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Flavescence dorée (FD) poses a significant threat to grapevine health, with the American grapevine leafhopper, Scaphoideus titanus, serving as the primary vector. FD is responsible for yield losses and high production costs due to mandatory insecticide treatments, infected plant uprooting, and replanting. Another potential FD vector is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach, which involves periodic human identification of yellow sticky traps, is labor-intensive and time-consuming. Therefore, there is a compelling need to develop an automatic pest detection system leveraging recent advances in computer vision and deep learning techniques. However, progress in developing such a system has been hindered by the lack of effective datasets for training. To fill this gap, our study contributes a fully annotated dataset of S. titanus and O. ishidae from yellow sticky traps, which includes more than 600 images, with approximately 1500 identifications per class. Assisted by entomologists, we performed the annotation process, trained, and compared the performance of two state-of-the-art object detection algorithms: YOLOv8 and Faster R-CNN. Pre-processing, including automatic cropping to eliminate irrelevant background information and image enhancements to improve the overall quality of the dataset, was employed. Additionally, we tested the impact of altering image resolution and data augmentation, while also addressing potential issues related to class detection. The results, evaluated through 10-fold cross validation, revealed promising detection accuracy, with YOLOv8 achieving an mAP@0.5 of 92%, and an F1-score above 90%, with an mAP@[0.5:0.95] of 66%. Meanwhile, Faster R-CNN reached an mAP@0.5 and mAP@[0.5:0.95] of 86% and 55%, respectively. This outcome offers encouraging prospects for developing more effective management strategies in the fight against Flavescence dorée.
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1 Introduction

Among grapevine adversities, Flavescence dorée (FD) is the most severe phytoplasma disease in Europe and for this reason is subject to quarantine measures across the European Union (EFSA et al., 2020). In response to the worsening impact and damages caused by this harmful phytoplasma, the Italian Ministry of Agriculture, Food Sovereignty, and Forests redefined emergency phytosanitary measures in 2023, issuing the Order No. 22/06/2023, No. 4 (G.U. 12/08/2023, n. 188). First discovered in Italy during the early 1970s, it has since spread to most viticultural regions, with epidemic episodes peaking at the end of the century (Morone et al., 2007). FD infection results from the interaction between a phytoplasma and an insect vector, primarily Scaphoideus titanus (ST), the American grapevine leafhopper, which is monophagous on Vitis plants (Lessio et al., 2014). Nymphs appear in May, while adults emerge at the beginning of July. Both nymphs and adults can acquire the phytoplasma while feeding on infected plants. Once infected, they remain carriers for the rest of their lives, transmitting the pathogen from one grapevine to another (Gonella et al., 2024). Due to its small size, ranging from 4.8 to 5.8 mm, identifying ST without adequate magnification is challenging even for entomologists. Another emerging vector is Orientus ishidae (OI), also known as the mosaic leafhopper due to the characteristic color pattern of its wings (Figure 1) (Gaffuri et al., 2011; Lessio et al., 2019). Despite the lower transmission efficiency compared to S. titanus (Lessio et al., 2016), its widespread presence also in other agroecosystems, such as apple orchards (Dalmaso et al., 2023), make it a potential concern.

[image: Eight close-up photos of insects stuck on yellow sticky traps are arranged in two rows labeled ST and OI. Each insect varies in size, coloration, and wing patterns, with some appearing blurry or partially obscured.]
Figure 1 | Samples of insect vectors captured by yellow sticky traps. The first row represents examples of the ST class, while the second row shows examples of the OI class.

The current management strategy for controlling FD involves limiting the spread of the vector through the timely application of insecticides, primarily targeting juveniles, and uprooting the affected plants to prevent the disease from spreading. However, since it has been discovered that adults can also acquire and transmit FD very efficiently, monitoring the dynamics of the ST population has become fundamentally important to determine whether a summer insecticide treatment is necessary (Alma et al., 2018, p. 201). Surveillance of S. titanus and O. ishidae adults rely on sticky card traps (Pavan et al., 2021), which are left in the vineyard for 7-15 days and then manually checked for the presence of vectors by expert operators. Following trap collection, insect identification is performed in the laboratory by using a stereoscopic microscope. This approach, albeit reliable, is time consuming and represents a bottleneck towards the development of large scale real-time monitoring.

In recent years, technology advancements in FD management have involved two main research avenues (Lee and Tardaguila, 2023):

	The automated monitoring of vector spread using machine vision techniques on insect traps: such solutions could significantly enhance disease control by enabling real-time mapping and generating large datasets of digitized trap images, allowing for retrospective investigations into the spread of other potential vectors. Two researchers (Ding and Taylor, 2016) pioneered the use of convolutional neural networks (CNNs) for detecting moths from trap images. Subsequently, several studies have applied similar algorithms to yellow sticky traps for various purposes, including monitoring vine pests (Bessa, 2021; Gonçalves et al., 2022), detecting other species of insects, such as Scirtothrips dorsalis (Niyigena et al., 2023) and the European cherry fruit fly (Salamut et al., 2023). Moreover, significant research efforts have been dedicated to developing easily deployable trap systems for real-time detection (Bjerge et al., 2021, 2022; Le et al., 2021; Suto, 2022; Bjerge et al., 2023; Sittinger et al., 2023). Some manufacturers have made available new smart traps for the detection of ST adults, e.g., Trapview (https://trapview.com/) and iSCOUT® COLOR TRAP by Metos (https://metos.global/en/iscout/). Finally, other studies have leveraged open datasets, such as iNaturalist, to benchmark state-of-the-art models for multi-species detection (Ahmad et al., 2022; Kumar et al., 2023; Wang et al., 2023), but these solutions were not specifically developed for research grade applications.

	Vineyard monitoring using imaging techniques on symptomatic plants: computer vision combined with multispectral and hyperspectral imaging or remote sensing has shown promising results for early detection of grapevine diseases (Silva et al., 2022; Tardif et al., 2022, 2023).



The focus of this study concerns the first line of research, specifically FD vectors captured by sticky card traps. In this area, the lack of high-quality datasets necessary for model training represents the major limitation to the development of automatic monitoring solutions of ST. In this paper, we address this gap by presenting and making available a fully annotated dataset of yellow sticky trap images, with insect identifications carried out by a team of expert entomologists. The dataset has to be intended as a reference source for establishing an autonomous and accurate pest identification system against the FD spread. In addition, we demonstrate its potential use by benchmarking two state-of-the-art object detection architectures with different image processing techniques.




2 Materials and methods



2.1 Data collection

The efficiency of a deep learning model depends on the quality and quantity of data used for the training. Considering the scope of our investigation, we focused on yellow sticky traps (YST) (Glutor, Biogard®, 10x25 cm), positioned in vineyards from different sites in Trentino (northern Italy) from July to November 2023, when ST adults occur. YST were exposed for a maximum of 14 days.

Due to the practical challenges in sample collection, images were obtained through four distinct methods (Table 1):

	photos taken directly in the field;

	images of stored YST (T = 5 ± 1°C), and deceased reared insects on empty traps within a controlled greenhouse environment;

	digital scans of YST collected during regular monitoring activities in the fields;

	photos from a smart trap prototype installed in our experimental vineyard (Figure 2).



[image: Panel a shows a sensor device mounted on a vineyard trellis, facing a yellow sticky trap positioned among grapevines. Panel b is a close-up of the sticky trap, covered with numerous trapped insects and labeled "NO RESIDUE."]
Figure 2 | Smart-trap prototype (A) and its camera framing (B).

Table 1 | Structure of the dataset, showing the number of images from each data source and the corresponding class annotations.


[image: Data table comparing image sources: Field, Laboratory, scanned, and smart-trap. It lists number of images, ST annotations, OI annotations, and number of background images for each source. Field: 18 images, 3 ST, 101 OI, 8 backgrounds. Laboratory: 157 images, 473 ST, 863 OI, 8 backgrounds. Scanned: 390 images, 853 ST, 542 OI, 84 backgrounds. Smart-trap: 50 images, 0 ST, 0 OI, 50 backgrounds.]
Digitally scanned YST made the primary contribution to our dataset since this method of acquisition allowed us to avoid common camera issues related to external interference, such as focusing and lighting, while also maximizing resolution. However, it presented drawbacks such as suboptimal visual conditions due to the risk of insect squeezing during the scanning process and possible reflections of nylon bags in which yellow traps are stored.

Regarding the smart trap, the device consists of several commercial components mounted on a customized printed circuit board (PCB). Specifically, the diurnal 3-hourly (9:00 AM, 12:00 AM, 3:00 PM, 6:00 PM) time-lapse images have been captured by the 8 MPixel Raspberry Pi camera module V2 (Raspberry Pi Foundation, Cambridge, UK) connected to the Raspberry Pi zero W single board computer. Each image consists of 3280 × 2462 pixels and the final size of the jpg file is about 5 MBytes. A Witty Pi 3 mini clock and power management board controlled the ON/OFF scheduled sequence. Images were sent back to the server via WiFi, by means of a Secure Copy Protocol (SCP) file transfer protocol. These images were repurposed as background images given the absence of target insects due to mandatory treatments against the spread of FD.

The final dataset consists of 615 images which also include the images of 150 traps where the two target insects were not detected. These were included to add variety so that the network can properly learn to distinguish the target objects from other insects. Insect annotations comprise 1329 ST and 1506 for OI, ensuring an almost class-balanced dataset.




2.2 Data pre-processing

An automated cropping procedure, inspired by (Bessa, 2021), was implemented using the Python library OpenCV (Bradski, 2000) to remove unnecessary background information outside of the yellow trap. The workflow is outlined in Figure 3.

[image: Workflow diagram displays the image processing and data enhancement stages for analyzing a yellow sticky trap. Steps shown include raw image capture, HSV conversion, yellow thresholding to create a binary image, maximum contour extraction for mask borders, image cropping, and enhancement by adjusting brightness, contrast, and sharpness, resulting in a final enhanced image with visible insect details.]
Figure 3 | Flowchart diagram of data pre-processing operations.

The original images were first converted to the HSV (Hue, Saturation, Value) color space and then segmented by defining two yellow thresholds. Subsequently, the algorithm identified contours in the binary mask image and extracted the largest contour based on its area. Using the coordinates of the bounding rectangle around this contour, the cropping operation on the original images was performed.

Before proceeding with data annotation, enhancement techniques were applied to the images to improve image quality and consequently model performance (Ding and Taylor, 2016; Pang et al., 2022; Suto, 2022). Specifically, brightness, contrast and sharpness parameters were adjusted to increase insect visibility and reduce the impact of lighting variations. Using OpenCV, the addWeighted function modifies brightness and contrast by calculating the weighted sum of two arrays as: [image: Mathematical equation showing alpha times image plus beta times image plus gamma, with alpha, beta, and gamma in italic Greek letters.] . We set [image: Mathematical formula displaying the Greek letter alpha equals one point one.] , [image: Mathematical expression showing the Greek letter beta equals ten.]  and [image: Mathematical expression showing the Greek letter gamma followed by an equals sign and the number zero.]  to meet visual requirements. Additionally, a sharpening filter was applied using the filter2D function to enhance image details.




2.3 Object detection models

Object detection tasks perform both localization and class recognition, allowing to identify multiple objects in a single image. These algorithms work by drawing bounding boxes around object targets along with a confidence score, indicating the likelihood that the bounding box contains the object.

Currently, object detection models consist of Convolutional Neural Networks (CNNs) (Krizhevsky et al., 2012), which are typically composed of three main components: the backbone network, the neck, and the head. The backbone, commonly a pre-trained CNN, extracts and encodes features from the input data; the neck further processes these features, enhancing their representational and informative power. One example is Feature Pyramid Network (FPN) (Lin et al., 2019). Finally, the head predicts the bounding boxes and class probabilities of detected objects based on the previously extracted information.

Object detectors can be categorized into two main types depending on their architecture: one-stage and two-stage detectors. The former predicts bounding boxes and class probabilities in a single forward pass, while the latter, as the Region-based Convolutional Neural Networks (Girshick et al., 2014) first proposes regions of interests (ROIs) in the image and then predicts the class and refine the bounding box for each proposed region. In our study, we chose to use the latest state-of-the-art detection architectures: YOLOv8 and Faster R-CNN. We selected these algorithms based on their respective strengths and suitability for our specific requirements.

For data annotation, we employed the open-source software CVAT (CVAT.ai Corporation, 2023). Under the guidance of entomologists, we labeled all instances related to the target pests even though their visual appearance could sometimes confuse the detector and introduce noise. Annotations were exported in YOLO format, which consists of string lines written as:

(class_id x_box_centre y_box_centre width height)



2.3.1 YOLO

YOLO (You Only Look Once) is a popular family of one-stage object detection models known for their speed and efficiency (Redmon et al., 2016). Unlike two-stage methods, YOLO solves detection as a regression problem.

Developed by Ultralytics (Glenn Jocher et al., 2023) and released in January 2023, YOLOv8 serves as the latest advancement in the YOLO family (as of the time of writing). It incorporates several improvements, including mosaic data augmentation, anchor-free detection, a more powerful backbone network, a decoupled head, and a modified loss function. Among the various model variants, we focused on YOLOv8s due to our computational constraints.




2.3.2 Faster R-CNN

Faster R-CNN implements Region Proposal Network (RPN) for generating potential bounding box proposals and a bounding box regression and classification network for refining these proposals and predicting the class labels (Ren et al., 2016). We implemented the algorithm using the Detectron2 framework (Wu et al., 2019), a cutting-edge tool developed by Facebook for a wide range of computer vision tasks.

For our study, we used the faster_rcnn_R_50_FPN_3x.yaml configuration, which uses a ResNet-50 (He et al., 2016) backbone network and integrates the FPN network to generate multiple feature maps of different scales. This configuration provides a good balance between speed and accuracy. The “3x” designation refers to the length of the training schedule (He et al., 2018).





2.4 Experiments and evaluation



2.4.1 Experiment design

We conducted several tests to benchmark the machine vision models, assessing the impact of the different preprocessing steps on their detection capability. Initially, we evaluated the effect of image enhancements to understand how it influenced training performance. The second test aimed to assess the impact of image resolution, as it is indeed known to significantly affect performance, albeit with a considerable increase in computational cost. In our tests, we focused on 640 and 1280 pixel images, both considered reasonable sizes to balance computational time and performance, while avoiding memory constraints. The algorithm automatically resized the images, setting their longest dimension to the chosen value, while preserving the original aspect ratio.

A similar test was conducted to evaluate the YOLOv8 built-in data augmentation. Based on several hyperparameters, default transformations are randomly applied to the training data to increase the diversity and size of the dataset. We conducted two training runs to compare the effects of default hyperparameters with their zeroing (see Supplementary Table 1).

From a more fundamental perspective, we explored whether, for our dataset, a deep learning model learns better when trained on one class (one insect species) at a time compared to binary-class detection. To get more insight on this aspect, we conducted an additional test by considering both classes as a single entity, labeled “pest”.

Finally, we evaluated the model architectures. After implementing Faster R-CNN with three different augmentation settings, we compared the best configuration with the one-stage detector, YOLOv8s.

To ensure a more robust estimate of model performance and to allow an honest estimation of the variability of the prediction metrics, we implemented a 10-fold Cross Validation scheme (Hastie et al., 2009). Given the challenges associated with class stratification in object detection tasks, we selected a random K-fold splitting that achieved an acceptable balance in the distribution of the two classes (Supplementary Table 2).




2.4.2 Evaluation metrics

To assess the performance of an object detection model, we examine its ability to correctly identify the object’s class and accurately predict their bounding box coordinates. Each prediction is characterized by a value of Intersection over Union (IoU) and confidence score. IoU, based on the Jaccard index, evaluates the degree of overlap between the predicted bounding box and the ground truth. Values range between 0 to 1, where a value closer to 1 implies a better alignment between the predicted and ground truth bounding boxes. The confidence score, instead, indicates the likelihood that the object in the bounding box actually belongs to a specific category. Based on these values, correct predictions are classified as True Positives (TP), while False Positives (FP) include detections of nonexistent target objects, which in our case are insects wrongly identified as ST or OI or misplaced detection of existing objects. False Negatives (FN) encompass all unpredicted ground truth bounding boxes. It’s worth noting that True Negatives (TN) are not considered in object detection, as there exists an infinite number of bounding boxes that should not be detected within an image (Padilla et al., 2020).

From these statistics, we can derive several performance indices, including Precision and Recall. Precision (Equation 1) measures the model’s ability to identify true objects while minimizing the number of incorrect annotations. Conversely, Recall (Equation 2) focuses on the model’s ability to identify all correct objects (TP), regardless of incorrect annotations. Ideally, a perfect model would have both high Precision and high Recall. For insect detection, we opted for low values of confidence score to make the model generate more predictions. This approach results in higher Recall, minimizing FN at the expense of increasing FP (Wenkel et al., 2021).

Lastly, F1-score (Equation 3) shows the harmonic mean of Precision and Recall, considering both FP and FN.

[image: Mathematical equation showing precision equals true positives divided by the sum of true positives and false positives, labeled as equation one.]

[image: Mathematical equation showing recall as TP divided by the sum of TP and FN, where TP stands for true positives and FN stands for false negatives. Equation is labeled as number two.]

[image: Mathematical formula for F1 score showing F1 score equals two divided by the sum of the reciprocals of precision and recall, enclosed in equation number three.]

IoU and precision-recall measures are used to compute Average Precision (AP) (Equation 4) for each class. By leveraging the area under the precision-recall curve (AUC-PR) and different thresholds of IoU, AP was first estimated using the 11-point interpolation method in the VOC2007 challenge (Everingham et al., 2015) to reduce the zig-zag behavior of the curve. The most common IoU values are 0.5 and 0.75, corresponding to AP@0.5 and AP@0.75, respectively, while AP@[0.5:0.95] represents instead the average precision across ten IoU thresholds varying from 0.5 to 0.95 with a step size of 0.05. Mean Average Precision (mAP) (Equation 5) is then calculated as the mean over all classes, serving as the benchmark metric to evaluate object detection model performance.

[image: Mathematical equation showing AP at alpha equals the integral from zero to one of p of r with respect to dr, labeled as equation four.]

[image: Mathematical formula expressing mean Average Precision at alpha as mAP at alpha equals one divided by n times the sum of average precision for n classes, labeled as equation five.]




2.4.3 Experimental setup

Training, validation and inference tests were executed on Amazon Web Services (AWS) virtual machines using a g5.2xlarge instance, which belongs to the GPU instance family. It is equipped with 8 vCPUs, 32.0 GiB of memory, and a NVIDIA A10G with 24.0 GiB of video memory. The configuration settings for each experiment, partially tuned to comply with hardware constraints, are saved in the corresponding YAML files, which are provided in the Supplementary Material.






3 Results

Figure 4 displays examples of model predictions, featuring randomly selected zoomed-in images from the four different sources, along with both ground-truth and predicted annotations. Bounding boxes, obtained from one of the YOLOv8s model tests, are displayed with specific class colors and their corresponding confidence scores. These photos provide a clear view of the model’s performance across various scenarios. For instance, in the scanned trap image (Figure 4B), all insects are detected accurately. Challenges arise in Figure 4C, where the photo presents a dense concentration of OI bounding boxes, making accurate detection more difficult. Similarly, in Figure 4D, the greater distance and ambient light conditions contribute to an increase in both FN and FP.

[image: Four pairs of images in a grid format compare input images of yellow sticky insect traps (top row) with detection results from YOLOv8s (bottom row). Each column, labeled (a) through (d), progressively zooms in on insect details, with bounding boxes and confidence scores in the bottom images indicating detected objects or insects.]
Figure 4 | Examples of zoomed insect images with predicted bounding boxes. Red and pink colors represent respectively the detections of ST and OI classes. (A) photos from the smart trap; (B) details from scanned trap images; (C) photos in the laboratory; (D) pictures from the field.

Quantitative results are presented following the experimental workflow, starting with the YOLO algorithm and moving to Faster R-CNN. Performance metrics are expressed as the mean and standard deviation across the 10 folds (Table 2), highlighting the variability of cross-validation splits.



3.1 Performance of YOLO models

Figure 5 summarizes the YOLO experiments on input image modifications and class detection, comparing the three Mean Average Precision (mAP) discussed in section 2.4.2, mAP@0.5, mAP@0.75, mAP@[0.5:0.95]. The Supplementary Material includes the corresponding Precision-Recall curves obtained during validation at the specific confidence thresholds.

[image: Five boxplot charts and a legend compare the effects of data enhancement, input image resize, data augmentation, and class grouping on three object detection metrics: AP at 0.5, AP at 0.75, and mean AP from 0.5 to 0.95. Each subplot presents results for different experimental variables, with higher AP values indicated by blue, orange, and green lines, and the legend clarifies color coding for each metric.]
Figure 5 | mAP evaluation of YOLO experiments: (A–C) represent the comparison on input image modifications; (D–F) include the class-oriented tests.

From the comparison of data enhancements (Figure 5A), we observe a clear similarity between the Crop and Bright models. Results show mAP@0.5 values ranging from 0.9 to 0.95, mAP@0.75 above 0.8, and mAP@[0.5:0.95] between 0.65 and 0.7, with a difference of less than 2% in the other metrics (see Table 2). On the other hand, Sharp and Bright_and_sharp models achieved slightly lower results and higher variabilities, with all mAP values dropping by up to 3%, especially the latter.

Table 2 | Insect detection performance of the 8 tests conducted.


[image: Table showing experimental results of object detection configurations, including data enhancement, input image size, augmentation, class type, and model architecture, with metrics for mAP at different thresholds, precision, recall, and F1 score, plus standard deviations across ten folds.]
The impact of input image resizing (Figure 5B) is more pronounced, particularly in terms of mAP@0.75 and Recall (Table 2). This observation suggests that image resolution becomes increasingly critical when higher IoU thresholds are required or for the complete detection of ground-truth annotations.

Figure 5C clearly demonstrates the effect of data augmentation during training. Without transformations, the model did not exceed 0.81 in mAP@0.5, 0.67 in mAP@0.75, and 0.57 in mAP@[0.5:0.95], with a low Recall of 72%. Training with data augmentation drastically improves these metrics, particularly mAP@0.75 and Recall (Table 2).

Regarding class detection tests, Figure 5D shows no significant difference between the Average Precision (AP) of ST for both the binary-class and single-class models. The same holds true of the OI class (Figure 5E), with subtle differences of less than 2%, except for a 4% increase in Recall for the binary-class model (Table 2). Finally, the last plot compares the mAP of the binary-class model and the AP of the pest-class model, both achieving high results: 0.92 mAP@0.5, 0.8 mAP@0.75, and 0.66 mAP@0.5:0.95, with 90% Precision, 87% Recall, and 88% F1 score as shown in Table 2.




3.2 Performance of Faster R-CNN models

Faster R-CNN results include an assessment of mAP performance when changing the augmentation settings. Three tests were conducted, named Default, Augmentation, and No_augmentation, each based on specific transformations applied during training, similarly to the YOLOv8 built-in data augmentation.

	Default: This test used the two default Detectron2 transformations, ResizeShortestEdge and RandomFlip. The first resizes the image while keeping the aspect ratio, while the other operation flips the image horizontally or vertically with a given probability;

	Augmentation: This test introduced additional Detectron2 transformations, including RandomBrightness, RandomContrast, RandomSaturation, RandomRotation, RandomLighting, along with ResizeShortestEdge and RandomFlip. These transformations randomly alter the intensity of image enhancements during training to augment the diversity of the training data;

	No_augmentation: This test represented the default training configuration without applying RandomFlip to input images.



For further details on the code, please refer to our GitHub repository, https://github.com/checolag/insect-detection-scripts.

Since Detectron2 does not provide Precision and Recall metrics, we monitored the progress of mAP over iterations for the three tests, as depicted in Figure 6. From the graph, we observed two main trends: the default configuration notably outperforms the model with augmentation, and maximum values are generally reached within the first 1500 iterations, after which they remain relatively constant.

[image: Line chart showing mean Average Precision (mAP) scores over four thousand iterations for three metrics: mAP at fifty, seventy-five, and fifty to ninety-five. Three line styles represent default trainer, no augmentation, and augmentation tests. mAP at fifty scores highest, while mAP at fifty to ninety-five is lowest across all tests. Chart includes two legends for metrics and test types.]
Figure 6 | Training curves of mAP@0.5, mAP@0.75, and mAP@[0.5:0.95] for the three augmentation tests with the Faster R-CNN algorithm.

As Detectron2 only saves the last model and not the best one, the metric values in Table 2 were derived considering the iteration at which the model of each split achieved the best results in terms of mAP@0.5, mAP@0.75, and mAP@[0.5:0.95]. Although the differences are small, they are relevant, with the default run reaching 86% in mAP@0.5, 66% in mAP@0.75, and 55% in mAP@[0.5:0.95].




3.3 Comparison of the algorithms

This section concludes the experimental evaluation of model architectures, highlighting the difference between the optimal configurations of Faster R-CNN and YOLOv8 that can be computationally managed by our hardware system. Specifically, we compare the chosen Faster R-CNN version with default augmentation settings against YOLOv8 with an input size of 1280 pixels and default augmentation hyperparameters. Both models were trained using only cropped input images.

The boxplots in Figure 7 illustrate mAP@0.5, mAP@0.75, and mAP@[0.5:0.95] across the 10 folds of cross-validation. We observe how YOLOv8s outperforms Faster R-CNN in terms of both accuracy and robustness. The percentage difference between the average values exceeds 6% in mAP@0.5, 15% in mAP@0.75, and more than 10% in mAP@[0.50:0.95]. Moreover, the size of the boxplot clearly shows the higher prediction variability of Faster R-CNN compared to YOLOv8. As shown in Table 2, the performance of the two-stage algorithm is highly dependent on the validation split, with a standard deviation of about 6%, compared to YOLOv8’s 2%.

[image: Box plot comparing mAP metrics for two object detectors, Faster R-CNN ResNet50+FPN and YOLOv8s, using default settings. YOLOv8s shows higher mAP values across all three metrics: mAP@50, mAP@75, and mAP@50-95.]
Figure 7 | Comparison of mAP@0.5, mAP@0.75, and mAP@[0.5:0.95] values between the optimal configuration of Faster R-CNN and YOLOv8s.





4 Discussion

Building on the previously mentioned work on ST detection (Bessa, 2021), which our study aims to expand, this benchmark has demonstrated the effectiveness of object detection algorithms in recognizing ST and OI on yellow sticky traps. We showed how a standardized acquisition procedure, – particularly in the scanned images – combined with a color segmentation, can achieve strong detection performance. Automated detection of FD vectors has proven both feasible and effective, supporting essential pest management strategies against the spread of this grapevine disease (Lee and Tardaguila, 2023).

Interestingly, the first test revealed that enhancing sharpness did not improve the model performance. This modification appeared to introduce noise to the image, which the model interpreted as irrelevant information. Conversely, variations in brightness and contrast resulted in similar detection accuracy as the non-processed dataset, suggesting that the original dataset was already suitable for training, and additional changes did not provide any further benefits. Further studies should be conducted to understand the relationship between model architecture and image processing, with the aim of optimizing the model training process. The use of higher resolution images significantly improved mAP values, with more pronounced effects observed at higher IoU values. However, in case of limited computational resources, an image size of 640 pixels proved to be a good compromise between accuracy and computing time. In accordance with a similar study (Dang et al., 2023), YOLOv8 built-in augmentation resulted in actual improvements, further demonstrating the effectiveness of the default hyperparameter settings.

Class-oriented tests revealed that single-class detectors did not perform better than multi-class models. No significant changes in terms of TP, FP and FN were noted when trained on one class at a time; in fact, they obtained equal or lower results, as seen with the OI class. Even when the classes were combined under a single target label, the differences were minimal. This suggests that binary-class training is a viable strategy for maximizing performance and feedback information. The reason why the ST class achieves higher results and lower variability than OI could be attributed to the distribution of annotations. ST labels are primarily concentrated in one source of image, i.e. the scanned images, which constitutes the majority of the dataset. In contrast, OI annotations were present in all image types, which vary significantly from each other. Some images contain dense clusters of labels, making the detection more challenging.

The Faster R-CNN tests yielded unexpected results. Adding several transformations appeared to confuse the model, resulting in lower mAP values, especially for higher IoU values. While augmentation is typically beneficial, enabling the model to learn under various situations such as different lighting, orientations, distortions, and variations in object sizes and shapes, in this specific case, these random modifications during training only had negative effects. A possible explanation could be a mismatch with real-world data, as the augmentations might not accurately reflect the variability present in actual scenarios.

Lastly, the superior performance of YOLOv8 over the two-stage detector is consistent with findings from other recent studies (Butt et al., 2024). This could be attributed to the more recent advancements in the YOLO model, making it better equipped for our specific detection task.



4.1 Limitations

Despite the advancements in computer vision and deep learning techniques, insect detection remains a highly challenging task. One major obstacle is the limited availability of data essential for model training, necessitating the construction of our own insect dataset. Depending on the type of study, target objects can be exceedingly small, difficult to see, and may exhibit variability in terms of shape, color, wing poses, and decay conditions (Le et al., 2021), adding complexity to the creation of a robust and consistent dataset. Moreover, the acquisition process in an uncontrolled environment introduces various other forms of noise, including reflections, shadows, orientations, blurring, and variations in visual appearance.

As discussed in section 4, annotations in our study were not uniformly distributed across the dataset, particularly for the OI class, with labels concentrated in fewer densely populated images. Additionally, the condition of insects was often very compromised, potentially introducing noise and affecting model training. In this regard, we opted to label everything potentially related to the specific pests, despite the risk of increasing the number of false positives (such as misidentifying dry leaves as the ST class).

Finally, another factor to consider is the presence of other insects on the yellow traps, particularly other Cicadellidae species that closely resemble S. titanus, which may be erroneously identified by the model. Notable examples include Fieberiella florii and Phlogotettix cyclops, as highlighted in previous studies (Bosco et al., 1997; Chuche et al., 2010; Strauss and Reisenzein, 2018). To address this issue, our strategy involves the collection of digitized trap images. This simple yet efficient approach allows us to continuously enrich the dataset over time. By progressively incorporating more data, we can enhance the model’s capability to distinguish between highly similar species.





5 Conclusions

This study was initiated to evaluate the latest deep learning models for insect detection, aiming to take a significant step forward in the control of Flavescence dorée. The collected images constitute the first fully annotated dataset of Scaphoideus titanus and Orientus ishidae, which is now available to the scientific community (see Data availability section) and can be expanded over time focusing on a standardized and reproducible procedure. We trained deep learning models using YOLOv8 and Faster R-CNN architectures and conducted a benchmark analysis, providing valuable insights and operational tips for acquisition, augmentation and training processes. The two algorithms achieved mAP@0.5 scores of 0.92 and 0.86 respectively, demonstrating the effectiveness of object detectors in addressing this challenging problem. Moving forward, possible improvements could involve optimizing the acquisition process, enhancing image quality, and adding location details to track vector spread in vineyards. Additionally, a segmentation model could simplify field data acquisition by automatically cropping yellow traps before applying subsequent operations. The deployment of these models could establish an efficient monitoring network, opening up potential applications for field-use scenarios. Specifically, a smartphone tool capable of identifying FD vectors would not only enable farmers to take immediate action against the disease, but also allow the scientific community to continuously update the dataset, in the spirit of citizen science.
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A variety of diseased leaves and background noise types are present in images of diseased tomatoes captured in real-world environments. However, existing tomato leaf disease recognition models are limited to recognizing only a single leaf, rendering them unsuitable for practical applications in real-world scenarios. Additionally, these models consume significant hardware resources, making their implementation challenging for agricultural production and promotion. To address these issues, this study proposes a framework that integrates tomato leaf detection with leaf disease recognition. This framework includes a leaf detection model designed for diverse and complex environments, along with an ultra-lightweight model for recognizing tomato leaf diseases. To minimize hardware resource consumption, we developed five inverted residual modules coupled with an efficient attention mechanism, resulting in an ultra-lightweight recognition model that effectively balances model complexity and accuracy. The proposed network was trained on a dataset collected from real environments, and 14 contrasting experiments were conducted under varying noise conditions. The results indicate that the accuracy of the ultra-lightweight tomato disease recognition model, which utilizes the efficient attention mechanism, is 97.84%, with only 0.418 million parameters. Compared to traditional image recognition models, the model presented in this study not only achieves enhanced recognition accuracy across 14 noisy environments but also significantly reduces the number of required model parameters, thereby overcoming the limitation of existing models that can only recognize single disease images.
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1 Introduction

Tomatoes, as a widely cultivated and significant crop, possess considerable edible and medicinal value. The diagnosis of early diseases typically relies on the assessment of leaf damage by experts. However, the inability of these experts to provide real-time diagnoses often results in missed opportunities for timely prevention, which can lead to substantial economic losses. Consequently, the development of an automatic and efficient crop disease diagnosis system has become an urgent area of research.

In early research, scholars aimed to leverage computer vision technology for the automatic identification of diseases. Gulhane and Gurjar (2011) employed a Back Propagation Neural Network (BPNN) to identify cotton diseases by extracting relevant disease characteristics. Sannakki et al. (2010) utilized a fuzzy algorithm in conjunction with K-means clustering (Bashish et al., 2011) to facilitate the grading of leaf diseases. Xie et al. (2016) developed a diagnostic system for wheat leaf diseases based on an Android smartphone, which effectively reduced the computational complexity associated with automated algorithms. Additionally, Siricharoen et al. (2016) diagnosed plant diseases by analyzing leaf textures, colors, and shapes. Qin et al. (2016) employed K-means clustering, the Naive Bayes algorithm, regression trees, and various other supervised classification methods to identify alfalfa diseases, ultimately seeking the optimal method for disease identification in alfalfa. However, the reliance on manually designed features necessitates expert knowledge, which not only limits the degree of automation but also renders the system less adaptable to accommodate variations in growth conditions such as light intensity and complex backgrounds when only a few related features are utilized. Consequently, both recognition accuracy and the level of automation in complex environments require further enhancement.

With the development of computer vision technology and internet technology (Keswani et al., 2019, 2020), the application of deep learning algorithms (Krizhevsky et al., 2017; Simonyan and Zisserman, 2014; He et al., 2016) to crop disease recognition has shown great potential (Dyrmann et al., 2016; Mohanty et al., 2016). Jiang et al. (2020) used deep learning methods to extract the disease characteristics of tomato leaves, such as spot blight, late blight, and yellow leaf curl. Their method predicted the category of each disease after continuous iterative learning, and the accuracy achieved on the training dataset and testing dataset were increased by 0.6% and 2.3%, respectively. Lv et al. (2020) proposed a framework to identify corn leaf diseases based on an improved AlexNet network and feature enhancement, thus improving the extraction performance of corn disease features in complex environments and increasing the accuracy of disease recognition. Liu et al. (2020) used DenseNet to train a generative adversarial network to generate images of 4 different leaf diseases and proposed a leaf disease recognition model based this network. It was further verified that data enhancement could not only effectively overcome the overfitting problem in disease recognition but also effectively improve the recognition accuracy. Liang and Zhang (2020) integrated three classifiers for plant disease image recognition, and the accuracy of the proposed method on a segmentation testing dataset was close to 99.92%. Huang et al. (2019) proposed an end-to-end plant disease diagnosis model based on deep neural networks that could reliably identify plant types and diseases. Sanida and Dasygenis (2024) proposed a lightweight convolutional neural network for tomato leaf disease identification, achieving an accuracy of 97.63% and an AUC score of 98.51%. Ni et al. (2023) introduced a tomato leaf disease recognition model based on ResNet18, enhanced by the addition of a squeeze-and-excitation module, which attained an average recognition accuracy of 99.63% on the publicly available PlantVillage dataset. Li et al. (2023) developed a tomato leaf disease identification model utilizing a self-attention mechanism, achieving an accuracy of 99.97% with a parameter size of 27 MB on the PlantVillage dataset. Additionally, Yang et al. (2024) proposed a lightweight CNN model, which demonstrated a recognition accuracy of 95.54%.These studies have proven that data enhancement can improve the robustness of models in different environments, but such recognition methods still have some shortcomings. (1) These methods all improve the recognition accuracy of the developed models by sacrificing complexity, lacking focus on the model’s complexity. (2) The input images of these end-to-end models can contain only one leaf. If the leaf size is small, the background is large, or multiple diseased leaves appear in one image, the models cannot recognize it. (3) Robustness studies regarding the data variability caused by image acquisition devices are scarce.

Therefore, to overcome these problems, this paper presents a framework that combines tomato leaf detection and leaf disease identification and is mainly divided into three parts. First, a tomato leaf detection model is designed to detect and crop tomato leaves in captured images to solve the problem of non-singular disease image recognition. Then, an effective data enhancement method is designed to improve the robustness of the model in complex environments. Finally, an ultra-lightweight tomato disease recognition model is designed to reduce required the number of model parameters while ensuring that the recognition accuracy remains unchanged and to balance the contradictory relationship between the complexity and recognition accuracy of the model.




2 Related work

To build a tomato leaf detection model in a complex environment, it is necessary to select a suitable object detection network. Mainstream object detection algorithms based on deep learning are mainly divided into two categories, and different types of object detection algorithms have different performances. The first category contains single-step detection networks that do not generate proposal regions but can directly convert an object frame positioning problem into a regression processing problem to achieve rapid object detection; such methods include You Only Look Once (YOLO) (Redmon et al., 2016), YOLOv3 (Redmon & Farhadi, 2018), YOLOv4 (Bochkovskiy et al., 2020), YOLOv6 (Li et al., 2022), YOLOv7 (Wang et al., 2022), YOLOv9 (Wang et al., 2024b), YOLOv10 (Wang et al., 2024a) and other networks, but their disadvantage is that they are prone to missing and falsely detected objects. The second type includes two-step detection networks based on proposal regions, which have high detection accuracy and positioning accuracy, and the probabilities of missed detections and false detections are relatively small; such methods include the fast region-convolutional neural network (Fast R-CNN) (Girshick, 2015) (Fast Region-Convolutional Neural Network) and Faster R-CNN (Ren et al., 2017). The tomato leaf detection results directly affect the accuracy of the utilized disease recognition model, so how to accurately detect tomato leaves in a complex background environment is particularly important. In this paper, we choose Faster RCNN as the basis for constructing a tomato leaf detection network due to its higher accuracy.

The recognition accuracy of image classification algorithms based on deep learning is superior to that traditional algorithms. VGG (Simonyan and Zisserman, 2014), ResNet (He et al., 2016), and GoogLeNet (Szegedy et al., 2015) realize deep convolutional neural networks (DCNNs) by increasing the number of utilized convolutional layers and widening their network structures, resulting in stronger feature extraction capabilities but requiring many hardware resources. To reduce the number of model parameters, MobileNetV1 (Howard et al., 2017) uses deep separable convolution to significantly improve computational efficiency, while MobileNetV2 (Sandler et al., 2018) employs a resource-efficient block with an inverse residual and a linear bottleneck to extend it. MobileNetV3 (Howard et al., 2019) introduces an attention mechanism and modifies the number of extended layer filters. These MobileNet series networks have become mainstream lightweight models, as they greatly reduce the number of required model parameters under the premise of ensuring recognition accuracy. Although MobileNetV3 incorporates an attention mechanism into the lightweight network and achieves better recognition performance, the introduced attention mechanism uses two fully connected layers to perform dimensionality reduction and then upgrade operations on channel features, resulting in an increased number of parameters and greater feature losses. Therefore, this paper designs an ultra-lightweight tomato disease recognition model based on the MobileNet series of models.

Because the image features of early diseased leaves are not obvious and a large number of network parameters can be used to extract the texture features of leaves, few studies have been conducted on the use of lightweight models for crop disease identification. If a lightweight network is used for disease image recognition, it is necessary to improve the feature extraction ability of the model and the utilization of model parameters to extract the features of diseased leaves at different scales. An attention mechanism enables a network to pay more attention to the most effective information in the image and ignore the irrelevant information, so it is considered an effective module for the aggregation of enhanced features. The squeeze-and-excitation network (SE-Net) (Jie et al., 2017) first proposed network that included an effective mechanism for learning channel attention, and it has achieved good performance. A convolutional block attention module (CBAM) (Woo et al., 2018) uses both average pooling and maximum pooling to aggregate features. Most of the attention modules proposed later, such as the Gram-Schmidt orthogonalization procedure (GSoP) (Gao et al., 2018) and Gather-excite (GE) (Hu et al., 2018), have high model complexity and can only be used in a single block or several convolutional blocks. Notable, all the above methods focus on developing complex attention modules to achieve better performance. An efficient attention mechanism aims to learn effective channel attention with low model complexity. The introduction of a high-efficiency attention mechanism into a tomato disease recognition model can reduce the impact of model weight on the resulting recognition accuracy.

Therefore, this paper defines a framework that combines tomato leaf detection and tomato disease recognition, divides tomato the disease recognition into three parts, and optimizes the method used for each part according to tomato disease characteristics to make it suitable for tomato disease recognition in real scenes. The main contributions of this article are as follows:

	By using MobileNetV2 to improve the feature extraction module of Faster RCNN, a fast detection method for tomato leaves in a complex environment is proposed to cut out the complete leaves in the camera’s field of view from the background.

	The existing tomato disease dataset was formed by picking diseased leaves and taking their pictures in an ideal experimental environment, so it lacks disease images in real growth environments and complex environments. Therefore, this paper collects tomato leaf images in an unconstrained tomato planting environment and designs a set of data enhancement methods to enhance the robustness of the recognition model in complex environments.

	An ultra-lightweight tomato disease recognition model based on an efficient attention mechanism is proposed; it balances the contradictory relationship between model complexity and accuracy.






3 Materials and methods

Data collection is an important part of crop disease identification. In this paper, tomato leaf images were collected at the tomato planting base of the Beijing Agricultural Information Technology Research Center. Under natural light, a Sony camera was used to capture tomato images with resolutions of 3024×4023 and 3024×3024. The disease image collection times were 6:00-8:00 am, 10:00-12:00 am and 2:00-6:00 pm. The collected disease category database includes powdery mildew, leaf mould and late blight, with a total of 2437 images. The images collected in an unconstrained environment are stored according to their disease categories. It is worth noting that to increase the diversity of the dataset, the photographed tomato disease images not only include tomato leaves, stems and fruits but also images collected at different angles, at different scales and with different background information for the same leaf. These complex environments, with characteristics such as light, dirt, healthy stems and leaves, the ground, human hands, and other objects, affect the results of tomato disease recognition. Therefore, this paper designs a framework that integrates tomato leaf detection and leaf disease recognition and proposes a rapid leaf detection model and an ultra-lightweight tomato disease recognition model that is suitable for complex environments. As shown in Figure 1, the framework is mainly divided into two parts. The first part mainly uses an object detection model to obtain a dataset of tomato leaf diseases, and then enhances the data of tomato leaves. A lightweight leaf recognition model is constructed using the enhanced tomato leaf disease data, and the trained recognition model is used to recognize leaf diseases.

[image: Flowchart illustrating the process of detecting tomato leaf diseases, starting with a photo of tomato leaves, followed by image collection, dataset creation and enhancement, model training, and final disease category recognition.]
Figure 1 | A framework for the fusion of tomato leaf detection and leaf disease recognition.



3.1 Tomato leaf detection in a complex environment



3.1.1 Data preparation

Pascal VOC2007 (Ren et al., 2017) is a public dataset in the field of object detection. To train the tomato leaf detection model, 800 images are extracted from among the collected images as the tomato leaf detection dataset and annotated according to the Pascal VOC2007 format. According to the standard that the target area accounts for more than 3/4 of the entire leaf area, it is considered a complete leaves. ImgLabel software is used to manually select complete healthy leaves and diseased leaves with clear pixels as the target areas, and fuzzy, incomplete leaves and other background information are uniformly defined as the image background and label labelled. The annotated images generate labels in Extensible Markup Language (XML) format as the tomato leaf detection dataset. (Xu et al., 2024), the dataset are randomly divided in an 8:1:1 ratio, resulting in 648 training images, 80 testing images, and 72 validation images.




3.1.2 Tomato leaf detection model

The accuracy of tomato leaf detection is directly related to the accuracy of the disease identification model. Currently, mainstream target detection models are mainly divided into two categories: single-stage and two-stage. Two-stage target detection algorithms consist of two steps: first, generating candidate regions, and then applying a classifier to these regions. This method is more accurate than single-stage detection but slower. Considering that the detection effect of leaves significantly impacts subsequent results, this paper constructs a tomato leaf detection model based on the Faster RCNN, which has high accuracy in two-stage target detection networks, as shown in Figure 2.

[image: Diagram illustrating an object detection pipeline for plant disease on tomato leaves using MobileNetV2 for feature extraction, followed by region proposal, classification, and bounding box prediction with labeled results shown on the leaf image.]
Figure 2 | Structure of the tomato leaf detection model.

The tomato leaf detection model includes a feature extraction network, region proposal network (RPN) and leaf classification and regression network. MobileNetV2 is used as the feature extraction network in Faster RCNN to extract tomato leaf features, reduce the number of model parameters, and then input the generated feature map into the RPN to search for a predefined number of suggested regions. The feature map output by MobileNetV2 and the region proposal output by the RPN are input into the region of interest (RoI) pooling layer, and after being adjusted to a fixed size, each leaf area is input into the leaf classification and regression network to detect and identify tomato leaves. The reasoning process of the tomato leaf detection model is shown in Figure 3.

[image: Five-panel diagram illustrating a tomato leaf image processing workflow: original input, resized version, regional proposal with red rectangles, detection results highlighting leaves, and final results mapped back to the original image size with bounding boxes and labels.]
Figure 3 | Schematic diagram of the inference process of the tomato leaf detection model.

Each image is scaled to a size of 600×1000 pixels and input into the tomato leaf detection model to detect all clear and complete tomato leaf coordinates in the image, and the output detection results are rescaled to fit the original image. When there are no leaves in the given image, the number of detected leaves is 0, and the image is not saved. The tomato leaf detection model accurately extracts all clear and complete leaf images in the camera’s field of view, thereby overcoming the limitation of current disease recognition research that the input image can only contain one leaf. This paper automatically detects images containing multiple tomato leaves and inputs the detected single leaves into the disease recognition network, which not only improves the accuracy and adaptability of tomato disease detection but also greatly reduces the workloads of researchers.




3.1.3 Tomato disease image enhancement

After the complete tomato leaves are cut out from the images taken by the camera, they are divided into four categories: powdery mildew, leaf mould, late blight and healthy leaves. These four kinds of disease data form the original tomato disease recognition dataset, which is divided into a training set and a test set at a ratio of 8:2. To enhance the robustness of the tomato disease recognition model in an unconstrained environment, this paper uses 13 data enhancement methods to expand the number of training images and test images. The enhancement results are shown in Figure 4.

[image: Grid of tomato leaf images arranged by disease status—healthy, leaf mold, powdery mildew, late blight—demonstrating various image processing techniques such as flipping, brightness, chroma, contrast, sharpness adjustments, and enhancement methods across columns.]
Figure 4 | The results of tomato disease image enhancement.

Image enhancement methods include flipping an image horizontally or vertically and increasing or decreasing the brightness, chroma, contrast, or sharpness of the image. These methods can simulate special lighting noise in a real environment, not only increasing the diversity of the training set but also enabling the design of comparative experiments to test the robustness of the developed model in a complex and changeable environment. In the image field, the Laplacian algorithm can highlight the edge information of an image, the gamma transform can perform different contrast enhancements according to different grey values, and contrast-limited adaptive histogram equalization (CLAHE) can enhance the local contrast of an image and increase the number of detailed features. The tomato disease dataset expanded using these methods is called the enhanced tomato disease recognition dataset, in which the brightness, chroma, contrast, etc. are increased to 50% of the original image or reduced to 50% of those of the original image.





3.2 Ultra-lightweight tomato leaf disease recognition model

At present, the mainstream recognition model has a relatively high number of parameters and consumes a relatively large amount of hardware resources. To balance the contradictory relationship between accuracy and complexity and to facilitate the deployment and application of the model, this paper uses deep separable convolution, an inverted residual structure and efficient channel attention (ECA) to design an ultra-lightweight tomato leaf disease recognition model. The specific architecture is shown in Figure 5.

[image: Flowchart diagram illustrating an ultra-lightweight plant disease recognition model. The process starts with a training dataset of leaf images, progressing through convolutional, depthwise, and residual modules, then a classification layer, with labeled images and feature maps shown for context.]
Figure 5 | Structure of an ultra-lightweight Plant leaf recognition model based on ECA.

To preserve more detailed diseased leaf features, five improved inverted residual structures are designed in the model, based on MobileNet v3 small, and the input image size of the model is set to 448×448 size. After a tomato leaf image feature is extracted by the case-based reasoning (CBR) module, the obtained feature map is input into the feature extraction network, which contains 5 improved inverted residual modules. Finally, the designed last-stage module uses a 1×1 convolution instead of a fully connected layer and uses a global pooling layer to transform 7×7 feature maps into 1×1 objects, which greatly reduces the number of required parameters. A dropout layer is added between the last two 1×1 convolutional layers of the model to prevent the model from overfitting. The parameters of each module are shown in Table 1.

Table 1 | Specific parameters of each module.


[image: Table detailing neural network architecture with columns for input size, module type, expansion channel, output channel, ECA inclusion, step, and output size. Footnotes clarify expansion and ECA module notation.]
The model uses rectified linear unit 6 (Relu6) as the non-linear activation function and limits the maximum value of the output to 6. The calculation method is shown in equation (1):

[image: Mathematical expression defining the ReLU6 activation function as ReLU6(x) equals the minimum of the maximum of zero and x, and six, with the equation labeled as one.]

The deep network easily causes gradient degradation when extracting tomato disease characteristics. The traditional residual structure performs compression first and then conducts expansion, thus losing much of the effective information contained in the feature map. Therefore, this paper designs five inverted residual structures to perform feature extraction after upgrading the channel information, and the structures are shown in Figure 6.

[image: Diagram showing three neural network block architectures: (a) DW_IR with depthwise convolution, batch normalization, channel attention, pointwise convolution, and linear layer; (b) DSC_IR adds pointwise convolutions before and after depthwise convolution and includes a residual connection; (c) DSC_ECA_IR extends (b) by inserting channel attention after the first batch normalization and before depthwise convolution, maintaining the residual structure.]
Figure 6 | The improved inverted residual module. (A) DW_IR is an inverted residual module based on depth-wise convolution and an efficient attention mechanism. (B) is an inverted residual module based on depth-wise separable convolution (DSC_IR). (C) is an inverted residual module based on depth-wise separable convolution and an efficient attention mechanism (DSC_ECA_IR).

To reduce the number of parameters required by the tomato disease recognition model, depth-wise separable convolution (DSC), which is composed of depth-wise (DW) convolution and point-wise (PW) convolution, is introduced. The use of DSC to replace the traditional standard convolution can reduce the numbers of model parameters and calculations. The inverted residual (IR) module uses PW convolution to upscale the channels and then uses DW convolution to extract features so that the model can extract rich feature information. Finally, PW convolution is used to keep the dimensionality of the input channel consistent with that of the output channel, thus achieving cross-layer connections and lightweight models. Since tomato leaf disease is mainly manifested in the texture information of tomatoes, to enhance the ability of the model to extract detailed leaf image features, an ECA mechanism is incorporated into the inverted residual structure. The module in Figure 6A does not perform dimensional upscaling and directly inputs the given feature map into the DW convolution mechanism. The IR modules in Figure 6B and Figure 6C both use PW convolution, DW convolution, and more PW convolution operations to increase the dimensionality of the input features and then extract the features. When the DW convolution step length is 1, a cross-layer connection is adopted, and when the step length is 2, a cross-layer connection is not adopted. In the last PW convolution, only a batch normalization (BN) structure is used, and the non-linear activation function is not used.

The standard convolution input is a feature map Liof size [image: Mathematical expression showing h sub i times w sub i times d sub i, typically representing height, width, and depth with corresponding subscripts.] , an output feature map Ljof size [image: Mathematical expression displaying h sub i times w sub i times d sub i, likely representing the height, width, and depth dimensions of an object or array.]  is generated by the convolution kernel [image: Mathematical expression showing K is an element of the real-valued tensor space with dimensions k by k by d sub i by d sub j.] , and the calculation cost is [image: Mathematical expression showing variables h sub i, w sub i, d sub i, d sub j, k, and k, all multiplied together and separated by multiplication dots.] . The DSC mechanism uses two layers instead of the standard convolution operation. The first layer is a DW convolution layer, which performs lightweight filtering on each input channel, and the second layer is a 1×1 point-by-point convolution layer, which constructs new features by calculating linear combinations of the input channels. However, the effect of DSC is similar to that of standard convolution, but the computational cost, which is the sum of a DW convolution and a 1×1 PW convolution, is lower:

[image: Mathematical expression displaying h sub i, w sub i, colon d times k plus d sub i, with the number two in parentheses on the right.]

where the DW convolution in the lightweight model designed in this paper uses 3×3 and 5×5 convolution operations, and the computational cost is reduced by 9-25 times compared with that of traditional convolution.

Reducing the number of model parameters can easily reduce the resulting recognition accuracy. To improve the accuracy of tomato disease recognition, this paper introduces an ECA mechanism to improve the inverted residual modules, as shown in Figures 6A, C. The specific structure of the ECA mechanism is shown in Figure 7.

[image: Diagram illustrating a channel attention mechanism for convolutional neural networks: an input tensor (W by H by C) undergoes global average pooling, one-dimensional convolution with adaptive kernel size, and sigmoid activation before channel-wise multiplication with the original tensor, producing an enhanced output tensor.]
Figure 7 | The specific structure of the ECA mechanism.

A feature map X is output after a convolution-based transformation as [image: Mathematical expression showing u sub c at i comma j is an element of R superscript W times H times C, representing a tensor of width W, height H, and channels C.] , where W, H and C are the width, height and channel dimensions, respectively. The attention module uses a compression operation to compress a feature map U into a 1×1×C format. This operation aggregates features across the spatial dimensions (H×W), generates channel descriptors, and obtains aggregate features [image: Mathematical expression showing F of u sub c belongs to the set of real numbers to the power of uppercase C.]  without dimensionality reduction. The channel attention can be learned by formula (3).

The channel attention can be learned by formula (3).

[image: Mathematical formula displaying bold lowercase omega equals sigma applied to M F of u sub t, labeled as equation three.]

where σ is a sigmoid function, which is the activation function of the attention module, M is the convolution calculation:

[image: Mathematical formula showing the sigmoid function: sigmoid of z equals one divided by one plus e to the power of negative z, labeled as equation four.]

The ECA module uses global average pooling (GAP) to obtain an aggregate feature [image: Mathematical expression displaying F subscript lambda of u subscript c.] :

[image: Mathematical formula showing FA(uc) equals one divided by H times W, multiplied by the sum of uc(i, j) over i from one to H and j from one to W, labeled as equation (5).]

When the convolution operation extracts features, the variance of the estimated value is easily increased due to the limited size of the neighborhood. GAP can reduce this error and retain more image background information.

To capture local cross-channel interactions and ensure the effectiveness of channel features, we can use a 1D convolution operation to make all channels share the same learning weight. The calculation of [image: Lowercase italic omega symbol with a subscript i, representing a variable commonly used in mathematics, physics, or engineering to indicate an indexed parameter or value.]  is dependent on [image: Mathematical expression showing italic uppercase F subscript i, evaluated at parenthesis u subscript c.]  and its k neighbors, i.e.,

[image: Mathematical equations showing two forms for calculating ω: the first uses σ applied to a weighted sum of F_j functions of u_j, and the second uses σ applied to a one-dimensional convolution on F_i of u_j. Equation six is labeled on the right.]

where [image: Mathematical expression showing the Greek letter phi with subscript i and superscript k, commonly used to represent an indexed element with an upper index or iteration.]  indicates the set of k adjacent channels of [image: Mathematical expression showing F sub i superscript j of u sub c.] . [image: Mathematical expression displaying italicized text "Conv1D" followed by a subscript "k".]  is a 1D convolution with a convolution kernel of k, and formula (6) involves only k parameters. Under the premise of low complexity, the efficiency and effectiveness of the model are ensured by appropriately capturing local cross-channel interactions.

Therefore, the M operation in formula (3) is a one-dimensional convolution operation, and the aggregate feature [image: Mathematical expression showing F subscript lambda of u subscript c in italic font.]  is input into the 1D convolution layer to filter the effective channel information and obtain [image: Mathematical notation showing the Greek letter lowercase omega followed by the subscript c, commonly used to denote cutoff angular frequency in engineering or physics.] :

[image: Mathematical equation showing omega sub x equals sigma of Conv1D sub X applied to E sub x of u sub i, with equation number seven in parentheses on the right.]

The convolution kernel size k is set as an adaptive parameter. For a given number of channels C, k is calculated as follows:

[image: Mathematical equation showing k equals function r of C, defined as the absolute value of open parenthesis log base two of C divided by gamma plus b over gamma, evaluated at old values, with the equation labeled as number eight.]

where [image: Mathematical equation displaying gamma equals two, comma, b equals one, with italicized variable symbols.]  [image: Mathematical expression showing the absolute value of alpha, with the subscript "odd" placed below the vertical bars.]  represents the nearest odd number of [image: Lowercase Greek letter alpha, written in italic font on a white background.]  and [image: Mathematical expression showing the Greek letter tau followed by an open parenthesis, uppercase letter C, and a close parenthesis, indicating a function tau of C.]  is a nonlinear mapping.

