shift leads to the
excessive accumulation of ROS and DNA damage, activating the
p53-p21-pRB axis (Wu, 2021). Consequently, telomerase is
inactivated, and mitochondrial function is impaired. Additionally,
the inhibition of mitochondrial biogenesis and related genes (PGC-
1, SIRT-1, and NRF) occurs. Simultaneously, senescent MSCs in
diabetic conditions can further enhance the senescence state by
secreting SASPs, which convert normal cells in the surrounding
environment into senescent cells. (Prattichizzo et al., 2018; Berlanga-
Acosta et al., 2020).

Insulin application may contribute to the senescence of MSCs.
Research has shown that insulin can induce senescence in BMSCs by
inhibiting autophagy and upregulating the TGF-β1 pathway-related
receptor II (TβRII). Furthermore, insulin also impairs the osteogenic
differentiation capacity of BMSCs. (Zhang et al., 2020).

4.5 The obesity microenvironment

Obesity is a chronic, low-grade inflammatory state that
contributes to bone loss and accelerates cellular aging. It is
frequently linked to the onset of cardiovascular disease and other
metabolic disorders (Li et al., 2020). In the obese microenvironment,
MSCs exhibit various signs of early aging. The specific variations in
aging-related manifestations of MSCs depend on intra-tissue
signaling and the tissue source.

Alessio et al. conducted a study where they isolated MSCs from
the body tissues of obese mice and compared them to MSCs derived
from normal mice. The findings revealed several differences between
the two groups. Firstly, the proliferation rate of MSCs from obese
mice was reduced, as indicated by a lower percentage of S-phase
cells. Additionally, there was an increased percentage of senescent
cells in the obese mice. The expression of senescence-related genes
RB21, p21, and p16 was found to be upregulated in MSCs from
obese mice. Furthermore, the intracellular ROS levels were increased
in these cells. Lastly, the DNA repair capacity of MSCs from obese
mice was impaired (Alessio et al., 2020).

The senescence expression wasmore pronounced inwhite ADSCs
than BMSCs, which could be attributed to the endocrine dysfunction
associated with inflammation in white adipose tissue. Li Y et al.
(Li et al., 2020) investigated the mechanism behind the altered
senescence and differentiation ability of BMSCs caused by obesity.
They discovered that by knocking down IL-6, the restoration of
osteogenic function was facilitated, the lipogenic tendency of
BMSCs was inhibited, and the senescence tendency caused by
obesity was suppressed. These effects were potentially linked to the
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TABLE 1 Effects of different microenvironments on the senescence of MSCs.

Microenvironment Effect Mechanism Ref

Aging microenvironment Cell senescence↑ JAK/STAT &MAPK↑ Peng et al. (2022)

Cell senescence↑ SASPs; EVs Ritschka et al., 2017; Sun
et al., 2022b

p21↑ Liu et al., 2017; Chen et al.,
2021a

γH2AX↑

Proliferative capacity↓ Cyr61in ECM↓ Marinkovic et al. (2022)

Differentiation capacity↓ CD137↑ Han et al. (2022)

Migration ability↓ DPP4, Egf, Actn3, Rho, Cav1↓ Amini-Nik et al. (2022)

Hypoxic/ischaemic
microenvironment

Physiological hypoxic Cell senescence↓ AIMP3↑ Buravkova et al., 2014; Kim
et al., 2019

Cell viability↑ HIF-1α↑ Luo et al. (2019)

LPL, PKM, & MAP3K13↑ Peck et al. (2021)

Angiogenic capacity↑ VEGF↑ Kim et al. (2019)

Osteogenic differentiation↑ RUNX2 & OCN↑ Zhang et al. (2018)

Pathological ischemic
and hypoxic

Cell senescence↑ ROS↑ Rehman et al. (2017)

Cell viability↓ Baxandcleaved-caspase3↑ Qi et al. (2021)

Proliferative capacity↓ PI3K/AKT↓ Chen et al. (2022b)

Microenvironment of Immune
diseases

SLE Proliferative capacity↓ LncRNA H19↑ Chen et al. (2021b)

Immunomodulatory dysfunction let-7f↓ (Geng et al., 2020)

Cell apoptosis↑ IL-6↑

Cell senescence↑ SASPs↑; JAK-STAT↑; HMGB1↑ Gao and Bird, 2017; Ji et al.,
2017

AS Osteogenic differentiation↑ Dkk-1↓; RUNX2, OSX,& ALP↑ Daoussis et al. (2022)

Cell senescence↑ AOPPs↑; ROS↑; p53, p21, & p16↑ Karakoc et al., 2007; Sun et al.,
2018

IBD Cell senescence↑ p16↑; Paracrine effects Onyiah and Colgan (2016),
Wang et al., 2020

MS Cell senescence↑ Telomere loss; SOD1&GSTP↓ Redondo et al., 2018b;
Redondo et al., 2018c

NMO Proliferative capacity↓
Cell senescence↑

Fas↑; Bcl-xl↓ Yang et al. (2019)

Pulmonary fibrosis Proliferative capacity↓
Differentiation capacity↓
Cell senescence↑

NADH-AMPK-p53↑ Cardenes et al. (2018)

Hyperglycemic microenvironment Cell senescence↑ p16, p21, &p27↑; p53↑
Metabolic alteration (Oxidative
phosphorylation↑; ROS↑; DNA
damage↑

Kong et al., 2019; Yin et al.,
2021a; Wu, 2021

Osteogenic and chondrogenic
differentiation ↓

Kong et al. (2019)

Obesity microenvironment Proliferative capacity↓ RB21, p21, & p16↑; ROS↑;
DNAdamage↑

Alessio et al. (2020)

Cell senescence↑

Differentiation capacity↓ p53↑; Glucose metabolism↓ Chen et al. (2016)

Lipogenic differentiation↑ PARG, FASN, IRS1↑ Tencerova et al. (2019)

(Continued on following page)
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inhibition of the IL-6/STAT3 pathway. In a separate study, Xiang
QY’s team (Xiang et al., 2020) explored the impact of postprandial
triglyceride-rich lipoproteins (postprandial TRL) on the aging of
ADSCs. They observed that the dose size and duration of
application of postprandial TRL regulated the aging process
of ADSCs. Furthermore, they identified the SIRT1/p53/Ac-p53/
p21 pathway as the regulatory pathway for postprandial TRL-
induced ADSCs.

However, the effects of obesity on MSCs metabolism and
lipogenic differentiation have not been unanimously agreed upon
by researchers. Differences in these results may be attributed to the
origins of the MSCs. Chen JR et al. (Chen et al., 2016) isolated
umbilical cord MSCs from obese pregnant women and found that
these cells exhibited impaired lipogenic differentiation and
osteogenesis, overexpression of p53, and lower levels of glucose
metabolism (glycolysis and oxidative phosphorylation). Tencerova
M et al. (Tencerova et al., 2019) discovered that BMSCs from obese
patients showed increased expression of lipogenic differentiation
genes (PPARG, FASN, IRS1). They also confirmed that activating
insulin signaling reduced BMSCs’ glycolytic efficiency, increased
oxidative phosphorylation, and raised intracellular ROS levels, thus
making the cells more prone to senescence.

4.6 Microenvironment of hematologic
malignancies

The development of leukemic cells in the bone marrow (BM) can
negatively impact the survival of MSCs in humans. Studies have shown
that BMSCs derived from both acute myeloid leukemia (AML) and
chronic myeloid leukemia (CML) sources exhibit senescence-related
changes. (Kim et al., 2015; Kumar et al., 2018). Co-culturingMSCs with
AML cells leads to a higher preference for oxidative phosphorylation
over glycolysis in energy production. Additionally, the alteredmetabolic
patterns observed in the leukemic disease are also linked to the
worsening of the disease (Zhang Leisheng et al., 2021; Zhang Luwen
et al., 2022). Bonilla X, VanegasNP, et al. (Bonilla et al., 2019) developed
an in vitromodel called the leukemic ecotone (LN) model. They found
that when induced with leukemic cells, MSCs exhibited senescence-
related characteristics, such as increased SA-β-gal activity, elevated
p53 expression, higher levels of intracellular ROS, and cell cycle
arrest. Additionally, these MSCs showed increased secretion of pro-

inflammatory factors IL-6, IL-8, and CCL2(Vernot et al., 2017). The
researchers then compared LN-MSCs withMSCs derived from patients
with B-lymphoblastic acute leukemia (B-ALL). They observed a similar
tendency towards senescence, but these changes were reversible. Upon
early removal of the leukemia cell effects, B-ALL-derivedMSCs reversed
senescence and re-entered the cell cycle (Vanegas et al., 2021). The
differentiation ability of leukemic MSCs is still a subject of debate, with
some researchers suggesting a tendency towards lipogenesis (Le et al.,
2016; Azadniv et al., 2020). Furthermore, leukemic MSCs have been
found to exhibit increased osteogenic capacity (Battula et al., 2017). The
variations in these findings may be attributed to the specific type of
leukemia and leukemic cell types involved.

Multiple myeloma (MM) is the secondmost commonmalignant
hematological disorder, accounting for 13% of all malignant
hematological disorders (Kumar et al., 2017). It is characterized
by increased osteoclast activity and decreased osteoblast activity.
The osteogenic differentiation capacity of bone BMSCs from MM
patients is severely impaired in developing the lesion (Arnulf et al.,
2007; Corre et al., 2007). The same is true for MM-derived ADSCs:
while morphology, proliferation, and lipogenic differentiation
capacity are similar to normal ADSCs, the osteogenic
differentiation capacity is severely impaired, and SA-β-gal activity
is increased. These functional changes may be related to DKK-1
expression (Bereziat et al., 2019).

Kutyna MM’s team (Kutyna et al., 2022)investigated therapy-
related myeloid neoplasm (tMN) patient-derived BMSCs and
observed aging-related manifestations, including morphological
changes, increased expression of aging genes, impaired DNA repair,
and reduced lipogenic capacity. Interestingly, the osteogenic
differentiation potential of these BMSCs was enhanced, and their
energy metabolism tended to shift towards a glycolytic mode
compared to normal BMSCs. In normal BMSCs, the mitochondrial
OXPHOS: glycolytic ATP production rate was 64%:36%, whereas in
tMN-derived BMSCs, it was only 31%:69%. Furthermore, tMN patient-
derived BMSCs exhibited amore pronounced trend towards senescence
compared to untreated myeloma patient-derived BMSCs, which could
be attributed to DNA damage caused by cytotoxic treatment.

When MSCs derived from patients with myelodysplastic
syndromes (MDS) are cultured in a laboratory setting, they show
signs of senescence. This includes changes in cell shape, with cells
becoming enlarged and flattened, as well as a decrease in their ability
to divide. Additionally, there is an increase in the levels of a protein

TABLE 1 (Continued) Effects of different microenvironments on the senescence of MSCs.

Microenvironment Effect Mechanism Ref

Microenvironment of hematologic
malignancies

AML&CML Cell viability↓
Cell senescence↑

Oxidative Phosphorylation↑ Kim et al., 2015; Kumar et al.,
2018

LN Cell senescence↑ p53↑; ROS↑; IL-6, IL-8, && CCL2↑ Vernot et al. (2017)

MM Osteogenic differentiation↓ DKK-1↑ Bereziat et al. (2019)

tMN Cell senescence↑
Lipogenic differentiation↓
Osteogenic differentiation↑
Metabolic alteration

Kutyna et al. (2022)

MDS Cell senescence↑
Proliferation capacity↓

S100A9↑; TLR4-NLRP3-IL-1β↑ Kim et al., 2012; Shi et al.,
2019
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TABLE 2 Typical clinical trials of MSCs.

Condition/Disease NCT
number

Study title Phase Sponsor

Healthy NCT04313647 A Tolerance Clinical Study on Aerosol
Inhalation of Mesenchymal Stem Cells
Exosomes In Healthy Volunteers

Phase 1 Ruijin Hospital

NCT01087996 The Percutaneous Stem Cell Injection Delivery
Effects on Neomyogenesis Pilot Study (The
POSEIDON-Pilot Study)

Phase1 University of Miami

Phase 2

Aging Frailty NCT02065245 AllogeneiC Human Mesenchymal Stem Cells
(hMSC) in Patients With Aging FRAilTy Via
IntravenoUS Delivery

Phase1 Longeveron Inc

Phase 2

COVID-19 NCT04349631 A Clinical Trial to Determine the Safety and
Efficacy of HB-adMSCs to Provide Protection
Against COVID-19

Phase 2 Hope Biosciences Stem Cell Research
Foundation

NCT04362189 Efficacy and Safety Study of Allogeneic HB-
adMSCs for the Treatment of COVID-19

Phase 2 Hope Biosciences Stem Cell Research
Foundation

NCT04348435 A Randomized, Double-Blind, Single Center,
Efficacy and Safety Study of Allogeneic HB-
adMSCs Against COVID-19

Phase 2 Hope Biosciences Stem Cell Research
Foundation

NCT04399889 hCT-MSCs for COVID-19 ARDS Phase1 Joanne Kurtzberg, MD

Phase 2

NCT04493242 Extracellular Vesicle Infusion Treatment for
COVID-19 Associated ARDS

Phase 2 Direct Biologics, LLC

Acute Respiratory Distress Syndrome NCT01775774 Human Mesenchymal Stem Cells For Acute
Respiratory Distress Syndrome

Phase 1 Michael A. Matthay

NCT04355728 Use of UC-MSCs for COVID-19 Patients Phase1 Camillo Ricordi

Phase 2

Idiopathic Pulmonary Fibrosis NCT01385644 A Study to Evaluate the Potential Role of
Mesenchymal Stem Cells in the Treatment of
Idiopathic Pulmonary Fibrosis

Phase 1 The Prince Charles Hospital

Bronchopulmonary Dysplasia NCT03857841 A Safety Study of IV Stem Cell-derived
Extracellular Vesicles (UNEX-42) in Preterm
Neonates at High Risk for BPD

Phase 1 United Therapeutics

Ischemic Heart Failure NCT02501811 Combination of Mesenchymal and C-kit +
Cardiac Stem Cells as Regenerative Therapy for
Heart Failure

Phase 2 The University of Texas Health Science
Center, Houston

NCT03925324 Serial Infusions of Allogeneic Mesenchymal
Stem Cells in Cardiomyopathy Patients With
Left Ventricular Assist Device

Phase 2 Medstar Health Research Institute

NCT00768066 The Transendocardial Autologous Cells
(hMSC or hBMC) in Ischemic Heart Failure
Trial (TAC-HFT)

Phase1 University of Miami

Phase 2

NCT00587990 Prospective Randomized Study of
Mesenchymal Stem Cell Therapy in Patients
Undergoing Cardiac Surgery (PROMETHEUS)

Phase1 Joshua M Hare

Phase 2

NCT02013674 The Transendocardial Stem Cell Injection
Delivery Effects on Neomyogenesis STudy (The
TRIDENT Study)

Phase 2 Joshua M Hare

NCT01781390 Safety Study of Allogeneic Mesenchymal
Precursor Cell Infusion in Myocardial
Infarction

Phase 2 Mesoblast, Inc

NCT01270139 Plasmonic Nanophotothermal Therapy of
Atherosclerosis

Not
Applicable

Ural State Medical University

NCT00927784 Effect of Intramyocardial Injection of
Mesenchymal Precursor Cells on Heart
Function in People Receiving an LVAD

Phase 2 Icahn School of Medicine at Mount Sinai

(Continued on following page)
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TABLE 2 (Continued) Typical clinical trials of MSCs.

Condition/Disease NCT
number

Study title Phase Sponsor

Non-ischemic Heart Failure NCT01392625 PercutaneOus StEm Cell Injection Delivery
Effects On Neomyogenesis in Dilated
CardioMyopathy (The POSEIDON-DCM
Study)

Phase1 Joshua M Hare

Phase 2

NCT02467387 A Study to Assess the Effect of Intravenous
Dose of (aMBMC) to Subjects With Non-
ischemic Heart Failure

Phase 2 CardioCell LLC

Cairdiomyopathy Due to
Anthracyclines

NCT02509156 Stem Cell Injection in Cancer Survivors Phase1 The University of Texas Health Science
Center, Houston

Tendon Injury NCT02298023 Treatment of Tendon Injury Using Allogenic
Adipose-derived Mesenchymal Stem Cells
(Rotator Cuff Tear)

Phase 2 Seoul National University Hospital

Focal articular cartilage lesions of the
knee

NCT02037204 IMPACT: Safety and Feasibility of a Single-
stage Procedure for Focal Cartilage Lesions of
the Knee

Phase1 UMC Utrecht

Phase 2

Spinal Cord Injury NCT02481440 Repeated Subarachnoid Administrations of
hUC-MSCs in Treating SCI

Phase1 Limin Rong

Phase 2

NCT01909154 Safety Study of Local Administration of
Autologous Bone Marrow Stromal Cells in
Chronic Paraplegia

Phase 1 Puerta de Hierro University Hospital

Osteoarthritis NCT01586312 Treatment of Knee Osteoarthritis With
Allogenic Mesenchymal Stem Cells

Phase1 Red de Terapia Celular

Phase 2

NCT02958267 Investigation of Mesenchymal Stem Cell
Therapy for the Treatment of Osteoarthritis of
the Knee

Phase 2 OhioHealth

NCT01183728 Treatment of Knee Osteoarthritis With
Autologous Mesenchymal Stem Cells

Phase1 Red de Terapia Celular

Phase 2

NCT02674399 A Phase 2 Study to Evaluate the Efficacy and
Safety of JointStem in Treatment of
Osteoarthritis

Phase 2 Nature Cell Co. Ltd

Rheumatoid Arthritis NCT03691909 Phase 1/2a Clinical Trial to Assess the Safety of
HB-adMSCs for the Treatment of Rheumatoid
Arthritis

Phase1 Hope Biosciences

Phase 2

Degeneration Articular Cartilage Knee NCT01733186 Evaluation of Safety and Exploratory Efficacy of
CARTISTEM? a Cell Therapy Product for
Articular Cartilage Defects

Phase1 Medipost Co. Ltd

Phase 2

Multiple Sclerosis, Chronic Progressive NCT03799718 Safety and Efficacy of Repeated Administration
of NurOwn (MSC-NTF Cells) in Participants
With Progressive MS

Phase 2 Brainstorm-Cell Therapeutics

Xerostomia NCT02513238 Mesenchymal Stemcells for Radiation Induced
Xerostomia

Phase 2 Rigshospitalet, Denmark

Cystic Fibrosis NCT02866721 Safety and Tolerability Study of Allogeneic
Mesenchymal Stem Cell Infusion in Adults
With Cystic Fibrosis

Phase1 University Hospitals Cleveland Medical
Center

Acute Graft Versus Host Disease NCT02379442 Early Treatment of Acute Graft Versus Host
Disease With Bone Marrow-Derived
Mesenchymal Stem Cells and Corticosteroids

Phase1 National Heart, Lung, and Blood Institute
(NHLBI)

Phase 2

Diabetes Mellitus NCT02886884 Allogeneic Mesenchymal Human Stem Cells
Infusion Therapy for Endothelial DySfunctiOn
in Diabetic Subjects

Phase1 Joshua M Hare

Phase 2

NCT02387749 Effect Of Mesenchymal Stem Cells Transfusion
on the Diabetic Peripheral Neuropathy Patients

Not
Applicable

Cairo University

(Continued on following page)
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called SA-β-gal (Mattiucci et al., 2018), which is associated with high
expression of S100A9 in MDS patients. This protein can induce
senescence in MSCs through a signaling pathway involving TLR4,
NLRP3, and IL-1β secretion (Kim et al., 2012; Shi et al., 2019).

4.7 Microenvironment of inborn errors of
metabolism

Inborn errors of metabolism are caused by mutations in
chromosomal genes, leading to the deletion or abnormality of
enzymes. This disruption in the catalytic process of specific
enzymes hinders normal metabolic processes. As a result, there is
an accumulation of abnormal metabolic substrates and a deficiency
of normal products, which affects the organism’s normal
development (Agana et al., 2018). Inborn metabolic disorders
encompass various types with complex metabolic defects, and a
perfect classification method has yet to be established. Previous
research has primarily focused on experimental studies of stem cell
therapy for inborn metabolic disorders related to the connective
tissue, musculoskeletal, neurological, and hematopoietic systems
(Ricci and Cacialli, 2021; Specchio et al., 2021). For instance,
MSCs and their EVs have shown potential in treating corneal
diseases caused by Mucopolysaccharidoses by delivering the
enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS) to
defective cells (Flanagan et al., 2021). Moreover, MSCs and EVs
can secrete endogenous coagulation factors FVIII and FIX, making
them a promising therapeutic strategy for treating hemophilia
(Sokal et al., 2015).

However, senescence-related changes in MSCs derived from the
microenvironment of inborn errors of metabolism may have a
detrimental impact on their efficacy. For instance, in glycogen
storage disease type Ib (GSD-Ib), the ability of MSCs to
differentiate into bone and fat cells is hindered due to the absence
of glucose-6-phosphate transport protein (G6PT) and the suppression
of the OHPOXS response (Sim et al., 2020). The differentially
expressed genes (DEGs) in MSCs derived from premature aging
syndromes (PAS) compared to MSCs derived from individuals
without these syndromes primarily revolve around DNA double-
strand damage, telomere damage, and DNA methylation. These
genetic changes are associated with the impaired differentiation of
MSCs(Trani et al., 2022). In response to these alterations inMSCs, the
application of MSC-based cell therapies combined with genetic
engineering can provide a safe and effective method for individuals
to produce factors that are needed by cells in recipient organs with
enzymatic or other defects (Meyerrose et al., 2010) (Tables 1 and 2).

5 Conclusion

MSCs have gained significant attention in the fields of organ
repair, new drug development, anti-aging, and rare disease treatment
due to their ability to differentiate in multiple directions and their
immunological properties. However, along with these promising
possibilities, there are also emerging challenges. These include
establishing quality standards for MSCs, ensuring their activity
during in vitro culture, guaranteeing the survival and functionality
of MSCs at the site of the disease to achieve therapeutic effects,

TABLE 2 (Continued) Typical clinical trials of MSCs.

Condition/Disease NCT
number

Study title Phase Sponsor

Metabolic Syndrome NCT03059355 Infusion of Umbilical Cord Versus Bone
Marrow Derived Mesenchymal Stem Cells to
Evaluate Cytokine Suppression

Phase1 Joshua M Hare

Phase 2

Breast Reconstruction NCT01771913 Immunophenotyping of Fresh Stromal
Vascular Fraction From Adipose Derived Stem
Cells (ADSC) Enriched Fat Grafts

Phase 2 University of Sao Paulo

Alzheimer Disease NCT03117738 A Study to Evaluate the Safety and Efficacy of
AstroStem in Treatment of Alzheimer’s Disease

Phase1 Nature Cell Co. Ltd

Phase 2

Cerebral Palsy NCT03473301 A Study of UCB and MSCs in Children With
CP: ACCeNT-CP

Phase1 Joanne Kurtzberg, MD

Phase 2

Cleft Lip and Palate NCT01932164 Use of Mesenchymal Stem Cells for Alveolar
Bone Tissue Engineering for Cleft Lip and
Palate Patients

Not
Applicable

Hospital Sirio-Libanes

Dental Pulp Regeneration NCT03102879 Encapsulated Mesenchymal Stem Cells for
Dental Pulp Regeneration

Not
Applicable

Universidad de los Andes, Chile

Retinal Degeneration NCT02330978 Intravitreal Mesenchymal Stem Cell
Transplantation in Advanced Glaucoma

Phase 1 University of Sao Paulo

Malignant Melanoma NCT02331134 Tissue and Hematopoietic/Mesenchymal Stem
Cell for Humanized Xenograft Studies in
Melanoma and Squamous Head and Neck
Cancer

Not
Applicable

University of Colorado, Denver
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understanding the potential negative effects of drugs used to treat the
primary pathology on MSCs, and investigating the role of MSCs in
tumorigenesis (Nowak et al., 2021). In this review, we provide a
summary of the effects and mechanisms of different
microenvironments on the senescence and function of MSCs. We
also discuss possible ways to improve and explore further research
directions. These include: 1. Pre-treating MSCs with specific media
before transplantation or culture to enhance their survival rate post-
transplantation. 2. Selecting the most suitable MSC donors to ensure
efficient utilization of MSCs. 3. Exploring the combination of drugs,
bioactive signals, natural and synthetic materials (such as Hydrogels
and scaffolds) with MSCs. 4. Investigating the utilization of EVs as an
alternative to MSCs and modifying them to address ethical concerns
and potential carcinogenic effects. Understanding the interaction
between MSCs and the cellular microenvironment is crucial for
advancing MSC therapeutics and fostering realistic possibilities for
their clinical application. Up to now, MSCs have been the subject of
more than 1,599 clinical trials investigating their potential for
treatment, with most of these trials still in the early stages.
Although the preliminary data from these trials are promising,
only two of them involve pretreatment (NCT03105284 and
NCT01962233), indicating a lack of rigorous and uniform effective
means of establishing a culture system related to pretreatment.
Furthermore, MSC therapy still lacks long-term safety assessment,
and large-scale and controlled trials are needed to make more
conclusive judgments about MSC-based therapies, which are
important for clinical translation. It is worth noting that clinical
patients often suffer from multiple diseases, not a single disease, and
most animal experiments with MSCs have focused on only a single
disease model. Therefore, exploring the efficacy of MSCs under
multiple diseases in future clinical translation is one of the future
research priorities.
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Deciphering transcriptome
patterns in porcine mesenchymal
stem cells promoting phenotypic
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Mesenchymal stem cells (MSC) are fibroblast-like non-hematopoietic cells with
self-renewal and differentiation capacity, and thereby great potential in
regeneration and wound healing. MSC populations are heterogeneous not
only inherently, but also among different model species. In particular, porcine
MSC serve as a frequently used resource for translational research, due to pigs’
distinctive closeness to human anatomy and physiology. However, information
on gene expression profiles from porcine MSC and its dynamics during
differentiation is sparse, especially with regard to cell surface and inner cell
markers. In this study, we investigated the transcriptome of bonemarrow-derived
MSC and its differentiated cell types in a minipig breed for experimental research,
known as Mini-LEWE, using bulk mRNA sequencing. Our data highlighted
Rap1 signaling and downstream pathways PI3K-Akt and MAPK signaling as
potential players for the maintenance of stemness of BM-MSC. In addition, we
were able to link the process of differentiation to changes in the regulation of
actin cytoskeleton. A total of 18 “BM-MSC differentiation driver markers” were
identified, potentially promoting the process of differentiation into adipocytes,
chondrocytes as well as osteocytes. Our results offer a new perspective on the
molecular phenotype of porcine BM-MSC and the transcriptional responses in
new differentiated progeny.

KEYWORDS

mesenchymal stem cells, bone marrow, transcriptome, RNA-seq, pig, Mini-Lewe,
differentiation

1 Introduction

Mesenchymal stem cells (MSC) are adult stem cells with characteristic proliferative and
differentiation capacities (Friedenstein et al., 1970; Tavassoli and Crosby, 1968; Caplan,
1991). Research goes back to a long history of studies on themultipotency andmesengenesis
of these mesenchymal stromal cells and their potential use for wound healing,
immunomodulation and regenerative medicine (Caplan, 1994; Caplan, 1995; Horwitz
et al., 2005). One of the common sources of MSC is non-hematopoietic cell population
of the bone marrow, contributing to tissue homeostasis, immune regulation and tissue
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repair along with immune cells (Le Blanc and Ringden, 2007; Kfoury
and Scadden, 2015; Sangiorgi and Panepucci, 2016).

MSC populations are known to be inherently heterogeneous and
show different phenotypic and behavioural subtypes (Mets and
Verdonk, 1981). In addition, subtle yet significant diversity is
found in MSC from different tissue- and species sources,
sampling procedures and culture conditions (Costa et al., 2021;
Dominici et al., 2006). However, there are several MSC-specific
characteristics common in all cultured MSC populations, namely
their adherence to plastic surface, the ability to multilineage
differentiate to adipocytes, osteocytes, chondrocytes in vitro as
well as the expression of specific surface antigens (Dominici
et al., 2006; Choudhery et al., 2022). In human, bone-marrow
derived MSC (BM-MSC) were found to present the surface
“cluster of differentiation” (CD) markers CD29, CD44, CD73,
CD90 and CD105 in more than 95% of the cell population, and
CD14 (CD11b), CD34, CD45, CD19 (or CD79α), and HLA-DR in
less than 2% of cell population (Dominici et al., 2006; Choudhery
et al., 2022). However, in animal models, the composition of cell
surface markers is slightly different: For example, cultured BM-MSC
from horses were shown to express CD29, CD44, CD90, CD105,
CD166 and but lack CD34, CD45 and CD79α expression
(Bundgaard et al., 2018). Similarly, in bovine BM-MSC,
transcriptomic profiles suggested CD29, CD44 and CD73 to be
highly expressed, whereas CD90 as one of the strongest MSC-
indicators, held no and/or lower expression in comparison to
human and horse MSC (Kato et al., 2004; Danev et al., 2024). It
was demonstrated that bovine BM-MSCs share more common
functionally relevant gene expression profiles with human BM-
MSCs than compared to murine BM-MSCs and thus highlighted
the particular potential of non-murine cells for translational studies
(Danev et al., 2024). With regard to the surface marker CD105 in
bovine BM-MSC, its role was controversially discussed as it was
either found to be not highly expressed or missing (Kato et al., 2004;
Danev et al., 2024). Similar findings were made for porcine BM-
MSC, which were proposed to strongly express CD29, CD90, and
CD44, but were found to have a lower CD105 expression compared
to human BM-MSC, and no CD45 expression (Juhásova et al., 2011;
Prinz, 2017). In contrast, in another study, the complete absence of
CD73 and CD105 expression in porcine BM-MSC was highlighted
and underlined the need for further investigations on the
characteristics of these cells (Schweizer et al., 2020). Despite these
studies reporting on selected markers, a full list of potential marker
genes remains elusive. For successful detection, it was proposed that
high throughput sequencing of RNA helps to improve stem cell
characterization, which is otherwise limited due to the absence of
appropriate antibodies against markers for various selected species
(Dawson and Lunney, 2018). Subsequently, RNA sequencing was
successfully applied for defining cell-specific mRNA expression to
interrogate the spectrum of cell surface proteins, known as the
surfaceome (Pais et al., 2019)

Pigs represent a particular valuable non-primate model for
translational and clinical medicine to target disease, cell therapy,
immunomodulation, regeneration and xenotransplantation, due to
its similarities to human anatomy and physiology, and its relatively
short as well as seasonal-independent gestation time (Lee et al., 2007;
Krupa et al., 2007; Walters and Prather, 2013; Hatsushika et al.,
2014; Khatri et al., 2015; Kawamura et al., 2015; Ock et al., 2016;

Tseng et al., 2018; Fisher, 2021). Therefore, it is important to gain a
comprehensible knowledge of the molecular phenotype of porcine
MSC. So far, the majority of studies on the characterization of MSC
relied on flow cytometry, Real-Time PCR (RT-qPCR) and
microarrays. In addition, RNA sequencing approaches are used
in human and few model species to not only characterize MSC,
in particular BM-MSC, but also to unravel the underlying
differentiation mechanisms and hierarchies (Danev et al., 2024;
Roson-Burgo et al., 2014; Cho et al., 2017; Haga et al., 2024;
Kanazawa et al., 2021; Zhan et al., 2019; Koch et al., 2022).

In pigs, RNA sequencing of MSC from subcutaneous adipose
tissue and synovial joints was performed for different commercial
large breeds in order to understand molecular mechanisms related
to mesengenic formation and paracrine signaling in general, as well
as to study diseases such as metabolic syndrome (Li et al., 2023;
Ponsuksili et al., 2024; Conley et al., 2018; Eirin et al., 2017; Pawar
et al., 2020). In a microarray analysis of MSC from Yorkshire
crossbreed pigs, the transcriptome of adipose-derived and bone-
marrow derived cells was compared and studied for its in vitro
osteogenic and adipogenic differentiation (Monaco et al., 2012). It
was highlighted that BM-MSC had larger angiogenic, osteogenic,
migration and neurogenic capacities, presumably more suitable for
specific therapeutic applications (Monaco et al., 2012). Moreover,
expression profiling of porcine BM-MSC was done to study
cryopreservation and treatment with histone deacetylase
inhibitors to identify cellular responses related to cell stress,
development and differentiation (Gurgul et al., 2017; Gurgul
et al., 2018). These studies emphasized that BM-MSC represent
the gold standard for its use in tissue regeneration and thereby
require thorough molecular phenotyping and investigation of its
differentiation processes (Monaco et al., 2012; Monaco et al., 2009).

In this research paper, our goal is to study the transcriptome
profiles of BM-MSC and its differentiated cell lineages specifically in
the miniature pig breed Mini-LEWE, using bulk mRNA sequencing.
We aim to investigate the transcriptional expression of known or
potential new candidate stem cell surface markers as well as potential
intracellular markers in BM-MSC and its derivatives.

2 Material and methods

2.1 Sample collection

In this study, we obtained BM-MSC of the iliac crest of three 80-
day-old Mini-LEWE piglets. The piglets underwent euthanasia in a
two-step process using intramuscular injection of Azaperone
(2 mg/kg) and Ketamine (20 mg/kg) and subsequent intracardial
application of T61 (Tetracaine hydrochloride, Mebezonium iodine
and Embutramide cocktail (6mL/50kg, MSD Tiergesundheit - Intervet
Deutschland GmbH, Germany). This procedure was approved by the
animal welfare officer of the University of Veterinary Medicine
Hannover (“Tötungsanzeige”, ID TIHO-T-2020-9), in accordance
with national and international guidelines. After euthanasia, the
laterofrontal of the ilium bone was exposed and a biopsy needle
(Jamshidi with T-handle, Lehnecke, Germany) was used to aspirate
bone marrow from the iliac crest. The aspirate was transferred to an
EDTA-coated collection tube (BD vacutainer, New Jersey,
United States), suspended in ice-cold CO2-independent medium
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(Gibco, New York, United States) with 2% Glutamax (Gibco), and
transported to cell culture laboratory. In addition, Peripheral Blood
Mononuclear Cells (PBMC), representing differentiated hematopoietic
cells from bone-marrow, were used as the control samples to the non-
hematopoietic undifferentiated BM-MSC. They were obtained from
full progeny of the sampled pigs and proceeded into RNA isolation.

2.2 Cell isolation and culture

The acquired bone marrow samples were treated with Red Blood
Cell Lysis Buffer (Roche, Basel, Switzerland) to remove the erythrocytes
from the cell suspensions. Next, the samples were transferred to cell
culture flask T-175 (Sarstedt, Nuembrecht, Germany) and incubated in
DMEM (Gibco) with 10% Foetal Bovine Serum at 5% CO2 and 37°C
for 24 h. Then, the media were changed and cells were maintained
initially in MesenPRO RS Medium (Gibco) and all further passages in
Mesenchymal Stem Cell Growth Medium 2 (MSC-GM2, PromoCell,
Heidelberg, Germany). Cells at passages four (P4) and five (P5) were
used for differentiation and RNA isolation.

2.3 Directed differentiation of mesenchymal
stem cells

BM-MSC-multipotency was tested by directed adipogenesis,
chondrogenesis and osteogenesis during two consecutive passages
P4 and P5. For this purpose, BM-MSCs were detached from their
vessels with TrypLE Express Enzyme (1X) (Gibco), stained with
Trypan Blue Solution, 0.4% (Gibco) and counted on Neubauer
chamber (Roth, Karlsruhe, Germany). Next, 6 × 105 viable cells
were seeded into three 10 cm2 petri dishes (2,00,000/dish), one dish
for each type of differentiation. Cells were maintained for 24 h at 5%
CO2 and 37°C in MSC-GM2 allowing them to recover and attach.
Adipogenesis was induced using StemPro Adipogenesis
Differentiation Kit (Gibco) for 10 days (media exchanged every
second day). After differentiation, cells were maintained for another
7 days on Human Adipocyte Maintenance Media (Cell Application,
San Diego, United States). Chondrogenesis was promoted using
StemPro Chondrogenesis Differentiation Kit (Gibco) for 14 days
and media was refreshed every second day. The differentiated
chondrocytes were maintained for another 7 days on Chondrocyte
Growth Medium (PromoCell). Osteogenesis was induced using
Mesenchymal Stem Cell Osteogenic Differentiation Medium
(PromoCell) for 24 days and the cells maintained for another
7 days in Minimum Essential Medium α, nucleosides (Gibco)
containing 10% FBS and 2% Glutamax.

