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Editorial on the Research Topic

Integrated diagnostics and biomarker discovery in endocrinology and
biomedical sciences, volume II
The integration of multi-omics biological data, such as genomics, transcriptomics,

proteomics, etc., is reshaping how we conceptualize and pursue biomarker discovery in

endocrinology. Moving beyond reductionist paradigms, contemporary research now unites

molecular, cellular, physiological, and population-level information to illuminate the

complex regulatory architecture underlying endocrine health and disease. Integrated

Diagnostics and Biomarker Discovery in Endocrinology and Biomedical Sciences:

Volume II brings together nine original contributions that exemplify this transition

toward a systems-oriented and data-driven discipline.

Spanning the spectrum from ionic ratios and proteomic signaling to transcriptomic

networks, genomic variation, and ecological microbiome interactions, these studies

demonstrate how diagnostic precision emerges through the convergence of molecular

and systemic perspectives. Collectively, they trace a coherent trajectory - from basal

biochemistry and molecular communication to clinical integration and population-scale

modeling - illustrating how multi-scale data synthesis from ionic ratios to networks can

refine both mechanistic understanding and translational application.

Taken together, this Research Topic reflects the growing maturity of integrative

endocrinology, a field where multi-omics analytics, causal inference, and real-world data

harmonization converge to enable predictive and personalized approaches to endocrine

disorders. By highlighting these multi-scale insights, Volume II underscores the central

message of modern biomarker science: meaningful diagnostic innovation arises not from

any single data layer, but from their integration into a unified systems framework that

connects molecules to medicine.
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Lou et al. systematically validated the Glucose–Potassium Ratio

(GPR) - a long-recognized broad clinical predictive marker (1) - as a

prognostic biomarker for both short- and long-term all-cause

mortality. They showed a strong association with mortality in

both hospital and ICU settings. Mortality risk escalated sharply

when GPR exceeded this threshold. Sensitivity analyses confirmed

the robustness of these findings, positioning GPR as a valuable,

non-invasive indicator for early identification and risk stratification

of high-risk sepsis patients. This study opens the Research Topic by

illustrating that integrated diagnostics can arise not only from

macromolecular data but from fundamental ionic interactions

reflecting systemic metabolic homeostasis.

Ji et al. utilized Tandem Mass Tag (TMT)-based quantitative

proteomics on serum-derived exosomes to compare protein profiles

among juvenile gout (J-Gout), juvenile hyperuricemia (J-HUA), and

oligoarticular juvenile idiopathic arthritis (oJIA) patients. Subsequent

ELISA validation confirmed that two proteins’ concentrations were

significantly high in J-Gout. Furthermore, their marker levels showed

a positive correlation with clinical inflammatory indicators, C-reactive

protein (CRP), and erythrocyte sedimentation rate (ESR).

Bioinformatic analysis linked the differentially expressed proteins

primarily to inflammatory mechanisms. These findings offer crucial

molecular insight into J-Gout pathogenesis and serve as promising

diagnostic or therapeutic biomarkers. Following the ionic analysis, this

proteomic exploration demonstrates how molecular communication

via exosomes encodes disease-specific inflammatory signatures.

Wang et al. analyzed the time-dependent biological variation

(BV) of 16 biomarkers related to thyroid function, iron metabolism,

and bone metabolism in 24 stable Type-2 Diabetes Mellitus (T2DM)

patients. They also used variation values derived from healthy subjects,

showing that some markers could be precisely monitored in T2DM

patients by applying these reference change values. Conversely, for

certain biomarkers, personalized monitoring was emphasized over

using variation derived from healthy groups. This study illustrates the

transition from individual molecular measures to dynamic systems of

integrated biomarkers, reinforcing the need for personalized

interpretation in metabolic diseases.

Wang and Zhu applied a two-sample Mendelian randomization

(MR) analysis—an influential method for causal inference developed

in the early 2000s (2)—using large-scale GWAS summary data

comprising 1,195 rosacea cases and 211,139 controls to investigate

the causal relationships between 179 plasma lipid species and rosacea.

Two sterol esters (SE), two phosphatidylethanolamines (PE), and one

sphingomyelin (SM) were identified as statistically significant

protective factors against rosacea risk. This research enhances the

understanding of rosacea pathogenesis by suggesting that these lipids

are crucial for maintaining cell membrane function and regulating

immune responses. It represents novel molecular targets for assessing

and potentially treating this dermatological condition. Their

work connects biochemical variability with genetic causality,

demonstrating how lipid species can bridge metabolism, immunity,

and dermatological pathology.

Ke et al. advanced the field of diagnostic marker discovery by

applying bulk RNA analysis integrated with a comprehensive

bioinformatics workflow - including differentially expressed gene
Frontiers in Endocrinology 026
(DEG) analysis, weighted gene co-expression network analysis

(WGCNA), and machine learning - to identify potential

diagnostic genes in patients with Diabetes Mellitus (DM). They

further highlighted the biological significance by noting its strong

correlation with variations in immune cell types, suggesting a

pivotal role in DM’s immunoregulatory mechanisms. This work

leverages transcriptomic networks and machine learning to map the

immune-metabolic landscape of endocrine disease.

Buzdin et al. introduced the EndoGene database, which is a

repository documenting genetic variants identified via NGS and

WES in 5,926 Russian patients with endocrine disorders. This work

is valuable and meaningful from both an ethnic and population

genetics perspective. This database is vital from a population-

specific perspective due to the genetic heterogeneity of the

Russian Federation. The study reported 2,073 unique genetic

variants, with a striking 57% being previously undescribed at the

time of genetic interpretation. EndoGene contributes essential

population statistics and genetic background information, aiding

clinicians in interpreting rare or population-specific mutations and

ultimately enhancing the diagnostic accuracy and informative

power of clinical NGS panels for endocrine pathologies. In the

broader context, this database serves as an anchor point for

genomic diversity, ensuring that future biomarker interpretation

reflects population-specific genetic architecture.

Zhang et al. extended the concept of the Pan-Immune-

Inflammation Value (PIV) - a composite biomarker integrating

neutrophils, platelets, monocytes, and lymphocytes, originally

proposed around 2020 as a prognostic indicator in cancer patients

(3) - to broader applications encompassing general disease and

mortality outcomes. They evaluated PIV as a predictor of mortality

in the general population from a nationwide cohort study (NHANES,

48,662 samples). They found PIV levels were significantly and

independently associated with an increased risk of all-cause

mortality, as well as cause-specific deaths (cardiovascular, cancer,

and diabetes-related). Moreover, a significant nonlinear dose-

response relationship was observed between PIV and all-cause,

cardiovascular disease, and cancer mortality. This research supports

PIV’s utility for public health risk stratification. Following the

molecular and genomic studies, this large-scale investigation

illustrates how integrated immune indices can extend biomarker

discovery to population-level prediction.

Zhang et al. retrospectively analyzed 420 Chinese pregnant

women with preeclampsia (PE) who had concomitant gestational

hypothyroidism (GHT) to investigate the complex association

between PE/GHT and neonatal birth weight (BW). Neonates born

to mothers suffering from both PE and GHT exhibited significantly

lower birth weight compared to those born to women with PE alone.

Crucially, maternal Alanine Aminotransferase (ALT) levels, which

were significantly elevated in the PE/GHT group, were identified as a

potential partial mediator in this relationship. This highlights the

necessity for clinicians to closely monitor maternal thyroid and liver

function in PE patients to improve neonatal outcomes. Positioned

toward the conclusion, their work exemplifies system-level biomarker

integration, linking endocrine, hepatic, and obstetric parameters to

clinical outcomes.
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Cao et al. investigated the characteristics of the gut microbiome

in 30 patients with Asymptomatic Hyperuricemia (AH) compared

to 30 healthy controls using 16S rRNA sequencing. The AH group

exhibited decreased overall gut microbial richness and ecological

diversity. These microbial changes offer new insights and suggest

that specific species may serve as potential biomarkers for early

diagnosis and monitoring of AH. As the final piece, this study

completes the integration spectrum by linking internal endocrine

metabolism to external ecological networks, emphasizing that

precision endocrinology now extends beyond the human genome

into the microbiome.

Together, these nine contributions delineate a rapidly

expanding frontier in integrated diagnostics, spanning the full

continuum of biological organization—from ionic ratios and

proteomic signatures to genomic databases and microbiome-

derived ecological biomarkers. Collectively, they illustrate how

endocrine science is evolving from isolated molecular

characterization toward a fully systems-based discipline, in which

the integration of multi-omics, clinical, and environmental data

enhances both mechanistic insight and translational precision.

This convergence reflects the maturation of data-informed

endocrinology, where diagnostic and prognostic innovation

emerges from the synthesis of diverse data modalities rather than

from any single layer of observation. By harmonizing biochemical,

genetic, immunologic, and ecological perspectives, these studies

redefine biomarker discovery as a process of multi-scale inference

and integration - one that connects molecular precision with

population-level relevance and real-world applicability. In this

new framework, integration is not merely a methodological

approach but a scientific imperative - transforming endocrinology

into a discipline that systematically bridges molecules to medicine,

and data to diagnosis.
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Introduction: Endocrine system disorders are a serious public health burden and

can be caused by deleterious genetic variants in single genes or by the combined

effects of multiple variants along with environmental and lifestyle factors.

Methods: The EndoGene database presents the results of next-generation

sequencing assays used to genetically profile 5,926 patients who were

diagnosed with 450 endocrine and concomitant diseases and were examined

and treated at the National Medical Research Center for Endocrinology between

November 2017 and January 2024. Among them, 494, 1,785, 692, and 1,941

patients were profiled using four internally developed genetic panels including

220, 250, 376, and 382 genes, respectively, selected based on a literature analysis

and clinical recommendations, and 1,245 patients were profiled by whole exome

sequencing covering 31,969 genes.

Results: 2,711 genetic variants were reported as clinically relevant by medical

geneticists and are presented here along with genomic, technical, and

clinical annotations.
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Discussion: This publicly accessible database will be useful to those interested in

genetics, epidemiology, population statistics, and a better understanding of the

molecular basis of endocrine disorders.
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1 Introduction

Endocrine diseases, including diabetes, thyroid dysfunction,

and other hormonal imbalances, contribute significantly to the

global burden of disease (1). These diseases not only affect public

health but also lead to long-term disability and reduced quality of

life for the affected individuals (1). The prevalence of these disorders

is increasing, especially in the context of an aging population and

the increasing incidence of metabolic disorders (2, 3).

These disorders can be caused by rare variants in a single gene

(Mendelian or monogenic diseases), by the combined effects of

multiple genetic variants, or by environmental and lifestyle factors

(polygenic diseases such as type 2 diabetes mellitus or obesity). New

techniques such as gene therapy offer hope when diseases cannot be

effectively treated with traditional drugs. This is possible when the

etiology of the inherited disease is known. Thus, a functional copy

of a gene is introduced into the human body with the help of a

gene therapy drug, slowing down the progression of the disease

and, in some cases, even achieving significant improvement (4). In

recent years, advancements in technology have facilitated the

characterization of genomic diversity across a wide range of

populations (5). Next-generation sequencing (NGS) and genome-

wide association studies (GWASs) have been intensely used to

study the genetic basis of endocrine diseases (6–9). However,

the interpretation of identified variants using criteria widely

recommended by the American College of Medical Genetics

and the Association for Molecular Pathology (ACMG/AMP)

(10) is challenging because detailed phenotypic information

associated with specific variants is limited in most databases (11).

To improve the accuracy of diagnosis, prognosis, and genetic

counseling, the importance of variant databases in patients with

specific diagnoses (12) is increasingly recognized. Such databases

constitute systematically organized repositories of genetic variants,

supplemented with clinical data (13). They facilitate communication

between researchers, clinicians, and patients by allowing the sharing of

information about genes, variants, and pathologic phenotypes (11).

Previous studies have created databases that include genetic

variants associated with specific endocrinopathies. For example, the

MEN2 RET database developed by Margraf et al. is a publicly

accessible database that contains all RET sequence variants related

to MEN2 syndromes as well as relevant clinical data (14). The “NGS

and PPGL Study Group” also collected and classified variants in the

SDHB gene, which is one of the major genes responsible for
029
paraganglioma/pheochromocytoma predisposition (PPGL), leading

to the creation of the SDHB variant database (15). In Argentina, a

study of 170 patients with congenital hypopituitarism identified

causative variants in both known and recently proposed candidate

genes (9). In addition, a recent report presented a database containing

comprehensive experimentally validated associations between

endocrine diseases and long non-coding RNAs (16).

However, it is important to consider the potential role of

population-specific variants in disease pathogenesis. Uncommon

variants tend to be specific to certain populations (17). It has been

observed that disease-causing variants often exhibit population

specificity not only for rare but also for common diseases, which

emphasizes the importance of considering pedigree in genetic

studies and clinical diagnosis (18). The multinational population

of the Russian Federation, comprising more than one hundred

different ethnic groups, demonstrates genetic heterogeneity (19–21)

and provides a unique but challenging opportunity to study the

genetic basis of inherited pathogenic mutations and their

contribution to disease etiology in different populations. A recent

study presented a database on the frequency of genetic variants in

Russia (22). In addition, several databases have been created for

Russian patients with hereditary cancer syndromes (23, 24).

The aim of our study was to create the first representative

database of genetic variants specifically targeting endocrine diseases

in the Russian population. We collected information on pathogenic,

likely pathogenic, and other genetic variants identified by panel

NGS and/or whole exome sequencing (WES) in 5,926 patients with

various endocrine pathologies. The database includes information

on zygosity and pathogenicity classification according to ACMG/

AMP recommendations and the presence of reported variants in

previous scientific publications and in population frequency

databases at the time of genetic interpretation. We also calculated

gene mutation frequencies associated with each type of diagnosis.

In addition, we calculated the proportion of WES and smaller

genetic panel analyses that resulted in the identification of variants

for each type of endocrine diagnosis, allowing us to compare the

performance of WES and panel target sequencing tests.

We believe that our database and the analysis of the statistics of

reported genetic variants will contribute to a better understanding

of the genetic basis of endocrine diseases, aid in the interpretation of

mutations found in different populations, and suggest changes in

the composition of diagnostic NGS panels to increase their

informative power.
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The ability to predict clinical outcomes based on genetic data

may be improved by identifying pathogenic variants specific to

certain populations (25). This study is the first to establish the

frequency of pathogenic variants in Russian patients with endocrine

diseases. To our knowledge, the presented database is also one of the

world’s largest genetic experimental knowledge bases on endocrine

pathology. It contributes to the growing body of knowledge on the

genetic basis of these diseases and opens the way for more accurate

and personalized diagnosis and treatment.
2 Methods

2.1 Participant characteristics

The sample includes 5,926 patients who were subjected to NGS

DNA sequencing tests performed in the National Medical Research

Center for Endocrinology (Moscow) fromNovember 2017 to January

2024. The patients either suffered from endocrine pathology or had

unfavorable hereditary history. In all cases, written informed consent

to participate in this study was acquired from the patients or from

their legal representatives. The consent procedure and the design of

the study were approved by the ethics committee of the National

Medical Research Center for Endocrinology, Moscow, Russia.

Inclusion criteria were the availability of diagnosis and record

with sequencing results interpreted by clinical geneticists according

to the ACMG/AMP guidelines (10). Patients were not specifically

selected based on their clinical diagnoses. However, given the

specialization of the Endocrinology Research Center, the testing

cohort predominantly included individuals with endocrine or

endocrine-related pathology, and their relatives were considered

potential carriers of pathogenic genetic variants. A complete set of

ICD10 diagnoses associated with individual patients and specific

genetic variants is available in the database file (https://doi.org/

10.5281/zenodo.10894526) and the patients can be filtered by

ICD10 code for specific disease types.
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Exclusion criteria were records with genetic variants that were

not confirmed by two or more identifiers or were not classified

according to ACMG guidelines (e.g., due to the need for additional

examination of the patient).
2.2 Library preparation and sequencing

Genomic DNA was extracted using a NucleoMag Blood Kit

(Macherey−Nagel), MagPure Blood Dna, Kit (Magen), MagPure

Universal Dna Kit (Magen), or HiPure Universal Dna Kit (Magen).

DNA concentrations were measured on Qubit 4 fluorimeter. Library

preparation was performed using a KAPA HyperPlus Kit (Roche),

VAHTS Universal Plus DNA Library Prep Kit for Illumina V2

(Vazyme), or Illumina DNA Prep with Enrichment reagents

(Illumina). To allow sample multiplexing, indexed primers or

adapters were used as follows: KAPA UDI Primer Mixes (Roche),

VAHTS DNA Adapters for Illumina (Vazyme), and IDT for Illumina

UD Indexes (IDT). For target enrichment, DNA libraries were

hybridized with biotinylated DNA probes for 16 to 18 h and then

captured by streptavidin beads. Hybridization and capture procedures

were performed according to the KAPAHyperCapWorkflow, VAHTS

Target Capture Hybridization and Wash protocol, оr Illumina DNA

Prep with Enrichment protocol with respective reagent kits. For whole

exome enrichment, KAPA HyperExome Probes (Roche), a VAHTS

Target Capture Core Exome Panel (Vazyme), or an IDT xGen Exome

Hyb Panel (IDT) were used. Additionally, four custom probe panels

were used for the enrichment of genes involved in endocrine disorders:

Endo1, Endo2, Endome1, and Endome2 (Roche, designed in the

National Medical Research Center for Endocrinology). Library

quality was assessed using a 5200 Fragment Analyzer system

(Agilent) with NGS Fragment Kits (1 to 6000bp). PE100 sequencing

was performed on an Illumina NovaSeq 6000, NextSeq550, or MiSeq

depending on the required number of reads per sample. The average

mean exon coverage of x100 was obtained for both whole exome and

target panel sequencing. Demultiplexing was performed using the

Illumina Bcl2fastq2 program.
FIGURE 1

Flowchart of the study. The green color denotes molecular data; bioinformatic pipeline steps are shown in yellow. The blue block corresponds to
performed NGS tests.
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2.3 Data processing

The design of the study is schematized in Figure 1. A quality

check of the fastq files was done using FastP (26). The reads were

aligned to the human genome assembly GRCh38 using BWA-mem

(27). Coordinates of target regions correspond to the enrichment

used. BAM coverage was calculated against the BED file using

mosdepth. Samtools software was used for BAM file indexing.

Duplicate marking was performed using MarkDuplicates

software. We used DeepVariant for variant calling (28). All

variants with an allele frequency in the experimental read for a

particular biosample of less 0.01 were removed from further

analysis. VCF annotation was performed using the VEP (29) tool.

Variant interpretation was performed in accordance with the

ACMG/AMP guidelines considering information about clinical

features including phenotype and family segregation, VEP

annotation, which characterized its potential impact on protein

function (variant type, scores from in silico predictors CADD,

PolyPhen, BayesDel, MutPred, MetaRNN, SpliceAI, and LoF),

and data from population and clinical databases (gnomAD,

ClinVar, and HGMD public). A complete list of VEP annotation

fields is available in Supplementary File 1. In addition, information

from variant-related scientific articles found in the PubMed

database was used to annotate the fields.
2.4 Designs of target panels for NGS

The targeted NGS panels were developed at the National

Medical Research Center for Endocrinology to cover genes known

to be associated with endocrine pathologies. Initially, at the

beginning of the project, two separate NGS panels, called Endo1

and Endo2, were developed. Later, they were combined with some

modifications into one comprehensive Endome1 panel, which was

further expanded to the Endome2 panel (Figure 2). The
Frontiers in Endocrinology 0411
composition of the genes in the used NGS panels is given in

Supplementary File 2.
2.5 Text analysis

Interpreted genetic variants were available as text records in

electronic medical cards. Genetic coordinates, type of mutation,

gene name, zygosity, and novelty of variant at the moment of

interpretation were parsed with R v4.3.1 (30) and checked

manually. Diagnoses of patients were automatically downloaded

from the “ICD10 code” fields in the electronic medical cards. If the

“ICD10 code” field was empty, the diagnoses were extracted

manually from another field in the electronic medical cards or

available hard medical documents.
2.6 Patient diagnoses

Every patient case was assigned an ICD10 code of diagnosis

according to the 10th revision of the International Statistical

Classification of Diseases and Related Health Problems, a medical

classification list created by the World Health Organization. The

code of the last available clinical diagnosis before the sequencing

was used. If information about concomitant diagnoses was

available, we also included the ICD10 codes for them. If the

patient had no documented evidence about their pathology or

any medical consultation at the moment on sequencing, ICD10

code Z01.8 was assigned.
2.7 Database format

We created a single comma-separated file with the following

columns: “Patient ID”, “Age”, “Gender”, “ICD-10 code of the disease”,
FIGURE 2

Relationship between the NGS panels used in this study. Intersections reflect the gene composition of panels under comparison.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1472754
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Buzdin et al. 10.3389/fendo.2025.1472754
“Sequencing type”, “Panel design (if available)”, “Variant reported”,

“Gene”, “Zygosity”, and “Described in the literature”. If at least one

variant was reported for a patient, each row corresponded to one

variant. If the patient had no reported variants, one row corresponded

to one patient and the fields for the reported variant were empty. All

the ICD-10 codes for the patients are listed in each row with a

semicolon as a separator.
2.8 Technical validation

2.8.1 Quality control of sequencing data
A data quality check was conducted on an Illumina SAV. A

quality check of fastq files was conducted using FastP. All Illumina

DNA short reads had a Phred score greater than 35 corresponding

to a base accuracy greater than 99.9%.

2.8.2 Quality control of archive data
Metadata from the laboratory information system, such as WES

or NGS panel version, were manually compared with the

information from the text descriptions of the sequencing results.

All the information obtained through text parsing was

manually verified.

To prevent any operator mistakes, we validated the parsed

variant description. We considered the variant valid if one of the

following conditions was met:
Fron
1. The variant was written in both genomic and

transcriptomic coordinates. We ensured that both types

of coordinates described the same variant.

2. The variant had a dbSNP ID. We checked if the dbSNP

variant indeed matched the variant parsed from the

geneticist’s report.

3. A vcf file was available and included the variant parsed from

the geneticist’s report.
To match genomic and cDNA coordinates, dbSNP ID, and vcf

records, we used the Mutalyzer (31) and VariantValidator

(32) tools.

Additionally, we used protein coordinates, HGMD ID, or

PubMed ID (variant description from a scientific article) in

manual mode to confirm the parsed variant.

In this study, we did not include any results obtained using a

bioinformatic pipeline other than that outlined in Figure 1. Genetic

variants with incomplete information (genome assembly, genomic

coordinates, or ACMG/AMP classification) were filtered out and

not included in the database. In this study, we did not consider

genetic variants without final classification with only partially met

ACMG/AMP criteria.

2.8.3 Control of clinical data
Interpretation of sequencing results for the individual patients

was performed by clinical geneticists considering patient

phenotype, medical documentation, and familial history when

available. The correspondence of the patient diagnoses with the
tiers in Endocrinology 0512
pathology group and with the results of NGS analysis was

determined by the clinical endocrinologist.
3 Results and discussion

3.1 Overview of data records

We identified a total of 6,208 medical records with sequencing

results for 5,926 patients. In total, 1,248 WES tests were performed

for 1,245 patients, and 4,960 gene panel NGS tests were performed

for 4895 patients. For 214 patients, both panel and WES tests were

done. Some patients were tested several times due to technical or

clinical reasons. Only genetic variants classified as “pathogenic,”

“likely pathogenic,” or “of uncertain significance” were taken into

consideration. Hereafter, they will be referred to as “reported

variants”. The complete database file is available at the following

link: https://doi.org/10.5281/zenodo.10894526.

Relevant genetic variants were reported by clinical geneticists in

1,882 cases out of 4,960 NGS panel sequencing tests. Among them,

1,267 reports contained genetic variants classified as “pathogenic”

and “likely pathogenic”, and 700 were “variants of uncertain

significance” (Figure 3). For WES tests, relevant genetic variants

were reported for 448 out of 1,248 tests, including pathogenic and

likely pathogenic variants in 203 cases and variants of uncertain

significance in 284 cases (Figure 3). In some patient cases (267 for

panel NGS and 129 for WES), more than one variant was annotated

and reported. Interestingly, the percentage share of the cases with

reported genetic variants was very similar for the results of WES

and panel NGS (38% vs 36%, respectively).

For 43 genes, pathogenic and likely pathogenic variants were

reported in both WES and panel NGS results. Pathogenic (P) and

likely pathogenic (LP) variants were found in 108 and 186 genes in

panel NGS or WES tests, respectively, with no intersections

(Figure 3B). For variants of uncertain significance (VUS), 83

genes were common, and 161 and 251 were specific for the panel

NGS and WES tests, respectively (Figure 3C). In total, 281 and 515

genes had at least one P, LP, or VUS reported variant for the panel

NGS and WES tests, respectively, and 120 genes hosted reported

genetic variants common in both tests (Supplementary Figure S1).
3.2 Analysis of groups of patients.

For statistical analyses, the patients were grouped according to

their clinical diagnoses by ICD10 sections (240 groups,

Supplementary File 3). The biggest groups, each containing more

than 100 genetically profiled patients, are listed in Table 1.

In Table 1, some ICD10 diagnosis sections have broad

definitions and include the following specific diagnoses for the

clinical group under investigation:
a. for E03 Other hypothyroidism—E03.0 Congenital

hypothyroidism with diffuse goitre, E03.1 Congenital

hypothyroidism without goitre, E03.2 Hypothyroidism
frontiersin.org
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FIGURE 3

The proportion of NGS tests with reported genetic variants. (A) Number and percentage share of genetic tests with reported variants classified as
“pathogenic” (P), “likely pathogenic” (LP), or “uncertain significance” (VUS) among the results of WES and panel NGS. (B) The number of genes
hosting genetic variants classified as pathogenic or likely pathogenic in the results of WES and panel NGS. (C) The number of genes hosting genetic
variants classified as VUS in the results of WES and panel NGS.
TABLE 1 ICD10 diagnostic sections containing more than 100 patients.

ICD10_section WHO description Diagnoses of the patients tested Panel WES Total

E23
Hypofunction and other disorders of the
pituitary gland E23.0; E23.2; E23.3; E23.6; E23.7 574 112 686

E10 Type 1 diabetes mellitus
E10; E10.0; E10.1; E10.2; E10.3; E10.4; E10.6; E10.7;

E10.8; E10.9 371 165 536

R73 Elevated blood glucose level R73; R73.0; R73.9 408 2 410

E14 Unspecified diabetes mellitus E14; E14.0; E14.7; E14.8; E14.9 392 7 399

E03 Other hypothyroidism E03; E03.0; E03.1; E03.2; E03.8; E03.9 291 103 394

E34 Other endocrine disorders E34; E34.3; E34.4; E34.5; E34.8; E34.9 230 128 358

E16 Other disorders of pancreatic internal secretion E16.0; E16.1; E16.2; E16.4; E16.8; E16.9 248 97 345

E13 Other specified diabetes mellitus E13; E13.2; E13.4; E13.7; E13.8; E13.9 297 10 307

E21
Hyperparathyroidism and other disorders of
parathyroid gland E21.0; E21.1; E21.2; E21.3; E21.4; E21.5 292 15 307

E66 Obesity E66.0; E66.1; E66.8; E66.9 143 141 284

E25 Adrenogenital disorders E25.0; E25.8; E25.9 261 21 282

E22 Hyperfunction of the pituitary gland E22.0; E22.1; E22.8; E22.9 155 100 255

E27 Other disorders of the adrenal gland E27; E27.0; E27.1; E27.3; E27.4; E27.5; E27.8; E27.9 207 32 239

(Continued)
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Fron
due t o med i c amen t s , E03 . 8 O the r sp e c ifi ed

hypothyroidism, E03.9: Hypothyroidism, unspecified;

b. for E04 Other nontoxic goiter—E04.0 Non-toxic diffuse

goiter, E04.1 Non-toxic single thyroid nodule, E04.2 Non-

toxic multinodular goiter;

c. for E13 Other specified diabetes mellitus—E13.2 Other

specified diabetes mellitus with renal complications, E13.4

Other specified diabetes mellitus with neurological

complications, E13.7 Other specified diabetes mellitus

with multiple complications, E13.8 Other specified
tiers in Endocrinology 0714
diabetes mellitus with unspecified complications, E13.9

Other specified diabetes mellitus without complications;

d. for E16 Other disorders of pancreatic internal secretion—

E16.0 Drug-induced hypoglycemia without coma, E16.1

Other hypoglycemia, E16.2 Hypoglycemia, unspecified,

E16.4 Abnormal secretion of gastrin, E16.8 Other

specified disorders of pancreatic internal secretion, E16.9

Disorder of pancreatic internal secretion, unspecified;

e. for E23 Hypofunction and other disorders of pituitary

gland —E23.0 Hypopituitarism, E23.2: Diabetes insipidus,
FIGURE 4

The proportion of patients with genetic variants classified as “pathogenic” (P), “likely pathogenic” (LP), or “uncertain significance” (VUS) in the results
of panel NGS and WES tests for ICD10 diagnosis groups containing more than 100 genetically profiled patients with endocrine pathologies.
TABLE 1 Continued

ICD10_section WHO description Diagnoses of the patients tested Panel WES Total

E11 Type 2 diabetes mellitus E11.2; E11.3; E11.4; E11.5; E11.6; E11.7; E11.8; E11.9 204 18 222

E83 Disorders of mineral metabolism E83.3; E83.4; E83.5; E83.8; E83.9 194 11 205

E04 Other non-toxic goiter E04.0; E04.1; E04.2 161 5 166

E31 Polyglandular dysfunction E31; E31.0; E31.1; E31.8; E31.9 115 24 139

E30 Disorders of puberty, not elsewhere classified E30; E30.0; E30.1; E30.8; E30.9 91 37 128
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ersin.org
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Fron
E23.3 Hypothalamic dysfunction, not elsewhere classified,

E23.6 Other disorders of pituitary gland, E23.7 Disorder of

pituitary gland, unspecified;

f. for E27 Other disorders of adrenal gland—E27.0 Other

adrenocortical overactivity, E27.1 Primary adrenocortical

insufficiency, E27.3 Drug-induced adrenocortical

insufficiency, E27.4 Other and unspecified adrenocortical

insufficiency, E27.5 Adrenomedullary hyperfunction, E27.8

Other specified disorders of adrenal gland, E27.9 Disorder

of adrenal gland, unspecified;

g. for E30 Disorders of puberty, not elsewhere classified—E30.0

Delayed puberty, E30.1 Precocious puberty, E30.8 Other

disorders of puberty, E30.9 Disorder of puberty, unspecified;

h. for E34 Other endocrine disorders—E34.3 Short stature, not

elsewhere classified, E34.4 Constitutional tall stature, E34.5

Androgen resistance syndrome, E34.8 Other specified

endocrine disorders, E34.9 Endocrine disorder, unspecified.
For the WES tests, the biggest proportion of reported variants

was detected for the following patient groups (Figure 4): type 1

diabetes mellitus (E10), hyperparathyroidism and other disorders of

parathyroid gland (E21), hyperfunction of pituitary gland (E22),

hypofunction and other disorders of pituitary gland (E23), other

endocrine disorders (E34), obesity (E66), and disorders of mineral

metabolism (E83).
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For panel NGS, the biggest proportion of reported variants was

reported for the following groups: other hypothyroidism (E03);

other non-toxic goiter (E04); type 2 diabetes mellitus (E11); other

specified diabetes mellitus (E13); unspecified diabetes mellitus

(E14); other disorders of pancreatic internal secretion (E16);

adrenogenital disorders (E25); other disorders of the adrenal

gland (E27); disorders of puberty, not elsewhere classified (E30);

polyglandular dysfunction (E31); and elevated blood glucose

level (R73).

For each individual patient, the pathogenicity level was assessed

by the highest pathogenicity score of their reported variants

(Figure 5). Thus, the highest level (“pathogenic”) included

patients with at least one pathogenic variant but who might have

additional reported variants as well. Similarly, patients classified as

having “likely pathogenic” variants could have other variants as well

except for the “pathogenic” ones. The distribution of patients by

pathogenicity level is shown in Figure 5.

Both panel NGS and WES profiles were available for 214

patients (Figure 6, Supplementary File 3). Thus, we compared the

genetic variants reported in the same patients using alternative tests.

In general, the WES results contained more reported variants than

the panel NGS annotations. However, some variants were reported

in the panel NGS results and then labeled as irrelevant to the

patient’s condition in the WES tests. Because the geneticists

subjected the patients to WES after panel NGS in cases of doubt
FIGURE 5

The proportion of patients with variants of different pathogenicity levels among all patients with reported variants for ICD10 diagnosis groups
containing more than 100 genetically profiled patients with endocrine pathologies.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1472754
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Buzdin et al. 10.3389/fendo.2025.1472754
FIGURE 6

Statistics of patients with reported genetic variants classified as “pathogenic” (P), “likely pathogenic” (LP), or “uncertain significance” (VUS) in the
results of double tests including panel NGS and WES, performed for 214 patients. Complete diagnoses of the patients tested are specified in
Supplementary File 3.
FIGURE 7

Frequencies of “pathogenic” (P) and “likely pathogenic” (LP) genetic variants for the ICD10 diagnosis group “E23 Hypofunction and other disorders of
pituitary gland” identified using WES and panel NGS tests. Mutation frequency was calculated as the ratio of patients with gene mutations to the total
number of patients in the group. Genes with pathogenic and likely pathogenic variants found in both panel NGS and WES tests are highlighted in
orange (common items), otherwise shown in green (differential genes). The black marker shows whether the gene was included (black–yes, white–
no) in the specific versions of the NGS panel used.
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when the first test could not adequately explain the patient’s

phenotype, here we consider WES results as the gold standard for

cases of such dual profiling.

A more detailed comparison of the molecular cases for the

patients simultaneously profiled by panel NGS and WES including

the distribution of gene mutation frequencies is given in

Supplementary File 4.

We then compared the frequencies of P and LP variants in panel

NGS and WES results. For this analysis, we excluded panel NGS
Frontiers in Endocrinology 1017
results that were dismissed byWES tests for the same patients (eight

patient cases).

In Figure 7, such an analysis is exemplified for the ICD10

diagnosis group “E23 Hypofunction and other disorders of pituitary

gland”. It can be seen that gene PTPN11, which was most frequently

associated with the diagnosis “E34.3 Short stature due to endocrine

disorder”, was also useful for the analysis of the E23 group.

For other ICD10 diagnosis groups containing more than 100

genetically profiled patients with endocrine pathologies, complete
FIGURE 8

Genes with 10 times and greater occurrence in genetic reports in the whole patient cohort.
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FIGURE 9

The most commonly reported genetic variants found in at least five patients under analysis.
FIGURE 10

Statistics of different mutation types identified among the reported genetic variants in this study. One patient case may be included in several groups
depending on the presence of mutations of a specific class.
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lists of genes hosting reported variants and mutation frequency

statistics are given in Supplementary File 5 for both WES and panel

NGS tests.

We also identified a list of the most frequently mutated genes

with a predominance of pathogenic and likely pathogenic reported

variants that included genes GCK and HNF1A for diabetes mellitus

phenotype or disorders of glucose metabolism (E10, E11, E13, E14,

E74, an dR73); KCNJ11, ABCC8 and GCK for other disorders of

pancreatic internal secretion (E16); AIRE and MEN1 for

polyglandular dysfunction (E31); AR and PTPN11 for the other

endocrine disorders section including constitutional short stature;

GNRHR and PROP1 for hypofunction and other disorders of

pituitary gland (E23); DICER1 for other non-toxic goiter (E04);

and CYP24A1 and PHEX for disorders of mineral metabolism

(Figure 8). In addition, 10 genes harbored relatively frequently

reported variants that occurred in at least five patients under

analysis (Figure 9).

In total, 1,184 out of 2,073 (57%) reported unique genetic

variants were not described at the moment of NGS data

interpretation by the geneticists. In the EndoGene database

published here (https://doi.org/10.5281/zenodo.10894526), this is

shown by the “yes” or “no” flags in the “Described in literature”

column. The reported variants included 2,412 single nucleotide

substitutions (SNS), 301 deletions, six insertions, 19 complex

insertions and deletions, and 73 duplications. Out of them, four

deletions and four duplications were long rearrangements involving

at least several genes, as could be judged from the results of theWES

analysis (Figure 10). In total, 2,811 variants (2,073 unique) were

reported that could be classified as pathogenic, likely pathogenic,

or VUS.
3.3 Next steps and limitations

Here, we present a database of genetic variants reported in

patients with endocrine diseases and endocrine-related pathologies

and in individuals at risk. We provided the ICD10 diagnosis codes

for each patient and calculated the frequencies of genetic variants

for the patients with diagnoses from the same ICD10 section.

However, this article describes the raw data collection and does

not intend to comprehensively interpret the data obtained. Thus,

further statistical analysis will be needed to identify any associations

of genetic variants with specific diagnoses.

Here, we report clinically relevant genetic variants in the

standard HGVS format and classify associated diagnoses

according to the ICD10 system, thus allowing this information to

be converted and merged with other relevant knowledge bases.
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Background: Rosacea is a common chronic inflammatory skin disease. Limited

studies reported the association between plasma lipidome and rosacea.

Methods: We employed a two-sample Mendelian randomization (MR) study to

assess the causality between plasma lipidome and rosacea. Plasma lipidome

association genome-wide association study (GWAS) data were collected. The

inverse variance weighted (IVW) method was utilized as the principal method in

our Mendelian randomization (MR) study; we also used the MR-Egger, weighted

median, simple mode, and weighted mode methods. The MR-Egger intercept

test, Cochran’s Q test, MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO),

and leave-one-out analysis were conducted to identify heterogeneity

and pleiotropy.

Results: A total of 179 lipid species were analyzed; among them, five lipid species

were closely related to rosacea. Two species of sterol ester [sterol ester (27:1/

22:6) and sterol ester (27:1/15:0)], two species of phosphatidylethanolamine

[phosphatidylethanolamine (O-18:2_20:4) and phosphatidylethanolamine

(18:0_20:4)], and one species of sphingomyelin [sphingomyelin (d34:0)] were

causally associated with rosacea (P < 0.05). All of them play protective roles in

patients with rosacea. No heterogeneity or pleiotropy was observed.

Conclusion: This study provided new evidence of the relationship between

plasma lipidome and rosacea. Our MR suggested that five lipid species play

protective roles in rosacea progression. These could be novel and effective ways

to treat rosacea.
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plasma lipidome, rosacea, Mendelian randomization, causal inference, protective
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1 Introduction

Rosacea is a prevalent chronic inflammatory dermatological

condition that primarily impacts the cheeks, chin, nose, forehead,

and ocular regions (1, 2). The reported prevalence of rosacea varies

significantly, ranging from 1% to 22%, a variation attributed to

geographical and demographic factors (3, 4). A recent systematic

review estimated the global prevalence of rosacea to be

approximately 5.5% among the adult population (5). Contrary to

earlier studies that indicated a higher prevalence in females (1, 2),

the findings of this systematic review suggest that both men and

women are equally affected by the condition (5). The

pathophysiology of rosacea remains inadequately understood.

Mechanistically, the pathogenesis of rosacea is associated with

various inflammatory pathways, which involve the dysregulation

of both the innate and adaptive immune systems (2, 6).

Investigations into single nucleotide polymorphisms (SNPs) in

genes linked to rosacea indicate that genetic factors may also play

a role (7). Factors such as stress, ultraviolet radiation, consumption

of spicy foods, smoking, and alcohol intake have been identified as

potential exacerbators of symptoms (1). The diagnosis of rosacea is

primarily based on clinical manifestations and skin biopsy findings

(1). Treatment options for rosacea include skin care regimens,

topical medications such as brimonidine and ivermectin (8), oral

antibiotics like doxycycline and minocycline (9), as well as biologic

agents such as Secukinumab (10) and Erenumab (2). It is important

to note that rosacea is a chronic condition; while patients may

experience periods of remission due to various treatments, relapses

are frequently observed (1).

Plasma lipids, including high-density lipoprotein cholesterol

(HDL-C), low-density lipoprotein cholesterol (LDL-C),

triglycerides (TG), and total cholesterol (TC), are routinely

assessed and have been established as significant risk factors for

various health conditions, particularly cardiovascular disease

(CVD). Recent studies have expanded our comprehension of

circulating lipid diversity by identifying additional lipid species,

such as cholesterol esters (CE), lysophosphatidylcholines (LPC),

phosphatidylcholines (PC), phosphatidylethanolamines (PE), and

sphingomyelins (SM) (11).

Several studies reported the relationship between plasma lipids

and skin disease. For instance, a significant reduction in serum

high-density lipoprotein cholesterol (HDL-C) levels has been

documented in patients with chronic spontaneous urticaria (12);

on the other hand, patients suffering from atopic dermatitis

exhibited a notable decrease in cholesteryl esters, free cholesterol,

lysophosphatidylcholine (particularly the 16:0 species), and

phosphatidylethanolamine (13). Additionally, adolescents

diagnosed with atopic dermatitis (AD) within the Asian

demographic demonstrated significantly elevated levels of total

cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C).

Mendelian randomization (MR) utilizes one or more genetic

variants as instrumental variables (IVs) based on genome-wide

association studies (GWAS). MR studies can infer the causal effects

of exposure on an outcome. Recently, MR analysis also reported the
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causal relationship between lipids and skin diseases. For instance, MR

analysis showed that HDL deficiency and high LDL-C and TG have a

causal relationship with incident psoriasis genetically (14, 15). To our

knowledge, no study has yet investigated the causal effect of plasma

lipidome on the risk of rosacea using Mendelian randomization. Our

investigation aimed to explore the plasma lipidome risk variants as

instrumental variables for rosacea utilizing two-sample MR.
2 Materials and methods

2.1 Study design

According to the MR framework (Figure 1), three key

assumptions are included (1): Relevance Assumption: Single

nucleotide polymorphisms (SNPs) that are substantially linked to

exposures are used as instrumental variables (IVs). (2)

Independence Assumption: These SNPs (IVs) should not show

any correlation with the relevant confounding factor. (3) Exclusivity

Assumption: These SNPs (IVs) should affect outcomes only

through its effect on exposure (16, 17).
2.2 Data sources

The plasma lipidome GWAS data were obtained from the

prospective GeneRISK cohort including 7,174 individuals (18),

summarized by Ottensmann L et al. (11). A total of 179 lipid

species [GWAS Catalog (https://www.ebi .ac .uk/gwas/ ,

GCST90277238–GCST90277416)] belonging to 13 lipid classes

cover ing four major l ip id categor ies (g lycero l ip ids ,

glycerophospholipids, sphingolipids, and sterols) were detected.

The GWAS data related to rosacea was obtained from the IEU

OpenGWAS project, GWAS ID: finn-b-L12_ROSACEA, which

included 1,195 cases and 211,139 controls, featuring 16,380,452

SNPs, with the study population being of European descent. All

participants provided informed written consent, and all studies

were reviewed and approved by institutional ethics review

committees at the involved institutions.
2.3 Instrumental variables selection

Related IVs (plasma lipidome) for MR analysis followed particular

principles: SNPs should be associated with exposures at the locus-wide

significance level: P < 5e−06. In addition, linkage disequilibrium (LD)

coefficient r2 should be less than 0.001, not closely related (clumping

window more than 10,000 kb) to ensure exposure instrument

independence. The F statistic was employed to assess the strength of

the IVs, with values exceeding 10, thereby suggesting the absence of

weak instrumental variable bias. The F-value is calculated using the

formula F = R2(N − 2)/(1 − R2), where R² denotes the proportion of

variance accounted for by SNPs in the exposure dataset, and N

represents the sample size of the GWAS (16, 17).
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2.4 MR analysis

Causal associations between plasma lipidome and rosacea were

determined using MR analysis. In the exposure–outcome analysis,

we employed MR with more than two SNPs serving as IVs. Our MR

analysis used each of the five methods: inverse variance weighted

(IVW) was performed as the primary statistical analysis method in

our MR analysis for evaluating causal effects, with additional

methodologies, namely, simple mode, weighted median, weighted

mode, and MR-Egger, being utilized to further corroborate the

findings. The MR-Egger method is implemented through a

straightforward modification of the weighted linear regression

technique previously outlined. MR-Egger was specifically

employed to evaluate the robustness of the MR results as a form

of validation (16, 17, 19).