[image: Mathematical formula showing x sub r equals F sat with arguments u sub φ and ω sub α, which equals ω with circumflex sub c multiplied by u sub φ, labeled as equation nine.] 

where [image: Mathematical expression showing X equals an array containing x sub one, x sub two, up to x sub t, enclosed in brackets.]  and [image: Mathematical expression displaying F subscript scale, open parenthesis u sub c comma bold omega sub C, close parenthesis.]  represent the channel multiplication relationship between the scalar [image: Mathematical expression showing the Greek letter omega in bold, followed by a subscript lowercase c, commonly representing a cutoff frequency in science or engineering contexts.]  and the feature map. The ECA module does not reduce the dimensionality of the original channel features. High-dimensional channels have longer-range interactions, which are not limited to the local acceptance domain of the convolution response, and realize the enhancement and recalibration of important features in the former and latter layers.





4 Experimental results and analysis



4.1 Experimental configuration and data

The models are trained on one NVIDIA Tesla P100 GPU with 16 GB of RAM based on a 64-bit Ubuntu 16.04 operating system and the PyTorch framework, with Python version 3.7.6, PyTorch version 1.3.0, CUDA API version 10.0, and cuDNN version 7.5.1.

According to the data preprocessing procedure in Figure 1, the original tomato disease recognition dataset and the enhanced tomato disease recognition dataset are produced, as shown in Table 2. The original collected tomato disease dataset contains 3 kinds of diseases, and a total of 2,437 tomato images with two sizes, 3024×4023 and 3024×3024. To train the tomato leaf detection model, 800 images are extracted from the collected images and manually labelled as the tomato leaf detection dataset. Finally, the overall dataset is divided into 80 testing images, 648 training images and 72 validation images. The trained tomato leaf detection model is used to crop the tomato leaves with powdery mildew, late blight, leaf mould and healthy tissues from the original image, and 6,001 leaf images are obtained; these form the original tomato disease recognition dataset and are divided into a training set and testing set at a ratio of 8:2. Thirteen kinds of image enhancement methods are used to expand the training set and testing set of the original tomato disease recognition, and 84,014 enhanced leaf images are obtained, forming the enhanced tomato disease recognition dataset.

Table 2 | Number of images in the tomato disease dataset.


[image: Data table comparing tomato disease dataset categories of powdery mildew, late blight, leaf mould, and healthy, across image captures, cropped images, original and enhanced training and testing sets, and image enhancement quantities, with totals given for each column.]



4.2 Testing results of the tomato leaf detection model

The training process and detection results of the tomato leaf detection model are shown in Figure 8 and Figure 9, respectively. During the training process, the total loss function exhibits a downward trend, and the oscillation interval is stable between 0.15-0.20. After the training process is completed, the model can effectively detect the clear leaves in the original collected tomato images while ignoring the blurred leaves and incomplete leaves in the background. The calculated accuracy of the model is 93.7%, the recall is 85%, the weight of the model is 88MB, and which proves that the model has a good detection effect for tomato leaves.

[image: Line graph showing total loss on the y-axis versus iteration on the x-axis, with total loss values decreasing sharply at first and then stabilizing around 0.18 after 2,000 iterations.]
Figure 8 | The training process of the tomato leaf detection model.

[image: Close-up photographs of tomato plant leaves with visible signs of disease, such as browning and wilting, are outlined with red rectangles and annotated with blue labels indicating leaf detection confidence scores.]
Figure 9 | Test results of the tomato leaf detection models in different environments.

At the same time, to verify the effectiveness of the proposed model, we conducted comparative experiments with YOLO v8x, YOLO v8l, and Faster R-CNN. The accuracy, recall rates, and model sizes are as follows: for the YOLO v8x model, the accuracy is 95%, the recall rate is 85.5%, and the model size is 130 MB; for the YOLO v8l model, the accuracy is 92.5%, the recall rate is 83.2%, and the model size is 84 MB; for the Faster R-CNN model, the accuracy is 94.5%, the recall rate is 85.9%, and the model size is 467 MB. Compared to the original Faster R-CNN, the detection performance of our proposed model is slightly lower, but the model size is only about one-fourth of that. In comparison with YOLO v8x, the model size is approximately two-thirds of that, and there is little difference in detection performance. However, when compared to YOLO v8l, the detection performance is improved by about 2 percentage points, while the model size only increases by 4 MB.




4.3 Recognition results for tomato leaf diseases

To verify the effectiveness of the tomato leaf disease recognition model, the original tomato disease recognition training set and the enhanced tomato disease recognition training set are used to train the ultra-lightweight tomato disease recognition model based on the ECA mechanism proposed in this paper. The robustness of the model is tested on the testing set derived from 14 kinds of different environments. To further analyze the impact of the improved module on the recognition results, an ablation experiment is carried out on the ultra-lightweight tomato disease recognition model. Finally, the same parameter configuration and methods are used to train mainstream recognition networks, including the MobileNet series, VGG16, ResNet50 and AlexNet, for a comparison with the model proposed in this article in terms of recognition performance.



4.3.1 Training results of the ultra-lightweight tomato disease recognition model

The original tomato disease recognition training set and the enhanced tomato disease recognition training set are separately used to train the disease recognition model, and then the trained model is verified on the same enhanced testing set. The image size used for the two training sets is scaled to 448*448 pixels. Figure 10 shows the change curve of the loss function and the accuracy achieved on the testing set during the training process. As the number of training epochs increases, the loss functions of the model for the two datasets first decrease and then stabilize, and the accuracy on the testing set also increases and then stabilizes. However, the loss function of the model trained on the enhanced tomato disease recognition dataset is lower, and the accuracy on the testing set reaches 97.84%. The accuracy of the model trained on the original tomato disease recognition dataset is only 77.09% on the same testing set, which is far lower than the recognition accuracy of the model trained on the enhanced tomato disease recognition dataset. It is proven that the 13 kinds of image enhancement methods used in this paper can greatly improve the accuracy of the model with respect to the task of tomato disease recognition.

[image: Two line graphs compare model performance on original and augmented tomato disease datasets over 120 epochs. Left graph shows lower train loss for augmented data, highlighted with a zoom inset. Right graph shows higher test accuracy for augmented data.]
Figure 10 | The training results of the ultra-lightweight tomato disease recognition model obtained with different datasets.




4.3.2 Comparison of the recognition results of each model

To further verify the influence of the model and enhancement method proposed in this paper on the recognition results, the current mainstream models are trained on the original tomato disease recognition training set and the enhanced tomato disease recognition training set and then uniformly tested on the enhanced testing set. The results are shown in Figure 11.

[image: Radar chart comparing the accuracy of eight neural network models on tomato disease recognition, with purple indicating the original dataset and orange the enhanced dataset. Enhanced dataset consistently achieves higher accuracy across all models.]
Figure 11 | Comparison of the accuracies of different models on the enhanced testing set.

After conducting training on the enhanced tomato disease recognition training set, the recognition accuracies of the tomato disease recognition models in different environments are much higher than those of the models trained on the original tomato disease training set. This is because the enhanced testing set contains images of diseased leaves in a complex environment. Data enhancement can simulate diseased tomato leaves in a complex unconstrained environment, so training models with the enhanced tomato disease dataset can make them more robust. In addition, although the proposed model trained on the original tomato disease dataset has a recognition accuracy of 77.09% on the testing set, which is lower than that of AlexNet, this value is much higher than the test results of other networks. However, the recognition accuracy of the proposed model on the testing set after training on the enhanced tomato disease recognition dataset is 97.84%, which is higher than the recognition accuracies of all other network models. The experimental results prove that the image enhancement method selected in this paper can effectively improve tomato recognition accuracy. When the number of datasets is expanded to 84,014, the shallow network AlexNet exhibits certain limitations and is unable to obtain higher accuracy, and the model proposed in this paper has the highest accuracy among all tested models.

To further study the influence of the utilized complex environment on the models, each type of network is trained on two datasets and then uniformly tested on 14 enhanced tomato disease recognition testing sets. The weight of the version of each model with the highest average accuracy on the testing set is saved, and then the influences of different environments on the accuracy of model recognition are analyzed. The test results obtained after training on the original tomato disease recognition dataset are shown in Table 3, and the test results obtained after training on the enhanced tomato disease recognition dataset are shown in Table 4.

Table 3 | Test results obtained after training on the original tomato disease recognition dataset.


[image: Table comparing classification accuracy percentages for various image augmentations across eight neural network models: AlexNet, ShuffleNet, VGG16, ResNet50, MobileNetV2, MobileNetV3 large, MobileNetV3 small, and Ours. “Ours” consistently shows the highest accuracy in all augmentations and the highest average accuracy at 77.09 percent, outperforming others especially in challenging transformations like brightness reduction and CLAHE.]
Table 4 | Test results obtained after training on the enhanced tomato disease recognition dataset.


[image: Table comparing classification accuracy percentages of different neural network models under various image augmentations. The "Ours" model consistently achieves the highest accuracy across all conditions, with an average accuracy of 97.84 percent.]
Upon analyzing the recognition results of the models trained on the different sub-datasets of the enhanced tomato disease recognition testing set, it is found that the accuracy of each model on the original images of the testing set is very high. The image flip, sharpness transformation and Laplace transformation have the least influence on the recognition result, because sharpness transformation and Laplace transformation can enhance the details and edge information of the image, while flipping changes the angle of the image and has little effect on its texture and shape. However, changes in the brightness, chroma, and contrast of an image or a gamma or CLAHE transformation reduce the recognition accuracy of the model to varying degrees, mainly because these transformations have a significant impact on the color, texture, and other aspects of the image, and these types of data are missing from the original data. The lack of these types of data in the original data results in the model lacking robustness to this type of noise. Meanwhile, based on the experimental results in Tables 3, 4, we can conclude that the number of model parameters does not necessarily represent the recognition performance of the model. Excessive model parameters may lead to the extraction of redundant features, thereby affecting the performance of the model. On the contrary, a small number of parameters may also reduce the feature extraction capability of the model. It can be seen from Table 3 that without image enhancement, the recognition accuracy of the model proposed in this paper is higher than that of most models in different environments. Through image enhancement, the model can be adapted to the changes in these tomato images, and the recognition accuracy of the model in different environments can be significantly improved. In Table 4, the accuracies of the model proposed in this paper is maintained at approximately 97% in different environments. The recognition accuracy in most environments is higher than that of other models, and the average accuracy is 97.84%, which is higher than that of other models. The experimental results verify that the model proposed in this paper not only has the highest recognition accuracy for tomato disease images in an unconstrained environment but also has better robustness to images with multiple types of noise interference.

The tomato disease recognition model designed in this paper not only has high accuracy and strong robustness in a variety of complex environments but is also ultra-lightweight. Table 5 compares the number of parameters utilized by each model. The weight of the model proposed in this paper is only 1.6 MB, and the number of parameters is 0.418 M, which is only one-tenth of that required by MobileNetV3. Although the tomato disease recognition accuracy listed in Table 3 is slightly lower than that of AlexNet, the number of model parameters is reduced by 200 times. After training on the enhanced tomato disease recognition dataset in Table 4, the accuracy of the model in this paper ranks first, and the number of parameters is much smaller than that of VGG16 and ResNet50. Compared with the lightweight MobileNet series models proposed in recent years, the model proposed in this paper not only has a higher recognition accuracy but also has a lower model weight. For example, the weight of the model developed in this paper is one-fifth of that of MobileNetV2, but the test results in Table 3 and Table 4 show that the recognition accuracies of the model in this paper are 15.09% and 1.44% higher than those of MobileNetV2. Experiments show that the ultra-lightweight tomato disease recognition model based on the ECA module proposed in this paper balances the contradiction between tomato disease recognition accuracy and model complexity and uses the ultra-lightweight network to obtain disease recognition accuracy.

Table 5 | Model size comparison and evaluation.


[image: Comparison table of eight neural network models showing model weight, parameter count, and test results in Table 3 and Table 4; “Ours” model has the lowest weight and parameters, and the highest Table 4 accuracy.]



4.3.3 Results of an ablation experiment

In this paper, an ablation experiment is designed to further explore the effect of the high-efficiency channel attention mechanism and dropout layer on the obtained tomato disease recognition accuracy. After the ECA mechanisms in all modules are removed, the formed tomato disease recognition model is called No_ECA. After the last dropout layer in the model proposed in this paper is removed, the resulting tomato disease recognition model is called No_Dropout. These two models are trained on the enhanced tomato disease recognition dataset, and the models are tested according to the test method described in section 4.3.2. The test results are shown in Table 6.

Table 6 | Comparison of the ablation experiment results for the model proposed in this paper.


[image: Table comparing image data augmentation results for three models: No_ECA, No_Dropout, and Ours, across original, various flipped, and transformed images, showing percentages for accuracy and parameter counts. Ours model consistently achieves the highest average accuracy and values across most categories.]
According to the results of the ablation experiment, when using the same dataset and training configuration to train No_ECA and No_Dropout, their recognition accuracies are lower than that of the model proposed in this paper. Although a large number of ECA modules are used in the model proposed in this paper to improve the accuracy of tomato disease recognition, the number of model parameters increases by 33, which is only a slight increase. This proves that our model not only improves the accuracy of tomato disease recognition but also realizes ultralightweight characteristics. It balances the contradiction between model accuracy and complexity and has strong robustness to complex and unconstrained environments.






5 Discussion and conclusion

This paper addresses the limitations of existing tomato disease recognition models, which are typically capable of identifying only a single diseased leaf and struggle to reconcile the conflicting demands of accuracy and complexity. To overcome these challenges, we propose a comprehensive framework that integrates tomato leaf detection with leaf disease recognition. Initially, we develop a tomato leaf detection model designed to extract individual diseased leaves from tomato disease images captured in real-world, unconstrained environments. Subsequently, we introduce an effective data enhancement method that simulates image noise across various settings, thereby augmenting the model’s robustness in complex environments. Finally, we present an ultra-lightweight tomato leaf disease recognition model tailored for operation in such challenging conditions. This model leverages a high-efficiency channel attention mechanism and incorporates five inverted residual modules to enhance accuracy while minimizing the number of parameters, effectively balancing model complexity with recognition accuracy and reducing hardware resource consumption. We utilize both the original tomato disease dataset and an enhanced version to train the model, subsequently evaluating its recognition accuracy across 14 distinct noise environments. Experimental results reveal that our ultra-lightweight tomato disease recognition model, based on high-efficiency channel attention, achieves an accuracy of 97.84% while maintaining only 0.418 million parameters. In comparison to traditional image recognition models such as AlexNet, VGG16, ResNet50, and the MobileNet series, the proposed model not only demonstrates superior accuracy across the 14 noisy environments but also significantly reduces the parameter count. Additionally, our model addresses the limitation of existing systems that can only recognize a single disease image, making it suitable for deployment on mobile devices for practical demonstration applications. At the same time, based on the framework proposed in this study, using disease images of other crops for model fine-tuning can also be applied to other crops. Although the existing models have achieved good results, there is still room for improvement in future research. Firstly, the existing image data mainly simulates complex environments through different data processing methods. In the future, more image acquisition devices can be used to obtain image data under different performance devices, so that the images are closer to the natural environment. At the same time, more complex leaf disease images can be collected to establish a more balanced leaf disease dataset. Secondly, based on this model, techniques such as compression pruning, knowledge distillation, and quantification can be used to further improve the lightweight process of the model.
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Introduction

The deployment of robots for automated weeding holds significant promise in promoting sustainable agriculture and reducing labor requirements, with vision based detection being crucial for accurate weed identification. However, weed detection through computer vision presents various challenges, such as morphological similarities between weeds and crops, large-scale variations, occlusions, and the small size of the target objects.





Methods

To overcome these challenges, this paper proposes a novel object detection model, PD-YOLO, based on multi-scale feature fusion. Building on the YOLOv8n framework, the model introduces a Parallel Focusing Feature Pyramid (PF-FPN), which incorporates two key components: the Feature Filtering and Aggregation Module (FFAM) and the Hierarchical Adaptive Recalibration Fusion Module (HARFM). These modules facilitate efficient feature fusion both laterally and radially across the network. Furthermore, the inclusion of a dynamic detection head (Dyhead) significantly enhances the model’s capacity to detect and locate weeds in complex environments.





Results and discussion

Experimental results on two public weed datasets demonstrate the superior performance of PD-YOLO over state-the-art models, with a modest increase in computational cost. PD-YOLO improves the mean average precision (mAP) by 1.7% and 1.8% on the CottonWeedDet12 dataset at thresholds of 0.5 and 0.5-0.95, respectively. This research not only presents an efficient and accurate weed detection method but also offers new insights and technological advances for automated weed detection in agriculture.
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1 Introduction

Weeds are one of the major factors affecting agriculture. Currently, the damage caused by weeds to agriculture reaches as high as 34% (Oerke, 2006). For decades, herbicides have been widely adopted as the preferred method for weed management in global agriculture; however, herbicides often have adverse environmental side effects (Kudsk and Streibig, 2003). With the development of precision agriculture and the widespread use of intelligent agricultural machinery, robots for weed control hold great potential in building environmentally friendly agriculture and reducing labor demands (You et al., 2020). Intelligent robots rely on real-time weed detection systems with high accuracy to locate weeds, but weed detection in actual farmland environments still faces the following challenges.

Firstly, the coexistence of inter-class phenotypic similarity and intra-class morphological variation poses significant challenges. Weeds and crops exhibit substantial overlap in color features, particularly during the seedling stage, with notable similarities in leaf shape and texture characteristics during growth (Hasan et al., 2021). For instance, Italian ryegrass (Lolium multiflorum) and wheat are visually indistinguishable without expert knowledge (Bansal et al., 2024), rendering traditional detection methods ineffective. Compounding this complexity, dynamic variations in leaf color, morphology, and texture occur across different growth stages of the same weed species (Veeragandham and Santhi, 2021), hindering the establishment of stable feature representations in detection models. Studies have shown that YOLOX and YOLOv8 models experienced accuracy declines of 14.5% and 14.2%, respectively, in identifying eight cross-season weed categories common in cotton fields. This degradation primarily stems from seasonal variations in lighting, background conditions, and weed growth states (Deng et al., 2024).

Secondly, the sheer diversity of weed species (Chen et al., 2024), combined with the simultaneous presence of weeds at varying developmental stages within agroecosystems, creates scale differences spanning three orders of magnitude. Empirical analysis using the Weed25 dataset revealed significant disparities in recognition performance: Asiatic smartweed (Polygonum aviculare) achieved a mean average precision (mAP) of 62.92%, while velvetleaf (Abutilon theophrasti) reached 99.70% (Wang et al., 2022). Such scale heterogeneity complicates the development of algorithms capable of effectively detecting multi-category weeds. Furthermore, leaf overlap and weed occlusion in dense scenarios exacerbate differentiation and detection challenges (Wang et al., 2019). In cabbage fields, weed detection not only struggles with color similarity but also contends with illumination variations and leaf occlusion, leading to suboptimal performance in direct detection methods addressing these issues (Sun et al., 2024).

Finally, the high-density distribution and small size of weed targets frequently result in missed detections and false positives. Wu et al. (2023). proposed an enhanced YOLO-V4 model tailored for small weed detection in farmland, improving the mAP by 4.2%. However, despite advancements in lightweight performance, the parameter count of model remains high at 42.54 million, posing deployment challenges.

To address the aforementioned challenges, this paper proposes an PD-YOLO method based on a multi-scale feature fusion network, building on YOLOv8n. The method introduces an innovative Parallel Focusing Feature Pyramid (PF-FPN), which effectively improves the accurate classification and localization of different types of weeds in complex environments. The PF-FPN includes the Feature Filtering and Aggregation Module (FFAM) and the Hierarchical Adaptive Recalibration Fusion Module (HARFM). The FFAM module utilizes deep convolution and attention mechanisms to preliminarily filter and extract features, adaptively adjusting and fusing multi-scale features to capture rich semantic information. This enhances small object detection and multi-scale feature fusion, thereby improving the model’s accuracy and robustness. The HARFM module leverages attention mechanisms to fuse features at different levels, achieving adaptive optimization and enhancing the model’s expressive power. To further improve detection performance, a dynamic detection head (Dyhead) (Dai et al., 2021) is introduced, enhancing the model’s stability and accuracy in complex backgrounds. Ultimately, the proposed PD-YOLO model integrates the PF-FPN network and Dyhead architecture, using YOLOv8n as the base framework. This optimization of feature fusion and model representation capabilities significantly enhances the overall accuracy of weed detection.

The remainder of this paper is organized as follows: Section 2 introduces related research work; Section 3 presents the PD-YOLO model; Section 4 describes the experiments conducted on the model; Section 5 provides relevant discussions; and Section 6 concludes the paper.




2 Related works

Early research in weed detection primarily relied on traditional image processing techniques (Wu et al., 2021). These methods involved extracting features such as color, texture, and shape from images, which were then used in conjunction with machine learning algorithms like Random Forests or Support Vector Machines for weed identification (Sabzi et al., 2020). For example, Islam et al (Islam et al., 2021). achieved efficient weed detection in Unmanned Aerial Vehicle (UAV) imagery through image orthorectification combined with machine learning algorithms, reaching accuracy rates of 98.40% on the original dataset and 94.72% on an extended dataset. The success of these techniques heavily depended on the quality of image acquisition, preprocessing, and feature extraction, as these factors directly influenced the performance and generalization ability of the algorithms.

With the advent of deep learning, object detection methods have revolutionized weed detection due to their superior efficiency and accuracy. Tang et al. (2017). pioneered the use of K-means unsupervised feature learning in conjunction with Convolutional Neural Networks (CNNs), improving the identification accuracy of soybean seedlings and associated weeds to 92.89% through fine-tuning optimization. This approach effectively addressed the issues of instability and limited generalization found in manually designed feature-based methods. Similarly, dos Santos Ferreira et al (Tang et al., 2017) applied a ConvNets network to detect weeds in soybean crop images, classifying them into grass and broadleaf categories. This categorization enabled the targeted application of specific herbicides, achieving over 98% identification accuracy.

Currently, classical deep learning-based object detection methods are mainly categorized into single-stage and two-stage detection algorithms. Single-stage algorithms directly use neural networks to extract features from images and perform detection. Representative algorithms include SSD (Liu et al., 2016), the YOLO series (Redmon et al., 2016; Chen et al., 2021), and RT-DETR (Chen et al., 2021). Single-stage algorithms generally have the advantage of faster speed and better real-time detection performance, but they often suffer from lower localization accuracy. In contrast, two-stage algorithms first generate candidate regions and then classify and localize these regions. They usually achieve higher detection accuracy but are relatively slower and require more computational resources, with Faster R-CNN (Ren et al., 2015) being a representative example.

In weed detection, two-stage algorithms first generate potential weed-containing regions using object detection algorithms, followed by deep learning model classification to distinguish weeds from crops. Veeranampalayam Sivakumar et al (Veeranampalayam Sivakumar et al., 2020). constructed Faster R-CNN and SSD models and evaluated their performance for weed detection in soybean fields using UAV images. The results showed that both models performed well in weed detection, but Faster R-CNN outperformed SSD in terms of performance. This approach typically improves detection accuracy and reduces false positive rates, but its high computational complexity makes it difficult to meet real-time requirements.

To address the challenges of morphological diversity, scale variations, and complex backgrounds in farmland weed detection, researchers have proposed various improvements based on the YOLO series models. These methods enhance model performance in specific agricultural scenarios through strategies such as integrating attention mechanisms, optimizing multi-scale feature fusion, and improving small-target detection capabilities. Table 1 systematically compares representative models in terms of improvement methods, parameter counts, computational costs, and performance metrics.

Table 1 | Systematic comparison of YOLO-based improvement methods and performance metrics for farmland weed detection tasks.


[image: Comparison table of six weed detection models shows their names, application scenarios, improvement methods, parameters in millions, GFLOPS, and mAP at zero point five percent. Parameters range from zero point fifty seven to forty point eight million.]
Current YOLO-based farmland weed detection models generally suffer from scenario limitations and methodological homogenization. Most models, such as GTCBS-YOLOv5s (Shao et al., 2023) and YOLOv8-DMAS (Zheng et al., 2024), are optimized solely for single environments like rice or cotton fields, relying on repetitive technical approaches including attention mechanisms, multi-scale feature fusion, and loss function improvements, while lacking differentiated designs for weed morphological diversity and crop coexistence scenarios. Some models like RMS-DETR (Guo et al., 2024) with 40.8M parameters and 187 GFLOPs computational cost achieve only 85.1% accuracy, showing significant efficiency-accuracy imbalance. Lightweight models such as YOLOV7-G (Yu et al., 2024), though compressed to 0.57M parameters, suffer from high missed detection rates resulting in mAP as low as 56.6%, limiting practical applicability. Although a few models like YOLO-Riny (Xu et al., 2024) achieve edge device compatibility through structural lightweighting, their improvements remain confined to specific weed types Corydalis edulis and Setaria viridis in cornfields, failing to address complex multi-target interaction detection needs. While YOLO-CWD (Ma et al., 2025) achieves lightweight design with 75.1% mAP@50 and 9.6 GFLOPS in cornfield weed detection through hybrid attention mechanisms and PIoU loss function, its detection accuracy and model compactness still require further optimization. Existing studies generally lack cross-scenario generalization validation, showing weak support for multi-category weed interaction detection, environmental robustness, and crop-weed coexistence mechanisms, which constrains practical agricultural applications.

Existing weed detection methods based on general deep learning architectures face challenges due to the diversity in weed morphology and environmental conditions, making algorithm development for different plant species difficult (Hu et al., 2024). Additionally, Convolutional Neural Networks (CNNs), while extracting image features, are limited by the local receptive field of convolutional operators, making it hard to capture global information, which affects accurate image localization and classification (Luo et al., 2016). To overcome this limitation, researchers often employ multi-scale feature fusion techniques, with parallel multi-branch networks and serial skip-connection structures being two commonly used approaches.

In the Inception module of GoogLeNet, the parallel multi-branch network extracts multi-scale and hierarchical feature information from the same feature map using convolutional kernels of different sizes (Szegedy et al., 2015). Although this method takes advantage of convolution kernels with different receptive fields and carefully designed modules to learn rich multi-scale features, it overlooks semantic differences between features of different scales, which can lead to the loss of semantic information. High-level feature maps generated by the backbone network contain rich semantic information but lack the detailed information of objects, while low-level features, although containing precise object locations, lack sufficient semantic information.

To address this issue, high-dimensional features are typically upsampled and aligned with downsampled low-dimensional features, followed by pixel-wise summation to enhance semantic information. However, this method does not perform feature selection, merely summing pixel values across multiple feature layers, which may lead to redundant and repetitive information. Consequently, this approach fails to fully integrate and utilize diverse features (Chen et al., 2024).

In addition, feature fusion networks represent an efficient method for multi-scale fusion. The classic Feature Pyramid Network (FPN) (Lin et al., 2017) employs a top-down pyramid structure to achieve multi-scale feature fusion. However, due to its structural characteristics, FPN lacks sufficient high-level semantic information. To enhance local localization information, PANet (Liu et al., . 2018) added a bidirectional feature fusion module on top of FPN. Building on these approaches, BiFPN (Tan et al., 2020) introduced bidirectional connections in the process of information propagation, allowing information to flow both top-down and bottom-up within the network. This bidirectional flow effectively addresses issues of information loss and blurring in feature pyramid networks.

The Gold-YOLO model introduced an advanced gather and distribute mechanism (GD mechanism), which uses a unified module to collect and fuse information from all levels and distribute it to different levels, addressing the information fusion issues in traditional object detection models (Wang et al., 2024). Although multi-scale feature fusion methods have significant reference value for image processing tasks, current networks struggle to meet the practical requirements of weed detection tasks due to challenges such as limited weed features, varying lighting conditions, and occlusion problems. Therefore, developing more efficient feature fusion networks is crucial for improving the accuracy of weed detection.




3 Method



3.1 PD-YOLO model

YOLOv8 is an end-to-end optimized model known for its high performance and accuracy in detection and segmentation tasks in computer vision (Redmon et al., 2016; Chen et al., 2021; Reis et al., 2023). It builds upon the improvements made in YOLOv5 (Zhang et al., 2022), and its specific structure is shown in Figure 1. The C2f module is a key component of YOLOv8’s backbone network, enhancing the richness of information flow through gradient-splitting connections while maintaining a lightweight model. The neck part uses a PA-FPN structure, inspired by PANet (Liu et al., . 2018), and the head adopts a decoupled structure designed separately for object classification and bounding box regression, utilizing different loss functions to improve detection accuracy and model convergence speed. This design, combined with a dynamic sample allocation mechanism, further enhances YOLOv8’s detection accuracy and robustness.

[image: Flowchart diagram of a deep learning architecture with Backbone, Neck, and Head sections, illustrating stages like Conv, C2f, SPPF, Bottleneck, Detect blocks, interconnections, and detailed building block breakdowns in the Details panel.]
Figure 1 | The overall architecture of the YOLOv8 model.

The YOLOv8 series includes multiple versions, offering more refined model parameter tuning options, making it highly effective in both high-precision and real-time applications. YOLOv8n (Nano) is the smallest and fastest version of the YOLOv8 series, suitable for mobile devices, embedded systems, and applications that require real-time processing. Its efficient performance in terms of processing speed and computational resources makes it ideal for weed detection applications.

Based on the lightweight YOLOv8n model, we designed an improved weed detection model—PD-YOLO. The structure of PD-YOLO is shown in Figure 2, and it primarily enhances the accuracy and efficiency of weed detection through the organic combination of three key components: the Backbone, the Parallel Focusing Feature Pyramid (PF-FPN), and the DyHead.

[image: Diagram illustrating an object detection neural network architecture with labeled sections: Backbone, PF-FPN, Details, and Head. Components such as Conv, C2f, Bottleneck, SPPF, FFAM, HARFM, and DyHead are arranged in a flowchart, showing data flow, connections, and tensor dimensions for each stage.]
Figure 2 | Overall architecture of FD-YOLO. PF-FPN is the feature fusion network proposed in this study, which fuses three scale features from the backbone network based on the FAFM module. Meanwhile, the HARFM module fuses low-level and high-level features within the same path and aggregates them into the FFAM module.

	(1) The Backbone utilizes multiple convolutional layers to extract multi-scale features from the input image, and the C2F module enhances the feature map’s expressive capability, effectively capturing and integrating information from different levels to support efficient and accurate object detection tasks.

	(2) The PF-FPN is a multi-layer feature fusion pyramid that enables efficient multi-scale feature fusion, addressing the issue of similar features between weeds and plants as well as between different weeds, thereby improving the detection capability of various weed types. PF-FPN includes the Feature Filtering and Aggregation Module (FFAM) and the Hierarchical Adaptive Recalibration Fusion Module (HARFM). The FFAM module first filters and fuses features, and then extracts them, achieving multi-scale feature extraction. The HARFM module, based on attention mechanisms, further enhances feature expression, effectively improving the model’s feature fusion capability.

	(3) The detection head is responsible for object localization and classification based on the fused features. In field environments, weeds exhibit diverse scales and complex morphologies, which increases the difficulty of detection. To tackle these challenges, this study introduces dynamic head technology, which adaptively adjusts the parameters and structure of the detection head to more effectively capture information from different feature layers, enhancing the model’s adaptability to complex scenarios.






3.2 Parallel focusing feature pyramid

The structure of PF-FPN is shown in Figure 3. It consists of two parts: the FFAM module and the HARFM module. “Fuse” represents the process of fusing multi-scale features. The features C1, C2, and C3 are derived from different levels of the backbone network, representing information at various scales: C1 originates from lower levels, containing high resolution and rich details; C2 comes from the intermediate levels, balancing resolution and semantic information; and C3 comes from the higher levels, containing deeper semantic information despite lower resolution. The {C1, C2, C3} features are aggregated into the FFAM module, where efficient multi-scale feature fusion is achieved through attention mechanisms and convolutional layers. The fused features are then distributed across various detection scales through convolutional Downsampling or Upsampling, concatenated with features of the same level, and passed to the C2F module in Figure 2 for further fusion. The HARFM module fuses low-level and high-level features along the same path before aggregating them into the FFAM module. This parallel feature fusion, from left to right and from the center to the edges, produces the final {P1, P2, P3} feature layers, achieving complementary enhancement of multi-level features. This parallel dynamic feature fusion mechanism takes into account the diversity of feature hierarchies and effectively avoids information loss and bias through parallel fusion, significantly improving the model’s ability to handle large-scale variations and similar feature targets. Compared to the traditional FPN, which uses a unidirectional top-down feature fusion path, this parallel fusion approach better preserves the detailed information of low-level features, avoiding the loss of detail features that may occur in traditional methods.

[image: Block diagram showing three blue input components labeled C1, C2, and C3 on the left, each connected by arrows to modules labeled Fuse, HARFM, FFAFM, and then to three brown output components labeled P1, P2, and P3 on the right. Arrows indicate data flow between components and modules.]
Figure 3 | The structure of the Parallel Focusing Feature Pyramid.




3.3 Feature filtering and aggregation module

During feature extraction, unfiltered features often introduce noise and redundant information, which can negatively impact subsequent analysis and decision-making processes. Therefore, a method of filtering before extraction is proposed. The structure of the FFAM module is shown in Figure 4.

[image: Diagram illustrating a multi-stage deep learning network architecture, with three main sections: the ELA model applying average pooling, convolution, group normalization, and sigmoid operations; an intermediate module combining convolution, upsampling, multiplication, and addition; and a third section with parallel depthwise convolutions, identity mapping, merging operations, and a pointwise convolution. Symbols for multiplication and addition are also explained.]
Figure 4 | Feature Filtering and Aggregation Module.

The filtering step for multi-scale features benefits from the ELA attention mechanism (Xu and Wan, 2024), which can dynamically adjust and filter based on the characteristics of the input data. It helps suppress background noise, such as soil textures, and enhances small target regions like weed leaves. Compared to SE attention (Hu et al., 2018), which only focuses on channel relationships, ELA is more suitable for agricultural scenarios with irregular spatial distributions. The feature extraction method involves using a set of parallel depthwise separable convolutions to extract multi-scale detailed features from the filtered and fused features. This channel fusion mechanism helps integrate features with different receptive field sizes, capturing extensive contextual information.

The input feature map F of the module consists of three features at different scales: a low-level feature [image: Mathematical expression showing F subscript low belongs to the set of real numbers with dimensions H I times W I times C I.] , a high-level feature [image: Mathematical expression showing F subscript high belongs to the real number space of dimensions H 2 by W 2 by C 2.] , and a mid-level feature [image: Mathematical expression showing F subscript mid belongs to the set of real numbers with dimensions H by W by C.] .The mathematical expression for this process is as follows, as shown in Equation 1:

[image: Mathematical equations showing transformation functions where F_low_prime equals f_2d of F_low, F_mid_prime equals f_2D of F_mid, and F_high_prime equals f_up of F_high, labeled as equation one.] 

Where [image: Mathematical expression showing a lowercase italic f with subscript two d.]  denotes 2D convolution and; [image: Mathematical notation showing the lowercase letter f with a subscript reading two d.]  denotes downsampling using a 2D convolution with a kernel size of 3 and a stride of 2; [image: Mathematical notation showing the variable f with a subscript "up."]  denotes upsampling. On this basis, the high-level feature [image: Mathematical notation showing F subscript high, with a prime symbol after the F, indicating a modified or derivative version of force labeled as high.]  generates the corresponding attention weight through the ELA attention mechanism, which is used to filter the low-level features. Meanwhile, the mid-level feature [image: Mathematical expression showing the letter F with a right bracket above and the word mid written as a subscript.]  also generates corresponding attention weights through the ELA module to filter its own redundant information. Subsequently, the filtered multi-scale features are added and fused to obtain [image: Mathematical expression showing M sub S belongs to the set of real numbers with dimensions H prime by W prime by C prime.] . The mathematical expression for this process is as follows, as shown in Equation 2:

[image: Mathematical equation showing M sub S equals f sub ELA of F sub high times F sub low divided by F sub high, plus f sub ELA of F sub mid times F sub low divided by F sub mid, labeled as equation two.] 

Where [image: Mathematical expression showing a lowercase italic f with a subscript reading ELA in capital letters.]  represents the attention weights generated by the ELA module. The ELA attention mechanism is crucial in the FFAM module, as shown in Figure 4. ELA is a novel attention mechanism that uses a simple and lightweight structure, enabling the network to precisely focus on regions of interest. It first uses adaptive average pooling to pool the input feature map x vertically and horizontally, with horizontal direction as (1, H) and vertical direction as (W, 1). For the [image: Mathematical notation showing the letter c followed by a superscript “t h,” representing “c-th” as in the c-th element or term in mathematics.]  channel, the height h and width w are expressed as shown in Equations 3 and 4:

[image: Mathematical formula showing z subscript c superscript h of h equals one divided by H times the sum from i equals zero to i is less than H of x subscript c of h comma i, labeled as equation three.] 

[image: Mathematical formula for Z subscript c superscript star of w equals one divided by w, multiplied by the sum from j equals k to k plus w of X subscript c of j comma w, labeled as equation 4.] 

The two obtained feature vectors, [image: Mathematical expression showing a bold uppercase Z with a superscript W and a subscript c.]   and [image: Mathematical expression showing the letter Z with a superscript w and a subscript c.] , are respectively processed through a 2D convolution, followed by a group normalization layer (GN), and finally a Sigmoid activation function to generate the attention weights. The process is illustrated in Equations 5 and 6:

[image: Mathematical equation displaying f sub h equals sigma of function G sub N applied to function f sub 2 d of Z sub h superscript t, labeled as equation five.] 

[image: Mathematical equation showing f sub w equals sigma of function G sub N S applied to square bracket, function f sub A 2 applied to Z superscript e sub r, close bracket, labeled equation six.] 

where [image: Mathematical notation showing the variable f with subscript 2d.]  denotes 2D convolution, [image: Mathematical notation showing the lowercase letter f with the subscript G N, typically representing a function or variable labeled by the indices G and N.]  denotes group normalization with 16 groups, and [image: Lowercase Greek letter sigma, commonly used in mathematics and statistics to represent standard deviation or summation. Black symbol on a white background.]  denotes the Sigmoid function.The horizontal and vertical outputs are multiplied to obtain the resulting attention weights, represented as shown in Equation 7:

[image: Mathematical formula showing H sub fA equals f sub h multiplied by f sub w, followed by equation number seven in parentheses.] 

On the basis of initially filtered features, the module employs a set of parallel depthwise separable convolutions to extract multi-scale detailed features, enhancing the capability to capture small targets and rich semantic information, thus improving the model’s generalization and robustness. Inspired by PKI (Cai et al., 2024), an Inception-style feature extraction module (Yu et al., 2024) is introduced, as shown in Figure 4, which demonstrates good performance in handling multi-scale target detection tasks. The large convolutional kernels can recognize larger weed shapes, while the small convolutional kernels focus on small target weeds. Compared to the single-scale convolutions in the BiFPN network, this design is more flexible in adapting to the scale variations of weed shapes. The module uses a set of parallel depthwise separable convolutions to capture small target features and contextual semantic information, with direct connections added. Specifically, according to the parameter settings of the PKI module, the optimal kernel size for the [image: Mathematical notation displaying the letter m followed by a superscript t and h, representing the ordinal indicator for m-th position.]  DWConv is set to: [image: Mathematical expression showing k to the power of m equals open parenthesis m plus one close parenthesis times two plus one.] .The module uses a total of 4 DWConv layers, with kernel sizes of 5, 7, 9, and 11. These are followed by a 1×1 pointwise convolution (Pwconv) to fuse the local and contextual features, generating the output feature [image: Mathematical expression showing M subscript C is an element of the real-valued tensor space with dimensions H prime by W prime by C prime.] . The expression for [image: Mathematical notation showing an uppercase letter M with a subscript uppercase letter C presented in a serif font.]  is as follows:

[image: Mathematical equation showing MC equals fP of the sum, for indices S not equal to C, of fD-ex of MS plus MS, labeled as equation eight.] 

Where [image: Mathematical notation showing f subscript D subscript k, m.]  the [image: Mathematical notation showing the lowercase letter m with the letters t and h in superscript, representing the ordinal indicator for mth position or term.]  3×3 depthwise separable convolution; [image: Mathematical notation featuring a bold lowercase letter f with a subscript lowercase letter p, representing the symbol f sub p.]  represents the pointwise convolution. Finally, [image: Mathematical notation showing a capital letter M with a subscript lowercase c.]  is combined with the original input feature [image: Mathematical notation showing an uppercase italic letter M with a smaller uppercase italic letter S as a subscript, commonly used to represent a variable with a specific designation.]  to obtain the rich semantic output feature [image: Mathematical expression showing F subscript j as an element of the set of real numbers with dimensions H prime by W prime by C prime.] . The expression is given in Equation 9:

[image: Mathematical equation showing F prime equals M sub S of F plus M sub C of M sub S of F, labeled as equation nine.] 




3.4 Hierarchical adaptive recalibration fusion module

In the feature pyramid structure, high-level features contain rich semantic information due to their deep receptive fields but have lower spatial resolution, while low-level features retain high-resolution detail information but lack global semantic context. The traditional Feature Pyramid Network (FPN) fuses multi-scale features through simple linear summation, which can dilute semantic information, especially making it less sensitive to low-contrast overlapping leaf regions. Therefore, the HARFM module recalibrates the attention weights obtained by concatenating high-level and low-level features, enhancing the network’s focus on key features and improving the overall performance of weed detection. Specifically, group normalization (GN) is used instead of batch normalization (BN) to avoid the statistical bias issues during small-batch training, which is crucial for agricultural images with complex data distributions. The HARFM structure is shown in Figure 5.

[image: Neural network block diagram illustrating a two-branch structure with labeled operations, including convolution, normalization, activation, concatenation, multiplication, and addition. Dimensions and process order are shown, with a key defining CBS, R, and GN.]
Figure 5 | HARFM structure.

The low-level feature [image: Mathematical expression showing X subscript l belongs to the space of real numbers with dimensions C sub l by H sub l by W sub l.]  and the high-level feature [image: Mathematical expression showing X sub two is an element of the space of real numbers with dimensions C sub two by H sub two by W sub two.]  have a large difference in the number of channels, which would result in high computational cost if concatenated directly. Therefore, the input low-level feature [image: Mathematical variable X with a subscript one, commonly used to represent the first element in a sequence or series.]  is passed through a 3×3 convolution to reduce the number of channels to [image: Latin capital letter C with a subscript two, commonly used to represent the diatomic carbon molecule or a subgroup in mathematics or chemistry contexts.] , making its dimensions consistent with [image: Mathematical notation showing a capital X with a subscript two, commonly used to denote the second element of a sequence or variable in mathematics or statistics.] , and then they are concatenated to obtain a feature map [image: Mathematical notation displaying an uppercase italic F with a lowercase italic c as a subscript, typically representing a force with the subscript c indicating a specific type or component in physics.]  in 2 [image: Mathematical expression showing C subscript 2 multiplied by H subscript 2 multiplied by W subscript 2, typically representing dimensions in tensor notation.] .The process is represented as shown in Equation 10:

[image: Mathematical equation showing Fc equals fc of the function frgs with argument Xt and also argument Xt, labeled as equation ten.] 

where [image: Mathematical expression with the letter f as a function symbol and CBS as a subscript, indicating a specific form or parameterization for f.]  represents the low-level feature processed by 2D convolution, batch normalization (BN), and activation function (Silu). The function [image: Mathematical notation displaying the lowercase letter f with the lowercase letter c as a subscript, often used to represent a specific function or parameter in equations.]  denotes concatenation. The concatenated features are then passed through a series of convolutions to generate the attention weights. To reduce computational cost, the concatenated feature is first passed through a 2D convolution to reduce the number of channels to 2 [image: Mathematical expression showing capital C subscript two divided by lowercase r.] , resulting in [image: Mathematical notation where F subscript l is an element of the set of real numbers R to the power of C subscript l divided by r by H subscript l by W subscript l.] , expressed as Equation 11:

[image: Mathematical expression showing F sub one equals delta t times f sub a d of F sub infinity, labeled as equation eleven.] 

where [image: Mathematical expression showing the lowercase letter f with a subscript two d, indicating a function or variable denoted as f sub two d.]  represents 2D convolution and [image: Lowercase Greek letter delta symbol in a serif font, commonly used in mathematics and science to represent a change or small difference in a variable.]  represents the ReLU activation function. Then, two depthwise separable convolutions are used to effectively extract low-level features while reducing the number of parameters: The process is represented as shown in Equation 12:

[image: Mathematical expression showing E sub r equals delta of f sub n of delta of f sub n of E sub r, with equation number twelve in parentheses on the right.] 

where [image: Mathematical expression showing the lowercase italic letter f followed by an uppercase italic letter D, commonly used as symbolic variables or notation in mathematics or physics.]  represents depthwise separable convolution. Finally, a 1×1 convolution is applied to restore the channel number to [image: Mathematical expression showing "two C subscript two," representing a binomial coefficient or combination notation.] , resulting in [image: Mathematical expression showing F subscript 3 is an element of the space of real numbers with dimensions two C subscript 2 by H subscript 2 by W subscript 2.] . The process is represented as shown in Equation 13:

[image: Mathematical equation showing F sub two equals delta times f sub ad of E sub two, labeled as equation thirteen in parentheses.] 

The ReLU activation function is introduced to improve computational efficiency. Finally, the feature map is processed through a Group Normalization (GN) layer and a Sigmoid function to generate the attention weights. The output is obtained by multiplying the original features with the weight matrix and then adding them together. The mathematical expression is given as Equation 14:

[image: Mathematical equation showing F_out equals sigma of f_sub_GN of F_three multiplied by F_C plus F_C. Equation number fourteen is shown in parentheses.] 




3.5 Dynamic head

The structure of the Dynamic Head is illustrated in Figure 6. The Dynamic Head incorporates multiple attention mechanisms: Scale-aware, Spatial-aware, and Task-aware. This design enables the Dynamic Head to address scale variations, spatial changes, and different task requirements, thereby improving the efficiency and accuracy of weed detection. Specifically, multi-level features from the feature pyramid are adjusted to the same scale and reshaped into three-dimensional tensors. The attention mechanism is applied according to the formula in Equation 15:

[image: Diagram illustrating a neural network module with three pathways: πL with average pooling, convolution, ReLU, and hard sigmoid; πS with indexing, convolution, sigmoid, and offset; πC with average pooling, fully connected layers, ReLU, normalization, and a vector addition. Each pathway is distinguished by color-coded boxes and arrows showing data flow.]
Figure 6 | The detailed design of the Dynamic Head and the structure of each attention module.

[image: Mathematical equation showing W of F equals pi of E multiplied by F, labeled as equation fifteen.] 

where [image: Lowercase Greek letter pi symbol, shown in black on a white background.]  represents the attention function, implemented through fully connected layers. The attention mechanism operates along three dimensions, with each attention mechanism focusing only on a specific dimension to ensure computational efficiency. The attention function is defined as in Equation 16:

[image: Mathematical formula showing W of F equals pi sub c of bracket pi sub s of bracket pi sub t of E close bracket minus F close bracket colon F, all multiplied by F, labeled equation sixteen.] 

Where [image: Mathematical symbol showing the Greek letter pi with a subscript uppercase letter L, often used as a variable or notation in mathematical formulas.] , [image: Mathematical symbol showing the Greek letter pi followed by a subscript lowercase s, commonly representing a variable such as pi sub s in mathematical or scientific notation.] , and [image: Mathematical expression displaying the Greek letter pi followed by a capital letter C, both in a serif font.]  are three distinct attention functions applied to dimensions L, S, and C respectively.

The description of the multiple attention mechanisms—Scale-aware, Spatial-aware, and Task-aware—is as follows:



3.5.1 Scale-aware attention

The Scale-aware Attention module is designed to handle targets of different scales by distinguishing the relative importance between feature layers and dynamically adjusting feature representations to adapt to various target scales. The input features first go through an average pooling layer to reduce the number of parameters, then are passed through a convolution layer with a kernel size of 1, using the ReLU activation function to better capture non-linear relationships in the input data. Finally, a Sigmoid activation function is applied to produce the final output. The mathematical expression is as follows in Equation 17:

[image: Mathematical equation showing π subscript SC of F times F equals sigma of f of one over SC times the sum over SC of F subscript i, all multiplied by F, labeled as equation seventeen.] 

where F represents the input feature tensor, F is a linear function approximating a 1×1 convolution, and σ represents the Sigmoid activation function.




3.5.2 Spatial-aware attention

The Spatial-aware Attention module is designed to capture the spatial consistency of targets. This module enhances the understanding of weed locations and shapes in complex environments by identifying consistent regions across spatial positions and feature hierarchies. To reduce the dimensionality of high-dimensional features, the module operates in two steps: first, deformable convolutions are applied to achieve sparse attention learning, followed by aggregation of feature information from different levels at the same spatial locations. The mathematical expression is shown as follows in Equation 18:

[image: Mathematical formula showing π₅(F)·F equals negative one over L₁ times the double summation over l and k of W₁,ₖ multiplied by F(l; pₖ plus Δpₖ; c·Δmₖ), labeled as equation eighteen.] 

In this context, L represents the number of feature layers, and K denotes the number of sparse sampling positions. The term [image: Mathematical symbol displaying a lowercase p with a subscript k.]  + [image: Mathematical expression showing the capital Greek letter delta followed by a bold lowercase p with a subscript k.]  indicates the spatial offset that is self-learned to focus on a distinct region, while [image: Mathematical notation showing uppercase delta, lowercase m, and subscript k.]  reflects the self-learned importance scalar at a specific location, [image: Mathematical notation showing a bold lowercase letter p with a subscript k, commonly used to represent an indexed vector or sequence element.] . Both [image: Mathematical expression showing the Greek letter delta followed by a bold lowercase p and subscript k, commonly representing a change in the k-th component of vector p.]  and [image: Mathematical notation displaying a capital delta symbol followed by lowercase m and a subscript k.]  k are derived from the median-level input features of F.




3.5.3 Task-aware attention

The Task-aware attention module adapts to different detection tasks. Specifically, the input feature map x is first passed through an average pooling layer to reduce feature dimensions. Then, two fully connected layers and a normalization layer map the features into the range of -1 to 1. The normalized results are fed into a hyperfunction for further computation. This design enhances the model’s adaptability and performance across various detection scenarios. The mathematical expression is as follows in Equation 19:

[image: Mathematical equation displaying π sub c of F equals the maximum of two expressions: alpha prime of F times F sub c plus beta prime of F, and alpha prime of F times F sub c plus beta squared of F.] 

where [image: Mathematical notation showing an uppercase F followed by a subscript uppercase C, commonly used to represent a specific force, variable, or constant in scientific contexts.]  represents the feature slice of the [image: Mathematical notation showing a lowercase letter c followed by a superscript “th” indicating an ordinal position, as in “c-th”.]  channel, [image: Mathematical expression showing a column vector of alpha superscript one, alpha superscript two, beta superscript one, and beta superscript two, transposed, equal to theta of a dot argument.]  is as a meta-function that learns to control activation thresholds through dimension reduction, neural network layers, normalization, and sigmoid transformation.






4 Experiments



4.1 Datasets

In this study, two widely varying and challenging datasets, CottonWeedDet12 (Dang et al., 2023) and Lincoln beet (Salazar-Gomez et al., 2021), were chosen instead of a single weed dataset or datasets from specific environments. This approach comprehensively tests the detection capabilities of the PD-YOLO model under different environments and conditions, validating the generality, effectiveness, and robustness of PD-YOLO in real-world applications.

(1) CottonWeedDet12 is one of the largest publicly available multi-class weed detection datasets. The dataset covers 12 common weed species found in cotton fields in southern U.S. states, containing 5648 RGB images annotated for weed identification using the VGG Image Annotator (version 2.10), with a total of 9370 bounding boxes. These images were collected under natural field lighting conditions using smartphones or handheld digital cameras from June to September 2021. The dataset is characterized by weed occlusion, large scale differences, and small targets. Figure 7 shows some original images from the CottonWeedDet12 dataset.

[image: Six separate photographs show young green plants growing in cracked, dry or sandy soil, with each image depicting a different plant species at an early stage, emphasizing vegetation emergence in arid or disturbed environments.]
Figure 7 | Illustration of images from the CottonWeedDet12 dataset.

(2) Lincoln beet is a dataset designed for beet and weed detection, specifically focused on addressing the challenge of occlusion. The dataset contains 4405 images with a resolution of 1902×1080 pixels, and each image is annotated with bounding boxes for both beets and harmful weeds, totaling 39,246 bounding boxes. It is a dense dataset with small targets. These images were extracted from videos recorded in different fields in Lincoln, UK. The video recordings were conducted between May and June 2021, using two cameras, with each beet field scanned at least four times per week to capture weed development at various growth stages, showcasing different soil types, plant distributions, and weed species. Figure 8 shows some original images from the Lincoln beet dataset.

[image: Six-panel photographic comparison showing close-ups of soil with small green seedlings at varying densities and growth stages, highlighting differences in plant distribution and leaf development across the panels.]
Figure 8 | Illustration of images from the Lincoln beet dataset.

Although the experiments focus on cotton and beet field scenarios, the multi-scale features and weed morphology similarities of the CottonWeedDet12 dataset, along with the high density, occlusion, and small object challenges of the Lincoln Beet dataset, are highly representative and can validate the generalizability of FD-YOLO in complex agricultural environments. Additionally, the PF-FPN design concept of FD-YOLO gives it a certain level of cross-crop adaptability. The global semantic information and local detail features captured by PF-FPN can be generalized to weed detection tasks in other crops (such as corn and wheat). However, the morphological differences, planting densities, and background complexities of different crops may affect model performance, requiring further validation and optimization across datasets.




4.2 Performance experiment of PD-YOLO

The experiments were conducted on a 64-bit Windows 11 operating system using an NVIDIA GeForce RTX 3050Ti GPU with 16GB of memory. The PD-YOLO model was implemented in a deep learning environment using Python 3.9.16, torch 2.2.0, and CUDA 12.1. The input image size for the model was set to 640×640, and the model was trained for 200 epochs. During training, mosaic data augmentation was applied, but it was turned off after the 15th epoch. The learning rate was set to 0.01, weight decay to 0.0005, and momentum to 0.937. The CottonWeedDet12 dataset was split in an 8:1:1 ratio for training, validation, and testing, while the Lincoln beet dataset was split in a 7:1:2 ratio.

We conducted experiments comparing PD-YOLO with Faster R-CNN (Ren et al., 2015), SSD (Liu et al., 2016), Yolov7-tiny (Wang et al., 2023), Yolov8n, Yolov8s, Yolov10 (Wang et al., 2024), and RT-DETR (Zhao et al., 2024) to evaluate the performance of PD-YOLO. The experiments were conducted using the CottonWeedDet12 and Lincoln beet datasets, with precision, recall, mAP@0.5, mAP@0.5:0.95, parameters, and FLOPs as evaluation metrics.

(1) Precision, as follows in Equation 20, measures the accuracy of the model when predicting positive classes, which is the ratio of correctly predicted positive samples to all samples predicted as positive.

[image: Equation showing precision equals true positives divided by the sum of true positives and false positives, with the equation number twenty in parentheses on the right.] 

Where TP (True Positive) refers to correctly identified positive samples, and FP (False Positive) refers to incorrectly identified negative samples as positive.

(2) Recall, as follows in Equation 21 evaluates the model’s ability to identify positive samples, which is the ratio of correctly predicted positive samples to all actual positive samples.

[image: Mathematical equation for recall showing recall equals true positives divided by the sum of true positives and false negatives, labeled as equation twenty-one.] 

Where FN (False Negative) refers to the positive samples missed by the model.

(3) mAP, as follows in Equation 22, is a core evaluation metric in object detection. It calculates the Average Precision (AP) for each class, then averages them to comprehensively evaluate the model’s detection accuracy, taking into account different classes and various IoU thresholds. The mathematical expression is as follows:

[image: Mathematical equations enclosed in a left curly brace define AP as the integral from zero to one of p of r with respect to r, and Map as one over c times the sum from i equals one to c of AP sub i, labeled as equation twenty-two.] 

Where c represents the number of classes, and [image: Mathematical expression showing capital A subscript P and subscript i, where P and i appear as subscripts to A.] represents the average precision for the i class.

(4) FLOPs measure the hardware performance and algorithmic complexity, while FPS represents detection speed by measuring the number of frames processed per second.

The experimental results on the CottonWeedDet12 are shown in Table 2. PD-YOLO demonstrates a high precision (P) of 94.3%, outperforming all other models. Its recall (R) reached 87.0%, slightly lower than Yolov8s’s 90.6%, but still excellent at 87.0%, showcasing its superior ability to identify targets. To evaluate detection performance under different IoU thresholds, we used the mean average precision (mAP). The results show that PD-YOLO achieved an mAP@0.5 of 95.0%, the best among all models, surpassing Faster-RCNN by 27.9%. When compared to other high-performance models such as Yolov10 and RT-DETR, PD-YOLO outperformed them by 2.3% and 2.5%, respectively. The mAP@0.5-0.95 was 88.3%, proving its ability to maintain high detection accuracy across different IoU thresholds, highlighting its strong generalization and robustness.