2.4 Staining and microscopy

After differentiation, cells from each cell type were transferred to
µ-Slide 8 Well (ibidi GmbH, Graefelfing, Germany), maintained for
2 days, fixed with 4% ice-cold formaldehyde for exact 10 min at room
temperature, and washed three times with distilled water. Transmitted
light images of adipo-, chondro- and osteocytes were captured using
the Celldiscoverer 7 (Zeiss, Oberkochen, Germany). Due to the lack of
a condenser in the platform, the so-called phase gradient contrast

(PGC) was utilized. The PGC images were automatically acquired with
a self-adjusted aperture, so the cellular fine structures could be scanned
throughout multiwall formats without edge or meniscus artefacts.

Next, the water was removed from the wells and each cell type
was specifically stained. Fixed adipocytes were washed once with
60% isopropanol for 5 min, covered with filtered working Oil Red O
solution (3 times stock Oil Red O (3 mg/ml) in 2 times distilled
water) for 5 min at room temperature, and finally washed with
distilled water until all excessive stain was removed. Fixed
chondrocytes were washed once with PBS, then covered with 1%
Alician blue in 0.1N HCl staining solution for 30 min at room
temperature. Upon removal of the staining solution, the excess stain
washed away with 0.1N HCl. Furthermore, fixed osteocytes were
stained with 2% Alizarin Red solution (pH 4.2) for 3 min at room
temperature, and washed with distilled water. All stained cells were
maintained in 250 μL distilled water. RBG images were acquired
using Axio Observer Z1 (Zeiss) equipped with RGB (red, green, and
blue) camera.

2.5 RNA isolation and library preparation

In total, all three BM-MSC samples from three Mini-Lewe, six
adipocyte, chondrocyte and osteocyte samples each underwent RNA
isolation and library preparation (Supplementary Table S1). In
addition, the RNA of three PBMC samples was isolated.

All cells were scraped from the plastic surface and resuspended
in TRIzol, then transferred into innuSPEED Lysis Tubes X
(Innuscreen GmbH, Berlin, Germany) for homogenization on a
pre-cooled SpeedMill PLUS (Analytik Jena GmbH, Jena, Germany)
for two interval steps. Subsequently, RNA isolation was performed
based on TRIzol user guide provided by Invitrogen (Massachusetts,
United States). The quality and integrity of the isolated RNA was
controlled using a High Sensitivity RNA ScreenTape assay on
4200 TapeStation system (Agilent, Santa Clara, United States).
Samples were selected for library preparation based on RNA
integrity numbers (RIN) of >8 in BM-MSCs as well as >6 in
PBMCs (due to a higher RNA-fragmentation rate of PBMCs
in general).

2.6 RNA sequencing and data processing

RNA libraries of 24 samples (three BM-MSCs, six adipocytes, six
chondrocytes, six osteocytes and three PBMCs) were prepared using
NEBNext Ultra II Directional RNA Library Prep Kit for Illumina
(NEB, Ipswich, United States) and Unique Dual Index Primer Pairs
of NEBNext Multiplex Oligos for Illumina kit (NEB). Libraries were
set in equal molarity and sequenced for 70 million reads 2 × 100 bp
on an Illumina NextSeq200. The obtained data were quality
controlled, pre-processed and mapped based on Sus scrofa
11.1 genome reference, as previously described (Khaveh et al., 2023).

2.7 Differential gene expression analysis

The raw counts of the mapped reads were extracted using the
STAR quatMode (version 2.7.9a, (Dobin et al., 2013) and were
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analysed using DESeq2 in R environment (version 1.44.0, (Love
et al., 2014). Prior to differential expression analysis (DEA),
preanalytical data quality control based on regularized logarithm
(rlog) transformation and principal component analysis (PCA) was
performed as recommended by Love et al. (2014). In addition, the
Euclidian distance of all samples were calculated and clustered to
observe their similarity and correlation. DEA was run to identify the
unique transcriptome profile of Mini-Lewe BM-MSCs in contrast to
PBMCs (control samples) and secondly to observe the differential
transcriptomes of BM-MSCs and their differentiated cell types.
Thus, six samples from each differentiated cell types (adipocytes,
chondrocytes, and osteocytes) were contrasted separately with
expression profile of BM-MSC as control. After the DEA for
each aforementioned set, the genes with the absolute log2 fold
change (|log2FC|)>2 and false discovery rate (padj) < 0.05 were
considered as significantly differentially expressed. Finally, we
identified and extracted gene expression patterns of cell surface
markers and their differential expression information in our porcine
BM-MSC and its differentiated cell lineages by comparing our
dataset to a compiled list of all known CD markers (Engel et al.,
2015) as well as notable MSC markers in human (Miller-Rhodes,
2023; Uder et al., 2018).

2.8 Enrichment analysis

First, the lists of differentially expressed genes (DEG) of each
contrast, namely of BM-MSCs, adipocytes, chondrocytes and
osteocytes, were overlapped with human orthologues acquired
from Ensembl Biomart and submitted to enrichR tool (R
package, version 3.2, (Chen et al., 2013; Kuleshov et al., 2016; Xie
et al., 2021; Jawaid, 2023)) for enrichment with four gene-set
databases “KEGG_Human_2021,” “GO Biological Process 2023,”
“Reactome_2022” and “Jensen TISSUES.” All term lists were filtered
for p-value < 0.05. The notable pathway terms highlighted in
“KEGG_Human_2021” were further investigated manually on
KyotoEncyclopedia of Genes and Genomes website (KEGG:
https://www.genome.jp/kegg/pathway.html) for pig (sus scrofa)
specified pathways.

2.9 Differential exon usage

To observe the frequency of exon usage and therefore predict
post-transcriptional changes BM-MSC and its derivative cell types,
DEXSeq tool (version 1.50.0 (Anders et al., 2012; Reyes et al., 2013))
was used in R environment. First, the annotations of the pig reference
genome from Ensembl Biomart were transformed into a TxD object
using “makeTxDbFromBiomart” from GenomicFeatures package
(Lawrence et al., 2013) and collapsed into counting bins. The
counting bins were used to count the number of overlapping
exons and read fragments from the aligned reads (Aligned.out.bam
files by STAR) using “summarizeOverlaps” fromGenomicAlignments
package (Lawrence et al., 2013). At this stage, the data was split into
two objects, one holding MSCs and PBMCs data and another
containing MSCs and its derivative cell types. Next, the counted
overlapped exons were fitted into a generalized linear model (GLM)
with the formula “~sample + exon + cell_type:exon” normalized based

on size factors estimation (“estimateSizeFactors”) and dispersed
(“estimateDispersions”). The interaction of condition (cell type) and
exon (from aforementioned GLM) are compared on Chi squared
distribution to establish a p-value. Finally, the data was tested for
differential exon usage and exon fold changes were estimated based on
samples’ cell type. The result was summarised and filtered for
significance threshold of |log2FC| > 2 and padj < 0.05.

2.10 Weighted gene co-expression network
analysis (WGCNA)

We investigated the association of the expressed genes and their
correlations with the cell type by modulating a hierarchical
clustering and constructing gene networks with a high
probability of co-expressing using the R package Weighted Gene
Co-expression Network Analysis (WGCNA) (version 1.72-5.
(Langfelder and Horvath, 2008; Langfelder and Horvath, 2012).
For this purpose, the normalized and stabilized data matrix from
DESeq2 analysis was used to build a topological overlapping matrix
with soft-thresholding power value of three. The next step of
network construction was performed following our previous
suggestions (Khaveh et al., 2023). Furthermore, the correlations
between each module and cell type were test using Fisher test. Genes
from the significantly correlated modules were functionally enriched
as described above for functional enrichment of DEGs.

2.11 Fluorescence staining and microscopy

For validation of the expression of cell surface markers and
functional elements using fluorescent microscopy, we seeded
1,000 cells each cell lineage in dark-walled flat-bottomed
96 wells (Greiner Bio-One GmbH, Frickenhausen, Germany)
and fixed as described above in Section 2.4. Next, the fixed cells
were rinsed in PBS and permeabilized for 1 h blocked using
Normal Donkey Serum Block (NDSB: 1% w/v BSA, 2% v/v
Normal Donkey serum, 0.1% v/v Triton X, 0.05 v/v % Tween-
20) for 30 min. Primary antibodies against CD105 (mouse anti-pig,
Abcam Cat#ab53318, Cambridge, United Kingdom), CD29
(Mouse anti-pig, Cat#561496, BD Pharmingen, New Jersey,
United States), CD90 (Mouse anti-pig, Cat#561972, BD
Pharmingen) were diluted in 1:500 in the identical NDSB
solution and incubated at 4°C overnight. Further primary
antibody C7 (mouse anti-human, Proteintech Cat# 66908-1,
Illinoise, United States) were diluted in 1:1,000 in NDSB,
applied to the wells and incubated for 1 h at room temperature.
The antibody solutions were washed out of the well by flushing the
well with three times 1 × PBS. Secondary Antibodies as well as
phalloidin (1 μg/mL) and Hoechst (0.5 μg/mL) were also diluted in
the NDSB and incubated together in one well for 1 h at room
temperature before a final flushing with three times PBS.

For evaluation of cellular protein contents (CD marker, or any
endogenous content) we used Zeiss Celldiscoverer 7 running under
Zen Blue 3.5. All experiment consisted several 1,000s of individual
position per condition in large mosaics. The acquisitions were
carried out fully automated using a surface detection strategy for
stabilizing the focus position under controlled temperature. The
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acquisitions were carried out with a 20x, NA0.7 or 20x,
NA0.95 objectives and a 1x or 2x post magnification the use
camera chip was a 12 megapixel Axiocam 712. In Combination
with Abbes resolution limit we had a typical lateral (XY) pixel size
of 0.352 or 0.258 µm/pixel. The acquired images underwent a
standard hierarchical image analysis strategy. Briefly nuclei were
detected based on their fluorescence intensity, with fixed intensity
thresholds, close by objects were separated by water shedding. The

resulting masks were filtered towards an area in between 75 and
800 μm2 and a circularity in between 0.6 and 1 (dimensionless).
From this primary objects our routine automatically dilated 5 pixel
before a secondary with a width around the nuclei of 100 pixel were
drawn. Within this region the marker signals were quantified. Our
fluorescence data is shown as total fluorescence intensity signal.
Typically, we analyzed in between ~2,000 and 20,000 single cells
per condition in more than 30 dimension. Finally, the obtained

FIGURE 1
Morphology of undifferentiated and differentiated BM-MSC. (top) The formalin-fixed undifferentiated BM-MSC were investigated using phase
gradient contrast (PGC) technique as well as immunofluorescence imaging (IF) for surface markers with anti-CD29, anti-CD90, anti-CD105 and
counterstain (Hoechst). PGC capture of the cytoskeleton structure of these cells was done without any staining. (bottom) Successful differentiation of
BM-MSC into three cell lineages, namely adipocyte, chondrocyte and osteocyte, was confirmed using cell type specific staining (Oil Red-O for
adipocytes, Alician blue for chondrocytes and Alizarin Red for osteocytes; RGB = red, green and blue). In addition, changes in cell morphology were
highlighted using PGC technique (Image partially created by BioRender, agreement number: VN275VWCHA).
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data for C7 and actin were analyzed using “ggbetweenstat” package
(Patil, 2021) with parametric pairwise Welch’s t-test and false
discovery rate (FDR) < 0.05.

3 Results

3.1 Morphology of the undifferentiated and
differentiated BM-MSC

First of all, we investigated the characteristics of the BM-MSC
population using three cell surface markers, CD29, CD90 as well as
CD105. The image analysis showed that all three CD markers were
expressed strongly in the BM-MSC (Figure 1). Next, we aimed to
validate the capacities of our approach to differentiate into osteo-,
chondro- and adipocytes. Therefore, we used the well-established
above described classical histological staining protocols on our
differentiated cells and captured images with a contrast
transmitted light strategy as well as RGB images of the identical
cells in a second microscope. The undifferentiated BM-MSC were
observed in small colonies and well as spread out as single cells.
The cells in dense colonies had a spindle-like morphology, while
the cells surrounding the colonies in less populated areas displayed
a spread-out cytoplasm with a visible cytoskeleton organisation. In
the adipocytes, Oil Red O stain highlighted lipid vacuoles distinctly
in bright red (Figure 1). The chondrocytes’ phenotype was
observed with 1% Alician blue as the glycosaminoglycan
became visible with fine blue signals within and surrounding

the cells. In addition, osteocyte differentiation was confirmed by
highlighting the calcium content of these cells stained in bright red
by 2% Alizarin red stain.

3.2 Transcriptome profiles of
undifferentiated BM-MSC

Cell type-specific expression profiles provide essential knowledge
for cell identification and marker-based characterisation of cells
in vitro. In our investigation of BM-MSC, we called 14,019 out of
35,670 annotated genes to be expressed based on normalised
counts per million (cpm), of which 91.4% were protein-coding
and 7.3% were long non-coding RNAs (lncRNA). Furthermore,
the Euclidian distance test for BM-MSC showed a high
dissimilarity to PBMC (Supplementary Figure S1). Each cell
type displayed a clustering within its replicates. In comparison
to PBMCs, BM-MSCs revealed a distinct separation on the first
principal component (PC1) by 97% variance between the two
groups, whereas the variance among the individual samples
within each group (PC2) was less than 1% in PCA (Figure 2A).
Within the transcriptome of porcine BM-MSC, we could identify
253 expressed genes out of 371 CD markers known in human.

In our DEA, we identified 6,285 DEGs within the significance
threshold padj <0.05 and |log2FC| >2, of which 2,994 genes were
upregulated and 3,291 were downregulated (Figure 2B;
Supplementary Table S2). Furthermore, we could identify
146 DEGs from the list of human CD markers.

FIGURE 2
Differentially expressed genes in BM-MSC in contrast to PBMC. (A) PCA plot for BM-MSC and PBMC samples (B) Volcano plot of DEGs; log2FC is on
the x-axis and padj on the y-axis (* = ENSSSCG000000). Thresholds of significance are shown on the left and right of the intersection lines. (C) Top
15 significant KEGG pathways (based on KEGG_Human_2021 database) and (D) Jensen TISSUEs displayed for their number of overlapped genes
and p-value.
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Enrichment analysis of DEGs for “KEGG_Human_2021”
pathway revealed significantly enriched pathways such as
Rap1 signalling pathway and ECM-receptor interactions
(Figure 2C; Supplementary Table S3). In addition, “Jensen
TISSUES” database highlighted the involvement of tissues and
cells within the bone marrow referring to BM-MSCs in contrast
to PBMCs such as “Mesenchyme,” “Stromal cell,” “Immune system”

and “Chronic lymphocytic leukemia cell” (Figure 2D;
Supplementary Table S3). From other two databases, “GO
Biological Process 2023” and “Reactome_2022” enriched terms
such as “Extracellular matrix organization (GO:0030198, R-HAS-
1474244),” “Collagen fibril organization (GO:0030199),” “Collagen
formation (R-HAS-1474290),” “External encapsulating structure
organization (GO:0045229),” “Embryonic skeletal system
development (GO:0048706)” and also immunomodulatory
processes such as “Inflammatory Response (GO:0006954),”
“B Cell Receptor Signaling Pathway (GO:0050853),” “Regulation
Of T Cell Activation (GO:0050863)” were highlighted. In addition,
gene families such as COL, ADAM and HOX genes were frequently
observed in these clusters (Supplementary Table S3).

3.3 Mesengenic differentiation shifts
transcriptome of BM-MSC

One of the widely known properties of BM-MSCs is the
multipotency and the ability to differentiate into certain cell
lineages, namely adipocyte, chondrocyte, and osteocyte (Caplan,
1991). In order to identify the transcriptome changes of BM-MSC
after differentiation into new cell-phenotypes, we compared the
different expression profiles. PCA revealed a 32% variance (PC1)
among all four cell types, whereas on the PC2 dimension, the distinct
separation among adipocytes, osteocytes and BM-MSC can be
observed (Supplementary Figure S2).

About fifteen thousand genes were identified in adipocytes,
chondrocytes and osteocytes, respectively. These included
88% protein coding genes and 10% lncRNAs in all three cell
types. We identified 483 DEGs in adipocytes compared to BM-
MSC, of which 259 were upregulated and 224 downregulated
(Figure 3A; Supplementary Table S4). In chondrocytes, 246 DEGs
(149 up- and 97 downregulated) were identified (Figure 3B;
Supplementary Table S5). Furthermore, osteocytes revealed

FIGURE 3
BM-MSC and its derivative cell-lineages. Volcano plots of DEGs from contrasts of (A) adipocyte versus BM-MSC (control), (B) chondrocyte versus
BM-MSC (control), and (C) osteocyte versus BM-MSC (control) datasets; log2FC on the x-axis and padj on the y-axis (* = ENSSSCG000000). Thresholds
of significance are shown on the left and right of the intersection lines. Top 15 significant KEGG pathways (based on KEGG_Human_2021 database)
displayed for their number of overlapped genes and their p-value score for (D) adipocyte versus BM-MSC (control), (E) chondrocyte versus BM-MSC
(control), and (F) osteocyte versus BM-MSC (control) datasets.
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598 DEGs (387 up- and 211 downregulated) (Figure 3C;
Supplementary Table S6).

Enrichment analysis based on “KEGG_Human_2021” pathway
revealed significant common terms in all three DEG datasets such as
“ECM-receptor interaction,” “PI3K-Akt signalling pathway2” and
“Focal adhesion” (Figures 3D–F). From other databases, terms such
as such as “Mesenchyme” and “Abdominal adipose tissue,” “Bone
matrix” and “Adipocyte,” “Fat cell differentiation (GO:0045444),”
“Positive regulation of cell differentiation (GO:0045597)” and “Fatty
acid transport (GO:0015908)” for adipocytes, “Long bone,”
“Epiphyseal growth plate” and“ Chondrocyte cell line,” “Skeletal
system development (GO:0001501) for chondrocytes as well as
“Long bone,” “Mesenchyme,” “Bone matrix,” “Tibia,” and
“Osteoblast cell line” for osteocytes were highly significant
(Supplementary Tables S7–S9).

Furthermore, comparisons of the three DEG lists of adipocytes,
chondrocytes and osteocytes contrasted to BM-MSC revealed
301 DEGs unique for adipocytes, 426 for osteocytes and 154 for
chondrocytes (Figure 4A). Additionally, 32 DEGs were detected
both for chondrocytes and osteocytes, whereas 42 DEGs were called
for adipocytes and chondrocytes as well, and 122 DEGs in
adipocytes and osteocytes, respectively. Subsequently, 18 DEGs
were common among all three datasets. These 18 DEGs showed
similar pattern of up- or downregulation among all three DEG lists
(Figure 4B). Interestingly, ten of these DEGs were also differentially
expressed in BM-MSC compared to PBMCs. In contrast, genes such
as C7, MYH11, EGR1, CLIC3, and THBS4 were unique for the

differentiated cell lineages. Among these, C7, MYH11, THSB4 and
FGF19 were assigned to a common pathway “Regulation of actin
cytoskeleton” in KEGG database (KEGG path ID: ssc04810).
According to KEGG, this pathway was not only highlighted to
influence PI3K-Akt and MAPK pathway, which contained several
other DEGs (e.g. FGFR2, PDGFRA, and several ITGA genes) but was
also shown to be affected by the upstream paths of “Focal adhesion
signalling” (KEGG path ID: ssc04510, Figure 5).

Finally, 67 notable MSC marker genes according to our list of all
known CD markers as well as notable MSC markers in human
(Miller-Rhodes, 2023; Uder et al., 2018), which are not restricted to
BM-MSC only, were investigated for the gene expression among our
identified DEGs for their log2FCs of BM-MSC relative to PBMC as
well as BM-MSC relative to adipocytes, chondrocytes or osteocytes
(Figure 6). Among these markers, 21 of the analogous genes, such as
PTPRC (CD45), HLA-DRA (MHC-II), CD200 and CD19 were
downregulated in BM-MSC (in comparison with PBMCs). In
contrast, 14 DEGs, including ITGB1 (CD29), Thy-1 (CD90, pig
annotation: ENSSSCG00000032330), FUT4 (CD15), VCAM1
(CD106), MME (CD10), CD70, NCAM1 (CD56), NT5E (CD73)
were upregulated in BM-MSC (in comparison with PBMC).
Additionally, 26 genes coding for MSC markers did not show
significant differential gene expression in BM-MSC, however
some markers such as ENG (CD105), ITGA6 (CD49f) and TFRC
(CD71) were close to the threshold of significance for upregulation
(log2FC = 1.74 (ENG), 1.77 (ITGA6) 1.84 (TFRC) (Supplementary
Figure S3). Furthermore, MATN3 was upregulated in chondrocytes
as well as VCAM1 (CD106) in osteocytes. In contrast, we found a
downregulation of SOX11 and MME in osteocytes and CD70 and
NT5E in adipocytes.

3.4 Exon usage alterations in differentiating
BM-MSC

Differential exon usage analysis was performed for the same
contrasts as tested for DEGs: We called differences between BM-
MSCs and PBMCs, as well as differences between BM-MSC and
adipocytes, chondrocytes, or osteocytes. In total, 2,93,078 exons
were aligned and counted. Among these exons, 20,507 (related to
7,126 genes) with padj < 0.05 differed in terms of exon usage in
either PBMC or BM-MSCs, and 7,148 exons (related to 3,820 genes)
with |l2FC|>2 were significantly differentially expressed
(Supplementary Table S10).

Furthermore, exon usage analysis among adipocytes,
chondrocytes, osteocytes and BM-MSCs (as control) revealed for
all four groups 2,860 exons (related to 7,612 genes) with potential
significant effects (padj < 0.05) on the phenotypes (Supplementary
Table S11). Additionally, the exon expression was compared
between each cell type to the control, resulting in 356 exons
(related to 283 genes) in adipocytes, 3,346 exons (related to
2,177 genes) in chondrocytes and 2.735 exons (related to
1,810 genes) in osteocytes within the significance threshold |l2FC|
>2 for differential expression of exons. Additionally, we found the
three genes C7, COL17A1 andMYH11, called as part of the group of
the common 18 DEGs, in differentiated cell lineages to contain
significantly differential exon usage in six (C7) or one (COL17A1
and MYH11) exons, respectively (Figure 7).

FIGURE 4
Common DEGs among the three differentiated lineages. (A)
Venn diagram for the number of DEGs from each dataset. In total,
18 DEG are common. (B)Overview of the common 18 DEGs and their
log2FC from all three datasets. The padj values of each test is
displayed on each bar (* = ENSSSCG000000).
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3.5 WGCNA highlights clusters of co-
expressed genes associated with
BM-MSC lineage

The complete transcriptome of 25,484 expressed genes among
all five groups of cells was fitted into 26 weighted co-expressed gene
networks (Figure 8; Supplementary Table S12). Only one module
was exclusively correlated to PBMCs (correlation = 1 and p-value <
2 × 10−50), representing the largest module in terms of number of
genes (19,976 genes, module “turquoise”). This module did not
correlate with BM-MSC and its lineages. Therefore, the co-expressed
genes within this module were specific to PBMC transcriptome.
Furthermore, among the 26 clusters, the smallest module contained
55 co-expressed genes and held no significant correlation with any
phenotype (module “darkorange”). The module with the highest
correlation (correlation = 0.56 and p-value < 0.04) to BM-MSC
phenotype was “lightcyan” with 140 co-expressed genes. However,
no DEG related to BM-MSC could be identified within this module.
Themajority of DEGs in BM-MSC (versus PBMCs) were detected in
module “turquoise” (6,162 out of 6,285 DEGs) and “yellow” (61 out
of 6,285 DEGs). Adipocytes were correlated significantly with four
different modules (“black,” “darkred,” “orange” and “yellow”).

Chondrocytes showed a strong significant correlation with six
different modules (“black” “blue” “brown” “lightgreen” “red” and
“yellow”) and osteocytes were correlated significantly with only two
modules, “darkturquoise” and “green”. In addition, all the
significant clusters were investigated using enrichment analysis
(Supplementary Table S13).

3.6 Fluorescence microscopy investigation
of cell cycle stages as well as genes from
“regulation of actin cytoskeleton” pathway
on protein level

Active proliferation of all tested cell types was shown by DNA
counter stain. The fluorescent intensity signals fromDNA content in
BM-MSC and differentiated lineages represented cell cycle stages
G1 and G2 as indicators of actively mitotic cells. In our results, we
found that osteocytes showed more cells in G1 cycle, whereas
adipocytes had less cells in G1 stage. However, no significant
changes were be observed in G2 stage among all cells (Figure 9).

Furthermore, fluorescent microscopy approach was used for
validation of RNA-seq results on protein level regarding the

FIGURE 5
KEGG pathway “Regulation of actin cytoskeleton” (ssc04810). Modified figure according to KEGG database. The highlighted genes are DEGs
observed in all three datasets. Individual gene names from gene clusters “Focal adhesion, ssc04510” and “PI3K/Akt signaling pathway, ssc04151” were
added to the figure below (Copyright permission 240859 by Kanehisa labs).
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FIGURE 6
List of MSCmarkers with significant changes in porcine BM-MSC.
The bar chart represents 40 significantly differentially expressed
known cell surface markers in BM-MSC (vs. PBMC). Expression levels
are compared to DEGs of adipocytes, chondrocytes and
osteocytes (all vs. BM-MSC). Padj values for each dataset are
presented on its related bars.

FIGURE 7
Differential exon usage of three DEGs C7, MYH11 and COL17A1.
The expression level and exon usage of each exon of (top)C7, (middle)
MYH11 and (bottom) COL17A1 for all cell lineages are displayed. The
differential exon usage for each cell lineage was tested against
BM-MSC as control. Common significant differentially used exons in
all three cell lineages are highlighted in yellow.
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“regulation of the actin cytoskeleton” in BM-MSC and differentiated
cells. We targeted not only C7 as an upstream protein in the pathway
but also actin filaments as the final product of the pathway (please
refer to Figure 5). The fluorescent intensities of both C7 and actin in
differentiated cells (adipocytes, chondrocytes, and osteocytes)
showed a significant increase in comparison to BM-MSC
(Figure 9). Alongside the detected fluorescent signal, the images
displayed visually different patterns and rearrangements of the actin
filaments, which indicated a more active pathway in the
differentiated cells.

4 Discussion

In our work, we studied comprehensive transcriptome profiles
linking BM-MSC gene expression patterns to cell-specific
characteristics and highlighting transcriptome dynamics during
targeted differentiation. To our knowledge, this is the first study
in pigs, which investigates a profound list of genes coding for CD
markers in BM-MSC to highlight expression patterns of these key
stem cell surface markers as potential candidates for future
improved cell-type characterization.

Our transcriptome data shed light to the debate regarding the
expression of well-known markers such as CD73 (NT5E) and
CD105 (ENG) in porcine BM-MSC. We observed the gene
encoding the surface marker CD105 to be below the
significance threshold but with an absolute log2 fold change

approximating |log2FC|)>2 (log2FC = 1.74 and padj = 1.9 ×
10−6). This finding that CD105 is expressed in BM-MSC was also
confirmed with our image analysis in which we used anti-CD105
anti-pig antibody. We assume, that this finding might explain the
divergent results in previous studies, reporting on either no
expression of CD105 or a “mild positivity” as suggested in flow
cytometry data (Juhásova et al., 2011; Schweizer et al., 2020).
Similarly, we found the gene encoding CD73 to be strongly
upregulated in porcine BM-MSC, contradicting a previous study
reporting on its absence (Schweizer et al., 2020). With regard to
these discrepancies, we follow Prinz’ (Prinz, 2017) reasoning, who
suspects the low number of commercially available porcine
antibodies and subsequent potential use of alternatives from
human or mice to be the cause for differential results in different
studies. Consequently, our list of expression patterns of genes
encoding cell surface markers might be of help for future
improved porcine stem cell characterization.

Furthermore, by using PBMCs as benchmark for our study, we
found genes pointing to the immunomodulatory properties of BM-
MSCs. We identified clusters of more than 800 genes involved in the
regulation of the immune system. As demonstrated in previous
studies (Khatri et al., 2015; Liu et al., 2012; Uccelli et al., 2007; Blanco
et al., 2016), several of these genes belong to surface markers (such as
CD4, CD8, CD19 and CD80), interleukin families and their
receptors (IL1R, IL2R, IL4, IL10 and IL12 to name a few) and
different growth factors (such as FGF2, FGF7 and FGF10) as well as
interferons (IFNs) and tumor necrosis factors (TNFs). These results
are in agreement with the findings of functional studies of MSCs,
highlighting the inhibitory effect of BM-MSCs on the proliferation
of T cells, B cells, dendritic cells and natural killer cells (Uccelli et al.,
2007; Russell et al., 2016). It was suggested that this ability of MSCs
could even be used to dampen immune-mediated diseases and
transplant rejection (Uccelli et al., 2007).

In addition to these findings, we identified very interesting
expression patterns in BM-MSC, which are obviously characteristic
for this cell type with regard to its stemness properties; According to
our analysis of DEGs for BM-MSC, we found a significant gene
enrichment for “Rap1 signaling pathway” (KEGG pathway ssc04015)
suggesting its activation, as well as interactions with “Extracellular
matrix receptors” (KEGG pathway ssc04512). Interestingly, the
components of Rap1 pathway have been shown to regulate
paracrine MSC activities as well as promote cell survival by
activating DNA double-strand break repair mechanisms (Ding
et al., 2018; Khattar et al., 2019). In addition, Rap1/PI3K/Akt axis
of this pathway was found to be involved in cell proliferation,
migration and differentiation (Chen et al., 2022; Takahashi et al.,
2013; Jiang et al., 2024; Jiang et al., 2019). Thus, these findings
underline the differentiation capacity of BM-MSC (Chen et al., 2022).

This nature of BM-MSC was likewise highlighted by our
findings of 18 common DEGs in all differentiated cell lineages.
Collectively, these DEGs were apparently associated with either
characteristic common molecular processes underlying the core
stem cell properties of self-renewal or the generation of
differentiated progeny, as referred to stemness (Douglas et al.,
2014). Among these genes, we identified FGF19, downregulated
in all three datasets, which is known to promote epithelial-
mesenchymal transition (EMT) and self-renewal capacity of
cancer stem cells, and to induce cell cycle arrest in differentiated

FIGURE 8
Weighted gene co-expression network analysis. The heat map
presents the correlation between modules and cell types. The size of
each module is mentioned in parenthesis next to the module’s name.
FDR of each correlation is present in parenthesis on its
corresponding heat-cell.
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chondrocytes (Wang et al., 2021; Zhao et al., 2016; Chen et al., 2023).
Furthermore, our data also revealed a downregulation of IGFBP6,
which is supposed to result in the inhibition of EMT and activation
of differentiation (Cui et al., 2011; Nikulin et al., 2018) as well as
EGR1, meditating actin assembly and mechanotransduction
signaling in stem cells in response to cytoskeletal tension (Bleher
et al., 2020; Baek et al., 2022). PTH1R is another example, which was
upregulated in our datasets and subsequently might be involved in
the initiation of bone formation and differentiation through

activation of parathyroid hormone and Wnt signaling pathway
(Yu et al., 2012). Furthermore, SMOC2, which was upregulated
in all data-sets, could probably act as an enhancer in activating
PI3K-Akt signaling pathway and subsequently promote
differentiation as previously suggested (He et al., 2023). These
findings suggest that these common DEGs might be key players
represented as “BM-MSC differentiation driver markers.

Among these potential differentiation driver genes, ten DEGs
were also found to be differential in BM-MSC vs. PBMC. This

FIGURE 9
Fluorescence microscopy images of fixed BM-MSC and its differentiated cell lineages. The fixed cells were stained for nuclei (Hoechst, blue), C7
(anti-C7; yellow) and actin (Phalloidin, purple). The bottom panel, from left to right, shows the analytical graphs for fluorescent intensities for DNA content
(left), anti-C7 (middle) and anti-actin (right). The histogram at the left shows the DNA content with fluorescent intensity on the x axis. The more intense
signal is the indicator of G2 cycle due to DNA duplication. The boxplots display mean fluorescent intensity of C7 (middle) and actin (right). The plots
show significant increase in C7 and actin in the differentiated cells in comparison to BM-MSC. The mean value of each intensity is written in each
corresponding boxplot. All testes are significant with FDR <0.05 (the data is not shown).
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strongly suggests that these genes might be of importance for the
maintenance of the BM-MSC phenotype. For two out of the
remaining eight genes, C7 and MYH11, we found significant
differential exon usage in addition to their upregulation in all
differentiated cell-types. This finding follows previous assumption
that the encoded proteins of these genes might play a significant role
in the activation of stress fibers in the actin cytoskeleton (KEGG
pathway ssc04810 (Kanehisa and Goto, 2000; Kanehisa, 2019;
Kanehisa et al., 2023)) and therefore control cell proliferation,
migration and lineage commitment (Muller et al., 2013; Burnette
et al., 2011; Clarke and Martin, 2021). Notably, this pathway
meditates PI3K signaling through growth factors such as FGF19
(KEGG pathway ssc04810) as well as MAPK signaling pathway
promoting the mechanically induced signal transduction and
differentiation (Muller et al., 2013).

In summary, we presume that for porcine BM-MSC,
Rap1 signaling and subsequently its downstream pathways PI3K-
Akt as well as MAPK signaling are essential players for the cellular
functionality andmaintenance of its stemness. The increase in PI3K-
Akt activity might lead the cell toward proliferation and
differentiation. In addition, we assume that changes in the
regulation of actin cytoskeleton during differentiation, might not
only result in cell morphological changes but also facilitate the
activity of PI3K andMAPK cascades. As potential key players in this
differentiation process, our data highlight 18 candidate “BM-MSC
differentiation driver markers.” Subsequently, this study offers a
comprehensive molecular phenotype of porcine BM-MSC and
elucidates its potential underlying mechanisms in vitro.
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SUPPLEMENTARY FIGURE S1
Heatmap of sample-sample distance and clustering. The heatmap visualizes
the results of similarity and hierarchical clustering between each cell type
and its replicates based on Euclidian distances. Distances are displayed on
each cell of the heatmap.

SUPPLEMENTARY FIGURE S2
PCA plots from differential gene expression analysis. The PCA plot shows the
variances among the BM-MSC, adipocytes, chondrocytes, and
osteocytes datasets.

SUPPLEMENTARY FIGURE S3
Expression of not differentially expressed BM-MSC markers. The bar chart
display the log2FC of known but not differentially expressed MSCmarkers in
porcine BM-MSC, adipocytes, chondrocytes and osteocytes. Padj of each
gens is displayed on its respective bar.
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Background: Mechanical stress and pathological signaling trigger the activation of
fibroblasts tomyofibroblasts,which impacts extracellularmatrix composition, disrupts
normal wound healing, and can generate deleterious fibrosis. Myocardial fibrosis
independently promotes cardiac arrhythmias, sudden cardiac arrest, and contributes
to the severity of heart failure. Fibrosis can also alter cell-to-cell communication and
increase myocardial stiffness which eventually may lead to lusitropic and inotropic
cardiac dysfunction. Human induced pluripotent stem cell derived cardiac fibroblasts
(hiPSC-CFs) have the potential to enhance clinical relevance in precision disease
modeling by facilitating the study of patient-specific phenotypes. However, it is
unclear whether hiPSC-CFs can be activated to become myofibroblasts akin to
primary cells, and the key signaling mechanisms in this process remain unidentified.