The heterogeneity of the chosen SNPs was evaluated using

Cochrane’s Q test, where a P-value of more than 0.05 suggested

the lack of heterogeneity. The random effects model was used once

significant heterogeneity has been identified. We evaluated the

possible bias from horizontal pleiotropy using the weighted

median and MR-Egger regression in order to gauge the robustness

of the IVW method. The MR-PRESSO (MR-Pleiotropy RESidual

Sum and Outlier) test was used to appraise outliers that might have

been influenced by horizontal pleiotropy. The causal-effect estimates

for individual variants were displayed using a scatter plot. Thereafter,

we performed a leave-one-out analysis to examine the stability of the

results in the context of a single SNP’s influence and presented the

findings in a forest plot (16, 17, 19).
2.5 Statistical analysis

All statistical analysis were conducted in R software (Version

4.3.2) using the TwoSampleMR package (Version 0.5.8). The
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statistical significance level is P <0.05. Pooled odds ratio (OR)

with 95% confidence interval (CI) were calculated. The IVW

method was primarily employed to evaluate the causal

relationships between 179 lipid species and rosacea, with the

findings illustrated through a volcano plot; significant results were

subsequently represented using a forest plot. The false discovery

rate (FDR) correction was applied to adjust all P-value thresholds,

whereby P-values exceeding the FDR-corrected threshold but

remaining below 0.05 were regarded as indicative of potential

causal associations.
3 Results

3.1 MR analysis

Totally, we analyzed the plasma lipidome (1,893 SNPs, detailed in

Supplementary Table S1) for their causal association with rosacea. As

mentioned, the inverse variance weighted (IVW) method was chosen

as the primary statistical analysis method. MR analysis revealed that

among the 179 lipid species, according to the results of the IVW

method (P < 0.05, Figure 2), five lipid species exhibited a significant

association with the outcome variable of rosacea. Notably, all of these

lipid species demonstrated an odds ratio (OR) of less than 1 (Figure 3,

detailed in Table 1). Among them, two species of sterol ester [sterol

ester (27:1/22:6) (OR = 0.757, 95% CI = 0.613–0.935, P = 0.01) and

sterol ester (27:1/15:0) (OR = 0.691, 95% CI = 0.495–0.965, P = 0.03]

resulted in a protective factor for rosacea; two species of

phosphatidylethanolamine [phosphatidylethanolamine (O-18:2_20:4)

(OR = 0 . 761 , 95% CI = 0 .589–0 . 984 , P = 0 . 03) and

phosphatidylethanolamine (18:0_20:4) (OR= 0.864, 95% CI = 0.753–

0.992, P = 0.03)] showed a protective effect on rosacea; one species of

sphingomyelin [sphingomyelin (d34:0) (OR = 0.835, 95% CI = 0.702–

0.992, P = 0.04)] also resulted in a causal protective relationship with
FIGURE 1

Flowchart schematic diagram followed by the MR analysis’s principle of this study.
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rosacea. The scatter plots for the causal relationship between plasma

lipidome and rosacea are presented in Figure 4. It is noteworthy that all

five lipid species exhibited a negative correlation with rosacea,

indicating that these lipid types may have a causal protective effect

against the condition. A detailed analysis of the components of each

lipid species is provided in the Supplementary Materials.
3.2 Sensitivity analysis

According to the Cochran Q test, our IVW–MR analysis results

demonstrated no evidence of heterogeneity among our reported

results. The MR-Egger regression analysis results provided evidence

that there was no other significant horizontal pleiotropy (Table 2).
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We also conducted the leave-one-out method to identify and delete

abnormal instrumental variables. The results showed the robustness

of our results (Supplementary Figure S1). These results suggest that

the MR analysis results were relatively stable.
4 Discussion

We conducted an MR analysis to investigate the causal

relationship between plasma lipidome and rosacea utilizing GWAS

summary-level data. Our results showed that five lipid species have

negative causal relationship on rosacea, specifically, two species of

sterol ester, two species of phosphatidylethanolamine, and one

species of sphingomyelin. To the best of our knowledge, the
FIGURE 3

Forest plot of Mendelian randomization analysis for sterol ester (27:1/22:6), sterol ester (27:1/15:0), phosphatidylethanolamine (O-18:2_20:4),
phosphatidylethanolamine (18:0_20:4), sphingomyelin (d34:0), and rosacea risk. The results of inverse variance weighted (IVW), weighted median,
and MR-Egger are shown.
FIGURE 2

The volcano plot shows the association between 179 lipid species and rosacea risk. The X-axis represents the b value, and the Y-axis shows the
logarithmic p-value in base 10. Sterol ester (27:1/22:6), sterol ester (27:1/15:0), phosphatidylethanolamine (O-18:2_20:4), phosphatidylethanolamine
(18:0_20:4), and sphingomyelin (d34:0) indicate the P-value <0.05.
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current analysis of plasma lipidome on rosacea is limited, and the

relationship between plasma lipidome and rosacea has not

been reported.

Sterol ester, formed through the esterification of sterols and

fatty acids, belongs to the sterols category, playing a crucial role in

maintaining the structural and functional integrity of cellular

membranes. They modulate membrane fluidity and stability,

which in turn affect cellular responsiveness to external stimuli

and signal transduction (20, 21). Generally, sterols are primarily

taken up through dietary sources and synthesized in the liver.

Additionally, cholesterol biosynthesis enzymes are expressed in

primary and secondary lymphoid organs, which suggested that

sterols play a role in immune regulation. Accordingly, systemic

sterols modulate immune cell biology (22); furthermore, in

inflammatory processes, sterol esters may act as signaling

molecules or a regulatory agent (23). Meanwhile, our

understanding of how sterols modulate specific immune cell

biology is limited (20, 24).

Phosphatidylethanolamine (PE) is one of the most abundant

phospholipids in plasma membranes (25). Besides being a passive

membrane constituent, PE is also functionally associated with

protein biogenesis and activity (26), oxidative phosphorylation

(27), and autophagy (28) and is an important precursor of other

lipids (29). The localization of PE changes during cell death. PE

resides predominantly in the inner leaflet of the cell membrane in

healthy cells; on the other hand, PE is externalized to the outer

leaflet of the plasma membrane in dead or dying cells (25). It is

demonstrated that PE is associated with Alzheimer’s and

Parkinson’s disease and liver steatosis and steatohepatitis (29).

Sphingomyelin (SM) is one of the main phospholipids that make

up the hydrophobic matrix of mammalian membranes, which are
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considered a “structural” lipid and contribute to the geometrical

stability of the cell membranes (30). Recently, studies reported that

the SM metabolic pathway contributes significantly to cell signaling,

especially in regulating tumor cell growth, differentiation, senescence,

and survival (31). Accordingly, SM acts as a critical molecule for brain

physiopathology, playing a role in Parkinson’s disease progression

(32). In addition, SM regulates cell growth, differentiation, and

apoptosis in colorectal cancer and decreases colonic inflammation

and inflammation-driven colorectal cancer (33).

Although no MR analysis reported the causal relationship

between plasma lipidome and rosacea, some MR analyses

reported the causal relationship between plasma lipidome and

other illness. MR analysis revealed that phosphatidylinositol and

triglyceride levels decreased the risk of breast cancer (BC) (34);

genetically increased triglycerides were closely related to an elevated

risk of Barrett’s esophagus (BE) (35).

Studies also reported the role of plasma lipidome in rosacea.

Neutrophils and HDL, instead of LDL, have effects on the risk or

severity of rosacea (36). Moreover, a meta-analysis performed on

large groups of patients with rosacea and controls revealed that

rosacea is significantly associated with dyslipidemia and higher total

cholesterol, LDL, and triglyceride concentrations (37). The

explanation for the association between rosacea and dyslipidemia

is uncertain. Studies showed the activation of nucleotide binding

oligomerization domain-like receptor 3, which can cause IL-1b
release and induce structural changes of lipoproteins, decreasing

their ability to break down and transport cholesterol (37, 38). An

earlier study on the skin surface lipids in rosacea revealed that the

lipid contents in the skin, particularly cholesterol, free fatty acids,

triglycerides, esters, and squalene, were no different between

patients and controls without rosacea (39). It should be noted
TABLE 1 Causal relationship between the plasma lipidome and rosacea.

Exposure Methods OR Low 95% CI Up 95% CI P

Inverse variance weighted 0.757 0.613 0.935 0.010

Sterol ester (27:1/22:6) Weighted median 0.779 0.572 1.060 0.112

MR-Egger 0.605 0.351 1.043 0.092

Inverse variance weighted 0.691 0.495 0.965 0.030

Sterol ester (27:1/15:0) Weighted median 0.751 0.481 1.171 0.206

MR-Egger 0.851 0.475 1.524 0.607

Inverse variance weighted 0.761 0.589 0.984 0.037

Phosphatidylethanolamine (O-18:2_20:4) Weighted median 0.836 0.590 1.184 0.313

MR-Egger 0.668 0.362 1.230 0.227

Inverse variance weighted 0.864 0.753 0.992 0.039

Phosphatidylethanolamine (18:0_20:4) Weighted median 0.896 0.750 1.070 0.224

MR-Egger 0.904 0.644 1.269 0.570

Inverse variance weighted 0.835 0.702 0.992 0.040

Sphingomyelin (d34:0) Weighted median 0.842 0.665 1.066 0.152

MR-Egger 0.891 0.661 1.199 0.457
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that this research was performed on a small group of patients

(N=31) and focused on skin lipidomics, not plasma lipidome. In

actuality, research examining the roles of sterol esters, PE, and SM

in the context of rosacea is relatively scarce.

Our research employed MR analysis to investigate the causal

relationship between various plasma components and rosacea. The

results suggest that sterol esters, PE, and SMmay serve as protective

factors against rosacea. Identifying novel biomarkers could enhance

our understanding of the pathogenesis of rosacea and facilitate

improved assessment of patients suffering from this dermatological

condition. The implications of our findings may extend to both

experimental design and clinical practice. Future investigations will

focus on the roles of sterol esters, PE, and SM in rosacea, utilizing

cell culture and animal models for further exploration.
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There are several limitations to our study. First, due to the

original GWAS statistics, we were unable to divide the cohorts or

perform subgroup analyses. Second, our analysis only included

individuals of the European population. Although using a single

European population to investigate causal relationships can

minimize population stratification bias, it is important to

interpret these findings with caution regarding their applicability

to other populations; in addition, there was no validation performed

using a different set of data.

Our findings reported that sterol ester, PE, and SM have

nominal causal connections with rosacea, but these correlations

vanished after applying the FDR correction. It is important to note

that the FDR correction can result in false negatives (40).
FIGURE 4

Scatter plots showing significant causal effects between plasma lipidome and rosacea. (A) Sterol ester (27:1/22:6). (B) Sterol ester (27:1/15:0).
(C) Phosphatidylethanolamine (O-18:2_20:4). (D) Phosphatidylethanolamine (18:0_20:4). (E) Sphingomyelin (d34:0).
TABLE 2 Sensitivity analysis of plasma lipidome on rosacea.

Exposure Q
P-value for Cochran
Q test

Egger-intercept
P-value for MR-Egger
intercept

Sterol ester (27:1/22:6) 14.612 0.405 0.040 0.395

Sterol ester (27:1/15:0) 3.326 0.767 −0.039 0.426

Phosphatidylethanolamine(O-18:2_20:4) 5.899 0.750 0.020 0.653

Phosphatidylethanolamine (18:0_20:4) 7.134 0.929 −0.012 0.780

Sphingomyelin (d34:0) 8.819 0.887 −0.013 0.607
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We have established a causal relationship between sterol ester,

PE, and SM in relation to rosacea; however, the expression levels of

specific liposomes in patients with rosacea remain uncertain.

Furthermore, the underlying mechanisms by which these lipids

exert their effects are not yet fully understood, necessitating further

investigation. It is important to emphasize that while our study did

not identify any associations between other subtypes of the plasma

lipidome and the risk of rosacea, this absence of evidence does not

imply that these other subtypes lack an influence on the condition.

Our research serves as a hypothesis-generating endeavor for

exploratory purposes.
5 Conclusion

In summary, our MR study presents evidence suggesting that

sterol esters, phosphatidylethanolamine (PE), and sphingomyelin

(SM) exert a negative causal influence on rosacea. This finding

indicates that sterol esters, PE, and SM may play a protective role in

the pathophysiology of rosacea. Future investigations into the

plasma lipidome may yield innovative therapeutic targets and

clinical strategies for the management of rosacea.
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Introduction: The Pan-Immune-Inflammation Value (PIV) is a novel biomarker

derived from counts of neutrophils, platelets, monocytes, and lymphocytes,

providing a comprehensive measure of systemic immune and inflammatory

status. While it has shown prognostic value in specific disease settings, its

association with mortality in the general population remains unclear. This study

aims to evaluate the predictive value of PIV for all-cause and cause-specific

mortality, including cardiovascular, cancer, and diabetes-related deaths, within a

general adult population.

Methods:Data were obtained from the NHANES cohort, with 48,662 participants

aged 20 and older. Participants were followed for an average of 117.44 months,

with PIV quartiles calculated at baseline. Cox proportional hazard models were

used to assess mortality risk across PIV quartiles, while restricted cubic spline

models examined nonlinear dose-response relationships. Subgroup and

sensitivity analyses further explored the robustness of PIV’s associations.

Results:Higher PIV levels were significantly associated with increased risks of all-

cause, cardiovascular, cancer, and diabetes mortality. Nonlinear relationships

were observed between PIV and all-cause, cardiovascular, and cancer mortality,

with a risk threshold at PIV values above 254.07. Subgroup analyses supported

these findings, and sensitivity analyses confirmed the consistency of PIV’s

prognostic value.
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Conclusion: Elevated PIV serves as an independent risk factor for multiple

mortality outcomes in the general population. This study underscores the

potential of PIV as a predictive biomarker for mortality risk, with implications

for its use in clinical and epidemiological settings. Further studies are needed to

confirm PIV’s clinical utility across diverse populations and conditions.
KEYWORDS

pan-immune-inflammation value, mortality, inflammation, biomarker, NHANES
Introduction

Inflammatory responses are fundamental to maintaining health

and protecting the body from external threats. Acute inflammation

is a normal physiological reaction to infections, injuries, and other

external stimuli, where the immune system is activated to eliminate

pathogens and promote tissue repair (1). However, chronic

inflammation has been strongly linked to the development of

various diseases, including cardiovascular diseases, cancer,

diabetes, and metabolic disorders (2–7). Persistent inflammatory

responses can result in tissue damage, disrupt homeostasis, and

accelerate disease onset and progression (6).

Immune-inflammatory biomarkers (IIBs), such as neutrophils

(NEUs), lymphocytes (LYMs), monocytes (MONs), and platelets

(PLTs), reflect the balance between the host’s immune and

inflammatory states and are critical for assessing disease

conditions. Several inflammatory indices derived from CBC

parameters, such as the monocyte-to-lymphocyte ratio (MLR),

neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte

ratio (PLR), systemic inflammation response index (SIRI),

lymphocyte-to-monocyte ratio (LMR), and systemic immune-

inflammation index (SII), are widely used for disease risk

assessment and prognosis. Multiple studies have demonstrated

that NLR, PLR, and LMR are effective predictors of disease

progression and prognosis across diverse conditions, including

cancer, cardiovascular diseases, and inflammatory disorders (8–

13). Additionally, these indices have been employed to distinguish

between different types of chronic inflammatory diseases, such as

Crohn’s disease, further underscoring their broad clinical utility

(14). Among these, SII has emerged as a valuable marker of

inflammation, showing significant prognostic value in chronic

conditions such as cancer and inflammatory diseases (8, 15, 16).

Research conducted on general populations has also highlighted the

potential of SII in assessing systemic inflammation (17, 18).

More recently, a novel and more comprehensive immune-

inflammatory index, the Pan-Immune-Inflammation Value (PIV),

has been developed. PIV integrates the counts of NEUs, PLTs,

MONs, and LYMs, offering a more holistic assessment of the

systemic immune and inflammatory status (19). Preliminary

studies suggest that PIV has greater prognostic accuracy

compared to traditional IIBs such as NLR and PLR, particularly
0231
in predicting outcomes for patients with cancers such as advanced

colorectal cancer, hepatocellular carcinoma, and breast cancer (19–

21). Although PIV has shown promise in predicting outcomes for

cancer patients, its association with overall and cause-specific

mortality in the general population remains understudied.

Therefore, this study aims to evaluate the relationship between

PIV and mortality rates in the U.S. population, with the goal of

determining its potential as a prognostic marker and providing

valuable insights to inform public health strategies.
Methods

Data source and study population

This study employed a prospective cohort design, with all data

drawn from the NHANES database. NHANES, administered by the

National Center for Health Statistics (NCHS), uses a multistage,

stratified, and subgroup probability sampling method to select a

representative sample of the American population. Its objective is to

evaluate the health and nutritional status of adults and children in

the United States (22). The survey’s original protocol underwent a

comprehensive ethical review and was approved by the CDC’s

Institutional Review Board. Informed consent was obtained from

all participants, who signed consent forms prior to their

participation (23) Additional details regarding the study are

accessible online: www.cdc.gov/nchs/nhanes/irba98.htm.

We enrolled a total of 101,326 participants from NHANES,

covering data of ten circles from 1999 to 2018 in this research.

Participants younger than 20 years old and those missing data on

neutrophil counts, monocyte counts, or mortality information were

excluded. The process of participant selection is depicted

in Figure 1.
Definition of CBC-derived inflammatory
indices

The complete blood count (CBC) parameters were derived

using the Beckman Coulter method for cell counting and sizing,

with an automated diluting and mixing device for sample
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processing. All cell counts were measured in ×109/L. The

inflammatory indicators were calculated using the following

formulas (19, 24):

MLR = monocytes=lymphocytes;

NLR = neutrophils=lymphocytes;

PLR = platelets=lymphocytes;

SII = platelets� neutrophils=lymphocytes;

SIRI = neutrophils �monocytes=lympocytes;

PIV = neutrophils�monocytes� platelets=lymphocytes;

As all components are expressed as counts per ×109/L, the units

cancel out during calculation, and all indices, including PIV, are

dimensionless values. Among these indices, PIV uniquely integrates

four key circulating immune cells — neutrophils, monocytes,

platelets, and lymphocytes — representing both innate and

adaptive immunity. Compared with simpler indices such as NLR

and PLR, PIV provides a more comprehensive assessment of

systemic immune-inflammatory status and has been identified as

a promising prognostic marker in recent studies. In this study, PIV

was analyzed both as a continuous variable and as a categorical

variable by dividing participants into quartiles according to their

PIV levels for subsequent analyses.
Frontiers in Endocrinology 0332
Assessment of all-cause and cause-specific
mortality

The primary outcomes of interest were all-cause mortality,

along with mortality due to cardiovascular disease (CVD),

diabetes and cancer. Mortality information in NHANES is

available via the National Death Index (NDI) death certificate

records (www.cdc.gov/nchs/data-linkage/mortality_public.htm).

Participant mortality status was determined by linking their data

with the National Mortality Index through December 31, 2019.

Disease-specific deaths were classified according to the

International Classification of Diseases (ICD)-10. Cardiovascular

mortality included deaths related to heart disease, cerebrovascular

conditions, and/or hypertension. Specifically, heart disease

mortality corresponded to codes I00-09, I11, I13, and I20-51,

while cerebrovascular mortality was defined by codes I60-I69.

Diabetes-related deaths were classified under codes E10-E14, and

cancer-related deaths under codes C00-C97.
Potential covariates

Sociodemographic information assessed included age, gender,

race, education level, and family income-to-poverty ratio, as well as

marital status. Lifestyle and health-related factors comprised body

mass index (BMI), smoking, and drinking. Laboratory parameters

included red blood cell (RBC) count, white blood cell (WBC) count,
FIGURE 1

Flow chart depicting the incision and exclusion of participants from NHANES 1999-2018.
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lymphocyte count, neutrophil count, monocyte count, platelet

count, hemoglobin, aspartate transaminase (AST), alanine

transaminase (ALT), total cholesterol (TC), blood urea nitrogen

(BUN), uric acid, creatinine, albumin, and glycosylated hemoglobin

A1c (HbA1c). Medical conditions considered were hypertension,

diabetes, kidney disease, congestive heart failure(CHF), coronary

heart disease(CHD),heart attack, angina pectoris, stroke, liver

disease, and cancer.
Statistical analysis

In this study, statistical analyses accounted for the sample

weights, clustering, and stratification resulting from the complex

multistage stratified probability design used in NHANES. All

analyses adhered to CDC guidelines (http://www.cdc.gov/nchs/

tutorials/default.aspx). For two circles in NHANES 1999-2002, we

applied the WTMEC4YR weights, while for the remaining 8 circles

in NHANES 2003-2018, the WTMEC2YR weights were used. In

accordance with the analytical recommendations, we calculated

sampling weights for the 1999–2018 period as 1/5 of the 1999–

2002 weight or 1/10 of the 2003–2018 weight.

Baseline characteristics of all participants were presented

depending on PIV quartiles. Continuous variables were expressed

as weighted means (95% confidence interval, 95%CI), while

categorical variables were described in terms of weighted

percentages. Differences in continuous and categorical variables

were analyzed using linear regression models and chi-square tests,

respectively. Multivariable Cox proportional hazards model was

utilized to estimate the association between PIV and both all-cause

and cause-specific mortality, reported through hazard ratios (HRs)

and 95%CI. Model 1 represented the non-adjusted analysis. Model

2 adjusted for age, gender, race, family income to poverty ratio,

education level, and marital status. Model 3 further adjusted for

BMI, albumin, ALT, AST, BUN, creatinine, HbA1c, hemoglobin,

RBC, TC, and uric acid. Finally, Model 4 included all variables from

Model 3, along with adjustments for drinking, smoking,

hypertension, diabetes, kidney disease, CHF, CHD, angina

pectoris, heart attack, stroke, liver disease, and cancer. Survival

was evaluated using the Kaplan-Meier method, and HRs for all-

cause and specific mortality were derived using the log-rank test. To

investigate potential non-linear associations between PIV and

mortality outcomes, restricted cubic spline (RCS) analyses with

four knots were performed, adjusting for the same variables as in

Model 4. The knots were positioned at the 5th, 35th, 65th, and 95th

percentiles of PIV distribution. Four knots were placed to exclude

the most extreme 5% of values, minimizing the potential influence

of outliers. Non-linearity relationship was assessed via the

likelihood ratio test. In cases where a nonlinear relationship was

identified, a threshold effect analysis was conducted. This involved

applying a two-piece Cox proportional hazards model on either side

of the inflection point to assess the association between PIV and the

risk of all-cause and cause-specific mortality. Subgroup analyses

were carried out to identify potential effect modifications by crucial

factors, including age, gender, race, education level, family income-
Frontiers in Endocrinology 0433
to-poverty ratio, marital status, smoking, drinking, BMI. The

diagnostic efficacy of PIV and other inflammatory indices was

evaluated using receiver operating characteristic (ROC) curve

analysis. To quantify their predictive accuracy, the area under the

curve (AUC) was calculated, providing a comprehensive measure of

their performance in distinguishing outcomes. Finally, sensitivity

analyses were performed as follows: (1) repeating the Multivariable

Cox proportional hazards regression on the complete dataset

(33,710 participants) without multiple imputation; (2) repeating

the analyses after excluding participants with cancer, cardiovascular

disease, or diabetes; and (3) calculating the E-value to determine the

influence of unmeasured confounders on the study’s findings (25).

The proportion of missing data for all variables was less than

10% in our study. To address potential bias from missing data,

multiple imputation was performed (26, 27). A two-sided P-value of

less than 0.05 was considered statistically significant. All statistical

analyses were executed using R software version 4.3.2 (R

Foundation for Statistical Computing) and Empower (R)

version 4.2.
Results

Baseline population characteristics by PIV
quartiles

After excluding 46,235 participants under 20 years of age, 5,459

participants with missing neutrophil counts, 871 participants with

missing monocyte counts, and 89 participants with incomplete

mortality information, a total of 48,662 participants were

included in the final analysis. The demographic and clinical

characteristics of the participants, stratified by PIV quartiles, are

detailed in Table 1.

Participants were categorized into four quartiles based on their

PIV levels at enrollment: Q1 (<164.18), Q2 (164.19–254.05), Q3

(254.06–393.66), and Q4 (>393.67). The overall mean PIV value for

all participants was 327.0 (95% CI: 322.8–331.2). Median PIV

values for each quartile were as follows: 116.9 (95% CI: 116.1–

117.7) in Q1, 208.4 (95% CI: 207.8–209.0) in Q2, 316.4 (95% CI:

315.4–317.4) in Q3, and 640.1 (95% CI: 633.2–647.1) in Q4.

Additional inflammatory markers, including MLR, NLR, PLR, SII,

and SIRI, demonstrated a significant upward trend across the PIV

quartiles. The mean MLR values increased from 0.21 (95% CI: 0.20–

0.21) in Q1 to 0.38 (95% CI: 0.38–0.39) in Q4. Similarly, NLR rose

from 1.40 (95% CI: 1.39–1.41) in Q1 to 3.25 (95% CI: 3.21–3.28) in

Q4. PLR increased from 105.75 (95% CI: 104.68–106.83) in Q1 to

158.40 (95% CI: 156.77–160.03) in Q4, and SII climbed from 291.18

(95% CI: 288.34–294.01) in Q1 to 923.36 (95% CI: 912.94–933.78)

in Q4. SIRI followed a similar pattern, rising from 0.57 (95% CI:

0.56–0.57) in Q1 to 2.26 (95% CI: 2.23–2.28) in Q4.

Participants in the highest PIV quartile (Q4) were characterized

by older age (mean: 48.38 years), higher BMI, and a greater

prevalence of females, Non-Hispanic Whites, and individuals with

lower educational attainment (below high school and high school

levels). They were more likely to have lower family income-to-
frontiersin.org
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TABLE 1 The demographic characteristics of the study population with various PIV quartiles.

Variable Total Q1 Q2 164.19- Q3 254.06-
.66 (N=12,166)

Q4
>393.67(N=12,166)

P-value

4 47.80) 48.38 (47.88 ,48.88) <0.001

0.727

4 48.78) 47.68 (46.63 ,48.72)

5 53.14) 52.32 (51.28 ,53.37)

<0.001

.4 7) 7.67 (6.59 ,8.90)

.8 3) 5.25 (4.34 ,6.33)

6 73.44) 75.04 (72.95 ,77.01)

.2 9) 6.54 (5.78 ,7.38)

.6 4) 5.51 (4.91 ,6.18)

<0.001

1 17.80) 18.09 (17.03 ,19.19)

2 25.45) 26.73 (25.51 ,27.99)

5 60.50) 55.18 (53.51 ,56.84)

<0.001

2 23.01) 22.21 (21.01 ,23.45)

3 36.87) 37.85 (36.57 ,39.14)

4 44.98) 39.94 (38.18 ,41.73)

<0.001

5 54.25) 47.69 (46.22 ,49.16)

4 48.46) 52.31 (50.84 ,53.78)

0.004

2 24.37) 21.95 (20.69 ,23.27)

7 78.62) 78.05 (76.73 ,79.31)
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3.95 ,

1.03 ,

1.54 ,

5.75 ,

1.38 ,

5.63 ,
(N=48,662) <164.18(N=12,166) 254.05 (N=12,164)

Age, years 47.19 (46.83 ,47.54) 46.15 (45.66 ,46.63) 46.80 (46.38 ,47.23) 47.29 (

Gender (%)

Male 48.01 (47.58 ,48.45) 48.04 (46.91 ,49.18) 48.52 (47.43 ,49.61) 47.82 (

Female 51.99 (51.55 ,52.42) 51.96 (50.82 ,53.09) 51.48 (50.39 ,52.57) 52.18 (

Race (%)

Mexican American 8.20 (7.19 ,9.35) 8.35 (7.29 ,9.56) 8.34 (7.25 ,9.58) 8.47 (7

Hispanics 5.60 (4.80 ,6.51) 5.63 (4.85 ,6.51) 5.81 (4.89 ,6.89) 5.71 (4

Non-Hispanic White 68.52 (66.43 ,70.55) 57.44 (54.85 ,59.99) 68.82 (66.58 ,70.98) 71.41 (

Non-Hispanic Black 10.77 (9.71 ,11.93) 19.35 (17.52 ,21.31) 10.16 (9.12 ,11.30) 8.11 (7

Others 6.91 (6.32 ,7.54) 9.23 (8.28 ,10.28) 6.87 (6.08 ,7.75) 6.30 (5

Education level (%)

Below high school 17.23 (16.36 ,18.13) 17.38 (16.30 ,18.51) 16.86 (15.77 ,18.02) 16.60 (

High school 23.99 (23.22 ,24.78) 21.65 (20.50 ,22.84) 22.85 (21.67 ,24.07) 24.43 (

Above high school 58.78 (57.46 ,60.09) 60.97 (59.22 ,62.70) 60.29 (58.63 ,61.92) 58.96 (

Family income of poverty ratio(%)

<1.3 21.26 (20.23 ,22.32) 21.25 (20.09 ,22.47) 19.97 (18.65 ,21.35) 21.61 (

1.30-3.5 35.92 (34.94 ,36.91) 35.07 (33.52 ,36.65) 35.26 (33.86 ,36.67) 35.40 (

≥3.50 42.82 (41.29 ,44.37) 43.68 (41.64 ,45.74) 44.78 (42.90 ,46.68) 43.00 (

Smoking (%)

No 54.07 (53.14 ,55.00) 60.10 (58.62 ,61.56) 56.34 (54.91 ,57.76) 52.90 (

Yes 45.93 (45.00 ,46.86) 39.90 (38.44 ,41.38) 43.66 (42.24 ,45.09) 47.10 (

Drinking (%)

No 22.73 (21.61 ,23.90) 24.25 (22.76 ,25.81) 22.09 (20.77 ,23.47) 22.84 (

Yes 77.27 (76.10 ,78.39) 75.75 (74.19 ,77.24) 77.91 (76.53 ,79.23) 77.16 (
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TABLE 1 Continued

Variable Total Q1 Q2 164.19- Q3 254.06-
6 (N=12,166)

Q4
>393.67(N=12,166)

P-value

<0.001

.08) 39.17 (37.90 ,40.46)

.62) 60.83 (59.54 ,62.10)

.38) 29.83 (29.63 ,30.02) <0.001

4.71 (4.69 ,4.73) <0.001

9.00 (8.94 ,9.05) <0.001

2.05 (2.03 ,2.07) <0.001

6.01 (5.97 ,6.06) <0.001

0.72 (0.71 ,0.72) <0.001

264.38) 293.96 (291.73 ,296.20) <0.001

.39) 14.23 (14.17 ,14.28) <0.001

.02) 24.92 (24.57 ,25.27) <0.001

.62) 25.43 (24.78 ,26.09) 0.191

5.08 (5.05 ,5.10) 0.001

4.92 (4.86 ,4.97) <0.001

324.21) 327.53 (325.20 ,329.86) <0.001

.00) 79.61 (78.81 ,80.42) <0.001

.85) 42.10 (42.00 ,42.20) <0.001

5.64 (5.62 ,5.66) <0.001

<0.001

.86) 96.85 (96.50 ,97.16)

3.15 (2.84 ,3.50)

<0.001

.87) 96.32 (95.93 ,96.68)

3.68 (3.32 ,4.07)

(Continued)
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(N=48,662) <164.18(N=12,166) 254.05 (N=12,164) 393.6

Marital status (%)

Single 36.07 (35.14 ,37.01) 34.86 (33.48 ,36.27) 34.37 (33.10 ,35.65) 35.72 (34.38 ,3

Married or living with
a partner

63.93 (62.99 ,64.86) 65.14 (63.73 ,66.52) 65.63 (64.35 ,66.90) 64.28 (62.92 ,6

BMI, kg/m2 28.79 (28.67 ,28.92) 27.67 (27.49 ,27.84) 28.34 (28.16 ,28.52) 29.20 (29.03 ,2

RBC, 1012/L 4.70 (4.69 ,4.71) 4.65 (4.63 ,4.66) 4.71 (4.69 ,4.72) 4.73 (4.71 ,4.74

WBC,109/L 7.30 (7.26 ,7.34) 5.83 (5.77 ,5.89) 6.67 (6.62 ,6.71) 7.52 (7.47 ,7.57

Lymphocyte,109/L 2.16 (2.14 ,2.17) 2.28 (2.23 ,2.33) 2.16 (2.14 ,2.18) 2.15 (2.13 ,2.18

Neutrophils,109/L 4.34 (4.31 ,4.38) 2.88 (2.85 ,2.90) 3.75 (3.73 ,3.78) 4.55 (4.52 ,4.58

Monocyte,109/L 0.56 (0.56 ,0.57) 0.43 (0.42 ,0.43) 0.51 (0.51 ,0.52) 0.58 (0.58 ,0.59

Platelets,109/L 254.70 (253.38 ,256.02) 214.94 (213.46 ,216.42) 242.07 (240.57 ,243.58) 262.86 (261.35

Hemoglobin, g/dL 14.26 (14.22 ,14.30) 14.13 (14.08 ,14.18) 14.32 (14.28 ,14.37) 14.34 (14.30 ,1

AST, mmol/L 25.12 (24.94 ,25.30) 25.87 (25.50 ,26.24) 25.03 (24.70 ,25.35) 24.75 (24.48 ,2

ALT, mmol/L 25.29 (25.03 ,25.54) 24.92 (24.50 ,25.34) 25.53 (25.07 ,25.98) 25.23 (24.85 ,2

TC, mmol/L 5.07 (5.05 ,5.09) 5.02 (4.99 ,5.05) 5.09 (5.06 ,5.11) 5.09 (5.06 ,5.12

BUN, mmol/L 4.82 (4.78 ,4.86) 4.71 (4.65 ,4.76) 4.81 (4.77 ,4.86) 4.83 (4.78 ,4.89

Uric acid, umol/L 320.80 (319.63 ,321.97) 312.33 (310.20 ,314.47) 319.90 (317.77 ,322.02) 322.35 (320.48

Creatinine, umol/L 77.94 (77.50 ,78.37) 77.23 (76.60 ,77.86) 77.49 (76.84 ,78.13) 77.32 (76.63 ,7

Albumin, g/L 42.68 (42.60 ,42.76) 42.92 (42.82 ,43.03) 43.01 (42.90 ,43.11) 42.74 (42.63 ,4

HbA1c (%) 5.58 (5.56 ,5.59) 5.54 (5.52 ,5.56) 5.54 (5.52 ,5.56) 5.59 (5.56 ,5.61

Kidney disease (%)

No 97.59 (97.40 ,97.76) 98.02 (97.69 ,98.31) 97.97 (97.62 ,98.27) 97.56 (97.22 ,9

Yes 2.41 (2.24 ,2.60) 1.98 (1.69 ,2.31) 2.03 (1.73 ,2.38) 2.44 (2.14 ,2.78

CHF (%)

No 97.55 (97.36 ,97.74) 98.20 (97.95 ,98.42) 98.25 (97.96 ,98.49) 97.53 (97.12 ,9

Yes 2.45 (2.26 ,2.64) 1.80 (1.58 ,2.05) 1.75 (1.51 ,2.04) 2.47 (2.13 ,2.88
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TABLE 1 Continued

Variable Total Q1 Q2 164.19- Q3 254.06-
.66 (N=12,166)

Q4
>393.67(N=12,166)

P-value

<0.001

96.87) 95.37 (94.85 ,95.84)

3) 4.63 (4.16 ,5.15)

<0.001

97.82) 96.94 (96.48 ,97.34)

8) 3.06 (2.66 ,3.52)

<0.001

96.97) 95.44 (94.96 ,95.87)

9) 4.56 (4.13 ,5.04)

<0.001

97.53) 96.12 (95.68 ,96.52)

8) 3.88 (3.48 ,4.32)

0.128

97.21) 96.42 (95.98 ,96.82)

4) 3.58 (3.18 ,4.02)

<0.001

91.24) 88.74 (87.88 ,89.55)

.20) 11.26 (10.45 ,12.12)

<0.001

70.01) 64.04 (62.85 ,65.21)

32.44) 35.96 (34.79 ,37.15)

<0.001

91.23) 89.20 (88.47 ,89.89)

.25) 10.80 (10.11 ,11.53)

(Continued)
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393

5.87 ,

13 ,4.1

7.02 ,

18 ,2.9

6.11 ,

03 ,3.8

6.72 ,

47 ,3.2

6.36 ,

79 ,3.6

9.80 ,

76 ,10

7.56 ,

9.99 ,

9.75 ,

77 ,10
(N=48,662) <164.18(N=12,166) 254.05 (N=12,164)

CHD (%)

No 96.44 (96.14 ,96.70) 97.37 (96.98 ,97.71) 96.71 (96.24 ,97.12) 96.40 (

Yes 3.56 (3.30 ,3.86) 2.63 (2.29 ,3.02) 3.29 (2.88 ,3.76) 3.60 (3

Angina pectoris (%)

No 97.51 (97.29 ,97.71) 98.11 (97.75 ,98.41) 97.61 (97.20 ,97.96) 97.45 (

Yes 2.49 (2.29 ,2.71) 1.89 (1.59 ,2.25) 2.39 (2.04 ,2.80) 2.55 (2

Heart attack (%)

No 96.56 (96.30 ,96.79) 97.19 (96.77 ,97.55) 97.11 (96.67 ,97.49) 96.57 (

Yes 3.44 (3.21 ,3.70) 2.81 (2.45 ,3.23) 2.89 (2.51 ,3.33) 3.43 (3

Stroke (%)

No 97.15 (96.94 ,97.34) 97.66 (97.26 ,98.00) 97.72 (97.35 ,98.03) 97.15 (

Yes 2.85 (2.66 ,3.06) 2.34 (2.00 ,2.74) 2.28 (1.97 ,2.65) 2.85 (2

Liver disease (%)

No 96.45 (96.20 ,96.68) 96.04 (95.49 ,96.53) 96.47 (95.98 ,96.90) 96.81 (

Yes 3.55 (3.32 ,3.80) 3.96 (3.47 ,4.51) 3.53 (3.10 ,4.02) 3.19 (2

Cancer (%)

No 90.45 (90.06 ,90.82) 91.73 (91.01 ,92.39) 90.93 (90.21 ,91.61) 90.55 (

Yes 9.55 (9.18 ,9.94) 8.27 (7.61 ,8.99) 9.07 (8.39 ,9.79) 9.45 (8

Hypertension(%)

No 69.26 (68.46 ,70.05) 73.04 (71.85 ,74.20) 71.63 (70.40 ,72.83) 68.80 (

Yes 30.74 (29.95 ,31.54) 26.96 (25.80 ,28.15) 28.37 (27.17 ,29.60) 31.20 (

Diabetes (%)

No 91.03 (90.66 ,91.39) 92.44 (91.77 ,93.06) 92.15 (91.54 ,92.72) 90.51 (

Yes 8.97 (8.61 ,9.34) 7.56 (6.94 ,8.23) 7.85 (7.28 ,8.46) 9.49 (8

36
9

.

9

.

9

.

9

.

9

.

8

.

6

2

8

.

https://doi.org/10.3389/fendo.2025.1534018
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


TABLE 1 Continued

Variable Total Q1 Q2 164.19-
164)

Q3 254.06-
393.66 (N=12,166)

Q4
>393.67(N=12,166)

P-value

<0.001

89.28 (88.60 ,89.92) 84.27 (83.27 ,85.22)

10.72 (10.08 ,11.40) 15.73 (14.78 ,16.73)

0.001

99.64 (99.51 ,99.73) 99.41 (99.22 ,99.55)

0.36 (0.27 ,0.49) 0.59 (0.45 ,0.78)

<0.001

97.78 (97.47 ,98.05) 96.49 (96.09 ,96.86)

2.22 (1.95 ,2.53) 3.51 (3.14 ,3.91)

<0.001

96.68 (96.29 ,97.03) 95.21 (94.77 ,95.62)

3.32 (2.97 ,3.71) 4.79 (4.38 ,5.23)

122.41 (119.92 ,124.90) 117.20 (114.59 ,119.81) <0.001

0.29 (0.29 ,0.29) 0.38 (0.38 ,0.39) <0.001

2.26 (2.24 ,2.28) 3.25 (3.21 ,3.28) <0.001

131.93 (130.60 ,133.26) 158.40 (156.77 ,160.03) <0.001

573.61 (569.11 ,578.12) 923.36 (912.94 ,933.78) <0.001

1.26 (1.25 ,1.27) 2.26 (2.23 ,2.28) <0.001

316.36 (315.37 ,317.36) 640.13 (633.21 ,647.06) <0.001

-weighted percentage (95% CI), P-value was by survey-weighted Chi-square test.
cholesterol; BUN, blood urea nitrogen; HBA1c, glycosylated hemoglobin A1c; CHF, congestive heart failure; CHD, coronary
mune-inflammation index; SIRI, systemic inflammation response index; PIV, pan-immune- inflammation value.
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(N=48,662) <164.18(N=12,166) 254.05 (N=12

All-cause mortality (%)

No 88.83 (88.31 ,89.34) 91.49 (90.80 ,92.14) 90.63 (89.93 ,91.29)

Yes 11.17 (10.66 ,11.69) 8.51 (7.86 ,9.20) 9.37 (8.71 ,10.07)

Diabetes mortality (%)

No 99.61 (99.54 ,99.67) 99.75 (99.63 ,99.83) 99.66 (99.52 ,99.77)

Yes 0.39 (0.33 ,0.46) 0.25 (0.17 ,0.37) 0.34 (0.23 ,0.48)

Cancer mortality (%)

No 97.43 (97.24 ,97.60) 97.83 (97.48 ,98.13) 97.66 (97.34 ,97.95)

Yes 2.57 (2.40 ,2.76) 2.17 (1.87 ,2.52) 2.34 (2.05 ,2.66)

Cardiovascular mortality (%)

No 96.67 (96.41 ,96.91) 97.56 (97.15 ,97.91) 97.34 (96.99 ,97.65)

Yes 3.33 (3.09 ,3.59) 2.44 (2.09 ,2.85) 2.66 (2.35 ,3.01)

Follow-up time (months) 117.44 (115.55 ,119.34) 110.65 (108.28 ,113.03) 118.66 (116.39 ,120.94)

MLR 0.28 (0.28 ,0.29) 0.21 (0.20 ,0.21) 0.25 (0.25 ,0.25)

NLR 2.22 (2.20 ,2.23) 1.40 (1.39 ,1.41) 1.85 (1.83 ,1.87)

PLR 129.99 (129.08 ,130.90) 105.75 (104.68 ,106.83) 120.86 (119.65 ,122.07)

SII 563.98 (558.31 ,569.65) 291.18 (288.34 ,294.01) 433.75 (430.09 ,437.40)

SIRI 1.27 (1.25 ,1.28) 0.57 (0.56 ,0.57) 0.90 (0.89 ,0.91)

PIV 327.00 (322.80 ,331.20) 116.90 (116.10 ,117.70) 208.41 (207.82 ,209.00)

For continuous variables: survey-weighted mean (95% CI), P-value was by survey-weighted linear regression. For categorical variables: surve
BMI, body mass index; RBC, red blood cell; WBC, white blood cell; AST, aspartate transaminase; ALT, glutamic-pyruvic transaminase; TC, tota
heart disease; MLR, monocyte-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio; SII, systemic im
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poverty ratios (<3.5), higher rates of smoking and drinking, and a

single marital status. Moreover, these participants exhibited

elevated levels of inflammatory markers (MLR, NLR, PLR, SII,

and SIRI) and adverse metabolic indicators, including elevated

BUN, creatinine, uric acid, and HbA1c. Comorbidities such as

kidney disease, cancer, hypertension, diabetes, and cardiovascular

conditions (e.g., CHF, CHD, angina pectoris, heart attack, and

stroke) were more prevalent in participants in Q4 compared to

those in Q1. Additionally, participants in Q4 exhibited significantly

higher mortality rates, including all-cause mortality (15.73% vs.

8.51%), diabetes-related mortality (0.59% vs. 0.25%), cancer-related

mortality (3.51% vs. 2.17%), and cardiovascular mortality (4.79% vs.

2.44%). The median follow-up duration was shorter in Q4

participants (117.20 months) compared to Q1 (110.65 months),

likely reflecting the elevated mortality risks associated with

this group.
Relationship between PIV and all-cause
and cause-specific mortality

To explore the relationship between PIV and various mortality

outcomes, including all-cause, cardiovascular, cancer, and diabetes-

related mortality, we developed four weighted Cox proportional

hazard models, as presented in Table 2. For every 100-unit increase

in PIV, the unadjusted hazard ratios were 1.038 (95% CI: 1.030–

1.047) for all-cause mortality, 1.039 (95% CI: 1.031–1.048) for

cardiovascular mortality, 1.035 (95% CI: 1.028–1.042) for cancer

mortality, and 1.035 (95% CI: 1.028–1.042) for diabetes mortality.

The fully adjusted hazard ratios were 1.031 (95% CI: 1.024–1.038),

1.032 (95% CI: 1.024–1.040), 1.028 (95% CI: 1.020–1.035), and

1.040 (95% CI: 1.030–1.051), respectively. Furthermore, when PIV

was divided into quartiles, a clear, stepwise increase in mortality risk

was observed across the quartiles, even after adjusting for

confounders (p for trend < 0.05).