Table 2 | Performance experiment of PD-YOLO on the CottonWeedDet12 dataset.


[image: Comparison table showing object detection model performance including Faster-RCNN, SSD, Yolov7-tiny, Yolov8n, Yolov8s, RT-DETR, Yolov10s, and PD-YOLO, with metrics for precision, recall, mAP 0.5, mAP 0.5–0.95, and FPS. Bold values indicate best results: PD-YOLO leads in precision, mAP 0.5, and mAP 0.5–0.95; Yolov8s achieves highest recall; Yolov8n achieves highest FPS.]
The experimental results on the Lincoln beet dataset are shown in Table 3. Compared with the baseline model Yolov8n, PD-YOLO achieved improvements of 0.6% in precision (P), 1% in recall (R), 1.3% in mAP@0.5, and 0.9% in mAP@0.5:0.95, demonstrating that the optimizations in PD-YOLO effectively enhance model performance. PD-YOLO outperforms most comparison models in both precision and recall. Specifically, PD-YOLO achieved a precision of 75.4%, 3.9% higher than Faster-RCNN, 13.1% higher than SSD, and slightly higher than Yolov7-tiny. In terms of recall, PD-YOLO reached 71.4%, equal to Yolov10s and 3.6% higher than Faster-RCNN.

Table 3 | Performance experiment of PD-YOLO on the Lincoln beet dataset.


[image: Table comparing object detection models by precision, recall, mAP at 0.5 and 0.5-0.95, and FPS. Bold values highlight optimal performance for RT-DETR in precision, Yolov8s in recall, mAP 0.5, and mAP 0.5-0.95, and Yolov7-tiny in FPS.]
The mAP@0.5 reached 76.8%, slightly lower than Yolov8s’s 76.9%, but still 3.2% and 1.2% higher than RT-DETR and Yolov10s, respectively. Regarding mAP@0.5:0.95,PD-YOLO also led with a score of 53.6%, outperforming SSD, RT-DETR, and YOLOv10 by 14.1%, 2.2%, and 1.7%, respectively. These results demonstrate that PD-YOLO maintains high detection accuracy even under more stringent evaluation criteria, showcasing the model’s robustness and broad adaptability.

FPS measures the number of image frames processed by the model per second, which is a critical metric for evaluating real-time performance. PD-YOLO achieved FPS values of 42.5 and 42.9 on the CottonWeedDet12 and Lincoln beet test sets, respectively, meeting the requirements for real-time performance. Table 4 presents the parameter counts and computational complexity of different detection models. Compared to some lightweight models, such as YOLOv7-tiny, which achieved FPS values of 102.3 and 108.9 on the CottonWeedDet12 and Lincoln beet test sets, respectively, with a computational complexity of 13.1 GFLOPs and 6.04M parameters, PD-YOLO has a lower FPS. However, with a computational complexity of 10.6 GFLOPs and 3.96M parameters, PD-YOLO maintains a moderate level of computational complexity and parameter count, achieving a good balance between real-time performance and resource requirements.

Table 4 | Parameter count and computational complexity of different detection models.


[image: Table comparing deep learning models with columns for model name, parameters in millions, and GFLOPS in billions. Faster-RCNN has 41.41M parameters and 121.4 GFLOPS; SSD, 14.50M and 15.8; Yolov7-tiny, 6.04M and 13.1; Yolov8n, 3.01M and 8.1; Yolov8s, 11.20M and 28.5; RT-DETR, 19.89M and 57.0; Yolov10s, 8.04M and 24.5; PD-YOLO, 3.96M and 10.6.]
In summary, the PD-YOLO model outperformed other detection models on most metrics in the CottonWeedDet12 and Lincoln Beet datasets, especially in terms of precision and mAP@0.5:0.95. The model provides efficient processing speeds while maintaining moderate computational demands, making it suitable for resource-constrained environments. It achieves an excellent balance between detection accuracy and real-time performance.




4.3 Ablation study

We introduced the TIDE metric to comprehensively evaluate the impact and performance of different components on the PD-YOLO model. The TIDE metric allows us to gain a more in-depth and holistic understanding of the role each component plays within the overall detection system, as well as the interpretability of the model design. The effectiveness of weed detection is significantly influenced by the size and quality of the dataset used. Compared to the Lincoln beet dataset, which only annotates two classes (weeds and plants), the CottonWeedDet12 dataset provides detailed annotations of 12 different weed categories, making it more challenging. Given this, we selected the CottonWeedDet12 dataset for the ablation study.



4.3.1 Comparison of different multi-scale feature fusion strategies

Considering the morphological similarity of weeds, we designed the Parallel Focusing Feature Pyramid (PF-FPN). To demonstrate the ability of PF-FPN in multi-scale feature fusion, we conducted comparative experiments with FPN (Lin et al., 2017), PA-FPN (Liu et al., . 2018), BiFPN (Tan et al., 2020), and AFPN (Yang et al., 2023). The experimental results are shown in Table 5.

Table 5 | Performance results of different feature fusion methods.


[image: Table comparing five models—FPN, BIFPN, PA-FPN, AFPN, PF-FPN—across parameters, GFLOPS, precision, recall, mAP0.5, mAP0.5-0.95, and FPS. PF-FPN has the highest mAP0.5 and precision, BIFPN achieves the highest FPS, and PA-FPN shows the highest recall. Each model displays distinct trade-offs between efficiency and accuracy.]
The experimental results in Table 5 show that PF-FPN demonstrates significant advantages across multiple metrics compared to other multi-scale feature fusion methods. Specifically, PF-FPN’s mAP@0.5 is 1.8% higher than FPN, 0.7% higher than BiFPN, 1.9% higher than AFPN, and 0.8% higher than PA-FPN. In terms of mAP@0.5:0.95, PF-FPN also achieves the highest score, reaching 88.3%. Compared to other methods, PF-FPN’s mAP@0.5:0.95 is 1.5% higher than FPN and AFPN, 2.4% higher than BiFPN, and 0.6% higher than PA-FPN.

Although the parameter count and computational complexity are higher, resulting in a lower FPS compared to other methods, the significant improvements in precision and recall demonstrate PF-FPN’s superiority in multi-scale feature fusion. These results suggest that PF-FPN can more effectively fuse multi-scale features, leading to a substantial improvement in the model’s detection performance.

We used the Grad-CAM (Selvaraju et al., 2017) heatmap visualization method to present the results in the form of heatmaps, which helps improve the interpretability and reliability of the network. Figure 9 shows the heatmaps generated by different multi-scale methods. The first row (a-e) represents the original images, while the second to fifth rows show the heatmaps generated by different models. In the heatmaps, darker regions indicate where the model’s attention is more focused. Compared to other methods, the heatmap generated by PD-YOLO shows a more pronounced focus on weed regions. This concentrated attention helps better capture multi-scale features in the image, thereby improving detection accuracy, particularly when dealing with small objects and reducing the likelihood of missed detections.

[image: Grid of plant images in the top row, columns labeled (a) through (e), showing different young plants on soil. Subsequent rows display heatmaps overlaid on the same base images, generated by five methods (FPN, BiFPN, PAFPN, AFPN, FDPFN) labeled along the rows, illustrating regions of interest identified by each method for each plant image.]
Figure 9 | Heatmaps of different images. The first row (a-d) shows the original images of different weeds, while the second to fifth rows (a-d) display the corresponding heatmaps generated by the model.




4.3.2 Comparison of different modules

This section presents the detailed experimental results of the proposed PD-YOLO method. We conducted a comprehensive comparison of PD-YOLO, including the FFAM module, HARFM module, and Dyhead framework, with the baseline model YOLOv8n. We evaluated the performance differences of the baseline model when using and not using FFAM, HARFM, and Dyhead. To investigate the specific impact of each module on model performance, we treated FFAM and Dyhead as independent functional modules based on YOLOv8n, with the FFAM and HARFM modules together forming PF-FPN. Subsequently, by applying the controlled variable method, we analyzed the performance improvements of these modules on the CottonWeedDet12 dataset.

By introducing the TIDE metric (Bolya et al., 2020) for model evaluation and conducting a series of carefully designed ablation experiments, we validated the functionality and performance of each module in PD-YOLO. The TIDE evaluation method identifies the following types of errors in single-class detection problems:

	(1) Classification Error (Cls): The model correctly locates the object but misclassifies its category.

	(2) Localization Error (Loc): The model correctly identifies the target category, but the bounding box is inaccurate.

	(3) Classification and Localization Error (Both): The model makes errors in both classification and localization.

	(4) Duplicate Detection Error (Dupl): The model generates multiple high-scoring bounding boxes for the same object.

	(5) Background Misclassification (Bkg): The model mistakenly classifies a generated bounding box as the background.

	(6) Missed Ground Truth Bounding Box (Miss): The model fails to detect an object that actually exists.

	(7) False Positive (FP): The model incorrectly classifies a negative instance as a positive one.

	(8) False Negative (FN): The model incorrectly classifies a positive instance as a negative one.



Table 6 presents the results of ablation experiments conducted on the CottonWeedDet12 dataset, showing significant improvements in several key metrics compared to the original YOLOv8n baseline. Specifically, to address the issue of missed and false detections caused by morphological similarity, the FAFM module was introduced, resulting in increases of 0.5% in mAP@0.5 and 0.9% in mAP@0.5:0.95, demonstrating the effectiveness of FAFM in enhancing small object detection. The HARFM module strengthens weed feature representations, improving the model’s accuracy. The combination of the HARFM and FAFM modules forms PF-FPN, which shows significant improvements in both mAP@0.5 and mAP@0.5:0.95, reaching 94.2% and 87.4%, respectively. This indicates that PF-PFN enhances the performance of multi-scale feature fusion in weed detection. The Dyhead architecture was introduced to improve the model’s stability and accuracy.

Table 6 | Performance results of the ablation experiments.


[image: Comparison table showing five network module configurations for Yolov8 with different combinations of FAFM, HARFM, and Dyhead modules. Table columns list Parameters in millions, GFLOPS, Precision, Recall, mAP at 0.5, and mAP at 0.5-0.95, with performance metrics improving as more modules are activated, peaking at 3.96M parameters, 10.6 GFLOPS, 94.3% precision, 87.0% recall, 95.0% mAP0.5, and 88.3% mAP0.5-0.95. Checkmarks denote activated modules.]
Compared to the baseline model, PD-YOLO showed a 0.6% decrease in recall (R), while precision (P), mAP@0.5, and mAP@0.5:0.95 increased by 0.5%, 1.7%, and 1.8%, respectively. PD-YOLO’s parameter count increased by 0.95M, and GFLOPs increased by 2.5G, resulting in only marginal computational cost increases but significantly better performance across multiple key metrics.

Table 7 presents the results evaluated using the TIDE method, providing a deeper understanding of the performance improvements in the modified model. The YOLOv8n model had a relatively high background misclassification rate (Bkg). After adding the FAFM module, the Bkg rate decreased by 0.6%. As shown in the TIDE metric statistics in Figure 10, the proportion of background misclassification significantly decreased, demonstrating that FAFM effectively reduces background errors in weed detection.

Table 7 | TIDE metrics of the ablation experiments.


[image: Table comparing different module combinations in object detection. Headers include Yolov8, FAFM, HARFM, Dyhead, Cls, Loc, Both, Dupl, Bkg, Miss, FP, and FN. Rows show various combinations with check marks and corresponding metric percentages. A note states that a check mark indicates module activation.]
[image: Composite chart with five pie charts on top and a grouped bar chart below, each corresponding to categories a through e. Categories, shown with color-coding in the legend, are Cls, Loc, Both, Dupl, Bkg, Miss, FP, and FN. Bar chart shows percentage errors by type for each category, with FP and FN exhibiting the highest values across categories. Pie charts visually represent the proportion of each error type per category.]
Figure 10 | Statistical charts of various TIDE metrics. (a) Yolov8, (b) Yolov8n+FAFM, (c) Yolov8n+Dyhead, (d) Yolov8+FAFM+HARFM, (e) Yolov8+FAFM+HARFM+Dyhead.

After combining FAFM and HARFM, the model performed well across multiple metrics, achieving low classification error (Cls) and missed detection (Miss) rates of 0.87% and 0.99% respectively. This indicates that PF-FPN classifies similar weeds more accurately.

The PD-YOLO model excels in multiple aspects, with reductions in Cls, localization error (Loc), both classification and localization errors (Both), duplicate detection (Dupl), missed detections (Miss), false positives (FP), and false negatives (FN) by 0.43%, 0.17%, 0.04%, 0.05%, 0.2%, 1.43%, and 0.31%, respectively, while Bkg remained unchanged. This shows that PF-FPN enhances the accuracy of classifying similar weeds. As shown in Figure 10, PD-YOLO demonstrates superior performance in both localization and classification, with only 0.02% of Dupl errors, indicating that the model rarely makes simultaneous errors in classification and localization. This further validates the improvements in the model’s accuracy and its ability to reduce the risks of misclassification, localization errors, and missed detections.

The PD-YOLO model significantly reduces false positive and background error rates while maintaining high precision and recall, thus improving overall detection performance, though its processing speed is slower. These experimental results clearly demonstrate that, compared to the original YOLOv8n algorithm, the PD-YOLO model significantly optimizes and enhances performance, validating the effectiveness of the algorithm improvements proposed in this study.

We evaluated the performance of weed detection in various scenarios, including dense weed clusters, partial occlusion, multi-class detection, small-sized weeds, and other complex conditions. The detection results were visualized and compared to observe the algorithm’s ability to identify targets in terms of location, size, and category information. Figure 11 shows some of the results, where the first row displays the original YOLOv8 results and the second row shows the improved PD-YOLO model’s detection outcomes. In Figure 11, due to the small weed target on the left edge, YOLOv8 exhibited missed detections and false positives, while the improved model successfully avoided these issues. In Figure 11, the model was able to address detection errors caused by morphological differences within the same weed species, resulting in more accurate bounding boxes. In Figure 11, the improved model reduced false positives in scenarios involving occlusion. Figure 11 presents a challenging sample with dense, small targets, and the improved model significantly enhanced detection performance in this difficult scenario.

[image: Comparison of weed detection results in agricultural fields using object detection algorithms YOLOv8n (top row) and FD-YOLO (bottom row) across four sample images labeled a, b, c, and d, with colored bounding boxes indicating detected weeds.]
Figure 11 | (a-d) represent different weed images. The first row shows the YOLOv8 results, and the second row shows the FD-YOLO results. Green boxes represent correct detections, blue boxes represent false detections, and red boxes represent missed detections. Compared to YOLOv8, FD-YOLO reduces missed detections in small target edge weeds (a), morphological differences (b), Mutually occluded weeds (c), and dense occlusion (d) scenarios, with more accurate bounding boxes, thanks to the multi-scale feature fusion of PF-FPN and the dynamic attention mechanism of DyHead.

With these improvements, the model’s detection performance in complex conditions was significantly enhanced. In practical applications, especially when detecting multiple weed species in complex environments, PD-YOLO can more reliably identify and locate targets, reducing both false positives and missed detections.






5 Discussion

This study improves and optimizes the YOLOv8 model, enhancing its performance in weed detection tasks and developing a novel weed detection model, PD-YOLO. The FAFM and HARFM modules were introduced in this study, and based on these modules, a Parallel Focusing Feature Pyramid was proposed to replace the original PA-FPN, improving the model’s feature fusion capability. Additionally, a dynamic detection head was incorporated to enhance the model’s detection stability. These methods improve the classification accuracy of the traditional YOLOv8n model in weed detection and reduce both missed detections and false positives.

Section 4.1 focuses on the performance comparison of different object detection models. The results in Tables 1 and 2 show that FD-YOLO achieves an mAP@0.5 of 95.0% on the CottonWeedDet12 dataset and 76.8% on the Lincoln Beet dataset. This difference may be attributed to several factors: first, the Lincoln Beet dataset only contains two labeled categories—”weeds” and “beetroot”—while CottonWeedDet12 includes 12 subcategories of weeds, which tests the model’s fine-grained classification ability; second, the weed distribution in the Lincoln Beet dataset is denser, and the target sizes are smaller, leading to increased difficulty in localization in dense occlusion scenarios; furthermore, the images in the Lincoln Beet dataset were captured under the variable field lighting conditions in the UK, with diverse background soil types, further increasing the detection complexity. FD-YOLO’s PF-FPN enhances multi-category feature discrimination through the FFAM and HARFM modules, demonstrating clear advantages on CottonWeedDet12, but the high-density targets in Lincoln Beet require stronger spatial context modeling capabilities. The current model still has room for improvement in the spatial awareness attention mechanism of the Dynamic Head (DyHead). Future work could focus on introducing adaptive resolution adjustment strategies or enhancing spatial attention weight distribution to further improve the model’s performance in high-density scenarios. These differences indicate that FD-YOLO requires fine-tuning or data augmentation for specific environments in cross-regional and multi-crop scenarios.

The results in Table 4 show that PD-YOLO has fewer parameters and lower computational complexity than lightweight models like YOLOv7-tiny, positioning it as an efficient lightweight model. However, its FPS performance still lags significantly, and it may face challenges such as insufficient frame rates and image blur in high-speed agricultural robots. Further optimization of computational efficiency or the adoption of hardware acceleration solutions is needed. Additionally, future research could explore techniques such as model pruning, quantization, and hardware acceleration to better adapt to low-power embedded devices, ensuring its wide applicability in real-time agricultural applications.

In practical agricultural robotics applications, FD-YOLO can integrate with SLAM technology to enable “detection-navigation-operation” integration. Following Zhang W et al (Zhang et al., 2024), combining 2D LiDAR and visual sensors with YOLOv3 algorithm allows target detection and information mapping onto 2D grid maps for efficient path planning, eliminating computational latency-induced trajectory deviations in traditional models. Researchers applied the trained DIN-LW-YOLO model to autonomous laser weeding robots in strawberry fields, with robot speed set at 0.50 m/s and Intel Realsense D435i camera mounted 600 mm above ground at 30 fps. Field tests demonstrated 92.6% weed control rate and 1.2% seedling damage rate (Zhao et al., 2025). Moreover, FD-YOLO’s lightweight design enables edge device deployment for future weed management. Similar studies deployed customized YOLOv7 models on NVIDIA Jetson Xavier NX platforms, integrating robotic frame spraying systems that recognize Amaranthus palmeri in cornfields for real-time spot spraying (Balabantaray et al., 2024).

Furthermore, the ablation experiments validated the roles and necessity of each module and their impact on model size, as discussed in Section 4.2. The experimental results demonstrated the impact of each module on the model’s recognition accuracy, as well as a comparison of different feature pyramids. In PF-FPN, the excessive upsampling and downsampling during feature aggregation and distribution by the FFAM module led to a loss of detailed features. Therefore, the introduction of the HARFM module reduced this loss, showcasing efficient feature fusion capabilities. Despite the increase in computational cost and detection speed, the improvements in multi-scale feature fusion and small object detection enable the PD-YOLO model to perform well in scenarios involving high-density, partial occlusion, and multi-class weeds. However, in practical applications, environmental adaptability still needs to be considered. The robustness of the model under low-light conditions or extreme weather has not been validated. The current dataset is primarily based on natural lighting conditions, which may limit the model’s stability in complex lighting scenarios.

The systematic analysis of the TIDE metrics provides clear directions for model optimization. Experimental results show that FD-YOLO significantly outperforms the baseline model in terms of classification errors and localization errors, but there is still room for further optimization. To address classification errors, future work could introduce fine-grained feature alignment strategies to enhance the model’s ability to distinguish between morphologically similar weeds. The residual localization errors may stem from blurred object boundaries in complex occlusion scenarios, which could be improved by integrating deformable convolutions or refining the bounding box regression loss function to boost localization accuracy. Additionally, the background misdetection rate remains relatively high, indicating that the current model lacks sufficient suppression of background noise such as soil texture. To address this, more diverse background samples should be included during data augmentation, or a lightweight background-aware attention module could be designed.




6 Conclusions and future work

This study proposes PD-YOLO, a novel computer vision method specifically designed for real-time weed detection. The architecture of PD-YOLO combines the Parallel Focusing Feature Pyramid (PF-FPN) and Dyhead framework, built upon the YOLOv8n framework. The FAFM module optimizes feature fusion, enhancing the model’s representational capabilities, while the HARFM module strengthens weed-specific features, improving weed identification. The PF-FPN network, developed with consideration of weed morphological characteristics, serves as an effective feature fusion network for weed detection. The Dyhead framework improves the design of the detection head, ensuring both accuracy and stability in detection results.

The research results show that, compared to the baseline model, PD-YOLO improves mAP by 1.7% and 1.8% (at thresholds of 0.5 and 0.5-0.95, respectively). While maintaining a lightweight structure, PD-YOLO outperforms current mainstream object detection algorithms, demonstrating superior performance. Moreover, although the model’s detection speed meets real-time detection requirements, there is potential for further optimization in real-world field environments.

Future research will focus on the following directions:

(1)Data Augmentation and Multimodal Fusion: Integrating multispectral imaging data to enhance the model’s detection capability under complex lighting and occlusion conditions, and expanding data diversity through synthetic data augmentation (e.g., simulating rain, fog, and shadows).

Lightweight and Efficiency Optimization: Developing an FD-YOLO-Tiny variant that combines the vMamba (Zhu et al., 2024) architecture to improve the model’s backbone, reducing computational overhead while maintaining accuracy, and adapting it for deployment on edge devices.

(2)Error-Driven Model Improvement: Based on the analysis results from the TIDE metrics, specifically optimizing the false negative and false positive modules. This can be achieved by strengthening the training of negative samples, improving the loss function, or adjusting the post-processing stage of the detection algorithm to reduce misdetections and missed detections.

(3)Cross-Scene Validation and Transfer Learning: Expanding experimental validation to include different crops, such as corn and wheat, and varying agricultural environments. Combining transfer learning techniques to enhance the model’s generalization ability, ensuring its practicality in diverse agricultural settings.
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In order to enhance the accuracy of rice leaf disease detection in complex farmland environments, and facilitate the deployment of the deep learning model onto mobile terminals for rapid real-time inference, this paper introduces a disease detection network titled YOLOv11 Multi-scale Dynamic Feature Fusion for Rice Disease Detection (YOLOv11-MSDFF-RiceD). The model adopts the concept of ParameterNet to design the FlexiC3k2Net module, which replaces the neck feature extraction network, thereby bolstering the model's feature learning capabilities without significantly increasing computational complexity. Additionally, an efficient multi-scale feature fusion module (EMFFM) is devised, improving both the computational efficiency and feature extraction capabilities of the model, while simultaneously reducing the number of parameters and memory footprint. The bounding box regression loss function, inner-WIoU, utilizes auxiliary bounding boxes and scale factors. Finally, the Dependency Graph (DepGraph) pruning model is employed to minimize the model's size, computational load, and parameter count, with only a moderate sacrifice in accuracy. Compared to the original YOLOv11n model, the optimized model achieves reductions in computational complexity, parameter scale, and memory usage by 50.7%, 49.6%, and 36.9%, respectively, with only a 1.7% improvement in mAP@0.5:0.9. These optimizations enable efficient deployment on resource-constrained mobile devices, making the model highly suitable for real-time disease detection in practical agricultural scenarios where hardware limitations are critical. Consequently, the improved model proposed in this paper effectively detects rice disease targets in complex environments, providing theoretical and technical support for the deployment and application of mobile terminal detection devices, such as rice disease detectors, in practical scenarios.
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1 Introduction

Rice is a key crop for national food security, and its growth status is extremely sensitive to diseases. The occurrence of diseases is usually related to improper agricultural technology practice, inappropriate variety selection and non-standard use of pesticides, which may lead to the aggravation of diseases. According to the forecast of the National Agricultural Technology Extension Service Center, based on the comprehensive analysis of the base of rice diseases (Muehe et al., 2019) and insect pests, cultivation management methods, variety layout (Singh et al., 2021) and climatic conditions (Hajjar et al., 2023), the occurrence trend of rice diseases in China is expected to be more serious in 2024, and the affected area may reach 390 million acre (Hunan Agriculture, 2024). The increase in the diversity of rice diseases, the acceleration of transmission, and the increase in the difficulty of prevention and control have made the early identification and effective prevention of diseases particularly critical in modern agricultural production. Therefore, the implementation of large-scale and intelligent rice disease management strategies is of great significance for controlling disease spread and ensuring food production.

Compared with traditional computer vision technology, deep learning technology has shown excellent generalization performance in the field of image analysis due to its remarkable ability in feature extraction. This technology has been introduced into the research of agricultural plant disease recognition, and with the rapid development of deep learning technology, its application in the field of target detection has also received extensive attention. Target detection technology is mainly divided into two categories: two-stage method and one-stage method. The Two-stage method decomposes the object detection task into two independent stages: first, the region proposal network (RPN) is used to generate candidate regions; secondly, these candidate regions are classified and accurately located. Representative algorithms include Mask R-CNN (Dorrer and Alekhin, 2021) and Faster R-CNN (Ren et al., 2017). The advantage of this kind of method is that it has lower error recognition rate and missed detection rate, and can achieve higher detection accuracy. However, since it contains two separate calculation steps, the two-stage method has certain limitations in processing speed and is difficult to meet the needs of real-time detection. In order to solve this problem, the one-stage method was developed. Representatives of such methods include YOLO (Wang et al., 2024; Wang et al., 2024b) (You Only Look Once) series and SSD (Zeng et al., 2022) (Single Shot MultiBox Detector). Unlike the two-stage method, the one-stage method merges the recognition and localization process into a single stage. By dividing the image into multiple grids and predicting the category and location of the target simultaneously on each grid, fast target detection is achieved. The advantage of this method is its fast recognition speed, which can meet the needs of real-time detection. In addition, due to the small number of model parameters and high computational efficiency, the one-stage method is also easier to be deployed to mobile devices and embedded systems to achieve edge computing. It is worth noting that with the continuous optimization of the algorithm, the one-stage method has also achieved a significant improvement in accuracy. In some cases, the one-stage method can even surpass two-stage method to achieve a fairly high level of detection. This shows that the one-stage method has broad application prospects in the field of target detection. (Zhan et al., 2024) based on the improved target detection model BHC-YOLOV8 of YOLOv8, which is specifically used to detect tea diseases and defects in real scenes. By introducing the dynamic sparse attention mechanism BiFormer, Haar wavelet improved downsampling module and new feature fusion network, the model has improved in terms of computational complexity, confidence and mAP0.5, which effectively improves the accuracy and efficiency of tea disease and defect detection. (Wang et al., 2024) proposed a lightweight apple leaf disease detection method called LCGSC-YOLO. This method combines LCNet backbone network, GSConv and VOVGSCSP modules, and coordinate attention mechanism to achieve high-efficiency and high-precision disease detection under the YOLO framework. It has low model parameters and computational complexity, and high detection speed, which is suitable for deployment on embedded devices. (Xie et al., 2024) proposed a detection method called YOLO-Sizelect, which realized the accurate and rapid detection of ginseng fruit in natural agricultural environment by integrating C3f-RN feature extraction module and model compression technology. (Liu et al., 2024) developed an early detection method for pine wilt disease based on UAV remote sensing, hyperspectral image reconstruction and support vector machine (SVM) classification. In particular, a new hyperspectral reconstruction network DW3D was proposed to improve the detection efficiency and real-time performance. A lightweight recognition model of plant diseases and insect pests (PDLM-TK) based on tensor features and knowledge distillation was proposed by (Zhang et al., 2024) The model improves the diagnostic efficiency and accuracy of plant diseases and insect pests by constructing a lightweight residual block based on spatial tensor (LRBST), a branch network fusion graph convolution feature (BNF-GC) and a model training strategy based on knowledge distillation (MTS-KD).

In practical agricultural scenarios, especially in resource-constrained environments like mobile terminals, the efficient utilization of computational resources is of great significance. Models with lower computational complexity and smaller memory footprint can be deployed more easily on these devices, enabling real-time and on-site disease detection. Therefore, in addition to recognition accuracy, the resource conservation capability of a disease detection model is equally important for its practical application. Our proposed YOLOv11-MSDFF-RiceD model focuses on achieving this balance by optimizing the model structure to reduce computational load and memory usage while maintaining acceptable detection accuracy.

Existing studies on rice disease detection, such as YOLOv8-based models (Zhan et al., 2024) and lightweight frameworks like LCGSC-YOLO (Wang et al., 2024), primarily focus on accuracy under controlled laboratory conditions. However, these models face significant limitations in real-world agricultural settings. For instance, they often exhibit high computational complexity and large parameter sizes, making deployment on resource-constrained devices impractical. Additionally, models like Faster R-CNN (Ren et al., 2017) and Mask R-CNN (Dorrer and Alekhin, 2021), while accurate, lack real-time capabilities due to their two-stage architecture. Furthermore, existing datasets rarely account for environmental variability such as lighting changes, occlusions, or seasonal variations, leading to poor generalization in field conditions. These limitations underscore the need for a lightweight, adaptive model that balances accuracy with computational efficiency while addressing complex environmental challenges. Disease detection in complex agricultural environments encounters challenges such as high computational resource consumption, stringent real-time requirements, and the need for enhanced detection accuracy. To address these issues, this study chose the latest and relatively stable YOLOv11 model from the YOLO series as the research foundation. The YOLOv11 model has drawn attention for its higher detection accuracy, fewer parameters, and smaller model size. The aim is to further enhance and optimize this model to meet the specific demands of rice disease detection. The proposed YOLOv11-MSDFF-RiceD model, which is the optimized version, holds great potential for integration into large-scale precision agriculture systems. For example, it can be installed on drones with real-time imaging sensors to automatically monitor rice fields, facilitating early disease detection over extensive agricultural areas. Moreover, its lightweight design (only 4.7 MB) enables smooth integration into handheld devices used by farmers for on-site diagnosis. By combining the model with automated pesticide spraying systems, farmers can precisely treat infected areas, reducing chemical usage and operational costs. These applications are in line with the increasing demand for sustainable and intelligent farming practices, providing a scalable solution to minimize crop losses and enhance food security. Through the improvements made to the YOLOv11 model, we expect to develop a rice disease detection model that not only achieves high accuracy but also meets the real-time requirements in detection speed. Considering the limited computing power of mobile devices, we have also placed special emphasis on the lightweight design of the model, aiming to realize efficient disease detection on resource-constrained devices and promote the application of rice disease detection technology in actual agricultural production.




2 Materials and methods



2.1 Datasets construction

In the field of deep learning, the mobility and generalization ability of the algorithm model are always one of the key challenges. Models showing excellent performance in the laboratory environment often have a significant decrease in recognition efficiency when transferred to the natural environment. In order to solve this problem, this study mainly focuses on the accurate detection of rice leaf diseases and has selected four common rice diseases, including Rice Blast, Brown Spot, Fusarium wilt and Bacterial blight.

The construction of this data set strictly follows the principles of scientificity and diversity, covering samples widely collected from the Internet and data taken on site to ensure the authenticity and richness of the data set. The data collection was carried out in the high standard farmland demonstration area (32° 44 ′ N, 119° 29 ′ E) in Qinwang Village, Cheluo Town, Gaoyou City, Jiangsu Province from mid-June to late August 2024. In the collection process, we used DJI MAVIC AIR UAV and iPhone 12 smartphone as the main collection tools. In view of the limitation of the endurance of the UAV, we determined the best shooting parameters through multiple flight experiments: the UAV flight speed is 3m/s to 5m/s, the height is 3 to 4 meters from the rice plant, and the mobile phone camera is 30 to 50 cm away from the rice plant. The position is taken to ensure that the collected image is clear and usable. All captured images are saved in JPG format with a resolution of 2720 × 1530 pixels or 1920 × 1080 pixels to ensure a clear presentation of image details. Figure 1 shows some samples of the data set, and Table 1 lists the main features of various diseases in detail. In order to enhance the diversity and challenge of the datasets and ensure the model’s robustness, a comprehensive approach was taken during data collection. A variety of natural environments, including soil, sky, paddy fields, as well as complex backgrounds like water reflections and overlapping foliage, were deliberately selected as the background for on - site shooting. The shooting strategies incorporated following light, reversing light, different distances (close and long distance), and multi - angles (pitch angle, elevation angle) to comprehensively simulate various light and perspective conditions. Images were also collected across different seasons, specifically from mid - June to late August, which allowed for the inclusion of seasonal variations. For instance, images of early - stage (yellowing leaves) and late - stage (necrotic lesions) infections were captured. Additionally, different lighting scenarios were considered, such as those at dawn, midday, and dusk, with deliberate inclusion of overcast, sunny, and partially shaded conditions. This extensive coverage of diverse environmental conditions mimics real - world challenges and ensures the model’s adaptability to climatic and environmental heterogeneity, which is a crucial factor for its deployment in precision agriculture systems

[image: Four photographic panels show rice diseases: Panel A displays rice blast with brown lesions on green leaves; Panel B presents Fusarium wilt affecting yellowing rice panicles; Panel C depicts brown spot disease as brown lesions on a leaf blade; Panel D shows bacterial blight with pale, yellowing rice foliage.]
Figure 1 | Part of the self-built data set samples. (A) Rice blast (B) Fusarium wilt (C) Brown Spot (D) Bacterial blight.

Table 1 | This paper studies rice diseases and their characteristics.


[image: Table listing four rice diseases—rice blast, brown spot, Fusarium wilt, and bacterial blight—alongside their main characteristics, including lesion shapes, colors, affected leaf areas, and symptom progression, with relevant citations noted for specific diseases.]
In order to solve the problem of over-fitting or under-fitting of the model caused by the imbalance of the number of images of different disease categories in the data set, and enhance the robustness and generalization ability of the model, this study uses image enhancement technology to expand the data set. The specific enhancement methods include horizontal flipping of the image, random rotation, and random adjustment of brightness and contrast (Zhong et al., 2017). After these enhancement steps and excluding the images with information loss, 13464 disease images were finally obtained. These images are divided into training set, validation set and test set according to the proportion of 70%, 20% and 10%. The number of samples in each part is listed in Table 2.

Table 2 | The number of samples in each part.


[image: Table displaying the number of samples for four plant disease types—Rice blast, Bacterial blight, Fusarium wilt, and BrownSpot—across Train, Validation, Test, and Total columns; sample counts are listed per category.]
In the process of dataset construction, we noticed that the characteristics of bacterial blight often appear as thin strips, which may lead to many non-disease features being incorrectly included in the annotation process, as shown in Figure 2A. This mislabeling may cause the model to learn invalid features, which will affect its detection performance. In order to solve this problem, this study decided to introduce more detailed disease images, as shown in Figure 2B, to help the model learn more effective features. This method will improve the accuracy of the model ‘s recognition of disease features, thereby improving the overall performance of the model.

[image: Panel A shows a dense cluster of rice plants with overlapping green leaves and yellow panicles, creating a visually complex background. Panel B displays a close-up of rice leaves and panicles with water droplets, featuring a less cluttered, simpler background.]
Figure 2 | Datasets samples. (A) Complex background samples. (B) Simple background samples.




2.2 YOLOv11 network model

YOLOv11n is a lightweight target detection model in the YOLOv11 series. Compared with the same series of models such as YOLOv11s and YOLOv11x, although there is a compromise in detection accuracy, it has achieved a significant improvement in detection speed. By reducing the amount of calculation and parameters, YOLOv11n reduces the requirements for hardware devices, and effectively improves real-time performance, so that it shows more prominent advantages in scenarios with strict requirements for real-time performance and hardware resources. As shown in Figure 3, the network structure of YOLOv11 n is composed of Input, Backbone, Neck and Head. The input end performs image acquisition and preprocessing. By implementing an adaptive scaling strategy, the size of the input image is ensured to match the input requirements of the model. The adaptive anchor frame technology is used to calculate the bounding box that is most suitable for the current image. In addition, the input data is enhanced by using multi-image stitching and cropping techniques to improve the performance and robustness of the model. The backbone network consists of several key modules, including the convolutional layer (Conv), C3k2, SPPF, and C2PSA, which are jointly responsible for extracting feature information from the input image. The C3k2 module is developed on the basis of C2f, which integrates two different parameter configurations: C3k and Bottleneck. The design goal of this module is to improve the accuracy of feature extraction while maintaining computational efficiency and inference speed. The C3k2 module allows switching between C3k and Bottleneck configurations by introducing an optional C3k parameter. When the C3k configuration is enabled, the module enhances the extraction ability of local features by adding two convolution operations, which is particularly useful in complex scenes because it can improve the resolution and expression ability of features. On the contrary, if the C3k parameter is not enabled, the module will adopt the standard Bottleneck configuration, and the function of the C3k2 module is the same as that of C2f. This design flexibility enables the C3k2 module to adjust its structure according to the needs of different tasks. SPPF includes three maximum pooling operations and one convolution operation, which is helpful to realize the effective fusion of global information and local information. C2PSA extends C2f by introducing PSA (Position-Sensitive Attention), aiming to enhance feature extraction ability through multi-head attention mechanism and feedforward neural network. It can selectively add residual structure (shortcut) to optimize gradient propagation and network training effect. The neck network is composed of a path aggregation network (PAN) and a feature pyramid network (FPN), which is mainly used to integrate feature maps from different levels and scales to achieve effective fusion of features. The Head part adopts a decoupling head structure and combines an anchor-free strategy to allow the model to perform image detection and classification tasks independently at different scales.

[image: Diagram illustrating a neural network architecture with sections for backbone, neck, and detection layers, featuring convolutional, PSA, attention, concatenation, upsampling, bottleneck, and split modules interconnected in flowchart style, each function distinctly color-coded.]
Figure 3 | YOLOv11n network structure diagram.




2.3 YOLOv11-MSDFF-RiceD

In order to increase the detection speed and accuracy of the model for rice diseases in complex field environments, this study improved the model based on the original YOLOv11. The network structure is shown in Figure 4 above.

[image: Flowchart diagram of a neural network architecture for image analysis, showing input leading to a backbone with convolutional and FlexiC3k2Net layers, followed by neck, detect, and result blocks, with annotated feature fusion and concatenation operations in the neck.]
Figure 4 | YOLOv11-MSDFF-RiceD network structure diagram.




2.4 Optimization of backbone feature extraction

As a new lightweight model of low floating-point operations (FLOPs), YOLOv11n has achieved a corresponding improvement in detection speed although it has been damaged in detection accuracy. In order to balance the computational efficiency and detection accuracy of the model in the disease detection task, this study draws on the design idea of ParameterNet (Han et al., 2023). By increasing the number of parameters of large-scale visual pre-training models without significantly increasing FLOPs, the network uses dynamic convolution technology. Figure 5 shows the structure of dynamic convolution. The dynamic convolution in can significantly enhance the expression ability of the model by using multiple convolution kernels and dynamically adjusting the weight of these convolution kernels according to the input features. This design improves its capacity by integrating multiple dynamic convolution kernels to capture more complex functional relationships. According to its adaptive computer mechanism, the model can automatically adjust the weight of the convolution kernel according to different input features to achieve more flexible and effective feature extraction. Dynamic convolution is used to introduce additional parameters into the network, which only brings a slight increase in FLOPs. This paper uses similar design ideas to innovate the Bottleneck in C3k2 and proposes the FlexiC3k2Net module. Figure 6 is the FlexiC3k2Net structure diagram.FlexiC3k2Net enhances feature extraction by dynamically adjusting convolutional kernel weights based on input characteristics. Unlike static convolutions, FlexiC3k2Net employs multiple kernels whose contributions are weighted via a lightweight MLP. For example, in detecting thin bacterial blight stripes, the module prioritizes kernels capturing linear patterns, while for larger lesions like rice blast, it emphasizes spatial context. This adaptability reduces redundant computations while improving accuracy for heterogeneous targets.

[image: Diagram comparing a normal layer and a Mixture of Experts (MoE) layer. The left shows a single expert model with input and output arrows. The right depicts the MoE structure with input X directed to a mixed expert, which integrates outputs from multiple experts, each weighted by factors alpha one, alpha two, and alpha M, to produce output Y.]
Figure 5 | Structure diagram of dynamic convolution. (1) Normal layer. 2) MoE layer.

[image: Diagram showing two parallel neural network architectures. Both begin with a cyan “Conv” block followed by a peach “Split” block, diverging into two brown or yellow dynamic convolution blocks labeled either “Bottleneck_DynamicConv” or “C3k_DynamicConv,” repeated n times. The outputs are concatenated in a brown “Concat” block and proceed through a final cyan “Conv” block. Black arrows indicate data flow and connectivity throughout the architecture.]
Figure 6 | FlexiC3k2Net structure diagram.

PNC3k2 has M dynamic convolution kernels, which can be expressed as Equation 1:

[image: Mathematical expression showing Y equals X times W prime, where W prime is defined as the sum from i equals one to M of alpha sub i times W sub i, marked as equation one.] 

Among them, [image: Mathematical expression showing that Wi belongs to the set of real numbers with dimensions Cout by Cin by H by W.]  represents the weight tensor of the i th convolution kernel, and [image: Mathematical expression showing the Greek letter alpha with a subscript i, commonly used to denote indexed variables or parameters in mathematics or science.]  is the dynamic coefficient corresponding to the convolution kernel. These coefficients [image: Mathematical expression showing lowercase Greek letter alpha with a subscript i.]  are calculated dynamically through a multi-layer perceptron (MLP) module based on the different characteristics of the input samples and are expressed as Equation 2:

[image: Mathematical equation showing alpha equals softmax of MLP applied to the pooled value of X, followed by a closing parenthesis and equation number two in italics.] 

In comparison with the original convolutional layer, the coefficient generation in Formula 2 only leads to a slight increase in the number of floating-point operations (FLOPS). Therefore, the PNC3k2 implemented by dynamic convolution can significantly reduce the growth of FLOPs while introducing a large number of additional parameters.

In the ordinary convolution layer, the total number of parameters is [image: Mathematical expression showing Cout multiplied by Cin multiplied by K multiplied by K, where Cout and Cin are variables with subscripts, and K represents a variable.] , and the corresponding floating-point operations (FLOPs) are [image: Mathematical expression showing H prime times W prime times C out times C in times K times K.] . In contrast, the dynamic convolution architecture enhances the parameter efficiency and computational performance of the model by integrating the coefficient generation module, the dynamic weight fusion mechanism and the convolution execution process. Specifically, the coefficient generation module is conFigd with [image: Mathematical notation displaying an uppercase italic letter C with the subscript lowercase letters i and n, commonly used to represent "C sub in" in equations or circuit diagrams.]  hidden units, which requires [image: Mathematical expression showing C sub i n squared plus C sub i n times M.]  parameters and consumes [image: Mathematical equation showing C sub i n squared plus C sub i n multiplied by M.] FLOPs to dynamically derive the coefficients of the convolution kernel. Although the dynamic weight fusion process does not increase the parameter burden of the model, it involves [image: Mathematical expression showing M multiplied by C subscript out, multiplied by C subscript in, multiplied by K, and then multiplied by K, with variables and subscripts clearly formatted.]  FLOPs to achieve real-time combination of weights. Combining these components, the total number of parameters of the dynamic convolutional layer and the amount of FLOPs calculation are increased to [image: Mathematical expression with variables: C sub in squared plus C sub in times M plus M times C sub out times C sub in times K squared.]  and [image: Mathematical equation showing Cin squared plus Cin multiplied by M plus M minus Cout minus Cin times K minus K plus H squared times W minus Cout minus Cin times K minus K.] , respectively. This design not only improves the adaptability of the model to the input data, but also achieves the goal of increasing the complexity of the model while maintaining the computational efficiency through refined parameter management and computational optimization.

The parameter ratio of dynamic convolution to standard convolution is (Equation 3):

[image: Mathematical equation for R_param showing fractional and summation terms, with variables C_in, C_out, M, and K. Ends with assumptions M much less than C_out times K squared, and C_in equals C_out.]

The proportion of FLOPs is (Equation 4):

[image: Mathematical equation for R_flops showing R_flops equals the sum of two fractions with variables C_out, C_in, M, H, W, K, then further simplified assuming C_out equals C_in, plus a term M divided by H times W, followed by indices and a condition that M is much less than H times W. Equation number four appears at the right.] 

Therefore, compared with standard convolution, dynamic convolution has about M times the parameters, and the additional FLOPs can be ignored.




2.5 Efficient multi-scale feature fusion module

In the rice disease detection task, the coexistence of small target lesions and large targets (such as healthy leaves) poses a challenge to model training. In the training process, the model may tend to focus on the big target and ignore the small target lesions, resulting in insufficient capture of the contextual features of the small target. This bias may reduce the recognition accuracy of the model for small target lesions and increase the risk of missed or false detection. At the same time, the existence of large targets also introduces a large amount of redundant information, which increases the learning burden of the model. In order to solve this problem, this study proposes an efficient multi-scale feature fusion module (Efficient multi-scale feature fusion module, EMFFM). The design of the module draws on the design concepts of GhostNet (Han et al., 2020) (Figure 7) and FasterNet (Chen et al., 2023) (Figure 8 where * represents the meaning of multiplication).

[image: Diagram depicting a deep learning process: a grayscale data stack is transformed by convolution into a colored stack, followed by parallel transformations and an identity shortcut, merging into a final output stack labeled Output.]
Figure 7 | GhostNet structure diagram.

[image: Diagram illustrating partial convolution (Pconv) identity operation, showing input and output feature maps as 3D blocks labeled with height (h), width (w), and channels (Cp), convolved with Cp filters of kernel size k by k resulting in matching output dimensions.]
Figure 8 | Pconv structure diagram.

The core idea of GhostNet is to decompose the traditional convolutional layer into two smaller convolutional layers: one is the ghost convolutional layer, which only uses a part of the original convolutional layer for calculation; the other is the residual convolution layer, which is responsible for processing the output of the remaining channels.

FasterNet introduces the concept of Partial Convolution to extract spatial features more efficiently by reducing redundant computation and memory access.

The design of EMFFM combines these two network design concepts. As shown in Figure 9 (where * represents the meaning of multiplication) below, the input image is first processed by a 3x3 convolutional layer and then divided into two sets of features: one set of features continues to be processed by a 5x5 convolutional layer, while the other set of features is retained for subsequent feature fusion. After multiple convolution operations, the feature information will inevitably be lost, so the features of P2, P3 and P4 layers are partially fused. However, this operation is only carried out on some channels, which improves the computational efficiency. Finally, the features of different scales are fused by 1x1 convolution layer, and the input features are added to the processed features by residual connection, which effectively retains the original information and introduces new multi-scale information, and enhances the expression ability of the model.

[image: Flowchart illustrating a convolutional neural network module: input passes through branches with Conv3x3, Conv5x5, and Conv7x7 layers creating feature maps P2, P3, and P4; outputs are concatenated, passed through Conv1x1, added to P1, producing the final output.]
Figure 9 | Efficient multi-scale feature fusion module (EMFFM).




2.6 Loss function

In YOLOv11, CIoU (distributed focusing loss function) is used as the regression loss function of the detection box, and the matching accuracy is improved by considering the overlapping area, center distance and aspect ratio between the target boxes. Compared with the traditional IoU loss function, the computational complexity of the CIoU loss function is higher, because it requires additional calculation of the distance and angle differences between the target detection boxes, which will increase the calculation time and resource consumption. And CIoU may have limitations when dealing with small targets. Due to the small size of small targets, the difference of bounding box distance and angle between them is relatively small, which makes it difficult for the CIoU loss function to effectively distinguish the subtle differences between these small targets.

In this study, we refer to the concept of Inner-IoU (Zhang et al., 2023). By introducing multi-scale auxiliary bounding boxes, the concept allows these bounding boxes to be dynamically adjusted according to the sample characteristics to improve the efficiency of bounding box regression. At the same time, the scale factor ratio parameter is added, which can adjust the size of the auxiliary bounding box, and can be optimized for different data sets and detectors, thereby improving the computational performance of the loss function. Inspired by these ideas, we designed Inner-WIoUv2. Figure 10 below is a diagram of Inner-IoU. As shown in the Figure, the Ground Truth (GT) and Anchor are represented as [image: Mathematical expression showing an uppercase letter B with a lowercase g in superscript.]  and [image: Uppercase letter B in a serif font displayed in black on a white background.] , respectively. The center point inside the GT bounding box and its corresponding GT bounding box itself are represented by [image: Mathematical notation showing a coordinate pair with subscripts and superscripts: x sub c superscript g t, y sub c superscript g t, enclosed in parentheses.] . The center point inside the anchor box and its corresponding anchor box are represented by [image: Mathematical expression showing an ordered pair with variables x sub c and y sub c in parentheses, commonly representing coordinates or a point location.] . The width and height of the GT bounding box are represented by [image: Mathematical notation showing the letter w with a superscript t.]  and [image: Lowercase letter h followed by a superscript g and t, representing h to the power of g t in a mathematical or scientific context.] , respectively, while the width and height of the anchor box are represented by [image: Lowercase, bold black letter "w" on a white background, centered and slightly pixelated.]  and [image: Lowercase black letter "h" displayed on a white background, presented in a bold serif typeface with soft edges and even proportions.] , respectively. The scale factor, usually expressed as ‘ratio’, ranges from [0.5, 1.5].

[image: Side-by-side comparison of two diagrams illustrating bounding box relationships in object detection: the left diagram highlights overlapping blue target boxes with orange inner target boxes, while the right diagram inverts emphasis with overlapping orange anchor boxes and inner anchor boxes, labeled to show dimensions, centers, and the intersection structure.]
Figure 10 | Inner-IoU diagram.

In addition, the definition of Inner-loU is as follows (Equations 5–11):

[image: Mathematical equation showing y sub i f equals x sub c f minus w o f times ratio divided by two, and y sub i b equals x sub c f plus w o f times ratio divided by two, labeled as equation five.] 

[image: Mathematical equation showing y_b^qt equals y_c^qt minus l_{qt} times ratio divided by two, and b_b^qt equals b_c^qt plus w_{qt} times ratio divided by two. Equation labeled as six.] 

[image: Mathematical formula showing b sub l equals x sub c minus w underscore ratio divided by two, and b sub r equals x sub c plus w underscore ratio divided by two, labeled as equation seven.] 

[image: Mathematical formula showing b_sub_t equals y_sub_c minus h_ratio divided by two, and b_sub_b equals y_sub_c plus h_ratio divided by two, labeled as equation eight.] 

[image: Mathematical expression showing inter equals the product of two differences: the minimum of b sub h superscript gt and b sub h, minus the maximum of b sub l superscript gt and b sub l; and the minimum of b sub r superscript gt and b sub r, minus the maximum of b sub l superscript gt and b sub l, labeled as equation nine.] 

[image: Mathematical equation showing union equals wgt times hgt times ratio squared plus w times h times ratio squared minus inter, with the equation labeled as number ten on the right.] 

[image: Mathematical equation showing the Intersection over Union (IoU), where IoU subscript inner equals inter divided by union, with both inter and union italicized and in the numerator and denominator respectively. Equation labeled as 11.] 

WIoUv2 (Tong et al., 2023) The bounding box regression loss function is constructed to reduce the loss effect on simple samples, and a monotonic focusing coefficient is introduced so that the model can process difficult samples more intensively, thereby improving the target detection performance. The formula of the loss function is shown in Equation 12, which aims to optimize the training effect of the model and highlights the superiority in the face of challenging target detection tasks.

[image: Mathematical equation showing script L sub WatDV two equals script L sub WatDV one star, script L sub tot, and script L sub WatDV one, with the condition r greater than zero, labeled as equation twelve.] 

In the process of model training, [image: Mathematical expression showing script capital L with subscript iou and a star symbol as a superscript.]  in the above formula may decrease the convergence speed with the gradual decrease of loss function [image: Mathematical expression showing script capital L subscript i o u, representing a loss function related to Intersection over Union.] , which may lead to the slow convergence of the model in the later training stage. In order to deal with this challenge, we introduce the moving average [image: Mathematical expression showing script uppercase L, subscript i o u, with a horizontal line above the entire term, typically notating mean or averaged IOU loss.] , which can effectively maintain the overall loss function at a relatively high level, thus promoting the stable training and faster convergence of the model. As shown in Equation 13:

[image: Mathematical equation showing L sub Wlotv2 equals the ratio of L sub Iot prime to L sub Iot, multiplied by L sub Wlotv1, labeled as equation thirteen.] 

According to the above formula, the calculation formula of Inner-WIoU is (Equation 14):

[image: Mathematical formula showing L sub inner-WIoUv2 equals L sub WIoUv2 plus IoU minus IoU sub inner, referenced as equation fourteen.] 

It can be seen from Figure 11 that after the network is added such as Inner-WIoUv2, the accuracy is significantly improved.

[image: Line graph compares mAP at fifty over epochs for CIoU and Inner-WIoU methods. Inner-WIoU shows slightly higher performance, emphasized by a zoom-in on epochs two hundred fifty to three hundred ten.]
Figure 11 | Comparison of experimental results of different loss functions.




2.7 Model pruning

In order to optimize the neural network structure and reduce the computational resource consumption on resource-constrained embedded devices, this paper adopts a model pruning method based on Dependency Graph [DepGraph (Fang, 2023)]. This method first reconstructs the convolutional neural network (CNN) into a graph structure, as shown in Figure 12. In this structure, we can identify two key dependencies: one is the inter-layer dependency between layers, and the other is the intra-layer dependency within a single layer. Through this graph structure, the network can be decomposed into smaller and more basic components, which helps us to understand and model these dependencies more accurately.

[image: Mathematical expression shows tuples of functions f sub one minus and f sub one plus, linked by double arrows to f sub two minus and f sub two plus, continuing to f sub L minus and f sub L plus. A labeled curly bracket beneath connects the first two tuples as “Inter-layer Dep” and a bracket under the last tuple marks it as “Intra-layer Dep.”]
Figure 12 | CNN in DepGraph.

Then, based on this decomposition, a dependency graph is constructed, which records the direct dependencies between adjacent layers as a simplified representation of network dependencies. Finally, DepGraph (Figure 13) groups the layers with dependencies according to the dependency graph, and performs pruning operations at the group level to ensure that if the parameters in a group are pruned, all the parameters of the entire group will be pruned, thereby maintaining the integrity of the network structure and achieving effective structural pruning. Through this method, we can effectively reduce the amount of calculation and parameters of the model while maintaining the expression ability of the model, making it more suitable for deployment on edge computing devices.

[image: Neural network diagram with two panels: left panel shows a sequence of layers labeled Conv f1, BN f2, ReLU f3, Conv f4, BN f5, and ReLU f6, with skip connection adding f7 at the output; right panel visualizes feature flows between functions f1 to f7 with directional arrows and color coding for preceding and succeeding layers, indicating scheduling differences and interactions between layers.]
Figure 13 | The pruning method of DepGraph.





3 Experimental environment and evaluation index



3.1 Experimental environment and parameter settings

The hardware equipment of this research experiment is based on Windows system, RTX4090 graphics card, 24 G graphics memory, Intel i7–13700 K CPU. The deep learning development environment is Pytorch2.2.0 + CUDA11.8 + Python3.10. The deep learning software used is publicly available and can be found on GitHub or other open-source platforms. After many experiments, the most suitable training hyperparameters for this study were found. The specific parameter settings are shown in Table 3.

Table 3 | Deep learning hyperparameters.


[image: Table with two columns labeled Parameter and Value, listing image size as six hundred forty, batch size as thirty-two, learning rate as zero point zero one, and epoch as three hundred.]



3.2 Evaluation indicators

In this paper, the performance of the model is evaluated using key indicators such as mean Average Precision (mAP), computational complexity, parameter size, and model size. Among them, the mean average precision (mAP) is used as the core evaluation index to quantify the accuracy performance of the model in multi-category target detection tasks. Specifically, the calculation of recall, precision and average precision is based on the statistical data of True Positives (TP), False Positives (FP) and False Negatives (FN). The determination of mAP is achieved by drawing the Precision-Recall Curve (P-R Curve) and calculating the area under the curve, and then summarizing the average of all categories. Through the comprehensive consideration of these indicators, the performance of the model can be comprehensively evaluated and its performance in different application scenarios can be deeply understood. The calculation formulas of accuracy rate P, recall rate R and average accuracy mAP are as follows (Equations 15–17):

[image: Mathematical formula showing precision, represented as P equals TP divided by the sum of TP and FP, where TP is true positives and FP is false positives, labeled as equation fifteen.] 

[image: Mathematical formula showing recall equals true positives divided by the sum of true positives and false positives, labeled as equation sixteen.] 

[image: Mathematical formula expressing mean Average Precision as mAP equals one divided by n, multiplied by the sum from i equals one to N of AP of i. Equation number seventeen.] 




3.3 Ablation experiment

In order to verify the advantages of the improved method proposed in this study in the field of rice disease detection, this study designed ablation experiments to evaluate the contribution of each improved module. The experiment includes a total of 8 verification schemes, and all experiments are carried out under a unified hardware environment and experimental parameters. The experimental results are detailed in Table 4. The first four groups of experiments introduced FlexiC3k2Net module, EMFFM module and Inner-WIoU module respectively. The results showed that the addition of these modules increased the mAP @ 0.5 index by 0.6%, 0.4% and 1% respectively. In the subsequent experiments, these improved modules are gradually combined and integrated into the model. Finally, compared with the original YOLOv11 model, although the improved YOLOv11-MSDFF-RiceD model has increased in the number of parameters, it has achieved 2.3% and 2.2% improvement in the two key performance indicators of mAP @ 0.5 and mAP @ 0.5: 0.9, respectively. The experimental results show that the proposed improved method has significant performance advantages in rice disease detection tasks.