Objective: We aim to explore the notable changes in fibroblast phenotype upon
passage-mediated activation of hiPSC-CFs with increased mitochondrial
metabolism, like primary cardiac fibroblasts.

Methods: We activated the hiPSC-CFs with serial passaging from passage 0 to 3
(P0 to P3) and treatment of P0 with TGFβ1.

Results: Passage-mediated activation of hiPSC-CFs was associated with a gradual
induction of genes to initiate the activation of these cells to myofibroblasts, including
collagen, periostin, fibronectin, and collagen fiber processing enzymes with
concomitant downregulation of cellular proliferation markers. Most importantly,
canonical TGFβ1 and Hippo signaling component genes including TAZ were
influenced by passaging hiPSC-CFs. Seahorse assay revealed that passaging and
TGFβ1 treatment increased mitochondrial respiration, consistent with fibroblast
activation requiring increased energy production, whereas treatment with the
glutaminolysis inhibitor BPTES completely attenuated this process.
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Conclusion:Our study highlights that the hiPSC-CF passaging enhanced fibroblast
activation, activated fibrotic signaling pathways, and enhanced mitochondrial
metabolism approximating what has been reported in primary cardiac
fibroblasts. Thus, hiPSC-CFs may provide an accurate in vitro preclinical model
for the cardiac fibrotic condition, which may facilitate the identification of putative
anti-fibrotic therapies, including patient-specific approaches.

KEYWORDS

fibroblast, myofibroblast, induced pluripotent stem cells, arrhythmia, cardiac fibrosis,
cardiac remodeling, cardiac ECM

Highlights

• Passaging promotes the activation of fibroblasts to
myofibroblasts.

• TGFβ1 treatment activates the fibroblasts, but their
expression profile was uniquely different from passaged
myofibroblasts.

• High energy requiring fibroblast activation is dependent on
glutaminase-based mitochondrial metabolism.

• Passaging induces TGFβ1 and Hippo signaling pathways in
activated fibroblasts and myofibroblasts.

Introduction

Extracellular matrix (ECM) remodeling in the heart is crucial to
forming a stable scar after myocardial infarction (MI) and
contributes to replacement fibrosis after a significant loss of
cardiomyocytes upon injury (Bohl et al., 2008; Sutton and
Sharpe, 2000). In hypertensive and diabetic myocardia,
uncontrolled ECM alteration can lead to reactive fibrosis upon
activation of renin-angiotensin and β-adrenergic signalling
(Tanaka et al., 1986; Weber and Brilla, 1991; Weber et al., 1988).
ECM remodeling is tightly coordinated, and several trophic factors

GRAPHICAL ABSTRACT
Probing the activation of fibroblasts to myofibroblasts is key in ECM remodeling processes to avoid fibrosis-related adverse complications, and to
better understand disease pathology. Here we report that passaging of hiPSC-derived cardiac fibroblasts promotes fibroblast activation along with a
gradual shift in gene expression and metabolic changes towards myofibroblasts. TGFβ1 treatment activates non-passaged fibroblasts, but they are
dissimilar to myofibroblasts. The energy-intensive fibroblast to myofibroblast activation process is dependent on glutaminase-mediated
mitochondrial metabolism and is prevented by treatment with GLS-1 inhibitor BPTES. Our work demonstrates that hiPSC-CFs can offer a preclinical
model analogous to primary cardiac fibroblasts that is comparable with passage-mediated myofibroblast activation and increased mitochondrial
metabolism. hiPSC-CFs may also facilitate patient-specific novel anti-fibrosis drug screening and disease management.
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are known to stimulate cardiac fibroblast activation. Wound healing,
in the absence of fibrosis, is marked by fibroblast activation to
myofibroblasts (Frangogiannis, 2021) and rapid scar formation
followed by a period of myofibroblast apoptosis which results in
healed tissue characterized by continuous and relatively slow matrix
turn-over. Conversely wound healing after myocardial infarction, or
in response to prolonged stress in the heart such as in pressure
overload, is typified by the relative persistence of myofibroblasts
with attendant excessive synthesis and deposition of ECM and
matrix-associated proteins (Hinz and Lagares, 2020; Nagalingam
et al., 2022). This excessive deposition includes structural collagens
as well as periostin (Shimazaki et al., 2008) and the fibronectin ED-A
splice variant. As our understanding of the pathophysiology and
signaling mechanisms of cardiac fibroblast activation and the genes
that are associated with this activation remains incomplete, its
investigation is warranted. Several groups have investigated the
signaling mechanisms governing fibroblast activation using
primary murine cardiac fibroblasts (Klingberg et al., 2018). The
expression of α-smooth muscle actin (α-SMA) by myofibroblasts is
often cited as a standard marker protein of fibroblast activation and
after acute MI, increased numbers of α-SMA-positive
myofibroblasts are found within the infarct region (Virag and
Murry, 2003). Lineage tracing of cardiac myofibroblasts in a
murine MI model revealed that after scar formation, some
myofibroblasts transition towards quiescent matrifibrocytes, and
that in the human myocardial scar, similar matrifibrocytes with
unique gene expression and secretome exist and are separate from
myofibroblasts (Fu et al., 2018). Whether the persistence of
myofibroblasts and appearance of matrifibrocytes occurs in hearts
of various etiologies of disease and in non-murine preclinical models
remains an open question. In a left ventricular pressure overload
model, α-SMA expressing myofibroblasts were found to be elevated
at 2 weeks and then declined after 4 weeks, and in vitro cultured
fibroblasts revealed that α-SMA expression peaked at 9 days and
declined by 12 days, indicating that fibroblast activationmay present
as a dynamic transition (Gilles et al., 2020). Removal of periostin-
positive myofibroblasts results in less severity of the disease
phenotype by limiting collagen synthesis and scar formation after
MI (Kanisicak et al., 2016). TGFβ1 (Algeciras et al., 2021;
Dobaczewski et al., 2010; Saadat et al., 2020; Villalobos et al.,
2019; Zeglinski et al., 2016), and hippo signaling (Landry et al.,
2021) is also elevated when fibroblasts are activated to become
myofibroblasts. Fibroblast activation to myofibroblasts utilizes
energy via mitochondrial metabolism (Negmadjanov et al., 2015)
and is highly dependent on glutaminolysis and its rate-limiting
enzyme GLS1 (Chattopadhyaya et al., 2022; Gibb et al., 2022). Most
fibroblast activation studies to date were performed either in stable
cell lines or murine primary cells due to the scarcity of human tissues
to prepare primary cells, and commercially available cardiac
fibroblasts are often passaged multiple times prior to sale.

There are multiple protocols published so far to differentiate
cardiac fibroblasts from iPSCs; however, most of them share a
similar path with various small molecules to initiate the cardiac
mesoderm formation followed by epicardial cell conversion to
cardiac fibroblasts. To generate the cardiac mesoderm and
cardiac progenitors from iPSCs, most protocols used a
GSK3 inhibitor (CHIR99021) and a WNT signaling inhibitor
(IWR1 or XAV939); after cardiac mesoderm formation, a TGFβ-

inhibitor (SB431542) and retinoic acid (RA) promoted conversion
to epicardial lineage cells, followed by FGF-2 treatment to generate
hiPSC-CFs (Beauchamp et al., 2020; Campostrini et al., 2021;
Cumberland et al., 2023; Giacomelli et al., 2020; Hall et al., 2023;
Soussi et al., 2023; Whitehead et al., 2022; Yu et al., 2022; Zhang
et al., 2022; Zhang H. et al., 2019). The differentiation protocols for
iPSC-derived lung and dermal fibroblasts differ in the growth factors
and chemical signals used on specific lineages to become tissue-
specific fibroblasts (Alvarez-Palomo et al., 2020; Itoh et al., 2013;
Kim et al., 2018; Mitchell et al., 2023; Tamai et al., 2022; Wong et al.,
2015). Most notably, NKX2.5 defines the cardiac-specific lineage
from cardiac mesoderm (Zhang et al., 2022; Zhang H. et al., 2019),
whereas NKX2.1 directs lung-specific lineage (Mitchell et al., 2023;
Wong et al., 2012). iPSC-CFs express cardiac-specific genes like
GATA4, BMP4, TCF21, DDR2, TE-7, HAND2, HEY1, ISL1 and α-
SMA and are influenced by their epicardial lineage (Campostrini
et al., 2021; Giacomelli et al., 2020; Zhang et al., 2022; Zhang H. et al.,
2019; Zhang J. et al., 2019). iPSC-derived lung fibroblasts express
different sets of genes like NKX2.1, GATA6, DNP63a, FOXA1,
ACE1, AQP5, T1α, SPA, SPB, SPC FOXF1, and FOXA2 (Alvarez-
Palomo et al., 2020; Mitchell et al., 2023; Tamai et al., 2022; Wong
et al., 2015); whereas iPSC-derived dermal fibroblasts and
keratinocytes presented with not only KRT14, but also ΔNp63,
DSG3, ITGB4, laminin 5, KRT5, KRT1 and loricrin (Itoh et al., 2013;
Kim et al., 2018).

Current advancements and optimization in protocols that are
more efficient in generating hiPSC-derived cardiac fibroblasts
provide a compelling model to mimic myofibroblast activation to
study fibrosis. A recent study reported the use of
TGFβ1 inhibitors to maintain the fibroblasts as quiescent for
up to five passages (Zhang H. et al., 2019). Fibroblasts locally
generate TGFβ1 during mechanical stretch upon interacting with
integrins (Munger et al., 1999; Sarrazy et al., 2014) and TGFβ1 is a
critical player in activating the fibroblasts and fibrosis-associated
ECM gene expression in cultured fibroblasts (Dobaczewski et al.,
2010; Eghbali et al., 1991; Heimer et al., 1995; Sarrazy et al., 2014;
Villarreal et al., 1996; Yi et al., 2014). Several studies used
passaging and TGFβ1 to induce fibroblast activation and the
myofibroblast phenotype in primary cardiac fibroblasts. It is
unclear whether TGFβ1-induced fibroblast activation is similar
to the myofibroblastic phenotype produced by passaging. In this
study, our goal was to capture a snapshot of passage-mediated
cardiac fibroblast to myofibroblast transition and TGFβ1-
induced fibroblast activation in hiPSC-derived cardiac
fibroblasts using transcriptomic, proteomic, and metabolomic
profiling and signaling mechanisms involved to provide a
better understanding of the fibrosis-associated disease
phenotype; also using hiPSC-CFs as a better alternate model
than murine and human cardiac fibroblasts.

Materials and methods

Human induced pluripotent stem cell
maintenance and fibroblast differentiation

We used two hiPSC lines (iPS IMR90-1 and STAN248i-617C1),
obtained from the WiCell Research Institute, for fibroblast
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differentiation, which was accomplished using a few modifications
of previously published protocols (Zhang et al., 2022; Zhang H. et al.,
2019). The hiPSCs were maintained on Corning Matrigel-coated 6-
well tissue culture plates with mTeSR-Plus medium (STEMCELL
Technologies). Cells were passaged every 4 days using ReLeSRmedia
(StemCell Technologies) and were then seeded on a six-well
Matrigel-coated plate at a density of 175,000 cells cm−2 in
mTeSR-Plus medium. For fibroblast differentiation, on day-
0 >90% confluent hiPSC monolayers were treated with 6 μM
CHIR99021 containing RPMI-1640 + B27- insulin media for
48 h. On day-2 the media was replaced with RPMI-1640 + B27-
insulin media for 24 h; on day-3, cells were treated with 5 μM of the
WNT signaling inhibitor IWR1 (I0161, Sigma) containing RPMI-
1640 + B27-insulin media for 48 h; On day-5, the media was
replaced with RPMI-1640 + B27-insulin media for 24 h. On day-
6, hiPSC-derived progenitor cells (hiPSC-PCs) were passaged and
replated at a density of 200,000 cells cm−2 in advanced DMEM
medium (12634028, Gibco) consisting of 1% FBS and glutaMax
along with 5 μMCHIR99021 and 2 μM retinoic acid (R2625, Sigma-
Aldrich) for 72 h. On day-9, cells were maintained in advanced
DMEM consisting of 1% FBS and glutaMax for 48 h. On day-11,
hiPSC-PCs were passaged and replated at a density of
100,000 cells cm−2 then treated with 10 μM SB431542 (S1067,
Selleck chemicals) in fibroblast growth medium-3 (FGM-3)
(PromoCell) for another 72 h. On day-14, hiPSC-derived
epicardial cells (hiPSC-EPCs) were passaged and replated at a
density of 100,000 cells cm−2 then treated with 20 ng/mL FGF2
(100–18B, PeproTech) and 10 μM SB431542 (S1067, Selleck
chemicals) in fibroblast growth medium-3 (FGM-3)
(PromoCell) for another 6 days, with the media changed every
48 h. On day-20, hiPSC derived fibroblasts (hiPSC-CFs) (P0) were
ready to be passaged and replated at a density of 75,000 cells cm−2

with FGM-3 media. Then after every 96 h hiPSC-CFs were
passaged until passage-3 (P3). We considered each
differentiation into a replicate and multiple differentiations
were carried out with two different hiPSC lines. For the
TGFβ1 treatment, hiPSC-CFs were serum starved for 6 h
without serum supplement in FGM-3 media, prior to the
treatment with 10 ng/mL of TGFβ1 for 48 h.

The critical part in biological/technical replicates in these
experiments has to do with the manual differentiation of hiPSCs
and the subsequent passaging of hiPSC-CFs. Both protocols can
cause significant variations in gene expression and proteomic
profiles. For these experiments, at least four separate
differentiations/passages were performed by the same highly
experienced scientist and the variance was very limited.

Protein isolation and purification

The hiPSC-CF proteins were isolated from cell pellets using
TrypLE dissociation reagent, which was added to each well and
incubated for ~5–6 min. This was followed by media neutralization
and the collection of detached cells. The homogenous cell
suspension was centrifuged to obtain the cell pellet. The pellet
was then resuspended in an aliquot of lysis buffer in which the
volume was proportional to the number of cells. The cells were
counted using the CellDrop automated cell counter. The lysis buffer

contained 100 mM HEPES (pH = 8–8.5) + 20% SDS. Cell lysates
were then placed for 5 min in 95°C water bath, followed by 3 min on
ice. To complete the lysis, the samples were sonicated twice for 30 s,
and placed on ice between rounds. This was followed by treatment
with benzonase (EMD Millipore-Sigma) at 37°C for 30 min to
fragment the chromatin.

After obtaining the lysates, each sample was reduced with
10 mM dithiothreitol (DTT) at 37°C for 30 min, followed by
alkylation with 50 mM chloroacetamide (CAA) for 30 min in
the dark. The alkylation was quenched in 50 mM DTT for 10 min
at room temperature. To each sample, hydrophilic and
hydrophobic Sera-Mag Speed Beads (GE Life Sciences,
Washington, US) were added in 1:1 ratio. Proteins were then
bound to the beads with 100% ethanol (80% v/v) and washed twice
with 90% ethanol.

After binding of the proteins to the beads, the samples
underwent an overnight enzymatic digestion with trypsin (1:
50 w/w), followed by C18 matrix midi-column clean up and
elution. The BioPure midi columns (Nest Group Inc.) were
conditioned with 200 μL methanol, 200 μL 0.1% formic acid
(FA), 60% acetonitrile (ACN), and 200 μL 0.1% trifluoroacetic
acid (TFA). The sample pH was adjusted to pH = 3 – 4 using
10% TFA prior to loading the columns. Samples were sequentially
eluted 3 times with 70 μL, 70 μL, and 50 μL 0.1% FA, 60% ACN. The
eluate was collected into LoBind tubes and placed into a SpeedVac to
remove the organic ACN. Lastly, the samples were resuspended in
0.1% FA (ready for MS injection).

Protein detection and quantification using
LC/MS

The total protein concentration for each of the purified samples
was determined using Nanodrop. Mass spectrometric analyses were
performed on Q Exactive HF Orbitrap mass spectrometer coupled
with an Easy-nLC liquid chromatography system (Thermo
Scientific). The time of flight was calculated as the period
between injection to detection. In the MS sample chamber (96-
well plate), the samples were completely randomized across all
conditions and biological replicates. A total of 1 μg peptides per
sample was injected for analysis. The peptides were separated over a
3-h gradient consisting of Buffer A (0.1% FA in 2% ACN) and 2%–
80% Buffer B (0.1% FA in 95%ACN) at a set flow rate of 300 nL/min.
The raw mass-to-charge (M/Z) data acquired from the Q Exactive
HF were searched with MaxQuant (MQ)-version 2.0.0.0 (Max
Planck Institute, Germany), and Proteome discoverer software
(Thermo Fisher Scientific, CA, United States), using the built-in
search engine, and embedded standard DDA settings. The false
discovery rate for protein and peptide searches was set at 1%.
Digestion settings were set to trypsin. Oxidation (M) and Acetyl
(N-term) were set as dynamic modifications. Carbamidomethyl (C)
was set as fixed modification, and Phosphorylation (STY) was set as
a variable modification. For the main comparative protein search,
the human proteome database (FASTA) was downloaded from
Uniprot (2022_06; 20,365 sequences) and used as the reference
file. Common contaminants were embedded from MaxQuant.
Peptide sequences that were labeled as “Potential contaminant/
REV” were excluded from the final analysis.
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Seahorse assay

hiPSCs were differentiated 4 days apart to attain all the passages
(P0, P1, P2 and P3) on the same day to perform Seahorse assay.
hiPSC-derived fibroblasts were dissociated using TrypLE and
replated at a density of 15,000 cells/well on Matrigel-coated
Seahorse Xfe96 well cell culture plates. Cells were serum starved
for 6 h without serum supplement in FGM-3 media, after 24 h of
initial plating, followed by treatment with 10 ng/mL TGFβ1 for 48 h
or 10 μM BPTES treated after 24 h of TGFβ1 treatment for 24 h. On
the day of the experiment, the cell medium was changed to Seahorse
media containing RPMI1640 medium without glucose and sodium
bicarbonate (R1383, Sigma) supplemented with glucose (10 mM,
Sigma), glutamine (2 mM, Sigma), and sodium pyruvate (1 mM,
Sigma) and cells were incubated in a non-CO2 incubator for a
maximum of 45min. Subsequently, the SeahorseMito Stress test was
performed using Agilent Seahorse XFe96 Analyzer by sequential
injection of ATP synthase inhibitor oligomycin (1 μM, Sigma),
mitochondrial uncoupler FCCP (1.5 μM, Sigma), and
mitochondrial complex I and III inhibitors rotenone (100 nM,
Sigma)/antimycin A (1 μM, Sigma). The raw oxygen
consumption rate (OCR) and extracellular acidification rate
(ECAR) values were normalized based on cell numbers per each
well usingWave software (Agilent Technologies, Inc.). Data analysis
and visualization were performed using GraphPad Prism [Version
9.5.1 (528)].

Immunofluorescence staining

hiPSC-derived fibroblasts were cultured on a cover glass coated
with Matrigel with appropriate seeding density. Cells were washed
thrice with PBS followed by 4% PFA for 10 min at room temperature
(RT). Fixed cells were quenched with 100 mM glycine for 5 min at
RT, then washed with PBS thrice. Cells were permeabilized using
0.1%–0.3% triton X-100 in PBS for 3 mins, followed by washing with
PBS thrice. Permeabilized cells were then blocked with 5% BSA for
45 mins, followed by overnight incubation with 1:500 dilution of
DDR-2 antibody (ab63337, Abcam). The cover glass with the cells
was then washed with PBS 3 times for 5 min in an orbital motion
shaker at 50–60 rpm. The cells were incubated with phalloidin
(A34055, ThermoFisher) and 1:500 dilution of goat anti-rabbit
secondary antibody in 1% BSA for an hour at RT in the dark.
The cells were washed with PBS for 5 min three times in an orbital
motion shaker, then mounted on a glass slide using ProLong Glass
Antifade Mountant (P36980, ThermoFisher) and dried for 2 h, then
imaged under a Nikon Ti microscope.

Quantitative real-time PCR

hiPSC-derived fibroblasts were dissociated using TrypLE, and
the cells were pelleted by centrifugation and flash-frozen prior to
RNA isolation. Total RNA from flash-frozen cells was processed
using NucleoMag (744350.1, Takara) Magnetic bead-based RNA
isolation following the manufacturer’s instructions. cDNA was
generated from 1 µg RNA samples using the iScript cDNA
Synthesis kit (Bio-Rad, United States). qPCR reactions were

prepared using 5 mL SsoAdvanced Universal SYBR Green
Supermix (Bio-Rad, United States) and 4 mL 1:6 diluted cDNA
template along with 200 nM forward and reverse primers in a total
volume of 10 mL per reaction. PCR amplification was performed in
duplicate for each reaction on a CFX384 Touch Real-Time PCR
(Bio-Rad, United States). The cycling conditions were 95°C (3 min),
followed by 40 cycles of denaturation at 95°C (15 s) and extension at
62°C (30 s). After amplification, a continuous melt curve was
generated from 60°C to 95°C to confirm the amplification of
single amplicons. Relative gene expression was calculated using
the 2−ΔΔCT method with normalization to GAPDH (primer
sequences are in Supplementary Table S1).

NanoString analysis for mRNA
expression profile

Total RNA from flash-frozen cells was processed using
NucleoMag (744350.1, Takara) Magnetic bead-based RNA
isolation, according to the manufacturer’s instructions. The
concentration and purity of the RNA were determined using a
NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific).
Multiplexed mRNA profiling was conducted using a human fibrosis
V2 panel codeset containing 762 fibrosis-specific gene probes
synthesized by NanoString Technologies Inc. and read on the
NanoString nCounter® SPRINT Profiler. A total of 50 ng purified
RNA per sample was hybridized overnight (16 h) to the custom
capture and reporter probes. Hybridized samples were loaded into
each channel of the nCounter® SPRINT cartridge. Raw mRNA
counts were collected, and the results were normalized to ten
housekeeping genes (ACAD9, ARMH3, CNOT10, GUSB,
MTMR14, NOL7, NUBP1, PGK1, PPIA, RPLP0). Analysis was
performed on the nSolver analysis software and the Advanced
Analysis module (NanoString Technologies Inc.).

Statistical analysis

Data are reported as mean ± standard deviation of a minimum
of three independent biological replicates. To reduce variability, all
cells, including control and treatment groups, were isolated and
cultured on the same day. For data analysis, different treatments and
samples between groups were kept blinded. Violin plots from
NanoString and mass spectrometry data sets were generated and
analyzed using GraphPad prism (9.5.1) software with one-way
analysis of variance with Tukey’s post-hoc analysis as
appropriate, with p < 0.05 considered to be statistically
significant. Principal component analysis (PCA) was performed
based on the Benjamini–Hochberg method false discovery rate
(FDR) adjusted to p-value <0.05. Group correlation heatmap was
based on Pearson correlation and FDR adjusted to p-value <0.05.
Volcano plots were prepared based on Welch’s t-test and adjusted
p < 0.05 using Perseus v2.0.10.0 software. Heatmap for selected
genes was generated with the pheatmap package (clustering_
distance_rows = “euclidean”) and with a p-value
of <0.05 considered statistically significant. The compareCluster
function was used to compare the top 10 gene ontology (GO) terms
between each group (pAdjustMethod = “BH”, pvalueCutoff = 0.05,
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qvalueCutoff = 0.2). Gene set enrichment analysis was performed
using the gseGO function (pvalueCutoff = 0.05). Dot s were
generated using ggplot2 dotplot (Wickham, 2016).

Results

Passaging promotes fibroblast activation to
myofibroblasts

In our hiPSC-derived cardiac fibroblasts, upon passaging towards
the myofibroblast (P3) phenotype or treatment with TGFβ1 to
become activated fibroblasts (P0+TGFβ1), both phenotypes display
a reduction in the expression of the proliferation markers CDK-4 at
the mRNA level (Supplementary Figure S1A) and CDK-1, MCM3,
and PCNA at the protein level (Supplementary Figures S1B–D)
compared to the non-passaged fibroblasts (P0). The characteristic
hallmark of fibroblast to myofibroblast activation is α-SMA positive
stress fiber incorporation inside the myofibroblasts (Hinz, 2007).
Phalloidin staining and DDR immunofluorescence revealed that
hiPSC-derived cardiac fibroblasts that underwent three passages
(P1 to P3) or P0+TGFβ1 showed gradual expression of stress
fibers in higher passaged cells compared to non-passaged cells (P0)
(Figure 1B). Most importantly, after passaging hiPSC-CFs displayed a
reduction in TCF21 gene expression from P0 to P3 and in P0+TGFβ1,
whereas myofibroblast marker genes (e.g., periostin (POSTN) and
ED-A-fibronectin [ED-A-Fn)] showed an incremental expression
pattern in P0 to P3 and in P0+TGFβ1 compared to P0 cells at the
mRNA level using qPCR analysis (Figures 1C–E). These results clearly
indicate that hiPSC-derived fibroblasts, upon passaging TGFβ,
gradually become myofibroblasts.

Passaging elevates fibrosis-associated
genes while transitioning to the
myofibroblast phenotype

We compared the different passages of hiPSC-CFs with the
NanoString codeset using a PCA plot displaying unique clusters of
various passages of hiPSC-CFs (P0, P1, P2, P3) and TGFβ1 treated
non-passaged cells (P0+TGFβ1). The differences are 55.6% and
14.6% in component-1 (X-axis) and component-2 (Y-axis),
respectively. The P0 and P3 clusters showed the greatest
differences between each other, while other clusters (P1, P2,
P0+TGFβ1) fell between P0 and P3 (Figure 2A). The group
correlation of gene expression between various passages of
hiPSC-CFs were plotted based on Pearson correlation, and the
higher intensity of red corresponds to high correlation, and
higher green corresponds less correlation between groups
(Figure 2B). Volcano plots were generated based on fold change
between P0+TGFβ1 vs. P0 (Figure 2C), P1 vs. P0 (Figure 2D), P2 vs.
P0 (Figure 2E), P3 vs. P0 (Figure 2F), P3 vs. P0+TGFβ1 (Figure 2G),
in which upregulated genes are depicted on the left side and
downregulated genes are on the right side of the panel. Volcano
plot analysis revealed that each passage of hiPSC-CFs (P1, P2, P3)
and P0+TGFβ1 gene expression pattern is distinct when compared
to P0; also, P3 displayed significantly different gene expression
compared to P0+TGFβ1. The P3 group showed significant

upregulation in profibrotic and myofibroblast-related genes,
whereas P1, P2, and P0+TGFβ1 showed a steady shift towards
myofibroblast-related profibrotic genes such as POSTN, ED-A-Fn
and key fibrillar collagens (Col1α1 and Col1α2), whereas α-smooth
muscle actin (ACTA2) expression was higher in the P1 and P0+
TGFβ1 compared to P0 but not in P2 and P3. We tested the
differential expression of selective ECM-related genes comparing
various passages of hiPSC-CFs (P0, P1, P2, P3) and P0+TGFβ1 using
heatmap analysis (Figure 2H). The heatmap data revealed that the
expression profile of different passages of hiPSC-CFs (P1, P2, P3)
and P0+TGFβ1 caused a significant shifting towards the
myofibroblast phenotype upon passage-mediated fibroblast
activation. Activated fibroblasts and myofibroblasts are responsible
for the increased ECM turnover in reparative and reactive fibrosis,
increasing collagen, fibronectin, and other secretory proteins.
Passaging of hiPSC-CFs revealed that gene expression of major
fibrotic fibrillar collagens, Col1α1 and Col1α2, was significantly
higher in both P0+TGFβ1and P3 compared to P0, whereas
Col3α1 showed a reduction in P0+TGFβ1 and P3 compared to P0
(Supplementary Figures S3A–C). Similarly, gene expression of
structural and secretory proteins like α-smooth muscle actin
(ACTA2), periostin (POSTN), fibronectin (FN1), vimentin (VIM),
integrin beta-1 (ITGB1), and integrin alpha-4 (ITGA4) were
significantly elevated in P0+TGFβ1 and P3 compared to P0
(Supplementary Figures S3D–I). ECM remodeling enzymes play a
crucial role in the formation and maturation of stable scars, and their
expression was elevated in parallel with a significant accumulation of
mature collagen fibers in the failing myocardium. Lysyl oxidase (LOX)
acts as a catalyst in linking collagen fibers to become mature collagen,
and along with other matrix remodeling enzymes such as MMP2 and
MMP1 was upregulated in both P3 and P0+TGFβ1 compared to P0
(Supplementary Figures S2A–C). Comparative cluster enrichment
analysis revealed the top 10 upregulated pathways when comparing
P3 vs. P0, P0+TGFβ1 vs. P0, or P3 vs. P0+TGFβ1 (Figure 2H); similar
analysis provided the top 10 downregulated pathways in these
comparisons (Figure 2I). Passage mediated activation of fibroblasts
results in alterations in gene expression in the transcripts shown in
Figure 3 relative to P0 with each passage (P1, P2 and P3), significant
upregulation (Figure 3A) and downregulation (Figure 3B) observed
with each consecutive passage.

Passaging alters the proteomic profile of
hiPSC-derived cardiac fibroblasts

To understand the passage-mediated proteome profile changes,
we performed PCA to see the clustering differences between non-
passaged fibroblasts (P0), myofibroblasts (P3), and growth factor
activated fibroblasts (P0+TGFβ1) using the Benjamini–Hochberg
method (Figure 4A). The cluster differences are 46.3% in
component-1 (X-axis) and 16.9% in component-2 (Y-axis). The
P0 and P3 clusters are notably far apart from each other, with
P0+TGFβ1 falling in the middle. Group correlation analysis of
proteomic expression in P0, P3, and P0+TGFβ1 based on
Pearson correlation revealed intensity gradient differences
between groups, in which higher intensity of brown corresponds
to high correlation and higher blue corresponds minimal correlation
(Figure 4B). Proteome profiles of different passages of hiPSC-CFs
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(P0, P1, P2, P3) and P0+TGFβ1 were plotted based on fold change
between P0+ TGFβ1 vs. P0 (Figure 4C), P3 vs. P0 (Figure 4D), P3 vs.
P0+ TGFβ1 (Figure 4E) using volcano plot analysis; these plots
indicated that passaging promoted the myofibroblast phenotype in

hiPSC-CFs, whereas TGFβ1-treated non-passaged fibroblasts also
exhibited distinct proteomic expression compared to either P0 or P3.
Differential expression of selected ECM-related proteins compared
between P0, P3, and P0+TGFβ1 was examined using heatmap

FIGURE 1
hiPSC-derived fibroblast transition to the myofibroblast phenotype after passaging. Timeline and differentiation of fibroblasts from hiPSCs (A).
Images represent stress fibers stained with phalloidin (red), DDR-2 (green) and DAPI (blue) in hiPSC-derived non-passaged fibroblasts (P0), non-passaged
fibroblasts treated with TGFβ (P0+TGFβ1) and different passages of fibroblasts (P1, P2, P3) (B). Passaging of fibroblasts initiates myofibroblast activation,
altering the mRNA expression of TCF21 (C), POSTN (D), and EDA-Fn (E) as assessed by qPCR. Statistical significance was determined by one-way
ANOVAwith Tukey’s post hoc test (n = 3–4). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. P0 and #p ≤ 0.05, ####p ≤ 0.0001 vs. P0+TGFβ1. The
STAN248i-617C1 hiPSC line was used to generate the data for (B) and the iPS IMR90-1 line was used to generate the data for (C–E).
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FIGURE 2
Passaging promotes fibrosis-responsive gene expression. PCA of NanoString data (A), based on Benjamini–Hochberg method FDR adjusted to
p-value <0.05. Group correlation of different passages of fibroblasts based on Pearson correlation method (B), and the gene expression values were
scaled from 86.5 to 98.5. Volcano plot of fibrosis gene expression profile in hiPSC-derived fibroblasts P0+TGFβ1 vs. P0 (C), P1 vs. P0 (D), P2 vs. P0 (E),
P3 vs. P0 (F), P3 vs. P0+TGFβ1 (G), (adjusted p < 0.05), upregulated genes on the left side of the panel and downregulated on the right side (n = 4–5),
per group and the fold-change was compared using Welch’s t-test. Heatmap of differential expression of selected genes comparing various passages of
hiPSC-derived fibroblasts (H) and the expression values were scaled from −1.5 to 1.5, similarity was calculated using a heatmap package (clustering_
distance_rows = “euclidean”). Compare cluster analysis of enrichment of the top 10 upregulated pathways (I) and downregulated pathways (J) between
P3 vs. P0, P0+TGFβ1 vs. P0, and P3 vs. P0+TGFβ1, based on adjusted p-value <0.05.The iPS IMR90-1and STAN248i-617C1 lines were used to generate the
data for (A–J).
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analysis (Figure 4F), and the data revealed that each group is unique,
with expression profiles that differ from one another. Passage-
mediated myofibroblasts and TGFβ1-treated hiPSC-CFs revealed
that profibrotic proteins such as fibrillar collagens (Col1α1 and
Col1α2) and non-fibrillar collagens (Col4α1) were significantly
higher in P3 compared to P0, whereas Col3α1 showed a
reduction in P0+TGFβ1 and P3 compared to P0 (Figures 5A–D).
Structural proteins like ACTA2, FN1, integrin α-1 (ITGA1), and
integrin β-3 (ITGB3) were significantly elevated in P0+TGFβ1 and
P3 compared to P0; however, vimentin (VIM) protein expression
went down in P3 compared to P0 (Figures 5E–I). Additionally, ECM
remodeling enzymes such as lysyl oxidase and lysyl hydroxylase-2
(PLOD2) protein expression was upregulated in both P3 and
P0+TGFβ1 compared to P0, an indication of elevated collagen
processing (Supplementary Figures S2D, E). Comparative cluster
enrichment analysis of proteomic expression profiles revealed the
top 10 upregulated (Figure 4G) and downregulated (Figure 4H)
signaling pathways between (P3 vs. P0), (P0+TGFβ1 vs. P0), and
(P3 vs. P0+ TGFβ1); these results indicate that both P3 and
P0+TGFβ1 exhibit distinct profibrotic gene expression profiles
and signaling when compared to P0.

Metabolic profiling of hiPSC-derived cardiac
fibroblasts transitioning to myofibroblasts

To understand the potential metabolic changes involved in
hiPSC-derived cardiac fibroblast to myofibroblast conversion,
Seahorse assays for mitochondrial respiration were performed at
different passages with/without TGFβ1 treatment. Interestingly, the
results of our study showed a significant concomitant increase in
both mitochondrial oxygen consumption rate (OCR) (Figure 6A)
and extracellular acidification rate (ECAR) which is a proxy for
glycolysis (Figure 6B) with increased passage number, with the
highest values observed in P3 compared to non-passaged
fibroblasts (P0). To further understand the role of glutamine

metabolism in passage-mediated cardiac myofibroblast phenotype
switching in hiPSC-CFs, we treated the various passages of hiPSC-
CFs with glutaminase (GLS1) inhibitor BPTES, which limits the
conversion of glutamine to glutamate, decreasing energy
production via the TCA cycle. We noted a significant
attenuation of OCR and ECAR by BPTES, indicating that
passage-mediated metabolic changes depended on glutaminolysis,
which appears to play an essential role in cardiac fibroblast to
myofibroblast transition.

