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Editorial on the Research Topic

Integrated diagnostics and biomarker discovery in endocrinology and
biomedical sciences, volume Il

The integration of multi-omics biological data, such as genomics, transcriptomics,
proteomics, etc., is reshaping how we conceptualize and pursue biomarker discovery in
endocrinology. Moving beyond reductionist paradigms, contemporary research now unites
molecular, cellular, physiological, and population-level information to illuminate the
complex regulatory architecture underlying endocrine health and disease. Integrated
Diagnostics and Biomarker Discovery in Endocrinology and Biomedical Sciences:
Volume II brings together nine original contributions that exemplify this transition
toward a systems-oriented and data-driven discipline.

Spanning the spectrum from ionic ratios and proteomic signaling to transcriptomic
networks, genomic variation, and ecological microbiome interactions, these studies
demonstrate how diagnostic precision emerges through the convergence of molecular
and systemic perspectives. Collectively, they trace a coherent trajectory - from basal
biochemistry and molecular communication to clinical integration and population-scale
modeling - illustrating how multi-scale data synthesis from ionic ratios to networks can
refine both mechanistic understanding and translational application.

Taken together, this Research Topic reflects the growing maturity of integrative
endocrinology, a field where multi-omics analytics, causal inference, and real-world data
harmonization converge to enable predictive and personalized approaches to endocrine
disorders. By highlighting these multi-scale insights, Volume II underscores the central
message of modern biomarker science: meaningful diagnostic innovation arises not from
any single data layer, but from their integration into a unified systems framework that
connects molecules to medicine.
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Park et al.

Lou et al. systematically validated the Glucose-Potassium Ratio
(GPR) - a long-recognized broad clinical predictive marker (1) - asa
prognostic biomarker for both short- and long-term all-cause
mortality. They showed a strong association with mortality in
both hospital and ICU settings. Mortality risk escalated sharply
when GPR exceeded this threshold. Sensitivity analyses confirmed
the robustness of these findings, positioning GPR as a valuable,
non-invasive indicator for early identification and risk stratification
of high-risk sepsis patients. This study opens the Research Topic by
illustrating that integrated diagnostics can arise not only from
macromolecular data but from fundamental ionic interactions
reflecting systemic metabolic homeostasis.

Ji et al. utilized Tandem Mass Tag (TMT)-based quantitative
proteomics on serum-derived exosomes to compare protein profiles
among juvenile gout (J-Gout), juvenile hyperuricemia (J-HUA), and
oligoarticular juvenile idiopathic arthritis (oJIA) patients. Subsequent
ELISA validation confirmed that two proteins’ concentrations were
significantly high in J-Gout. Furthermore, their marker levels showed
a positive correlation with clinical inflammatory indicators, C-reactive
protein (CRP), and erythrocyte sedimentation rate (ESR).
Bioinformatic analysis linked the differentially expressed proteins
primarily to inflammatory mechanisms. These findings offer crucial
molecular insight into J-Gout pathogenesis and serve as promising
diagnostic or therapeutic biomarkers. Following the ionic analysis, this
proteomic exploration demonstrates how molecular communication
via exosomes encodes disease-specific inflammatory signatures.

Wang et al. analyzed the time-dependent biological variation
(BV) of 16 biomarkers related to thyroid function, iron metabolism,
and bone metabolism in 24 stable Type-2 Diabetes Mellitus (T2DM)
patients. They also used variation values derived from healthy subjects,
showing that some markers could be precisely monitored in T2DM
patients by applying these reference change values. Conversely, for
certain biomarkers, personalized monitoring was emphasized over
using variation derived from healthy groups. This study illustrates the
transition from individual molecular measures to dynamic systems of
integrated biomarkers, reinforcing the need for personalized
interpretation in metabolic diseases.

Wang and Zhu applied a two-sample Mendelian randomization
(MR) analysis—an influential method for causal inference developed
in the early 2000s (2)—using large-scale GWAS summary data
comprising 1,195 rosacea cases and 211,139 controls to investigate
the causal relationships between 179 plasma lipid species and rosacea.
Two sterol esters (SE), two phosphatidylethanolamines (PE), and one
sphingomyelin (SM) were identified as statistically significant
protective factors against rosacea risk. This research enhances the
understanding of rosacea pathogenesis by suggesting that these lipids
are crucial for maintaining cell membrane function and regulating
immune responses. It represents novel molecular targets for assessing
and potentially treating this dermatological condition. Their
work connects biochemical variability with genetic causality,
demonstrating how lipid species can bridge metabolism, immunity,
and dermatological pathology.

Ke et al. advanced the field of diagnostic marker discovery by
applying bulk RNA analysis integrated with a comprehensive
bioinformatics workflow - including differentially expressed gene
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(DEG) analysis, weighted gene co-expression network analysis
(WGCNA), and machine learning - to identify potential
diagnostic genes in patients with Diabetes Mellitus (DM). They
further highlighted the biological significance by noting its strong
correlation with variations in immune cell types, suggesting a
pivotal role in DM’s immunoregulatory mechanisms. This work
leverages transcriptomic networks and machine learning to map the
immune-metabolic landscape of endocrine disease.

Buzdin et al. introduced the EndoGene database, which is a
repository documenting genetic variants identified via NGS and
WES in 5,926 Russian patients with endocrine disorders. This work
is valuable and meaningful from both an ethnic and population
genetics perspective. This database is vital from a population-
specific perspective due to the genetic heterogeneity of the
Russian Federation. The study reported 2,073 unique genetic
variants, with a striking 57% being previously undescribed at the
time of genetic interpretation. EndoGene contributes essential
population statistics and genetic background information, aiding
clinicians in interpreting rare or population-specific mutations and
ultimately enhancing the diagnostic accuracy and informative
power of clinical NGS panels for endocrine pathologies. In the
broader context, this database serves as an anchor point for
genomic diversity, ensuring that future biomarker interpretation
reflects population-specific genetic architecture.

Zhang et al. extended the concept of the Pan-Immune-
Inflammation Value (PIV) - a composite biomarker integrating
neutrophils, platelets, monocytes, and lymphocytes, originally
proposed around 2020 as a prognostic indicator in cancer patients
(3) - to broader applications encompassing general disease and
mortality outcomes. They evaluated PIV as a predictor of mortality
in the general population from a nationwide cohort study (NHANES,
48,662 samples). They found PIV levels were significantly and
independently associated with an increased risk of all-cause
mortality, as well as cause-specific deaths (cardiovascular, cancer,
and diabetes-related). Moreover, a significant nonlinear dose-
response relationship was observed between PIV and all-cause,
cardiovascular disease, and cancer mortality. This research supports
PIV’s utility for public health risk stratification. Following the
molecular and genomic studies, this large-scale investigation
illustrates how integrated immune indices can extend biomarker
discovery to population-level prediction.

Zhang et al. retrospectively analyzed 420 Chinese pregnant
women with preeclampsia (PE) who had concomitant gestational
hypothyroidism (GHT) to investigate the complex association
between PE/GHT and neonatal birth weight (BW). Neonates born
to mothers suffering from both PE and GHT exhibited significantly
lower birth weight compared to those born to women with PE alone.
Crucially, maternal Alanine Aminotransferase (ALT) levels, which
were significantly elevated in the PE/GHT group, were identified as a
potential partial mediator in this relationship. This highlights the
necessity for clinicians to closely monitor maternal thyroid and liver
function in PE patients to improve neonatal outcomes. Positioned
toward the conclusion, their work exemplifies system-level biomarker
integration, linking endocrine, hepatic, and obstetric parameters to
clinical outcomes.
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Park et al.

Cao et al. investigated the characteristics of the gut microbiome
in 30 patients with Asymptomatic Hyperuricemia (AH) compared
to 30 healthy controls using 16S rRNA sequencing. The AH group
exhibited decreased overall gut microbial richness and ecological
diversity. These microbial changes offer new insights and suggest
that specific species may serve as potential biomarkers for early
diagnosis and monitoring of AH. As the final piece, this study
completes the integration spectrum by linking internal endocrine
metabolism to external ecological networks, emphasizing that
precision endocrinology now extends beyond the human genome
into the microbiome.

Together, these nine contributions delineate a rapidly
expanding frontier in integrated diagnostics, spanning the full
continuum of biological organization—from ionic ratios and
proteomic signatures to genomic databases and microbiome-
derived ecological biomarkers. Collectively, they illustrate how
endocrine science is evolving from isolated molecular
characterization toward a fully systems-based discipline, in which
the integration of multi-omics, clinical, and environmental data
enhances both mechanistic insight and translational precision.

This convergence reflects the maturation of data-informed
endocrinology, where diagnostic and prognostic innovation
emerges from the synthesis of diverse data modalities rather than
from any single layer of observation. By harmonizing biochemical,
genetic, immunologic, and ecological perspectives, these studies
redefine biomarker discovery as a process of multi-scale inference
and integration - one that connects molecular precision with
population-level relevance and real-world applicability. In this
new framework, integration is not merely a methodological
approach but a scientific imperative - transforming endocrinology
into a discipline that systematically bridges molecules to medicine,
and data to diagnosis.
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Introduction: Endocrine system disorders are a serious public health burden and
can be caused by deleterious genetic variants in single genes or by the combined
effects of multiple variants along with environmental and lifestyle factors.

Methods: The EndoGene database presents the results of next-generation
sequencing assays used to genetically profile 5926 patients who were
diagnosed with 450 endocrine and concomitant diseases and were examined
and treated at the National Medical Research Center for Endocrinology between
November 2017 and January 2024. Among them, 494, 1,785, 692, and 1,941
patients were profiled using four internally developed genetic panels including
220, 250, 376, and 382 genes, respectively, selected based on a literature analysis
and clinical recommendations, and 1,245 patients were profiled by whole exome
sequencing covering 31,969 genes.

Results: 2,711 genetic variants were reported as clinically relevant by medical

geneticists and are presented here along with genomic, technical, and
clinical annotations.
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Discussion: This publicly accessible database will be useful to those interested in
genetics, epidemiology, population statistics, and a better understanding of the
molecular basis of endocrine disorders.

genetic database, endocrine pathology, mutations, diabetes mellitus, Mendelian
diseases, human genetic variants

1 Introduction

Endocrine diseases, including diabetes, thyroid dysfunction,
and other hormonal imbalances, contribute significantly to the
global burden of disease (1). These diseases not only affect public
health but also lead to long-term disability and reduced quality of
life for the affected individuals (1). The prevalence of these disorders
is increasing, especially in the context of an aging population and
the increasing incidence of metabolic disorders (2, 3).

These disorders can be caused by rare variants in a single gene
(Mendelian or monogenic diseases), by the combined effects of
multiple genetic variants, or by environmental and lifestyle factors
(polygenic diseases such as type 2 diabetes mellitus or obesity). New
techniques such as gene therapy offer hope when diseases cannot be
effectively treated with traditional drugs. This is possible when the
etiology of the inherited disease is known. Thus, a functional copy
of a gene is introduced into the human body with the help of a
gene therapy drug, slowing down the progression of the disease
and, in some cases, even achieving significant improvement (4). In
recent years, advancements in technology have facilitated the
characterization of genomic diversity across a wide range of
populations (5). Next-generation sequencing (NGS) and genome-
wide association studies (GWASs) have been intensely used to
study the genetic basis of endocrine diseases (6-9). However,
the interpretation of identified variants using criteria widely
recommended by the American College of Medical Genetics
and the Association for Molecular Pathology (ACMG/AMP)
(10) is challenging because detailed phenotypic information
associated with specific variants is limited in most databases (11).
To improve the accuracy of diagnosis, prognosis, and genetic
counseling, the importance of variant databases in patients with
specific diagnoses (12) is increasingly recognized. Such databases
constitute systematically organized repositories of genetic variants,
supplemented with clinical data (13). They facilitate communication
between researchers, clinicians, and patients by allowing the sharing of
information about genes, variants, and pathologic phenotypes (11).

Previous studies have created databases that include genetic
variants associated with specific endocrinopathies. For example, the
MEN2 RET database developed by Margraf et al. is a publicly
accessible database that contains all RET sequence variants related
to MEN2 syndromes as well as relevant clinical data (14). The “NGS
and PPGL Study Group” also collected and classified variants in the
SDHB gene, which is one of the major genes responsible for
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paraganglioma/pheochromocytoma predisposition (PPGL), leading
to the creation of the SDHB variant database (15). In Argentina, a
study of 170 patients with congenital hypopituitarism identified
causative variants in both known and recently proposed candidate
genes (9). In addition, a recent report presented a database containing
comprehensive experimentally validated associations between
endocrine diseases and long non-coding RNAs (16).

However, it is important to consider the potential role of
population-specific variants in disease pathogenesis. Uncommon
variants tend to be specific to certain populations (17). It has been
observed that disease-causing variants often exhibit population
specificity not only for rare but also for common diseases, which
emphasizes the importance of considering pedigree in genetic
studies and clinical diagnosis (18). The multinational population
of the Russian Federation, comprising more than one hundred
different ethnic groups, demonstrates genetic heterogeneity (19-21)
and provides a unique but challenging opportunity to study the
genetic basis of inherited pathogenic mutations and their
contribution to disease etiology in different populations. A recent
study presented a database on the frequency of genetic variants in
Russia (22). In addition, several databases have been created for
Russian patients with hereditary cancer syndromes (23, 24).

The aim of our study was to create the first representative
database of genetic variants specifically targeting endocrine diseases
in the Russian population. We collected information on pathogenic,
likely pathogenic, and other genetic variants identified by panel
NGS and/or whole exome sequencing (WES) in 5,926 patients with
various endocrine pathologies. The database includes information
on zygosity and pathogenicity classification according to ACMG/
AMP recommendations and the presence of reported variants in
previous scientific publications and in population frequency
databases at the time of genetic interpretation. We also calculated
gene mutation frequencies associated with each type of diagnosis.

In addition, we calculated the proportion of WES and smaller
genetic panel analyses that resulted in the identification of variants
for each type of endocrine diagnosis, allowing us to compare the
performance of WES and panel target sequencing tests.

We believe that our database and the analysis of the statistics of
reported genetic variants will contribute to a better understanding
of the genetic basis of endocrine diseases, aid in the interpretation of
mutations found in different populations, and suggest changes in
the composition of diagnostic NGS panels to increase their
informative power.
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The ability to predict clinical outcomes based on genetic data
may be improved by identifying pathogenic variants specific to
certain populations (25). This study is the first to establish the
frequency of pathogenic variants in Russian patients with endocrine
diseases. To our knowledge, the presented database is also one of the
world’s largest genetic experimental knowledge bases on endocrine
pathology. It contributes to the growing body of knowledge on the
genetic basis of these diseases and opens the way for more accurate
and personalized diagnosis and treatment.

2 Methods
2.1 Participant characteristics

The sample includes 5,926 patients who were subjected to NGS
DNA sequencing tests performed in the National Medical Research
Center for Endocrinology (Moscow) from November 2017 to January
2024. The patients either suffered from endocrine pathology or had
unfavorable hereditary history. In all cases, written informed consent
to participate in this study was acquired from the patients or from
their legal representatives. The consent procedure and the design of
the study were approved by the ethics committee of the National
Medical Research Center for Endocrinology, Moscow, Russia.

Inclusion criteria were the availability of diagnosis and record
with sequencing results interpreted by clinical geneticists according
to the ACMG/AMP guidelines (10). Patients were not specifically
selected based on their clinical diagnoses. However, given the
specialization of the Endocrinology Research Center, the testing
cohort predominantly included individuals with endocrine or
endocrine-related pathology, and their relatives were considered
potential carriers of pathogenic genetic variants. A complete set of
ICD10 diagnoses associated with individual patients and specific
genetic variants is available in the database file (https://doi.org/
10.5281/zenodo.10894526) and the patients can be filtered by
ICD10 code for specific disease types.

10.3389/fendo.2025.1472754

Exclusion criteria were records with genetic variants that were
not confirmed by two or more identifiers or were not classified
according to ACMG guidelines (e.g., due to the need for additional
examination of the patient).

2.2 Library preparation and sequencing

Genomic DNA was extracted using a NucleoMag Blood Kit
(Macherey—Nagel), MagPure Blood Dna, Kit (Magen), MagPure
Universal Dna Kit (Magen), or HiPure Universal Dna Kit (Magen).
DNA concentrations were measured on Qubit 4 fluorimeter. Library
preparation was performed using a KAPA HyperPlus Kit (Roche),
VAHTS Universal Plus DNA Library Prep Kit for Illumina V2
(Vazyme), or Illumina DNA Prep with Enrichment reagents
(Mlumina). To allow sample multiplexing, indexed primers or
adapters were used as follows: KAPA UDI Primer Mixes (Roche),
VAHTS DNA Adapters for Illumina (Vazyme), and IDT for Illumina
UD Indexes (IDT). For target enrichment, DNA libraries were
hybridized with biotinylated DNA probes for 16 to 18 h and then
captured by streptavidin beads. Hybridization and capture procedures
were performed according to the KAPA HyperCap Workflow, VAHT'S
Target Capture Hybridization and Wash protocol, or Illumina DNA
Prep with Enrichment protocol with respective reagent kits. For whole
exome enrichment, KAPA HyperExome Probes (Roche), a VAHTS
Target Capture Core Exome Panel (Vazyme), or an IDT xGen Exome
Hyb Panel (IDT) were used. Additionally, four custom probe panels
were used for the enrichment of genes involved in endocrine disorders:
Endol, Endo2, Endomel, and Endome2 (Roche, designed in the
National Medical Research Center for Endocrinology). Library
quality was assessed using a 5200 Fragment Analyzer system
(Agilent) with NGS Fragment Kits (1 to 6000bp). PE100 sequencing
was performed on an Illumina NovaSeq 6000, NextSeq550, or MiSeq
depending on the required number of reads per sample. The average
mean exon coverage of x100 was obtained for both whole exome and
target panel sequencing. Demultiplexing was performed using the
Nlumina Bcl2fastq2 program.

WES
1,031 patients

VEP

Panels & WES
214 patients

Gasth@ @arkDupIicate9

— @D

Panels

BWA
alignmen

XDeepVariant) ACMG/AMP
t calling criteria

4,681 patients

FIGURE 1

Flowchart of the study. The green color denotes molecular data; bioinformatic pipeline steps are shown in yellow. The blue block corresponds to

performed NGS tests.
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2.3 Data processing

The design of the study is schematized in Figure 1. A quality
check of the fastq files was done using FastP (26). The reads were
aligned to the human genome assembly GRCh38 using BWA-mem
(27). Coordinates of target regions correspond to the enrichment
used. BAM coverage was calculated against the BED file using
mosdepth. Samtools software was used for BAM file indexing.
Duplicate marking was performed using MarkDuplicates
software. We used DeepVariant for variant calling (28). All
variants with an allele frequency in the experimental read for a
particular biosample of less 0.01 were removed from further
analysis. VCF annotation was performed using the VEP (29) tool.
Variant interpretation was performed in accordance with the
ACMG/AMP guidelines considering information about clinical
features including phenotype and family segregation, VEP
annotation, which characterized its potential impact on protein
function (variant type, scores from in silico predictors CADD,
PolyPhen, BayesDel, MutPred, MetaRNN, SpliceAl, and LoF),
and data from population and clinical databases (gnomAD,
ClinVar, and HGMD public). A complete list of VEP annotation
fields is available in Supplementary File 1. In addition, information
from variant-related scientific articles found in the PubMed
database was used to annotate the fields.

2.4 Designs of target panels for NGS

The targeted NGS panels were developed at the National
Medical Research Center for Endocrinology to cover genes known
to be associated with endocrine pathologies. Initially, at the
beginning of the project, two separate NGS panels, called Endol
and Endo2, were developed. Later, they were combined with some
modifications into one comprehensive Endomel panel, which was
further expanded to the Endome2 panel (Figure 2). The

Panel «<Endo2»
250 genes
Since 2017-11-21

)

Panel «Endo1»
220 genes
Since 2017-11-21

\

10.3389/fendo.2025.1472754

composition of the genes in the used NGS panels is given in
Supplementary File 2.

2.5 Text analysis

Interpreted genetic variants were available as text records in
electronic medical cards. Genetic coordinates, type of mutation,
gene name, zygosity, and novelty of variant at the moment of
interpretation were parsed with R v4.3.1 (30) and checked
manually. Diagnoses of patients were automatically downloaded
from the “ICD10 code” fields in the electronic medical cards. If the
“ICD10 code” field was empty, the diagnoses were extracted
manually from another field in the electronic medical cards or
available hard medical documents.

2.6 Patient diagnoses

Every patient case was assigned an ICD10 code of diagnosis
according to the 10th revision of the International Statistical
Classification of Diseases and Related Health Problems, a medical
classification list created by the World Health Organization. The
code of the last available clinical diagnosis before the sequencing
was used. If information about concomitant diagnoses was
available, we also included the ICD10 codes for them. If the
patient had no documented evidence about their pathology or
any medical consultation at the moment on sequencing, ICD10
code Z01.8 was assigned.

2.7 Database format

We created a single comma-separated file with the following

»

columns: “Patient ID”, “Age”, “Gender”, “ICD-10 code of the disease”,

"1 Endomel
Endome2

71 Endol
1 Endo2

+13 genes
-50 genes
Panel «<kEndome1»
376 genes
Since 2021-09-24
‘ + 6 genes

Panel «<kEndome2»
382 genes
Since 2022-04-07

FIGURE 2

Relationship between the NGS panels used in this study. Intersections reflect the gene composition of panels under comparison.
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»

“Sequencing type”,

»

Panel design (if available)”, “Variant reported”,

» o«

“Gene”, “Zygosity”, and “Described in the literature”. If at least one
variant was reported for a patient, each row corresponded to one
variant. If the patient had no reported variants, one row corresponded
to one patient and the fields for the reported variant were empty. All
the ICD-10 codes for the patients are listed in each row with a

semicolon as a separator.

2.8 Technical validation

2.8.1 Quality control of sequencing data

A data quality check was conducted on an Illumina SAV. A
quality check of fastq files was conducted using FastP. All Illumina
DNA short reads had a Phred score greater than 35 corresponding
to a base accuracy greater than 99.9%.

2.8.2 Quality control of archive data

Metadata from the laboratory information system, such as WES
or NGS panel version, were manually compared with the
information from the text descriptions of the sequencing results.
All the information obtained through text parsing was
manually verified.

To prevent any operator mistakes, we validated the parsed
variant description. We considered the variant valid if one of the
following conditions was met:

1. The variant was written in both genomic and
transcriptomic coordinates. We ensured that both types
of coordinates described the same variant.

2. The variant had a dbSNP ID. We checked if the dbSNP
variant indeed matched the variant parsed from the
geneticist’s report.

3. A vcffile was available and included the variant parsed from
the geneticist’s report.

To match genomic and cDNA coordinates, dbSNP ID, and vcf
records, we used the Mutalyzer (31) and VariantValidator
(32) tools.

Additionally, we used protein coordinates, HGMD ID, or
PubMed ID (variant description from a scientific article) in
manual mode to confirm the parsed variant.

In this study, we did not include any results obtained using a
bioinformatic pipeline other than that outlined in Figure 1. Genetic
variants with incomplete information (genome assembly, genomic
coordinates, or ACMG/AMP classification) were filtered out and
not included in the database. In this study, we did not consider
genetic variants without final classification with only partially met
ACMG/AMP criteria.

2.8.3 Control of clinical data

Interpretation of sequencing results for the individual patients
was performed by clinical geneticists considering patient
phenotype, medical documentation, and familial history when
available. The correspondence of the patient diagnoses with the
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pathology group and with the results of NGS analysis was
determined by the clinical endocrinologist.

3 Results and discussion
3.1 Overview of data records

We identified a total of 6,208 medical records with sequencing
results for 5,926 patients. In total, 1,248 WES tests were performed
for 1,245 patients, and 4,960 gene panel NGS tests were performed
for 4895 patients. For 214 patients, both panel and WES tests were
done. Some patients were tested several times due to technical or
clinical reasons. Only genetic variants classified as “pathogenic,”
“likely pathogenic,” or “of uncertain significance” were taken into
consideration. Hereafter, they will be referred to as “reported
variants”. The complete database file is available at the following
link: https://doi.org/10.5281/zenodo.10894526.

Relevant genetic variants were reported by clinical geneticists in
1,882 cases out of 4,960 NGS panel sequencing tests. Among them,
1,267 reports contained genetic variants classified as “pathogenic”
and “likely pathogenic”, and 700 were “variants of uncertain
significance” (Figure 3). For WES tests, relevant genetic variants
were reported for 448 out of 1,248 tests, including pathogenic and
likely pathogenic variants in 203 cases and variants of uncertain
significance in 284 cases (Figure 3). In some patient cases (267 for
panel NGS and 129 for WES), more than one variant was annotated
and reported. Interestingly, the percentage share of the cases with
reported genetic variants was very similar for the results of WES
and panel NGS (38% vs 36%, respectively).

For 43 genes, pathogenic and likely pathogenic variants were
reported in both WES and panel NGS results. Pathogenic (P) and
likely pathogenic (LP) variants were found in 108 and 186 genes in
panel NGS or WES tests, respectively, with no intersections
(Figure 3B). For variants of uncertain significance (VUS), 83
genes were common, and 161 and 251 were specific for the panel
NGS and WES tests, respectively (Figure 3C). In total, 281 and 515
genes had at least one P, LP, or VUS reported variant for the panel
NGS and WES tests, respectively, and 120 genes hosted reported
genetic variants common in both tests (Supplementary Figure SI).

3.2 Analysis of groups of patients.

For statistical analyses, the patients were grouped according to
their clinical diagnoses by ICDI10 sections (240 groups,
Supplementary File 3). The biggest groups, each containing more
than 100 genetically profiled patients, are listed in Table 1.

In Table 1, some ICD10 diagnosis sections have broad
definitions and include the following specific diagnoses for the
clinical group under investigation:

a. for E03 Other hypothyroidism—E03.0 Congenital

hypothyroidism with diffuse goitre, E03.1 Congenital
hypothyroidism without goitre, E03.2 Hypothyroidism

frontiersin.org
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FIGURE 3

The proportion of NGS tests with reported genetic variants. (A) Number and percentage share of genetic tests with reported variants classified as
“pathogenic” (P), “likely pathogenic” (LP), or “uncertain significance” (VUS) among the results of WES and panel NGS. (B) The number of genes
hosting genetic variants classified as pathogenic or likely pathogenic in the results of WES and panel NGS. (C) The number of genes hosting genetic
variants classified as VUS in the results of WES and panel NGS.

TABLE 1 ICD10 diagnostic sections containing more than 100 patients.

ICD10_section WHO description Diagnoses of the patients tested Panel WES Total

Hypofunction and other disorders of the
E23 pituitary gland E23.0; E23.2; E23.3; E23.6; E23.7 574 112 686

E10; E10.0; E10.1; E10.2; E10.3; E10.4; E10.6; E10.7;

E10 Type 1 diabetes mellitus E10.8; E10.9 371 165 536
R73 Elevated blood glucose level R73; R73.0; R73.9 408 2 410
E14 Unspecified diabetes mellitus E14; E14.0; E14.7; E14.8; E14.9 392 7 399
E03 Other hypothyroidism E03; E03.0; E03.1; E03.2; E03.8; E03.9 291 103 394
E34 Other endocrine disorders E34; E34.3; E34.4; E34.5; E34.8; E34.9 230 128 358
El6 Other disorders of pancreatic internal secretion E16.0; E16.1; E16.2; E16.4; E16.8; E16.9 248 97 345
E13 Other specified diabetes mellitus E13; E13.2; E13.4; E13.7; E13.8; E13.9 297 10 307

Hyperparathyroidism and other disorders of

E21 parathyroid gland E21.0; E21.1; E21.2; E21.3; E21.4; E21.5 292 15 307
E66 Obesity E66.0; E66.1; E66.8; E66.9 143 141 284
E25 Adrenogenital disorders E25.0; E25.8; E25.9 261 21 282
E22 Hyperfunction of the pituitary gland E22.0; E22.1; E22.8; E22.9 155 100 255
E27 Other disorders of the adrenal gland E27; E27.0; E27.1; E27.3; E27.4; E27.5; E27.8; E27.9 207 32 239
(Continued)
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TABLE 1 Continued
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ICD10_section WHO description Diagnoses of the patients tested Panel WES Total
Ell Type 2 diabetes mellitus E11.2; E11.3; E11.4; E11.5; E11.6; E11.7; E11.8; E11.9 204 18 222
E83 Disorders of mineral metabolism E83.3; E83.4; E83.5; E83.8; E83.9 194 11 205
E04 Other non-toxic goiter E04.0; E04.1; E04.2 161 5 166
E31 Polyglandular dysfunction E31; E31.0; E31.1; E31.8; E31.9 115 24 139
E30 Disorders of puberty, not elsewhere classified E30; E30.0; E30.1; E30.8; E30.9 91 37 128

due to medicaments, E03.8 Other specified
hypothyroidism, E03.9: Hypothyroidism, unspecified;

. for E04 Other nontoxic goiter—E04.0 Non-toxic diffuse

goiter, E04.1 Non-toxic single thyroid nodule, E04.2 Non-
toxic multinodular goiter;

. for E13 Other specified diabetes mellitus—E13.2 Other

specified diabetes mellitus with renal complications, E13.4
Other specified diabetes mellitus with neurological
complications, E13.7 Other specified diabetes mellitus
with multiple complications, E13.8 Other specified

EO03 Other hypothyroidism {

EO04 Other nontoxic goitre 1

E10 Type 1 diabetes mellitus 1

E11 Type 2 diabetes mellitus 1

E13 Other specified diabetes mellitus 4
E14 Unspecified diabetes mellitus

E16 Other disorders of pancreatic internal secretion 1

ICD10 section

E27 Other disorders of adrenal gland {
E30 Disorders of puberty, not elsewhere classified 1
E31 Polyglandular dysfunction {

E34 Other endocrine disorders A

E83 Disorders of mineral metabolism 1

R73 Elevated blood glucose level q

FIGURE 4

The proportion of patients with genetic variants classified as “pathogenic” (P), “likely pathogenic” (LP), or “uncertain significance” (VUS) in the results
of panel NGS and WES tests for ICD10 diagnosis groups containing more than 100 genetically profiled patients with endocrine pathologies.
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E23 Hypofunction and other disorders of pituitary gland 1
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Other specified diabetes mellitus without complications;

. for E16 Other disorders of pancreatic internal secretion—

E16.0 Drug-induced hypoglycemia without coma, E16.1
Other hypoglycemia, E16.2 Hypoglycemia, unspecified,
E16.4 Abnormal secretion of gastrin, E16.8 Other
specified disorders of pancreatic internal secretion, E16.9
Disorder of pancreatic internal secretion, unspecified;

. for E23 Hypofunction and other disorders of pituitary

gland —E23.0 Hypopituitarism, E23.2: Diabetes insipidus,
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E23.3 Hypothalamic dysfunction, not elsewhere classified,
E23.6 Other disorders of pituitary gland, E23.7 Disorder of
pituitary gland, unspecified;

f. for E27 Other disorders of adrenal gland—E27.0 Other
adrenocortical overactivity, E27.1 Primary adrenocortical
insufficiency, E27.3 Drug-induced adrenocortical
insufficiency, E27.4 Other and unspecified adrenocortical
insufficiency, E27.5 Adrenomedullary hyperfunction, E27.8
Other specified disorders of adrenal gland, E27.9 Disorder
of adrenal gland, unspecified;

g. for E30 Disorders of puberty, not elsewhere classified—E30.0
Delayed puberty, E30.1 Precocious puberty, E30.8 Other
disorders of puberty, E30.9 Disorder of puberty, unspecified;

h. for E34 Other endocrine disorders—E34.3 Short stature, not
elsewhere classified, E34.4 Constitutional tall stature, E34.5
Androgen resistance syndrome, E34.8 Other specified
endocrine disorders, E34.9 Endocrine disorder, unspecified.

For the WES tests, the biggest proportion of reported variants
was detected for the following patient groups (Figure 4): type 1
diabetes mellitus (E10), hyperparathyroidism and other disorders of
parathyroid gland (E21), hyperfunction of pituitary gland (E22),
hypofunction and other disorders of pituitary gland (E23), other
endocrine disorders (E34), obesity (E66), and disorders of mineral
metabolism (E83).

10.3389/fendo.2025.1472754

For panel NGS, the biggest proportion of reported variants was
reported for the following groups: other hypothyroidism (E03);
other non-toxic goiter (E04); type 2 diabetes mellitus (E11); other
specified diabetes mellitus (E13); unspecified diabetes mellitus
(E14); other disorders of pancreatic internal secretion (E16);
adrenogenital disorders (E25); other disorders of the adrenal
gland (E27); disorders of puberty, not elsewhere classified (E30);
polyglandular dysfunction (E31); and elevated blood glucose
level (R73).

For each individual patient, the pathogenicity level was assessed
by the highest pathogenicity score of their reported variants
(Figure 5). Thus, the highest level (“pathogenic”) included
patients with at least one pathogenic variant but who might have
additional reported variants as well. Similarly, patients classified as
having “likely pathogenic” variants could have other variants as well
except for the “pathogenic” ones. The distribution of patients by
pathogenicity level is shown in Figure 5.

Both panel NGS and WES profiles were available for 214
patients (Figure 6, Supplementary File 3). Thus, we compared the
genetic variants reported in the same patients using alternative tests.
In general, the WES results contained more reported variants than
the panel NGS annotations. However, some variants were reported
in the panel NGS results and then labeled as irrelevant to the
patient’s condition in the WES tests. Because the geneticists
subjected the patients to WES after panel NGS in cases of doubt
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Supplementary File 3.
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when the first test could not adequately explain the patient’s  results that were dismissed by WES tests for the same patients (eight

phenotype, here we consider WES results as the gold standard for ~ patient cases).

cases of such dual profiling. In Figure 7, such an analysis is exemplified for the ICD10
A more detailed comparison of the molecular cases for the  diagnosis group “E23 Hypofunction and other disorders of pituitary
patients simultaneously profiled by panel NGS and WES including  gland”. It can be seen that gene PTPN11, which was most frequently
the distribution of gene mutation frequencies is given in  associated with the diagnosis “E34.3 Short stature due to endocrine
Supplementary File 4. disorder”, was also useful for the analysis of the E23 group.

We then compared the frequencies of P and LP variants in panel For other ICD10 diagnosis groups containing more than 100
NGS and WES results. For this analysis, we excluded panel NGS  genetically profiled patients with endocrine pathologies, complete
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lists of genes hosting reported variants and mutation frequency
statistics are given in Supplementary File 5 for both WES and panel
NGS tests.

We also identified a list of the most frequently mutated genes
with a predominance of pathogenic and likely pathogenic reported
variants that included genes GCK and HNFIA for diabetes mellitus
phenotype or disorders of glucose metabolism (E10, E11, E13, E14,
E74, an dR73); KCNJj11, ABCC8 and GCK for other disorders of
pancreatic internal secretion (E16); AIRE and MENI for
polyglandular dysfunction (E31); AR and PTPNII for the other
endocrine disorders section including constitutional short stature;
GNRHR and PROPI for hypofunction and other disorders of
pituitary gland (E23); DICERI for other non-toxic goiter (E04);
and CYP24A1 and PHEX for disorders of mineral metabolism
(Figure 8). In addition, 10 genes harbored relatively frequently
reported variants that occurred in at least five patients under
analysis (Figure 9).

In total, 1,184 out of 2,073 (57%) reported unique genetic
variants were not described at the moment of NGS data
interpretation by the geneticists. In the EndoGene database
published here (https://doi.org/10.5281/zenodo.10894526), this is
shown by the “yes” or “no” flags in the “Described in literature”
column. The reported variants included 2,412 single nucleotide
substitutions (SNS), 301 deletions, six insertions, 19 complex
insertions and deletions, and 73 duplications. Out of them, four
deletions and four duplications were long rearrangements involving
at least several genes, as could be judged from the results of the WES
analysis (Figure 10). In total, 2,811 variants (2,073 unique) were
reported that could be classified as pathogenic, likely pathogenic,
or VUS.

3.3 Next steps and limitations

Here, we present a database of genetic variants reported in
patients with endocrine diseases and endocrine-related pathologies
and in individuals at risk. We provided the ICD10 diagnosis codes
for each patient and calculated the frequencies of genetic variants
for the patients with diagnoses from the same ICD10 section.
However, this article describes the raw data collection and does
not intend to comprehensively interpret the data obtained. Thus,
further statistical analysis will be needed to identify any associations
of genetic variants with specific diagnoses.

Here, we report clinically relevant genetic variants in the
standard HGVS format and classify associated diagnoses
according to the ICD10 system, thus allowing this information to
be converted and merged with other relevant knowledge bases.
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Background: Rosacea is a common chronic inflammatory skin disease. Limited
studies reported the association between plasma lipidome and rosacea.

Methods: We employed a two-sample Mendelian randomization (MR) study to
assess the causality between plasma lipidome and rosacea. Plasma lipidome
association genome-wide association study (GWAS) data were collected. The
inverse variance weighted (IVW) method was utilized as the principal method in
our Mendelian randomization (MR) study; we also used the MR-Egger, weighted
median, simple mode, and weighted mode methods. The MR-Egger intercept
test, Cochran’s Q test, MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO),
and leave-one-out analysis were conducted to identify heterogeneity
and pleiotropy.

Results: A total of 179 lipid species were analyzed; among them, five lipid species
were closely related to rosacea. Two species of sterol ester [sterol ester (27:1/
22:6) and sterol ester (27:1/15:0)], two species of phosphatidylethanolamine
[phosphatidylethanolamine (O-18:2_20:4) and phosphatidylethanolamine
(18:0_20:4)], and one species of sphingomyelin [sphingomyelin (d34:0)] were
causally associated with rosacea (P < 0.05). All of them play protective roles in
patients with rosacea. No heterogeneity or pleiotropy was observed.

Conclusion: This study provided new evidence of the relationship between
plasma lipidome and rosacea. Our MR suggested that five lipid species play
protective roles in rosacea progression. These could be novel and effective ways
to treat rosacea.
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1 Introduction

Rosacea is a prevalent chronic inflammatory dermatological
condition that primarily impacts the cheeks, chin, nose, forehead,
and ocular regions (1, 2). The reported prevalence of rosacea varies
significantly, ranging from 1% to 22%, a variation attributed to
geographical and demographic factors (3, 4). A recent systematic
review estimated the global prevalence of rosacea to be
approximately 5.5% among the adult population (5). Contrary to
earlier studies that indicated a higher prevalence in females (1, 2),
the findings of this systematic review suggest that both men and
women are equally affected by the condition (5). The
pathophysiology of rosacea remains inadequately understood.
Mechanistically, the pathogenesis of rosacea is associated with
various inflammatory pathways, which involve the dysregulation
of both the innate and adaptive immune systems (2, 6).
Investigations into single nucleotide polymorphisms (SNPs) in
genes linked to rosacea indicate that genetic factors may also play
a role (7). Factors such as stress, ultraviolet radiation, consumption
of spicy foods, smoking, and alcohol intake have been identified as
potential exacerbators of symptoms (1). The diagnosis of rosacea is
primarily based on clinical manifestations and skin biopsy findings
(1). Treatment options for rosacea include skin care regimens,
topical medications such as brimonidine and ivermectin (8), oral
antibiotics like doxycycline and minocycline (9), as well as biologic
agents such as Secukinumab (10) and Erenumab (2). It is important
to note that rosacea is a chronic condition; while patients may
experience periods of remission due to various treatments, relapses
are frequently observed (1).

Plasma lipids, including high-density lipoprotein cholesterol
(HDL-C), low-density lipoprotein cholesterol (LDL-C),
triglycerides (TG), and total cholesterol (TC), are routinely
assessed and have been established as significant risk factors for
various health conditions, particularly cardiovascular disease
(CVD). Recent studies have expanded our comprehension of
circulating lipid diversity by identifying additional lipid species,
such as cholesterol esters (CE), lysophosphatidylcholines (LPC),
phosphatidylcholines (PC), phosphatidylethanolamines (PE), and
sphingomyelins (SM) (11).

Several studies reported the relationship between plasma lipids
and skin disease. For instance, a significant reduction in serum
high-density lipoprotein cholesterol (HDL-C) levels has been
documented in patients with chronic spontaneous urticaria (12);
on the other hand, patients suffering from atopic dermatitis
exhibited a notable decrease in cholesteryl esters, free cholesterol,
lysophosphatidylcholine (particularly the 16:0 species), and
phosphatidylethanolamine (13). Additionally, adolescents
diagnosed with atopic dermatitis (AD) within the Asian
demographic demonstrated significantly elevated levels of total
cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C).

Mendelian randomization (MR) utilizes one or more genetic
variants as instrumental variables (IVs) based on genome-wide
association studies (GWAS). MR studies can infer the causal effects
of exposure on an outcome. Recently, MR analysis also reported the
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causal relationship between lipids and skin diseases. For instance, MR
analysis showed that HDL deficiency and high LDL-C and TG have a
causal relationship with incident psoriasis genetically (14, 15). To our
knowledge, no study has yet investigated the causal effect of plasma
lipidome on the risk of rosacea using Mendelian randomization. Our
investigation aimed to explore the plasma lipidome risk variants as
instrumental variables for rosacea utilizing two-sample MR.

2 Materials and methods

2.1 Study design

According to the MR framework (Figure 1), three key
assumptions are included (1): Relevance Assumption: Single
nucleotide polymorphisms (SNPs) that are substantially linked to
exposures are used as instrumental variables (IVs). (2)
Independence Assumption: These SNPs (IVs) should not show
any correlation with the relevant confounding factor. (3) Exclusivity
Assumption: These SNPs (IVs) should affect outcomes only
through its effect on exposure (16, 17).

2.2 Data sources

The plasma lipidome GWAS data were obtained from the
prospective GeneRISK cohort including 7,174 individuals (18),
summarized by Ottensmann L et al. (11). A total of 179 lipid
species [GWAS Catalog (https://www.ebi.ac.uk/gwas/,
GCST90277238-GCST90277416)] belonging to 13 lipid classes
covering four major lipid categories (glycerolipids,
glycerophospholipids, sphingolipids, and sterols) were detected.
The GWAS data related to rosacea was obtained from the IEU
OpenGWAS project, GWAS ID: finn-b-L12_ROSACEA, which
included 1,195 cases and 211,139 controls, featuring 16,380,452
SNPs, with the study population being of European descent. All
participants provided informed written consent, and all studies
were reviewed and approved by institutional ethics review
committees at the involved institutions.

2.3 Instrumental variables selection

Related IVs (plasma lipidome) for MR analysis followed particular
principles: SNPs should be associated with exposures at the locus-wide
significance level: P < 5e—06. In addition, linkage disequilibrium (LD)
coefficient r* should be less than 0.001, not closely related (clumping
window more than 10,000 kb) to ensure exposure instrument
independence. The F statistic was employed to assess the strength of
the IVs, with values exceeding 10, thereby suggesting the absence of
weak instrumental variable bias. The F-value is calculated using the
formula F = R*(N - 2)/(1 — R?), where R? denotes the proportion of
variance accounted for by SNPs in the exposure dataset, and N
represents the sample size of the GWAS (16, 17).
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2.4 MR analysis

Causal associations between plasma lipidome and rosacea were
determined using MR analysis. In the exposure-outcome analysis,
we employed MR with more than two SNPs serving as IVs. Our MR
analysis used each of the five methods: inverse variance weighted
(IVW) was performed as the primary statistical analysis method in
our MR analysis for evaluating causal effects, with additional
methodologies, namely, simple mode, weighted median, weighted
mode, and MR-Egger, being utilized to further corroborate the
findings. The MR-Egger method is implemented through a
straightforward modification of the weighted linear regression
technique previously outlined. MR-Egger was specifically
employed to evaluate the robustness of the MR results as a form
of validation (16, 17, 19).