Kaplan-Meier survival curves, shown in Figure 2, confirmed the

differences in mortality rates across PIV quartiles. Significant

disparities were observed in all-cause, cardiovascular, cancer, and

diabetes-related mortality among the groups (log-rank test p-values

< 0.001 for all).
Nonlinear association between PIV and
mortality outcomes

To model the relationship between PIV and mortality outcomes

flexibly, we used restricted cubic spline analyses. Figure 3 illustrates

significant nonlinear dose-response relationships between PIV and all-

cause, cardiovascular, and cancer mortality after adjusting for

covariates in Model 4 (p for nonlinearity < 0.001, 0.001, and 0.019,

respectively). No significant nonlinear relationship was found between

PIV and diabetes-related mortality (p for nonlinearity = 0.101).

When nonlinear relationships were identified, a threshold effect

analysis was performed using a two-piece Cox proportional hazards
Frontiers in Endocrinology 0938
model. For PIV values below 254.07, no significant association with

all-cause, cardiovascular, or cancer mortality was observed (log-

likelihood ratio test p-values = 0.995, 0.838, and 0.776, respectively).

However, for PIV values of 254.07 or higher, a positive association

with increased risk of all-cause, cardiovascular, and cancer

mortality was evident (log-likelihood ratio test p-values < 0.001

for all), as detailed in Supplementary Table S1.
Subgroup analysis

Subgroup analyses were performed to determine the association

between PIV and both all-cause and cause-specific mortality,

stratifying by variables including age, gender, race, family

income-to-poverty ratio, marital status, education level, smoking,

drinking, and BMI. Across most subgroups, PIV was consistently

linked with a significantly higher risk of both all-cause and cause-

specific mortality, as shown in Table 3. However, the interaction

analysis produced nuanced results. While a significant association

with all-cause and cardiovascular mortality was observed across all

subgroups, except for the gender subgroup, the association for

cancer mortality was significant only in the subgroups defined by

race, family income-to-poverty ratio, drinking, and BMI. For

diabetes mortality, significant associations were found in

subgroups based on race, family income-to-poverty ratio,

and drinking.
ROC analysis

ROC curve analyses (Figure 4) evaluated the predictive

efficiency of PIV and other inflammatory markers. For all-cause

mortality, PIV had an AUC of 0.581 (95% CI: 0.574–0.588), which

was superior to PLR (AUC = 0.557) and SII (AUC = 0.567) (both

p<0.001), but inferior to MLR (AUC = 0.627), NLR (AUC = 0.600),

and SIRI (AUC = 0.609) (all p<0.001). Similar trends were observed

for cardiovascular mortality, with PIV demonstrating better

performance than PLR and SII (both p<0.001), but inferior to

MLR, NLR, and SIRI (all p<0.001). For cancer mortality, PIV

showed comparable performance to NLR and PLR, while

outperforming SII (p<0.001) but being surpassed by MLR and

SIRI. For diabetes-related mortality, PIV outperformed PLR

(p<0.001) and was comparable to other markers (p>0.05).
Sensitivity analysis

To further assess the stability of the PIV-mortality relationships,

we performed a sensitivity analysis by excluding participants with

incomplete data, as well as those with pre-existing cardiovascular

disease or cancer (Supplementary Table S2, Supplementary Table

S3 and Supplementary Table S4). The results aligned with those of

the primary analysis. Furthermore, based on Model 4, we calculated

the E-value to determine the minimum strength of association that
frontiersin.org
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an unmeasured confounder would need to negate the observed

PIV-mortality relationships. The E-values for PIV and all-cause

mortality, cardiovascular mortality, cancer mortality, and diabetes

mortality were 1.21, 1.21, 1.20, and 1.24, respectively. These E-

values indicate that relatively small unmeasured confounding would

be sufficient to explain the observed hazard ratios.
Frontiers in Endocrinology 1039
Discussion

This study investigated whether the PIV could predict long-

term outcomes in a general population. Our results demonstrated

that PIV is significantly associated with mortality across multiple

causes in this population. A high PIV level was shown to be an
TABLE 2 Association between PIV and all-cause mortality and cause-specific mortality.

Model 1 Model 2 Model 3 Model 4 P-value

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI)

All-cause mortality

PIV (per 100units) 1.038 (1.030,1.047) <0.001 1.036 (1.028,1.043) <0.001 1.030 (1.022,1.037) <0.001 1.031 (1.024,1.038) <0.001

Q1 Ref Ref Ref Ref Ref Ref Ref Ref

Q2 1.013 (0.920, 1.116) 0.787 0.956 (0.871,1.048) 0.336 0.961 (0.874,1.057) 0.411 0.977 (0.891,1.071) 0.614

Q3 1.116 (1.021, 1.220) 0.016 1.012 (0.932,1.099) 0.771 1.003 (0.920,1.094) 0.945 0.993 (0.910,1.083) 0.869

Q4 1.718 (1.570,1.880) <0.001 1.423 (1.312,1.544) <0.001 1.365 (1.253,1.486) <0.001 1.334 (1.225,1.452) <0.001

P for trend <0.001 <0.001 <0.001 <0.001

Cardiovascular mortality

PIV (per 100units) 1.039 (1.031,1.048) <0.001 1.037 (1.029,1.045) <0.001 1.031 (1.022,1.039) <0.001 1.032 (1.024,1.040) <0.001

Q1 Ref Ref Ref Ref Ref Ref Ref Ref

Q2 1.004 (0.843,1.195) 0.964 0.948 (0.804, 1.118) 0.527 0.925 (0.779,1.097) 0.370 0.934 (0.788,1.109) 0.436

Q3 1.208 (1.004, 1.452) 0.045 1.098 (0.923, 1.307) 0.291 1.038 (0.869,1.240) 0.682 1.029 (0.864,1.226) 0.746

Q4 1.827 (1.562,2.136) <0.001 1.481 (1.273, 1.724) <0.001 1.337 (1.145,1.562) <0.001 1.313 (1.126,1.532) <0.001

P for trend <0.001 <0.001 <0.001 <0.001

Cancer mortality

PIV (per 100units) 1.035 (1.028,1.042) <0.001 1.030 (1.024,1.037) <0.001 1.028 (1.021,1.035) <0.001 1.028 (1.020,1.035) <0.001

Q1 Ref Ref Ref Ref Ref Ref Ref Ref

Q2 0.992 (0.813,1.209) 0.933 0.939 (0.772,1.141) 0.526 0.978 (0.801,1.194) 0.826 0.985 (0.806,1.204) 0.883

Q3 0.907 (0.764, 1.076) 0.263 0.830 (0.695,0.990) 0.039 0.864 (0.719,1.039) 0.120 0.855 (0.709,1.030) 0.100

Q4 1.505 (1.257, 1.802) <0.001 1.275 (1.072,1.517) 0.006 1.317 (1.100,1.575) 0.003 1.272 (1.066,1.519) 0.008

P for trend <0.001 <0.001 <0.001 <0.001

Diabetes mortality

PIV (per 100units) 1.035 (1.028,1.042) <0.001 1.041 (1.031,1.051) <0.001 1.028 (1.015,1.042) <0.001 1.040 (1.030,1.051) <0.001

Q1 Ref Ref Ref Ref Ref Ref Ref Ref

Q2 1.230 (0.705,2.146) 0.467 1.214 (0.690,2.138) 0.501 1.041 (0.581,1.862) 0.894 0.981 (0.534,1.80) 0.949

Q3 1.267 (0.801, 2.002) 0.312 1.245 (0.769,2.014) 0.372 0.983 (0.583,1.657) 0.949 0.989 (0.598,1.635) 0.965

Q4 2.181 (1.368,3.477) 0.001 2.033 (1.219, 3.391) 0.007 1.580 (0.939,2.658) 0.085 1.523 (0.900, 2.577) 0.117

P for trend <0.001 <0.001 0.004 0.011
fro
Model 1: Non-adjusted.
Model 2: Adjusted for age, gender, race, family income of poverty ratio, education level, marital status.
Model 3: Adjusted for age, gender, race, family income of poverty ratio, education level, marital status, BMI, albumin, ALT, AST, BUN, creatinine, HbA1c, Hemoglobin, RBC, TC, uric acid.
Model 4: Adjusted for age, gender, race, family income of poverty ratio, education level, marital status, BMI, albumin, ALT, AST, BUN, creatinine, HbA1c, Hemoglobin, RBC, TC, uric acid,
drinking, smoking, hypertension, diabetes, kidney disease, CHF, CHD, angina pectoris, heart attack, stroke, liver disease, cancer.
BMI, body mass index; RBC, red blood cell; AST, aspartate transaminase; ALT, glutamic-pyruvic transaminase; TC, total cholesterol; BUN, blood urea nitrogen; HbA1c, glycosylated hemoglobin
A1c; CHF, congestive heart failure; CHD, coronary heart disease; PIV, pan-immune- inflammation value; CI, confidence interval; HR, hazard ratios.
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independent risk factor for all-cause mortality and cause-specific

mortality. Additionally, PIV exhibited a nonlinear relationship with

all-cause, cardiovascular, and cancer mortality, while displaying a

linear association with diabetes mortality.

The PIV is a novel biomarker derived from neutrophils,

platelets, monocytes, and lymphocytes, providing an integrative

view of a patient’s immune and inflammatory status. Originally

studied in the context of metastatic colorectal cancer, PIV has

shown superior prognostic power over traditional inflammatory

markers, such as NLR and PLR (19). Its simplicity, along with its

ability to combine multiple immune components into a single

measure, makes PIV a valuable and non-invasive tool for

assessing systemic inflammation across a variety of clinical settings.

PIV has been well-established as a prognostic marker in

oncology, where elevated levels are associated with worse

prognosis, rapid disease progression, and therapy resistance.

Researches have shown that high PIV correlates with poor

survival outcomes in multiple cancers, including pancreatic (28),

colorectal (29, 30), lung (31, 32), ovarian (33) esophageal (34), and

breast cancers (35, 36). In newly diagnosed glioblastoma
Frontiers in Endocrinology 1140
multiforme (GBM), E. Topkan et al. reported a significant

association between elevated PIV levels and shorter progression-

free survival (PFS) and overall survival (OS) outcomes (37).

Furthermore, dynamic changes in PIV during immune

checkpoint inhibitor (ICI) treatment have been linked to patient

outcomes in colorectal cancer, with higher PIV levels indicating

poor response and survival (38) Additionally, PIV serves as an

indicator of chemotherapy resistance; for instance, in breast cancer

patients undergoing neoadjuvant chemotherapy, lower PIV levels

have been associated with better responses and improved survival

(35). Elevated PIV levels also predict enhanced tumor progression,

aiding clinicians in tailoring treatment plans and identifying

patients at higher risk of recurrence. PIV not only plays a critical

role in prognostic assessment but also shows potential in tumor

diagnosis and recurrence monitoring. Y.T. Yang et al. highlighted

that PIV has high sensitivity and specificity for diagnosing brain

tumors, particularly gliomas (39). In Merkel cell carcinoma (MCC),

T. Gambichler’s study confirmed that PIV levels correlate with

disease stage and are independent predictors of MCC

recurrence (40).
FIGURE 2

Kaplan-Meier curves showing survival rates and population numbers for us adults stratified by PIV quartiles. (A) All-cause mortality. (B)
Cardiovascular mortality. (C) Cancer mortality. (D) Diabetes mortality.
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Chronic inflammation is a central factor in cardiovascular

diseases, and PIV provides a comprehensive measure of

inflammatory burden in conditions such as ST-segment elevation

myocardial infarction (STEMI) and hypertension. Elevated PIV

levels are predictive of both short-term and long-term mortality

following STEMI, underscoring its value in risk stratification (9).

Among hypertensive patients, high PIV levels have been linked to

increased cardiovascular mortality due to their role in promoting

thrombosis and exacerbating atherosclerosis (41). PIV’s capacity to

integrate immune and inflammatory markers makes it a valuable

tool for tracking disease progression and tailoring interventions in

cardiovascular care.
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Beyond oncology and cardiovascular disease, PIV has shown

promise across a broad spectrum of conditions. In autoimmune

diseases like systemic lupus erythematosus (SLE), PIV levels are

significantly elevated compared to healthy controls (42). This

elevation captures both inflammatory activity and immune

dysregulation, which are critical in autoimmune disease

pathogenesis . In rheumatoid arthrit is , where chronic

inflammation drives joint damage and cardiovascular

complications, PIV serves as a useful index of inflammatory

burden (43) Additionally, PIV is a significant nonlinear predictor

of 28-day and 90-day mortality in septic patients, with higher levels

correlating with increased mortality risk beyond a specific threshold
FIGURE 3

Dose-response curve of PIV and all-cause mortality and specific-mortality. A restricted cubic spline was fitted to model each curve, with 4 knots
fixed at the 5th, 35th, 65th and 95th percentiles for all smooth curves. Solid lines represent the point estimates of HRs for incident all-cause
mortality (A), CVD mortality (B), cancer mortality (C), diabetes mortality (D). Orange area represents their corresponding 95% Cls. Adjusted for age,
gender, race, family income of poverty ratio, education level, marital status, BMI, albumin, ALT, AST, BUN, creatine, HbA1c, Hemoglobin, RBC, TC,
uric acid, drinking, smoking, hypertension, diabetes, kidney disease, CHF, CHD, angina pectoris, heart attack, stroke, liver disease, cancer. PIV, pan-
immune-inflammation value; BMI, body mass index; RBC, red blood cell; AST, aspartate transaminase; ALT, glutamic-pyruvic transaminase; TC, total
cholesterol; BUN, blood urea nitrogen; HBA1c, glycosylated hemoglobin A1c; CHF, congestive heart failure; CHD, coronary heart disease; Cl,
confidence interval; HR, hazard ratios.
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TABLE 3 Subgroup analysis of the associations between PIV (per 100units) and all-cause and cause-specific mortality.

Variables All-cause mortality Cardiovascular mortality Canc ortality Diabetes mortality

r
e

P for
interaction

HR (95%CI) P for
value

P for
interaction

0.805 0.101

1.08 (1.03,1.13) 0.002

1 1.03 (1.02,1.04) <0.001

0.143 0.615

1 1.03 (1.02,1.04) <0.001

1.04 (1.01,1.07) 0.002

0.008 0.006

1 1.02 (0.99,1.05) 0.152

1.10 (0.96,1.25) 0.162

1 1.09 (1.07,1.12) <0.001

1.02 (0.92,1.13) 0.728

1 1.04 (0.82,1.33) 0.742

0.047 0.004

1 1.04 (1.02,1.06) <0.001

1 1.03 (1.00,1.05) 0.026

1 1.13 (1.08,1.17) <0.001

0.509 0.113

1 1.03 (1.01,1.04) <0.001

1 1.05
(1.03,01.07)

<0.001

0.321 0.481

1 1.04 (1.01,1.06) 0.006

1 1.07 (1.02,1.13) 0.008

1 1.03 (1.02,1.05) <0.001
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0.279
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<0.00

0.351

<0.00

0.099

<0.00

0.21

<0.00

<0.00

<0.00

<0.00

<0.00

<0.00

<0.00

<0.00

<0.00
HR
(95%CI)

P for
value

P for
interaction

HR
(95%CI)

P for
value

P for
interaction

HR
(95%CI)

Age 0.008 0.007

<60 1.05 (1.03,1.06) <0.001 1.07 (1.04,1.09) <0.001 1.02(0.98,1.06)

≥60 1.03 (1.02,1.03) <0.001 1.03 (1.02,1.03) <0.001 1.03(1.02,1.03)

Gender 0.032 0.137

Male 1.03 (1.03,1.03) <0.001 1.03 (1.02,1.03) <0.001 1.03(1.02,1.03)

Female 1.04 (1.03,1.04) <0.001 1.04 (1.03,1.05) <0.001 1.01(0.99,1.04)

Race <0.001 <0.001

Mexican American 1.02 (1.02,1.03) <0.001 1.02 (1.01,1.04) 1.03(1.02,1.04)

Hispanics 1.05 (1.01,1.09) 0.019 1.06 (0.99,1.13) 1.06(0.99,1.14)

Non-Hispanic White 1.07 (1.06,1.07) <0.001 1.07 (1.06,1.08) 1.05(1.03,1.07)

Non-Hispanic Black 1.04 (1.02,1.06) <0.001 1.04 (1.01,1.07) 1.04(1.01,1.08)

Others 1.09 (1.06,1.12) <0.001 1.09 (1.04,1.15) 1.11(1.06,1.17)

Family income of
poverty ratio

<0.001 <0.001

<1.3 1.03 (1.03,1.04) <0.001 1.04 (1.03,1.04) <0.001 1.03(1.01,1.04)

1.3-3.5 1.03 (1.02,1.03) <0.001 1.03 (1.02,1.03) <0.001 1.03(1.02,1.03)

≥3.5 1.08 (1.07,1.10) <0.001 1.08 (1.06,1.11) <0.001 1.07(1.04,1.09)

Marital status <0.001 <0.001

Single 1.03 (1.02,1.03) <0.001 1.03 (1.02,1.03) <0.001 1.03(1.02,1.03)

Married or living with partner 1.04 (1.04,1.05) <0.001 1.04 (1.04,1.05) <0.001 1.03(1.02,1.05)

Education level <0.001 <0.001

Under high school 1.03 (1.03,1.04) <0.001 1.03 (1.02,1.04) <0.001 1.03(1.01,1.04)

High school 1.06 (1.05,1.07) <0.001 1.07 (1.05,1.09) <0.001 1.05(1.03,1.08)

Above high school 1.06 (1.05,1.07) <0.001 1.03 (1.03,1.04) <0.001 1.03(1.02,1.04)
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TABLE 3 Continued

Variables All-cause mortality Cardiovascular mortality Canc ortality Diabetes mortality

for
raction

HR
(95%CI)

P for
value

P for
interaction

HR
(95%CI)

r
e

P for
interaction

HR (95%CI) P for
value

P for
interaction

01 <0.001 0.203 0.148

1.03 (1.02,1.03) <0.001 1.03(1.02,1.04) 1 1.03 (1.01,1.05) 0.001

1.04 (1.03,1.05) <0.001 1.03(1.02,1.04) 1 1.05 (1.03,1.06) <0.001

01 <0.001 0.003 0.004

1.02 (1.02,1.03) <0.001 1.03(1.02,1.03) 1 1.02 (1.01,1.04) 0.002

1.07 (1.06,1.08) <0.001 1.05(1.04,1.07) 1 1.08 (1.05,1.11) <0.001

01 <0.001 <0.001 0.057

1.08 (1.06,1.09) <0.001 1.07(1.05,1.09) 1 1.09 (1.04,1.14) <0.001

1.03 (1.02,1.03) <0.001 1.03(1.02,1.03) 1 1.03 (1.01,1.05) <0.001

1.07 (1.05,1.08) <0.001 1.03(1.00,1.06) 1.06 (1.02,1.11) 0.002

yruvic transaminase; TC, total cholesterol; BUN, blood urea nitrogen; HbA1c, glycosylated globin A1c; CHF, congestive heart failure; CHD, coronary heart disease; PIV, pan-
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<0.00

<0.00

<0.00

<0.00

<0.00

<0.00

0.021

hemo
HR
(95%CI)

P for
value

P
inte

Smoking <0.0

No 1.03 (1.02,1.03) <0.001

Yes 1.04 (1.04,1.04) <0.001

Drinking <0.0

No 1.03 (1.02,1.03) <0.001

Yes 1.07 (1.06,1.07) <0.001

BMI <0.0

<25 1.08 (1.07,1.09) <0.001

25-30 1.03 (1.02,1.03) <0.001

≥ 30 1.06 (1.05,1.07) <0.001

BMI, body mass index; RBC, red blood cell; AST, aspartate transaminase; ALT, glutamic-
immune- inflammation value; CI, confidence interval; HR, hazard ratios.
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(44). In critically ill patients with non-traumatic subarachnoid

hemorrhage (SAH), elevated admission PIV is independently

associated with increased mortality across ICU, in-hospital, 30-

day, 90-day, and 1-year outcomes (45). For patients with fatty liver

disease (FLD), Pan and colleagues demonstrated that PIV, alongside

the SII, is closely associated with all-cause mortality, particularly

highlighting its link to cardiovascular mortality (46). Jiang and

colleagues further showed that PIV, rather than SII, is associated

with the prevalence of NAFLD and hepatic fibrosis, particularly in

individuals under 60, positioning it as a valuable marker for liver

health (47). In hypertensive patients, Long and colleagues identified

elevated PIV as a significant predictor of sarcopenia, especially in

those with coexisting diabetes (48). Guo and colleagues reported

that PIV, along with SII and SIRI, is inversely associated with

cognitive performance in older adults, suggesting its potential as a
Frontiers in Endocrinology 1544
biomarker for cognitive decline (49). Qiu and colleagues found that

higher PIV levels are associated with increased COPD prevalence

and all-cause mortality, with nonlinear relationships displaying a J-

shaped association for prevalence and a U-shaped association for

mortality risk (50). In the study by Tang et al (24), elevated levels of

NLR, MLR, PLR, SII, SIRI, and PIV were positively associated with

frailty risk in middle-aged and older adults, while lower PLR levels

were inversely related. In frail individuals, all six inflammatory

markers were linked to increased all-cause mortality, with MLR

exhibiting the strongest predictive value. Among pre-frail

individuals, elevated NLR, MLR, SII, SIRI, and PIV, alongside

increased neutrophil counts, were associated with higher

mortality risk, whereas higher lymphocyte counts were protective.

Notably, a U-shaped relationship between NLR, MLR, SIRI, and

PIV with mortality was observed in pre-frail individuals, where
FIGURE 4

Receiver operating characteristic curves for PIV, MLR, NLR, PLR, SII, and SIRI in predicting all-cause and cause-specific mortality. (A) All-cause
mortality. (B) Cardiovascular mortality. (C) Cancer mortality. (D) Diabetes mortality. MLR, monocyte-to-lymphocyte ratio; PLR, platelet-to-
lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio; SII, systemic immune-inflammation index; SIRI, systemic inflammation response index; PIV,
pan-immune- inflammation value; AUC, area under the curve.
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excessively low or high levels increased mortality risk. The

predictive superiority of MLR likely arises from its ability to

reflect immune senescence, as elevated monocytes indicate

systemic inflammation, and reduced lymphocytes represent

immune dysfunction—both critical drivers of frailty progression

and mortality. Our study aligns with the findings of Tang et al.,

demonstrating that MLR exhibits the highest predictive value for

all-cause mortality risk. However, their research didn’t extend to the

investigation of other cause-specific mortality risks.

Taken together, these findings underscore the versatility and

clinical relevance of PIV across diverse medical conditions,

including liver disease, sarcopenia, cognitive decline, respiratory

diseases, autoimmune disorders, sepsis, and others. PIV’s ability to

integrate systemic inflammation and immune dysregulation

highlights its value as a robust biomarker for risk assessment and

disease prognosis across various populations.

These findings underscore the versatility and clinical relevance

of PIV across diverse medical conditions, including liver disease,

sarcopenia, cognitive decline, respiratory diseases, autoimmune

disorders, sepsis, and others. PIV’s ability to integrate systemic

inflammation and immune dysregulation highlights its value as a

robust biomarker for risk assessment and disease prognosis across

various populations.

While the precise mechanisms underlying PIV’s prognostic

value in various diseases remain uncertain, several explanations

are emerging. Firstly, neutrophils, once considered straightforward

immune defenders, are now understood to regulate diverse

processes, including tissue repair, cancer progression,

autoimmunity, and chronic inflammation. Low neutrophil levels

can lead to severe immunodeficiency, while their excessive

activation can damage host tissues (51). In cancer, neutrophils

release VEGF, IL-6, and MMPs, which promote angiogenesis,

tumor growth, and metastasis (52). However, they also suppress

adaptive immunity by inhibiting T-cell activity through nitric oxide

and reactive oxygen species (ROS), enabling tumor immune evasion

(53). In ischemic heart failure, neutrophils initially assist in cardiac

repair by initiating inflammation and clearing necrotic myocardial

debris, but prolonged activation may lead to chronic inflammation,

impairing cardiac function (54). Secondly, platelets are known for

their complex roles in both physiological and pathological

conditions. Beyond hemostasis and thrombosis, platelets regulate

immune responses, chronic inflammation, and disease progression.

In sterile inflammation (e.g., atherosclerosis), platelets bind

damage-associated molecular patterns (DAMPs), activate

signaling pathways such as MAPK and NF-kB, and release potent

inflammatory mediators like HMGB1 (55, 56) Additionally, they

interact with bacteria, initiate immune responses, and release

inflammatory mediators through Toll-like receptors (TLRs),

aiding in pathogen defense (55) Platelets also play a crucial role

in cancer metastasis by cloaking circulating tumor cells, promoting

endothelial adhesion, and facilitating tumor invasion and metastasis

(57, 58). Thirdly, monocytes play central roles in immune defense

and inflammation. Classical monocytes are recruited to infection
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and inflammation sites via the CCL2/CCR2 pathway, releasing

cytokines like TNF-a and iNOS to kill pathogens and enhance

adaptive immunity. while non-classical monocytes patrol the

vascular endothelium to monitor for tissue injury via the

CX3CL1/CX3CR1 axis. In conditions like atherosclerosis,

monocytes differentiate into foam cells, sustaining chronic

inflammation and plaque formation (59). In tumors, monocytes

differentiate into tumor-associated macrophages (TAMs), which

promote immunosuppression and angiogenesis, allowing tumor

cells to evade immune surveillance (60). Lastly, lymphocytes are

pivotal in immune surveillance and inflammation. In chronic

inflammation, such as atherosclerosis, lymphocytes mediate

immune responses against pathogens and contribute to tissue

repair, though excessive activity can exacerbate inflammation and

tissue damage (61–63). Within tumors, tumor-infiltrating

lymphocytes (TILs) recognize and kill cancer cells, particularly in

high mutation-load cancers (64, 65). Conversely, lymphopenia—a

low lymphocyte count—is linked with poor outcomes, reflecting

impaired immune competence and heightened disease

susceptibility (66). Overall, these mechanisms highlight PIV’s

potential to capture the complex interplay between immunity and

inflammation across diverse diseases.

Our findings underscore a significant association between PIV

and various mortality outcomes. We observed a dose-dependent

increase in the risk of all-cause, cardiovascular, cancer, and

diabetes-related mortality with elevated PIV levels. Even after

adjusting for potential confounders, high PIV levels remained

consistently associated with increased mortality risks. Kaplan-

Meier survival curves further validated these disparities across

PIV quartiles, demonstrating that individuals with higher PIV

indices had markedly elevated long-term mortality risks. Notably,

restricted cubic spline analysis revealed nonlinear dose-response

relationships between PIV and all-cause, cardiovascular, and cancer

mortality. Specifically, when PIV levels were below 254.07, no

significant association with mortality risk was observed, but once

this threshold was exceeded, the risks rose sharply. This threshold

effect suggests that while low PIV levels may have minimal impact,

elevated PIV could play a critical role in disease progression.

Sensitivity and subgroup analyses reinforced the robustness of

these associations, underscoring PIV’s potential as a reliable

prognostic marker across diverse populations.

Additionally, our findings highlight the comparative predictive

efficiency of PIV against other inflammatory markers in mortality

risk assessment. ROC curve analyses demonstrated that PIV

provides reasonable predictive performance for all-cause,

cardiovascular, cancer, and diabetes-related mortality. Notably,

PIV outperformed simpler markers such as PLR and SII,

emphasizing its greater utility in reflecting systemic inflammatory

responses. However, its predictive capability was surpassed by more

comprehensive indices, including MLR, NLR, and SIRI, which likely

integrate broader aspects of inflammatory and immune dynamics.

For cancer mortality, PIV exhibited comparable performance to

NLR and PLR but was inferior to MLR and SIRI, suggesting that
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composite indices may better capture the complexity of

inflammation-driven processes in cancer progression. Similarly,

for diabetes-related mortality, PIV demonstrated consistent and

comparable predictive performance relative to other markers,

further supporting its reliability in specific contexts. Taken

together, these findings highlight PIV as a practical and accessible

prognostic marker with considerable potential for mortality risk

stratification. However, the superior performance of MLR, NLR,

and SIRI indicates that combining PIV with complementary

markers could enhance predictive accuracy. Future studies should

prioritize investigating the synergistic use of PIV alongside other

inflammatory indices to improve risk stratification and inform

clinical decision-making across diverse populations and

mortality outcomes.

In this study, we conducted a comprehensive comparison of

baseline characteristics between participants who were excluded

and those included in the final analysis (Supplementary Table S5).

Significant differences were observed in various demographic,

clinical, and laboratory parameters, including age, race,

educational attainment, family income-to-poverty ratio, smoking

behavior, marital status, BMI, and laboratory measurements such as

RBC count, lymphocyte count, platelet count, hemoglobin, ALT,

TC, BUN, uric acid, creatinine, albumin, and HbA1c. Additionally,

differences were notable in the prevalence of comorbidities, such as

kidney disease, CHF, CHD, heart attack, stroke, and cancer, as well

as in causes of mortality. Conversely, no significant differences were

identified in gender, WBC count, neutrophil count, monocyte

count, AST levels, or in the prevalence of angina pectoris, liver

disease, hypertension, diabetes, and follow-up duration.

Furthermore, inflammatory markers, including NLR, PLR, SII,

and PIV, also showed no significant differences between the two

groups. We recognize the potential for selection bias arising from

these differences. To address this, we employed rigorous statistical

adjustments, incorporating a variety of confounding variables into

our analysis. Multiple models were constructed to validate the

consistency and reliability of our findings, all of which

demonstrated concordant trends. Despite the inherent limitations

in sample selection, the robustness of our results underscores the

credibility of our conclusions. This study provides a strong

foundation for future research exploring the clinical relevance of

PIV and related outcomes in diverse populations.

Our findings also have important clinical implications. First, as

a composite biomarker derived from routine complete blood count

(CBC) parameters, PIV is a cost-effective, readily available, and

non-invasive marker that can be easily applied in daily clinical

practice, including in primary care and resource-limited settings.

Second, given its strong association with all-cause and cause-

specific mortality, PIV may serve as an effective tool for early

identification of individuals at high risk of adverse outcomes, who

may benefit from targeted preventive interventions and more

intensive clinical monitoring. For instance, individuals with

elevated PIV levels could be prioritized for cardiovascular risk

management, cancer screening, or metabolic evaluations. Third,
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since PIV reflects both innate and adaptive immune responses, as

well as systemic inflammation, it offers a broader perspective on the

overall immune-inflammatory status than traditional indices such

as NLR or PLR, supporting its potential role in comprehensive risk

stratification models. Furthermore, considering the dynamic nature

of inflammation, repeated assessments of PIV over time may help

monitor disease progression and evaluate treatment responses.

Lastly, integrating PIV with other clinical information, including

comorbidities, lifestyle factors, and biochemical markers, could

improve personalized risk prediction and support clinical

decision-making in preventive and therapeutic strategies. Further

prospective and interventional studies are warranted to validate

these clinical applications and to establish optimal PIV thresholds

for risk stratification and clinical management.
Strengths, limitations, and future
directions

Our study, leveraging a large cohort and extensive follow-up,

provided valuable insights into the association between PIV and

mortality outcomes, including all-cause, cardiovascular, cancer, and

diabetes-related mortality in the general population. The use of

restricted cubic spline models enabled us to explore nonlinear

relationships between PIV and mortality, revealing nuanced dose-

response patterns and potential threshold effects.

However, several limitations warrant discussion. This study is

cross-sectional in design, which inherently limits its ability to

establish causal relationships between PIV and mortality

outcomes. While the observed associations provide valuable

insights, the lack of longitudinal data prevents us from fully

elucidating the temporal dynamics and causal pathways

underlying these relationships. This limitation is particularly

relevant given the multifactorial nature of inflammation and its

interactions with mortality risks over time. First and foremost, PIV

was measured only at baseline, which restricts our ability to capture

dynamic changes in inflammatory status during follow-up.

Inflammation is a highly variable and dynamic process, and the

absence of longitudinal PIV measurements may obscure important

temporal trends or fluctuations that could further clarify its

association with mortality. For instance, repeated measures of

PIV could reveal patterns of sustained inflammation or

fluctuations that are more predictive of adverse outcomes. Future

studies should consider incorporating multiple PIV assessments at

different time points to better evaluate its trajectory and time-

dependent predictive value. Second, baseline data on complications

and lifestyle factors were self-reported, which introduces the

potential for recall bias and inaccuracies in the data. This

limitation may have impacted the reliability of certain variables,

particularly those related to behavioral factors or self-perceived

health conditions. Future research should prioritize the use of

objective, validated measures and standardized data collection

protocols to minimize these biases and enhance the reliability of
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findings. Third, while we adjusted for a wide range of potential

confounders, there is always the possibility of residual confounding

from unmeasured variables. Factors such as genetic predisposition,

environmental exposures, access to healthcare, and specific

treatments during follow-up may have influenced our results.

Addressing these unmeasured variables in future research through

more comprehensive data collection and advanced statistical

techniques, such as causal inference models, will be critical.

Finally, the generalizability of our findings is limited by the

single-cohort design and population characteristics. The results

may not fully reflect the diverse inflammatory and mortality

profiles present across different regions or healthcare systems.

To address these limitations, future research should focus on

several key areas. First, well-designed longitudinal cohort studies

with repeated PIV measurements are warranted to capture the

dynamic changes in inflammatory status over time and to better

elucidate the temporal relationship between PIV fluctuations and

mortality outcomes. These studies should explore whether

persistent elevation or changes in PIV trajectories are more

predictive of adverse outcomes compared to single baseline

measurements. Second, further investigation is needed to

determine optimal PIV cut-off values for risk stratification in

diverse populations, considering differences in age, sex, ethnicity,

and comorbid conditions, to enhance its clinical applicability.

Third, mechanistic studies incorporating multi-omics approaches,

including transcriptomics, proteomics, and metabolomics, could

provide deeper insights into the biological pathways linking PIV

with systemic inflammation and disease progression. Fourth,

intervention-based studies, such as randomized controlled trials,

should assess whether modulating systemic inflammation to reduce

PIV levels can translate into improved clinical outcomes, thereby

establishing PIV not only as a prognostic biomarker but also as a

potential target for therapeutic interventions. Additionally, future

studies should integrate PIV with advanced analytical techniques,

including artificial intelligence and machine learning models, to

develop robust, individualized prediction tools that can dynamically

assess risk based on PIV trajectories and other clinical parameters.

Finally, large multi-center and international studies are essential to

validate the generalizability of PIV and to facilitate its integration

into global clinical practice guidelines.

Despite these limitations, our study highlights the significant

prognostic value of PIV as a biomarker for mortality risks. It

provides a robust foundation for future investigations into

inflammation-based risk stratification, paving the way for large-

scale, longitudinal, and multi-center studies to further elucidate the

clinical utility of PIV in predicting diverse mortality outcomes.
Conclusion

The PIV is a robust and versatile biomarker that integrates

inflammation and immune status, providing valuable insights into

disease progression, treatment response, and patient outcomes. Its
Frontiers in Endocrinology 1847
prognostic utility has been demonstrated across various diseases,

including cancer, cardiovascular conditions, autoimmune disorders,

and infectious diseases. The individual contributions of neutrophils,

platelets, monocytes, and lymphocytes reflect the intricate dynamics

driving disease progression, underscoring the clinical relevance of PIV.

As research advances, PIV holds substantial promise for personalized

medicine, enabling clinicians to optimize treatment strategies,

improve patient outcomes, and enhance healthcare delivery.
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TMT-based quantitative
proteomics analysis of serum-
derived exosomes in patients
with juvenile gout
Zhuyi Ji3,1†, Shaoling Zheng1†, Ling Liang4†, Lixin Huang1†,
Shanmiao Sun1, Zhixiang Huang1, Yuebing He1, Xia Pan1*,
Tianwang Li1,2* and Yukai Huang1*

1The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China,
2Department of Rheumatology and Immunology, Zhaoqing Central People’s Hospital,
Zhaoqing, China, 3Department of Rheumatology and Immunology, The Third People’s Hospital of
Chengdu, Chengdu, China, 4The Second Affiliated Hospital, Guangzhou Medical University,
Guangzhou, China
Objectives: The purpose of this study was to compare the proteomics of serum-

derived exosomes in juvenile gout (J-Gout), juvenile hyperuricemia (J-HUA) and

oligoarticular juvenile idiopathic arthritis (oJIA).

Methods: Serum-derived exosomes were isolated from patients using a qEV

column combined with the ExoQuick-TC kit. The proteomics of serum-derived

exosomes was analyzed by tandem mass tag (TMT)-labeled liquid

chromatography-mass spectrometry (LC-MS/MS) technology. Proteins

differentially expressed in J-Gout and the other two groups were identified.

This was followed by volcano plot, hierarchical cluster, Venn diagram, gene

ontology (GO), and Kyoto Encyclopedia of Genes and Genome (KEGG)

pathway analyses.

Results: A total of 838 credible proteins were identified in serum-derived

exosomes from the three groups. Eighty-eight differentially expressed proteins

(13 upregulated and 75 downregulated) were identified in J-Gout when

compared with J-HUA. One hundred twenty-one differentially expressed

proteins (20 upregulated and 101 downregulated) were identified in J-Gout

when compared with oJIA. A total of 166 differentially expressed proteins were

identified in J-Gout, compared with J-HUA and oJIA respectively. Bioinformatic

analysis indicated that the 166 differentially expressed proteins were significantly

involved in “immune response”, “Fc epsilon RI signaling pathway” and “B cell

receptor signaling pathway”. A total of 43 differentially expressed proteins were

identified in J-Gout, compared with J-HUA and oJIA simultaneously. Six proteins

were found highly expressed in J-Gout uniquely. ELISA results showed that

dipeptidyl peptidase 4 (DPP4) and heparin cofactor 2 (SERPIND1) were the

highest in J-Gout, which was consistent with the proteomic results.

Correlation analysis revealed that exosome-derived DPP4 and SERPIND1 were

positively correlated with C-reactive protein (CRP) and erythrocyte

sedimentation rate (ESR).
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Conclusion: The protein composition of serum-derived exosomes in J-Gout

was significantly differed from that in J-HUA and oJIA. DPP4 and SERPIND1 were

uniquely highly expressed in J-Gout. Some possible mechanisms regarding the

inflammatory response and coagulation complement system were proposed,

which may provide helpful diagnostic and therapeutic insights for J-Gout.
KEYWORDS

juvenile gout, exosomes, TMT, proteomics, biomarker
1 Introduction

Gout is an inflammatory form of arthritis that can be attributed to

monosodium urate (MSU) deposition resulting from hyperuricemia

(1). Recent data suggest that the incidence and prevalence of juvenile

gout (J-Gout) are increasing, and childhood obesity parallels the

increased incidence of gout at younger ages (2, 3). A survey based on

Chinese children and adolescents showed an overall prevalence of

hyperuricemia of 23.3% (4). At present, few studies exploring J-Gout

have been conducted, and many challenges still exist in J-Gout

diagnosis and treatment. A previous study showed that compared

with adult gout, J-Gout has a higher average level of serum uric acid

and faster progression of joint destruction (5). In addition, most J-Gout

patients meet the diagnostic criteria for juvenile idiopathic arthritis

(JIA), especially oligoarticular juvenile idiopathic arthritis (oJIA) (6).

Therefore, it is of vital significance to find biomarkers for J-Gout and

further explore its pathogenesis.

Exosomes are nanoscale membrane vesicles with a diameter of

30–150 nm that contain proteins and RNAs and are present in

serum, synovial fluid, urine, and milk. Exosomes are thought to be

an essential mediators of intercellular communication and carriers

of cargoes involved in cellular processes, including extracellular

matrix degradation, inflammation regulation, and antigen

presentation (7–9). Yoo identified that exosomal serum amyloid

A (SAA) and lymphatic endothelial hyaluronic acid receptor-1

(LYVE-1) were important in the rheumatoid arthritis (RA)

pathogenic process and could serve as novel biomarkers of

activity and remission (10). Ying screened and identified

differentially expressed proteins using proteomics and found that

the TBB4A protein may be involved in the pathogenesis of gout

(11). Li analyzed the protein profiles of synovial fluid-derived

exosomes from adult gout patients and proposed some potential

biomarkers (12). However, no study has been conducted examining

the proteomics of serum-derived exosomes in J-Gout.

In our study, serum-derived exosomes were isolated from J-

Gout, juvenile hyperuricemia (J-HUA) and oJIA patients.

Quantitative proteomics with tandem mass tag (TMT) labeling

combined with LC-MS/MS was used to explore differentially

expressed proteins. This study may provide clues for identifying

potential biomarkers and further exploring the molecular

mechanism of J-Gout.
0251
2 Materials and methods

2.1 Participants

Because J-Gout and J-HUA do not have official acronyms, we

customized the study subjects for the experiment. Gout and

hyperuricemia were diagnosed according to adult criteria, but all

subjects were aged <18 years.

In this study, a total of 6 J-Gout patients with acute attacks, 6 J-

HUA patients and 6 oJIA patients from October 2018 to August 2022

in our hospital were enrolled. The inclusion criteria were as follows: all

cases were aged <18 years. Gout was diagnosed in accordance with the

2015 American College of Rheumatology/European League Against

Rheumatism classification criteria for primary gout (13). The diagnosis

of HUA was consistent with serum uric acid (sUA) levels greater than

420 mmol/L for boys and 360 mmol/L for girls, no history of acute

attack gout and no medical treatment (14). OJIA was diagnosed

according to the International League of Associations for

Rheumatology (ILAR) criteria (15). The serum was centrifuged, and

the supernatant was stored at −80°C. Samples were collected after

obtaining informed consent from all participants. This study was

approved by the Ethics Committee of the Guangdong Second

Provincial General Hospital (2019-QNJJ-17-02).
2.2 Isolation and identification of
exosomes

Serum-derived exosomes were isolated from patients using a

qEV column combined with the ExoQuick-TC kit. The morphology

of exosomes was observed by transmission electron microscopy

(TEM). The size and concentration of exosomes were measured by

high-sensitivity flow cytometry (HSFC) for nanoparticle analysis.

Western blotting was used to examine the levels of exosome protein

markers (TSG101 and CD81).
2.3 Tryptic digestion

Six samples in the same group were mixed pairwise into three

samples to be tested per group. Corresponding volumes of 25 mM
frontiersin.org
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dithiothreitol and 100 mM iodoacetamide were added. After

incubating away from light, acetone was added (6 times volume)

to precipitate the protein. After being left overnight, the precipitate

was collected by centrifugation at 8000 g for 10 min, and 200 mM

tetraethylammonium bromide was added to bring the volume to

100 µl. The samples were digested with trypsin overnight at 37°C in

a 50:1 ratio (protein: enzyme), followed by lyophilization.
2.4 TMT labeling

The lyophi l ized samples were added to 100 mM

tetraethylammonium bromide, followed by the addition of TMT

pro reagent mixed with anhydrous acetonitrile. After leaving for 1 h,

5% hydroxylamine was added to react for 15 min. The labeled

peptide solutions were lyophilized.
2.5 Reversed-phase chromatography
separation

The samples were fractionated by reversed-phase 1100 HPLC

using an Agilent Zorbax Extend-C18 narrow diameter column

(2.1×150 mm, 5µm, Agilent, USA). The detection wavelengths

were set to 210 nm and 280 nm. The flow rate was set to 300 µL/

min, mobile phase A (2% acetonitrile in HPLC water) and mobile

phase B (90% acetonitrile in HPLC water). Samples were collected

by gradient elution for 8–60 min, and the eluate was collected in

centrifuge tubes every minute. The centrifuge tubes were marked 1-

15, and samples were repeatedly collected in these tubes. The

separated samples were lyophilized for mass spectrometry analysis.
2.6 Chromatography and mass
spectrometry conditions

The samples were loaded onto the precolumn Acclaim

PepMap100 (Thermo, USA), setting at a flow rate of 350 nL/min

and separated using an Acclaim PepMap RSLC (RP-C18, Thermo

Fisher, USA) separation column. Full MS scans were acquired in the

mass range of 350–1500 m/z with a mass resolution of 60,000, an

AGC target of 3e6 and a maximum injection time of 50 ms. MS/MS

spectra were obtained with a resolution of 45,000, an AGC target of

2e5 and a maximum injection time of 80 ms. All MS/MS spectra

were obtained in positive ion mode, and the dynamic exclusion time

was set to 30 s.
2.7 Database search

The resulting MS/MS data were processed using Proteome

Discoverer 2.4.1.15 (Thermo Fisher Scientific, USA). Trypsin was

specified as a cleavage enzyme allowing up to 2 missing cleavages.

The primary MS error range was 10 ppm, and the fragment ion

mass tolerance was 0.02 Da.
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2.8 Bioinformatics analysis

Differential proteins were screened according to the criteria of fold

change ≥ 1.2 and p value < 0.05 and analyzed by volcano plot,

hierarchical clustering heatmap and Venn diagram. The functions of

the differentially expressed proteins were assessed by GO enrichment

analysis, which comprehensively describes the functions of genes and

products in organisms in terms of biological processes, cellular

components, and molecular functions. The Kyoto Encyclopedia of

Genes and Genomes (KEGG) (http://www.genome.jp/kegg/ and

https://david.ncifcrf.gov/) was used to analyze the biological

regulatory pathways and functional roles of proteins with

significantly differential expression.
2.9 ELISA

Protein samples of serum-derived exosomes from 6 J-Gout, 6 J-

HUA and 6 oJIA patients were measured for the expression levels of

DPP4 and SERPIND1 using ELISA kits (ZCIBIO-32912, ZCIBIO-

56060) according to the manufacturer’s instructions.
2.10 Statistical analysis

All statistical analyses were conducted using SPSS 23.0 or

GraphPad Prism 8 software. Continuous variables are described as

the mean ± standard deviation (mean ± SD) in the patient’s basic

information, and categorical variables are described as frequencies.