The OCR/ECAR ratio reveals a more pronounced shift toward
mitochondrial respiration than glycolysis for energy metabolism in
higher passages with or without TGFβ1, whichwas inhibited by BPTES
treatment (Figure 6C). The significant boost in spare respiratory
capacity in higher passages corresponds to the metabolic
adaptability of cells in responding to the increased energy demand
during the transition to the myofibroblast stage; however, these
responses were reduced with BPTES treatment (Figure 6D).
Similarly, basal and maximal respiration also showed an increased
trend toward higher passages with TGFβ1 treatment. ATP production,
proton leak, and non-mitochondrial OCR were significantly increased
in higher passages and following TGFβ1 treatment compared to P0
(Figures 6E–H; Supplementary Figure S4A) and these effects were
abolished with BPTES treatment. Additionally, we did not observe any
differences in coupling efficiency with passage or TGFβ1-mediated
fibroblast activation or treatment with glutaminolysis inhibitor BPTES
treatment (Supplementary Figure S4B).

Signaling mechanisms involved in passage-
mediated myofibroblast transition in
hiPSC-derived cardiac fibroblasts

In our hiPSC-derived cardiac fibroblasts, upon passage, there
was a significant increase in TGFβ1 mRNA and protein expression
in both P3 and P0+TGFβ1 (Figure 7A,C). TGFβ1-induced
transcript-1 (TGFβ1I1) also known as Hic-5, involved in

FIGURE 3
Transcriptomic profile transition of hiPSC-CFs with each passage. Plot demonstrates the change in gene expression relative to P0 with each
passage, showing genes that are significantly (A) upregulated and (B) downregulated with each consecutive passage. Statistical significance between
each passage (P1 vs. P0, P2 vs. P1, P3 vs. P2) was determined by Student’s t-test, with a p-value <0.05 cut-off. Only genes that significantly differed
between each passage were included. The iPS IMR90-1and STAN248i-617C1 lines were used to generate the data for (A, B).
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FIGURE 4
Passaging alters the proteomic expression profile of fibroblasts, activated fibroblasts andmyofibroblasts. PCA analysis of proteomic gene expression
data by mass spectrometry (A), FDR adjusted to p-value <0.01. Pearson group correlation of different passages of fibroblasts and their gene expression
(B). Volcano plot of proteomic gene expression profile in P3 vs. P0 (C), P0+TGFβ1 vs. P0 (D), P3 vs. P0+TGFβ1 (E), p-value adjusted to <0.05; (n = 3–4), per
group and the fold-changewasmeasured usingWelch’s t-test. Heatmap of differential expression of selective ECM-related genes comparing hiPSC
derived P0, P0+TGFβ and P3 (F), expression values were scaled from −1.0 to +1.0. Comparative cluster analysis of enrichment of top 10 upregulated
pathways (G) and downregulated pathways (H) between P3 vs. P0, P0+TGFβ1 vs. P0, and P3 vs. P0+TGFβ1, based on adjusted p-value <0.05. The iPS
IMR90-1 line was used to generate the data for (A–H).
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activation, stress fiber growth and assembly of myofibroblasts, was
highly upregulated in both P3 and P0+TGFβ1 compared to P0
(Figure 7B). Our hiPSC-derived CFs P0+TGFβ1 and P3 showed a
significant reduction in YAP protein expression compared to P0,
whereas TAZ expression was upregulated in both P3 and P0+TGFβ1
(Figures 7D,E).We observed that YAP1 is phosphorylated at S127 site
(Figure 7F), and we also noted no change in the total YAP1 vs.
YAP1 phosphorylation ratio in P3 and P0+TGFβ1 compared to P0
(Figure 7G). Phosphorylation of YAP1 promotes the degradation or
retains the YAP1/TAZ complex in the cytoplasm to limit the
profibrotic signaling. Our activated hiPSC-CFs displayed an
increase in the active form of YAP1 than P0; however, we did not
observe any change in total YAP1 vs. phosphorylated YAP1.

Discussion

Our passaged hiPSC-CFs phenotypically resemble human or
murine cardiac fibroblasts upon activation, which was evident in
their key marker protein expression, such as TCF21, POSTN, and
ED-A-Fn. Several studies have reported that primary human and
murine cardiac fibroblasts attain a myofibroblast phenotype upon
serial passaging, with reduced motility, incorporation of α-SMA into
stress fibers, and formation of focal adhesions (Roche et al., 2016; Rohr,
2011; Rupert et al., 2020; Santiago et al., 2010). This is the first study to

show that passaging hiPSC-derived cardiac fibroblasts similarly
promotes the activation of fibroblasts and transition to a
myofibroblast phenotype. We systematically captured snapshots of
transcriptomic, proteomic, and metabolomic changes over three
passages to understand the plasticity of hiPSC-CFs. This approach
has provided insight into hiPSC-CFs and their use as ex vivo human
models to study cardiac fibrosis and injury-relatedmechanistic aspects.

Cardiac fibroblasts undergo a surge in proliferation rate within
2–4 days of activation upon myocardial infarction or pressure overload
injury, followed by a reduction in proliferation when they become
myofibroblasts (Ali et al., 2014; Farbehi et al., 2019; Fu et al., 2018; Ivey
et al., 2018; Ma et al., 2017; Moore-Morris et al., 2014). Several in vitro
studies reported that while passaging murine primary adult cardiac
fibroblasts, upon activation they undergo a proliferative burst followed
by a significant reduction in the rate of proliferation when they attain
the myofibroblast phenotype (Roche et al., 2016; Santiago et al., 2010).
Similarly, in our hiPSC-CFs, we observed that proliferation indicators
such as PCNA, MCM3, CDK1, and CDK4 were downregulated when
passaged three times (P3), whereas TGFβ1-treated P0 fibroblasts
displayed no significant difference in PCNA expression compared to
P0. Our results suggest that passaging of hiPSC-CFs reduces their
proliferative potential as they become more secretory and nonmotile
myofibroblasts.

In the healthy myocardium, the ECM framework protects
fibroblasts from stress. Injury or stress-related changes affect the

FIGURE 5
Passaging accelerates the turnover of profibrotic extracellular matrix genes during phenotype. Violin plots of profibrotic ECM protein expression in
P0+TGFβ1 and P3 compared to P0, (A–I). Statistical significance was determined by one-way ANOVA with Tukey’s post hoc test (n = 4); *p < 0.05, **p <
0.01, ***p < 0.001, ***p < 0.0001 vs. fibroblasts (P0) and #p ≤ 0.05, ##p ≤ 0.01, ###p ≤ 0.001, vs. P0+TGFβ1. The iPS IMR90-1 line was used to generate
the data for (A–I).
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FIGURE 6
Passage-mediated myofibroblast activation depended on mitochondrial metabolism. Oxygen consumption rate is elevated in higher passage of
fibroblasts and in TGFβ1 treatment than no passage fibroblasts Seahorse assay reveals that increasedOCR rate upon passage (P3) and/or TGFβ1 treatment,
whereas the glutaminase inhibitor BPTES limits this process when compared to non-passaged fibroblasts (P0) (A–H), indicating that activation of
myofibroblasts primarily depended on the α-keto-glutarate (α-KG) mediated glutaminolysis pathway. Statistical significance for the violin plots was
determined by one-way ANOVAwith Tukey’s post hoc test (n = 3–8); *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001, vs. fibroblasts (P0) and #p ≤ 0.05,
##p ≤ 0.01, ###p ≤ 0.001, ####p ≤ 0.0001 vs. P0+TGFβ1. The iPS IMR90-1and STAN248i-617C1 lines were used to generate the data for (A–H).
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FIGURE 7
Passaging influences TGFβ1 and Hippo signaling pathway. Violin plots represent mRNA expression of TGFβ1 (A), TGFβ1I1 (B) and proteomic
expression of TGFβ1 (C), showing upregulation in the TGFβ1-mediated canonical signaling pathway in P3 and P0+TGFβ1compared to fibroblasts (P0).
Proteomic expression of hippo signalingmediators YAP (D), TAZ (E) and phosphorylated sites of YAP on S127 (F), was observed in P3 and P0+TGFβ1. Ratio
of total YAP1 vs. YAP1 phosphorylation plotted between YAP1/YAP1-S127 (G) showed no differences between groups upon fibroblast activation.
Statistical significance was determined by one-way ANOVA with Tukey’s post hoc test (n = 3–4) *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001, vs.
fibroblasts (P0). The iPS IMR90-1 line was used to generate the data for (A–G).
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ECMmicroenvironment and architectural integrity, and these changes
promote fibroblast activation to become myofibroblasts (Burgess et al.,
2002; Hinz and Gabbiani, 2003; Kural and Billiar, 2016; Snider et al.,
2009; Wang et al., 2003). Fibroblast activation comes with notable
changes in the secretion of ECM proteins compared to quiescent
fibroblasts, which is reflected in altered gene expression of ED-A-Fn,
Postn, Colα1, Colα3, integrins, and α-SMA in myofibroblasts (Davis
and Molkentin, 2014; Ignotz and Massagué, 1986; Ivey and Tallquist,
2016; Serini et al., 1998; Snider et al., 2009; Tomasek et al., 2002). Lysyl
oxidase and its family members are involved in the crosslinking of
collagen and significantly contributes to cardiac remodeling
(González-Santamaría et al., 2016). MMPs are also known to
contribute to cardiac remodeling and the degradation of collagen
during wound healing (DeLeon-Pennell et al., 2017; Visse and
Nagase, 2003). In our hiPSC-CFs, similar changes were observed
with passage-mediated fibroblast activation in Col1α1, Col1α2,
Col4α1, ED-A-Fn, Postn, ITGA1, ITGB3, Lox, PLOD2, MMP-1,
and MMP-2 expression, whereas Col3α1 and Vim expression were
downregulated. Surprisingly, in our hiPSC-CFs, α-SMA mRNA
expression was increased in P1 and P0+TGFβ1, but not in P2 or
P3, whereas α-SMA protein expression was elevated in P3, but not in
P0+ TGFβ1; indicating that α-SMA/ACTA2 showed a biphasic wave/
effect in our mRNA and protein expression profiles at the time of
sampling. However, recent studies on matrifibrocytes indicate that
ACTA2 elevation may be transient; 2–4 days after MI injury, activated
CFs begin to express αSMA, followed by 4–7 days after injury, activated
CFs become myofibroblasts and display high levels of αSMA,
eventually by day 10, these CFs further differentiate into
matrifibrocytes resulting in loss of αSMA expression and halted the
proliferation (Fu et al., 2018). Similar findings, like reduction in
proliferation and transient αSMA expression, were observed in our
hiPSC-CFs. Li et al. reported that cardiac-specific loss of
ACTA2 expression in CFs and lineage tracing showed no change in
proliferation, migration, contractility, or survival rate after MI
compared to the WT animals. Most importantly, loss of
ACTA2 does not reduce stress fiber incorporation in their
myofibroblasts. In contrast, increase in other actin filaments like
skeletal muscle alpha-actin (Acta1), cytoplasmic beta-actin (Actb),
cardiac muscle alpha-actin (Actc1), cytoplasmic gamma-actin
(Actg1), and smooth muscle gamma-actin (Actg2) to compensate
the loss of ACTA2, indicating that ACTA2 loss does not alter the
myofibroblast phenotype or total stress fiber incorporation (Li et al.,
2022). We observed similar effects in increased stress fiber
incorporation using phalloidin staining in our passage-mediated
activated fibroblasts. These results closely resemble the in vivo gene
expression changes observed upon fibroblast activation to become
myofibroblasts in the fibrotic myocardium.

Mitochondrial and metabolomic changes are crucial in
determining the nature of fibroblast activation, persistence, and
function in failing human hearts (Gibb et al., 2022). Fibrosis-
associated myofibroblast transition is highly dependent on
oxidative phosphorylation and increased mitochondrial content
for energy production (Gibb et al., 2020; Negmadjanov et al.,
2015). Glutaminolysis ensures the bioavailability of α-keto-
glutarate (α-KG) to feed into the TCA cycle to increase collagen
synthesis required for the ECM remodeling (Gibb et al., 2020;
Lombardi et al., 2019). Myofibroblasts exhibit increased aerobic
glycolysis and lactate production (Lombardi et al., 2019). During

idiopathic pulmonary fibrosis, lung myofibroblasts enhance the
glutaminolysis-mediated α-KG pathway for energy production
that ensures the stability of collagen when remodeling occurs (Ge
et al., 2018). Glutaminolysis inhibitors (e.g., CB-839 and BPTES,
which inhibit GLS1) attenuate this process and collagen synthesis
(Ge et al., 2018; Gibb et al., 2022). Our results provide evidence of
similar metabolic changes during passage-mediated hiPSC-CFs
activation to myofibroblasts, and notably, these changes were
fully reversible by the GLS1 inhibitor BPTES.

Recent studies showed that in a murine MI model, increased
collagen synthesis is correlated with higher glycolytic protein
synthesis; this process is attenuated with the glycolysis inhibitor
2-deoxy-D-glucose (2-DG) which limited the activation of cardiac
fibroblasts (Chen et al., 2021). In primary adult rat cardiac
fibroblasts, passaging or TGFβ1 treatment promoted fibroblast
activation and GLS1 expression; this process is limited by
treatment with CB-839 (Chattopadhyaya et al., 2022). In our
hiPSC-CFs upon passaging (P0 to P3) or TGFβ1 treatment, a
gradual increase in mitochondrial oxygen consumption rate and
ECAR (glycolysis) were observed, indicating that quiescent cardiac
fibroblasts are activated and utilizing high energy while they become
myofibroblasts. However, BPTES, a glutaminolysis inhibitor, limited
passage-mediated increases in OCR. Thus, activated hiPSC-CFs
phenotypically resemble cardiac fibrosis-associated human or
murine myofibroblasts.

TGFβ1 is a potent inducer of cardiac fibroblast to myofibroblast
phenotype switching during pathological remodeling via canonical
(Algeciras et al., 2021; Dobaczewski et al., 2010; Saadat et al., 2020;
Villalobos et al., 2019) and non-canonical signaling (Zeglinski et al.,
2016). Cardiac fibroblasts secrete the active form of TGFβ1 to
promote myofibroblast activation (Sarrazy et al., 2014). TGFβ1I1 is
also known as hydrogen peroxide inducible clone-5 (Hic-5), which
was colocalized with α-SMA in human hypertrophic scars. In human
dermal fibroblasts, mechanosensitive Hic-5 expression is dependent
on TGFβ1 signaling and it was mediated by canonical Smad-3 and
non-canonical MRTF-A and SRF pathways. Hic-5 plays a crucial role
in the activation of myofibroblasts, stress fiber growth and assembly,
and also nuclear translocation of MRTF-A (Dabiri et al., 2008; Varney
et al., 2016). In our hiPSC-CFs, upon passaging, there was an
induction of TGFβ1 and TGFb1I1/Hic-5 expression in
myofibroblasts compared to non-passaged fibroblasts. These results
are congruent with activation of the canonical TGFβ1-Smad signaling
pathway, which potently promotes activation of fibroblasts and stress
fiber assembly in cardiac myofibroblasts upon stress or injury.

Hippo signaling is also an important mechanism that activates
fibroblasts to become myofibroblasts (Landry et al., 2021). YAP and
TAZ bind together to translocate into the nucleus to activate the
profibrotic signaling pathway, and phosphorylation of YAP hinders
nuclear translocation in fibroblasts and myofibroblasts. We found
that passage-mediated fibroblast activation in hiPSC-CFs resulted in
increased TAZ expression and dephosphorylation of YAP1 at S127,
which may induce YAP1 nuclear translocation along with TAZ to
promote profibrotic gene expression.

To mimic fibrosis-associated fibroblast activation and other
cellular changes in cardiac fibroblasts, in vitro experiments have
been largely focused on murine primary fibroblasts (Gilles et al.,
2020). Most commercially available human primary cardiac
fibroblasts (HCFs) are very limited in cell numbers and are
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passaged more than once prior to freezing. Frozen cells need to be
further expanded to increase the cell numbers before initiating the
experiments. Fibroblasts are highly mechano-sensitive in nature, and
upon passaging are activated and transition towards themyofibroblast
phenotype which was clearly evident in our hiPSC-CFs. The main
advantages over murine fibroblasts are avoidance of batch-to-batch
variability and low passage number, whereas hiPSC-CFs can be
maintained up to five passages quiescently using the
TGFβ1inhibitor SB431542 (Zhang H. et al., 2019). In our hands,
hiPSC-CFs can be obtained in larger quantities, which helps with
conducting multiple experiments and with reproducibility of results,
as our cells exhibited relatively low variability across experiments.
hiPSC-CFs can be cryopreserved at the P0 stage, which will help avoid
batch variations. Mimicking the profibrotic condition with proper
controls in HCFs is very unlikely due to limited cell numbers as well as
nature of the cells after passaging.

A major advantage of hiPSC-derived cells is that they can be
bioprinted as three-dimensional cardiac tissue-like structures,
consisting of cardiomyocytes, fibroblasts, and endothelial cells
together from the same patient-specific hiPSC cells, and can
mimic the cardiac fibrotic condition inside the myocardium.
These patient-specific hiPSC-derived cells will help to better
understand gene related abnormalities and the severity of disease
phenotypes. In hiPSC-CFs, gene-specific alterations like knock-in or
knock-out variants can be easily achieved; this will greatly facilitate
mimicking and delineating the detailed human profibrotic signaling
mechanisms and targeted drug screening for cardiac fibrosis. Most
Importantly, understating the changes in the fibroblast to
myofibroblast phenotype transition will help unlock the true
potential in identifying novel therapeutic druggable targets for
cardiac fibrosis and heart failure. Thus hiPSC-CFs offer distinct
advantages over murine or human cardiac fibroblasts.

The present study shows that passage-mediated hiPSC-CFs
activation aligns well with the in vivo physiology of fibrotic
myocardium, as shown by transcriptomic, proteomic and
metabolomic analysis. Mimicking profibrotic conditions in
hiPSC-CFs is highly feasible as shown by our analyses, and more
physiologically relevant to humans than murine primary fibroblasts.
Most importantly, in our hiPSC-CFs, in P0+TGFβ1,
TGFβ1 activates the fibroblasts and their transcriptomic,
proteomic and metabolomic profile shows that they are in the
continuum phase to become myofibroblasts but are not identical
to P3 fibroblasts. Our study results will help clarify the
misrepresentations of phenotype and disparity in previous studies.

Study limitations

• We used passage and TGFβ1 to activate the fibroblasts. It is
important to mention that inflammation/inflammatory
modulators also can promote the fibroblast activation after
myocardial infarction.

• We have cultured hiPSC-CFs in tissue culture dishes not on
the soft hydrogel matrices, which tend to promote the
activation of fibroblasts.

• We have used BPTES as a glutaminolysis inhibitor, but we
have not elucidated the mechanistic role of BPTES mediated
inhibition in cardiac myofibroblasts.
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In recent years, stem cell therapy has become a pivotal component of
regenerative medicine. Stem cells, characterized by their self-renewal capacity
and multidirectional differentiation potential, can be isolated from a variety of
biological tissues, including adipose tissue, bone marrow, the umbilical cord, and
the placenta. The classic applications of stem cells include human pluripotent
stem cells (hPSCs) and mesenchymal stem cells (MSCs). However, numerous
factors can influence the normal physiological function of stem cells. For
instance, in diabetes mellitus, advanced glycation end products (AGEs)
accumulate in the extracellular matrix (ECM), impairing the physiological
function of stem cells. These substances are closely associated with aging and
the progression of numerous degenerative diseases. AGEs can create an
environment that is detrimental to the normal physiological functions of stem
cells. By binding to the primary cellular receptor for advanced glycation end
products (RAGE), AGEs disrupt the physiological activities of stem cells. The
binding of RAGE to various ligands triggers the activation of downstream signaling
pathways, contributing to the pathophysiological development of diabetes,
aging, neurodegenerative diseases, and cancer. Therefore, there is an urgent
need for comprehensive research on the impact of AGEs on stem cells, which
could provide new insights into the therapeutic application of stem cells in
regenerative medicine.
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1 Introduction

Stem cells (SCs) possess unique self-renewal capacity and
multidirectional differentiation potential. They can be derived
from various biological tissues, including bone marrow, adipose
tissue, the umbilical cord, and the placenta. Additionally, SCs exhibit
multiple functions, including nutritional support, migration ability,
and immunosuppression, and hold broad potential for research and
application in regenerative medicine (Naji et al., 2019). In
regenerative medicine, treatment strategies focus on tissue repair
and cell replacement. The self-renewal capacity and multidirectional
differentiation potential of SCs offer extensive applications in
treating various diseases (Hoang et al., 2022). Numerous studies
focus on exploring the effects of SCs on various diseases. Currently,
SCs are utilized directly as therapeutic agents, as exosomes, or
synergistically with other drugs. For instance, bone marrow
mesenchymal stem cells (BMSCs), a type of biomaterial, have
shown promising results in cell therapy, demonstrating high
safety and low immunogenicity, and can be rapidly applied to
treat diseases (Hoang et al., 2022; Lotfy et al., 2023). Stem cell
therapy now spans various fields, including cardiovascular diseases
(Zhang et al., 2021a), digestive system diseases (Wang et al., 2021),
and cancer-related treatments (Barisic and Childs, 2022). However,
available data on the safety of autologous or allogeneic mesenchymal
stem cells (MSCs) therapy are often preliminary, thus, precise
control over SC characterization, production and delivery
methods, and therapeutic regimens is still required (Naji
et al., 2017).

In recent years, significant advancements in stem cell therapy
have led to a clearer understanding of its functions and mechanisms,
highlighting its immense therapeutic potential. Moreover, various
factors influencing the physiological function of SCs have garnered
widespread attention and research. Numerous studies have shown
that under pathological conditions, the accumulation of Advanced
Glycation End Products (AGEs) within the extracellular matrix
(ECM) significantly threatens the normal physiological function
of SCs (Mouw et al., 2014). This nonenzymatic glycosylation process
differs from enzyme-directed glycosylation (Figure 1). It occurs
spontaneously between carbohydrates and molecules containing
free amino groups, including proteins (Fournet et al., 2018a).
AGEs, as nonenzymatic glycation end products, are composed of
macromolecules such as proteins, lipids, or nucleic acids and can be
classified into two categories: exogenous and endogenous (Singh
et al., 2001). AGEs can trigger various pathological mechanisms in
the body, including cross-linking with proteins to alter their
properties and functions, and activating intracellular signals
through receptor and nonreceptor-mediated mechanisms, which
increase reactive oxygen species (ROS) and inflammation-related
factors (Uribarri et al., 2015). AGEs can accumulate in cells, tissues,
and organs throughout the body, leading to oxidative stress and
inflammatory responses, and causing detrimental effects on human
health. Under the influence of AGEs, the activation of downstream
signaling pathways triggers the release of various inflammatory
cytokines, which may contribute to the development of diabetes,
kidney disease, rheumatoid arthritis, neurodegeneration, cancer and
other diseases (Ahmad et al., 2018).

Overall, the cytotoxic effects of AGEs are primarily reflected in
irreversible damage to protein structure and functional integrity,

resulting from both intermolecular and intramolecular cross-
linking. AGEs can cross-link with each other and bind to specific
proteins, thereby altering their structure and disrupting their
functional properties (Uribarri et al., 2015). This covalent cross-
linking leads to the inactivation of biologically active proteins and
enzymes, resulting in protein hydrolysis and resistance to digestion.
It also creates catalytic sites for ROS formation, thereby exacerbating
inflammation and oxidative stress (Wan et al., 2022). Furthermore,
AGEs induce various metabolic and biochemical disorders by
interfering with intracellular signal transduction processes, and
their interactions with different cell surface receptors trigger
various cell-mediated pathophysiological responses. For instance,
when AGEs bind to the homologous receptor RAGE, they activate
multiple downstream signaling pathways, directly affecting the
physiological function of SCs (Kume et al., 2005; Uribarri et al.,
2015; Ahmad et al., 2018).

This article aims to provide a comprehensive review of how
AGEs exert multifaceted effects on the physiological functions of
SCs, including their survival, proliferation, differentiation potential,
with the goal of exploring the underlying mechanisms in detail. To
elucidate the correlation between the physiological function of SCs
and the accumulation of AGEs in the ECM, focusing on how AGEs
affect the physiological function of SCs. Additionally, we summarize
the current methods for addressing the effects of cytotoxic AGEs on
SCs. By answering and discussing these questions, we will advance
our understanding of the physiological mechanisms and influencing
factors of SCs.

2 Sources of AGEs

The accumulation of AGEs primarily occurs through two
pathways: endogenous and exogenous pathways. Exogenous
AGEs are widely present in various foods. The formation of
exogenous AGEs is, in fact, closely associated with cooking
methods employed in the food industry. Specifically, during food
heat treatment, the application of dry heat technologies, such as deep
frying, barbecuing, and baking, significantly promotes AGE
production. These exogenous AGEs contribute significantly to the
total AGEs in the human body (Kellow and Coughlan, 2015). When
these AGEs are ingested into the human body through the daily diet,
approximately 10%–30% are absorbed and enter the systemic
circulation, while the rest are excreted through metabolic
pathways (Garay-Sevilla et al., 2021; Khalid et al., 2022). More
than 20 AGEs have been identified, with the most common ones
being N-ε-carboxymethyl-lysine (CML), N-ε-carboxyethyl-lysine
(CEL), pentosidine, pyrraline, glyoxal-lysine dimer (GOLD),
methylglyoxal-lysine dimer (MOLD), among others (Figure 2)
(Singh et al., 2001).

The formation of endogenous AGEs predominantly occurs via a
complex, multistage glycosylation process known as the Maillard
reaction. The synthesis of endogenous AGEs involves three steps: 1.
The aldehyde group of reducing sugars undergoes nonenzymatic
glycation with proteins to form Schiff bases, resulting from the
condensation of electrophilic carbonyl groups of reducing sugars
with free amino groups; 2. Schiff bases undergo structural
rearrangement to produce more stable Amadori products; 3.
Amadori products dehydrate and degrade to form AGEs (Xu
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et al., 2023) (Figure 3). Within an organization, glycation results in
protein aggregates forming through three different mechanisms: 1.
covalent bonds are formed between AGEs; 2. Oxidation of thiol
groups into disulfide bridges; 3. New reactive groups are formed
inside proteins. The chemical cross-links created by AGEs
contribute to protein network formation and ECM cross-linking,
thereby significantly increasing structural rigidity (Fournet et al.,
2018b). This nonenzymatic glycosylation process accelerates under
hyperglycemic conditions, as commonly seen in diabetes
(Stratmann, 2022). The Maillard reaction generates numerous
highly reactive carbonyl AGE precursors. Among these
precursors, dicarbonyl compounds serve as critical intermediates
in carbonyl AGE formation due to their unique chemical properties,
playing an indispensable role in the generating endogenous AGEs.
In addition, dicarbonyl compounds can be generated through
various other reaction pathways and ultimately converted into
AGEs. For example, Schiff bases follow the Namiki pathway
during oxidation and can be converted into dicarbonyl
compounds; Glucose undergoes automatic oxidation through the
Wolff pathway under metal catalysis, generating dicarbonyl
compounds. Under the oxidation of the acetone pathway, fats
also create a series of highly active dicarbonyl compounds. The
endogenous production pathways of these dicarbonyl compounds,
also known as α-Acetaldehyde, include glucose autooxidation, the
polyol pathway, and lipid oxidation. Imbalances in ketone
metabolism, especially under hyperglycemic conditions, lead to
dicarbonyl stress, a phenomenon particularly common in diabetic
patients (Kellow and Coughlan, 2015; Uribarri et al., 2015; Kuzan,
2021) (Figure 3).

3 Effects of AGEs on SCs survival and
proliferation

AGEs significantly impact the survival and proliferation of SCs,
with numerous studies demonstrating their inhibitory effect on SCs
proliferation across various sources (Kroemer et al., 2010; Zhang
et al., 2021b; Liang et al., 2022; Dobrucki et al., 2024). This effect is
closely linked to the impact of AGEs on the ECM. The ECM offers
localization and structural support for cells, influencing tissue and
organ formation, differentiation, and maintenance by modulating
growth factor and receptor levels and regulating the cellular
environment’s pH. (Mouw et al., 2014). Blackburn et al. (2017)
demonstrated that AGEs significantly impair cell adhesion within
the ECM. Specifically, the adhesion ability of BMSCs is significantly
diminished when interacting with AGE-modified collagen. This
interaction heightens cellular sensitivity to apoptosis, diminishes
the progenitor cell population, and impairs SCs differentiation into
vascular tissue.

AGEs contribute to apoptosis and senescence in SCs. One of the
primary mechanisms of apoptosis involves initiating a cascade of
reactions via the activation of cysteine-containing caspases
(Cavalcante et al., 2019). In addition to AGEs, RAGE recognizes
various ligands, including pro-inflammatory cytokine mediators of
the S100/calcogranulin family, high-mobility histone B1 (HMGB1),
and the mucopolysaccharide β-amyloid. This nuclear protein is
released upon cell necrosis and functions in the extracellular
environment. As a pattern recognition receptor, RAGE shares
ligands and signaling pathways with many members of the
receptor family (Uribarri et al., 2015; Dobrucki et al., 2024).

FIGURE 1
Identification of glycation reaction and glycosylation reaction.
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AGE-RAGE binding induces oxidative stress and activates the
mitogen-activated protein kinase (MAPK) pathway. MAPK
belong to the serine/threonine kinase family, which is not only
involved in apoptotic signaling, but also accelerates the process of
stem cell apoptosis (Ahmad et al., 2018).

In addition to influencing apoptosis, AGEs also regulate another
form of cell death—autophagy. Apoptosis involves the orderly
fragmentation of cells into apoptotic bodies, which are swiftly
recognized and removed via phagocytosis. Autophagy is an
intracellular degradative process in which endogenous or
exogenous cytoplasmic components are delivered to lysosomes
for degradation. Its primary function is to maintain cell survival
and homeostasis by recycling and reusing essential components
under stress or nutrient limitation (Kroemer et al., 2010). While
autophagy is crucial for cellular homeostasis, excessive autophagy

can have harmful effects In Zhang et al. study (Zhang et al., 2021b), it
was found that knocking out RAGE can inhibit cell autophagy,
indicating that AGEs/RAGE promote autophagy. In Liang et al.
(2022) study, it was also found that receptors for AGEs and RAGE
are associated with fibrosis and autophagy. Furthermore, inhibiting
RAGE provides cardiac protection by reducing hypertrophy and
fibrosis in mice. Similarly, Zhang et al. (2023) observed that AGE/
RAGE interactions stimulate autophagy.

4 Impact of AGEs on the differentiation
potential of SCs

The regeneration of tissues is intricately linked to the
differentiation of SCs. For instance, during bone development,
MSCs migrate to the target site of bone formation, thereby
initiating the first stage of bone development. The mechanism of
osteogenesis in the human body involves two main pathways: 1. The
direct differentiation of cells into osteoblasts, a process known as
intramembranous osteogenesis; 2. The indirect pathway,
endochondral osteogenesis, involves the differentiation of
chondrocytes and their eventual transformation into bone tissue.
This osteogenic process ensures normal bone development and
formation. Currently, most osteogenic studies focus on osteogenic
differentiation as the primary strategy for osteogenic differentiation
(Ding et al., 2022). Various mechanisms affect the differentiation
process of MSCs, including the AGE/RAGE pathway (Wang et al.,
2022), Wnt/β-catenin pathway (Zhang et al., 2018), Notch-Hes1
pathway (Islam and Aboussekhra, 2019), TGFβ pathway (Notsu
et al., 2014). The osteogenic differentiation potential of SCs has
remarkable plasticity and can be regulated and transformed through
a variety of mechanisms. For instance, specific growth factors or
pharmacological agents can effectively direct SC differentiation into
osteoblasts. These growth factors or drugs direct the transformation
of SCs into osteoblasts by interacting with intracellular signaling

FIGURE 2
Chemical structure of common AGEs. CML, N-ε-carboxymethyl-lysine; CEL, N-ε-carboxyethyl-lysine; GOLD, glyoxal-lysine dimer; MOLD,
methylglyoxal-lysine dimer.

FIGURE 3
The main process of endogenous AGEs production. CML, N-ε-
carboxymethyl-lysine; CEL, N-ε-carboxyethyl-lysine; GOLD, glyoxal-
lysine dimer; MOLD, methylglyoxal-lysine dimer.
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pathways that regulate gene expression and cellular function (Fu
et al., 2021).

4.1 AGE/RAGE pathway

Sun et al. (2020) proposed that the AGE/RAGE axis can inhibit
the osteogenic differentiation of BMSCs. Their study employed
inhibition of the AGE/RAGE axis to mitigate dysfunction in SCs
differentiation. Okazaki et al. found that AGEs constrained the
osteogenic differentiation of mouse stromal ST2 cells by
inhibiting Osterix (OSX) expression and partially increasing
RAGE expression. Furthermore, AGEs interfere with the process
of SCs differentiation into bone cells by potentially reducing
osteocalcin production while increasing RAGE expression
(Okazaki et al., 2012). AGEs exert a more pronounced impact
during the immature stage of osteoblasts compared to the
differentiation stage, inhibiting differentiation and reducing the
number of mature osteoblasts (Ogawa et al., 2007). Stolzing et al.
(2010) added different doses of AGEs to cultured MSCs and found
that the self-renewal and osteogenic differentiation of MSCs were
significantly reduced. Under osteogenic differentiation conditions,
the extent of this effect depended on the concentration of AGEs in
the culture medium. Furthermore, the proliferation of MSCs
significantly increased in the low-concentration group, while
normal proliferation and osteogenic differentiation of MSCs were
impaired in the high-concentration group. They also observed that
AGEs suppressed osteocalcin mRNA expression in rat MSCs,
thereby hindering their differentiation. Lin et al. (2016) reported
that HMGB1 facilitate the osteogenic differentiation of BMSCs while
also increasing the expression of RAGE and Toll-like receptors 2 and
4 (TLR2/4) bound to HMGB1. RAGE, a high-affinity receptor for
HMGB1, can activate the p38/MAPK and NF-κB pathways upon
binding to HMGB1, thereby promoting the osteogenic
differentiation of BMSCs (Park et al., 2004). The p38/MAPK
pathway plays a crucial role in cell cycle regulation (Barnum and
O’Connell, 2014); Kim et al. reported (Kim and Kwon, 2013) that
COMP-Ang1 induces the upregulation of the PI3K/AKT and p38/
MAPK pathways, thereby facilitating the attenuation of osteogenic
differentiation of MSCs by AGEs via the Ang1/Tie2 pathway.

4.2 TGF-β pathway

TGF-β is a crucial factor in regulating the differentiation of
MSCs and plays a vital role in stem cell differentiation (Li et al.,
2024). Notsu et al. considered that AGEs increase TGF-β by binding
to RAGE, and the AGE-TGF-β pathway has a negative effect on the
differentiation of MSCs into osteoblasts, impairing their
differentiation. This indicates that TGF-β is one of the factors
influencing the differentiation potential of SCs (Notsu et al.,
2014). In recent years, joint cartilage regeneration technology has
advanced significantly, driven by continuous improvements in
biological scaffold materials. TGF-β3, as an important isoform of
the TGF-β family, plays a pivotal role in mesenchymal stem cell
differentiation through both Smad-dependent and non-Smad
pathways. Its active involvement and tightly regulated role in the
bone healing process have been widely recognized. In recent years,

there has been increasing interest in the potential of TGF-β3 to
promote and induce the proliferation, osteogenesis, and
chondrogenic differentiation of adult SCs in biological scaffold
materials. In particular, the induction of TGF-β3 is particularly
significant in the early stages of the osteogenic process, providing
new therapeutic strategies and research ideas for bone tissue
regeneration. These studies not only help us to understand the
mechanism of cartilage repair and regeneration deeply, but also
provide a solid theoretical basis and experimental foundation for
future clinical applications (Li et al., 2018; Roth et al., 2019; Martin
et al., 2021).