The heterogeneity of the chosen SNPs was evaluated using
Cochrane’s Q test, where a P-value of more than 0.05 suggested
the lack of heterogeneity. The random effects model was used once
significant heterogeneity has been identified. We evaluated the
possible bias from horizontal pleiotropy using the weighted
median and MR-Egger regression in order to gauge the robustness
of the IVW method. The MR-PRESSO (MR-Pleiotropy RESidual
Sum and Outlier) test was used to appraise outliers that might have
been influenced by horizontal pleiotropy. The causal-effect estimates
for individual variants were displayed using a scatter plot. Thereafter,
we performed a leave-one-out analysis to examine the stability of the
results in the context of a single SNP’s influence and presented the
findings in a forest plot (16, 17, 19).

2.5 Statistical analysis

All statistical analysis were conducted in R software (Version
4.3.2) using the TwoSampleMR package (Version 0.5.8). The
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statistical significance level is P <0.05. Pooled odds ratio (OR)
with 95% confidence interval (CI) were calculated. The IVW
method was primarily employed to evaluate the causal
relationships between 179 lipid species and rosacea, with the
findings illustrated through a volcano plot; significant results were
subsequently represented using a forest plot. The false discovery
rate (FDR) correction was applied to adjust all P-value thresholds,
whereby P-values exceeding the FDR-corrected threshold but
remaining below 0.05 were regarded as indicative of potential
causal associations.

3 Results
3.1 MR analysis

Totally, we analyzed the plasma lipidome (1,893 SNPs, detailed in
Supplementary Table S1) for their causal association with rosacea. As
mentioned, the inverse variance weighted (IVW) method was chosen
as the primary statistical analysis method. MR analysis revealed that
among the 179 lipid species, according to the results of the IVW
method (P <0.05, Figure 2), five lipid species exhibited a significant
association with the outcome variable of rosacea. Notably, all of these
lipid species demonstrated an odds ratio (OR) of less than 1 (Figure 3,
detailed in Table 1). Among them, two species of sterol ester [sterol
ester (27:1/22:6) (OR =0.757, 95% CI =0.613-0.935, P = 0.01) and
sterol ester (27:1/15:0) (OR = 0.691, 95% CI = 0.495-0.965, P = 0.03]
resulted in a protective factor for rosacea; two species of
phosphatidylethanolamine [phosphatidylethanolamine (O-18:2_20:4)
(OR=0.761, 95% CI=0.589-0.984, P = 0.03) and
phosphatidylethanolamine (18:0_20:4) (OR =0.864, 95% CI=0.753-
0.992, P = 0.03)] showed a protective effect on rosacea; one species of
sphingomyelin [sphingomyelin (d34:0) (OR = 0.835, 95% CI = 0.702-
0.992, P = 0.04)] also resulted in a causal protective relationship with
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FIGURE 2

The volcano plot shows the association between 179 lipid species and rosacea risk. The X-axis represents the B value, and the Y-axis shows the
logarithmic p-value in base 10. Sterol ester (27:1/22:6), sterol ester (27:1/15:0), phosphatidylethanolamine (O-18:2_20:4), phosphatidylethanolamine

(18:0_20:4), and sphingomyelin (d34:0) indicate the P-value <0.05.

rosacea. The scatter plots for the causal relationship between plasma
lipidome and rosacea are presented in Figure 4. It is noteworthy that all
five lipid species exhibited a negative correlation with rosacea,
indicating that these lipid types may have a causal protective effect
against the condition. A detailed analysis of the components of each
lipid species is provided in the Supplementary Materials.

3.2 Sensitivity analysis

According to the Cochran Q test, our IVW-MR analysis results
demonstrated no evidence of heterogeneity among our reported
results. The MR-Egger regression analysis results provided evidence
that there was no other significant horizontal pleiotropy (Table 2).

We also conducted the leave-one-out method to identify and delete
abnormal instrumental variables. The results showed the robustness
of our results (Supplementary Figure SI). These results suggest that
the MR analysis results were relatively stable.

4 Discussion

We conducted an MR analysis to investigate the causal
relationship between plasma lipidome and rosacea utilizing GWAS
summary-level data. Our results showed that five lipid species have
negative causal relationship on rosacea, specifically, two species of
sterol ester, two species of phosphatidylethanolamine, and one
species of sphingomyelin. To the best of our knowledge, the

Rosacea || id:finn-b-L12_ROSACEA

Sterol ester (27:1/22:6)

Sterol ester (27:1/15:0)

Phosphatidylethanolamine (0-18:2_20:4)

Phosphatidylethanolamine (18:0_20:4)

Sphingomyelin (d34:0)

04 05 0607 1.0

- |

I .

——| .

method
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* Inverse variance weighted

95% Confidential Interval

FIGURE 3

Forest plot of Mendelian randomization analysis for sterol ester (27:1/22:6), sterol ester (27:1/15:0), phosphatidylethanolamine (O-18:2_20:4),
phosphatidylethanolamine (18:0_20:4), sphingomyelin (d34:0), and rosacea risk. The results of inverse variance weighted (IVW), weighted median,

and MR-Egger are shown.
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TABLE 1 Causal relationship between the plasma lipidome and rosacea.

10.3389/fendo.2025.1427656

Exposure Methods OR Low 95% CI Up 95% CI P
Inverse variance weighted 0.757 0.613 0.935 0.010
Sterol ester (27:1/22:6) Weighted median 0.779 0.572 1.060 0.112
MR-Egger 0.605 0.351 1.043 0.092
Inverse variance weighted 0.691 0.495 0.965 0.030
Sterol ester (27:1/15:0) Weighted median 0.751 0.481 1.171 0.206
MR-Egger 0.851 0.475 1.524 0.607
Inverse variance weighted 0.761 0.589 0.984 0.037
Phosphatidylethanolamine (O-18:2_20:4) Weighted median 0.836 0.590 1.184 0.313
MR-Egger 0.668 0.362 1.230 0.227
Inverse variance weighted 0.864 0.753 0.992 0.039
Phosphatidylethanolamine (18:0_20:4) Weighted median 0.896 0.750 1.070 0.224
MR-Egger 0.904 0.644 1.269 0.570
Inverse variance weighted 0.835 0.702 0.992 0.040
Sphingomyelin (d34:0) Weighted median 0.842 0.665 1.066 0.152
MR-Egger 0.891 0.661 1.199 0.457

current analysis of plasma lipidome on rosacea is limited, and the
relationship between plasma lipidome and rosacea has not
been reported.

Sterol ester, formed through the esterification of sterols and
fatty acids, belongs to the sterols category, playing a crucial role in
maintaining the structural and functional integrity of cellular
membranes. They modulate membrane fluidity and stability,
which in turn affect cellular responsiveness to external stimuli
and signal transduction (20, 21). Generally, sterols are primarily
taken up through dietary sources and synthesized in the liver.
Additionally, cholesterol biosynthesis enzymes are expressed in
primary and secondary lymphoid organs, which suggested that
sterols play a role in immune regulation. Accordingly, systemic
sterols modulate immune cell biology (22); furthermore, in
inflammatory processes, sterol esters may act as signaling
molecules or a regulatory agent (23). Meanwhile, our
understanding of how sterols modulate specific immune cell
biology is limited (20, 24).

Phosphatidylethanolamine (PE) is one of the most abundant
phospholipids in plasma membranes (25). Besides being a passive
membrane constituent, PE is also functionally associated with
protein biogenesis and activity (26), oxidative phosphorylation
(27), and autophagy (28) and is an important precursor of other
lipids (29). The localization of PE changes during cell death. PE
resides predominantly in the inner leaflet of the cell membrane in
healthy cells; on the other hand, PE is externalized to the outer
leaflet of the plasma membrane in dead or dying cells (25). It is
demonstrated that PE is associated with Alzheimer’s and
Parkinson’s disease and liver steatosis and steatohepatitis (29).

Sphingomyelin (SM) is one of the main phospholipids that make
up the hydrophobic matrix of mammalian membranes, which are

Frontiers in Endocrinology

considered a “structural” lipid and contribute to the geometrical
stability of the cell membranes (30). Recently, studies reported that
the SM metabolic pathway contributes significantly to cell signaling,
especially in regulating tumor cell growth, differentiation, senescence,
and survival (31). Accordingly, SM acts as a critical molecule for brain
physiopathology, playing a role in Parkinson’s disease progression
(32). In addition, SM regulates cell growth, differentiation, and
apoptosis in colorectal cancer and decreases colonic inflammation
and inflammation-driven colorectal cancer (33).

Although no MR analysis reported the causal relationship
between plasma lipidome and rosacea, some MR analyses
reported the causal relationship between plasma lipidome and
other illness. MR analysis revealed that phosphatidylinositol and
triglyceride levels decreased the risk of breast cancer (BC) (34);
genetically increased triglycerides were closely related to an elevated
risk of Barrett’s esophagus (BE) (35).

Studies also reported the role of plasma lipidome in rosacea.
Neutrophils and HDL, instead of LDL, have effects on the risk or
severity of rosacea (36). Moreover, a meta-analysis performed on
large groups of patients with rosacea and controls revealed that
rosacea is significantly associated with dyslipidemia and higher total
cholesterol, LDL, and triglyceride concentrations (37). The
explanation for the association between rosacea and dyslipidemia
is uncertain. Studies showed the activation of nucleotide binding
oligomerization domain-like receptor 3, which can cause IL-1B
release and induce structural changes of lipoproteins, decreasing
their ability to break down and transport cholesterol (37, 38). An
earlier study on the skin surface lipids in rosacea revealed that the
lipid contents in the skin, particularly cholesterol, free fatty acids,
triglycerides, esters, and squalene, were no different between
patients and controls without rosacea (39). It should be noted
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Scatter plots showing significant causal effects between plasma lipidome and rosacea. (A) Sterol ester (27:1/22:6). (B) Sterol ester (27:1/15:0).
(C) Phosphatidylethanolamine (O-18:2_20:4). (D) Phosphatidylethanolamine (18:0_20:4). (E) Sphingomyelin (d34:0).

that this research was performed on a small group of patients
(N=31) and focused on skin lipidomics, not plasma lipidome. In
actuality, research examining the roles of sterol esters, PE, and SM
in the context of rosacea is relatively scarce.

Our research employed MR analysis to investigate the causal
relationship between various plasma components and rosacea. The
results suggest that sterol esters, PE, and SM may serve as protective
factors against rosacea. Identifying novel biomarkers could enhance
our understanding of the pathogenesis of rosacea and facilitate
improved assessment of patients suffering from this dermatological
condition. The implications of our findings may extend to both
experimental design and clinical practice. Future investigations will
focus on the roles of sterol esters, PE, and SM in rosacea, utilizing
cell culture and animal models for further exploration.

TABLE 2 Sensitivity analysis of plasma lipidome on rosacea.

P-value for Cochran

There are several limitations to our study. First, due to the
original GWAS statistics, we were unable to divide the cohorts or
perform subgroup analyses. Second, our analysis only included
individuals of the European population. Although using a single
European population to investigate causal relationships can
minimize population stratification bias, it is important to
interpret these findings with caution regarding their applicability
to other populations; in addition, there was no validation performed
using a different set of data.

Our findings reported that sterol ester, PE, and SM have
nominal causal connections with rosacea, but these correlations
vanished after applying the FDR correction. It is important to note
that the FDR correction can result in false negatives (40).

P-value for MR-Egger

Egger-intercept

Exposure Q test
Sterol ester (27:1/22:6) 14.612 0.405
Sterol ester (27:1/15:0) 3.326 0.767
Phosphatidylethanolamine(O-18:2_20:4) 5.899 0.750
Phosphatidylethanolamine (18:0_20:4) 7.134 0.929
Sphingomyelin (d34:0) 8.819 0.887

intercept
0.040 0395
-0.039 0.426
0.020 0.653
-0.012 0.780
-0.013 0.607
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We have established a causal relationship between sterol ester,
PE, and SM in relation to rosacea; however, the expression levels of
specific liposomes in patients with rosacea remain uncertain.
Furthermore, the underlying mechanisms by which these lipids
exert their effects are not yet fully understood, necessitating further
investigation. It is important to emphasize that while our study did
not identify any associations between other subtypes of the plasma
lipidome and the risk of rosacea, this absence of evidence does not
imply that these other subtypes lack an influence on the condition.
Our research serves as a hypothesis-generating endeavor for
exploratory purposes.

5 Conclusion

In summary, our MR study presents evidence suggesting that
sterol esters, phosphatidylethanolamine (PE), and sphingomyelin
(SM) exert a negative causal influence on rosacea. This finding
indicates that sterol esters, PE, and SM may play a protective role in
the pathophysiology of rosacea. Future investigations into the
plasma lipidome may yield innovative therapeutic targets and
clinical strategies for the management of rosacea.
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Introduction: The Pan-Immune-Inflammation Value (PIV) is a novel biomarker
derived from counts of neutrophils, platelets, monocytes, and lymphocytes,
providing a comprehensive measure of systemic immune and inflammatory
status. While it has shown prognostic value in specific disease settings, its
association with mortality in the general population remains unclear. This study
aims to evaluate the predictive value of PIV for all-cause and cause-specific
mortality, including cardiovascular, cancer, and diabetes-related deaths, within a
general adult population.

Methods: Data were obtained from the NHANES cohort, with 48,662 participants
aged 20 and older. Participants were followed for an average of 117.44 months,
with PIV quartiles calculated at baseline. Cox proportional hazard models were
used to assess mortality risk across PIV quartiles, while restricted cubic spline
models examined nonlinear dose-response relationships. Subgroup and
sensitivity analyses further explored the robustness of PIV's associations.

Results: Higher PIV levels were significantly associated with increased risks of all-
cause, cardiovascular, cancer, and diabetes mortality. Nonlinear relationships
were observed between PIV and all-cause, cardiovascular, and cancer mortality,
with a risk threshold at PIV values above 254.07. Subgroup analyses supported
these findings, and sensitivity analyses confirmed the consistency of PIV's
prognostic value.
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Conclusion: Elevated PIV serves as an independent risk factor for multiple
mortality outcomes in the general population. This study underscores the
potential of PIV as a predictive biomarker for mortality risk, with implications
for its use in clinical and epidemiological settings. Further studies are needed to
confirm PIV’s clinical utility across diverse populations and conditions.

pan-immune-inflammation value, mortality, inflammation, biomarker, NHANES

Introduction

Inflammatory responses are fundamental to maintaining health
and protecting the body from external threats. Acute inflammation
is a normal physiological reaction to infections, injuries, and other
external stimuli, where the immune system is activated to eliminate
pathogens and promote tissue repair (1). However, chronic
inflammation has been strongly linked to the development of
various diseases, including cardiovascular diseases, cancer,
diabetes, and metabolic disorders (2-7). Persistent inflammatory
responses can result in tissue damage, disrupt homeostasis, and
accelerate disease onset and progression (6).

Immune-inflammatory biomarkers (IIBs), such as neutrophils
(NEUs), lymphocytes (LYMs), monocytes (MONs), and platelets
(PLTs), reflect the balance between the host’s immune and
inflammatory states and are critical for assessing disease
conditions. Several inflammatory indices derived from CBC
parameters, such as the monocyte-to-lymphocyte ratio (MLR),
neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte
ratio (PLR), systemic inflammation response index (SIRI),
lymphocyte-to-monocyte ratio (LMR), and systemic immune-
inflammation index (SII), are widely used for disease risk
assessment and prognosis. Multiple studies have demonstrated
that NLR, PLR, and LMR are effective predictors of disease
progression and prognosis across diverse conditions, including
cancer, cardiovascular diseases, and inflammatory disorders (8-
13). Additionally, these indices have been employed to distinguish
between different types of chronic inflammatory diseases, such as
Crohn’s disease, further underscoring their broad clinical utility
(14). Among these, SII has emerged as a valuable marker of
inflammation, showing significant prognostic value in chronic
conditions such as cancer and inflammatory diseases (8, 15, 16).
Research conducted on general populations has also highlighted the
potential of SII in assessing systemic inflammation (17, 18).

More recently, a novel and more comprehensive immune-
inflammatory index, the Pan-Immune-Inflammation Value (PIV),
has been developed. PIV integrates the counts of NEUs, PLTs,
MONs, and LYMs, oftering a more holistic assessment of the
systemic immune and inflammatory status (19). Preliminary
studies suggest that PIV has greater prognostic accuracy
compared to traditional IIBs such as NLR and PLR, particularly
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in predicting outcomes for patients with cancers such as advanced
colorectal cancer, hepatocellular carcinoma, and breast cancer (19-
21). Although PIV has shown promise in predicting outcomes for
cancer patients, its association with overall and cause-specific
mortality in the general population remains understudied.
Therefore, this study aims to evaluate the relationship between
PIV and mortality rates in the U.S. population, with the goal of
determining its potential as a prognostic marker and providing
valuable insights to inform public health strategies.

Methods
Data source and study population

This study employed a prospective cohort design, with all data
drawn from the NHANES database. NHANES, administered by the
National Center for Health Statistics (NCHS), uses a multistage,
stratified, and subgroup probability sampling method to select a
representative sample of the American population. Its objective is to
evaluate the health and nutritional status of adults and children in
the United States (22). The survey’s original protocol underwent a
comprehensive ethical review and was approved by the CDC’s
Institutional Review Board. Informed consent was obtained from
all participants, who signed consent forms prior to their
participation (23) Additional details regarding the study are
accessible online: www.cdc.gov/nchs/nhanes/irba98.htm.

We enrolled a total of 101,326 participants from NHANES,
covering data of ten circles from 1999 to 2018 in this research.
Participants younger than 20 years old and those missing data on
neutrophil counts, monocyte counts, or mortality information were
excluded. The process of participant selection is depicted
in Figure 1.

Definition of CBC-derived inflammatory
indices
The complete blood count (CBC) parameters were derived

using the Beckman Coulter method for cell counting and sizing,
with an automated diluting and mixing device for sample

frontiersin.org


http://www.cdc.gov/nchs/nhanes/irba98.htm
https://doi.org/10.3389/fendo.2025.1534018
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Zhang et al.

10.3389/fendo.2025.1534018

Participants from NHANES 1999-2018

(N=101,326)
_ Excluded age<20
- (N=46,235)
\J
Participants included
(N=55,081)
Excluded missing data for
»-| neutrophils counts(N=5459) and
\/ monocyte counts (N=871)
Participants included
(N=48,751)
. | Excluded missing data for mortality
v (N=89)
Participants included
(N=48,662)
Y Y Y Y
Quartile 1 Quartile 2 Quartile 3 Quartile 4
(N=12,166 ) (N=12,164 ) (N=12,166) (N=12,166)

FIGURE 1

Flow chart depicting the incision and exclusion of participants from NHANES 1999-2018.

processing. All cell counts were measured in x10°/L. The
inflammatory indicators were calculated using the following
formulas (19, 24):

MLR = monocytes/lymphocytes;
NLR = neutrophils/lymphocytes;
PLR = platelets/lymphocytes;
SII = platelets x neutrophils/lymphocytes;
SIRI = neutrophils x monocytes/lympocytes;

PIV = neutrophils X monocytes x platelets/lymphocytes;

As all components are expressed as counts per x10°/L, the units
cancel out during calculation, and all indices, including PIV, are
dimensionless values. Among these indices, PIV uniquely integrates
four key circulating immune cells — neutrophils, monocytes,
platelets, and lymphocytes — representing both innate and
adaptive immunity. Compared with simpler indices such as NLR
and PLR, PIV provides a more comprehensive assessment of
systemic immune-inflammatory status and has been identified as
a promising prognostic marker in recent studies. In this study, PIV
was analyzed both as a continuous variable and as a categorical
variable by dividing participants into quartiles according to their
PIV levels for subsequent analyses.
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Assessment of all-cause and cause-specific
mortality

The primary outcomes of interest were all-cause mortality,
along with mortality due to cardiovascular disease (CVD),
diabetes and cancer. Mortality information in NHANES is
available via the National Death Index (NDI) death certificate
records (www.cdc.gov/nchs/data-linkage/mortality_public.htm).
Participant mortality status was determined by linking their data
with the National Mortality Index through December 31, 2019.
Disease-specific deaths were classified according to the
International Classification of Diseases (ICD)-10. Cardiovascular
mortality included deaths related to heart disease, cerebrovascular
conditions, and/or hypertension. Specifically, heart disease
mortality corresponded to codes 100-09, I11, I13, and 120-51,
while cerebrovascular mortality was defined by codes 160-169.
Diabetes-related deaths were classified under codes E10-E14, and
cancer-related deaths under codes C00-C97.

Potential covariates

Sociodemographic information assessed included age, gender,
race, education level, and family income-to-poverty ratio, as well as
marital status. Lifestyle and health-related factors comprised body
mass index (BMI), smoking, and drinking. Laboratory parameters
included red blood cell (RBC) count, white blood cell (WBC) count,
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lymphocyte count, neutrophil count, monocyte count, platelet
count, hemoglobin, aspartate transaminase (AST), alanine
transaminase (ALT), total cholesterol (TC), blood urea nitrogen
(BUN), uric acid, creatinine, albumin, and glycosylated hemoglobin
Alc (HbAlc). Medical conditions considered were hypertension,
diabetes, kidney disease, congestive heart failure(CHF), coronary
heart disease(CHD),heart attack, angina pectoris, stroke, liver
disease, and cancer.

Statistical analysis

In this study, statistical analyses accounted for the sample
weights, clustering, and stratification resulting from the complex
multistage stratified probability design used in NHANES. All
analyses adhered to CDC guidelines (http://www.cdc.gov/nchs/
tutorials/default.aspx). For two circles in NHANES 1999-2002, we
applied the WTMEC4YR weights, while for the remaining 8 circles
in NHANES 2003-2018, the WTMEC2YR weights were used. In
accordance with the analytical recommendations, we calculated
sampling weights for the 1999-2018 period as 1/5 of the 1999-
2002 weight or 1/10 of the 2003-2018 weight.

Baseline characteristics of all participants were presented
depending on PIV quartiles. Continuous variables were expressed
as weighted means (95% confidence interval, 95%CI), while
categorical variables were described in terms of weighted
percentages. Differences in continuous and categorical variables
were analyzed using linear regression models and chi-square tests,
respectively. Multivariable Cox proportional hazards model was
utilized to estimate the association between PIV and both all-cause
and cause-specific mortality, reported through hazard ratios (HRs)
and 95%CI. Model 1 represented the non-adjusted analysis. Model
2 adjusted for age, gender, race, family income to poverty ratio,
education level, and marital status. Model 3 further adjusted for
BMI, albumin, ALT, AST, BUN, creatinine, HbAlc, hemoglobin,
RBC, TC, and uric acid. Finally, Model 4 included all variables from
Model 3, along with adjustments for drinking, smoking,
hypertension, diabetes, kidney disease, CHF, CHD, angina
pectoris, heart attack, stroke, liver disease, and cancer. Survival
was evaluated using the Kaplan-Meier method, and HRs for all-
cause and specific mortality were derived using the log-rank test. To
investigate potential non-linear associations between PIV and
mortality outcomes, restricted cubic spline (RCS) analyses with
four knots were performed, adjusting for the same variables as in
Model 4. The knots were positioned at the 5th, 35th, 65th, and 95th
percentiles of PIV distribution. Four knots were placed to exclude
the most extreme 5% of values, minimizing the potential influence
of outliers. Non-linearity relationship was assessed via the
likelihood ratio test. In cases where a nonlinear relationship was
identified, a threshold effect analysis was conducted. This involved
applying a two-piece Cox proportional hazards model on either side
of the inflection point to assess the association between PIV and the
risk of all-cause and cause-specific mortality. Subgroup analyses
were carried out to identify potential effect modifications by crucial
factors, including age, gender, race, education level, family income-
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to-poverty ratio, marital status, smoking, drinking, BMI. The
diagnostic efficacy of PIV and other inflammatory indices was
evaluated using receiver operating characteristic (ROC) curve
analysis. To quantify their predictive accuracy, the area under the
curve (AUC) was calculated, providing a comprehensive measure of
their performance in distinguishing outcomes. Finally, sensitivity
analyses were performed as follows: (1) repeating the Multivariable
Cox proportional hazards regression on the complete dataset
(33,710 participants) without multiple imputation; (2) repeating
the analyses after excluding participants with cancer, cardiovascular
disease, or diabetes; and (3) calculating the E-value to determine the
influence of unmeasured confounders on the study’s findings (25).

The proportion of missing data for all variables was less than
10% in our study. To address potential bias from missing data,
multiple imputation was performed (26, 27). A two-sided P-value of
less than 0.05 was considered statistically significant. All statistical
analyses were executed using R software version 4.3.2 (R
Foundation for Statistical Computing) and Empower (R)
version 4.2.

Results

Baseline population characteristics by PIV
quartiles

After excluding 46,235 participants under 20 years of age, 5,459
participants with missing neutrophil counts, 871 participants with
missing monocyte counts, and 89 participants with incomplete
mortality information, a total of 48,662 participants were
included in the final analysis. The demographic and clinical
characteristics of the participants, stratified by PIV quartiles, are
detailed in Table 1.

Participants were categorized into four quartiles based on their
PIV levels at enrollment: Q1 (<164.18), Q2 (164.19-254.05), Q3
(254.06-393.66), and Q4 (>393.67). The overall mean PIV value for
all participants was 327.0 (95% CI: 322.8-331.2). Median PIV
values for each quartile were as follows: 116.9 (95% CI: 116.1-
117.7) in Q1, 208.4 (95% CI: 207.8-209.0) in Q2, 316.4 (95% CI:
315.4-317.4) in Q3, and 640.1 (95% CI: 633.2-647.1) in Q4.
Additional inflammatory markers, including MLR, NLR, PLR, SIJ,
and SIRI, demonstrated a significant upward trend across the PIV
quartiles. The mean MLR values increased from 0.21 (95% CI: 0.20-
0.21) in Q1 to 0.38 (95% CI: 0.38-0.39) in Q4. Similarly, NLR rose
from 1.40 (95% CI: 1.39-1.41) in Q1 to 3.25 (95% CI: 3.21-3.28) in
Q4. PLR increased from 105.75 (95% CI: 104.68-106.83) in QI to
158.40 (95% CI: 156.77-160.03) in Q4, and SII climbed from 291.18
(95% CI: 288.34-294.01) in Q1 to 923.36 (95% CI: 912.94-933.78)
in Q4. SIRI followed a similar pattern, rising from 0.57 (95% CI:
0.56-0.57) in Q1 to 2.26 (95% CI: 2.23-2.28) in Q4.

Participants in the highest PIV quartile (Q4) were characterized
by older age (mean: 48.38 years), higher BMI, and a greater
prevalence of females, Non-Hispanic Whites, and individuals with
lower educational attainment (below high school and high school
levels). They were more likely to have lower family income-to-

frontiersin.org


http://www.cdc.gov/nchs/tutorials/default.aspx
http://www.cdc.gov/nchs/tutorials/default.aspx
https://doi.org/10.3389/fendo.2025.1534018
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

ABojourdopul ul s1213U0I4

[SSIRVIFETMIIT]

Variable

Age, years

Gender (%)

Total

(N=48,662)

47.19 (46.83 ,47.54)

Q1

<164.18(N=12,166)

46.15 (45.66 ,46.63)

TABLE 1 The demographic characteristics of the study population with various PIV quartiles.

Q2 164.19-
254.05 (N=12,164)

46.80 (46.38 ,47.23)

Q3 254.06-
393.66 (N=12,166)

47.29 (46.78 ,47.80)

Q4

>393.67(N=12,166)

48.38 (47.88 ,48.88)

P-value

<0.001

0.727

Male

48.01 (47.58 ,48.45)

48.04 (46.91 ,49.18)

48.52 (47.43 ,49.61)

47.82 (46.86 ,48.78)

47.68 (46.63 ,48.72)

Female

51.99 (51.55 ,52.42)

51.96 (50.82 ,53.09)

51.48 (50.39 ,52.57)

52.18 (51.22 ,53.14)

52.32 (51.28 ,53.37)

Race (%)
Mexican American

Hispanics

Non-Hispanic White

8.20 (7.19 ,9.35)
5.60 (4.80 ,6.51)

68.52 (66.43 ,70.55)

8.35 (7.29 ,9.56)
5.63 (4.85 ,6.51)

57.44 (54.85,59.99)

8.34 (7.25 ,9.58)
5.81 (4.89 ,6.89)

68.82 (66.58 ,70.98)

8.47 (7.40 ,9.67)
571 (4.84 ,6.73)

71.41 (69.30 ,73.44)

7.67 (6.59 ,8.90)
525 (4.34 ,6.33)

75.04 (72.95 ,77.01)

<0.001

Non-Hispanic Black

10.77 (9.71 ,11.93)

19.35 (17.52 ,21.31)

10.16 (9.12,11.30)

8.11 (7.23 ,9.09)

6.54 (5.78 ,7.38)

Others

6.91 (6.32,7.54)

9.23 (8.28 ,10.28)

6.87 (6.08 ,7.75)

6.30 (5.64 ,7.04)

551 (4.91,6.18)

Education level (%)

<0.001

Below high school
High school

Above high school

17.23 (16.36 ,18.13)
23.99 (23.22 ,24.78)

58.78 (57.46 ,60.09)

17.38 (16.30 ,18.51)
21.65 (20.50 ,22.84)

60.97 (59.22 ,62.70)

16.86 (15.77 ,18.02)
22.85 (21.67 ,24.07)

60.29 (58.63 ,61.92)

16.60 (15.48 ,17.80)
24.43 (23.44 ,25.45)

58.96 (57.41 ,60.50)

18.09 (17.03,19.19)
26.73 (25.51 ,27.99)

55.18 (53.51 ,56.84)

Family income of poverty ratio(%)

<0.001

<13
1.30-3.5
>3.50

Smoking (%)

2126 (20.23 22.32)
35.92 (34.94 ,36.91)

42.82 (41.29 ,44.37)

21.25 (20.09 ,22.47)
35.07 (33.52 ,36.65)

43.68 (41.64 ,45.74)

19.97 (18.65 21.35)
3526 (33.86 ,36.67)

44.78 (42.90 ,46.68)

21.61 (20.26 ,23.01)
35.40 (33.95 ,36.87)

43.00 (41.03 ,44.98)

2221 (21.01 ,23.45)
37.85 (36.57 ,39.14)

39.94 (38.18 ,41.73)

<0.001

No

54.07 (53.14 ,55.00)

60.10 (58.62 ,61.56)

56.34 (54.91 ,57.76)

52.90 (51.54 ,54.25)

47.69 (46.22 ,49.16)

Yes

45.93 (45.00 ,46.86)

39.90 (38.44 ,41.38)

43.66 (42.24 45.09)

47.10 (45.75 ,48.46)

5231 (50.84 ,53.78)

Drinking (%)
No

Yes

22.73 (21.61 ,23.90)

77.27 (76.10 ,78.39)

24.25 (22.76 ,25.81)

75.75 (74.19 ,77.24)

22.09 (20.77 ,23.47)

7791 (76.53 ,79.23)

22.84 (21.38 ,24.37)

77.16 (75.63 ,78.62)

21.95 (20.69 ,23.27)

78.05 (76.73 ,79.31)

0.004
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TABLE 1 Continued

Variable Total Q1 Q2 164.19- Q3 254.06- (eZ P-value
(N=48,662) <164.18(N=12,166) 254.05 (N=12,164) 393.66 (N=12,166) >393.67(N=12,166)

Marital status (%) <0.001

Single 36.07 (35.14 ,37.01) 34.86 (33.48 ,36.27) 34.37 (33.10 ,35.65) 35.72 (34.38 ,37.08) 39.17 (37.90 ,40.46)

Married or living with 63.93 (62.99 ,64.86) 65.14 (63.73 ,66.52) 65.63 (64.35 ,66.90) 64.28 (62.92 ,65.62) 60.83 (59.54 ,62.10)

a partner
BMI, kg/m2 28.79 (28.67 ,28.92) 27.67 (27.49 ,27.84) 28.34 (28.16 ,28.52) 29.20 (29.03 ,29.38) 29.83 (29.63 ,30.02) <0.001
RBC, 10"/L 4.70 (4.69 ,4.71) 4.65 (4.63 ,4.66) 4.71 (4.69 ,4.72) 4.73 (4.71 ,4.74) 4.71 (4.69 ,4.73) <0.001
WBC,10°/L 7.30 (7.26 ,7.34) 5.83 (5.77 ,5.89) 6.67 (6.62 ,6.71) 7.52 (7.47 ,7.57) 9.00 (8.94 ,9.05) <0.001
Lymphocyte,10°/L 2.16 (2.14 ,2.17) 2.28 (223 ,2.33) 2.16 (2.14 ,2.18) 2.15 (2.13 ,2.18) 2.05 (2.03 ,2.07) <0.001
Neutrophils,10°/L 4.34 (4.31 ,4.38) 2.88 (2.85 ,2.90) 3.75 (3.73 3.78) 4.55 (4.52 ,4.58) 6.01 (5.97 ,6.06) <0.001
Monocyte,10°/L 0.56 (0.56 ,0.57) 0.43 (0.42 ,0.43) 0.51 (0.51,0.52) 0.58 (0.58 ,0.59) 0.72 (0.71 ,0.72) <0.001
Platelets,10°/L 254.70 (253.38 ,256.02) | 214.94 (213.46 ,216.42) 242.07 (240.57 ,243.58) 262.86 (261.35 ,264.38) 293.96 (291.73 ,296.20) <0.001
Hemoglobin, g/dL 14.26 (14.22 ,14.30) 14.13 (14.08 ,14.18) 14.32 (14.28 ,14.37) 14.34 (14.30 ,14.39) 14.23 (14.17 ,14.28) <0.001
AST, mmol/L 25.12 (24.94 ,25.30) 25.87 (25.50 ,26.24) 25.03 (24.70 ,25.35) 24.75 (24.48 ,25.02) 24.92 (24.57 ,25.27) <0.001
ALT, mmol/L 25.29 (25.03 ,25.54) 24.92 (24.50 ,25.34) 25.53 (25.07 ,25.98) 25.23 (24.85 ,25.62) 25.43 (24.78 ,26.09) 0.191
TC, mmol/L 5.07 (5.05 ,5.09) 5.02 (4.99 ,5.05) 5.09 (5.06 ,5.11) 5.09 (5.06 ,5.12) 5.08 (5.05 ,5.10) 0.001
BUN, mmol/L 4.82 (4.78 ,4.86) 471 (4.65 ,4.76) 4.81 (4.77 ,4.86) 4.83 (4.78 ,4.89) 4.92 (4.86 ,4.97) <0.001
Uric acid, umol/L 320.80 (319.63 ,321.97)  312.33 (310.20 ,314.47) 319.90 (317.77 ,322.02) 322.35 (320.48 ,324.21) 327.53 (325.20 ,329.86) <0.001
Creatinine, umol/L 77.94 (77.50 ,78.37) 77.23 (76.60 ,77.86) 77.49 (76.84 ,78.13) 77.32 (76.63 ,78.00) 79.61 (78.81 ,80.42) <0.001
Albumin, g/L 42.68 (42.60 ,42.76) 42.92 (42.82 ,43.03) 43.01 (42.90 ,43.11) 42.74 (42.63 ,42.85) 42.10 (42.00 ,42.20) <0.001
HbAlc (%) 5.58 (5.56 ,5.59) 5.54 (5.52 ,5.56) 5.54 (552 ,5.56) 5.59 (5.56 ,5.61) 5.64 (5.62 ,5.66) <0.001
Kidney disease (%) <0.001

No 97.59 (97.40 ,97.76) 98.02 (97.69 ,98.31) 97.97 (97.62 ,98.27) 97.56 (97.22 ,97.86) 96.85 (96.50 ,97.16)

Yes 2.41 (2.24 ,2.60) 1.98 (1.69 ,2.31) 2.03 (1.73 ,2.38) 2.44 (2.14 2.78) 3.15 (2.84 ,3.50)
CHF (%) <0.001

No 97.55 (97.36 ,97.74) 98.20 (97.95 ,98.42) 98.25 (97.96 ,98.49) 97.53 (97.12 ,97.87) 96.32 (95.93 ,96.68)

Yes 2.45 (2.26 ,2.64) 1.80 (1.58 ,2.05) 1.75 (1.51 ,2.04) 2.47 (2.13 ,2.88) 3.68 (3.32 ,4.07)
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TABLE 1 Continued

Variable

Total

(N=48,662)

Q1

<164.18(N=12,166)

Q2 164.19-
254.05 (N=12,164)

Q3 254.06-
393.66 (N=12,166)

Q4

>393.67(N=12,166)

P-value

CHD (%) <0.001
No 96.44 (96.14 ,96.70) 97.37 (96.98 ,97.71) 96.71 (96.24 ,97.12) 96.40 (95.87 ,96.87) 95.37 (94.85 ,95.84)
Yes 3.56 (3.30 ,3.86) 2.63 (2.29 ,3.02) 3.29 (2.88 ,3.76) 3.60 (3.13 ,4.13) 4.63 (4.16 ,5.15)

Angina pectoris (%) <0.001
No 97.51 (97.29 ,97.71) 98.11 (97.75 ,98.41) 97.61 (97.20 ,97.96) 97.45 (97.02 ,97.82) 96.94 (96.48 ,97.34)
Yes 2.49 (2.29 2.71) 1.89 (1.59 ,2.25) 2.39 (2.04 ,2.80) 2.55 (2.18 ,2.98) 3.06 (2.66 ,3.52)

Heart attack (%) <0.001
No 96.56 (96.30 ,96.79) 97.19 (96.77 ,97.55) 97.11 (96.67 ,97.49) 96.57 (96.11 ,96.97) 95.44 (94.96 ,95.87)
Yes 3.44 (3.21 ,3.70) 2.81 (245 ,3.23) 2.89 (2.51 ,3.33) 3.43 (3.03 ,3.89) 4.56 (4.13 ,5.04)

Stroke (%) <0.001
No 97.15 (96.94 ,97.34) 97.66 (97.26 ,98.00) 97.72 (97.35 ,98.03) 97.15 (96.72 ,97.53) 96.12 (95.68 ,96.52)
Yes 2.85 (2.66 ,3.06) 2.34 (2.00 ,2.74) 2.28 (1.97 ,2.65) 2.85 (247 ,3.28) 3.88 (3.48 ,4.32)

Liver disease (%) 0.128
No 96.45 (96.20 ,96.68) 96.04 (95.49 ,96.53) 96.47 (95.98 ,96.90) 96.81 (96.36 ,97.21) 96.42 (95.98 ,96.82)
Yes 3.55 (3.32 ,3.80) 3.96 (3.47 ,4.51) 3.53 (3.10 ,4.02) 3.19 (2.79 ,3.64) 3.58 (3.18 ,4.02)

Cancer (%) <0.001
No 90.45 (90.06 ,90.82) 91.73 (91.01 ,92.39) 90.93 (90.21 ,91.61) 90.55 (89.80 ,91.24) 88.74 (87.88 ,89.55)
Yes 9.55 (9.18 ,9.94) 8.27 (7.61 ,8.99) 9.07 (839 ,9.79) 9.45 (8.76 ,10.20) 11.26 (10.45 ,12.12)

Hypertension(%) <0.001
No 69.26 (68.46 ,70.05) 73.04 (71.85 ,74.20) 71.63 (70.40 ,72.83) 68.80 (67.56 ,70.01) 64.04 (62.85 ,65.21)
Yes 30.74 (29.95 ,31.54) 26.96 (25.80 ,28.15) 28.37 (27.17 ,29.60) 31.20 (29.99 ,32.44) 35.96 (34.79 ,37.15)

Diabetes (%) <0.001
No 91.03 (90.66 ,91.39) 92.44 (91.77 ,93.06) 92.15 (91.54 ,92.72) 90.51 (89.75 ,91.23) 89.20 (88.47 ,89.89)
Yes 8.97 (8.61 ,9.34) 7.56 (6.94 ,8.23) 7.85 (7.28 ,8.46) 9.49 (8.77 ,10.25) 10.80 (10.11,11.53)
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TABLE 1 Continued

Variable Total Q1 Q2 164.19- Q3 254.06- (el P-value
(N=48,662) <164.18(N=12,166) 254.05 (N=12,164) 393.66 (N=12,166) >393.67(N=12,166)
All-cause mortality (%) <0.001
No 88.83 (88.31 ,89.34) 91.49 (90.80 ,92.14) 90.63 (89.93 ,91.29) 89.28 (88.60 ,89.92) 84.27 (83.27 ,85.22)
Yes 11.17 (10.66 ,11.69) 8.51 (7.86 ,9.20) 9.37 (8.71,10.07) 10.72 (10.08 ,11.40) 15.73 (14.78 ,16.73)
Diabetes mortality (%) 0.001
No 99.61 (99.54 ,99.67) 99.75 (99.63 ,99.83) 99.66 (99.52 ,99.77) 99.64 (99.51 ,99.73) 99.41 (99.22 ,99.55)
Yes 0.39 (0.33 ,0.46) 0.25 (0.17 ,0.37) 0.34 (0.23 ,0.48) 0.36 (0.27 ,0.49) 0.59 (0.45 ,0.78)
Cancer mortality (%) <0.001
No 97.43 (97.24 ,97.60) 97.83 (97.48 ,98.13) 97.66 (97.34 ,97.95) 97.78 (97.47 ,98.05) 96.49 (96.09 ,96.86)
Yes 2.57 (2.40 ,2.76) 2.17 (1.87 ,2.52) 2.34 (2.05 ,2.66) 2.22 (1.95 ,2.53) 3.51 (3.14 ,3.91)
Cardiovascular mortality (%) <0.001
No 96.67 (96.41 ,96.91) 97.56 (97.15 ,97.91) 97.34 (96.99 ,97.65) 96.68 (96.29 ,97.03) 95.21 (94.77 ,95.62)
Yes 3.33 (3.09 ,3.59) 2.44 (2.09 ,2.85) 2.66 (2.35 ,3.01) 3.32 (297 ,3.71) 4.79 (4.38 ,5.23)
Follow-up time (months) 117.44 (11555 ,119.34) | 110.65 (108.28 ,113.03) 118.66 (116.39 ,120.94) 122.41 (119.92 ,124.90) 117.20 (114.59 ,119.81) <0.001
MLR 0.28 (0.28 ,0.29) 0.21 (0.20 ,0.21) 0.25 (0.25 ,0.25) 0.29 (0.29 ,0.29) 0.38 (0.38 ,0.39) <0.001
NLR 2.22 (220 ,2.23) 1.40 (1.39 ,1.41) 1.85 (1.83,1.87) 2.26 (2.24 ,2.28) 3.25 (3.21 ,3.28) <0.001
PLR 129.99 (129.08 ,130.90) | 105.75 (104.68 ,106.83) 120.86 (119.65 ,122.07) 131.93 (130.60 ,133.26) 158.40 (156.77 ,160.03) <0.001
SII 563.98 (558.31 ,569.65) | 291.18 (288.34 ,294.01) 433.75 (430.09 ,437.40) 573.61 (569.11 ,578.12) 923.36 (912.94 ,933.78) <0.001
SIRI 127 (1.25,1.28) 0.57 (0.56 ,0.57) 0.90 (0.89 ,0.91) 1.26 (1.25,1.27) 2.26 (2.23 ,2.28) <0.001
PIV 327.00 (322.80 ,331.20) | 116.90 (116.10 ,117.70) 208.41 (207.82 ,209.00) 316.36 (315.37 ,317.36) 640.13 (633.21 ,647.06) <0.001

For continuous variables: survey-weighted mean (95% CI), P-value was by survey-weighted linear regression. For categorical variables: survey-weighted percentage (95% CI), P-value was by survey-weighted Chi-square test.