Table 4 | Data comparison of ablation experiments.


[image: Table comparing eight YOLOv11-based treatments on four metrics: mAP@0.5, mAP@0.5:0.9, parameter count (in millions), and GFLOPs. YOLOv11-MSDFF-RiceD achieves the highest mAP@0.5 with 90.4.]



3.4 Comparative experiments of different loss functions

In order to verify that the loss function proposed in this paper has certain advantages for disease detection tasks, we systematically compared and analyzed the performance of six different loss functions (CIoU, DIoU (Zheng et al., 2019), EIoU (Zhang et al., 2021), GIoU (Rezatofighi et al., 2019), SIoU (Gevorgyan, 2022), Inner-WIoU) in rice disease detection tasks. The detailed experimental results are shown in Table 5.

Table 5 | Comparative experimental data of different loss functions.


[image: Table comparing six loss functions: CIoU, DIoU, EIoU, GIoU, SIoU, and Inner-WIoU, across four metrics: Precision, Recall, mAP at 0.5, and mAP at 0.5:0.9. Inner-WIoU shows the highest recall at 84.8%, highest mAP at 0.5 of 89.1%, and highest mAP at 0.5:0.9 of 70.6%.]
The performance of these loss functions is evaluated by Precision, Recall, and average precision at two different thresholds (mAP @ 0.5 and mAP @ 0.5: 0.9). The results show that CIoU and DIoU are the closest in accuracy, 94.5% and 94.5% respectively, but DIoU is higher in recall rate, 83.4%, while CIoU is 82.6%. EIoU is slightly lower in accuracy, 91.7%, and performs worst on mAP @ 0.5: 0.9, only 64.9%. GIoU and SIoU are relatively close in all indicators, but SIoU is slightly lower at mAP @ 0.5: 0.9, which is 68.6%, while GIoU is 68.7%. Inner-WIoU is not as good as CIoU and DIoU in accuracy, which is 94.1%, but it exceeds other loss functions in recall rate, mAP @ 0.5, mAP @ 0.5: 0.9. The experimental results show that the Inner-WIoU loss function is helpful to improve the efficiency of rice disease detection.




3.5 Pruning experiment

When studying the effect of different compression ratios on the performance of the disease detection model, we conducted six experiments with different compression ratios. The experimental results are shown in Table 6. The experimental data show that with the increase of compression ratio, the parameters, computing requirements and storage space of the model are reduced, but the performance of the model is also reduced. When the compression ratio is 2, the parameters, computation and storage space of the model are reduced by 25.4%, 49.1% and 36.9% respectively compared with the original model, while the accuracy, mAP @ 0.5 and mAP @ 0.5: 0.9 are only reduced by 1.4%, 0.6% and 0.5% respectively. Therefore, while significantly reducing hardware requirements, the loss of model accuracy is small. We use a pruning method with a compression ratio of 2 to optimize the model.

Table 6 | Effects of different compression ratios on model performance.


[image: Data table showing the effect of increasing compression ratio from slash, two, two point five, three, three point five, to four on precision, recall, mAP at zero point five, mAP at zero point five colon zero point nine, parameters, GFLOPs, and model size, all of which decrease as compression ratio increases.]



3.6 Comparative experiments of different models

In order to further evaluate the performance difference between YOLOv11-MSDFF-RiceD and the current mainstream target detection algorithms, this paper selects key indicators such as the number of parameters, the amount of calculation, mAP @ 0.5, mAP @ 0.5: 0.9, accuracy, recall rate and model size, and compares YOLOv11-MSDFF-RiceD with YOLOv5n, YOLOv6n, YOLOv8n, YOLOv9t, YOLOv10n and YOLOv11n on the self-defined data set. The experimental results are summarized in Table 7. The results showed that the mAP @ 0.5 of YOLOv11-MSDFF-RiceD reached 89.8%, which was 1.7 percentage points higher than that of YOLOv11n, and 2%, 3.4%, 1.8%, 1.1% and 1.9% higher than that of YOLOv5n, YOLOv6n (Li et al., 2022), YOLOv8n, YOLOv9t (Wang et al., 2024c) and YOLOv10n (Wang et al., 2024a), respectively. This shows that YOLOv11-MSDFF-RiceD performs best in average accuracy, showing its excellent ability in disease detection. In addition, the model size and parameter number of YOLOv11-MSDFF-RiceD were reduced to 4.7 MB and 1.3 million, respectively, which was 36.9% and 49.6% lower than that of YOLOv11n, and showed significant optimization effect in comparison with other detection models.

Table 7 | Comparative experiments of different models.


[image: Table comparing YOLO model variants using parameters, GFLOPs, mAP at 0.5, mAP at 0.5:0.9, precision, recall, and size. YOLOv11-MSDF-RiceD has the best values in bold for parameters, GFLOPs, mAP metrics, mAP@0.5:0.9, and size.]
In this study, we conducted a detailed comparison of the detection performance between YOLOv11-MSDFF-RiceD and YOLOv11n to better understand their capabilities in complex farmland environments. To achieve a more accurate evaluation, we enlarged and cropped images for closer inspection, as shown in Figure 14. The results clearly demonstrate that YOLOv11-MSDFF-RiceD outperforms YOLOv11n significantly, with our proposed model achieving higher detection accuracy and eliminating missed detections. The missed detections observed with YOLOv11 in some cases can be attributed to two primary factors. Firstly, the network structure of YOLOv11 has inherent limitations in feature extraction. It fails to fully capture the feature information that is truly useful for disease detection, leading the model to learn incorrect feature patterns and thereby compromising detection accuracy. Secondly, the complex farmland environment poses significant challenges. The model is exposed to a large amount of redundant and complex interference information during the learning process, making it difficult to accurately extract the effective features of the disease. This results in suboptimal detection performance. In contrast, YOLOv11-MSDFF-RiceD addresses these challenges through enhanced feature extraction capabilities and improved robustness to environmental complexities, ensuring more reliable and accurate disease detection.

[image: Comparison of plant disease detection in rice fields using two models is shown in eight labeled panels. Left column presents missed detections by YOLOv1ln, while right column shows successful detections by YOLOv11-MSDF-RiceD, with bounding boxes and confidence scores for diseases such as Rice Blast, Brown Spot, Bacterial Blight, and Fusarium wilt.]
Figure 14 | (A-H) Details of detection effect.

The comparison of the effects in Figure 15 shows the superiority of the YOLOv11-MSDFF-RiceD model over other models such as YOLOv5, YOLOv6, YOLOv8, YOLOv9, YOLOv10 and YOLOv11 in rice disease detection tasks. From the results, in addition to YOLOv11-MSDFF-RiceD, other models generally have missed detection during the detection process, and YOLOv5 and YOLOv6 have the problem of misidentification of rice blast as brown spot. These missed and false detections not only affect the accuracy of disease detection, but also may mislead the actual disease management. The YOLOv11-MSDFF-RiceD model significantly reduces the missed detection and false detection, improves the detection accuracy, and can more accurately identify rice diseases including rice blast and brown spot. Although the model achieves good detection performance (89.8% mAP @ 0.5), its accuracy will decrease under extreme background or low resolution input. Similarly, small lesions (< 10 pixels) in severely occluded areas also showed a high false negative rate. Future work will explore a hybrid architecture that combines attention mechanisms with super-resolution preprocessing to address these challenges. In addition, although in this study, there was no misjudgment between diseases in the model, this does not mean that similar problems will not occur in subsequent studies, which also sounded the alarm for us. In order to prevent the occurrence of such problems, future research will focus on the following two aspects: First, expand the scale of the data set, especially increase the number of disease samples with similar symptoms, so as to enhance the adaptability of the model to complex situations; the second is to continuously optimize the feature extraction method to further improve the model ‘s ability to capture subtle differences, so as to better achieve the goal of accurate classification.

[image: Grid of rice plant photographs in seven rows labeled A to G, each containing four columns; images display detection boxes and probability scores overlaying rice leaves, panicles, and spikelets, highlighting disease or feature identification at different growth stages and detection algorithms.]
Figure 15 | (A-G) Comparison of the effects of different models.




3.7 Model deployment comparison experiment

In this study, in order to highlight the performance advantages of lightweight models, we deployed multiple models on the Jetson Orin Nano development board and compared their frame rates. TensorRT is not used for acceleration processing during deployment. Table 8 shows the frame rate differences between different models in detail. This comparison is mainly based on the video stream data taken by the drone. The flight parameters of the drone are: the flight speed is 3 m/s to 5 m/s, and the flight height is 3 m to 4 m away from the rice plant.

Table 8 | Comparison of deployment speed of different models.


[image: Table comparing detection modules YOLOv5n, YOLOv6n, YOLOv8n, YOLOv9t, YOLOv10n, YOLOv11n, and YOLOv11-MSDF-RiceD with columns for FPS and preprocess time in milliseconds, showing YOLOv11-MSDF-RiceD achieves highest FPS and fastest preprocess.]
It can be seen from the results that the YOLOv11-MSDFF-RiceD model shows significant real-time and deployable advantages on the Jetson Orin Nano development board. The frame rate is as high as 27 FPS, and the preprocessing time is only 112 ms, which are significantly better than other models. This performance enables it to complete target detection quickly and efficiently in farmland disease detection tasks, and is suitable for real-time deployment in a resource-constrained hardware environment (Li et al., 2025). It provides a strong theoretical basis for the subsequent deployment of hardware equipment to drones, and provides strong support for rapid monitoring and precise prevention and control of farmland diseases.





4 Conclusion

Aiming at the challenge of rice leaf disease detection in complex field environment, this study proposes a lightweight network model based on improved multi-scale dynamic feature fusion based on YOLOv11 framework, named YOLOV11-MSDFF-RiceD. The model introduces the concept of ParameterNet, and replaces the original neck feature extraction network by designing the FlexiC3k2Net module to enhance the model ‘s ability to learn features and control the increase in computation. In addition, this study designs an efficient multi-scale feature fusion module (Hyper Multi-Scale Fusion Module, Hyper-MFFM), which aims to improve the computational efficiency and feature capture ability of the model, while reducing the number of parameters and memory usage. In terms of loss function, this study uses the auxiliary bounding box and the scale factor bounding box regression loss function (inner-WIoU) to improve the prediction accuracy of the model. Finally, through the Dependency Graph (DepGraph) pruning technique, the model volume is reduced and the computational load is reduced at a moderate sacrifice of model accuracy.

The experimental results show that the YOLOv11-MSDFF-RiceD model significantly reduces the computational load and model size (4.7 MB) while maintaining considerable detection accuracy. Although the improvement on mAP @ 0.5 is modest (1.7%), the lightweight design of the model addresses the urgent need to deploy AI solutions on edge devices with limited computing resources, such as drones or handheld agricultural sensors. Although the model shows robustness in complex farmland environments, there are still some challenges. Firstly, the dataset mainly covers four common rice diseases, and its performance in rare or emerging disease categories has not been tested. Secondly, changes in light conditions (such as overexposure or shadows) and background interference (such as overlapping leaves or soil patterns) may reduce the detection reliability. For example, under weak light conditions, the thin strip lesions of bacterial blight may be confused with natural veins. In addition, due to the limitation of rice cycle, this study did not deeply explore the influence of different heights and flight speeds on model training and detection performance during data acquisition. Future research will focus on expanding the data set to include more disease types and environmental changes, integrating illumination invariant feature extraction techniques to enhance robustness, and planning to study the effects of different altitudes and flight speeds on model performance. At the same time, future research directions also include optimizing the model structure and parameters to improve its robustness in complex scenarios, and exploring advanced technologies such as transfer learning and federated learning to further improve the performance of the model on embedded devices and ensure its effective deployment and application in actual agricultural scenarios.
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Traditional farming methods, effective for generations, struggle to meet rising global food demands due to limitations in productivity, efficiency, and sustainability amid climate change and resource scarcity. Precision agriculture presents a viable solution by optimizing resource use, enhancing efficiency, and fostering sustainable practices through data-driven decision-making supported by advanced sensors and Internet of Things (IoT) technologies. This review examines various smart sensors used in precision agriculture, including soil sensors for moisture, pH, and plant stress sensors etc. These sensors deliver real-time data that enables informed decision-making, facilitating targeted interventions like optimized irrigation, fertilization, and pest management. Additionally, the review highlights the transformative role of IoT in precision agriculture. The integration of sensor networks with IoT platforms allows for remote monitoring, data analysis via artificial intelligence (AI) and machine learning (ML), and automated control systems, enabling predictive analytics to address challenges such as disease outbreaks and yield forecasting. However, while precision agriculture offers significant benefits, it faces challenges including high initial investment costs, complexities in data management, needs for technical expertise, data security and privacy concerns, and issues with connectivity in remote agricultural areas. Addressing these technological and economic challenges is essential for maximizing the potential of precision agriculture in enhancing global food security and sustainability. Therefore, in this review we explore the latest trends, challenges, and opportunities associated with IoT enabled smart sensors in precision agriculture.
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1 Introduction

Traditional agricultural practices have been utilized for generations, leveraging local knowledge and techniques passed down through families. This small-scale farming often includes strategies such as crop rotation (Lundborg, 1990; Vasilescu et al., 2023). However, a significant drawback of traditional agriculture is its reliance on outdated methods, which can limit productivity and efficiency. Farmers may experience challenges such as lower crop yields stemming from rigid crop rotations and inadequate pest management techniques (Jain, 2012). Moreover, traditional practices are typically more vulnerable to climate variability, making crops susceptible to extreme weather events and pest outbreaks. As a result, these methods struggle to meet the growing demands of a global population, prompting a need for more sustainable and productive farming approaches (Janc et al., 2019). The shift to precision agriculture represents a viable solution, enhancing farming efficiency through technology and data analytics. This modern approach optimizes resource use, increases yields, and promotes sustainability (Charania and Li, 2020; Karunathilake et al., 2023) Precision agriculture enables real-time monitoring and targeted interventions, allowing farmers to better adapt to climate change and improve economic viability while minimizing environmental impacts compared to traditional practices (Lipper et al., 2014; Bogoviz et al., 2023; Gemtou et al., 2024).

Precision agriculture represents a significant advancement in the modern agricultural sector, highlighting the increasing need to enhance food production efficiency while simultaneously reducing environmental impacts (Işık et al., 2017; Evett et al., 2020; Wu et al., 2022). As global populations rise and the demand for food escalates, the agricultural landscape must adapt—this is where precision agriculture comes into play, utilizing advanced technologies to empower farmers and optimize operations (Afzaal et al., 2020; Wanyama et al., 2024). At its core, precision agriculture focuses on using data-driven approaches to inform agricultural practices. By harnessing technologies like the Internet of Things (IoT), artificial intelligence (AI), big data analytics, and cloud computing (Rodríguez et al., 2017; Abioye et al., 2020; Mansoor and Chung, 2024; Mansoor et al., 2024b; Sheikh et al., 2024), farmers can make informed decisions that lead to better resource utilization and improved crop yields. The benefits of precision agriculture extend beyond simple yield enhancements; they also encompass significant reductions in resource wastage, particularly water and fertilizers. This not only conserves water but also ensures that crops receive the precise amounts of water they need for optimal growth (Uztürk and Büyüközkan, 2024).

Agriculture 1.0 was defined using basic tools, manual and animal labor, and a heavy dependence on natural factors such as sunlight and rainfall. Farmers depended on their understanding of the land, weather patterns, and traditional farming techniques passed down through generations, typically from fathers to sons. This period was characterized by subsistence farming, where families grew just enough food to meet their own needs. The Industrial Revolution marked a significant transformation in agriculture, leading to what is known as the “Green Revolution” due to substantial increases in crop yield and productivity (Gagliardi et al., 2022; Liu et al., 2021; Zhai et al., 2020; Aggarwal and Verma, 2022). Agriculture 2.0 introduced machinery like tractors and harvesters, replacing manual labor and enhancing efficiency. This period also saw the rise of chemical fertilizers and pesticides, which boosted crop yields but negatively impacted the environment. Many innovations stemmed from the re-adaptation of mechanical and chemical industries that had previously catered to military needs during World War II. Additionally, breeding programs expanded through public universities, research institutes, and private companies (Aggarwal and Verma, 2022; Gagliardi et al., 2022).

Agriculture 3.0, often referred to as precision agriculture, utilized technology to enhance farming methods. It integrated GPS technology, remote sensing, and Geographic Information Systems (GIS) to gather data on soil conditions, crop health, and weather patterns. This information was used to create detailed maps, allowing for the targeted application of inputs like fertilizers, pesticides, and irrigation, which reduced waste and lessened environmental harm. During this period, public awareness grew regarding the environmental consequences of excessive fertilizer and chemical usage (Aggarwal and Verma, 2022; Gagliardi et al., 2022; Casavola and Gagliardi, 2012; Nargotra and Khurjekar, 2020).

The evolution of precision agriculture is often framed within the contexts of Agriculture 4.0 and Agriculture 5.0. Agriculture 4.0, described as the “Digital Revolution in Agriculture,” focuses heavily on the incorporation of sophisticated technologies to facilitate efficient agricultural practices (Maffezzoli et al., 2024). Agriculture 4.0 significantly enhances precision agriculture through a variety of technological advancements that improve efficiency, accuracy, and sustainability in farming practices. By utilizing IoT sensors, farmers can collect real-time data on conditions such as soil moisture, temperature, and crop health, allowing for informed decision-making (Zhai et al., 2020; Javaid et al., 2022). Additionally, big data analytics helps identify trends and make predictive assessments that optimize resource allocation. Drones equipped with multispectral cameras provide high-resolution aerial imagery, enabling remote monitoring of large fields and identifying areas that require attention. AI and machine learning (ML) further aid precision agriculture by analyzing data to predict outcomes and automate decision-making processes related to irrigation, fertilization, and pest control (Latino et al., 2022). Variable rate technology (VRT) allows for tailored applications of inputs like fertilizers and pesticides based on specific field characteristics, reducing waste and environmental impact. GPS technology enhances precision mapping and guides autonomous machinery, ensuring accurate operation in planting, harvesting, and resource application (Latino et al., 2022; Tenreiro et al., 2023). Moreover, Agriculture 4.0 fosters collaboration and connectivity among farmers through shared data, promoting integrated farming systems that improve overall management. By optimizing resource use and reducing carbon footprints, these advancements contribute to sustainable agricultural practices, demonstrating how Agriculture 4.0 is revolutionizing the efficiency and effectiveness of farming (Zambon et al., 2019; Zhai et al., 2020; Javaid et al., 2022).

Transitioning into Agriculture 5.0, we observe a paradigm shift towards a more human-centric approach in agricultural innovation. While Agriculture 4.0 emphasizes data and automation, Agriculture 5.0 combines technology with human ingenuity and sustainable practices (Islam et al., 2024). It accommodates the use of advanced IoTs, robotics, AI, and collaborative efforts between humans and machines, promoting resilience within agricultural systems (Hurst and Spiegal, 2023; Kazakis and Tsirliganis, 2023). Agriculture 5.0 seeks to foster a deeper collaboration among human expertise, machine efficiency, and sustainable methodologies, creating a synergistic effect where both humans and machines can contribute to overcoming agricultural challenges (da Silveira and Amaral, 2022; Ross and Maynard, 2021). For example, autonomous agricultural equipment equipped with AI can work alongside farmers, enhancing their capabilities in tasks such as planting, harvesting, and pest control, while ensuring that these processes are executed with minimal environmental impact. Moreover, this evolution also accentuates the importance of sustainable practices in agriculture (Pham et al., 2013; de la Parte et al., 2024; Popescu et al., 2024). As awareness of environmental concerns grows, there is an increasing emphasis on practices that not only increase yield but also maintain ecological balance. By incorporating sustainable techniques within the precision agriculture framework, farmers can reduce their carbon footprint, enhance biodiversity, and maintain healthier soils (Fraser and Campbell, 2019; Juwono et al., 2023; Ku et al., 2023; Mansoor et al., 2024a). Precision agriculture is transforming agriculture by integrating advanced technologies to meet food production demands. This shift from a data-driven model to a collaborative approach, incorporating multi-omics data analysis, emphasizes the synergy between technology and human expertise, fostering resilient agricultural systems (Abioye et al., 2023). As stakeholders adopt these innovations, including the integration of multi-omics insights, the agricultural sector is increasingly poised to ensure food security and sustainability for the growing global population.

As environmental concerns grow, there is an increasing emphasis on agricultural practices that enhance yield while maintaining ecological balance. By integrating sustainable techniques within the precision agriculture framework, farmers can effectively reduce their carbon footprint, bolster biodiversity, and promote healthier soils (Konfo et al., 2024). Precision agriculture optimizes resource use and minimizes waste, leading to significant environmental benefits. For instance, reductions in carbon emissions result from decreased fertilizer and pesticide application, which not only lowers greenhouse gas emissions but also enhances soil health, measurable through a soil health index that reflects improved organic matter and nutrient availability (Ahmad and Dar, 2020; Farooqui et al., 2024). Moreover, precision irrigation enhances water use efficiency, conserving vital resources and protecting local ecosystems. Collectively, these metrics illustrate how precision agriculture fosters sustainable farming methods and enhances overall environmental stewardship.

IoT is a global network that enables devices to operate, identify, and monitor objects across the globe via the internet, connecting virtual and physical entities through integrated information and communication technologies (Pham et al., 2013; Abioye et al., 2023) The main objective of smart farming is to enhance real-time information sharing across autonomous networks using smart sensors and internet connectivity. Various communication solutions, such as wireless sensors and Radio-Frequency Identification (RFID) technologies, support interconnectivity among networks and devices (Juwono et al., 2023; Ku et al., 2023). In smart farming, critical parameters are monitored to improve yield, optimize environmental conditions, manage irrigation, control pests and fertilizers, oversee soil health, and enhance greenhouse production, all while reducing operational costs (Evans, 2011; Gómez Romero et al., 2016; Nukala et al., 2016; Fraser and Campbell, 2019; Mansoor et al., 2024a). These technologies play a vital role within IoT platforms and are classified into data acquisition, investigation, and evaluation categories (Zecha et al., 2013; Freeman and Freeland, 2015; Balafoutis et al., 2017). Countries such as those in Europe, Australia, and the USA have embraced smart farming, alongside individual nations like Italy (Borgogno Mondino and Gajetti, 2017), Brazil (Pivoto et al., 2018), Ireland (Das et al., 2019), and India (Mogili and Deepak, 2018).

We analyzed the existing literature on the application of IoT platforms and wireless communication technologies across various agricultural activities. At the outset of this review, relevant articles were sourced from the Web of Science using keywords such as “smart agriculture,” Agriculture 4.0, IoT, smart farming, digital agriculture. This collection included 6000 recent articles comprehensive bibliometric information, which was subsequently used as input for VOS viewer (Software) analysis. This analysis assesses the frequency of keyword usage and citation metrics in the selected articles. Additionally, it visualizes the co-occurrence of keywords and the co-citation of references (Figure 1).

[image: Colorful network visualization chart showing keyword clusters related to the internet of things, including terms like machine learning, sensors, agriculture, blockchain, optimization, energy harvesting, and wireless communication, with larger font size signifying higher relevance.]
Figure 1 | VOS viewer keyword co-occurrence network visualizes associations and clusters related to the “Internet of Things” (IoT). It features various color-coded clusters representing interconnected concepts. The central term, “Internet of Things,” connects to multiple branches, highlighting its relevance. Key clusters include the green cluster with “optimization” and “analytics,” focusing on data processing; the blue cluster with “security” and “blockchain,” emphasizing secure data transactions; the yellow cluster with “machine learning,” showcasing AI advancements; and the red cluster with “energy” and “sustainability,” addressing environmental concerns. Lines between keywords illustrate co-occurrence, helping identify trending topics and common research areas in IoT. This image was created with VOSviewer.

To create the visual map, specific criteria were established, with a minimum threshold of five co-occurrences for keywords. Out of a total of 20767 keywords, only 1440 met this threshold criterion. The keyword with greatest total link strength is selected. The size of each node represents the frequency of co-occurrences of terms, while the thickness of the connecting lines indicates how often these keywords appear together (Figure 1). The connections illustrate the relationships between items, and each node reflects the strength of a particular item. Similarly, co-citation analysis evaluates how frequently an article has been cited across the selected documents. The visualization of the co-occurrence network of citations is depicted in Figure 2.
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Figure 2 | Network visualization of keyword usage and co-citation metrics in the journals. (a) Network visualization of co-citation of references across different journals, highlighting the interconnectedness of cited works. (b) Network visualization map illustrating international research in precision agriculture, showcasing the global distribution and collaboration in this field.




2 Smart sensor trends

The modern agricultural industry has significant challenges that need the use of innovative technologies. Agriculture, a vital economic sector (Gollin, 2010) is being impacted by inflation, rising labor costs (Ray et al., 2023), and climate change (Outhwaite et al., 2022; Verma et al., 2022), resulting in diminished agricultural yields. In this scenario, Precision Agriculture emerges as a crucial solution. This sophisticated agricultural technique employs state-of-the-art technology to enhance the amount and timing of inputs necessary for cultivation, aiming to increase output and efficiency.

Sensors play a crucial role in agriculture, detecting environmental changes and transmitting information to processors (Ullo and Sinha, 2021; Liu et al., 2022). In precision agriculture, smart sensors integrate onboard computing capabilities, allowing them to process and analyze data independently (Rahman et al., 2023; Rajak et al., 2023; Saqib et al., 2024). These sensors are equipped with microprocessors that enable local data processing, autonomous decision-making, and direct communication with other devices via Wi-Fi, Bluetooth, or cellular networks (Yin et al., 2021). This autonomy is particularly useful in large-scale farming, where real-time data on soil conditions, plant health, and climate can significantly influence management decisions. Precision agriculture utilizes various sensor technologies to improve the efficiency and productivity of agricultural practices. Soil sensors deliver critical data on moisture levels, pH, temperature, nutrient content, and electrical conductivity, guiding decisions related to irrigation, fertilization, and planting (Roper et al., 2021). Plant health monitoring employs sensors like leaf sensors, chlorophyll fluorescence sensors, Normalized difference vegetation index (NDVI) sensors, and hyperspectral sensors (Li et al., 2021), while environmental sensors monitor atmospheric conditions that impact agricultural decisions (Rahman et al., 2024; Yin et al., 2021; Han, 2024). Specialized sensors, like yield monitors and water potential sensors, offer precise data on crop yield and soil water availability, enhancing farming operations (Table 1).

Table 1 | Sensors used in precision agriculture, detailing their types, functions, and applications.
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The cost of sensors is a crucial factor because it directly affects farmers’ ability to invest in these technologies within their budget constraints. The cost-effectiveness of agriculture sensors depends on their complexity and function (Saqib et al., 2020). Soil moisture sensors range from $50 to $300, while weather stations can cost $100 to several thousand dollars. Nutrient sensors typically range from $500 to $2000. Pest and disease sensors, part of advanced systems, also cost a few hundred to several thousand dollars. Agricultural drones vary from $1,000 to $25,000 or more, depending on features. Basic moisture sensors are inexpensive and provide essential data for irrigation management, while advanced sensors like electrical conductivity and nutrient sensors require higher initial investments but enable precise fertilization and soil health monitoring (Panagopoulos et al., 2014; Kiropoulos et al., 2021; Guerrero et al., 2021). Specialized sensors, like yield monitors and water potential sensors, help farmers assess crop performance and optimize water use, leading to improved crop quality and higher revenues. The return on investment of precision agriculture sensors depends on the scale of the farming operation, the type of sensor, and the specific needs of the farm. Low-cost sensors offer immediate benefits, while high-end technologies provide long-term savings through resource efficiency and yield optimization. Farmers should make informed decisions about which sensors align with their financial capabilities and operational goals.



2.1 Soil sensors

A soil sensor is a device used to measure various physical and chemical properties of soil, such as moisture content, temperature, pH level, electrical conductivity, and nutrient concentration (Yin et al., 2021). Traditional assessment methods, such as soil sampling and laboratory analyses, often lack the necessary spatial and temporal resolution. Therefore, there is an increasing demand for innovative technologies capable of providing precise soil data to enhance smart or precision agriculture systems (Zhang et al., 2024). Recent developments in soil sensors for precision agriculture focus on essential factors for monitoring plant growth cycles. Key elements affecting crop productivity include soil moisture, temperature, pH, nutrient levels, pests, and pollutants. Site-specific management practices, like irrigation and fertilizer usage, rely on data collected from various soil sensors (Kalita et al., 2017; de Jong et al., 2020). A review of six types of soil sensors highlights their technologies, designs, performance, advantages, and disadvantages as well as also discusses research trends and challenges in soil sensors and smart agriculture to guide future studies.



2.2.1 Soil moisture sensors

Soil moisture is vital for assessing soil health and is key to plant growth. It affects the soil’s physical and chemical properties, which in turn impacts salt dissolution, the uptake of water and nutrients by plants, and the activity of microorganisms in the soil (Zhang et al., 2022). Keeping track of soil moisture levels is essential to ensure the right conditions for agricultural production. Soil moisture sensors help farmers measure the water content in the soil, allowing them to determine the optimal timing and amount of irrigation needed for healthy plant growth. Soil moisture measurement is crucial for various applications, including agriculture and hydrological studies. Techniques have been developed to measure soil moisture based on accuracy, cost, and complexity (Zhang et al., 2017, 2024).

Soil moisture sensors are categorized based on the technology they use to detect the moisture levels in the soil, and each type serves specific purposes. Volumetric sensors, particularly capacitive soil dielectric permittivity sensors, are common and appropriate for low-cost, wireless applications. Capacitive sensors measure the capacitance between two plates, which changes with the soil’s dielectric constant, influenced by its moisture content. These sensors are preferred for their low power requirements and minimal interference from soil salinity. Anindita Kalita’s study on polymethyl methacrylate (PMMA) coated capacitive sensors for soil moisture sensing suggests they could be a cost-effective and easy-to-fabricate solution for real-time soil moisture monitoring in agriculture. Despite initial sensitivity limitations, they could optimize irrigation practices and crop productivity, highlighting the need for further research (de la Parte et al., 2024).

Resistive sensors measure the electrical resistance between electrodes inserted into the soil, but their accuracy can be compromised by soil composition variations. Steven M. de Jong’s study on Electrical Resistivity Tomography (ERT) showed it can effectively monitor soil moisture dynamics under controlled field conditions, but challenges remain due to environmental variables and ERT’s limitations (de Jong et al., 2020).

Time Domain Reflectometry (TDR) and Time Domain Transmissometer (TDT) sensors use electromagnetic waves to measure moisture, however they are costly and complicated, suitable for research and precision agricultural activities. Time-Domain Reflectometry (TDR) is known for its precision and is widely used in scientific research. Zhongdian and his research group developed a TDR-based method for measuring soil erosion and soil moisture content, demonstrating high accuracy and automation potential. Further refinement and testing are suggested for wider applicability (Zhang et al., 2022) Time Domain Transmissometer (TDT) measures the transmission time of electromagnetic waves through the soil, providing excellent accuracy and usefulness for depth-specific moisture profiling. Raphaël Pederiva and colleagues developed an on-chip terahertz (THz) characterization technique for low-volume or thin-film materials. The method uses time-domain transmissometer to determine the complex refractive index of materials over a frequency range of hundreds of gigahertz (GHz). The device uses ultrafast photoconductive switches driven by a femtosecond laser, allowing for high precision and minimal sample volume (Krzeminska et al., 2022).

Frequency Domain Reflectometry (FDR) uses the frequency change of an electromagnetic wave to determine soil moisture, making it effective for continuous monitoring across various soil conditions. The study in the Gryteland catchment in Norway used frequency domain reflectometry (FDR) and electrical resistivity tomography (ERT) to monitor soil moisture and temperature patterns. Key findings showed different patterns on north-facing and south-facing slopes, impacting freezing and thawing cycles. The study suggests that local terrain features, particularly slope aspects, are crucial in hydrological processes and should be considered in environmental and agricultural management strategies (Ma et al., 2022).

Optical methods, such as visible and near-infrared spectrophotometry, leverage the soil’s light absorption and scattering properties, which change with moisture content. These methods are advantageous for non-contact measurements and are particularly useful in remote sensing applications (Abdulraheem et al., 2023). The choice of a suitable technique depends on the specific requirements of the application, including accuracy, cost considerations, and environmental conditions. The use of Sentinel-2 imagery and the optical trapezoid model (OPTRAM) to monitor soil moisture variability in agricultural production stages. The method, which uses Sentinel-2 imagery, is used to explore high-resolution spatial heterogeneity of soil moisture and monitor various stages of agricultural production (Hassanpour et al., 2020; Stańczyk et al., 2023). The results show that the OPTRAM model can produce accurate soil moisture estimates, improving irrigation management and crop growth understanding, ultimately leading to better water resource management in agriculture (Crioni et al., 2025).

Precision irrigation uses soil moisture sensors to monitor real-time water levels and optimize crop decisions. Sensors are deployed at multiple depths to capture moisture variations across the root zone (Bwambale et al., 2022). IoT-based systems analyze this data, combining weather forecasts and crop models to determine precise irrigation schedules. Automated systems adjust water application based on the data, ensuring efficient water distribution and preventing over- or under-irrigation (Kanimozhi and Vadivel, 2024). This dynamic approach refines irrigation strategies, conserving water, enhancing plant health, and improving agricultural yields. For example, in Zhang et al. (2017), an IoT-based soil monitoring system was implemented in a citrus orchard, where real-time soil moisture data helped optimize fertilization and irrigation strategies, leading to reduced water waste, improved efficiency, and enhanced crop productivity (Zhang et al., 2017).




2.2.2 pH sensors

Soil pH is crucial for plant growth and fertilizer application efficiency. Real-time soil pH sensors, integrated with precision agriculture technologies, provide real-time feedback on soil conditions. These sensors communicate with cloud-based systems, enabling automated pH adjustments (Table 1) (Lavanaya and Parameswari, 2018; Yin et al., 2021; Fauziah et al., 2024).

In addition to improving nutrient absorption, real-time pH monitoring enhances soil microbial activity, which is vital for organic matter decomposition and natural nitrogen fixation (Xu et al., 2024). Studies have shown that microbial communities thrive best within a neutral to slightly acidic pH range (5.5–7.5), where beneficial bacteria such as nitrogen-fixing Rhizobia and phosphate-solubilizing Pseudomonas species actively contribute to soil fertility (Saeed et al., 2021). Savich investigated the application of soil amendments combined with pH-responsive sensors in saline soils, demonstrating that integrating real-time monitoring with phosphogypsum and organic fertilizers significantly enhanced CO2 assimilation and crop biomass (Savich et al., 2021). The study emphasized the role of real-time pH adjustments in improving photosynthetic activity, ultimately leading to higher productivity in challenging soil conditions.

Furthermore, Zhao analyzed the long-term impact of no-till (NT) agriculture on soil pH stability, revealing that real-time pH monitoring could help mitigate soil acidification by optimizing nitrogen application rates and periodic liming schedules. By integrating pH sensors into conservation tillage practices, farmers can maintain soil health while minimizing the negative effects of prolonged nitrogen fertilization (Zhao et al., 2022).

In addition to chemical amendments, biological strategies for pH optimization are gaining traction. Yaghoubi Khanghahi highlighted the potential of plant growth-promoting bacteria (PGPB) in modifying soil pH and improving nutrient availability. Their research demonstrated that combining bio-inoculants with real-time pH sensors allowed farmers to adjust pH levels in response to microbial activity, reducing dependence on synthetic fertilizers. The findings suggest that a holistic approach integrating biological, chemical, and technological solutions can maximize soil fertility and improve overall crop resilience (Yaghoubi Khanghahi et al., 2021). A typical conductometric pH sensor consists of conductivity electrodes and a thin layer of pH-responsive sensing material.

The study presents a 3D macroporous graphene-functionalized soil pH microsensor, fabricated on Si/SiO2 substrates with Au-interdigitated electrodes. The sensor increases conductance with pH increase, exhibiting a sensitivity of 97 μS/pH and a response of 650%. It detects soil pH variations in different soil samples, with sensitivity varying with gravimetric moisture contents (Penn and Camberato, 2019; Siddiqui and Aslam, 2023). A potentiometric soil pH sensor measures soil pH by detecting voltage difference between reference and pH-sensitive electrodes. Accurate pH readings are crucial for agriculture and research, requiring regular calibration and calibration with known solutions (Siddiqui and Aslam, 2023). Matthew McCole, presents a potentiometric measurement system for on-site soil pH and potassium levels detection (McCole et al., 2023). The system uses 3D printed ion-selective electrodes, a PSoC4 microcontroller, and a reference electrode for ion activity. The system is portable, user-friendly, and efficient, enabling real-time soil analysis and precise management of soil nutrients, potentially leading to better crop yields and reduced environmental impact (Childs et al., 2000). Ion-selective pH sensors (ISE) measure hydrogen ions in solutions or soil, providing accurate real-time data through a glass electrode and reference electrode, requiring regular calibration. An alternative method is the ion-selective field-effect transistor (ISFET), which includes a drain, source, and gate electrode. pH-sensitive materials like silicon oxide, silicon nitride, and aluminum oxide are coated on the gate electrode. When in contact with the solution, these materials induce changes in gate voltage, affecting the current between the source and drain electrodes based on pH variations. Due to the complexity of soil, ISFETs must be well-protected to avoid damage during insertion (Shylendra et al., 2025).




2.2.3 Temperature sensors

Soil temperature, which varies between -10 and 50°C, is a significant determinant in agriculture, affecting germination, flowering, decomposition, and multiple phases of plant development (Bollero et al., 1996; Onwuka and Mang, 2018). It profoundly affects the physical, chemical, and microbiological processes in soil that are critical for plant growth. Soil temperature is influenced by factors such as specific heat capacity, thermal conductivity, bulk density, texture, water content, and surface coverings (Passioura, 2002; Hatfield and Prueger, 2015).

A soil temperature sensor operates by converting temperature fluctuations into an electrical signal, which is then processed into digital data. Various types of electronic temperature sensors suitable for this application include thermocouples, resistance temperature detectors (RTDs), thermistors, and semiconductor-based sensors (Davaji et al., 2017). Thermocouples function by generating a voltage due to the temperature difference at the junction of two dissimilar metals, typically iron and constantan. They are recognized for their rapid response and automation capabilities, making them appropriate for monitoring soil temperature. Specially calibrated cables are essential for long-distance measurements. Resistance temperature detectors (RTDs) are composed of a conductive metal wire coiled around a non-conductive core, offering high accuracy and stability. They display increased delicacy relative to thermocouples and show a reduced response time to temperature changes due to their protective housing (Kool et al., 2016).

Thermistors, made from ceramic or polymer materials, demonstrate a change in resistance when subjected to temperature fluctuations. They provide high resolution due to significant thermal coefficients; however, they require complex calibration because of their non-linear response. The resolution of this issue can be achieved (Xu et al., 2023). Kool and colleagues’ study highlights the importance of accurately measuring soil temperature gradients to determine soil heat and latent heat fluxes. They used thermistors to monitor soil temperature, but found discrepancies of 0.2°C under uniform conditions. To improve accuracy, they developed an in-situ calibration technique that minimized uncertainty to 0.05°C. This allowed for more precise measurements in a vineyard under arid conditions and showed stable thermistor offsets over a five-year period (Kool et al., 2016).




2.2.4 Nutrient sensors

Nutrient sensors for soil are advanced tools critical for precision agriculture, designed to identify and measure essential soil nutrients, including nitrogen, phosphorus, and potassium. These sensors operate on various principles, including ion-selective electrodes, optical sensors, electrochemical sensors, and spectroscopy, each tailored for specific nutrient types (Burton et al., 2020a). They enable real-time monitoring and mapping of soil nutrient levels, thus facilitating precise and efficient fertilizer application. This approach improves crop yields and optimizes fertilizer use, reducing costs and minimizing environmental impacts by preventing nutrient runoff, thus preserving soil health and protecting water quality. Nutrient sensors represent a significant advancement in agricultural technology, enhancing sustainable farming practices by optimizing plant growth and resource management (Horváth et al., 2024).

Various nutrient sensors have been developed for agricultural applications, each demonstrating unique capabilities and stages of development (Burton et al., 2020b). The Visible-Near Infrared (Vis-NIR) sensor is currently in use in both laboratory and field settings, effectively measuring soil pH and nutrient levels. Similarly, the Visible-Mid Infrared (Vis-MIR) sensor has shown promise in laboratory settings for assessing soil mineral nitrogen content (Ehsani et al., 1999, 2001). The Attenuated Total Reflectance (ATR) spectroscopy sensor operates in both laboratory and field environments, focusing on soil nutrient analysis (Christy et al., 2003).

Raman spectroscopy, used in laboratory and field applications, is effective for evaluating various soil nutrients (Jahn et al., 2006). Additionally, Ion Selective Electrodes (ISE) and Ion-Selective Field Effect Transistors (ISFET) are utilized in laboratory and field settings for measuring soil pH and nutrients (Sudduth et al., 1997; Adamchuk et al., 2005; Aravamudhan and Bhansali, 2008; van Staden et al., 2018). Each sensor type contributes vital insights into soil health and nutrient management, enhancing precision agriculture practices (Burton et al., 2020b).




2.2.5 Electrical conductivity sensors

Soil electrical conductivity (EC) is a crucial indicator in agriculture, as high soil salinity can negatively impact crop growth and reduce agricultural productivity. Soil EC is directly related to the types and concentrations of ions in soil moisture, such as sodium, chloride, calcium, and magnesium, which enhance the soil’s electrical conductivity. Higher moisture levels generally increase soil EC because they facilitate the movement of soluble salts (Liu et al., 2024). The physical composition of the soil, including its clay, sand, and organic matter content, can also influence EC readings. Clay soils typically have higher EC values due to their finer texture and greater cation exchange capacity.

Techniques for measuring soil EC include laboratory measurements, in-situ sensors, and remote sensing techniques. High levels of soil salinity can lead to osmotic stress, which can cause dehydration and stunted growth, and ion toxicity, which can accumulate in plant tissues to toxic levels. To mitigate these effects, various soil amendments and management practices may be employed, such as leaching, which involves applying ample irrigation water to flush out excess salts from the root zone, soil amendments, and crop selection and rotation (Wang et al., 2025).




2.2.6 Soil pollutant sensors

Soil pollutant sensors are essential tools in modern agriculture and environmental management, designed to detect and measure harmful substances in the soil, such as heavy metals, pesticides, herbicides, and industrial pollutants. Excessive application of agrochemicals, industrial activities, and household waste contribute significantly to soil health degradation, crop safety concerns, and environmental quality deterioration. Advanced technologies, including electrochemical detection, optical sensing, and biosensing, enable precise and real-time monitoring of soil pollutants (Garlando et al., 2020). Electrochemical sensors quantify changes in soil conductivity due to specific contaminants, while optical sensors utilize light interactions to identify pollutants, such as organic chemicals. Biosensors employ biological components, including enzymes or microbes, for the precise detection of toxic substances. These sensors are employed in multiple applications, such as monitoring soil health in agriculture, optimizing fertilizer use, ensuring environmental compliance, and aiding soil remediation efforts. Soil pollutant sensors enable the early identification of contaminants, which mitigates risks to human health, protects ecosystems, and promotes sustainable agricultural practices. Their role is essential in addressing soil contamination problems (Garnaik and Nayak, 2024).





2.3 Insect/pest sensors

Plant diseases and pests can significantly compromise the quality and yield of agricultural products by inflicting damage on plant roots, bulbs, and aerial parts through their feeding behaviors. Common soil-dwelling pests that contribute to agricultural loss include various species such as beetles, moths, butterflies, and flies. To facilitate the detection of these soil pests, a range of advanced methodologies has been developed. Optoelectronic sensors harness light-based technologies to identify changes in environmental conditions attributable to pest activity. Acoustic sensors capture the sounds generated by pests while they interact with plants or soil, thereby enabling their identification. Impedance sensors assess variations in electrical resistance that may indicate the presence of pests or their feeding behavior (Stańczyk et al., 2023).

Furthermore, nanostructured biosensors provide a highly sensitive detection mechanism by utilizing nanomaterials to enhance their capabilities, facilitating the identification of specific pests or biological markers associated with pest-induced damage. These innovative detection methodologies furnish agricultural practitioners with essential tools to monitor and manage pest populations more effectively, ultimately contributing to the protection of crop health and the enhancement of agricultural productivity.

Fazeel Ahmed Khan and his team have developed an IoT-based system for environmental monitoring and disease detection in smart greenhouses. The system monitors the greenhouse’s environment, manages water irrigation, collects images, and predicts plant diseases using leaf datasets. The research validates the proposed system design and architecture for IoT-based monitoring and water irrigation management. The system also enhances greenhouse management and supports agribusinesses and farmers by transitioning traditional greenhouses into smart greenhouses, thereby automating and improving agricultural practices using advanced technologies (Khan et al., 2020).




2.4 Plant stress sensors

Plant stress refers to the negative impact on plant growth and development due to biotic and abiotic factors, such as pests, diseases, drought, salinity, and extreme temperatures (Bashir et al., 2021). Understanding and managing plant stress is crucial for improving crop yield and sustainability, especially in the face of global challenges like climate change and food security issues (Galieni et al., 2021; Mansoor et al., 2022). Plant stress mechanisms involve complex physiological and biochemical processes, triggering a cascade of molecular and cellular responses. Techniques for detecting plant stress include remote sensing, thermal imaging, fluorescence imaging, and spectroscopy and hyperspectral imaging. Types of stress sensors include moisture sensors, nutrient sensors, soil salinity sensors, gas exchange sensors, and chlorophyll fluorescence sensors. Moisture sensors monitor soil and plant water status, while nutrient sensors detect deficiencies or toxicities of nutrients. Soil salinity sensors measure soil salinity, which can adversely affect plant growth due to osmotic stress and nutrient imbalance (Yin et al., 2021). Gas exchange sensors measure photosynthesis and respiration rates, indicating plant health and stress levels. Future directions in plant stress detection include Positron Emission Tomography (PET) and advanced metabolomics, which offer deeper insights into physiological and metabolic changes occurring in plants under stress (Galieni et al., 2021). These technologies provide more detailed data and non-destructive ways to monitor plants, facilitating timely interventions and better management practices to enhance plant health and crop yields (Yin et al., 2021; Galieni et al., 2021).




2.5 Positional and motion sensors

Motion and positional sensors are critical tools in precision agriculture, enhancing the implementation of farming practices. These sensors enable precise navigation and guidance of agricultural machinery, ensuring the accurate execution of tasks such as planting, fertilizing, and harvesting. The integration of GPS and IoT technologies facilitates the creation of comprehensive field maps, the tracking of machinery movement, and the enhancement of automated systems, including tractors and drones (Pandey et al., 2021; Getahun et al., 2024). The application of variable rate technology (VRT) through these sensors allows farmers to apply precise amounts of seeds, fertilizers, or water in designated areas, thus reducing waste and improving efficiency (He, 2023). They enhance sustainability by reducing fuel consumption, limiting chemical overuse, and decreasing environmental impact. Motion and positional sensors are critical for tracking livestock movement and protecting valuable agricultural assets (Tenreiro et al., 2023). The ability to provide real-time feedback and data-driven insights allows farmers to make informed decisions, enhancing productivity, lowering costs, and fostering sustainable agricultural practices. With the advancement of precision agriculture, these sensors play a crucial role in improving accuracy and efficiency in modern farming practices (Nackley et al., 2021; Rajak et al., 2023; Naidu et al., 2024).





3 IoT and sensor integration in precision agriculture

The IoT is revolutionizing agriculture by enabling smarter resource management and enhancing productivity. IoT-based systems use intelligent sensors to monitor field conditions in real-time, transmitting data via wireless networks to cloud platforms for precise irrigation adjustments (Rajak et al., 2023). IoT integration with mobile internet allows farmers to remotely monitor and control agricultural systems using mobile applications. Combining IoT with agricultural robotics advances intelligent farming practices, with robots autonomously performing tasks like seeding, fertilization, and pesticide application (Botta et al., 2022).

IoT platforms also facilitate environmental monitoring and early pest detection, with tools like video surveillance and pest-monitoring lamps enabling remote observation of pest activity. Meteorological data collected by IoT sensors aids in forecasting agricultural disasters. However, challenges like high costs, inconsistent standards, and limited compatibility across platforms hinder widespread IoT adoption in agriculture. Addressing these barriers by developing unified data standards and cost-effective IoT products can enhance agricultural productivity, expand benefits to more farmers, and promote sustainable agricultural development (Xu et al., 2022).

The integration of IoT with diverse sensor technologies allows for continuous, real-time monitoring of various agricultural parameters such as soil moisture, pH levels, temperature, nutrient status, and plant health (Marios and Georgiou, 2017; Khanal et al., 2020). These sensors collect data at high temporal and spatial resolutions, providing a detailed view of the field conditions. The real-time data transmission enabled by IoT technologies ensures immediate availability of information, which is crucial for timely decision-making and intervention (Wang et al., 2011). IoT-enabled sensor networks offer the capability for remote monitoring of agricultural fields, reducing the necessity for physical presence (Srbinovska et al., 2015).

Through web interfaces and mobile applications, farmers can access data collected by sensors from anywhere, enabling them to monitor and manage their fields more effectively. This remote accessibility is particularly beneficial for large-scale operations or farms located in hard-to-reach areas (Hashim et al., 2015). Integrating sensors with IoT in agriculture offers significant benefits, including process automation driven by real-time data. For instance, irrigation systems can adjust automatically based on soil moisture levels, while fertilizer and pesticide applications can be tailored to the specific needs of different crop zones, reducing waste and environmental impact (Liang and Shah, 2023). IoT platforms aggregate data from various sensors, enabling advanced analytics and predictive insights that help farmers anticipate issues like pest outbreaks and plant diseases. Furthermore, ML algorithms optimize resource allocation and crop management by leveraging historical and real-time data (Mowla et al., 2023).

The scalable design of IoT platform allows for the integration of diverse sensors and data sources, ensuring adaptability to changing farm conditions and facilitating a flexible management approach in precision agriculture (Sharma and Shivandu, 2024). The use of IoT technology in precision agriculture is markedly reducing human involvement while improving operability and system stability. IoT-driven smart irrigation systems, autonomous machinery, and real-time soil and crop monitoring facilitate efficient resource utilization and enhanced productivity. Soil moisture sensors and automated irrigation optimize water consumption, while GPS-guided tractors, drones, and robotic seeders execute field operations autonomously (Shantaram et al., 2005; Pratama et al., 2021).

AI-driven predictive maintenance guarantees equipment dependability by identifying problems before to failure (McCole et al., 2023). Furthermore, cloud-based farm management systems provide farmers with remote monitoring and decision-making capabilities, including real-time sensor data, weather predictions, and AI analytics. The use of 5G, LoRaWAN, and edge computing enhances system connectivity and reactivity, allowing fully autonomous, data-driven agriculture. These developments result in reduced labor costs, optimal resource use, and improved sustainability, guaranteeing that the future of precision agriculture is more efficient, resilient, and ecologically sustainable (Liu et al., 2024).




4 Smart sensors and IoT in precision agriculture

Modern technology is important in maintaining agricultural productivity even with limited resources. It helps farmers monitor climate changes, track soil nutrient levels, manage water usage, and streamline data handling in farming operations. Various sensors and computing tools are now available to collect and manage data from cropping systems to make timely and informed decisions (Ali et al., 2023). Various digital platforms and camera-based monitoring systems empower farmers to observe their fields remotely. IoT applications and smart farming techniques enhance decision-making by simulating and forecasting crop yields under anticipated climatic conditions (Akbar et al., 2024). Moreover, advanced neural networks and simulation models have reliable decision support for farming activities (Figure 3). By integrating these technologies, farmers can optimize resource use, minimize waste, and enhance crop health and productivity, contributing to more sustainable and efficient farming systems (Mana et al., 2024).
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Figure 3 | Figure highlights key applications including resource efficacy, data-driven decision-making, livestock monitoring, precision farming, pest and disease management, smart irrigation, greenhouse automation, and supply chain optimization. Sustainability, cost reduction, yield improvement and resource management can enhance productivity, sustainably manage re-sources, and improve agricultural efficiency.

Precision farming uses IoT-enabled sensors to monitor and manage agricultural operations with the highest accuracy. Various sensors embedded in fields collect data on soil moisture, pH, temperature, and nutrient levels. These sensors provide farmers with real-time data for the health and needs of various crops. The biggest advantage of this granular data includes the optimization of irrigation, fertilization, and pest control resulting in increased yields and reduced resource wastage (Sishodia et al., 2020). For example, soil moisture sensors can help farmers determine the optimal watering schedule, preventing over-irrigation and conserving water (Figure 4). Similarly, nutrient sensors analyse soil composition to recommend precise fertilizer applications, reducing costs and minimizing environmental runoff. Precision farming technologies also give variable-rate application of inputs which helps to treat specific areas of a field differently based on their unique conditions. This level of customization improves productivity while promoting environmental sustainability (Sishodia et al., 2020).

[image: Infographic showing five sequential steps for smart irrigation: assess irrigation needs, choose technology, train users, monitor system, and adjust system. Each step is represented with a growing plant in a pot, illustrating system progression.]
Figure 4 | It explains a five-stage process for implementing smart irrigation systems. The figure depicts a sequential workflow for establishing effective smart irrigation. This involves: (a) Evaluating site-specific irrigation requirements. (b) Selecting appropriate sensors and controllers. (c) Providing training on system operation. (d) Continuously checking system performance. (e) Making necessary adjustments for efficiency. Each stage is visually represented by a potted plant progressing in growth, illustrating the impact of effective irrigation management.

IoT and sensors have transformed livestock management by continuous monitoring of animal health, behavior, and the environment. Some wearable sensors on livestock collect data on body temperature, movement, heart rate, and feeding habits. This information is then transmitted to centralized platforms where farmers can identify health issues or various irregularities (Isaac, 2021; Monteiro et al., 2021). For example, sensors can detect signs of illness, such as reduced movement or abnormal temperature. Additionally, sensors monitor reproductive cycles showing timely breeding and increasing reproduction rates. IoT platforms can also track the location and activity of grazing animals, reducing the risk of theft and improving pasture management. This combination of real-time monitoring and predictive analytics helps increase animal welfare, boost productivity, and reduce economic losses (Davaji et al., 2017).



4.1 Smart irrigation systems

Water is one of the most critical resources in agriculture and its efficient use is important in growing scarcity (Mansoor and Chung, 2024). IoT-enabled smart irrigation systems provide a solution by automating water distribution based on real-time data. Sensors placed in fields monitor soil moisture, weather conditions, and crop water requirements. These systems then analyze the data to activate irrigation systems only when needed. Smart irrigation reduces water consumption by preventing overwatering and ensuring even distribution (Figure 4). For example, drip irrigation systems equipped with IoT sensors deliver water directly to plant roots. This minimizes evaporation and runoff (Math et al., 2018).

Water scarcity is a significant challenge for global agriculture, necessitating the adoption of smart irrigation systems that utilize real-time data from soil moisture sensors, weather conditions, and crop water requirements to optimize water use efficiency (Ingrao et al., 2023) Traditional irrigation methods often lead to water wastage, uneven distribution, and reduced crop yields due to inefficient scheduling and overwatering. IoT-enabled smart irrigation systems integrate wireless sensors, cloud computing, and AI to automate water distribution based on real-time environmental conditions, ensuring crops receive the optimal amount of water while minimizing losses due to evaporation and runoff (Koul et al., 2022).

Soil moisture sensors provide continuous feedback on volumetric water content (VWC) and soil matric potential. Weather monitoring systems allow dynamic adjustments to irrigation schedules, while evapotranspiration models predict water loss through transpiration and soil evaporation. The optimization of smart irrigation is achieved through various adaptive techniques that integrate sensor data with AI-based decision models (Veeramanju, 2024).

Real-time irrigation optimization has been shown to yield significant water savings while improving crop productivity. Studies indicate that smart irrigation can reduce agricultural water consumption by 30-50% compared to conventional practices (Mallareddy et al., 2023). AI-based irrigation scheduling improves water-use efficiency (WUE) by up to 60%, ensuring that each unit of water applied contributes maximally to crop growth and yield. Smart irrigation also prevents soil erosion and nutrient leaching, preserving soil fertility and long-term sustainability (Alharbi et al., 2024).

As technology continues to evolve, the future of smart irrigation systems looks promising. Innovations such as AI and ML are expected to enhance the predictive capabilities of these systems, allowing for even more precise irrigation management (Figure 4). Additionally, the increasing focus on sustainable agriculture and water conservation will likely drive the adoption of smart irrigation technologies worldwide (Zhang et al., 2021; Sharma and Shivandu, 2024). Smart irrigation systems are transforming the way we manage water resources in agriculture. By leveraging technology to optimize irrigation practices, these systems not only conserve water but also promote sustainable farming and enhance crop productivity. As we move towards a future where water scarcity is a growing concern, the importance of smart irrigation systems will only continue to rise. The effectiveness of these systems hinges on various sensor types, each with a specific function, and application. As water scarcity, drought, climate changes intensify, the importance of smart sensor systems will continue to grow.