In general, the role of TGF-β3 in cartilage formation is cell-type
specific. Jin et al.’s reported that the inhibitory effect of TGF-β3 on
chondrocytes is achieved through the activation of Notch signaling,
which inhibits the proliferation of mesenchymal cells and pre-
cartilage condensation (Jin et al., 2007). In another study, they
also reported a similar finding regarding the inhibitory effect of
TGF-β3 on the differentiation of MSCs, which is that TGF-β3
downregulates Protein Kinase C-α (PKC-α) mediated activation
of connexin 43, integrin β4, and ERK, inhibiting chondrogenic
differentiation of mesenchymal cells (Jin et al., 2008). In contrast
to the inhibitory effect of TGF-β3 onMSC differentiationmentioned
above, Zheng et al. found that knocking out the TβRIII gene can
promote TGF-β3-induced MSCs cartilage differentiation,
demonstrating the positive induction effect of TGF-β3 on
mesenchymal stem cell differentiation (Zheng et al., 2018).
Similarly, Jin et al. found that TGF-β3 stimulates the
differentiation of MSCs into chondrocytes and inhibits the
differentiation of chondrocytes. This is because TGF-β3 promotes
chondrogenic differentiation of mesenchymal cells by activating the
PKC-α and p38 MAPK pathways (Jin et al., 2006). Based on the
multiple studies on TGF-β3 specified above, it can be concluded that
the differences in TGF-β3 are due to its various functions,
manifested as a mixed effect of induction and inhibition on the
differentiation process of MSCs.

Overall, it is crucial to investigate the complex signaling
pathways and mechanisms by which AGEs affect the
differentiation process of SCs. This will not only aid in revealing
the mechanisms by which AGEs influence SC differentiation, but
also provide insight into potential strategies to reverse the toxic
effects of AGEs.

4.3 Wnt/β-catenin pathway

The Wnt/β-catenin pathway, a central signaling pathway,
precisely regulates cell polarity, determines the differentiation fate
of cells, guides the migration process of cells, and has a profound
impact on spindle formation, organ development, and stem cell
renewal (Nayak et al., 2016). Currently, 19 Wnt ligands have been
identified, and all of these ligands specifically bind to a seven-
transmembrane Wnt receptor named Frizzled (FZD) (Houschyar
et al., 2019). The Wnt pathway, a well-established osteogenic
differentiation pathway, is a complex system comprising three
distinct pathways, which are believed to be activated upon Wnt
receptor activation: the canonical Wnt/β-catenin cascade, the
noncanonical planar cell polarity (PCP) pathway, and the Wnt/
Ca2+ pathway.
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In the canonical Wnt/β-catenin cascade, the central event is the
nuclear translocation of the β-catenin protein and its regulation of
target genes. In the absence of Wnt ligands, β-catenin is degraded by
intracellular complexes-primarily composed of glycogen synthase
kinase 3 (GSK-3). However, once the canonical Wnt/β-catenin
cascade is activated, Dishevelled proteins (Dvl) are triggered,
which in turn inhibit GSK-3, thereby stabilizing β-catenin and
promoting its nuclear translocation and target gene expression.
Atypical Wnt signaling also plays a crucial role in the
differentiation of bone tissue. Unlike the canonical Wnt/β-
catenin cascade, the atypical Ca2+ dependent Wnt pathway
uniquely promotes osteogenesis in MSCs. When the Wnt ligand
binds to the FZD receptor, it activates G proteins, triggering the
release of Ca2+ ions from the endoplasmic reticulum. This process
initiates the Protein Kinase C (PKC) pathway and continue signaling
to promote osteogenesis (Ahmadi et al., 2022). The Wnt pathway is
initiated when Wnt ligands bind to FZD receptors, activating G
proteins that subsequently trigger the release of Ca2+ ions from the
endoplasmic reticulum, which then initiates the PKC pathway. Low-
density lipoprotein receptor associated protein 5/6 (LRP5/6) or
receptor tyrosine kinase-like orphan receptors (RORs) function
as common receptors alongside FZD, facilitating the binding of
Wnt proteins to their receptors. The involvement of these co-
receptors dictates the downstream effects following successful
ligand binding, initiating either the canonical Wnt/β-catenin
cascade or the noncanonical planar cell polarity (PCP) pathway
(Houschyar et al., 2019; Ahmadi et al., 2022) (Figure 4). Zhou et al.
(2023) found that AGEs can impair the osteogenic differentiation
process of BMSCs by upregulating the expression of fat and obesity-
related gene FTO. This process is regulated by FTO to modify the
SOST transcript with m6A, increase the mRNA stability recognized
by YTHDF2, inhibit the Wnt signaling pathway, and ultimately
disrupt the differentiation of BMSCs into bone. Minear et al. (2010)
amplified the cell Wnt response by removing the Axin 2 gene in a
mouse model and found that delivering liposome vesicles containing
purified Wnt-3a protein can promote the Wnt pathway, leading to
increased proliferation and early differentiation of BMSCs, thereby
accelerating fracture healing.

Growth factors activate aspects of the Wnt pathway. The TGF-β
pathway is a membrane-to-nucleus signaling cascade activated by
receptor-mediated transcription factors. Due to structural and
functional considerations, the 32 family members are classified
into TGF-β and bone morphogenetic proteins (BMPs)
subfamilies, along with other variations (David and Massagué,
2018). BMPs have been extensively studied, with BMPs 2, 6, and
9 being the primary isoforms. As potent growth factor, BMPs
stimulate MSCs to differentiate into osteoblasts (Carreira et al.,
2014). The functional Wnt signaling pathway constitutes the core
mechanism of BMP-induced osteogenic differentiation of MSCs.
There is a significant interaction between the Wnt and the TGF-β
pathways, as they share some key regulatory targets, thus forming a
complex signaling network. Among them, β-catenin, a key node in
this network, plays a crucial role in regulation (Case and Rubin,
2010). β-catenin plays various roles during different phases of bone
repair. In the initial stages following injury, it modulates the
osteoblast-to-chondrocyte ratio within the callus tissue induced
by MSCs, ensuring a balanced and coordinated repair process
(Bao et al., 2017). In the later stages of bone healing, β-catenin

induces osteoblasts to differentiate and produce an osteogenic
matrix, promoting bone reconstruction and regeneration (Wang
et al., 2017). Zhang et al. (2009) suggest that BMP2 regulates β-
catenin by stimulating the expression of Lrp5 in osteoblasts and
inhibiting the expression of β-Trcp. Chen et al. (2019) also found
that the key growth factor BMP2 stimulates the Wnt/β-catenin
pathway to promote the osteogenic differentiation of BMSCs. The
addition of Wnt-3a enhances the osteogenic effect of BMP9.
However, it is counteracted by the downregulation of β-catenin
or the increased expression of FrzB, which acts as an antagonist of
the FZD receptor (Boland et al., 2004).

5 Strategies for dealing with the toxic
effects of AGEs on SCs

Effective intervention in AGEs-induced damage is critical for
promoting the normal physiological activity of SCs. Given the
central role of AGEs in stimulating tissue fibrosis and mediating
matrix cross-linking, strategies such as reducing AGEs formation,
enhancing AGEs degradation, and blocking AGEs cross-linking
show promise as therapeutic approaches. Currently, interventions
targeting AGEs focus on blocking the pathways through which they
exert their effects, thereby mitigating the deleterious impact of AGEs
on SCs’ physiological functions. In this process, AGE/RAGE and
Wnt/β-catenin signaling pathways have become the focus of our
attention, and they provide important clues for us to understand the
mechanism of AGEs and develop effective interventions.

5.1 Targeting the AGE/RAGE pathway

The glyoxalase system is integral, serving as a key enzyme system
present in all mammalian cells. This system consists of two enzymes
that act in concern: glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2). The
AGE/RAGE pathway alleviate differentiation dysfunction of BMSCs
by enhancing the activity of Glo1. AGEs activate complex signaling
pathways by binding to RAGE, thereby triggering various toxic
effects in the organism. These enzymes catalyze sequential reactions,

FIGURE 4
Effects of AGEs on the canonical Wnt/β-catenin cascade; Dvl,
Dishevelled; GSK-3β, glycogen synthase kinase 3 beta; βcat, β-catenin.
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with reduced glutathione (GSH) serving as a catalytically active and
essential component. The Glo1 enzyme plays a crucial role in the
metabolic process by catalyzing the nonenzymatic isomerization of
the active dicarbonyl metabolite methylglyoxal (MG) with
glutathione to produce dithiol acetaldehyde. Additionally,
Glo2 catalyzes the hydrolysis of S-D-lactoylglutathione to
generate D-lactic acid, thereby efficiently supplementing the
glutathione consumed in the Glo1-catalyzed process. Due to this
synergistic action, the glyoxalase system is able to efficiently process
dicarbonyl compounds in vivo and maintain normal metabolic
functions of cells (Rabbani and Thornalley, 2019). Wang et al.
(2019) used glycine to inhibit the formation of AGEs, and the
study described that Glo1 also mediates this effect. In Jandial
et al. mouse model (Jandial et al., 2018), blocking Glo1 resulted
in increased AGE production and upregulation of RAGE expression.
Consequently, Glo1 inhibition caused cellular accumulation of MG,
triggering rapid modifications of proteins, lipids, and DNA,
ultimately inducing apoptosis. To counteract the adverse effects
of AGEs on primary SCs, an effective strategy involves blocking the
interaction between AGE and RAGE. The discovery of Zhang et al.
can be utilized with the RAGE inhibitor FPS-ZM1, which can
attenuate the adverse effects of AGEs on the osteogenic potential
of SCs (Zhang et al., 2018). Rasheed et al. (2011) found that
knocking down RAGE by pre-treating soluble RAGE (sRAGE) or
using siRNAs effectively reduced the cytotoxicity of AGEs. Based on
the above research, activating Glo1 or directly inhibiting the binding
of AGEs to RAGE is a highly feasible strategy to mitigate the toxic
effects of AGEs.

5.2 Promoting DNA demethylation

Alterations in the Wnt/β-catenin pathway significantly influence
bone metabolism. Notably, elevated concentrations of Wnt3a can
inhibit the osteogenic differentiation of BMSCs, indicating that
regulating the Wnt/β-catenin pathway needs to be fully balanced to
avoid adverse effects on stem cell differentiation. Therefore,
comprehensive research on the Wnt/β-catenin pathway and its
interaction with DNA methylation processes is highly important for
optimizing the physiological functions of SCs in AGEs -induced
environments (Boland et al., 2004). In Liang et al.’s study, DNA
methylation was found to have a substantial impact on the
expression of Wnt/β-catenin signaling pathway genes, which also
proves that the impact of DNA methylation on the physiological
function of MSCs is achieved through the Wnt/β-catenin pathway
(Liang et al., 2015). DNA methylation is a molecular modification that
determines cell identity and lineages by regulating gene expression and
maintaining genomic stability. Under the action of DNA
methyltransferase, the covalent bond at the cytosine 5 carbon
position of the CpG dinucleotide in the genome binds to a methyl
group.DNAmethylation induces changes in chromatin structure, DNA
conformation, stability, and the dynamics of DNA-protein interactions,
thus exerting control over gene expression (Nishiyama and Nakanishi,
2021). DNMT1, DNMT3a and DNMT3b play indispensable roles in
DNAmethylation. Recent research by Zhang et al. (2018) demonstrated
that the expression of DNMT1 and DNMT3a was upregulated,
indicating that AGEs increased the level of DNA methylation in
ADSCs. To reverse this effect, the investigators used FPS-ZM1,

which successfully rescued the loss of osteogenic differentiation in
ADSCs by inhibiting AGEs induced DNA methylation. In a study
by Li et al. (2020), when ADSCs were cultured in a medium containing
AGEs, they exhibited high levels of 5-mC andDNMTs, accompanied by
a significant reduction in osteogenic differentiation capacity in vitro.
However, by applying DNMT inhibitors (5-aza-dC), investigators
found that the osteogenic differentiation potential of ADSCs was
improved. The promotion of DNA demethylation enhanced the
osteogenic differentiation of ADSCs, highlighting the critical role of
DNA methylation levels in regulating this process.

6 Conclusion

Both endogenous and exogenous AGEs negatively affect the
physiological function of SCs. These strong oxidants continuously
weaken the cell’s natural defense mechanisms, leading to abnormal
oxidative stress and inflammatory responses. However, this
unfavorable situation is not irreversible and stem cell therapy is a
potential coping strategy to curb the damage caused by AGEs
effectively. Elucidating the underlying mechanisms of the impact
of AGEs on stem cell toxicity and devising pertinent solutions are
vital for advancing stem cell therapy technology.
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Pluripotent stem cells (PSCs) possess the extraordinary capability to differentiate
into a variety of cell types. This capability is tightly regulated by epigenetic
mechanisms, particularly histone modifications. Moreover, the reprogramming
of somatic or fate-committed cells into induced pluripotent stem cells
(iPSCs) largely relies on these modifications, such as histone methylation and
acetylation of histones. While extensive research has been conducted utilizing
mouse models, the significance of histone modifications in human iPSCs is
gaining increasing recognition. Recent studies underscore the importance of
epigenetic regulators in both the reprogramming process and the regulation
of cancer stem cells (CSCs), which are pivotal in tumor initiation and the
development of treatment resistance. This review elucidates the dynamic
alterations in histonemodifications that impact reprogramming and emphasizes
the necessity for a balance between activating and repressive marks. These
epigenetic marks are influenced by enzymes such as DNA methyltransferases
(DNMTs) and histone deacetylases (HDACs). Furthermore, this review explores
therapeutic strategies aimed at targeting these epigenetic modifications to
enhance treatment efficacy in cancer while advancing the understanding
of pluripotency and reprogramming. Despite promising developments in
the creation of inhibitors for histone-modifying enzymes, challenges such
as selectivity and therapy resistance continue to pose significant hurdles.
Therefore, future endeavors must prioritize biomarker-driven approaches
and gene-editing technologies to optimize the efficacy of epigenetic
therapies.

KEYWORDS

pluripotent stem cells (PSCs), histone modifications, epigenetic regulations, cancer
stem cells, reprogramming
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1 Introduction

The discovery of PSCs and their ability to differentiate into
various cell types has significantly advanced regenerative medicine.
PSCs, including embryonic stem cells (ESCs) and iPSCs, have
tremendous therapeutic potential due to their pluripotency and
self-renewal capabilities.

Maintaining pluripotency and reprogramming somatic cells
into iPSCs relies on key transcription factors such as OCT4,
SOX2, and NANOG, as well as critical signaling pathways,
including Wnt, TGF-beta, and FGF (Marson et al., 2008; Maherali
and Hochedlinger, 2009; Mossahebi-Mohammadi et al., 2020).
Additionally, many studies have demonstrated that epigenetic
factors play a crucial role in sustaining pluripotency and facilitating
the reprogramming of somatic cells into iPSCs. Specifically, histone
modifications can alter chromatin structure and influence gene
expression.

Notably, PSCs and CSCs share many similarities. Therefore,
understanding how histone modifications regulate PSCs could open
up new avenues for therapeutic interventions in cancer.

2 Histone modifications in PSCs and
CSCs

Histone modifications, which include methylation, acetylation,
and phosphorylation, play a vital role in regulating chromatin
dynamics and gene expression in PSCs (Guenther et al., 2010;
Delgado-Olguin and Recillas-Targa, 2011). These modifications
primarily occur on the N-terminal tails of histones H3 and
H4, impacting the structural configuration of chromatin and
controlling the accessibility of transcriptional machinery to
DNA (Kouzarides, 2007) (Table 1). Among these modifications,
histone methylation and acetylation are particularly important for
regulating the pluripotency and differentiation potential of PSCs.

For instance, trimethylation at lysine four on histone H3
(H3K4me3) serves as a marker commonly found at the promoters
of actively transcribed genes, such as OCT4 and SOX2. These genes
are critical for maintaining pluripotency and fostering an open
chromatin state that facilitates gene expression (Benayoun et al.,
2014). In contrast, trimethylation at lysine 27 on histone H3
(H3K27me3), mediated by the Polycomb Repressive Complex 2
(PRC2), marks silent genes like cyclin-dependent kinase inhibitor
2A (CDKN2A) and compacts chromatin into a repressive state,
which inhibits transcription (Guo et al., 2021) (Table 1).

The interaction between these two marks is essential
for maintaining the “bivalent” chromatin state characteristic
of PSCs, where both activating (H3K4me3) and repressive
(H3K27me3) marks coexist at important developmental gene
promoters. This bivalency allows PSCs to remain in a poised
state, ready for rapid activation or repression in response to
differentiation signals (Bernstein et al., 2006).

Histone acetylation marks, particularly H3K9ac and H3K27ac,
are essential for the differentiation of stem cells into specialized
cell types (Creyghton et al., 2010). These acetylation marks are
linked with active transcription, allowing the chromatin structure
to become more open and accessible to transcription factors
(McCool et al., 2007) (Table 1).

During differentiation, histone acetyltransferases (HATs) play a
crucial role by adding acetyl groups to specific lysine residues on
histones. This process facilitates the activation of genes necessary
for lineage commitment and functional specialization. On the
other hand, HDACs remove these acetyl groups, resulting in
a more compact chromatin structure that represses stem cell-
associated genes.

The balance between HAT and HDAC activity is vital
for directing stem cells through the differentiation process,
as it determines which genes are expressed and when. This
dynamic regulation of histone acetylation marks influences the
transcriptional landscape, guiding stem cells to assume specific fates
while preventing premature differentiation (McCool et al., 2007).

During the reprogramming of somatic cells into iPSCs,
significant changes occur in histone modifications, which help
reset the epigenetic landscape from a differentiated state to a
pluripotent one (Liang and Zhang, 2013). Repressive marks
such as H3K9me3 and H3K27me3, which are abundant in
differentiated cells and indicate regions of heterochromatin,
must be actively removed or modified to activate pluripotency
genes (Chandra et al., 2012). For example, the removal of
H3K9me3 from the NANOG promoter by the lysine demethylase
4B (KDM4B) is essential for initiating reprogramming and
maintaining pluripotency (Wei et al., 2017) (Table 1). Additionally,
the H3K27me3 demethylase UTX plays a crucial role during
the early stages of reprogramming (Mansour et al., 2012). These
enzymes work together to erase differentiation-specific epigenetic
memory, thus improving both the efficiency and fidelity of the
reprogramming process (Dimitrova et al., 2015).

Furthermore, histone acetylation marks play a crucial role in
the reprogramming process by enhancing chromatin accessibility.
Studies have demonstrated that using HDAC inhibitors, such
as valproic acid (VPA), increases reprogramming efficiency
(Huangfu et al., 2008; Zhai et al., 2015). These inhibitors
work by preventing the removal of acetyl groups, which helps
maintain an open chromatin state that is favorable for activating
pluripotency-associated genes (Zhai et al., 2015; Duan et al., 2019).

For example, HDAC inhibitors enhance acetylation at the
promoter regions of key genes like MYC, thereby promoting the
activation of essential pluripotency pathways (Kretsovali et al.,
2012) (Table 1). Additionally, the balance of histone modifications
is dynamically regulated by histone-modifying enzymes, which are
closely controlled during the reprogramming process (Huang et al.,
2015; Yang et al., 2022; Kelly et al., 2024).

One specific example is the histone methyltransferase
Set1/COMPASS complex, which is responsible for the
trimethylation of H3K4. This complex is upregulated during the
establishment of pluripotency, facilitating the activation of genes
essential for maintaining the pluripotent state (Sze et al., 2017).

CSCs are small populations of tumor cells with the unique ability
to self-renew, differentiate, and drive tumor development (Batlle and
Clevers, 2017). These cells are believed to contribute significantly to
tumor heterogeneity, resistance to therapies, andmetastasis, making
them critical targets for cancer treatment (Yu et al., 2012; Rich,
2016). Similar to PSCs, the stemness potential of CSCs is
heavily influenced by epigenetic modifications, particularly histone
modifications, which play a key role in regulating gene expression
programs necessary for maintaining their stem-like properties.
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TABLE 1 The roles of epigenetic modifications in stem cells and CSCs.

Epigenetic marker Role in stem cells Role in CSCs References

DNA Methylation Controls pluripotency and
differentiation by silencing
lineage-specific genes

Aberrant DNA methylation leads to
self-renewal, tumorigenesis, and
therapy resistance in CSCs

Smith and Meissner (2013), Baylin and
Jones (2016), Li and Sun (2019)

Histone Modifications Regulates gene expression through
histone acetylation, methylation,
phosphorylation, etc

Alterations in histone marks control
CSC plasticity, growth, and therapeutic
resistance

Kouzarides (2007), Berdasco and
Esteller (2010), Kumar et al. (2022)

Chromatin Remodeling Modulates chromatin accessibility to
transcription factors, regulating
self-renewal and differentiation

Aberrant remodeling sustains stem-like
properties, enabling CSC survival and
metastasis

Wilson and Roberts (2011),
Trevino et al. (2021), Chu et al. (2024)

Non-Coding RNAs (miRNAs,
IncRNAs)

MicroRNAs and long non-coding RNAs
regulate stem cell fate and self-renewal

Dysregulated miRNAs/lncRNAs
contribute to CSC maintenance,
metastasis, and drug resistance

Wang et al. (2010), Iorio and Croce
(2012), Khan et al. (2019)

Polycomb Repressive Complex (PRC) Maintains stem cell identity by silencing
differentiation-associated genes

PRC components such as EZH2 are
highly expressed in CSCs, promoting an
undifferentiated state

Wen et al. (2017), Guo et al. (2021),
Parreno et al. (2022)

Histone Demethylases (KDMs) Histone demethylases regulate the
balance between pluripotency and
differentiation by removing methyl
groups

Dysregulated KDMs promote stem-like
features and survival in CSCs

Mosammaparast and Shi (2010),
Wei et al. (2017), Wang et al. (2021)

Histone Deacetylases (HDACs) Deacetylation of histones keeps
chromatin in a condensed, inactive
state, regulating gene expression

Overactive HDACs in CSCs suppress
tumor suppressor genes, enhancing
self-renewal and survival

McCool et al. (2007), Jiang et al. (2024)

CpG Island Methylator Phenotype
(CIMP)

Methylation at CpG islands in promoter
regions affects gene silencing and
differentiation

CIMP in CSCs leads to the silencing of
key tumor suppressors, promoting
aggressive tumor phenotypes

Barzily-Rokni et al. (2011)

RNA Methylation (m6A) Modifies mRNA stability, affecting stem
cell pluripotency and lineage
commitment

Dysregulation of m6A promotes CSC
formation, drug resistance, and tumor
growth

Zhang et al. (2017), Chen et al. (2021),
Wang et al. (2023)

InCSCs, specific histonemodifications are crucial for promoting
tumor aggressiveness by preserving a gene expression profile
that enhances cell survival, proliferation, and resistance to
programmed cell death. These epigenetic changes enable CSCs
to maintain their tumor-initiating capacity and contribute to
their resistance to conventional cancer treatments (French and
Pauklin, 2021; Keyvani-Ghamsari et al., 2021; Zhou et al., 2021;
Chehelgerdi et al., 2023) (Table 1).

Several histone marks play a crucial role in regulating the
identity of CSCs. One significant mark is H3K27me3, a repressive
modification added by EZH2, which is a component of the
PRC2 (Margueron and Reinberg, 2011). This mark is often
overexpressed in CSCs (Wen et al., 2017; Parreno et al., 2022)
(Table 1). The H3K27me3 modification silences tumor suppressor
genes, such as CDKN2A, as well as differentiation-related genes,
like bone morphogenetic protein 2 (BMP2). This silencing helps
maintain the cells in a more stem-like, undifferentiated state
(Gosselet et al., 2007; Shi et al., 2022).

In breast cancer, elevated levels of EZH2 correlate with an
increased population of CSCs and a poorer prognosis, highlighting
its role in promoting tumorigenesis and metastasis (Wen et al.,

2017; Verma et al., 2022) (Table 1). Similarly, H3K9me3, which
is catalyzed by the histone-lysine N-methyltransferase SUV39H1
(also known as KMT1A), has been associated with the repression
of differentiation pathways in glioblastoma CSCs. This repression
supports their self-renewal and tumor-initiating capabilities (Saha
and Muntean, 2021; Li et al., 2024).

Conversely, the activation of specific histone marks, such as
H3K4me3 and H3K27ac, plays a significant role in regulating
CSCs. These marks are associated with the expression of genes that
provide CSCs with stemness and survival advantages. For instance,
H3K4me3 is enriched at the promoters of genes crucial for stem
cell maintenance and cell cycle regulation, including NANOG and
OCT4, in various types of cancer, such as leukemia and colorectal
cancer (Deb et al., 2014; Liu et al., 2023). Additionally, acetylation
of histone H3 at lysine 27 (H3K27ac) by HATs promotes an open
chromatin structure at oncogene enhancers, which contributes to
the aggressive characteristics of CSCs in tumors like pancreatic and
ovarian cancers (Li et al., 2021; Parreno et al., 2022; Yang et al., 2022)
(Table 1). The dynamic regulation of these histone modifications
enables CSCs to respond to environmental cues, including stress
from chemotherapy and radiation (Li et al., 2023).
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3 Epigenetic barriers to
reprogramming

Despite significant advances in reprogramming technologies,
achieving high efficiency in converting somatic cells to iPSCs
remains a challenge due to various epigenetic barriers. Histone
modifications, which are often irregularly distributed in
differentiated cells, can create a chromatin environment that resists
reprogramming (Papp and Plath, 2013; Chehelgerdi et al., 2023;
Costa et al., 2023). For instance, repressive histone marks such
as H3K9me3 at LINE-1 retrotransposons and H3K27me3 at the
promoters of key pluripotency genes, including OCT4 and SOX2,
lead to a tightly packed chromatin structure that is inaccessible to the
transcription factors required to initiate reprogramming (Sun et al.,
2021). The persistence of these repressive marks hinders
the activation of pluripotency-associated genes, ultimately
reducing both the efficiency and fidelity of the reprogramming
process.

Furthermore, DNA methylation at CpG islands and the
presence of histone variants, such as macroH2A, contribute to
the maintenance of a differentiated state, making reprogramming
more challenging. For example, DNA methylation at the GATA4
promoter can inhibit its expression, which is crucial for initiating
mesendoderm differentiation during reprogramming (Barzily-
Rokni et al., 2011; Hatziapostolou and Iliopoulos, 2011) (Table 1).
While it is important to remove or modify these repressive
marks, this process is often incomplete because the activity
of the involved enzymes depends on the context and cellular
environment. Enzymes such as histone demethylases (like KDM4A
and KDM4B, which target H3K9me3) and HATs must be
precisely directed to specific genomic regions to effectively alter
chromatin states (Pack et al., 2016; Young and Dere, 2021).
However, this precise targeting is frequently ineffective due to
the existing chromatin structure, which is influenced by the
cell’s previous transcriptional history and current epigenetic
landscape.

Moreover, to successfully reprogram cells into a pluripotent
state, significant changes in the cell’s gene activity, or
transcriptome, are required. This process involves two key
steps: removing repressive marks that silence genes and
adding active marks, such as H3K4me3 and H3K27ac, at the
segments that control pluripotency genes (Papp and Plath,
2011; 2013). For instance, restoring H3K4me3 to the SOX2
enhancer is critical for achieving complete reprogramming
(Koche et al., 2011).

However, this process is complicated by the interactions between
different histone modifications. One type of modification can
influence the presence or absence of another, resulting in a
complex and resilient network of epigenetic changes. To address
these challenges, researchers employ various strategies. These
include HDAC inhibitors to enhance chromatin accessibility, DNA
methyltransferase inhibitors to reduce DNA methylation, and
chromatin remodelers to physically alter chromatin structure (Li
and Sun, 2019) (Table 1).

Nonetheless, determining the optimal combination of these
approaches can be challenging, as the epigenetic landscape varies
significantly from 1 cell type to another. These variations can lead to
unintended consequences, such as genomic instability or incomplete

reprogramming, ultimately resulting in a mix of different cell types.
This limitation can restrict the potential applications of iPSCs in
medical treatments.The roles of epigeneticmechanisms in stem cells
and CSCs are summarized in Table 1.

4 Targeting histone modifications in
CSCs for therapy

Histone modifications play a crucial role in maintaining
the characteristics of CSCs and promoting tumor progression.
As a result, disrupting these epigenetic markers has become a
promising strategy for cancer treatment. Recent advancements
have led to the development of novel small-molecule inhibitors
that specifically target key histone-modifying enzymes, including
histone methyltransferases and HDACs (Kumar et al., 2023)
(Table 1). These inhibitors work by dismantling the epigenetic
frameworks that underpin CSC maintenance, reducing stem-like
properties, promoting differentiation, and enhancing sensitivity
to traditional therapies such as chemotherapy and radiation
(Figure 1).

One notable advancement in cancer treatment is the
development of EZH2 inhibitors, with tazemetostat being a key
example that has received FDA approval for patients with both
hematologic and solid tumors (Straining and Eighmy, 2022)
(Figure 1). EZH2 is a component of the PRC2, which is responsible
for the H3K27me3 (Figure 1). This modification is linked to gene
silencing and inhibits the differentiation of mesenchymal stem cells
and potential CSCs (Momparler and Côté, 2015; Straining and
Eighmy, 2022) (Figure 1). High levels of EZH2 activity can repress
genes associated with cell cycle arrest, promoting self-renewal in
stem or progenitor cells (Kim and Roberts, 2016).

In cancer therapy, treating doxorubicin-resistant high-grade
complex karyotype soft tissue sarcoma (STS) cell lines with
tazemetostat has shown a reduction in the STS-CSC population.
Furthermore, when tazemetostat is combined with doxorubicin, it
has been found to restore chemosensitivity (O'Donnell et al., 2024).
Promising results from early-phase clinical trials in cancers such as
epithelioid sarcoma and follicular lymphoma highlight the potential
of EZH2 inhibitors in targeting CSC populations through epigenetic
reprogramming (Italiano et al., 2018).

In parallel, HDAC inhibitors like vorinostat and romidepsin
have garnered attention for their ability to enhance histone
acetylation, particularly at positions H3K27ac and H3K9ac, which
are associated with active gene transcription (Gallinari et al.,
2007) (Figure 1). By inhibiting HDAC, these compounds
create a more accessible chromatin structure, allowing for the
expression of genes that promote differentiation, such as p21
(CDKN1A) and BAX (Johnstone, 2002). Moreover, HDAC
inhibitors increase the sensitivity of breast CSCs to treatments like
cisplatin and doxorubicin across various breast cancer subtypes
(Hii et al., 2020).

Vorinostat is the first FDA-approved HDAC inhibitor,
specifically approved for the treatment of refractory cutaneous T
Cell lymphoma (CTCL). It has been shown to reduce the expression
of CSC markers and promote differentiation in glioma stem cell-
like populations (GSCs) (Duvic et al., 2007; Booth et al., 2014).
Additionally, Sirtuin 1 (SIRT1), the first identified member of the
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FIGURE 1
Epigenetic Modulation and Targeting Strategies for CSCs in Cancer Therapies. The upper part demonstrates two key epigenetic modifications: (1)
Tazemetostat, an EZH2 inhibitor, targets the PRC2 complex (comprising SUZ12, EED, and EZH2) to reduce H3K27me3 levels and increase gene
expression. (2) Vorinostat and Romidepsin are HDAC inhibitors that upregulate H3K27ac or H3K9ac levels, promoting chromatin accessibility and active
transcription. The lower section highlights CSC-targeting strategies: (1) CSC biomarkers are identified and targeted to achieve selective elimination of
CSC populations. (2) Epigenetic modulators are regulated using CRISPR-Cas9 to precisely modify CSC-specific pathways. The central route shows how
CSC-specific therapies cause tumor regression by targeting the CSC population (orange cells), while sparing normal tumor cells (green cells).

class III HDACs, requires NAD+ to catalyze the deacetylation of
both histone and non-histone proteins (Liu et al., 2009). The SIRT1
inhibitor Tenovin-6 (TV-6) has demonstrated the ability to disrupt
the dependence of lung adenocarcinoma CSCs on mitochondrial
oxidative phosphorylation (mtOXPHOS), thereby enhancing and
prolonging the therapeutic effectiveness of tyrosine kinase inhibitors
(TKIs) like gefitinib (Sun et al., 2020).

Research into the potential of combining HDAC inhibitors with
other therapies to overcome resistancemechanisms is ongoing. Such
combinations have shown promise in increasing CSC sensitivity to
radiation and chemotherapy.

Recent advances in gene therapy and single-cell epigenomic
techniques are enhancing epigenetic therapies by providing detailed
insights into CSC heterogeneity. Single-cell analysis allows for
precise targeting of epigenetic vulnerabilities, while CRISPR-
Cas9 technology is being employed to modify key epigenetic
regulators involved in CSC-driven tumor growth (Xing and
Meng, 2020) (Figure 1). A recent study emphasizes that the
overexpression of Achaete-scute homolog 1 (ASCL1), ASCL2,
and Transcription Factor AP-4 (TFAP4) significantly contributes
to the regulation of CSC-like cell populations, influencing their
differentiation potential based on the cellular environment
through epigenetic mechanisms (Chen et al., 2023). Furthermore,
haploinsufficiency of DNA methyltransferase 1 (Dnmt1) has been
shown to effectively impair the self-renewal capabilities of leukemia
stem cells while largely leaving normal hematopoiesis unaffected
(Trowbridge et al., 2012). In the future, targeting epigenetic
regulators specifically in CSCs using CRISPR-Cas9 presents a

promising strategy for cancer therapies, as manipulating key factors
like ASCL1, TFAP4, and Dnmt1 could disrupt CSC plasticity
and differentiation, thus reducing tumorigenicity and improving
treatment outcomes (Figure 1).

Despite these advancements, there are several challenges to
the development of epigenetic therapies. A primary concern
is the lack of selectivity—many histone-modifying enzymes,
such as EZH2, are crucial not only for regulating CSCs but
also for normal stem cell function. For example, studies have
demonstrated that loss of EZH2 function in hematopoietic stem cells
increases the likelihood of mice developing various hematologic
malignancies (Mochizuki-Kashio et al., 2015). Additionally, CSCs
exhibit epigenetic plasticity, allowing them to evade therapeutic
interventions by activating compensatory pathways or upregulating
alternative histone-modifying enzymes (Cabrera et al., 2015). This
adaptability poses a significant barrier to long-term treatment
success, often resulting in therapy resistance.

To address these challenges, biomarker-driven patient
stratification is emerging as a promising approach that enables
more personalized methods for epigenetic therapies. By identifying
specific CSC markers such as CD44, CD133, ALDH, and EpCAM,
clinicians can categorize patients based on the epigenetic profiles
of their tumors, allowing them to select individuals who are more
likely to benefit from targeted treatments (Chu et al., 2024) (Table 1).
An optimal future strategy could involve the use of specific
antibodies recognizing these CSC markers in combination with
epigenetic-targeting agents such as tazemetostat (an EZH2
inhibitor) or vorinostat (HDAC inhibitor). This combinatorial
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approachmay enhance therapeutic precision by selectively targeting
CSC populations while minimizing off-target effects.

Furthermore, an effective strategy may involve knocking
out epigenetic regulators essential for CSC self-renewal and
proliferation. Advances in single-cell technologies, such as single-
cell RNA sequencing and single-cell ATAC-seq, offer a valuable
solution by enabling the identification of CSC-specific epigenetic
signatures. Integrating this information with CRISPR-based gene
editing—where Cas9 expression is regulated by CSC-specific
promoters like CD133 and EpCAM—could enhance precision in
modulating CSC-associated regulators while preserving normal
cellular function. This strategy may contribute to the development
of highly selective and efficient epigenetic therapies tailored to CSCs
and their regulatory mechanisms.

Additionally, combination therapies are showing significant
potential. Pairing HDAC inhibitors with other agents that target
multiple epigenetic pathways has demonstrated synergistic effects
in preclinical models. This combination effectively inhibits CSC
functions, such as self-renewal and resistance to apoptosis
(Kumar et al., 2022) (Table 1).