BMI, body mass index; RBC, red blood cell; WBC, white blood cell; AST, aspartate transaminase; ALT, glutamic-pyruvic transaminase; TC, total cholesterol; BUN, blood urea nitrogen; HBA I, glycosylated hemoglobin Alc; CHF, congestive heart failure; CHD, coronary

heart disease; MLR, monocyte-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio; SII, systemic immune-inflammation index; SIRI, systemic inflammation response index; PIV, pan-immune- inflammation value.
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poverty ratios (<3.5), higher rates of smoking and drinking, and a
single marital status. Moreover, these participants exhibited
elevated levels of inflammatory markers (MLR, NLR, PLR, SII,
and SIRI) and adverse metabolic indicators, including elevated
BUN, creatinine, uric acid, and HbAlc. Comorbidities such as
kidney disease, cancer, hypertension, diabetes, and cardiovascular
conditions (e.g., CHF, CHD, angina pectoris, heart attack, and
stroke) were more prevalent in participants in Q4 compared to
those in Q1. Additionally, participants in Q4 exhibited significantly
higher mortality rates, including all-cause mortality (15.73% vs.
8.51%), diabetes-related mortality (0.59% vs. 0.25%), cancer-related
mortality (3.51% vs. 2.17%), and cardiovascular mortality (4.79% vs.
2.44%). The median follow-up duration was shorter in Q4
participants (117.20 months) compared to Q1 (110.65 months),
likely reflecting the elevated mortality risks associated with
this group.

Relationship between PIV and all-cause
and cause-specific mortality

To explore the relationship between PIV and various mortality
outcomes, including all-cause, cardiovascular, cancer, and diabetes-
related mortality, we developed four weighted Cox proportional
hazard models, as presented in Table 2. For every 100-unit increase
in PIV, the unadjusted hazard ratios were 1.038 (95% CI: 1.030-
1.047) for all-cause mortality, 1.039 (95% CI: 1.031-1.048) for
cardiovascular mortality, 1.035 (95% CI: 1.028-1.042) for cancer
mortality, and 1.035 (95% CI: 1.028-1.042) for diabetes mortality.
The fully adjusted hazard ratios were 1.031 (95% CI: 1.024-1.038),
1.032 (95% CI: 1.024-1.040), 1.028 (95% CI: 1.020-1.035), and
1.040 (95% CI: 1.030-1.051), respectively. Furthermore, when PIV
was divided into quartiles, a clear, stepwise increase in mortality risk
was observed across the quartiles, even after adjusting for
confounders (p for trend < 0.05).

Kaplan-Meier survival curves, shown in Figure 2, confirmed the
differences in mortality rates across PIV quartiles. Significant
disparities were observed in all-cause, cardiovascular, cancer, and
diabetes-related mortality among the groups (log-rank test p-values
< 0.001 for all).

Nonlinear association between PIV and
mortality outcomes

To model the relationship between PIV and mortality outcomes
flexibly, we used restricted cubic spline analyses. Figure 3 illustrates
significant nonlinear dose-response relationships between PIV and all-
cause, cardiovascular, and cancer mortality after adjusting for
covariates in Model 4 (p for nonlinearity < 0.001, 0.001, and 0.019,
respectively). No significant nonlinear relationship was found between
PIV and diabetes-related mortality (p for nonlinearity = 0.101).

When nonlinear relationships were identified, a threshold effect
analysis was performed using a two-piece Cox proportional hazards
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model. For PIV values below 254.07, no significant association with
all-cause, cardiovascular, or cancer mortality was observed (log-
likelihood ratio test p-values = 0.995, 0.838, and 0.776, respectively).
However, for PIV values of 254.07 or higher, a positive association
with increased risk of all-cause, cardiovascular, and cancer
mortality was evident (log-likelihood ratio test p-values < 0.001
for all), as detailed in Supplementary Table S1.

Subgroup analysis

Subgroup analyses were performed to determine the association
between PIV and both all-cause and cause-specific mortality,
stratifying by variables including age, gender, race, family
income-to-poverty ratio, marital status, education level, smoking,
drinking, and BMI. Across most subgroups, PIV was consistently
linked with a significantly higher risk of both all-cause and cause-
specific mortality, as shown in Table 3. However, the interaction
analysis produced nuanced results. While a significant association
with all-cause and cardiovascular mortality was observed across all
subgroups, except for the gender subgroup, the association for
cancer mortality was significant only in the subgroups defined by
race, family income-to-poverty ratio, drinking, and BMI. For
diabetes mortality, significant associations were found in
subgroups based on race, family income-to-poverty ratio,
and drinking.

ROC analysis

ROC curve analyses (Figure 4) evaluated the predictive
efficiency of PIV and other inflammatory markers. For all-cause
mortality, PIV had an AUC of 0.581 (95% CI: 0.574-0.588), which
was superior to PLR (AUC = 0.557) and SII (AUC = 0.567) (both
p<0.001), but inferior to MLR (AUC = 0.627), NLR (AUC = 0.600),
and SIRI (AUC = 0.609) (all p<0.001). Similar trends were observed
for cardiovascular mortality, with PIV demonstrating better
performance than PLR and SIT (both p<0.001), but inferior to
MLR, NLR, and SIRI (all p<0.001). For cancer mortality, PIV
showed comparable performance to NLR and PLR, while
outperforming SIT (p<0.001) but being surpassed by MLR and
SIRI. For diabetes-related mortality, PIV outperformed PLR
(p<0.001) and was comparable to other markers (p>0.05).

Sensitivity analysis

To further assess the stability of the PIV-mortality relationships,
we performed a sensitivity analysis by excluding participants with
incomplete data, as well as those with pre-existing cardiovascular
disease or cancer (Supplementary Table S2, Supplementary Table
S3 and Supplementary Table S4). The results aligned with those of
the primary analysis. Furthermore, based on Model 4, we calculated
the E-value to determine the minimum strength of association that
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TABLE 2 Association between PIV and all-cause mortality and cause-specific mortality.

Model 1 Model 2 Model 3 Model 4

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI)

All-cause mortality

PIV (per 100units) 1.038 (1.030,1.047) <0.001 1.036 (1.028,1.043) <0.001 1.030 (1.022,1.037) <0.001 1.031 (1.024,1.038) <0.001
Q1 Ref Ref Ref Ref Ref Ref Ref Ref
Q2 1.013 (0.920, 1.116) = 0.787 0.956 (0.871,1.048) = 0.336 0.961 (0.874,1.057) = 0.411 0.977 (0.891,1.071) = 0.614
Q3 1.116 (1.021, 1.220) = 0.016 1.012 (0.932,1.099) 0.771 1.003 (0.920,1.094) 0.945 0.993 (0.910,1.083) 0.869
Q4 1.718 (1.570,1.880) <0.001 1.423 (1.312,1.544) <0.001 1.365 (1.253,1.486) <0.001 1.334 (1.225,1.452) <0.001
P for trend <0.001 <0.001 <0.001 <0.001

Cardiovascular mortality

PIV (per 100units) 1.039 (1.031,1.048) <0.001 1.037 (1.029,1.045) <0.001 1.031 (1.022,1.039) <0.001 1.032 (1.024,1.040) <0.001
Q1 Ref Ref Ref Ref Ref Ref Ref Ref
Q2 1.004 (0.843,1.195) 0.964 0.948 (0.804, 1.118) = 0.527 0.925 (0.779,1.097) 0.370 0.934 (0.788,1.109) 0.436
Q3 1.208 (1.004, 1.452) = 0.045 1.098 (0.923, 1.307) = 0.291 1.038 (0.869,1.240) 0.682 1.029 (0.864,1.226) 0.746
Q4 1.827 (1.562,2.136) <0.001 1.481 (1.273, 1.724) | <0.001 1.337 (1.145,1.562) <0.001 1.313 (1.126,1.532) <0.001
P for trend <0.001 <0.001 <0.001 <0.001

Cancer mortality

PIV (per 100units) 1.035 (1.028,1.042) <0.001 1.030 (1.024,1.037) <0.001 1.028 (1.021,1.035) <0.001 1.028 (1.020,1.035) <0.001
Q1 Ref Ref Ref Ref Ref Ref Ref Ref
Q2 0.992 (0.813,1.209) 0.933 0.939 (0.772,1.141) 0.526  0.978 (0.801,1.194) 0.826 0.985 (0.806,1.204) 0.883
Q3 0.907 (0.764, 1.076)  0.263 0.830 (0.695,0.990) 0.039  0.864 (0.719,1.039) 0.120 0.855 (0.709,1.030) 0.100
Q4 1.505 (1.257, 1.802) = <0.001 1.275 (1.072,1.517) 0.006  1.317 (1.100,1.575) 0.003 1.272 (1.066,1.519) 0.008
P for trend <0.001 <0.001 <0.001 <0.001

Diabetes mortality

PIV (per 100units) 1.035 (1.028,1.042) <0.001 1.041 (1.031,1.051) <0.001 1.028 (1.015,1.042) <0.001 1.040 (1.030,1.051) <0.001
Q1 Ref Ref Ref Ref Ref Ref Ref Ref
Q2 1.230 (0.705,2.146) | 0.467 1.214 (0.690,2.138) 0501  1.041 (0.581,1.862) = 0.894 0.981 (0.534,1.80) = 0.949
Q3 1.267 (0.801, 2.002) = 0.312 1.245 (0.769,2.014) 0372 0.983 (0.583,1.657) = 0.949 0.989 (0.598,1.635) = 0.965
Q4 2.181 (1.368,3.477) 0.001 2.033 (1.219, 3.391) 0.007 = 1.580 (0.939,2.658) 0.085 1.523 (0.900, 2.577) = 0.117
P for trend <0.001 <0.001 0.004 0.011

Model 1: Non-adjusted.

Model 2: Adjusted for age, gender, race, family income of poverty ratio, education level, marital status.

Model 3: Adjusted for age, gender, race, family income of poverty ratio, education level, marital status, BMI, albumin, ALT, AST, BUN, creatinine, HbAlc, Hemoglobin, RBC, TC, uric acid.
Model 4: Adjusted for age, gender, race, family income of poverty ratio, education level, marital status, BMI, albumin, ALT, AST, BUN, creatinine, HbA1lc, Hemoglobin, RBC, TC, uric acid,
drinking, smoking, hypertension, diabetes, kidney disease, CHF, CHD, angina pectoris, heart attack, stroke, liver disease, cancer.

BMI, body mass index; RBC, red blood cell; AST, aspartate transaminase; ALT, glutamic-pyruvic transaminase; TC, total cholesterol; BUN, blood urea nitrogen; HbA ¢, glycosylated hemoglobin
Alc; CHF, congestive heart failure; CHD, coronary heart disease; PIV, pan-immune- inflammation value; CI, confidence interval; HR, hazard ratios.

an unmeasured confounder would need to negate the observed  Discussion

PIV-mortality relationships. The E-values for PIV and all-cause

mortality, cardiovascular mortality, cancer mortality, and diabetes This study investigated whether the PIV could predict long-
mortality were 1.21, 1.21, 1.20, and 1.24, respectively. These E-  term outcomes in a general population. Our results demonstrated
values indicate that relatively small unmeasured confounding would  that PIV is significantly associated with mortality across multiple
be sufficient to explain the observed hazard ratios. causes in this population. A high PIV level was shown to be an
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FIGURE 2

Kaplan-Meier curves showing survival rates and population numbers for us adults stratified by PIV quartiles. (A) All-cause mortality. (B)

Cardiovascular mortality. (C) Cancer mortality. (D) Diabetes mortality.

independent risk factor for all-cause mortality and cause-specific
mortality. Additionally, PIV exhibited a nonlinear relationship with
all-cause, cardiovascular, and cancer mortality, while displaying a
linear association with diabetes mortality.

The PIV is a novel biomarker derived from neutrophils,
platelets, monocytes, and lymphocytes, providing an integrative
view of a patient’s immune and inflammatory status. Originally
studied in the context of metastatic colorectal cancer, PIV has
shown superior prognostic power over traditional inflammatory
markers, such as NLR and PLR (19). Its simplicity, along with its
ability to combine multiple immune components into a single
measure, makes PIV a valuable and non-invasive tool for
assessing systemic inflammation across a variety of clinical settings.

PIV has been well-established as a prognostic marker in
oncology, where elevated levels are associated with worse
prognosis, rapid disease progression, and therapy resistance.
Researches have shown that high PIV correlates with poor
survival outcomes in multiple cancers, including pancreatic (28),
colorectal (29, 30), lung (31, 32), ovarian (33) esophageal (34), and
breast cancers (35, 36). In newly diagnosed glioblastoma

Frontiers in Endocrinology

multiforme (GBM), E. Topkan et al. reported a significant
association between elevated PIV levels and shorter progression-
free survival (PFS) and overall survival (OS) outcomes (37).
Furthermore, dynamic changes in PIV during immune
checkpoint inhibitor (ICI) treatment have been linked to patient
outcomes in colorectal cancer, with higher PIV levels indicating
poor response and survival (38) Additionally, PIV serves as an
indicator of chemotherapy resistance; for instance, in breast cancer
patients undergoing neoadjuvant chemotherapy, lower PIV levels
have been associated with better responses and improved survival
(35). Elevated PIV levels also predict enhanced tumor progression,
aiding clinicians in tailoring treatment plans and identifying
patients at higher risk of recurrence. PIV not only plays a critical
role in prognostic assessment but also shows potential in tumor
diagnosis and recurrence monitoring. Y.T. Yang et al. highlighted
that PIV has high sensitivity and specificity for diagnosing brain
tumors, particularly gliomas (39). In Merkel cell carcinoma (MCC),
T. Gambichler’s study confirmed that PIV levels correlate with
disease stage and are independent predictors of MCC
recurrence (40).
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Dose-response curve of PIV and all-cause mortality and specific-mortality. A restricted cubic spline was fitted to model each curve, with 4 knots
fixed at the 5th, 35th, 65th and 95th percentiles for all smooth curves. Solid lines represent the point estimates of HRs for incident all-cause
mortality (A), CVD mortality (B), cancer mortality (C), diabetes mortality (D). Orange area represents their corresponding 95% Cls. Adjusted for age,
gender, race, family income of poverty ratio, education level, marital status, BMI, albumin, ALT, AST, BUN, creatine, HbAlc, Hemoglobin, RBC, TC,
uric acid, drinking, smoking, hypertension, diabetes, kidney disease, CHF, CHD, angina pectoris, heart attack, stroke, liver disease, cancer. PIV, pan-
immune-inflammation value; BMI, body mass index; RBC, red blood cell; AST, aspartate transaminase; ALT, glutamic-pyruvic transaminase; TC, total

cholesterol; BUN, blood urea nitrogen; HBA1c, glycosylated hemoglobin Alc; CHF, congestive heart failure; CHD, coronary heart disease; Cl,

confidence interval; HR, hazard ratios.

Chronic inflammation is a central factor in cardiovascular
diseases, and PIV provides a comprehensive measure of
inflammatory burden in conditions such as ST-segment elevation
myocardial infarction (STEMI) and hypertension. Elevated PIV
levels are predictive of both short-term and long-term mortality
following STEMI, underscoring its value in risk stratification (9).
Among hypertensive patients, high PIV levels have been linked to
increased cardiovascular mortality due to their role in promoting
thrombosis and exacerbating atherosclerosis (41). PIV’s capacity to
integrate immune and inflammatory markers makes it a valuable
tool for tracking disease progression and tailoring interventions in
cardiovascular care.
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Beyond oncology and cardiovascular disease, PIV has shown
promise across a broad spectrum of conditions. In autoimmune
diseases like systemic lupus erythematosus (SLE), PIV levels are
significantly elevated compared to healthy controls (42). This
elevation captures both inflammatory activity and immune
dysregulation, which are critical in autoimmune disease
pathogenesis. In rheumatoid arthritis, where chronic
inflammation drives joint damage and cardiovascular
complications, PIV serves as a useful index of inflammatory
burden (43) Additionally, PIV is a significant nonlinear predictor
of 28-day and 90-day mortality in septic patients, with higher levels
correlating with increased mortality risk beyond a specific threshold
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TABLE 3 Subgroup analysis of the associations between PIV (per 100units) and all-cause and cause-specific mortality.

Variables All-cause mortality Cardiovascular mortality Cancer mortality Diabetes mortality
HR P for P for HR P for P for HR P for P for HR (95%Cl) P for P for
(95%Cl) value interaction (95%Cl) value interaction (95%Cl) value interaction value  interaction
Age 0.008 0.007 0.805 0.101
<60 1.05 (1.03,1.06)  <0.001 1.07 (1.04,1.09) | <0.001 1.02(0.98,1.06) | 0.279 1.08 (1.03,1.13) | 0.002
>60 1.03 (1.02,1.03)  <0.001 1.03 (1.02,1.03) | <0.001 1.03(1.02,1.03)  <0.001 1.03 (1.02,1.04) | <0.001
Gender ‘ 0.032 0.137 0.143 ‘ 0.615
Male 1.03 (1.03,1.03)  <0.001 1.03 (1.02,1.03) | <0.001 1.03(1.02,1.03)  <0.001 1.03 (1.02,1.04) | <0.001
Female 1.04 (1.03,1.04)  <0.001 1.04 (1.03,1.05) | <0.001 1.01(0.99,1.04) | 0.351 1.04 (1.01,1.07) | 0.002
Race ‘ <0.001 <0.001 0.008 ‘ 0.006
Mexican American 1.02 (1.02,1.03)  <0.001 1.02 (1.01,1.04) 1.03(1.02,1.04)  <0.001 1.02 (0.99,1.05) | 0.152
Hispanics 1.05 (1.01,1.09) | 0.019 1.06 (0.99,1.13) 1.06(0.99,1.14) | 0.099 1.10 (0.96,1.25) | 0.162
Non-Hispanic White 1.07 (1.06,1.07)  <0.001 1.07 (1.06,1.08) 1.05(1.03,1.07)  <0.001 1.09 (1.07,1.12) | <0.001
Non-Hispanic Black 1.04 (1.02,1.06)  <0.001 1.04 (1.01,1.07) 1.04(1.01,1.08) 021 1.02 (0.92,1.13) | 0.728
Others 1.09 (1.06,1.12)  <0.001 1.09 (1.04,1.15) 1.11(1.06,1.17) | <0.001 1.04 (0.82,1.33) | 0.742
Family income of <0.001 <0.001 0.047 0.004
poverty ratio
<13 1.03 (1.03,1.04)  <0.001 1.04 (1.03,1.04) | <0.001 1.03(1.01,1.04)  <0.001 1.04 (1.02,1.06) = <0.001
1.3-35 1.03 (1.02,1.03)  <0.001 1.03 (1.02,1.03) | <0.001 1.03(1.02,1.03)  <0.001 1.03 (1.00,1.05) | 0.026
>35 1.08 (1.07,1.10)  <0.001 1.08 (1.06,1.11) | <0.001 1.07(1.04,1.09)  <0.001 113 (1.08,1.17) | <0.001
Marital status <0.001 <0.001 0.509 ‘ 0.113
Single 1.03 (1.02,1.03)  <0.001 1.03 (1.02,1.03) | <0.001 1.03(1.02,1.03)  <0.001 1.03 (1.01,1.04) | <0.001
Married or living with partner 1.04 (1.04,1.05)  <0.001 1.04 (1.04,1.05) | <0.001 1.03(1.02,1.05)  <0.001 1.05 <0.001
(1.03,01.07)
Education level <0.001 <0.001 0.321 ‘ 0.481
Under high school 1.03 (1.03,1.04)  <0.001 1.03 (1.02,1.04) | <0.001 1.03(1.01,1.04)  <0.001 1.04 (1.01,1.06) | 0.006
High school 1.06 (1.05,1.07)  <0.001 1.07 (1.05,1.09) | <0.001 1.05(1.03,1.08) | <0.001 1.07 (1.02,1.13) | 0.008
Above high school 1.06 (1.05,1.07)  <0.001 1.03 (1.03,1.04) | <0.001 1.03(1.02,1.04) | <0.001 1.03 (1.02,1.05) | <0.001
(Continued)
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TABLE 3 Continued

Variables All-cause mortality Cardiovascular mortality Cancer mortality Diabetes mortality
HR P for P for HR P for P for HR P for P for HR (95%Cl) P for P for
(95%Cl) value  interaction (95%Cl) value  interaction (95%Cl) value interaction value interaction

Smoking <0.001 <0.001 0.203 0.148

No 1.03 (1.02,1.03)  <0.001 1.03 (1.02,1.03) | <0.001 1.03(1.02,1.04) | <0.001 1.03 (1.01,1.05)  0.001

Yes 1.04 (1.04,1.04)  <0.001 1.04 (1.03,1.05) | <0.001 1.03(1.02,1.04) | <0.001 1.05 (1.03,1.06) | <0.001

Drinking ‘ <0.001 <0.001 ‘ 0.003 ‘ ‘ 0.004
No 1.03 (1.02,1.03)  <0.001 1.02 (1.02,1.03) | <0.001 1.03(1.02,1.03) | <0.001 1.02 (1.01,1.04) | 0.002

Yes 1.07 (1.06,1.07)  <0.001 1.07 (1.06,1.08) | <0.001 1.05(1.04,1.07) | <0.001 1.08 (1.05,1.11) | <0.001

BMI ‘ <0.001 <0.001 ‘ <0.001 ‘ ‘ 0.057
<25 1.08 (1.07,1.09) | <0.001 1.08 (1.06,1.09) | <0.001 1.07(1.051.09) | <0.001 1.09 (1.04,1.14) | <0.001

25-30 1.03 (1.02,1.03) | <0.001 1.03 (1.02,1.03) | <0.001 1.03(1.02,1.03) | <0.001 1.03 (1.01,1.05) | <0.001

> 30 1.06 (1.05,1.07) | <0.001 1.07 (1.05,1.08) | <0.001 1.03(1.00,1.06) | 0.021 1.06 (1.02,1.11) | 0.002

BMI, body mass index; RBC, red blood cell; AST, aspartate transaminase; ALT, glutamic-pyruvic transaminase; TC, total cholesterol; BUN, blood urea nitrogen; HbAlc, glycosylated hemoglobin Alc; CHF, congestive heart failure; CHD, coronary heart disease; PIV, pan-
immune- inflammation value; CI, confidence interval; HR, hazard ratios.
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Receiver operating characteristic curves for PIV, MLR, NLR, PLR, SlI, and SIRI in predicting all-cause and cause-specific mortality. (A) All-cause
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(44). In critically ill patients with non-traumatic subarachnoid
hemorrhage (SAH), elevated admission PIV is independently
associated with increased mortality across ICU, in-hospital, 30-
day, 90-day, and 1-year outcomes (45). For patients with fatty liver
disease (FLD), Pan and colleagues demonstrated that PIV, alongside
the SII, is closely associated with all-cause mortality, particularly
highlighting its link to cardiovascular mortality (46). Jiang and
colleagues further showed that PIV, rather than SII, is associated
with the prevalence of NAFLD and hepatic fibrosis, particularly in
individuals under 60, positioning it as a valuable marker for liver
health (47). In hypertensive patients, Long and colleagues identified
elevated PIV as a significant predictor of sarcopenia, especially in
those with coexisting diabetes (48). Guo and colleagues reported
that PIV, along with SII and SIRI, is inversely associated with
cognitive performance in older adults, suggesting its potential as a
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biomarker for cognitive decline (49). Qiu and colleagues found that
higher PIV levels are associated with increased COPD prevalence
and all-cause mortality, with nonlinear relationships displaying a J-
shaped association for prevalence and a U-shaped association for
mortality risk (50). In the study by Tang et al (24), elevated levels of
NLR, MLR, PLR, SII, SIRI, and PIV were positively associated with
frailty risk in middle-aged and older adults, while lower PLR levels
were inversely related. In frail individuals, all six inflammatory
markers were linked to increased all-cause mortality, with MLR
exhibiting the strongest predictive value. Among pre-frail
individuals, elevated NLR, MLR, SII, SIRI, and PIV, alongside
increased neutrophil counts, were associated with higher
mortality risk, whereas higher lymphocyte counts were protective.
Notably, a U-shaped relationship between NLR, MLR, SIRI, and
PIV with mortality was observed in pre-frail individuals, where
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excessively low or high levels increased mortality risk. The
predictive superiority of MLR likely arises from its ability to
reflect immune senescence, as elevated monocytes indicate
systemic inflammation, and reduced lymphocytes represent
immune dysfunction—both critical drivers of frailty progression
and mortality. Our study aligns with the findings of Tang et al,,
demonstrating that MLR exhibits the highest predictive value for
all-cause mortality risk. However, their research didn’t extend to the
investigation of other cause-specific mortality risks.

Taken together, these findings underscore the versatility and
clinical relevance of PIV across diverse medical conditions,
including liver disease, sarcopenia, cognitive decline, respiratory
diseases, autoimmune disorders, sepsis, and others. PIV’s ability to
integrate systemic inflammation and immune dysregulation
highlights its value as a robust biomarker for risk assessment and
disease prognosis across various populations.

These findings underscore the versatility and clinical relevance
of PIV across diverse medical conditions, including liver disease,
sarcopenia, cognitive decline, respiratory diseases, autoimmune
disorders, sepsis, and others. PIV’s ability to integrate systemic
inflammation and immune dysregulation highlights its value as a
robust biomarker for risk assessment and disease prognosis across
various populations.

While the precise mechanisms underlying PIV’s prognostic
value in various diseases remain uncertain, several explanations
are emerging. Firstly, neutrophils, once considered straightforward
immune defenders, are now understood to regulate diverse
processes, including tissue repair, cancer progression,
autoimmunity, and chronic inflammation. Low neutrophil levels
can lead to severe immunodeficiency, while their excessive
activation can damage host tissues (51). In cancer, neutrophils
release VEGF, IL-6, and MMPs, which promote angiogenesis,
tumor growth, and metastasis (52). However, they also suppress
adaptive immunity by inhibiting T-cell activity through nitric oxide
and reactive oxygen species (ROS), enabling tumor immune evasion
(53). In ischemic heart failure, neutrophils initially assist in cardiac
repair by initiating inflammation and clearing necrotic myocardial
debris, but prolonged activation may lead to chronic inflammation,
impairing cardiac function (54). Secondly, platelets are known for
their complex roles in both physiological and pathological
conditions. Beyond hemostasis and thrombosis, platelets regulate
immune responses, chronic inflammation, and disease progression.
In sterile inflammation (e.g., atherosclerosis), platelets bind
damage-associated molecular patterns (DAMPs), activate
signaling pathways such as MAPK and NF-xB, and release potent
inflammatory mediators like HMGBL1 (55, 56) Additionally, they
interact with bacteria, initiate immune responses, and release
inflammatory mediators through Toll-like receptors (TLRs),
aiding in pathogen defense (55) Platelets also play a crucial role
in cancer metastasis by cloaking circulating tumor cells, promoting
endothelial adhesion, and facilitating tumor invasion and metastasis
(57, 58). Thirdly, monocytes play central roles in immune defense
and inflammation. Classical monocytes are recruited to infection
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and inflammation sites via the CCL2/CCR2 pathway, releasing
cytokines like TNF-or and iNOS to kill pathogens and enhance
adaptive immunity. while non-classical monocytes patrol the
vascular endothelium to monitor for tissue injury via the
CX3CL1/CX3CR1 axis. In conditions like atherosclerosis,
monocytes differentiate into foam cells, sustaining chronic
inflammation and plaque formation (59). In tumors, monocytes
differentiate into tumor-associated macrophages (TAMs), which
promote immunosuppression and angiogenesis, allowing tumor
cells to evade immune surveillance (60). Lastly, lymphocytes are
pivotal in immune surveillance and inflammation. In chronic
inflammation, such as atherosclerosis, lymphocytes mediate
immune responses against pathogens and contribute to tissue
repair, though excessive activity can exacerbate inflammation and
tissue damage (61-63). Within tumors, tumor-infiltrating
lymphocytes (TILs) recognize and kill cancer cells, particularly in
high mutation-load cancers (64, 65). Conversely, lymphopenia—a
low lymphocyte count—is linked with poor outcomes, reflecting
impaired immune competence and heightened disease
susceptibility (66). Overall, these mechanisms highlight PIV’s
potential to capture the complex interplay between immunity and
inflammation across diverse diseases.

Our findings underscore a significant association between PIV
and various mortality outcomes. We observed a dose-dependent
increase in the risk of all-cause, cardiovascular, cancer, and
diabetes-related mortality with elevated PIV levels. Even after
adjusting for potential confounders, high PIV levels remained
consistently associated with increased mortality risks. Kaplan-
Meier survival curves further validated these disparities across
PIV quartiles, demonstrating that individuals with higher PIV
indices had markedly elevated long-term mortality risks. Notably,
restricted cubic spline analysis revealed nonlinear dose-response
relationships between PIV and all-cause, cardiovascular, and cancer
mortality. Specifically, when PIV levels were below 254.07, no
significant association with mortality risk was observed, but once
this threshold was exceeded, the risks rose sharply. This threshold
effect suggests that while low PIV levels may have minimal impact,
elevated PIV could play a critical role in disease progression.
Sensitivity and subgroup analyses reinforced the robustness of
these associations, underscoring PIV’s potential as a reliable
prognostic marker across diverse populations.

Additionally, our findings highlight the comparative predictive
efficiency of PIV against other inflammatory markers in mortality
risk assessment. ROC curve analyses demonstrated that PIV
provides reasonable predictive performance for all-cause,
cardiovascular, cancer, and diabetes-related mortality. Notably,
PIV outperformed simpler markers such as PLR and SII,
emphasizing its greater utility in reflecting systemic inflammatory
responses. However, its predictive capability was surpassed by more
comprehensive indices, including MLR, NLR, and SIRI, which likely
integrate broader aspects of inflammatory and immune dynamics.
For cancer mortality, PIV exhibited comparable performance to
NLR and PLR but was inferior to MLR and SIRI, suggesting that
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composite indices may better capture the complexity of
inflammation-driven processes in cancer progression. Similarly,
for diabetes-related mortality, PIV demonstrated consistent and
comparable predictive performance relative to other markers,
further supporting its reliability in specific contexts. Taken
together, these findings highlight PIV as a practical and accessible
prognostic marker with considerable potential for mortality risk
stratification. However, the superior performance of MLR, NLR,
and SIRI indicates that combining PIV with complementary
markers could enhance predictive accuracy. Future studies should
prioritize investigating the synergistic use of PIV alongside other
inflammatory indices to improve risk stratification and inform
clinical decision-making across diverse populations and
mortality outcomes.

In this study, we conducted a comprehensive comparison of
baseline characteristics between participants who were excluded
and those included in the final analysis (Supplementary Table S5).
Significant differences were observed in various demographic,
clinical, and laboratory parameters, including age, race,
educational attainment, family income-to-poverty ratio, smoking
behavior, marital status, BMI, and laboratory measurements such as
RBC count, lymphocyte count, platelet count, hemoglobin, ALT,
TC, BUN, uric acid, creatinine, albumin, and HbAlc. Additionally,
differences were notable in the prevalence of comorbidities, such as
kidney disease, CHF, CHD, heart attack, stroke, and cancer, as well
as in causes of mortality. Conversely, no significant differences were
identified in gender, WBC count, neutrophil count, monocyte
count, AST levels, or in the prevalence of angina pectoris, liver
disease, hypertension, diabetes, and follow-up duration.
Furthermore, inflammatory markers, including NLR, PLR, SII,
and PIV, also showed no significant differences between the two
groups. We recognize the potential for selection bias arising from
these differences. To address this, we employed rigorous statistical
adjustments, incorporating a variety of confounding variables into
our analysis. Multiple models were constructed to validate the
consistency and reliability of our findings, all of which
demonstrated concordant trends. Despite the inherent limitations
in sample selection, the robustness of our results underscores the
credibility of our conclusions. This study provides a strong
foundation for future research exploring the clinical relevance of
PIV and related outcomes in diverse populations.

Our findings also have important clinical implications. First, as
a composite biomarker derived from routine complete blood count
(CBC) parameters, PIV is a cost-effective, readily available, and
non-invasive marker that can be easily applied in daily clinical
practice, including in primary care and resource-limited settings.
Second, given its strong association with all-cause and cause-
specific mortality, PIV may serve as an effective tool for early
identification of individuals at high risk of adverse outcomes, who
may benefit from targeted preventive interventions and more
intensive clinical monitoring. For instance, individuals with
elevated PIV levels could be prioritized for cardiovascular risk
management, cancer screening, or metabolic evaluations. Third,
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since PIV reflects both innate and adaptive immune responses, as
well as systemic inflammation, it offers a broader perspective on the
overall immune-inflammatory status than traditional indices such
as NLR or PLR, supporting its potential role in comprehensive risk
stratification models. Furthermore, considering the dynamic nature
of inflammation, repeated assessments of PIV over time may help
monitor disease progression and evaluate treatment responses.
Lastly, integrating PIV with other clinical information, including
comorbidities, lifestyle factors, and biochemical markers, could
improve personalized risk prediction and support clinical
decision-making in preventive and therapeutic strategies. Further
prospective and interventional studies are warranted to validate
these clinical applications and to establish optimal PIV thresholds
for risk stratification and clinical management.

Strengths, limitations, and future
directions

Our study, leveraging a large cohort and extensive follow-up,
provided valuable insights into the association between PIV and
mortality outcomes, including all-cause, cardiovascular, cancer, and
diabetes-related mortality in the general population. The use of
restricted cubic spline models enabled us to explore nonlinear
relationships between PIV and mortality, revealing nuanced dose-
response patterns and potential threshold effects.

However, several limitations warrant discussion. This study is
cross-sectional in design, which inherently limits its ability to
establish causal relationships between PIV and mortality
outcomes. While the observed associations provide valuable
insights, the lack of longitudinal data prevents us from fully
elucidating the temporal dynamics and causal pathways
underlying these relationships. This limitation is particularly
relevant given the multifactorial nature of inflammation and its
interactions with mortality risks over time. First and foremost, PIV
was measured only at baseline, which restricts our ability to capture
dynamic changes in inflammatory status during follow-up.
Inflammation is a highly variable and dynamic process, and the
absence of longitudinal PIV measurements may obscure important
temporal trends or fluctuations that could further clarify its
association with mortality. For instance, repeated measures of
PIV could reveal patterns of sustained inflammation or
fluctuations that are more predictive of adverse outcomes. Future
studies should consider incorporating multiple PIV assessments at
different time points to better evaluate its trajectory and time-
dependent predictive value. Second, baseline data on complications
and lifestyle factors were self-reported, which introduces the
potential for recall bias and inaccuracies in the data. This
limitation may have impacted the reliability of certain variables,
particularly those related to behavioral factors or self-perceived
health conditions. Future research should prioritize the use of
objective, validated measures and standardized data collection
protocols to minimize these biases and enhance the reliability of
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findings. Third, while we adjusted for a wide range of potential
confounders, there is always the possibility of residual confounding
from unmeasured variables. Factors such as genetic predisposition,
environmental exposures, access to healthcare, and specific
treatments during follow-up may have influenced our results.
Addressing these unmeasured variables in future research through
more comprehensive data collection and advanced statistical
techniques, such as causal inference models, will be critical.
Finally, the generalizability of our findings is limited by the
single-cohort design and population characteristics. The results
may not fully reflect the diverse inflammatory and mortality
profiles present across different regions or healthcare systems.

To address these limitations, future research should focus on
several key areas. First, well-designed longitudinal cohort studies
with repeated PIV measurements are warranted to capture the
dynamic changes in inflammatory status over time and to better
elucidate the temporal relationship between PIV fluctuations and
mortality outcomes. These studies should explore whether
persistent elevation or changes in PIV trajectories are more
predictive of adverse outcomes compared to single baseline
measurements. Second, further investigation is needed to
determine optimal PIV cut-off values for risk stratification in
diverse populations, considering differences in age, sex, ethnicity,
and comorbid conditions, to enhance its clinical applicability.
Third, mechanistic studies incorporating multi-omics approaches,
including transcriptomics, proteomics, and metabolomics, could
provide deeper insights into the biological pathways linking PTV
with systemic inflammation and disease progression. Fourth,
intervention-based studies, such as randomized controlled trials,
should assess whether modulating systemic inflammation to reduce
PIV levels can translate into improved clinical outcomes, thereby
establishing PIV not only as a prognostic biomarker but also as a
potential target for therapeutic interventions. Additionally, future
studies should integrate PIV with advanced analytical techniques,
including artificial intelligence and machine learning models, to
develop robust, individualized prediction tools that can dynamically
assess risk based on PIV trajectories and other clinical parameters.
Finally, large multi-center and international studies are essential to
validate the generalizability of PIV and to facilitate its integration
into global clinical practice guidelines.

Despite these limitations, our study highlights the significant
prognostic value of PIV as a biomarker for mortality risks. It
provides a robust foundation for future investigations into
inflammation-based risk stratification, paving the way for large-
scale, longitudinal, and multi-center studies to further elucidate the
clinical utility of PIV in predicting diverse mortality outcomes.

Conclusion

The PIV is a robust and versatile biomarker that integrates
inflammation and immune status, providing valuable insights into
disease progression, treatment response, and patient outcomes. Its
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prognostic utility has been demonstrated across various diseases,
including cancer, cardiovascular conditions, autoimmune disorders,
and infectious diseases. The individual contributions of neutrophils,
platelets, monocytes, and lymphocytes reflect the intricate dynamics
driving disease progression, underscoring the clinical relevance of PIV.
As research advances, PIV holds substantial promise for personalized
medicine, enabling clinicians to optimize treatment strategies,
improve patient outcomes, and enhance healthcare delivery.
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Objectives: The purpose of this study was to compare the proteomics of serum-
derived exosomes in juvenile gout (J-Gout), juvenile hyperuricemia (J-HUA) and
oligoarticular juvenile idiopathic arthritis (0JIA).

Methods: Serum-derived exosomes were isolated from patients using a gEV
column combined with the ExoQuick-TC kit. The proteomics of serum-derived
exosomes was analyzed by tandem mass tag (TMT)-labeled liquid
chromatography-mass spectrometry (LC-MS/MS) technology. Proteins
differentially expressed in J-Gout and the other two groups were identified.
This was followed by volcano plot, hierarchical cluster, Venn diagram, gene
ontology (GO), and Kyoto Encyclopedia of Genes and Genome (KEGG)
pathway analyses.

Results: A total of 838 credible proteins were identified in serum-derived
exosomes from the three groups. Eighty-eight differentially expressed proteins
(13 upregulated and 75 downregulated) were identified in J-Gout when
compared with J-HUA. One hundred twenty-one differentially expressed
proteins (20 upregulated and 101 downregulated) were identified in J-Gout
when compared with oJIA. A total of 166 differentially expressed proteins were
identified in J-Gout, compared with J-HUA and oJIA respectively. Bioinformatic
analysis indicated that the 166 differentially expressed proteins were significantly
involved in “immune response”, “Fc epsilon RI signaling pathway” and "B cell
receptor signaling pathway”. A total of 43 differentially expressed proteins were
identified in J-Gout, compared with J-HUA and oJIA simultaneously. Six proteins
were found highly expressed in J-Gout uniquely. ELISA results showed that
dipeptidyl peptidase 4 (DPP4) and heparin cofactor 2 (SERPIND1) were the
highest in J-Gout, which was consistent with the proteomic results.
Correlation analysis revealed that exosome-derived DPP4 and SERPIND1 were
positively correlated with C-reactive protein (CRP) and erythrocyte
sedimentation rate (ESR).
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Conclusion: The protein composition of serum-derived exosomes in J-Gout
was significantly differed from that in J-HUA and oJIA. DPP4 and SERPIND1 were
uniquely highly expressed in J-Gout. Some possible mechanisms regarding the
inflammatory response and coagulation complement system were proposed,
which may provide helpful diagnostic and therapeutic insights for J-Gout.

juvenile gout, exosomes, TMT, proteomics, biomarker

1 Introduction

Gout is an inflammatory form of arthritis that can be attributed to
monosodium urate (MSU) deposition resulting from hyperuricemia
(1). Recent data suggest that the incidence and prevalence of juvenile
gout (J-Gout) are increasing, and childhood obesity parallels the
increased incidence of gout at younger ages (2, 3). A survey based on
Chinese children and adolescents showed an overall prevalence of
hyperuricemia of 23.3% (4). At present, few studies exploring J-Gout
have been conducted, and many challenges still exist in J-Gout
diagnosis and treatment. A previous study showed that compared
with adult gout, J-Gout has a higher average level of serum uric acid
and faster progression of joint destruction (5). In addition, most J-Gout
patients meet the diagnostic criteria for juvenile idiopathic arthritis
(JTA), especially oligoarticular juvenile idiopathic arthritis (oJIA) (6).
Therefore, it is of vital significance to find biomarkers for J-Gout and
further explore its pathogenesis.

Exosomes are nanoscale membrane vesicles with a diameter of
30-150 nm that contain proteins and RNAs and are present in
serum, synovial fluid, urine, and milk. Exosomes are thought to be
an essential mediators of intercellular communication and carriers
of cargoes involved in cellular processes, including extracellular
matrix degradation, inflammation regulation, and antigen
presentation (7-9). Yoo identified that exosomal serum amyloid
A (SAA) and lymphatic endothelial hyaluronic acid receptor-1
(LYVE-1) were important in the rheumatoid arthritis (RA)
pathogenic process and could serve as novel biomarkers of
activity and remission (10). Ying screened and identified
differentially expressed proteins using proteomics and found that
the TBB4A protein may be involved in the pathogenesis of gout
(11). Li analyzed the protein profiles of synovial fluid-derived
exosomes from adult gout patients and proposed some potential
biomarkers (12). However, no study has been conducted examining
the proteomics of serum-derived exosomes in J-Gout.

In our study, serum-derived exosomes were isolated from J-
Gout, juvenile hyperuricemia (J-HUA) and oJIA patients.
Quantitative proteomics with tandem mass tag (TMT) labeling
combined with LC-MS/MS was used to explore differentially
expressed proteins. This study may provide clues for identifying
potential biomarkers and further exploring the molecular
mechanism of J-Gout.
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2 Materials and methods
2.1 Participants

Because J-Gout and J-HUA do not have official acronyms, we
customized the study subjects for the experiment. Gout and
hyperuricemia were diagnosed according to adult criteria, but all
subjects were aged <18 years.

In this study, a total of 6 J-Gout patients with acute attacks, 6 J-
HUA patients and 6 oJIA patients from October 2018 to August 2022
in our hospital were enrolled. The inclusion criteria were as follows: all
cases were aged <18 years. Gout was diagnosed in accordance with the
2015 American College of Rheumatology/European League Against
Rheumatism classification criteria for primary gout (13). The diagnosis
of HUA was consistent with serum uric acid (sUA) levels greater than
420 pumol/L for boys and 360 umol/L for girls, no history of acute
attack gout and no medical treatment (14). OJIA was diagnosed
according to the International League of Associations for
Rheumatology (ILAR) criteria (15). The serum was centrifuged, and
the supernatant was stored at —80°C. Samples were collected after
obtaining informed consent from all participants. This study was
approved by the Ethics Committee of the Guangdong Second
Provincial General Hospital (2019-QNJJ-17-02).

2.2 Isolation and identification of
exosomes

Serum-derived exosomes were isolated from patients using a
qEV column combined with the ExoQuick-TC kit. The morphology
of exosomes was observed by transmission electron microscopy
(TEM). The size and concentration of exosomes were measured by
high-sensitivity flow cytometry (HSFC) for nanoparticle analysis.
Western blotting was used to examine the levels of exosome protein
markers (TSG101 and CD81).

2.3 Tryptic digestion
Six samples in the same group were mixed pairwise into three

samples to be tested per group. Corresponding volumes of 25 mM
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dithiothreitol and 100 mM iodoacetamide were added. After
incubating away from light, acetone was added (6 times volume)
to precipitate the protein. After being left overnight, the precipitate
was collected by centrifugation at 8000 g for 10 min, and 200 mM
tetraecthylammonium bromide was added to bring the volume to
100 pl. The samples were digested with trypsin overnight at 37°C in
a 50:1 ratio (protein: enzyme), followed by lyophilization.

2.4 TMT labeling

The lyophilized samples were added to 100 mM
tetraethylammonium bromide, followed by the addition of TMT
pro reagent mixed with anhydrous acetonitrile. After leaving for 1 h,
5% hydroxylamine was added to react for 15 min. The labeled
peptide solutions were lyophilized.