One-way ANOVA or nonparametric tests were used for continuous

variables, and differences between groups were assessed using

categorical variables and chi-square tests or Fisher’s exact probability

method. Bivariate correlation analysis was performed using Pearson

correlation analysis. A p value < 0.05 was accepted as

statistically significant.
3 Results

3.1 Clinical characteristics of the
participants

J-Gout patients were older than oJIA patients. J-Gout patients

had higher levels of white blood cell counts than J-HUA patients.

Hemoglobin levels were higher in J-Gout patients than in oJIA

patients. J-Gout patients had the highest sUA levels compared to

oJIA and J-HUA patients. All differences were statistically

significant (p < 0.05) (Table 1).
3.2 Isolation and identification of serum-
derived exosomes

Morphological analysis using TEM showed that exosomes were

round to oval vesicular structures with darker stained lipid bilayers and
frontiersin.org
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lighter stained low electron density material (Figure 1A). The HSFC

nanoparticle analysis indicated that the exosome diameters were 78.69

± 21.41 nm, and their concentration was 256 x 1010 particles/ml

(Figure 1B). Western blot results showed that CD81 and TSG101 were

significantly expressed (Figure 1C). The results indicated that the

isolated exosomes had further experimental feasibility.
3.3 Quality control of proteomics data

Principal component analysis (PCA) revealed differences between

samples from different dimensions, and the results showed that the

protein expression profiles of samples in the same group were basically

stable (Figure 2A). Corrplot analysis showed that samples from the

same group were strongly correlated (Figure 2B). Box and density plot

analyses of credible protein expression revealed small fluctuations

across samples and concentrations (Figures 2C, D). These results

indicated sample stability and reproducibility.
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3.4 Screening and functional analysis of
differentially expressed proteins

A total of 838 credible proteins were identified in serum-derived

exosomes from the three groups. Eighty-eight differentially

expressed proteins were identified in J-Gout when compared with

J-HUA. One hundred twenty-one differentially expressed proteins

were identified in J-Gout when compared with oJIA. A total of 166

differentially expressed proteins were identified in J-Gout,

compared with J-HUA and oJIA respectively. A total of 43

differentially expressed proteins were identified in J-Gout,

compared with J-HUA and oJIA simultaneously. Six proteins

were found highly expressed in J-Gout uniquely. All screens were

based on criteria of log2 | fold change | ≥ 1.2 and p < 0.05. The

Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://

www.genome.jp/kegg/ and https://david.ncifcrf.gov/) was used to

analyze the biological regulatory pathways and functional roles of

proteins with significantly differential expression.
TABLE 1 Basic characteristics of the participants.

J-Gout (n=6) J-HUA (n=6) oJIA (n=6) p value

Age (years) 14.33 ± 1.63 12.17 ± 3.97 6.00 ± 3.95* 0.002

Sex (male/female) 6/0 5/1 2/4 0.027

WBC (10^9/mL) 8.36 ± 1.12 5.42 ± 1.81* 10.30 ± 2.60 0.004

NE# (10^9/mL) 4.84 ± 0.97 3.16 ± 1.32 5.83 ± 1.80 0.024

PLT (10^9/mL) 307.67 ± 59.95 232.00 ± 69.15 386.83 ± 68.68 0.006

HGB (g/L) 152.33 ± 6.15 140.00 ± 14.54 124.67 ± 8.57* 0.001

CRP (mg/L) 14.02 ± 27.60 0.78 ± 1.56 20.58 ± 21.65 0.394

ESR (mm/h) 24.52 ± 25.03 5.28 ± 4.29 47.20 ± 26.75 0.029

sUA (umol/L) 606.17 ± 132.52 443 ± 92.46* 273.50 ± 36.23* <0.001

RF (IU/mL) 2.04 ± 2.81 4.2 ± 3.54 3.95 ± 1.55 0.388

CCP (U/mL) 10.72 ± 3.03 18.27 ± 2.73 15.47 ± 12.76 0.492
*p < 0.05 vs. J-Gout group.
FIGURE 1

Isolation and identification of serum-derived exosomes. (A) The morphology of exosomes was shown by transmission electron microscopy (TEM),
Scale bar=200 nm. (B) The size of exosomes was detected by high -sensitivity flow cytometry (HSFC) nanoparticle analysis. (C) The expression of
CD81 and TSG101 was detected by western blotting.
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3.4.1 Screening and functional analysis of
differentially expressed proteins in J-Gout vs. J-
HUA

Proteins that were differentially expressed in J-Gout and J-HUA

groups were identified according to the criteria of log2 | fold-change | ≥

1.2 and p < 0.05. The volcano plot results showed that compared with

the J-HUA, 13 and 75 proteins were upregulated and downregulated in

J-Gout, respectively (Figure 3A). Upregulated proteins included histone

H1.10 (H1-10) and heparin cofactor 2 (SERPIND1), and

downregulated proteins included immunoglobulin kappa variable 1-

17 (IGKV1-17) and immunoglobulin kappa variable 6-21 (IGKV6-21)

(Table 2). Hierarchical clustering analysis was performed to reveal the

dynamic profiles of differentially expressed proteins in the two groups

(Figure 3B). Bioinformatic analysis indicated that the differentially

expressed proteins were significantly involved in “immune response”,

“Fc epsilon RI signaling pathway”, “B cell receptor signaling pathway”

and “neutrophil extracellular trap formation” (Figures 3C, D).
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3.4.2 Screening and functional analysis of
differentially expressed proteins in J-Gout vs.
oJIA

Proteins that were differentially expressed in J-Gout and oJIA

groups were identified according to the criteria of log2 | fold-change | ≥

1.2 and p < 0.05. The volcano plot results showed that compared with

the oJIA, 20 proteins were upregulated, while 101 were downregulated

in J-Gout (Figure 4A). Upregulated proteins included histone H1–10

and spondin-1 (SPON1), and downregulated proteins included

immunoglobulin lambda variable 3-25 (IGLV3-25) and

immunoglobulin lambda variable 3-1 (IGLV3-1) (Table 3).

Hierarchical clustering analysis was performed to reveal the dynamic

profiles of differentially expressed proteins in the two groups

(Figure 4B). Bioinformatic analysis indicated that the differentially

expressed proteins were significantly involved in “immune response”,

“Fc epsilon RI signaling pathway”, “B cell receptor signaling pathway”

and “primary immunodeficiency” (Figures 4C, D).
FIGURE 2

Quality control of proteomics data. (A) PCA. (B) Corrplot analysis. (C) Box plot analysis. (D) Density map analysis.
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3.4.3 Screening and functional analysis of
differentially expressed proteins in J-Gout vs. J-
HUA and J-Gout vs. oJIA

A total of 166 differentially expressed proteins were identified when

examining the combination of J-Gout vs. J-HUA and J-Gout vs. oJIA

according to the criteria of log2 | fold-change | ≥ 1.2 and p < 0.05

(Figure 5A). Upregulated expression proteins included SPON1 and

H1-10, and downregulated expression proteins included

immunoglobulin lambda variable 10-54 (IGLV10-54) and IGKV1-17

(Table 4). Hierarchical clustering analysis was performed to reveal the

dynamic profiles of differentially expressed proteins in the three groups
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(Figure 5B). Bioinformatic analysis indicated that the differentially

expressed proteins were significantly involved in “immune response”,

“Fc epsilon RI signaling pathway”, “B cell receptor signaling pathway”,

“NF-kappa B signaling pathway” and “primary immunodeficiency”

(Figures 5C, D).

3.4.4 Screening of differentially expressed
proteins in the intersection between J-Gout vs.
J-HUA and J-Gout vs. oJIA

A total of 43 differentially expressed proteins were identified in

J-Gout based on the intersection of J-Gout vs. J-HUA and J-Gout vs.
FIGURE 3

Screening and functional analysis of differentially expressed proteins in J-Gout vs. J-HUA. (A) Volcano plots. (B) Hierarchical clustering analysis. In
the color bar, red represents upregulated expression, and blue represents downregulated expression. (C) GO analysis. (D) KEGG pathway analysis.
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oJIA (Figure 6A). The cluster heatmap shows the most highly

expressed proteins as red and the proteins expressed in low levels

in J-Gout as blue (Figure 6B). With the criteria of ≥ 2 unique

peptides, 6 proteins were found to be uniquely highly expressed in J-

Gout, including H1-10, CILK1, SERPIND1, pantetheinase (VNN1),

dipeptidyl peptidase 4 (DPP4), and proprotein convertase

subtilisin/kexin type 6 (PCSK6) (Table 5).

The above experimental results indicate that based on

proteomic analysis, we screened significant differentially expressed

proteins in juvenile gout.
3.5 Verification of DPP4 and SERPIND1
concentrations and correlation analysis
with clinical indicators

ELISA results showed that the concentrations of DPP4 in

serum-derived exosomes were 57.77 ± 43.82 pg/ml, 38.91 ± 14.12

pg/ml, and 32.53 ± 10.32 pg/ml in the J-Gout, J-HUA and oJIA

groups, respectively (Figure 7A). The concentrations of serum-

derived exosomal SERPIND1 were 10.26 ± 6.14 ng/ml, 8.21 ± 2.36

ng/ml, and 6.70 ± 1.85 ng/ml in the J-Gout, J-HUA and oJIA

groups, respectively (Figure 7B). Both protein concentrations were

highest in J-Gout and lowest in oJIA. Although the differences

observed were not statistically significant, they were consistent with

trends in proteomics.

The correlation between DPP4 and SERPIND1 expression

levels and clinical indicators (CRP and ESR) was assessed. The

results indicated that the DPP4 and SERPIND1 expression levels

were positively correlated with CRP and ESR in serum-derived

exosomes. The observed differences were statistically significant.

(Figure 8). The expression levels of DPP4 and SERPIND1 did not

correlate with age, sex, white blood cell count, neutrophil count,

platelets, hemoglobin, serum uric acid level, RF and CCP. The

results further verified that the differentially expressed proteins we

selected were clinically significant.
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4 Discussion

Exosomes can transfer bioactive lipids, nucleic acids, and proteins,

to regulate gene expression and coordinate a broad spectrum of

biological processes. Exosomes may become biomarkers for disease

and potential candidates for disease therapy (16, 17). The advanced

analytical approach of combining proteomics and bioinformatics

analyses is currently used for discovering potential biomarkers for

disease diagnosis and treatment. Because serum-derived exosomes are

closely related to the pathogenesis of inflammation, there has been a

recent increase in proteomic studies of exosomes for different

rheumatic diseases (18, 19).

With changes in lifestyle, the proportion of J-Gout gradually

increases, and there is a tendency for a younger age of onset, which

can have a more significant impact on quality of life (20). The

discussion of risk factors and clinical features is inadequate, and

there are currently no guidelines for the management of J-Gout. JIA

is an acquired autoinflammatory disease characterized by

unexplained arthritis with onset before the age of 16 years, which

can also present clinically with redness, pain, and limited mobility

of the joints. The appearance of J-Gout is sometimes difficult to

distinguish from other forms of JIA (21). Exosomes are essential

mediators of intercellular communication and are involved in many

processes. In our study, we used TMT proteomics technology to

comprehensively analyze the protein composition of serum-derived

exosomes in J-Gout, J-HUA and oJIA patients, and used

bioinformatics to further explored the function of differentially

abundant proteins in J-Gout.

The results showed that 88 differentially expressed proteins (13

upregulated and 75 downregulated) were found in J-Gout exosomes

when compared with J-HUA exosomes. When compared with oJIA

exosomes, 121 differentially expressed proteins (20 upregulated and

101 downregulated) were found in J-Gout exosomes. To

comprehensively analyze the funcions of the differentially expressed

proteins in J-Gout, 166 differentially expressed proteins were screened

in J-Gout based on the combination of J-Gout vs. J-HUA and J-Gout
TABLE 2 The differentially expressed proteins in J-Gout vs. J-HUA.

Accession number Gene name Description J-Gout/J-HUA FC P value

Q92522 H1-10 Histone H1.10 2.788711474 0.038

P05546 SERPIND1 Heparin cofactor 2 2.545981773 0.004

Q9UPZ9 CILK1 Serine/threonine-protein kinase ICK 2.31308222 0.016

O95497 VNN1 Pantetheinase 2.062615101 0.047

P01031 C5 Complement C5 1.733464956 0.003

P01599 IGKV1-17 Immunoglobulin kappa variable 1-17 0.339959225 0.007

A0A0C4DH24 IGKV6-21 Immunoglobulin kappa variable 6-21 0.386996904 0.001

A0A075B6K0 IGLV3-16 Immunoglobulin lambda variable 3-16 0.408347928 0.049

P12035 KRT3 Keratin, type II cytoskeletal 3 0.426857143 0.001

P16112 ACAN Aggrecan core protein 0.43933518 0.035
Gray represents upregulated proteins, and white represents downregulated proteins.
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vs. oJIA. The bioinformatics functional analysis of the differentially

expressed proteins indicated that they were mainly enriched in

“immune response”, “NF-kappa B signaling pathway”, “Fc epsilon RI

signaling pathway” and “B cell receptor signaling pathway”. Previous

studies revealed that macrophage phagocytosis of MSU is a key step in

the pathogenesis of gout. MSU phagocytosis triggers NF-kB
translocation to induce the expression and secretion of

proinflammatory cytokines, such as IL-8, TNF-a and monocyte

chemotactic protein-1 (MCP-1), which initiates the inflammatory

response (22). By constructing murine models of gouty arthritis and
Frontiers in Endocrinology 0857
observing joint swelling, synovial tissue edema, and inflammatory cell

infiltration in mice, Cheng found that PAL attenuated MSU-induced

gouty arthritis inflammation, indicating that Sirt1 alleviates M1

macrophage polarization and inflammation in gouty arthritis by

inhibiting the MAPK/NF-kB/AP-1 pathway and activating the Nrf2/

HO-1 pathway. Thus, activating Sirt1 may provide a new therapeutic

target for gouty arthritis (23). In addition to its involvement in IgE-

mediated antigen presentation, Fc e RI also induces the transcription of
cytokine genes by activating multiple signaling pathways. Fc epsilon RI

signaling plays an important role in the pathogenesis of autoimmune
FIGURE 4

Screening and functional analysis of differentially expressed proteins in J-Gout vs. oJIA. (A) Volcano plots. (B) Hierarchical clustering analysis. In the
color bar, red represents upregulated expression, and blue represents downregulated expression. (C) GO analysis. (D) KEGG pathway analysis.
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allergic diseases, involving the activation of mast cells and the release of

inflammatory mediators (24). NF-kappa B may be activated

downstream of Fc epsilon RI signaling and thus participate in

inflammatory responses. For example, mast cell activation may

promote cytokine production and exacerbate inflammation through

the NF-kappa B pathway. Fc epsilon RI-activated mast cells release

cytokines such as TNF-a, which may further activate the inflammatory

response through NF-kappa B and form a positive feedback loop. A

study detected 256 unique extrachromosomal circular DNA elements

(eccDNAs) in gout patients in the acute phase and found that these

eccDNA genes were highly associated with immune and inflammatory

responses, including the T-cell receptor, Fc e RI and JAK-STAT

signaling pathways (25). The hypothetical molecular mechanisms

proposed above may provide therapeutic insights for J-Gout.

The uniquely expressed proteins in J-Gout were further screened

based on the intersection of differentially expressed proteins in J-Gout

vs. J-HUA and J-Gout vs. oJIA. The results showed that 6 proteins were

uniquely highly expressed in J-Gout, of which SERPIND1 and DPP4

might be worthy of further study. ELISA results showed that the

concentrations of SERPIND1 and DPP4 proteins in serum exosomes

were highest in J-Gout and lowest in oJIA, which is consistent with the

trend observed in the proteomics results. SERPIND1 is a thrombin

inhibitor that restrains thrombin activity by interacting with heparin

during the inflammatory response and affects the coagulation cascade.

SERPIND1 can be cleaved by neutrophil elastase to promote

neutrophil chemotaxis in acute inflammatory responses and also

promote the release of leukocyte chemokines inducing those

involved in angiogenesis. Guo’s study demonstrated that NF-kB
could regulate SERPIND1 through the PI3K/AKT signaling pathway,

therebymediating cell migration, invasion, proliferation, apoptosis, and

cell cycle regulation (26). Previous studies have shown that the

pathogenesis of gout is closely related to the production of

inflammatory factors in the acute inflammatory response.

SERPIND1 acts as an inhibitor of thrombin and may reduce the

release of inflammatory mediators by inhibiting thrombin. Thrombin

can activate protease-activated receptors (PARs), thereby promoting

the production of inflammatory factors, such as 1L-6 and IL-1b, while
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inhibition of thrombin may reduce the levels of these inflammatory

factors and downregulate the expression of 1L-6 and IL-1b. In a gastric
mucosal injury study, downregulation of SERPIND1 was associated

with a decrease in inflammatory cytokines IL-6 and IL-1b, while
expression of protective factors (eg, PGE2, SOD) was upregulated,

suggesting that it may act through dual mechanisms (coagulation

inhibition and anti-inflammation) (27). Alternatively, activation of the

inflammasome often involves the action of coagulation factors and

proteases. Thrombin activates the NLRP3 inflammasome, while

SERPIND1 as a thrombin inhibitor may indirectly inhibit

inflammasome activity by blocking this process, thereby reducing the

release of pyroptosis-related factors (eg, caspase-1, IL-1b). DPP4 is

expressed in many types of immune cells, and increasing research has

focused on the potential role of DPP4 in autoimmune rheumatism.

Both gout and diabetes mellitus type 2 (T2DM) are associated with

HUA, and insulin resistance caused by HUA may be one of the causes

involved in the pathogenesis. Previous studies showed that using

antidiabetic agents reduced the risk of gout (28). Some novel

antidiabetic agents, such as dipeptidyl peptidase-4 inhibition

(DPP4I), reduced UA levels in patients with T2DM and had

additional benefits for gout (29). These results indicated that DPP4

expression is closely related to the pathogenesis of gout. Our study also

had an interesting finding that the DPP4 and SERPIND1 expression

levels were positively correlated with CRP and ESR in serum-derived

exosomes. Gout initially manifests as acute inflammatory arthritis, the

activation of the NLRP3 inflammasome triggered by uric acid is

considered a key pathogenic mechanism in the acute inflammatory

response of gout, which leads to the production of proinflammatory

cytokines, including interleukin-1b (IL-1b) and IL-18 (30, 31). Kim

found that gout patients showed a higher expression of CXCL12 and

proinflammatory cytokines, including IL-1b and IL-18, than members

of the control group. Therefore, chemokine CXCL12 and its receptor

CXCR4 might be considered to be potent therapeutic targets in uric

acid-induced NLRP3 inflammasome activation in gout patients (32).

Previous studies clarified that pharmacological inhibition of NLRP3

inflammasome assembly and activation may also be a promising

approach for gouty arthritis treatment. Targeting NLRP3 through
TABLE 3 Differentially expressed proteins in J-Gout vs. oJIA.

Accession number Gene name Description J-Gout/oJIA FC P value

Q92522 H1-10 Histone H1.10 7.694672131 0.009

Q9HCB6 SPON1 Spondin-1 5.661495063 0.022

P07305 H1-0 Histone H1.0 3.97469459 0.021

P28799 GRN Progranulin 3.231152993 0.037

P05546 SERPIND1 Heparin cofactor 2 3.071464268 0.002

P01717 IGLV3-25 Immunoglobulin lambda variable 3-25 0.126243958 0.004

P01715 IGLV3-1 Immunoglobulin lambda variable 3-1 0.14797546 0.010

A0A0A0MS15 IGHV3-49 Immunoglobulin heavy variable 3-49 0.227100271 0.000

P01763 IGHV3-48 Immunoglobulin heavy variable 3-48 0.271468144 0.004

A0A075B6I4 IGLV10-54 Immunoglobulin lambda variable 10-54 0.275268817 0.019
Gray represents upregulated proteins, and white represents downregulated proteins.
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potentially effective drugs such as natural products, novel compounds,

and non-coding RNAs (ncRNAs) for the treatment of mousemodels of

MSU-induced gouty arthritis may be important for the treatment of

gouty arthritis (33). Therefore, SERPIND1 and DPP4 may participate

in the occurrence and development of J-Gout.
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There are some limitations in our study. Firstly, assessment of the

basic demographic data of the subjects revealed significant differences

in age and sex among the three groups. While the younger age of oJIA

patients than J-Gout patients is consistent with the clinical

characteristics of oJIA having a younger age of onset, the sample size
FIGURE 5

Screening and functional analysis of differentially expressed proteins in J-Gout vs. J-HUA and J-Gout vs. oJIA. (A) The number of differentially
expressed proteins (J-Gout vs. J-HUA, J-Gout vs. oJIA). (B) Hierarchical clustering analysis of the three groups. In the color bar, red represents
upregulated expression, and blue represents downregulated expression. (C) GO analysis. (D) KEGG pathway analysis.
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TABLE 4 Differentially expressed proteins in J-Gout vs. J-HUA and J-Gout vs. oJIA.

Accession number Gene name Description J-Gout/J-HUA FC J-Gout/oJIA FC

Q9HCB6 SPON1 Spondin-1 2.626963351 5.661495063

Q92522 H1-10 Histone H1.10 2.788711474 7.694672131

P28799 GRN Progranulin 1.78803681 3.231152993

Q9UPZ9 CILK1 Serine/threonine-protein kinase ICK 2.31308222 2.587675578

P05546 SERPIND1 Heparin cofactor 2 2.545981773 3.071464268

A0A075B6I4 IGLV10-54 Immunoglobulin lambda variable 10-54 0.456327986 0.275268817

P01599 IGKV1-17 Immunoglobulin kappa variable 1-17 0.339959225 0.403386755

A0A0C4DH24 IGKV6-21 Immunoglobulin kappa variable 6-21 0.386996904 0.439859245

A0A0B4J1X5 IGHV3-74 Immunoglobulin heavy variable 3-74 0.617647059 0.378823529

P16112 ACAN Aggrecan core protein 0.43933518 0.418690602
F
rontiers in Endocrinology
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Gray represents upregulated proteins, and white represents downregulated proteins.
FIGURE 6

Screening of differentially expressed proteins in the intersection between J-Gout vs. J-HUA and J-Gout vs. oJIA. (A) Venn diagram analysis of J-
Gout vs. J-HUA and J-Gout vs. oJIA. (B) Hierarchical clustering of the three groups.
TABLE 5 Proteins uniquely highly expressed in J-Gout.

Protein name Abundance

J-Gout J-HUA oJIA

H1-10 275.9 314 161.1 130.4 42.2 96.7 30.4 36.9 30.3

CILK1 211.9 137.6 221.6 83.1 89.2 74.6 63.3 54.3 103.1

SERPIND1 208.2 235.9 170.5 79.6 63.6 98.2 60.4 60.6 79.1

VNN1 200.9 114.1 133 62.6 69.4 85.2 49.6 52.8 55.5

DPP4 145.1 118.2 107.6 87.9 85.4 79.1 54 58.5 58.7

PCSK6 137.4 137.8 128.2 99.4 80.8 106 110.2 111.2 75
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was relatively small in our study. Secondly, because the study

population was children, on the one hand due to ethical restrictions,

and on the other hand, the small number of pediatric patients willing to

enter the study resulted in the lack of healthy control group data in this

study and the lack of female patients in the J-Gout group, although gout

was more common in boys than in girls, we should further expand the

sample size and conduct multicenter recruitment to obtain more

objective results. Thirdly, the function of uniquely highly expressed
Frontiers in Endocrinology 1261
proteins should be verified in vivo and in vitro to explore the

significance of these proteins in greater depth.

In conclusion, the protein profiles of serum-derived exosomes

in J-Gout were significantly different from those in J-HUA and

oJIA. Some possible mechanisms were proposed. DPP4 and

SERPIND1 were uniquely highly expressed in J-Gout. The highly

expressed differential proteins in serum-derived exosomes are

closely related to their function, which may be of great value in
FIGURE 7

Verification of DPP4 and SERPIND1 protein expression by ELISA. (A) The level of DPP4 in serum-derived exosomes. (B) The level of SERPIND1 in
serum-derived exosomes. (A, B, bars = mean ± standard error).
FIGURE 8

Correlation analysis between the differentially expressed proteins and clinical indicators. (A, B) Correlation analysis between DPP4 expression levels
and clinical indicators (CRP and ESR). (C, D) Correlation analysis between SERPIND1 expression levels and clinical indicators (CRP and ESR).
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identifying potential biomarkers and further exploring the

molecular mechanism of J-gout.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/supplementary material.
Ethics statement

The studies involving humans were approved by The Ethics

Committee of the Guangdong Second Provincial General Hospital

(2019-QNJJ-17-02). The studies were conducted in accordance with

the local legislation and institutional requirements. Written

informed consent for participation in this study was provided by

the participants’ legal guardians/next of kin.
Author contributions

ZJ: Writing – original draft, Writing – review & editing. SZ: Formal

Analysis, Methodology, Writing – review & editing. LL: Software,

Visualization, Writing – review & editing. LH: Conceptualization,

Investigation, Writing – review & editing. SS: Methodology,

Visualization, Writing – review & editing. ZH: Validation, Writing –

review & editing. YHe: Investigation, Software, Writing – review &

editing. XP: Writing – review & editing. TL: Funding acquisition,

Supervision, Writing – review & editing. YHu: Funding acquisition,

Validation, Writing – review & editing.
Frontiers in Endocrinology 1362
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This study was supported

by Science and Technology Projects in Guangzhou, China (No.

202102020127, No. 202102080321, No. 2023A03J0259, No.

2023A03J0260); The 3D printing research project of Guangdong

Second Provincial General Hospital (No. 3D-A2021002).
Acknowledgments

We sincerely thank the researchers and participants in

the study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Dalbeth N, Choi HK, Joosten LAB, Khanna PP, Matsuo H, Perez-Ruiz F, et al.
Gout. Nat Rev Dis Primers. (2019) 5:69. doi: 10.1038/s41572-019-0115-y

2. Chen-Xu M, Yokose C, Rai SK, Pillinger MH, Choi HK. Contemporary
prevalence of gout and hyperuricemia in the United States and decadal trends: the
national health and nutrition examination survey, 2007–2016. Arthritis Rheumatol
(Hoboken NJ). (2019) 71:991–9. doi: 10.1002/art.40807

3. Chen S-Y, Shen M-L. Juvenile gout in Taiwan associated with family history and
overweight. J Rheumatol. (2007) 34:2308–11. Available at online: https://www.jrheum.
org/content/jrheum/34/11/2308.full.pdf.

4. Rao J, Ye P, Lu J, Chen B, Li N, Zhang H, et al. Prevalence and related factors of
hyperuricaemia in Chinese children and adolescents: a pooled analysis of 11 population-
based studies. Ann Med. (2022) 54:1608–15. doi: 10.1080/07853890.2022.2083670

5. Zheng S, Lee PY, Huang Y, Deng W, Huang Z, Huang Q, et al. Clinical
characteristics of juvenile gout and treatment response to febuxostat. Ann Rheum
Dis. (2022) 81:599–600. doi: 10.1136/annrheumdis-2021-221762

6. Sezer M, Aydın F, Kurt T, Tekgöz N, Tekin ZE, Karagöl C, et al. Prediction of
inactive disease and relapse in oligoarticular juvenile idiopathic arthritis. Modern
Rheumatol. (2021) 31:1025–30. doi: 10.1080/14397595.2020.1836788
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Objectives: Variability in biomarkers is crucial for clinical decision-making in

individuals with type 2 diabetes mellitus (T2DM). The biological variation (BV) of

biomarkers associated with thyroid function, iron metabolism, and bone

metabolism may show population-specific differences. This study aims to

evaluate the biological variation of sixteen biomarkers in T2DM patients and

compare these with variations observed in a healthy population.

Methods: Twenty-four T2DM patients, aged 43 to 67 and in stable condition,

were enrolled. Blood samples were collected biweekly for three months. Analysis

of variance models were used to assess the BV, including within-subject BV (CVI),

between-subject BV (CVG), analytical variation, reference change value (RCV),

index of individuality (II), the number of samples required for steady-state set

points (NHSP), and analytical performance specifications for all biomarkers.

Results: Females exhibited lower CVI estimates for thyroid-stimulating hormone,

parathyroid hormone, and phosphate compared to males. No significant

differences in CVI estimates were observed between T2DM patients and

healthy individuals across the study. However, the CVG estimates for cortisol

and iron were significantly lower in T2DM patients compared to the

healthy individuals.
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Conclusions: BV data is critical for the precise interpretation of serial biomarker

level changes in T2DM patients. It is deemed reasonable to use RCVs for four

bone metabolism markers and five thyroid biomarkers, derived from a healthy

population, as a reference for monitoring T2DM patients.
KEYWORDS

biological variation, type 2 diabetes mellitus, thyroid, iron, biomarker
Introduction

Type 2 Diabetes mellitus (T2DM) is a prevalent health issue that

has significantly grown over the past few decades, becoming a

significant challenge to public health worldwide (1). There are

strong associations between diabetes mellitus and numerous

concurrent health issues, such as osteoporosis, thyroid dysfunction,

and abnormalities in iron metabolism (2–4). Biomarkers can be used

for diagnosis, risk stratification, and management of complications in

patients with T2DM. Therefore, it is important to accurately interpret

variations in these biomarker results, which are influenced by

biological variation (BV) (5, 6).

Biomarker variation refers to the fluctuation of an analyte around

a homeostatic set point (HSP) and encompasses both individual and

analytical variations (7). While improvements in analytical

techniques and testing processes can reduce analytical variation,

individual variability is likely influenced by specific populations and

may differ across various epidemiological studies (8). Most studies on

BV focus on healthy populations, with few examining individuals

with T2DM. Previous studies have explored BV in conditions such as

kidney transplantation, chronic liver disease, and heart failure (6, 9,

10), revealing that BV data from healthy individuals often differs from

those in unhealthy populations. Consequently, our study aims to

investigate the BV of an expanded set of biomarkers in patients

with T2DM.

Biomarkers for thyroid function are essential in diagnosing and

managing thyroid-related disorders. T2DM can lead to a decrease in

thyroid-stimulating hormone (TSH) levels and impair the

transformation of thyroxine (T4) to triiodothyronine (T3) in the

peripheral tissues (11). There are individual variations in thyroid

hormones related to factors such as age, circadian rhythms, and

hypothyroidism (12–14), but there are no data on BV in patients

with T2DM. Similarly, patients with T2DM frequently experience

disturbances in bone and mineral metabolism (15). Common

measurands of bone metabolism include calcium (Ca), phosphate

(PHOS) and parathyroid hormone (PTH), and 25-hydroxyvitamin D

[25(OH)D]. Moreover, high iron is a risk factor for T2DM (16), and

biomarkers are used to assess iron homeostasis. We included four

common metrics, serum iron, transferrin saturation (TSAT),

unsaturated iron-binding capacity (UIBC), and total iron-binding

capacity (TIBC), and the variability of these metrics in patients with

T2DM was not known previously.
0265
We analysed BV data for sixteen serum/plasma biomarkers,

including four related to bone metabolism, four to iron metabolism,

five thyroid biomarkers, and three additional hormones in patients

with T2DM. These data were used to determine the reference change

value (RCV), the number of samples needed for steady-state set point

(NHSP), and the analytical performance specifications (APS).

Ultimately, we compared these results with previously published

data from healthy populations.
Materials and methods

Participants and samples

Patients with T2DM were enrolled in the study following an

eligibility assessment based on specific inclusion and exclusion

criteria. The inclusion criteria were as follows: First, male and

female participants aged 18 to 70 were eligible; secondly,

participants diagnosed with T2DM without complications for at

least three months, according to the American Diabetes Association

guidelines published in 2015; thirdly, participants needed to have

been on a stable diabetes medication regimen for at least 3 months

prior to enrolment; fourthly, participants had to be capable of

understanding the study requirements and providing written

informed consent. The exclusion criteria included: firstly,

individuals treated with insulin, vitamin D supplements, or

medications that affect thyroid function; secondly, participants

with severe, uncontrolled comorbid conditions within the last

three months; thirdly, participants with severe psychological

disorders that may interfere with their ability to comply with

study procedures; and fourthly, women who were pregnant,

breastfeeding, or planning to become pregnant during the study

period. This study received approval from the Institutional Ethical

Review Board of the West China Hospital of Sichuan University

(No. 20201079). Each participant voluntarily signed an informed

consent form after being informed about the content and purpose of

the study.

Fasting venous blood samples were collected (BD Vacutainer®,

New Jersey, USA) biweekly between 8:30 a.m. and 9:30 a.m., a total

of six times. Plasma tubes were centrifuged within 45 min at 3000 g

for 10 min at 4°C, while serum tubes were centrifuged at 22°C.

Serum and plasma were then stored at −80°C until analysis.
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Analytical methods

Quantitative determination of serum TSH, T3, free

triiodothyronine (FT3), T4, free thyroxine (FT4), cortisol (CORT),

insulin (INS), C-peptide (C-P), plasma intact PTH, and 25(OH)D was

performed using the Roche Cobas e601 (Roche, Basle, Switzerland)

with immunoassay electrochemiluminescence reagents and

calibrators. The assays for TSH, T3, T4, and CORT were conducted

utilising first-generation reagents, whereas FT3 and FT4 assays used

third-generation reagents. INS, C-P, and intact PTH tests employed

second-generation reagents. Serum PHOS, iron, Ca, and UIBC were

analysed using Roche Cobas 8000 (Roche, Basle, Switzerland). Total

iron-binding capacity (TIBC) is calculated as the sum of Serum Iron

and UIBC, and TSAT is determined by the ratio of serum iron to

TIBC. All samples were measured in duplicate in a single run.
Data analysis

To obtain analytical variation (CVA) and within-subject

biological variation (CVI) estimates, data were analysed using

standard ANOVA or CV-ANOVA. The CV-ANOVA method is

based on the CV transformation, which normalises the data for each

individual by dividing by the mean value of each individual (17).

The CVG estimates were calculated by a standard nested ANOVA

after identifying outliers between subjects with Reed’s criterion and

the Dixon-q test2 (18). Outliers from replicates and within-subject

were excluded using the Bartlett test and the Cochran test. The

Shapiro-Wilk test was used to analyse data normality, and log-

transformation was applied to non-normally distributed data. The

steady state of subjects was assessed by linear regression of six

pooled mean group sample concentrations for each biomarker (19).

Subjects were considered to be in a steady state when the 95%

confidence interval (CI) of the regression line’s slope included zero.

Mean values and BV estimates were calculated for the entire study

population and separately for women and men. The 95% CI for BV

estimates was calculated using Miller’s formula (20). Differences in

mean values and BV estimates between subgroups were considered

significant if the 95% CI did not overlap. The CVI and CVG values

for the entire study population were applied to APS using the

criteria: CV = 0.5CVI; B = 0.25 (CVI
2 + CVG

2)0.5; total allowable

error (TE) = 1.65CV + B. The RCV, index of individuality (II), and

the NHSP were calculated for each measurand according to the

following formula:

RCV% = 100% � (exp( ±
ffiffiffi
2

p
� Z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CVI,ln

2 + CVA, ln
2

q
) − 1)

CVA, ln =  ½ln (CVA
2 + 1)�0:5

CVI, ln =  ½ln (CVI
2 + 1)�0:5

 II =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CVI

2 + CVA
2

p
=
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 NHSP = Z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CVI

2 + CVA
2

p
=D

� �2

The Z factor was set at 1.96, indicating a two-sided change and a

95% probability. The D values represented deviations of 10%, 15%,

and 20% from the true HSP (21).

For normally distributed data with equal variances, use mean ±

SD and T-tests. Otherwise, use median and Kruskal-Wallis tests.
Results

Twenty-four patients diagnosed with T2DM (11 men and 13

women), aged 43–69 years, were included in this study. We

collected the medical and medication histories of each participant,

including metformin, glimepiride, miglitol, gliclazide, and acarbose.

All participants were non-smokers and non-alcohol drinkers. Of

the 24 participants, 20 completed all six collections, and four

completed four collections; the mean number of blood samples

per participant was 5.7. Baseline characteristics and the

concentrations of sixteen biomarkers for all participants, as well

as for the men and women subgroups, are summarised in Table 1.

All subjects showed no systematic changes in the concentrations of

these biomarkers during the follow-up, as confirmed by linear

regression (Supplementary Table S1). Reference intervals for each

measurand are summarised in Supplementary Table S1, and all

measurements fell within these defined ranges. Details about the

outliers are provided in Supplementary Table S2. The median and

95% CI of eight hormones for each individual, grouped by sex, are

shown in Supplementary Figure S1. The remaining eight

measurements (including four for bone metabolism and four for

iron metabolism biomarkers) are shown in Supplementary

Figure S2.

No statistically significant differences were observed in the

concentrations of TSH, C-P, PTH, 25(OH)D, Ca, iron, UIBC, and

TSAT between genders. However, significant intersexual disparities

were identified in the levels of FT3, FT4, T3, T4, CORT, INS, and

TIBC, with males exhibiting markedly higher levels than those

exhibited by females (P < 0.05). The only exception was the mean

serum concentration of PHOS, which was significantly elevated in

women compared to men (P < 0.05).

The results for CVA, CVI, and CVG, along with their 95% CIs,

for sixteen biomarkers are displayed in Table 2. The BV

components of CVI and CVG based on healthy populations from

the European Federation of Clinical Chemistry and Laboratory

Medicine Biological Variation Database (EFLM BVD) are also

presented (22). The reliability of the CVI estimates was confirmed

by SDA/SDI ratios, according to the recommendations of Røraas

et al. (23), with all biomarkers demonstrating ratios below the

threshold of 1.0. According to the 95% CI, CVI estimates for TSH,

PTH, and PHOS calculated for females were lower than those

derived for males. For the entire study population, CORT and iron

CVG estimates were significantly lower than those reported by the

EFLM BVD, whereas the overall CVI estimates were similar

between patients with T2DM and healthy individuals.
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Table 3 presents the RCV, II, and NHSP values for each

biomarker. The APS were derived from the CVI and CVG of

sixteen measurands for all participants. For INS, the NHSP could

be estimated with 95% probability using eight samples if the D

values were set at 15%. The II values for five thyroid hormones, INS,

C-P, 25(OH)D, and TIBC, were <0.6, whereas the II estimates for

iron, TSAT, and Ca were >1.4.
Discussion

Currently, BV data from healthy individuals are widely used in

clinical settings for many common measurands. To ensure the

reliability of these data, the EFLM Biovariation Working Group

published the BV Critical Appraisal Checklist (BIVAC) (24).

According to the study criteria for BV data, this study provides

the first-ever BV estimates and RCV for sixteen biomarkers in
Frontiers in Endocrinology 0467
patients with T2DM, assessing whether differences between

measurements and HSP are clinically relevant.

Thyroid hormones are crucial endocrine regulators influenced

by multiple factors, including genetics, environment, disease status,

and circadian rhythm (25). To date, BV studies on thyroid

hormones have predominantly focused on healthy populations,

with only a few examining patients with hypothyroidism or

pregnant women (26, 27). Moreover, the sampling interval must

be considered when studying BV in thyroid hormone (28). There

are long-term BV studies of thyroid hormones and short-term BV

studies that lasted one year and 24 h, respectively (14, 29). In this

study, the CVI and CVG estimates for TSH, FT3, and FT4 in

patients with T2DM are similar to those reported in the

European Biological Variation Study, which is also a mid-term

study (30). Meanwhile, patients with T2DM exhibited comparable

CVI, CVG, and RCV estimates to those from another study focusing

on the elderly population (31). In clinical practice, using the TSH
TABLE 1 Baseline characteristics and concentrations of sixteen biomarkers for patients with T2DM, grouped by sex.

Sort All participants Males Females P valuea

Number of participants 24 11 13 –

Total number of results 136 62 74 –

Total number of samples 272 124 148

Age, year 55 (7) 54 (15) 56 (11) 0.64

BMI 55 (12.5) 54.5 (10) 56.0 (13.8) 0.64

FPG, mmol/l 6.52 (2.67) 4.98 (1.05) 5.11 (0.91) 0.39

HbA1C, % 6.5 (1.7) 6.85 (2.43) 6.3 (1.0) 0.09

TSH, mIU/L 2.18 (2.03) 1.94 (1.82) 2.5 (2.2) 0.32

FT3, pmol/l 4.41 ± 0.46 4.69 ± 0.49 4.18 ± 0.3 <0.001

FT4, pmol/l 15.9 ± 1.84 16.45 ± 1.65 15.45 ± 1.88 0.01

T3, nmol/l 1.54 ± 0.23 1.6 ± 0.27 1.5 ± 0.18 0.015

T4, nmol/l 93.93 (18.81) 96.03 (18.81) 90.8 (23.42) 0.005

CORT, nmol/l 287.88 ± 77.17 314.0 ± 67.73 264.49 ± 77.82 <0.001

INS, uU/ml 6.11 (3.6) 6.57 (3.73) 6.33 ± 2.7 0.02

C-P, nmol/l 0.63 ± 0.15 (0.15) 0.65 ± 0.13 (0.19) 0.62 ± 0.17 0.31

PTH, pmol/l 4.92 (1.02) 4.92 (2.03) 5.31 ± 1.56 0.31

25 (OH)D, nmol/l 62.29 (26.97) 63.75 (29.19) 61.89 (16.26) 0.89

Ca, mmol/l 2.35 ± 0.07 2.34 ± 0.09 2.35 ± 0.07 0.45

PHOS, mmol/l 1.16 ± 0.13 1.12 ± 0.21 1.17 ± 0.1 <0.001

Iron, umol/l 16.6 (5.24) 17.1 (5.07) 16.48 (6.01) 0.07

UIBC, umol/l 37.07 ± 6.34 37.09 ± 7.83 35.64 ± 6.42 0.38

TSAT, % 31.92 (8.96) 32.3 (9.09) 30.78 (10.13) 0.32

TIBC, umol/l 53.56 ± 6.38 54.71 ± 7.48 52.52 ± 6.65 0.04
aThe P value represents the comparison between males and females.
CI, confidence interval; FPG, Fasting Plasma Glucose; TSH, thyroid stimulating hormone; FT3, free triiodothyronine; FT4, free thyroxine; T3, triiodothyronine; T4, thyroxine; CORT, cortisol;
INS, insulin; C-P, c-peptide; PTH, parathyroid hormone; 25 (OH)D, 25-hydroxyvitamin D; Ca, calcium; PHOS, phosphorus; UIBC, unsaturated iron-binding capacity; TSAT, transferrin
saturation; TIBC, total iron-binding capacity.
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TABLE 2 Biological variation estimates of CVA, CVI, and CVG, with 95% CIs, for sixteen biomarkers and compared against the EFLM BV database.