4.2 Pest and disease management

Crop losses due to pests and diseases are a significant challenge for farmers. Various sensors installed in fields can detect environmental conditions that favour pest infestations or disease outbreaks, such as high humidity or temperature fluctuations (Wang et al., 2024). Additionally, advanced imaging sensors can identify early signs of plant stress or damage caused by pests. IoT networks connect these sensors to central platforms which analyze the data and send alerts to farmers. This early warning system leads to targeted interventions, such as applying pesticides or introducing biological control agents (Wang et al., 2024).

Crop health sensors and smart pest traps provide real-time data on plant stress and pest populations, allowing for early detection of pests and diseases. This data is analyzed using advanced algorithms and farm management software, enabling predictive analytics and threshold alerts for timely intervention. By targeting specific problem areas, farmers can implement focused control measures, thereby minimizing the use of chemical pesticides. This approach supports Integrated Pest Management (IPM) and enhances sustainable farming practices, ultimately promoting healthier crops and reducing environmental impact. IPM emphasizes the use of monitoring and assessment to identify pest species and their life cycles, enabling targeted and timely interventions. IPM utilizes a mix of biological control, cultural practices, habitat manipulation, and, when necessary, chemical methods in a way that minimizes risks to human health, beneficial organisms, and the environment. By fostering ecological balance and promoting natural pest resistance, IPM seeks to reduce reliance on chemical pesticides and improve the long-term health of ecosystems. This approach is particularly relevant in agriculture but is also applicable in urban settings and natural resource management, making it a valuable framework for sustainable pest management (Khan et al., 2020; Chin et al., 2023).




4.3 Supply chain optimization

The benefits of IoT in agriculture extend beyond the farm, revolutionizing the agricultural supply chain. Smart sensors track the journey of produce from the field to the market. This ensures quality control and traceability. For example, temperature and humidity sensors in storage and transport facilities monitor conditions for perishable goods that reduce spoilage and ensure freshness. IoT platforms also provide real-time updates on the location and status of shipments thereby improving delivery times. This transparency is best for consumer confidence in the safety and authenticity of agricultural products (Shiyale et al., 2020). Supply chain optimization is a critical aspect of modern business strategy, aiming to enhance efficiency and effectiveness from raw material procurement to product delivery to the end customer. The initial step in this process involves comprehensive data collection and analysis, which provides a foundation for understanding current performance. By gathering data from procurement, production, inventory, and distribution, businesses can identify bottlenecks and areas for improvement. Utilizing advanced analytics tools aids in diagnosing issues and setting the stage for continuous improvement. Following data analysis, accurate demand forecasting becomes imperative. Leveraging historical data alongside market trends allows organizations to predict market demand with greater precision, thereby reducing the likelihood of overproduction or shortages. Advanced forecasting methods enable dynamic adjustments, informed by real-time data, ensuring that businesses remain agile and responsive to market changes.

Inventory management plays a crucial role in supply chain optimization by balancing stock levels to avoid both overstock and stockouts. Techniques such as just-in-time (JIT) inventory or safety stock calculations help maintain this balance. Efficient inventory management reduces holding costs and improves cash flow while ensuring product availability. In optimizing supplier relationships, businesses need to focus on collaboration and effective communication. Building strong relationships with suppliers is essential for negotiation and reliability. Developing supplier scorecards can help evaluate performance, fostering a culture of continuous improvement and innovation. These relationships are pivotal in creating a resilient supply chain. Process and workflow improvements are another critical component. Streamlining operations by eliminating waste and redundancies can significantly enhance productivity.

Methodologies such as Lean, Six Sigma, or Total Quality Management (TQM) are valuable in identifying inefficiencies and driving process enhancements, ultimately leading to increased operational efficiency. Technology integration offers transformative potential in supply chain optimization. Implementing supply chain management software and automation tools can increase visibility and coordination across the supply chain. Emerging technologies like the Internet of Things (IoT), Artificial Intelligence (AI), and Blockchain provide opportunities for real-time tracking and secure transactions, further enhancing supply chain efficiency.

Logistics and distribution optimization are vital for minimizing costs and delivery times. By planning optimal transportation routes and utilizing distribution centers strategically, businesses can ensure rapid delivery and reduced logistics costs. This logistical agility is crucial in today’s fast-paced business environment, where customer expectations for quick delivery are high (Figure 5).

[image: Process diagram illustrates steps to optimize supply chain: identify need for optimization, implement inventory management, apply demand forecasting, manage supplier relationships, optimize logistics, integrate technology, address challenges, and achieve sustainable growth.]
Figure 5 | This figure illustrates key strategies for optimizing supply chains, which include (a), Identification of need (b) Inventory Management, (c) Demand Forecasting, (d) Supplier Relationship Management, (e) Logistics Optimization, (f) Technology Integration, (g) addressing challenges and (h) achieve growth by enhance overall supply chain performance. Each strategy plays a critical role in enhancing efficiency, reducing costs, and improving customer satisfaction within the supply chain framework.

Risk management and contingency planning are essential for safeguarding against potential disruptions such as supplier failures or demand fluctuations. Identifying these risks and developing comprehensive contingency plans ensures that businesses can maintain operations even in adverse conditions, thereby increasing supply chain resilience. Finally, performance measurement and continuous improvement are necessary to sustain supply chain optimization. Establishing key performance indicators (KPIs) provides a benchmark for evaluating success. Regularly reviewing and refining strategies based on KPI performance ensures that the supply chain remains efficient and aligned with organizational goals. Engaging in cross-functional collaboration and enhancing communication channels within the organization further supports this ongoing optimization process. Supply chain optimization is essential for businesses aiming to enhance their operational efficiency and customer satisfaction. By implementing effective strategies and leveraging technology, organizations can navigate the complexities of supply chains and achieve sustainable growth. Continuous assessment and adaptation to market changes will further ensure that supply chains remain resilient and competitive.




4.4 Greenhouse automation

IoT-enabled sensors and actuators automate greenhouse operations for the optimal conditions for plant growth. Sensors monitor variables such as temperature, humidity, light intensity, and carbon dioxide levels, while actuators adjust ventilation, heating, and lighting systems accordingly. For example, if sensors detect high temperatures, IoT platforms can automatically activate cooling fans or open vents to regulate the environment (Mishra et al., 2025). This level of automation reduces labour costs, maintains consistent growing conditions, and maximizes yields. Greenhouse automation is an innovative approach in modern agriculture that significantly enhances productivity and sustainability by integrating various technologies. Greenhouse automation offers significant advantages for modern agriculture, leading to enhanced environmental control, increased labor efficiency, data-driven decision-making, optimized resource utilization, and ultimately, higher crop yields (Shiyale et al., 2020; Acharya et al., 2022). This technology leverages several key components, including climate control systems for precise management of temperature, humidity, and ventilation, automated irrigation systems for efficient water distribution, sophisticated lighting systems to optimize light exposure, and automated nutrient delivery systems for precise feeding (Kumar et al., 2022a). Additionally, a network of monitoring sensors collects real-time data on various environmental parameters and plant health.



4.4.1 Climate control systems

	Temperature Management: These systems employ heaters, coolers, and fans to maintain optimal temperature ranges for plant growth.

	Humidity Control: By utilizing dehumidifiers and humidifiers, these systems help maintain appropriate moisture levels, which is vital for plant health.

	Ventilation: Automated vents and exhaust systems regulate airflow, preventing overheating and ensuring fresh air circulation.






4.4.2 Automated irrigation systems

	Drip or Sprinkler Irrigation: These systems allow for precise water delivery directly to plant roots or over crop surfaces, minimizing water waste.

	Soil Moisture Sensors: These sensors monitor soil moisture levels, enabling irrigation to be scheduled based on real-time data rather than a fixed schedule.






4.4.3 Sophisticated lighting systems

	LEDs and Grow Lights: These specialized lights provide optimal wavelengths for photosynthesis and can be controlled to simulate natural light cycles, promoting healthy plant growth.

	Light Intensity and Duration Control: Automated systems adjust light intensity and exposure duration depending on plant needs and growth stages.






4.4.4 Nutrient delivery systems

	Fertigation Systems: These automatically mix fertilizers with irrigation water, ensuring plants receive nutrients in the right proportions at the right times.

	Monitoring Nutrient Levels: Sensors can measure nutrient concentrations in the substrate, allowing for adjustments in real-time.






4.4.5 Monitoring sensors and data collection

	Environmental Sensors: These devices collect data on temperature, humidity, light intensity, CO2 levels, and more, providing a comprehensive view of the greenhouse environment.

	Plant Health Monitoring: Sensors can track plant growth metrics and detect stress indicators, allowing for timely interventions.






4.4.6 Implementation strategy

	Needs Assessment: Conduct a thorough evaluation of the greenhouse’s current capabilities and limitations to determine which automation features are most beneficial.

	Technology Selection: Choose technologies and systems that align with the greenhouse’s specific requirements while ensuring compatibility with existing infrastructures.



Successful greenhouse automation hinges on an iterative process of evaluation and adaptation. Regular data analysis allows growers to identify areas for improvement, streamline processes, and incorporate new technologies as they become available (Kumar et al., 2022b). This ongoing commitment to enhancement not only maximizes immediate benefits but also prepares the greenhouse for future challenges and opportunities. By understanding and implementing these components and strategies, growers can fully realize the advantages of greenhouse automation, ensuring more efficient and sustainable agricultural practices (Acharya et al., 2022). Greenhouse automation presents numerous opportunities for innovation and growth in the agricultural sector. By embracing these technologies, farmers can enhance productivity, reduce costs, and contribute to a more sustainable food system. As the industry continues to evolve, those who invest in automation will likely lead the way in meeting the challenges of modern agriculture.





4.5 Decision-making, resource efficiency and sustainability

The vast amounts of data generated by sensors and IoT devices enable advanced analytics and AI applications in agriculture. Farmers can use this to make informed decisions about planting schedules, crop rotation, and resource allocation. Predictive analytics can forecast weather patterns, pest outbreaks, and market trends. AI-driven systems analyze historical and real-time data to recommend optimal farming practices (Qazi et al., 2022). For example, ML algorithms can identify patterns in soil and weather data to suggest the best times for planting and harvesting. Precision agriculture leverages technology and data analysis to improve decision-making, optimize resource efficiency, and enhance sustainability. By using various tools, such as satellite imagery, drones, sensors, and weather stations, farmers can collect vast amounts of data regarding crop health, soil conditions, and environmental factors. This data-driven insight allows for informed decisions that can lead to more effective management practices, reducing uncertainty and risk in agricultural operations (Xu et al., 2022; Hoque and Padhiary, 2024).

One of the key aspects of decision-making in precision agriculture is predictive analytics. Advanced algorithms and machine learning techniques can analyze historical and real-time data to forecast crop yields, pest outbreaks, and potential disease occurrences. This predictive capability enables farmers to take proactive management steps, thereby enhancing crop resilience. Additionally, precision agriculture promotes customized farming practices by employing variable rate technology (VRT), which allow farmers to tailor inputs—such as seeds, fertilizers, and pesticides—to specific areas in their fields based on need rather than applying uniform treatments across the entire area (Bwambale et al., 2022; Kanimozhi and Vadivel, 2024). Resource efficiency is another significant advantage of precision agriculture. By facilitating precise application of fertilizers, pesticides, and water, farmers can optimize input costs while maximizing effectiveness. For example, by using soil moisture sensors and automated irrigation systems, water can be applied only where and when necessary, which is crucial especially in regions facing water scarcity. Moreover, GPS-guided machinery ensures accurate planting, cultivation, and harvesting, thereby reducing fuel consumption and wear on equipment. This attention to resource management not only saves costs but also minimizes environmental impacts, particularly regarding chemical runoff and waste (Pandey et al., 2021; Xu et al., 2022; Naidu et al., 2024). Sustainability is a fundamental principle underlying precision agriculture. The approach encourages practices that enhance soil health, such as cover cropping, reduced tillage, and crop rotation, all while monitoring soil conditions over time (Ullo and Sinha, 2021; Liu et al., 2022). This focus on maintaining soil quality is crucial for long-term agricultural productivity. Moreover, by precisely targeting resource applications, farmers can significantly decrease the use of pesticides and herbicides, helping preserve local ecosystems and promote biodiversity within farming landscapes. This sustainable approach can effectively lower the carbon footprint of agricultural operations, as efficient resource use translates to reduced greenhouse gas emissions (Ehsani et al., 1999).





5 Integration of IoT sensors with AI and ML

The integration of IoT sensors with AI and ML is revolutionizing precision agriculture by enabling real-time data collection, predictive analytics, and automated decision-making (Zhang et al., 2021; Hoque and Padhiary, 2024). IoT sensors deployed across agricultural fields continuously monitor and transmit real-time environmental and crop data, collecting information on key parameters such as soil moisture and pH, temperature and humidity, light intensity, leaf chlorophyll content, and NDVI. These sensors communicate data wirelessly via long range wide area network (LoRaWAN), 5G, or satellite networks, feeding it into AI-powered cloud platforms for further processing (Xu et al., 2022).

AI algorithms process the collected data to identify trends, detect anomalies, and make predictions. Key applications include ML for crop yield prediction, pest and disease detection, smart irrigation and water management, VRT, and decision tree algorithms for resource allocation and precision farming (He, 2023). Real-time decision-making and automated control are possible through AI and ML models continuously analyzing IoT data, allowing automated farming systems to activate smart irrigation systems, adjust greenhouse ventilation and temperature for ideal plant growth conditions, deploy autonomous drones or robotic sprayers for targeted pesticide and nutrient application, and send alerts and recommendations to farmers through mobile applications (Bwambale et al., 2022; Kanimozhi and Vadivel, 2024).

The benefits of IoT-AI integration in precision agriculture include higher crop yields, reduced costs, sustainability, labor efficiency, and climate adaptation. Accurate yield predictions and early disease detection lead to improved productivity, while precision application of resources lowers input costs. Data-driven decisions reduce waste and promote environmentally friendly farming. Automated AI-powered systems minimize manual intervention, and predictive models help farmers adjust to changing weather patterns proactively (Veeramanju, 2024).




6 Challenges associated with precision agriculture

The integration of advanced technologies such as AI, sensors and the IoT in agriculture presents transformative opportunities to enhance productivity and sustainability. However, the adoption of smart farming faces significant barriers that affect its successful implementation. A major obstacle in smart farming is the unclear ownership of data generated by precision agricultural technologies. Farmers produce substantial volumes of data, yet uncertainties regarding data rights, sharing practices, and usage often lead to conflicts and reluctance in adopting new technologies. Additionally, the heterogeneous nature of agricultural data necessitates proprietary software platforms for storage and transfer, further complicating ownership disputes (Wiseman et al., 2019; Demestichas et al., 2020; Saiz-Rubio and Rovira-Más, 2020).

Increased connectivity in smart farming makes systems vulnerable to cyberattacks, including data breaches and unauthorized control of autonomous machinery. Hijacking autonomous systems such as drones, robotic weeders, or tractors can result in severe disruptions, financial losses, and crop damage. The need for robust cybersecurity frameworks to safeguard data privacy and system integrity is critical to building trust and resilience in smart farming (Barreto and Amaral, 2018; Liu et al., 2020). The implementation of smart sensors also comes with a range of challenges that can hinder their effectiveness (Liu et al., 2020).

In soil monitoring, the use of soil moisture sensors and NPK sensors offers critical insights into soil health and fertility. Yet, the high initial costs of these sensors can be a significant barrier for farmers, especially small-scale operators. Additionally, NPK sensors often face challenges related to data accuracy, which can be compromised by issues like improper calibration. This often necessitates additional time and resources for regular calibration and maintenance to ensure reliable readings (Gupta et al., 2020). When it comes to crop health monitoring, multispectral cameras and drone sensors provide powerful tools for assessing crop conditions. However, the complexities associated with data processing and interpretation can overwhelm users without adequate training or resources. Moreover, consistent data management is essential to derive actionable insights; the lack of systematic approaches can lead to missed opportunities for improving crop yields. Weather tracking relies on weather stations and atmospheric sensors, yet this area faces its own set of challenges. These systems often rely on external data sources which can introduce errors into the data if the sources are unreliable. Furthermore, establishing infrastructure for atmospheric sensors in remote areas can be logistically difficult, potentially limiting the coverage and reliability of weather monitoring in sparsely populated agricultural regions (Koduru and Koduru, 2022; Otieno, 2023).

In livestock management, GPS collars and RFID tags enhance tracking and monitoring of animals, contributing to better herd management. However, concerns around privacy and data security can pose significant hurdles for adoption (Akhigbe et al., 2021). Additionally, the reliance on battery-operated devices like RFID tags presents challenges, as the effectiveness of these systems is contingent upon maintaining adequate battery life to ensure uninterrupted functionality. Supply chain efficiency through IoT-enabled GPS devices and environmental sensors contributes to streamlined operations, yet the complexity of data integration can complicate the process (Tan and Sidhu, 2022). Farmers and supply chain managers must navigate various data formats and platforms, which can lead to inconsistencies and inefficiencies. The potential for system failures in environmental sensors is another concern, as these interruptions can adversely affect operational continuity and productivity (Kleinschmidt et al., 2019; Sarma and Barbhuiya, 2019; de Araujo Zanella et al., 2020; Van Der Linden et al., 2020; Yazdinejad et al., 2021; McCaig et al., 2023).

Lastly, in the realm of sustainability, smart irrigation sensors and pH sensors represent vital innovations for resource management. However, they require ongoing maintenance and calibration to operate effectively, which can be a significant commitment for farmers. Additionally, there can be resistance from traditional farming practices, where growers may be hesitant to adopt new technologies without clear demonstrable benefits (Klerkx et al., 2019; Koduru and Koduru, 2022; Tiwari et al., 2024). Implementing IoT platforms in agriculture demands adaptability to local conditions and often requires substantial customization, making it resource-intensive. Farmers with limited technical expertise may find these systems difficult to manage, adding to implementation challenges (Gupta et al., 2020). Farmers must navigate varying regional regulations on data protection, environmental standards, and agricultural practices. Meeting these complex legal requirements can be burdensome, especially in the absence of clear guidelines (Ali et al., 2024). The absence of uniform standards for smart farming technologies creates compatibility issues among devices and platforms, hindering seamless integration (Koduru and Koduru, 2022; Otieno, 2023).

The initial investment and operational expenses for advanced technologies can be prohibitive, particularly for small-scale farmers. Limited access to affordable options exacerbates the digital divide, leaving smaller operators at a disadvantage compared to large-scale enterprises [129]. Many farmers hesitate to adopt smart technologies due to uncertain profitability. The lack of concrete evidence demonstrating financial benefits further delays widespread adoption (Tiwari et al., 2024). Limited power availability and poor connectivity in rural regions pose additional barriers to using smart farming tools. Advances in wireless power transfer and on-site energy generation are needed to mitigate these limitations. A significant knowledge gap exists between farmers and the technologies they are expected to use. While farmers possess practical expertise, many lack the specialized training required to operate sophisticated tools driven by AI and big data (Liu et al., 2020).

Ongoing education and skill development are essential for the effective use of smart farming systems. However, limited access to training programs in rural areas, along with a growing demand for skilled labor, may displace traditional agricultural workers (McCaig et al., 2023). A significant challenge with IoT devices used in smart farming is their outdoor installation, which exposes them to harsh environmental conditions such as heavy rain, dust, wind, and extreme temperatures. These adverse conditions can lead to unforeseen mechanical failures in sophisticated devices. To address this issue, manufacturers of IoT devices should utilize materials that can endure these environmental stresses, thereby enhancing the durability and reliability of their products for consistent performance over time (Rajak et al., 2023).Environmental exposure causes gradual sensor deterioration due to factors like corrosion and dust, reducing data accuracy. The limited computational capacity of agricultural sensors also makes implementing robust security measures challenging, increasing the system’s vulnerability to attacks such as sleep deprivation, which depletes battery life and disrupts data collection (Sarma and Barbhuiya, 2019).

Many farmers resist adopting new technologies due to adherence to traditional practices and skepticism about their benefits. Demonstrating tangible, long-term advantages is key to overcoming this reluctance (Van Der Linden et al., 2020) about data privacy, security, and the reliability of AI-driven decisions discourage full engagement with smart farming systems. Building trust through transparency and reliable performance is essential for widespread adoption (Kleinschmidt et al., 2019; de Araujo Zanella et al., 2020; Yazdinejad et al., 2021). Enhancing transparency and reliable performance is crucial for building trust in smart farming systems, particularly regarding data privacy, security, and AI-driven decision-making. Transparency involves clearly communicating how data is collected, stored, and utilized, allowing farmers to understand what information is being gathered and how it benefits their operations. By openly sharing details about algorithms used to make decisions, alongside robust data privacy policies that comply with regulations, stakeholders can alleviate concerns about data misuse and unauthorized access. This clarity ensures that farmers feel more secure in adopting smart farming technologies, knowing that their data is managed responsibly (Supplementary Table S1). Reliable performance, on the other hand, relates to the consistent accuracy and effectiveness of AI-driven technologies in improving agricultural outcomes. When farmers observe tangible benefits, such as increased yields or resource optimization, they are more likely to trust these systems (Koduru and Koduru, 2022). Providing access to performance metrics and establishing feedback mechanisms helps demonstrate the technology’s effectiveness and fosters a sense of partnership. Furthermore, offering training and support empowers farmers to use these systems competently, while creating community platforms for sharing experiences enhances mutual trust. Together, these elements form a foundation for widespread adoption of smart farming technologies, ultimately leading to more sustainable agricultural practices (Klerkx et al., 2019). While smart farming offers immense potential to revolutionize agriculture, its success depends on addressing a diverse array of technical, regulatory, economic, educational, and social barriers. Collaborative efforts among stakeholders—including farmers, technology developers, policymakers, and researchers—are vital to creating sustainable and inclusive smart farming ecosystems.




7 Conclusion and future

Precision agriculture, driven by the integration of sensors and the IoT, presents a transformative opportunity to enhance agricultural productivity and sustainability. In this review we explored the diverse array of sensor technologies currently employed in precision agriculture. While offering significant benefits, such as optimized resource utilization, increased yields, and improved decision-making, the widespread adoption of these technologies faces considerable challenges. High initial investment costs, the need for specialized expertise, data security concerns, and infrastructural limitations in rural areas pose significant barriers. Furthermore, the lack of clear data ownership guidelines and compatibility issues among various sensor systems and platforms hinder seamless integration.

Future for precision agriculture are promising, particularly given the ongoing advancements in AI, machine learning, and sensor technologies. Digital twins, virtual farm replicas powered by IoT data, will enable farmers to test strategies and optimize operations in simulated environments. Sustainability will be a central focus, with IoT technologies promoting carbon sequestration, minimizing resource waste, and leveraging renewable energy-powered devices. Improved connectivity through 5G networks and low power wide area network (LPWANs) will bridge gaps in rural and remote farming areas, enabling real-time monitoring and control of agricultural systems. Customizable and scalable IoT platforms will enhance affordability and usability, expanding accessibility. The development of more affordable and user-friendly systems, coupled with targeted training and education programs for farmers, will be crucial in expanding the reach and impact of precision agriculture. Addressing the data security concerns through robust cybersecurity frameworks and establishing clear data ownership protocols will foster trust and encourage wider adoption.

Practical applications in real production include automated smart irrigation, AI-powered crop health monitoring and pest control, autonomous farming equipment, supply chain optimization through blockchain and IoT, and greenhouse automation for controlled environments. These technologies provide significant economic advantages by increasing productivity, reducing input costs, and enhancing efficiency. Farmers can maximize yields while minimizing operational expenses, resulting in higher profitability and greater resilience to market fluctuations. Precision farming techniques reduce waste, conserve natural resources, and lower the carbon footprint, making agriculture more sustainable and environmentally friendly. Collaborative efforts among technology developers, policymakers, and farmers are essential to scaling up adoption of precision agriculture. Investment in affordable, user-friendly IoT solutions, standardization of sensor technologies, and education initiatives will ensure broader accessibility to smart farming practices. Establishing robust cybersecurity frameworks and clear data ownership policies will foster trust and encourage more widespread implementation.
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Accurate detection of pest insects is critical for agricultural pest management and crop yield protection, yet traditional detection methods struggle due to the vast diversity of pest species, significant individual differences, and limited labeled data. These challenges are compounded by the typically small size of pest targets and complex environmental conditions. To address these limitations, this study proposes a novel few-shot object detection (FSOD) method leveraging feature aggregation and supervised contrastive learning (SCL) within the Faster R-CNN framework. Our methodology involves multi-scale feature extraction using a Feature Pyramid Network (FPN), enabling the capture of rich semantic information across various scales. A Feature Aggregation Module (FAM) with an attention mechanism is designed to effectively fuse contextual features from support and query images, enhancing representation capabilities for multi-scale and few-sample pest targets. Additionally, supervised contrastive learning is employed to strengthen intra-class similarity and inter-class dissimilarity, thereby improving discriminative power. To manage class imbalance and enhance the focus on challenging samples, focal loss and class weights are integrated into the model’s comprehensive loss function. Experimental validation on the PestDet20 dataset, consisting of diverse tropical pest insects, demonstrates that the proposed method significantly outperforms existing approaches, including YOLO, TFA, VFA, and FSCE. Specifically, our model achieves superior mean Average Precision (mAP) results across different few-shot scenarios (3-shot, 5-shot, and 10-shot), demonstrating robustness and stability. Ablation studies confirm that each component of our method substantially contributes to performance improvement. This research provides a practical and efficient solution for pest detection under challenging conditions, reducing dependency on large annotated datasets and improving detection accuracy for minority pest classes. While computational complexity remains higher than real-time frameworks like YOLO, the significant gains in detection accuracy justify the trade-off for critical pest management applications.
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1 Introduction

Accurate detection of pest insects is crucial for effective pest management and agricultural productivity. Pest infestations can cause significant crop losses, threatening food security and economic stability worldwide. Traditional detection methods typically rely on manual inspection, which is time-consuming, labor-intensive, and prone to human error. With advancements in computer vision and deep learning, automated pest detection systems have gained attention for their potential to offer rapid and accurate identification of pest species in real-world agricultural environments (Rai and Sun, 2024). Developing robust pest detection models, however, remains challenging for several reasons. First, pest insects exhibit high intra-class variability (e.g., different developmental stages such as eggs, larvae, pupae, and adults) and low inter-class variability (similar appearances across species). This contrast often complicates accurate feature extraction and classification (Butera et al., 2021; Popescu et al., 2023). Second, constructing large-scale annotated datasets is difficult because gathering and labeling images for numerous pest species is resource-intensive and requires domain expertise. (Li, Y et al., 2021; Yang et al., 2022). In pest object detection, there are a huge number of pest types, and it is extremely costly or even impossible to directly detect all species. Collecting large-scale pest datasets is also highly challenging. In practice, pest management predominantly targets crops, with timely response to primary pests being essential (Ali et al., 2024). Rapidly collecting a small number of samples for these major pests can be more practical and cost-effective. Therefore, few-shot object detection (FSOD) has significant research value in pest management, as it enables effective detection of critical pests with minimal annotated data.

Few-shot learning (FSL) has emerged as a promising solution to address the problem of limited annotated data (Li, Y et al., 2021; Li X. et al., 2023). FSL aims to recognize new classes using only a few labeled examples by leveraging prior knowledge learned from other tasks or classes. In the context of pest detection, FSL can enable models to identify novel pest species with minimal labeled samples, which is highly valuable for practical agricultural applications. Despite the progress in FSL for image classification tasks, applying FSL to object detection, especially for small and densely packed pest insects, remains a significant challenge (Huang et al., 2023; Pöhler et al., 2023). Traditional object detection models like Faster R-CNN (Ren et al., 2016) struggle with small objects due to insufficient feature representation and the dominance of background information (Teng et al., 2022). Moreover, the high similarity between different pest species further complicates accurate detection and classification.

To overcome these challenges, we propose a novel FSOD framework specifically designed for pest insects, integrating feature aggregation and contrastive learning techniques. Our approach builds upon the Faster R-CNN architecture and introduces a Feature Aggregation Module (FAM) that leverages multi-scale features from both support and query images. By employing an attention mechanism, the model effectively fuses rich contextual information from the support set to enhance the representation of multi pest objects in the query images. Additionally, we incorporate SCL to improve the discriminative ability of the model. Contrastive learning has shown effectiveness in enhancing feature representations by pulling together samples of the same class and pushing apart samples of different classes (Sun et al., 2021). By integrating contrastive learning into the detection framework, we aim to increase intra-class compactness and inter-class variance, which is crucial for distinguishing between visually similar pest species.

Furthermore, we address the issue of class imbalance inherent in pest detection datasets by introducing a balancing mechanism in the loss function. We adopt the focal loss to focus the training on hard examples and underrepresented classes, thereby improving the model’s robustness and accuracy (Li, Y et al., 2021; Wen et al., 2022).



1.1 Key contributions include



1.1.1 Feature aggregation module

We design a novel Feature Aggregation Module (FAM) that enhances the representation of multiple pest objects by aggregating multi-scale features from support and query images using an attention mechanism.




1.1.2 Supervised contrastive learning

We integrate SCL into the object detection framework to improve feature discrimination, promoting intra-class similarity and inter-class dissimilarity among pest species.




1.1.3 Balancing mechanism

We introduce a balancing mechanism in the loss function using focal loss to mitigate the impact of class imbalance in pest detection datasets.




1.1.4 Comprehensive evaluation

We conduct extensive experiments on benchmark pest detection datasets to validate the effectiveness of our proposed method, demonstrating significant improvements over baseline models.

The proposed method provides a practical solution for agricultural pest management by enabling accurate detection of critical pests with minimal annotated data (Ragu and Teo, 2023). Its ability to handle few-shot scenarios ensures timely responses to pest outbreaks, reducing reliance on pesticides and promoting sustainable practices.

The remainder of this paper is organized as follows: Section 2 reviews related work on pest detection, few-shot learning, and contrastive learning. Section 3 details our proposed methodology, including the Feature Aggregation Module (FAM), the SCL approach, and the multi-task loss function. Section 4 presents experimental setups and results, and Section 5 concludes with future directions for research.






2 Related work



2.1 Pest detection in agriculture

The application of deep learning techniques in agriculture, particularly for pest detection, has gained momentum in recent years (Popescu et al., 2023; Mahmood et al., 2023). Traditional pest detection methods often rely on manual scouting, which is inefficient and prone to human error (Butera et al., 2021). Deep learning-based approaches offer automated, accurate, and real-time detection capabilities, vital for integrated pest management systems.

Several studies have focused on object detection models tailored for pest insects. For instance, Pang et al. (2022) proposed an improved YOLOv4 algorithm for real-time pest detection in orchards, reportedly achieving high detection accuracy (mAP above 80%) with efficient processing speeds. Similarly, Wen et al. (2022) introduced Pest-YOLO to detect dense, tiny pests, attaining about 92% detection accuracy on large-scale datasets.

Despite these successes, both methods relied on substantial annotated data, which is often infeasible given the vast diversity of pest species and the complexity of field conditions (Liu et al., 2022). Moreover, many pests are small or densely clustered, challenging conventional detectors that struggle with small-object detection (Teng et al., 2022; Yang et al., 2024).




2.2 Few-shot learning in agriculture

Few-shot learning (FSL) has emerged as a solution to data scarcity. In agriculture, FSL has been applied to tasks like plant disease recognition (Li, Y et al., 2021; Yang et al., 2022; Argüeso et al., 2020; Chen et al., 2021) and pest detection (Li X. et al., 2023; Rezaei et al., 2024; Li Y. et al., 2023). Li and Chao (Li and Chao, 2021) proposed a semi-supervised few-shot learning approach for plant disease recognition, leveraging unlabeled data to improve classification when labeled samples are limited. Yang et al. (2022), Cao et al. (2023), Liang et al. (2021), Lin et al. (2024) and Lin et al. (2022a) highlighted the role of FSL in smart agriculture, noting its effectiveness for rapid adaptation to new conditions or pest species. In pest detection, few-shot learning enables models to generalize to new pests with only a handful of labeled samples, a crucial capability given the difficulty of obtaining comprehensive data for every pest species. Li X. et al. (2023) introduced a few-shot crop pest detection method using object pyramids, reporting a notable increase in mAP under low-data conditions. Rezaei et al. (2024), Egusquiza et al. (2022) and Zhou et al. (2023) demonstrated that even modest improvements in few-shot scenarios significantly impacted real-world applications, reinforcing the practicality of FSL in pest management (Gao et al., 2024). Nonetheless, effectively transferring FSL methods from classification to object detection remains challenging (Wang C. et al., 2023; Wang et al., 2021), especially under severe data constraints and small-object settings.




2.3 Contrastive learning and feature representation

Contrastive learning has gained attention for learning discriminative feature representations by contrasting positive and negative sample pairs (Sun et al., 2021). In FSOD, contrastive learning helps models differentiate classes with limited samples by enlarging inter-class separation within the feature space. Sun et al. (2021). proposed FSCE, which encodes proposals using contrastive learning to enhance detection performance in few-shot settings, reportedly improving mAP on benchmark datasets by up to 3–5 percentage points. In agricultural applications, contrastive learning has also been employed to improve classification. Song et al. (2023) and Zhong et al. (2020) used an attention-based generative adversarial network with few-shot learning to boost feature representation for maize disease detection, achieving higher accuracy scores compared to baseline CNN models. These results suggest that contrastive learning can likewise benefit the detection of various agricultural pests, particularly when data are limited or imbalanced.




2.4 Feature aggregation techniques

Feature aggregation combines features from different layers or sources to improve detection performance. For small-object detection, multi-scale feature fusion can be critical (Kong et al., 2024; Lin et al., 2022b). Teng et al. (2022) developed MSR-RCNN, integrating multi-scale super-resolution enhancements, increasing detection accuracy for small pest objects by around 4% in mAP. Han J. et al. (2023) presented a FSOD method using variational feature aggregation, demonstrating substantial improvements under limited-data conditions.




2.5 Addressing class imbalance

Class imbalance is pervasive in pest detection, where certain dominant pest species overshadow minority ones (Wen et al., 2022; Liu et al., 2022). Focal loss has proven effective in re-weighting hard examples and mitigating bias toward majority classes (Li, Y et al., 2021; Wen et al., 2022). Anwar and Masood (Anwar and Masood, 2023) also emphasized the importance of addressing imbalance, demonstrating a 5-8% improvement in detection accuracy by incorporating focal loss and augmenting minority classes.




2.6 Advances in few-shot object detection

Recent surveys by Huang et al. (2023) and Pöhler et al. (2023) extensively review FSOD methods, including meta-learning, transfer learning, and metric learning techniques. The Segment Anything Model (SAM) (Zhang et al., 2023) represents a significant advancement in vision models, generalizing to new tasks with minimal data. While SAM primarily targets segmentation, it could be adapted for object detection under few-shot scenarios. Further, Han et al. (2023) extended SAM to open-vocabulary learning, enabling zero-shot generalization to unseen classes. These advancements suggest promising directions for applying cutting-edge few-shot methods to pest detection tasks.

Despite these advancements, several challenges persist in pest detection. First, multi-object detection remains problematic, as many models fail to handle multiple, densely packed pest insects due to insufficient feature representation (Teng et al., 2022; Yang et al., 2024). Second, labeled data scarcity restricts models from generalizing to novel pests, especially when each species demands expert-labeled samples (Li, Y et al., 2021; Yang et al., 2022; Liu et al., 2022). Third, visual similarity among pests complicates accurate feature discrimination (Butera et al., 2021; Popescu et al., 2023). Finally, class imbalance skews detection results, disadvantaging minority species (Wen et al., 2022; Liu et al., 2022; Wang X. et al., 2023). Our proposed method addresses these issues by incorporating feature aggregation to improve multi-object representation, SCL to enhance feature discrimination for visually similar pests, and a balancing mechanism to correct dataset imbalance.

In doing so, we aim to advance the state of pest detection by boosting accuracy for small, minority-class targets, reinforcing the practicality of few-shot techniques in agricultural domains.




2.7 Comparison of existing pest recognition methods

As shown in Table 1, the comparison table summarizes various pest recognition methods, highlighting the differences in tasks, architectures, and small-shot learning capabilities. Previous research on pest identification and detection largely relied on CNN-based architectures, including YOLO and Faster R-CNN, which offered effective solutions for recognizing and localizing pests but struggled with challenges like detecting tiny pests, distinguishing visually similar species, and addressing class imbalance. Although recent works introduced improvements, such as multi-scale feature fusion, super-resolution sampling, and focal-loss-based imbalance handling, they generally addressed these issues separately rather than in a unified framework. Few-shot methods, while beneficial for scenarios with limited training data, were often limited to classification tasks without explicit handling of small pests or class imbalance. In contrast, the method proposed in this paper innovatively integrates multi-scale feature aggregation, supervised contrastive learning, and focal loss within a unified Faster R-CNN framework. Feature aggregation significantly improves multi-object detection by fusing multi-scale features, while supervised contrastive learning enhances discriminative capabilities by effectively differentiating similar pest species even from minimal examples. Additionally, focal loss addresses class imbalance by prioritizing minority-class and challenging samples during training. Consequently, this comprehensive approach robustly tackles key limitations of existing methods, achieving superior detection accuracy and better generalization to novel and rare pest species, demonstrating significant practical value for real-world agricultural applications under limited labeled data conditions.

Table 1 | Comparison of existing pest recognition methods.


[image: Table comparing recognition and object detection architectures for contrastive learning, multi-target and multi-scale support, class imbalance handling, and representative papers. Each architecture is evaluated for these criteria with associated references.]




3 Proposed methodology

Our research presents an improved model based on the Faster R-CNN framework, aiming to enhance the feature representation capability of small-sample targets and improve object detection performance. Traditional Faster R-CNN frameworks face performance bottlenecks when handling small samples and multi object detection, primarily due to limitations in feature extraction layers and insufficient representation of small object features. To address these issues, we introduce multi-scale feature extraction for the support set and query set, expanding the capacity of feature extraction.

After feature extraction, the model inputs the features of the support set and query set into the Feature Aggregation Module (FAM). This module employs an attention mechanism for relational modeling, calculating the correlation between the support set and query set to construct aggregated features for multi-scale and multi objects. This feature aggregation method effectively utilizes the rich feature information from the support set, enhancing the feature representation capability of the query set, especially for detecting small-sample targets.

To further improve the model’s discriminative ability, we incorporate SCL. By performing contrastive learning mapping and normalization on features, we enhance intra-class similarity and inter-class dissimilarity, promoting the clustering of similar samples and the separation of dissimilar samples in the feature space, thereby alleviating misclassification issues. However, SCL may suffer from sample imbalance problems, where insufficient samples of minority classes may cause the model to bias toward majority classes. To resolve this, we introduce an imbalance correction mechanism, adopting Focal Loss to optimize the loss function, assigning higher weights to hard-to-classify samples, and balancing the influence of each class.

Finally, we adopt a multi-task learning approach to jointly optimize four tasks: localization, classification, feature aggregation, and SCL. By integrating these components into the model, we achieve efficient detection of multi-sample targets, enhancing the model’s feature representation capability and classification accuracy.



3.1 Framework overview

As shown in Figure 1, our proposed model is built on the Faster R-CNN framework and is enhanced to effectively represent the features of multi-sample objects. The model architecture comprises several key components: first, multi-scale feature extraction, which integrates a Feature Pyramid Network (FPN) into the backbone network to capture rich information across various scales. Second, the Feature Aggregation Module (FAM), an attention-based component, aggregates features from both the support set and query set, enhancing the representation of multi-scale objects. Third, the SCL module improves the discriminative ability of the feature space by maximizing intra-class similarity and inter-class differences. Fourth, an imbalance correction mechanism incorporates focal loss into the loss function to address sample imbalance, ensuring the model focuses more on minority classes and challenging examples. Finally, the multi-task learning optimization jointly optimizes localization, classification, feature aggregation, and contrastive learning tasks through a comprehensive loss function. This integration enables the model to exploit contextual and class-specific information from the support set, significantly improving detection performance for both multi-object and few-shot objects. While Faster R-CNN is known to struggle with small-object detection due to insufficient feature representation, it was chosen for its robust two-stage detection process, which ensures precise localization and classification. The integration of FAM and SCL addresses its limitations by enhancing feature representation and improving discrimination for small objects. Comparative results show that the proposed enhancements improve mAP for small objects compared to the unmodified Faster R-CNN.

[image: Diagram illustrates a deep learning object detection model architecture with two modules: Feature Aggregation and Supervised Contrastive Learning. It processes query and support images through shared backbones and feature pyramid networks, aggregates features using attention, then feeds them into classifier, regressor, and contrastive branches for prediction.]
Figure 1 | Overall model architecture.




3.2 Feature aggregation module

The core objective of the Feature Aggregation Module (FAM) is to utilize the rich feature information from the support set to enhance the feature representation capability of the query set, especially for detecting multi and multi-scale objects. Traditional feature extraction methods have limited ability to represent multi object features, whereas the support set provides additional context and class information to compensate for this deficiency.



3.2.1 Multi-scale feature extraction

We integrate a Feature Pyramid Network (FPN) into the backbone network to extract features from different scales. Specifically, we obtain feature maps from multiple levels (C2, C3, C4, C5) of the backbone network (e.g., ResNet) and generate multi-scale feature maps [image: Mathematical notation showing a set containing the elements p sub two, p sub three, p sub four, p sub five, and p sub six, all in bold type.]  through 1×1 and 3×3 convolution operations. This multi-scale feature extraction ensures the model’s sensitivity to targets of various sizes.

For each Region of Interest (RoI) in the support set and query set, we perform RoI Align operations on these multi-scale feature maps to obtain fixed-size feature representations (e.g., 7×7). These feature representations preserve spatial information and contextual relationships, providing rich features for subsequent feature aggregation.




3.2.2 Structure of the feature aggregation module

The Feature Aggregation Module (FAM) consists of the following components: Feature Mapping, maps the features of the support set and query set into query (Q), key (K), and value (V) spaces, as shown in Equation 1. Attention Mechanism, calculates the similarity between queries and keys to obtain the attention weight matrix. Feature Fusion, uses attention weights to perform weighted summation of values, achieving feature aggregation.

Implementation Details:



3.2.2.1 Mapping features to query, key, and value spaces

First, we map the features of the support set and query set into low-dimensional spaces through linear transformations as shown in Equation 1:

[image: Mathematical equation showing Q equals F sub query times W superscript Q, K equals F sub support times W superscript K, and V equals F sub support times W superscript V, labeled as equation one.]	(1)

Where [image: Mathematical variable F with the subscript query, written in italic font, commonly used in equations or formulas to denote a query-related function or value.]  and [image: Mathematical variable F with the subscript support, both in italicized font.]  are the feature representations of the query set and support set, respectively, and [image: Mathematical expression showing the letter W with a superscript uppercase Q.] , [image: Mathematical expression showing the uppercase letter W with a superscript uppercase K.]  and [image: Mathematical expression showing an uppercase W with a superscript lowercase v.]  are learnable parameter matrices.




3.2.2.2 Calculating attention weights

Using the dot product between queries and keys, we calculate the similarity scores and normalize them through the softmax function as shown in Equation 2:

[image: Mathematical equation showing A equals softmax of the matrix product Q times K transpose divided by the square root of d sub k, labeled as equation two.]

where [image: Mathematical variable d with a subscript k, commonly used to represent an indexed value or sequence term in mathematical notation.]  is the dimension of the key vectors, used to scale the dot product to prevent excessively large values.




3.2.2.3 Feature aggregation

Using the attention weight matrix A to perform weighted summation of the values V, the aggregated feature representation is formulated as Equation 3.

[image: Mathematical equation displaying F sub agg equals A times V, labeled as equation three.]

Then, we fuse the aggregated features with the original query set features to obtain the enhanced feature representation, defined in Equation 4.

[image: Mathematical formula displaying F_sub_enhanced equals F_sub_query plus alpha times F_sub_agg, labeled as equation four.]

Where [image: Lowercase Greek letter alpha, black serif font, centered on a white background. Often used in mathematics or science to represent variables or coefficients.]  is a learnable scaling factor that controls the influence of the aggregated features on the original features.





3.2.3 Aggregated features for multi-scale and multi objects

Through the feature aggregation process described above, the feature representation of the query set is enhanced in several ways. Multi-scale information fusion leverages features from the support set’s multi-scale feature maps, providing rich scale information that aids in detecting targets of various sizes. Multi object feature enhancement is achieved by supplementing high-level feature maps with low-level features from the support set, which preserves details that are often lost for multi objects. Additionally, the support set’s features provide valuable contextual information, helping the model understand the relationship between the target and its background. The module offers several advantages: it improves feature representation by effectively utilizing the rich information from the support set, enhances flexibility and scalability through an attention-based relational modeling approach that adaptively adjusts the influence of the support set on the query set, and allows for easy integration into existing object detection frameworks with minimal computational overhead.





3.3 Supervised contrastive learning module

In object detection tasks, the model’s discriminative ability is crucial for detection accuracy. However, due to the dispersion of intra-class features and the overlap of inter-class features, the model may experience misclassification issues. To address this problem, we introduce SCL, aiming to optimize the feature space so that features of the same class are closer together, while features of different classes are farther apart.



3.3.1 Contrastive learning feature mapping and normalization

We apply a projection head [image: Text reads: Head left parenthesis dot right parenthesis.]  to the enhanced features [image: Mathematical expression showing the letter F in italic, followed by the subscript word enhanced also in italic.]  output from the Feature Aggregation Module (FAM) to map them into the contrastive learning feature space, as expressed by Equation 5.

[image: Mathematical equation showing z sub one equals Normalize of Head applied to F sub enhanced one, with equation number five in parentheses to the right.]

Where Normalize (·) denotes [image: Mathematical expression showing uppercase letter L followed by subscript numeral two.]  normalization to ensure the feature vectors lie on a unit hypersphere.




3.3.2 Contrastive learning feature mapping and normalization

In SCL, label information is used to construct positive and negative sample pairs. Positive samples consist of a query sample i and support samples [image: Mathematical notation showing lowercase p belongs to the set script P of i, with the element-of symbol between p and script P of i.]  that belong to the same class. Negative samples consist of the query sample i and support samples [image: Mathematical expression showing lowercase a is an element of set uppercase A evaluated at i, written as a ∈ A(open parenthesis i close parenthesis).]  from different classes. Here, [image: Mathematical expression displaying the letter P followed by the variable i in parentheses, representing a function or probability notation P of i.]  represents the set of samples in the same class as sample i, while [image: Mathematical expression showing uppercase A followed by an open parenthesis, lowercase italic i, and a close parenthesis.]  represents the set of all samples except sample i.




3.3.3 Supervised contrastive loss function

We adopt the supervised contrastive loss function to optimize the feature representation, which is formulated as Equation 6.

[image: Mathematical formula representing supervised contrastive loss, labeled as equation six, containing summations, a logarithm, and an exponential ratio involving vectors z sub i, z sub p, and z sub a, normalized by temperature tau.]

Where [image: Lowercase Greek letter tau in black on a white background. Used in mathematics, physics, and engineering to represent various concepts such as time constants and torques.]  is the temperature parameter controlling the smoothness of the distribution.

By minimizing the supervised contrastive loss, the model is guided to achieve intra-class compactness, where features of the same class are closer together, enhancing similarity within each class. It also promotes inter-class separation, pushing features of different classes farther apart and increasing dissimilarity between classes. This optimization helps the model classify more accurately and reduces misclassification.




3.3.4 Correction for sample imbalance

SCL may be affected by sample imbalance, where minority classes have insufficient samples, causing the model to bias toward majority classes. To address this, we introduce an imbalance correction mechanism.

Specifically, we incorporate class weights [image: Mathematical variable featuring a bold lowercase w with a subscript n.]  into the supervised contrastive loss, adjusting according to the number of samples in each class, as defined in Equation 7.

[image: Mathematical formula showing w sub y equals one divided by N sub y comma i, labeled as equation seven.]

where [image: Mathematical notation showing a bold capital N with the subscript y sub i.]  is the number of samples in class [image: Mathematical notation displaying the letter y with subscript i, typically representing the i-th element in a sequence or dataset.] . The loss function Equation 6 becomes Equation 8.

[image: Mathematical formula labeled equation eight showing the supervised contrastive loss function with summations, weighting term w_yi, temperature parameter tau, and logarithm of a ratio of exponentials involving dot products of z vectors.]

This adjustment prioritizes minority class samples in the loss function, prompting the model to focus more on learning these classes.

The introduction of SCL will enhance the discriminability of the feature space, reduce misclassification, and thus improve classification accuracy; at the same time, through the imbalance correction mechanism, the model can learn the minority classes more fully and adapt to imbalanced data; finally, better feature representation helps the model perform better on unknown data and enhances generalization capabilities.





3.4 Overall loss function design



3.4.1 Construction of the multi-task loss function

To jointly optimize the model’s components, we design a comprehensive multi-task loss function that includes localization loss, classification loss, feature aggregation loss, and supervised contrastive loss, which is defined in Equation 9.

[image: Equation L_total equals L_cls plus L_reg plus lambda one times L_aggr plus lambda two times L_SCL, labeled as equation nine.]

Among them, [image: Mathematical expression showing a capital L with the subscript c l s, typically used as a variable or symbol in equations related to classification.]  is the classification loss, which measures the model’s prediction accuracy of the target class, [image: Mathematical expression showing an uppercase italic letter L with a subscript reading r e g, typically representing a regularization loss term in equations.]  is the regression loss, which measures the model’s positioning accuracy of the target bounding box, [image: Mathematical expression showing an italic uppercase L with the subscript "age".]  is the loss of the Feature Aggregation Module (FAM), which may include the regularization term of the attention mechanism, [image: Mathematical expression showing an uppercase italic L with a subscript reading S C L.]  is the supervised contrast loss, which enhances the discriminability of feature representation, [image: Mathematical notation displays lowercase Greek letter lambda sub one and lambda sub two separated by the word "and".]  are trade-off coefficients that adjust the impact of each loss term.




3.4.2 Design of the classification loss

We employ Focal Loss for the classification loss [image: Mathematical notation displaying an uppercase L with the subscript "cls" in a serif font.]  to address sample imbalance, especially in scenarios with imbalanced positive and negative samples. The Focal Loss is defined as Equation 10.

[image: Mathematical formula labeled as equation 10: L_cls equals negative sum over i of alpha sub i times one minus p sub i to the power gamma times log of p sub i.]

Among them, [image: Mathematical notation showing a lowercase italic letter p with a lowercase italic letter r as a subscript.]  is the model’s predicted probability of the true class, [image: Greek lowercase letter alpha with a subscript t, often used in mathematical or scientific notation to represent a time-dependent variable.]  is the class weight, which balances the impact of the number of samples in different classes, and [image: Lowercase Greek letter gamma, black on a white background.]  is the adjustment factor, which reduces the loss contribution of easy samples and focuses on hard samples. Through Focal Loss, we can reduce the impact of a large number of easy negative samples on the loss, so that the model can pay more attention to hard positive samples.




3.4.3 Design of the regression loss

For the regression loss [image: Mathematical notation showing a capital L with the subscript letters r, e, and g, representing "L sub reg", commonly used for regularization loss in mathematical or machine learning contexts.] , measuring bounding box localization accuracy, we use the Smooth [image: Mathematical notation showing the uppercase letter L with a subscript one.]  Loss as expressed in Equation 11.

[image: Mathematical expression depicting a regularization loss function, L_reg(t, v), defined as the sum over indices x, y, w, h of the smooth L1 function applied to the difference between t_i and v_i, labeled as equation eleven.]

Where [image: Mathematical notation showing the variable t with the subscript i, commonly used to represent time at instance i or an indexed time variable.]  is the predicted bounding box parameter, [image: Mathematical notation showing bold lowercase letter v with subscript i, commonly representing the i-th vector in a sequence or an indexed element in mathematics or linear algebra.]  is the truth bounding box parameter, [image: Mathematical notation showing a set containing the variables x, y, w, and h, commonly used to represent coordinates and dimensions such as position and size.]  are location information of the box and smoothL1 (·) is the Smooth loss function.




3.4.4 Modeling of the feature aggregation loss

To ensure effective utilization of support set information and prevent overfitting or redundancy due to the attention mechanism, we introduce the feature aggregation loss [image: Mathematical expression showing the variable L with the subscript “age”, commonly used in equations to denote a parameter or value related to age.] , consisting of attention regularization and sparsity constraint.



3.4.4.1 Attention regularization

We use Attention Entropy as a regularization term to prevent attention weights from over-concentrating on a few support samples, encouraging comprehensive utilization of support set information.

Attention Weight Matrix, for query set sample i and support set sample j, the attention weight [image: Mathematical variable a with subscripts i and j, often representing the entry in the i-th row and j-th column of a matrix.]  is computed as Equation 12:

[image: Mathematical equation showing aij equals the exponential of sij divided by the sum from k equals one to N sub i of the exponential of sik, commonly representing a softmax function.]

where the similarity score [image: Mathematical notation showing the variable s sub i j in italics, indicating a specific indexed value often used in equations or matrices.]  is: [image: Mathematical formula showing s subscript i j equals q subscript i times k subscript j divided by the square root of d subscript k.] , where [image: Lowercase letter q followed by subscript i in a serif font, often used in mathematical or scientific notation to represent indexed variables.]  is the query vector of i query sample, [image: Mathematical variable k with subscript j, presented in italic serif font.]  is the key vector supporting sample j, and [image: Italic lowercase letter d with a subscript k, representing a variable d sub k, commonly used in mathematical or scientific notation.]  is the dimension of the key vector.



3.4.4.1.1 Attention entropy regularization term

The attention entropy regularization term is formulated as Equation 13.

[image: Mathematical formula expressing L subscript attn_reg as one over N subscript q times the sum from i equals one to N subscript q of negative sum from j equals one to N subscript q of a subscript ij times log a subscript ij, labeled as equation thirteen.]

where [image: Mathematical variable N with a subscript q, displayed in italic serif font on a white background.]  and [image: Mathematical notation showing a capital letter N with a lowercase s as a subscript, commonly used to indicate a specific variable or quantity, such as sample size in statistics.]  are the numbers of query and support samples.

By maximizing the attention entropy (i.e., minimizing the negative attention entropy), the attention weights are encouraged to be more evenly distributed over the support set, preventing over-reliance on a small number of support samples.





3.4.4.2 Sparsity constraint

To encourage sparsity in attention weights, focusing on the most relevant support samples and enhancing discriminative power, we impose a sparsity constraint on the unnormalized similarity scores [image: Mathematical notation showing the variable s subscript i j, typically representing an indexed element of a matrix or array.] , Sparsity Regularization Term is defined in Equation 14.

[image: Mathematical formula for sparse loss, L sparse, defined by the average sum of the absolute values of s g j over all N q and N g, with equation number fourteen indicated.]

By summing the absolute values of the similarity scores, the model is encouraged to generate a sparser similarity matrix, making the attention weights more inclined to a small number of important support samples.



3.4.4.2.1 Complete feature aggregation loss function

Combining the attention regularization Equation 13 and sparsity constraint Equation 14, the feature aggregation loss is computed by Equation 15.

[image: Mathematical formula showing L subscript agg equals the sum of two expressions: the average of a sub i j times log of a sub i j, and the average of the absolute value of s sub i j, both averaged over N sub q and N sub i, with equation reference number fifteen.]

These regularization terms help the model better utilize the information of the support set and prevent the attention weights from being over-concentrated or over-dispersed, thereby improving the effect of feature aggregation and improving the detection performance of the model.




3.4.4.2.2 The choice of the balance coefficients

[image: Mathematical expression showing the lowercase Greek letter lambda followed by a subscript one.]  and [image: Mathematical notation showing the lowercase Greek letter lambda with a subscript two.]  has an important impact on the performance of the model. Usually, we can adjust the values of these coefficients through experimental verification to achieve the best performance. In general, the values of [image: Mathematical expression showing the Greek letter lambda followed by the subscript one, representing lambda one.]  and [image: Mathematical symbol showing the lowercase Greek letter lambda with a subscript two, commonly used to denote an eigenvalue or wavelength in scientific contexts.]  can be set to 1 or scaled according to the relative size of the loss terms.

By jointly optimizing the above loss functions, our model can simultaneously achieve the optimization goals of classification accuracy, positioning accuracy, feature representation, and imbalance during training. That is, through Focal Loss and SCL, the model more accurately predicts the target class to improve classification accuracy. By optimizing regression loss, the model can more accurately locate the target boundary to improve positioning accuracy. Through feature aggregation and SCL, the model’s feature expression ability is improved, thereby enhancing feature representation. The weight mechanism introduced in the loss function enables the model to pay more attention to minority classes and hard samples to adapt to unbalanced data.







3.5 Training strategies



3.5.1 Multi-task joint training

We employed a multi-task learning approach to facilitate collaborative optimization among various model components. In each training iteration, localization loss, classification loss, feature aggregation loss, and supervised contrastive loss were computed. These losses were then combined into a single cumulative loss [image: Mathematical expression showing uppercase italic letter L with the word "total" in subscript.] . Backpropagation and parameter updates were performed based on this total loss, ensuring joint optimization of all components. This approach promotes better feature representation, faster convergence, and improved generalization by encouraging mutual information sharing among tasks.




3.5.2 Learning rate and optimizer

To stabilize training and prevent initial oscillations, we adopted a piecewise or cosine annealing learning rate decay schedule. This strategy lowers the learning rate in a controlled manner, allowing the model to converge steadily. For the optimizer, we used Stochastic Gradient Descent (SGD) with momentum to accelerate convergence and smooth out gradients. The momentum factor was tuned on the validation set to achieve the best balance between convergence speed and stability.