2.5 Reversed-phase chromatography
separation

The samples were fractionated by reversed-phase 1100 HPLC
using an Agilent Zorbax Extend-C18 narrow diameter column
(2.1x150 mm, 5um, Agilent, USA). The detection wavelengths
were set to 210 nm and 280 nm. The flow rate was set to 300 pL/
min, mobile phase A (2% acetonitrile in HPLC water) and mobile
phase B (90% acetonitrile in HPLC water). Samples were collected
by gradient elution for 8-60 min, and the eluate was collected in
centrifuge tubes every minute. The centrifuge tubes were marked 1-
15, and samples were repeatedly collected in these tubes. The
separated samples were lyophilized for mass spectrometry analysis.

2.6 Chromatography and mass
spectrometry conditions

The samples were loaded onto the precolumn Acclaim
PepMapl100 (Thermo, USA), setting at a flow rate of 350 nL/min
and separated using an Acclaim PepMap RSLC (RP-C18, Thermo
Fisher, USA) separation column. Full MS scans were acquired in the
mass range of 350-1500 m/z with a mass resolution of 60,000, an
AGC target of 3e6 and a maximum injection time of 50 ms. MS/MS
spectra were obtained with a resolution of 45,000, an AGC target of
2e5 and a maximum injection time of 80 ms. All MS/MS spectra
were obtained in positive ion mode, and the dynamic exclusion time
was set to 30 s.

2.7 Database search

The resulting MS/MS data were processed using Proteome
Discoverer 2.4.1.15 (Thermo Fisher Scientific, USA). Trypsin was
specified as a cleavage enzyme allowing up to 2 missing cleavages.
The primary MS error range was 10 ppm, and the fragment ion
mass tolerance was 0.02 Da.
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2.8 Bioinformatics analysis

Differential proteins were screened according to the criteria of fold
change > 1.2 and p value < 0.05 and analyzed by volcano plot,
hierarchical clustering heatmap and Venn diagram. The functions of
the differentially expressed proteins were assessed by GO enrichment
analysis, which comprehensively describes the functions of genes and
products in organisms in terms of biological processes, cellular
components, and molecular functions. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) (http://www.genome.jp/kegg/ and
https://david.ncifcrf.gov/) was used to analyze the biological
regulatory pathways and functional roles of proteins with
significantly differential expression.

2.9 ELISA

Protein samples of serum-derived exosomes from 6 J-Gout, 6 J-
HUA and 6 oJIA patients were measured for the expression levels of
DPP4 and SERPINDI using ELISA kits (ZCIBIO-32912, ZCIBIO-
56060) according to the manufacturer’s instructions.

2.10 Statistical analysis

All statistical analyses were conducted using SPSS 23.0 or
GraphPad Prism 8 software. Continuous variables are described as
the mean + standard deviation (mean + SD) in the patient’s basic
information, and categorical variables are described as frequencies.
One-way ANOVA or nonparametric tests were used for continuous
variables, and differences between groups were assessed using
categorical variables and chi-square tests or Fisher’s exact probability
method. Bivariate correlation analysis was performed using Pearson
correlation analysis. A p value < 0.05 was accepted as
statistically significant.

3 Results

3.1 Clinical characteristics of the
participants

J-Gout patients were older than oJIA patients. J-Gout patients
had higher levels of white blood cell counts than J-HUA patients.
Hemoglobin levels were higher in J-Gout patients than in oJIA
patients. J-Gout patients had the highest sUA levels compared to
oJIA and J-HUA patients. All differences were statistically
significant (p < 0.05) (Table 1).

3.2 Isolation and identification of serum-
derived exosomes

Morphological analysis using TEM showed that exosomes were
round to oval vesicular structures with darker stained lipid bilayers and
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TABLE 1 Basic characteristics of the participants.

10.3389/fendo.2025.1460218

J-Gout (n=6) J-HUA (n=6) oJIA (n=6)

Age (years) 1433 £ 1.63 12.17 £ 3.97 6.00 + 3.95* 0.002
Sex (male/female) 6/0 5/1 2/4 0.027
WBC (1029/mL) 8.36 + 1.12 542 + 1.81* 10.30 + 2.60 0.004
NE# (10/9/mL) 4.84 £ 097 3.16 £ 1.32 5.83 + 1.80 0.024

PLT (10A9/mL) 307.67 +59.95 232.00 £ 69.15 386.83 + 68.68 0.006

HGB (g/L) 152.33 £ 6.15 140.00 + 14.54 124.67 + 8.57* 0.001

CRP (mg/L) 14.02 + 27.60 0.78 + 1.56 20.58 + 21.65 0.394

ESR (mm/h) 24.52 +25.03 528 £4.29 47.20 + 26.75 0.029

sUA (umol/L) 606.17 + 132.52 443 + 92.46* 273.50 + 36.23* <0.001

RF (IU/mL) 2.04 +2.81 4.2 +354 395+ 1.55 0.388

CCP (U/mL) 10.72 £ 3.03 18.27 +2.73 15.47 £ 12.76 0.492

*p < 0.05 vs. J-Gout group.

lighter stained low electron density material (Figure 1A). The HSFC
nanoparticle analysis indicated that the exosome diameters were 78.69
+ 2141 nm, and their concentration was 256 x 10'° particles/ml
(Figure 1B). Western blot results showed that CD81 and TSG101 were
significantly expressed (Figure 1C). The results indicated that the
isolated exosomes had further experimental feasibility.

3.3 Quality control of proteomics data

Principal component analysis (PCA) revealed differences between
samples from different dimensions, and the results showed that the
protein expression profiles of samples in the same group were basically
stable (Figure 2A). Corrplot analysis showed that samples from the
same group were strongly correlated (Figure 2B). Box and density plot
analyses of credible protein expression revealed small fluctuations
across samples and concentrations (Figures 2C, D). These results
indicated sample stability and reproducibility.

3.4 Screening and functional analysis of
differentially expressed proteins

A total of 838 credible proteins were identified in serum-derived
exosomes from the three groups. Eighty-eight differentially
expressed proteins were identified in J-Gout when compared with
J-HUA. One hundred twenty-one differentially expressed proteins
were identified in J-Gout when compared with oJIA. A total of 166
differentially expressed proteins were identified in J-Gout,
compared with J-HUA and oJIA respectively. A total of 43
differentially expressed proteins were identified in J-Gout,
compared with J-HUA and oJIA simultaneously. Six proteins
were found highly expressed in J-Gout uniquely. All screens were
based on criteria of log2 | fold change | = 1.2 and p < 0.05. The
Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://
www.genome.jp/kegg/ and https://david.ncifcrf.gov/) was used to
analyze the biological regulatory pathways and functional roles of
proteins with significantly differential expression.

C

FIGURE 1

Isolation and identification of serum-derived exosomes. (A) The morphology of exosomes was shown by transmission electron microscopy (TEM),
Scale bar=200 nm. (B) The size of exosomes was detected by high -sensitivity flow cytometry (HSFC) nanoparticle analysis. (C) The expression of

CD81 and TSG101 was detected by western blotting.
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Quality control of proteomics data. (A) PCA. (B) Corrplot analysis. (C) Box plot analysis. (D) Density map analysis.

3.4.1 Screening and functional analysis of
differentially expressed proteins in J-Gout vs. J-
HUA

Proteins that were differentially expressed in J-Gout and J-HUA
groups were identified according to the criteria of log2 | fold-change | >
1.2 and p < 0.05. The volcano plot results showed that compared with
the J]-HUA, 13 and 75 proteins were upregulated and downregulated in
J-Gout, respectively (Figure 3A). Upregulated proteins included histone
H1.10 (H1-10) and heparin cofactor 2 (SERPINDI1), and
downregulated proteins included immunoglobulin kappa variable 1-
17 (IGKV1-17) and immunoglobulin kappa variable 6-21 (IGKV6-21)
(Table 2). Hierarchical clustering analysis was performed to reveal the
dynamic profiles of differentially expressed proteins in the two groups
(Figure 3B). Bioinformatic analysis indicated that the differentially
expressed proteins were significantly involved in “immune response”,

» <

“Fc epsilon RI signaling pathway”, “B cell receptor signaling pathway”

and “neutrophil extracellular trap formation” (Figures 3C, D).
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3.4.2 Screening and functional analysis of
differentially expressed proteins in J-Gout vs.
oJIA

Proteins that were differentially expressed in J-Gout and oJIA
groups were identified according to the criteria of log2 | fold-change | >
1.2 and p < 0.05. The volcano plot results showed that compared with
the oJIA, 20 proteins were upregulated, while 101 were downregulated
in J-Gout (Figure 4A). Upregulated proteins included histone H1-10
and spondin-1 (SPON1), and downregulated proteins included
immunoglobulin lambda variable 3-25 (IGLV3-25) and
immunoglobulin lambda variable 3-1 (IGLV3-1) (Table 3).
Hierarchical clustering analysis was performed to reveal the dynamic
profiles of differentially expressed proteins in the two groups
(Figure 4B). Bioinformatic analysis indicated that the differentially
expressed proteins were significantly involved in “immune response”,

» «
>

“Fc epsilon RI signaling pathway”, “B cell receptor signaling pathway”

and “primary immunodeficiency” (Figures 4C, D).
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FIGURE 3
Screening and functional analysis of differentially expressed proteins in J-Gout vs. J-HUA. (A) Volcano plots. (B) Hierarchical clustering analysis. In
the color bar, red represents upregulated expression, and blue represents downregulated expression. (C) GO analysis. (D) KEGG pathway analysis.

(Figure 5B). Bioinformatic analysis indicated that the differentially
expressed proteins were significantly involved in “immune response”,
“Fc epsilon RI signaling pathway”, “B cell receptor signaling pathway”,
“NF-kappa B signaling pathway” and “primary immunodeficiency”
(Figures 5C, D).

3.4.3 Screening and functional analysis of
differentially expressed proteins in J-Gout vs. J-
HUA and J-Gout vs. oJIA

A total of 166 differentially expressed proteins were identified when
examining the combination of J-Gout vs. J-HUA and J-Gout vs. oJIA
according to the criteria of log2 | fold-change | > 1.2 and p < 0.05

(Figure 5A). Upregulated expression proteins included SPON1 and 3 4.4 Screening of differentially expressed

H1-10, and downregulated expression proteins included
immunoglobulin lambda variable 10-54 (IGLV10-54) and IGKV1-17
(Table 4). Hierarchical clustering analysis was performed to reveal the
dynamic profiles of differentially expressed proteins in the three groups
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proteins in the intersection between J-Gout vs.
J-HUA and J-Gout vs. oJIA

A total of 43 differentially expressed proteins were identified in
J-Gout based on the intersection of J-Gout vs. J]-HUA and J-Gout vs.
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TABLE 2 The differentially expressed proteins in J-Gout vs. J-HUA.

10.3389/fendo.2025.1460218

Accession number Gene name Description J-Gout/J-HUA FC P value
Q92522 HI1-10 Histone H1.10 2.788711474 0.038
P05546 SERPIND1 Heparin cofactor 2 2.545981773 0.004
Q9UPZ9 CILK1 Serine/threonine-protein kinase ICK 2.31308222 0.016
095497 VNN1 Pantetheinase 2.062615101 0.047
P01031 C5 Complement C5 1.733464956 0.003
P01599 IGKV1-17 Immunoglobulin kappa variable 1-17 0.339959225 0.007

A0A0C4DH24 IGKV6-21 Immunoglobulin kappa variable 6-21 0.386996904 0.001
A0A075B6K0 IGLV3-16 Immunoglobulin lambda variable 3-16 0.408347928 0.049
P12035 KRT3 Keratin, type II cytoskeletal 3 0.426857143 0.001
P16112 ACAN Aggrecan core protein 0.43933518 0.035

Gray represents upregulated proteins, and white represents downregulated proteins.

oJIA (Figure 6A). The cluster heatmap shows the most highly
expressed proteins as red and the proteins expressed in low levels
in J-Gout as blue (Figure 6B). With the criteria of > 2 unique
peptides, 6 proteins were found to be uniquely highly expressed in J-
Gout, including H1-10, CILK1, SERPIND1, pantetheinase (VNNI),
dipeptidyl peptidase 4 (DPP4), and proprotein convertase
subtilisin/kexin type 6 (PCSK6) (Table 5).

The above experimental results indicate that based on
proteomic analysis, we screened significant differentially expressed
proteins in juvenile gout.

3.5 Verification of DPP4 and SERPIND1
concentrations and correlation analysis
with clinical indicators

ELISA results showed that the concentrations of DPP4 in
serum-derived exosomes were 57.77 + 43.82 pg/ml, 3891 + 14.12
pg/ml, and 32.53 + 10.32 pg/ml in the J-Gout, ]-HUA and oJIA
groups, respectively (Figure 7A). The concentrations of serum-
derived exosomal SERPIND1 were 10.26 + 6.14 ng/ml, 8.21 + 2.36
ng/ml, and 6.70 £ 1.85 ng/ml in the J-Gout, J]-HUA and oJIA
groups, respectively (Figure 7B). Both protein concentrations were
highest in J-Gout and lowest in oJIA. Although the differences
observed were not statistically significant, they were consistent with
trends in proteomics.

The correlation between DPP4 and SERPINDI expression
levels and clinical indicators (CRP and ESR) was assessed. The
results indicated that the DPP4 and SERPINDI1 expression levels
were positively correlated with CRP and ESR in serum-derived
exosomes. The observed differences were statistically significant.
(Figure 8). The expression levels of DPP4 and SERPINDI did not
correlate with age, sex, white blood cell count, neutrophil count,
platelets, hemoglobin, serum uric acid level, RF and CCP. The
results further verified that the differentially expressed proteins we
selected were clinically significant.
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4 Discussion

Exosomes can transfer bioactive lipids, nucleic acids, and proteins,
to regulate gene expression and coordinate a broad spectrum of
biological processes. Exosomes may become biomarkers for disease
and potential candidates for disease therapy (16, 17). The advanced
analytical approach of combining proteomics and bioinformatics
analyses is currently used for discovering potential biomarkers for
disease diagnosis and treatment. Because serum-derived exosomes are
closely related to the pathogenesis of inflammation, there has been a
recent increase in proteomic studies of exosomes for different
rheumatic diseases (18, 19).

With changes in lifestyle, the proportion of J-Gout gradually
increases, and there is a tendency for a younger age of onset, which
can have a more significant impact on quality of life (20). The
discussion of risk factors and clinical features is inadequate, and
there are currently no guidelines for the management of J-Gout. JTA
is an acquired autoinflammatory disease characterized by
unexplained arthritis with onset before the age of 16 years, which
can also present clinically with redness, pain, and limited mobility
of the joints. The appearance of J-Gout is sometimes difficult to
distinguish from other forms of JIA (21). Exosomes are essential
mediators of intercellular communication and are involved in many
processes. In our study, we used TMT proteomics technology to
comprehensively analyze the protein composition of serum-derived
exosomes in J-Gout, J-HUA and oJIA patients, and used
bioinformatics to further explored the function of differentially
abundant proteins in J-Gout.

The results showed that 88 differentially expressed proteins (13
upregulated and 75 downregulated) were found in J-Gout exosomes
when compared with J-HUA exosomes. When compared with oJIA
exosomes, 121 differentially expressed proteins (20 upregulated and
101 downregulated) were found in J-Gout exosomes. To
comprehensively analyze the funcions of the differentially expressed
proteins in J-Gout, 166 differentially expressed proteins were screened
in J-Gout based on the combination of J-Gout vs. J-HUA and J-Gout
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FIGURE 4
Screening and functional analysis of differentially expressed proteins in J-Gout vs. oJIA. (A) Volcano plots. (B) Hierarchical clustering analysis. In the
color bar, red represents upregulated expression, and blue represents downregulated expression. (C) GO analysis. (D) KEGG pathway analysis.

vs. oJIA. The bioinformatics functional analysis of the differentially
expressed proteins indicated that they were mainly enriched in
“immune response”, “NF-kappa B signaling pathway”, “Fc epsilon RI
signaling pathway” and “B cell receptor signaling pathway”. Previous
studies revealed that macrophage phagocytosis of MSU is a key step in
the pathogenesis of gout. MSU phagocytosis triggers NF-xB
translocation to induce the expression and secretion of
proinflammatory cytokines, such as IL-8, TNF-o. and monocyte
chemotactic protein-1 (MCP-1), which initiates the inflammatory
response (22). By constructing murine models of gouty arthritis and
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observing joint swelling, synovial tissue edema, and inflammatory cell
infiltration in mice, Cheng found that PAL attenuated MSU-induced
gouty arthritis inflammation, indicating that Sirtl alleviates M1
macrophage polarization and inflammation in gouty arthritis by
inhibiting the MAPK/NF-kB/AP-1 pathway and activating the Nrf2/
HO-1 pathway. Thus, activating Sirtl may provide a new therapeutic
target for gouty arthritis (23). In addition to its involvement in IgE-
mediated antigen presentation, Fc € Rl also induces the transcription of
cytokine genes by activating multiple signaling pathways. Fc epsilon RI
signaling plays an important role in the pathogenesis of autoimmune
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TABLE 3 Differentially expressed proteins in J-Gout vs. oJIA.

10.3389/fendo.2025.1460218

Accession number Gene name Description J-Gout/oJIA FC P value

Q92522 HI1-10 Histone H1.10 7.694672131 0.009
QIHCB6 SPON1 Spondin-1 5.661495063 0.022
P07305 HI1-0 Histone H1.0 3.97469459 0.021
P28799 GRN Progranulin 3.231152993 0.037
P05546 SERPIND1 Heparin cofactor 2 3.071464268 0.002
P01717 IGLV3-25 Immunoglobulin lambda variable 3-25 0.126243958 0.004
P01715 IGLV3-1 Immunoglobulin lambda variable 3-1 0.14797546 0.010
AOAO0AOMS15 IGHV3-49 Immunoglobulin heavy variable 3-49 0.227100271 0.000
P01763 IGHV3-48 Immunoglobulin heavy variable 3-48 0.271468144 0.004
AO0A075B614 IGLV10-54 Immunoglobulin lambda variable 10-54 0.275268817 0.019

Gray represents upregulated proteins, and white represents downregulated proteins.

allergic diseases, involving the activation of mast cells and the release of
inflammatory mediators (24). NF-kappa B may be activated
downstream of Fc epsilon RI signaling and thus participate in
inflammatory responses. For example, mast cell activation may
promote cytokine production and exacerbate inflammation through
the NF-kappa B pathway. Fc epsilon RI-activated mast cells release
cytokines such as TNF-a, which may further activate the inflammatory
response through NF-kappa B and form a positive feedback loop. A
study detected 256 unique extrachromosomal circular DNA elements
(eccDNAs) in gout patients in the acute phase and found that these
eccDNA genes were highly associated with immune and inflammatory
responses, including the T-cell receptor, Fc € RI and JAK-STAT
signaling pathways (25). The hypothetical molecular mechanisms
proposed above may provide therapeutic insights for J-Gout.

The uniquely expressed proteins in J-Gout were further screened
based on the intersection of differentially expressed proteins in J-Gout
vs. J-HUA and J-Gout vs. oJIA. The results showed that 6 proteins were
uniquely highly expressed in J-Gout, of which SERPIND1 and DPP4
might be worthy of further study. ELISA results showed that the
concentrations of SERPIND1 and DPP4 proteins in serum exosomes
were highest in J-Gout and lowest in oJIA, which is consistent with the
trend observed in the proteomics results. SERPINDI is a thrombin
inhibitor that restrains thrombin activity by interacting with heparin
during the inflammatory response and affects the coagulation cascade.
SERPIND1 can be cleaved by neutrophil elastase to promote
neutrophil chemotaxis in acute inflammatory responses and also
promote the release of leukocyte chemokines inducing those
involved in angiogenesis. Guo’s study demonstrated that NF-kB
could regulate SERPIND1 through the PI3K/AKT signaling pathway,
thereby mediating cell migration, invasion, proliferation, apoptosis, and
cell cycle regulation (26). Previous studies have shown that the
pathogenesis of gout is closely related to the production of
inflammatory factors in the acute inflammatory response.
SERPINDI acts as an inhibitor of thrombin and may reduce the
release of inflammatory mediators by inhibiting thrombin. Thrombin
can activate protease-activated receptors (PARs), thereby promoting
the production of inflammatory factors, such as 1L-6 and IL-1f3, while
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inhibition of thrombin may reduce the levels of these inflammatory
factors and downregulate the expression of 1L-6 and IL-1P. In a gastric
mucosal injury study, downregulation of SERPINDI was associated
with a decrease in inflammatory cytokines IL-6 and IL-1B, while
expression of protective factors (eg, PGE2, SOD) was upregulated,
suggesting that it may act through dual mechanisms (coagulation
inhibition and anti-inflammation) (27). Alternatively, activation of the
inflammasome often involves the action of coagulation factors and
proteases. Thrombin activates the NLRP3 inflammasome, while
SERPINDI1 as a thrombin inhibitor may indirectly inhibit
inflammasome activity by blocking this process, thereby reducing the
release of pyroptosis-related factors (eg, caspase-1, IL-1B). DPP4 is
expressed in many types of immune cells, and increasing research has
focused on the potential role of DPP4 in autoimmune rheumatism.
Both gout and diabetes mellitus type 2 (T2DM) are associated with
HUA, and insulin resistance caused by HUA may be one of the causes
involved in the pathogenesis. Previous studies showed that using
antidiabetic agents reduced the risk of gout (28). Some novel
antidiabetic agents, such as dipeptidyl peptidase-4 inhibition
(DPP4I), reduced UA levels in patients with T2DM and had
additional benefits for gout (29). These results indicated that DPP4
expression is closely related to the pathogenesis of gout. Our study also
had an interesting finding that the DPP4 and SERPINDI1 expression
levels were positively correlated with CRP and ESR in serum-derived
exosomes. Gout initially manifests as acute inflammatory arthritis, the
activation of the NLRP3 inflammasome triggered by uric acid is
considered a key pathogenic mechanism in the acute inflammatory
response of gout, which leads to the production of proinflammatory
cytokines, including interleukin-1f (IL-1B) and IL-18 (30, 31). Kim
found that gout patients showed a higher expression of CXCL12 and
proinflammatory cytokines, including IL-1f and IL-18, than members
of the control group. Therefore, chemokine CXCL12 and its receptor
CXCR4 might be considered to be potent therapeutic targets in uric
acid-induced NLRP3 inflammasome activation in gout patients (32).
Previous studies clarified that pharmacological inhibition of NLRP3
inflammasome assembly and activation may also be a promising
approach for gouty arthritis treatment. Targeting NLRP3 through
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Screening and functional analysis of differentially expressed proteins in J-Gout vs. J-HUA and J-Gout vs. oJIA. (A) The number of differentially
expressed proteins (J-Gout vs. J-HUA, J-Gout vs. oJIA). (B) Hierarchical clustering analysis of the three groups. In the color bar, red represents
upregulated expression, and blue represents downregulated expression. (C) GO analysis. (D) KEGG pathway analysis.

potentially effective drugs such as natural products, novel compounds,
and non-coding RNAs (ncRNAs) for the treatment of mouse models of
MSU-induced gouty arthritis may be important for the treatment of
gouty arthritis (33). Therefore, SERPIND1 and DPP4 may participate
in the occurrence and development of J-Gout.
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There are some limitations in our study. Firstly, assessment of the
basic demographic data of the subjects revealed significant differences
in age and sex among the three groups. While the younger age of oJIA
patients than J-Gout patients is consistent with the clinical
characteristics of o]JIA having a younger age of onset, the sample size

frontiersin.org


https://doi.org/10.3389/fendo.2025.1460218
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Jietal.

TABLE 4 Differentially expressed proteins in J-Gout vs. J-HUA and J-Gout vs. oJIA.

10.3389/fendo.2025.1460218

Accession number Gene name Description J-Gout/J-HUA FC J-Gout/oJIA FC

Q9HCB6 SPON1 Spondin-1 2.626963351 5.661495063
Q92522 H1-10 Histone HI.10 2.788711474 7.694672131
P28799 GRN Progranulin 1.78803681 3.231152993
QIUPZ9 CILK1 Serine/threonine-protein kinase ICK 2.31308222 2.587675578
P05546 SERPIND1 Heparin cofactor 2 2.545981773 3.071464268
A0A075B614 IGLV10-54 Immunoglobulin lambda variable 10-54 0.456327986 0.275268817
P01599 IGKV1-17 Immunoglobulin kappa variable 1-17 0.339959225 0.403386755
A0A0C4DH24 IGKVe6-21 Immunoglobulin kappa variable 6-21 0.386996904 0.439859245
AO0AO0B4J1X5 IGHV3-74 Immunoglobulin heavy variable 3-74 0.617647059 0.378823529
Pl6112 ACAN Aggrecan core protein 0.43933518 0.418690602

Gray represents upregulated proteins, and white represents downregulated proteins.

A

J-Gout vs. J-HUA

FIGURE 6

Screening of differentially expressed proteins in the intersection between J-Gout vs. J-HUA and J-Gout vs.

J-Gout vs. oJIA

J-HUA-1
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Gout vs. J-HUA and J-Gout vs. oJIA. (B) Hierarchical clustering of the three groups.
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TABLE 5 Proteins uniquely highly expressed in J-Gout.

Protein name Abundance

J-HUA
H1-10 275.9 314 161.1 130.4 422 96.7 304 369 303
CILK1 2119 137.6 2216 83.1 89.2 74.6 633 543 103.1
SERPINDI 208.2 2359 170.5 79.6 63.6 982 60.4 60.6 79.1
VNN1 2009 114.1 133 62.6 69.4 852 496 52.8 555
DPP4 145.1 1182 107.6 87.9 85.4 79.1 54 585 587
PCSK6 137.4 137.8 128.2 99.4 80.8 106 110.2 1112 75
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was relatively small in our study. Secondly, because the study
population was children, on the one hand due to ethical restrictions,
and on the other hand, the small number of pediatric patients willing to
enter the study resulted in the lack of healthy control group data in this
study and the lack of female patients in the J-Gout group, although gout
was more common in boys than in girls, we should further expand the
sample size and conduct multicenter recruitment to obtain more
objective results. Thirdly, the function of uniquely highly expressed
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proteins should be verified in vivo and in vitro to explore the
significance of these proteins in greater depth.

In conclusion, the protein profiles of serum-derived exosomes
in J-Gout were significantly different from those in J-HUA and
oJIA. Some possible mechanisms were proposed. DPP4 and
SERPIND1 were uniquely highly expressed in J-Gout. The highly
expressed differential proteins in serum-derived exosomes are
closely related to their function, which may be of great value in

frontiersin.org


https://doi.org/10.3389/fendo.2025.1460218
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Jietal

identifying potential biomarkers and further exploring the
molecular mechanism of J-gout.
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Objectives: Variability in biomarkers is crucial for clinical decision-making in
individuals with type 2 diabetes mellitus (T2DM). The biological variation (BV) of
biomarkers associated with thyroid function, iron metabolism, and bone
metabolism may show population-specific differences. This study aims to
evaluate the biological variation of sixteen biomarkers in T2DM patients and
compare these with variations observed in a healthy population.

Methods: Twenty-four T2DM patients, aged 43 to 67 and in stable condition,
were enrolled. Blood samples were collected biweekly for three months. Analysis
of variance models were used to assess the BV, including within-subject BV (CV)),
between-subject BV (CVg), analytical variation, reference change value (RCV),
index of individuality (Il), the number of samples required for steady-state set
points (NHSP), and analytical performance specifications for all biomarkers.

Results: Females exhibited lower CV, estimates for thyroid-stimulating hormone,
parathyroid hormone, and phosphate compared to males. No significant
differences in CV, estimates were observed between T2DM patients and
healthy individuals across the study. However, the CVq estimates for cortisol
and iron were significantly lower in T2DM patients compared to the
healthy individuals.
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Conclusions: BV data is critical for the precise interpretation of serial biomarker
level changes in T2DM patients. It is deemed reasonable to use RCVs for four
bone metabolism markers and five thyroid biomarkers, derived from a healthy
population, as a reference for monitoring T2DM patients.

biological variation, type 2 diabetes mellitus, thyroid, iron, biomarker

Introduction

Type 2 Diabetes mellitus (T2DM) is a prevalent health issue that
has significantly grown over the past few decades, becoming a
significant challenge to public health worldwide (1). There are
strong associations between diabetes mellitus and numerous
concurrent health issues, such as osteoporosis, thyroid dysfunction,
and abnormalities in iron metabolism (2-4). Biomarkers can be used
for diagnosis, risk stratification, and management of complications in
patients with T2DM. Therefore, it is important to accurately interpret
variations in these biomarker results, which are influenced by
biological variation (BV) (5, 6).

Biomarker variation refers to the fluctuation of an analyte around
a homeostatic set point (HSP) and encompasses both individual and
analytical variations (7). While improvements in analytical
techniques and testing processes can reduce analytical variation,
individual variability is likely influenced by specific populations and
may differ across various epidemiological studies (8). Most studies on
BV focus on healthy populations, with few examining individuals
with T2DM. Previous studies have explored BV in conditions such as
kidney transplantation, chronic liver disease, and heart failure (6, 9,
10), revealing that BV data from healthy individuals often differs from
those in unhealthy populations. Consequently, our study aims to
investigate the BV of an expanded set of biomarkers in patients
with T2DM.

Biomarkers for thyroid function are essential in diagnosing and
managing thyroid-related disorders. T2DM can lead to a decrease in
thyroid-stimulating hormone (TSH) levels and impair the
transformation of thyroxine (T4) to triiodothyronine (T3) in the
peripheral tissues (11). There are individual variations in thyroid
hormones related to factors such as age, circadian rhythms, and
hypothyroidism (12-14), but there are no data on BV in patients
with T2DM. Similarly, patients with T2DM frequently experience
disturbances in bone and mineral metabolism (15). Common
measurands of bone metabolism include calcium (Ca), phosphate
(PHOS) and parathyroid hormone (PTH), and 25-hydroxyvitamin D
[25(OH)D]. Moreover, high iron is a risk factor for T2DM (16), and
biomarkers are used to assess iron homeostasis. We included four
common metrics, serum iron, transferrin saturation (TSAT),
unsaturated iron-binding capacity (UIBC), and total iron-binding
capacity (TIBC), and the variability of these metrics in patients with
T2DM was not known previously.
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We analysed BV data for sixteen serum/plasma biomarkers,
including four related to bone metabolism, four to iron metabolism,
five thyroid biomarkers, and three additional hormones in patients
with T2DM. These data were used to determine the reference change
value (RCV), the number of samples needed for steady-state set point
(NHSP), and the analytical performance specifications (APS).
Ultimately, we compared these results with previously published
data from healthy populations.

Materials and methods
Participants and samples

Patients with T2DM were enrolled in the study following an
eligibility assessment based on specific inclusion and exclusion
criteria. The inclusion criteria were as follows: First, male and
female participants aged 18 to 70 were eligible; secondly,
participants diagnosed with T2DM without complications for at
least three months, according to the American Diabetes Association
guidelines published in 2015; thirdly, participants needed to have
been on a stable diabetes medication regimen for at least 3 months
prior to enrolment; fourthly, participants had to be capable of
understanding the study requirements and providing written
informed consent. The exclusion criteria included: firstly,
individuals treated with insulin, vitamin D supplements, or
medications that affect thyroid function; secondly, participants
with severe, uncontrolled comorbid conditions within the last
three months; thirdly, participants with severe psychological
disorders that may interfere with their ability to comply with
study procedures; and fourthly, women who were pregnant,
breastfeeding, or planning to become pregnant during the study
period. This study received approval from the Institutional Ethical
Review Board of the West China Hospital of Sichuan University
(No. 20201079). Each participant voluntarily signed an informed
consent form after being informed about the content and purpose of
the study.

Fasting venous blood samples were collected (BD Vacutainer®,
New Jersey, USA) biweekly between 8:30 a.m. and 9:30 a.m., a total
of six times. Plasma tubes were centrifuged within 45 min at 3000 g
for 10 min at 4°C, while serum tubes were centrifuged at 22°C.
Serum and plasma were then stored at —80°C until analysis.
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Analytical methods

Quantitative determination of serum TSH, T3, free
triiodothyronine (FT3), T4, free thyroxine (FT4), cortisol (CORT),
insulin (INS), C-peptide (C-P), plasma intact PTH, and 25(OH)D was
performed using the Roche Cobas €601 (Roche, Basle, Switzerland)
with immunoassay electrochemiluminescence reagents and
calibrators. The assays for TSH, T3, T4, and CORT were conducted
utilising first-generation reagents, whereas FT3 and FT4 assays used
third-generation reagents. INS, C-P, and intact PTH tests employed
second-generation reagents. Serum PHOS, iron, Ca, and UIBC were
analysed using Roche Cobas 8000 (Roche, Basle, Switzerland). Total
iron-binding capacity (TIBC) is calculated as the sum of Serum Iron
and UIBC, and TSAT is determined by the ratio of serum iron to
TIBC. All samples were measured in duplicate in a single run.

Data analysis

To obtain analytical variation (CV,) and within-subject
biological variation (CV;) estimates, data were analysed using
standard ANOVA or CV-ANOVA. The CV-ANOVA method is
based on the CV transformation, which normalises the data for each
individual by dividing by the mean value of each individual (17).
The CVg estimates were calculated by a standard nested ANOVA
after identifying outliers between subjects with Reed’s criterion and
the Dixon-q test2 (18). Outliers from replicates and within-subject
were excluded using the Bartlett test and the Cochran test. The
Shapiro-Wilk test was used to analyse data normality, and log-
transformation was applied to non-normally distributed data. The
steady state of subjects was assessed by linear regression of six
pooled mean group sample concentrations for each biomarker (19).
Subjects were considered to be in a steady state when the 95%
confidence interval (CI) of the regression line’s slope included zero.
Mean values and BV estimates were calculated for the entire study
population and separately for women and men. The 95% CI for BV
estimates was calculated using Miller’s formula (20). Differences in
mean values and BV estimates between subgroups were considered
significant if the 95% CI did not overlap. The CV; and CVg values
for the entire study population were applied to APS using the
criteria: CV = 0.5CVy; B = 0.25 (CV® + CVH); total allowable
error (TE) = 1.65CV + B. The RCV, index of individuality (II), and
the NHSP were calculated for each measurand according to the
following formula:

RCV% = 100% X (exp(+ V2 X Z X /CVy12 + CVp 1,2) - 1)

CVap = [In(CV,2+ 1)

CVip = [In(CVE+1)>?

=+ CVIZ + CVAz/
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2
NHSP = (z % \/CVE + CV 2 /D)

The Z factor was set at 1.96, indicating a two-sided change and a
95% probability. The D values represented deviations of 10%, 15%,
and 20% from the true HSP (21).

For normally distributed data with equal variances, use mean +
SD and T-tests. Otherwise, use median and Kruskal-Wallis tests.

Results

Twenty-four patients diagnosed with T2DM (11 men and 13
women), aged 43-69 years, were included in this study. We
collected the medical and medication histories of each participant,
including metformin, glimepiride, miglitol, gliclazide, and acarbose.
All participants were non-smokers and non-alcohol drinkers. Of
the 24 participants, 20 completed all six collections, and four
completed four collections; the mean number of blood samples
per participant was 5.7. Baseline characteristics and the
concentrations of sixteen biomarkers for all participants, as well
as for the men and women subgroups, are summarised in Table 1.
All subjects showed no systematic changes in the concentrations of
these biomarkers during the follow-up, as confirmed by linear
regression (Supplementary Table S1). Reference intervals for each
measurand are summarised in Supplementary Table S1, and all
measurements fell within these defined ranges. Details about the
outliers are provided in Supplementary Table S2. The median and
95% CI of eight hormones for each individual, grouped by sex, are
shown in Supplementary Figure S1. The remaining eight
measurements (including four for bone metabolism and four for
iron metabolism biomarkers) are shown in Supplementary
Figure S2.

No statistically significant differences were observed in the
concentrations of TSH, C-P, PTH, 25(OH)D, Ca, iron, UIBC, and
TSAT between genders. However, significant intersexual disparities
were identified in the levels of FT3, FT4, T3, T4, CORT, INS, and
TIBC, with males exhibiting markedly higher levels than those
exhibited by females (P < 0.05). The only exception was the mean
serum concentration of PHOS, which was significantly elevated in
women compared to men (P < 0.05).

The results for CV,, CVy and CVg, along with their 95% Cls,
for sixteen biomarkers are displayed in Table 2. The BV
components of CV; and CVg based on healthy populations from
the European Federation of Clinical Chemistry and Laboratory
Medicine Biological Variation Database (EFLM BVD) are also
presented (22). The reliability of the CVy estimates was confirmed
by SDA/SDy ratios, according to the recommendations of Reraas
et al. (23), with all biomarkers demonstrating ratios below the
threshold of 1.0. According to the 95% CI, CV; estimates for TSH,
PTH, and PHOS calculated for females were lower than those
derived for males. For the entire study population, CORT and iron
CV estimates were significantly lower than those reported by the
EFLM BVD, whereas the overall CV; estimates were similar
between patients with T2DM and healthy individuals.
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TABLE 1 Baseline characteristics and concentrations of sixteen biomarkers for patients with T2DM, grouped by sex.

Sort All participants Males Females P value®
Number of participants 24 11 13 -
Total number of results 136 62 74 -
Total number of samples 272 124 148

Age, year 55 (7) 54 (15) 56 (11) 0.64
BMI 55 (12.5) 54.5 (10) 56.0 (13.8) 0.64
FPG, mmol/l 6.52 (2.67) 4.98 (1.05) 5.11 (0.91) 0.39
HbA1C, % 6.5 (1.7) 6.85 (2.43) 6.3 (1.0) 0.09
TSH, mIU/L 2.18 (2.03) 1.94 (1.82) 2.5(2.2) 0.32
FT3, pmol/l 4.41 + 0.46 4.69 + 0.49 418 £ 0.3 <0.001
FT4, pmol/l 159 + 1.84 16.45 + 1.65 15.45 + 1.88 0.01
T3, nmol/l 1.54 £ 0.23 1.6 £ 0.27 1.5+ 0.18 0.015
T4, nmol/l 93.93 (18.81) 96.03 (18.81) 90.8 (23.42) 0.005
CORT, nmol/l 287.88 +77.17 314.0 + 67.73 264.49 + 77.82 <0.001
INS, uU/ml 6.11 (3.6) 6.57 (3.73) 6.33 £ 2.7 0.02
C-P, nmol/l 0.63 + 0.15 (0.15) 0.65 + 0.13 (0.19) 0.62 +0.17 0.31
PTH, pmol/l 4.92 (1.02) 4.92 (2.03) 5.31 £ 1.56 0.31
25 (OH)D, nmol/l 62.29 (26.97) 63.75 (29.19) 61.89 (16.26) 0.89
Ca, mmol/l 2.35 £ 0.07 2.34 + 0.09 2.35+0.07 0.45
PHOS, mmol/l 1.16 £ 0.13 1.12 £ 0.21 1.17 £ 0.1 <0.001
ITron, umol/l 16.6 (5.24) 17.1 (5.07) 16.48 (6.01) 0.07
UIBC, umol/l 37.07 + 6.34 37.09 +7.83 35.64 + 6.42 0.38
TSAT, % 31.92 (8.96) 32.3 (9.09) 30.78 (10.13) 0.32
TIBC, umol/l 53.56 + 6.38 54.71 + 7.48 52.52 + 6.65 0.04

“The P value represents the comparison between males and females.

CI, confidence interval; FPG, Fasting Plasma Glucose; TSH, thyroid stimulating hormone; FT3, free triiodothyronine; FT4, free thyroxine; T3, triiodothyronine; T4, thyroxine; CORT, cortisol;
INS, insulin; C-P, c-peptide; PTH, parathyroid hormone; 25 (OH)D, 25-hydroxyvitamin D; Ca, calcium; PHOS, phosphorus; UIBC, unsaturated iron-binding capacity; TSAT, transferrin

saturation; TIBC, total iron-binding capacity.

Table 3 presents the RCV, II, and NHSP values for each
biomarker. The APS were derived from the CV; and CVg of
sixteen measurands for all participants. For INS, the NHSP could
be estimated with 95% probability using eight samples if the D
values were set at 15%. The II values for five thyroid hormones, INS,
C-P, 25(OH)D, and TIBC, were <0.6, whereas the II estimates for
iron, TSAT, and Ca were >1.4.

Discussion

Currently, BV data from healthy individuals are widely used in
clinical settings for many common measurands. To ensure the
reliability of these data, the EFLM Biovariation Working Group
published the BV Critical Appraisal Checklist (BIVAC) (24).
According to the study criteria for BV data, this study provides
the first-ever BV estimates and RCV for sixteen biomarkers in
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patients with T2DM, assessing whether differences between
measurements and HSP are clinically relevant.

Thyroid hormones are crucial endocrine regulators influenced
by multiple factors, including genetics, environment, disease status,
and circadian rhythm (25). To date, BV studies on thyroid
hormones have predominantly focused on healthy populations,
with only a few examining patients with hypothyroidism or
pregnant women (26, 27). Moreover, the sampling interval must
be considered when studying BV in thyroid hormone (28). There
are long-term BV studies of thyroid hormones and short-term BV
studies that lasted one year and 24 h, respectively (14, 29). In this
study, the CVy and CVg estimates for TSH, FT3, and FT4 in
patients with T2DM are similar to those reported in the
European Biological Variation Study, which is also a mid-term
study (30). Meanwhile, patients with T2DM exhibited comparable
CVy, CVg, and RCV estimates to those from another study focusing
on the elderly population (31). In clinical practice, using the TSH
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TABLE 2 Biological variation estimates of CV,, CV|, and CVg, with 95% Cls, for sixteen biomarkers and compared against the EFLM BV database.