Biomarker Sort CVA, %
(95% CI)

CVI, %
(95% CI)

CVG, %
(95% CI)

SDA/SDI CVI, % (95% CI)
EFLM BV database

CVG, % (95% CI)
EFLM BV database

TSH, mIU/L All articipants 1.6 (1.4-1.7) 18.2 (16.0-21.1) 42.9 (33.4-60.2) 0.1 17.9 (14.7-29.3) 36.1 (23.9-48.4)

male 21.9 (18.2-27.4) 41.7 (29.2-73.2)

female 15.2 (12.9-18.6) 44.7 (32.0-73.7)

FT3, pmol/l All participants 1.2 (1.1-1.3) 4.5 (4.0-5.2) 9.5 (7.4-13.3) 0.3 5.1 (4.7-7.9) 8.1 (8.0-22.5)

male 4.3 (3.6-5.3) 9.1 (6.3-15.9)

female 4.8 (4.1-5.8) 5.6 (4.0-9.3)

FT4, pmol/l All participants 2.6 (2.4-2.8) 5.3 (4.6-6.1) 10.4 (8.1-14.6) 0.5 4.8 (4.6-9.5) 8.0 (7.5-12.1)

male 5.4 (4.5-6.7) 8.6 (6.0-15.1)

female 5.1 (4.4-6.3) 11.3 (8.1-18.7)

T3, nmol/l All participants 3.9 (3.6-4.3) 6.2 (5.4-7.1) 13.6 (10.6-19.1) 0.6 6.2 (5.1-10.4) 11.1 (4.4-20.4)

male 6.2 (5.2-7.7) 16.3 (11.4-28.6)

female 6.2 (5.2-7.5) 10.2 (7.3-16.9)

T4, nmol/l All participants 1.7 (1.5-1.8) 5.8 (5.1-6.7) 15.1 (11.7-21.1) 0.3 6.4 (4.9-7.4) 11.8 (11.0-12.2)

male 5.2 (4.4-6.6) 15.0 (10.5-26.4)

female 6.3 (5.3-7.6) 14.5 (10.4-24.0)

CORT, nmol/l All participants 2.4 (2.2-2.6) 19.4 (17.2-22.6) 18.8 (14.6-26.6) 0.1 16.1 (15.5-26.6) 33.6 (28.8-53.1)

male 16.0 (13.5-20.2) 15.1 (10.5-26.4)

female 22.9 (19.3-28.1) 19.3 (13.7-32.7)

INS, uU/ml All participants 3.4 (3.1-3.7) 20.7 (18.3-23.9) 36.5 (28.3-51.1) 0.2 25.4 (21.1-37.1) 33.5 (31.5-81.8)

male 19.1 (16.0-23.8) 36.1 (25.2-63.4)

female 22.5 (19.1-27.5) 37.5 (26.9-61.9)

C-P, nmol/l All participants 1.1 (1.0-1.2) 11.4 (10.1-13.3) 21.5 (16.6-30.4) 0.1 – –

male 12.0 (10.0-15.2) 16.7 (11.5-30.6)

female 10.9 (9.2-13.3) 25.2 (18.0-41.5)

PTH, pmol/l All participants 2.5 (2.3-2.8) 18.4 (16.3-21.2) 26.3 (20.5-36.9) 0.1 14.7 (11.3-25.9) 28.9 (21.8-43.3)

male 21.9 (18.4-27.2) 27.4 (19.2-48.2)

female 15.2 (12.9-18.6) 26.1 (18.7-43.1)

25 (OH)D,
mol/l

All participants 2.7 (2.5-3.0) 6.9 (6.1-8.0) 23.7 (18.3-33.6) 0.4 6.8 (1.8-12.8) 30.1 (23.0-64.3)

male 6.3 (5.2-7.8) 23.6 (16.5-41.5)

female 7.4 (6.2-9.0) 24.8 (17.6-42.1)

Ca, mmol/l All participants 0.8 (0.8-0.9) 2.1 (1.9-2.5) 1.6 (1.2-2.2) 0.4 1.8 (0.8-2.3) 2.7 (1.6-4.1)

male 2.0 (1.7-2.5) 1.3 (0.9-2.2)

female 2.3 (1.9-2.7) 1.9 (1.4-3.1)

PHOS, mmol/l All participants 1.2 (1.2-1.4) 7.8 (6.9-9.0) 8.4 (6.5-11.8) 0.2 7.7 (5.7-8.3) 10.7 (7.9-17.4)

male 10.1 (8.5-12.6) 8.8 (6.2-15.5)

female 5.6 (4.8-6.9) 6.4 (4.6-10.6)

Iron, umol/l All participants 2.2 (2.0-2.4) 19.1 (16.9-22.0) 9.7 (7.5-13.6) 0.1 27.6 (19.8-30.3) 26.7 (25.1-32.3)

male 17.6 (14.8-21.9) 9.8 (6.9-17.2)

(Continued)
F
rontiers in Endoc
rinology
 0568
 frontiersin.org

https://doi.org/10.3389/fendo.2025.1506664
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2025.1506664
RCV estimates (65.8%) from this study, an individual’s serum TSH

concentration, initially measured at 2.0 mIU/L, could naturally rise

to 3.3 mIU/L without any pathological cause, ascribed to the

combined effects of biological and analytical variability. All five

analytes used to assess thyroid function showed low II values (<0.6),
Frontiers in Endocrinology 0669
indicating high individuality; similar findings were reported in a

meta-analysis of BV in thyroid-related measures (32).

As another important endocrine hormone, CORT exhibits a

more pronounced circadian rhythm than that of thyroid hormones

and is affected by multiple factors, including season, disease, and sex
TABLE 2 Continued

Biomarker Sort CVA, %
(95% CI)

CVI, %
(95% CI)

CVG, %
(95% CI)

SDA/SDI CVI, % (95% CI)
EFLM BV database

CVG, % (95% CI)
EFLM BV database

female 20.5 (17.4-24.9) 9.1 (6.5-15.0)

UIBC, umol/l All participants 1.3 (1.2-1.4) 10.1 (8.9-11.6) 14.7 (11.4-20.8) 0.1 – –

male 9.3 (7.8-11.7) 14.9 (10.2-27.2)

female 10.6 (9.1-13.1) 15.1 (10.8-24.9)

TSAT, % All participants 1.4 (1.3-1.5) 18.3 (16.2-21.2) 12.0 (9.3-17.0) 0.1 – –

male 17.1 (14.2-21.4) 13.0 (9.0-23.8)

female 18.8 (16.0-23.0) 11.2 (8.0-18.4)

TIBC, umol/l All participants 1.4 (1.3-1.5) 6.1 (5.4-7.1) 11.0 (8.5-15.6) 0.2 – –

male 4.6 (3.9-5.8) 9.9 (6.8-18.0)

female 6.8 (5.7-8.2) 11.1 (8.0-18.3)
CVA, analytical variation; within-subject biological variation (CVI), between-subject biological variation (CVG); CI, confidence interval; SDA/SDI, ratio between analytical (SDA) and within-
subject variance (SDI); TSH, thyroid stimulating hormone; FT3, free triiodothyronine; FT4, free thyroxine; T3, triiodothyronine; T4, thyroxine; CORT, cortisol; INS, insulin; C-P, c-peptide; PTH,
parathyroid hormone; 25 (OH)D, 25-hydroxyvitamin D; Ca, calcium; PHOS, phosphorus; UIBC, unsaturated iron-binding capacity; TSAT, transferrin saturation; TIBC, total iron-
binding capacity.
TABLE 3 Analytical performance specification and NHSP for sixteen biomarkers based on biological variation estimates.

Biomarker
NHSP APS derived from present study

RCV, % (Decrease; Increase) II, % 10% 15% 20% Imprecision, % B, % TE, %

TSH, mIU/L -39.7; 65.8 0.42 13 6 3 9.11 11.66 26.69

FT3, pmol/l -12.1; 13.8 0.49 1 1 1 2.26 2.63 6.36

FT4, pmol/l -14.9; 17.6 0.56 1 1 1 2.63 2.91 7.24

T3, nmol/l -18.3; 22.3 0.53 2 1 1 3.08 3.74 8.81

T4, nmol/l -15.3; 18.0 0.4 1 1 1 2.88 4.03 8.78

CORT, nmol/l -41.8; 71.8 1.04 15 7 4 9.72 6.76 22.8

INS, uU/ml -44.1; 78.74 0.58 17 8 4 10.37 10.49 27.6

C-P, nmol/l -27.1; 37.3 0.53 5 2 1 5.71 6.08 15.49

PTH, pmol/l -40.2; 67.1 0.71 13 6 3 9.21 8.03 23.22

25(OH)D, nmol/l -18.4; 22.6 0.31 2 1 1 3.43 6.17 11.83

Ca, mmol/l -6.1; 6.5 1.43 1 1 1 1.07 0.67 2.43

PHOS, mmol/l -19.6; 24.5 0.94 2 1 1 3.92 2.87 9.34

Iron, umol/l -41.2; 70.3 1.98 14 6 4 9.57 5.37 21.16

UIBC, umol/l -24.5; 32.4 0.69 4 2 1 5.04 4.46 12.76

TSAT, % -39.8; 66.2 1.53 13 6 3 9.17 5.48 20.61

TIBC, umol/l -15.9; 18.9 0.57 2 1 1 3.06 3.15 8.2
fro
RCV, reference change value; NHSP, number of samples required to homeostatic set point; APS: analytical performance specification; TSH, thyroid stimulating hormone; FT3, free
triiodothyronine; FT4, free thyroxine; T3, triiodothyronine; T4, thyroxine; CORT, cortisol; INS, insulin; C-P, c-peptide; PTH, parathyroid hormone; 25(OH)D, 25-hydroxyvitamin D; Ca,
calcium; PHOS, phosphorus; UIBC, unsaturated iron-binding capacity; TSAT, transferrin saturation; TIBC, total iron-binding capacity.
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(33). Compared to the EuBIVAS BV estimates for morning serum

CORT in healthy populations, patients with T2DM showed higher

CVI. However, similar CVG values were observed in subgroups of

men and women older than 50 years (34). Unlike other measurands,

INS and C-P are integral to the pathology of T2DM patients, where

insufficient INS secretion or INS resistance can lead to the

development of the disease. Unfortunately, no BV meta-analysis

results for C-peptide were available in the EFLM BVD. Dittadi R

et al. (35) provided estimates of CVG and CVI for serum C-peptide

in healthy individuals, which were higher than those found in this

study; however, their data lacked corresponding confidence

intervals for both CVG and CVI. The EuBIVAS reported a higher

CVI estimate than what was observed in our study (36), a

discrepancy that may be attributed to differences in health status

among the study populations.

Parathyroid hormone and vitamin D are crucial regulators of Ca

and PHOS and are widely used in diagnosing and treating bone

metabolism disorders (37). This study analysed total 25(OH)D and

intact PTH levels in plasma. Total 25(OH)D primarily comprises 25-

hydroxyvitamin D3 [25(OH)D3], with its active form being 1,25-

hydroxyvitamin D [1,25(OH)2D]. The plasma concentration of 25

(OH)D varied up to 6–7 times among participants and was affected by

factors such as diet, season, and genetics, and it does not remain

constant over time (38). Consequently, Cavalier E et al. suggested that

any APS derived from BV estimates may not be suitable for this

parameter (39). However, in this study, the patients were in a stable

state, and the CVI and CVG did not exhibit any significant differences

compared to those in healthy individuals. The fluctuation in 25(OH)D

concentration also affects PTH secretion, thereby influencing calcium

and phosphorus homeostasis (38). Similar to 25(OH)D, PTH exists in

multiple forms. Second-generation PTH assays measure not only the

full-length, biologically active PTH 1–84 but also large C-terminal

PTH fragments, which tend to accumulate in patients with chronic

kidney disease. Corte Z and Venta R (40) assessed the BV estimates of

PTH in haemodialysis patients and healthy individuals using the same

analytical method employed in our study. Our CVI estimates for PTH

were higher than those reported for healthy subjects in their study, as

indicated by the mostly non-overlapping 95%CI of CVI. However, BV

estimates for PTH, Ca, and PHOS in this study were consistent with

the meta-analysis results reported by EFLM BVD. A high II for Ca,

exceeding 1.4, suggests a low degree of individual variation, implying

that population-based reference intervals are expected to have good

diagnostic sensitivity.

Here, we present the BV estimates for four markers used in the

diagnosis of anaemia and iron metabolism. To date, the EFLM BV

database includes fifteen studies on BV data for iron assays, with CVI

values ranging from 1.3 to 38.4%. This variation is largely attributed

to differences in study duration. Iron overload or deficiency can lead

to metabolic disorders (41), making it crucial to evaluate BV values

for iron metabolic markers in such conditions. Unfortunately, only

two studies have reported BV data for TSAT and TIBC. The CVI

estimates for TSAT were 25.9% and 38.2% (8, 42), which were higher

than the 18.3% observed in patients with T2DM. This indicates a

need for more studies to meet clinical requirements for interpreting

iron metabolism biomarkers.
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Overall, the BV data obtained from patients with T2DM in this

study contribute to enriching the BV database, which is still

under development. The BV data are essential for accurately

interpreting changes in serially detected biomarker levels in

patients with T2DM. The index of individuality (> 1.4) for Ca,

iron, and TSAT indicates that the reference intervals are likely

to exhibit good diagnostic sensitivity. The RCV, derived from

BV data, is considered an optimal approach for monitoring

patients with chronic conditions (43). Our findings show that BV

data for these four bone metabolism analytes and five thyroid

biomarkers in T2DM patients are similar to those in healthy

individuals. This finding supports the rationale for applying

RCVs developed using BV data from healthy individuals to

patients with T2DM who are in a stable condition. It is worth

noting that CVA in this study was derived from repeated samples.

Laboratories should estimate RCVs based on their specific

conditions. Furthermore, a more precise analysis of BV is needed,

as hormonal analytes are influenced by rhythms and seasons. This

study mainly focused on patients over 50 years old, with only three

patients between 40 and 50 years of age, highlighting a gap in BV

assessment for younger patients. Future research should address

these aspects.
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SUPPLEMENTARY FIGURE 1

Themedian values and 95% CIs of thyroid biomarkers, CORT, INS, and C-P for
each participant according to sex. CI, confidence interval; TSH, thyroid

stimulating hormone; FT3, free triiodothyronine; FT4, free thyroxine; T3,
triiodothyronine; T4, thyroxine; CORT, cortisol; INS, insulin; C-P, c-peptide.

SUPPLEMENTARY FIGURE 2

The median values and 95% CIs of bone metabolism and iron metabolism

biomarkers for each participant according to sex. CI, confidence interval;
PTH, parathyroid hormone; 25(OH)D, 25-hydroxyvitamin D; Ca, calcium;

PHOS, phosphorus; UIBC, unsaturated iron-binding capacity; TSAT,
transferrin saturation; TIBC, total iron-binding capacity.
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Association between serum
glucose potassium ratio and
short- and long-term all-cause
mortality in patients with sepsis
admitted to the intensive care
unit: a retrospective analysis
based on the MIMIC-IV database
Jiaqi Lou1†, Ziyi Xiang2†, Xiaoyu Zhu3†, Jingyao Song4,
Shengyong Cui1, Jiliang Li1, Guoying Jin1, Neng Huang1,
Youfen Fan1* and Sida Xu1*

1Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China, 2Institute of Pathology, Faculty of
Medicine, University of Bonn, Bonn, Germany, 3Health Science Center, Ningbo University, Ningbo,
Zhejiang, China, 4School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
Background: The glucose potassium ratio (GPR) is emerging as a biomarker for

predicting clinical outcomes in various conditions. However, its value in sepsis

patients admitted to the intensive care unit (ICU) remains unclear. Prior studies have

shown conflicting results, with some indicating GPR’s potential as an early warning

indicator of metabolic decompensation in septic patients, while others found no

significant association. The current study addresses these inconsistencies by

conducting the first large-scale, systematic validation of GPR in ICU sepsis patients.

Methods: This retrospective cohort study used patient records from the MIMIC-IV

database to examine outcomes in sepsis patients. The primary outcomes were

hospital and ICUmortality at 30, 60, and 90 days. The correlation between GPR and

these outcomes was evaluated using Kaplan-Meier survival analysis, Cox regression

models, and restricted cubic spline (RCS) regression analysis. Sensitivity analyses,

including Propensity Score Matching (PSM) and E-value Quantification and

Subgroup analyses, were performed to assess the robustness of the findings.

Results: The study included 9,108 patients with sepsis. Kaplan-Meier survival

curves indicated progressively worsening survival probabilities from Q1 to Q4 for

both hospital and ICU mortality across all time points. Cox analysis revealed that

patients in the highest GPR quartile (Q4) had a significantly increased risk of

mortality compared to those in the lowest quartile (Q1). A nonlinear relationship

between GPR and mortality was identified, with a critical threshold at GPR=30.

Subgroup analysis showed that the effect size and direction were consistent

across different subgroups. Sensitivity analyses, including E-value quantification

and propensity score matching, supported the robustness of our findings.

Conclusion: This study demonstrates that higher GPR levels strongly predict

increased short- and long-term mortality risk in ICU-admitted sepsis patients.
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The composite nature of GPR, reflecting both hyperglycemia and hypokalemia,

offers incremental prognostic value beyond single metabolic parameter. A critical

threshold effect was observed at GPR=30, where risk substantially increased. This

consistent association across patient subgroups positions GPR as a promising

biomarker for identifying high-risk sepsis patients, warranting prospective validation.
KEYWORDS

intensive care unit, MIMIC, mortality, sepsis, glucose potassium ratio, long term,
Cox regression
1 Background

Sepsis, a life-threatening organ dysfunction stemming from a

dysregulated host response to infection, poses a significant

challenge in intensive care units (ICUs) across the globe. Despite

advancements in medical care, it remains one of the leading causes

of morbidity and mortality, impacting millions annually and

resulting in substantial healthcare expenditures (1). The

pathophysiology of sepsis is intricate, characterized by a cascade

of inflammatory responses that lead to widespread cellular and

metabolic abnormalities. Notably, alterations in glucose and

potassium homeostasis are critical metabolic disruptions that

affect cellular function and systemic homeostasis. Hyperglycemia

is frequently observed in septic patients, often attributed to stress-

induced hypermetabolism and insulin resistance (2). This metabolic

state intensifies oxidative stress and inflammation, further

compromising immune function and organ performance.

Conversely, potassium imbalances, such as hypokalemia, are

common due to factors like increased renal excretion and

intracellular shifts caused by insulin therapy or catecholamine

surges (3). These electrolyte disturbances can lead to severe

complications, including cardiac arrhythmias and muscle

weakness (4), thereby worsening the clinical trajectory of sepsis.

In recent years, there has been a pressing need to identify reliable

prognostic markers to enhance the prediction of sepsis outcomes.

While markers like procalcitonin, C-reactive protein, and lactate

have shown promise (5), they primarily reflect inflammatory or
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perfusion-related aspects. Consequently, the identification of novel

prognostic biomarkers that capture the complex metabolic

imbalances in sepsis remains a crucial research priority.

The serum glucose-potassium ratio (GPR) has emerged as a

promising biomarker that reflects the dynamic interplay between

glucose and potassium homeostasis, which is often disrupted in

various pathological states. Its clinical utility has been recognized in

conditions such as diabetic ketoacidosis (6), myocardial infarction

(7), and heart failure (8), where it offers a composite view of

metabolic derangements that singular parameters fail to capture.

In these conditions, an altered GPR has been associated with

increased morbidity and mortality, suggesting its potential as a

prognostic tool. For instance, studies in myocardial infarction

patients have demonstrated a correlation between a high GPR

and adverse cardiovascular events, indicating that this biomarker

could enhance risk stratification and guide treatment decisions (9,

10). However, research on the application of GPR in sepsis remains

limited and has yielded mixed results. Some studies suggest that a

high GPR correlates with increased mortality rates and worsened

clinical outcomes in sepsis patients, positing that the ratio could

serve as an early warning of metabolic decompensation (11, 12). In

contrast, a study by Güler et al. (13) found no significant predictive

relationship between the glucose-to-potassium ratio and mortality

risk in sepsis or septic shock patients admitted to the emergency

intensive care unit. These discrepancies may stem from variations

in study design, patient populations, or analytical methods.

Furthermore, the lack of standardized thresholds and guidelines

for interpreting GPR in sepsis complicates its clinical application.

Thus, the current understanding of GPR’s relevance to sepsis is

limited, underscoring the need for comprehensive evaluations and

validation in larger, well-characterized cohorts to establish its

potential as a reliable prognostic indicator.

In this context, the MIMIC-IV database serves as a rich

repository of de-identified health-related data from thousands of

ICU admissions (14), offering a unique opportunity to

comprehensively investigate the clinical parameters of sepsis. The

database is publicly accessible via the MIMIC-IV platform and

contains extensive datasets, including vital signs, laboratory results,

and clinical outcomes, which facilitate large-scale retrospective

analyses (15). This study aims to explore the association between
frontiersin.org

https://doi.org/10.3389/fendo.2025.1555082
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Lou et al. 10.3389/fendo.2025.1555082
the serum glucose-potassium ratio and short- and long-term all-

cause mortality in ICU-admitted sepsis patients using the MIMIC-

IV database. By examining this relationship, we aim to enhance the

understanding of metabolic markers in sepsis and potentially

identify a novel prognostic indicator that can improve risk

stratification and inform treatment strategies for critically

ill patients.
2 Methods

2.1 Data source and study design

We conducted a retrospective cohort study utilizing data from

the MIMIC-IV database (version 2.2), which is developed and

maintained by the Massachusetts Institute of Technology (MIT)

and Beth Israel Deaconess Medical Center (BIDMC) (15). This

database comprises two in-house systems: a customized hospital-

wide electronic health record (EHR) and an ICU-specific clinical

information system, encompassing data from 2008 to 2024. One of

the authors (JQ L) completed the necessary authentication process

and passed the Collaborative Institutional Training Initiative

examination (authentication number 60691748) to access the

database. Relevant variables were extracted, and patient data were

de-identified to ensure privacy. Given the study’s retrospective

nature and the anonymized patient data, the Human Research

Ethics Committee of Ningbo No.2 Hospital waived the requirement

for informed consent.
2.2 Participants

The study encompassed all sepsis patients from the MIMIC-IV

v2.2 database. Sepsis was defined according to the Sepsis 3.0 criteria,

which were jointly established by the American Society for Critical

Care Medicine (SCCM) and the European Society for Critical Care

Medicine (ESICM). Patient data were extracted using PostgreSQL.

The inclusion criteria were sepsis patients aged 18 and above who

were admitted to the ICU for the first time. The following exclusion

criteria were applied: (1) patients under 18 years old; (2) ICU stay

shorter than 48 hours; (3) patients with recurrent sepsis (only their

initial ICU admission was considered); and (4) insufficient data,

such as missing records for serum glucose and potassium (Figure 1).
2.3 Research procedures and definitions

Data extraction from MIMIC-IV was performed using Structured

Query Language (SQL) via Navicat Premium. The extracted data

encompassed a comprehensive set of variables, including patient

demographics (age, height, weight, gender, insurance, race, marital

status), medical history (hypertension, type 2 diabetes, heart failure,

myocardial infarction, malignant tumors, chronic renal failure,

cirrhosis, hepatitis, tuberculosis, pneumonia, chronic obstructive

pulmonary disease, hyperlipidemia, etc.), and initial laboratory test
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results (white blood cell count, red blood cell count, neutrophil count,

lymphocyte count, platelet count, hemoglobin, mean corpuscular

volume, hematocrit, albumin, globulin, total protein, sodium,

potassium, calcium, chloride, blood glucose, GPR, anion gap, blood

pH, lactate, free calcium, thrombin time, fibrinogen, partial

thromboplastin time, international normalized ratio, bilirubin, ALT,

AST, urea nitrogen, creatinine, troponin, urine protein, creatine kinase,

creatine kinase isoenzyme, N-terminal B-type natriuretic peptide

precursor). Special treatments (mechanical ventilation and CRRT),

clinical scores (SOFA score, APACHE III score, SAPS II, Oasis score,

Charlson Comorbidity Index, SIRS score, GCS score), and clinical

outcomes (length of hospital stay, in-hospital mortality, ICU stay, ICU

mortality) were also recorded. The 30-day, 60-day, and 90-day

mortality rates were calculated. During data cleaning, predictors with

more than 30% missing data were excluded. The serum glucose-

potassium ratio (GPR) was calculated using the first recorded serum

glucose and potassiummeasurements obtained within 24 hours of ICU

admission, based on the formula: GPR = serum glucose (mg/dL)/serum

potassium (mmol/L) (16).
2.4 Outcomes and measures

The primary outcomes of this study were hospital mortality and

ICU mortality at 30-day, 60-day and 90-day.
2.5 Statistical analysis

Continuous variables were presented as mean ± standard

deviation or median (interquartile range), while categorical

variables were reported as frequency and percentage. Data

conforming to a normal distribution were analyzed through the t-

test or analysis of variance (ANOVA).

For data not following a normal distribution, the Mann-

Whitney U test or Kruskal-Wallis test was employed (17, 18).

Kaplan-Meier survival analysis was utilized to assess the incidence

of endpoint events across different GPR levels, with differences

evaluated through the log-rank test. Kaplan-Meier curves offer a

visual comparison of survival differences between groups or

conditions and do not require prior assumptions about data

distribution (19), so it was relatively flexible in use.

The Cox proportional hazards model was utilized to calculate

the hazard ratio (HR) and 95% confidence interval (CI) between the

GPR and the endpoint. This model, taking survival outcome and

survival time as dependent variables, enabled simultaneous analysis

of multiple factors affecting survival and analysis of the data with

censored survival time, and did not necessitate the estimation of the

survival distribution type (20). The GPR was analyzed both as a

continuous variable and by quartiles. Cox proportional hazards

models were constructed in three sequential tiers: Model 1

(univariate); Model 2 (adjusted for demographics: age, sex, height,

weight, insurance, marital status, race); Model 3 (further adjusted

for laboratory/clinical covariates: WBC, RBC, RDW, albumin,

chloride, ALT, AST, comorbidities [hypertension, diabetes, heart
frontiersin.org
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failure, etc.], treatments [CRRT], and severity scores [SOFA, SAPS

II, etc.]).

Restricted cubic splines (RCS) used 4 knots placed at the 5th,

35th, 65th, and 95th percentiles. Nonlinearity was tested via the

significance of the second spline term. The GPR was incorporated

as either a continuous or ordered variable into the model, with the

first quartile of the GPR serving as the reference group. The quartile

level was used for the calculation of the P-value of the trend. RCS

was a non-parametric flexible fitting method that models survival

curves by transforming survival times into piecewise functions at

individual nodes (21) and can accommodate various types of

survival time distributions without excessive assumptions.

Subgroup analyses (22) were conducted to explore potential

differences across various subgroups based on age (≤ 70 years and >

70 years), sex, BMI (<27.4 kg/m², 27.4-31.2 kg/m², ≥31.2 kg/m²),

age, sex, BMI, hypertension, type 2 diabetes, heart failure, CKD,

stroke, AKI, CRRT, and mechanical ventilation, to evaluate the

consistency of the GPR’s prognostic value for the primary

outcomes. Cox models were also adopted in subgroup analyses to

adjust for all variables in the patient’s baseline information.

Sensitivity analyses included: (1) E-values to quantify unmeasured

confounding. To evaluate the potential impact of unmeasured

confounding on the association between GPR and mortality

outcomes, we also calculated E-values using the formula: E-value =

RR + √(RR*(RR-1)), where RR is the hazard ratio (HR) derived from

Cox regression models. This approach helped assess the robustness of

our findings against unmeasured confounding.; (2) Propensity score

matching (PSM) (22)). To further assess the robustness of our findings

and address potential confounding factors, we conducted a propensity

score matching (PSM) analysis. This method helps to reduce selection

bias by balancing the distribution of observed covariates between the

exposure groups (high GPR group and low GPR group). We defined

the high GPR group as patients with GPR above the mean value and

the low GPR group as patients with GPR below the mean value. The

nearest-neighbor matching method was used to match each patient in

the high GPR group with two patients in the low GPR group (1:2

matching), with a caliper width of 0.2 standard errors. Categorical

variables were converted into dummy variables for the analysis. For

example, marital status was categorized as divorced (1) versus others

(0), married (1) versus others (0), and so on. The matching process

aimed to create a more balanced comparison group by controlling for

key variables such as age, sex, and SOFA score, which are known to

influence outcomes in sepsis patients. In the PSM analysis, the balance

assessment focuses on comparing the distribution of covariates

between the treatment (high GPR) and control (low GPR) groups.

The goal of balance assessment is to ensure that these groups are

comparable in terms of key covariates, which is crucial for reducing

selection bias and enhancing the validity of the study. It is important to

note that different outcome variables do not influence the results of

balance assessment, as the assessment is solely concerned with the

distribution of covariates. Thus, our selection of covariates for balance

assessment is based on their potential confounding effects on the

relationship between GPR and hospital mortality. This approach

ensures that the matched groups are balanced in terms of key

covariates, providing a solid foundation for the subsequent analysis
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of the association between GPR and hospital mortality. After matching,

we repeated the Cox regression analysis to assess the association

between GPR and hospital mortality. The primary outcome was the

all-cause mortality at 30-day, 60-day, and 90-day. The balance of

covariates before and after matching was assessed using standardized

bias and t-tests. A standardized bias of less than 10% and a p-value

greater than 0.05 for the t-tests indicated successful matching.

Additionally, a common support test was performed to ensure that

the propensity scores of the treatment and control groups overlapped

sufficiently, minimizing potential biases.

Data processing and analysis were carried out via R version 4.3.0,

along with Zstats v1.0 (www.zstats.net), with statistical significance

set at P<0.05 for two-tailed tests. The primary analyses utilized the

following packages: Data management and transformation were

conducted using dplyr and tidyr. Survival analyses including

Kaplan-Meier curves, log-rank tests (via survdiff()), and

univariate/multivariate Cox proportional hazards regression (via

coxph()) were implemented with the survival package. Nonlinear

relationships were assessed through RCS using the rms package,

with knots placement and trend significance testing performed via

rcs() and anova() functions. Subgroup analyses were streamlined

using purrr for iterative modeling and broom for result

standardization. E-value analysis was also conducted in R,

utilizing packages survival for Cox regression and EValue for E-

value calculation. The PSM was performed using the MatchIt

package in R, which allows for various matching algorithms,

including nearest neighbor, optimal, and full matching.

Visualizations were generated with ggplot2 and enhanced using

survminer for survival plots. For missing values in the data, the

multiple imputation method of the random forest was used to

interpolate the missing value data (through the R package “mice”).

Features with missing values exceeding 50% were removed

before interpolation.
3 Results

Among the adult patients in the MIMIC-IV database, a total of

22,517 subjects met the eligibility criteria. From the database, 148

prognostic factors were initially extracted. Following data cleaning,

80 predictors with over 30% missing data were excluded. In the end,

68 forecast factors were included in the model.
3.1 Characteristics of included patients

A total of 9,108 people were included in the study, of which

2,272 (24.95%) were in GPR quantile 1 (Q1) group (GPR ≤ 6.67),

2,282 (25.05%) people were in quantile 2 group (6.67 < GPR≤

25.71), 2,277 people were in quantile 3 group (25.71 < GPR ≤

40.81), and 2,277 people in quantile 4 group, accounting for 25.00%

(GPR > 40.81). IQR is 15.09. The average GPR of all patients was

35.55 ± 16.49. Upon stratification into these four categories, the

distribution of each variable across the groups was analyzed. All

baseline data are presented in Table 1 and Supplementary Table 1.
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TABLE 1 Summary of characteristics that are statistically different of the study population.

Variables
Total

(n = 9,108)
Q1

(n = 2,272)
Q2

(n = 2,282)
Q3

(n = 2,277)
Q4

(n = 2,277)
Statistic P

Characteristics

Age (year) 71.61 ± 14.73 72.07 ± 14.94 71.52 ± 14.98 71.95 ± 14.52 70.91 ± 14.45 F=2.91 0.033

Weight (kg) 79.16 ± 23.62 77.69 ± 23.65 77.85 ± 23.39 78.96 ± 22.97 82.15 ± 24.17 F=17.45 <0.001

Gender (n(%)) c²=13.82 0.003

F 4038 (44.33) 944 (41.55) 993 (43.51) 1046 (45.94) 1055 (46.33)

M 5070 (55.67) 1328 (58.45) 1289 (56.49) 1231 (54.06) 1222 (53.67)

Marital Status, n(%) c²=51.12 <0.001

Divorced 644 (7.07) 165 (7.26) 163 (7.14) 168 (7.38) 148 (6.50)

Married 3801 (41.73) 944 (41.55) 960 (42.07) 937 (41.15) 960 (42.16)

NA 1017 (11.17) 200 (8.80) 229 (10.04) 264 (11.59) 324 (14.23)

Single 2127 (23.35) 573 (25.22) 564 (24.72) 497 (21.83) 493 (21.65)

Widowed 1519 (16.68) 390 (17.17) 366 (16.04) 411 (18.05) 352 (15.46)

Laboratory parameters

WBC (×109/L) 13.76 ± 12.36 13.37 ± 13.52 13.08 ± 11.54 13.72 ± 9.73 14.88 ± 14.11 F=9.27 <0.001

RBC (×1012/L) 3.42 ± 0.70 3.32 ± 0.68 3.38 ± 0.66 3.46 ± 0.71 3.51 ± 0.73 F=35.03 <0.001

Hemoglobin (g/dL) 10.23 ± 1.97 9.93 ± 1.90 10.15 ± 1.86 10.36 ± 2.01 10.47 ± 2.07 F=34.01 <0.001

RDW (%) 16.00 ± 2.51 16.48 ± 2.63 15.96 ± 2.47 15.88 ± 2.50 15.67 ± 2.36 F=43.44 <0.001

Hematocrit (%) 31.29 ± 5.92 30.60 ± 5.83 30.95 ± 5.52 31.60 ± 6.01 32.02 ± 6.19 F=26.51 <0.001

Albumin (g/L) 2.91 ± 0.65 2.86 ± 0.65 2.89 ± 0.64 2.96 ± 0.67 2.93 ± 0.65 F=4.76 0.003

Sodium (mmol/L) 138.56 ± 5.76 137.62 ± 5.44 138.56 ± 5.55 138.81 ± 5.43 139.24 ± 6.44 F=32.59 <0.001

Potassium (mmol/L) 4.26 ± 0.64 4.60 ± 0.68 4.25 ± 0.58 4.14 ± 0.57 4.06 ± 0.59 F=344.80 <0.001

Chlorine (mmol/L) 104.06 ± 7.03 103.48 ± 6.87 104.42 ± 6.73 104.20 ± 6.74 104.12 ± 7.69 F=7.51 <0.001

Glucose (mmol/L) 148.62 ± 64.05 96.47 ± 18.25 122.39 ± 17.48 148.66 ± 23.13 226.90 ± 75.54 F=4205.85 <0.001

Anion gap (mmol/L) 15.73 ± 4.61 15.99 ± 4.95 14.97 ± 4.21 15.33 ± 4.21 16.65 ± 4.85 F=60.36 <0.001

pH 7.35 ± 0.09 7.34 ± 0.09 7.36 ± 0.08 7.36 ± 0.08 7.35 ± 0.10 F=32.84 <0.001

PCO2 (mmHg) 41.76 ± 11.39 42.69 ± 12.88 41.85 ± 10.96 41.51 ± 11.13 41.13 ± 10.57 F=5.78 <0.001

PO2 (mmHg) 118.76 ± 71.09 113.39 ± 72.25 122.64 ± 73.70 121.03 ± 69.82 117.69 ± 68.65 F=5.45 <0.001

Free calcium (mmol/L) 1.10 ± 0.11 1.11 ± 0.11 1.11 ± 0.10 1.10 ± 0.10 1.10 ± 0.11 F=3.67 0.012

PT (s) 18.31 ± 10.24 19.64 ± 11.10 17.67 ± 8.72 17.64 ± 9.14 18.31 ± 11.56 F=17.03 <0.001

Fibrinogen (mg/dL) 310.32 ± 187.88 287.49 ± 173.05 291.86 ± 171.25 335.99 ± 201.95 330.48 ± 201.03 F=11.33 <0.001

PPT (s) 40.89 ± 20.28 40.87 ± 17.61 39.63 ± 18.68 40.39 ± 20.54 42.65 ± 23.60 F=8.20 <0.001

INR 1.68 ± 0.99 1.82 ± 1.12 1.62 ± 0.86 1.63 ± 0.97 1.66 ± 1.00 F=18.18 <0.001

Total bilirubin (mg/dL) 2.79 ± 5.88 3.67 ± 6.79 2.78 ± 5.87 2.84 ± 6.08 1.92 ± 4.47 F=22.47 <0.001

Direct bilirubin (mg/dL) 4.24 ± 5.73 5.05 ± 6.18 4.33 ± 5.84 4.09 ± 5.52 3.29 ± 5.12 F=2.88 0.035

Indirect bilirubin (mg/dL) 2.22 ± 2.85 2.65 ± 3.45 2.45 ± 2.83 1.85 ± 2.32 1.86 ± 2.46 F=3.36 0.019

ALT (U/L) 167.94 ± 596.01 186.59 ± 784.00 134.50 ± 479.30 140.58 ± 452.44 205.54 ± 597.57 F=5.00 0.002

AST (U/L) 302.91 ± 1065.00 349.66 ± 1235.43 253.35 ± 858.19 234.05 ± 758.68 366.35 ± 1273.72 F=5.79 <0.001

Urea nitrogen (mmol/L) 35.33 ± 25.42 39.73 ± 27.33 32.31 ± 24.14 32.67 ± 23.03 36.64 ± 26.23 F=44.41 <0.001

(Continued)
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TABLE 1 Continued

Variables
Total

(n = 9,108)
Q1

(n = 2,272)
Q2

(n = 2,282)
Q3

(n = 2,277)
Q4

(n = 2,277)
Statistic P

Laboratory parameters

Creatinine (mg/dL) 1.77 ± 1.60 2.17 ± 1.96 1.57 ± 1.39 1.61 ± 1.47 1.74 ± 1.42 F=70.06 <0.001

LDH (U/L) 715.76 ± 1616.90 828.65 ± 2105.51 633.76 ± 1211.17 563.17 ± 1040.05 829.50 ± 1828.93 F=7.34 <0.001

CKMB (U/L) 21.15 ± 52.72 14.24 ± 34.27 17.83 ± 48.56 21.76 ± 51.27 28.24 ± 65.76 F=12.94 <0.001

Troponint (mg/L) 0.75 ± 2.38 0.39 ± 1.15 0.61 ± 1.71 0.71 ± 2.06 1.14 ± 3.43 F=16.66 <0.001

NT-proBNP (pmol/L)
10065.50
± 12234.37

11888.63
± 12317.15

8313.65
± 10569.28

9541.94
± 12367.29

10538.55
± 13343.72

F=2.69 0.045

Treatment

CRRT (n(%)) c²=18.04 <0.001

No 8297 (91.10) 2026 (89.17) 2112 (92.55) 2091 (91.83) 2068 (90.82)

Yes 811 (8.90) 246 (10.83) 170 (7.45) 186 (8.17) 209 (9.18)

Ventilation (hours) 101.88 ± 145.10 91.36 ± 144.60 99.46 ± 141.63 108.83 ± 152.51 107.59 ± 140.66 F=5.94 <0.001

Comorbidity

Hypertension (n(%)) c²=41.33 <0.001

No 5615 (61.65) 1526 (67.17) 1394 (61.09) 1350 (59.29) 1345 (59.07)

Yes 3493 (38.35) 746 (32.83) 888 (38.91) 927 (40.71) 932 (40.93)

Type 2 diabetes mellitus
(n(%))

c²=640.05 <0.001

No 6235 (68.46) 1760 (77.46) 1787 (78.31) 1599 (70.22) 1089 (47.83)

Yes 2873 (31.54) 512 (22.54) 495 (21.69) 678 (29.78) 1188 (52.17)

Myocardial infarct (n(%)) c²=50.89 <0.001

No 8397 (92.19) 2139 (94.15) 2130 (93.34) 2104 (92.40) 2024 (88.89)

Yes 711 (7.81) 133 (5.85) 152 (6.66) 173 (7.60) 253 (11.11)

Malignant tumor (n(%)) c²=35.32 <0.001

No 7061 (77.53) 1719 (75.66) 1720 (75.37) 1758 (77.21) 1864 (81.86)

Yes 2047 (22.47) 553 (24.34) 562 (24.63) 519 (22.79) 413 (18.14)

Chronic kidney diseases
(n(%))

c²=17.68 <0.001

No 6884 (75.58) 1663 (73.20) 1776 (77.83) 1753 (76.99) 1692 (74.31)

Yes 2224 (24.42) 609 (26.80) 506 (22.17) 524 (23.01) 585 (25.69)

Acute renal failure (n(%)) c²=27.54 <0.001

No 4374 (48.02) 1011 (44.50) 1188 (52.06) 1106 (48.57) 1069 (46.95)

Yes 4734 (51.98) 1261 (55.50) 1094 (47.94) 1171 (51.43) 1208 (53.05)

Cirrhosis (n(%)) c²=42.28 <0.001

No 7998 (87.81) 1934 (85.12) 1979 (86.72) 2009 (88.23) 2076 (91.17)

Yes 1110 (12.19) 338 (14.88) 303 (13.28) 268 (11.77) 201 (8.83)

Stroke (n(%)) c²=25.50 <0.001

No 8138 (89.35) 2068 (91.02) 2054 (90.01) 2043 (89.72) 1973 (86.65)

Yes 970 (10.65) 204 (8.98) 228 (9.99) 234 (10.28) 304 (13.35)

(Continued)
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Patients in Q1 were older and had lower body weight than those

in the other groups, and there were differences in sex and marital

status among the four groups. WBC, RBC, platelet, hemoglobin,

hematocrit, albumin, sodium, glucose, anion gap, fibrinogen, PPT,

ALT, CK, CKMB were also higher in Q4 group than in Q1 group,

but RDW, potassium, hematocrit and bilirubin were lower than Q1

group. There was no significant difference in height, insurance,

languages, CRRT days, ventilation, COPD, heart failure, hepatitis,

tuberculosis and pneumonia (P>0.05) (Table 1).
3.2 Kaplan-Meier survival curve analysis

Kaplan-Meier curves (Figure 2) demonstrated worsening

survival probabilities from Q1 to Q4 for both hospital and ICU

mortality at 30-day, 60-day, and 90-day intervals (log-rank test, all

P < 0.001). Specifically, a total of 9,108 people were included in the
Frontiers in Endocrinology 0779
study, of which 2,272 (24.95%) were in GPR quantile 1 (Q1) group

(GPR ≤ 6.67), 2,282 (25.05%) people were in quantile 2 group (6.67

< GPR≤ 25.71), 2,277 people were in quantile 3 group (25.71 < GPR

≤ 40.81), and 2,277 people in quantile 4 group, accounting for

25.00% (GPR > 40.81).
3.3 Cox regression models for all-cause
mortality (in hospital and ICU)

In the Cox regression analysis, a higher GPR was positively

correlated with increased mortality rates in both the ICU and

hospital settings among critically ill patients with sepsis. When

the GPR was analyzed as a continuous variable, it was

independently associated with a higher risk of hospital mortality

both at 30-day, 60-day and 90-day (All P < 0.05). Patients in Q4 had

a 15–20% higher risk of mortality compared to Q1 across all time
TABLE 1 Continued

Variables
Total

(n = 9,108)
Q1

(n = 2,272)
Q2

(n = 2,282)
Q3

(n = 2,277)
Q4

(n = 2,277)
Statistic P

Comorbidity

Hyperlipidemia, (n(%)) c²=37.19 <0.001

No 6215 (68.24) 1628 (71.65) 1572 (68.89) 1570 (68.95) 1445 (63.46)

Yes 2893 (31.76) 644 (28.35) 710 (31.11) 707 (31.05) 832 (36.54)

Acute kidney injury stage
(n(%))

c²=34.38 <0.001

1 1403 (18.94) 356 (19.63) 347 (18.89) 353 (18.76) 347 (18.51)

2 3087 (41.67) 666 (36.71) 835 (45.45) 810 (43.04) 776 (41.39)

3 2918 (39.39) 792 (43.66) 655 (35.66) 719 (38.20) 752 (40.11)

Scoring systems

SOFA score (score) 6.77 ± 3.90 7.15 ± 4.08 6.23 ± 3.65 6.52 ± 3.74 7.18 ± 4.02 F=33.60 <0.001

APSIII score (score) 58.48 ± 23.59 60.89 ± 24.31 53.75 ± 21.65 56.23 ± 21.93 63.08 ± 25.13 F=76.14 <0.001

SAPSII score (score) 45.83 ± 14.75 47.50 ± 15.57 43.74 ± 13.71 44.94 ± 14.03 47.14 ± 15.28 F=34.07 <0.001

OASIS, score (score) 36.09 ± 8.90 36.05 ± 8.95 35.07 ± 8.57 35.91 ± 8.70 37.32 ± 9.24 F=24.98 <0.001

GCS score (score) 13.06 ± 3.18 13.12 ± 3.08 13.23 ± 2.90 13.07 ± 3.15 12.84 ± 3.53 F=6.07 <0.001

Charlson score (score) 6.53 ± 2.81 6.69 ± 2.81 6.42 ± 2.76 6.42 ± 2.79 6.59 ± 2.87 F=5.23 <0.001

SIRS score (score) c²=110.42 <0.001

0 60 (0.66) 18 (0.79) 19 (0.83) 13 (0.57) 10 (0.44)

1 637 (6.99) 188 (8.27) 187 (8.19) 145 (6.37) 117 (5.14)

2 2302 (25.27) 655 (28.83) 629 (27.56) 549 (24.11) 469 (20.60)

3 3837 (42.13) 916 (40.32) 939 (41.15) 993 (43.61) 989 (43.43)

4 2272 (24.95) 495 (21.79) 508 (22.26) 577 (25.34) 692 (30.39)
Continuous variables are expressed as the median and interquartile range. Counting data are presented as numbers and percentages. The medical condition was defined based on the ICD-9 code.
WBC, white blood cell; RBC, red blood cell; RDW, red blood cell distribution width; PCO2, partial pressure of carbon dioxide; PO2, partial pressure of oxygen; LD, Lactate Dehydrogenase; PT,
prothrombin time; PTT, partial thromboplastin time; INR, international normalized ratio; ALT, alanine aminotransferase; AST, aspartate aminotransferas; CKMB, creatine kinase-MB; BCK,
blood ketone; NT-proBNP, N-terminal pro-brain natriuretic peptide; CRRT, continuous renal replacement therapy; COPD, chronic obstructive pulmonary disease; OASIS, oxford acute severity
of illness score; SASPII, simplified acute physiology score II; SOFA, sequential organ failure assessment; CNS, central nervous system; GCS, Glasgow Coma Scale; SIRS, Systemic Inflammatory
Response Syndrome; F, ANOVA; c², Chi-square test; SD, standard deviation.
Bold red font indicates p-values with statistical significance.
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points. At 60-day, when categorized into quartiles, Model 1 revealed

that the risk of hospital mortality for Q4 were 19% higher than for

Q1 (HR 1.19 [95% CI 1.08 to 1.31], P < 0.001), Model 2 revealed

that the risk of hospital mortality for Q4 were 18% higher than for

Q1 (HR 1.18 [95% CI 1.03 to 1.35], P < 0.001). At 90-day, when

categorized into quartiles, Model 1 revealed that the risk of hospital

mortality for Q4 were 20% higher than for Q1 (HR 1.20 [95% CI

1.09 to 1.32], P < 0.001), Model 2 revealed that the risk of hospital

mortality for Q4 were 15% higher than for Q1 (HR 1.15 [95% CI

1.01 to 1.32], P = 0.037). The differences in Model 3 results

compared to Models 1 and 2 are likely due to the additional

adjustment for confounding variables such as WBC, RBC, RDW,

albumin, chloride, ALT, etc.