The next-generation of epigenetic inhibitors aims to enhance
selectivity, minimize off-target effects, and improve the durability of
therapeutic responses. Furthermore, gene-editing technologies like
CRISPR-Cas9 are being investigated to precisely target epigenetic
regulators, offering a more permanent solution for disrupting CSC
plasticity.

5 Concluding remarks

Epigenetic therapies targeting CSCs hold significant potential
for overcoming tumor growth and resistance to treatment.
Advanced technologies such as single-cell epigenomic analysis and
CRISPR-Cas9 gene editing allow for precise targeting of critical
epigenetic regulators that support CSC adaptability and survival.
Despite this progress, challenges still remain, including the non-
specificity of current epigenetic drugs and the ability of CSCs
to adapt and resist therapy. Utilizing biomarker-based patient
stratification combined with treatment strategies may enhance
therapeutic precision and minimize off-target effects. Moving
forward, advancing selective epigenetic inhibitors and integrating
gene-editing tools could offermore effective approaches to eliminate
CSCs and improve clinical outcomes.
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Introduction: Intestinal stem cells (ISCs) possess the ability to self-renew and
differentiate, which is essential for maintaining intestinal tissue homeostasis.
However, their functionality significantly declineswith age, leading to diminished
tissue regeneration and an increased risk of age-associated diseases.

Methods: This study investigates the effects of Dapagliflozin (DAPA), a novel
insulin sensitizer and SGLT2 inhibitor, on aging ISCs using the Drosophila
melanogaster model. Our findings demonstrate that DAPA can inhibit the
MAPK signaling pathway, as confirmed by network pharmacology analysis and
molecular docking experiments.

Results: DAPA ameliorates ISC aging, improves intestinal function (including
enhanced fecal excretion, restored intestinal barrier integrity and acid-base
balance), and enhances healthspan. These results highlight the potential of DAPA
as an anti-aging therapeutic agent.

Discussion: This study provides new evidence for the application of DAPA as an
anti-aging treatment.

KEYWORDS

dapagliflozin, intestinal stem cell, aging, MAPK signaling, Drosophila

1 Introduction

Aging is a complex biological process characterized by multidimensional and
multilevel functional decline across cells, tissues, and organs, thereby increasing
the risk of diseases (López-Otín et al., 2013, López-Otín et al., 2023). Normal
intestinal stem cells (ISCs) possess the dual abilities of self-renewal and differentiation,
which are essential for maintaining tissue and organ homeostasis (Ohlstein and
Spradling, 2006). However, their functionality significantly declines with age, resulting
in diminished tissue regeneration capacity and an elevated risk of age-related diseases
(Brunet, Goodell, and Rando, 2023; Ermolaeva et al., 2018). Consequently, combating
ISC aging represents a promising yet challenging field (Du et al., 2021; Yan et al., 2022).
Investigating small molecule drugs to mitigate age-related impairments in ISC function
can promote healthy aging and complement the mechanisms of age-related decline.

Frontiers in Cell and Developmental Biology 01 frontiersin.org103

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2025.1576258
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2025.1576258&domain=pdf&date_stamp=2025-04-16
mailto:chenhaiou@wchscu.cn
mailto:chenhaiou@wchscu.cn
mailto:dryanhuahua666@163.com
mailto:dryanhuahua666@163.com
https://doi.org/10.3389/fcell.2025.1576258
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcell.2025.1576258/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1576258/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1576258/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1576258/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Yan et al. 10.3389/fcell.2025.1576258

Dapagliflozin (DAPA), a novel insulin sensitizer and SGLT2
inhibitor, exerts direct, sugar-independent effects by reducing
oxidative stress and endoplasmic reticulum stress (Shibusawa et al.,
2019), restoring mitochondrial health, stimulating mitochondrial
biogenesis (Lee et al., 2019), and decreasing pro-inflammatory
and profibrotic pathways (Kounatidis et al., 2023). These effects
rejuvenate aging cells, tissues, and organs (O'Keefe et al., 2023), and
are associated with a reduced risk of various common age-related
diseases, including heart failure (Butt et al., 2022), chronic kidney
disease (Jhund et al., 2021), atrial fibrillation (Butt et al., 2022),
cancer (Basak et al., 2023), gout (Lai et al., 2023), neurodegenerative
diseases (Wu et al., 2023), and atherosclerosis (Ortega et al.,
2019). Recent Studies have shown that DAPA can reduce the
accumulation of reactive oxygen species (ROS) in cells and improve
age-related endothelial dysfunction (Tai et al., 2023). Moreover,
recent studies have shown that the SGLT2 inhibitors canagliflozin
enhances the clearance of senescent cells, thereby improving age-
related phenotypic changes and extending lifespan (Katsuumi et al.,
2024). We hypothesize that DAPA can modulate
ISC function and delay aging, which needs further
validation.

Drosophila melanogaster, a model organism renowned for
aging research, serves as an ideal model for studying ISC aging
(Promislow et al., 2022). During homeostasis, the midgut of fly
is composed of ISCs and various differentiated cell types, closely
resembling the complexity of the mammalian gut (Jasper, 2020).
Fly ISCs are characterized by their expression of Delta (Dl, a Notch
ligand) and Escargot (Esg, a transcription factor). ISCs divide and
differentiate into enteroblasts (EBs) and enteroendocrine progenitor
cells (EEPs), which further differentiate into enterocytes (ECs)
and enteroendocrine cells (EEs), thereby maintaining the self-
renewal of the intestinal epithelium (Biteau et al., 2008; Ayyaz and
Jasper, 2013; Biteau et al., 2011). In the aging fly intestine, aberrant
ISCs function leads to hyper-proliferation,thereby disrupting
intestinal homeostasis and impairing intestinal function. Extensive
research has demonstrated that alleviating ISC hyperplasia, which
is caused by dysplasia (Rodriguez-Fernandez et al., 2020), plays
a crucial role in extending lifespan (Biteau et al., 2010; Du et al.,
2020). Thus, the fly intestine is a valuable model for
studying the impact and mechanism of DAPA on stem
cell aging.

Research has shown that the MAPK signaling pathway exerts
regulatory influence over ISC aging in Drosophila (He et al., 2020),
and modulating MAPK activity can contribute to maintaining
normal function (Ureña et al., 2024; Zhang et al., 2019; Park et al.,
2009). In our study, using the Drosophila gut as a model system, we
found that DAPA alleviates hyper-proliferation of ISCs, maintains
gut homeostasis, improves age-related declines in intestinal
function, and prolongs the lifespan of Drosophila. Additionally, our
findings indicate that these effects of DAPA are mediated through
the inhibition of the MAPK signaling pathway. Therefore, our study
not only highlights DAPA’s potential as a novel anti-aging drug but
also underscores the importance of the MAPK pathway in stem
cell aging and longevity. In conclusion, the study demonstrates that
DAPA can serve as an effective and safe anti-aging drug to promote
healthy aging.

2 Results

2.1 Dapagliflozin prevents gut hyperplasia
of ISCs in aged Drosophila melanogaster

In the Drosophila midgut, intestinal stem cells (ISCs) maintain
intestinal cell homeostasis through proliferation and differentiation
(Figure 1A). However, in aging Drosophila, the regulation of stem
cell proliferation is dysregulated, leading to abnormal accumulation
of Esg + cells (including ISCs, EBs, and pre-EE), while the number
of fully differentiated intestinal cells decreases, thereby impairing
normal intestinal function (Choi et al., 2008).

To investigate whether certain small molecule compounds can
prevent age-related ISC dysfunction, we utilized the; esg-Gal4,
UAS-GFP, tub-Gal80TS/Cyo; system (hereafter referred to as esgts)
to express green fluorescent protein (GFP) under the control of
the esg gene at 29°C. This system allowed us to monitor and
quantify changes in esg-GFP + cells in real-time, enabling us to
screen for small molecule drugs that can alleviate age-related ISC
dysfunction.The esgts system is based on the TARGET system, which
is a powerful tool for spatiotemporal gene expression targeting in
Drosophila (McGuire et al., 2004). The TARGET system utilizes a
temperature-sensitiveGAL80protein(GAL80ts) tocontrol theactivity
of GAL4. At the permissive temperature (e.g., 18°C), GAL80ts binds
to and inhibits GAL4, preventing it from activating downstream
UAS-driven gene expression. When the temperature is shifted to the
restrictive temperature (e.g., 29°C), GAL80ts loses its binding affinity
for GAL4, allowing GAL4 to activate the expression of genes under
the control of UAS elements. This temperature-dependent regulation
enables precise temporal control of gene expression, making it an
ideal system for studying the effects of small molecule compounds on
ISC function over time.

At 30 days old, flies are in the middle and old age stages, and
they begin to show physiological changes associated with aging, such
as decreased intestinal cell homeostasis, abnormal accumulation of
Esg + cells, and a reduction in the number of fully differentiated
intestinal cells. We supplemented the diet of 30-day-old flies with
Dapagliflozin (DAPA) and maintained them at 29°C for 10 days
(Figure 1B). we used the entire gut for the pH3+ cell (phosphorylated
histone H3, which specifically stains dividing ISCs) count, which
is a common approach in the field to provide a comprehensive
assessment of cell proliferation across the entire organ. This method
allows us to capture the overall proliferative activity within the gut,
which is essential for understanding the biological processes we
are investigating. Among the three tested concentrations of DAPA
(1 μM, 10 μM, and 100 µM), the 100 µM concentration exhibited the
most pronounced effect on pH3+, significantly mitigating intestinal
hyperplasia causedbydysplasia in agedflies (Figure 1C).Compared to
aged flies without DAPA supplementation, those supplemented with
DAPA for 10 days showed a significant reduction in the number of
esg + cells (Figures 1D–G). Further quantification of Dl + cells (ISC
markers) demonstrated that the number of Dl + cells (Figures 1D–H)
in aged flies a supplemented with 100 µM DAPA was significantly
lower than in the control group. These findings suggest that DAPA
supplementation prevents excessive ISC proliferation and subsequent
intestinal hyperplasia in aged flies.
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FIGURE 1
Dapagliflozin Prevents gut hyperplasia of ISCs in Aged Drosophila melanogaster. (A) The lineages of Drosophila intestinal stem cells (ISCs). ISCs
(identified by Esg+,delta+) undergo asymmetric division to self-renew and give rise to enteroblasts (EBs) or enteroendocrine progenitor cells
(EEPs/Pre-EE). EBs differentiate to form enterocytes (ECs), while EEPs differentiate to form enteroendocrine cells (EEs). (B) Schematic diagram
depicting the process of oral DAPA in Drosophila. (C) The number of pH3+ cells (a marker of mitotic activity) was assessed in the whole guts of
10-day-old and 40-day-old female flies (esgts) without DAPA supplementation and with three concentrations of DAPA (1 μM, 10 μM, and 100 µM).
(D–F) Immunofluorescence images of posterior midguts of 10- (D) and 40-day-old (E) female flies without DAPA supplementation and 40-day-old
male flies with 100 μM DAPA supplementation (F) stained with DAPI (blue; nuclei), GFP (green; ISCs and progenitor cells marker), and Dl (red; ISCs
marker). The top panels represent the merged images, the middle panels represent esg-GFP, and the bottom panels represent Dl. Scale bars represent

(Continued)
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FIGURE 1 (Continued)

20 μm. (G) The ratio of esg-GFP+ cells to DAPI+ cells per ROI (region of interest) in posterior midguts of 10- and 40-day-old female flies without
DAPA supplementation and 40-day-old female flies with 100 μM DAPA supplementation. (H) The ratio of Dl+ cells to DAPI+ cells per ROI (region of
interest) in female flies experiments. The numbers of counted guts are 20. Data are represented as means ± SD. ANOVA or unpaired Kruskal Wallis
test be used, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, and ns indicates p > 0.05.

2.2 Dapagliflozin prevents age-related gut
dysfunction in aged Drosophila
melanogaster

To further explore the potential effects of DAPA
supplementation on intestinal function, we investigated its impact
on the gut of aged flies. Previous studies have demonstrated that
age-related dysfunction of ISCs leads to a significant deterioration
of intestinal function in flies, including disruption of gastrointestinal
acid-base homeostasis, reduced fecal excretion, and compromised
intestinal barrier integrity (Lemaitre and Miguel-Aliaga, 2013;
Kühn et al., 2020). To address this issue, flies were fed a diet with
or without DAPA supplementation and subsequently treated with
bromophenol blue (BPB) or non-absorbable blue dye (Figure 2A).
BPB is a pH indicator. Following BPB feeding, wild-type fly
midguts were examined for acidification. A yellow copper cell
region (CCR) revealed acidification (pH < 2.3), while the blue
anterior and posterior midgut indicated a neutral to basic pH
(pH > 4). Our results demonstrated that DAPA supplementation
significantly enhanced fecal excretion in aged flies (Figures 2B, C).
In flies, the size and function of the CCR decline with age, resulting
in disrupted acid-base balance in the gut (Dubreuil, 2004). We
observed that DAPA supplementation significantly restored acid-
base balance in the gut of aged flies (Figures 2D, E). The integrity
of the intestinal barrier is essential for maintaining epithelial
homeostasis, defending against pathogens, and promoting immune
tolerance to commensal bacteria (Martel et al., 2022). Furthermore,
to assess the impact of DAPA on intestinal barrier function, we
conducted the blue dye assay. Smurf (+) indicates that the flies
exhibit compromised intestinal barrier function, with visible blue
dye staining on the body surface due to leakage. Smurf (−) indicates
that the intestinal barrier function is intact, with no visible blue dye
staining (Figure 2F). Our study demonstrates that supplementation
with DAPA significantly enhances intestinal barrier function in
aged flies (Figure 2G). In conclusion, these findings demonstrate
that DAPA ameliorates age-related intestinal dysfunction in
aged flies.

2.3 Dapagliflozin extends lifespan under
both natural and stress-induced conditions
in Drosophila melanogaster

Intestinal health is closely related to lifespan extension.
Accumulating evidence has demonstrated that maintaining
intestinal homeostasis can contribute to longevity (Jing et al., 2025;
Choi and Augenlicht, 2024). we observed that DAPA alleviates age-
related ISC hyperplasia and prevents age-related gut dysfunction
in aged flies, which prompted us to further investigate the effects
of DAPA supplementation on the lifespan of flies. Initially, DAPA

was supplemented into the diet of the experimental group, and
the results demonstrated that DAPA supplementation significantly
extended the lifespan of flies compared to the control group
(Figures 3A, B).

Subsequently, we sought to explore whether DAPA could
extend lifespan under various environmental stress conditions.
Flies were exposed to various environmental stress models,
including dextran sulfate sodium (DSS)-induced ulcerative colitis
(Yan et al., 2023), paraquat (PQ)-induced oxidative damage
(Lyles et al., 2021), and bleomycin (BLM)-induced DNA damage
(Du et al., 2020). Under DSS-induced stress, we observed that
DAPA mitigated the damage to the tight junctions between
intestinal cells. Specifically, the damage to the tight junctions, as
marked by Armadillo (Arm), was less severe in the DAPA-treated
group compared to the control group (Supplementary Figure S1A).
In the PQ-induced oxidative stress model, the transcriptional
levels of ROS-related genes were downregulated in the DAPA-
supplemented group, suggesting that DAPA may enhance
antioxidant capacity (Supplementary Figure S1B). Furthermore,
in the BLM-induced DNA damage model, the transcriptional
levels of DNA damage-related genes were significantly reduced
in the DAPA-treated group, indicating that DAPA could mitigate
DNA damage (Supplementary Figure S1C). The scavenging effects
of DAPA supplementation on oxidative and DNA damage
likely involve multiple mechanisms, including direct antioxidant
actions, regulation of DNA repair mechanisms, and inhibition of
inflammatory responses (Arow et al., 2020; Alsereidi et al., 2024).
The synergistic action of these mechanisms may contribute to the
extended lifespan of fruit flies under various stress conditions.

Under DSS-induced stress, DAPA significantly extended the
lifespan of flies (Figures 3C, D). In the PQ-induced acute aging
model, DAPA supplementation significantly extended the lifespan of
flies and effectively mitigated acute oxidative stress (Figures 3E, F).
Additionally, in the BLM exposure model, DAPA significantly
prolonged the lifespan of flies (Figures 3G, H). In summary, our
findings demonstrate that DAPA supplementation not only extends
the normal lifespan of flies but also significantly prolongs lifespan
under various stress-induced model.

2.4 Dapagliflozin alleviates aging-induced
gut hyperplasia of ISCs primarily through
repressing the MAPK signaling pathway

Based on prior studies demonstrating that DAPA may
regulate the MAPK signaling pathway (Wang et al., 2022;
Phongphithakchai et al., 2025) and our PPI network/pathway
enrichment analysis (Supplementary Figure S2), we further
explored the potential molecular mechanisms using both PPI
network analysis and pathway enrichment analysis (Supplementary
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FIGURE 2
Dapagliflozin Prevents Age-Related Gut Dysfunction in Aged Drosophila melanogaster (A) Schematic diagram depicting the procedure of DAPA
administration in Drosophila: Drosophila were cultured at 26°C until reaching 30 days of age, following which they were randomly divided into two
groups: a control group and a group supplemented with DAPA. After a feeding period of 9 days, flies were selected for “Smurf,” deposits and intestinal
“Homeostasis,” respectively. (B) Representative images of excretion deposits from female flies at 10 and 40 days old without DAPA supplementation,
and 40 days old with 100 µM DAPA supplementation. (C) Quantification of excretion deposits from female at 10 and 40 days old without DAPA
supplementation, and 40 days old with 100 µM DAPA supplementation. Excretions are quantified for 6 fields in each group of 20 flies. (D)
Representative images of the intestinal acid-base homeostasis and the non-eating intestine: “Homeostasis” corresponds to CCR as yellow; “Perturbed”
corresponds to CCR as blue; “Non-eating” indicates that the flies did not ingest food, and the guts are not stained with bromophenol blue

(Continued)
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FIGURE 2 (Continued)

(E). The percentage of “Homeostasis” female in experiment. Each group included 20 flies. (F) Representative images of the gut leakage:Smurf (+)
corresponds to the leakage of blue dye from the gut into surrounding tissues. (G) The ratio of the female flies of smurf (+) in experiment. Each
group included 20 flies. Three independent experiments were conducted more than three times. Data are represented as means ± SD. ANOVA or
unpaired Kruskal Wallis test be used. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, and ns indicates p > 0.05.

Figure S2). These analyses collectively suggest that DAPA may exert
its protective effects via the EGFR/MAPK signaling pathway in
ISC aging. To test this hypothesis, we conducted the following
experiments.

The Epidermal Growth Factor Receptor (EGFR) is a well-
known regulator of ISC activity. Activation of EGFR leads to the
phosphorylation and activation of ERK, which in turn promotes ISC
proliferation and maintains intestinal homeostasis. This pathway
directly feeds into theMAPK cascade, making it a primary upstream
regulator (Zhang et al., 2022; Li et al., 2015). To further explore the
potential ofDAPA in regulating the EGFR signaling pathway,we first
measured the transcriptional level of EGFR in ISCs and found that
DAPA supplementation significantly reduced EGFR transcription
in intestinal ISCs (Figure 4A). Subsequently, we observed that
the fluoreoxidative stress and endoplasmicscence intensity of
phosphorylated Extracellular Signal-Regulated Kinase (pERK), a
marker of MAPK activation, was also significantly reduced in the
DAPA supplementation group, indicating that DAPA alleviated
intestinal hyperplasia by inhibiting pERK expression (Figure 4B;
Supplementary Figure S3A).

To further confirm the role of DAPA in regulating the EGFR
signaling pathway, we first induced overexpression of the dominant-
negative form of EGFR (EGFRDN) in Drosophila. We hypothesized
that DAPA slows the aging of Drosophila ISCs by inhibiting the
EGFR pathway and predicted that no synergistic effect would be
observed in Drosophila expressing EGFRDN (driven by esgts-gal4)
upon DAPA administration. Compared to normal aged Drosophila,
the number of esg-GFP + cells was significantly suppressed
in aged Drosophila with esgts-gal4-driven EGFRDN. Consistent
with our expectations, DAPA supplementation did not lead to a
further reduction in esg-GFP + cells (Figures 4C, D), and statistical
analysis demonstrated similar effects in Dl+ and pH3+ cell counts
(Figures 4E, F; Supplementary Figure S3B).

In addition, we conducted experiments with the constitutively
active form of EGFR (EGFRCA). We hypothesized that
overexpression of EGFRCA would counteract the protective
effects of DAPA on ISC dysfunction. The results showed that,
compared to normal aged Drosophila, the number of esg-GFP
+ cells was significantly increased in Drosophila expressing
EGFRCA (Figures 4C, D), indicating that EGFRCA overexpression
induces ISC hyperproliferation. Notably, DAPA treatment failed
to significantly reduce the number of esg-GFP + cells in
Drosophila expressing EGFRCA (Figures 4C, D), with parallel
resistance observed in Dl+ and pH3+ cell counts (Figures 4E, F;
Supplementary Figure S3B). This further substantiates that
EGFRCA overexpression counteracted the protective effects
of DAPA (Figures 4C–F). These findings suggest that DAPA-
induced mitigation of age-related ISC hyperproliferation in
Drosophila is associated with inhibition of the MAPK/EGFR
signaling pathway (Figure 4G).

3 Discussion

Researchers in the field of aging have long been dedicated to
understanding the mechanisms of aging and identifying precise
therapeutic strategies to delay aging and alleviate age-related
diseases. A critical frontier in biomedical science is the pursuit
of interventions that can mitigate the adverse effects of aging on
stem cell function. This study demonstrates for the first time that
Dapagliflozin (DAPA) ameliorates intestinal stem cell (ISC) aging in
Drosophilamelanogaster by repressing theMAPK signaling pathway.
Our findings reveal that DAPA supplementation reduces age-related
ISC hyperplasia (evidenced by decreased pH3+ and Dl + cells),
restores intestinal barrier integrity, acid-base homeostasis, and
excretory function, while extending lifespan under both natural and
stress-induced conditions. Network pharmacology and molecular
docking analyses further validate that DAPA suppresses ERK
phosphorylation by targeting EGFR/MAPK3, thereby maintaining
ISC homeostasis. These results provide direct evidence for DAPA as
a potential anti-aging therapeutic agent.

The extracellular-signal-regulated kinases (ERK) signaling
pathway, a classic pathway of mitogen-activated protein kinases
(MAPK), plays a crucial role in regulating cell growth,
differentiation, survival, inflammation (Fang and Richardson, 2005;
Chen et al., 2020; Schafer et al., 2017). Numerous studies have
demonstrated a negative correlation between ERK and healthy
lifespan, and a decrease in ERK is able to inhibit age-related
degenerative diseases (Tarragó et al., 2018; Sun et al., 2020).
Additionally, as one of the most important pathways regulating
cell proliferation, the overactivation of the ERK pathway can
autonomously stimulate the proliferation of intestinal stem cells
(Zhang et al., 2019). Live-cell imaging of colon monolayers reveals
that ERK is localized in the stem cell niche to maintain epithelial
homeostasis (Pond et al., 2022). Furthermore, in Drosophila
intestine, ERK regulates the homeostasis and regeneration of
intestinal stem cells (Jiang et al., 2011).

Beyond its glucose-lowering effects, DAPA has been shown to
exert a range of beneficial effects unrelated to blood glucose control.
Consistent with previous studies, SGLT2 inhibitors (including
DAPA) exert anti-aging effects through multiple pathways, such as
mitigating oxidative stress andmitochondrial dysfunction (Tai et al.,
2023; Jiang et al., 2023; Katsuumi et al., 2024). However, their role in
intestinal stem cell aging remains underexplored. Our work bridges
this gap by uncovering DAPA’s unique mechanism via MAPK
pathway inhibition. Notably, hyperactivation of MAPK signaling is
a key driver of age-related ISC dysfunction, and DAPA’s suppression
of this pathway aligns with the pro-aging role of ERK signaling in
mammals (Ureña et al., 2024; Nászai et al., 2021; Kabiri et al., 2018).

The anti-aging effects of Dapagliflozin (DAPA) on intestinal
stem cell (ISC) dysfunction may involve both SGLT2-dependent
and -independent mechanisms. While DAPA is primarily known
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FIGURE 3
Dapagliflozin Extends Lifespan Under Both Natural and Stress-Induced Conditions in Drosophila (A, B) Survival percentage of male flies (W1118, control:
n = 65, DAPA: n = 65) (A) and female flies (W1118, control: n = 50, DAPA: n = 50) (B) with or without DAPA supplementation. (C, D) Survival percentage
of male flies (W1118, control: n = 52, DAPA: n = 57) (C) and female flies (W1118, control: n = 54, DAPA: n = 51) (D) with or without DAPA supplementation
during 7% dextran sulfate sodium (DSS) treatment. (E, F) Survival percentage of male flies (W1118, control: n = 45, DAPA: n = 57) (E) and female flies
(W1118, control: n = 60, DAPA: n = 90). (F) with or without DAPA supplementation during 20 mM paraquat (PQ) treatment. (G, H) Survival percentage of
male flies (W1118, control: n = 48, DAPA: n = 47) (G) and female flies (W1118, control: n = 89, DAPA: n = 117) (H) with or without DAPA supplementation
during 5 μg/mL bleomycin (BLM) treatment. Three independent experiments were conducted. Lifespan analysis was performed using the log-rank test,
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001, and ns indicates p > 0.05.
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FIGURE 4
Dapagliflozin alleviates aging-induced gut hyperplasia of ISCs primarily through repressing the MAPK signaling pathway (A) RT-qPCR was used to
measure the mRNA levels of Egfr gene in esg + ISCs isolated from the midguts of esg-GFP Drosophila at three different time points: 10 days, 40 days,
and 40 days + DAPA (B) Quantification of fluorescent intensity of pErk in esg-GFP+ cells from 40-day-old female flies (esgts-Gal4 > UAS-lacZ) at three
different time points: 10 days, 40 days, and 40 days + DAPA. Cells were stained with pErk antibody. Each dot represents one esg-GFP + cell. n = 165
per group, with each n representing one esg-GFP + cell, and the n values for each group were derived from 30 flies.(C) Immunofluorescence images of
posterior midguts of female flies carrying esgts-Gal4-driven UAS-lacZ, UAS-lacZ + DAPA, UAS-EGFRCA + DAPA, UAS-EGFRDN, and UAS-EGFRDN + DAPA
stained with DI,DAPI and GFP. The top panels represent the merged images, the middle panels represent esg-GFP, and the bottom panels represent
Delta (Dl). Scale bars represent 20 µm. (D) The ratio of esg-GFP+ cells to DAPI+ cells per ROI (region of interest) in posterior midguts of female flies in
experiment. (E) The ratio of Dl+ cells to DAPI+ cells per ROI (region of interest) in posterior midguts of female flies. (F) The number of pH3+ cells in the

(Continued)
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FIGURE 4 (Continued)

whole guts of female flies carrying. (G) Model of mechanism: how DAPA modulates ISC aging. In Drosophila melanogaster, DAPA inhibits the MAPK
signaling pathway, thereby suppressing intestinal hyperplasia during aging. Data are represented as means ± SD. ANOVA or unpaired Kruskal Wallis
test be used, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, and ns indicates p > 0.05.

for its glycemic control through SGLT2 inhibition, recent studies
suggest that its benefits on ISC function could be mediated
by non-glycemic actions. These include anti-inflammatory and
antioxidant effects, which reduce oxidative stress and inflammation
via pathways such as NOX4/p38MAPK inhibition (Dihoum et al.,
2024; Alsereidi et al., 2024); autophagy regulation, which supports
cellular homeostasis by clearing damaged organelles and proteins
n (Jaikumkao et al., 2021; Arab et al., 2021); and cardiovascular
protection through pathways like ALDH2 and SK2 modulation
(James et al., 2024; Madero et al., 2024; Panico et al., 2024).
DAPA is known to inhibit the ERK signaling pathway, thereby
mitigating age-related dysfunction of ISC. However, DAPA may
also exert its effects by modulating other MAPK pathways, such
as JNK and p38 MAPK (Sun et al., 2019). For instance, in models
of diabetic cardiomyopathy, DAPA has been shown to provide
direct cardioprotection by modulating the NHE1/MAPK signaling
pathway (Lin et al., 2022). Moreover, DAPA has been reported to
attenuate cellular stress and inflammation through the modulation
of the PI3K/AKT pathway (Alsereidi et al., 2024). Although there
is currently no direct evidence demonstrating DAPA’s effects on
JNK and p38 MAPK signaling pathways in our Drosophila models,
considering DAPA’s regulatory actions on these pathways in other
systems, we cannot rule out the possibility that it may also act
through these pathways in Drosophila. Although these multifaceted
actions highlight the potential for non-glycemic mechanisms in
DAPA’s anti-aging effects, further research is needed to elucidate
the precise contributions of SGLT2-dependent and -independent
pathways using Drosophila diabetes models (Miao et al., 2022).
This will contribute to a more comprehensive understanding of
DAPA’s anti-aging potential and provide a theoretical basis for the
development of novel anti-aging therapeutics.

While this study establishes DAPA’s efficacy in flies, further
validation in mammalian models is essential. Additionally, whether
DAPA’s inhibition of MAPK synergizes with other aging-related
pathways (e.g., AMPK ormTOR) warrants investigation (Sung et al.,
2024). Future research should also address dose-response
relationships and long-term safety to facilitate clinical translation. In
conclusion, our findings position DAPA as a promising anti-aging
compound and underscore the therapeutic potential of targeting
MAPK signaling to combat stem cell aging.

4 Materials and methods

4.1 Drosophila strains and culture

The following Drosophila strains were used in this study: w1118

line (BDSC# 3605),UAS-lacZ line (fromAllan Spradling), esg ts-Gal4
line (fromBenjaminOhlstein),UAS-EGFRCA line (BDSC#9533) and
UAS-EGFRDN line (BDSC #5364).

Flies weremaintained on standard cornmeal-agarmedium (80 g
sucrose, 50 g cornmeal, 20 g glucose, 18.75 g yeast, 5 g agar, and
30 mL propionic acid per 1 L of water) and kept at standard
conditions (25°C, 60% relative humidity, and 12 h light/dark cycle).
Unless indicated otherwise, only mated females were used in
this study (due to the higher incidence of age-related intestinal
dysfunction observed in female fruit flies). The gene overexpression
or knockdown mediated by the esgts-Gal4 Drosophila line was
repressed at 18°C and activated at 29°C.

4.2 Drugs treatment

4.2.1 Dapagliflozin treatment
Dapagliflozin (Macklin, Shanghai, China, #D830111) was first

dissolved in deionized water, then added to standard food to
obtain different concentrations. Flies were collected randomly
and maintained in the medium with different concentrations of
Dapagliflozin (DAPA).

4.2.2 Bleomycin and paraquat treatment
A chromatography paper was cut into 3.7 × 5.8 cm strips

and soaked in 25 μg/mL BLM (Aladdin, B107423), or 20 mM PQ
(Aladdin, M106761) dissolved in 5% (wt/vol) sucrose. After being
starved for 1 h, flies were transferred into vials with the BLM or PQ
solution–saturated chromatography paper with 5% sucrose.

4.3 Immunofluorescence

Drosophila intestines were dissected in cold phosphate-buffered
saline (PBS), fixed at room temperature for 30 min with 4%
paraformaldehyde (PFA) (for anti-dpErk immunostaining, guts
were fixed in 8% paraformaldehyde for 50 min), and then washed
three times (10 min each) in PBS containing 0.1%Tween-20 (PBST).
Tissues were immersed in the primary antibodies diluted in PBST
and incubated overnight at 4°C.

The following primary antibodies were used: chicken anti-
GFP, Abcam, 1:1,000; mouse anti-Delta, DSHB, 1:50; rabbit anti
phospho-HistoneH3 (Ser10),Millipore, 1:1,000; rabbit anti-dpERK,
Cell Signaling, 1:500; Mouse anti-Armadillo 1:100, DSHB, #AB_
528089,1:100. After washing, guts were incubated with secondary
antibodies (Alexa 488, 568 or 647, Invitrogen, 1:2000) and DAPI
(Sigma, 1 μg/mL) for more than 2 h at room temperature with
shaking. Finally, seal and preserve the intestines by soaking
them with the anti-fluorescence quenching agent and placing
them on slides.

Immunofluorescence images were captured with a Leica TCS-
SP8 confocal microscope and assembled with Application Suite X,
Adobe Illustrator, and ImageJ software.
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4.4 Smurf assay

To test the integrity of theDrosophila intestinal barrier (Rera et al.,
2011), Drosophila treated with different drugs (fed with or without
DAPA) were starved for 1 h and then cultured in the medium
with added 2.5% (wt/vol) blue food dye (Spectrum Chemical
Manufacturing Corp, Shanghai, China, #FD110) for 12 h. Flies
leaking blue dye outside the intestine were considered as “Smurf
(+)” flies. Smurf (+) indicates that the flies exhibit compromised
intestinal barrier function, with visible blue dye staining on
the body surface due to leakage. Smurf (−) indicates that the
intestinal barrier function is intact, with no visible blue dye
staining.

4.5 Bromophenol blue assay

To determine the pH of Drosophila midguts, the bromophenol
blue assay was performed in the following steps (Li et al., 2016): add
200 µL of 2% bromophenol blue solution (Sigma, #B5525, dissolved
in 5% sucrose) to the surface of the standard medium, followed by
punching several holes with a pipet tip to allow the solution to be
fully absorbed. The flies were starved for 1 h and cultured in the
above food for 24 h. Then dissect the intestines and capture the
images immediately to prevent carbon dioxide from affecting the
rendering results.

To ensure accurate assessment of intestinal function, only flies
that had consumed food, as indicated by blue staining in their
guts (due to bromophenol blue), were included in the analysis.
Flies that did not consume food, evidenced by the absence of
blue staining, were excluded. The percentage of flies with blue-
stained guts, representing those with functional food intake, was
then calculated. We refer to flies whose guts were all dyed blue
after ingesting food containing bromophenol blue as “perturbed”
flies, while whose CCR areas retained yellow were described as
“homeostasis.”

4.6 Drosophila excretion assay

To measure the excretory function of the Drosophila
intestinal tract [3](Cognigni et al., 2011), Drosophila treated with
different drugs (fed with or without DAPA) were starved for 1 h
and cultured in the bromophenol blue food vial (whose wall was
surrounded by chromatography paper) for 24 h. Finally, image the
deposits on the paper with a Leica M205 FA stereomicroscope and
quantify the number of deposits.

4.7 Lifespan assay

To determine the effect of DAPA on the lifespan, 50–100 female
or male flies hatched within 48 h were collected and divided equally
into five vials, in which the food was mixed with or without DAPA.

To determine the lifespan under stressful conditions, the flies
were randomized into the following groups: DSS (7%) + water, DSS
(7%) +DAPA (100 µM). PQ (20 mM) +water, PQ (20 mM) +DAPA
(100 µM), BLM (5 μg/mL) +water, and BLM (5 μg/mL) + DAPA

(100 µM) group. For each group, 50–100 female ormale flies hatched
within 48 h were collected and divided equally into five vials.

In addition, the female flies used in the experiments are virgins
[to avoid confounding factors introduced by mating and to focus on
the intrinsic aging processes (Liu et al., 2024)]. The number of dead
flies was recorded every 2 days, and the experiments were repeated
at least three times.

4.8 Network pharmacology

The targets corresponding to DAPA (https://pubchem.ncbi.
nlm.nih.gov/) were obtained from the PharmMapper database
and filtered the targets with Norm Fit >0.5 (http://www.lilab-
ecust.cn/pharmmapper/). The targets of aging were searched by
the OMIM (https://omim.org/), TTD (http://db.idrblab.net/ttd/),
DrugBank (https://go.drugbank.com/), GeneCards (http://www.
genecards.org/), and DisGeNET (https://www.disgenet.org/)
databases using “Intestinal stem cells aging” as the keyword. The
gene names of these targets were obtained from theUniprot database
after removing the duplicates (http://www.uniprot.org).