Biomarker

CVa, %
(95% ClI)

Cv, %
(95% ClI)

CVq, %
(95% CI)

SDA/SD,

CV,, % (95% Cl)
EFLM BV database

CVea, % (95% Cl)
EFLM BV database

TSH, mIU/L All articipants 1.6 (1.4-1.7) 18.2 (16.0-21.1) 42.9 (33.4-60.2) 0.1 17.9 (14.7-29.3) 36.1 (23.9-48.4)
male 21.9 (18.2-27.4) 41.7 (29.2-73.2)
female 15.2 (12.9-18.6) 44.7 (32.0-73.7)

FT3, pmol/l All participants 1.2 (1.1-1.3) 4.5 (4.0-5.2) 9.5 (7.4-13.3) 0.3 5.1 (4.7-7.9) 8.1 (8.0-22.5)
male 4.3 (3.6-5.3) 9.1 (6.3-15.9)
female 438 (4.1-5.8) 5.6 (4.0-9.3)

FT4, pmol/l All participants 2.6 (2.4-2.8) 5.3 (4.6-6.1) 10.4 (8.1-14.6) 0.5 4.8 (4.6-9.5) 8.0 (7.5-12.1)
male 5.4 (4.5-6.7) 8.6 (6.0-15.1)
female 5.1 (4.4-6.3) 11.3 (8.1-18.7)

T3, nmol/l All participants 3.9 (3.6-4.3) 6.2 (5.4-7.1) 13.6 (10.6-19.1) 0.6 6.2 (5.1-10.4) 11.1 (4.4-20.4)
male 62 (5.2-7.7) 16.3 (11.4-28.6)
female 62 (5.2-7.5) 102 (7.3-16.9)

T4, nmol/l All participants | 1.7 (1.5-1.8) | 5.8 (5.1-6.7) 151 (117-21.1) 03 6.4 (4.9-7.4) 11.8 (11.0-12.2)
male 5.2 (4.4-6.6) 15.0 (10.5-26.4)
female 6.3 (5.3-7.6) 14.5 (10.4-24.0)

CORT, nmol/l All participants 2.4 (2.2-2.6) 19.4 (17.2-22.6) 18.8 (14.6-26.6) 0.1 16.1 (15.5-26.6) 33.6 (28.8-53.1)
male 16.0 (13.5-20.2)  15.1 (10.5-26.4)
female 229 (19.3-28.1) | 19.3 (13.7-32.7)

INS, uU/ml All participants | 3.4 (3.1-37) | 207 (183-23.9) | 36.5 (283-51.1) 0.2 25.4 (21.1-37.1) 33.5 (31.5-81.8)
male 19.1 (16.0-23.8) 36.1 (25.2-63.4)
female 22.5 (19.1-27.5) 37.5 (26.9-61.9)

C-P, nmol/l All participants 1.1 (1.0-1.2) 11.4 (10.1-13.3) 21.5 (16.6-30.4) 0.1 - -
male 12.0 (10.0-15.2) 16.7 (11.5-30.6)
female 109 (92-133) 252 (18.0-41.5)

PTH, pmol/l All participants | 2.5 (23-2.8) 184 (163-212) | 26.3 (20.5-36.9) 0.1 14.7 (11.3-25.9) 28.9 (21.8-43.3)
male 21.9 (18.4-27.2) 27.4 (19.2-48.2)
female 15.2 (12.9-18.6) 26.1 (18.7-43.1)

25 (OH)D, All participants 2.7 (2.5-3.0) 6.9 (6.1-8.0) 23.7 (18.3-33.6) 0.4 6.8 (1.8-12.8) 30.1 (23.0-64.3)

mol/l
male 6.3 (5.2-7.8) 23.6 (16.5-41.5)
female 7.4 (6.2-9.0) 24.8 (17.6-42.1)

Ca, mmol/l All participants | 0.8 (0.8-0.9) 2.1 (1.9-2.5) 1.6 (1.2-2.2) 0.4 1.8 (0.8-2.3) 2.7 (1.6-4.1)
male 2.0 (1.7-2.5) 1.3 (0.9-2.2)
female 2.3 (1.9-2.7) 1.9 (1.4-3.1)

PHOS, mmol/l All participants 1.2 (1.2-1.4) 7.8 (6.9-9.0) 8.4 (6.5-11.8) 0.2 7.7 (5.7-8.3) 10.7 (7.9-17.4)
male 10.1 (8.5-12.6) 8.8 (6.2-15.5)
female 5.6 (4.8-6.9) 6.4 (4.6-10.6)

Iron, umol/l All participants | 2.2 (2.0-2.4) 19.1 (16.9-22.0) 9.7 (7.5-13.6) 0.1 27.6 (19.8-30.3) 26.7 (25.1-32.3)
male 17.6 (14.8-21.9) 9.8 (6.9-17.2)
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TABLE 2 Continued
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Biomarker CVa % (G\V/74 CVa, % SDA/SD,  CV,, % (95% Cl) CVa, % (95% Cl)
(95% CI) | (95% ClI) (95% Cl) EFLM BV database = EFLM BV database
female 20.5 (17.4-249) | 9.1 (6.5-15.0)
UIBC, umol/l | All participants | 1.3 (1.2-14) | 10.1 (89-11.6) 147 (11.4-20.8) 0.1 - -
male 9.3 (7.8-11.7) 14.9 (10.2-27.2)
female 106 (9.1-13.1) | 15.1 (10.8-24.9)
TSAT, % All participants | 1.4 (1.3-15) | 183 (162-21.2) | 120 (93-170) 0.1 - -
male 171 (142-214) | 13.0 (9.0-23.8)
female 18.8 (16.0-23.0) | 11.2 (8.0-18.4)
TIBC, umol/l | All participants | 14 (13-1.5) | 6.1 (5.4-7.1) 110 (85-156) 02 - -
male 46 (3.9-5.8) 9.9 (6.8-18.0)
female 6.8 (5.7-8.2) 11.1 (8.0-18.3)

CV 4, analytical variation; within-subject biological variation (CVy), between-subject biological variation (CVg); CI, confidence interval; SD/SDy, ratio between analytical (SD,) and within-
subject variance (SDy); TSH, thyroid stimulating hormone; FT3, free triiodothyronine; FT4, free thyroxine; T3, triiodothyronine; T4, thyroxine; CORT, cortisol; INS, insulin; C-P, c-peptide; PTH,
parathyroid hormone; 25 (OH)D, 25-hydroxyvitamin D; Ca, calcium; PHOS, phosphorus; UIBC, unsaturated iron-binding capacity; TSAT, transferrin saturation; TIBC, total iron-
binding capacity.

RCV estimates (65.8%) from this study, an individual’s serum TSH
concentration, initially measured at 2.0 mIU/L, could naturally rise

indicating high individuality; similar findings were reported in a
meta-analysis of BV in thyroid-related measures (32).

to 3.3 mIU/L without any pathological cause, ascribed to the As another important endocrine hormone, CORT exhibits a
combined effects of biological and analytical variability. All five = more pronounced circadian rhythm than that of thyroid hormones

analytes used to assess thyroid function showed low II values (<0.6),  and is affected by multiple factors, including season, disease, and sex

TABLE 3 Analytical performance specification and NHSP for sixteen biomarkers based on biological variation estimates.

NHSP APS derived from present study

Biomarker
RCV, % (Decrease; Increase) I, % 10% Imprecision, % B, % TE, %

TSH, mIU/L -39.7; 65.8 042 13 6 3 9.11 11.66 26.69
FT3, pmol/l -12.1; 13.8 0.49 1 1 1 226 263 6.36
FT4, pmol/l -14.9; 17.6 0.56 1 1 1 2.63 291 7.24
T3, nmol/l -18.3; 223 053 2 1 1 3.08 3.74 8.81
T4, nmol/l -15.3; 18.0 0.4 1 1 1 2.88 4.03 8.78
CORT, nmol/l -41.8;71.8 1.04 15 7 4 9.72 6.76 228
INS, uU/ml -44.1; 78.74 0.58 17 8 4 10.37 10.49 27.6
C-P, nmol/l -27.1537.3 0.53 5 2 1 571 6.08 15.49
PTH, pmol/l -40.2; 67.1 071 13 6 3 921 8.03 2322
25(0H)D, nmol/l -18.4; 22.6 031 2 1 1 343 6.17 11.83
Ca, mmol/l -6.1; 6.5 143 1 1 1 1.07 0.67 243
PHOS, mmol/l -19.6; 24.5 0.94 2 1 1 3.92 2.87 9.34
Tron, umol/l -41.2; 70.3 1.98 14 6 4 9.57 5.37 21.16
UIBC, umol/l -24.5; 324 0.69 4 2 1 5.04 4.46 12.76
TSAT, % -39.8; 66.2 1.53 13 6 3 9.17 5.48 20.61
TIBC, umol/l -15.9; 18.9 057 2 1 1 3.06 3.15 8.2

RCYV, reference change value; NHSP, number of samples required to homeostatic set point; APS: analytical performance specification; TSH, thyroid stimulating hormone; FT3, free
triiodothyronine; FT4, free thyroxine; T3, triiodothyronine; T4, thyroxine; CORT, cortisol; INS, insulin; C-P, c-peptide; PTH, parathyroid hormone; 25(OH)D, 25-hydroxyvitamin D; Ca,
calcium; PHOS, phosphorus; UIBC, unsaturated iron-binding capacity; TSAT, transferrin saturation; TIBC, total iron-binding capacity.
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(33). Compared to the EuBIVAS BV estimates for morning serum
CORT in healthy populations, patients with T2DM showed higher
CV. However, similar CVg values were observed in subgroups of
men and women older than 50 years (34). Unlike other measurands,
INS and C-P are integral to the pathology of T2DM patients, where
insufficient INS secretion or INS resistance can lead to the
development of the disease. Unfortunately, no BV meta-analysis
results for C-peptide were available in the EFLM BVD. Dittadi R
et al. (35) provided estimates of CVg and CV; for serum C-peptide
in healthy individuals, which were higher than those found in this
study; however, their data lacked corresponding confidence
intervals for both CVg and CVy. The EuBIVAS reported a higher
CV; estimate than what was observed in our study (36), a
discrepancy that may be attributed to differences in health status
among the study populations.

Parathyroid hormone and vitamin D are crucial regulators of Ca
and PHOS and are widely used in diagnosing and treating bone
metabolism disorders (37). This study analysed total 25(OH)D and
intact PTH levels in plasma. Total 25(OH)D primarily comprises 25-
hydroxyvitamin D; [25(OH)D;], with its active form being 1,25-
hydroxyvitamin D [1,25(0OH),D]. The plasma concentration of 25
(OH)D varied up to 6-7 times among participants and was affected by
factors such as diet, season, and genetics, and it does not remain
constant over time (38). Consequently, Cavalier E et al. suggested that
any APS derived from BV estimates may not be suitable for this
parameter (39). However, in this study, the patients were in a stable
state, and the CV; and CV; did not exhibit any significant differences
compared to those in healthy individuals. The fluctuation in 25(OH)D
concentration also affects PTH secretion, thereby influencing calcium
and phosphorus homeostasis (38). Similar to 25(OH)D, PTH exists in
multiple forms. Second-generation PTH assays measure not only the
full-length, biologically active PTH 1-84 but also large C-terminal
PTH fragments, which tend to accumulate in patients with chronic
kidney disease. Corte Z and Venta R (40) assessed the BV estimates of
PTH in haemodialysis patients and healthy individuals using the same
analytical method employed in our study. Our CV; estimates for PTH
were higher than those reported for healthy subjects in their study, as
indicated by the mostly non-overlapping 95% CI of CVy. However, BV
estimates for PTH, Ca, and PHOS in this study were consistent with
the meta-analysis results reported by EFLM BVD. A high II for Ca,
exceeding 1.4, suggests a low degree of individual variation, implying
that population-based reference intervals are expected to have good
diagnostic sensitivity.

Here, we present the BV estimates for four markers used in the
diagnosis of anaemia and iron metabolism. To date, the EFLM BV
database includes fifteen studies on BV data for iron assays, with CV;
values ranging from 1.3 to 38.4%. This variation is largely attributed
to differences in study duration. Iron overload or deficiency can lead
to metabolic disorders (41), making it crucial to evaluate BV values
for iron metabolic markers in such conditions. Unfortunately, only
two studies have reported BV data for TSAT and TIBC. The CV;
estimates for TSAT were 25.9% and 38.2% (8, 42), which were higher
than the 18.3% observed in patients with T2DM. This indicates a
need for more studies to meet clinical requirements for interpreting
iron metabolism biomarkers.
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Overall, the BV data obtained from patients with T2DM in this
study contribute to enriching the BV database, which is still
under development. The BV data are essential for accurately
interpreting changes in serially detected biomarker levels in
patients with T2DM. The index of individuality (> 1.4) for Ca,
iron, and TSAT indicates that the reference intervals are likely
to exhibit good diagnostic sensitivity. The RCV, derived from
BV data, is considered an optimal approach for monitoring
patients with chronic conditions (43). Our findings show that BV
data for these four bone metabolism analytes and five thyroid
biomarkers in T2DM patients are similar to those in healthy
individuals. This finding supports the rationale for applying
RCVs developed using BV data from healthy individuals to
patients with T2DM who are in a stable condition. It is worth
noting that CV in this study was derived from repeated samples.
Laboratories should estimate RCVs based on their specific
conditions. Furthermore, a more precise analysis of BV is needed,
as hormonal analytes are influenced by rhythms and seasons. This
study mainly focused on patients over 50 years old, with only three
patients between 40 and 50 years of age, highlighting a gap in BV
assessment for younger patients. Future research should address
these aspects.
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Background: The glucose potassium ratio (GPR) is emerging as a biomarker for
predicting clinical outcomes in various conditions. However, its value in sepsis
patients admitted to the intensive care unit (ICU) remains unclear. Prior studies have
shown conflicting results, with some indicating GPR's potential as an early warning
indicator of metabolic decompensation in septic patients, while others found no
significant association. The current study addresses these inconsistencies by
conducting the first large-scale, systematic validation of GPR in ICU sepsis patients.

Methods: This retrospective cohort study used patient records from the MIMIC-IV
database to examine outcomes in sepsis patients. The primary outcomes were
hospital and ICU mortality at 30, 60, and 90 days. The correlation between GPR and
these outcomes was evaluated using Kaplan-Meier survival analysis, Cox regression
models, and restricted cubic spline (RCS) regression analysis. Sensitivity analyses,
including Propensity Score Matching (PSM) and E-value Quantification and
Subgroup analyses, were performed to assess the robustness of the findings.

Results: The study included 9,108 patients with sepsis. Kaplan-Meier survival
curves indicated progressively worsening survival probabilities from Q1 to Q4 for
both hospital and ICU mortality across all time points. Cox analysis revealed that
patients in the highest GPR quartile (Q4) had a significantly increased risk of
mortality compared to those in the lowest quartile (Q1). A nonlinear relationship
between GPR and mortality was identified, with a critical threshold at GPR=30.
Subgroup analysis showed that the effect size and direction were consistent
across different subgroups. Sensitivity analyses, including E-value quantification
and propensity score matching, supported the robustness of our findings.

Conclusion: This study demonstrates that higher GPR levels strongly predict
increased short- and long-term mortality risk in ICU-admitted sepsis patients.
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The composite nature of GPR, reflecting both hyperglycemia and hypokalemia,
offers incremental prognostic value beyond single metabolic parameter. A critical
threshold effect was observed at GPR=30, where risk substantially increased. This
consistent association across patient subgroups positions GPR as a promising
biomarker for identifying high-risk sepsis patients, warranting prospective validation.

intensive care unit, MIMIC, mortality, sepsis, glucose potassium ratio, long term,

Cox regression

1 Background

Sepsis, a life-threatening organ dysfunction stemming from a
dysregulated host response to infection, poses a significant
challenge in intensive care units (ICUs) across the globe. Despite
advancements in medical care, it remains one of the leading causes
of morbidity and mortality, impacting millions annually and
resulting in substantial healthcare expenditures (1). The
pathophysiology of sepsis is intricate, characterized by a cascade
of inflammatory responses that lead to widespread cellular and
metabolic abnormalities. Notably, alterations in glucose and
potassium homeostasis are critical metabolic disruptions that
affect cellular function and systemic homeostasis. Hyperglycemia
is frequently observed in septic patients, often attributed to stress-
induced hypermetabolism and insulin resistance (2). This metabolic
state intensifies oxidative stress and inflammation, further
compromising immune function and organ performance.
Conversely, potassium imbalances, such as hypokalemia, are
common due to factors like increased renal excretion and
intracellular shifts caused by insulin therapy or catecholamine
surges (3). These electrolyte disturbances can lead to severe
complications, including cardiac arrhythmias and muscle
weakness (4), thereby worsening the clinical trajectory of sepsis.
In recent years, there has been a pressing need to identify reliable
prognostic markers to enhance the prediction of sepsis outcomes.
While markers like procalcitonin, C-reactive protein, and lactate
have shown promise (5), they primarily reflect inflammatory or

Abbreviations: ICU, Intensive Care Units; TG, Triglyceride; HDL-C, High-
Density Lipoprotein Cholesterol; BMI, Body Mass Index; MIMIC-IV, Medical
Information Mart for Intensive Care IV; SOFA, Sequential Organ Failure
Assessment; RCS, Restricted Cubic Splines; COPD, Chronic Obstructive
Pulmonary Disease; CKD, Chronic Kidney Disease; HR, Hazard Risk; CI,
Confidence Interval; HF, Heart Failure; HT, Hypertension; DM2, Diabetes
Mellitus type 2; OASIS, Oxford Acute Severity of Illness Score; SAPS II,
Simplified Acute Physiology Score II; WBC, White Blood Cell; Rbc, Red Blood
Cell; RDW, Red blood cell Distribution Width. AKI, Acute Kidney Injury; CRRT,
Continuous Renal Replacement Therapy; HLP, Hyperlipidemia; TB,
Tuberculosis; ARF, acute renal failure; MT, Malignant Tumor; MI,

Myocardial Infarction.
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perfusion-related aspects. Consequently, the identification of novel
prognostic biomarkers that capture the complex metabolic
imbalances in sepsis remains a crucial research priority.

The serum glucose-potassium ratio (GPR) has emerged as a
promising biomarker that reflects the dynamic interplay between
glucose and potassium homeostasis, which is often disrupted in
various pathological states. Its clinical utility has been recognized in
conditions such as diabetic ketoacidosis (6), myocardial infarction
(7), and heart failure (8), where it offers a composite view of
metabolic derangements that singular parameters fail to capture.
In these conditions, an altered GPR has been associated with
increased morbidity and mortality, suggesting its potential as a
prognostic tool. For instance, studies in myocardial infarction
patients have demonstrated a correlation between a high GPR
and adverse cardiovascular events, indicating that this biomarker
could enhance risk stratification and guide treatment decisions (9,
10). However, research on the application of GPR in sepsis remains
limited and has yielded mixed results. Some studies suggest that a
high GPR correlates with increased mortality rates and worsened
clinical outcomes in sepsis patients, positing that the ratio could
serve as an early warning of metabolic decompensation (11, 12). In
contrast, a study by Giiler et al. (13) found no significant predictive
relationship between the glucose-to-potassium ratio and mortality
risk in sepsis or septic shock patients admitted to the emergency
intensive care unit. These discrepancies may stem from variations
in study design, patient populations, or analytical methods.
Furthermore, the lack of standardized thresholds and guidelines
for interpreting GPR in sepsis complicates its clinical application.
Thus, the current understanding of GPR’s relevance to sepsis is
limited, underscoring the need for comprehensive evaluations and
validation in larger, well-characterized cohorts to establish its
potential as a reliable prognostic indicator.

In this context, the MIMIC-IV database serves as a rich
repository of de-identified health-related data from thousands of
ICU admissions (14), offering a unique opportunity to
comprehensively investigate the clinical parameters of sepsis. The
database is publicly accessible via the MIMIC-IV platform and
contains extensive datasets, including vital signs, laboratory results,
and clinical outcomes, which facilitate large-scale retrospective
analyses (15). This study aims to explore the association between
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the serum glucose-potassium ratio and short- and long-term all-
cause mortality in ICU-admitted sepsis patients using the MIMIC-
IV database. By examining this relationship, we aim to enhance the
understanding of metabolic markers in sepsis and potentially
identify a novel prognostic indicator that can improve risk
stratification and inform treatment strategies for critically
ill patients.

2 Methods
2.1 Data source and study design

We conducted a retrospective cohort study utilizing data from
the MIMIC-IV database (version 2.2), which is developed and
maintained by the Massachusetts Institute of Technology (MIT)
and Beth Israel Deaconess Medical Center (BIDMC) (15). This
database comprises two in-house systems: a customized hospital-
wide electronic health record (EHR) and an ICU-specific clinical
information system, encompassing data from 2008 to 2024. One of
the authors (JQ L) completed the necessary authentication process
and passed the Collaborative Institutional Training Initiative
examination (authentication number 60691748) to access the
database. Relevant variables were extracted, and patient data were
de-identified to ensure privacy. Given the study’s retrospective
nature and the anonymized patient data, the Human Research
Ethics Committee of Ningbo No.2 Hospital waived the requirement
for informed consent.

2.2 Participants

The study encompassed all sepsis patients from the MIMIC-IV
v2.2 database. Sepsis was defined according to the Sepsis 3.0 criteria,
which were jointly established by the American Society for Critical
Care Medicine (SCCM) and the European Society for Critical Care
Medicine (ESICM). Patient data were extracted using PostgreSQL.
The inclusion criteria were sepsis patients aged 18 and above who
were admitted to the ICU for the first time. The following exclusion
criteria were applied: (1) patients under 18 years old; (2) ICU stay
shorter than 48 hours; (3) patients with recurrent sepsis (only their
initial ICU admission was considered); and (4) insufficient data,
such as missing records for serum glucose and potassium (Figure 1).

2.3 Research procedures and definitions

Data extraction from MIMIC-IV was performed using Structured
Query Language (SQL) via Navicat Premium. The extracted data
encompassed a comprehensive set of variables, including patient
demographics (age, height, weight, gender, insurance, race, marital
status), medical history (hypertension, type 2 diabetes, heart failure,
myocardial infarction, malignant tumors, chronic renal failure,
cirrhosis, hepatitis, tuberculosis, pneumonia, chronic obstructive
pulmonary disease, hyperlipidemia, etc.), and initial laboratory test
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results (white blood cell count, red blood cell count, neutrophil count,
lymphocyte count, platelet count, hemoglobin, mean corpuscular
volume, hematocrit, albumin, globulin, total protein, sodium,
potassium, calcium, chloride, blood glucose, GPR, anion gap, blood
pH, lactate, free calcium, thrombin time, fibrinogen, partial
thromboplastin time, international normalized ratio, bilirubin, ALT,
AST, urea nitrogen, creatinine, troponin, urine protein, creatine kinase,
creatine kinase isoenzyme, N-terminal B-type natriuretic peptide
precursor). Special treatments (mechanical ventilation and CRRT),
clinical scores (SOFA score, APACHE III score, SAPS II, Oasis score,
Charlson Comorbidity Index, SIRS score, GCS score), and clinical
outcomes (length of hospital stay, in-hospital mortality, ICU stay, ICU
mortality) were also recorded. The 30-day, 60-day, and 90-day
mortality rates were calculated. During data cleaning, predictors with
more than 30% missing data were excluded. The serum glucose-
potassium ratio (GPR) was calculated using the first recorded serum
glucose and potassium measurements obtained within 24 hours of ICU
admission, based on the formula: GPR = serum glucose (mg/dL)/serum
potassium (mmol/L) (16).

2.4 Outcomes and measures

The primary outcomes of this study were hospital mortality and
ICU mortality at 30-day, 60-day and 90-day.

2.5 Statistical analysis

Continuous variables were presented as mean + standard
deviation or median (interquartile range), while categorical
variables were reported as frequency and percentage. Data
conforming to a normal distribution were analyzed through the t-
test or analysis of variance (ANOVA).

For data not following a normal distribution, the Mann-
Whitney U test or Kruskal-Wallis test was employed (17, 18).
Kaplan-Meier survival analysis was utilized to assess the incidence
of endpoint events across different GPR levels, with differences
evaluated through the log-rank test. Kaplan-Meier curves offer a
visual comparison of survival differences between groups or
conditions and do not require prior assumptions about data
distribution (19), so it was relatively flexible in use.

The Cox proportional hazards model was utilized to calculate
the hazard ratio (HR) and 95% confidence interval (CI) between the
GPR and the endpoint. This model, taking survival outcome and
survival time as dependent variables, enabled simultaneous analysis
of multiple factors affecting survival and analysis of the data with
censored survival time, and did not necessitate the estimation of the
survival distribution type (20). The GPR was analyzed both as a
continuous variable and by quartiles. Cox proportional hazards
models were constructed in three sequential tiers: Model 1
(univariate); Model 2 (adjusted for demographics: age, sex, height,
weight, insurance, marital status, race); Model 3 (further adjusted
for laboratory/clinical covariates: WBC, RBC, RDW, albumin,
chloride, ALT, AST, comorbidities [hypertension, diabetes, heart
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failure, etc.], treatments [CRRT], and severity scores [SOFA, SAPS
1L, etc.]).

Restricted cubic splines (RCS) used 4 knots placed at the 5th,
35th, 65th, and 95th percentiles. Nonlinearity was tested via the
significance of the second spline term. The GPR was incorporated
as either a continuous or ordered variable into the model, with the
first quartile of the GPR serving as the reference group. The quartile
level was used for the calculation of the P-value of the trend. RCS
was a non-parametric flexible fitting method that models survival
curves by transforming survival times into piecewise functions at
individual nodes (21) and can accommodate various types of
survival time distributions without excessive assumptions.

Subgroup analyses (22) were conducted to explore potential
differences across various subgroups based on age (< 70 years and >
70 years), sex, BMI (<27.4 kg/m?, 27.4-31.2 kg/m’®, 231.2 kg/m?),
age, sex, BMI, hypertension, type 2 diabetes, heart failure, CKD,
stroke, AKI, CRRT, and mechanical ventilation, to evaluate the
consistency of the GPR’s prognostic value for the primary
outcomes. Cox models were also adopted in subgroup analyses to
adjust for all variables in the patient’s baseline information.

Sensitivity analyses included: (1) E-values to quantify unmeasured
confounding. To evaluate the potential impact of unmeasured
confounding on the association between GPR and mortality
outcomes, we also calculated E-values using the formula: E-value =
RR + V(RR*(RR-1)), where RR is the hazard ratio (HR) derived from
Cox regression models. This approach helped assess the robustness of
our findings against unmeasured confounding,; (2) Propensity score
matching (PSM) (22)). To further assess the robustness of our findings
and address potential confounding factors, we conducted a propensity
score matching (PSM) analysis. This method helps to reduce selection
bias by balancing the distribution of observed covariates between the
exposure groups (high GPR group and low GPR group). We defined
the high GPR group as patients with GPR above the mean value and
the low GPR group as patients with GPR below the mean value. The
nearest-neighbor matching method was used to match each patient in
the high GPR group with two patients in the low GPR group (1:2
matching), with a caliper width of 0.2 standard errors. Categorical
variables were converted into dummy variables for the analysis. For
example, marital status was categorized as divorced (1) versus others
(0), married (1) versus others (0), and so on. The matching process
aimed to create a more balanced comparison group by controlling for
key variables such as age, sex, and SOFA score, which are known to
influence outcomes in sepsis patients. In the PSM analysis, the balance
assessment focuses on comparing the distribution of covariates
between the treatment (high GPR) and control (low GPR) groups.
The goal of balance assessment is to ensure that these groups are
comparable in terms of key covariates, which is crucial for reducing
selection bias and enhancing the validity of the study. It is important to
note that different outcome variables do not influence the results of
balance assessment, as the assessment is solely concerned with the
distribution of covariates. Thus, our selection of covariates for balance
assessment is based on their potential confounding effects on the
relationship between GPR and hospital mortality. This approach
ensures that the matched groups are balanced in terms of key
covariates, providing a solid foundation for the subsequent analysis
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of the association between GPR and hospital mortality. After matching,
we repeated the Cox regression analysis to assess the association
between GPR and hospital mortality. The primary outcome was the
all-cause mortality at 30-day, 60-day, and 90-day. The balance of
covariates before and after matching was assessed using standardized
bias and t-tests. A standardized bias of less than 10% and a p-value
greater than 0.05 for the t-tests indicated successful matching.
Additionally, a common support test was performed to ensure that
the propensity scores of the treatment and control groups overlapped
sufficiently, minimizing potential biases.

Data processing and analysis were carried out via R version 4.3.0,
along with Zstats v1.0 (www.zstats.net), with statistical significance
set at P<0.05 for two-tailed tests. The primary analyses utilized the
following packages: Data management and transformation were
conducted using dplyr and tidyr. Survival analyses including
Kaplan-Meier curves, log-rank tests (via survdiff()), and
univariate/multivariate Cox proportional hazards regression (via
coxph()) were implemented with the survival package. Nonlinear
relationships were assessed through RCS using the rms package,
with knots placement and trend significance testing performed via
res() and anova() functions. Subgroup analyses were streamlined
using purrr for iterative modeling and broom for result
standardization. E-value analysis was also conducted in R,
utilizing packages survival for Cox regression and EValue for E-
value calculation. The PSM was performed using the MatchlIt
package in R, which allows for various matching algorithms,
including nearest neighbor, optimal, and full matching.
Visualizations were generated with ggplot2 and enhanced using
survminer for survival plots. For missing values in the data, the
multiple imputation method of the random forest was used to
interpolate the missing value data (through the R package “mice”).
Features with missing values exceeding 50% were removed
before interpolation.

3 Results

Among the adult patients in the MIMIC-IV database, a total of
22,517 subjects met the eligibility criteria. From the database, 148
prognostic factors were initially extracted. Following data cleaning,
80 predictors with over 30% missing data were excluded. In the end,
68 forecast factors were included in the model.

3.1 Characteristics of included patients

A total of 9,108 people were included in the study, of which
2,272 (24.95%) were in GPR quantile 1 (Q1) group (GPR < 6.67),
2,282 (25.05%) people were in quantile 2 group (6.67 < GPR<
25.71), 2,277 people were in quantile 3 group (25.71 < GPR <
40.81), and 2,277 people in quantile 4 group, accounting for 25.00%
(GPR > 40.81). IQR is 15.09. The average GPR of all patients was
35.55 + 16.49. Upon stratification into these four categories, the
distribution of each variable across the groups was analyzed. All
baseline data are presented in Table 1 and Supplementary Table 1.
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TABLE 1 Summary of characteristics that are statistically different of the study population.

Variables Vel e Cr e € Statistic
(n =9,108) (n =2,272) (n = 2,282) (n = 2,277) (n = 2,277)

Characteristics
Age (year) 71.61 + 14.73 72.07 + 14.94 71.52 + 14.98 71.95 + 14.52 70.91 + 14.45 F=2.91 0.033
Weight (kg) 79.16 + 23.62 77.69 + 23.65 77.85 + 23.39 78.96 + 22.97 82.15 + 24.17 F=17.45 <0.001
Gender (n(%)) %1’=13.82 0.003

F 4038 (44.33) 944 (41.55) 993 (43.51) 1046 (45.94) 1055 (46.33)

M 5070 (55.67) 1328 (58.45) 1289 (56.49) 1231 (54.06) 1222 (53.67)
Marital Status, n(%) x*=51.12 <0.001

Divorced 644 (7.07) 165 (7.26) 163 (7.14) 168 (7.38) 148 (6.50)

Married 3801 (41.73) 944 (41.55) 960 (42.07) 937 (41.15) 960 (42.16)

NA 1017 (11.17) 200 (8.80) 229 (10.04) 264 (11.59) 324 (14.23)

Single 2127 (23.35) 573 (25.22) 564 (24.72) 497 (21.83) 493 (21.65)

Widowed 1519 (16.68) 390 (17.17) 366 (16.04) 411 (18.05) 352 (15.46)
Laboratory parameters
WBC (x10°/L) 13.76 + 12.36 13.37 + 13.52 13.08 + 11.54 13.72 + 9.73 14.88 + 14.11 F=9.27 <0.001
RBC (x10'%/L) 3.42 +0.70 3.32 +0.68 3.38 + 0.66 3.46 + 0.71 3.51 + 0.73 F=35.03 <0.001
Hemoglobin (g/dL) 10.23 + 1.97 9.93 + 1.90 10.15 + 1.86 10.36 + 2.01 1047 + 2.07 F=34.01 <0.001
RDW (%) 16.00 + 2.51 1648 + 2.63 15.96 + 2.47 15.88 + 2.50 15.67 + 2.36 F=43.44 <0.001
Hematocrit (%) 31.29 + 592 30.60 + 5.83 30.95 + 5.52 31.60 + 6.01 32,02 + 6.19 F=26.51 <0.001
Albumin (g/L) 2.91 + 0.65 2.86 + 0.65 2.89 + 0.64 2.96 + 0.67 2.93 + 0.65 F=4.76 0.003
Sodium (mmol/L) 138.56 + 5.76 137.62 + 5.44 138.56 + 5.55 138.81 + 5.43 139.24 + 6.44 F=32.59 <0.001
Potassium (mmol/L) 4.26 + 0.64 4.60 + 0.68 4.25 +0.58 4.14 +0.57 4.06 + 0.59 F=344.80 <0.001
Chlorine (mmol/L) 104.06 + 7.03 103.48 + 6.87 104.42 + 6.73 104.20 + 6.74 104.12 + 7.69 F=7.51 <0.001
Glucose (mmol/L) 148.62 + 64.05 96.47 + 18.25 12239 + 17.48 148.66 + 23.13 226.90 + 75.54 F=4205.85 <0.001
Anion gap (mmol/L) 15.73 + 4.61 15.99 + 4.95 14.97 + 4.21 1533 + 4.21 16.65 + 4.85 F=60.36 <0.001
pH 7.35 + 0.09 7.34 + 0.09 7.36 + 0.08 7.36 + 0.08 7.35 4 0.10 F=32.84 <0.001
PCO, (mmHg) 41.76 + 11.39 42.69 + 12.88 41.85 + 10.96 41,51 + 11.13 41.13 + 10.57 F=5.78 <0.001
PO, (mmHg) 118.76 + 71.09 113.39 + 72.25 122.64 + 73.70 121.03 + 69.82 117.69 + 68.65 F=5.45 <0.001
Free calcium (mmol/L) 1.10 + 0.11 111 +0.11 1.11 +0.10 1.10 + 0.10 1.10 + 0.11 F=3.67 0.012
PT (s) 1831 + 10.24 19.64 + 11.10 17.67 + 8.72 17.64 + 9.14 1831 + 11.56 F=17.03 <0.001
Fibrinogen (mg/dL) 31032 + 187.88 | 287.49 +173.05 = 291.86+171.25 = 33599 +201.95 | 330.48 + 201.03 F=11.33 <0.001
PPT (s) 40.89 + 20.28 40.87 + 17.61 39.63 + 18.68 40.39 + 20.54 42.65 + 23.60 F=8.20 <0.001
INR 1.68 % 0.99 1.82 + 1.12 1.62 + 0.86 1.63 + 0.97 1.66 + 1.00 F=18.18 <0.001
Total bilirubin (mg/dL) 2.79 + 5.88 3.67 +6.79 2.78 + 5.87 2.84 + 6.08 1.92 + 4.47 F=22.47 <0.001
Direct bilirubin (mg/dL) 424 +573 5.05 + 6.18 433 +5.84 4.09 + 5.52 3.29 +5.12 F=2.88 0.035
Indirect bilirubin (mg/dL) 2.22 +2.85 2.65 + 3.45 2.45 +2.83 1.85 +2.32 1.86 + 2.46 F=3.36 0.019
ALT (U/L) 167.94 + 596.01 186.59 + 784.00 134.50 + 479.30 140.58 + 452.44 | 205.54 + 597.57 F=5.00 0.002
AST (U/L) 302.91 + 1065.00 = 349.66 + 123543 | 25335 +858.19 = 234.05+ 758.68 | 366.35 + 1273.72 F=5.79 <0.001
Urea nitrogen (mmol/L) 3533 + 25.42 39.73 + 27.33 32.31 + 24.14 32.67 + 23.03 36.64 + 26.23 F=44.41 <0.001

(Continued)
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Variables m '=I'09t’a1108) T =02’1272) Statistic
Laboratory parameters
Creatinine (mg/dL) 1.77 £ 1.60 2.17 £ 1.96 1.57 £ 1.39 1.61 +1.47 1.74 £ 1.42 F=70.06 <0.001
LDH (U/L) 715.76 + 1616.90 828.65 + 2105.51 633.76 + 1211.17 563.17 + 1040.05 829.50 + 1828.93 F=7.34 <0.001
CKMB (U/L) 21.15 £ 52.72 14.24 + 34.27 17.83 + 48.56 21.76 + 51.27 28.24 + 65.76 F=12.94 <0.001
Troponint (ug/L) 0.75 + 2.38 0.39 + 1.15 0.61 +1.71 0.71 + 2.06 1.14 + 343 F=16.66 <0.001
NT-proBIP (o) simey | s | suses | simeom | simen | P2 | 0
Treatment
CRRT (n(%)) x2=18.04 <0.001
No 8297 (91.10) 2026 (89.17) 2112 (92.55) 2091 (91.83) 2068 (90.82)
Yes 811 (8.90) 246 (10.83) 170 (7.45) 186 (8.17) 209 (9.18)
Ventilation (hours) 101.88 + 145.10 91.36 + 144.60 99.46 + 141.63 108.83 + 152.51 107.59 + 140.66 F=5.94 <0.001
Comorbidity
Hypertension (n(%)) %*=41.33 <0.001
No 5615 (61.65) 1526 (67.17) 1394 (61.09) 1350 (59.29) 1345 (59.07)
Yes 3493 (38.35) 746 (32.83) 888 (38.91) 927 (40.71) 932 (40.93)
"(Fgl([.())/:)f diabetes mellitus 1=640.05 <0.001
No 6235 (68.46) 1760 (77.46) 1787 (78.31) 1599 (70.22) 1089 (47.83)
Yes 2873 (31.54) 512 (22.54) 495 (21.69) 678 (29.78) 1188 (52.17)
Myocardial infarct (n(%)) %*=50.89 <0.001
No 8397 (92.19) 2139 (94.15) 2130 (93.34) 2104 (92.40) 2024 (88.89)
Yes 711 (7.81) 133 (5.85) 152 (6.66) 173 (7.60) 253 (11.11)
Malignant tumor (n(%)) %*=35.32 <0.001
No 7061 (77.53) 1719 (75.66) 1720 (75.37) 1758 (77.21) 1864 (81.86)
Yes 2047 (22.47) 553 (24.34) 562 (24.63) 519 (22.79) 413 (18.14)
((;}zl;))r;ic kidney diseases 1=17.68 <0.001
No 6884 (75.58) 1663 (73.20) 1776 (77.83) 1753 (76.99) 1692 (74.31)
Yes 2224 (24.42) 609 (26.80) 506 (22.17) 524 (23.01) 585 (25.69)
Acute renal failure (n(%)) X*=27.54 <0.001
No 4374 (48.02) 1011 (44.50) 1188 (52.06) 1106 (48.57) 1069 (46.95)
Yes 4734 (51.98) 1261 (55.50) 1094 (47.94) 1171 (51.43) 1208 (53.05)
Cirrhosis (n(%)) x*=42.28 <0.001
No 7998 (87.81) 1934 (85.12) 1979 (86.72) 2009 (88.23) 2076 (91.17)
Yes 1110 (12.19) 338 (14.88) 303 (13.28) 268 (11.77) 201 (8.83)
Stroke (n(%)) %*=25.50 <0.001
No 8138 (89.35) 2068 (91.02) 2054 (90.01) 2043 (89.72) 1973 (86.65)
Yes 970 (10.65) 204 (8.98) 228 (9.99) 234 (10.28) 304 (13.35)
(Continued)
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Variables Uit e € € &y Statistic
(n=9108) (n=2272) (n = 2,282) (n = 2,277) (n = 2,277)

Comorbidity
Hyperlipidemia, (n(%)) %*=37.19 <0.001

No 6215 (68.24) 1628 (71.65) 1572 (68.89) 1570 (68.95) 1445 (63.46)

Yes 2893 (31.76) 644 (28.35) 710 (31.11) 707 (31.05) 832 (36.54)
2&‘;;““8" injury stage X?=34.38 <0.001

1 1403 (18.94) 356 (19.63) 347 (18.89) 353 (18.76) 347 (18.51)

2 3087 (41.67) 666 (36.71) 835 (45.45) 810 (43.04) 776 (41.39)

3 2918 (39.39) 792 (43.66) 655 (35.66) 719 (38.20) 752 (40.11)
Scoring systems
SOFA score (score) 6.77 + 3.90 7.15 + 4.08 6.23 + 3.65 6.52 + 3.74 7.18 £ 4.02 F=33.60 <0.001
APSIII score (score) 58.48 + 23.59 60.89 + 24.31 53.75 + 21.65 56.23 +21.93 63.08 + 25.13 F=76.14 <0.001
SAPSII score (score) 45.83 + 14.75 47.50 + 15.57 43.74 + 13.71 4494 + 14.03 47.14 + 15.28 F=34.07 <0.001
OASIS, score (score) 36.09 + 8.90 36.05 + 8.95 35.07 + 8.57 3591 + 8.70 3732 £9.24 F=24.98 <0.001
GCS score (score) 13.06 + 3.18 13.12 + 3.08 13.23 £2.90 13.07 £ 3.15 12.84 £ 3.53 F=6.07 <0.001
Charlson score (score) 6.53 +2.81 6.69 + 2.81 6.42 +2.76 6.42 +2.79 6.59 + 2.87 F=5.23 <0.001
SIRS score (score) %*=110.42 <0.001

0 60 (0.66) 18 (0.79) 19 (0.83) 13 (0.57) 10 (0.44)

1 637 (6.99) 188 (8.27) 187 (8.19) 145 (6.37) 117 (5.14)

2 2302 (25.27) 655 (28.83) 629 (27.56) 549 (24.11) 469 (20.60)

3 3837 (42.13) 916 (40.32) 939 (41.15) 993 (43.61) 989 (43.43)

4 2272 (24.95) 495 (21.79) 508 (22.26) 577 (25.34) 692 (30.39)

Continuous variables are expressed as the median and interquartile range. Counting data are presented as numbers and percentages. The medical condition was defined based on the ICD-9 code.
WBC, white blood cell; RBC, red blood cell; RDW, red blood cell distribution width; PCO,, partial pressure of carbon dioxide; PO,, partial pressure of oxygen; LD, Lactate Dehydrogenase; PT,
prothrombin time; PTT, partial thromboplastin time; INR, international normalized ratio; ALT, alanine aminotransferase; AST, aspartate aminotransferas; CKMB, creatine kinase-MB; BCK,
blood ketone; NT-proBNP, N-terminal pro-brain natriuretic peptide; CRRT, continuous renal replacement therapy; COPD, chronic obstructive pulmonary disease; OASIS, oxford acute severity
of illness score; SASPII, simplified acute physiology score II; SOFA, sequential organ failure assessment; CNS, central nervous system; GCS, Glasgow Coma Scale; SIRS, Systemic Inflammatory

Response Syndrome; F, ANOVA; x> Chi-square test; SD, standard deviation.
Bold red font indicates p-values with statistical significance.

Patients in Q1 were older and had lower body weight than those
in the other groups, and there were differences in sex and marital
status among the four groups. WBC, RBC, platelet, hemoglobin,
hematocrit, albumin, sodium, glucose, anion gap, fibrinogen, PPT,
ALT, CK, CKMB were also higher in Q4 group than in Q1 group,
but RDW, potassium, hematocrit and bilirubin were lower than Q1
group. There was no significant difference in height, insurance,
languages, CRRT days, ventilation, COPD, heart failure, hepatitis,
tuberculosis and pneumonia (P>0.05) (Table 1).

3.2 Kaplan-Meier survival curve analysis

Kaplan-Meier curves (Figure 2) demonstrated worsening
survival probabilities from Q1 to Q4 for both hospital and ICU
mortality at 30-day, 60-day, and 90-day intervals (log-rank test, all
P < 0.001). Specifically, a total of 9,108 people were included in the
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study, of which 2,272 (24.95%) were in GPR quantile 1 (Q1) group
(GPR <£6.67), 2,282 (25.05%) people were in quantile 2 group (6.67
< GPR< 25.71), 2,277 people were in quantile 3 group (25.71 < GPR
< 40.81), and 2,277 people in quantile 4 group, accounting for
25.00% (GPR > 40.81).

3.3 Cox regression models for all-cause
mortality (in hospital and ICU)

In the Cox regression analysis, a higher GPR was positively
correlated with increased mortality rates in both the ICU and
hospital settings among critically ill patients with sepsis. When
the GPR was analyzed as a continuous variable, it was
independently associated with a higher risk of hospital mortality
both at 30-day, 60-day and 90-day (All P < 0.05). Patients in Q4 had
a 15-20% higher risk of mortality compared to Q1 across all time
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FIGURE 1

Selection of the study population from the MIMIC-IV database.

points. At 60-day, when categorized into quartiles, Model 1 revealed
that the risk of hospital mortality for Q4 were 19% higher than for
Q1 (HR 1.19 [95% CI 1.08 to 1.31], P < 0.001), Model 2 revealed
that the risk of hospital mortality for Q4 were 18% higher than for
QI (HR 1.18 [95% CI 1.03 to 1.35], P < 0.001). At 90-day, when
categorized into quartiles, Model 1 revealed that the risk of hospital
mortality for Q4 were 20% higher than for Q1 (HR 1.20 [95% CI
1.09 to 1.32], P < 0.001), Model 2 revealed that the risk of hospital
mortality for Q4 were 15% higher than for Q1 (HR 1.15 [95% CI
1.01 to 1.32], P = 0.037). The differences in Model 3 results
compared to Models 1 and 2 are likely due to the additional
adjustment for confounding variables such as WBC, RBC, RDW,
albumin, chloride, ALT, etc.