3.5.3 Weight initialization

To expedite convergence and leverage prior knowledge, we initialized model parameters using ImageNet-pretrained backbone weights. Newly added modules, such as the Feature Aggregation Module (FAM) and the projection head for contrastive learning, were initialized using Kaiming initialization. This approach ensures that important structural components inherit robust feature representations while newly introduced parameters adapt rapidly.




3.5.4 Regularization and overfitting prevention

To mitigate overfitting, we applied L2 regularization (weight decay) in the optimizer. Additionally, dropout was introduced in fully connected layers and within the FAM to stochastically deactivate a fraction of neurons during training. This not only prevents the model from over-relying on specific neurons but also improves its capacity to generalize to unseen data.




3.5.5 Data augmentation

We employed a variety of image augmentation techniques, including random cropping, rotation, flipping, and color jittering, to increase data diversity and reduce overfitting. For class imbalance issues—especially in few-shot scenarios—we performed sample balancing by oversampling minority classes or undersampling majority classes, aiming to achieve a more balanced and representative training set. This augmentation and balancing strategy is particularly critical in 3-shot, 5-shot, and 10-shot experiments, where the training samples are limited.




3.5.6 Training process monitoring

We continuously tracked training progress by observing the loss curves (localization, classification, feature aggregation, and supervised contrastive) to ensure stable convergence. Model performance was periodically evaluated on a validation set using metrics such as mean average precision (mAP) or recall. If the performance began to plateau or degrade, we adjusted hyperparameters—including learning rate, momentum, and regularization factors—accordingly.




3.5.7 Hyperparameter adjustment

In our loss function, the coefficients [image: Mathematical notation showing the lowercase Greek letter lambda followed by the subscript one, representing the first eigenvalue or a specific parameter labeled as lambda one.]  and [image: Greek lowercase letter lambda followed by the subscript two, representing the mathematical symbol lambda two.]  determine the relative importance of each sub-loss. We fine-tuned these values based on validation performance, ensuring that no single loss term dominated the training.

Of particular importance is the temperature parameter [image: Lowercase Greek letter tau, presented in black on a white background.]  in the supervised contrastive loss, which controls the smoothness of the probability distribution when computing similarities among samples. Proper tuning of \(\tau\) helps stabilize contrastive learning by balancing the separation between positive and negative pairs. After addressing reviewer concerns, we corrected the temperature parameter usage by referencing the optimal settings reported in the official FSCE(Sun, B et al., 2021) experiment. Few-Shot Settings: For 3-shot, 5-shot, and 10-shot training, the positive sample IoU thresholds were set to 0.6, 0.7, and 0.8, respectively. Temperature Coefficients [image: Lowercase Greek letter tau symbol in black on a white background, commonly used in mathematics, physics, and engineering contexts.] : Consistently set to 0.2 for 3-shot, 5-shot, and 10-shot. Aggregate Loss Weights [image: Mathematical expression showing the lowercase Greek letter lambda followed by the subscript numeral one, representing lambda sub one.] and Comparison Loss Weights [image: Mathematical symbol consisting of the lowercase Greek letter lambda with the subscript two, indicating the variable lambda two.] : Set to 0.2, 0.5, and 0.5, respectively, in the 3-shot, 5-shot, and 10-shot scenarios.




3.5.8 Model saving and selection

To safeguard against unexpected interruptions, we regularly saved model checkpoints during training. Each checkpoint contained the model weights, optimizer state, and current learning rate. After completing training, we selected the best-performing checkpoint based on validation metrics for final testing and deployment. This ensures that the model used in downstream tasks represents the most robust and accurate version learned during training.

By implementing the above multi-task joint training strategy with detailed hyperparameter tuning, our model demonstrated stable and efficient training, fully harnessing the benefits of collaborative optimization. The experimental results (presented in Section 4) indicate marked improvements in both convergence speed and overall performance, corroborating the effectiveness of these methodologies. Additionally, fine-tuning in the two-stage Faster R-CNN architecture proved essential for adapting the model to specific datasets and tasks, yielding enhanced robustness and accuracy. This tailored approach ensures alignment with the unique characteristics of real-world applications, thereby solidifying the model’s practical relevance.






4 Experiments



4.1 Dataset, experimental configuration and parameter settings

This research introduces the PestDet dataset to support a few-shot pest detection method based on feature aggregation and SCL. PestDet, consisting of approximately 82,000 images, integrates data from the IP102 dataset (Wu et al., 2019), the IDADP dataset (Chen and Yuan, 2019), and additional images from the internet and production environments. It includes targets at individual, medium, collective, and mixed levels, covering various pest stages. The IP102 dataset, comprising over 75,000 images of 102 pests, served as the primary source, with 19,000 images containing detailed detection annotations. The IDADP dataset added 4,700 images of typical agricultural pests. Additional samples from tropical regions further enhanced dataset diversity.Dataset preprocessing included cleaning duplicate images using a pre-trained vision transformer (ViT), re-annotating different pest stages, and resolution equalization to balance image resolutions. Annotations were optimized by removing zero-area bounding boxes, duplicate boxes, and correcting incorrect labels. These steps improved dataset quality, ensuring effective training and better detection performance.

To construct the object detection dataset for this study, we leveraged the PestDet dataset, which was originally designed for classification and object detection tasks and includes 102 pest classes labeled from 0 to 101. Table 2 provides detailed statistics of the PestDet dataset, including the total number of images, the number of bounding boxes, and the number of single-bounding-box images for each pest class. However, the bounding box distribution in PestDet is highly imbalanced, with some classes having significantly more annotations than others, leading to a model bias toward classes with more bounding boxes during training. To address this issue and to focus on FSOD while considering computational constraints, we constructed a balanced subset, PestDet20, by selecting 20 pest classes from PestDet. These classes were chosen to represent pests commonly found in tropical and subtropical economic crops, characterized by individual diversity and complex backgrounds. The selection process, detailed in Table 1, involved sorting all classes by bounding box count in descending order, excluding redundant or subset classes (e.g., those with large overlaps between larvae and adult forms of the same pest), and finally selecting the top 20 classes based on bounding box count. The selected classes are numbered {0, 3, 14, 15, 16, 21, 24, 25, 26, 37, 39, 48, 50, 66, 67, 70, 76, 95, 99, 101}, following the original PestDet numbering. Inspired by the 20-class structure of the PASCAL VOC dataset as outlined in the TFA standard, the PestDet20 dataset was constructed to provide a balanced and representative foundation for addressing the unique challenges of FSOD in pest management.

Table 2 | Overall class image information of training set and test set.


[image: Data table summarizing metrics related to images, total annotated boxes, and images with unique annotated boxes, including mean, standard deviation, minimum, quartiles, and maximum values for each column.]
To facilitate analysis and experimentation, a few-shot pest dataset, PestDet20, was created according to selected standards. Class statistics are summarized in Table 3. The training set includes 5,076 images with 5,590 bounding boxes, while the testing set has 1,177 images and 1,292 bounding boxes, split by the typical 8:2 ratio. Figure 2 presents examples of the 20 pest classes studied. In the fine-tuning-based few-shot object detection task, the model training and testing process is divided into two stages: the base stage and the fine-tuning stage. The base stage consists of training and testing, where the training phase uses all samples of the base classes from the training set, and the testing phase uses all samples of the base classes from the testing set. Similarly, the fine-tuning stage also consists of training and testing. During the training phase of the fine-tuning stage, 3, 5, or 10 samples from both the base classes and the novel classes in the training set are used. For testing in the fine-tuning stage, all samples from both the base classes and the novel classes in the testing set are used.

Table 3 | Image information of 20 selected pests.


[image: Tabular data table listing insect pest classes, including fields for class number, name, number of training and test set images, and corresponding annotation boxes with a total of sixteen columns and twenty-two rows, concluding with summary totals.]
[image: Collage of twenty insect and mite species, each displayed in a numbered grid. Examples include various moths, beetles, a brightly colored mite, an aphid, grasshopper, weevil, planthopper, assassin bug, and others, each shown on leaves or natural surfaces. Numbers in white text help identify the species in each square.]
Figure 2 | Examples of all classes of pests in the dataset.

Using the feature aggregation-based fine-tuning method from VFA (Han et al., 2023), the FSOD dataset was divided with a random shuffling strategy. The 20 selected pest classes {0, 3, 14, 15, 16, 21, 24, 25, 26, 37, 39, 48, 50, 66, 67, 70, 76, 95, 99, 101} were shuffled three times, creating distinct class arrays. In each shuffle, 15 classes served as base classes, while the remaining 5 were designated as novel classes, as shown in Table 4.

Table 4 | Classification.


[image: Table showing dataset splits for three class groups across three splits. Columns are split number, all classes, basic classes, and new classes, with each cell listing class identifiers separated by commas.]
The training set, used as the support set, and the testing set, used as the query set, evaluated the model’s stability and robustness. Strong performance across subsets indicates model stability, while poor performance on certain subsets suggests sensitivity to specific classes or features. After dividing the base classes and novel classes, we trained and tested the model using 30 random seeds and obtained the average results to compare with methods that use random seeds. For the fine-tuning phase, we sampled images from each class to construct the training set, with the number of sampled images set to 3, 5, and 10, respectively. This approach ensures that the sample sizes of base classes and novel classes during the fine-tuning phase are balanced, thereby reducing the model’s bias toward the base classes.



4.1.1 Experimental configuration and parameter settings

Compared to few-shot classification and regular object detection tasks, FSOD faces more challenges. Its training dataset is mainly divided into two classes: base classes, with abundant annotated data, and novel classes, with limited annotated data. The main goal of FSOD is to significantly improve detection performance for novel classes while maintaining high detection accuracy for base class. FSOD effectively reduces the dependence of object detection models on large amounts of training data, solves the problem of imbalanced annotations in training data, and has significant practical value and a wide range of applications.

This study compared three classic FSOD algorithms: YOLO (Khanam and Hussain, 2024), TFA (Wang et al., 2020) VFAr43 (Han et al., 2023) and FSCE (Sun et al., 2021). Experiments were conducted on the Ubuntu operating system, using Python as the main development language, based on the PyTorch deep learning framework, with mmfewshot used for FSOD model training and testing. The hardware environment included two NVIDIA GeForce RTX 4090 GPUs with 24G VRAM each, an Intel(R) Xeon(R) CPU E5–2680 v3, and 64G of memory.

In experimental hyperparameter settings, SGD was selected as the optimizer, with an initial learning rate of 0.02, a batch size of 4, and 18,000 training iterations, with model evaluation intervals of 3,000 iterations. During the fine-tuning stage, the learning rate was adjusted to 0.001, and iteration numbers and evaluation intervals were adjusted according to different novel classes. During 3-shot, 5-shot, and 10-shot training, the IoU threshold for positive samples was set to 0.6, 0.7, and 0.8, respectively, the temperature coefficient was set to 0.2, and contrastive loss weights were set to 0.2, 0.5, and 0.5 respectively.





4.2 Evaluation indicators



4.2.1 Evaluation criteria

[image: Mathematical formula for precision, showing precision equals TP divided by the sum of TP and FP, where TP is true positives and FP is false positives, labeled as equation sixteen.]

[image: Mathematical formula showing recall equals true positives divided by the sum of true positives and false negatives, labeled as equation seventeen.]

[image: Italicized serif capital letters T and P appear next to each other on a plain background.] , [image: Text “FP” in a serif font appears against a light, textured background. Letters are uppercase and positioned closely together, suggesting they may be initials or an abbreviation.] , and [image: Black serif capital letters F and N appear side by side on a white background. Letters are in standard font without ornamentation or additional symbols.]  represent true positive, false positive, and false negative, respectively. Precision and recall are defined as Equations 16, 17, respectively.

When the sum of IoU between the predicted box and the target box exceeds 0.5, the predicted box is positive, otherwise it is negative.

[image: Mathematical equation showing AP equals the integral from zero to one of p of r with respect to r, labeled as equation eighteen.]

AP represents the area below the precision-recall curve, calculated as shown in Equation 18, with accuracy as the ordinate and recall as the abscissa.

In FSOD, base class performance is typically measured using bAP, while nAP is used to assess the performance of novel classes. Suppose class [image: Mathematical expression showing variable i, where i equals one, two, and so on up to N subscript B, written as i left parenthesis i equals one comma two comma ellipsis comma N sub B right parenthesis.]  belongs to base classes, and class [image: Mathematical expression displaying j, with j equal to N sub B plus one, N sub B plus two, continuing sequentially up to N, all enclosed in parentheses.]  belongs to novel classes (N denotes the number of the training classes), [image: Mathematical expression showing the lowercase italic letter b followed by uppercase italic letters A and P, possibly representing a variable or abbreviation in a mathematical or scientific context.]  and [image: Mathematical expression in italicized font displaying lowercase n, uppercase A, and uppercase P together as "nAP".]  can be expressed by Equations 19, 20.

[image: Mathematical formula for bAP equals one divided by N sub B times the sum from i equals one to N sub B of AP sub i, with the equation labeled as nineteen.]

[image: Mathematical formula for nAP: nAP equals one divided by the quantity N minus NB, multiplied by the sum from j equals NB plus one to N of AP sub j, labeled as equation twenty.]

In the subsequent analysis, we also utilize mAP, expressed by Equation 21.

[image: Mathematical formula showing mean average precision as mAP equals the sum from c equals one to n of AP subscript c divided by n, labeled as equation twenty-one.]

where c represents the class, n represents the number of classes, and [image: Mathematical variable mAP is shown in italic serif font, typically representing mean average precision in scientific or data analysis contexts.]  represents the average [image: Text "A P" in italic serif font, centered on a plain light background.]  of multiple classes. The overall effect of multi-class target detection can be represented by [image: Italicized mathematical term m A P, which is an abbreviation commonly used for mean Average Precision in machine learning and information retrieval contexts.] .





4.3 Comparative analysis of experiments

Our method will be compared with several classic FSOD methods, including the classic fine-tuning method TFA (Wang et al., 2020), the feature aggregation method based on the meta-learning framework VFA (Han et al., 2023), and the two-stage learning method (Sun et al., 2021) based on contrastive learning. Additionally, we incorporate YOLO (Khanam and Hussain, 2024), a widely adopted one-stage object detection framework that is particularly known for its real-time performance in various detection tasks. YOLO (You Only Look Once) significantly differs from two-stage models like Faster R-CNN by integrating region proposal and classification into a single, unified network, making it highly efficient and fast for both training and inference. All comparative experiments are trained and tested on the MMFewShot framework produced by Open MMLab. Our model’s indicators are significantly better than most of the most advanced SOTA methods.



4.3.1 Analysis of basic stage results

Figure 3 shows the overall loss curves of the three class split sets (split 1, 2, 3) during basic stage training. As can be seen from the figure, the loss curves of TFA, FSCE and the proposed method (OURS) are almost completely overlapped, indicating that the learning process of the three methods in the basic training stage is very similar. Since the variational autoencoder introduces additional loss terms during training, the loss of VFA is higher. Overall, the loss of the four methods is gradually decreasing with the increase in the number of training iterations, indicating that the model is constantly learning and improving.

[image: Three line charts compare loss values across iterations for four methods (TFA, VFA, FSCE, OURS) over three data splits. VFA consistently shows the highest loss, while FSCE and OURS show the lowest.]
Figure 3 | Line chart of overall loss of basic stage training.

Figure 4 shows the changes in mAP50 (average accuracy under IoU 0.5) of four different class splits during basic stage, and the test set is evaluated every 3000 iterations. In split1, VFA, FSCE, and the proposed method reach maximum mAP50 values of 86.6, 88.9, and 89.7 at 18,000 iterations, respectively; while TFA reaches a maximum mAP50 value of 89.1 at 15,000 iterations, but drops at 18,000 iterations, indicating possible overfitting. In split2, TFA and VFA reach maximum mAP50 values ​​of 88.6 and 85.6 at 18,000 iterations, respectively, while FSCE and the proposed method reach 89.0 and 89.8 at 15,000 iterations, and also show overfitting at 18,000 iterations. In split3, TFA and FSCE reached 85.8 and 85.3 respectively at 18,000 iterations, while VFA and the proposed method reached the maximum value of 84.5 and 85.9 at 15,000 iterations, but overfitting also occurred at 18,000 iterations. These results reflect the differences in the sensitivity of different methods to the number of training iterations and the stability in the later stages of training.

[image: Three line charts compare model performance across three data splits labeled split1, split2, and split3. Each chart plots mean Average Precision (mAP) on the y-axis against iteration number on the x-axis. Four models—TFA, VFA, FSCE, and OURS—are represented by distinct colored lines. All models generally show increasing mAP with more iterations, with OURS achieving the highest final mAP in each split. Legends in each subplot include final iteration values in parentheses.]
Figure 4 | Basic stage testing mAP50 indicator line chart.

Based on these results, we will adopt the following strategy for subsequent fine-tuning: selecting the models saved at the point where mAP50 achieves the highest value in splits 1 to 3 as the starting point for fine-tuning. the proposed method is to leverage the model state that achieves optimal performance during the base stage to further enhance its performance in the few-shot object detection task.




4.3.2 Fine-tuning experimental results analysis

Figures 5–7 show the visualization results of the relevant data after two rounds of random sampling and fine-tuning, and the results on the test set with different sample numbers (3, 5, and 10), covering splits 1, 2, and 3. The performance of each method (TFA, VFA, FSCE, and the proposed method) is measured by the average precision of the base class (bAP50), the average precision of the new class (nAP50), and the overall average precision (mAP50).As can be seen from Figures 5–7, TFA and VFA show an inverse relationship in performance: TFA performs well on the base class (bAP50), but is relatively weak on the new class (nAP50), which indicates that TFA may not be able to effectively transfer knowledge to the new class. In contrast, VFA performs well in the new class but poorly in the base class, which indicates that the model may sacrifice the performance of the base class to adapt to the new class. In contrast, FSCE performs evenly in the two classes and shows better robustness. the proposed method performs better on the basis of FSCE. Under certain split and shot configurations, the proposed method even slightly outperforms VFA in terms of new classes and overall accuracy, indicating its excellent ability in balancing the performance difference between base and new classes.

[image: Three side-by-side line charts compare four methods, TFA, VFA, FSCE, and OURS, across shots 3, 5, and 10 for metrics bAP50, nAP50, and mAP50 in split2. OURS shows higher or steadily increasing performance, especially in nAP50 and mAP50.]
Figure 5 | Trends of bAP50, nAP50, and mAP50 for split1.

[image: Three line charts compare the results of four models—TFA, VFA, FSCE, and OURS—on split3-bAP50, split3-nAP50, and split3-mAP50 metrics across three, five, and ten shots. OURS consistently achieves the highest performance in all metrics.]
Figure 6 | Trends of bAP50, nAP50, and mAP50 for split2.

[image: Three line charts displaying performance comparisons of four methods—TFA, VFA, FSCE, and OURS—across three metrics: bAP50, nAP50, and mAP50, for different shot counts labeled 3, 5, and 10. OURS consistently achieves the highest or near-highest scores on all metrics, with all methods generally improving as shot count increases, especially for nAP50 and mAP50. Each chart includes a legend linking colors to methods.]
Figure 7 | Trends of bAP50, nAP50 and mAP50 for split3.

In the nAP50 graph of new classes for split3, VFA outperforms other methods under 3-shot conditions; but its performance improves only slightly with the increase in sample size, increasing by only 11.04% from 3-shot to 10-shot. In contrast, the performance of the proposed method improves significantly, increasing by 23.95% from 3-shot to 10-shot. To further study this phenomenon, a third random sampling fine-tuning training experiment was conducted based on the split3 dataset.

Figure 7 shows the changing trends of bAP50 and nAP50 during split3 fine-tuning training under different shot conditions. The performance of FSCE and the proposed method in bAP50 is always between TFA and VFA, but its maximum nAP50 exceeds that of other methods, which highlights the advantage of the proposed method in balancing the performance of base and new classes.

To comprehensively compare the performance of detection methods across 20 tropical pest classes, we included the YOLO model (specifically the YOLO11x version) as a benchmark for FSOD tasks. Table 5 and relevant results incorporate the YOLO method alongside TFA, VFA, FSCE, and the proposed method (OURS). While YOLO is known for its efficiency in real-time detection tasks due to lower computational complexity, the results indicate that this advantage does not translate into better performance in FSOD scenarios. The results show that YOLO, TFA, VFA, FSCE and the proposed method all show high AP values ​​under 3-shot, 5-shot and 10-shot conditions, proving the stability of the methods. With the increase of sample size, the performance of the three methods in new classes gradually improves, especially when the sample size is small, the detection performance is significantly improved with a slight increase in sample size.

Table 5 | AP values and mAP values of four methods for detecting 20 types of pests.


[image: Comparison table showing Average Precision (AP) scores for several methods: YOLO11-FSOD, TFA, VFA, FSCE, and OURS, across base and new classes, with mean Average Precision (mAP) results. Results are provided for three-shot, five-shot, and ten-shot scenarios across multiple categories and numbers. OURS generally shows higher AP scores, especially in new class and all class mAP columns.]
In terms of detection performance in each class, the proposed method shows an upward or stable trend in mAP value with the increase of sample size, while YOLO, TFA, VFA and FSCE have certain fluctuations. Especially in the new class, the proposed method achieved the maximum mAP value of 82% in the 10-shot experiment, which is significantly better than YOLO, TFA, VFA and FSCE. In addition, the proposed method shows particularly excellent performance in specific classes such as 15 and 95, and significantly improves AP in the challenging 101 class (Cicadellidae). Compared with other methods, its mAP value is nearly 3 times higher, reflecting the powerful feature aggregation and migration capabilities of the proposed method.

Although the mAP values ​​of most classes are above 70, indicating that the proposed method can effectively detect these pests, the mAP values ​​of other methods are relatively low for classes such as 48, 101, 76, and 95. As can be seen from the relevant images in Figure 8, the visual features of these pests are highly similar to the background, or have features that are difficult to distinguish from other classes, making it difficult for YOLO, TFA, VFA, and FSCE methods to accurately identify them. Overall, the mAP value of the proposed method in the new class is nearly 10 percentage points higher than that of YOLO, TFA, VFA, and FSCE on average, showing its significant advantage in the tropical pest detection task.

[image: Six panels of insect images are shown in rows, with each row featuring a different object detection method labeled at the bottom: RAW, YOLO, TFA, VFA, FSCE, and OURS. Colored bounding boxes highlight detected insects, showing varying accuracy and number of detections among the methods.]
Figure 8 | Visual comparison of original image RAW, YOLO, TFA, VFA, FSCE and OURS.

In terms of detection performance under 3-shot, 5-shot, and 10-shot conditions, YOLO demonstrates relatively lower AP values compared to the other methods. For example, in the 10-shot experiment, YOLO achieves an mAP of 77.5%, whereas the proposed method achieves a significantly higher mAP of 82.6%. Notably, in challenging classes such as 48 and 101, YOLO struggles to distinguish pests with features similar to the background, resulting in mAP values below 60%, significantly lower than the corresponding performance of the proposed method. Overall, while YOLO provides a computationally efficient solution, the trade-off between speed and accuracy limits its applicability in FSOD tasks that prioritize precise detection over real-time processing. The proposed method strikes a better balance by achieving state-of-the-art detection performance, justifying the slightly higher computational cost for critical applications like pest management in tropical agricultural settings.

As shown in Figure 9, from the 10-shot confusion matrix analysis of TFA, VFA, FSCE and the proposed method in split3, the proposed method has obvious advantages in terms of accuracy, missed detection rate and recall rate. First, in terms of accuracy, the proposed method presents higher values ​​on the diagonal, indicating that the model has higher classification accuracy on multiple classes. In contrast, TFA and FSCE methods have lower diagonal accuracy in some classes, showing that the recognition of some classes is not accurate enough under few-sample conditions. In particular, the TFA method has serious misclassification in some classes, while the proposed method is relatively balanced in overall accuracy. In addition, VFA has some misclassification in the background class, while the proposed method is better at distinguishing between targets and backgrounds. Secondly, in terms of missed detection rate performance, the off-diagonal misclassification rate of the proposed method is lower, which means that it has fewer missed detections. In contrast, the FSCE and VFA methods have high missed detection rates in some classes, especially between difficult-to-distinguish classes, which are prone to prediction deviation. FSCE has more obvious misclassification in medium-complexity classes, while VFA shows a tendency to misdetect when the background interference is strong, resulting in an increase in missed detection rate. the proposed method significantly reduces the missed detection rate and improves overall reliability by improving feature extraction. Finally, in terms of recall rate, the proposed method has a higher recall rate in most classes. With fewer misclassifications, the proposed method can effectively identify more real samples, especially in complex backgrounds or with few samples, and the recall performance is more stable. In contrast, the recall rate of the TFA method is low, and it is easy to make recognition errors when the class boundaries are blurred. The recall rate of FSCE is also slightly insufficient when dealing with some subdivided classes.

[image: Four confusion matrix diagrams compare the classification performance of different models—TFA, FSCE, VFA, and "Our"—on a data split with ten shots, where brighter yellow squares along each diagonal indicate correct predictions and off-diagonal purple squares represent errors, each with corresponding percentages, and a color bar on the right shows values from zero to above eighty.]
Figure 9 | Confusion matrix of split3-10shot for TFA (a), VFA (b), FSCE (c) and OURS (d).

In summary, the proposed method is superior to other methods in accuracy, missed detection rate and recall rate. Its advantages lie in better feature extraction ability, lower misclassification rate and higher recall rate, making it a more robust model in the case of few samples and complex backgrounds. These improvements enable the proposed method to perform better classification results in the split3 10-shot scenario.




4.3.3 Ablation experiment analysis

We have evaluated the effectiveness of the modules used in the study, such as the feature aggregation module(FAM), the SCL module SCL, and the multi-task loss optimization MTLF, in detail through ablation experiments. In the ablation study show in Figure 10, we systematically introduced three key modules based on the baseline method TFA. By incorporating these modules into the baseline separately, we conducted 3-shot, 5-shot, and 10-shot experiments in the few-shot scenario, and evaluated them in terms of bAP50, nAP50, and mAP50. Through this comprehensive evaluation, we can thoroughly investigate and verify the effectiveness of each component in the framework, which helps to further fully understand the proposed method. The ablation results are shown in Figure 10, showing the effect of the key modules. The performance is significantly improved by about 1.1% by introducing FAM alone. Specifically, mAP increases from 0.741 to 0.751 in the case of 3 shots, from 0.772 to 0.779 in the case of 5 shots, and from 0.794 to 0.805 in the case of 10 shots. In addition, the inclusion of the SCL module alone can improve its performance by about 1.5%. In the case of 3 shots, mAP increases from 0.741 to 0.753, in the case of 5 shots, from 0.772 to 0.787, and in the case of 10 shots, from 0.794 to 0.809, highlighting the effectiveness of the SCL module in addressing the multi-scale challenges encountered in pest object detection. In addition, adopting the multi-task loss optimization module as a standalone ensemble on the baseline improves the results by about 3.5%. This improvement is evident in the case of 3 shots, where mAP increases from 0.741 to 0.776, in the case of 5 shots, from 0.772 to 0.807, and in the case of 10 shots, from 0.794 to 0.826.

[image: Three grouped bar charts compare the performance of four models—ExecNet, RAM, MVF, and UFSL—across varying shot counts on separate metrics, showing differing trends and scores for each metric and shot combination.]
Figure 10 | Ablation experiment.

Figure 8 shows an example of the comparison of the new class detection results of the proposed method with those of TFA, VFA, and FSCE methods in the dataset. As shown in Figure 8, most of the new class objects are correctly detected, demonstrating the efficiency of our model. Other methods have difficulty in effectively detecting new class multi-target situations. In Figure 5, we can see that although the insect is similar to the background, our model correctly identifies the background and does not misidentify the insect. Similarly, although there are multiple insect targets in the image, our model can still correctly identify all the targets. Our model can effectively handle size variations and multiple targets, and correctly identify single targets and multiple targets of different sizes. Edge cases, such as overlapping pests or those camouflaged within cluttered backgrounds, posed challenges for all tested models. While the proposed method outperformed others in these scenarios, future work could explore adaptive feature learning techniques or advanced data preprocessing to further improve performance in such cases”.




4.3.4 Model statistical characteristics analysis

To evaluate the stability and differences of the proposed method compared to other methods, statistical analysis and significance tests were conducted. As shown in Table 6, our method outperforms the comparison methods (TFA, VFA, and FSCE) in terms of statistical metrics such as mean (Mean), standard deviation (Std), and confidence interval (CI). The mean value of OURS is 79.13, which is higher than TFA (75.30), VFA (75.07), and FSCE (77.26), indicating its superior overall performance. Furthermore, the standard deviation of the proposed method is 1.920, lower than those of VFA (2.471) and FSCE (2.233), demonstrating greater stability. Within the 95% confidence interval, the proposed method exhibits a range of (78.178, 80.088), which is significantly higher than the intervals of other methods, such as TFA (74.541, 76.059). This indicates that the proposed method holds a clear statistical advantage.

Table 6 | Mean, standard deviation and confidence interval statistical analysis.


[image: Data table showing statistical results for four models: TFA, FSCE, VFA, and OURS. Each row lists the model's mean, standard deviation, standard error, margin of error, and 95 percent confidence interval.]
As presented in Table 7, statistical significance tests based on multiple independent experimental results further confirm the advantages of the proposed method compared to TFA, VFA, and FSCE. Using independent t-tests at a significance level of 0.05, the results show that the p-value for the proposed method versus TFA is 0.00116, versus FSCE is 0.03284, and versus VFA is 0.00288—all below 0.05. This demonstrates that the performance of the proposed method is statistically significantly different from the other models. Additionally, the mean value of OURS is 79.13, which is higher than TFA (77.05), FSCE (77.62), and VFA (76.87). These results indicate that the proposed method not only outperforms other models in overall performance but also achieves statistically significant differences across multiple experiments. In summary, the proposed method demonstrates superior stability and performance compared to other models, highlighting its statistical advantages.

Table 7 | Independent t-test method significance verification analysis.


[image: Table comparing the performance of the OURS model to TFA, FSCE, and VFA models at a significance level of zero point zero five, showing p-values below zero point zero five and higher model means for OURS.]



4.3.5 Computational cost and performance trade-off analysis

The analysis of computational complexity and detection performance highlights the trade-offs made in this study. YOLO, known for its efficiency in real-time detection tasks, achieves the lowest computational complexity with 114.5 GFLOPs and relatively moderate mAP values (66.3, 75.5, 77.5 for 3-shot, 5-shot, and 10-shot tasks, respectively). In contrast, OURS, a model based on the Faster R-CNN framework with enhancements such as FAM and SCL, achieves the highest mAP values across all settings (75.9, 79.5, 82.6) at a slightly higher computational cost of 130.2 GFLOPs. These results, summarized in Table 8, clearly demonstrate the performance and computational trade-offs between YOLO and OURS. This demonstrates that OURS leverages the computational resources to achieve significant performance gains, particularly in few-shot detection tasks, where accuracy and robustness are critical. While YOLO is more suitable for real-time applications, its lower performance in few-shot tasks highlights its limitations in capturing fine-grained and diverse pest characteristics. Models like TFA, FSCE, and VFA strike a balance between complexity and performance, but they fall short of the proposed method in overall accuracy.

Table 8 | Model size, computational cost, and performance analysis.


[image: Table comparing five models: YOLO1x-FSOD, TFA, FSCE, VFA, and Ours across six columns: number of parameters, calculation costs in GPLOPs, and accuracy for three, five, and ten-shot all class settings. Ours shows the highest results in 3-shot (75.9), 5-shot (79.5), and 10-shot (82.6) all class, with 68.1 million parameters and 130.2 GPLOPs.]
By choosing Faster R-CNN as the base framework, this study prioritizes higher detection accuracy over real-time speed, a trade-off that is justified for applications requiring precise pest management. This approach demonstrates that slight increases in computational complexity are acceptable to achieve substantial performance improvements, aligning with the study’s goal of advancing few-shot object detection in complex agricultural environments.




4.3.6 Practical application and field validation

The proposed algorithm has been integrated into a practical pest management system, whose architectural design (as depicted at the top of Figure 10) addresses three specific application scenarios: Under weak network conditions, front-end devices with edge computing capabilities perform local pest detection in real-time and autonomously activate laser-based capture mechanisms. Under stable network conditions, low-cost front-end visual sensors transmit images to a backend cloud platform for rapid pest identification, subsequently triggering front-end laser capture devices, thus optimizing deployment costs. Agricultural technicians or unmanned aerial vehicles (UAVs) upload images to the backend platform, enabling precise identification and geolocation-based positioning, supporting flexible mobile monitoring. The backend cloud platform employs parallel computing to achieve millisecond-level processing and feedback, effectively fulfilling diverse scenario requirements and establishing a comprehensive intelligent pest management system encompassing real-time monitoring, rapid identification, precise localization, and targeted pest control.

As shown in the lower-left section of Figure 11, the pest induction and laser capture device comprises key modules including a core computing board, laser emitter, galvanometer controller, and visual sensing components. Specific attractants or optical methods accurately lure pests onto designated induction panel areas. Real-time visual data captured by onboard cameras is swiftly processed by a lightweight detection algorithm developed in this research, which can also be deployed in parallel on cloud platforms to handle large volumes of data from multiple devices simultaneously. The coordinate conversion module precisely calculates the physical positions of detected pests, guiding the laser galvanometer to accurately target and activate the laser for pest capture. Captured pests are subsequently collected in designated containers for further identification and analysis. This approach effectively minimizes environmental interference and protects beneficial insects, significantly enhancing the precision and effectiveness of pest monitoring and control.

[image: Diagram illustrating a pest management system using edge computing, cloud platforms, and laser trapping equipment, including workflow charts, equipment photos, a smart greenhouse illustration, app result screens, and process demonstration with pest identification on plant leaves.]
Figure 11 | Pest management system architecture, laser trapping equipment and process demonstration.

The backend platform, based on our proposed algorithm, provides a comprehensive management interface, facilitating efficient, real-time collection of pest monitoring data from greenhouses and farms. Data can be flexibly submitted by agricultural technicians via smartphones or automatically uploaded by pest induction and laser capture devices. The backend management system automatically identifies pests, clearly visualizes real-time identification results, and assigns data to corresponding greenhouse or farmland regions according to geographic locations. The detailed system processing workflow is presented in the lower-right section of Figure 10.

To further validate the practical efficacy of our proposed few-shot pest insect detection model, we conducted an extensive field evaluation over a three-month period in vegetable greenhouses located in Haikou, Hainan Province. Situated in a tropical region, Hainan faces significant pest challenges. The evaluation specifically targeted eight prevalent pest species in this region: flea beetles, aphids, whiteflies, thrips, diamondback moths, armyworms, fruit flies, and leaf miners. We deployed a detection platform utilizing our proposed algorithm, continuously monitoring pest instances captured through smartphone images provided by agricultural technicians and integrated intelligent trapping devices. Throughout the evaluation period, a total of 563 pest instances were captured across all monitored areas. Among these, the AI model successfully identified 534 instances, yielding an overall accuracy of 94.84%. Notably, aphids and whiteflies demonstrated the highest detection accuracy, each exceeding 96%. In contrast, flea beetles exhibited slightly lower accuracy at 89.7% due to their smaller size and higher mobility.

Our methodology comprehensively addresses the dynamic and complex nature of pest monitoring environments by employing targeted detection strategies that integrate crop types, regional characteristics, and seasonal factors, significantly reducing data collection and labeling costs through few-shot learning techniques. The lightweight model design ensures effective deployment even in agricultural scenarios with limited computational resources or poor network connectivity, exhibiting robust and stable performance in greenhouse monitoring environments.






5 Conclusion

This study presents a novel FSOD method for pest insects, addressing challenges related to limited annotation data and multi object sizes. Built upon the Faster R-CNN framework, our approach integrates feature aggregation and SCL to enhance feature representation and improve detection accuracy. Multi-scale feature extraction using a Feature Pyramid Network captures rich semantic information at different scales, improving sensitivity to multi targets. A Feature Aggregation Module (FAM) with attention mechanism fuses features from the support and query sets, enhancing detection ability for small-sample targets. SCL is introduced to improve feature discriminability, while class weights and Focal Loss address class imbalance and hard-to-classify samples. Joint optimization of multiple tasks with an integrated loss function enhances robustness and precision. Experimental results demonstrate significant performance improvements in small and minority class pest detection, offering a valuable solution for agricultural pest management. While the proposed method achieves significant improvements in detection accuracy, the computational cost associated with Faster R-CNN remains a limitation for real-time applications. Future research could focus on optimizing the framework for faster inference or exploring lightweight architectures to enhance scalability for edge deployment.
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Pests in rice fields not only affect the yield and quality of rice but also cause serious ecological and environmental problems due to the heavy reliance on pesticides. Since various pests have irregular and changeable shapes, small sizes, and complex backgrounds, field rice pest detection is an essential prerequisite and challenge for the precise control of pests in the field. A multiscale aggregated vision MambaU-Net (MAVM-UNet) model for rice pest detection is constructed. The model consists of four main modules, Visual State Space (VSS), multiscale VSS (MSVSS), Channel-Aware VSS (CAVSS), and multiscale attention aggregation (MSAA), where VSS is used as the basic module for capturing context information, MSVSS is used to capture and aggregate fine-grained multiscale feature of field rice pest images, CAVSS is added into Skip connection to select the critical channel representations of the encoder and decoder, and MSAA is added in the bottleneck layer to integrate the pest features of different layers of the encoder. Combining MSAA and CAVSS can capture the low-level details and high-level semantics and dynamically adjust the contributions of features at different scales; for example, the slender legs and antennae of pests rely on fine-grained features, while the large body of pests relies on coarse-grained features. A large number of experimental results on the rice pest image subset of the IP102 dataset show that MAVM-UNet is superior to the state-of-the-art models, with PA and MIoU of 82.07% and 81.48%, respectively. The proposed model provides important guidance for the monitoring and control of pests in rice fields. The codes are available at https://github.com/ZengsihaoNB666/mavmunet.git.





Keywords: field rice pest detection, Visual State Space (VSS), Channel-Aware VSS (CAVSS), vision MambaU-Net, multiscale aggregated vision MambaU-Net (MAVM-UNet)







1 Introduction


Field crop disease and pest detection (FCDPD) is essential for ensuring the yield and quality of crops. The traditional FCDPD method based on agricultural experts is inefficient and has limited accuracy in large-scale real-time FCDPD (He et al., 2023; Zhang et al., 2023). With the development of Android mobile, Internet of Things (IoT), and unmanned aerial vehicle (UAV) technologies in smart agriculture, many methods for detecting crop diseases and pests have been proposed by easily collecting images of field crops through IoT and UAVs (Saleem et al., 2024; Zhang et al., 2024). In recent years, deep learning models, such as U-Net and its variants, have been widely applied in FCDPD, particularly field crop pest detection (FCPD) (Guo et al., 2024; Saleem et al., 2025). However, due to limited receptive fields, they are unable to extract the long-range dependencies that are crucial for understanding the global context of the field pest image structures (Naeem et al., 2025). Transformer and Vision Transformer (ViT) models have emerged as a promising alternative (Xu et al., 2022; Bai et al., 2023). They are good at capturing long-range dependencies, but not at extracting local features, and their quadratic computational complexity limits their application, especially for high-resolution images of field pests collected by Android mobile, Internet of Things, and unmanned aerial vehicles (Gole et al., 2024; Bedi et al., 2025).


To address the above challenges, Mamba and its improved models have been presented and achieved remarkable development with a linear complexity of O(n), including Vision Mamba (VMamba), Mamba-UNet, and MSVM-UNet (Chen et al., 2024; Wang et al., 2024). They excel in capturing long-range dependencies and spatial local features and are particularly suitable for complex FCPD tasks. Aiming at the problems existing in FCPD, such as irregular and variable shapes, blurred pest boundaries, low contrast between pests and the background, and large imaging noise, a multiscale aggregated vision Mamba-UNet (MAMVM-UNet) model for FCPD is constructed. The main contributions of this paper are described as follows:


	
A multiscale Visual State Space (MSVSS) module is proposed to capture and aggregate the multiscale fine-grained features of field crop pest images.


	
A Channel-Aware VSS (CAVSS) Block is added into the Skip connection to incorporate channel-spatial attention features into VSS to select the critical representations of the encoder and decoder.


	
A multiscale attention aggregation (MSAA) module is added to the bottleneck layer to integrate the features of different layers of the encoder.





The rest of this paper is arranged hierarchically, as follows. Section 2 overviews the related work. MAVM-UNet and its components are introduced in detail in Section 3. Section 4 presents the experiments, results, and analyses. The paper is summarized along with prospects for the next work in Section 5.






2 Related work


With the advancement of computer vision, IoT, and UAV technologies, many FCPD methods have been continuously presented, which are roughly divided into convolutional neural networks (CNNs), Transformers, Mamba, and their improved models.





2.1 CNN-based methods


By stacking deep convolutional layers, CNN can automatically extract useful advanced features from pest images, achieving high performance of FCDPD (Bedi and Gole, 2021a; Bedi and Gole, 2021b). (Wei et al., 2022). proposed a multiscale feature fusion (MFFNet) model for FCPD and integrated multiscale feature extraction and mapping modules to achieve end-to-end precise classification of crop insects. (Zhang et al., 2024). combined the advantages of the attention mechanism and multiscale feature fusion to improve the accuracy of FCPD. They introduced the relationship-aware Global attention module to adaptively adjust the feature weights at each position, pay more attention to the areas related to pests, and reduce background interference. (Wang et al., 2024). constructed a dilated multiscale attention U-Net model for FCPD. In the model, the dilated Inception module replaces the convolution operation in U-Net to extract the multiscale features of pest images, and the attention module focuses on the edges of pest images.


The above models with limited convolutional receptive fields rely on a large dataset for training the model, but it is ineffective for few-shot FCPD and cannot extract the long-range dependencies that are crucial for multiscale FCPD.






2.2 Transformer-based methods


In the field of FCPD, Transformer and ViT can analyze the pest behavior changes, providing strong support for the early monitoring (Xie et al., 2024). (Zhang et al., 2023). proposed a multimodal Transformer model for FCPD and obtained more competitive results compared to other excellent models. (Zeng et al., 2024). proposed a lightweight hybrid FCPD network HCFormer, which integrates both the local and global features of the input images, resulting in a more accurate feature representation of crop pests. (Fu et al., 2024). introduced an improved ViT for FCPD. The results indicate that the self-attention mechanism of ViT can optimize the performance of FCPD. (Liu et al., 2025). proposed a Transformer-based end-to-end FCPD method, which can compensate for the feature information loss caused by the downsampling process and achieve remarkable results.


The above analysis demonstrates the powerful performance of Transformers and ViTs in various computer vision tasks, but their quadratic complexity limits their application in high-resolution and real-time FCPD tasks.






2.3 Mamba-based method


Mamba and its variants combine state space model (SSM) and Visual State Space (VSS) blocks with advanced deep learning to learn local–global features and remote dependencies, thereby enhancing the performance of image detection and segmentation (Chen et al., 2024; Jiang et al., 2024; Liao et al., 2024; Wang et al., 2024). VSS is regarded as visual SSM. VSS compensates for the inherent deficiencies of SSM in two-dimensional data by introducing spatial serialization strategies, locality modules, and multiscale designs. The essential difference between SSM and VSS lies in the trade-off between universality and domain adaptability. As a visual mamba, VMamba inherits the advantages of CNN and ViTs, improves computational efficiency, and achieves linear complexity without sacrificing the global acceptance field. Mamba-UNet is a hybrid deep learning model that combines U-Net and Mamba. It can effectively capture the global context, significantly improve the accuracy of image detection and segmentation, and maintain relatively low computational overhead. Visual Mamba UNet (VM-UNet) is a hybrid deep learning model that combines U-Net and Mamba to capture global–local features for effective image detection and segmentation. To overcome the limitations of CNN and ViTs (Ruan et al., 2024, Wang et al., 2024). introduced the insect classification model InsectMamba. It integrates SSM, CNN, multi-head self-attention mechanism, and multi-layer perceptron in the hybrid SSM block, achieving an accurate classification of pests.


From the above analysis, it is known that CNNs and ViTs have been widely applied in FCPD. However, CNN is not good at capturing remote dependencies, while the computational complexity of ViT is quadratic. Based on VM-UNet and MSVM-UNet, a multiscale aggregated VM-UNet (MAMVM-UNet) is constructed. The multiscale global context features are captured using VMamba, U-Net, and VM-UNet, and the fine-grained FCPD is achieved by multiscale attention mechanisms.







3 The proposed model


The proposed model MAVM-UNet for FCPD is an improved VM-UNet. Its architecture is shown in 
Figure 1
, consisting of an encoder and a decoder, including three main modules: MSVSS, CAVSS, and MSAA. Their structures are illustrated in 
Figures 2A–C
, respectively.


[image: Flowchart illustrating a deep learning model for crop pest image segmentation. The image is partitioned into patches, processed by an encoder with patch merging and MSVSS modules, then connected by CAVSS modules to a decoder with patch expanding and VSS modules, producing a segmented pest region using a softmax layer.]
Figure 1 | 
The architecture of MAVM-UNet.




[image: Diagram illustrates three neural network module architectures: (A) MSVSS with VSS and MSDC blocks, (B) MSAA featuring dilated inception and pooling branches, and (C) CAVSS integrating VSS, normalization, convolution, pooling, and activation, with addition and multiplication points shown.]
Figure 2 | 
The main components of MAVM-UNet. (A) MSVSS. (B) MSAA. (C) CAVSS. MAVM-UNet, multiscale aggregated vision MambaU-Net; MSVSS, multiscale Visual State Space; MSAA, multiscale attention aggregation; CAVSS, Channel-Aware Visual State Space.







3.1 Overall architecture of MAVM-UNet


MAVM-UNet is an improved VM-UNet. Similar to ViT and Mamba-UNet, the input 
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, where C is the mapping channel dimension default set to 96. Like the encoder, the decoder adopts two consecutive VSS blocks for feature reconstruction, and the Patch Expanding module is used for feature upsampling. It can enhance depth features and improve resolution (by doubling the scale), while halving the feature size, doubling the feature size in the initial layer, and reorganizing and reducing them to enhance resolution. The output resolutions of each layer of the encoder are 
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. The linear embedding layer adjusts the feature dimension to the size of C. The last 1 × 1 convolution is used as a fully connected layer, and Softmax as a classifier is adopted for FCPD.






3.2 MSVSS


As shown in 
Figure 2A
, MSVSS consists of VSS (
Figure 2A
 left) and multiscale dilated convolution (MSDC) (
Figure 2A
 right). In VSS, the Selective Scan 2D module (SS2D) is an extension of Mamba (State Space Model) on 2D visual data. It replaces traditional convolution or self-attention through a content-aware sequence scanning mechanism to achieve efficient long-range dependency modeling. It consists of three key components—scan expanding, S6, and scan merging—where scan expanding decomposes the input image into 16 independent sequences along four directions of up, down, left, and right, which can ensure the spatial coverage of information and capture the multi-direction feature; S6 utilizes a selective mechanism to accurately identify and extract useful information while filtering out the irrelevant parts. DWConv is a depthwise-separable convolution module, consisting of Depthwise Convolution and Pointwise Convolution operations. It is often used to reduce the number of weight parameters and computational load by separating the convolution and point-by-point convolution. After VSS, Linear projecting, and Layer norm operations, the output is input into MSDC to perform multiscale dilated convolution with three kernels of sizes 1 × 1, 3 × 3, and 5 × 5. The process of MSVSS is formalized in Equation 1:
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 are the input feature maps and output feature maps of the ith layer of encoder, respectively; 
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 is the output of the VSS module; LP(·) is Linear projecting; LN(·) is Layer normalization; and MSDC(·) and VSS(·) are MSDC and VSS operations, respectively.


In VSS, Squeeze and Excitation (SE) is a lightweight attention module, which can significantly improve model performance with low computational cost by enhancing useful features through adaptive channel weighting and suppressing redundant features.


Three Linear layers are used to realize feature compression, dynamic parameterization, and modal transformation in VSS, which is the key to balancing computational efficiency and modeling ability.







3.3 MSAA


MSAA is added to the bottleneck layer of the model, as shown in 
Figure 2B
, consisting of a set of dilated convolutions, parallel max-pooling and Avg-pooling, residual connection, and 7 × 7 convolution, followed by Sigmoid activation and 1 × 1 convolution. The dilated convolutions with dilated rates of 1, 3, and 5 are used to capture multiscale features. The process of MSAA is formalized in Equation 2:
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where 
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 are the input feature maps and output feature maps of MSAA, respectively; 
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 is the output of the Layer norm dilated convolution with dilated rates of 1, 3, and 5; 
⊗

 is the Hadamard product; and Avg(·) and Max(·) are parallel max-pooling and Avg-pooling operations, respectively.






3.4 CAVSS


CAVSS, as the attentional Skip connection of Mamba-UNet, is used to fuse the multiscale features and upsampled features of the encoder and the decoder together, reducing the loss of spatial information. Its structure is shown in 
Figure 2C
, consisting of a VSS block, a Layer norm, a Conv., and two parallel pooling and two residual connections. Its process is formalized in Equation 3:
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where 
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 are the input–output feature maps of CAVSS and VSS(·) is the VSS operation.






3.5 Patch merging and expanding


Patch Merging in the encoder is regarded as downsampling, and the feature resolution is downsampled by 2×. It retains the global context through Mamba blocks to avoid the information loss of max-pooling in U-Net. Since the concatenating operation results in the feature dimension increasing by 4×, a Linear layer is used to reduce the feature dimension to 2× the original dimension.


Symmetrical to the Patch Merging of the encoder, Patch Expanding in the decoder is used to gradually reconstruct the details of the image and gradually restore the spatial details to achieve precise segmentation. It uses a linear layer on the input features to increase the feature dimension to twice the original dimension, uses a rearrangement operation to expand the resolution of the input features to twice the input resolution, and reduces the feature dimension to 1/4 of the input dimension.






3.6 Loss function


The pest image pixels are divided into pest (marked as 1) and background (marked as 0). To address the class imbalance and small pest detection issues, the hybrid loss functions combining Cross-entropy (Ce) 
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 is adopted to train MAVM-UNet, calculated as follows:
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where 
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 are ground truth and predicted probabilities for class c, respectively; 
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 is an adjustment parameter; and 
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 is a very small non-zero number, indicating that proof 
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4 Experiments and analysis


MAVM-UNet is verified on the rice pest image subset of the public IP102 dataset and is compared with six state-of-the-art models, i.e., combining fuzzy C-Means and gray-level co-occurrence matrix (FCMGLCM) (Chodey and Shariff, 2023), U-Net, DIA-UNet (Zhang et al., 2025), TSRST (Bai et al., 2023), HCFormer (Zeng et al., 2024), Mamba-UNet (Wang et al., 2024), VM-UNet (Ruan et al., 2024), and MSVM-UNet (Chen et al., 2024), where FCMGLCM is a traditional machine learning model, U-Net is the backbone model, DIA-UNet is a multiscale attention U-Net, TSRST and HCFormer are Transformer-based hybrid models, and VM-UNet and MSVM-UNet are two recent improved Mamba-UNet models. They are simply introduced as follows.


	
➢ FCMGLCM is a hybrid machine learning model that extracts nine statistical texture features for FCPD. FCMGLCM adopts SVM to detect pest pixels without long-term training.


	
➢ U-Net is the backbone model.


	
➢ DIA-UNet is a dilated Inception attention U-Net.


	
➢ TSRST is a hybrid lightweight model combining Transformer and Super-Resolution Sampling Techniques.


	
➢ HCFormer is a lightweight FCPD model combining CNN and ViT.


	
➢ Mamba-UNet is the backbone model of VM-UNet, MSVM-UNet, and the proposed model.


	
➢ VM-UNet is a vision Mamba-UNet using VSS to capture contextual information with low calculation cost.


	
➢ MSVM-UNet is a multiscale VM-UNet by multiscale VSS blocks to effectively capture and aggregate the multiscale feature representations from the hierarchical features of the VMamba encoder and better handle 2D visual data.









4.1 Dataset


IP102 is a large public image dataset (https://github.com/xpwu95/IP102) (Wu et al., 2019). It has 75,222 images distributed across various crops and environments, covering 102 common pests of eight crops, including rice, alfalfa, wheat, corn, grapes, sugar beets, citrus, and mangoes. Their indices and names can be obtained from https://github.com/xpwu95/IP102/blob/master/classes.txt. IP102 has 8,417 images of 14 types of rice pests. The number of pest images and some examples are shown in 
Figure 3
. 
Figure 3A
 illustrates the names of rice pests with the image counts of each category, and 
Figure 3B
 shows 14 images, one image per category. 
Figures 3C–E
 show various pest images with different shapes, colors, and backgrounds in the field. 
Figure 3F
 shows some images of a pest at its different growth stages. 
Figures 3B–F
 exhibit distinct appearance characteristics at different growth stages, while different species of insects share similar characteristics.


[image: Composite image containing eight panels labeled A to H showing rice pest classification. Panel A shows a horizontal bar chart of pest occurrences by species. Panel B displays photos of different rice pests, each labeled. Panel C includes grouped images of pest varieties and stages. Panel D shows pest clusters on rice plants. Panel E illustrates rice plant damage. Panel F presents pest moths in multiple poses. Panel G compares original versus altered images for contrast, flipping, cropping, rotation, and enhancement. Panel H features augmented images from two originals using varied transformations.]
Figure 3 | 
The image number, rice pest image, and augmented image examples. (A) The number of pest images. (B) Fourteen pest images, one image per category. (C) Various rice pests with different shapes and sizes. (D) Many fine rice pests. (E) Not obvious rice pests. (F) Ten images of an asiatic rice borer with different shapes and sizes. (G) Seven augmented images of one on the far left. (H) Nine augmented images by Mixup and CutMix. MAVM-UNet, multiscale aggregated vision MambaU-Net.






Figure 3A
 shows that the subsets of images of rice pests are highly unbalanced. For example, there are 1,115 images of rice leaf rollers and 173 images of rice-rice thrips. Imbalance may lead to bias and overfitting in FCPD. To solve this problem of insufficient training samples, some image augmentation algorithms are adopted to generate more images, such as randomly cropping, left and right flipping, up and down flipping, enhancing, random rotating, and random shifting. 
Figure 3G
 shows seven augmented images of an original image. Mixup and CutMix are two data augmentation techniques, and their main difference lies in the way they are mixed. MixUp is for smoothing decision boundaries (e.g., classification), and CutMix is for localization tasks (e.g., object detection). Nine augmented images are shown in 
Figure 3H
. In the following experiments, we only randomly select some augmented images so that there are at least 500 images for each category of the 14 types of rice pests. Then, an augmented dataset containing 9,314 images of rice pests is constructed, including 8,515 original and 799 augmented images.






4.2 Experimental set


All models except GLCM are performed on Intel Core i9-10900K CPU, CUDA 11.8, and Nvidia GeForce RTX 3090 GPU using Python 3.8.8 and PyTorch 1.10 framework. The hyperparameters of each model are initialized by random variables of a normal distribution and are optimized by Stochastic Gradient Descent (SGD). In Equation 4, 
λ

 is set as 0.4, and 
ϵ

 is set as 0.001. The model training parameters are set as shown in 
Table 1
.



Table 1 | 
The experimental set of the model.





	Name

	Set






	The number of training Iterations
	3,000



	Batch size
	24



	Initialized learning rate
	0.001



	momentum
	0.9



	Weight decay
	0.0001










The model performance is evaluated on the validation dataset every 200 iterations, and the model weights are saved only upon achieving a new best performance on the validation subset. Pixel accuracy (PA) and Mean IoU (MIoU) are commonly adopted to evaluate the performance of the image object detection and semantic segmentation models by the similarity between the predicted result and the ground truth, calculated in Equation 5:
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where n is the number of categories, 
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 is the pixel number of true positives, 
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 is the total pixel number of the ith true category predicted as the jth category, and 
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 are the pixel number of false positives and false negatives, respectively.


All 9,314 images of rice pests in the augmented dataset are divided into three subsets in a ratio of 6:2:2, of which approximately 60% is used for training, 20% for verification, and the remaining 20% for testing to obtain the detection result. After repeating this 6:2:2 experiment 50 times, the average results of PA and MIoU are calculated as the FCPD results.


To be fair in the experiments, all models except FCMGLCM are performed using the above dataset and data preprocessing algorithms under the same optimizer and the same loss function. FCMGLCM is conducted by feature extraction and SVM. MAVM-UNet and the baseline models are trained under consistent settings, with hyperparameters tuned via an evaluation metric standardized across all comparisons. Pretrained weights are used where applicable (e.g., for backbone architectures like U-Net and VMamba) as noted in Res (Bai et al., 2023; Chen et al., 2024).






4.3 Visualization


To verify the model performance of MAVM-UNet, 
Figure 4
 illustrates the hot maps, compared with U-Net. 
Figure 4
 shows that MAVM-UNet can capture the salient features of the pest, and it can detect the pests with complete shapes and edges at the 1,000th iteration, while the detected pests are complete by U-Net at the 2,000th iteration. The detected results indicate that MAVM-UNet is more stable and faster to converge than U-Net.