For ICU mortality, the GPR, when used as a continuous variable,

was significantly associated with an elevated risk of ICU death in

Models 1, 2 and 3 (All P < 0.001). Furthermore, when the GPR was

categorized into quartiles, at 30-day, Model 1 demonstrated that the

risk of ICU mortality for Q4 was 1.13 times that of Q1 (HR 1.13 [95%
Frontiers in Endocrinology 0880
CI 1.01 to 1.26], P < 0.001). At 60-day, Model 1 demonstrated that the

risk of ICU mortality for Q4 was 1.23 times that of Q1 (HR 1.23 [95%

CI 1.10 to 1.37], P < 0.001), Model 2 demonstrated that the risk of ICU

mortality for Q4 was 1.21 times that of Q1 (HR 1.04 [95% CI 1.01 to

1.41], P = 0.015) (Table 2).
3.4 RCS regression models for all-cause
mortality (in hospital and ICU)

We subsequently employed the RCS regression models to elucidate

the risk and discovered a nonlinear association between the GPR and

mortality. Figures 3 and 4 illustrate the results of the univariate and

multivariate analyses regarding the relationship between the GPR and

in-hospital, In-ICU mortality in three time points, respectively.

Figures 3A, B present the findings of the univariate and

multivariate analyses concerning the association between the GPR

and hospital mortality on 30-day, respectively. Before adjusting for
FIGURE 1

Selection of the study population from the MIMIC-IV database.
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30-day in-hospital mortality, the p-value for the overall effect was <

0.001, and the p-value for the nonlinear effect was also < 0.001.

Following adjustment, all p-values were less than 0.05. Similarly,

nonlinear associations were observed for 60-day (Figures 3C, D)

and 90-day (Figures 3E, F) in-hospital mortality, both before and

after adjustment for relevant factors.

For ICU mortality, on 30-day mortality (Figures 4A, B), the

unadjusted p value for the overall effect was less than 0.001, the p

value for the nonlinear effect was less than 0.001, and all adjusted p
Frontiers in Endocrinology 0981
values were greater than 0.05. The unadjusted p value was less than

0.001 for the overall effect and less than 0.001 for the nonlinear

effect on 60-day mortality (Figures 4C, D). The adjusted p value was

0.007 for the overall effect and 0.004 for the nonlinear effect. Finally,

on 90-day mortality (Figures 4E, F), the unadjusted p value was less

than 0.001 for the overall effect and less than 0.001 for the nonlinear

effect. After adjustment, the p value of overall effect was 0.014, and

the p value of nonlinear effect was 0.01. Figures 3 and 4 demonstrate

that the inflection point in both multifactorial models is about 30.
FIGURE 2

Kaplan-Meier survival curve of cumulative survival rate during hospitalization and ICU for groups. (A): Kaplan-Meier survival curve of cumulative
survival rate during hospitalization for groups at 30-day. (B): Kaplan-Meier survival curve of cumulative survival rate during ICU for groups at 30-day.
(C) Kaplan-Meier survival curve of cumulative survival rate during hospitalization for groups at 60-day. (D) Kaplan-Meier survival curve of cumulative
survival rate during ICU for groups at 60-day. (E) Kaplan-Meier survival curve of cumulative survival rate during hospitalization for groups at 90-day.
(F) Kaplan-Meier survival curve of cumulative survival rate during ICU for groups at 90-day. X-axis: Time (Days); Y-axis: Survival Probability. Log-rank
test, all P < 0.001. Q1: dark blue; Q2: red; Q3: green; Q4: light blue.
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TABLE 2 The association between GPR groups and in-hospital and ICU mortality at 30-day, 60-day and 90-day.

Exposure Model 1 Model 2 Model 3

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

In-hospital mortality

At 30-day

GPR as continuous 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) 0.012 1.01 (1.01 ~ 1.01) 0.012

Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Q2 0.73 (0.65 ~ 0.81) <0.001 0.79 (0.68 ~ 0.91) 0.002 0.87 (0.70 ~ 1.08) 0.200

Q3 0.82 (0.74 ~ 0.91) <0.001 0.81 (0.70 ~ 0.93) 0.004 0.80 (0.64 ~ 0.99) 0.042

Q4 1.05 (0.95 ~ 1.15) 0.370 0.99 (0.86 ~ 1.13) 0.838 0.99 (0.80 ~ 1.22) 0.916

At 60-day

GPR as continuous 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) 0.012

Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Q2 0.81 (0.73 ~ 0.90) <0.001 0.92 (0.80 ~ 1.07) 0.270 0.91 (0.74 ~ 1.13) 0.397

Q3 0.94 (0.85 ~ 1.04) 0.214 0.98 (0.85 ~ 1.13) 0.795 0.92 (0.75 ~ 1.13) 0.433

Q4 1.19 (1.08 ~ 1.31) <0.001 1.18 (1.03 ~ 1.35) 0.015 1.14 (0.93 ~ 1.41) 0.202

At 90-day

GPR as continuous 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) 0.012

Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Q2 0.81 (0.73 ~ 0.90) <0.001 0.90 (0.78 ~ 1.03) 0.135 0.87 (0.70 ~ 1.07) 0.173

Q3 0.93 (0.85 ~ 1.03) 0.182 0.96 (0.83 ~ 1.10) 0.523 0.91 (0.74 ~ 1.12) 0.355

Q4 1.20 (1.09 ~ 1.32) <0.001 1.15 (1.01 ~ 1.32) 0.037 1.10 (0.90 ~ 1.35) 0.351

ICU mortality

At 30-day

GPR as continuous 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) <0.001

Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Q2 0.72 (0.63 ~ 0.81) <0.001 0.81 (0.69 ~ 0.96) 0.017 0.73 (0.65 ~ 0.81) <0.001

Q3 0.87 (0.78 ~ 0.98) 0.024 0.85 (0.72 ~ 1.00) 0.052 0.82 (0.74 ~ 0.91) <0.001

Q4 1.13 (1.01 ~ 1.26) 0.027 1.07 (0.91 ~ 1.24) 0.425 1.05 (0.95 ~ 1.15) 0.370

At 60-day

GPR as continuous 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) 0.012

Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Q2 0.76 (0.67 ~ 0.86) <0.001 0.89 (0.76 ~ 1.06) 0.190 0.73 (0.65 ~ 0.81) <0.001

Q3 0.93 (0.83 ~ 1.05) 0.255 0.96 (0.82 ~ 1.13) 0.618 0.82 (0.74 ~ 0.91) <0.001

Q4 1.23 (1.10 ~ 1.37) <0.001 1.21 (1.04 ~ 1.41) 0.015 1.05 (0.95 ~ 1.15) 0.370

At 90-day

GPR as continuous 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) 0.012

Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Q2 0.76 (0.67 ~ 0.86) <0.001 0.88 (0.75 ~ 1.04) 0.148 0.73 (0.65 ~ 0.81) <0.001

(Continued)
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3.5 Subgroup analysis

In subgroup analyses, the directionality of the effect estimates in

subgroups was consistent with the overall outcomes. Subgroup analyses

were stratified by age, sex, BMI, hypertension, type 2 diabetes, heart

failure, CKD, stroke, AKI, CRRT, and mechanical ventilation.

The directional trends in the effect estimates for in-hospital

mortality (Figure 5A) in almost subgroups were consistent with the

overall outcomes before adjustment for covariates. Similarly, almost

all subgroups were consistent with the overall outcome of ICU

mortality (Figure 5B). In addition, there was an interaction between

mechanical ventilation subgroup parameters (P < 0.01 for

interaction). After adjustment for covariates, the directionality of

the effect estimates in in-hospital and ICU mortality was consistent

with the overall outcome in almost all subgroups except AKI and

the subgroups with CRRT and no mechanical ventilation. There

was no interaction between GPR and age, gender, BMI,

hypertension, type 2 diabetes, heart failure, CKD, shock and

mechanical ventilation (all P for interaction >0.05).
3.6 Sensitivity analyses

The E-values for the association between GPR and mortality

outcomes at different time points are as follows: For ICU mortality,

the E-values are 1.60 (30-day, HR=1.13), 1.79 (60-day, HR=1.23),

and 1.85 (90-day, HR=1.26). For in-hospital mortality, the E-values

are 1.11 (30-day, HR=1.05), 1.66 (60-day, HR=1.19), and 1.68 (90-

day, HR=1.20). An E-value of 1.60 for 30-day ICUmortality implies

that an unmeasured confounder would need to be associated with

both the exposure and outcome by at least 1.60-fold to fully explain

the observed association. Similarly, higher E-values for other time

points indicate the minimum association strength required for

potential unmeasured confounders to explain the observed results.

The common support test results confirmed that the propensity

scores of the high GPR and low GPR groups had sufficient overlap.

The kernel density plots showed that the density lines for the two

groups were closely aligned both before and after matching, indicating

a large common support region. The histograms further

demonstrated that most observations were within the common
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support range, ensuring minimal sample loss during the matching

process. This confirmed the reliability of the matching process and the

comparability of the matched groups. The balance assessment figures

demonstrate that after PSM, the bias for all covariates was reduced to

below 10%, and the t-tests showed no significant differences between

the groups (p > 0.05). This indicates that the matching process

successfully balanced the covariates between the high and low GPR

groups. The kernel density and histogram figures show that the

propensity scores of the two groups had sufficient overlap both

before and after matching. After matching, the density lines and

histogram bars for the two groups were closely aligned, indicating a

large common support region and minimal loss of samples. This

ensures that the matched groups are comparable and the results are

reliable. These visualizations provide additional evidence of the

effectiveness of the PSM method in reducing bias and enhancing

the comparability of the groups, thereby strengthening the validity of

the study findings. (Supplementary Table 2, Figures 6, 7).
4 Discussion

This study examines the association between GPR and short-

and long-term all-cause mortality in ICU-admitted sepsis patients

using the MIMIC-IV database. With a large sample and extensive

confounder adjustment, the results show a significant link between

higher GPR and increased mortality risk in both hospital and ICU

settings over 90 days. The nonlinear relationship identified by

restricted cubic spline regression, with an inflection point at GPR

30, adds depth to GPR’s prognostic potential. Our study is the first

large-scale validation of GPR in ICU sepsis patients, addressing

inconsistencies in prior literature (13, 23). The composite GPR

captures synergistic metabolic dysregulation (hyperglycemia +

hypokalemia), explaining its incremental prognostic value over

isolated markers. The U-shaped association—lower risk in Q2/Q3

vs. Q1—may reflect protective effects of moderate metabolic stress,

whereas extremes (Q1: hypokalemia; Q4: severe dysregulation)

drive mortality. The former is likely to exacerbate cardiac

instability, while the latter’s extreme dysregulation overrides

compensatory mechanisms. This aligns with the RCS-identified

threshold (GPR=30), beyond which mortality risk escalates
TABLE 2 Continued

Exposure Model 1 Model 2 Model 3

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

ICU mortality

Q3 0.95 (0.84 ~ 1.06) 0.353 0.95 (0.81 ~ 1.11) 0.515 0.82 (0.74 ~ 0.91) <0.001

Q4 1.26 (1.13 ~ 1.40) <0.001 1.20 (1.03 ~ 1.40) 0.018 1.05 (0.95 ~ 1.15) 0.370
*GPR: Q1 (Quartile 1; GPR ≤ 6.67, n=436), Q2 (Quartile 2; 6.67 < GPR ≤ 25.71), Q3 (Quartile 3; 25.71 < GPR ≤ 40.81) and Q4 (Quartile 4; GPR > 40.81). HR: hazard ratio; CI:
confidential interval.
Model 1: Cox univariate analysis.
Model 2: Adjusted for age, gender, height, weight, insurance, marital status and race.
Model 3: Adjusted for age, gender, height, weight, insurance, marital status and race, WBC, RBC, RDW, albumin, chloride, ALT, AST, Hypertension, Type 2 diabetes mellitus, heart failure,
malignant tumor, chronic kidney disease, acute renal failure, stroke, hyperlipidemia, chronic obstructive pulmonary disease, SIRS, CRRT, Oxford acute severity of illness score, Simplified acute
physiology score II, Sequential organ failure assessment, Central nervous system, Glasgow coma scale.
Bold red font indicates p-values with statistical significance.
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sharply. Sensitivity analyses including E-value quantification and

propensity score matching further reinforced the robustness of our

primary findings. The E-values (1.60–1.85 for ICU mortality)

indicate that unmeasured confounders would need strong

associations to nullify our results, while PSM confirmed the

mortality gradient across quartiles in matched cohorts. These

findings underscore GPR’s utility as a prognostic indicator in

critically ill septic patients.

This study underscores that GPR, when evaluated both as a

continuous variable and within categorized quartiles, stands out as a

predictive marker for mortality in septic patients requiring intensive
Frontiers in Endocrinology 1284
care. In particular, patients belonging to the highest GPR quartile

(Q4) consistently demonstrated notably higher mortality rates

compared to those in the lowest quartile (Q1) across all measured

intervals (30, 60, and 90 days) and settings (hospital and ICU), as

shown by Hazard Ratios (HRs) that reflected increased risk. These

findings highlight the GPR’s potential as an independent prognostic

indicator beyond traditional physiological and biochemical markers

often used in ICU settings. While our study offers novel insights

into the prognostic role of GPR in sepsis, it builds upon a modest

body of prior research investigating GPR in various medical

contexts. In non-septic conditions, such as myocardial infarction
FIGURE 3

RCS regression for GPR and in-hospital mortality. (A) Univariate analysis at 30-day (P for overall effect <0.001; P for nonlinearity <0.001). (B)
Multivariate analysis at 30-day (P for overall effect <0.001; P for nonlinearity <0.001). (C) Univariate analysis at 60-day (P for overall effect <0.001; P
for nonlinearity <0.001). (D) Multivariate analysis at 60-day (P for overall effect 0.007; P for nonlinearity 0.004). (E) Univariate analysis at 90-day (P for
overall effect <0.001; P for nonlinearity <0.001). (F) Multivariate analysis at 90-day (P for overall effect 0.014; P for nonlinearity 0.010).
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(7) and heart failure (6), elevated GPRs have also demonstrated

correlations with increased morbidity and mortality, signifying its

broad potential as a marker of metabolic imbalance. In ischemic

stroke patients, a study (24) found that GPR was positively

correlated with 30-day mortality, and the relationship between

them was linear. In a multicenter retrospective cohort study (25),

baseline GPR serum was found to be an independent predictor of

all-cause mortality within 12 months in patients with acute and

subacute ischemic stroke, and the study by Zhang et al. (26) also

reached a similar conclusion. Chen et al. (27) found that high GPR
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was an independent risk factor for in-hospital mortality in patients

with Acute type A aortic dissection (ATAAD). Serum GPR was

observed in 146 patients. In cases of severe traumatic brain injury is

substantially associated with trauma severity and 30-day mortality

(28), and a similar association has been observed in patients with

traumatic brain injury undergoing emergency craniotomy (29).

Similarly, another study (30) observed a significant relationship

between serum GPR and admission injury severity and the 6-month

prognosis acute traumatic Spinal cord injurypatients. A high GFR

correlated with Hunt and Kosnik grade and was also observed in
FIGURE 4

RCS regression for GPR and mortality during ICU admission. (A) Univariate analysis at 30-day (P for overall effect <0.001; P for nonlinearity <0.001).
(B) Multivariate analysis at 30-day (P for overall effect <0.001; P for nonlinearity <0.001). (C) Univariate analysis at 60-day (P for overall effect <0.001;
P for nonlinearity <0.001). (D) Multivariate analysis at 60-day (P for overall effect 0.007; P for nonlinearity 0.004). (E) Univariate analysis at 90-day (P
for overall effect <0.001; P for nonlinearity <0.001). (F) Multivariate analysis at 90-day (P for overall effect 0.014; P for nonlinearity 0.010).
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patients with aneurysmal subarachnoid hemorrhage at admission

Glasgow Outcome Scale score at discharge (31, 32). The predictive

value between GPR and adverse clinical outcomes was also

preliminarily verified in patients with acute intracerebral

hemorrhage. In a retrospective study (33), it was observed that

the predictive efficacy of GRF for the diagnosis of massive

pulmonary embolism and non-massive pulmonary embolism in

ICU patients was higher than that of D-dimer. However, another

study based on ICU patients (34) found that the mortality of

patients with isolated blunt abdominal trauma was highly

correlated with GFR, and the sensitivity and specificity of GRF

were both higher than 70%. Such studies provide a contextual

backdrop where the dysregulation of glucose and potassium levels

has been similarly implicated in adverse outcomes, suggesting a

possible cross-pathophysiological utility of the GPR. However,

existing literature on GPR specifically within sepsis is relatively

scant, and the findings have been inconclusive due to significant

methodological variances and population differences.

The GPR in sepsis reflects intricate metabolic dysregulations

that accompany the systemic inflammatory response characteristic

of this condition. Understanding the potential pathological

mechanisms that lead to changes in both glucose and potassium

levels can provide valuable insights into the prognostic value and

clinical significance of GPR in sepsis. In sepsis, hyperglycemia is a

frequent occurrence due to a combination of increased hepatic

glucose production and impaired peripheral glucose utilization.

Stress-induced hormonal responses (35), including the release of

cortisol, catecholamines, glucagon, and pro-inflammatory cytokines

(36), like tumor necrosis factor-alpha and interleukins, stimulate
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hepatic gluconeogenesis and glycogenolysis. This hypermetabolic

state is compounded by insulin resistance, which limits glucose

uptake by peripheral tissues, further elevating blood glucose levels

(37). The pathological mechanism of hyperglycemia in sepsis can

exacerbate the disease’s course through a variety of pathways.

Elevated glucose levels contribute to oxidative stress by generating

advanced glycation end products (AGEs) (38), which promote

inflammation and tissue injury. Hyperglycemia also impairs

neutrophil function (39), thereby weakening the host immune

response and increasing susceptibility to infections. Furthermore,

it is associated with endothelial dysfunction (40, 41), facilitating

microvascular thrombosis and impaired tissue perfusion, which can

deteriorate organ function. Clinically, the presence of

hyperglycemia in sepsis patients has been linked to worse

outcomes, including increased mortality rates, prolonged ICU

stay, and higher incidences of multi-organ failure (42). This

underlines the importance of close glycemic control in critical

care settings, although the potential benefits must be weighed

against the risks of hypoglycemia. Potassium imbalances, notably

hypokalemia, are also common in sepsis and can stem from several

factors. These include intracellular shifts of potassium driven by

insulin administration (43) (used therapeutically to control

hyperglycemia), beta-adrenergic stimulation, and metabolic

alkalosis, as well as increased renal losses due to activation of the

renin-angiotensin-aldosterone system and nephrotoxic effects of

medications or the sepsis itself. Alternatively, hyperkalemia can

occur, particularly in cases of acute kidney injury or significant

cellular lysis (44). The clinical consequences of potassium

imbalances are profound. Hypokalemia may lead to arrhythmias,
FIGURE 5

Forest plots for subgroup analyses of the association between GPR and mortality. (A) Subgroup analysis of the association between GPR and in-
hospital mortality after covariate adjustment. (B) Subgroup analysis of the association between GPR and ICU mortality after covariate adjustment. For
both plots, hazard ratios (HRs) and 95% confidence intervals (CIs) are shown. The analysis includes subgroups based on age (≤70 years and >70
years), sex, BMI (<27.4 kg/m², 27.4–31.2 kg/m², ≥31.2 kg/m²), hypertension, type 2 diabetes, heart failure, CKD, stroke, AKI, CRRT, and mechanical
ventilation. The P value for interaction is provided for each subgroup analysis.
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muscle weakness, and respiratory failure, while hyperkalemia can

precipitate potentially fatal cardiac arrhythmias (45). Potassium

levels are critical for the function of cells, particularly in excitable

tissues such as nerves and muscles, including the heart, implicating

disturbances in significant morbidity in septic patients (46).
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The ratio of serum glucose to potassium, or GPR, synthesizes

the metabolic derangements of these two crucial solutes into a single

metric. While each component on its own provides insight into

specific pathophysiological processes, the GPR captures the

overarching metabolic stress within the body (47). A high GPR
FIGURE 6

Propensity score matching and common support assessment regarding in-hospital mortality. (A) Kernel Density Estimation Before Matching: Displays
the kernel density estimates of propensity scores for the treatment group (blue line) and control group (red line) prior to matching. The overlapping
regions between the two curves indicate the initial common support area. Before matching, the density curves show some overlap, but there are
also areas where the propensity scores of the treatment and control groups do not align closely, suggesting a limited common support region. (B)
Kernel Density Estimation After Matching: Shows the kernel density estimates of propensity scores for the treatment group (blue line) and control
group (red line) following matching. After matching, the density curves of the two groups are closely aligned across a wider range of propensity
scores. This close alignment demonstrates an expanded common support region, indicating that the matching process has effectively balanced the
distribution of propensity scores between the treatment and control groups. (C) Histogram of Common Support: Presents a histogram displaying the
distribution of propensity scores for both the treatment and control groups. The green bars represent the treated observations within the common
support range, the red bars represent the untreated observations within the common support range, the blue bar represents untreated observations
outside the support, and the orange bar represents treated observations outside the support. The majority of observations fall within the common
support range (indicated by the green and red bars), which means that only a minimal number of samples were excluded during the matching
process. This ensures that the matched groups are highly comparable and reduces the potential for bias in the subsequent analysis.
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may indicate a metabolic milieu marked by severe insulin

resistance, profound stress response, and possibly inadequate

compensatory mechanisms for electrolyte maintenance (48). This

composite biomarker might therefore reflect a higher severity of

systemic physiological derangement, correlating with worse clinical
Frontiers in Endocrinology 1688
outcomes. Integrating glucose and potassium levels into a single

ratio could afford a fuller picture of the metabolic state in sepsis

compared to evaluating each element in isolation. In clinical

practice, monitoring the GPR in sepsis patients could potentially

aid in identifying patients at higher risk of adverse outcomes,
FIGURE 7

Propensity score matching and common support assessment regarding in-ICU mortality. (A) Kernel Density Estimation Before Matching: Displays the
kernel density estimates of propensity scores for the treatment group (blue line) and control group (red line) prior to matching. The overlapping
regions between the two curves indicate the initial common support area. Before matching, the density curves show some overlap, but there are
also areas where the propensity scores of the treatment and control groups do not align closely, suggesting a limited common support region. (B)
Kernel Density Estimation After Matching: Shows the kernel density estimates of propensity scores for the treatment group (blue line) and control
group (red line) following matching. After matching, the density curves of the two groups are closely aligned across a wider range of propensity
scores. This close alignment demonstrates an expanded common support region, indicating that the matching process has effectively balanced the
distribution of propensity scores between the treatment and control groups. (C) Histogram of Common Support: Presents a histogram displaying the
distribution of propensity scores for both the treatment and control groups. The green bars represent the treated observations within the common
support range, the red bars represent the untreated observations within the common support range, the blue bar represents untreated observations
outside the support, and the orange bar represents treated observations outside the support. The majority of observations fall within the common
support range (indicated by the green and red bars), which means that only a minimal number of samples were excluded during the matching
process. This ensures that the matched groups are highly comparable and reduces the potential for bias in the subsequent analysis.
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offering opportunities for early intervention and more tailored

therapeutic strategies. However, understanding the precise

interplay and optimizing clinical use of GPR necessitate further

research exploring the dynamic interrelations between glucose and

potassium metabolisms in the progression of sepsis.

The E-values calculated for the association between GPR and

mortality outcomes provide additional insight into the robustness

of our findings against unmeasured confounding. For instance, an

E-value of 1.60 for 30-day ICU mortality implies that an

unmeasured confounder would need to be associated with both

the exposure and outcome by at least 1.60-fold to fully explain the

observed association. Similarly, the propensity score matching

(PSM) analysis confirmed the consistency of our findings, further

strengthening the validity of the observed association between GPR

and mortality in sepsis patients.

This study’s contribution to the field is highlighted by its

significant dataset derived from the MIMIC-IV database,

encompassing a variety of demographic and clinical variables not

previously analyzed in this combination. By confirming the

prognostic relevance of GPR across a diverse ICU population, our

findings suggest this biomarker could play a critical role in

advancing sepsis management protocols, potentially guiding

therapeutic decisions to mitigate mortality risks more effectively.

Future research should focus on prospective validation of GPR

thresholds and exploration of GPR dynamics over the course of

sepsis to better understand its prognostic implications. By

identifying patients at high risk of poor outcomes early in their

treatment course, clinicians could tailor more aggressive

monitoring and intervention strategies, which might include

tighter glucose control, more frequent electrolyte assessments, or

enhanced cardiovascular monitoring. Such an approach could lead

to better resource allocation in high-intensity care environments

and possibly improve patient outcomes by preemptively managing

predicted complications.

This study also has limitations. The MIMIC-IV database

consists largely of data from patients at a single tertiary care

center, potentially limiting the generalizability of findings to other

settings with different demographics, socioeconomic backgrounds,

or healthcare systems (49). This can result in a population that is

not fully representative of broader, more diverse sepsis populations

worldwide. The demographic composition within the database may

not sufficiently capture the variability across different ethnic and

racial groups, which can affect disease presentation and responses to

treatment, potentially skewing results and interpretations. Although

the study includes adjustments for factors such as age and

comorbidities, the inherent diversity in these variables may not be

fully comparable across different demographic groups (50),

implicating variations in baseline mortality risk that might

confound the association between GPR and outcomes. In

addition, as a retrospective study, it is subject to inherent biases

such as selection bias and information bias (51). Decisions

regarding data extraction and the variables included can

introduce unintended biases that might impact the overall

interpretation of findings. Despite efforts to adjust for numerous

confounders, it is possible that not all relevant factors were
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considered or measured accurately, leading to residual

confounding. Factors such as medication usage, nutritional status,

or patient management differences might not be fully accounted for.

The timing of GPR measurement relative to the onset of sepsis or

the clinical course has not been standardized (52), potentially

impacting its reliability as a consistent prognostic tool. The

variation in when glucose and potassium levels are recorded can

introduce discrepancies in how the GPR is calculated and

interpreted. What’s more, a notable limitation is the potential for

missing data, as not all patients may have fully recorded laboratory

measurements or clinical outcomes. The study relied on multiple

imputation methods to address missing data, which may introduce

bias if assumptions about missingness are incorrect (53). The

dataset may lack comprehensive longitudinal data necessary to

explore causal relationships over time, limiting insights into how

changes in GPR might reflect disease progression or response to

interventions. Certain clinical variables crucial for understanding

individual patient conditions, such as specific dietary intake,

detailed medication histories, and underlying genetic

predispositions (54, 55), may not be captured in the database,

affecting the depth of analysis. Given the nature of the database

as an aggregation of EMR from clinical practice, the quality and

precision of recorded data can be variable. This variability may

affect the accuracy of the input data, especially laboratory

measurements, and the resulting analysis (56, 57). Notably, the

lack of data on treatment interventions such as insulin therapy and

fluid resuscitation represent a key limitation, as these factors can

significantly influence patient outcomes and may confound the

relationship between GPR and mortality (58, 59).

As a path forward, prospective studies evaluating GPR

longitudinally across different stages of sepsis, and within broader

and more varied populations, could validate our findings.

Investigations might also focus on optimal intervention strategies

for patients identified as high-risk by their GPR, possibly examining

the impact of targeted therapies aimed at normalizing glucose and

potassium homeostasis (60). Furthermore, establishing

standardized GPR thresholds and developing clinical guidelines

for their use could facilitate more widespread integration of GPR

into ICU protocols. Limitations of our study, such as its

retrospective nature and reliance on a single database, should also

be addressed in future studies to enhance generalizability (61).

Additionally, detailed longitudinal data collection could enable a

better understanding of the causal pathways potentially involved in

the links between GPR and sepsis outcomes.
5 Conclusion

In summary, the serum glucose-potassium ratio emerges from

our investigation as a promising biomarker of mortality risk in

sepsis, warranting further exploration and validation in future

clinical research endeavors. By enhancing our understanding and

application of GPR, healthcare practitioners may improve

prognostic accuracy and patient outcomes in the challenging

realm of sepsis management.
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Background: Diabetes Mellitus (DM) is a complex metabolic disorder

characterized by hyperglycemia, primarily arising from insufficient insulin

secretion or the development of insulin resistance. Estrogen plays a significant

role in regulating the occurrence and progression of DM. This study aims to

investigate the role of estrogen-related genes in diabetes, focusing on identifying

potential biomarkers and therapeutic targets for the disease.

Methods: We initially obtained gene expression datasets related to type 2

diabetes mellitus (T2DM) from the GEO database. A systematic and coherent

series of methodologies was then implemented in a structured manner. First,

Principal Component Analysis (PCA) was employed for preliminary data

exploration and dimensionality reduction. Next, we identified Differentially

Expressed Genes (DEGs). Subsequently, we conducted Weighted Gene Co-

expression Network Analysis (WGCNA) to uncover gene modules associated

with DM. This was followed by Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses to explore the biological

functions and pathways associated with the identified genes. To enhance the

precision of biomarker identification, we applied three distinct machine learning

algorithms, including Least Absolute Shrinkage and Selection Operator (LASSO),

Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Random

Forest (RF), for further refined selection. This comprehensive approach ultimately

identified the estrogen-related gene IER3 as a promising biomarker for DM.

Furthermore, correlation analyses focusing on immune cell infiltration were

conducted to clarify the immunological role of IER3 in DM.

Results: Our findings revealed a significant downregulation of IER3 in DM

patients, accompanied by an AUC value of 0.723 in the diagnostic curve ROC,

indicating its considerable diagnostic and prognostic potential for DM.

Furthermore, the expression levels of IER3 exhibited a strong correlation with

variations in the proportions of diverse immune cell types, suggesting that it may

play a pivotal role in the immunoregulatory mechanisms underlying DM.
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Conclusion: In conclusion, our findings reveal that the estrogen-related gene

IER3 is significantly downregulated in patients with DM, highlighting its potential

as a diagnostic and prognostic marker for the disease. Therefore, IER3 may serve

as a promising biomarker and therapeutic target for DM.
KEYWORDS

diabetes mellitus, glycometabolism, estrogen, bioinformatics analysis, machine
learning, IER3
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1 Introduction

Diabetes mellitus (DM) is characterized by hyperglycemia and

encompasses several types, primarily type 1 diabetes mellitus

(T1DM), type 2 diabetes mellitus (T2DM), and gestational

diabetes mellitus (GDM). The primary pathological mechanisms

underlying DM involve either inadequate insulin secretion or the

presence of insulin resistance, resulting in sustained elevations in

blood glucose levels (1, 2). This hyperglycemic state not only

disrupts systemic metabolism but also inflicts damage to multiple

organs and systems. Chronic hyperglycemia is a contributing factor

to both microvascular and macrovascular complications, leading to

conditions such as diabetic retinopathy, diabetic nephropathy,

diabetic neuropathy, alongside a variety of gynecological

malignancies (3, 4). Furthermore, individuals with DM

demonstrate a markedly higher incidence of cardiovascular

diseases, contributing to a cardiovascular mortality rate that

exceeds that of individuals without DM (5, 6). Preventive

strategies for DM emphasize the importance of managing

established risk factors, including obesity, hypertension, and

unhealthy dietary habits, while also promoting public awareness

of DM through health policies designed to enhance early screening

rates. Notably, early intervention in T2DM has been shown to

effectively delay or prevent the onset of the disease.

Estrogens, a class of steroid hormones predominantly secreted

by the ovaries, include estradiol (E2), estrone (E1), and estriol (E3).

These hormones play a crucial role in the development of the female

reproductive system, the manifestation of secondary sexual

characteristics, and a multitude of physiological functions (7).

Recent advancements in understanding of estrogen signaling

mechanisms have yielded a more nuanced perspective on their

roles in various physiological processes. Within the female

reproductive system, estrogens are primarily responsible for

promoting the development and maturation of ovarian follicles,

sustaining endometrial proliferation, and facilitating ovulation.

Additionally, estrogens have garnered considerable attention for

their protective effects on bone health, as they help maintain bone

density by promoting bone matrix synthesis and inhibiting bone

resorption, thereby effectively reducing the risk of osteoporosis in

postmenopausal women (8). Furthermore, estrogens exert

significant influences on cognitive function, mood regulation, and

neuroprotection, with clinical studies suggesting their positive

impact on slowing the progression of Alzheimer’s disease (9).

It is essential to highlight the significant role that estrogens play

in DM. At certain concentrations, elevated estrogen levels can

enhance insulin sensitivity, thereby reducing the risk of

developing DM (10). Specifically, estrogens exert their effects by

binding to specific receptors and activating signaling pathways such

as PI3K/Akt and MAPK, which subsequently influence both insulin

secretion and action (11). This interaction ultimately modulates the

onset and progression of DM (12, 13). Given the intricate interplay

between estrogens and DM, alongside the current gaps in

understanding their molecular mechanisms and pathological

interactions, recent advancements in biotechnology offer valuable
Frontiers in Endocrinology 0395
tools for exploring the underlying mechanisms linking these

two factors.

This study utilizes a comprehensive bioinformatics approach

combined with machine learning techniques to investigate the

shared genes and associated signaling pathways linking estrogens

and DM. By elucidating the specific pathogenic mechanisms of

estrogen-related genes in the context of DM, this research offers

valuable data support and identifies potential breakthroughs for

more targeted and effective prevention and treatment strategies

for DM.
2 Materials and methods

2.1 Data acquisition and preprocessing

Graphical Abstract illustrates the workflow of this study. The

gene expression dataset for DM was sourced from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/) using “diabetes” as

the search term. We applied filtering criteria including “DataSets

Database” and “Homo sapiens” to refine the dataset. Specimens

related to “methylation,” “diabetic nephropathy,” and “non-

pancreatic tissues” were excluded from consideration. Ultimately,

we selected sequencing data from the T2DM group and the normal

pancreatic tissue group for further analysis. Based on the

aforementioned selection criteria, GSE76896 was identified as the

discovery cohort, comprising a total of 206 samples, including 117

from the normal group, 55 from the T2DM group, while 34 samples

from the impaired glucose tolerance group were excluded.
2.2 Principal component analysis

To reduce dimensionality and facilitate the visualization of

sample clustering, PCA was conducted on the original dataset,

with all preprocessing executed utilizing the “affy” package in R

(14). Probes were converted to gene symbols based on the GPL570

platform (Affymetrix Human Genome U133 Plus 2.0 Array). PCA

serves as a dimensionality reduction technique that applies

orthogonal transformation to reconfigure the data into a new

coordinate system, thereby maximizing variance along these new

axes. This approach preserves the most significant features of the

data and enables visualization of the distribution of high-

dimensional data across the first two principal components.
2.3 Identification of differentially expressed
genes in DM

We utilized the “Limma” package in R to identify DEGs within

the GSE76896 dataset. The criteria for DEG selection were established

as an adjusted p-value of <0.05 and a log-fold change (logFC) of

≥0.70. Additionally, we constructed a volcano plot to visually depict

the statistical significance and magnitude of expression changes
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fendo.2025.1570332
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ke et al. 10.3389/fendo.2025.1570332
associated with these DEGs. This approach enables researchers to

effectively identify target genes that exhibit significant upregulation or

downregulation under disease conditions.
2.4 Weighted gene co-expression network
analysis and module gene identification

We employed the R package “WGCNA” to identify biologically

meaningful co-expression gene modules and to explore the

relationship between gene networks and disease (15). Initially, the

top 10,000 genes with the highest variance were selected for further

analysis. Subsequently, the “pickSoft Threshold” function was

utilized to determine the optimal soft thresholding power (b),
which ranges from 1 to 20, in order to construct a scale-free

network. The average connectivity R² threshold was set at 0.85.

Following this, the adjacency matrix was transformed into a

Topological Overlap Matrix (TOM) to evaluate gene ratios and

dissimilarity. In the fourth step, hierarchical clustering and the

dynamic tree cut function were applied to delineate and identify co-

expression modules. These modules were then merged based on

analogous expression patterns for further analysis, with the

parameters “minModuleSize” and “deepSplit” set to 150 and 2,

respectively. In the fifth step, we examined the correlation between

modules and disease by calculating Gene Significance (GS) and

Module Membership (MM). Genes within the modules that

exhibited the strongest correlation with the disease were selected

for further investigation. Finally, we conducted an intersection

analysis between the DEGs and the genes identified through

WGCNA, which yielded a set of 34 common genes. We

visualized these shared genes using clustering heatmaps generated

by the “ggplot2” and “pheatmap” R packages (16). This step aims to

identify co-expression modules that are significantly associated with

DM, thereby providing a candidate set of genes for subsequent

functional enrichment analysis and machine learning screening.
2.5 Functional enrichment analysis

To further investigate the biological functions and signaling

pathway characteristics of diabetes-related genes, as well as to

elucidate their potential molecular mechanisms, we conducted

functional enrichment analysis using the “clusterProfiler” and

“ggplot2” R packages. This approach facilitated an efficient

evaluation and visualization of gene functionality. In the Gene

Ontology (GO) analysis, genes were categorized into three main

functional categories: Biological Process (BP), Cellular Component

(CC), and Molecular Function (MF). This categorization enhances

our comprehension of the roles of genes across various biological

dimensions. Additionally, Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis offers a

systematic framework for investigating gene functions,

particularly concerning cellular signaling and metabolic pathways.

To ensure the statistical significance of the analysis results, we

established a cutoff criterion for p-values and q-values at 0.05.
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2.6 Machine learning approaches for
identifying candidate biomarkers

To accurately identify candidate biomarkers associated DM

from extensive genomic datasets, we employed machine learning

methodologies. These algorithms have gained prominence in the

field of bioinformatics due to their robust capabilities for handling

complex datasets (17). They are capable of extracting critical

information from gene expression data and identifying the genes

that are most pertinent to specific disease states. By leveraging

machine learning techniques, we can more effectively manage high-

dimensional data, uncover nonlinear relationships, and filter

potential biomarkers. This approach enhances predictive accuracy

and addresses challenges that frequently confound traditional

statistical methods. Consequently, machine learning was used in

this study to further refine candidate genes with the aim of

discovering novel biomarkers for DM. We employed three widely

recognized machine learning algorithms to further refine the

selection of candidate biomarkers: Least Absolute Shrinkage and

Selection Operator (LASSO) (18), Support Vector Machine-

Recursive Feature Elimination (SVM-RFE) (19), and Random

Forest (RF) (20). LASSO is a regularized regression technique that

applies an L1 penalty to shrink the coefficients of less informative

variables to zero, thus facilitating simultaneous variable selection

and regularization. SVM-RFE is a backward feature elimination

method based on support vector machines, which recursively

eliminates features with the lowest ranking weights to identify the

subset that optimally separates the classes. RF, an ensemble learning

approach based on decision trees, trains each tree on a bootstrap

sample and a subset of features, allowing for the assessment of

feature importance via the mean decrease in impurity. These three

algorithms collectively enhance the feature selection process:

LASSO prioritizes sparsity, SVM-RFE focuses on margin-based

discrimination, and RF utilizes ensemble-based ranking. This

complementary synergy significantly bolsters the robustness and

reliability of the selected biomarkers. Candidate genes identified

through the intersection of these algorithms were considered highly

reliable for subsequent analysis.
2.7 Expression analysis and diagnostic
evaluation of candidate genes for DM

To further verify the diagnostic efficacy of candidate genes and

construct a clinically applicable risk assessment model, the

“ggplot2” package was utilized to assess the expression levels of

candidate biomarkers in both control and DM groups, with a

significance threshold set at p < 0.05. A Nomogram was

constructed using the “rms” package, wherein “Points” represent

the scores assigned to the candidate genes, and the “Total Score”

denotes the cumulative score across all the aforementioned genes.

To evaluate the diagnostic accuracy of the candidate biomarkers,

the area under the receiver operating characteristic (ROC) curve

(AUC) was calculated using the “pROC” package.
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2.8 Identification of candidate biomarkers

Candidate genes related to estrogen were retrieved from the

NCBI (National Center for Biotechnology Information, https://

www.ncbi.nlm.nih.gov/gene) database using the search terms

“oestrogen” and “Homo sapiens”. These estrogen-related genes

were subsequently intersected with genes linked to DM, with

selection criteria requiring an AUC ≥ 0.7 for further analysis.

After screening and identifying five candidate genes, we

conducted a comprehensive evaluation of each and determined

that IER3 exhibits the highest research value for the following

reasons:A. Estrogen linkage: Previous studies have demonstrated

that OHT, a related compound, stimulates IER3 expression in an

estrogen receptor-dependent manner (21). In contrast, other genes,

including LRRK2, have not shown a similar association.B. Immune

modulation: IER3 is a well-established immunoregulatory gene. For

instance, induction of IER3 protects macrophages from LPS-

induced apoptosis and inhibits NF-kB activity (22). This function

in modulating inflammation is directly relevant to diabetes, which is

characterized by chronic immune dysregulation.C. Metabolic

inflammation: IER3 plays a crucial role in mediating metabolic

and immune crosstalk in obesity. Mice deficient in IER3 exhibit

reduced adipose inflammation and improved insulin sensitivity

under high-fat diet conditions (23). This demonstrates that IER3

plays a significant role in regulating the interface between

metabolism and immune responses.
2.9 Gene set enrichment analysis

The Pearson correlation coefficients between IER3 and all other

genes were calculated using the cor.test function in R. Following this

calculation, all genes were ranked in descending order according to

their correlation with the target gene. This ranked gene list was then

utilized for GSEA to determine whether gene sets exhibiting a

strong correlation with the target gene are enriched in specific

biological pathways or functional modules. The primary objective

of this analysis was to identify the gene sets that demonstrated

significant correlations with the target gene and to elucidate the

biological implications of these gene sets.
2.10 Construction of protein-protein
interaction network

To further elucidate the functions and mechanisms of IER3 in

biological processes associated with DM, this study utilized the

STRING network data platform (https://string-db.org) to identify

protein associations and construct a PPI network. By establishing a

specified required confidence threshold of 0.400, we ensured that

only high-confidence interactions were included in the network,

thereby facilitating the identification of key proteins closely related

to the function of IER3. The establishment of this network enhances

our understanding of the molecular mechanisms underlying the
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role of IER3 in DM, as well as the associated signaling pathways and

biological processes in which it may be involved. Through this

systematic approach, we are able to delineate the critical role of

IER3 in the pathophysiology of DM and propose potential

molecular targets for future therapeutic strategies. To explore the

correlations between IER3 and key genes in the PI3K/Akt and

MAPK signaling pathways in DM, we utilized gene expression data

from public databases. We identified core genes in the PI3K/Akt

pathway, including PIK3CA, PIK3CB, PIK3CD, PIK3R1, AKT1,

AKT2, and AKT3, as well as key genes in the MAPK pathway, such

as MAPK3, MAPK8, MAPK9, MAPK14, MAP2K1, MAP2K2, and

MAP3K4. Following this, we performed a correlation analysis to

assess the expression relationships between IER3 and these genes in

DM samples. The results were visualized using a heat map to

facilitate interpretation of the correlations.
2.11 Immuno-infiltration analysis

To attain a deeper insight into the cellular composition and

functional alterations within the immune system in the context of

DM, this study employed the CIBERSORT algorithm for a

comprehensive analysis of immune cell infiltration. CIBERSORT

is a deconvolution algorithm that leverages gene expression data to

identify the relative abundances of 22 distinct immune cell types,

estimating their proportions in heterogeneous cell samples based on

a training set derived from established gene expression profiles

characteristic of known immune cells (24). The “CIBERSORT”

package was employed in our analysis to further elucidate the

differences in immune cell proportions between DM patients and

healthy control groups, as well as to explore potential correlations

between these variations and the immune responses and

inflammatory processes associated with DM.