For ICU mortality, the GPR, when used as a continuous variable,
was significantly associated with an elevated risk of ICU death in
Models 1, 2 and 3 (All P < 0.001). Furthermore, when the GPR was
categorized into quartiles, at 30-day, Model 1 demonstrated that the
risk of ICU mortality for Q4 was 1.13 times that of Q1 (HR 1.13 [95%
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CI 1.01 to 1.26], P < 0.001). At 60-day, Model 1 demonstrated that the
risk of ICU mortality for Q4 was 1.23 times that of Q1 (HR 1.23 [95%
CI 1.10 to 1.37], P < 0.001), Model 2 demonstrated that the risk of ICU
mortality for Q4 was 1.21 times that of Q1 (HR 1.04 [95% CI 1.01 to
1.41], P = 0.015) (Table 2).

3.4 RCS regression models for all-cause
mortality (in hospital and ICU)

We subsequently employed the RCS regression models to elucidate
the risk and discovered a nonlinear association between the GPR and
mortality. Figures 3 and 4 illustrate the results of the univariate and
multivariate analyses regarding the relationship between the GPR and
in-hospital, In-ICU mortality in three time points, respectively.

Figures 3A, B present the findings of the univariate and
multivariate analyses concerning the association between the GPR
and hospital mortality on 30-day, respectively. Before adjusting for
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Kaplan-Meier survival curve of cumulative survival rate during hospitalization and ICU for groups. (A): Kaplan-Meier survival curve of cumulative

survival rate during hospitalization for groups at 30-day. (B): Kaplan-Meier survival curve of cumulative survival rate during ICU for groups at 30-day.
(C) Kaplan-Meier survival curve of cumulative survival rate during hospitalization for groups at 60-day. (D) Kaplan-Meier survival curve of cumulative
survival rate during ICU for groups at 60-day. (E) Kaplan-Meier survival curve of cumulative survival rate during hospitalization for groups at 90-day.
(F) Kaplan-Meier survival curve of cumulative survival rate during ICU for groups at 90-day. X-axis: Time (Days); Y-axis: Survival Probability. Log-rank

test, all P < 0.001. Q1: dark blue; Q2: red; Q3: green; Q4: light blue.

30-day in-hospital mortality, the p-value for the overall effect was <
0.001, and the p-value for the nonlinear effect was also < 0.001.
Following adjustment, all p-values were less than 0.05. Similarly,
nonlinear associations were observed for 60-day (Figures 3C, D)
and 90-day (Figures 3E, F) in-hospital mortality, both before and
after adjustment for relevant factors.

For ICU mortality, on 30-day mortality (Figures 4A, B), the
unadjusted p value for the overall effect was less than 0.001, the p
value for the nonlinear effect was less than 0.001, and all adjusted p
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values were greater than 0.05. The unadjusted p value was less than
0.001 for the overall effect and less than 0.001 for the nonlinear
effect on 60-day mortality (Figures 4C, D). The adjusted p value was
0.007 for the overall effect and 0.004 for the nonlinear effect. Finally,
on 90-day mortality (Figures 4E, F), the unadjusted p value was less
than 0.001 for the overall effect and less than 0.001 for the nonlinear
effect. After adjustment, the p value of overall effect was 0.014, and
the p value of nonlinear effect was 0.01. Figures 3 and 4 demonstrate
that the inflection point in both multifactorial models is about 30.
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TABLE 2 The association between GPR groups and in-hospital and ICU mortality at 30-day, 60-day and 90-day.

Exposure

Model 1
HR (95% Cl)

Model 2

HR (95% CI)

10.3389/fendo.2025.1555082

Model 3

HR (95% CI)

In-hospital mortality

At 30-day
GPR as continuous 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) 0.012 1.01 (1.01 ~ 1.01) 0.012
Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Q2 0.73 (0.65 ~ 0.81) <0.001 0.79 (0.68 ~ 0.91) 0.002 0.87 (0.70 ~ 1.08) 0.200
Q3 0.82 (0.74 ~ 0.91) <0.001 0.81 (0.70 ~ 0.93) 0.004 0.80 (0.64 ~ 0.99) 0.042
Q4 1.05 (0.95 ~ 1.15) 0.370 0.99 (0.86 ~ 1.13) 0.838 0.99 (0.80 ~ 1.22) 0.916
At 60-day
GPR as continuous 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) 0.012
Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Q2 0.81 (0.73 ~ 0.90) <0.001 0.92 (0.80 ~ 1.07) 0.270 0.91 (0.74 ~ 1.13) 0.397
Q3 0.94 (0.85 ~ 1.04) 0.214 0.98 (0.85 ~ 1.13) 0.795 0.92 (0.75 ~ 1.13) 0.433
Q4 1.19 (1.08 ~ 1.31) <0.001 1.18 (1.03 ~ 1.35) 0.015 1.14 (0.93 ~ 1.41) 0.202
At 90-day
GPR as continuous 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) 0.012
Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Q2 0.81 (0.73 ~ 0.90) <0.001 0.90 (0.78 ~ 1.03) 0.135 0.87 (0.70 ~ 1.07) 0.173
Q3 0.93 (0.85 ~ 1.03) 0.182 0.96 (0.83 ~ 1.10) 0.523 0.91 (0.74 ~ 1.12) 0.355
Q4 1.20 (1.09 ~ 1.32) <0.001 1.15 (1.01 ~ 1.32) 0.037 1.10 (0.90 ~ 1.35) 0.351
ICU mortality
At 30-day
GPR as continuous 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) <0.001
Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Q2 0.72 (0.63 ~ 0.81) <0.001 0.81 (0.69 ~ 0.96) 0.017 0.73 (0.65 ~ 0.81) <0.001
Q3 0.87 (0.78 ~ 0.98) 0.024 0.85 (0.72 ~ 1.00) 0.052 0.82 (0.74 ~ 0.91) <0.001
Q4 1.13 (1.01 ~ 1.26) 0.027 1.07 (0.91 ~ 1.24) 0.425 1.05 (0.95 ~ 1.15) 0.370
At 60-day
GPR as continuous 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) 0.012
Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Q2 0.76 (0.67 ~ 0.86) <0.001 0.89 (0.76 ~ 1.06) 0.190 0.73 (0.65 ~ 0.81) <0.001
Q3 0.93 (0.83 ~ 1.05) 0.255 0.96 (0.82 ~ 1.13) 0.618 0.82 (0.74 ~ 0.91) <0.001
Q4 1.23 (1.10 ~ 1.37) <0.001 1.21 (1.04 ~ 1.41) 0.015 1.05 (0.95 ~ 1.15) 0.370
At 90-day
GPR as continuous 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) <0.001 1.01 (1.01 ~ 1.01) 0.012
Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)
Q2 0.76 (0.67 ~ 0.86) <0.001 0.88 (0.75 ~ 1.04) 0.148 0.73 (0.65 ~ 0.81) <0.001
(Continued)
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TABLE 2 Continued

Model 1
HR (95% Cl)

Exposure

HR (95% CI)

10.3389/fendo.2025.1555082

Model 2 Model 3

HR (95% Cl)

ICU mortality
Q3 0.95 (0.84 ~ 1.06) 0.353

Q4 1.26 (1.13 ~ 1.40) <0.001

0.95 (0.81 ~ 1.11)

1.20 (1.03 ~ 1.40)

0.515 0.82 (0.74 ~ 0.91) <0.001

0.018 1.05 (0.95 ~ 1.15) 0.370

*GPR: Q1 (Quartile 1; GPR < 6.67, n=436), Q2 (Quartile 2; 6.67 < GPR < 25.71), Q3 (Quartile 3; 25.71 < GPR < 40.81) and Q4 (Quartile 4; GPR > 40.81). HR: hazard ratio; CI:

confidential interval.
Model 1: Cox univariate analysis.
Model 2: Adjusted for age, gender, height, weight, insurance, marital status and race.

Model 3: Adjusted for age, gender, height, weight, insurance, marital status and race, WBC, RBC, RDW, albumin, chloride, ALT, AST, Hypertension, Type 2 diabetes mellitus, heart failure,
malignant tumor, chronic kidney disease, acute renal failure, stroke, hyperlipidemia, chronic obstructive pulmonary disease, SIRS, CRRT, Oxford acute severity of illness score, Simplified acute
physiology score II, Sequential organ failure assessment, Central nervous system, Glasgow coma scale.

Bold red font indicates p-values with statistical significance.

3.5 Subgroup analysis

In subgroup analyses, the directionality of the effect estimates in
subgroups was consistent with the overall outcomes. Subgroup analyses
were stratified by age, sex, BMI, hypertension, type 2 diabetes, heart
failure, CKD, stroke, AKI, CRRT, and mechanical ventilation.

The directional trends in the effect estimates for in-hospital
mortality (Figure 5A) in almost subgroups were consistent with the
overall outcomes before adjustment for covariates. Similarly, almost
all subgroups were consistent with the overall outcome of ICU
mortality (Figure 5B). In addition, there was an interaction between
mechanical ventilation subgroup parameters (P < 0.01 for
interaction). After adjustment for covariates, the directionality of
the effect estimates in in-hospital and ICU mortality was consistent
with the overall outcome in almost all subgroups except AKI and
the subgroups with CRRT and no mechanical ventilation. There
was no interaction between GPR and age, gender, BMI,
hypertension, type 2 diabetes, heart failure, CKD, shock and
mechanical ventilation (all P for interaction >0.05).

3.6 Sensitivity analyses

The E-values for the association between GPR and mortality
outcomes at different time points are as follows: For ICU mortality,
the E-values are 1.60 (30-day, HR=1.13), 1.79 (60-day, HR=1.23),
and 1.85 (90-day, HR=1.26). For in-hospital mortality, the E-values
are 1.11 (30-day, HR=1.05), 1.66 (60-day, HR=1.19), and 1.68 (90-
day, HR=1.20). An E-value of 1.60 for 30-day ICU mortality implies
that an unmeasured confounder would need to be associated with
both the exposure and outcome by at least 1.60-fold to fully explain
the observed association. Similarly, higher E-values for other time
points indicate the minimum association strength required for
potential unmeasured confounders to explain the observed results.

The common support test results confirmed that the propensity
scores of the high GPR and low GPR groups had sufficient overlap.
The kernel density plots showed that the density lines for the two
groups were closely aligned both before and after matching, indicating
a large common support region. The histograms further
demonstrated that most observations were within the common
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support range, ensuring minimal sample loss during the matching
process. This confirmed the reliability of the matching process and the
comparability of the matched groups. The balance assessment figures
demonstrate that after PSM, the bias for all covariates was reduced to
below 10%, and the t-tests showed no significant differences between
the groups (p > 0.05). This indicates that the matching process
successfully balanced the covariates between the high and low GPR
groups. The kernel density and histogram figures show that the
propensity scores of the two groups had sufficient overlap both
before and after matching. After matching, the density lines and
histogram bars for the two groups were closely aligned, indicating a
large common support region and minimal loss of samples. This
ensures that the matched groups are comparable and the results are
reliable. These visualizations provide additional evidence of the
effectiveness of the PSM method in reducing bias and enhancing
the comparability of the groups, thereby strengthening the validity of
the study findings. (Supplementary Table 2, Figures 6, 7).

4 Discussion

This study examines the association between GPR and short-
and long-term all-cause mortality in ICU-admitted sepsis patients
using the MIMIC-IV database. With a large sample and extensive
confounder adjustment, the results show a significant link between
higher GPR and increased mortality risk in both hospital and ICU
settings over 90 days. The nonlinear relationship identified by
restricted cubic spline regression, with an inflection point at GPR
30, adds depth to GPR’s prognostic potential. Our study is the first
large-scale validation of GPR in ICU sepsis patients, addressing
inconsistencies in prior literature (13, 23). The composite GPR
captures synergistic metabolic dysregulation (hyperglycemia +
hypokalemia), explaining its incremental prognostic value over
isolated markers. The U-shaped association—lower risk in Q2/Q3
vs. Ql—may reflect protective effects of moderate metabolic stress,
whereas extremes (Q1: hypokalemia; Q4: severe dysregulation)
drive mortality. The former is likely to exacerbate cardiac
instability, while the latter’s extreme dysregulation overrides
compensatory mechanisms. This aligns with the RCS-identified
threshold (GPR=30), beyond which mortality risk escalates
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FIGURE 3

RCS regression for GPR and in-hospital mortality. (A) Univariate analysis at 30-day (P for overall effect <0.001; P for nonlinearity <0.001). (B)
Multivariate analysis at 30-day (P for overall effect <0.001; P for nonlinearity <0.001). (C) Univariate analysis at 60-day (P for overall effect <0.001; P
for nonlinearity <0.001). (D) Multivariate analysis at 60-day (P for overall effect 0.007; P for nonlinearity 0.004). (E) Univariate analysis at 90-day (P for
overall effect <0.001; P for nonlinearity <0.001). (F) Multivariate analysis at 90-day (P for overall effect 0.014; P for nonlinearity 0.010).

sharply. Sensitivity analyses including E-value quantification and
propensity score matching further reinforced the robustness of our
primary findings. The E-values (1.60-1.85 for ICU mortality)
indicate that unmeasured confounders would need strong
associations to nullify our results, while PSM confirmed the
mortality gradient across quartiles in matched cohorts. These
findings underscore GPR’s utility as a prognostic indicator in
critically ill septic patients.

This study underscores that GPR, when evaluated both as a
continuous variable and within categorized quartiles, stands out as a
predictive marker for mortality in septic patients requiring intensive
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care. In particular, patients belonging to the highest GPR quartile
(Q4) consistently demonstrated notably higher mortality rates
compared to those in the lowest quartile (Q1) across all measured
intervals (30, 60, and 90 days) and settings (hospital and ICU), as
shown by Hazard Ratios (HRs) that reflected increased risk. These
findings highlight the GPR’s potential as an independent prognostic
indicator beyond traditional physiological and biochemical markers
often used in ICU settings. While our study offers novel insights
into the prognostic role of GPR in sepsis, it builds upon a modest
body of prior research investigating GPR in various medical
contexts. In non-septic conditions, such as myocardial infarction
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RCS regression for GPR and mortality during ICU admission. (A) Univariate analysis at 30-day (P for overall effect <0.001; P for nonlinearity <0.001).
(B) Multivariate analysis at 30-day (P for overall effect <0.001; P for nonlinearity <0.001). (C) Univariate analysis at 60-day (P for overall effect <0.001;
P for nonlinearity <0.001). (D) Multivariate analysis at 60-day (P for overall effect 0.007; P for nonlinearity 0.004). (E) Univariate analysis at 90-day (P
for overall effect <0.001; P for nonlinearity <0.001). (F) Multivariate analysis at 90-day (P for overall effect 0.014; P for nonlinearity 0.010).

(7) and heart failure (6), elevated GPRs have also demonstrated
correlations with increased morbidity and mortality, signifying its
broad potential as a marker of metabolic imbalance. In ischemic
stroke patients, a study (24) found that GPR was positively
correlated with 30-day mortality, and the relationship between
them was linear. In a multicenter retrospective cohort study (25),
baseline GPR serum was found to be an independent predictor of
all-cause mortality within 12 months in patients with acute and
subacute ischemic stroke, and the study by Zhang et al. (26) also
reached a similar conclusion. Chen et al. (27) found that high GPR
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was an independent risk factor for in-hospital mortality in patients
with Acute type A aortic dissection (ATAAD). Serum GPR was
observed in 146 patients. In cases of severe traumatic brain injury is
substantially associated with trauma severity and 30-day mortality
(28), and a similar association has been observed in patients with
traumatic brain injury undergoing emergency craniotomy (29).
Similarly, another study (30) observed a significant relationship
between serum GPR and admission injury severity and the 6-month
prognosis acute traumatic Spinal cord injurypatients. A high GFR
correlated with Hunt and Kosnik grade and was also observed in
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FIGURE 5

Forest plots for subgroup analyses of the association between GPR and mortality. (A) Subgroup analysis of the association between GPR and in-
hospital mortality after covariate adjustment. (B) Subgroup analysis of the association between GPR and ICU mortality after covariate adjustment. For
both plots, hazard ratios (HRs) and 95% confidence intervals (Cls) are shown. The analysis includes subgroups based on age (<70 years and >70
years), sex, BMI (<27.4 kg/m?, 27.4-31.2 kg/m?, >31.2 kg/m?), hypertension, type 2 diabetes, heart failure, CKD, stroke, AKI, CRRT, and mechanical
ventilation. The P value for interaction is provided for each subgroup analysis.

patients with aneurysmal subarachnoid hemorrhage at admission
Glasgow Outcome Scale score at discharge (31, 32). The predictive
value between GPR and adverse clinical outcomes was also
preliminarily verified in patients with acute intracerebral
hemorrhage. In a retrospective study (33), it was observed that
the predictive efficacy of GRF for the diagnosis of massive
pulmonary embolism and non-massive pulmonary embolism in
ICU patients was higher than that of D-dimer. However, another
study based on ICU patients (34) found that the mortality of
patients with isolated blunt abdominal trauma was highly
correlated with GFR, and the sensitivity and specificity of GRF
were both higher than 70%. Such studies provide a contextual
backdrop where the dysregulation of glucose and potassium levels
has been similarly implicated in adverse outcomes, suggesting a
possible cross-pathophysiological utility of the GPR. However,
existing literature on GPR specifically within sepsis is relatively
scant, and the findings have been inconclusive due to significant
methodological variances and population differences.

The GPR in sepsis reflects intricate metabolic dysregulations
that accompany the systemic inflammatory response characteristic
of this condition. Understanding the potential pathological
mechanisms that lead to changes in both glucose and potassium
levels can provide valuable insights into the prognostic value and
clinical significance of GPR in sepsis. In sepsis, hyperglycemia is a
frequent occurrence due to a combination of increased hepatic
glucose production and impaired peripheral glucose utilization.
Stress-induced hormonal responses (35), including the release of
cortisol, catecholamines, glucagon, and pro-inflammatory cytokines
(36), like tumor necrosis factor-alpha and interleukins, stimulate
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hepatic gluconeogenesis and glycogenolysis. This hypermetabolic
state is compounded by insulin resistance, which limits glucose
uptake by peripheral tissues, further elevating blood glucose levels
(37). The pathological mechanism of hyperglycemia in sepsis can
exacerbate the disease’s course through a variety of pathways.
Elevated glucose levels contribute to oxidative stress by generating
advanced glycation end products (AGEs) (38), which promote
inflammation and tissue injury. Hyperglycemia also impairs
neutrophil function (39), thereby weakening the host immune
response and increasing susceptibility to infections. Furthermore,
it is associated with endothelial dysfunction (40, 41), facilitating
microvascular thrombosis and impaired tissue perfusion, which can
deteriorate organ function. Clinically, the presence of
hyperglycemia in sepsis patients has been linked to worse
outcomes, including increased mortality rates, prolonged ICU
stay, and higher incidences of multi-organ failure (42). This
underlines the importance of close glycemic control in critical
care settings, although the potential benefits must be weighed
against the risks of hypoglycemia. Potassium imbalances, notably
hypokalemia, are also common in sepsis and can stem from several
factors. These include intracellular shifts of potassium driven by
insulin administration (43) (used therapeutically to control
hyperglycemia), beta-adrenergic stimulation, and metabolic
alkalosis, as well as increased renal losses due to activation of the
renin-angiotensin-aldosterone system and nephrotoxic effects of
medications or the sepsis itself. Alternatively, hyperkalemia can
occur, particularly in cases of acute kidney injury or significant
cellular lysis (44). The clinical consequences of potassium
imbalances are profound. Hypokalemia may lead to arrhythmias,
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FIGURE 6

Propensity score matching and common support assessment regarding in-hospital mortality. (A) Kernel Density Estimation Before Matching: Displays
the kernel density estimates of propensity scores for the treatment group (blue line) and control group (red line) prior to matching. The overlapping
regions between the two curves indicate the initial common support area. Before matching, the density curves show some overlap, but there are
also areas where the propensity scores of the treatment and control groups do not align closely, suggesting a limited common support region. (B)
Kernel Density Estimation After Matching: Shows the kernel density estimates of propensity scores for the treatment group (blue line) and control
group (red line) following matching. After matching, the density curves of the two groups are closely aligned across a wider range of propensity
scores. This close alignment demonstrates an expanded common support region, indicating that the matching process has effectively balanced the
distribution of propensity scores between the treatment and control groups. (C) Histogram of Common Support: Presents a histogram displaying the
distribution of propensity scores for both the treatment and control groups. The green bars represent the treated observations within the common
support range, the red bars represent the untreated observations within the common support range, the blue bar represents untreated observations
outside the support, and the orange bar represents treated observations outside the support. The majority of observations fall within the common
support range (indicated by the green and red bars), which means that only a minimal number of samples were excluded during the matching
process. This ensures that the matched groups are highly comparable and reduces the potential for bias in the subsequent analysis.

muscle weakness, and respiratory failure, while hyperkalemia can
precipitate potentially fatal cardiac arrhythmias (45). Potassium
levels are critical for the function of cells, particularly in excitable
tissues such as nerves and muscles, including the heart, implicating
disturbances in significant morbidity in septic patients (46).
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The ratio of serum glucose to potassium, or GPR, synthesizes
the metabolic derangements of these two crucial solutes into a single
metric. While each component on its own provides insight into
specific pathophysiological processes, the GPR captures the
overarching metabolic stress within the body (47). A high GPR
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Propensity score matching and common support assessment regarding in-ICU mortality. (A) Kernel Density Estimation Before Matching: Displays the
kernel density estimates of propensity scores for the treatment group (blue line) and control group (red line) prior to matching. The overlapping
regions between the two curves indicate the initial common support area. Before matching, the density curves show some overlap, but there are
also areas where the propensity scores of the treatment and control groups do not align closely, suggesting a limited common support region. (B)
Kernel Density Estimation After Matching: Shows the kernel density estimates of propensity scores for the treatment group (blue line) and control
group (red line) following matching. After matching, the density curves of the two groups are closely aligned across a wider range of propensity

scores. This close alignment demonstrates an expanded common support region, indicating that the matching process has effectively balanced the
distribution of propensity scores between the treatment and control groups. (C) Histogram of Common Support: Presents a histogram displaying the
distribution of propensity scores for both the treatment and control groups. The green bars represent the treated observations within the common
support range, the red bars represent the untreated observations within the common support range, the blue bar represents untreated observations

outside the support, and the orange bar represents treated observations outside the support. The majority of observations fall within the common
support range (indicated by the green and red bars), which means that only a minimal number of samples were excluded during the matching
process. This ensures that the matched groups are highly comparable and reduces the potential for bias in the subsequent analysis.

may indicate a metabolic milieu marked by severe insulin
resistance, profound stress response, and possibly inadequate
compensatory mechanisms for electrolyte maintenance (48). This
composite biomarker might therefore reflect a higher severity of
systemic physiological derangement, correlating with worse clinical
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outcomes. Integrating glucose and potassium levels into a single
ratio could afford a fuller picture of the metabolic state in sepsis
compared to evaluating each element in isolation. In clinical
practice, monitoring the GPR in sepsis patients could potentially
aid in identifying patients at higher risk of adverse outcomes,
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offering opportunities for early intervention and more tailored
therapeutic strategies. However, understanding the precise
interplay and optimizing clinical use of GPR necessitate further
research exploring the dynamic interrelations between glucose and
potassium metabolisms in the progression of sepsis.

The E-values calculated for the association between GPR and
mortality outcomes provide additional insight into the robustness
of our findings against unmeasured confounding. For instance, an
E-value of 1.60 for 30-day ICU mortality implies that an
unmeasured confounder would need to be associated with both
the exposure and outcome by at least 1.60-fold to fully explain the
observed association. Similarly, the propensity score matching
(PSM) analysis confirmed the consistency of our findings, further
strengthening the validity of the observed association between GPR
and mortality in sepsis patients.

This study’s contribution to the field is highlighted by its
significant dataset derived from the MIMIC-IV database,
encompassing a variety of demographic and clinical variables not
previously analyzed in this combination. By confirming the
prognostic relevance of GPR across a diverse ICU population, our
findings suggest this biomarker could play a critical role in
advancing sepsis management protocols, potentially guiding
therapeutic decisions to mitigate mortality risks more effectively.
Future research should focus on prospective validation of GPR
thresholds and exploration of GPR dynamics over the course of
sepsis to better understand its prognostic implications. By
identifying patients at high risk of poor outcomes early in their
treatment course, clinicians could tailor more aggressive
monitoring and intervention strategies, which might include
tighter glucose control, more frequent electrolyte assessments, or
enhanced cardiovascular monitoring. Such an approach could lead
to better resource allocation in high-intensity care environments
and possibly improve patient outcomes by preemptively managing
predicted complications.

This study also has limitations. The MIMIC-IV database
consists largely of data from patients at a single tertiary care
center, potentially limiting the generalizability of findings to other
settings with different demographics, socioeconomic backgrounds,
or healthcare systems (49). This can result in a population that is
not fully representative of broader, more diverse sepsis populations
worldwide. The demographic composition within the database may
not sufficiently capture the variability across different ethnic and
racial groups, which can affect disease presentation and responses to
treatment, potentially skewing results and interpretations. Although
the study includes adjustments for factors such as age and
comorbidities, the inherent diversity in these variables may not be
fully comparable across different demographic groups (50),
implicating variations in baseline mortality risk that might
confound the association between GPR and outcomes. In
addition, as a retrospective study, it is subject to inherent biases
such as selection bias and information bias (51). Decisions
regarding data extraction and the variables included can
introduce unintended biases that might impact the overall
interpretation of findings. Despite efforts to adjust for numerous
confounders, it is possible that not all relevant factors were
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considered or measured accurately, leading to residual
confounding. Factors such as medication usage, nutritional status,
or patient management differences might not be fully accounted for.
The timing of GPR measurement relative to the onset of sepsis or
the clinical course has not been standardized (52), potentially
impacting its reliability as a consistent prognostic tool. The
variation in when glucose and potassium levels are recorded can
introduce discrepancies in how the GPR is calculated and
interpreted. What’s more, a notable limitation is the potential for
missing data, as not all patients may have fully recorded laboratory
measurements or clinical outcomes. The study relied on multiple
imputation methods to address missing data, which may introduce
bias if assumptions about missingness are incorrect (53). The
dataset may lack comprehensive longitudinal data necessary to
explore causal relationships over time, limiting insights into how
changes in GPR might reflect disease progression or response to
interventions. Certain clinical variables crucial for understanding
individual patient conditions, such as specific dietary intake,
detailed medication histories, and underlying genetic
predispositions (54, 55), may not be captured in the database,
affecting the depth of analysis. Given the nature of the database
as an aggregation of EMR from clinical practice, the quality and
precision of recorded data can be variable. This variability may
affect the accuracy of the input data, especially laboratory
measurements, and the resulting analysis (56, 57). Notably, the
lack of data on treatment interventions such as insulin therapy and
fluid resuscitation represent a key limitation, as these factors can
significantly influence patient outcomes and may confound the
relationship between GPR and mortality (58, 59).

As a path forward, prospective studies evaluating GPR
longitudinally across different stages of sepsis, and within broader
and more varied populations, could validate our findings.
Investigations might also focus on optimal intervention strategies
for patients identified as high-risk by their GPR, possibly examining
the impact of targeted therapies aimed at normalizing glucose and
potassium homeostasis (60). Furthermore, establishing
standardized GPR thresholds and developing clinical guidelines
for their use could facilitate more widespread integration of GPR
into ICU protocols. Limitations of our study, such as its
retrospective nature and reliance on a single database, should also
be addressed in future studies to enhance generalizability (61).
Additionally, detailed longitudinal data collection could enable a
better understanding of the causal pathways potentially involved in
the links between GPR and sepsis outcomes.

5 Conclusion

In summary, the serum glucose-potassium ratio emerges from
our investigation as a promising biomarker of mortality risk in
sepsis, warranting further exploration and validation in future
clinical research endeavors. By enhancing our understanding and
application of GPR, healthcare practitioners may improve
prognostic accuracy and patient outcomes in the challenging
realm of sepsis management.
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Background: Diabetes Mellitus (DM) is a complex metabolic disorder
characterized by hyperglycemia, primarily arising from insufficient insulin
secretion or the development of insulin resistance. Estrogen plays a significant
role in regulating the occurrence and progression of DM. This study aims to
investigate the role of estrogen-related genes in diabetes, focusing on identifying
potential biomarkers and therapeutic targets for the disease.

Methods: We initially obtained gene expression datasets related to type 2
diabetes mellitus (T2DM) from the GEO database. A systematic and coherent
series of methodologies was then implemented in a structured manner. First,
Principal Component Analysis (PCA) was employed for preliminary data
exploration and dimensionality reduction. Next, we identified Differentially
Expressed Genes (DEGs). Subsequently, we conducted Weighted Gene Co-
expression Network Analysis (WGCNA) to uncover gene modules associated
with DM. This was followed by Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses to explore the biological
functions and pathways associated with the identified genes. To enhance the
precision of biomarker identification, we applied three distinct machine learning
algorithms, including Least Absolute Shrinkage and Selection Operator (LASSO),
Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Random
Forest (RF), for further refined selection. This comprehensive approach ultimately
identified the estrogen-related gene IER3 as a promising biomarker for DM.
Furthermore, correlation analyses focusing on immune cell infiltration were
conducted to clarify the immunological role of IER3 in DM.

Results: Our findings revealed a significant downregulation of IER3 in DM
patients, accompanied by an AUC value of 0.723 in the diagnostic curve ROC,
indicating its considerable diagnostic and prognostic potential for DM.
Furthermore, the expression levels of IER3 exhibited a strong correlation with
variations in the proportions of diverse immune cell types, suggesting that it may
play a pivotal role in the immunoregulatory mechanisms underlying DM.
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Conclusion: In conclusion, our findings reveal that the estrogen-related gene
IER3 is significantly downregulated in patients with DM, highlighting its potential
as a diagnostic and prognostic marker for the disease. Therefore, IER3 may serve
as a promising biomarker and therapeutic target for DM.

KEYWORDS

diabetes mellitus, glycometabolism, estrogen, bioinformatics analysis, machine
learning, IER3
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1 Introduction

Diabetes mellitus (DM) is characterized by hyperglycemia and
encompasses several types, primarily type 1 diabetes mellitus
(TIDM), type 2 diabetes mellitus (T2DM), and gestational
diabetes mellitus (GDM). The primary pathological mechanisms
underlying DM involve either inadequate insulin secretion or the
presence of insulin resistance, resulting in sustained elevations in
blood glucose levels (1, 2). This hyperglycemic state not only
disrupts systemic metabolism but also inflicts damage to multiple
organs and systems. Chronic hyperglycemia is a contributing factor
to both microvascular and macrovascular complications, leading to
conditions such as diabetic retinopathy, diabetic nephropathy,
diabetic neuropathy, alongside a variety of gynecological
malignancies (3, 4). Furthermore, individuals with DM
demonstrate a markedly higher incidence of cardiovascular
diseases, contributing to a cardiovascular mortality rate that
exceeds that of individuals without DM (5, 6). Preventive
strategies for DM emphasize the importance of managing
established risk factors, including obesity, hypertension, and
unhealthy dietary habits, while also promoting public awareness
of DM through health policies designed to enhance early screening
rates. Notably, early intervention in T2DM has been shown to
effectively delay or prevent the onset of the disease.

Estrogens, a class of steroid hormones predominantly secreted
by the ovaries, include estradiol (E2), estrone (E1), and estriol (E3).
These hormones play a crucial role in the development of the female
reproductive system, the manifestation of secondary sexual
characteristics, and a multitude of physiological functions (7).
Recent advancements in understanding of estrogen signaling
mechanisms have yielded a more nuanced perspective on their
roles in various physiological processes. Within the female
reproductive system, estrogens are primarily responsible for
promoting the development and maturation of ovarian follicles,
sustaining endometrial proliferation, and facilitating ovulation.
Additionally, estrogens have garnered considerable attention for
their protective effects on bone health, as they help maintain bone
density by promoting bone matrix synthesis and inhibiting bone
resorption, thereby effectively reducing the risk of osteoporosis in
postmenopausal women (8). Furthermore, estrogens exert
significant influences on cognitive function, mood regulation, and
neuroprotection, with clinical studies suggesting their positive
impact on slowing the progression of Alzheimer’s disease (9).

It is essential to highlight the significant role that estrogens play
in DM. At certain concentrations, elevated estrogen levels can
enhance insulin sensitivity, thereby reducing the risk of
developing DM (10). Specifically, estrogens exert their effects by
binding to specific receptors and activating signaling pathways such
as PI3K/Akt and MAPK, which subsequently influence both insulin
secretion and action (11). This interaction ultimately modulates the
onset and progression of DM (12, 13). Given the intricate interplay
between estrogens and DM, alongside the current gaps in
understanding their molecular mechanisms and pathological
interactions, recent advancements in biotechnology offer valuable
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tools for exploring the underlying mechanisms linking these
two factors.

This study utilizes a comprehensive bioinformatics approach
combined with machine learning techniques to investigate the
shared genes and associated signaling pathways linking estrogens
and DM. By elucidating the specific pathogenic mechanisms of
estrogen-related genes in the context of DM, this research offers
valuable data support and identifies potential breakthroughs for
more targeted and effective prevention and treatment strategies
for DM.

2 Materials and methods
2.1 Data acquisition and preprocessing

Graphical Abstract illustrates the workflow of this study. The
gene expression dataset for DM was sourced from the GEO
database (https://www.ncbinlm.nih.gov/geo/) using “diabetes” as
the search term. We applied filtering criteria including “DataSets
Database” and “Homo sapiens” to refine the dataset. Specimens

» o«

related to “methylation,” “diabetic nephropathy,” and “non-
pancreatic tissues” were excluded from consideration. Ultimately,
we selected sequencing data from the T2DM group and the normal
pancreatic tissue group for further analysis. Based on the
aforementioned selection criteria, GSE76896 was identified as the
discovery cohort, comprising a total of 206 samples, including 117
from the normal group, 55 from the T2DM group, while 34 samples

from the impaired glucose tolerance group were excluded.

2.2 Principal component analysis

To reduce dimensionality and facilitate the visualization of
sample clustering, PCA was conducted on the original dataset,
with all preprocessing executed utilizing the “affy” package in R
(14). Probes were converted to gene symbols based on the GPL570
platform (Affymetrix Human Genome U133 Plus 2.0 Array). PCA
serves as a dimensionality reduction technique that applies
orthogonal transformation to reconfigure the data into a new
coordinate system, thereby maximizing variance along these new
axes. This approach preserves the most significant features of the
data and enables visualization of the distribution of high-
dimensional data across the first two principal components.

2.3 Identification of differentially expressed
genes in DM

We utilized the “Limma” package in R to identify DEGs within
the GSE76896 dataset. The criteria for DEG selection were established
as an adjusted p-value of <0.05 and a log-fold change (logFC) of
>0.70. Additionally, we constructed a volcano plot to visually depict
the statistical significance and magnitude of expression changes
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associated with these DEGs. This approach enables researchers to
effectively identify target genes that exhibit significant upregulation or
downregulation under disease conditions.

2.4 Weighted gene co-expression network
analysis and module gene identification

We employed the R package “WGCNA” to identify biologically
meaningful co-expression gene modules and to explore the
relationship between gene networks and disease (15). Initially, the
top 10,000 genes with the highest variance were selected for further
analysis. Subsequently, the “pickSoft Threshold” function was
utilized to determine the optimal soft thresholding power (f),
which ranges from 1 to 20, in order to construct a scale-free
network. The average connectivity R* threshold was set at 0.85.
Following this, the adjacency matrix was transformed into a
Topological Overlap Matrix (TOM) to evaluate gene ratios and
dissimilarity. In the fourth step, hierarchical clustering and the
dynamic tree cut function were applied to delineate and identify co-
expression modules. These modules were then merged based on
analogous expression patterns for further analysis, with the
parameters “minModuleSize” and “deepSplit” set to 150 and 2,
respectively. In the fifth step, we examined the correlation between
modules and disease by calculating Gene Significance (GS) and
Module Membership (MM). Genes within the modules that
exhibited the strongest correlation with the disease were selected
for further investigation. Finally, we conducted an intersection
analysis between the DEGs and the genes identified through
WGCNA, which yielded a set of 34 common genes. We
visualized these shared genes using clustering heatmaps generated
by the “ggplot2” and “pheatmap” R packages (16). This step aims to
identify co-expression modules that are significantly associated with
DM, thereby providing a candidate set of genes for subsequent

functional enrichment analysis and machine learning screening.

2.5 Functional enrichment analysis

To further investigate the biological functions and signaling
pathway characteristics of diabetes-related genes, as well as to
elucidate their potential molecular mechanisms, we conducted
functional enrichment analysis using the “clusterProfiler” and
“ggplot2” R packages. This approach facilitated an efficient
evaluation and visualization of gene functionality. In the Gene
Ontology (GO) analysis, genes were categorized into three main
functional categories: Biological Process (BP), Cellular Component
(CC), and Molecular Function (MF). This categorization enhances
our comprehension of the roles of genes across various biological
dimensions. Additionally, Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis offers a
systematic framework for investigating gene functions,
particularly concerning cellular signaling and metabolic pathways.
To ensure the statistical significance of the analysis results, we
established a cutoff criterion for p-values and q-values at 0.05.
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2.6 Machine learning approaches for
identifying candidate biomarkers

To accurately identify candidate biomarkers associated DM
from extensive genomic datasets, we employed machine learning
methodologies. These algorithms have gained prominence in the
field of bioinformatics due to their robust capabilities for handling
complex datasets (17). They are capable of extracting critical
information from gene expression data and identifying the genes
that are most pertinent to specific disease states. By leveraging
machine learning techniques, we can more effectively manage high-
dimensional data, uncover nonlinear relationships, and filter
potential biomarkers. This approach enhances predictive accuracy
and addresses challenges that frequently confound traditional
statistical methods. Consequently, machine learning was used in
this study to further refine candidate genes with the aim of
discovering novel biomarkers for DM. We employed three widely
recognized machine learning algorithms to further refine the
selection of candidate biomarkers: Least Absolute Shrinkage and
Selection Operator (LASSO) (18), Support Vector Machine-
Recursive Feature Elimination (SVM-RFE) (19), and Random
Forest (RF) (20). LASSO is a regularized regression technique that
applies an L1 penalty to shrink the coefficients of less informative
variables to zero, thus facilitating simultaneous variable selection
and regularization. SVM-RFE is a backward feature elimination
method based on support vector machines, which recursively
eliminates features with the lowest ranking weights to identify the
subset that optimally separates the classes. RF, an ensemble learning
approach based on decision trees, trains each tree on a bootstrap
sample and a subset of features, allowing for the assessment of
feature importance via the mean decrease in impurity. These three
algorithms collectively enhance the feature selection process:
LASSO prioritizes sparsity, SVM-RFE focuses on margin-based
discrimination, and RF utilizes ensemble-based ranking. This
complementary synergy significantly bolsters the robustness and
reliability of the selected biomarkers. Candidate genes identified
through the intersection of these algorithms were considered highly
reliable for subsequent analysis.

2.7 Expression analysis and diagnostic
evaluation of candidate genes for DM

To further verify the diagnostic efficacy of candidate genes and
construct a clinically applicable risk assessment model, the
“ggplot2” package was utilized to assess the expression levels of
candidate biomarkers in both control and DM groups, with a
significance threshold set at p < 0.05. A Nomogram was
constructed using the “rms” package, wherein “Points” represent
the scores assigned to the candidate genes, and the “Total Score”
denotes the cumulative score across all the aforementioned genes.
To evaluate the diagnostic accuracy of the candidate biomarkers,
the area under the receiver operating characteristic (ROC) curve
(AUC) was calculated using the “pROC” package.
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2.8 ldentification of candidate biomarkers

Candidate genes related to estrogen were retrieved from the
NCBI (National Center for Biotechnology Information, https://
www.ncbi.nlm.nih.gov/gene) database using the search terms
“oestrogen” and “Homo sapiens”. These estrogen-related genes
were subsequently intersected with genes linked to DM, with
selection criteria requiring an AUC > 0.7 for further analysis.
After screening and identifying five candidate genes, we
conducted a comprehensive evaluation of each and determined
that IER3 exhibits the highest research value for the following
reasons:A. Estrogen linkage: Previous studies have demonstrated
that OHT, a related compound, stimulates IER3 expression in an
estrogen receptor-dependent manner (21). In contrast, other genes,
including LRRK2, have not shown a similar association.B. Immune
modulation: IER3 is a well-established immunoregulatory gene. For
instance, induction of IER3 protects macrophages from LPS-
induced apoptosis and inhibits NF-kB activity (22). This function
in modulating inflammation is directly relevant to diabetes, which is
characterized by chronic immune dysregulation.C. Metabolic
inflammation: IER3 plays a crucial role in mediating metabolic
and immune crosstalk in obesity. Mice deficient in IER3 exhibit
reduced adipose inflammation and improved insulin sensitivity
under high-fat diet conditions (23). This demonstrates that IER3
plays a significant role in regulating the interface between
metabolism and immune responses.

2.9 Gene set enrichment analysis

The Pearson correlation coefficients between IER3 and all other
genes were calculated using the cor.test function in R. Following this
calculation, all genes were ranked in descending order according to
their correlation with the target gene. This ranked gene list was then
utilized for GSEA to determine whether gene sets exhibiting a
strong correlation with the target gene are enriched in specific
biological pathways or functional modules. The primary objective
of this analysis was to identify the gene sets that demonstrated
significant correlations with the target gene and to elucidate the
biological implications of these gene sets.

2.10 Construction of protein-protein
interaction network

To further elucidate the functions and mechanisms of IER3 in
biological processes associated with DM, this study utilized the
STRING network data platform (https://string-db.org) to identify
protein associations and construct a PPI network. By establishing a
specified required confidence threshold of 0.400, we ensured that
only high-confidence interactions were included in the network,
thereby facilitating the identification of key proteins closely related
to the function of IER3. The establishment of this network enhances
our understanding of the molecular mechanisms underlying the
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role of IER3 in DM, as well as the associated signaling pathways and
biological processes in which it may be involved. Through this
systematic approach, we are able to delineate the critical role of
IER3 in the pathophysiology of DM and propose potential
molecular targets for future therapeutic strategies. To explore the
correlations between IER3 and key genes in the PI3K/Akt and
MAPK signaling pathways in DM, we utilized gene expression data
from public databases. We identified core genes in the PI3K/Akt
pathway, including PIK3CA, PIK3CB, PIK3CD, PIK3RI, AKTI,
AKT?2, and AKT3, as well as key genes in the MAPK pathway, such
as MAPK3, MAPKS, MAPK9, MAPK14, MAP2K1, MAP2K2, and
MAP3K4. Following this, we performed a correlation analysis to
assess the expression relationships between IER3 and these genes in
DM samples. The results were visualized using a heat map to
facilitate interpretation of the correlations.

2.11 Immuno-infiltration analysis

To attain a deeper insight into the cellular composition and
functional alterations within the immune system in the context of
DM, this study employed the CIBERSORT algorithm for a
comprehensive analysis of immune cell infiltration. CIBERSORT
is a deconvolution algorithm that leverages gene expression data to
identify the relative abundances of 22 distinct immune cell types,
estimating their proportions in heterogeneous cell samples based on
a training set derived from established gene expression profiles
characteristic of known immune cells (24). The “CIBERSORT”
package was employed in our analysis to further elucidate the
differences in immune cell proportions between DM patients and
healthy control groups, as well as to explore potential correlations
between these variations and the immune responses and
inflammatory processes associated with DM.

To effectively present the analysis results visually, we applied R

» «

packages such as “ggplot2,” “corrplot,” and “vioplot” to effectively
illustrate the distribution and interrelationships of various immune
cell types across the two groups. Furthermore, Spearman
correlation analysis was conducted to assess the association
between immune cells and the candidate biomarker IER3,
evaluating the impact of IER3 expression levels on the immune
cell ratios. This segment of the research not only deepens our
understanding of the role of immune cells in the pathological
processes of DM, but also provides empirical support for the
potential use of IER3 as a key biomarker. Consequently, it offers
new insights and viable targets for the diagnosis, treatment, and
prognostic evaluation of DM.