[image: Panel A displays a color photograph of an insect on a leaf and its corresponding white silhouette on a black background. Panel B and Panel C each contain seven pairs of heatmap-like visualizations and black-and-white segmented masks representing an insect, labeled with increasing numeric values from fifty to three thousand under each pair, showing iterative segmentation results.]
Figure 4 | 
The hot maps and detected pests versus the number of iterations. (A) Original and labeled image. (B) The hot maps and corresponding detected pests by U-Net. (C) The hot maps and corresponding detected pests by MAVM-UNet. MAVM-UNet, multiscale aggregated vision MambaU-Net.




To visually compare the pests detected by the proposed model MAVM-UNet and the seven comparison models, 
Figure 5
 illustrates six randomly selected original images (three simple images, each with only one pest, and three complex images, each with several multi-shape pests), the corresponding labeled images, and the pest images detected by the seven comparison models and MAMM-UNet.


[image: Comparison figure of insect detection and segmentation on leaves showing eight different algorithm results per sample with red circles marking target insects; labeled images, original photos, and algorithm output masks are arranged in rows and columns for panels A and B.]
Figure 5 | 
The detected pests from three simple images and three complex images. (A) One pest in an image. (B) Various multiscale pests in an image.






Figure 5
 clearly shows that FCMGLCM cannot effectively detect field pests because it is difficult to extract the optimal classification features from the images of rice pests in the field, resulting in poor detection performance of field pests. It is also found that MAVM-UNet is superior to the other seven models, and DIA-UNet is slightly superior to U-Net because the max-pooling of U-Net may lead to detailed information loss.




Figure 4A
 shows that, except for FCMGLCM and U-Net, all models can satisfactorily obtain the complete contour of each pest from the simple images, and MSVM-UNet and MSVM-UNet can obtain complete and thin legs of the pest. 
Figure 4B
 shows that U-Net and DIA-UNet are more likely to over-detect pests (in the fourth and fifth columns), TSRST and HCFormer under-detect the pests (in the sixth and seventh columns), MAVM-UNet, VM-UNet, and MSVM-UNet can detect fine-sized pests in a dense distribution. The results indicate that the models based on VMamba architecture have a stronger ability to encode the global context and distinguish semantics. 
Figure 4B
 also shows in the third column that the dense fine pests cannot be detected by FCMGLCM. The reason is that FCMGLCM cannot correctly extract the features from the various poses and shapes of the dense fine pests, resulting in poor detection performance.






4.4 Quantitative results


The proposed model is further verified through a series of 6:2:2 experiments and is quantitatively compared with the seven comparison models. 
Table 2
 presents the pixel accuracy (PA), MIoU, model training time, and GFLOPs (Giga Floating-point Operations Per Second) of eight models.



Table 2 | 
The detection results of eight models.





	Results 
Models

	
PA (%)

	
MIoU (%)

	Training time (h)

	GFLOPs






	FCMGLCM
	58.80
	56.28
	0.50
	8



	U-Net
	69.22
	68.29
	6.39
	75



	DIA-UNet
	72.20
	71.07
	6.88
	98



	TSRST
	74.08
	73.14
	8.48
	90



	HCFormer
	75.28
	75.12
	8.42
	95



	VM-UNet
	75.85
	75.70
	3.27
	55



	MSVM-Mamba
	80.24
	77.32
	3.36
	70



	MAVM-UNet
	82.07
	81.48
	3.30
	58







GFLOPs, Giga Floating-point Operations Per Second; FCMGLCM, fuzzy C-Means and gray-level co-occurrence matrix; MAVM-UNet, multiscale aggregated vision MambaU-Net.






Table 2
 shows that the PA and MIoU of MAVM-UNet are the highest at 82.07% and 81.48%, respectively, but MAVM-UNet’s training time and GFLOPs are slightly longer than those of VM-UNet due to the relatively time-consuming nature of MSAA and CAVSS modules. MSVM-Mamba is better than VM-UNet because it is a multiscale VM-UNet and is effective for multiscale pest detection. The result of FCMGLCM is the lowest, but its training time is the least because it relies on the handcrafted features and only needs to train the SVM classifier. The result of U-Net is the second lowest due to its max-pooling, leading to the inaccurate detection and location of pests by this model. TSRST and HCFormer are better than DIA-UNet, but their training time is the longest. The reason is that they can obtain the global contextual features from the complex field pest images, while the computational complexity of their backbone network Transformer is quadratic.






4.5 Ablation experiments


MAVM-UNet is an improved model of VM-UNet. The main improvements are three modules: MSVSS, MSAA, and CAVSS. To verify the robustness of MAVM-UNet, a series of 6:2:2 experiments are conducted to investigate the impact of MSAA and CAVSS on the performance of FCPD under the same experimental conditions mentioned above. The detected pest images are shown in 
Figure 6
. 
Table 3
 presents the quantitative detection results of these experiments.


[image: Figure shows image processing analysis of small objects, likely seeds. Panel A displays an original photo and its segmented mask. Panel B compares segmentation methods; the top row shows various color-heatmap processed images, and the bottom row shows corresponding black-and-white binary segmentation masks labeled (a) through (h), illustrating differences in accuracy for object detection.]
Figure 6 | 
The hot maps and detected pests by the variants of MAVM-UNet, where (a) without MSAA, MSVSS, and CAVSS;, (b) without MSAA and CAVSS;, (c) without MSAA and MSVSS;, (e) CAVSS is replaced by channel-spatialChannel-Spatial attention;, (f) MASS is replaced by VSS;, (g) MASS is replaced by CBAM (Convolutional Block Attention Module (CBAM);, and (h) MSVSS in encoder and VSS in decoder are replaced by lightweight Transformer. (A) Original and labeled image. (B) The hot maps and corresponding detected pests. MAVM-UNet, multiscale aggregated vision MambaU-Net; MSVSS, multiscale Visual State Space; MSAA, multiscale attention aggregation; CAVSS, Channel-Aware Visual State Space.





Table 3 | 
The experiment results by variants of MAVM-UNet.





	Results 
Variants

	
PA (%)

	
MIoU (%)

	Training time (h)






	(a) Without MSAA, MSVSS, and CAVSS
	68.52
	67.38
	3.64



	(b) Without MSAA and CAVSS
	73.68
	71.32
	3.51



	(c) Without MSAA and MSVSS
	76.43
	74.46
	3.29



	(d) MSVSS in encoder is replaced by VSS
	79.19
	78.27
	3.17



	(e) CAVSS is replaced by channel-spatial attention
	81.15
	80.66
	3.25



	(f) Dilated conv. module in MSDC of MSVSS is replaced by DWConv
	81.36
	80.60
	3.22



	(g) MASS is replaced by CBAM
	81.10
	80.18
	3.27



	(h) MSVSS in encoder and VSS in decoder are replaced by lightweight Transformer
	81.72
	81.26
	7.11







MSAA, multiscale attention aggregation; MSVSS, multiscale Visual State Space; CAVSS, Channel-Aware Visual State Space; MAVM-UNet, multiscale aggregated vision MambaU-Net; CBAM, Convolutional Block Attention Module.






Figure 6
 and 
Table 3
 show that MSVSS, MSAA, and CAVSS are three very important modules that can improve the detection performance of the model. The reason is that MSVSS and MSAA can obtain multiscale features, which are superior to the direct image division in VM-UNet. Compared with VSS in VM-UNet, MSVSS enhances the performance of extracting deep semantic features of the images of the original SSM blocks. Adding MASS to the bottleneck layer can improve the detection results, but the training time is slightly longer. The lightweight Transformer block can enhance global feature extraction while increasing large computational cost. 
Figure 6
 and 
Table 3
 indicate that MAVM-UNet can achieve remarkable results for small-sized and densely distributed pests in rice fields.


To check the effect of data augmentation on pest detection performance, some experiments are implemented on the original dataset and the augmented dataset. The results are given in 
Table 4
. 
Table 4
 shows that the PA and training time are improved on the augmented dataset. The main reason is that the IP102 dataset is class-imbalanced, and data augmentation can avoid overfitting and vanishing gradients. The training time on the original dataset is longer than that on the augmented dataset because the original dataset is insufficient to simulate the characteristics of pests.



Table 4 | 
The effect of data augmentation on pest detection performance.





	Results 
Dataset

	
PA (%)

	
MIoU (%)

	Training time (h)






	Original dataset
	81.61
	80.27
	4.28



	Augmented dataset
	82.07
	81.48
	3.30














4.6 Analysis


The field pest images are complex with small-sized and various-shaped pests, and many models find it difficult to capture the features of dense fine pests. VM-UNet is an effective backbone network for various segmentation and detection tasks in computer vision and can solve the problem of long-range dependency modeling caused by the inherent locality of U-Net and the computational complexity of Transformer. MAVM-UNet is an improved model of VM-UNet. 
Figures 4
-
6
 and 
Tables 2
-
4
 show that when the pests are very small with various shape details and there is low contrast between the pests and the background, MAVM-UNet, VM-UNet, and MSVM-UNet can detect field pests and are generally superior to other models. For smaller pests with thinner antennae and legs, MAVM-UNet can also locate pests and obtain pest details more accurately and precisely, while other models have phenomena such as missed detections and incompleteness to different degrees. The above results verify that the constructed MAVM-UNet outperforms the state-of-the-art models. The training time and GFLOPs of the proposed model are slightly longer than those of VM-UNet because the proposed model is more complex than VM-UNet.







5 Conclusions


The detection of pests in rice fields is important for the timely prevention and control of pests in rice. However, since the collected images of field pests are often complex and irregular with a massive background, pest detection is still a challenging task. Mamba-UNet can overcome the limitations by effectively capturing long-range dependencies with linear computational complexity through the utilization of the selective structure state space model. Inspired by VM-UNet and MSVM-UNet, a multiscale aggregated vision MambaU-Net (MAVM-UNet) is constructed. The model consists of three main modules: MSVSS, MSAA, and CAVSS. By integrating MSVSS, MSAA, and CAVSS, MAVM-UNet can effectively capture the multiscale contextual global–local features and long-range dependencies of various pests in rice fields. Experimental results on the rice pest image subset of the IP102 dataset indicate that the proposed MAVM-UNet is effective for field rice pest detection, with PA and MIoU of 82.04% and 81.37%, respectively. This model provides technical support for a pest and disease detection system by unmanned aerial vehicle equipment and an IoT platform. Future work should include trimming the model. Removing redundant neurons or layers can reduce the model size while maintaining performance. Designing a downsized version of VMM-UNET (for example, with fewer channels or a shallower architecture) can make it suitable for edge devices.
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The rice weevil (Sitophilus oryzae L.) is one of the most destructive pests of stored cereal grains, particularly wheat, leading to considerable post-harvest losses and posing serious threats to global food security and international trade. Rapid and accurate identification of infestations is essential for implementing timely pest management strategies and adhering to phytosanitary regulations. In this study, we report the development and validation of a molecular diagnostic assay that is rapid, sensitive, and highly specific for the early detection of S. oryzae in stored wheat grains. Two novel species-specific oligonucleotide primer sets—KNSoCox1F1/KNSoCox1R1 and KNSoCox2F1/KNSoCox2R1—were designed to amplify target regions of the mitochondrial cytochrome oxidase subunits I and II (COI and COII), generating diagnostic fragments of 176 bp and 248 bp, respectively. Conventional PCR demonstrated high specificity, with no cross-reactivity observed in other non-target insects or uninfested wheat samples. Further, sensitivity assessments using quantitative real-time PCR (qPCR) revealed detection thresholds as low as 1 picogram of genomic DNA, which corresponds to a single insect per 10 kg of grains. The assay easily operates in moderately equipped molecular laboratories and offers quick results with streamlined workflows or automation, making it ideally suited for use in quarantine stations, grain storage facilities, and entomological diagnostic laboratories. Its reliability, speed, and cost-efficiency make it a powerful tool for pest surveillance, ecological studies, and enhancing biosecurity protocols.
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Introduction

Wheat (Triticum aestivum L.) is a globally significant staple crop, cultivated extensively to meet the escalating food demands driven by the rapid growth of the human population (Nikos and Jelle, 2012; Shiferaw et al., 2013). Due to its widespread cultivation and substantial nutritional contribution, wheat is a cornerstone of global food and nutritional security and is regarded as the most strategically vital cereal crop worldwide (Nyaupane et al., 2024; Ulukan, 2024). It serves as a principal dietary component for approximately 40% of the global population. With the world population projected to reach 9.8 billion by 2050 (Severo et al., 2024), agricultural systems must either augment crop production by an estimated 1 billion tons annually (FAO, 2015) or substantially minimize post-harvest losses (Iqbal et al., 2017) to ensure sustainable food availability. Reduction of post-harvest losses could significantly enhance global food reserves, thereby diminishing the need for further intensification of agricultural practices (Kiaya, 2014).

Stored grain pests are responsible for approximately 20–40% of global post-harvest grain losses (Igbeka, 2013), posing a serious challenge to food availability and nutritional security (Midega et al., 2016). Among the key pests of stored cereals, the rice weevil, S. oryzae (L.) (Coleoptera: Curculionidae) is particularly destructive. Although traditionally associated with rice, S. oryzae is a polyphagous species capable of infesting wheat and other cereal grains. The insect completes its development within the seed kernels, resulting in concealed infestations that can lead to significant economic losses and pose health risks such as allergic reactions and gastrointestinal disturbances (Hansen et al., 2012).

Timely and accurate detection of S. oryzae infestations is essential for implementing effective management strategies (Obrepalska-Steplowska et al., 2008). Traditional detection methods have relied on sensory evaluation (e.g., visual inspection, odor assessment), temperature monitoring in storage units (Abass et al., 2018), and various physical and chemical techniques, including kernel staining (Frankenfeld, 1948), near-infrared spectroscopy (Dowell et al., 1998), acoustic sensors (Hagstrum et al., 1996; Fleurat-Lessard et al., 2006), microwave radar (Mankin, 2004), X-ray imaging (Karunakaran et al., 2003; Fornal et al., 2007), immunoassays (Kitto et al., 1994), pitfall traps, and visual surveillance (Njoroge et al., 2019). Despite their utility, many of these methods are labor-intensive, costly, time-consuming, and limited by low sensitivity, particularly in detecting juvenile insect stages or differentiating morphologically similar species. Acoustic techniques, for instance, necessitate specialized equipment for capturing insect-generated sounds (Mankin et al., 2021). Additionally, environmental sensing and volatile compound analysis using electronic-nose (e-nose) technology (Kaushik and Singhai, 2018) have been explored; however, these methods are often compromised by external environmental variables and remain inadequate for detecting cryptic or early-stage infestations (Neethirajan et al., 2007).

In this regard, molecular diagnostics offer a promising alternative for the rapid and precise identification of stored grain pests. These techniques can detect both active infestations and residual genetic material from past infestations (Křížková-Kudlíková and Hubert, 2007). Given the growing emphasis on automation and time-efficient quality control in food processing industries, molecular tools, particularly those based on Polymerase Chain Reaction (PCR), offer enhanced sensitivity and specificity. They facilitate early detection across all life stages of insects and can also elucidate genetic relationships, species distribution, and intra-species diversity (Fleurat-Lessard and Pronier, 2006).

Among molecular methods, PCR—especially quantitative real-time PCR (qPCR)—has gained attraction. While PCR is routinely employed in the food industry for detecting pathogens and genetically modified organisms (GMOs), its application for insect detectionin grains is gaining broader acceptance now-a-days in pest monitoring and quarantine practices. Several studies have successfully employed PCR to detect and differentiate stored grain insect pests. For example, species-specific DNA markers have been used to detect early-stage infestations of Rhyzopertha dominica in wheat (Negi et al., 2021), while multiplex PCR has facilitated differentiation among S. oryzae, S. granarius, and S. zeamais (Solà et al., 2018). Amplification of mitochondrial cytochrome oxidase I (COI) gene regions has proven effective for identifying species such as Sitophilus spp., R. dominica, Plodia interpunctella, Oryzaephilus spp., and Samea spp (Abbasi et al., 2021). Specific primers targeting mitochondrial genes like mtCOI and mtCOII, as well as internal transcribed spacer (ITS) regions of rDNA, have been developed for both standard and real-time PCR applications (Obrepalska-Steplowska et al., 2008; Nowaczyk et al., 2009). These tools allow accurate and stage-independent detection of pest species, including S. oryzae and S. zeamais (Devi et al., 2017). Recent work by Negi et al. (2021) demonstrated the application of qRT-PCR targeting mtCOI for rapid and high-fidelity detection of Tribolium castaneum, highlighting its potential for use in grain trade, milling, baking, and food processing industries.

Molecular techniques are now recognized for their high accuracy, specificity, sensitivity, and throughput capacity. A critical advantage lies in their ability to detect both active and historical infestations, enabling timely and informed management decisions. PCR and RT-PCR, in particular, are poised to play a pivotal role in the early detection of S. oryzae, thereby mitigating post-harvest losses. In light of the existing knowledge gaps and practical constraints of conventional methods, the present study was designed to develop species-specific primers targeting mitochondrial cytochrome oxidase regions, with the objective of establishing a simple, sensitive, and rapid molecular diagnostic protocol for S. oryzae detection in wheat grains.





Materials and methods




Wheat (T. aestivum L.) germplasm collection

The experiments were conducted during 2021–22 in the Entomology Laboratory of the Crop Protection Division at ICAR–Indian Institute of Wheat and Barley Research (IIWBR), Karnal, India. Disease- and insect-free wheat germplasm of the cultivar HS490, essential for the study, was obtained from the Germplasm Resources Unit (GRU) at ICAR–IIWBR. Prior to experimentation, the grains were thoroughly cleaned and inspected to eliminate any damaged kernels, thereby ensuring the absence of contamination.





Maintaining S. oryzae pure culture

The initial stock population of S. oryzae adults used in the study was sourced from the experimental laboratory of ICAR–IIWBR, Karnal, and subsequently reared for several generations on healthy wheat grains in the Insect Rearing Room of the Entomology Laboratory. For experimental purposes, the S. oryzae culture was maintained on undamaged wheat grains stored in 1-liter glass jars (20 cm height x 5 cm diameter) under controlled environmental conditions within a Biochemical Oxygen Demand (BOD) incubator, set at a temperature of 28 ± 2°C and relative humidity of 70 ± 5%.





Genomic DNA isolation from S. oryzae and wheat grains

Genomic DNA was extracted from adult S. oryzae individuals (used as positive controls) obtained from the maintained pure culture. Insect tissues were lysed using TNES buffer (comprising Tris-HCl, NaCl, EDTA, and SDS) in a microtube homogenizer. The resulting DNA pellet was resuspended in 1% TE (Tris-EDTA) buffer. To eliminate RNA contamination, 3 µl of RNase solution (10 mg/ml) was added to each sample, followed by incubation in a water bath at 37°C for 30 minutes. Additionally, genomic DNA was isolated by crushing the whole grains (5 g) of the wheat genotype HS490 and then following modified CTAB (cetyltrimethylammonium bromide) extraction protocol, based on the method described by Saghai-Maroof et al. (1984), with slight modifications.

Furthermore, genomic DNA was also isolated from contaminated wheat grains. For contaminating the wheat grains, two hundred gram of wheat grains, in triplicate, after conditioning, were maintained at 25 ± 2°C and 65 ± 5% relative humidity in round plastic containers of capacity 500 grams. One hundred pair of S. oryzae adults, were transferred in each container holding the grains and was covered with muslin cloth and tightened using rubber bands. Contaminated and infested grains were sub-sampled (5 g) for DNA isolation at 30 days after infestation through the same modified CTAB extraction method, resulting in contamination level of 1000 insects in one kg of grains.





DNA quantity and quality

The quantity and purity of DNA was tested using BioDrop Touch PC + Spectrophotometer (BioDrop, Cambridge shire, UK) by loading 1 μl sample of stock DNA. It was later diluted to prepare the working solution of 50 ng/μl concentration using the NFW (Nuclease Free Water) for further PCR based assays.





DNA amplification

For molecular identification of S. oryzae, genomic DNA of the insects was amplified in vitro in thermocyclers using already reported and available specific primers from the literature. Initially, four different primers (SOF1-SOR1, SOF2-SOR2, SOF3-SOR3, and SOF4-SOR4) were assessed for S. oryzae, that amplified the cytochrome oxidase (COX) gene of S. oryzae (Table 1). These primers were then used to amplify COI gene from extracted DNA of adult insects isolated from infested wheat grain samples.


Table 1 | Brief description of already reported S. oryzae specific primers used in the present investigation.
	Sr. no.
	Primer name
	Forward and reverse primer sequences (5’-3’)
	Amplicon size 
(bp-base pairs)
	Ta -Annealing temperature (°C)



	1.
	SOF1
	AGTTTGCTAATTCGGGCAGA
	950
	55.5


	SOR1
	ACTCCGGTTAATCCTCCAAT


	2.
	SOF2
	CTAATTCGGGCAGAACTAGGAA
	484
	55.5


	SOR2
	AGAGGAGGAGAATAGCAGTGATTCTT


	3.
	SOF3
	TTTCTTCAAGATAGAGCCTCACC
	551
	56.5


	SOR3
	GCTCCGCAAATTTCAGAACA


	4.
	SOF4
	CTACTAACCACAAAGATATCGG
	653
	50.0


	SOR4
	TAAACTTCAGGGTGACCAAAAAATCA







The PCR amplification was performed in a total reaction volume of 10 µL, comprising 1 µL of template DNA, 1 µL of primer mix (containing equimolar concentrations of both forward and reverse primers, each at 10µM concentration), 5 µL of GoTaq® G2 Green Master Mix (Promega), and 3 µL of nuclease-free water (NFW). The thermocycling conditions included an initial denaturation step at 95°C for 5 minutes, followed by 35 cycles of denaturation at 94°C for 30 seconds, annealing at the primer-specific annealing temperature (Ta) for 30 seconds, and extension at 72°C for 1 minute. A final extension was carried out at 72°C for 10 minutes, and the amplified products were subsequently held at 4°C. Reactions were conducted using a Q Cycler 96 thermal cycler (Hain Life Sciences, UK).

The resulting PCR products were resolved by electrophoresis on a 2% agarose gel prepared in 1× TBE (Tris-Borate-EDTA) buffer and stained with ethidium bromide at a concentration of 0.5 mg/mL. Electrophoresis was carried out at 90 V for 45 minutes. DNA bands were visualized under ultraviolet (UV) illumination, and fragment sizes were estimated by comparing the banding patterns to expected sizes based on the primer specifications.





Designing specific primers of S. oryzae

The sequencing of the amplified PCR products was conducted to confirm the identity of the target insect pest species by analyzing the nucleotide composition of the cytochrome oxidase (COX) gene region. This process was carried out through a commercial sequencing service provided by Eurofins Genomics India Pvt. Ltd. The resulting amplicons were subjected to Sanger sequencing to generate precise DNA sequences of the targeted COX region. To verify the identity of the amplified sequences and ensure species-specific amplification, the obtained sequences were analyzed using the Basic Local Alignment Search Tool (BLAST) available on the National Center for Biotechnology Information (NCBI) website (https://www.ncbi.nlm.nih.gov/tools/primer-blast), using default parameters. The sequences were compared with publicly available COX gene sequences in the NCBI database to confirm their alignment with the cytochrome oxidase gene of S. oryzae and to check for any homology with unrelated species. This comparative analysis helped validate the specificity and accuracy of the amplified region. Species-specific primers for S. oryzae were designed by aligning COX gene sequences from S. oryzae and other insect species to identify conserved and unique regions. The alignment was performed using MEGA 11 (Molecular Evolutionary Genetics Analysis) software. The primary objective of this alignment was to identify conserved motifs within the COX gene suitable for designing primers capable of selectively amplifying S. oryzae DNA without cross-reactivity with non-target species. This strategy facilitated the development of new primers from conserved regions that allowed for precise and extended amplification of the COX gene, which in turn enabled reliable species-level identification following sequencing.

The newly designed forward and reverse primers were synthesized and procured from Eurofins Genomics India Pvt. Ltd. These primers were then used in subsequent PCR assays for species-specific amplification and molecular identification of S. oryzae in wheat grain samples.





Amplification through polymerase chain reaction

The PCR amplification was carried out in a total reaction volume of 25 µL, prepared by combining 1 µL of template DNA (at a concentration of 50 ng/µL), 2 µL of custom-designed primer mix (comprising equal volumes of forward and reverse primers, each at 10 µM concentration), 12.5 µL of GoTaq® G2 Green Master Mix (Promega), and 9.5 µL of nuclease-free water (NFW). A no-template control (NTC), containing all reaction components except the DNA template, was included to detect any contamination or nonspecific amplification. PCR amplification was performed using a Q Cycler 96 thermal cycler (Hain Life Sciences, UK). The thermocycling conditions included an initial denaturation at 95°C for 5 minutes, followed by 35 amplification cycles consisting of denaturation at 94°C for 30 seconds, primer annealing at 56°C for 30 seconds, and extension at 72°C for 1 minute. The final extension was carried out at 72°C for 10 minutes, after which the reaction mixtures were held at 4°C until further analysis. To confirm the amplification of the target cytochrome oxidase (COX) gene region, the PCR products were subjected to agarose gel electrophoresis. A 2% agarose gel was prepared in 1× TBE (Tris-Borate-EDTA) buffer and stained with ethidium bromide at a final concentration of 0.5 mg/mL. The gel was run at a constant voltage of 90 V for 45 minutes. The resulting DNA bands were visualized under ultraviolet (UV) light using a gel documentation system. Band sizes were estimated by comparing the migration pattern of the PCR amplicons to a standard 100 bp DNA ladder (Bangalore Genie, India), which served as the molecular weight reference. The presence of specific bands at expected sizes confirmed successful amplification of the target COX gene fragment.





Specificity analysis

To verify the specificity of the designed primers, genomic DNA was also extracted from eight distinct unrelated species, including R. dominica; Tribolium castaneum; Tribolium confusum; Callosobruchus chinensis; Oryzaephilus surinamensis; Lasioderma serricorne; Corcyra cephalonica; and aphid, Raphalosiphum maidis using the previously described method.

Specificity of the designed primers towards S. oryzae was confirmed in standard PCR reaction as mentioned above by amplifying the designed primers using pure DNA of S. oryzae adults collected in eight different lots from the local market, contaminated and uncontaminated wheat grains and eight different unrelated insect species. NTC was kept for the experiment to check the specificity of the reaction. The PCR reaction cocktail, master mixture, thermal cycler profile, and electrophoretic conditions were similar as described earlier. This assay was replicated twice for confirmation.





Sensitivity analysis

The sensitivity of the primers was evaluated using real-time PCR (qPCR). To detect S. oryzae contamination, DNA samples were extracted from both contaminated and uncontaminated wheat grains. This approach enabled quantitative assessment of S. oryzae infestation. Serial dilutions of the DNA were prepared, ranging from 10 ng/μl to 0.1 pg/μl, to assess the sensitivity of the primers. These DNA dilutions were used as templates for the qPCR experiments. Additionally, a NTC and DNA from healthy, uncontaminated grains were included to ensure specificity of the reactions. Pure S. oryzae DNA served as the positive control, while the NTC acted as the negative control. The DNA-binding fluorescent dye SYBR Green, in combination with the primers, provided high detection specificity during qPCR.

The qPCR reaction was carried out in a total volume of 20 µl, containing 1 µl of template DNA, 2 µl of the designed primer mix (equal volumes of forward and reverse primers), 10 µl of SYBR Green dye (Promega GoTaq® G2 Green), and 7 µl of nuclease-free water (NFW). The reaction was conducted without DNA template for the NTC. The amplification protocol followed the same parameters as the conventional PCR experiments, and the reactions were performed using a Q Cycler 96 thermal cycler (Hain Life Sciences, UK). Cycle threshold (Ct) values were obtained for each DNA dilution. These results were validated by performing a melting curve analysis and constructing a standard curve. The efficiency of the qPCR was calculated by plotting Ct values against the logarithmic scale of DNA concentrations (in g) and determining the regression equation from the resulting graph.






Results




DNA quantity and quality

Concerning the amount and quality of DNA analysis using the BioDrop Touch PC + Spectrophotometer (BioDrop, Cambridge shire, UK), the majority of positive control DNA samples of test insect fell between 500 and 800 ng/μl, whereas the DNA extracted from grain samples fell between 800 and 2 μg/μl.





Development of species-specific primers

Based on the multiple sequence alignment of S. oryzae accessions with sequences of other wheat-infesting insects available in the NCBI database, conducted using nucleotide BLAST and MEGA 11 software, two distinct primer sets were designed (Table 2). These two sets of forward and reverse primer pairs (KNSoCox1F1/KNSoCox1R1 and KNSoCox2F1/KNSoCox2R1) lie within the COI and COII region of S. oryzae, respectively.


Table 2 | Primers developed in the present study specific to COX I and COX II region of S. oryzae DNA.
	Primer Name
	Forward and reverse primer sequences (5’-3’)
	Primer base pairs
	Amplicon size
	Ta - Annealing temperature (˚C)



	Primer 1
	KNSoCox1F1
	GAGCCCCAGATATAGCATTCC
	21
	176
	56


	KNSoCox1R1
	GGCCAGATCAACAGAAGCTC
	20


	Primer 2
	KNSoCox2F1
	ATTGCCTTACCCTCACTTCG
	20
	248
	56


	KNSoCox2R1
	TCTGCAGACGTAACTAAGAGTCG
	23











PCR detection and confirmation of diagnostic markers

In order to assess the KNSoCox1F1/KNSoCox1R1 and KNSoCox2F1/KNSoCox2R1 primer pairs efficacy, the genomic DNA extracted from eight distinct isolates of S. oryzae collected from the local market, the genomic DNA of contaminated and uncontaminated wheat grains, and the genomic DNA of eight distinct unrelated species (Table 3) were used as templates for the PCR assay. NTC was kept for the confirmation.


Table 3 | Ct values of analyzed samples in real-time PCR reaction with primer 1 specific for COI of S. oryzae infesting wheat.
	S.No.
	Sample
	Ct value



	Primer 1


	1.
	S. oryzae
	18.83


	2.
	Contaminated wheat grains @ 1000 insects per kg
	21.27


	3.
	Contaminated wheat grains @ 100 insects per kg
	24.52


	4.
	Contaminated wheat grains @ 10 insects per kg
	27.3


	5.
	Contaminated wheat grains @ 1 insects per kg
	30.28


	6.
	Contaminated wheat grains @ 1 insects per 10 kg
	33.12


	7.
	Uncontaminated grains
	No Ct


	8.
	No DNA Template
	No Ct


	Primer 2


	1.
	S. oryzae
	17.92


	2.
	Contaminated wheat grains @ 1000 insects per kg
	21.31


	3.
	Contaminated wheat grains @ 100 insects per kg
	24.31


	4.
	Contaminated wheat grains @ 10 insects per kg
	27.05


	5.
	Contaminated wheat grains @ 1 insects per kg
	29.82


	6.
	Contaminated wheat grains @ 1 insects per 10 kg
	33.21


	7.
	Uncontaminated grains
	No Ct


	8.
	No DNA Template
	No Ct







The chances of cross-species amplification for the developed PCR assay designed to detect S. oryzae infestation were negated by PCR-based amplicon generation (Figures 1, 2). It showed that each set of the designed primers produced only a single band of 176 bp and 248 bp from the DNA of S. oryzae and contaminated grains, but not from the other 8 unrelated insect species, uncontaminated grains and NTC.

[image: Gel electrophoresis image labeled "Primer 1" shows 21 sample lanes and two DNA ladders at both sides. Bright bands are visible in lanes 1 to 11 at 176 base pairs, indicating successful amplification.]
Figure 1 | The PCR Reaction and specificity test for Primer 1 (KNSoCox1F1/KNSoCox1R1) specific to COX I region of S. oryzae DNA. The well numbering (1-21) in the figure represents the DNA samples of (1-8): S. oryzae obtained from eight different lots from local market; (9-10): S. oryzae infested/contaminated wheat grains; (11-12): uninfested healthy wheat grains; (13): R. dominica; (14): Tribolium castaneum; (15): Tribolium confusum; (16): Callosobruchus chinensis; (17): Oryzaephilus surinamensis; (18): Lasioderma serricorne; (19): Corcyra cephalonica; (20): aphid, Raphalosiphum maidis; (21): NTC.

[image: A black and white gel electrophoresis image labeled “Primer 2” shows twenty-one wells with horizontal DNA bands; lanes 1 to 11 display prominent bands at 248 base pairs. Lanes 1 and 21 contain DNA ladders.]
Figure 2 | The PCR Reaction and specificity test for Primer 2 (KNSoCox2F1/KNSoCox2R1) specific to COX II region of S. oryzae. The well numbering (1-21) in the figure represents the DNA samples of (1-8): S. oryzae obtained from eight different lots from local market; (9-10): S. oryzae infested/contaminated wheat grains; (11-12): uninfested healthy wheat grains; (13): R. dominica; (14): Tribolium castaneum; (15): Tribolium confusum; (16): Callosobruchus chinensis; (17): Oryzaephilus surinamensis; (18): Lasioderma serricorne; (19): Corcyra cephalonica; (20): aphid, Raphalosiphum maidis; (21): NTC.





Specificity and validation of diagnostic markers

The specificity of the designed primers for S. oryzae DNA and S. oryzae-infested wheat grains was assessed using a standard PCR reaction. S. oryzae DNA served as the positive control, and DNA with no template was used as the negative control. The results were verified through agarose gel electrophoresis, which displayed the amplified PCR products. The findings showed that primer 1 (KNSoCox1F1/KNSoCox1R1) targeting the COX I region and primer 2 (KNSoCox2F1/KNSoCox2R1) targeting the COX II region of S. oryzae DNA specifically bound at 176 bp and 248 bp, respectively, for both S. oryzae and contaminated wheat grains. No bands were observed for DNA extracted from uncontaminated grains or from eight other unrelated insect species (Figures 1, 2). Consequently, these primers did not amplify DNA from insect-free grains or other insects. Additionally, the assay was repeated twice, and no significant variation in the results was found.

Therefore, the two primers that were found specific to S. oryzae were further tested through quantitative PCR (qPCR) to check the sensitivity of the primers by using different dilutions.





Sensitivity analysis

Real-time PCR was used to detect S. oryzae grain contamination using DNA samples isolated from contaminated and uncontaminated wheat grains. This approach makes it possible to assess the presence of S. oryzae infestation quantitatively. It makes it possible to even detect the S. oryzae DNA sample having infestation level of one insect per 10 kg of contaminated wheat grains for both the primers (Primer 1- KNSoCox1F1/KNSoCox1R1 and Primer 2- KNSoCox2F1/KNSoCox2R1). Ct (Cycle threshold) values were obtained for all these samples (Primer 1 & 2: Table 3). The Ct is defined as the cycle at which PCR enters the exponential phase and the fluorescence emission exceeds the threshold limit. The results were confirmed using standard curve (Primer 1: Figure 3; Primer 2: Figure 4) and melting curve (Primer 1: Figure 5; Primer 2: Figure 6) analysis. The efficiency of the qPCR was computed by graphing Ct values against -log (DNA concentration in g) and figuring out the regression equation.

[image: Scatter plot with a linear regression line showing an inverse correlation between log copies of DNA per milliliter on the x-axis and Ct values on the y-axis, with equation y = -2.8931x + 36.013 and R squared value 0.9992.]
Figure 3 | Standard curve of analyzed samples in real-time PCR reaction with primer 1 specific for COI of S. oryzae infesting wheat.

[image: Scatter plot showing a negative linear relationship between log copies of DNA per milliliter on the x-axis and Ct values on the y-axis. The regression equation is y equals negative 2.992x plus 36.075, with an R squared value of 0.9986.]
Figure 4 | Standard curve of analyzed samples in real-time PCR reaction with primer 2 specific for COII of S. oryzae infesting wheat.

[image: Line graph with multiple overlapping green curves showing a sharp peak around the x-value of seventy and rapidly declining thereafter; one horizontal green line at approximately one hundred units serves as a reference threshold.]
Figure 5 | Melting curve of analyzed samples in real-time PCR reaction with primer 1 specific for COI of S. oryzae infesting wheat.

[image: Line graph with five overlapping green curves showing sharp peaks near x equals seventy and a horizontal green reference line at y equals one hundred. Y-axis ranges from zero to four hundred. X-axis ranges from sixty to ninety-five.]
Figure 6 | Melting curve of analyzed samples in real-time PCR reaction with primer 2 specific for COII of S. oryzae infesting wheat.






Discussion

Molecular biology-based diagnostic techniques are increasingly gaining traction across various biological disciplines, primarily due to their high reliability, sensitivity, rapid turnaround time, and specificity. In the present study, we developed and validated a rapid, sensitive, and species-specific molecular diagnostic method for the detection and identification of S. oryzae (rice weevil) infestation in wheat grains. S. oryzae is among the most destructive pests of stored cereals, particularly wheat, with considerable implications for post-harvest losses and international trade biosecurity.

To facilitate precise detection, we designed novel species-specific oligonucleotide primers targeting the mitochondrial cytochrome oxidase (mtCOX) gene complex, including both COI and COII subunits. These gene regions are widely recognized for their high interspecific variability and utility in molecular taxonomy and species-level identification. Although various genetic markers have been developed for the identification of grain-infesting beetles (Křížková-Kudlíková and Hubert, 2007), to our knowledge, this is the first report presenting COI/COII-based primers specifically designed for unambiguous detection of S. oryzae in wheat.

Early and accurate identification of S. oryzae infestations is critical for the enforcement of phytosanitary regulations, quarantine protocols, and surveillance measures during grain storage and international trade. PCR-based diagnostics have previously been developed for several storage pest species, including Tribolium confusum and T. castaneum (Nowaczyk et al., 2009; Kamel et al., 2016; Negi et al., 2021), as well as S. zeamais and S. granarius (Obrepalska-Steplowska et al., 2008; Devi et al., 2017; Solà et al., 2018). Moreover, a similar approach was imployed for the development of a highly sensitive (2.6 mg arthropod/500g rice) qPCR-based method for the detection of arthropod pests in stored rice by del Arco et al. (2025) using universal arthropod primers which successfully detected 10 most common pest species affecting rice but is recommended to be used only in commodities with a certain degree of processing to avoid environmental DNA detection. These PCR protocols are widely adopted in entomological diagnostic laboratories owing to their high sensitivity and specificity, minimal DNA requirements, and operational simplicity. Furthermore, commercial kits for DNA extraction from both insect tissue and grain matrices enhance the efficiency of molecular workflows. However, the reliability of this protocol is highly dependent on the effective strategies imployed for sampling and screening of the grain lots. For this method to detect the infestation, it is very important to ensure that multiple uniform sub-samples are taken, which truely represent the whole stock.

In this study, primer design was informed by computational analysis of the mtCOX gene region of S. oryzae. This locus is highly polymorphic among closely related taxa, making it an ideal target for species discrimination. Multiple studies have validated the effectiveness of COX genes for insect species identification (Ahrens et al., 2007; Nowaczyk et al., 2009; Kamel et al., 2016; Solà et al., 2018; Abbasi et al., 2021; Negi et al., 2021). The primers developed herein specifically amplify 176 bp and 248 bp fragments of the COI and COII regions, respectively. No amplification was observed from non-target insects or uninfested grains, affirming the assay’s high specificity. This is consistent with prior reports that underscore the importance of using highly variable mtDNA regions for reliable species discrimination (Min and Hickey, 2007; Dasmahapatra et al., 2010; Virgilio et al., 2012; Church et al., 2019).

The utility of the mtCOX region has also been extensively demonstrated in detecting pests such as Plodia interpunctella, Rhyzopertha dominica, Oryzaephilus spp., and Samea spp (Abbasi et al., 2021), as well as T. confusum (Nowaczyk et al., 2009) and T. castaneum (Negi et al., 2021). The use of multi-copy mitochondrial genes and variable nuclear ribosomal DNA regions (e.g., internal transcribed spacers or ITS) significantly enhances assay sensitivity (Cheng et al., 2003; Hsu et al., 2003). However, only regions exhibiting sufficient interspecific divergence are suitable for species-level resolution, as demonstrated by Peng et al. (2003) for closely related Sitophilus species. Kaundal et al. (2023) also used the COX1 gene for molecular analysis to validate the presence of S. oryzae and S. granarius. Similarly, the existence of S. oryzae, S. zeamais and S. granarius was confirmed by Suhriani et al. (2023) using COX1 gene.

Our PCR-based approach offers notable advantages over conventional detection methods. It requires only standard laboratory equipment—thermal cyclers and electrophoresis systems—making it feasible for routine implementation. The assay demonstrated exceptional sensitivity, detecting as little as 1 picogram (pg) of S. oryzae genomic DNA, equivalent to the infestation of a single insect per 10 kg of wheat grain, aligning with detection thresholds reported by Nowaczyk et al. (2009). This is particularly significant in the context of the Polish standard PN-69/R-74016, which allows only one insect per kilogram of grain.

Moreover, a quantitative real-time PCR (qPCR) assay was also developed to assess infestation levels. This approach enhances diagnostic resolution, enabling detection of minute quantities of target DNA, even from residual insect fragments in sieved grain samples. The qPCR protocol, using COI/COII-specific primers, allows for the establishment of standard curves and accurate quantification of S. oryzae DNA across a range of concentrations. This provides a robust supplementary tool for surveillance and contamination assessment in grain storage facilities.

The developed PCR assay is of high practical relevance for quarantine and regulatory applications where time-sensitive and precise species identification is imperative. Notably, it permits rapid screening of samples within 24 hours, enabling timely decision-making and mitigation strategies. Importantly, the assay is capable of detecting S. oryzae infestation at an early stage, thus facilitating prompt intervention and reducing post-harvest losses.





Conclusion

In this study, two species-specific molecular markers targeting the mitochondrial COI and COII genes of S. oryzae were developed using primer pairs KNSoCox1F1/KNSoCox1R1 and KNSoCox2F1/KNSoCox2R1. Standard PCR assays produced distinct amplicons of 176 bp and 248 bp, confirming high specificity with no cross-reactivity in non-target insects or uninfested grains. Real-time PCR detected S. oryzae DNA at infestation levels as low as one weevil per 10 kg of wheat. The assay is rapid, sensitive, reliable, and cost-effective, making it ideal for entomological diagnostics, ecological studies, host-pest interactions, routine screening of stored products, and quarantine applications. It provides a valuable tool for early detection and quantification of S. oryzae in pest management and biosecurity.
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Thrips can damage over 200 species across 62 plant families, causing significant economic losses worldwide. Their tiny size, rapid reproduction, and wide host range make them prone to outbreaks, necessitating precise and efficient population monitoring methods. Existing intelligent counting methods lack effective solutions for tiny pests like thrips. In this work, we propose the Thrip Counting and Detection Network (TCD-Net). TCD-Net is an fully convolutional network consisting of a backbone network, a feature pyramid, and an output head. First, we propose a lightweight backbone network, PartialNeXt, which optimizes convolution layers through Partial Convolution (PConv), ensuring both network performance and reduced complexity. Next, we design a lightweight channel-spatial hybrid attention mechanism to further refine multi-scale features, enhancing the model’s ability to extract global and local features with minimal computational cost. Finally, we introduce the Adaptive Feature Mixer Feature Pyramid Network (AFM-FPN), where the Adaptive Feature Mixer (AFM) replaces the traditional element-wise addition at the P level, enhancing the model’s ability to select and retain thrips features, improving detection performance for extremely small objects. The model is trained with the Object Counting Loss (OC Loss) specifically designed for the detection of tiny pests, allowing the network to predict a small spot region for each thrips, enabling real-time and precise counting and detection. We collected a dataset containing over 47K thrips annotations to evaluate the model’s performance. The results show that TCD-Net achieves an F1 score of 85.67%, with a counting result correlation of 75.50%. The model size is only 21.13M, with a computational cost of 114.36 GFLOPs. Compared to existing methods, TCD-Net achieves higher thrips counting and detection accuracy with lower computational complexity. The dataset is publicly available at github.com/ZZL0897/thrip_leaf_dataset.
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1 Introduction


Thrips belong to the order Thysanoptera and the family Thripidae. These insects are small in size, reproduce rapidly, and have a body length of less than 2mm. They are typically yellow, brown, or black in color. The eggs vary in shape, including kidney-shaped, round, and oval, with colors ranging from colorless to white and yellow (Zhang, 2011; Wu et al., 2018). Thrips exhibit diverse feeding habits, predominantly phytophagous. Thrips exhibit diverse feeding habits, predominantly phytophagous. They can damage over 200 crop species from 62 families, including Cucurbitaceae, Fabaceae, Brassicaceae, and Solanaceae (Kirk et al., 2021). Thrips inflict significant economic losses worldwide. Controlling thrips is challenging for three main reasons: 1) Their small size and strong concealment tendencies, as they prefer to hide in flowers, tender tips, and the undersides of leaves, making detection difficult. 2) Their short life cycle and rapid reproduction, which contribute to the rapid development of resistance to chemical pesticides, leading to outbreaks. 3) Their broad host range, strong dispersal ability, and excellent ecological adaptability, enabling severe damage to various crops (Steenbergen et al., 2018). Therefore, It is crucial to accurately detect and count thrips.


Traditional manual counting methods for pests are time-consuming and labor-intensive, while computer vision and deep learning-based intelligent detection technologies can significantly improve monitoring efficiency (Zhang et al., 2020b, 2024, 2024; Liu et al., 2025; Zhang et al., 2025). Current research on pest intelligent detection and counting mainly focuses on improvements to object detection algorithms. Key improvements include optimizing feature extraction backbones, enhancing the Feature Pyramid Network (FPN), improving the Region Proposal Network (RPN), and optimizing anchor generation and selection mechanisms to better suit pest counting and detection tasks (Jiao et al., 2020; Dong et al., 2021; Liu et al., 2021a; Wang et al., 2021b; Jiao et al., 2022b; Wang et al., 2023; Dong et al., 2024b). For instance, Wang et al. (2021a) and Jiao et al. (2022a) both made improvements to R-CNN by incorporating attention mechanisms into the network, enriching the features extracted to enhance detection performance. Dong et al. (2024a) made comprehensive improvements to the YOLO model, effectively enhancing the model’s feature attention capabilities and multi-scale feature extraction, increasing accuracy while reducing model parameters. These studies demonstrated the strong benchmark performance of object detection in pest counting and detection tasks. They have made effective improvements to address challenges such as small pest size and complex backgrounds, promoting the application of object detection methods in agricultural pest detection expert systems.


However, detecting and counting extremely small pests like thrips and planthoppers still poses challenges. Small object detection has consistently posed a challenge for object detectors, often resulting in False Negatives (FNs) and False Positives (FPs). The limited features and low signal-to-noise ratio of extremely small pests hinder object detectors from extracting sufficient features or accurately locating the anchors (Zhan et al., 2022; Dong et al., 2024b; Zhang et al., 2024a). Some scholars have explored solutions to these challenges. He et al. (2020) and Lee et al. (2020) both used Faster R-CNN for intelligent detection of brown planthoppers and tea thrips, respectively. Wang et al. (2021a) and Wang et al. (2021b) improved RPN and incorporated feature attention mechanisms to enhance detection performance for small pests. De Cesaro et al. (2022) utilized Mask R-CNN for counting aphids and parasitic wasps, achieving approximately 80% result correlation. Li et al. (2022) proposed a two-stage detection method for whiteflies and thrips, initially locating pests using spectral features, followed by recognition using Support Vector Machines (SVM). Wang et al. (2023) developed an anchor-free framework and a dynamic detection head, achieving competitive results on two multi-class small-object pest datasets. Dong et al. (2024b) designed multi-scale feature aggregation and dynamic perception modules, achieving optimal detection performance. Yang et al. (2024) introduced a super-resolution module and multi-level feature fusion in YOLOv8, achieving a 57% mAP for detecting extremely small pests. Zhang et al. (2024a) proposed an innovative rice planthopper detection method based on a fully convolutional architecture and object counting loss, achieving an F1 score of 92.36%. Banerjee et al. (2024) and Wu et al. (2024) designed IoT-based thrips pest monitoring systems, which effectively improved monitoring efficiency for thrips populations in their experimental environments.


The aforementioned studies provide innovative research ideas and improvement pathways for counting and detecting extremely small pests. However, research on intelligent counting methods for thrips remains limited. Existing methods for precise counting and detection of thrips still have significant room for improvement in detection accuracy and model runtime efficiency. Therefore, this paper focuses on thrips as the research subject, collects thrips infestation data from Spathiphyllum floribundum ‘Clevelandii’ cultivated in greenhouses, and proposes a new real-time counting and detection algorithm for thrips, offering an efficient and reliable intelligent method for monitoring small pests in greenhouses. The main contributions of this paper are as follows:


	
Thrip Counting and Detection Network (TCD-Net). A fully convolutional network based on a multi-level attention mechanism and feature adaptive fusion is built. The Object Counting Loss (OC Loss), designed for extremely small pests, is used to train the network, enabling real-time and accurate detection and counting of thrips in greenhouses.


	
Optimized backbone network and feature attention mechanism. The PartialNeXt backbone network is proposed, the convolution layers of ConvNeXtV2 are optimized using Partial Convolution (PConv), improving the network’s computational efficiency and feature reuse capability. Then, a channel-spatial hybrid attention (HA) mechanism that balances performance and efficiency is designed to enhance detection stability.


	
Multi-scale feature adaptive fusion: The Adaptive Feature Mixer Feature Pyramid Network (AFM-FPN) is proposed, using Adaptive Feature Mixer (AFM) for adaptive fusion of P-level multi-scale features, enhancing the model’s ability to select and retain thrips features, thereby improving detection accuracy for extremely small objects.


	
We collect a thrips dataset consisting of 5,618 images and 47,726 annotations. Extensive experiments and comparisons are conducted on this dataset to verify the superiority of TCD-Net in detection accuracy and computational efficiency.









2 Materials





2.1 Data acquisition


Our team collected the dataset from July to September 2024 in the Plant Growth Chamber at Jingchu Sci-tech Park, Jingchu University of Technology, using potted Spathiphyllum floribundum ‘Clevelandii’. The temperature in the growth chamber was 25°C, with humidity levels ranging from 50% to 70%, and light intensity was 10,000 lux. The thrips species identified on the infected leaves was Megalurothrips usitatus. Data collection was carried out by six plant protection students. They randomly took 2–3 images of thrips on the leaves at different time intervals using smartphones, keeping only the clearest image at each location. The shooting environment is shown in 
Figure 1
.


[image: Two photographs show rows of healthy green potted plants arranged on multi-level metal shelves in an indoor environment with a tiled floor and bright lighting. The plants appear well organized and evenly spaced.]
Figure 1 | 
Plant greenhouse.








2.2 Dataset


After data collection was completed, a total of 5,618 images were selected to form the dataset, and all images were resized to a resolution of 1280×1280. The thrips annotations were performed collaboratively by six photographers, followed by a second round of verification to ensure annotation accuracy. The annotation tool used was Labelme, with the initial annotation results in json format. Subsequently, we converted the annotation results to COCO and YOLO formats for easy comparison with other methods. The dataset contains a total of 47,726 thrips annotations. The dataset was split into training, validation, and test sets in a 6:2:2 ratio, and specific statistics are shown in 
Table 1
. The dataset is publicly available at github.com/ZZL0897/thrip_leaf_dataset.



Table 1 | 
Dataset information.





	Train

	Validation

	Test

	Statistics




	Images

	Annotations

	Images

	Annotations

	Images

	Annotations

	Avg. num

	Avg. bbox area






	3370
	28934
	1124
	9407
	1124
	9385
	8.5
	176px










It is worth noting that the average pixel area of the thrips bounding boxes in the images is only 176px, with widths ranging from 2px to 54px and heights ranging from 2px to 56px. The ratio of the average pixel area of the bounding boxes to the image pixel area is only 0.011%, which highlights the fact that thrips are extremely small targets in the images, making accurate detection a significant challenge.







3 Proposed method





3.1 Network construction


The overall structure of TCD-Net is shown in 
Figure 2
. Its modular design is similar to that of a typical object detection network. The backbone network extracts rich multi-scale feature information from the input image, with attention mechanisms further enhancing the feature representation. These multi-scale features are fed into the FPN to improve the network’s performance in detecting small objects (Lin et al., 2017). Finally, the output head generates the final predictions. Unlike traditional object detection methods, this network is fully convolutional. The output head consists of four 1×1 convolutions, which reduce the output channel count of the FPN to 1, and interpolate it back to the input size, ultimately combining the results into a single prediction output.


[image: Diagram of a deep learning model architecture showing input passing into the PartialNeXt_Nano backbone, followed by hybrid attention modules labeled as HA, then through an adaptive feature mixer and feature pyramid network neck, leading to the head and generating output.]
Figure 2 | 
The overall structure of TCD-Net. The network architecture consists of four components. The backbone network extracts fundamental image features and outputs four sets of multi-scale feature maps. These four feature maps are then fed into the Hybrid Attention (HA) for further refinement, followed by adaptive feature fusion through the AFM-FPN. Finally, four 1×1 convolutional layers serve as the output heads to generate the prediction results.




A regular fully convolutional network cannot count and localize tiny objects. We address this by using a specially designed loss function during training, allowing the network to accept object detection labels and enabling the counting and detection of small pests in images. The implementation process will be detailed in Sections 3.2 and 3.3.





3.1.1 Feature extraction backbone


The choice of feature extraction backbone plays a crucial role in the performance of the model. We improve the ConvNeXtV2 and propose the PartialNeXt, which offers higher computational efficiency and better feature extraction performance. The introduction of ConvNeXtV2 has elevated the convolutional neural network model to new heights in both computational efficiency and model performance (Woo et al., 2023). However, its key feature extraction convolution layer uses a 7×7 Depthwise Convolution (DWConv), which reduces the model’s parameter count and computation load. But due to increased memory access frequency and insufficient hardware optimization, the computational speed is actually reduced. Therefore, we replace the DWConv in ConvNeXtV2 with Partial Convolution (PConv) to enhance the model’s computational speed. The core idea of PConv is that there is significant redundancy in the massive feature maps of the model. PConv performs traditional convolution operations only on a small portion of the feature map, while the remaining majority of the feature map is directly passed to the next layer. This achieves a balance between model efficiency and performance (Chen et al., 2023). The operation process of PConv is shown in 
Figure 3
.


[image: Diagram illustrating a residual neural network block with two parallel paths: one showing direct identity mapping with an arrow, and the other applying 2D convolution using yellow convolutional kernels, both merging at the output.]
Figure 3 | 
Partial convolution. PConv only performs traditional convolution operations on a small portion of the feature map, and the rest is directly passed to the next layer. This reduces computational redundancy and memory access frequency, and with the use of traditional convolutions, it benefits from better hardware support, improving computation speed.




The structural parameters of the backbone network refer to the Nano version of ConvNeXtV2, which offers good feature extraction ability while maintaining low parameter and computation counts. The overall structure of PartialNeXt is shown in 
Figure 4A
.


[image: Three labeled diagrams depict neural network structures. Panel A shows the PartialNeXt architecture, detailing input, convolution, layer normalization, repeated PartialNeXt Blocks, and downsampling across spatial dimensions. Panel B illustrates a downsampling block with layer normalization and convolution. Panel C displays the PartialNeXt Block, sequentially comprising partial convolution, normalization, convolution, GELU activation, a GRN module, another convolution, and a skip connection. Color highlights differentiate block types.]
Figure 4 | 

(A) The overall structure of PartialNeXt, its layers and channels are designed according to ConvNeXt Nano; (B) The structure of the Downsample layer; (C) The structure of the PartialNeXt Block, its key improvement is to use partial convolution to optimize feature extraction.




The network structure of PartialNeXt adopts a hierarchical design, divided into four stages. Each stage contains a downsampling layer, with the number of blocks and channels in each stage consistent with ConvNeXtV2 Nano. The stages, from shallow to deep, contain [2, 2, 8, 2] PartialNeXt Blocks with corresponding channel counts of [80, 160, 320, 640]. Multi-scale features are crucial for object detection tasks, and these four stages can extract features at four different scales, C2 to C5, for subsequent feature fusion. The structure of the Downsample layer is shown in 
Figure 4B
, responsible for reducing the resolution of feature maps and expanding the channel count. At the beginning of each stage, a convolution layer with a kernel size of 2 and a stride of 2 reduces the resolution of the feature map by half while doubling the number of channels. Layer Normalization is applied to ensure stable feature distribution, enhancing model training efficiency. The structure of the PartialNeXt Block is shown in 
Figure 4C
. Each Block starts with PConv, which is the most critical improvement, with a kernel size of 7. We use the default parameters from the PConv paper, where the ratio of the feature map for feature extraction to the feature map for direct forward is 1:3. A 1×1 convolution is used for cross-channel information fusion, while the other modules follow the ConvNeXtV2 design.






3.1.2 Hybrid attention


Although the model employs a fully convolutional architecture, its objective is to achieve accurate counting and localization of tiny thrips rather than pursuing precise contour segmentation. Therefore, we introduce a lightweight hybrid channel-spatial attention mechanism. This mechanism focuses on enhancing the detection accuracy for small targets while introducing only minimal additional computational overhead. After the backbone network outputs four multi-scale features (C2–C5), all are fed into the HA module for feature extraction.