The common targets of DAPA and aging were analyzed by
the Venny 2.1.0 database to predict the potential targets of
DAPA against aging. These common targets were imported into
the STRING database (https://cn.string-db.org/), the minimum
required interaction score was set to 0.7 and the isolated targets
were removed to obtain the protein-protein interaction (PPI)
network. Kyoto Encyclopedia of Genes and Genomes (KEGG,
https://www.kegg.jp/kegg/pathway.html) enrichment analysis of the
common targets was performed using the Metascape database
(https://metascape.org/).The enrichment results of KEGG pathways
were visualized by the Bioinformatics platform (https://www.
bioinformatics.com.cn/).

4.9 Molecular docking

The 3D structure of DAPA in the SDF file was obtained from the
PubChemdatabase (https://pubchem.ncbi.nlm.nih.gov/), converted
to a PDB file via Open Babel 2.4.1 software, used AutoDockTools-
1.5.6 to add hydrogen bonds, detect the root, and set rotatable
bonds, then saved as PDBQT format. The conformation of proteins
obtained from the PDB database were exported to the PDB file,
then charged into AutoDockTools-1.5.6 software to remove the
water molecules and excess inactive ligands, get hydrogenated and
exported to PDBQT format. The molecular docking was performed
using AutoDockTools-1.5.6 software and the results were visualized
by PyMol (DeLano Scientific, United States) and proteins. plus
website (https://proteins.plus/).

4.10 Flow cytometry-based isolation of
esg+ cells from Drosophila midguts

A total of 200 female Drosophila midgut were dissected
under ice-cold PBS (pH 7.4) supplemented with 1% penicillin-
streptomycin. The midguts (R1–R5 regions) were carefully excised
and immersed in PBS containing diethylpyrocarbonate (DEPC) to
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inactivate ribonucleases. Tissues were then treated with 1 mg/mL
Elastase solution (Sigma, cat. no. E0258) at 25°C for 30 min with
periodic gentle mechanical disruption every 10 min to ensure
complete dissociation. The resulting cell suspension was passed
through a 40 μm cell strainer (Biologix) to generate a single-
cell population, which was subsequently sorted using a BD FACS
AriaTM III sorter (BD Biosciences) equipped with a 488 nm laser
and a 530/30 nm emission filter. Sorting gates were set based onGFP
fluorescence intensity and forward/side scatter profiles to exclude
esg-cells. Sorted cells were pelleted by centrifugation at 400 ×
g for 20 min at 4°C, resuspended in 0.2 mL ice-cold PBS/DEPC,
and stored at −80°C until further analysis. For each of three
biological replicates, approximately 1 × 105–1 × 106 GFP-positive
cells were obtained.

4.11 RNA isolation and RT-qPCR for
Drosophila

40 adult midguts or 1 × 105–1 × 106 esg+ cells collected into
4°C diethylpyrocarbonate (DEPC)-treated water-PBS solution.
Samples were homogenized in RNA-easy Isolation Reagent
(Vazyme, R701) for total RNA isolation and cDNA synthesis.
RT-qPCRwas performedon aCFX96TouchDeepWell (Bio Rad)
usingChamQUniversal SYBRqPCRMasterMix (Vazyme, Q711).
The reference standardgroup was Rp49. The expression levels
were counted by the2−△△CTmethod.The primers used were
listed as below:

Rp49-F:GCCCAAGGGTATCGACAACA.
Rp49-R:GCGCTTGTTCGATCCGTAAC.
Egfr-F: CGACCGTACTACGACGACAGTA.
Egfr-R:TGATCTTGGTGAGGACGATGA.
dmp53-F:CGTGATTGCTGTGGTTACGTGTACT.
dmp53-R:GCTGCAGAATGCGTTGCTGAAATGTG.
chk2-F:ATGGTGCCGTTGTTGATGTGCAGAT.
chk2-R:TGCAGATGTGCGTTGATGTGGTGCCAT.
sod-F: CAAGGGCACGGTTTTCTTC.
sod-R: CCTCACCGGAGACCTTCAC.
cat-F:TTCCTGTGGGCAAAATGGTG.
cat-R:ATCTTCACCTTGTACGGGCA.

4.12 Statistical analyses

For all the experiments, the data were processed usingGraphPad
Prism version 8.0 and presented as average ±SD from at least three
independent experiments. Statistical significance was determined
using the two-tailed Student’s t-test unless otherwise specified in the
figure legends. For all the tests, p < 0.05 was considered to indicate
statistical significance.
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SUPPLEMENTARY FIGURE S1
DAPAmitigates oxidative stress and DNA damage in Drosophilamidgut under
different stress conditions (A) Reduced Armadillo (Arm) fluorescence intensity in

DAPA-treated flies under 7% DSS-mediated intestinal injury.(scale bar = 20 µm).
(B) Downregulation of ROS-related genes (sod and cat) in DAPA-treated flies
exposed to paraquat (PQ). Gene expression was analyzed by qRT-PCR using RNA
extracted fromwhole midgut tissues (n = 40 guts per group). (C) Downregulation
of DNA damage-related genes (chk2 and dmp53) in DAPA-treated flies receiving
bleomycin (BLM). Data are represented as means ± SD. ANOVA or unpaired
Kruskal Wallis test be used,∗p < 0.05,∗∗p < 0.01,∗∗∗p < 0.001, and∗∗∗∗p < 0.0001,
and ns indicates p > 0.05.

SUPPLEMENTARY FIGURE S2
Network pharmacology analysis and molecular docking of Dapagliflozin. (A) The
structure of DAPA. (B) Venn diagram illustrating the intersection between DAPA
and Aging. (C) PPI network of DAPA and aging intersection targets. (D) Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways bubble diagram. (E) The
gene ontology (GO) functional enrichment analysis revealed a significant
enrichment of MAPK-related proteins in biological processes and molecular
functions. (F, G) Diagram of themolecular docking of DAPA with EGFR or MAPK3,
the binding energies for the targets docked into the DAPA are EGFR (−5.44
kcal/mol), MAPK3/ERK (−4.92 kcal/mol).

SUPPLEMENTARY FIGURE S3
Representative images of pErk and pH3 staining in gut of ISCs (A) Representative
immunofluorescence images of pErk in esg-GFP+ cells from female flies
(esgts-Gal4 > UAS-lacZ) at three different time points: 10 days old (10d), 40 days
old (40d), and 40 days old with DAPA treatment (40d + DAPA). Cells were stained
with pErk antibody. Scale bar represents 20 µm. (B) Representative
immunofluorescence images of pH3 in the posterior midguts from female flies
carrying esgts-Gal4-driven UAS-lacZ, UAS-lacZ +DAPA, UAS-EGFRCA + DAPA,
UAS-EGFRDN, and UAS-EGFRDN + DAPA stained with pH3 (red), DAPI (blue). Scale
bar represents 20 µm.
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Introduction: Given the crucial role of paracrine signaling in the therapeutic 
function of adipose tissue-derived mesenchymal stem cells (ADSCs) for skin 
wound repair, this study aimed to evaluate the efficacy of ADSC-conditioned 
medium (ACM) in enhancing type 2 diabetic (T2D) wound healing.
Methods: The effect of ACM on the viability and angiogenesis of human 
umbilical vein endothelial cells (HUVECs) was first evaluated using the CCK-8 
assay and q-PCR analysis, respectively. Next, a T2D rat model was established 
through the combination of a high-fat diet and streptozotocin (STZ). Following 
the establishment of full-thickness skin defects in T2D rats, ACM or serum-
free cultured medium was daily injected around the wound edges for 7 days. 
Afterward, the skin wound healing rate was analyzed, and the skin tissues were 
assessed by histopathological examination. The mRNA levels of TNF-α, IL-1β, 
IL-6, COX-2, IL-12, and IFN-γ were evaluated by q-PCR analysis. Additionally, 
transcriptome sequencing and immunohistochemistry were performed to 
reveal the potential mechanisms of ACM in T2D skin wound healing.
Results: ACM significantly enhanced HUVEC proliferation and angiogenesis 
while upregulating the expression of EGF, bFGF, VEGF, and KDR. In T2D 
rats, ACM accelerated wound closure and suppressed pro-inflammatory 
mediators (TNF-α, IL-1β, IL-6, COX-2, IL-12, and IFN-γ). Notably, transcriptome 
analysis revealed ACM-mediated downregulation of TNF and chemokine 
signaling pathways.
Discussion: ACM promotes diabetic wound healing through dual mechanisms: 
(1) stimulating vascularization by inducing growth factor expression and (2) 
modulating the inflammatory microenvironment by inhibiting TNF/chemokine
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cascades. These findings position ACM as a promising cell-free therapy for 
impaired wound healing in diabetes.

KEYWORDS

adipose tissue-derived mesenchymal stem cells, conditioned medium, type 2 diabetes, 
skin wound, regeneration 

1 Introduction

Skin wound healing is a complex process involving multiple stages, 
such as hemostasis, inflammation, angiogenesis, and remodeling, 
which requires the coordinated effort of various cell types and 
signaling pathways (Freedman et al., 2023; Martin and Nunan, 2015). 
There are several factors, such as ischemia, diabetes, age, nutrition, 
hormones, obesity, infection, smoking, alcoholism, and radiation and 
chemotherapy, which can influence one or more stages of this process, 
resulting in improper or impaired wound healing (Roux et al., 2025). 
In particular, delayed wound healing in diabetic patients is increasing 
globally due to the lack of effective intervention strategies and the 
widespread prevalence of diabetes (De Souza et al., 2023). 

Given their excellent immunoregulation, multidirectional 
differentiation ability, and paracrine function, adipose-derived 
mesenchymal stem cells (ADSCs) have emerged as a novel 
and promising strategy for treating diabetic wounds in both 
preclinical and clinical studies (Yan et al., 2024; Carstens et al., 
2021; Huerta et al., 2023). However, the effectiveness of ADSCs 
in repairing diabetic wounds is limited by their low engraftment 
efficiency, which could be partially attributed to the stark contrast 
between optimized in vitro culture conditions and the harsh 
pathological microenvironment of chronic wound sites (Yu et al., 
2023). Therefore, further research is needed to improve the efficacy 
of ADSC therapy for diabetic wound healing. Recently, increasing 
evidence has suggested that the paracrine function of ADSCs 
plays a leading role in skin wound regeneration (Ma et al., 2023; 
Ren et al., 2024; Wei et al., 2024; Wang et al., 2024). In particular, 
instead of mesenchymal stem cells (MSCs), using MSC-conditioned 
medium or secretome also provides a therapeutic potential for 
reducing irradiated skin injuries (Lin et al., 2023) and scar fibrosis 
(Zhang et al., 2021; Wang et al., 2024). More importantly, this cell-
free strategy effectively avoids the potential limitation of low cell 
engraftment of MSCs for wound healing.

In this study, we investigated whether ADSC-conditioned 
medium (ACM) can be used for accelerating diabetic wound healing 
in rats. To achieve this purpose, we evaluated the therapeutic effect 
of ACM on skin wounds both in vitro and in vivo and the potential 
mechanism of ACM in diabetic wound healing. The results suggest 
that ACM may offer a promising strategy to promote diabetic 
wound recovery. 

2 Materials and methods

2.1 Animals

Twenty adult male Sprague–Dawley (SD) rats (weighing 
180 g–200 g) were obtained from the Shanghai Slack Laboratory 

Animal Center (license number: SCXK hu 2022-0004). 
All rats were housed in a standard specific pathogen-free 
(SPF) barrier environment at 20 °C–26 °C and 40%–70% 
humidity under a 12 h/12 h light–dark cycle. All animal 
experiments were approved by the Experimental Animal 
Ethics Center of Mengchao Hepatobiliary Hospital of Fujian 
Medical University (MCHH-AEC-2022-08). All experiments 
were designed and reported in accordance with the Animal 
Research: Reporting of In Vivo Experiments (ARRIVE) 
guidelines 2.0. 

2.2 Preparation of ADSC-conditioned 
medium

The ADSCs were isolated and cultured according to previously 
published methods (Liao et al., 2017). In brief, adipose tissues were 
obtained from the inguinal region of male SD rats (n = 5) and 
washed with PBS solution. The tissues were then cut into small 
fragments and digested with 0.1% type I collagenase, followed by 
neutralization with α-MEM containing 10% FBS. Subsequently, 
the cells were cultured at a density of 1 × 106 cells/mL in T-
75 plates. ADSCs at passage 3 were collected and cultured at 
a density of 2 × 106 cells per 10 cm plate. After overnight cell 
adhesion, the cultured ADSCs were washed with PBS solution to 
remove residual serum and then replaced with serum-free medium 
(YOCON, China) for 48 h. After incubation, the conditioned 
medium (10 mL/2 × 106 ADSCs) was collected and centrifuged 
at 3,000 g for 5 min to remove any cell debris. Furthermore, the 
ADSC-conditioned medium was concentrated using ultrafiltration 
with a tangential flow filtration capsule (Pall, United States) 
containing a 3-kDa molecular weight cut-off membrane, following 
the manufacturer’s instructions. Finally, the concentration of 
the ADSC-conditioned medium was analyzed using a BCA 
assay kit (TransGen Biotech, China) and stored at −80 °C. A 
concentration of 100 ng/mL ADSC-conditioned medium was used 
in the present study. 

2.3 HUVEC culture

The human umbilical vein endothelial cell (HUVEC) line was 
obtained from the National Institutes for Food and Drug Control 
(Beijing, China) and cultured with RPMI 1640 containing 10% FBS 
supplemented with 2% FBS, VEGF, IGF-1, and EGF at 37 °C/5% 
CO2. For the tubule formation assay, 96-well plates were pre-coated 
with Matrigel (Corning, 10 mg/mL, 1:50 dilution in EGM-2) for 1 h 
at 37 °C to simulate the basement membrane matrix, as standardized 
in angiogenesis assays. 
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TABLE 1  Primer sequences.

Gene Forward primer Reverse primer

TNF-α CAGAGGGAAGAGTTCCCCAG CCTTGGTCTGGTAGGAGACG

IL-1β CACCTCTCAAGCAGAGCACAG GGGTTCCATGGTGAAGTCAAC

IL-6 CACTGGTCTTTTGGAGTTTGAG GGACTTTTGTACTCATCTGCAC

COX-2 CGGAGGAGAAGTGGGGTTTAGGAT TGGGAGGCACTTGCGTTGATGG

IL-12 AGTTCTTCGTCCGCATCCAG CTTGCACGCAGAT ATTCGCC

IFN-γ CAACCCACAGATCCAGCACA TCAGCACCGACTCCTTTTCC

VEGF CCCAGAAGTTGGACGAAAA TGAGTTGGGAGGAGGATG

EGF ACACGGAGGGAGGCTACA GTAGCCTCCCTCCGTGTT

bFGF CGCACCCTATCCCTTCACA CAACGACCAGCCTTCCAC

KDR ACTCCTCCTCATTCAGCG GGGTCCCACAACTTCTCA

β-actin GTGGACA TCCGCAA AGAC AAAGGGTGTAACGC AACTA

2.4 Cell viability assay

HUVECs were cultured at a density of 1 × 104 cells per 
well in 96-well plates. After overnight cell adhesion, the cell 
supernatants were removed and replaced with 100 μL ADSC-
conditioned medium, while the cells treated with serum-free 
medium were used as the negative control. After incubation for 
24 h or 48 h, cell viability was evaluated using a CCK-8 assay 
kit (TransGen Biotech, China), according to the manufacturer’s 
instructions. 

2.5 Quantitative real-time PCR analysis

Total RNA was collected using a TRIzol reagent kit (TransGen 
Biotech, China) following the manufacturer’s instructions. 
Afterward, mRNA was reverse-transcribed into cDNA using a 
cDNA synthesis kit (Roche, Germany). The quantitative real-time 
PCR analysis was performed in an ABI StepOnePlus Real-time PCR 
System (Carlsbad, United States), and the PCR conditions were as 
follows: 95 °C for 15 s, 60 °C for 30 s, and 70 °C for 30 s, for a total 
of 40 cycles. The primer sequences are listed in Table 1. The 2-△△Ct

formula was used to analyze the relative gene expression.

2.6 Diabetic skin-injured model and ACM 
treatment

The type 2 diabetic (T2D) model was established using a 
previously described method (Liao et al., 2017). In brief, the SD rats 
(n = 10) were fed with a high-fat diet (HFD) containing 66.5% 
normal chow, 20% sucrose, 10% lard, 2% cholesterol, and 1.5% 
cholate. After being fed with the HFD for 4 weeks, all rats were 
administered 25 mg/kg of streptozotocin (STZ) by intraperitoneal 

injection twice/week for 2 weeks. Rats treated with STZ and 
exhibiting a non-fasting blood glucose level ≥11.1 mmol/L were 
considered successful in establishing the T2D model. Next, the T2D 
rats were anesthetized with 40 mg/kg of pentobarbital sodium, and 
a full-thickness skin defect of 1 cm in diameter was created using 
a previously described method (Hur et al., 2017). Subsequently, 
the rats were randomly (random table method) divided into T2D 
skin-injured model and ACM groups (n = 5/group) and housed 
separately. Rats in the ACM group were treated daily with 100 μL 
ACM administered intradermally around the wound edges for 
7 days, while model rats received an equal volume of serum-free 
medium. Normal rats (n = 5) were used as the negative control. On 
the 5th day after the last ACM treatment (the 12th day in total), all 
rats were euthanized with 100 mg/kg of pentobarbital sodium, and 
the wounds were harvested for further evaluation. All animals were 
selected at random for outcome assessment. 

2.7 Histological examination

Tissues were collected and fixed in 4% paraformaldehyde 
for 24 h and then paraffin-embedded and sectioned into slices. 
Tissue sections were evaluated with hematoxylin and eosin (HE) 
staining and Masson staining, respectively. Finally, a double-blind 
histological examination was performed using an ortho-microscope 
(Zeiss, Germany) by two expert pathologists. 

2.8 RNA sequencing

Total RNA from skin tissues was subjected to polyA-selected 
RNA-sequencing on the Illumina HiSeq X10 platform in a blinded 
manner. Using the DESeq2 package, RNA-seq analysis was carried 
out to determine the different gene expression (DEG) among three 
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FIGURE 1
ACM promotes vascular cell proliferation and angiogenesis. (A) ACM promotes HUVEC proliferation. (B) Representative images of HUVECs after ACM 
treatment (scale bar, 100 μm). (C) Relative mRNA expression of EGF, bFGF, VEGF, and KDR in HUVECs after ACM treatment.

groups: normal vs. model and ACM vs. model. False discovery rate 
(FDR) of < 0.05 and fold change of ≥ 2 or ≤ 2 were the principles for 
DEG screening. Gene Ontology (GO) analysis was used to analyze 
the gene functions of the DEGs, and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis was used to target the DEGs’ 
enrichment pathway.

2.9 Immunohistochemistry

The skin wound sections were drenched in a citrate antigen 
retrieval solution (Beyotime Institute of Biotechnology, China) and 
heat-treated in a pressure cooker for 2 min, naturally cooled to 
RT, and washed with PBS buffer three times. Following incubation 
with 3% H2O2 for 10 min, the sections were blocked with 5% 
BSA for 30 min. The sections were then incubated overnight at 
4 °C with primary antibodies against TNF-α, NF-κB, p-NF-κB, 
MAPK, p-MAPK, CXCL1, CXCL2, and CXCL8 at a dilution ratio 
of 1:200 . After washing three times with PBS, the sections were 
incubated with the secondary antibody at RT for another 2 h, 
followed by staining with DAB. The samples were observed using 
an ortho-microscope (Zeiss, Germany) in a blinded manner by the 
assessors. 

2.10 Statistical analysis

All quantitative data were expressed as the mean ± standard 
deviation. GraphPad Prism version 9.0 (GraphPad Software, United 
States) was used for statistical analysis. The ANOVA was used 
to evaluate the significant differences among three independent 
groups, while the two-tailed paired sample Student’s t-tests were 
used to evaluate the significant differences between two groups. p
< 0.05 was considered a statistically significant difference. 

3 Results

3.1 ACM promotes HUVEC angiogenesis 
and proliferation in vitro

Flow cytometry analysis showed that ADSCs typically expressed 
CD73 and CD90 while lacking expression of CD45, CD19, and CD34 
(Supplementary Figure S1), suggesting the successful isolation and 
culture of ADSCs in this study. The impaired skin wound healing in 
diabetic individuals is largely attributed to diabetic angiopathy, which 
is characterized by the dysfunction and impairment of the arteries 
throughout the body (Jin et al., 2022). We, therefore, investigated 
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FIGURE 2
ACM accelerates T2D skin wound healing in rats. (A) General observation of skin wounds after ACM treatment. (B) Skin wound healing rate after ACM 
treatment. (C) Histopathological changes in skin wounds after ACM treatment by HE and Masson staining, respectively (scale bar, 1 mm). The area 
within the blue dotted line represents the damaged region. The green oval shape represents the area of inflammation. (D) Immunofluorescence 
expression of CD31, FGF-2, and VEGF in skin wounds after ACM treatment. Scale bar = 200 μm and 50 μm, respectively. (E) Number of CD31+ cells and 
the relative MFI of FGF-2 and VEGF expression in skin wounds after ACM treatment.
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FIGURE 3
ACM inhibits the mRNA level of inflammatory factors in T2D skin wounds. The relative mRNA expression of TNF-α (A), IL-1β (B), IL-6 (C), COX-2 (D), 
IL-12 (E), and IFN-γ (F) in skin wounds.

the effect of ACM on the angiogenesis and proliferation of vascular 
cells in vitro. After incubation with ACM for 24 or 48 h, the viability 
of HUVECs was significantly increased (Figure 1A), suggesting that 
ACM promoted HUVEC proliferation. After 2 days of continuous 
ACM incubation, HUVECs showed vascular-like morphological 
changes (Figure 1B), and the expression of genes associated with 
angiogenesis, including EGF, bFGF, VEGF, and KDR, was significantly 
upregulated after ACM treatment (Figure 1C), implying that ACM 
promotes HUVEC angiogenesis in vitro. 

3.2 ACM accelerates T2D skin wound 
healing

Based on the pro-angiogenic potential of ACM in vascular 
cells, we established a T2D skin wound model to further evaluate 
its therapeutic effects. As shown in Figures 2A, B, the skin wound 
healing rate of T2D rats was significantly improved by the 

continuous ACM treatment for 7 days compared to that of the 
model group. Moreover, increased tissue regeneration and decreased 
inflammatory infiltration were also observed in the ACM group 
compared to those in the model group (Figure 2C). Given the 
excellent performance of ACM on angiogenesis in vitro, we also 
investigated the beneficial effect of ACM on angiopathy in vivo. We 
found that the number of CD31+ cells and the expression of FGF-2 
and VEGF were markedly increased in the ACM group compared 
to those in the model group (Figures 2D, E), suggesting that ACM 
could also improve angiopathy in vivo. Therefore, these data suggest 
that ACM accelerates T2D skin wound healing. 

3.3 ACM inhibits T2D skin wound 
inflammation

Given that excessive inflammation is a typical characteristic of skin 
wounds (Huang et al., 2022), we further analyzed the inflammatory 
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FIGURE 4
ACM inhibits the expression of inflammatory factors in macrophages. The immunofluorescence expression of TNF-α, IL-1β, and IL-6 in F4/80+

macrophages in skin wounds after ACM treatment. Scale bar = 200 μm and 50 μm, respectively.

genes in T2D skin wound tissues. As shown in Figure 3, the mRNA 
expression levels of TNF-α, IL-1β, IL-6, COX-2, IL-12, and IFN-
γ were significantly increased in T2D skin wounds compared to 
those in normal skin tissues, indicating excessive inflammation. 
However, these levels were effectively decreased after ACM treatment 
compared to those in the model groups, suggesting that ACM 
could inhibit this excessive inflammation. Moreover, we found that 
ACM treatment reduced inflammatory cell infiltration. This included 
a reduction in both the CD3+ T cells and F4/80+ macrophages 
(Supplementary Figure S3). Furthermore, the expression of TNF-
α, IL-1β, and IL-6 was significantly decreased in the ACM-
treated groups (Figure 4). Taken together, these data suggest that ACM 
mitigates the inflammatory response in skin wounds of diabetic rats. 

3.4 ACM promotes T2D skin wound healing 
by targeting the TNF and chemokine 
signaling pathway

The potential molecular mechanism of ACM in accelerating 
T2D skin wound healing was further explored by RNA sequencing. 

Volcano plot analysis revealed differential expression of 10,655 
genes was different between the normal and model groups 
(normal vs. model) and 5,287 genes between the ACM and 
model groups (ACM vs. model); a total of 4,269 genes were 
common to both comparisons (Figures 5A–C). GO annotation 
and pathway enrichment analysis showed that the upregulation 
of TNF and chemokine signaling was observed in the model 
group (compared with the normal group), while downregulation 
of TNF and chemokine signaling was clearly observed in the 
ACM group compared with the model groups (Figures 5D, E), 
suggesting that the potential molecular mechanism of ACM in 
T2D skin wound healing is by targeting the TNF and chemokine
signaling pathway.

To confirm the RNA sequencing results, we further evaluated the 
protein expression of the main regulators in TNF and chemokine 
signaling. As shown in Figure 6, the TNF signaling-related proteins, 
including TNF-α, NF-κB, p-NF-κB, MAPK, and p-MAPK, and the 
chemokine signaling-related proteins, including CXCL1, CXCL2, 
and CXCL8, were all downregulated by ACM treatment in T2D skin 
wounds, suggesting that ACM accelerated T2D skin wound healing 
via the downregulation of TNF and chemokine signaling. 
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FIGURE 5
Transcriptome sequencing analysis of T2D skin wound tissues in rats. The volcano plot for differential gene expression of normal vs. model groups (A)
and ADSC vs. model (B) groups. The gray pixel represents a gene where the difference in expression is not significant, while red and green pixels 
represent those that are significant. (C) Venn diagrams exhibiting the number of identified genes and the overlay of these identified genes. GO 
annotation and pathway enrichment analysis in normal vs. model groups (D) and ADSC vs. model (E) groups.

4 Discussion

Angiogenesis is an essential part of skin wound regeneration, 
and it is also prone to being impaired by the diabetes status (Fan 
et al., 2024), excessive inflammation (Guo et al., 2023), oxidative 
stress, and other chronic wound conditions (De Wolde et al., 
2021). Given the excellent performance of MSCs in promoting 
vasculogenesis through paracrine factors (e.g., VEGF, EGF, and 
bFGF) (Guillamat-Prats, 2021), MSC secretome or conditioned 
medium provides a new strategy for accelerating angiogenesis 
of skin wounds (Hade et al., 2022). Adipose tissue-derived 
ACM was assessed in this study to confirm its beneficial effects 
on angiogenesis, owing to the abundant availability and easy 
accessibility of adipose tissues (Bunnell, 2021). As expected, ACM 
effectively promoted HUVEC proliferation and angiogenesis. In 
particular, ACM also upregulated the expression of VEGF, EGF, 
bFGF, and KDR in HUVECs. Therefore, these data suggest that ACM 
contributes to cutaneous wound regeneration.

Considering that T2D accounts for more than 90% of diabetes 
cases (Edlitz and Segal, 2022), a T2D skin wound injury rat model 
was used to assess the therapeutic effect of ACM on skin wounds. 
Significantly, we found that ACM could promote the skin wound 
healing rate. It is well-known that excessive inflammation is caused 
by the crosstalk of various immune cells, including neutrophils 
(Zhu et al., 2021), macrophages (Lv et al., 2023), and lymphocytes 
(Baltzis et al., 2014), which is also characterized by the high 
expression of various pro-inflammatory factors, including TNF-α, 
IL-1β, IL-6, COX-2, IL-12, and IFN-γ (Quagliariello et al., 2021; 
Acosta et al., 2008; Schürmann et al., 2014). In this study, we 
proved that these pro-inflammatory factors were highly expressed 
in skin wounds, which means that excessive inflammation occurred 
in T2D rats. More importantly, we found that ACM could reduce the 
excessive inflammation. In particular, the transcriptome sequencing 
data further confirmed that ACM-accelerated T2D skin wound 
healing is closely related to the downregulation of TNF and the 
chemokine signaling pathway. Taken together, ACM provides a new 
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FIGURE 6
ACM downregulates TNF and chemokine signaling in T2D skin wound tissues. (A) Representative images of TNF-α, NF-κB, p-NF-κB, MAPK, and p-MAPK 
expression in skin tissues. Scale bars = 200 μm. (B) Relative expressions of TNF-α, NF-κB, p-NF-κB, MAPK, and p-MAP . (C) Representative images of 
CXCL1, CXCL2, and CXCL8 expression in skin tissues. Scale bars = 200 μm. (D) Relative expressions of CXCL1, CXCL2, and CXCL8.

promising strategy for accelerating T2D skin wound healing, which 
is partly through the TNF and chemokine signaling pathway.

It was previously shown that ADSC secretome reduces scar 
formation in skin wound healing (An et al., 2021) by inhibiting TGF-
β1 and collagen expression (Wang et al., 2024). Paracrine cytokines 
and extracellular vesicles (e.g., exosomes) have been reported to 
be the major factors in the biological effects of ADSCs on wound 
healing (Wang et al., 2024). In this study, we further demonstrated 
that ACM accelerated diabetic skin wound healing through its 
anti-inflammatory functions. Given that MSC-conditioned medium 
or secretome has a complex composition, including extracellular 
vesicles (containing various types of lipids, proteins, and nucleic 
acids) and effector molecules (e.g., PGE2 and IDO) (Kota et al., 
2017; Maughon et al., 2022; Zhao et al., 2023), the enhancement of 
ACM in skin wound regeneration may involve multiple targets and 
pathways. Further studies should focus on the different components 
and targets of ACM in the therapeutic role in T2D skin wound repair 
to verify more detailed mechanisms. Recently, Yin et al. reported 

that ADSC exosomes promote diabetic wound healing by regulating 
macrophage polarization (Yin and Shen, 2024) and epidermal 
autophagy (Ren et al., 2024). Therefore, exosomes of ACM would 
play a key role in accelerating diabetic wound healing. Furthermore, 
before proceeding with further clinical trials or applications, it is 
crucial to ensure strict control over the large-scale production, 
stability, and quality considerations related to ACM production.

In this study, we showed that ACM could enhance vascular 
proliferation and angiogenesis, promote skin wound healing in 
type 2 diabetes, and inhibit the inflammatory response. The 
mechanism may involve the downregulation of the TNF and 
chemokine pathways. 

5 Conclusion

In conclusion, our study demonstrates that ACM can 
significantly accelerate the healing of diabetic skin wounds by
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promoting vascular remodeling and suppressing inflammation 
through the TNF and chemokine pathways.
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Distinct effect of preconditioning 
with p38 MAPK signals on 
matrix-expanded human 
synovium-derived stem cell 
chondrogenesis: sb203580 
favors chondrogenic 
differentiation while anisomycin 
benefits endochondral bone 
formation

Ying Zhang � 1,2,3, Ming Pei3,4* and Chaoliang Lv2*
1Jinfeng Laboratory, Chongqing, China, 2Department of Spine Surgery, Jining NO.1 People’s Hospital 
Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 
China, 3Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia 
University, Morgantown, WV, United States, 4WVU Cancer Institute, Robert C. Byrd Health Sciences 
Center, West Virginia University, Morgantown, WV, United States

Introduction: Cartilage defects are often accompanied by inflammation, 
presenting a major challenge in clinical treatment. Adult stem cells offer a 
promising approach for cartilage regeneration; however, in vitro expansion leads 
to replicative senescence, hindering their application. Our previous studies have 
demonstrated that decellularized extracellular matrix (dECM) can serve as an
in vitro “microenvironment” to promote stem cell expansion and chondrogenic 
potential. In this study, we hypothesized that pretreatment with p38 mitogen-
activated protein kinase (MAPK), a key pathway driving inflammation, would 
impair chondrogenesis in dECM-expanded adult stem cells.
Methods: Human synovium-derived stem cells (SDSCs) were expanded for one 
passage on either dECM or plastic culture flasks and pretreated with p38 MAPK, 
followed by chondrogenic or osteogenic induction.
Results: We found that pretreatment with sb203580, a p38 MAPK inhibitor, 
enhanced chondrogenic differentiation of dECM-expanded SDSCs, whereas 
pretreatment with anisomycin, a p38 MAPK activator, favored both 
chondrogenic hypertrophy and osteogenic differentiation of dECM-expanded 
SDSCs. In SDSC pretreatment, p38 MAPK significantly upregulated the non-
canonical Wnt signaling pathway during dECM expansion and chondrogenic 
induction. The significant upregulation of Wnt5a induced by anisomycin 
combined with dECM expansion may indicate the highest osteogenic potential; 
SDSC pretreatment with sb203580 combined with dECM expansion exhibited 
the strongest chondrogenic differentiation and the highest levels of Wnt11. 
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Discussion: This study suggests that p38 MAPK pretreatment may play a key role 
in dECM-expanded tissue-specific stem cell-mediated cartilage regeneration. 
Further verification of Wnt-related regenerative mechanisms remains to be 
determined.

KEYWORDS

extracellular matrix, p38 MAPK signal, mesenchymal stem cell, chondrogenic potential, 
non-canonical wnt signal 

Introduction

Cartilage defects do not readily heal spontaneously due 
to a lack of blood supply. Although adult stem cells are a 
promising cell source for cartilage regeneration (Toh et al., 
2014), in vitro expansion, a necessary step prior to in vivo
application, remains a major challenge for adult stem cells to 
survive replicative senescence (Li and Pei, 2012). Accumulating 
evidence suggests that expansion on decellularized extracellular 
matrix (dECM), a microenvironment resembling an in vivo
“niche”, is an effective method for rejuvenating adult stem cells 
in terms of proliferation and chondrogenic potential (Pei, 2017). 
The effects of dECM preconditioning on tissue-specific stem 
cell cartilage regeneration have also been demonstrated in vivo
(Pei et al., 2013a; Pei et al., 2022).

Because post-traumatic joint inflammation is often 
accompanied by cartilage defects, inflammation may contribute 
to the reduced efficacy of dECM for adult SDSCs, hindering 
dECM-mediated cell rejuvenation (Pei et al., 2013a; Yan et al., 
2020; Zhang et al., 2015). Fortunately, p38 mitogen-activated 
protein kinase (MAPK) has been shown to play an important 
role in stress and inflammatory signals, although it was 
originally considered a mediator of growth and development 
(Joos et al., 2009; Long and Loeser, 2010). p38 MAPK has 
been identified as a major signaling pathway activated by 
degradative cytokines such as interleukin 1beta (IL-1β) and 
tumor necrosis factor alpha (TNFα) (Martel-Pelletier et al., 
1999; Sondergaard et al., 2010). Furthermore, it has been 
reported that basal levels of p38 phosphorylation were 
reduced in osteoarthritic chondrocytes compared with normal 
chondrocytes, while p38 MAPK inhibitors upregulated the 
expression of chondrogenic and hypertrophic genes in normal rat 
chondrocytes (Prasadam et al., 2012).

p38 MAPK inhibitors are used to treat cartilage defects 
to suppress inflammation; however, the p38 MAPK inhibitor 
also blocks chondrogenesis (Oh et al., 2000). To exploit their 
anti-inflammatory effect and limit their inhibitory effects on 
cartilage regeneration, this study evaluated the potential effects 
of p38 MAPK inhibitors or activators on chondrogenesis 
during SDSC pretreatment and cell expansion. Given the 
interplay between MAPK and Wnt signaling during cartilage 
regeneration (Zhang et al., 2014), we investigated whether 
Wnt signaling is also actively involved in the enhanced 
chondrogenic differentiation of SDSCs following pretreatment 
with p38 MAPK inhibitors or activators combined with dECM
expansion.