2.12 Statistical analysis

Statistical analyses were conducted utilizing R software (version
4.4.1), and the Wilcoxon and T-tests were employed to compare
differences between the T2DM group and the control group. A p-
value of less than 0.05 was considered statistically significant.
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3 Results
3.1 Identification of DEGs in DM

The results of PCA reveal a notable trend of separation between
DM patients and the normal population within the PCA space
(Figure 1A). While some overlapping regions are observed, the
overall clustering characteristics of the data points from the two
groups demonstrate marked differences. These findings indicate
that PCA effectively captures the principal variance patterns within
the dataset and partially elucidates the differences between the
two groups.

In the GSE76896 dataset, we identified a total of 401 DEGs,
comprising 177 upregulated and 224 downregulated genes
(Supplementary Table 1). The volcano plot (Figure 1B) visually
illustrates the expression changes and statistical significance of these
genes, with orange and green dots representing genes that are
significantly upregulated or downregulated in the DM group,
respectively. The black dots at the center of the plot indicate
genes with no significant changes in expression. Our results reveal
that the expression of the IER3 gene is significantly decreased in
DM patients compared to the control group, whereas the SLC26A4
and ELFN1 genes exhibit significant upregulation. These key DEGs
identified in DM lay the groundwork for further functional analysis.

3.2 WGCNA and module gene
identification in DM

To identify the gene modules most closely associated with DM,
we conducted a WGCNA. The optimal soft threshold for GSE76896
was determined to be 6 (Figure 1C). A total of 14 distinct modules
were then identified, among which the MEyellow module
demonstrated the strongest negative correlation with DM
(correlation coefficient = -0.38, p = 8e-05) (Figures 1D, E)
(Supplementary Table 2), encompassing 882 genes. We
subsequently intersected the DEGs with the genes selected
through WGCNA, resulting in a set of 34 shared genes associated
with DM (Figure 1F) (Supplementary Table 3). A clustering
heatmap for these 34 DM-related genes was generated using the
“ggplot2” and “pheatmap” R packages (Figure 1G).

3.3 GO enrichment analysis and KEGG
pathway analysis

To further explore the biological functions of the identified
DM-related genes and to uncover potential key signaling pathways
involved, we conducted GO enrichment analysis (Figures 2A-C)
and KEGG pathway analysis (Figure 2D). The top ten enriched BPs
included intracellular signal transduction, cell activation, leukocyte
activation, inflammatory response, regulation of signaling receptor
activity, myeloid leukocyte activation, response to molecule of
bacterial origin, regulation of leukocyte chemotaxis, nitric-oxide
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synthase biosynthetic process, and regulation of nitric-oxide
synthase biosynthetic process. Notably, the enrichment of nitric
oxide synthase biosynthetic process regulation aligns with emerging
evidence linking endothelial dysfunction to DM (25). In this
context, impaired NO bioavailability contributes to vascular
complications (26). The top ten enriched CC were identified as
extracellular region, endomembrane system, extracellular space,
organelle membrane, secretory vesicle, cytoplasmic vesicle
membrane, vesicle membrane, secretory granule, receptor
complex, and plasma membrane receptor complex. CC analysis
highlighted significant extracellular space and secretory vesicles,
indicating dysregulated paracrine signaling. For instance,
extracellular vesicles derived from P cells can serve as a medium
for intercellular communication within the pancreatic
microenvironment in type 1 DM and participate in immune
regulation (27). Furthermore, the top ten enriched MF included
receptor ligand activity, receptor regulator activity, signaling
receptor binding, co-receptor binding, growth factor activity,
cytokine activity, G protein-coupled receptor binding, molecular
function regulator, enzyme activator activity, and ion channel
binding. Additionally, Ion channel binding may be associated
with potassium channel mutations that lead to insufficient insulin
secretion in response to glucose levels (28). Following this, in terms
of KEGG pathways, the top ten pathways identified were the NOD-
like receptor signaling pathway, TNF signaling pathway, IL - 17
signaling pathway, Rheumatoid arthritis, Viral protein interaction
with cytokine and cytokine receptor, AGE-RAGE signaling pathway
in diabetic complications, NF-kappa B signaling pathway, Kaposi
sarcoma-associated herpesvirus infection, Chemokine signaling
pathway, and Legionellosis. Notably, these findings of the GO
classification and KEGG pathway analysis reveal the functional
characteristics of DM-related genes at the molecular biological and
signaling transduction levels, particularly in relation to immune
responses, signal transduction, and metabolic regulation, thereby
providing crucial insights into the molecular pathophysiological
mechanisms underlying the onset of DM.

3.4 Identification of candidate biomarkers
for DM through machine learning

To further refine the identification of key genes associated with
DM, we identified 34 common genes by intersecting 401 DEGs with
882 genes selected through WGCNA. Subsequently, we utilized
three machine learning algorithms to screen for potential candidate
biomarkers based on these 34 common genes. In the GSE76896
dataset, the LASSO regression identified eight genes (Figures 3A, B),
whereas the SVM-RFE algorithm extracted 20 genes with the lowest
root mean square error (RMSE) (Figure 3C). Additionally, the RF
classifier ranked the top 20 genes according to their importance
(Supplementary Table 4, Figures 3D, E). By intersecting the results
obtained from these three methods, we ultimately identified five
candidate biomarkers for DM, including ALDH1A3, MIOS-DT,
MELTEF-AS1, LRRK2, and TER3 (Figure 3F).
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Exploratory analysis of gene expression in DM. (A) Principal Component Analysis (PCA). (B) A volcano plot illustrating all differentially expressed genes
(DEGs). (C) Determination of the optimal soft threshold. (D) Heatmap depicting the relationship between gene modules and clinical traits. (E) Gene
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3.5 Risk stratification of candidate
biomarkers for DM

We subsequently constructed a nomogram (Figures 4A, B)
based on the above five identified candidate biomarkers for DM,
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which translates the relative expression levels of each gene into a
specific score ranging from 0 to 100. By aggregating the individual
gene scores to obtain a total score, we can effectively evaluate the
overall risk of an individual developing DM. Specifically, a higher
total score correlates with an increased risk of DM occurrence. This
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GO and KEGG analyses of diabetes-related genes. (A—C) Gene Ontology (GO) categories for Biological Processes (BP), Cellular Components (CC),
and Molecular Functions (MF). The top 10 categories of BP, CC and MF are shown. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis.

methodology not only furnishes clinicians with a robust tool for risk
stratification of patients but also holds significant predictive value
for the prognosis of DM.

Furthermore, we evaluated the diagnostic performance of each
gene as a biomarker for DM through ROC curve analysis
(Figure 4C). The resulting AUC values were as follows:
ALDHI1A3 (AUC: 0.627), MIOS-DT (AUC: 0.742), MELTE-AS1
(AUC: 0.694), and LRRK2 (AUC: 0.764), and IER3 (AUC: 0.723).
These findings not only enhance our understanding of the
molecular mechanisms underlying the onset of DM but also
provide valuable biomarkers for prospective clinical applications
in the prevention and treatment of DM.

3.6 Significance of estrogen-related gene
IER3 as a diagnhostic and prognostic marker
for DM

In this study, we identified the estrogen-related genes and
intersected them with the five candidate genes for DM that
previously identified through machine learning techniques. We
specifically focused on genes exhibiting an AUC value of >0.7,
ultimately determining IER3 as a key biomarker for DM
(Figures 4D, E). ROC curve analysis revealed that IER3 achieved an
AUC value of 0.723, with a 95% confidence interval ranging from 0.636
to 0.811. This finding suggests that IER3 demonstrates both accurate
and satisfactory diagnostic and prognostic value for DM. Furthermore,
the ROC curve revealed sensitivity and specificity values for IER3
of 0.8205 and 0.7636, respectively. These performance metrics further
underscore the significant role of IER3 as an effective biomarker
for DM, highlighting its potential clinical utility. To further evaluate
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the accuracy of the candidate biomarkers, we employed the GSE72377
dataset for verification and ROC curve analysis revealed that
IER3 exhibits significant diagnostic value, with an AUC value of
0.703 (Figure 4F). As shown in Figure 4G, a significant negative
correlation was observed between the expression levels of IER3 and
ESR1 (R =- 0.39, P = 1.5e-07). The trend line, along with the 95%
confidence interval, is represented in gray. These findings offer
evidence suggesting a potential association between IER3 and
estrogen signaling pathways.

3.7 PPl network analysis of IER3 in DM

PPI network analysis serves as a crucial tool for elucidating gene
functions and their biological roles. To further investigate the role of
the IER3 gene in DM more comprehensively, we constructed a PPI
network centered on IER3 utilizing the STRING database
(Figure 5A). This network not only illustrates the direct and
indirect interactions between IER3 and its interactive genes but
also offers valuable insights into the strength and sources of
evidence supporting these interactions.

Using this high-throughput analytical approach, we successfully
identified the protein nodes that are closely associated with IER3,
specifically DUSP5, PHLDA1, ADCYAP1, PPP2R5C, PPP2R5B,
MAPKI1, MCL1, MAPK3, RELA, and PPP2CA. These protein
nodes are depicted in the network with varying colors and line
styles, effectively illustrating the positioning of IER3 within the
network and its potential influence on other biomolecules. The
identification of these interacting proteins provides valuable
insights into the potential roles of IER3 in the pathological
processes of DM, thereby enhancing our understanding of the
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FIGURE 3

Machine learning in the screening of candidate biomarkers. (A, B) Based on the Lasso regression algorithm, 8 genes corresponding to the lowest
binominal deviation were identified as the most appropriate for diabetes mellitus (DM) diagnosis. (C) The top 20 genes were selected based on
Support Vector Machine Recursive Feature Elimination (SVM-RFE) with the lowest error rates and highest accuracy for DM classification. (D, E) The
top 20 genes were selected and ranked according to the importance scores derived from the random forest algorithm applied to DM. (F) A Venn
diagram showing the intersected genes identified by the three machine learning algorithms in DM.

molecular pathways through which IER3 is involved in the
progression of DM. The heatmap illustrates significant
correlations between IER3 and genes involved in the PI3K/Akt
and MAPK signaling pathways associated with diabetes (Figure 5B).
In the PI3K/Akt pathway, both PIK3CA and PIK3CB exhibit strong
positive correlations with IER3. Within the MAPK pathway,
MAP2K1 shows a positive correlation with IER3, while MAP3K4
reveals a negative correlation. These findings suggest that IER3 may
play a role in the pathogenesis of diabetes through its interactions
with specific genes in these pathways.
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3.8 Functional enrichment of IER3

To further elucidate the functions of genes and their underlying
biological mechanisms, we conducted GSEA enrichment analysis to
identify differentially expressed genes between the low and high
expression groups of IER3 (Figure 5C). In the GO enrichment
analysis, the most significantly activated biological process
identified was axoneme assembly, followed by processes such as
microtubule bundle formation, host interaction, non-motile cilium
assembly, and positive regulation of canonical NF-«B signaling.
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Additionally, the top five KEGG pathways identified included the = gene expression patterns of various cell types (Figure 6B) and
Escherichia ESPG to microtubule RHOA signaling pathway, the  visualized the proportions of different immune cell types
SARS-CoV-2 spike protein to ANGII/ATIR/NOX2 signaling  (Figure 6C). The results indicated that the distribution of multiple
pathway, the IL - 2-JAK-STAT signaling pathway, kinetochore  immune cell types in the DM group differed significantly from that
microtubule attachment, and microtubule depolymerization  of the normal group, thereby reinforcing the role of immune cells in
(Figure 5D). These findings indicate that IER3 may be involved in  the pathology of DM. An in-depth analysis through correlation
various complex biological processes related to DM, including  heatmaps illustrated the relationships among various immune cell
infection, cardiovascular diseases, immune regulation, cellular  types, revealing a notably high degree of similarity between different
dynamics, and cytoskeletal remodeling. T cell subtypes, such as resting CD4 memory T cells and CD8+ T
cells (Figure 6D). This observation suggests potential functional
synergy among these cells. Overall, the correlation analyses
3.9 Immune cell infiltration analysis underscore the intricate interactions and regulatory mechanisms
of diverse immune cells in the context of DM.

In this study, we conducted a comprehensive analysis of the To further explore the influence of IER3 on the proportions of
cellular composition and functional alterations of the immune  the aforementioned immune cells, we stratified the DM group into
system in the context of DM. Utilizing the CIBERSORT  two subgroups based on high and low expression levels of IER3
algorithm, we performed a detailed comparison of immune cell  (Figure 6E). The results revealed that the proportions of naive B
proportions between the DM group and normal controls cells, regulatory T cells (Tregs), activated dendritic cells, and
(Figure 6A). Our findings revealed significant differences in the  neutrophils were significantly elevated in the high IER3
proportions of various immune cell types between the two groups,  expression group compared to those in the low expression group.
which may be closely related to the immune response and  Conversely, the proportions of CD8+ T cells and follicular helper T
inflammatory processes associated with DM. Specifically, the  cells were markedly reduced in the high IER3 expression group.
proportions of naive B cells, monocytes, MO macrophages, and  Notably, consistent trends were observed in the proportions of
activated dendritic cells were significantly elevated in the DM group  naive B cells, CD8+ T cells, follicular helper T cells, and activated
compared to the control group. Conversely, the proportions of CD8  dendritic cells across both comparisons of immune cell proportions.
+ T cells and follicular helper T cells markedly decreased in the DM These findings strongly suggest that IER3 plays a pivotal role in
group. To further investigate the activation states of different modulating the immune microenvironment, thereby influencing
immune cells in DM, we constructed heatmaps to analyze the  the progression of DM. The elevated expression of IER3 appears to
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PPI network and functional enrichment analysis of IER3 in DM. (A) The network of interacting genes associated with IER3. The circles represent the
query proteins and their corresponding first shell interactors in the network. The color and number of edges indicate the source and quantity of
supporting evidence, respectively. (B) Correlation heatmap of IER3 with genes involved in the PI3K/Akt and MAPK signaling pathways. (C) Gene Set
Enrichment Analysis (GSEA) illustrating pathway enrichment across the ordered gene dataset. (D) KEGG analysis of the activated and repressed

biological processes.

be associated with enhanced immune cell activation and increased
inflammatory responses. This segment of the research not only
underscores the significance of immune cells in the pathological
processes of DM but also provides additional empirical evidence for
IER3 as a potential biomarker, opening new avenues for the
diagnosis, treatment, and prognostic evaluation of DM.

Collectively, these results demonstrate significant changes in
immune cell composition under DM conditions, and IER3 is not
only closely correlated with variations in immune cell proportions
but also plays a crucial role in the immunoregulatory mechanisms
underlying DM. These findings underscore the considerable
research value of IER3 in elucidating the immunological basis of
DM and suggest its potential as a biomarker for future
therapeutic strategies.
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4 Discussion

DM is characterized as a complex metabolic disorder syndrome,
distinguished by hyperglycemia, insulin resistance, and
hyperinsulinemia, making it one of the most prevalent chronic
metabolic diseases globally (29). This condition significantly affects
individuals’ overall quality of life (30). Estrogen plays a crucial
protective role in the pathogenesis of DM by enhancing both insulin
sensitivity and secretion, thereby contributing to the maintenance
of stable blood glucose levels (31). Nevertheless, postmenopausal
women frequently experience increased insulin resistance and a
heightened risk of developing DM due to declining estrogen levels
(11, 32). Research has demonstrated that estrogen can regulate
pancreatic beta cell function (33), facilitate glucose uptake and
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Analysis of immune cell infiltration. (A) The boxplot comparing the proportion of immune cells between DM and control groups. (B) Comparative
heatmap depicting immune cell gene expression in DM and control groups. (C) The bar plot visualizing the proportion of infiltrating immune cells in
different samples. (D) Correlation heatmap representing associations between various immune cell types. (E) The boxplot comparing the proportions

of immune cells in high and low IER3 expression groups.

utilization, and reduce cellular apoptosis, all of which are critical for
preventing and controlling the onset and progression of DM (34).
This regulatory effect of estrogen is particularly vital for
women’s health.

This study employs a comprehensive approach that integrates
bioinformatics methods with machine learning techniques to
explore the shared genes and associated signaling pathways
related to DM and estrogen. It specifically highlights the potential
role of the estrogen-related gene IER3 in DM. The findings reveal a
significant downregulation of IER3 in DM patients, and it appears
to affect the progression of DM through the regulation of glucose

metabolism, immune responses, and inflammatory pathways,
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suggesting that IER3 may play a pivotal role in the pathological
processes linking DM and estrogen. Furthermore, the construction
of a diagnostic ROC curve based on IER3 gene expression
demonstrates both accurate and satisfactory diagnostic and
prognostic value of IER3 for DM. Notably, the study reveals
significant changes in immune cell composition under DM
conditions, and IER3 is not only closely correlated with variations
in the proportions of various immune cells, but also plays a crucial
role in the immunoregulatory mechanisms underlying DM.
Through an in-depth analysis of IER3 and its associated signaling
pathways, this research underscores the unique value of the
estrogen-related gene IER3 as a potential biomarker and
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therapeutic target for DM. Collectively, our study lays the
groundwork for future investigations into the molecular
mechanisms underlying the pathogenesis of DM, while also
providing more molecular evidence and therapeutic strategies for
its diagnosis and treatment.

IER3 plays a crucial role in regulating cell apoptosis and the
heterogeneity of immune cells (35). Research indicates that
macrophages are key contributors to obesity-related inflammation,
particularly through the transition of adipose tissue macrophages from
alternatively activated macrophages (AAM) to classically activated
macrophages (CAM), a process that is significant in the context of
obesity-associated inflammation (36, 37). The high expression of IER3
in macrophages may facilitate this transformation, thereby promoting
the onset of obesity-related inflammation and enhancing insulin
sensitivity in murine models (38). Additionally, IER3 is extensively
implicated in vital biological processes such as cell proliferation,
differentiation, and apoptosis, with its expression regulated by
various transcription factors, including NF-xB, p53, SP1, API,
vitamin D3 receptor (VD3R), and retinoic acid receptors (RAR/
RXR) (39, 40). Furthermore, studies have highlighted the prognostic
value of IER3 in several pathological conditions, including pancreatic
cancer, hepatocellular carcinoma, and acute kidney injury (41-44).

Estrogen plays a pivotal regulatory role in the onset and
progression of DM, particularly among female patients, where
fluctuations in estrogen levels may directly affect insulin sensitivity
and glucose metabolism (45). This study posits that IER3 may serve as
an intermediary between DM and estrogen, thereby establishing a
critical connection between the two. The expression of the IER3 gene is
modulated by various factors, with estrogen emerging as a significant
regulator that may influence the development of DM through its
impact on IER3 expression. Furthermore, our findings indicate a
significant negative correlation between the expression levels of IER3
and ESRI, suggesting a potential association between IER3 and
estrogen signaling pathways. Additionally, studies have shown that
IER3 exhibits a dose-dependent response to 17(3-estradiol stimulation
in MCF - 7 (BUS) cells, with its expression being upregulated in
conjunction with cyclin D1 and its mutants (46). These findings
collectively underscore the potential regulatory role of estrogen on
IER3 and highlight the importance for further investigation into this
gene and its associated pathways. Such investigations will enhance our
understanding of the pathological mechanisms underlying DM and
may offer novel therapeutic targets for clinical intervention.

In addition to its involvement in glucose metabolism and estrogen
levels, the IER3 gene may also participate in the immune regulatory
mechanisms associated with DM by modulating immune system
functionality. Recently, the interplay between immune responses and
DM has garnered significant attention (47). Research has indicated that
the chronic inflammatory state characteristic of DM is closely linked to
the aberrant activation of immune cells (48, 49). The dysregulation of
immune cell subset proportions constitutes a critical pathological
hallmark within the immune microenvironment of DM. Significant
elevations in the proportions of naive B cells, monocytes, M0
macrophages, and activated dendritic cells (DCs) were observed in
the DM patients. Research has demonstrated that in insulin-dependent
DM, activated DCs play a crucial role in autoimmune pathogenesis by
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presenting [B-cell-derived autoantigens to naive autoreactive ThO
lymphocytes (50). This antigen presentation facilitates the
differentiation of ThO cells into pro-inflammatory effector T cells,
which subsequently initiate [3-cell apoptosis through cytotoxic
mechanisms. The resulting impairment of insulin biosynthesis in
pancreatic islets constitutes a key pathogenic mechanism in disease
progression, with DC-mediated antigen presentation serving as a
pivotal initiating event in the autoimmune destruction of [-cells.
Monocytes also contribute significantly to the vascular complications
associated with DM. In the diabetic environment, monocytes are
recruited to the vascular wall, leading to a rapid release of
inflammatory cytokines such as IL - 18 and TNF-o, which accelerate
the progression of atherosclerotic lesions and plaque instability (51).
Our study revealed significant reductions in CD8" T cells and follicular
helper T cells among DM patients. As primary cytotoxic lymphocytes,
the depletion of CD8" T cells may be linked to functional exhaustion
characterized by PD - 1 upregulation and metabolic dysregulation
manifested by glycolytic inhibition and mitochondrial dysfunction.
Consequently, this depletion diminishes their capacity to eliminate
aberrant cells in target tissues (52, 53). Furthermore, follicular helper T
cells play a pivotal role in maintaining immune tolerance and
regulating B-cell antibody production, with their diminished
frequency potentially predisposing to aberrant humoral immune
responses (54). This pathological process may exacerbate [3-cell
dysfunction through disrupting local T-B cell interactions within
pancreatic islets and impairing antigen-specific immunomodulation.
Collectively, the imbalance of immune cell repertoires in DM is not
merely a passive epiphenomenon, it likely drives metabolic
derangements, islet dysfunction, and chronic inflammation via
mechanisms involving immunometabolic decoupling, dysregulated
cytokine release, and impaired local immune regulation. These
findings underscore the centrality of immune cell dyshomeostasis in
elucidating the pathophysiological progression of DM. Our findings
indicate a strong correlation between IER3 expression and alterations
in the proportions of immune cells, particularly in patients with DM,
suggesting that dysregulation of the immune system may exacerbate
the progression of DM by influencing the activation states of immune
cells. Therefore, IER3 may be pivotal in regulating the chronic
inflammatory response associated with DM through its impact on
immune system functionality. Several studies have highlighted the
significant role of IER3 in immune cells, potentially modulating the
release of cytokines, the activation of immune cells, and their
migration, thereby affecting systemic inflammatory responses (55).
This study elucidates the potential biological and immunological
significance of IER3 in DM by employing an integrated approach that
combines bioinformatics and machine learning techniques. However,
it remains in its preliminary stages and has certain limitations. The
molecular mechanisms that link IER3 to estrogen signaling pathways,
specifically the PI3K/Akt and MAPK cascades, along with their
interactions with immune regulation, require experimental
validation. Moreover, the causal relationship between IER3
downregulation and the progression of DM necessitates verification
through longitudinal studies and interventional models. Future
research should strive to diversify data sources by incorporating a
wide range of sample data from DM patients across various ethnicities
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and regions, thereby enhancing the reliability and generalizability of
the findings. Furthermore, it is essential to clarify the relationship
between IER3 and different types of DM, such as type 1 diabetes and
gestational diabetes, in order to further deepen and broaden the scope
of the research. Therefore, such future efforts have the potential to
substantially enhance the applicability of IER3 in the treatment of DM.

5 Conclusion

In this study, we conducted a thorough investigation focusing
on the role of the estrogen-related gene IER3 in the context of DM.
Our findings reveal a significant downregulation of IER3 in DM
patients, with an AUC value of 0.723 on the diagnostic ROC curve,
indicating its considerable diagnostic and prognostic potential for
DM. Furthermore, IER3 acts as a critical link between DM and
estrogen, influencing the progression of DM through its regulatory
effects on glucose metabolism, immune responses, and
inflammatory pathways. Notably, our study uncovers significant
alterations in immune cell composition under DM conditions. IER3
is not only closely correlated with variations in the proportions of
diverse immune cell types but also plays a crucial role in the
immunoregulatory mechanisms underlying DM. Through an in-
depth analysis of IER3 and its associated signaling pathways, this
research emphasizes the unique value of the estrogen-related gene
IER3 as a potential biomarker and therapeutic target for DM.

Conclusively, these findings offer valuable insights into the
biological and immunological significance of IER3. Monitoring its
expression could facilitate the identification of high-risk
populations, and its significance in the early diagnosis and
prognostic evaluation of DM should not be underestimated.
Consequently, extensive research on IER3 and its related
signaling pathways opens new avenues for the development of
innovative diagnostic tools and therapeutic strategies for the
prevention and management of DM. Future investigations should
explore the modulation of IER3 expression through
pharmacological or gene-editing techniques, aiming to establish
new treatment strategies for DM and provide essential evidence for
personalized therapy. We anticipate that further exploration in this
field will facilitate advancements in relevant technologies and their
practical applications, ultimately enhancing the quality of life and
health outcomes for individuals affected by DM.
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Birth weight serves as a critical indicator of neonatal survival. Preeclampsia
represents a serious complication during pregnancy and is closely associated
with gestational hypothyroidism (GHT), both of which severely affect neonatal
birth weight. Preeclampsia and hypothyroidism during pregnancy are usually
accompanied by abnormalities of maternal liver function, which frequently leads
to adverse pregnancy outcomes including low birth weight (LBW). This
retrospective study utilized data from 420 cases of patients with preeclampsia
who underwent prenatal examinations and delivery at department of Obstetrics.
The association between preeclampsia combined with GHT in pregnancy,
maternal liver function and neonatal birth weight was estimated using
generalized linear model (GLM), and the potential partial mediating effects of
maternal liver function were assessed through mediating models. Among
pregnant women with preeclampsia, 11.0% had GHT, and the median
(interquartile range) birth weight of all neonates was 2990.0 (2541.3, 3368.8)
grams. Neonates born to pregnant women who had preeclampsia combine with
GHT showed a higher incidence of LBW (y¥*=22.13, P< 0.001), exhibited a
significantly lower birth weight compared to those born to women with
preeclampsia alone (B=-258.53;95%C/:-398.56, -118.50). Additionally, maternal
alanine aminotransferase (ALT) levels were found to partially mediate this
association (indirect effect:-50.85, 95%C/:-101.07, -15.07). The findings of this
study indicate that compared with pregnant women with preeclampsia alone,
neonates born to pregnant women suffering from preeclampsia combined with
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GHT have significantly lower birth weights, with maternal ALT levels acting as a
potential partial mediator in this association. These results provide an important
reference for clinicians to monitor thyroid and liver function in patients

with preeclampsia.

birth weight, preeclampsia, gestational hypothyroidism, liver function, mediating model

Introduction

Neonatal birth weight is determined by maternal health, the
placenta, and the fetus’ own growth potential, and serving as a
critical indicator of neonatal survival (I, 2). Low birth weight
(LBW), defined as a birth weight of less than 2500 grams(g), is
considered an important factor in neonatal mortality (3, 4). Studies
have demonstrated that LBW increases the risk of future
cardiovascular morbidity and is associated with an elevated risk
of future hypertension in pregnancy (5, 6).

Preeclampsia is a serious complication of pregnancy with
hypertension and proteinuria as the main clinical manifestations,
and is one of the leading causes of maternal and neonatal mortality
(7, 8). Preeclampsia can cause a series of serious obstetric
complications, including preterm labor and placental abruption,
as well as fetal complications such as fetal respiratory distress,
intrauterine growth restriction, oligohydramnios, and stillbirth (9).
There is increasing evidence suggests that preeclampsia is closely
associated with maternal hypertension, cardiovascular disease, and
dementia (10-12). Mechanistically, placental dysfunction induced
by preeclampsia profoundly impacts on fetal development, with
studies confirming it as an important predictor of neonatal birth
weigh (13-15). The thyroid gland is involved in endocrine
regulation and plays a crucial role in maternal and fetal
development during pregnancy (16). Studies have confirmed the
correlation between thyroid dysfunction and preeclampsia, and the
prevalence of hypothyroidism in pregnant women with
preeclampsia is significantly increased (17-19). Currently,
hypothyroidism has become a common complication of
preeclampsia, leading to adverse pregnancy outcomes, including
LBW, and severely affecting neonatal birth weight and even future
growth and development (20).

Preeclampsia and hypothyroidism during pregnancy are closely
associated with alterations in liver function. Preeclampsia causes
impaired liver function, which has been identified as the third most
important predictor after hypertension and proteinuria (21, 22).
Simultaneously, hypothyroidism, which is characterized by a
feedback increase in thyroid-stimulating hormone (TSH) as a
biochemical marker, interacts with hepatic function metabolically
(23, 24). Experimental evidence has been presented that hepatic
dysfunction in pregnant mice predisposes to placental dysfunction,
which results in lower birth weights in newborn mice (25).

Frontiers in Endocrinology

Population-based studies have also confirmed that pregnant
women with abnormal liver function are associated with adverse
birth outcomes, such as preterm labor, LBW, intrauterine stillbirth,
and fetal respiratory distress (26). Several scholars have investigated
the mechanisms underlying the association of preeclampsia and
hypothyroidism in pregnancy with LBW, including placental
dysfunction in preeclampsia, maternal nutritional deficiencies
associated with pregnancy, and maternal thyroid hormone levels
(27-29). In conclusion, the mechanism by which preeclampsia
combined with hypothyroidism affects neonatal birth weight is
multifactorial. But there are currently limited studies exploring
the mediating role of liver function as an important factor in the
relationship between preeclampsia combined with hypothyroidism
and birth weight. As shown in some studies, maternal liver function
status is associated with fetal growth and development during
pregnancy. Conducting research on the association between liver
function indicators and birth weight can provide a basis for early
risk monitoring strategies.

Therefore, the objective of this study was to explore the
association between preeclampsia in conjunction with gestational
hypothyroidism, maternal liver function, and neonatal birth weight.
Additionally, the study aimed to explore whether maternal liver
function serves as a potential mediating factor in the association
between preeclampsia combined with gestational hypothyroidism
and neonatal birth weight. This investigation seeks to address
existing gaps in the literature regarding the underlying
mechanisms and to offer insights for future related studies.

Materials and methods
Study design and population

This study was a retrospective study, and 554 cases who
underwent prenatal examinations and deliveries at department of
Obstetrics, Zhengzhou Central Hospital Affiliated to Zhengzhou
from January 2021 to September 2023 were selected as the study
subjects. According to the following inclusion criteria, 482 cases
diagnosed with preeclampsia were initially included, and then 62
cases were excluded according to the exclusion criteria, 420 cases of
preeclampsia patients were ultimately included in this study, and
the median gestational age at diagnosis of preeclampsia
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(interquartile range) was 35.4(32.5, 37.3) weeks. Among these, 46
cases were complicated by hypothyroidism, and the median
gestational age at diagnosis of hypothyroidism (interquartile
range) was 32.2(27.0, 36.0) weeks.

The inclusion criteria were as follows: (1) fulfillment of the
diagnostic criteria for preeclampsia; (2) maternal age > 18 years; (3)
gestational age > 24 weeks; (4) singleton pregnancy; (5) absence of a
history of substance abuse, smoking, or alcohol consumption
among the pregnant women.

The exclusion criteria were as follows: (1) pregnant individuals
with other complications, such as gestational diabetes or
hypertension, as well as those with underlying medical conditions
prior to pregnancy (e.g., thyroid disorders, chronic hypertension,
heart disease, liver or biliary diseases, or renal diseases); (2) patients
lacking relevant information, such as those with incomplete or
missing neonatal birth weight and liver function indicators; (3)
individuals who conceived through assisted reproductive technology.

The diagnostic criteria for preeclampsia were based on the
“Diagnosis and treatment of hypertension and preeclampsia in
pregnancy: a clinical practice guideline in China (2020)” issued by
the Obstetrics and Gynecology Branch of the Chinese Medical
Association. Specifically, preeclampsia is diagnosed when, after 20
weeks of gestation, a pregnant woman exhibits a systolic blood
pressure of 2140 mmHg and/or a diastolic blood pressure of =90
mmHg, accompanied by at least one of the following: (1) a 24-hour
urinary protein quantification of >0.3 g, or a urinary protein-to-
creatinine ratio of 0.3, or a random urinary protein result of >(+);
(2) the absence of proteinuria but the presence of any one of the
following organ or system involvements, including abnormalities
affecting vital organs such as the heart, lungs, liver, and kidneys, or
alterations in the hematological, gastrointestinal, or neurological
systems, as well as involvement of the placenta and fetus (30).

The diagnostic criteria for hypothyroidism during pregnancy refer
to the revised “Guideline on diagnosis and management of thyroid
diseases during pregnancy and postpartum (2™ edition)” by the
Chinese Medical Association, which stipulates that serum thyroid-
stimulating hormone (TSH) levels exceed the upper limit of
the pregnancy-specific reference range, while serum free thyroxine
(FT4) levels fall below the lower limit of the specific reference range.
Combined with the types of kits and fully automated chemiluminescent
immunoassay analyzers used in this study, the guideline recommended
reference ranges for TSH and FT4 were as follows: in early pregnancy,
TSH 0.05~3.55 mIU/L, FT49.01~15.89 pmol/L; in mid-pregnancy, TSH
0.21~3.31 mIU/L, FT4 6.62~13.51 pmol/L; in late pregnancy, TSH
0.43~3.71 mIU/L, FT4 6.42~10.75 pmol/L (31).

Ethical compliance statement for human
participant research

All study participants provided written informed consent, and
this study received approved from the Ethics Committee of
Zhengzhou Central Hospital Affiliated to Zhengzhou (No.
7ZXYY202470). All methods were performed in accordance with
the relevant guidelines and regulations of the Declaration
of Helsinki.
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Variables and definitions

Measurement of serum liver function indicators

In this study, we collected the levels of liver function indicators
from subjects during their hospitalization. Based on previous research,
this study selected indicators closely related to liver function, primarily
including alanine aminotransferase (ALT 7-40U/L), aspartate
aminotransferase (AST 13-35U/L), alkaline phosphatase (ALP 50-
135U/L), total bilirubin (TBIL 0-21umol/L), total protein (TP 60-
80g/L), and albumin (Alb 35-55g/L). A volume of 5 mL of fasting
antecubital venous blood was collected, and serum was separated by
centrifugation at 4000 rpm for 5 minutes. All biochemical analyses
were performed using an AU5800 fully automated biochemistry
analyzer (Beckman Coulter, USA) with matched reagent kits. All
reagents and instruments were subjected to quality control procedures.

Measurement of neonatal birth weight

Neonatal birth weight, measured in grams, was measured and
recorded within one hour after birth. The data pertaining to birth
weight for this investigation was sourced from medical records.

Measurement of covariates

Participants in this study were requested to complete a baseline
questionnaire upon admission, which encompassed demographic
characteristics of the pregnant women (age, ethnicity, residence, and
educational level), history of cesarean delivery (yes/no), history of
adverse pregnancy outcomes (yes/no), primiparity (yes/no), and
family history of hypertension (yes/no). Participants self-reported
their pre-pregnancy weight (kg) and their height was measured in a
barefoot standing position using a medical height and weight
measuring device (cm). Subsequently, pre-pregnancy body mass
index (PBMI) was calculated using the standard formula BMI =
weight (kg)/height (m?). According to World Health Organization
(WHO) standards, participants were classified into categories of
underweight (BMI< 18.5 kg/m®), normal weight (18.5 < BMI < 24.9
kg/m?), overweight (25 < BMI < 29.9 kg/m?), and obese (BMI = 30 kg/
m?). During hospitalization, ultrasound was utilized to assess whether
the fetus was experiencing growth restriction, and postpartum data on
preterm birth (yes/no) and neonatal sex (male/female) were collected
from medical records. The ultrasound diagnostic criteria for fetal
growth restriction (FGR) were defined as an ultrasound-estimated
fetal weight or abdominal circumference below the 10th percentile for
the corresponding gestational age; preterm birth was defined as
delivery occurring before 37 weeks of gestation.

Statistical analysis

Data analysis was conducted using SPSS 26.0 statistical software.
Initially, descriptive analysis was performed, with categorical data
expressed as N (%) and continuous data described using either x + s
or M (IQR). For univariate analysis, given that birth weight exhibited
a non-normal distribution, the Mann-Whitney U test or Kruskal-
Wallis H test were employed to examine differences in birth weight
among various characteristic groups. Spearman correlation analysis
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was utilized to assess the relationship between liver function
indicators (ALT/AST/ALP/TP/Alb/TBIL) and birth weight.
Subsequently, a generalized linear model (GLM) was applied for
multivariate analysis to evaluate the potential association between the
presence of GHT, the levels of liver function indicators, and birth
weight. Finally, the presence of GHT was treated as the independent
variable, liver function indicators as mediating variables, and birth
weight as the dependent variable. The mediation effect of liver
function indicators was calculated using the SPSS Process macro,
employing the bias-corrected Bootstrap method (with 5000
resamples) for validation. A p-value 0f<0.05 was considered
statistically significant.

Results
Descriptive statistics

This study included a total of 420 pregnant women diagnosed
with preeclampsia, among whom 46 (11.0%) also had concomitant
hypothyroidism. The median age (interquartile range) was 31 (28,
34) years, with the majority of the participants (72.1%) aged
between 25 and 35 years. The median neonatal birth weight
(interquartile range) was 2990.0 (2541.3, 3368.8) grams. Preterm

TABLE 1 The baseline characteristics of the included pregnant women.

10.3389/fendo.2025.1555277

birth occurred in 111 participants (26.4%), while 24 (5.7%) were
diagnosed with fetal growth restriction. Additionally, 15
participants were classified as underweight prior to pregnancy,
123 as overweight, and 52 as obese. Univariate analysis revealed
that preterm birth (P<0.001), occurrence of fetal growth restriction
during pregnancy (P<0.001), a pre-pregnancy BMI below 18.5 kg/
m? (P=0.003), and the presence of GHT (P<0.001) were associated
with lower birth weights of the neonates born to women with
preeclampsia (Table 1).

Compared with pregnant women with preeclampsia alone,
those with preeclampsia combined with GHT had higher rates of
preterm delivery (39.1% vs. 24.9%), fetal growth restriction (17.4%
vs. 4.3%) and LBW (50.0% vs. 19.3%), were more likely to be
primiparous (73.9% vs. 58.6%), and obese (13.0% vs. 12.3%). From
the perspective of liver function indicators, the levels of ALT
(P<0.001) and AST (P=0.002) showed statistically significant
differences between the two subgroups (Table 2).

Correlation between maternal liver
function indicators and neonatal birth
weight

Except for total bilirubin, the levels of other maternal liver
function indicators showed significant correlations with neonatal

Variable N (%) Birth weight (g) Z/IH P
Age (Years)
<25 23 (5.5) 2980.0 (2610.0, 3250.0)
25~35 303 (72.1) 3000.0 (2600.0, 3370.0)
2.65 0.449
35~40 79 (18.8) 2825.0 (2325.0, 3350.0)
>40 15 (3.6) 3155.0 (2795.0, 3630.0)
Fetal sex
Male 223 (53.1) 3015.0 (2600.0, 3370.0)
-0.68 0.494
Female 197 (46.9) 2950.0 (2497.5, 3365.0)
Ethnicity
Han ethnicity 411 (97.9) 2990.0 (2550.0, 3365.0)
-0.65 0.513
Ethnic minorities 9 (2.1) 2890.0 (2120.0, 3485.0)
Residence
Urban area 349 (83.1) 2980.0 (2547.5, 3322.5)
-1.26 0.208
Rural area 71 (16.9) 3100.0 (2500.0, 3570.0)
Education level
Junior high school and below 41 (9.8) 3155.0 (2260.0, 3500.0)
High school and vocational secondary
A 51 (12.1) 2980.0 (2450.0, 3305.0)
schoo 2.11 0.550
Junior college 134 (31.9) 3032.5 (2660.0, 3415.0)
Undergraduate and postgraduate degrees 194 (46.2) 2950.0 (2543.8, 3311.3)
(Continued)
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TABLE 1 Continued
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Variable N (%) Birth weight (g) Z/H P
PTD
No 309 (73.6) 3160.0 (2880.0, 3495.0)
-12.79 <0.001
Yes 111 (26.4) 2240.0 (1985.0, 2525.0)
History of cesarean section
No 319 (76.0) 3005.0 (2545.0, 3370.0)
-0.68 0.496
Yes 101 (24.0) 2965.0 (2522.5, 3315.0)
History of adverse obstetric
No 363 (86.4) 3010.0 (2570.0, 3370.0)
-1.66 0.098
Yes 57 (13.6) 2760.0 (2450.0, 3275.0)
Primipara
No 167 (39.8) 2950.0 (2495.0, 3370.0)
-1.06 0.288
Yes 253 (60.2) 3020.0 (2570.0, 3367.5)
FGR
No 396 (94.3) 3017.5 (2630.0, 3370.0)
-5.92 <0.001
Yes 24 (5.7) 2182.5 (1788.8, 2338.8)
Family history of hypertension
No 370 (88.1) 3002.5 (2548.8, 3370.0)
-1.28 0.201
Yes 50 (11.9) 2895.0 (2498.8, 3242.5)
PBMI (kg/m?)
<185 15 (3.6) 2645.0 (2255.0, 3165.0)
18.5~24.9 230 (54.7) 2950.0 (2392.5, 3280.0)
13.77 0.003*
25.0~29.9 123 (29.3) 3035.0 (2660.0, 3390.0)
>30 52 (124) 3180.0 (2808.8, 3613.8)
PESGHT
No 374 (89.0) 3015.0 (2610.0, 3371.3)
-3.95 <0.001
Yes 46 (11.0) 2530.0 (2023.8, 3143.8)

*P<0.05; PTD, Preterm delivery; FGR, Fetal growth restriction; PBMI, Pre-pregnancy body mass index; PE&GHT, Preeclampsia combined with gestational hypothyroidism.

birth weight. Specifically, ALT (r=-0.320) and AST (r=-0.234) levels
exhibited negative correlations with neonatal birth weight, while
ALP (r=0.193), TP (r=0.165), and ALB (r=0.177) displayed positive
correlations with neonatal birth weight (Table 3).

Relationship between thyroid function,
liver function indicators in pregnant
women with preeclampsia, and neonatal
birth weight

This study explored the relationship between the presence of
GHT in preeclamptic pregnant women and their liver function
indicators with neonatal birth weight through the construction of a
GLM and the adjustment of control variables. The findings revealed
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that, without adjusting for other variables (Model 1), the neonatal
birth weight of infants born to preeclamptic mothers with GHT was
significantly lower compared to those born to mothers with
uncomplicated preeclampsia [ = -351.36; 95% confidence
interval (CI): -532.57, -170.15]. Furthermore, as levels of ALT (8
= -2.18; 95% CI: -3.90, -0.47) and AST (B = -4.04; 95% CI: -7.06,
1.02) increased, neonatal birth weight correspondingly decreased,
while an elevation in ALP levels ($=1.43; 95% CI: 0.53, 2.32) was
associated with an increase in neonatal birth weight. Following
adjustments for preterm birth, FGR, and PBMI (Model 2), the
presence of GHT (f = -258.53; 95% CI: -398.56, -118.50), ALT (3 =
-1.88; 95% CI: -3.19, -0.56), and ALP (f=1.02; 95% CI: 0.33, 1.70)
levels remained significantly associated with neonatal birth weight,
whereas the association between AST levels (8 = -1.34; 95% CI:
-3.66, 0.98) and neonatal birth weight became statistically
insignificant (Table 4).
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TABLE 2 Comparison of baseline data between the preeclampsia group and the preeclampsia with hypothyroidism group.