To effectively present the analysis results visually, we applied R

packages such as “ggplot2,” “corrplot,” and “vioplot” to effectively

illustrate the distribution and interrelationships of various immune

cell types across the two groups. Furthermore, Spearman

correlation analysis was conducted to assess the association

between immune cells and the candidate biomarker IER3,

evaluating the impact of IER3 expression levels on the immune

cell ratios. This segment of the research not only deepens our

understanding of the role of immune cells in the pathological

processes of DM, but also provides empirical support for the

potential use of IER3 as a key biomarker. Consequently, it offers

new insights and viable targets for the diagnosis, treatment, and

prognostic evaluation of DM.
2.12 Statistical analysis

Statistical analyses were conducted utilizing R software (version

4.4.1), and the Wilcoxon and T-tests were employed to compare

differences between the T2DM group and the control group. A p-

value of less than 0.05 was considered statistically significant.
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3 Results

3.1 Identification of DEGs in DM

The results of PCA reveal a notable trend of separation between

DM patients and the normal population within the PCA space

(Figure 1A). While some overlapping regions are observed, the

overall clustering characteristics of the data points from the two

groups demonstrate marked differences. These findings indicate

that PCA effectively captures the principal variance patterns within

the dataset and partially elucidates the differences between the

two groups.

In the GSE76896 dataset, we identified a total of 401 DEGs,

comprising 177 upregulated and 224 downregulated genes

(Supplementary Table 1). The volcano plot (Figure 1B) visually

illustrates the expression changes and statistical significance of these

genes, with orange and green dots representing genes that are

significantly upregulated or downregulated in the DM group,

respectively. The black dots at the center of the plot indicate

genes with no significant changes in expression. Our results reveal

that the expression of the IER3 gene is significantly decreased in

DM patients compared to the control group, whereas the SLC26A4

and ELFN1 genes exhibit significant upregulation. These key DEGs

identified in DM lay the groundwork for further functional analysis.
3.2 WGCNA and module gene
identification in DM

To identify the gene modules most closely associated with DM,

we conducted a WGCNA. The optimal soft threshold for GSE76896

was determined to be 6 (Figure 1C). A total of 14 distinct modules

were then identified, among which the MEyellow module

demonstrated the strongest negative correlation with DM

(correlation coefficient = -0.38, p = 8e-05) (Figures 1D, E)

(Supplementary Table 2), encompassing 882 genes. We

subsequently intersected the DEGs with the genes selected

through WGCNA, resulting in a set of 34 shared genes associated

with DM (Figure 1F) (Supplementary Table 3). A clustering

heatmap for these 34 DM-related genes was generated using the

“ggplot2” and “pheatmap” R packages (Figure 1G).
3.3 GO enrichment analysis and KEGG
pathway analysis

To further explore the biological functions of the identified

DM-related genes and to uncover potential key signaling pathways

involved, we conducted GO enrichment analysis (Figures 2A–C)

and KEGG pathway analysis (Figure 2D). The top ten enriched BPs

included intracellular signal transduction, cell activation, leukocyte

activation, inflammatory response, regulation of signaling receptor

activity, myeloid leukocyte activation, response to molecule of

bacterial origin, regulation of leukocyte chemotaxis, nitric-oxide
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synthase biosynthetic process, and regulation of nitric-oxide

synthase biosynthetic process. Notably, the enrichment of nitric

oxide synthase biosynthetic process regulation aligns with emerging

evidence linking endothelial dysfunction to DM (25). In this

context, impaired NO bioavailability contributes to vascular

complications (26). The top ten enriched CC were identified as

extracellular region, endomembrane system, extracellular space,

organelle membrane, secretory vesicle, cytoplasmic vesicle

membrane, vesicle membrane, secretory granule, receptor

complex, and plasma membrane receptor complex. CC analysis

highlighted significant extracellular space and secretory vesicles,

indicating dysregulated paracrine signaling. For instance,

extracellular vesicles derived from b cells can serve as a medium

for intercellular communication within the pancreatic

microenvironment in type 1 DM and participate in immune

regulation (27). Furthermore, the top ten enriched MF included

receptor ligand activity, receptor regulator activity, signaling

receptor binding, co-receptor binding, growth factor activity,

cytokine activity, G protein-coupled receptor binding, molecular

function regulator, enzyme activator activity, and ion channel

binding. Additionally, Ion channel binding may be associated

with potassium channel mutations that lead to insufficient insulin

secretion in response to glucose levels (28). Following this, in terms

of KEGG pathways, the top ten pathways identified were the NOD-

like receptor signaling pathway, TNF signaling pathway, IL - 17

signaling pathway, Rheumatoid arthritis, Viral protein interaction

with cytokine and cytokine receptor, AGE-RAGE signaling pathway

in diabetic complications, NF-kappa B signaling pathway, Kaposi

sarcoma-associated herpesvirus infection, Chemokine signaling

pathway, and Legionellosis. Notably, these findings of the GO

classification and KEGG pathway analysis reveal the functional

characteristics of DM-related genes at the molecular biological and

signaling transduction levels, particularly in relation to immune

responses, signal transduction, and metabolic regulation, thereby

providing crucial insights into the molecular pathophysiological

mechanisms underlying the onset of DM.
3.4 Identification of candidate biomarkers
for DM through machine learning

To further refine the identification of key genes associated with

DM, we identified 34 common genes by intersecting 401 DEGs with

882 genes selected through WGCNA. Subsequently, we utilized

three machine learning algorithms to screen for potential candidate

biomarkers based on these 34 common genes. In the GSE76896

dataset, the LASSO regression identified eight genes (Figures 3A, B),

whereas the SVM-RFE algorithm extracted 20 genes with the lowest

root mean square error (RMSE) (Figure 3C). Additionally, the RF

classifier ranked the top 20 genes according to their importance

(Supplementary Table 4, Figures 3D, E). By intersecting the results

obtained from these three methods, we ultimately identified five

candidate biomarkers for DM, including ALDH1A3, MIOS-DT,

MELTF-AS1, LRRK2, and IER3 (Figure 3F).
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3.5 Risk stratification of candidate
biomarkers for DM

We subsequently constructed a nomogram (Figures 4A, B)

based on the above five identified candidate biomarkers for DM,
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which translates the relative expression levels of each gene into a

specific score ranging from 0 to 100. By aggregating the individual

gene scores to obtain a total score, we can effectively evaluate the

overall risk of an individual developing DM. Specifically, a higher

total score correlates with an increased risk of DM occurrence. This
FIGURE 1

Exploratory analysis of gene expression in DM. (A) Principal Component Analysis (PCA). (B) A volcano plot illustrating all differentially expressed genes
(DEGs). (C) Determination of the optimal soft threshold. (D) Heatmap depicting the relationship between gene modules and clinical traits. (E) Gene
cluster tree of co-expressed genes. (F) Venn diagram demonstrates the intersection of common genes identified through Weighted Gene Co-
expression Network Analysis (WGCNA) and DEGs. (G) Cluster heatmap based on all DEGs.
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methodology not only furnishes clinicians with a robust tool for risk

stratification of patients but also holds significant predictive value

for the prognosis of DM.

Furthermore, we evaluated the diagnostic performance of each

gene as a biomarker for DM through ROC curve analysis

(Figure 4C). The resulting AUC values were as follows:

ALDH1A3 (AUC: 0.627), MIOS-DT (AUC: 0.742), MELTF-AS1

(AUC: 0.694), and LRRK2 (AUC: 0.764), and IER3 (AUC: 0.723).

These findings not only enhance our understanding of the

molecular mechanisms underlying the onset of DM but also

provide valuable biomarkers for prospective clinical applications

in the prevention and treatment of DM.
3.6 Significance of estrogen-related gene
IER3 as a diagnostic and prognostic marker
for DM

In this study, we identified the estrogen-related genes and

intersected them with the five candidate genes for DM that

previously identified through machine learning techniques. We

specifically focused on genes exhibiting an AUC value of ≥0.7,

ultimately determining IER3 as a key biomarker for DM

(Figures 4D, E). ROC curve analysis revealed that IER3 achieved an

AUC value of 0.723, with a 95% confidence interval ranging from 0.636

to 0.811. This finding suggests that IER3 demonstrates both accurate

and satisfactory diagnostic and prognostic value for DM. Furthermore,

the ROC curve revealed sensitivity and specificity values for IER3

of 0.8205 and 0.7636, respectively. These performance metrics further

underscore the significant role of IER3 as an effective biomarker

for DM, highlighting its potential clinical utility. To further evaluate
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the accuracy of the candidate biomarkers, we employed the GSE72377

dataset for verification and ROC curve analysis revealed that

IER3 exhibits significant diagnostic value, with an AUC value of

0.703 (Figure 4F). As shown in Figure 4G, a significant negative

correlation was observed between the expression levels of IER3 and

ESR1 (R =- 0.39, P = 1.5e-07). The trend line, along with the 95%

confidence interval, is represented in gray. These findings offer

evidence suggesting a potential association between IER3 and

estrogen signaling pathways.
3.7 PPI network analysis of IER3 in DM

PPI network analysis serves as a crucial tool for elucidating gene

functions and their biological roles. To further investigate the role of

the IER3 gene in DM more comprehensively, we constructed a PPI

network centered on IER3 utilizing the STRING database

(Figure 5A). This network not only illustrates the direct and

indirect interactions between IER3 and its interactive genes but

also offers valuable insights into the strength and sources of

evidence supporting these interactions.

Using this high-throughput analytical approach, we successfully

identified the protein nodes that are closely associated with IER3,

specifically DUSP5, PHLDA1, ADCYAP1, PPP2R5C, PPP2R5B,

MAPK1, MCL1, MAPK3, RELA, and PPP2CA. These protein

nodes are depicted in the network with varying colors and line

styles, effectively illustrating the positioning of IER3 within the

network and its potential influence on other biomolecules. The

identification of these interacting proteins provides valuable

insights into the potential roles of IER3 in the pathological

processes of DM, thereby enhancing our understanding of the
FIGURE 2

GO and KEGG analyses of diabetes-related genes. (A–C) Gene Ontology (GO) categories for Biological Processes (BP), Cellular Components (CC),
and Molecular Functions (MF). The top 10 categories of BP, CC and MF are shown. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis.
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molecular pathways through which IER3 is involved in the

progression of DM. The heatmap illustrates significant

correlations between IER3 and genes involved in the PI3K/Akt

and MAPK signaling pathways associated with diabetes (Figure 5B).

In the PI3K/Akt pathway, both PIK3CA and PIK3CB exhibit strong

positive correlations with IER3. Within the MAPK pathway,

MAP2K1 shows a positive correlation with IER3, while MAP3K4

reveals a negative correlation. These findings suggest that IER3 may

play a role in the pathogenesis of diabetes through its interactions

with specific genes in these pathways.
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3.8 Functional enrichment of IER3

To further elucidate the functions of genes and their underlying

biological mechanisms, we conducted GSEA enrichment analysis to

identify differentially expressed genes between the low and high

expression groups of IER3 (Figure 5C). In the GO enrichment

analysis, the most significantly activated biological process

identified was axoneme assembly, followed by processes such as

microtubule bundle formation, host interaction, non-motile cilium

assembly, and positive regulation of canonical NF-kB signaling.
FIGURE 3

Machine learning in the screening of candidate biomarkers. (A, B) Based on the Lasso regression algorithm, 8 genes corresponding to the lowest
binominal deviation were identified as the most appropriate for diabetes mellitus (DM) diagnosis. (C) The top 20 genes were selected based on
Support Vector Machine Recursive Feature Elimination (SVM-RFE) with the lowest error rates and highest accuracy for DM classification. (D, E) The
top 20 genes were selected and ranked according to the importance scores derived from the random forest algorithm applied to DM. (F) A Venn
diagram showing the intersected genes identified by the three machine learning algorithms in DM.
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Additionally, the top five KEGG pathways identified included the

Escherichia ESPG to microtubule RHOA signaling pathway, the

SARS-CoV-2 spike protein to ANGII/AT1R/NOX2 signaling

pathway, the IL - 2-JAK-STAT signaling pathway, kinetochore

microtubule attachment, and microtubule depolymerization

(Figure 5D). These findings indicate that IER3 may be involved in

various complex biological processes related to DM, including

infection, cardiovascular diseases, immune regulation, cellular

dynamics, and cytoskeletal remodeling.
3.9 Immune cell infiltration analysis

In this study, we conducted a comprehensive analysis of the

cellular composition and functional alterations of the immune

system in the context of DM. Utilizing the CIBERSORT

algorithm, we performed a detailed comparison of immune cell

proportions between the DM group and normal controls

(Figure 6A). Our findings revealed significant differences in the

proportions of various immune cell types between the two groups,

which may be closely related to the immune response and

inflammatory processes associated with DM. Specifically, the

proportions of naive B cells, monocytes, M0 macrophages, and

activated dendritic cells were significantly elevated in the DM group

compared to the control group. Conversely, the proportions of CD8

+ T cells and follicular helper T cells markedly decreased in the DM

group. To further investigate the activation states of different

immune cells in DM, we constructed heatmaps to analyze the
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gene expression patterns of various cell types (Figure 6B) and

visualized the proportions of different immune cell types

(Figure 6C). The results indicated that the distribution of multiple

immune cell types in the DM group differed significantly from that

of the normal group, thereby reinforcing the role of immune cells in

the pathology of DM. An in-depth analysis through correlation

heatmaps illustrated the relationships among various immune cell

types, revealing a notably high degree of similarity between different

T cell subtypes, such as resting CD4 memory T cells and CD8+ T

cells (Figure 6D). This observation suggests potential functional

synergy among these cells. Overall, the correlation analyses

underscore the intricate interactions and regulatory mechanisms

of diverse immune cells in the context of DM.

To further explore the influence of IER3 on the proportions of

the aforementioned immune cells, we stratified the DM group into

two subgroups based on high and low expression levels of IER3

(Figure 6E). The results revealed that the proportions of naive B

cells, regulatory T cells (Tregs), activated dendritic cells, and

neutrophils were significantly elevated in the high IER3

expression group compared to those in the low expression group.

Conversely, the proportions of CD8+ T cells and follicular helper T

cells were markedly reduced in the high IER3 expression group.

Notably, consistent trends were observed in the proportions of

naive B cells, CD8+ T cells, follicular helper T cells, and activated

dendritic cells across both comparisons of immune cell proportions.

These findings strongly suggest that IER3 plays a pivotal role in

modulating the immune microenvironment, thereby influencing

the progression of DM. The elevated expression of IER3 appears to
FIGURE 4

Analysis of IER3 as a candidate biomarker for DM. (A, B) Nomogram construction based on five shared genes identified in discovery datasets. (C) The
Receiver Operating Characteristic (ROC) curve for the shared genes in discovery datasets. (D) IER3 was identified as a candidate biomarker. (E, F) The
ROC curve of IER3 in the GSE76896 and GSE72377 datasets. (G) The correlation between IER3 and ESR1 in diabetes.
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be associated with enhanced immune cell activation and increased

inflammatory responses. This segment of the research not only

underscores the significance of immune cells in the pathological

processes of DM but also provides additional empirical evidence for

IER3 as a potential biomarker, opening new avenues for the

diagnosis, treatment, and prognostic evaluation of DM.

Collectively, these results demonstrate significant changes in

immune cell composition under DM conditions, and IER3 is not

only closely correlated with variations in immune cell proportions

but also plays a crucial role in the immunoregulatory mechanisms

underlying DM. These findings underscore the considerable

research value of IER3 in elucidating the immunological basis of

DM and suggest its potential as a biomarker for future

therapeutic strategies.
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4 Discussion

DM is characterized as a complex metabolic disorder syndrome,

distinguished by hyperglycemia, insulin resistance, and

hyperinsulinemia, making it one of the most prevalent chronic

metabolic diseases globally (29). This condition significantly affects

individuals’ overall quality of life (30). Estrogen plays a crucial

protective role in the pathogenesis of DM by enhancing both insulin

sensitivity and secretion, thereby contributing to the maintenance

of stable blood glucose levels (31). Nevertheless, postmenopausal

women frequently experience increased insulin resistance and a

heightened risk of developing DM due to declining estrogen levels

(11, 32). Research has demonstrated that estrogen can regulate

pancreatic beta cell function (33), facilitate glucose uptake and
FIGURE 5

PPI network and functional enrichment analysis of IER3 in DM. (A) The network of interacting genes associated with IER3. The circles represent the
query proteins and their corresponding first shell interactors in the network. The color and number of edges indicate the source and quantity of
supporting evidence, respectively. (B) Correlation heatmap of IER3 with genes involved in the PI3K/Akt and MAPK signaling pathways. (C) Gene Set
Enrichment Analysis (GSEA) illustrating pathway enrichment across the ordered gene dataset. (D) KEGG analysis of the activated and repressed
biological processes.
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utilization, and reduce cellular apoptosis, all of which are critical for

preventing and controlling the onset and progression of DM (34).

This regulatory effect of estrogen is particularly vital for

women’s health.

This study employs a comprehensive approach that integrates

bioinformatics methods with machine learning techniques to

explore the shared genes and associated signaling pathways

related to DM and estrogen. It specifically highlights the potential

role of the estrogen-related gene IER3 in DM. The findings reveal a

significant downregulation of IER3 in DM patients, and it appears

to affect the progression of DM through the regulation of glucose

metabolism, immune responses, and inflammatory pathways,
Frontiers in Endocrinology 12104
suggesting that IER3 may play a pivotal role in the pathological

processes linking DM and estrogen. Furthermore, the construction

of a diagnostic ROC curve based on IER3 gene expression

demonstrates both accurate and satisfactory diagnostic and

prognostic value of IER3 for DM. Notably, the study reveals

significant changes in immune cell composition under DM

conditions, and IER3 is not only closely correlated with variations

in the proportions of various immune cells, but also plays a crucial

role in the immunoregulatory mechanisms underlying DM.

Through an in-depth analysis of IER3 and its associated signaling

pathways, this research underscores the unique value of the

estrogen-related gene IER3 as a potential biomarker and
FIGURE 6

Analysis of immune cell infiltration. (A) The boxplot comparing the proportion of immune cells between DM and control groups. (B) Comparative
heatmap depicting immune cell gene expression in DM and control groups. (C) The bar plot visualizing the proportion of infiltrating immune cells in
different samples. (D) Correlation heatmap representing associations between various immune cell types. (E) The boxplot comparing the proportions
of immune cells in high and low IER3 expression groups.
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therapeutic target for DM. Collectively, our study lays the

groundwork for future investigations into the molecular

mechanisms underlying the pathogenesis of DM, while also

providing more molecular evidence and therapeutic strategies for

its diagnosis and treatment.

IER3 plays a crucial role in regulating cell apoptosis and the

heterogeneity of immune cells (35). Research indicates that

macrophages are key contributors to obesity-related inflammation,

particularly through the transition of adipose tissue macrophages from

alternatively activated macrophages (AAM) to classically activated

macrophages (CAM), a process that is significant in the context of

obesity-associated inflammation (36, 37). The high expression of IER3

in macrophages may facilitate this transformation, thereby promoting

the onset of obesity-related inflammation and enhancing insulin

sensitivity in murine models (38). Additionally, IER3 is extensively

implicated in vital biological processes such as cell proliferation,

differentiation, and apoptosis, with its expression regulated by

various transcription factors, including NF-kB, p53, SP1, AP1,
vitamin D3 receptor (VD3R), and retinoic acid receptors (RAR/

RXR) (39, 40). Furthermore, studies have highlighted the prognostic

value of IER3 in several pathological conditions, including pancreatic

cancer, hepatocellular carcinoma, and acute kidney injury (41–44).

Estrogen plays a pivotal regulatory role in the onset and

progression of DM, particularly among female patients, where

fluctuations in estrogen levels may directly affect insulin sensitivity

and glucose metabolism (45). This study posits that IER3 may serve as

an intermediary between DM and estrogen, thereby establishing a

critical connection between the two. The expression of the IER3 gene is

modulated by various factors, with estrogen emerging as a significant

regulator that may influence the development of DM through its

impact on IER3 expression. Furthermore, our findings indicate a

significant negative correlation between the expression levels of IER3

and ESR1, suggesting a potential association between IER3 and

estrogen signaling pathways. Additionally, studies have shown that

IER3 exhibits a dose-dependent response to 17b-estradiol stimulation

in MCF - 7 (BUS) cells, with its expression being upregulated in

conjunction with cyclin D1 and its mutants (46). These findings

collectively underscore the potential regulatory role of estrogen on

IER3 and highlight the importance for further investigation into this

gene and its associated pathways. Such investigations will enhance our

understanding of the pathological mechanisms underlying DM and

may offer novel therapeutic targets for clinical intervention.

In addition to its involvement in glucose metabolism and estrogen

levels, the IER3 gene may also participate in the immune regulatory

mechanisms associated with DM by modulating immune system

functionality. Recently, the interplay between immune responses and

DM has garnered significant attention (47). Research has indicated that

the chronic inflammatory state characteristic of DM is closely linked to

the aberrant activation of immune cells (48, 49). The dysregulation of

immune cell subset proportions constitutes a critical pathological

hallmark within the immune microenvironment of DM. Significant

elevations in the proportions of naive B cells, monocytes, M0

macrophages, and activated dendritic cells (DCs) were observed in

the DM patients. Research has demonstrated that in insulin-dependent

DM, activated DCs play a crucial role in autoimmune pathogenesis by
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presenting b-cell-derived autoantigens to naive autoreactive Th0

lymphocytes (50). This antigen presentation facilitates the

differentiation of Th0 cells into pro-inflammatory effector T cells,

which subsequently initiate b-cell apoptosis through cytotoxic

mechanisms. The resulting impairment of insulin biosynthesis in

pancreatic islets constitutes a key pathogenic mechanism in disease

progression, with DC-mediated antigen presentation serving as a

pivotal initiating event in the autoimmune destruction of b-cells.
Monocytes also contribute significantly to the vascular complications

associated with DM. In the diabetic environment, monocytes are

recruited to the vascular wall, leading to a rapid release of

inflammatory cytokines such as IL - 1b and TNF-a, which accelerate

the progression of atherosclerotic lesions and plaque instability (51).

Our study revealed significant reductions in CD8+ T cells and follicular

helper T cells among DM patients. As primary cytotoxic lymphocytes,

the depletion of CD8+ T cells may be linked to functional exhaustion

characterized by PD - 1 upregulation and metabolic dysregulation

manifested by glycolytic inhibition and mitochondrial dysfunction.

Consequently, this depletion diminishes their capacity to eliminate

aberrant cells in target tissues (52, 53). Furthermore, follicular helper T

cells play a pivotal role in maintaining immune tolerance and

regulating B-cell antibody production, with their diminished

frequency potentially predisposing to aberrant humoral immune

responses (54). This pathological process may exacerbate b-cell
dysfunction through disrupting local T-B cell interactions within

pancreatic islets and impairing antigen-specific immunomodulation.

Collectively, the imbalance of immune cell repertoires in DM is not

merely a passive epiphenomenon, it likely drives metabolic

derangements, islet dysfunction, and chronic inflammation via

mechanisms involving immunometabolic decoupling, dysregulated

cytokine release, and impaired local immune regulation. These

findings underscore the centrality of immune cell dyshomeostasis in

elucidating the pathophysiological progression of DM. Our findings

indicate a strong correlation between IER3 expression and alterations

in the proportions of immune cells, particularly in patients with DM,

suggesting that dysregulation of the immune system may exacerbate

the progression of DM by influencing the activation states of immune

cells. Therefore, IER3 may be pivotal in regulating the chronic

inflammatory response associated with DM through its impact on

immune system functionality. Several studies have highlighted the

significant role of IER3 in immune cells, potentially modulating the

release of cytokines, the activation of immune cells, and their

migration, thereby affecting systemic inflammatory responses (55).

This study elucidates the potential biological and immunological

significance of IER3 in DM by employing an integrated approach that

combines bioinformatics and machine learning techniques. However,

it remains in its preliminary stages and has certain limitations. The

molecular mechanisms that link IER3 to estrogen signaling pathways,

specifically the PI3K/Akt and MAPK cascades, along with their

interactions with immune regulation, require experimental

validation. Moreover, the causal relationship between IER3

downregulation and the progression of DM necessitates verification

through longitudinal studies and interventional models. Future

research should strive to diversify data sources by incorporating a

wide range of sample data from DM patients across various ethnicities
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and regions, thereby enhancing the reliability and generalizability of

the findings. Furthermore, it is essential to clarify the relationship

between IER3 and different types of DM, such as type 1 diabetes and

gestational diabetes, in order to further deepen and broaden the scope

of the research. Therefore, such future efforts have the potential to

substantially enhance the applicability of IER3 in the treatment of DM.
5 Conclusion

In this study, we conducted a thorough investigation focusing

on the role of the estrogen-related gene IER3 in the context of DM.

Our findings reveal a significant downregulation of IER3 in DM

patients, with an AUC value of 0.723 on the diagnostic ROC curve,

indicating its considerable diagnostic and prognostic potential for

DM. Furthermore, IER3 acts as a critical link between DM and

estrogen, influencing the progression of DM through its regulatory

effects on glucose metabolism, immune responses, and

inflammatory pathways. Notably, our study uncovers significant

alterations in immune cell composition under DM conditions. IER3

is not only closely correlated with variations in the proportions of

diverse immune cell types but also plays a crucial role in the

immunoregulatory mechanisms underlying DM. Through an in-

depth analysis of IER3 and its associated signaling pathways, this

research emphasizes the unique value of the estrogen-related gene

IER3 as a potential biomarker and therapeutic target for DM.

Conclusively, these findings offer valuable insights into the

biological and immunological significance of IER3. Monitoring its

expression could facilitate the identification of high-risk

populations, and its significance in the early diagnosis and

prognostic evaluation of DM should not be underestimated.

Consequently, extensive research on IER3 and its related

signaling pathways opens new avenues for the development of

innovative diagnostic tools and therapeutic strategies for the

prevention and management of DM. Future investigations should

explore the modulat ion of IER3 express ion through

pharmacological or gene-editing techniques, aiming to establish

new treatment strategies for DM and provide essential evidence for

personalized therapy. We anticipate that further exploration in this

field will facilitate advancements in relevant technologies and their

practical applications, ultimately enhancing the quality of life and

health outcomes for individuals affected by DM.
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The association between
gestational hypothyroidism in
pregnant women with
preeclampsia, maternal liver
function indicators, and neonatal
birth weight: a study in Chinese
pregnant women
Fang Zhang1†, Qing Hua1†, Xiaoyan You1, Fenglian Shi1,
Yadan Zhou1, Xia Xu2, Xiaona Tian1*, Gang Tian3* and Li Li 1*

1Department of Obstetrics, Zhengzhou Central Hospital Affiliated to Zhengzhou University,
Zhengzhou, China, 2Institute of Trauma and Metabolism, Zhengzhou Central Hospital Affiliated to
Zhengzhou University, Zhengzhou, China, 3Henan Province Hypertension Precision Prevention and
Control Engineering Research Center, Henan Provincial People’s Hospital, Zhengzhou University
People’s Hospital, Zhengzhou, Henan, China
Birth weight serves as a critical indicator of neonatal survival. Preeclampsia

represents a serious complication during pregnancy and is closely associated

with gestational hypothyroidism (GHT), both of which severely affect neonatal

birth weight. Preeclampsia and hypothyroidism during pregnancy are usually

accompanied by abnormalities of maternal liver function, which frequently leads

to adverse pregnancy outcomes including low birth weight (LBW). This

retrospective study utilized data from 420 cases of patients with preeclampsia

who underwent prenatal examinations and delivery at department of Obstetrics.

The association between preeclampsia combined with GHT in pregnancy,

maternal liver function and neonatal birth weight was estimated using

generalized linear model (GLM), and the potential partial mediating effects of

maternal liver function were assessed through mediating models. Among

pregnant women with preeclampsia, 11.0% had GHT, and the median

(interquartile range) birth weight of all neonates was 2990.0 (2541.3, 3368.8)

grams. Neonates born to pregnant women who had preeclampsia combine with

GHT showed a higher incidence of LBW (c²=22.13, P< 0.001), exhibited a

significantly lower birth weight compared to those born to women with

preeclampsia alone (b=-258.53;95%CI:-398.56, -118.50). Additionally, maternal

alanine aminotransferase (ALT) levels were found to partially mediate this

association (indirect effect:-50.85, 95%CI:-101.07, -15.07). The findings of this

study indicate that compared with pregnant women with preeclampsia alone,

neonates born to pregnant women suffering from preeclampsia combined with
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GHT have significantly lower birth weights, with maternal ALT levels acting as a

potential partial mediator in this association. These results provide an important

reference for clinicians to monitor thyroid and liver function in patients

with preeclampsia.
KEYWORDS

birth weight, preeclampsia, gestational hypothyroidism, liver function, mediating model
Introduction

Neonatal birth weight is determined by maternal health, the

placenta, and the fetus’ own growth potential, and serving as a

critical indicator of neonatal survival (1, 2). Low birth weight

(LBW), defined as a birth weight of less than 2500 grams(g), is

considered an important factor in neonatal mortality (3, 4). Studies

have demonstrated that LBW increases the risk of future

cardiovascular morbidity and is associated with an elevated risk

of future hypertension in pregnancy (5, 6).

Preeclampsia is a serious complication of pregnancy with

hypertension and proteinuria as the main clinical manifestations,

and is one of the leading causes of maternal and neonatal mortality

(7, 8). Preeclampsia can cause a series of serious obstetric

complications, including preterm labor and placental abruption,

as well as fetal complications such as fetal respiratory distress,

intrauterine growth restriction, oligohydramnios, and stillbirth (9).

There is increasing evidence suggests that preeclampsia is closely

associated with maternal hypertension, cardiovascular disease, and

dementia (10–12). Mechanistically, placental dysfunction induced

by preeclampsia profoundly impacts on fetal development, with

studies confirming it as an important predictor of neonatal birth

weigh (13–15). The thyroid gland is involved in endocrine

regulation and plays a crucial role in maternal and fetal

development during pregnancy (16). Studies have confirmed the

correlation between thyroid dysfunction and preeclampsia, and the

prevalence of hypothyroidism in pregnant women with

preeclampsia is significantly increased (17–19). Currently,

hypothyroidism has become a common complication of

preeclampsia, leading to adverse pregnancy outcomes, including

LBW, and severely affecting neonatal birth weight and even future

growth and development (20).

Preeclampsia and hypothyroidism during pregnancy are closely

associated with alterations in liver function. Preeclampsia causes

impaired liver function, which has been identified as the third most

important predictor after hypertension and proteinuria (21, 22).

Simultaneously, hypothyroidism, which is characterized by a

feedback increase in thyroid-stimulating hormone (TSH) as a

biochemical marker, interacts with hepatic function metabolically

(23, 24). Experimental evidence has been presented that hepatic

dysfunction in pregnant mice predisposes to placental dysfunction,

which results in lower birth weights in newborn mice (25).
02110
Population-based studies have also confirmed that pregnant

women with abnormal liver function are associated with adverse

birth outcomes, such as preterm labor, LBW, intrauterine stillbirth,

and fetal respiratory distress (26). Several scholars have investigated

the mechanisms underlying the association of preeclampsia and

hypothyroidism in pregnancy with LBW, including placental

dysfunction in preeclampsia, maternal nutritional deficiencies

associated with pregnancy, and maternal thyroid hormone levels

(27–29). In conclusion, the mechanism by which preeclampsia

combined with hypothyroidism affects neonatal birth weight is

multifactorial. But there are currently limited studies exploring

the mediating role of liver function as an important factor in the

relationship between preeclampsia combined with hypothyroidism

and birth weight. As shown in some studies, maternal liver function

status is associated with fetal growth and development during

pregnancy. Conducting research on the association between liver

function indicators and birth weight can provide a basis for early

risk monitoring strategies.

Therefore, the objective of this study was to explore the

association between preeclampsia in conjunction with gestational

hypothyroidism, maternal liver function, and neonatal birth weight.

Additionally, the study aimed to explore whether maternal liver

function serves as a potential mediating factor in the association

between preeclampsia combined with gestational hypothyroidism

and neonatal birth weight. This investigation seeks to address

existing gaps in the literature regarding the underlying

mechanisms and to offer insights for future related studies.
Materials and methods

Study design and population

This study was a retrospective study, and 554 cases who

underwent prenatal examinations and deliveries at department of

Obstetrics, Zhengzhou Central Hospital Affiliated to Zhengzhou

from January 2021 to September 2023 were selected as the study

subjects. According to the following inclusion criteria, 482 cases

diagnosed with preeclampsia were initially included, and then 62

cases were excluded according to the exclusion criteria, 420 cases of

preeclampsia patients were ultimately included in this study, and

the median gestational age at diagnosis of preeclampsia
frontiersin.org
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(interquartile range) was 35.4(32.5, 37.3) weeks. Among these, 46

cases were complicated by hypothyroidism, and the median

gestational age at diagnosis of hypothyroidism (interquartile

range) was 32.2(27.0, 36.0) weeks.

The inclusion criteria were as follows: (1) fulfillment of the

diagnostic criteria for preeclampsia; (2) maternal age ≥ 18 years; (3)

gestational age ≥ 24 weeks; (4) singleton pregnancy; (5) absence of a

history of substance abuse, smoking, or alcohol consumption

among the pregnant women.

The exclusion criteria were as follows: (1) pregnant individuals

with other complications, such as gestational diabetes or

hypertension, as well as those with underlying medical conditions

prior to pregnancy (e.g., thyroid disorders, chronic hypertension,

heart disease, liver or biliary diseases, or renal diseases); (2) patients

lacking relevant information, such as those with incomplete or

missing neonatal birth weight and liver function indicators; (3)

individuals who conceived through assisted reproductive technology.

The diagnostic criteria for preeclampsia were based on the

“Diagnosis and treatment of hypertension and preeclampsia in

pregnancy: a clinical practice guideline in China (2020)” issued by

the Obstetrics and Gynecology Branch of the Chinese Medical

Association. Specifically, preeclampsia is diagnosed when, after 20

weeks of gestation, a pregnant woman exhibits a systolic blood

pressure of ≥140 mmHg and/or a diastolic blood pressure of ≥90

mmHg, accompanied by at least one of the following: (1) a 24-hour

urinary protein quantification of ≥0.3 g, or a urinary protein-to-

creatinine ratio of ≥0.3, or a random urinary protein result of ≥(+);

(2) the absence of proteinuria but the presence of any one of the

following organ or system involvements, including abnormalities

affecting vital organs such as the heart, lungs, liver, and kidneys, or

alterations in the hematological, gastrointestinal, or neurological

systems, as well as involvement of the placenta and fetus (30).

The diagnostic criteria for hypothyroidism during pregnancy refer

to the revised “Guideline on diagnosis and management of thyroid

diseases during pregnancy and postpartum (2nd edition)” by the

Chinese Medical Association, which stipulates that serum thyroid-

stimulating hormone (TSH) levels exceed the upper limit of

the pregnancy-specific reference range, while serum free thyroxine

(FT4) levels fall below the lower limit of the specific reference range.

Combinedwith the types of kits and fully automated chemiluminescent

immunoassay analyzers used in this study, the guideline recommended

reference ranges for TSH and FT4 were as follows: in early pregnancy,

TSH0.05~3.55mIU/L, FT49.01~15.89 pmol/L; inmid-pregnancy, TSH

0.21~3.31 mIU/L, FT4 6.62~13.51 pmol/L; in late pregnancy, TSH

0.43~3.71 mIU/L, FT4 6.42~10.75 pmol/L (31).
Ethical compliance statement for human
participant research

All study participants provided written informed consent, and

this study received approved from the Ethics Committee of

Zhengzhou Central Hospital Affiliated to Zhengzhou (No.

ZXYY202470). All methods were performed in accordance with

the relevant guidelines and regulations of the Declaration

of Helsinki.
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Variables and definitions

Measurement of serum liver function indicators
In this study, we collected the levels of liver function indicators

from subjects during their hospitalization. Based on previous research,

this study selected indicators closely related to liver function, primarily

including alanine aminotransferase (ALT 7-40U/L), aspartate

aminotransferase (AST 13-35U/L), alkaline phosphatase (ALP 50-

135U/L), total bilirubin (TBIL 0-21mmol/L), total protein (TP 60-

80g/L), and albumin (Alb 35-55g/L). A volume of 5 mL of fasting

antecubital venous blood was collected, and serum was separated by

centrifugation at 4000 rpm for 5 minutes. All biochemical analyses

were performed using an AU5800 fully automated biochemistry

analyzer (Beckman Coulter, USA) with matched reagent kits. All

reagents and instruments were subjected to quality control procedures.

Measurement of neonatal birth weight
Neonatal birth weight, measured in grams, was measured and

recorded within one hour after birth. The data pertaining to birth

weight for this investigation was sourced from medical records.

Measurement of covariates
Participants in this study were requested to complete a baseline

questionnaire upon admission, which encompassed demographic

characteristics of the pregnant women (age, ethnicity, residence, and

educational level), history of cesarean delivery (yes/no), history of

adverse pregnancy outcomes (yes/no), primiparity (yes/no), and

family history of hypertension (yes/no). Participants self-reported

their pre-pregnancy weight (kg) and their height was measured in a

barefoot standing position using a medical height and weight

measuring device (cm). Subsequently, pre-pregnancy body mass

index (PBMI) was calculated using the standard formula BMI =

weight (kg)/height (m²). According to World Health Organization

(WHO) standards, participants were classified into categories of

underweight (BMI< 18.5 kg/m²), normal weight (18.5 ≤ BMI ≤ 24.9

kg/m²), overweight (25 ≤ BMI ≤ 29.9 kg/m²), and obese (BMI ≥ 30 kg/

m²). During hospitalization, ultrasound was utilized to assess whether

the fetus was experiencing growth restriction, and postpartum data on

preterm birth (yes/no) and neonatal sex (male/female) were collected

from medical records. The ultrasound diagnostic criteria for fetal

growth restriction (FGR) were defined as an ultrasound-estimated

fetal weight or abdominal circumference below the 10th percentile for

the corresponding gestational age; preterm birth was defined as

delivery occurring before 37 weeks of gestation.
Statistical analysis

Data analysis was conducted using SPSS 26.0 statistical software.

Initially, descriptive analysis was performed, with categorical data

expressed as N (%) and continuous data described using either �x ± s

or M (IQR). For univariate analysis, given that birth weight exhibited

a non-normal distribution, the Mann-Whitney U test or Kruskal-

Wallis H test were employed to examine differences in birth weight

among various characteristic groups. Spearman correlation analysis
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was utilized to assess the relationship between liver function

indicators (ALT/AST/ALP/TP/Alb/TBIL) and birth weight.

Subsequently, a generalized linear model (GLM) was applied for

multivariate analysis to evaluate the potential association between the

presence of GHT, the levels of liver function indicators, and birth

weight. Finally, the presence of GHT was treated as the independent

variable, liver function indicators as mediating variables, and birth

weight as the dependent variable. The mediation effect of liver

function indicators was calculated using the SPSS Process macro,

employing the bias-corrected Bootstrap method (with 5000

resamples) for validation. A p-value of<0.05 was considered

statistically significant.
Results

Descriptive statistics

This study included a total of 420 pregnant women diagnosed

with preeclampsia, among whom 46 (11.0%) also had concomitant

hypothyroidism. The median age (interquartile range) was 31 (28,

34) years, with the majority of the participants (72.1%) aged

between 25 and 35 years. The median neonatal birth weight

(interquartile range) was 2990.0 (2541.3, 3368.8) grams. Preterm
Frontiers in Endocrinology 04112
birth occurred in 111 participants (26.4%), while 24 (5.7%) were

diagnosed with fetal growth restriction. Additionally, 15

participants were classified as underweight prior to pregnancy,

123 as overweight, and 52 as obese. Univariate analysis revealed

that preterm birth (P<0.001), occurrence of fetal growth restriction

during pregnancy (P<0.001), a pre-pregnancy BMI below 18.5 kg/

m² (P=0.003), and the presence of GHT (P<0.001) were associated

with lower birth weights of the neonates born to women with

preeclampsia (Table 1).

Compared with pregnant women with preeclampsia alone,

those with preeclampsia combined with GHT had higher rates of

preterm delivery (39.1% vs. 24.9%), fetal growth restriction (17.4%

vs. 4.3%) and LBW (50.0% vs. 19.3%), were more likely to be

primiparous (73.9% vs. 58.6%), and obese (13.0% vs. 12.3%). From

the perspective of liver function indicators, the levels of ALT

(P<0.001) and AST (P=0.002) showed statistically significant

differences between the two subgroups (Table 2).

Correlation between maternal liver
function indicators and neonatal birth
weight

Except for total bilirubin, the levels of other maternal liver

function indicators showed significant correlations with neonatal
TABLE 1 The baseline characteristics of the included pregnant women.

Variable N (%) Birth weight (g) Z/H P

Age (Years)

<25 23 (5.5) 2980.0 (2610.0, 3250.0)

2.65 0.449
25~35 303 (72.1) 3000.0 (2600.0, 3370.0)

35~40 79 (18.8) 2825.0 (2325.0, 3350.0)

≥40 15 (3.6) 3155.0 (2795.0, 3630.0)

Fetal sex

Male 223 (53.1) 3015.0 (2600.0, 3370.0)
-0.68 0.494

Female 197 (46.9) 2950.0 (2497.5, 3365.0)

Ethnicity

Han ethnicity 411 (97.9) 2990.0 (2550.0, 3365.0)
-0.65 0.513

Ethnic minorities 9 (2.1) 2890.0 (2120.0, 3485.0)

Residence

Urban area 349 (83.1) 2980.0 (2547.5, 3322.5)
-1.26 0.208

Rural area 71 (16.9) 3100.0 (2500.0, 3570.0)

Education level

Junior high school and below 41 (9.8) 3155.0 (2260.0, 3500.0)

2.11 0.550

High school and vocational secondary
school

51 (12.1) 2980.0 (2450.0, 3305.0)

Junior college 134 (31.9) 3032.5 (2660.0, 3415.0)

Undergraduate and postgraduate degrees 194 (46.2) 2950.0 (2543.8, 3311.3)

(Continued)
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birth weight. Specifically, ALT (r=-0.320) and AST (r=-0.234) levels

exhibited negative correlations with neonatal birth weight, while

ALP (r=0.193), TP (r=0.165), and ALB (r=0.177) displayed positive

correlations with neonatal birth weight (Table 3).
Relationship between thyroid function,
liver function indicators in pregnant
women with preeclampsia, and neonatal
birth weight

This study explored the relationship between the presence of

GHT in preeclamptic pregnant women and their liver function

indicators with neonatal birth weight through the construction of a

GLM and the adjustment of control variables. The findings revealed
Frontiers in Endocrinology 05113
that, without adjusting for other variables (Model 1), the neonatal

birth weight of infants born to preeclamptic mothers with GHT was

significantly lower compared to those born to mothers with

uncomplicated preeclampsia [b = -351.36; 95% confidence

interval (CI): -532.57, -170.15]. Furthermore, as levels of ALT (b
= -2.18; 95% CI: -3.90, -0.47) and AST (b = -4.04; 95% CI: -7.06,

1.02) increased, neonatal birth weight correspondingly decreased,

while an elevation in ALP levels (b=1.43; 95% CI: 0.53, 2.32) was

associated with an increase in neonatal birth weight. Following

adjustments for preterm birth, FGR, and PBMI (Model 2), the

presence of GHT (b = -258.53; 95% CI: -398.56, -118.50), ALT (b =

-1.88; 95% CI: -3.19, -0.56), and ALP (b=1.02; 95% CI: 0.33, 1.70)

levels remained significantly associated with neonatal birth weight,

whereas the association between AST levels (b = -1.34; 95% CI:

-3.66, 0.98) and neonatal birth weight became statistically

insignificant (Table 4).
TABLE 1 Continued

Variable N (%) Birth weight (g) Z/H P

PTD

No 309 (73.6) 3160.0 (2880.0, 3495.0)
-12.79 <0.001

Yes 111 (26.4) 2240.0 (1985.0, 2525.0)

History of cesarean section

No 319 (76.0) 3005.0 (2545.0, 3370.0)
-0.68 0.496

Yes 101 (24.0) 2965.0 (2522.5, 3315.0)

History of adverse obstetric

No 363 (86.4) 3010.0 (2570.0, 3370.0)
-1.66 0.098

Yes 57 (13.6) 2760.0 (2450.0, 3275.0)

Primipara

No 167 (39.8) 2950.0 (2495.0, 3370.0)
-1.06 0.288

Yes 253 (60.2) 3020.0 (2570.0, 3367.5)

FGR

No 396 (94.3) 3017.5 (2630.0, 3370.0)
-5.92 <0.001

Yes 24 (5.7) 2182.5 (1788.8, 2338.8)

Family history of hypertension

No 370 (88.1) 3002.5 (2548.8, 3370.0)
-1.28 0.201

Yes 50 (11.9) 2895.0 (2498.8, 3242.5)

PBMI (kg/m2)

<18.5 15 (3.6) 2645.0 (2255.0, 3165.0)

13.77 0.003*
18.5~24.9 230 (54.7) 2950.0 (2392.5, 3280.0)

25.0~29.9 123 (29.3) 3035.0 (2660.0, 3390.0)

≥30 52 (12.4) 3180.0 (2808.8, 3613.8)

PE&GHT

No 374 (89.0) 3015.0 (2610.0, 3371.3)
-3.95 <0.001

Yes 46 (11.0) 2530.0 (2023.8, 3143.8)
*P<0.05; PTD, Preterm delivery; FGR, Fetal growth restriction; PBMI, Pre-pregnancy body mass index; PE&GHT, Preeclampsia combined with gestational hypothyroidism.
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TABLE 2 Comparison of baseline data between the preeclampsia group and the preeclampsia with hypothyroidism group.