Materials and methods

SDSC culture

Adult human SDSCs were purchased from Asterand (North 
America Laboratories, Detroit, MI) (Pei et al., 2013b) and isolated 
from four donors: two men and two women with a mean age of 
43 years and no known joint diseases. These SDSCs were cultured 
in growth medium consisting of αMEM (alpha minimum essential 
medium) supplemented with 10% FBS (fetal bovine serum), 
100 U/mL penicillin, 100 μg/mL streptomycin, and 0.25 μg/mL 
fungizone (Invitrogen, Carlsbad, CA). Cultures were maintained in a 
humidified incubator at 37 °C with 5% CO2, and the growth medium 
was changed every 3 days. 

dECM preparation

The preparation of dECM has been described previously (Li 
and Pei, 2018). Briefly, Plastic (tissue culture plastic) was pre-coated 
with 0.2% gelatin (MilliporeSigma, Burlington, MA) and incubated 
at 37 °C for 1 h, followed by fixation with 1% glutaraldehyde and 
treatment with 1M ethanolamine. P3 (passage 3) SDSCs were seeded 
at a density of 6,000 cells/cm2 and cultured to 90% confluence. 
Growth medium was supplemented with 250 μM L-ascorbic acid 
phosphate (Wako Chemicals United States, Inc., Richmond, VA) 
and cultured for 8 days. The deposited matrix was treated with 0.5% 
Triton X-100 containing 20 mM ammonium hydroxide at 37 °C for 
5 min to remove cells and then stored in PBS (phosphate-buffered 
saline) containing 100 U/mL penicillin, 100 μg/mL streptomycin, 
and 0.25 μg/mL fungizone at 4 °C. 

Morphological characterization of dECM 
with or without SDSCs

After post-fixation in 2.5% glutaraldehyde (MilliporeSigma) 
for 2 hrs, representative samples (n = 2) were re-post-fixed in 
2% osmium tetroxide (MilliporeSigma) for 2 hrs. Samples were 
dehydrated using a graded ethanol series and then treated twice 
with HMDS (hexamethyldisilazane) (MilliporeSigma) mixed with 
ethanol at a 1:1 ratio for 1 hour each, followed by overnight 
treatment with HMDS at a 1:2 ratio with ethanol, and finally three 
times with HMDS for 4 hrs each. After air-drying for 24-h, samples 
were gold-sputtered. Images were captured using a scanning electron 
microscope (SEM) (Hitachi, Model S 2400). 
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Global gene expression by microarrays and 
data analyses

P3 SDSCs were expanded for one passage on dECM or Plastic 
and then induced into chondrogenic tissue for 21 days in a pellet 
culture system (designated as Ep and Pp, respectively). Total 
RNA was purified from the expanded cells and 21-day pellets 
using TRIzol (Invitrogen) and further purified using the RNeasy 
Mini Kit (Qiagen, Valencia, CA) according to the manufacturer’s 
instructions. The specified amount of cDNA (5.5 µg) was then 
fragmented and biotinylated using the GeneChip®WT Terminal 
Labeling Kit (Affymetrix, Santa Clara, CA). This entire reaction 
mixture, containing 50 µL of fragmented biotinylated cDNA and 
hybridization controls, was hybridized to a Human GeneChip®1.0 
ST Exon Arrays (Affymetrix) in a GeneChip®640 Hybridization 
Chamber (Affymetrix) at 45 °C for 17 h. Parameters such as the 
scale factor, background noise, and percent presence were calculated 
according to the manufacturer’s instructions (Affymetrix). The 
resulting raw data were then uploaded to GeneSpring (Agilent, Santa 
Clara, CA) and Partek (St. Louis, MO) software for preliminary 
analysis. Pathway and functional analysis was performed using 
Ingenuity Pathway Analysis (IPA, Redwood City, CA). Briefly, raw 
intensity values were adjusted by background subtraction, then 
normalized by robust multiarray analysis (RMA), log-transformed, 
and fold-changes assessed. All batch effects related to scan date were 
eliminated before fold-change calculation. 

SDSC expansion and p38 MAPK 
pretreatment

P3 SDSCs were seeded at a density of 3,000 cells/cm2 on two 
substrates (dECM and Plastic) for one passage. To investigate the 
effects of p38 MAPK on the expanded cells, 10 µM sb203580 (a 
p38 MAPK inhibitor, LC Laboratories, Woburn, MA) or 1 µM 
anisomycin (a p38 MAPK activator, also from LC Laboratories) was 
added 48 h after seeding and maintained throughout the culture 
period. Groups not treated with p38 MAPK served as controls. 
The experimental design included six groups: dECM expansion 
group (denoted as Econ), dECM expansion combined with 
sb203580 group (denoted as Esb), dECM expansion combined with 
anisomycin group (denoted as Ean), Plastic expansion alone (Pcon), 
Plastic expansion combined with sb203580 group (denoted as Psb), 
and Plastic expansion combined with anisomycin group (denoted 
as Pan). Cell counts were performed using a hemocytometer to 
determine the cell number in each group. 

Chondrogenic induction of expanded 
SDSCs

0.3 × 106 SDSCs from each group were placed in a 15-
mL polypropylene tube and centrifuged at 500 g for 5 min to 
form a pellet. The pellet was incubated overnight in growth 
medium and then cultured in serum-free chondrogenic medium 
for 35 days. This medium consisted of high-glucose DMEM 
(Dulbecco’s Modified Eagle’s Medium) supplemented with 40 μg/mL 
proline, 100 nM dexamethasone, 100 U/mL penicillin, 100 μg/mL 

streptomycin, 0.1 mM ascorbic acid-2-phosphate, and 1×ITS™ 
Premix (BD Biosciences, San Jose, CA). In addition, 10 ng/mL TGF-
β3 (transforming growth factor beta 3) (PeproTech Inc., Rocky Hill, 
NJ) was added. Chondrogenic differentiation was assessed at 14 and 
35 days by histology, immunostaining, biochemical analysis, and 
real-time qPCR (quantitative polymerase chain reaction).

For histological analysis, representative pellets (n = 3) were 
fixed with 4% paraformaldehyde overnight at 4 °C and then 
dehydrated using a graded ethanol series. Samples were cleared 
with xylene and embedded in paraffin blocks. Histochemical 
staining of 5-µm-thick sections was performed using Alcian blue 
(MilliporeSigma) and counterstained with Fast Red to visualize 
sulfated glycosaminoglycan (sGAG). For immunohistochemistry 
(IHC) analysis, sections were labeled with primary antibodies 
against type II collagen (II-II6B3; Developmental Studies 
Hybridoma Bank, Iowa City, IA), type I collagen (GeneTex 
Inc., Irvine, CA), type X collagen (MilliporeSigma), and matrix 
metalloproteinase 13 (MMP13) (VIIIA2, Abcam, Cambridge, 
MA). A biotinylated horse anti-mouse IgG secondary antibody 
(Vector, Burlingame, CA) was then applied, and immunoactivity 
was visualized using Vectastain ABC reagent (Vector) with 
3,3′-diaminobenzidine as a substrate.

For biochemical quantification, another representative set of 
pellets (n = 4) was digested in PBE buffer (100 mM phosphate 
and 10 mM ethylenediaminetetraacetic acid, pH 6.5) containing 
125 μg/mL papain and 10 mM cysteine for 4 hours at 60 °C, using 
200 μL of enzyme per sample. DNA concentration in the papain 
digests was quantified using the Quant-iT™ PicoGreen™ dsDNA 
Assay kit (Invitrogen) using a CytoFluor®4000 Series (Applied 
Biosystems, Foster City, CA). GAG levels were measured using a 
Spectronic BioMate 3 Spectrophotometer (ThermoFisher Scientific, 
Milford, MA) using dimethylmethylene blue dye and bovine 
chondroitin sulfate as a standard.

For qPCR analysis, total RNA from another set of pellets (n 
= 4) was extracted in TRIzol® (Invitrogen) using an RNase-free 
pestle. Approximately 1 µg of RNA was reverse transcribed using 
the High Capacity cDNA Archive Kit (Applied Biosystems) at 37 °C 
for 120 min. Custom genes included chondrogenic marker genes 
such as COL2A1 (type II collagen; assay ID: Hs00156568_m1), 
ACAN (aggrecan; assay ID: Hs00153935_m1), and SOX9 [SRY (sex 
determining region Y)-box 9; assay ID: Hs00165814_m1), as well 
as hypertrophic marker genes COL10A1 (type X collagen; assay 
ID: H200166657_m1) and MMP13 (assay ID: Hs00233992_m1). 
The endogenous control gene was eukaryotic 18S RNA (assay ID: 
Hs99999901_s1). Real-time qPCR was performed using the iCycler 
iQ™ Multicolor Real-Time PCR Detection System (Perkin-Elmer, 
Waltham, MA). Relative transcript levels were calculated using the 
formula χ = 2−ΔΔCt, where ΔΔCt = ΔE-ΔC, ΔE = Ctexp-Ct18s, and
ΔC = Ctct1-Ct18s. 

Western blot

To investigate the potential effects of dECM expansion 
combined with p38 MAPK on cell proliferation and chondrogenic 
differentiation through Wnt signaling, we homogenized expanded 
cells and chondrogenically differentiated pellets from each group. 
These samples were dissolved in lysis buffer supplemented with 
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protease inhibitors (Cell Signaling, Danvers, MA). Total protein 
concentration was then measured using a BCA™ Protein Assay Kit 
(ThermoFisher Scientific).

For subsequent analysis, 30 μg of protein from each sample 
was denatured, separated by gel electrophoresis, and transferred 
to a nitrocellulose membrane (Invitrogen). The membrane was 
incubated with primary monoclonal antibodies diluted in 5% 
bovine serum albumin, 1× TBS (10 mM Tris-HCl, 150 mM NaCl, 
pH 7.5), and 0.05% Tween-20 for 1 h at room temperature. 
A horseradish peroxidase-conjugated goat anti-mouse secondary 
antibody (ThermoFisher Scientific) was then added and incubated 
for 1 h. Blots were exposed using SuperSignal West Femto Maximum 
Sensitivity Substrate and CL-X exposure film (ThermoFisher 
Scientific). Primary antibodies used in immunoblotting included 
Wnt3a, Wnt5a, and Wnt11 (ThermoFisher Scientific) and β-actin 
(Cell Signaling). 

Osteogenic induction of expanded SDSCs

Expanded SDSCs (n = 3) were reseeded at a density of 8,000 cells 
per cm2. When the cultures reached 90% confluence, the medium 
was changed to an osteogenic induction medium, consisting 
of growth medium supplemented with 0.01 μM dexamethasone, 
10 mM β-glycerophosphate, 50 μM ascorbate-2-phosphate, and 
0.01 μM 1,25-dihydroxyvitamin D3. Induction culture continued 
for 21 days.

To assess osteogenic differentiation, ALP (alkaline phosphatase) 
activity was measured using a kit (MilliporeSigma). To assess 
calcium deposition, induced cells (n = 3) were fixed with 70% ice-
cold ethanol for 1 h and then incubated in 40 mM Alizarin Red S 
(ARS), pH 4.2, for 20 min with agitation. After rinsing twice with 
deionized water, matrix mineral-binding staining was documented 
using a Nikon TE300 phase-contrast microscope (Nikon, Japan). 
Total ALP and calcium accumulation was analyzed using NIH 
ImageJ software (U.S. National Institutes of Health, Bethesda, MD). 

Statistics

Numerical data are presented as the mean and standard error. 
Pairwise comparisons in biochemical and real-time qPCR data 
analysis were performed using the Mann-Whitney U test. All 
statistical analyses were performed using SPSS 13.0 statistical 
software (SPSS Inc., Chicago, IL). A p-value of less than 0.05 was 
considered statistically significant.

Results

dECM-expanded SDSCs and chondrogenic 
potential

SEM data (Figure 1A) showed that SDSCs expanded on 
dECM had a small, fibroblast-like shape, while those grown on 
Plastic had a flat, broad shape. To determine whether SDSCs 
expanded on dECM possessed enhanced chondrogenic potential, 
we induced chondrogenesis in a pellet culture system. Histology 

data (Figure 1B) revealed that pellets of SDSCs expanded on dECM 
were not only larger in size but also stained more intensely 
for sGAG and type II collagen, two typical cartilage markers. 
Microarray data (Figure 1C) showed that compared to Plastic-
expanded cells, dECM-expanded SDSCs showed upregulation of 
chondrogenic markers [HAPLN1 (hyaluronan and proteoglycan 
link protein 1), ACAN, COL2A1, COL9A1 (type IX collagen), 
and COL11A1 (type XI collagen)]. Notably, dECM-expanded 
chondrogenically induced SDSCs exhibited upregulation of these 
chondrogenic markers, consistent with histology data (Figure 1B). 
Interestingly, the chondrogenic transcription factor SOX9 remained 
upregulated during both the dECM expansion period and the 
subsequent chondrogenic induction period (Figure 1C). These 
microarray data were also confirmed by real-time qPCR analysis 
of SOX9, ACAN, and COL2A1 expression in chondrogenically 
induced SDSCs (Figure 1D).

Effect of dECM pretreatment on wnt 
signaling during sdsc expansion and 
subsequent chondrogenic induction

To determine the involvement of Wnt signaling in dECM 
expansion, we used microarray to analyze canonical and non-
canonical Wnt signaling in SDSCs expanded on dECM and Plastic, 
and during subsequent chondrogenic induction. In Figure 2A, 
SDSCs expanded on dECM showed slight downregulation of the 
canonical Wnt signaling antagonist DKK1 [dickkopf 1 homolog 
(Xenopus laevis)] and slight upregulation of the Wnt signaling 
pathway activator CTNNB1 (cadherin-associated protein beta 
1), suggesting that canonical Wnt signaling may be enhanced 
during dECM-mediated cell expansion. However, microarray data 
did not detect a fold change in WNT3A (a typical canonical 
Wnt signaling ligand) after SDSC expansion on dECM (but 
not on Plastic), despite a dramatic decrease in dECM-expanded 
chondrogenically induced SDSCs, as confirmed by Western blotting 
data (Figure 2B). Notably, dECM expansion upregulated WNT5A
and WNT11, as well as NFATC2 (nuclear factor of activated 
T-cells, cytoplasmic, calcineurin-dependent 2) and CAMK2A
(calcium/calmodulin-dependent protein kinase type II alpha chain) 
in expanded and chondrogenically induced SDSCs (Figure 2C). 
This finding indicates that non-canonical Wnt signaling may be 
involved in dECM-mediated SDSC rejuvenation in terms of cell 
proliferation and chondrogenic potential, as confirmed by Western 
blotting data (Figure 2D).

Pretreatment with p38 MAPK inhibitor 
enhanced the chondrogenic potential of 
SDSCs, while p38 MAPK activator 
promoted chondrogenic hypertrophy, 
particularly in SDSCs expanded on dECM

To determine whether pretreatment with p38 MAPK inhibitor 
plays a role in SDSC expansion and chondrogenic potential, 
10 µM sb203580 was added to the culture medium of SDSCs 
expanded on Plastic or dECM; 1 µM anisomycin (an activator 
of p38 MAPK) was also added as a control. Although dECM 
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FIGURE 1
Effects of dECM pretreatment on the chondrogenic potential of SDSCs. Human SDSCs were expanded for one passage on dECM or Plastic and then 
induced to form chondrocytes. (A) SEM was used to evaluate culture substrates (dECM versus Plastic) (w/o cells) and SDSCs expanded on culture 
substrates (w/cells). (B) Alcian blue (Ab) was used to stain sulfated GAG (sGAG) and immunohistochemistry (IHC) was for staining of type II collagen 
(Col II). Scale bar = 1 mm. (C) Microarray was used to measure fold changes in cartilage marker genes during cell expansion (cell ratio) and 
chondrogenic differentiation (pellet ratio) in SDSCs expanded on dECM versus Plastic (E vs. P). (D) Real-time qPCR was used to confirm changes in 
representative cartilage marker genes in SDSCs induced by chondrogenic medium after expansion on dECM. Data are shown as mean ± SD (standard 
deviation) for n = 4. ∗p < 0.05 indicates statistical significance.

expansion increased cell number by 1.19-fold compared to Plastic 
expansion, supplementation with sb203580 increased cell number 
both when expanded on dECM (1.21-fold versus 0.20-fold) and 
Plastic (1.85-fold versus 0.44-fold), whereas anisomycin reduced 
this increase. Surprisingly, sb203580 pretreatment also increased the 
size of chondrogenically SDSC pellets on day 14, with comparable 
staining intensity for sGAGs and type II collagen; the benefits of 
sb203580 pretreatment on the chondrogenic potential of dECM-
expanded SDSCs were amplified (Figure 3A). These histological data 
were supported by real-time qPCR data (Figure 3B).

The 35-day pellets further confirmed the data from the 14-day 
pellets described above, with dECM-expanded SDSCs producing 
larger pellets (Figure 4A) and higher cell viability and GAG 
content compared to the corresponding Plastic group (Figure 4B). 
Pretreatment with dECM and sb203580 produced the largest SDSC 
pellets (Figure 4A) with the highest cell viability and GAG content, 

followed by the dECM group, while the anisomycin-combination 
group had the least viability (Figure 4B). In contrast, pretreatment 
with anisomycin slightly reduced the pellet size of chondrogenically 
differentiated SDSCs, despite comparable staining intensity for 
sGAG and type II collagen (Figure 4A); cell viability and GAG 
content did not decrease significantly (Figure 4B).

Intriguingly, sb203580 pretreatment reduced the intensity of 
type X collagen immunostaining in SDSC pellets in the Plastic 
group, whereas no significant difference was observed in the 
dECM group (Figure 5A), consistent with the real-time qPCR data 
(Figure 5C). Anisomycin pretreatment enhanced immunostaining 
of MMP13, another hypertrophic marker, in SDSC pellets in 
both the Plastic and dECM groups, while sb203580 pretreatment 
resulted in the weakest MMP13 immunostaining in SDSCs in 
the dECM group (Figure 5B), which was supported by real-time 
qPCR data (Figure 5D).
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FIGURE 2
Effects of dECM pretreatment on Wnt signaling changes after SDSC expansion and subsequent chondrogenic induction. Human SDSCs were 
expanded on dECM or Plastic for one passage and then subjected to chondrogenic induction. Microarray was used to measure the fold changes in 
canonical (A) and non-canonical (B) Wnt signaling-related genes during cell expansion (cell ratio) and chondrogenic differentiation (pellet ratio) in 
SDSCs expanded on dECM versus Plastic (E vs. P). Western blot was used to confirm the above changes in canonical (C) and non-canonical (D) Wnt 
signaling in chondrogenically induced SDSCs after expansion on dECM. β-actin was used as a loading control.

WNT5A was upregulated in 
chondrogenically differentiated SDSCs 
pretreated with p38 MAPK activator, while 
WNT11 was upregulated in 
chondrogenically differentiated SDSCs 
pretreated with p38 MAPK inhibitor

To determine whether the Wnt pathway is involved in 
the chondrogenic potential of SDSCs expanded on dECM 
pretreated with p38 MAPK, we assessed canonical and non-
canonical Wnt signaling in chondrogenically differentiated 

SDSCs using Western blotting. We found that Wnt3a expression 
was upregulated in chondrogenically differentiated SDSCs 
expanded on dECM compared to Plastic (Figure 6A). We also 
found that both Wnt5a (Figure 6B) and Wnt11 (Figure 6C) 
expression was upregulated in chondrogenically differentiated 
SDSCs expanded on dECM compared to Plastic. Notably, Wnt5a 
expression levels were highest in SDSC pellets generated when 
dECM expansion was combined with anisomycin (Figure 6B), 
while Wnt11 expression levels were highest in SDSC pellets 
generated when dECM expansion was combined with sb203580
(Figure 6C).
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FIGURE 3
Effects of SDSC pretreatment [p38 MAPK inhibitor (sb203580) or activator (anisomycin)] combined with dECM expansion on their chondrogenic 
potential. Human SDSCs were expanded for one passage on dECM or Plastic in the presence of sb203580 or anisomycin, followed by chondrogenic 
induction for 14 and 35 days. (A) Alcian blue (Ab) was used to stain sGAG, and immunohistochemistry (IHC) was for staining of type I collagen (Col I) 
and type II collagen (Col II). Scale bar = 1 mm. (B) Real-time qPCR was used for ACAN and COL2A1. Data are shown as mean ± SD for n = 4. ∗p < 0.05 
indicates statistical significance.

Pretreatment with a p38 MAPK activator 
enhanced the osteogenic potential of 
dECM-Expanded SDSCs

To further determine whether pretreatment with a p38 MAPK 
activator plays a role in the osteogenic potential of SDSCs, dECM- 
or Plastic-expanded cells (with or without pretreatment of sb203580 
and anisomycin) were incubated in osteogenic induction medium 
for 21 days. Our ARS staining revealed that supplementation with 
either sb203580 or anisomycin enhanced calcium deposition in 
expanded cells, although no significant differences were observed 
between dECM and Plastic expansion. Interestingly, combined 
dECM expansion and anisomycin pretreatment resulted in the 
highest staining intensity (Figure 7A), which was confirmed by 

ARS quantification data (Figure 7B). ALP staining (Figure 7C) and 
activity analysis (Figure 7D) also demonstrated that combined 
dECM expansion and anisomycin pretreatment resulted in 
expanded SDSCs with the highest ALP activity, another marker 
of osteogenic differentiation.

Discussion

Despite the increasing application of dECM in cell-based 
cartilage regeneration (Pei et al., 2013b; Pei et al., 2022), little is 
known about the involvement of the MAPK and Wnt signaling 
pathways in the proliferation of dECM-expanded cells and their 
subsequent chondrogenic differentiation. Our previous reports 
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FIGURE 4
Effects of SDSC pretreatment [p38 MAPK inhibitor (sb203580) or activator (anisomycin)] combined with dECM expansion on SDSC chondrogenic 
potential. Human SDSCs were expanded for one passage on dECM or Plastic in the presence of sb203580 or anisomycin, followed by 35 days of 
chondrogenic induction. (A) Alcian blue (Ab) was used to stain sGAG, and immunohistochemistry (IHC) was for staining of type I collagen (Col I) and 
type II collagen (Col II). Scale bar = 1 mm. (B) Biochemical analysis was used to analyze the DNA and GAG contents in the chondrogenic pellets. Cell 
proliferation and viability were assessed using the DNA ratio (DNA content on days 35 and 14 were adjusted to the DNA content on day 0). The 
chondrogenic index was assessed using the GAG to DNA ratio. Data are shown as mean ± SD for n = 4. ∗p < 0.05 indicates statistical significance.

have shown that non-canonical Wnt signaling is upregulated 
in dECM-mediated expansion and chondrogenic induction of 
SDSCs (Li et al., 2014; Li et al., 2020). To further investigate 
whether pretreatment with p38 MAPK affects the chondrogenic 
differentiation capacity of expanded cells and the associated 
changes in Wnt signaling, in this study, we expanded SDSCs for 
one passage on dECM or Plastic in the presence of sb203580 
or anisomycin. We found that sb203580 pretreatment favored 
chondrogenic differentiation of dECM-expanded SDSCs, whereas 
anisomycin pretreatment favored chondrogenic hypertrophy 
of dECM-expanded SDSCs. Osteogenic induction studies also 
demonstrated the contribution of anisomycin to endochondral bone 
formation of dECM-expanded SDSCs. During dECM expansion 
and chondrogenic differentiation, the non-canonical Wnt signaling 
pathway was greatly upregulated in SDSCs pretreated with p38 

MAPK. In SDSCs pretreated with anisomycin combined with dECM 
expansion, significant upregulation of Wnt5a was associated with 
the highest osteogenic potential whereas, in SDSCs pretreated with 
both sb203580 and dECM expansion, the highest chondrogenic 
differentiation was associated with the highest levels of Wnt11.

Dedifferentiation refers to a cellular process in which 
differentiated cells revert to an earlier developmental stage 
and may be involved in regeneration (Casimir et al., 1988). 
Alternatively, cells cultured in a monolayer may lose their original 
properties, such as protein expression, or change shape. For 
instance, proliferation and differentiation are unique features of 
human chondrocytes; in vitro expansion often results in a loss 
of differentiation (Schnabel et al., 2002). Similar to the former 
definition, dECM expansion can lead to “dedifferentiation”, resulting 
in expanded SDSCs possessing enhanced chondrogenic potential. 
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FIGURE 5
Effects of SDSC pretreatment [p38 MAPK inhibitor (sb203580) or activator (anisomycin)] combined with dECM expansion on SDSC chondrogenic 
hypertrophy. Human SDSCs were expanded for one passage on dECM or Plastic in the presence of sb203580 or anisomycin, followed by 35 days of 
chondrogenic induction. Immunohistochemistry (IHC) staining of type X collagen (Col X) (A) and MMP13 (B) in pellets was performed. Scale bar = 
1 mm. Real-time qPCR for COL10A1 mRNA (C) and MMP13 mRNA (D) was performed to validate the histological staining. Data are shown as mean ± 
SD for n = 4. ∗p < 0.05 indicates a statistically significant difference.

This process is distinct from the “dedifferentiation” induced by 
monolayer culture, in which dedifferentiated chondrocytes typically 
irreversibly lose their chondrogenic potential (Li and Pei, 2012). 
Downregulation of chondrogenic differentiation genes (such as 
ACAN) and upregulation of chondrogenic transcriptional genes 
(such as SOX9) during dECM expansion may be one of the 
mechanisms by which mesenchymal stem cells (MSCs) maintain 
stemness and chondrogenic potential (Wang et al., 2021).

Research into the mechanisms underlying dECM expansion and 
its rejuvenation ability on stem cells is in its infancy and warrants 
further investigation. Wnt signaling plays a particularly important 
role in regulating MSC proliferation and differentiation. Our 
microarray data suggest that the Wnt pathway is involved in SDSC 
dECM expansion and subsequent chondrogenic differentiation. 
Canonical Wnt signaling, mediated by Wnt3a, has been reported to 
maintain stem cells in an undifferentiated and highly proliferative 
state (Kawakami et al., 2001; Reya et al., 2003). However, we 
found that, regardless of whether SDSCs were expanded on dECM 
or Plastic, dECM expansion resulted in a higher proliferation 
rate, but upregulation of Wnt3a mRNA (from microarray) or 
protein levels (from Western blot) was not significant. Intriguingly, 
after chondrogenic induction, dECM-expanded SDSCs exhibited 
a rapid upregulation of Wnt3a, which may be due in part to 
the inhibition of chondrogenesis by Wnt3a, leading to accelerated 
chondrogenic differentiation (Reinhold et al., 2006). While all 
Wnt inhibitors were upregulated during chondrogenesis, we also 
found that WISP2 (WNT1-inducible-signaling pathway protein 

2), SFRP1 (Secreted frizzled-related protein 1), and SFRP4 were 
also upregulated during the proliferation phase, when DKK1 was 
upregulated, suggesting a delicate balance between canonical Wnt 
signaling in dECM-expanded SDSCs. Compared to the relatively 
stable canonical Wnt signaling, non-canonical Wnt signaling (such 
as WNT5A and WNT11 and their downstream effectors NFATC2
and CAMK2A) was significantly upregulated in dECM-expanded 
SDSCs during both the proliferation and chondrogenesis phases, 
as confirmed by our Western blot data at the protein level. 
It is well known that non-canonical signaling can antagonize 
canonical Wnt activity (Maye et al., 2004; Topol et al., 2003). Our 
results indicate that non-canonical Wnt signaling increases with 
dECM expansion until a balance is reached between canonical 
and non-canonical Wnt signaling. However, during chondrogenic 
induction, this balance was disrupted, with canonical Wnt signaling 
downregulated and non-canonical Wnt signaling upregulated in 
dECM-expanded SDSCs.

dECM expansion promoted cell proliferation, and concurrently 
upregulated Wnt5a levels, suggesting a possible parallel between 
cell proliferation and Wnt5a levels. Wnt5a-mediated non-canonical 
Wnt signaling has been reported to regulate endothelial cell 
proliferation (Cheng et al., 2008), promote fibroblast proliferation, 
and enhance relative resistance to hydrogen peroxide induced 
apoptosis (Vuga et al., 2009). Our data corroborated these findings, 
with dECM expansion leading to significant upregulation of Wnt5a 
and Wnt11, but not Wnt3a. The primary function of Wnt5a during 
early chondrogenesis is to cooperate with other Wnt antagonists 

Frontiers in Cell and Developmental Biology 09 frontiersin.org135

https://doi.org/10.3389/fcell.2025.1655408
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Zhang et al. 10.3389/fcell.2025.1655408

FIGURE 6
Involvement of non-canonical Wnt signaling during pretreatment with dECM and p38 MAPK signaling. Human SDSCs expanded on dECM or Plastic in 
the presence of sb203580 or anisomycin were evaluated for canonical (A) Wnt3a) and non-canonical (B) Wnt5a and (C) Wnt11) signaling. β-actin 
served as a loading control. Immunoblotting bands were semi-quantitatively analyzed using ImageJ software.

to maintain low levels of canonical signaling, thereby enabling 
cartilage differentiation (Hosseini-Farahabadi et al., 2013). Studies 
have shown that supplementation of Wnt5a during chondrogenesis 
promotes chondrogenic differentiation but inhibits hypertrophic 
chondrocyte differentiation (Bradley and Drissi, 2010). Wnt5a also 
reduces cell-cell adhesion (Torres et al., 1996), consistent with 
the fact that cell-matrix interactions govern dECM expansion 
and are responsible for active migration (Lin et al., 2012). Our 
results also suggest the possibility of a canonical WNT-to-WNT11 
signaling loop, in which canonical WNT signaling induces WNT11
upregulation, which then activates a non-canonical WNT signaling 
cascade to induce cellular motility, as recently described (Katoh and 
Katoh, 2009). WNT11 can also activate the Ca2+-MAP3K7-NLK 
signaling cascade, thereby attenuating canonical WNT signaling 
(Katoh and Katoh, 2009). Although Wnt11 was upregulated in 
dECM-expanded SDSCs, current evidence is insufficient to support 
a self-renewal function for Wnt11 (Singla et al., 2006) which needs 
to be further elucidated in future studies.

The p38 MAPK signaling cascade is not only involved in 
cell proliferation and differentiation (Onom and Han, 2000) 
but is also activated by various pro-inflammatory and stressful 
stimuli (Schindler et al., 2007). Evidence suggests that in vivo

administration of p38 MAPK inhibitor can alleviate inflammation 
and associated damage; however, these inhibitors can also have 
side effects, such as the suppression of tissue regeneration 
(Yong et al., 2009). Interestingly, in this study, we found that 
preconditioning stem cells with p38 MAPK inhibitor during 
expansion significantly enhanced dECM-mediated chondrogenesis 
in SDSCs, likely by preventing inflammation. We also found that 
pretreatment with sb203580 promoted chondrogenic differentiation 
of dECM-expanded SDSCs, concomitantly with upregulation of 
Wnt11 expression, suggesting that p38 MAPK inhibitors may 
enhance Wnt11-mediated chondrogenesis in dECM-expanded 
SDSCs. Although Wnt11 plays multiple roles in regulating cell 
properties (Ouko et al., 2004; Lako et al., 1998; Sekiya et al., 2002), 
its precise functions and mechanisms of action remain unclear. 
Unlike the canonical Wnts, Wnt11 is classified as one of the few 
recognized pro-differentiation Wnts, acting through a β-catenin-
independent pathway involving PKC (protein kinase C) and Jnk (c-
Jun N-terminal kinase) (Eisenberg et al., 1997; Pandur et al., 2002).

We also found that pretreatment with anisomycin promoted 
osteogenic differentiation of dECM-expanded SDSCs and 
upregulated Wnt5a expression, suggesting that anisomycin may 
enhance Wnt5a-mediated osteogenesis in dECM-expanded SDSCs. 
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FIGURE 7
Effects of SDSC pretreatment [p38 MAPK inhibitor (sb203580) or activator (anisomycin)] combined with dECM expansion on SDSC osteogenic 
potential. Human SDSCs were expanded for one passage on dECM or Plastic in the presence of sb203580 or anisomycin, followed by 21 days of 
osteogenic induction. Alizarin Red S (ARS) was used for calcium deposition staining (A) and staining density was quantified (B). Alkaline phosphatase 
(ALP) staining was also performed (C), and activity was quantified (D). Data are shown as mean ± SD for n = 4. ∗p < 0.05 indicates statistical significance.

This finding is consistent with numerous reports. For example, 
Lee et al. found that osteogenic transcription factor Runx2 (Runt-
related transcription factor-2) was effectively inhibited by sb203580, 
while anisomycin significantly induced its expression (Lee et al., 
2002); Wnt5a plays a key role in the osteogenic differentiation of 
human MSCs both in vitro and in vivo (Guo et al., 2008; Baksh and 
Tuan, 2007). Given that Wnt5a signaling leads to intracellular Ca2+

release and activation of PKC and CaMKII (calcium/calmodulin-
dependent protein kinase II) (Kühl et al., 2000), upregulation of 
Wnt5a through pretreatment with anisomycin may predispose 
SDSCs to osteogenic development. Our assessment of SDSC 
chondrogenic hypertrophy supports this conclusion. In this study, 
pretreatment with sb203580 reduced early hypertrophic markers 
(such as COL10A1), whereas anisomycin increased them in 
expanded SDSCs. Our hypertrophy analysis was performed on 
35-day chondrogenically induced SDSC pellets, which exceeds 
the chondrogenic hypertrophy phase of human MSCs (typically 
occurring between 14 and 28 days after incubation in a TGF-
β-chondrogenic medium) (Mueller et al., 2010). This stage of 

endochondral ossification is regulated by MMPs (Ortega et al., 
2004). Our data showed that pretreatment with anisomycin 
significantly upregulated MMP13 in chondrogenically differentiated 
SDSCs, whereas pretreatment with sb203580 upregulated MMP13
in dECM-expanded SDSCs, suggesting that pretreatment with 
p38 MAPK activator favors endochondral ossification, while 
pretreatment with p38 MAPK inhibitor favors chondrogenic 
differentiation. Furthermore, secreted MMP13 can degrade type 
II collagen (Inada et al., 2004) and aggrecan (Fosang et al., 
1996), which may explain why pretreatment with p38 MAPK 
inhibitor resulted in more functional cartilage matrix, whereas 
pretreatment with p38 MAPK activator produced less functional
cartilage matrix.

Conclusion

Our results suggest that pretreatment with p38 MAPK signaling 
plays distinct roles in matrix-expanded SDSC chondrogenesis: 
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FIGURE 8
Flowchart of future research hypotheses. In this study, the dECM model provided a cell expansion matrix to maintain a balance of canonical and 
non-canonical Wnt signaling, thereby promoting expanded cell proliferation, migration, and chondrogenic potential. When expanded cells were 
released from the dECM and induced to chondrogenesis in a defined medium containing TGF-β, a shift from canonical to non-canonical Wnt signaling 
occurred, favoring chondrogenic differentiation. Pretreatment with a p38 MAPK inhibitor confirmed the effect of dECM on the chondrogenic potential 
of expanded SDSCs, possibly through interaction with Wnt11-mediated signaling. Pretreatment with a p38 MAPK activator accelerated the effect of 
dECM on the osteogenic potential of expanded SDSCs, perhaps through interaction with Wnt5a-mediated signaling. Dotted arrows indicated 
hypotheses that require verification in future studies.

sb203580 favors chondrogenic differentiation, while anisomycin 
favors endochondral bone formation. Our Wnt signaling data 
also suggest a novel hypothesis (Figure 8): pretreatment with a 
p38 MAPK inhibitor may underlie the effects of dECM on the 
chondrogenic potential of expanded SDSCs through interaction 
with Wnt11-mediated signaling, whereas pretreatment with a 
p38 MAPK activator may accelerate the effects of dECM on 
the osteogenic potential of expanded SDSCs through interaction 
with Wnt5a-mediated signaling. This hypothesis warrants further 
investigation.
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