Maternal status

0,
Variable [n (%)/M (P25, P7s)]
PESGHT
Age (Years)
<25 0 (0.0) 23 (6.1)
25~35 35 (76.1) 268 (71.7)
-1.07 0.283
35~40 7 (15.2) 72 (19.3)
>40 4(8.7) 11 (2.9)
‘ Fetal sex
Male 22 (47.8) 201 (53.7)
0.58 0.448
Female 24 (52.2) 173 (46.3)
‘ Ethnicity
Han ethnicity 45 (97.8) 366 (97.9)
— 1.000
Ethnic minorities 1(2.2) 8 (2.1)
‘ Residence
Urban area 43 (93.5) 306 (81.8)
3.97 0.058
Rural area 3(6.5) 68 (18.2)
‘ Education level
Junior high school and below 6 (13.0) 35(9.4)
Hihgh fchool and vocational secondary 6 (13.0) 45 (12.0)
schoo -0.28 0.778
Junior college 10 (21.8) 124 (33.2)
Undergraduate and postgraduate degrees 24 (52.2) 170 (45.4)
‘ PTD
No 28 (60.9) 281 (75.1)
4.29 0.038*
Yes 18 (39.1) 93 (24.9)
‘ History of cesarean section
No 37 (80.4) 282 (75.4)
0.57 0.451
Yes 9 (19.6) 92 (24.6)
‘ History of adverse obstetric
No 39 (84.8) 324 (86.6)
0.12 0.730
Yes 7 (15.2) 50 (13.4)
‘ Primipara
No 12 (26.1) 155 (41.4)
4.03 0.045*
Yes 34 (73.9) 219 (58.6)
‘ FGR
No 38 (82.6) 358 (95.7)
10.75 0.001*
Yes 8 (17.4) 16 (4.3)
(Continued)
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TABLE 2 Continued
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Maternal status
[n (%)/M (P25, P75

Variable
PE&GHT
Family history of hypertension
No 43 (93.5) 327 (87.4)
143 0.232
Yes 3(6.5) 47 (12.6)
PBMI (kg/m?)
<185 1(2.2) 14 (3.7)
18.5~24.9 32 (69.6) 198 (53.0)
-2.33 0.020*
25.0~29.9 7 (15.2) 116 (31.0)
>30 6 (13.0) 46 (12.3)
Neonatal birth weight status
non-LBW 23 (50.0) 302 (80.7)
22.13 <0.001
LBW 23 (50.0) 72 (19.3)
ALT (U/L) 23.5 (12.8,59.3) 13.0 (9.0,20.0) -4.34 <0.001
AST (U/L) 36.5 (24.0,50.3) 26.0 (22.0,33.0) -3.17 0.002*
ALP (U/L) 155.0 (120.3,193.8) 151.0 (123.0,189.3) 022 0.823
TP (g/L) 56.0 (52.4,62.0) 58.1 (54.0,62.0) -1.18 0.238
Alb (g/L) 30.1 (27.5,34.4) 31.1 (29.0,34.0) -1.66 0.097
TBIL (umol/L) 10.9 (8.3,14.8) 11.0 (9.1,13.3) -0.16 0.870

*P<0.05; PE&GHT, Preeclampsia combined with gestational hypothyroidism; PTD, Preterm delivery; FGR, Fetal growth restriction; PBMI, Pre-pregnancy body mass index; LBW, low birth
weight; ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; ALP, Alkaline Phosphatase; TP, Total Protein; Alb, Albumin; TBIL, Total Bilirubin; BW, Birth Weight.

We also did some extra analysis after sorting out liver function
indicators (normal or abnormal) and birth weight (low birth weight
or non-low birth weight). Check out the Supplementary Table S1
and Supplementary Table S2 for more details.

Mediating effects of liver function
indicators

Since there was no statistically significant difference in ALP
levels between the preeclampsia group and the preeclampsia

combined with GHT group, this study only included ALT, which
was statistically significant in the multifactorial analysis, into a
mediation model to investigate whether the factor partially mediate
the relationship between preeclampsia in pregnant women with
GHT and neonatal birth weight. The path coefficients are detailed in
Table 5. The results indicate that pregnant women with
preeclampsia combined with GHT exhibited higher ALT levels
compared to those with preeclampsia alone (=23.19, P=0.002),
which was associated with a negative impact on neonatal birth
weight (f’=-271.18, P<0.001). Furthermore, ALT levels had a
negative effect on neonatal birth weight (f=-2.40, P<0.001. In

TABLE 3 Analysis of the correlation of maternal liver function indicators and neonatal birth weight.

Variables ALT AST ALP TP ALB TBIL BW
ALT 1.000
AST 0.589** 1.000
ALP 0.111% 0.051 1.000
TP -0.038 -0.139** 0.077 1.000
Alb 0.000 -0.181%* 0.099* 0.790%* 1.000
TBIL 0.100* 0.118* 0.130** 0.067 0.127** 1.000
BW -0.320* -0.234** 0.193** 0.165** 0.177** 0.089 1.000

* P<0.05, ** P<0.01. ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; ALP, Alkaline Phosphatase; TP, Total Protein; Alb, Albumin; TBIL, Total Bilirubin; BW, Birth Weight.
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TABLE 4 The results of generalized linear regression analyses of birth weight.

Model 1 Model 2
Variable
B (95%Cl) B (95%Cl)

PESGHT

No (ref.) — — —_ _

Yes -351.36 (-532.57, -170.15) <0.001 -258.53 (-398.56, -118.50) <0.001
ALT -2.184 (-3.90, -0.47) 0.013* -1.88 (-3.19, -0.56) 0.005*
AST -4.04 (-7.06, 1.02) 0.009* -1.34 (-3.66, 0.98) 0.256
ALP 1.43 (0.53, 2.32) 0.002* 1.02 (0.33, 1.70) 0.004*
TP 10.45 (-1.65, 22.56) 0.090 6.07 (-3.21, 15.34) 0.200
ALB 4.74 (-14.59, 24.07) 0.631 -0.45 (-15.24, 14.35) 0.953
PTD

No (ref.) — — — —

Yes — — -799.73 (-899.72, -699.75) <0.001
FGR

No (ref.) — — — —

Yes — — -296.60 (-487.72, -105.49) 0.002*
PBMI (kg/m?)

<18.5 — — -177.45 (-408.54, 53.64) 0.132

18.5~24.9 (ref) — — _ _

25.0~29.9 — — 93.69 (-4.30, 191.68) 0.061

>30.0 — — 310.39 (176.83, 443.96) <0.001

*P<0.05. CI, confidence interval; PE&GHT: Preeclampsia combined with gestational hypothyroidism; ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; ALP, Alkaline
Phosphatase; TP, Total Protein; Alb, Albumin; PTD, Preterm delivery; FGR, Fetal growth restriction; PBMI, Pre-pregnancy body mass index; ref., Reference Group.
Model 1 was the unadjusted model; Model 2 adjusted for PTD, FGR and PBMI.

light of these path results, the study explored the mediating effect of  Djscussions

ALT, as detailed in Table 6. The findings indicate that preeclampsia

in conjunction with GHT may indirectly diminish neonatal birth This study explores the impact of gestational hypothyroidism
weight by elevating maternal ALT levels. The mediating effect of  and liver function indicators on neonatal birth weight in women
ALT is quantified at -50.85 with a 95% Bootstrap confidence  with preeclampsia by constructing generalized linear models and
interval. The interval (95% CI) of [101.07, -15.07] does not mediation models, while also evaluates the potential mediating
encompass zero, indicating a substantial mediating effect that  effects of liver function indicators. The results indicate that
accounts for 15.5% of the total effect. The constructed mediation  approximately 11.0% of the preeclamptic participants included in
model is illustrated in Figure 1. the study concurrently suffered from hypothyroidism. Neonates

TABLE 5 Path-coefficients of the mediating models.

Pathway Standardized coefficients Coefficients() S.E. P
PE&GHT—ALT 0.49 23.19 7.44 0.002
PE&GHT—BW -0.42 27118 7225 <0.001

ALT—BW -0.18 -2.40 048 <0.001

Adjusting for preterm delivery, fetal growth restriction and pre-pregnancy body mass index.
S.E., Standard Error; PE&GHT, Preeclampsia combined with gestational hypothyroidism; ALT, Alanine Aminotransferase; BW, Birth Weight.
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TABLE 6 Mediating effects of maternal alanine aminotransferase between preeclampsia with gestational hypothyroidism and birth weight.

Bootstrap 95%CI

Effect size (%)

Variable Estimate

Total effect -327.52 73.79
Direct effect -276.66 72.89
Indirect effect -50.85 22.53

Lower Upper

-472.56 -182.48 ‘ 100.0
-419.94 -133.39 ‘ 84.5
-101.07 -15.07 ‘ 155

Adjusting for preterm delivery, fetal growth restriction and pre-pregnancy body mass index.
S.E., Standard Error; CI, Confidence Interval.

born to mothers with preeclampsia and hypothyroidism exhibited
lower birth weights; specifically, higher levels of ALT in liver
function indicators were associated with lower neonatal birth
weights, whereas neonatal birth weight increased with rising ALP
levels. Notably, after adjusting for covariates such as preterm birth,
FGR, and PBM], the relationship between AST levels and neonatal
birth weight became statistically insignificant. Furthermore, the
mediation model revealed that hypothyroidism can directly affect
the neonatal birth weight of women with preeclampsia and can also
indirectly influence neonatal birth weight through elevated ALT
levels (mediating effect: -50.85; 95% CI = -101.07, -15.07).
Preeclampsia and gestational hypothyroidism are two common
pregnancy complications that can have severe implications for the
health of both the mother and the fetus, including miscarriage,
preterm birth, fetal growth restriction, and low birth weight (32,
33). Preeclampsia can lead to maternal vascular constriction and
reduced blood flow, thereby affecting the blood supply to the placenta
and subsequently influencing the nutritional supply to the fetus (34).
Particularly, preeclampsia is one of the significant causes of maternal
and neonatal mortality, and once diagnosed, there are currently no
effective treatment options available aside from the termination of
pregnancy (34, 35). Similarly, during pregnancy, thyroid hormones
can regulate various metabolic balances in pregnant women and are
also involved in the formation and function of the placenta. In cases
of hypothyroidism, the resulting deficiency of thyroid hormones may
lead to placental dysfunction, causing fetal developmental
abnormalities (36). It is worth noting that these two diseases often
coexist and influence each other. Previous studies have indicated

that hypothyroidism is significantly associated with an increased
incidence of preeclampsia (37), and the prevalence of hypothyroidism
among patients with preeclampsia is significantly higher than that in
the general population (38). Additionally, further research has
pointed out that hypothyroidism is correlated with the severity of
preeclampsia (39). Therefore, the combination of preeclampsia and
gestational hypothyroidism may pose greater risks to both the mother
and the fetus. On the other hand, the birth weight of neonates is not
only related to their survival rates but also has lasting implications for
their physical growth, the development of various systems, and health
issues in adulthood (40, 41). That’s why we focused on investigating
the effect of hypothyroidism in pregnant women with preeclampsia
on neonatal birth weight. Our study findings indicate that neonates
born to mothers with preeclampsia combined with hypothyroidism
have lower birth weights compared to those born to mothers with
preeclampsia alone, which is consistent with previous research results
(42). This may indicate that when pregnant women experience
preeclampsia in conjunction with hypothyroidism, it may have a
more severe impact on the birth weight of the neonate.
Furthermore, our study further investigated the association
between maternal liver function indicators and neonatal birth
weight. Among pregnant women, the prevalence of liver diseases
during pregnancy is approximately 3%, primarily manifested by
abnormal changes in transaminases, bilirubin, and other related
parameters (43). Pregnancy-related liver diseases are closely
associated with fetal growth and development. Some pregnancy-
specific liver diseases, such as acute fatty liver of pregnancy (AFLP)
and intrahepatic cholestasis of pregnancy (ICP), may result in

Alanine
Aminotransferase
hu\
(\ b
1?3'\9
Preeclampsia with -276.66 (72.89)

hypothyroidism

FIGURE 1

Birth Weight

The mediation model examines the indirect correlation between gestational hypothyroidism in pregnant women with preeclampsia and neonatal

birth weight through maternal alanine aminotransferase level.
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maternal hepatic dysfunction, which can subsequently affect the
placenta’s ability to supply nutrients and oxygen to the fetus. This
may lead to complications such as fetal intrauterine distress,
preterm birth, and LBW, thereby posing risks to maternal and
fetal safety (44). However, during pregnancy, the indicators related
to liver function diagnosis do not change independently and may
undergo physiological changes, which complicates the diagnosis of
liver function in pregnant women. For instance, ALP levels may
physiologically increase in the late stages of pregnancy due to
placental production and fetal skeletal development. Conversely,
albumin levels may decrease due to hemodilution. Nevertheless,
when maternal transaminase and bilirubin levels increase, it is
generally considered an abnormal phenomenon (45). Consistent
with the findings of Sciarrone et, al (46), this study also indicates
that maternal ALT levels are negatively correlated with neonatal
birth weight. Elevated ALT levels typically indicate liver cell damage
or liver dysfunction, which may lead to a decrease in the liver’s
synthetic capacity and subsequently affect fetal nutrition supply
(47). Additionally, pro-inflammatory factors released due to liver
damage can cross the placental barrier and inhibit fetal growth (48),
ultimately resulting in reduced the neonatal birth weight (49). This
study also found a positive correlation between maternal serum
ALP levels and neonatal birth weight, which is consistent with
previous research findings (50, 51). The variation in ALP levels is
associated with gestational age; although elevated ALP levels are
related to ICP (52), which may impair placental function, the
increase in ALP during pregnancy is generally considered
physiological. From another perspective, ALP is involved in the
transport and metabolic processes within the placenta. Elevated
ALP levels may reflect robust placental function, which is beneficial
for fetal growth and development, thereby contributing to increased
birth weight (53). Interestingly, after adjusting for covariates, the
statistical significance between AST levels and neonatal birth weight
dissipated. This may be attributed to the substantial influence of
these covariates on neonatal birth weight, thereby obscuring the
effect of AST levels. Additionally, there may be a high correlation
between AST levels and the covariates, as indicated by the research
conducted by Zhuang et al., which suggests that AST is an
independent risk factor for preterm birth (54).

It is noteworthy that both preeclampsia and hypothyroidism
can impair maternal liver function (35, 55), and that preeclampsia,
hypothyroidism, and liver function all have an impact on neonatal
birth weight. Therefore, we constructed a mediation model to
explore whether preeclampsia combined with hypothyroidism
could indirectly influence neonatal birth weight by altering liver
function indicators. This investigation serves as an extension of our
understanding of the impact of hypothyroidism on fetal
development. The results of this study indicate that ALT levels
partially mediate the relationship between preeclampsia combined
with hypothyroidism and neonatal birth weight, that is, compared
to pregnant women with preeclampsia alone, those with
preeclampsia combined with hypothyroidism not only directly
contribute to a reduction in neonatal birth weight but may also
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indirectly lower birth weight through increased ALT levels.
Hypothyroidism is characterized by elevated serum TSH levels
and decreased FT4 levels, leading to thyroid hormone deficiency,
which plays a crucial role in hepatic cellular activity and liver
metabolism. Thus, hypothyroidism may lead to hepatic
dysfunction, commonly manifested as impaired lipid metabolism
(56) and hepatic steatosis (57). Previous studies have primarily
focused on the lipid metabolism of pregnant women with
hypothyroidism and its impact on pregnancy outcomes (58).
However, there is a paucity of research examining the effects of
changes in liver function indicators caused by hypothyroidism on
pregnancy outcomes. In fact, hypothyroidism can lead to
abnormalities in serum liver enzymes. A study analyzing serum
data from 10292 outpatient adults indicated a negative correlation
between serum GGT and ALT concentrations and FT4 levels (59),
suggesting that hypothyroidism may result in elevated
concentrations of ALT and gamma-glutamyl transferase (GGT).

Certainly, this study has several limitations. Firstly, the scope of
our investigation is not comprehensive enough, as it lacks details on
factors such as the nutritional status of pregnant women and the
treatment received during hospitalization, which may confound the
relationship with neonatal birth weight. Secondly, given that this
study employs an observational design, it cannot establish causal
relationships, necessitating cautious interpretation of the findings.
Thirdly, the study only included women with singleton live births,
which may introduce selection bias; additionally, there is a lack of
relevant data from normal pregnant women to serve as a control
group. Fourthly, since the focus of research designs was on
examining the effects of preeclampsia combined with or without
hypothyroidism on maternal liver function and neonatal birth
weight, the impact of the severity of preeclampsia on liver
function and birth weight was overlooked. Consequently, some
classification criteria lacked comprehensive data monitoring,
making it impossible to conduct more in-depth exploratory
research. Finally, there may exist a bidirectional relationship
between thyroid function and liver function; this study only
explored whether hypothyroidism could induce changes in liver
function indicators that indirectly affect neonatal birth weight.
Therefore, future research should consider conducting larger-scale
prospective studies to gain a more comprehensive understanding of
the intricate interplay between preeclampsia with hypothyroidism,
liver function, and adverse pregnancy outcomes.

Conclusions

This study provides new insights by exploring the impact of
hypothyroidism and liver function indicators in pregnant women
with preeclampsia on neonatal birth weight. The findings support
the notion that hypothyroidism adversely affects fetal development
and suggest that maternal serum ALT levels may serve as a potential
partial mediator linking preeclampsia combined with
hypothyroidism and neonatal birth weight. Clinicians should
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closely monitor thyroid and liver function in pregnant women with
preeclampsia and implement appropriate interventions to improve
neonatal birth weight and health outcomes.
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Purpose: Asymptomatic hyperuricemia(AH) is characterized by elevated blood
uric acid levels without symptoms,posing risks like gout, kidney stones, and
cardiovascular diseases. This study aims to investigate the role of the gut
microbiota in uric acid metabolism in AH.

Methods: Clinical data from 30 AH patients and 30 healthy controls were
collected. Fecal microbiota genomic DNA was extracted, PCR amplified, library
constructed, and sequenced. Bioinformatics and statistical analyses were
conducted to study the gut microbiota of the two groups.

Results: The AH group exhibited significantly elevated levels of body mass index
(BMI), Triglycerides (TG), Total Cholesterol (TC), as along with a history of
smoking, hypertension, and fatty liver disease compared to the healthy group
(P < 0.05). The overall richness and ecological diversity of gut microbiota in the
AH group decreased, with differences in the distribution at the phylum and genus
levels compared to the healthy group. Uric acid demonstrated significant
correlations with various gut microbiota (e.g., Granulicatella), suggesting their
potential as biomarkers for AH. Despite limitations such as a small sample size
and lack of long-term follow-up, our findings provide new insights for the early
diagnosis and personalized treatment of AH. Looking ahead, these discoveries
may advance the clinical management of AH and the exploration of
associated biomarkers.

KEYWORDS

asymptomatic hyperuricemia, gut microbiota, 16S rRNA sequencing, correlation study,
clinical parameters

1 Introduction

Asymptomatic hyperuricemia(AH) is characterized by elevated levels of uric acid in the
blood without clinical symptoms. Despite its increasing prevalence in adults, the potential
health risks associated with this condition are often overlooked (1). AH is closely linked to
the development of gout, kidney stones, and cardiovascular diseases (2), imposing
significant economic burdens on healthcare systems. Current diagnostic and treatment
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approaches primarily focus on symptomatic gout patients, while
prevention and management of AH lack sufficient research and
attention, highlighting the urgent need for further exploration and
investigation in this field.

Recent research has indicated a potential significant role of the
gut microbiota in metabolic disorders, including the regulation of
uric acid metabolism (3, 4). The composition of the gut microbiota
is closely associated with an individual’s metabolic status, with
certain microbes potentially impacting the synthesis and excretion
of uric acid (5). This discovery has sparked scientific interest in
exploring the connection between AH and the gut microbiota,
suggesting a potential significant role of the gut microbiota in the
development of hyperuricemia (6). Therefore, research focusing on
the gut microbiota may unveil new pathophysiological insights into
AH and offer novel avenues for intervention.

This study aims to explore the potential connection between gut
microbiota characteristics and uric acid metabolism in patients with
AH. The research methods include clinical data collection, DNA
extraction and sequencing, microbiome data analysis, to elucidate
how microbiota composition impacts the development and
advancement of AH. This not only provides foundational data for
mechanistic studies of AH but also offers potential biomarker
support for future personalized treatment strategies.

Upon reviewing the background and existing research, it is evident
that this study will provide a new perspective on the prevention and
treatment of AH, particularly in the individualized intervention of the
microbiome. This will offer a more scientific basis for clinical practice,
ultimately reducing the incidence of AH and its related complications,
thereby improving patients’ quality of life.

2 Materials and methods
2.1 Study population

In the period from January to June 2023, we recruited 30 patients
with AH at the Health Examination Center of Dongfang Hospital,
Beijing University of Chinese Medicine. The diagnostic criteria for AH
were defined as serum uric acid levels of > 7 mg/dL for males and > 6
mg/dL for females in two fasting tests on different dates under normal
purine diet (7). Exclusion criteria for the AH patients included: a
history of acute gouty arthritis, chronic tophaceous gout, chronic
gouty arthritis, or uric acid nephropathy; the presence of severe
cardiovascular, cerebrovascular, hepatic, renal, or hematopoietic
system diseases; and secondary hyperuricemia due to other causes
such as malignancy or renal disease. Additionally, we excluded
individuals who had taken medications known to influence uric
acid metabolism (e.g., aspirin, hydrochlorothiazide, probenecid) or
those who had used antibiotics, probiotics, prebiotics, or synbiotics
within the 3 months prior to enrollment. Pregnant or lactating women
were also excluded. A parallel group of 30 age- and gender-matched
healthy volunteers was recruited. These volunteers had no history of
significant diseases or infections in the past 3 months and had likewise
not used any antibiotics or probiotic supplements during that period.
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Sample size estimation: The sample size was determined a priori
using power analysis in G*Power 3.1, where based on pilot data
from 5 asymptomatic hyperuricemia (AH) patients and 5 healthy
controls, we estimated a Cohen’s d effect size of 0.80 for o.-diversity
(Shannon index) differences; with a significance level (o)) of 0.05
(two-tailed) and 80% statistical power, the minimum required
sample was calculated as 22 participants per group, which was
increased to 30/group to accommodate 20% potential attrition from
DNA extraction/sequencing failures.

This study was conducted in accordance with the Helsinki
Declaration and Good Clinical Practice guidelines. Approved by
the Ethics Committee of Dongfang Hospital, Beijing University of
Chinese Medicine (Approval No: JDF-IRB-2023051802), all
participants provided written informed consent.

2.2 Clinical information

Patient consultation and physical examination data were
collected, including patient ID, gender, age, height, weight, liver
ultrasound results, medical history, smoking and alcohol
consumption history. Body mass index (BMI) was calculated
using the formula BMI = weight (kg)/height (m~2) based on the
patient’s height and weight information. Blood pressure was
measured using a clinical electronic sphygmomanometer, with
two seated blood pressure measurements taken 10 minutes apart
and the average recorded. Hypertension was defined as systolic
blood pressure > 140 mmHg, diastolic blood pressure > 90 mmHg,
a history of hypertension, and/or current use of antihypertensive
medication. Diabetes was defined as fasting blood glucose > 7.1
mmol/l, a history of diabetes, and/or current use of antidiabetic
medication. Smoking history referred to current or past smoking
habits, while alcohol consumption history referred to the
consumption of alcoholic beverages in the past year. Fatty liver
was diagnosed based on abdominal ultrasound findings or a history
of fatty liver disease. Additionally, 5ml of peripheral venous blood
was collected from each patient after a 12-hour fast for laboratory
testing, including routine blood parameters, blood biochemistry,
renal and liver function parameters, and blood lipid analysis.

2.3 Specimen collection

Before sampling, instruct the participants to empty their
bladders to prevent urine contamination of feces. Collect
approximately 2g of freshly passed feces using a sterile spoon and
place it in a 2 mL cryotube. Store the sample at -80 °C within 2
hours for sequencing.

2.4 DNA extraction and PCR amplification

In this study, genomic DNA of fecal gut microbiota was extracted
using the CTAB method. Subsequently, DNA purity and concentration
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were assessed by 1% agarose gel electrophoresis. An appropriate
amount of fecal sample was diluted in sterile water to 1 ng/ul in a
centrifuge tube. The highly variable V3V4 region of the bacterial 16S
rRNA gene was selected for sequencing. Specific primers 341F (5-
CCTAYGGGRBGCASCAG-3’) and 806R (5-GGACTACNNGGG
TATCTAAT-3’) were used for PCR amplification of the V3 + V4
variable region. The amplification protocol involved using the diluted
genomic DNA as a template, specific primers designed with specific
barcodes, Phusion® High-Fidelity DNA polymerase enzyme, and
Phusion® High-Fidelity PCR Master Mix with GC Buffer.
Amplification of the V3 + V4 variable region was carried out using a
Bio-rad T100 gradient PCR machine.

2.5 Purification and multiplexing of PCR
products

After equalizing the concentrations of PCR products, they were
thoroughly mixed and purified using a 2% agarose gel electrophoresis
in 1xTAE buffer (Biowest, Spain). The target bands were recovered
using the Universal DNA Purification Recovery Kit (TianGen, China).

2.6 Construction of libraries and
sequencing on computers

Utilizing the NEB Next® Ultra DNA Library Prep Kit (Illumina,
USA), libraries were constructed, followed by library quality
assessment and qPCR quantification using the Agilent 5400
Bioanalyzer (Agilent Technologies, USA). Subsequently, qualified
libraries were subjected to sequencing on the Illumina Novaseq
6000 PE250 platform (Illumina, USA).

2.7 Bioinformatics analysis

The analysis was conducted by following the “Atacama soil
microbiome tutorial” of Qiime2docs along with customized
program scripts (https://docs.qiime2.0rg/2019.1/).

Utilizing the QIIME2 dada2 plugin, all raw sequences underwent
quality control, trimming, denoising, merging, and removal of chimeras
to obtain the final feature sequences (amplicon sequence variants,
ASVs). The ASV representative sequences were aligned to the pre-
trained 13_8 version of the GREENGENES database at 99% similarity
using the QIIME2 feature-classifier plugin (with the database trimmed to
the V3V4 region based on the 341F/806R primers), resulting in a table of
taxonomic classifications. Subsequently, the QIIME2 feature-table
plugin was employed to eliminate all contaminant mitochondrial and
chloroplast sequences. Various methods such as ANCOM, ANOVA,
Kruskal-Wallis, LEfSe, and DESeq2 were employed to identify
differential bacterial abundance between groups and samples.
Subsequently, the QIIME2 core-diversity plugin was utilized to
compute diversity matrices, including alpha diversity indices at the
feature sequence level such as observed features, Chaol, Simpson,
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Shannon, and Faith’s phylogenetic diversity, to assess the diversity
within samples. Beta diversity indices, such as Bray Curtis, unweighted
UniFrac, and weighted UniFrac, are utilized to assess differences in
microbial community structures among samples. We employed
Principal Coordinates Analysis (PCoA) and Partial Least-Squares
Discrimination Analysis (PLS-DA) plots for visualization. To further
understand the specific species contributing to inter-group microbial
differences, bacteria with differential abundances between groups were
identified using the Kruskal-Wallis test and Linear discriminant analysis
Effect Size (LEfSe) based on species abundance tables. Spearman
correlation coefficients were calculated between clinical phenotypes
and microbial species, and a correlation heatmap was constructed to
assess significant associations. Additionally, the functional composition
of microbial communities was predicted using PICRUSt software.
Unless stated otherwise, default parameters were utilized for the
aforementioned analyses. (Sequencing service and data analysis service
were provided by Wekemo Tech Group Co., Ltd. Shenzhen China.).

3 Result

3.1 The fundamental characteristics of the
research subject.

The AH group and the healthy control group showed no
significant differences in age and gender (P > 0.05). The AH
group exhibited significantly higher levels of BMI, Serum Uric
Acid (SUA), TG, and TC compared to the healthy control group
(P < 0.05), while High-Density Lipoprotein Cholesterol (HDLC)
levels were significantly lower in the AH group (P < 0.05).
Differences in hypertension, fatty liver, and alcohol history were
statistically significant (P < 0.05) (Table 1).

3.2 The characteristics of the distribution
at the phylum and genus levels of gut
microbiota in two groups.

By analyzing the feature table of Amplicon Sequence Variants
(ASVs), the relative abundances of samples at different taxonomic
levels including phylum, class, order, family, genus, and species were
determined. The results were presented using stacked bar graphs. At the
phylum level, the top 20 species were selected to compose the bar graph,
as shown in Figure 1A. Both groups exhibited Firmicutes, Bacteroidota,
Proteobacteria, Actinobacteria, and Euryarchaeota as dominant gut
microbiota. Among the phyla with relatively higher proportions, the
abundance of Euryarchaeota in the AH group was significantly lower
compared to the other group (2.54% vs. 1.345%, P=0.019).

At the genus level, a bar graph was constructed using the top 20
ranked species, as shown in Figure 1B. The gut microbiota of the two
groups exhibited differences at the genus level, with relatively higher
abundances in the following genera for both groups: Bacteroides
(20.40% vs 20.89%), Faecalibacterium (10.74% vs 12.98%), and
Prevotella (8.01% vs 10.58%). In the AH group, Oscillospira (1.63%
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TABLE 1 Comparison of baseline characteristics of the participants [(x + s/n (%)].

Clinical data Healthy group(n=30) AH group(n=30) P-value
Gender 0.79
Male = 1 17(56.7%) 18(60%)

Female = 0 13(43.3%) 12(40%)

Age(years) 38.03 + 11.35 34.43 + 9.65 0.19
BMI(kg/m?) 23.36 + 3.00 27.56 + 4.71 0.00
SUA(mmol/L) 301 + 67.00 462 + 84.37 0.00
TC(mmol/L) 445 £ 0.75 4.96 + 1.11 0.04
TG(mmol/L) 1.21 £ 0.61 1.97 + 1.49 0.01
LDL-C(mmol/L) 2.80 + 0.73 3.20 + 0.96 0.07
HDL-C(mmol/L) 145+ 0.34 121 £0.26 0.04
Fatty liver

Yes = 1 5(16.7%) 19(63.3%) 0.00
No =0 25(83.3%) 11(36.7%)

Smoking history

Yes =1 6(20%) 13(43.3%) 0.52
No =0 24(80%) 17(56.7%)

Alcohol consumption history

Yes = 1 6(20%) 19(63.3%) 0.00
No=0 24(80%) 11(36.7%)

Hypertension

Yes =1 2(6.7%) 11(36.7%) 0.01
No =0 28(93.3%) 19(63.3%)

Diabetes

Yes = 1 4(13.3%) 10(33.3%) 0.07
No=0 26(86.7%) 20(66.7%)

vs 1.18%, p=0.035) and Methanomethylovorans (1.63% vs 0.65%,
p=0.003) showed significantly lower abundance levels.

As shown in Figures 1C, D, the community heatmap illustrates
the species abundance of the top 20 gut-dominant microbiota at the
phylum and genus levels for two groups, revealing differences in gut
microbiota composition between the groups.

3.3 Comparison of alpha diversity of gut
microbiota

As shown in Figure 2A, the Chaol index, Observed species index,
Shannon index, and Simpson index of the AH group were lower than
those of the healthy control group, but the differences were not statistically
significant (P > 0.05). As depicted in Figure 2B below, the sequencing
depth of the experimental samples gradually reached saturation with

Frontiers in Endocrinology

increasing sequencing efforts, indicating sufficient sequencing coverage to
assess the diversity of the gut microbiota under study.

3.4 Comparison of beta diversity in gut
microbiota

The PCoA analysis (Figure 3A) revealed differences in the gut
microbiota community structure between the AH group and the
healthy control group. Further confirmation of these differences was
obtained through ANOSIM analysis, which indicated non-
significant dissimilarities between the two groups (P=0.69).
NMDS analysis results were consistent with the PCoA analysis
(Figure 3B). Utilizing Partial Least Squares Discriminant Analysis
(PLS-DA) (Figure 3C), the samples from the two groups were
distinctly separated in the PLS-DA plot without overlap, with an
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FIGURE 1

Characteristics of the distribution of gut microbiota at the phylum and genus levels in two groups. (A) displays the relative abundance of species at
the phylum level, while (B) illustrates the relative abundance of species at the genus level. The x-axis represents the group names, and the y-axis
(Sequence Number Percent%) indicates the proportion of sequences annotated at that level compared to the total annotated data, with the color
sequence in the bar charts corresponding to the legend on the right. (C) represents a heatmap of species communities at the phylum level, and (D)
shows a heatmap of species communities at the genus level. The x-axis denotes the group names, and the y-axis displays the phylum/genus-level
taxonomic annotations. The clustering tree on the left clusters species based on similarity in abundance distribution. The middle heatmap represents
the logl0(absolute abundance) heatmap. Group A refers to the healthy group, while Group B refers to the AH group.

AUC value of 1 for both groups, indicating significant differences in
gut microbiota composition between them. The Venn diagram
(Figure 3D) visually displayed the shared and unique species
compositions between the healthy and AH groups, showing 1140
shared ASVs and a differing number of ASVs, highlighting a
quantitative difference in species between the two groups.

3.5 LEfSe analysis of divergent species
As shown in Figure 4, compared to the healthy group, the AH

group exhibited higher relative abundance of g Enhydrobacter,
g Dorea, g Stenotrophomonas, and g Acinetobacter (P < 0.05),
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while g Sphingobium, g Candidatus_Koribacter, p_Acidobacteria,
g Anaerostipes, g Oscillospira, g Methanomethylovorans, and
p_Euryarchaeota showed lower relative abundance (P < 0.05).

3.6 Correlation analysis

The Spearman correlation analysis revealed a positive correlation
between blood uric acid levels and the abundance of Enterococcaceae,
Dorea, Bordetella, and Granulicatella (P < 0.05), and a
negative correlation with Oxalobacter, Methanomethylovorans,
Candidatus_Arthromitus, and Proteus (P < 0.05) (Figure 5).
Additionally, clinical parameters such as BMI and blood lipid levels
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FIGURE 2
Comparison of alpha diversity in gut microbiota. (A) compares the alpha diversity (Chaol, Observed species, Shannon, Simpson) indices between the

two groups; (B) the sampling depth on the x-axis and the Shannon index on the y-axis. “ns” indicates no statistical significance, Group A: healthy
group, Group B: AH group.

showed significant correlations with the abundance of certain gut ~ community predicted functions were analyzed using ANOVA with

microbial species. Duncan and Dunn tests. As shown in Figure 6, the AH group

exhibited downregulation of glycolysis V (Pyrococcus), 7-(3-amino-

3-carboxypropyl)-wyosine biosynthesis, archaetidylinositol

3.7 Analysis of inter-group differences in biosynthesis, CDP-archaeol biosynthesis, coenzyme B biosynthesis,

fu nctionality mevalonate pathway II (archaea), phosphopantothenate biosynthesis

II, and superpathway of methanogenesis, while L-tryptophan

Based on PICRUSt2-predicted pathway annotations (MetaCyc  degradation IX was upregulated compared to the healthy group,
database) and considering the grouping information, microbial  with significant differences (P < 0.05).
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FIGURE 4

. [ ¢ vetharosarcinacede
. T o_vethanomethylovorans

-4

EA HB

' i

' I
g_Enhydrobacter
{ g_Dorea
f_Moraxellaceae
k_Bacteria
£_Xanthomonadaceae
“o_Xanthomonadales
£_sphingomonadaceae
o_sphingomonadales
g_Stenotrophomonas
© f_Owalobacteraceae
g_Acinetobacter
g_Sphingobium
ribacteraceae |
)_Candidatus_Koribacter

] o_methanosarcinales

| ] ¢ vetharomicrobia
[ _prchaeh :

] p_turarchaeota
I 1 ! 1 I
-3 -2

|

-1 0 1 2
LDA SCORE (log 10)

i
3

© >

Cladogram

== =:g_Methanomethylovorans
=) bf_Metanosarcinacese
B co_Methanosarcinsles
=0 ¢:_Methanomicrobia
B e:p_turarchacon
=0 f:9_Candidatus Koribacter
[E3 g f_Koribacteraceae
0 no_acdbacurisies
= ic_addobscreria
0 jp_acdobacters
[« f_Odoribacteraceae
(== P —

B mg_Dores

B3 ng_oscilospia

B uf_Momwellacese

B v g_Stenowophomonas.
B f_Xanthomonadaceae
BB x o_Xanthomonadales

Analysis of differential species in the gut microbiota. (A) Each horizontal bar represents a species, with the length corresponding to the LDA value
indicating the level of difference. The color of the bars indicates the microbial feature group to which the species belongs, reflecting its relatively
higher abundance within that group. (B) In the cladogram, the layers from inner to outer represent different taxonomic levels such as phylum, class,
order, family, and genus, with connecting lines indicating their hierarchical relationships. Each circular node represents a species, with yellow nodes
indicating insignificant differences between groups, while non-yellow nodes represent species characteristic of a specific group (with significantly
higher abundance within that group). Colored sectors highlight the taxonomic range of the characteristic microbes. Group A: healthy group, Group
B: AH group.

Frontiers in Endocrinology

127

frontiersin.org


https://doi.org/10.3389/fendo.2025.1557225
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Cao et al.

10.3389/fendo.2025.1557225

Hons
oL
Ing
vn
1aH
oL
1a1

FIGURE 5

Heatmap illustrating the relationships between microbial species and clinical phenotypes in the study participants (r > 0.3). The X-axis represents
clinical phenotypes (including BMI, TC, TG, LDL-C, UA, HDL-C), while the Y-axis indicates the corresponding species (at the genus level). The color
bar on the far left denotes the phylum classification, with different colors representing different r values. The legend on the far right shows the color
intervals corresponding to r values and the phylum names. *P < 0.05, **P < 0.01. BMI, Body Mass Index; TC, Total Cholesterol; TG, Triglycerides;
LDL-C, Low-Density Lipoprotein Cholesterol; HDL-C, High-Density Lipoprotein Cholesterol; UA, Serum Uric Acid.
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4 Discussion

This study explores the background of AH and its potential
associations with metabolic-related diseases. AH is characterized by
elevated blood uric acid levels without symptoms of conditions like
gout. Despite a rising prevalence in the general population and its
close links to health risks such as cardiovascular diseases, kidney
stones, and metabolic syndrome, research on AH remains limited,
particularly regarding its underlying pathophysiology and
preventive strategies. This suggests that AH may serve as a
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precursor to more serious health issues, emphasizing the need for
further investigation in this field.

This study investigates the observed association between
changes in gut microbiota and AH. Various methods including
clinical data collection, high-throughput sequencing, and
microbiome data analysis were employed to analyze the gut
microbiota characteristics of AH patients compared to healthy
controls, and their relationship with clinical indicators. The
results reveal significant differences in gut microbiota
composition between AH patients and healthy individuals,
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FIGURE 6

Significant differences in all METAcyc pathways identified through ANOVA and Duncan’s test. The x-axis represents the names of pathways. Each
pathway is color-coded to indicate a specific group. If two groups share the same letter above them, it signifies nonsignificant differences;

otherwise, differences are considered significant.

suggesting new targets for future treatments. Through a thorough
analysis of these findings, we aim to provide novel insights and
evidence for the prevention and treatment of AH.

In this study, we revealed a potential association between AH
and the gut microbiota by analyzing the characteristics of AH
patients and their gut microbiomes. The results indicated significant
variances between the AH group and the healthy control group in
terms of body mass index (BMI) and metabolic indicators such as
TG and TC. These variances suggest distinct metabolic features in
AH patients compared to healthy individuals, providing
foundational data for clinical screening and intervention
strategies. Additionally, the prevalence of hypertension and fatty
liver in the AH group was significantly higher than in the healthy
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group, further supporting a potential link between AH and
metabolic syndrome (8).

In the analysis of microbiota data, this study observed a
decrease in Alpha diversity in the AH group compared to the
healthy group, indicating a reduction in overall richness and
ecological diversity of the gut microbiota in the AH group. Beta
diversity suggested differences in the composition of gut microbiota
between the two groups. At the phylum level, a decrease in
abundance of Acidobacteria and Verrucomicrobia was noted in
the AH group. At the genus level, the relative abundance of
Enhydrobacter, Dorea, Stenotrophomonas, Acinetobacter was
higher, while Sphingobium, Candidatus_Koribacter, Anaerostipes,
Oscillospira, Methanomethylovorans showed lower relative
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abundance in the AH group. These microbial differences may be
correlated with the pathogenesis of AH, providing clues for future
research on the relationship between gut microbiota and AH.
Previous studies have suggested that gut microbiota are associated
with uric acid synthesis and excretion through metabolic pathways
and immune responses (9).

Some studies suggest that Oscillospira is a genus associated with
a healthy gut and has been predicted to be a potential producer of
butyric acid (10). Anaerostipes strains are known to utilize inositol
to generate propionic and acetic acids (11). SCFAs, particularly
propionate and butyrate, have been reported to provide ATP to
intestinal cells, potentially benefiting uric acid excretion (12). Our
research also observed decreased abundance of Oscillospira and
Anaerostipes in the AH group, indicating a possible association
between AH and the reduction of these two genera.

Furthermore, the study revealed a positive correlation between
serum uric acid levels in AH patients and specific gut microbiota such
as Bordetella and Granulicatella, while showing a negative correlation
with Oxalobacter and Methanomethylovorans (P < 0.05). These
findings offer a novel perspective for biomarker research in AH,
potentially aiding in early diagnosis and monitoring in clinical
settings. Future research should explore the utility of microbiome
analysis techniques for early diagnosis and investigate the prospects
of these biomarkers in personalized medicine (13).

Finally, based on the PICRUSt2-predicted pathway abundances
annotated by the METAcyc database, we observed significant
differences in specific metabolic pathways, including downregulation
of glycolysis V (Pyrococcus) and upregulation of L-tryptophan
degradation IX in the AH group compared to the healthy group.
However, as these functional predictions are derived from 16S rRNA
gene sequences and not from metagenomic or metatranscriptomic
data, they should be interpreted as in silico inferences with inherent
limitations including dependence on reference genomes and lack of
experimental validation.

Despite these predictive limitations, previous research has
provided insights that may relate our findings to hyperuricemia
pathogenesis. Potential inhibition of the glycolysis pathway could
theoretically contribute to accumulation of metabolic intermediates
such as 6-phospho-glucose and 3-phosphoglyceraldehyde, which can
be diverted to produce 5-phosphoribose and subsequently ribose-5-
phosphate. This could theoretically increased endogenous purine
synthesis and elevated serum uric acid levels (14). It is noteworthy
that the predicted glycolysis V pathway is specific to archaea
(Pyrococcus), which implies a possible connection of archaeal
metabolism in AH that warrants further investigation.

Regarding tryptophan metabolism, which encompasses the
kynurenine, serotonin, and indole pathways, the production of
bioactive compounds from tryptophan degradation can be
associated with diverse physiological processes including
inflammation, metabolism, and immune responses (15).
Kynurenic acid, a major degradation product of L-tryptophan
(16), was found elevated in AH rats, while indoxyl sulfate and
tryptophan 2-C-glucoside were decreased, indicating alterations in
tryptophan metabolism in AH (17). Although our predictive data
suggest altered tryptophan degradation activity in the gut

Frontiers in Endocrinology

10.3389/fendo.2025.1557225

microbiome of AH patients, the nature of the relationship
between microbial pathway activity and host metabolite levels
requires experimental validation.

The limitations of this study primarily lie in sample size and
experimental design. Although we compared high uric acid patients
with a healthy control group, the relatively small sample size may
impact the statistical significance and generalizability of the results.
Furthermore, the observational design prevents causal inferences, and
the lack of validation through wet lab experiments restricts the
biological significance and clinical applicability of the findings.
Additionally, important lifestyle factors including dietary patterns,
fiber intake, physical activity, and probiotic use were not assessed in
this study. These unmeasured confounders may influence both gut
microbiota composition and uric acid levels, limiting the ability to
isolate microbiome-specific effects. Moreover, the absence of long-
term clinical follow-up data prevents the assessment of potential
causality between microbiome changes and the progression of AH.
These limitations suggest that future research should involve larger
sample sizes, incorporate multiple experimental approaches, control
for key lifestyle confounders, and include long-term follow-up to
validate our findings and enhance their clinical relevance.

In conclusion, this study provides important foundational data
for clinical management by analyzing the characteristics of patients
with AH, differences in gut microbiota, and associated risk factors.
Despite certain limitations, our findings suggest new research
directions for early diagnosis and personalized treatment of AH.
Future investigations into the relationship between microbiota and
AH, combined with larger-scale clinical data, may contribute to the
development of more effective prevention and treatment strategies.
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