Variable

Maternal status
[n (%)/M (P25, P75)] c2 /Z P

PE&GHT PE

Age (Years)

<25 0 (0.0) 23 (6.1)

-1.07 0.283
25~35 35 (76.1) 268 (71.7)

35~40 7 (15.2) 72 (19.3)

≥40 4 (8.7) 11 (2.9)

Fetal sex

Male 22 (47.8) 201 (53.7)
0.58 0.448

Female 24 (52.2) 173 (46.3)

Ethnicity

Han ethnicity 45 (97.8) 366 (97.9)
— 1.000

Ethnic minorities 1 (2.2) 8 (2.1)

Residence

Urban area 43 (93.5) 306 (81.8)
3.97 0.058

Rural area 3 (6.5) 68 (18.2)

Education level

Junior high school and below 6 (13.0) 35 (9.4)

-0.28 0.778

High school and vocational secondary
school

6 (13.0) 45 (12.0)

Junior college 10 (21.8) 124 (33.2)

Undergraduate and postgraduate degrees 24 (52.2) 170 (45.4)

PTD

No 28 (60.9) 281 (75.1)
4.29 0.038*

Yes 18 (39.1) 93 (24.9)

History of cesarean section

No 37 (80.4) 282 (75.4)
0.57 0.451

Yes 9 (19.6) 92 (24.6)

History of adverse obstetric

No 39 (84.8) 324 (86.6)
0.12 0.730

Yes 7 (15.2) 50 (13.4)

Primipara

No 12 (26.1) 155 (41.4)
4.03 0.045*

Yes 34 (73.9) 219 (58.6)

FGR

No 38 (82.6) 358 (95.7)
10.75 0.001*

Yes 8 (17.4) 16 (4.3)

(Continued)
F
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We also did some extra analysis after sorting out liver function

indicators (normal or abnormal) and birth weight (low birth weight

or non-low birth weight). Check out the Supplementary Table S1

and Supplementary Table S2 for more details.
Mediating effects of liver function
indicators

Since there was no statistically significant difference in ALP

levels between the preeclampsia group and the preeclampsia
Frontiers in Endocrinology 07115
combined with GHT group, this study only included ALT, which

was statistically significant in the multifactorial analysis, into a

mediation model to investigate whether the factor partially mediate

the relationship between preeclampsia in pregnant women with

GHT and neonatal birth weight. The path coefficients are detailed in

Table 5. The results indicate that pregnant women with

preeclampsia combined with GHT exhibited higher ALT levels

compared to those with preeclampsia alone (b’=23.19, P=0.002),
which was associated with a negative impact on neonatal birth

weight (b’=-271.18, P<0.001). Furthermore, ALT levels had a

negative effect on neonatal birth weight (b’=-2.40, P<0.001. In
TABLE 2 Continued

Variable

Maternal status
[n (%)/M (P25, P75)] c2 /Z P

PE&GHT PE

Family history of hypertension

No 43 (93.5) 327 (87.4)
1.43 0.232

Yes 3 (6.5) 47 (12.6)

PBMI (kg/m2)

<18.5 1 (2.2) 14 (3.7)

-2.33 0.020*
18.5~24.9 32 (69.6) 198 (53.0)

25.0~29.9 7 (15.2) 116 (31.0)

≥30 6 (13.0) 46 (12.3)

Neonatal birth weight status

non-LBW 23 (50.0) 302 (80.7)
22.13 <0.001

LBW 23 (50.0) 72 (19.3)

ALT (U/L) 23.5 (12.8,59.3) 13.0 (9.0,20.0) -4.34 <0.001

AST (U/L) 36.5 (24.0,50.3) 26.0 (22.0,33.0) -3.17 0.002*

ALP (U/L) 155.0 (120.3,193.8) 151.0 (123.0,189.3) -0.22 0.823

TP (g/L) 56.0 (52.4,62.0) 58.1 (54.0,62.0) -1.18 0.238

Alb (g/L) 30.1 (27.5,34.4) 31.1 (29.0,34.0) -1.66 0.097

TBIL (mmol/L) 10.9 (8.3,14.8) 11.0 (9.1,13.3) -0.16 0.870
*P<0.05; PE&GHT, Preeclampsia combined with gestational hypothyroidism; PTD, Preterm delivery; FGR, Fetal growth restriction; PBMI, Pre-pregnancy body mass index; LBW, low birth
weight; ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; ALP, Alkaline Phosphatase; TP, Total Protein; Alb, Albumin; TBIL, Total Bilirubin; BW, Birth Weight.
TABLE 3 Analysis of the correlation of maternal liver function indicators and neonatal birth weight.

Variables ALT AST ALP TP ALB TBIL BW

ALT 1.000

AST 0.589** 1.000

ALP 0.111* 0.051 1.000

TP -0.038 -0.139** 0.077 1.000

Alb 0.000 -0.181** 0.099* 0.790** 1.000

TBIL 0.100* 0.118* 0.130** 0.067 0.127** 1.000

BW -0.320** -0.234** 0.193** 0.165** 0.177** 0.089 1.000
* P<0.05, ** P<0.01. ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; ALP, Alkaline Phosphatase; TP, Total Protein; Alb, Albumin; TBIL, Total Bilirubin; BW, Birth Weight.
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light of these path results, the study explored the mediating effect of

ALT, as detailed in Table 6. The findings indicate that preeclampsia

in conjunction with GHT may indirectly diminish neonatal birth

weight by elevating maternal ALT levels. The mediating effect of

ALT is quantified at -50.85 with a 95% Bootstrap confidence

interval. The interval (95% CI) of [101.07, -15.07] does not

encompass zero, indicating a substantial mediating effect that

accounts for 15.5% of the total effect. The constructed mediation

model is illustrated in Figure 1.
Frontiers in Endocrinology 08116
Discussions

This study explores the impact of gestational hypothyroidism

and liver function indicators on neonatal birth weight in women

with preeclampsia by constructing generalized linear models and

mediation models, while also evaluates the potential mediating

effects of liver function indicators. The results indicate that

approximately 11.0% of the preeclamptic participants included in

the study concurrently suffered from hypothyroidism. Neonates
TABLE 4 The results of generalized linear regression analyses of birth weight.

Variable
Model 1 Model 2

b (95%CI) P b (95%CI) P

PE&GHT

No (ref.) — — — —

Yes -351.36 (-532.57, -170.15) <0.001 -258.53 (-398.56, -118.50) <0.001

ALT -2.184 (-3.90, -0.47) 0.013* -1.88 (-3.19, -0.56) 0.005*

AST -4.04 (-7.06, 1.02) 0.009* -1.34 (-3.66, 0.98) 0.256

ALP 1.43 (0.53, 2.32) 0.002* 1.02 (0.33, 1.70) 0.004*

TP 10.45 (-1.65, 22.56) 0.090 6.07 (-3.21, 15.34) 0.200

ALB 4.74 (-14.59, 24.07) 0.631 -0.45 (-15.24, 14.35) 0.953

PTD

No (ref.) — — — —

Yes — — -799.73 (-899.72, -699.75) <0.001

FGR

No (ref.) — — — —

Yes — — -296.60 (-487.72, -105.49) 0.002*

PBMI (kg/m2)

<18.5 — — -177.45 (-408.54, 53.64) 0.132

18.5~24.9 (ref.) — — — —

25.0~29.9 — — 93.69 (-4.30, 191.68) 0.061

≥30.0 — — 310.39 (176.83, 443.96) <0.001
*P<0.05. CI, confidence interval; PE&GHT: Preeclampsia combined with gestational hypothyroidism; ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; ALP, Alkaline
Phosphatase; TP, Total Protein; Alb, Albumin; PTD, Preterm delivery; FGR, Fetal growth restriction; PBMI, Pre-pregnancy body mass index; ref., Reference Group.
Model 1 was the unadjusted model; Model 2 adjusted for PTD, FGR and PBMI.
TABLE 5 Path-coefficients of the mediating models.

Pathway Standardized coefficients Coefficients(b’) S.E. P

PE&GHT→ALT 0.49 23.19 7.44 0.002

PE&GHT→BW -0.42 -271.18 72.25 <0.001

ALT→BW -0.18 -2.40 0.48 <0.001
Adjusting for preterm delivery, fetal growth restriction and pre-pregnancy body mass index.
S.E., Standard Error; PE&GHT, Preeclampsia combined with gestational hypothyroidism; ALT, Alanine Aminotransferase; BW, Birth Weight.
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born to mothers with preeclampsia and hypothyroidism exhibited

lower birth weights; specifically, higher levels of ALT in liver

function indicators were associated with lower neonatal birth

weights, whereas neonatal birth weight increased with rising ALP

levels. Notably, after adjusting for covariates such as preterm birth,

FGR, and PBMI, the relationship between AST levels and neonatal

birth weight became statistically insignificant. Furthermore, the

mediation model revealed that hypothyroidism can directly affect

the neonatal birth weight of women with preeclampsia and can also

indirectly influence neonatal birth weight through elevated ALT

levels (mediating effect: -50.85; 95% CI = -101.07, -15.07).

Preeclampsia and gestational hypothyroidism are two common

pregnancy complications that can have severe implications for the

health of both the mother and the fetus, including miscarriage,

preterm birth, fetal growth restriction, and low birth weight (32,

33). Preeclampsia can lead to maternal vascular constriction and

reduced blood flow, thereby affecting the blood supply to the placenta

and subsequently influencing the nutritional supply to the fetus (34).

Particularly, preeclampsia is one of the significant causes of maternal

and neonatal mortality, and once diagnosed, there are currently no

effective treatment options available aside from the termination of

pregnancy (34, 35). Similarly, during pregnancy, thyroid hormones

can regulate various metabolic balances in pregnant women and are

also involved in the formation and function of the placenta. In cases

of hypothyroidism, the resulting deficiency of thyroid hormones may

lead to placental dysfunction, causing fetal developmental

abnormalities (36). It is worth noting that these two diseases often

coexist and influence each other. Previous studies have indicated
Frontiers in Endocrinology 09117
that hypothyroidism is significantly associated with an increased

incidence of preeclampsia (37), and the prevalence of hypothyroidism

among patients with preeclampsia is significantly higher than that in

the general population (38). Additionally, further research has

pointed out that hypothyroidism is correlated with the severity of

preeclampsia (39). Therefore, the combination of preeclampsia and

gestational hypothyroidismmay pose greater risks to both the mother

and the fetus. On the other hand, the birth weight of neonates is not

only related to their survival rates but also has lasting implications for

their physical growth, the development of various systems, and health

issues in adulthood (40, 41). That’s why we focused on investigating

the effect of hypothyroidism in pregnant women with preeclampsia

on neonatal birth weight. Our study findings indicate that neonates

born to mothers with preeclampsia combined with hypothyroidism

have lower birth weights compared to those born to mothers with

preeclampsia alone, which is consistent with previous research results

(42). This may indicate that when pregnant women experience

preeclampsia in conjunction with hypothyroidism, it may have a

more severe impact on the birth weight of the neonate.

Furthermore, our study further investigated the association

between maternal liver function indicators and neonatal birth

weight. Among pregnant women, the prevalence of liver diseases

during pregnancy is approximately 3%, primarily manifested by

abnormal changes in transaminases, bilirubin, and other related

parameters (43). Pregnancy-related liver diseases are closely

associated with fetal growth and development. Some pregnancy-

specific liver diseases, such as acute fatty liver of pregnancy (AFLP)

and intrahepatic cholestasis of pregnancy (ICP), may result in
FIGURE 1

The mediation model examines the indirect correlation between gestational hypothyroidism in pregnant women with preeclampsia and neonatal
birth weight through maternal alanine aminotransferase level.
TABLE 6 Mediating effects of maternal alanine aminotransferase between preeclampsia with gestational hypothyroidism and birth weight.

Variable Estimate S.E.
Bootstrap 95%CI

Effect size (%)
Lower Upper

Total effect -327.52 73.79 -472.56 -182.48 100.0

Direct effect -276.66 72.89 -419.94 -133.39 84.5

Indirect effect -50.85 22.53 -101.07 -15.07 15.5
Adjusting for preterm delivery, fetal growth restriction and pre-pregnancy body mass index.
S.E., Standard Error; CI, Confidence Interval.
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maternal hepatic dysfunction, which can subsequently affect the

placenta’s ability to supply nutrients and oxygen to the fetus. This

may lead to complications such as fetal intrauterine distress,

preterm birth, and LBW, thereby posing risks to maternal and

fetal safety (44). However, during pregnancy, the indicators related

to liver function diagnosis do not change independently and may

undergo physiological changes, which complicates the diagnosis of

liver function in pregnant women. For instance, ALP levels may

physiologically increase in the late stages of pregnancy due to

placental production and fetal skeletal development. Conversely,

albumin levels may decrease due to hemodilution. Nevertheless,

when maternal transaminase and bilirubin levels increase, it is

generally considered an abnormal phenomenon (45). Consistent

with the findings of Sciarrone et, al (46), this study also indicates

that maternal ALT levels are negatively correlated with neonatal

birth weight. Elevated ALT levels typically indicate liver cell damage

or liver dysfunction, which may lead to a decrease in the liver’s

synthetic capacity and subsequently affect fetal nutrition supply

(47). Additionally, pro-inflammatory factors released due to liver

damage can cross the placental barrier and inhibit fetal growth (48),

ultimately resulting in reduced the neonatal birth weight (49). This

study also found a positive correlation between maternal serum

ALP levels and neonatal birth weight, which is consistent with

previous research findings (50, 51). The variation in ALP levels is

associated with gestational age; although elevated ALP levels are

related to ICP (52), which may impair placental function, the

increase in ALP during pregnancy is generally considered

physiological. From another perspective, ALP is involved in the

transport and metabolic processes within the placenta. Elevated

ALP levels may reflect robust placental function, which is beneficial

for fetal growth and development, thereby contributing to increased

birth weight (53). Interestingly, after adjusting for covariates, the

statistical significance between AST levels and neonatal birth weight

dissipated. This may be attributed to the substantial influence of

these covariates on neonatal birth weight, thereby obscuring the

effect of AST levels. Additionally, there may be a high correlation

between AST levels and the covariates, as indicated by the research

conducted by Zhuang et al., which suggests that AST is an

independent risk factor for preterm birth (54).

It is noteworthy that both preeclampsia and hypothyroidism

can impair maternal liver function (35, 55), and that preeclampsia,

hypothyroidism, and liver function all have an impact on neonatal

birth weight. Therefore, we constructed a mediation model to

explore whether preeclampsia combined with hypothyroidism

could indirectly influence neonatal birth weight by altering liver

function indicators. This investigation serves as an extension of our

understanding of the impact of hypothyroidism on fetal

development. The results of this study indicate that ALT levels

partially mediate the relationship between preeclampsia combined

with hypothyroidism and neonatal birth weight, that is, compared

to pregnant women with preeclampsia alone, those with

preeclampsia combined with hypothyroidism not only directly

contribute to a reduction in neonatal birth weight but may also
Frontiers in Endocrinology 10118
indirectly lower birth weight through increased ALT levels.

Hypothyroidism is characterized by elevated serum TSH levels

and decreased FT4 levels, leading to thyroid hormone deficiency,

which plays a crucial role in hepatic cellular activity and liver

metabolism. Thus, hypothyroidism may lead to hepatic

dysfunction, commonly manifested as impaired lipid metabolism

(56) and hepatic steatosis (57). Previous studies have primarily

focused on the lipid metabolism of pregnant women with

hypothyroidism and its impact on pregnancy outcomes (58).

However, there is a paucity of research examining the effects of

changes in liver function indicators caused by hypothyroidism on

pregnancy outcomes. In fact, hypothyroidism can lead to

abnormalities in serum liver enzymes. A study analyzing serum

data from 10292 outpatient adults indicated a negative correlation

between serum GGT and ALT concentrations and FT4 levels (59),

suggesting that hypothyroidism may result in elevated

concentrations of ALT and gamma-glutamyl transferase (GGT).

Certainly, this study has several limitations. Firstly, the scope of

our investigation is not comprehensive enough, as it lacks details on

factors such as the nutritional status of pregnant women and the

treatment received during hospitalization, which may confound the

relationship with neonatal birth weight. Secondly, given that this

study employs an observational design, it cannot establish causal

relationships, necessitating cautious interpretation of the findings.

Thirdly, the study only included women with singleton live births,

which may introduce selection bias; additionally, there is a lack of

relevant data from normal pregnant women to serve as a control

group. Fourthly, since the focus of research designs was on

examining the effects of preeclampsia combined with or without

hypothyroidism on maternal liver function and neonatal birth

weight, the impact of the severity of preeclampsia on liver

function and birth weight was overlooked. Consequently, some

classification criteria lacked comprehensive data monitoring,

making it impossible to conduct more in-depth exploratory

research. Finally, there may exist a bidirectional relationship

between thyroid function and liver function; this study only

explored whether hypothyroidism could induce changes in liver

function indicators that indirectly affect neonatal birth weight.

Therefore, future research should consider conducting larger-scale

prospective studies to gain a more comprehensive understanding of

the intricate interplay between preeclampsia with hypothyroidism,

liver function, and adverse pregnancy outcomes.
Conclusions

This study provides new insights by exploring the impact of

hypothyroidism and liver function indicators in pregnant women

with preeclampsia on neonatal birth weight. The findings support

the notion that hypothyroidism adversely affects fetal development

and suggest that maternal serum ALT levels may serve as a potential

partial mediator linking preeclampsia combined with

hypothyroidism and neonatal birth weight. Clinicians should
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closely monitor thyroid and liver function in pregnant women with

preeclampsia and implement appropriate interventions to improve

neonatal birth weight and health outcomes.
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Purpose: Asymptomatic hyperuricemia(AH) is characterized by elevated blood

uric acid levels without symptoms,posing risks like gout, kidney stones, and

cardiovascular diseases. This study aims to investigate the role of the gut

microbiota in uric acid metabolism in AH.

Methods: Clinical data from 30 AH patients and 30 healthy controls were

collected. Fecal microbiota genomic DNA was extracted, PCR amplified, library

constructed, and sequenced. Bioinformatics and statistical analyses were

conducted to study the gut microbiota of the two groups.

Results: The AH group exhibited significantly elevated levels of body mass index

(BMI), Triglycerides (TG), Total Cholesterol (TC), as along with a history of

smoking, hypertension, and fatty liver disease compared to the healthy group

(P < 0.05). The overall richness and ecological diversity of gut microbiota in the

AH group decreased, with differences in the distribution at the phylum and genus

levels compared to the healthy group. Uric acid demonstrated significant

correlations with various gut microbiota (e.g., Granulicatella), suggesting their

potential as biomarkers for AH. Despite limitations such as a small sample size

and lack of long-term follow-up, our findings provide new insights for the early

diagnosis and personalized treatment of AH. Looking ahead, these discoveries

may advance the clinical management of AH and the exploration of

associated biomarkers.
KEYWORDS

asymptomatic hyperuricemia, gut microbiota, 16S rRNA sequencing, correlation study,
clinical parameters
1 Introduction

Asymptomatic hyperuricemia(AH) is characterized by elevated levels of uric acid in the

blood without clinical symptoms. Despite its increasing prevalence in adults, the potential

health risks associated with this condition are often overlooked (1). AH is closely linked to

the development of gout, kidney stones, and cardiovascular diseases (2), imposing

significant economic burdens on healthcare systems. Current diagnostic and treatment
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approaches primarily focus on symptomatic gout patients, while

prevention and management of AH lack sufficient research and

attention, highlighting the urgent need for further exploration and

investigation in this field.

Recent research has indicated a potential significant role of the

gut microbiota in metabolic disorders, including the regulation of

uric acid metabolism (3, 4). The composition of the gut microbiota

is closely associated with an individual’s metabolic status, with

certain microbes potentially impacting the synthesis and excretion

of uric acid (5). This discovery has sparked scientific interest in

exploring the connection between AH and the gut microbiota,

suggesting a potential significant role of the gut microbiota in the

development of hyperuricemia (6). Therefore, research focusing on

the gut microbiota may unveil new pathophysiological insights into

AH and offer novel avenues for intervention.

This study aims to explore the potential connection between gut

microbiota characteristics and uric acid metabolism in patients with

AH. The research methods include clinical data collection, DNA

extraction and sequencing, microbiome data analysis, to elucidate

how microbiota composition impacts the development and

advancement of AH. This not only provides foundational data for

mechanistic studies of AH but also offers potential biomarker

support for future personalized treatment strategies.

Upon reviewing the background and existing research, it is evident

that this study will provide a new perspective on the prevention and

treatment of AH, particularly in the individualized intervention of the

microbiome. This will offer a more scientific basis for clinical practice,

ultimately reducing the incidence of AH and its related complications,

thereby improving patients’ quality of life.
2 Materials and methods

2.1 Study population

In the period from January to June 2023, we recruited 30 patients

with AH at the Health Examination Center of Dongfang Hospital,

Beijing University of Chinese Medicine. The diagnostic criteria for AH

were defined as serum uric acid levels of > 7 mg/dL for males and > 6

mg/dL for females in two fasting tests on different dates under normal

purine diet (7). Exclusion criteria for the AH patients included: a

history of acute gouty arthritis, chronic tophaceous gout, chronic

gouty arthritis, or uric acid nephropathy; the presence of severe

cardiovascular, cerebrovascular, hepatic, renal, or hematopoietic

system diseases; and secondary hyperuricemia due to other causes

such as malignancy or renal disease. Additionally, we excluded

individuals who had taken medications known to influence uric

acid metabolism (e.g., aspirin, hydrochlorothiazide, probenecid) or

those who had used antibiotics, probiotics, prebiotics, or synbiotics

within the 3 months prior to enrollment. Pregnant or lactating women

were also excluded. A parallel group of 30 age- and gender-matched

healthy volunteers was recruited. These volunteers had no history of

significant diseases or infections in the past 3 months and had likewise

not used any antibiotics or probiotic supplements during that period.
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Sample size estimation: The sample size was determined a priori

using power analysis in G*Power 3.1, where based on pilot data

from 5 asymptomatic hyperuricemia (AH) patients and 5 healthy

controls, we estimated a Cohen’s d effect size of 0.80 for a-diversity
(Shannon index) differences; with a significance level (a) of 0.05
(two-tailed) and 80% statistical power, the minimum required

sample was calculated as 22 participants per group, which was

increased to 30/group to accommodate 20% potential attrition from

DNA extraction/sequencing failures.

This study was conducted in accordance with the Helsinki

Declaration and Good Clinical Practice guidelines. Approved by

the Ethics Committee of Dongfang Hospital, Beijing University of

Chinese Medicine (Approval No: JDF-IRB-2023051802), all

participants provided written informed consent.
2.2 Clinical information

Patient consultation and physical examination data were

collected, including patient ID, gender, age, height, weight, liver

ultrasound results, medical history, smoking and alcohol

consumption history. Body mass index (BMI) was calculated

using the formula BMI = weight (kg)/height (m^2) based on the

patient’s height and weight information. Blood pressure was

measured using a clinical electronic sphygmomanometer, with

two seated blood pressure measurements taken 10 minutes apart

and the average recorded. Hypertension was defined as systolic

blood pressure ≥ 140 mmHg, diastolic blood pressure ≥ 90 mmHg,

a history of hypertension, and/or current use of antihypertensive

medication. Diabetes was defined as fasting blood glucose ≥ 7.1

mmol/l, a history of diabetes, and/or current use of antidiabetic

medication. Smoking history referred to current or past smoking

habits, while alcohol consumption history referred to the

consumption of alcoholic beverages in the past year. Fatty liver

was diagnosed based on abdominal ultrasound findings or a history

of fatty liver disease. Additionally, 5ml of peripheral venous blood

was collected from each patient after a 12-hour fast for laboratory

testing, including routine blood parameters, blood biochemistry,

renal and liver function parameters, and blood lipid analysis.
2.3 Specimen collection

Before sampling, instruct the participants to empty their

bladders to prevent urine contamination of feces. Collect

approximately 2g of freshly passed feces using a sterile spoon and

place it in a 2 mL cryotube. Store the sample at -80 °C within 2

hours for sequencing.
2.4 DNA extraction and PCR amplification

In this study, genomic DNA of fecal gut microbiota was extracted

using the CTABmethod. Subsequently, DNA purity and concentration
frontiersin.org
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were assessed by 1% agarose gel electrophoresis. An appropriate

amount of fecal sample was diluted in sterile water to 1 ng/µl in a

centrifuge tube. The highly variable V3V4 region of the bacterial 16S

rRNA gene was selected for sequencing. Specific primers 341F (5’-

CCTAYGGGRBGCASCAG-3’) and 806R (5’-GGACTACNNGGG

TATCTAAT-3’) were used for PCR amplification of the V3 + V4

variable region. The amplification protocol involved using the diluted

genomic DNA as a template, specific primers designed with specific

barcodes, Phusion® High-Fidelity DNA polymerase enzyme, and

Phusion® High-Fidelity PCR Master Mix with GC Buffer.

Amplification of the V3 + V4 variable region was carried out using a

Bio-rad T100 gradient PCR machine.
2.5 Purification and multiplexing of PCR
products

After equalizing the concentrations of PCR products, they were

thoroughly mixed and purified using a 2% agarose gel electrophoresis

in 1xTAE buffer (Biowest, Spain). The target bands were recovered

using the Universal DNA Purification Recovery Kit (TianGen, China).
2.6 Construction of libraries and
sequencing on computers

Utilizing the NEB Next®Ultra DNA Library Prep Kit (Illumina,

USA), libraries were constructed, followed by library quality

assessment and qPCR quantification using the Agilent 5400

Bioanalyzer (Agilent Technologies, USA). Subsequently, qualified

libraries were subjected to sequencing on the Illumina Novaseq

6000 PE250 platform (Illumina, USA).
2.7 Bioinformatics analysis

The analysis was conducted by following the “Atacama soil

microbiome tutorial” of Qiime2docs along with customized

program scripts (https://docs.qiime2.org/2019.1/).

Utilizing the QIIME2 dada2 plugin, all raw sequences underwent

quality control, trimming, denoising, merging, and removal of chimeras

to obtain the final feature sequences (amplicon sequence variants,

ASVs). The ASV representative sequences were aligned to the pre-

trained 13_8 version of the GREENGENES database at 99% similarity

using theQIIME2 feature-classifierplugin (with thedatabase trimmedto

theV3V4 regionbased on the 341F/806Rprimers), resulting in a table of

taxonomic classifications. Subsequently, the QIIME2 feature-table

plugin was employed to eliminate all contaminant mitochondrial and

chloroplast sequences. Various methods such as ANCOM, ANOVA,

Kruskal-Wallis, LEfSe, and DESeq2 were employed to identify

differential bacterial abundance between groups and samples.

Subsequently, the QIIME2 core-diversity plugin was utilized to

compute diversity matrices, including alpha diversity indices at the

feature sequence level such as observed features, Chao1, Simpson,
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Shannon, and Faith’s phylogenetic diversity, to assess the diversity

within samples. Beta diversity indices, such as Bray Curtis, unweighted

UniFrac, and weighted UniFrac, are utilized to assess differences in

microbial community structures among samples. We employed

Principal Coordinates Analysis (PCoA) and Partial Least-Squares

Discrimination Analysis (PLS-DA) plots for visualization. To further

understand the specific species contributing to inter-group microbial

differences, bacteria with differential abundances between groups were

identified using theKruskal-Wallis test and Linear discriminant analysis

Effect Size (LEfSe) based on species abundance tables. Spearman

correlation coefficients were calculated between clinical phenotypes

and microbial species, and a correlation heatmap was constructed to

assess significant associations. Additionally, the functional composition

of microbial communities was predicted using PICRUSt software.

Unless stated otherwise, default parameters were utilized for the

aforementioned analyses. (Sequencing service and data analysis service

were provided by Wekemo Tech Group Co., Ltd. Shenzhen China.).
3 Result

3.1 The fundamental characteristics of the
research subject.

The AH group and the healthy control group showed no

significant differences in age and gender (P > 0.05). The AH

group exhibited significantly higher levels of BMI, Serum Uric

Acid (SUA), TG, and TC compared to the healthy control group

(P < 0.05), while High-Density Lipoprotein Cholesterol (HDLC)

levels were significantly lower in the AH group (P < 0.05).

Differences in hypertension, fatty liver, and alcohol history were

statistically significant (P < 0.05) (Table 1).
3.2 The characteristics of the distribution
at the phylum and genus levels of gut
microbiota in two groups.

By analyzing the feature table of Amplicon Sequence Variants

(ASVs), the relative abundances of samples at different taxonomic

levels including phylum, class, order, family, genus, and species were

determined. The results were presented using stacked bar graphs. At the

phylum level, the top 20 species were selected to compose the bar graph,

as shown in Figure 1A. Both groups exhibited Firmicutes, Bacteroidota,

Proteobacteria, Actinobacteria, and Euryarchaeota as dominant gut

microbiota. Among the phyla with relatively higher proportions, the

abundance of Euryarchaeota in the AH group was significantly lower

compared to the other group (2.54% vs. 1.345%, P=0.019).

At the genus level, a bar graph was constructed using the top 20

ranked species, as shown in Figure 1B. The gut microbiota of the two

groups exhibited differences at the genus level, with relatively higher

abundances in the following genera for both groups: Bacteroides

(20.40% vs 20.89%), Faecalibacterium (10.74% vs 12.98%), and

Prevotella (8.01% vs 10.58%). In the AH group, Oscillospira (1.63%
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vs 1.18%, p=0.035) and Methanomethylovorans (1.63% vs 0.65%,

p=0.003) showed significantly lower abundance levels.

As shown in Figures 1C, D, the community heatmap illustrates

the species abundance of the top 20 gut-dominant microbiota at the

phylum and genus levels for two groups, revealing differences in gut

microbiota composition between the groups.
3.3 Comparison of alpha diversity of gut
microbiota

As shown in Figure 2A, the Chao1 index, Observed species index,

Shannon index, and Simpson index of the AH group were lower than

thoseof thehealthycontrol group,but thedifferenceswerenot statistically

significant (P > 0.05). As depicted in Figure 2B below, the sequencing

depth of the experimental samples gradually reached saturation with
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increasing sequencing efforts, indicating sufficient sequencingcoverage to

assess the diversity of the gut microbiota under study.
3.4 Comparison of beta diversity in gut
microbiota

The PCoA analysis (Figure 3A) revealed differences in the gut

microbiota community structure between the AH group and the

healthy control group. Further confirmation of these differences was

obtained through ANOSIM analysis, which indicated non-

significant dissimilarities between the two groups (P=0.69).

NMDS analysis results were consistent with the PCoA analysis

(Figure 3B). Utilizing Partial Least Squares Discriminant Analysis

(PLS-DA) (Figure 3C), the samples from the two groups were

distinctly separated in the PLS-DA plot without overlap, with an
TABLE 1 Comparison of baseline characteristics of the participants [(x ± s/n (%)].

Clinical data Healthy group(n=30) AH group(n=30) P-value

Gender 0.79

Male = 1 17(56.7%) 18(60%)

Female = 0 13(43.3%) 12(40%)

Age(years) 38.03 ± 11.35 34.43 ± 9.65 0.19

BMI(kg/m2) 23.36 ± 3.00 27.56 ± 4.71 0.00

SUA(mmol/L) 301 ± 67.00 462 ± 84.37 0.00

TC(mmol/L) 4.45 ± 0.75 4.96 ± 1.11 0.04

TG(mmol/L) 1.21 ± 0.61 1.97 ± 1.49 0.01

LDL-C(mmol/L) 2.80 ± 0.73 3.20 ± 0.96 0.07

HDL-C(mmol/L) 1.45± 0.34 1.21 ± 0.26 0.04

Fatty liver

Yes = 1 5(16.7%) 19(63.3%) 0.00

No = 0 25(83.3%) 11(36.7%)

Smoking history

Yes = 1 6(20%) 13(43.3%) 0.52

No = 0 24(80%) 17(56.7%)

Alcohol consumption history

Yes = 1 6(20%) 19(63.3%) 0.00

No = 0 24(80%) 11(36.7%)

Hypertension

Yes = 1 2(6.7%) 11(36.7%) 0.01

No = 0 28(93.3%) 19(63.3%)

Diabetes

Yes = 1 4(13.3%) 10(33.3%) 0.07

No = 0 26(86.7%) 20(66.7%)
frontiersin.org

https://doi.org/10.3389/fendo.2025.1557225
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Cao et al. 10.3389/fendo.2025.1557225
AUC value of 1 for both groups, indicating significant differences in

gut microbiota composition between them. The Venn diagram

(Figure 3D) visually displayed the shared and unique species

compositions between the healthy and AH groups, showing 1140

shared ASVs and a differing number of ASVs, highlighting a

quantitative difference in species between the two groups.
3.5 LEfSe analysis of divergent species

As shown in Figure 4, compared to the healthy group, the AH

group exhibited higher relative abundance of g_Enhydrobacter,

g_Dorea, g_Stenotrophomonas, and g_Acinetobacter (P < 0.05),
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while g_Sphingobium, g_Candidatus_Koribacter, p_Acidobacteria,

g_Anaerostipes, g_Oscillospira, g_Methanomethylovorans, and

p_Euryarchaeota showed lower relative abundance (P < 0.05).
3.6 Correlation analysis

The Spearman correlation analysis revealed a positive correlation

between blood uric acid levels and the abundance of Enterococcaceae,

Dorea, Bordetella, and Granulicatella (P < 0.05), and a

negative correlation with Oxalobacter, Methanomethylovorans,

Candidatus_Arthromitus, and Proteus (P < 0.05) (Figure 5).

Additionally, clinical parameters such as BMI and blood lipid levels
FIGURE 1

Characteristics of the distribution of gut microbiota at the phylum and genus levels in two groups. (A) displays the relative abundance of species at
the phylum level, while (B) illustrates the relative abundance of species at the genus level. The x-axis represents the group names, and the y-axis
(Sequence Number Percent%) indicates the proportion of sequences annotated at that level compared to the total annotated data, with the color
sequence in the bar charts corresponding to the legend on the right. (C) represents a heatmap of species communities at the phylum level, and (D)
shows a heatmap of species communities at the genus level. The x-axis denotes the group names, and the y-axis displays the phylum/genus-level
taxonomic annotations. The clustering tree on the left clusters species based on similarity in abundance distribution. The middle heatmap represents
the log10(absolute abundance) heatmap. Group A refers to the healthy group, while Group B refers to the AH group.
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showed significant correlations with the abundance of certain gut

microbial species.
3.7 Analysis of inter-group differences in
functionality

Based on PICRUSt2-predicted pathway annotations (MetaCyc

database) and considering the grouping information, microbial
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community predicted functions were analyzed using ANOVA with

Duncan and Dunn tests. As shown in Figure 6, the AH group

exhibited downregulation of glycolysis V (Pyrococcus), 7-(3-amino-

3-carboxypropyl)-wyosine biosynthesis, archaetidylinositol

biosynthesis, CDP-archaeol biosynthesis, coenzyme B biosynthesis,

mevalonate pathway II (archaea), phosphopantothenate biosynthesis

III, and superpathway of methanogenesis, while L-tryptophan

degradation IX was upregulated compared to the healthy group,

with significant differences (P < 0.05).
FIGURE 2

Comparison of alpha diversity in gut microbiota. (A) compares the alpha diversity (Chao1, Observed species, Shannon, Simpson) indices between the
two groups; (B) the sampling depth on the x-axis and the Shannon index on the y-axis. “ns” indicates no statistical significance, Group A: healthy
group, Group B: AH group.
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FIGURE 3

Comparison of beta diversity in gut microbiota. (A) Based on the 3D PCoA plot using weighted Unifrac, Axis 1 represents the first principal
component contributing 29.86%, while Axis 2 represents the second principal component contributing 9.25%. (B) NMDS analysis was conducted
using weighted Unifrac distances. Each point in the plot represents a sample, with different colors indicating different sample groups, and the
distances between points represent the degree of microbial community differences. (C) PLS-DA coordinate plot where each point represents a
sample, with points of the same color belonging to the same group; AUC curves of the regression model indicating the area under the curve for
discriminant analysis of each group displayed on the right side of the plot. (D) Venn diagram showing Group A: healthy group, Group B: AH group.
FIGURE 4

Analysis of differential species in the gut microbiota. (A) Each horizontal bar represents a species, with the length corresponding to the LDA value
indicating the level of difference. The color of the bars indicates the microbial feature group to which the species belongs, reflecting its relatively
higher abundance within that group. (B) In the cladogram, the layers from inner to outer represent different taxonomic levels such as phylum, class,
order, family, and genus, with connecting lines indicating their hierarchical relationships. Each circular node represents a species, with yellow nodes
indicating insignificant differences between groups, while non-yellow nodes represent species characteristic of a specific group (with significantly
higher abundance within that group). Colored sectors highlight the taxonomic range of the characteristic microbes. Group A: healthy group, Group
B: AH group.
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4 Discussion

This study explores the background of AH and its potential

associations with metabolic-related diseases. AH is characterized by

elevated blood uric acid levels without symptoms of conditions like

gout. Despite a rising prevalence in the general population and its

close links to health risks such as cardiovascular diseases, kidney

stones, and metabolic syndrome, research on AH remains limited,

particularly regarding its underlying pathophysiology and

preventive strategies. This suggests that AH may serve as a
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precursor to more serious health issues, emphasizing the need for

further investigation in this field.

This study investigates the observed association between

changes in gut microbiota and AH. Various methods including

clinical data collection, high-throughput sequencing, and

microbiome data analysis were employed to analyze the gut

microbiota characteristics of AH patients compared to healthy

controls, and their relationship with clinical indicators. The

results reveal significant differences in gut microbiota

composition between AH patients and healthy individuals,
FIGURE 5

Heatmap illustrating the relationships between microbial species and clinical phenotypes in the study participants (r ≥ 0.3). The X-axis represents
clinical phenotypes (including BMI, TC, TG, LDL-C, UA, HDL-C), while the Y-axis indicates the corresponding species (at the genus level). The color
bar on the far left denotes the phylum classification, with different colors representing different r values. The legend on the far right shows the color
intervals corresponding to r values and the phylum names. *P < 0.05, **P < 0.01. BMI, Body Mass Index; TC, Total Cholesterol; TG, Triglycerides;
LDL-C, Low-Density Lipoprotein Cholesterol; HDL-C, High-Density Lipoprotein Cholesterol; UA, Serum Uric Acid.
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suggesting new targets for future treatments. Through a thorough

analysis of these findings, we aim to provide novel insights and

evidence for the prevention and treatment of AH.

In this study, we revealed a potential association between AH

and the gut microbiota by analyzing the characteristics of AH

patients and their gut microbiomes. The results indicated significant

variances between the AH group and the healthy control group in

terms of body mass index (BMI) and metabolic indicators such as

TG and TC. These variances suggest distinct metabolic features in

AH patients compared to healthy individuals, providing

foundational data for clinical screening and intervention

strategies. Additionally, the prevalence of hypertension and fatty

liver in the AH group was significantly higher than in the healthy
Frontiers in Endocrinology 09129
group, further supporting a potential link between AH and

metabolic syndrome (8).

In the analysis of microbiota data, this study observed a

decrease in Alpha diversity in the AH group compared to the

healthy group, indicating a reduction in overall richness and

ecological diversity of the gut microbiota in the AH group. Beta

diversity suggested differences in the composition of gut microbiota

between the two groups. At the phylum level, a decrease in

abundance of Acidobacteria and Verrucomicrobia was noted in

the AH group. At the genus level, the relative abundance of

Enhydrobacter, Dorea, Stenotrophomonas, Acinetobacter was

higher, while Sphingobium, Candidatus_Koribacter, Anaerostipes,

Oscillospira, Methanomethylovorans showed lower relative
FIGURE 6

Significant differences in all METAcyc pathways identified through ANOVA and Duncan’s test. The x-axis represents the names of pathways. Each
pathway is color-coded to indicate a specific group. If two groups share the same letter above them, it signifies nonsignificant differences;
otherwise, differences are considered significant.
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abundance in the AH group. These microbial differences may be

correlated with the pathogenesis of AH, providing clues for future

research on the relationship between gut microbiota and AH.

Previous studies have suggested that gut microbiota are associated

with uric acid synthesis and excretion through metabolic pathways

and immune responses (9).

Some studies suggest that Oscillospira is a genus associated with

a healthy gut and has been predicted to be a potential producer of

butyric acid (10). Anaerostipes strains are known to utilize inositol

to generate propionic and acetic acids (11). SCFAs, particularly

propionate and butyrate, have been reported to provide ATP to

intestinal cells, potentially benefiting uric acid excretion (12). Our

research also observed decreased abundance of Oscillospira and

Anaerostipes in the AH group, indicating a possible association

between AH and the reduction of these two genera.

Furthermore, the study revealed a positive correlation between

serum uric acid levels in AH patients and specific gut microbiota such

as Bordetella and Granulicatella, while showing a negative correlation

with Oxalobacter and Methanomethylovorans (P < 0.05). These

findings offer a novel perspective for biomarker research in AH,

potentially aiding in early diagnosis and monitoring in clinical

settings. Future research should explore the utility of microbiome

analysis techniques for early diagnosis and investigate the prospects

of these biomarkers in personalized medicine (13).

Finally, based on the PICRUSt2-predicted pathway abundances

annotated by the METAcyc database, we observed significant

differences in specific metabolic pathways, including downregulation

of glycolysis V (Pyrococcus) and upregulation of L-tryptophan

degradation IX in the AH group compared to the healthy group.

However, as these functional predictions are derived from 16S rRNA

gene sequences and not from metagenomic or metatranscriptomic

data, they should be interpreted as in silico inferences with inherent

limitations including dependence on reference genomes and lack of

experimental validation.

Despite these predictive limitations, previous research has

provided insights that may relate our findings to hyperuricemia

pathogenesis. Potential inhibition of the glycolysis pathway could

theoretically contribute to accumulation of metabolic intermediates

such as 6-phospho-glucose and 3-phosphoglyceraldehyde, which can

be diverted to produce 5-phosphoribose and subsequently ribose-5-

phosphate. This could theoretically increased endogenous purine

synthesis and elevated serum uric acid levels (14). It is noteworthy

that the predicted glycolysis V pathway is specific to archaea

(Pyrococcus), which implies a possible connection of archaeal

metabolism in AH that warrants further investigation.

Regarding tryptophan metabolism, which encompasses the

kynurenine, serotonin, and indole pathways, the production of

bioactive compounds from tryptophan degradation can be

associated with diverse physiological processes including

inflammation, metabolism, and immune responses (15).

Kynurenic acid, a major degradation product of L-tryptophan

(16), was found elevated in AH rats, while indoxyl sulfate and

tryptophan 2-C-glucoside were decreased, indicating alterations in

tryptophan metabolism in AH (17). Although our predictive data

suggest altered tryptophan degradation activity in the gut
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microbiome of AH patients, the nature of the relationship

between microbial pathway activity and host metabolite levels

requires experimental validation.

The limitations of this study primarily lie in sample size and

experimental design. Although we compared high uric acid patients

with a healthy control group, the relatively small sample size may

impact the statistical significance and generalizability of the results.

Furthermore, the observational design prevents causal inferences, and

the lack of validation through wet lab experiments restricts the

biological significance and clinical applicability of the findings.

Additionally, important lifestyle factors including dietary patterns,

fiber intake, physical activity, and probiotic use were not assessed in

this study. These unmeasured confounders may influence both gut

microbiota composition and uric acid levels, limiting the ability to

isolate microbiome-specific effects. Moreover, the absence of long-

term clinical follow-up data prevents the assessment of potential

causality between microbiome changes and the progression of AH.

These limitations suggest that future research should involve larger

sample sizes, incorporate multiple experimental approaches, control

for key lifestyle confounders, and include long-term follow-up to

validate our findings and enhance their clinical relevance.

In conclusion, this study provides important foundational data

for clinical management by analyzing the characteristics of patients

with AH, differences in gut microbiota, and associated risk factors.

Despite certain limitations, our findings suggest new research

directions for early diagnosis and personalized treatment of AH.

Future investigations into the relationship between microbiota and

AH, combined with larger-scale clinical data, may contribute to the

development of more effective prevention and treatment strategies.
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