For the input feature f, we first compute its channel attention, then calculate its spatial attention, and finally add its residual, as shown in Equation 1. Below, we will detail the channel attention and spatial attention mechanisms.
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Most channel attention mechanisms apply global average pooling to the feature map, which captures only single-channel information. This offers limited improvements for detecting small objects, as global pooling tends to weaken the features of tiny targets. In our channel attention mechanism, we combine both local and global features to enhance performance on small objects while keeping computational overhead minimal (Wan et al., 2023). As shown in 
Figure 5
, the input feature map undergoes adaptive average pooling to produce a local pooling result of size ls, followed by global average pooling applied to the local result to obtain the global pooling result. Local pooling emphasizes local region features, while global pooling captures the distribution characteristics of the entire feature map. Both local and global pooling results are passed through a 1D convolution to extract features and compute attention. The global attention is interpolated to the size of the local attention and fused by element-wise addition. Finally, the fused result is interpolated to the input size and multiplied with the input feature map to generate the final channel attention map.


[image: Block diagram illustrating a deep learning architecture with a multi-step process involving input tensor transformation through LAP, GAP, 1D convolution, interpolation, reshaping, and summation operations, ultimately generating an output tensor. Data flows are visually depicted with colored 3D blocks and arrows.]
Figure 5 | 
Mixed local channel attention. Integrating local and global features by using average pooling of different sizes in channel attention.




The implementation of spatial attention is straightforward. We adopt the spatial attention module from the Convolutional Block Attention Module (CBAM) (Woo et al., 2018), which incurs minimal computational overhead, as shown in 
Figure 6
. First, we extract distribution information of the spatial features by performing average and max pooling along the channel dimension. Then, a 2D convolution is applied to compute spatial attention.


[image: Diagram illustrating a neural network module where an input tensor with shape H, W, C undergoes max pooling and average pooling, concatenation, a 2D convolution with kernel size three, and a sigmoid activation, outputting a tensor of shape H, W, 1.]
Figure 6 | 
Spatial attention.








3.1.3 Adaptive feature mixer feature pyramid network


Feature Pyramid Networks (FPN) have become a standard paradigm for small object detection tasks, as they enhance small object feature information (Lin et al., 2017). Traditional FPNs fuse features through sampling and element-wise addition. However, this fusion method is not conducive to the flow of information between multi-scale feature maps. The element-wise addition could lead to the accumulation of abnormal feature information or cause the weakening of important features (Dai et al., 2021). To address this issue, we propose the Adaptive Feature Mixer Feature Pyramid Network (AFM-FPN). AFM-FPN uses an Adaptive Feature Mixer (AFM) module to perform adaptive weighted fusion of features, as shown in 
Figure 7
.


[image: Diagram illustrating the AFM-FPN Neck and Output Head architecture, showing feature flows from inputs C2 to C5 through identity and convolution operations, adaptive mixers, prediction modules, and element-wise summation for output.]
Figure 7 | 
Adaptive feature mixer feature pyramid network. Optimizing the traditional element wise addition method for P-level features to use AFM module for feature adaptive fusion to enhance performance.




The AFM module is divided into two branches: spatial feature extraction and channel feature extraction. It assigns fusion weights on a pixel-by-pixel basis for the two features to be fused, as shown in 
Figure 8
. The two features to be fused are then added element-wise. Two 1×1 convolutions are used to obtain spatial feature weights with size (h, w, d). Global average pooling is applied to compress the spatial size of the feature map to 1×1, and a Feed Forward Network (FFN) is used to encode the channel feature weights. The channel feature weights are broadcasted and added element-wise with the spatial feature weights, followed by activation with the Sigmoid function to obtain the adaptive fusion weight W, with size (h, w, d). The features f1
 and f2
 are then weighted and fused using W, as shown in Equation 2.


[image: Diagram illustrating a neural network gating mechanism, showing parallel paths with 1x1 Conv2D and ReLU layers, global average pooling, a feed-forward network, and a sigmoid activation, resulting in an h by w by d shaped gate tensor.]
Figure 8 | 
Adaptive feature mixer. By extracting the spatial and channel features of the input features, fusion weights are assigned pixel-wise for the two features to be fused.
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3.2 Loss function


A pure fully convolutional network predicts the target’s mask during training to enable precise segmentation of target pixels, but it lacks the capability for counting and detecting targets. Zhang et al. (2024a) observed that existing object detection methods struggle to count tiny pests, as the model struggles to learn the precise location and contours of the target due to missing features, leading to poor performance. They proposed RPH-Counter, using Object Counting Loss (OC Loss) to train the fully convolutional network and incorporating a self-attention mechanism to enhance the model’s feature extraction capability, achieving precise detection of field planthoppers. Thrips are even smaller than planthoppers, presenting a greater challenge to model performance. Therefore, we further optimized the model and used OC Loss to train the fully convolutional network to enhance the detection performance for thrips. Our method uses object-level annotations similar to object detection, and the training process of the network model is shown in 
Figure 9
.


[image: Flowchart illustrating a training process with five steps: input data, FCN model, output, object counting loss, and backpropagation, showing arrows for data flow and feedback within a blue bordered loop.]
Figure 9 | 
Training process of TCD-Net.




The OC Loss optimizes the model’s prediction of object centers by focusing on the center points, restricting the model’s prediction range for each object according to the annotated bounding box, and continuously constraining false positives during training, as shown in Equation 3. The three sub-goals are optimized together during training, extending the original semantic segmentation capability of the fully convolutional network to include object detection and counting.
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After forward propagation, the model generates a prediction matrix P, which has the same size as the input image. For each pixel i, the raw output value is denoted as 


p
i



. To convert this into a probability score, the Sigmoid activation function is applied to the model’s output. Let 
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 be the Sigmoid probability of thrip at pixel i, the closer the value is to 1, the higher the likelihood that the position corresponds to a thrip.


Two ground-truth matrices, TL
 and TB
, are defined, both matching the size of the input image. Matrix TL
 stores the center locations of pests, assigning a value of 1 to the exact center of each pest and 0 to all other pixels. This serves as a precise localization target during training. On the other hand, TB
 represents the object boundaries, assigning a value of 0 to pixels within the annotated bounding boxes and 1 to all other regions. This matrix is designed to guide the model in distinguishing pest boundaries from their surrounding areas. In the following sections, we will provide a comprehensive breakdown of the three sub-loss functions, each tailored to address specific aspects of the training objective.





3.2.1 Localization loss



Bearman et al. (2016) proposed a point-supervised semantic segmentation loss function that only requires point-level annotations to achieve approximate object contour segmentation. We applied and integrated this loss function into the Localization loss component of the OC Loss, enabling the model to accurately localize objects. The Localization loss optimizes the model to predict a region around each object’s center, granting the model localization capabilities, as shown in Equation 4.
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Based on the object bounding box annotations, we first compute the coordinates of each object’s center point and generate the ground truth matrix TL
 for the object center points. The target center point label is 1, let 
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 be the set of coordinates in TL
 where the label is 1. For these coordinates with label value of 1, let the predicted value of the corresponding position in the model prediction result P be 
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. We aim to ensure that the model’s output value at these positions is close to 1. This optimization objective ensures that the model can accurately localize each thrips. To provide more comprehensive training, we introduce a dynamic parameter 
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, where the contribution to the loss increases with the number of targets in the image.






3.2.2 Boundary loss


Localization loss only optimizes the model’s prediction of each object’s center region but does not provide guidance or constraints on the predicted region’s boundaries, which can lead to model “laziness”, resulting in a lack of constraint on the predicted region. Boundary loss constrains the model’s predicted range using the boundary information from the annotated bounding boxes, ensuring that the model predicts a small region around each thrips center. We pre-load a matrix TB
 containing the boundary information for all targets in the Dataloader. In this matrix, the value of the element corresponding to the target bounding box position is 1, and only these positions hold a value of 1. TB
 can indicate the boundary coordinates of each target.


Let 
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 be the set of coordinates in TB
 where the label is 1. For these boundary coordinates, let the predicted value of the corresponding position in the model prediction result P be 
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. We aim to ensure that the model’s output at these positions is close to 0. Boundary loss is formulated as in Equation 5.
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This optimization objective constrains the model’s predicted range, ensuring that the center of the predicted region for each object is accurate. Similarly, we introduce a dynamic parameter 
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. When the image contains more targets, the targets may be closer to each other. Therefore, we assign higher weight to Boundary Loss to ensure that each target remains independently detected.






3.2.3 False positive loss


Localization loss and Boundary loss contribute only to the model’s prediction of positive samples, without encouraging the model to learn the characteristics of negative samples. Therefore, we also incorporate False Positive Loss to train the model’s ability to detect negative samples. The procedure for this is as follows: during training, we identify regions that the model incorrectly predicts as positive samples and encourage the model to predict these regions as background, as described in Equation 6.
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The process for calculating erroneous prediction regions is as follows: First, we use a connected component labeling algorithm to assign unique labels to each independent region in the predicted result P. Then, we element-wise multiply P with the ground truth center point matrix TL
 to obtain the prediction regions that contain ground truth target centers. Finally, the remaining regions are identified as erroneous predictions. Let 


ℤ
F



 be the set of coordinates in P corresponding to these erroneous regions. We aim for the model’s output at these positions to be close to 0.







3.3 Thrip counting and detection





3.3.1 Thrip counting


The counting of thrips is achieved by calculating the number of independent regions in the model’s prediction P. This is done using a connected component labeling algorithm (He et al., 2017), specifically implemented using the label method from the Scipy library.






3.3.2 Thrip detection


Thrip localization and detection results are obtained by calculating the centroid coordinates of each independent region. First, we extract the set of non-zero labels from the labeled matrix, excluding the background. Then, we construct a 2D coordinate matrix with the same dimensions as the input, where each pixel’s row and column indices are recorded. Both the labeled matrix and coordinate matrix are flattened into 1D arrays for vectorized computation. Histogram statistics are used to count the number of pixels for each label, and weighted accumulation is performed on the row and column coordinates to obtain the total vertical and horizontal coordinates for the pixels in each connected region. Finally, the centroid coordinates are computed for each label using the centroid calculation formula.








4 Experimental results





4.1 Implementation details


The hardware used for model training and inference consists of an Intel Core I9 12900K CPU with 64GB of memory and an NVIDIA RTX 4090 GPU. The operating system is Ubuntu 22.04.1 LTS, with CUDA version 12.1. The model is built on Python 3.9 and PyTorch 2.1.2.





4.1.1 Model details


In PartialNeXt, the ratio between feature maps processed by PConv for feature extraction and those directly bypassed is 1:3, with a kernel size of 7. The downsampling rates for C2–C5 feature maps are 4×, 8×, 16×, and 32×, with channel counts of 80, 160, 320, and 640, respectively. When calculating the mixed attention for C2-C5, the local size for each layer is 32, 16, 8, and 4, respectively. The kernel size for the Conv1D in channel attention is 3, while the kernel size for Conv2D in spatial attention is also 3. All feature maps are adjusted to 256 channels in the FPN, outputting four multi-scale features with 256 channels. Finally, four 1×1 convolutions reduce the channel count of the four multi-scale features to 1, which is then resampled back to the input size and merged, with the Sigmoid activation function applied, resulting in the final prediction.






4.1.2 Details of the methods used for comparison


We compare TCD-Net with existing methods, including one-stage detectors: YOLOv8 and YOLOv11 (Sharma et al., 2024). Two-stage detectors include Faster R-CNN (Ren et al., 2015), Cascade R-CNN (Cai and Vasconcelos, 2018) and Dynamic R-CNN (Zhang et al., 2020a). DETR-based detectors include Deformable DETR (Zhu et al., 2020) and DDQ-DETR (Zhang et al., 2023). We also compare with the recently proposed RPH-Counter (Zhang et al., 2024a). YOLO is implemented using the official open-source code, with the Large version of the model. The two-stage detectors and DETR-based detectors are implemented using the MMDetection framework, with the backbone network using ResNet50 pre-trained on ImageNet 1K. For anchor-based detectors, the anchor generation size is adapted to the target size of the rice planthopper dataset.






4.1.3 Training details


During training, random flipping is used for data augmentation. The batch size is set to 1, and the Adam optimizer is used with a learning rate of 1e-5 and weight decay of 1e-4. All methods are trained for 100 epochs.







4.2 Evaluation metrics





4.2.1 Detection accuracy


The model’s localization accuracy can be evaluated by checking whether the predicted region’s centroid lies within the ground truth bounding box. Object detection methods determine this by calculating the center point of the predicted box. The criteria for TP, FP, and FN are shown in 
Table 2
.



Table 2 | 
Criteria for determining TP, FP, and FN.





	Flag

	Description






	True positive (TP)
	The centroid of the predicted region lies within the ground truth bounding box



	False positive (FP)
	The centroid of the predicted region does not lie within any ground truth bounding box



	False negative (FN)
	There is no centroid of the predicted region within the ground truth bounding box










The model’s detection accuracy is evaluated using Precision, Recall, and F1 score, as shown in Equations 7-9. Our method uses a confidence threshold of 0.5, while the confidence threshold for object detection methods is determined by finding the value corresponding to the highest F1 score on the Precision-Recall curve.



F
1
=


2
T
P


2
T
P
+
F
P
+
F
N




(7)



P
r
e
c
i
s
i
o
n
=


T
P


T
P
+
F
P




(8)



R
e
c
a
l
l
=


T
P


T
P
+
F
N




(9)






4.2.2 Counting error


The algorithm’s stability is evaluated using the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). Let 
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 represent the ground truth and predicted number of targets in the i-th image, respectively. N be the number of images. The calculations are shown in Equations 10 and 11.
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R-squared (R²) evaluates the similarity between the algorithm’s counting results and the actual results, as shown in Equation 12, 
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. The R2 value ranges from 0 to 1, with higher values indicating that the algorithm more accurately reflects the pest situation.
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4.3 Training results


We visualized the reduction in loss during training, as well as the changes in counting error and accuracy on the validation set, as shown in 
Figure 10
. First, the model’s training loss steadily decreased, with all sub-loss functions being well optimized. Meanwhile, in each evaluation cycle, the counting error on the validation set generally showed a decreasing trend, while the F1 score showed an increasing trend. This indicates that, after training, the model successfully achieved the objective of detecting and counting thrips in the images.


[image: Three side-by-side line charts showing model training metrics by epoch. Left: Train loss chart with lines for total, localization, boundary, and false positive losses, all decreasing. Center: Validation F1 chart with lines for F1, precision, and recall, all increasing and stabilizing. Right: Validation MAE and RMSE chart with both metrics decreasing and stabilizing as epochs progress.]
Figure 10 | 
Visualization results of the training process.




We further visualized the model’s prediction, presented in the form of heatmaps, as shown in 
Figure 11
. After sufficient training, the model demonstrated the ability to detect thrips while being insensitive to the background. For each thrip, the model predicts a small spot area, and the predicted range is confined within the thrip’s body size. Subsequently, the number of independent regions can be calculated using a connected component labeling algorithm, and by calculating the centroid of each region, precise detection and counting of thrips can be achieved.


[image: Collage of nine close-up photographs of blue-toned leaves, each featuring small, scattered red spots distributed across the leaf surfaces and along the veins, highlighting possible plant disease or pest presence.]
Figure 11 | 
Visualization of model output.








4.4 Quantitative analysis


We compared TCD-Net with some existing methods widely used for pest counting. First, we compared the detection performance of these models, and the results are shown in 
Table 3
. TCD-Net significantly outperforms the one-stage detectors, with both higher Precision and Recall. YOLOv8l and YOLOv11l show relatively weaker performance, with lower F1 scores and Recall rates compared to other methods, likely due to their inadequate small object detection performance. The two-stage detectors performed relatively better in the thrips detection task. Compared to the one-stage detectors, the two-stage detectors showed a significant improvement in Recall. However, their drawback lies in lower Precision, which leads to more false positives, resulting in suboptimal F1 scores. Deformable DETR achieved higher detection performance, with a primary advantage in Precision. However, due to the global attention mechanism of the Transformer, small object sparse features are prone to being overwhelmed by the background when calculated on high-dimensional feature maps. Additionally, the one-to-one matching (O2O) of predicted boxes in DETR results in far fewer positive samples than the one-to-many matching (O2M) in traditional detectors, which may reduce performance in small object detection tasks (Shihua et al., 2025). Therefore, current DETR-based detectors still face significant limitations in detecting extremely small objects, with lower Recall in thrips detection leading to many missed detections. TCD-Net demonstrated the best overall performance on both the validation and test sets, with an F1 score significantly higher than other methods. Moreover, it achieved a good balance between Precision and Recall.



Table 3 | 
Comparison of detection accuracy with existing methods.





	Method

	Val

	Test




	F1

	Precision

	Recall

	F1

	Precision

	Recall






	TCD-Net
	86.20%
	85.30%
	87.12%
	85.67%
	85.18%
	86.17%



	RPH-Counter
	83.14%
	83.35%
	82.93%
	82.98%
	82.67%
	83.29%



	Faster R-CNN
	80.68%
	78.41%
	83.10%
	80.91%
	79.31%
	82.58%



	Cascade R-CNN
	81.05%
	78.66%
	83.59%
	81.11%
	79.80%
	82.46%



	Dynamic R-CNN
	81.29%
	81.69%
	80.88%
	81.23%
	82.63%
	79.89%



	Deformable DETR
	82.67%
	86.22%
	79.40%
	82.43%
	86.09%
	79.07%



	DDQ-DETR
	82.97%
	85.02%
	81.02%
	82.28%
	84.13%
	80.52%



	YOLOv8l
	77.52%
	76.35%
	78.73%
	77.04%
	75.90%
	78.22%



	YOLOv11l
	76.89%
	75.83%
	77.98%
	76.48%
	75.56%
	77.43%










We further compared the counting accuracy of these methods, and the results are shown in 
Table 4
. TCD-Net once again demonstrates its advantage, with the lowest MAE and RMSE and the highest R2 value, indicating that its counting results are the closest to the actual values, with the best stability. Considering the detection accuracy results, models with higher detection performance also show higher counting accuracy, reflecting a more accurate assessment of pest conditions.



Table 4 | 
Comparison of counting accuracy with existing methods.





	Method

	Val

	Test




	MAE

	RMSE

	R2


	MAE

	RMSE

	R2







	TCD-Net
	1.43
	2.43
	76.80%
	1.49
	2.48
	75.50%



	RPH-Counter
	1.69
	2.66
	65.62%
	1.73
	2.75
	65.41%



	Faster R-CNN
	2.12
	3.14
	62.57%
	2.13
	3.17
	62.23%



	Cascade R-CNN
	2.09
	3.08
	64.59%
	2.09
	3.06
	62.85%



	Dynamic R-CNN
	1.96
	2.99
	63.54%
	2.02
	3.10
	60.51%



	Deformable DETR
	1.99
	2.87
	65.24%
	2.01
	2.99
	64.78%



	DDQ-DETR
	1.88
	2.85
	66.13%
	2.03
	3.01
	64.63%



	YOLOv8l
	2.14
	3.22
	60.67%
	2.15
	3.26
	59.73%



	YOLOv11l
	2.19
	3.29
	59.92%
	2.21
	3.34
	58.61%










Finally, we compared the computational complexity of these methods. The comparison was based on four aspects: model parameter count, computational load, training speed, and inference speed, with the results shown in 
Table 5
. When comparing with the one-stage detection models, YOLOv8 and YOLOv11, TCD-Net has lower theoretical parameter count and computational load. It also has slightly faster training and inference speeds than YOLO, while achieving significantly better detection performance. For more complex models, such as Deformable DETR and RPH-Counter, the detection performance of these models is slightly lower than that of TCD-Net, but their computational complexity is significantly higher, especially Deformable DETR, which fails to meet real-time inference speeds. In comparison with RPH-Counter, TCD-Net’s computational load is less than half, and its inference speed is approximately 1.5 times faster. In summary, TCD-Net not only achieves higher detection and counting accuracy but also maintains a relatively low computational load, with its inference speed surpassing the real-time detection requirement.



Table 5 | 
Comparison of model complexity with existing methods.





	Method

	Params (M)

	FLOPs (G)

	Training speed (it/s)

	Inference FPS on GPU

	Inference FPS on CPU






	TCD-Net
	21.13
	114.36
	20.76
	91.66
	1.67



	RPH-Counter
	36.37
	247.58
	14.06
	62.66
	0.94



	Faster R-CNN
	41.35
	322.42
	13.21
	38.76
	0.16



	Cascade R-CNN
	69.16
	350.22
	11.52
	34.36
	0.16



	Dynamic R-CNN
	41.75
	323.60
	12.92
	38.46
	0.17



	Deformable DETR
	41.21
	319.21
	3.45
	14.86
	0.24



	DDQ-DETR
	48.31
	437.31
	3.09
	12.95
	0.15



	YOLOv8l
	43.63
	275.32
	15.62
	52.44
	0.53



	YOLOv11l
	25.31
	147.46
	17.04
	74.29
	0.75














4.5 Visualization


We visualized the detection and counting results of each method for a more intuitive comparison, as shown in 
Figure 12
. Upon observing the detection results of Faster R-CNN and Cascade R-CNN, it is evident that they suffer from insufficient detection precision, with many FPs present. YOLOv11l’s detection results also include noticeable FN and FP, leading to higher counting discrepancies in some cases. The detection results of Deformable DETR contain fewer FN and FP compared to one-stage and two-stage detectors, but due to its lower recall rate, the counting results are fewer than the actual number of targets. Compared to existing methods, TCD-Net has fewer FN and FP, and its counting results are closer to the actual numbers. However, in some cases, the target detection method may exhibit significant missed detections and false detections, as shown in 
Supplementary Figure S1
. This is primarily due to the small proportion of thrips’ features, making accurate identification difficult. The visualized results align with the quantitative analysis, further confirming the comprehensive advantage of TCD-Net in the thrips detection and counting task.


[image: Grid showing six columns of leaf images and six rows labeled as GT, TCD-Net, Faster R-CNN, Cascade R-CNN, Deformable DETR, and YOLOv11. The top row displays ground truth counts, while subsequent rows show predicted pest counts with green, red, and yellow dots representing true positives, false positives, and false negatives, respectively. A color legend appears at the bottom.]
Figure 12 | 
Visual comparison of prediction results with existing methods.




Finally, as shown in 
Figure 13
, we present a set of detection and counting results from TCD-Net. TCD-Net demonstrates high stability, with only a small number of FN and FP in the detection results, providing strong algorithmic support for the intelligent monitoring and management of thrips.


[image: Grid of twenty plant leaf photographs, each labeled with a blue box showing predicted spot counts and marked green for true positive, red for false positive, and yellow for false negative detections, with a key explaining marker colors at the bottom.]
Figure 13 | 
Visualization of the prediction results of TCD-Net.








4.6 Comparative analysis





4.6.1 Comparison of backbone


First, we compared PartialNeXt with several existing backbone networks, without using any attention mechanisms in the network. The features from four levels of the backbone network were input into the vanilla FPN for feature fusion. The performance comparison results are shown in 
Table 6
. When using PartialNeXt, the model outperforms several existing backbone networks in terms of F1 score, RMSE, and R2 on both the validation and test sets. Compared to ConvNeXtV2-Nano, after applying PConv, the model’s performance significantly improves, demonstrating that using PConv is a better choice than DWConv. When compared to classic backbone networks such as ResNet-50 (He et al., 2016), Swin Transformer-Tiny (Liu et al., 2021b), and FasterNet-S (Chen et al., 2023), PartialNeXt, through lightweight design and PConv optimization, is able to extract richer features. At the same time, PartialNeXt maintains a high degree of lightweight efficiency, as shown in 
Supplementary Table S1
. Compared to the larger backbone network Swin Transformer-Tiny, PartialNeXt achieves higher performance and a 4.5× faster inference speed. In comparison with ConvNeXtV2-Nano, PartialNeXt delivers significantly higher performance with minimal efficiency loss.



Table 6 | 
Performance comparison of backbone.





	Backbone

	Val

	Test




	F1

	RMSE

	R2


	F1

	RMSE

	R2







	ResNet-50
	82.66%
	2.77
	65.14%
	81.91%
	3.01
	63.79%



	Swin Transformer-Tiny
	82.99%
	2.75
	65.21%
	82.57%
	2.99
	64.21%



	ConvNeXt-Tiny
	82.84%
	2.78
	65.09%
	82.20%
	2.96
	63.88%



	ConvNeXtV2-Nano
	82.91%
	2.77
	64.99%
	82.21%
	2.94
	62.82%



	FasterNet-S
	82.58%
	2.88
	66.42%
	81.80%
	3.07
	59.99%



	PartialNeXt
	83.69%
	2.79
	71.25%
	83.56%
	2.87
	65.87%














4.6.2 Comparison of attention mechanism


Next, we fixed the backbone network as PartialNeXt and used the vanilla FPN for feature fusion. We compared the performance and efficiency of different attention mechanisms. The performance comparison results are shown in 
Table 7
. When using our proposed HA to process the multi-level feature maps of the backbone network, model performance improves, especially in R2, which shows a notable enhancement. This indicates that, after using HA, the model’s output becomes more stable. Meanwhile, as shown in 
Supplementary Table S2
, the computational cost of HA is lower than that of CBAM, and the inference speed is only slightly lower than MLCA, achieving a good balance between model performance and efficiency.



Table 7 | 
Performance comparison of attention mechanism.





	Attention

	Val

	Test




	F1

	RMSE

	R2


	F1

	RMSE

	R2







	-
	83.69%
	2.79
	71.25%
	83.56%
	2.87
	65.87%



	CBAM
	85.12%
	2.67
	72.44%
	84.20%
	2.68
	67.17%



	MLCA
	84.81%
	2.64
	71.46%
	84.37%
	2.58
	68.99%



	HA
	85.54%
	2.46
	75.34%
	84.94%
	2.61
	69.04%














4.6.3 Comparison of FPN


Finally, we compared the performance and efficiency of different FPNs. With the backbone network fixed as PartialNeXt and no attention mechanism, the performance comparison results are shown in 
Table 8
. Using our proposed AFM-FPN further enhanced the model’s feature fusion mechanism, improving the model’s detection and counting performance for thrips. At the same time, as shown in 
Supplementary Table S3
, the model with AFM-FPN has lower parameters and computational cost, balancing model performance and efficiency effectively.



Table 8 | 
Performance comparison of FPN.





	FPN

	Val

	Test




	F1

	RMSE

	R2


	F1

	RMSE

	R2







	Vanilla FPN
	83.69%
	2.79
	71.25%
	83.56%
	2.87
	65.87%



	PAFPN
	85.05%
	2.48
	72.27%
	84.58%
	2.62
	70.01%



	AFM-FPN
	85.93%
	2.45
	75.75%
	85.35%
	2.55
	71.03%















4.7 Ablation study





4.7.1 Loss ablation


We conducted an ablation study on the components of the loss function, and the visualization results are shown in 
Figure 14
. When only ℒ
L
 is used, the model exhibits “laziness,” predicting the entire image as the foreground to include all thrips. When ℒ
L
+ℒ
B
 is used, the lack of constraints on false positives leads to a large number of false positive predictions. When ℒ
L
+ℒ
F
 is used, the model predicts a larger spot for each thrips, but due to the absence of constraints on prediction boundaries, the model is unable to separate thrips that are close together. When the complete loss function is used, the model predicts a smaller spot for each thrips, with individuals well separated, and false positives are constrained, achieving precise detection and counting of thrips.


[image: Grid of sixteen close-up leaf photographs arranged in four rows and five columns, each column representing a different image analysis method for detecting spots on leaves. Columns are labeled “Original,” “L_L,” “L_L+L_B,” “L_L+L_F,” and “L_L+L_B+L_F.” Colored dots overlay specific images to indicate detection results: green for true positives, red for false positives, and blue for multiple objects. A legend below clarifies these color codes.]
Figure 14 | 
Visual comparison of loss ablation.








4.7.2 Network module ablation


We conducted ablation experiments on the three key improvements we proposed to validate their effectiveness, and the model performance comparison results are shown in 
Table 9
. Each of the three proposed improvement modules effectively enhances the model’s performance, and when combined, they exhibit significant synergistic effects. First, when used individually, each of these modules improves the evaluation metrics, confirming the independent effectiveness of each module. Then, combining two modules further enhances performance, with PConv+AFM-FPN performing the best, showing an 8.21% improvement in R2 on the test set. Finally, when all three improvements are combined, the model achieves optimal performance, with the test set F1 reaching 85.67%, RMSE reduced by 15.6%, and R2 increased by 12.68%. These results significantly outperform the baseline and any combination of submodules, demonstrating the rationality and necessity of the multi-module collaborative design.



Table 9 | 
Ablation study on model performance.





	PConv

	HA

	AFM-FPN

	Val

	Test




	F1

	RMSE

	R2

	F1

	RMSE

	R2






	 
	 
	 
	82.91%
	2.77
	64.99%
	82.21%
	2.94
	62.82%



	✓
	 
	 
	83.69%
	2.79
	71.25%
	83.56%
	2.87
	65.87%



	 
	✓
	 
	83.20%
	2.73
	66.97%
	82.66%
	2.83
	64.55%



	 
	 
	✓
	83.68%
	2.66
	68.49%
	83.07%
	2.90
	65.88%



	✓
	✓
	 
	85.54%
	2.46
	75.34%
	84.94%
	2.61
	69.04%



	✓
	 
	✓
	85.93%
	2.45
	75.75%
	85.35%
	2.55
	71.03%



	 
	✓
	✓
	84.39%
	2.55
	72.70%
	83.60%
	2.72
	67.36%



	✓
	✓
	✓
	86.20%
	2.43
	76.80%
	85.67%
	2.48
	75.50%










As shown in 
Table 10
, we further investigated the impact of these improvements on the model’s computational efficiency. First, PConv, due to the use of partial vanilla convolution, results in a noticeable increase in parameters and computational load (+5M Params, +25.96G FLOPs), but has minimal impact on training speed. HA, with almost no increase in parameters and computation, slightly reduces the inference speed, indicating that the computational overhead of its attention mechanism is manageable. The multi-scale fusion structure introduced by AFM-FPN also only slightly increases the computational burden (+0.2M Params, +4.49G FLOPs), while maintaining high training and inference efficiency. When combining the modules, the inference speed drops to 91.66 it/s but still exceeds the real-time requirements. Overall, the modules achieve a good balance between computational cost and performance improvement.



Table 10 | 
Ablation study on model efficiency.





	PConv

	HA

	AFM-FPN

	Params (M)

	FLOPs (G)

	Training speed (it/s)

	Inference speed (it/s)






	 
	 
	 
	15.93
	83.89
	21.69
	113.02



	✓
	 
	 
	20.93
	109.85
	21.32
	106.07



	 
	✓
	 
	15.93
	83.91
	21.35
	107.08



	 
	 
	✓
	16.13
	88.38
	21.44
	108.11



	✓
	✓
	 
	20.93
	109.87
	21.13
	100.56



	✓
	 
	✓
	21.13
	114.34
	20.99
	96.31



	 
	✓
	✓
	16.13
	88.40
	21.18
	97.54



	✓
	✓
	✓
	21.13
	114.36
	20.76
	91.66
















5 Discussion


We identified the performance shortcomings of existing methods in thrips detection and made key improvements to address these issues. The main advantages of TCD-Net include: 1) State-of-the-art optimization: TCD-Net follows the latest neural network optimization approaches, improving the model’s performance through enhancements in feature extraction, attention mechanisms, and multi-scale feature fusion. 2) Model efficiency: While optimizing the model, we ensure its efficiency by using methods with low parameter and computational requirements, rather than merely stacking modules, achieving a balance between performance and efficiency. 3) Specialized loss function: We use a loss function tailored for small object pest detection, avoiding the issue in traditional object detection methods where it is difficult to predict and match precise small target bounding boxes, ensuring the model’s baseline performance.


However, this work still faces some limitations. First, regarding the dataset, we have collected a thrips dataset with over 47K+ annotations in a greenhouse, and the public release of this dataset can contribute to the field of extremely small pest detection. Although TCD-Net has shown good performance in our environment, greenhouse and field conditions are nearly infinitely complex, and the diversity and scale of the dataset still require further development. While data collection and annotation took considerable time and incurred high labor costs, it remains crucial to gather richer datasets in future work. New data augmentation techniques can be explored, such as using generative models like GANs and diffusion models to synthesize new data, which can be combined with the original dataset, reducing annotation costs and increasing data richness (Lu et al., 2022; Zhang et al., 2024b). Furthermore, unsupervised and weakly supervised methods can be explored for model training to reduce the need for large annotated datasets and enhance model generalization (Bollis et al., 2022; Han et al., 2025).


Regarding method optimization, further development of the model’s attention and feature fusion mechanisms is an ongoing direction that requires continued exploration. At the same time, model efficiency must be considered to ensure feasibility in practical deployment. The loss function also needs further development. While it has been successful for small pest counting, its current support for large-scale, multi-class tasks is limited. Future work could focus on optimizing the localization loss part of the loss function to enhance its multi-class support capabilities. Another potential avenue is the development of hybrid or multi-branch networks to improve support for large-scale pest detection. For example, using a hybrid machine learning and deep learning structure could enhance model performance, or employing a combined density estimation and object detection network could simultaneously improve pest detection and counting accuracy (Gao et al., 2024; Han et al., 2024).






6 Conclusions


This paper presents an efficient model for thrips counting and detection, capable of performing real-time, accurate counting and detection of thrips on the leaves of Spathiphyllum floribundum ‘Clevelandii’ in greenhouses. TCD-Net is a unique fully convolutional network structure, which utilizes our designed efficient PartialNeXt as the backbone network, combined with lightweight Hybrid Attention and AFM-FPN to extract and fuse rich thrips features. By predicting a small region for each thrips, TCD-Net achieves precise counting and detection. Experiments were conducted on a dataset containing over 47K thrips annotations, and the results demonstrate that TCD-Net provides highly accurate counting and detection performance, while maintaining low model complexity and an inference speed that far exceeds real-time detection. On the test set, TCD-Net achieved an F1 score of 85.67% and a counting result correlation of 75.50%, outperforming existing methods in both counting and detection accuracy. Additionally, the model size (21.13M parameters) and theoretical computational load (114.36 GFLOPs) are less than half that of two-stage object detection methods, while the inference speed (91.66 it/s) is more than twice as fast as that of two-stage object detection methods. In summary, TCD-Net achieves higher thrips counting and detection accuracy with lower computational complexity, demonstrating its potential for detecting extremely small pests. Future optimization directions include further improving model training and inference speeds, integrating with patrol robots for intelligent pest monitoring in greenhouses, and expanding its application to other types of pests, contributing to intelligent pest reporting systems.
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In the context of the rapid development of smart agriculture, the detection of crop diseases remains a critical and challenging task. The diversity in eggplant disease scales, disease edge features, and the complexity of planting backgrounds significantly impact disease detection effectiveness. To address these challenges, we propose an eggplant disease detection network with edge feature enhancement based on multi-scale learning. The overall network adopts a “backbone–neck–head” architecture: the backbone extracts features, the neck performs feature fusion, and a three-scale detection head produces the final predictions. First, we designed the Multi-scale Edge Information Enhance (CSP-MSEIE) module to extract features from different disease scales and highlight edge information to obtain richer target features. Second, the Multi-source Interaction Module (MSIM) and Dynamic Interpolation Interaction Module (DIIM) sub-modules were designed further to enhance the model’s capacity for multi-scale feature representation. By leveraging dynamic interpolation and feature fusion strategies, these sub-modules significantly improved the model’s ability to detect targets in complex backgrounds. Then, leveraging these sub-modules, we designed the Multi-scale Context Reconstruction Pyramid Network (MCRPN) to facilitate spatial feature reconstruction and hierarchical context extraction. This framework efficiently combines feature information across multiple levels, strengthening the model’s ability to capture and utilize contextual details. Finally, we validated the effectiveness of the proposed model on two disease datasets. It is noteworthy that on the eggplant disease data, the proposed disease detection model achieved improvements of 4.7% and 7.2% in mAP50 and mAP50–95 metrics, respectively, and the model’s frames per second (FPS) reached 270.5. This detection network provides an effective solution for the efficient detection of crop diseases.
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1 Introduction


Eggplants are widely cultivated and highly valued for their rich content of dietary fiber and essential vitamins. They play a crucial role in improving global dietary patterns and promoting nutritional balance. Advancements in agricultural technology and the rapid growth of international trade have significantly increased both the cultivation area and total production of eggplants in recent years. By 2022, global eggplant production had exceeded 59 million tons, and the cultivation area surpassed 1.89 million hectares, underscoring its importance in modern agriculture (Yan et al., 2024). However, the expansion of cultivation has made eggplants more vulnerable to diseases and pest infestations, as shown in 
Figure 1
, especially under increasingly complex and unpredictable climate conditions. Common problems such as yellow spot disease, fruit rot, and pest infestations severely threaten eggplant yield and quality, resulting in significant economic losses for growers (Liu and Wang, 2021).


[image: Two close-up photos of a purple eggplant held in hand, each showing small dark holes and scarring on the fruit’s surface, indicating pest damage. Green foliage is visible in the background.]
Figure 1 | 
Status of eggplant cultivation, highlighting that very small, concealed fruit diseases (e.g., Fruit Borer) are often missed during field inspection.




Efficient disease management remains a central challenge in agricultural production. Traditional management methods mainly rely on manual inspection and chemical control, both of which have notable limitations. Manual inspection is time-consuming and prone to errors due to subjective judgment and reliance on individual experience, making it unsuitable for large-scale modern agriculture. Moreover, the growing reliance on pesticides to combat frequent disease outbreaks not only raises production costs but also increases pathogen resistance, posing additional threats to the environment and food safety. Therefore, developing accurate and efficient disease detection and management technologies is imperative.


In recent years, automated detection technologies have advanced rapidly in agriculture, offering innovative solutions for addressing eggplant diseases. For example, spectral analysis has been preliminarily applied to eggplant disease identification. However, the complexity of processing high-dimensional spectral data and the associated information loss during dimensionality reduction have become major development bottlenecks (Wu, 2018). Additionally, texture-based feature extraction algorithms combined with classification models have shown moderate effectiveness in eggplant disease classification (Xie and He, 2016). However, these methods depend on manual feature extraction, suffer from pixel-level information loss, and exhibit high computational complexity, limiting their scalability and practical use. The emergence of machine learning has introduced promising solutions for crop disease recognition. Convolutional Neural Network (CNN)-based models have been successfully applied to eggplant disease recognition, demonstrating notable advantages over traditional approaches. However, early machine learning models mainly focused on classification tasks (Krishnaswamy Rangarajan and Purushothaman, 2020; Maggay, 2025; Theckedath and Sedamkar, 2025), neglecting the critical aspect of disease localization. This limitation prevents these models from fully replacing manual inspection, as accurate localization is essential for targeted treatment and intervention.


The rise of computer deep learning technology has driven object detection models toward greater efficiency and precision. These models can classify diseases and accurately localize them in images, representing a breakthrough in automated crop disease detection. Object detection models are typically categorized into two types: single-stage and two-stage detectors. Representative two-stage models include SSD (Tian et al., 2023), Faster R-CNN (Ren et al., 2017), and RetinaNet (Math and Dharwadkar, 2023). These models first generate region proposals or candidate bounding boxes, followed by classification and fine-grained localization within those regions. In contrast, single-stage models such as the YOLO (You Only Look Once) (Redmon et al., 2016; Redmon and Farhadi, 2017; Bochkovskiy et al., 2020; Redmon and Farhadi, 2018; Jocher et al., 2022; Wang et al., 2022; Redmon and Farhadi, 2025; Wang et al., 2024b; Li et al., 2022) series are widely recognized for their real-time performance and high accuracy. Recent research has increasingly focused on enhancing YOLO models for crop disease detection. For example, Liu et al. proposed a YOLOv5 variant with a novel loss function to detect tomato brown rot (Liu et al., 2023). Wang et al. integrated a Transformer into YOLOv8 to enhance tomato disease detection, significantly improving its ability to capture detailed disease features (Wang and Liu, 2024). Jiang et al. combined the Swin Transformer with CNN to optimize YOLOv8’s feature extraction, improving detection performance for cabbage diseases under complex conditions (Jiang et al., 2024). Liu et al. introduced a multi-source information fusion approach based on YOLOv8 to enhance detection accuracy across multiple vegetable diseases (Liu and Wang, 2024). Moreover, some researchers have further improved detection performance on target images by employing edge-image enhancement (Wang et al., 2023) and additional image-preprocessing techniques (Wang et al., 2024c).


Although these enhanced YOLO models have shown progress, they primarily focus on leaf diseases, small datasets, and parameter tuning. However, the impact of scale variations in fruit disease regions and edge features under complex backgrounds on detection accuracy remains underexplored. To address this critical gap in current eggplant fruit disease detection methods, we propose an eggplant disease detection network with edge feature enhancement based on multi-scale learning. The key contributions of this paper are outlined as follows:


	
We develop the Multi-scale Edge Information Enhancement (CSP-MSEIE) module, which extracts features across multiple disease scales and highlights the edge characteristics of affected regions, enabling richer and more comprehensive target representations.


	
We develop the Multi-source Interaction Module (MSIM), Dynamic Interpolation Interaction Module (DIIM), and Multi-scale Context Extraction Module (MCEM), which enhance the model’s capacity to capture multi-scale features and improve target detection accuracy in complex backgrounds by utilizing dynamic interpolation and the fusion of multiple features.


	
We construct the Multi-scale context reconstruction pyramid network (MCRPN). This network aims to reconstruct spatial features and extract pyramid context, effectively integrating feature information from different levels and enhancing contextual awareness, thereby improving the model’s detection performance.


	
We conducted extensive ablation and comparative experiments on the two datasets, and the results show that EggplantDet outperforms other advanced detection algorithms in detection performance, even surpassing the advanced detection model YOLO11.









2 Materials and methods





2.1 Materials


Dataset processing: We validated the effectiveness of the proposed model on two datasets: PlantDoc (Singh et al., 2019) and eggplant disease. PlantDoc is a dataset of 2,569 images across 13 plant species and 30 classes (diseased and healthy) for image classification and object detection. There are 8,851 labels. Among them, the eggplant disease data is an eggplant fruit disease dataset from the Roboflow platform, containing four distinct disease categories (BSCS, 2024). The dataset includes four categories: healthy, fruit borer, yellow spot, and fruit rot. Detailed category distributions are presented in 
Figure 2
. It is divided into training, validation, and test sets, comprising 2507, 744, and 365 images, respectively. The dataset was collected from diverse, natural cultivation environments, making it highly valuable for applied research.


[image: Panel A shows two healthy purple eggplants hanging from a plant. Panel B displays an eggplant with small round holes indicating fruit borer damage. Panel C features an eggplant with extensive yellow mottling identified as yellow spot. Panel D presents an eggplant with brown, sunken lesions characteristic of fruit rot.]
Figure 2 | 
Display of some four eggplant diseases before enhancement. (A) Healthy (B) Fruit Borer (C) Yellow Spot (D) Fruit Rot.




To better enhance the model’s generalization ability and detection performance on the eggplant disease dataset, we utilized the online data augmentation method of the Roboflow platform to perform data augmentation on the training dataset of this eggplant disease dataset. The augmentations included: 90° rotation (clockwise and counter-clockwise), saturation adjustment (-30% to +30%), general rotation (-45° to +45°), horizontal and vertical flipping, grayscale (applied to 15% of images), hue adjustment (-15° to +15°), cropping (0-20% zoom), brightness adjustment (-15% to +15%), exposure adjustment (-10% to +10%), Gaussian blur (up to 4.8 px), noise addition (up to 1.99% of pixels), and shear transformation (± 15° horizontally and vertically) in 
Figure 3
. As a result of these 12 augmentation methods, the expanded dataset includes 7521 images for training, 744 for validation, and 365 for testing.


[image: Sixteen-panel collage showing eggplants in various stages of health and disease, including close-ups of healthy shiny purple eggplants and others with discoloration, lesions, or mold characteristic of plant disease. Some panels are in black and white, while others are rotated, highlighting damage such as spots, patches, and tissue breakdown among leaves and fruit.]
Figure 3 | 
Display of some four eggplant diseases after enhancement.




Implementation details: This study was implemented using a Python deep learning framework on the Windows 11 operating system. For the training process, a batch size of 16 was used, with the SGD optimizer, an initial learning rate of 0.01, weight decay set to 0.0005, and the training was carried out over 100 epochs. The detailed experimental settings are provided in 
Table 1
.



Table 1 | 
Experimental environment.





	Name

	Details






	Programming language
	Python 3.9



	GPU
	NVIDIA GeForce RTX 4090



	CUDA
	11.8



	Pytorch
	2.0.1



	Platform
	Visual Studio Code














2.2 Methods





2.2.1 Macroscopic architecture of EggplantDet


Considering the scale variations of eggplant disease targets and their susceptibility to complex background interference, we constructed EggplantDet based on the YOLOv8 model. 
Figure 4
 illustrates the overall architecture of the proposed EggplantDet. The detection network comprises three main components: the Backbone, the Multi-scale Context Reconstruction Pyramid Network (MCRPN), and the Head.


[image: Flowchart illustration of a multi-scale context reconstruction pyramid network (MCRPN) for deep learning, showing three main sections: Backbone (input through convolutional layers with CSP-MSEIE and SPPF modules), MCRPN (features processed by MCEM, RCM, MSIM, DIIM components), and Head (output layers for bounding box and class loss calculation).]
Figure 4 | 
The overall architecture of EggplantDet.




	
Backbone: The input feature map size is 640×640×3, utilizing multiple 3×3 convolutions to reduce image dimensions and increase channel numbers. To extract features across various disease scales and emphasize the edge information of the diseases, the CSP-MSEIE module was designed and integrated into the Backbone (as shown in 
Figure 3
). The convolution, CSP-MSEIE, and SPPF modules work together to generate P3 features of 80×80×256, P4 features of 40×40×512, and P5 features of 20×20×1024 for the subsequent MCRPN network.


	
MCRPN: As depicted in the center of 
Figure 3
, P3, P4, and P5 are first processed through the RCM (Ni et al., 2024) module to reconstruct and extract key contextual features in both horizontal and vertical directions. Subsequently, the MCEM module integrates features from different levels, while the MSIM and DIIM modules fuse multi-scale features. This significantly improves target recognition performance in complex backgrounds.


	
Head: The detection head integrates features from three scale layers: P3, P4, and P5. This design effectively captures fine-grained information in low-level feature maps, thereby enhancing detection accuracy for multi-scale targets. In terms of loss functions, the model retains traditional box and classification losses to ensure accurate prediction box locations and categories.





Overall, the model applies targeted optimizations to both the Backbone and Neck components. Specifically, the introduction of the CSP-MSEIE module and MCRPN network significantly enhances the extraction and fusion of multi-scale and edge features, enabling EggplantDet to exhibit greater robustness and accuracy in eggplant disease detection tasks.






2.2.2 Cross-Stage Partial - Multi-scale Edge Information Enhance (CSP-MSEIE)


To extract multi-scale features and emphasize target edge information, we designed the Multi-scale Edge Information Enhance (MSEIE) module. We integrated it with the Cross Stage Partial Net (CSP) structure to form the Cross Stage Partial-Multi-scale Edge Information Enhance (CSP-MSEIE) module, enhancing the learning capability of convolutional neural networks in the Backbone. As depicted in 
Figure 5
, the MSEIE module is comprised of three main components: (1) Multi-scale feature extraction: Different parameters of AdaptiveAvgPool (3, 6, 9, 12) are used to achieve multi-scale pooling, extracting local information of different sizes, which helps capture hierarchical features of images. (2) Edge enhancement: The Edge Enhancer module is specifically designed to extract disease edge information, thereby enhancing the network’s sensitivity to edge features. As illustrated in 
Figure 6
, the Edge Enhancer module initially applies average pooling to the input feature map to capture low-frequency information. Next, the smoothed feature map is subtracted from the original input feature map to extract the enhanced edge information (high-frequency details). Finally, this high-frequency information is added back to the original feature map to produce the enhanced output. (3) Feature fusion: Features from various scales are aligned to a unified scale through interpolation operations, and after concatenation, they are fused through convolutional layers into a unified feature representation, thus improving the model’s perception of multi-scale features. The CSP-MSEIE module integrates multi-scale feature extraction, edge information enhancement, and convolution operations. Incorporating the CSP-MSEIE module into the Backbone notably enhances edge features and the model’s capacity to extract features.


[image: Diagram showing three deep learning modules: The Multi-scale Context Extraction Module (MCEM) processes inputs P3, P4, and P5 with average pooling, concatenates them, applies RCM, and splits to produce outputs P'3, P'4, and P'5. The Dynamic Interpolation Interaction Module (DIIM) combines input X1 with X2 processed by interpolation, convolution, and addition. The Multi-source Interaction Module (MSIM) applies convolution to X1, while X2 is processed by convolution, sigmoid, interpolation, and multiplied with X1.]
Figure 5 | 
The structure details of the MCEM, MSIM and DIIM.




[image: Block diagram illustrating the CSP-MSEIE network, showing sequential Conv, Split, MSEIE, and Concat operations. The MSEIE block expands to display four parallel adaptive pooling branches, each followed by convolution, upsampling, and edge enhancement, then concatenation and convolution steps. Below, the Edge Enhancer module is detailed, demonstrating average pooling, subtraction, convolution, and addition operations.]
Figure 6 | 
The structure of the CSP-MSEIE.








2.2.3 The principle and details of the MCEM, MSIM and DIIM


To more effectively reconstruct spatial features and capture multi-scale contextual information, we designed three key modules: Multi-scale Context Extraction Module (MCEM), Multi-source Interaction Module (MSIM), and Dynamic Interpolation Interaction Module (DIIM). In the MCEM module, for the P3, P4, and P5 level features extracted by the Backbone, average pooling is first applied to unify feature scales and perform fusion, followed by the use of the RCM module to model axial global context for extracting rectangular key region features. Finally, the features P’3, P’4, and P’5 features are generated through the split operation, thereby effectively integrating information from different levels and enhancing the contextual awareness of the MCRPN network. In the MSIM module, convolution operations are first used to adjust the number of channels, then the sigmoid function and interpolation algorithm further adjust feature dimensions, followed by the multiplication of features from two branches. In the DIIM module, interpolation operations automatically adjust the dimensions of matching features, followed by convolution operations for additive fusion. These three modules greatly enhance the model’s capability to capture features across multiple scales and enhance target recognition performance in complex backgrounds by employing dynamic interpolation and the fusion of multiple features. This process can be specifically expressed in Equations 1–3:
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Where AP(·) represents the average pooling operation, S represents the h-sigmoid function, + denotes addition operation, × denotes multiplication operation, and C(·) is the Concatenation operation.








3 Experiments





3.1 Experimental indicators


In this study, we used several indicators to assess the performance of our model: GFLOPs, Parameters, mean Average Precision (mAP50-90), mean Average Precision (mAP50), and Frames per second (FPS). Of these, mAP50 was selected as the primary evaluation metric. The procedure for calculating the mean Average Precision is described in Equations 4–7.
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The variable K signifies the total count of distinct object classifications within the dataset, while each class’s precision is quantified by its specific Average Precision (AP) score. In the performance evaluation equations, several key indicators are utilized: True Positives (TP) represent accurately identified instances of the target condition, False Positives (FP) indicate cases where the algorithm incorrectly flagged non-existent conditions as present, and False Negatives (FN) encompass actual occurrences of the condition that the system failed to recognize.






3.2 Comparison studies


To verify the generalization ability of the proposed detection model, this paper first compared the disease detection performance of current mainstream advanced object detection models on the public PlantDoc dataset. As shown in 
Table 2
, compared with the baseline model, EggplantDet achieved improvements of 4.3% and 6.7% in mAP50 and mAP50–95, respectively. Compared with the advanced YOLO11n, EggplantDet improved mAP50–95 by 3.0% and mAP50 by 1.6%. Additionally, in terms of Frames per second (FPS), EggplantDet also outperformed other advanced mainstream detection models.



Table 2 | 
Comparison with advanced object detection models on the PlantDoc dataset.





	Model

	Params

	GFLOPs

	mAP50-95

	mAP50

	FPS






	YOLOv8n (baseline) (Redmon and Farhadi, 2025)
	3.0M
	8.1
	0.285
	0.420
	190.4



	YOLOv9t (Wang et al., 2024b)
	2.1M
	7.6
	0.290
	0.423
	193.4



	YOLOv10n (Wang et al., 2024a)
	2.3M
	6.6
	0.286
	0.428
	209.5



	YOLOv11n (Jocher and Qiu, 2024)
	2.6M
	6.3
	0.295
	0.431
	227.6



	EggplantDet (Ours)
	3.1M
	7.7
	0.304
	0.438
	241.2










Secondly, to further verify the advantages of the proposed eggplant disease detection model, we conducted a comprehensive experimental comparative evaluation on the augmented eggplant disease dataset. 
Table 3
 presents the experimental results of several advanced detection algorithms, including both two-stage and mainstream single-stage models for comparison. As shown in 
Table 3
, two-stage detectors (e.g., SSD and Faster R-CNN) exhibited significantly lower mAP and FPS compared to the proposed method. Additionally, they required substantially more parameters and GFLOPs than the other algorithms. Among single-stage detectors, EggplantDet achieved the best mAP50–95, mAP50, and FPS, while maintaining similar parameter counts and GFLOPs. Compared to the baseline YOLOv8n, EggplantDet achieved 84.3% mAP50 and 50.3% mAP50–95, with respective improvements of 4.7% and 7.2%. Notably, EggplantDet outperformed the state-of-the-art YOLO11n by 0.017 in mAP50, 0.027 in mAP50–90, and 19.7 in FPS. 
Figures 7A, B
 visually demonstrate the mAP comparison between EggplantDet and the baseline model on the enhanced eggplant dataset, indicating EggplantDet’s excellent performance throughout the process. In conclusion, the improved EggplantDet network demonstrates excellent performance in both detection accuracy and speed, possessing high practical value.



Table 3 | 
Detection results with different models on the eggplant disease dataset.





	Model

	Params

	GFLOPs

	mAP50-95

	mAP50

	FPS






	Faster-RCNN (Ren et al., 2017)
	314M
	341.2
	0.451
	0.721
	92.7



	SSD (Liu et al., 2016)
	53M
	112.5
	0.418
	0.682
	44.6



	RT-DETR (Zhao et al., 2024)
	82M
	109.6
	0.447
	0.728
	109.2



	YOLOv3 (Redmon and Farhadi, 2018)
	12M
	19.0
	0.423
	0.746
	80.1



	YOLOv5n (Jocher et al., 2022)
	2.5M
	7.1
	0.439
	0.763
	92.9



	YOLOv6 (Li et al., 2022)
	4.2M
	11.8
	0.438
	0.755
	106.6



	YOLOv7 (Wang et al., 2022)
	5.6M
	13.4
	0.426
	0.768
	118.5



	YOLOv8n (Baseline) (Redmon and Farhadi, 2025)
	3.0M
	8.1
	0.469
	0.805
	186.1



	YOLOV8s (Redmon and Farhadi, 2025)
	11.1M
	28.4
	0.478
	0.815
	108.1



	YOLOv9t (Wang et al., 2024b)
	2.0M
	7.6
	0.463
	0.810
	203.7



	YOLOv10n (Wang et al., 2024a)
	2.3M
	6.5
	0.474
	0.815
	226.1



	YOLOv11n (Jocher and Qiu, 2024)
	2.6M
	6.3
	0.476
	0.826
	250.8



	EggplantDet (Ours)
	3.1M
	7.7
	0.503
	0.843
	270.5










[image: Two line charts compare three object detection methods—Baseline, YOLO11, and EggplantDet—across 100 training epochs. The left chart shows mAP_50, where EggplantDet performs best, followed by YOLO11 and Baseline. The right chart presents mAP_50-95 with similar performance trends. Legends identify each method by color.]
Figure 7 | 
Comparison of detection accuracy during training of different models on the eggplant disease dataset.








3.3 Ablation studies


To evaluate the effectiveness of the proposed modules, YOLOv8 was adopted as the baseline model, and each module was tested individually on the enhanced eggplant disease dataset. The ablation results for the proposed modules are presented in 
Table 4
. Initially, the CSP-MSEIE, MCRPN, and MCEM modules were introduced individually. Each module contributed to improvements in detection performance. Specifically, introducing CSP-MSEIE alone yielded the highest improvement in mAP50, whereas MCRPN contributed the most to mAP50–95. Subsequently, the modules were combined in pairs. All three combinations further enhanced detection performance, demonstrating strong synergy among the modules. Notably, the combination of CSP-MSEIE and MCRPN resulted in mAP50–95, mAP50, and FPS increasing to 49.3%, 83.7%, and 266.5, respectively. Finally, all three modules were integrated simultaneously. As shown in the last row of 
Table 4
, combining the proposed modules improved the model’s mAP50 and mAP50–95 by 4.7% and 7.2%, respectively, with FPS reaching 270.5. This further confirms the efficacy of the proposed CSP-MSEIE, MCRPN, and MCEM modules in detecting eggplant diseases.



Table 4 | 
The results of the ablation study on the eggplant disease dataset.





	Baseline

	CSP-MSEIE

	MCRPN

	MCEM

	Parameters

	GFLOPs

	mAP50-95

	mAP50

	FPS






	 
	 
	 
	 
	3,006,428
	8.1
	0.469
	0.805
	186.1



	 
	✓
	 
	 
	2,855,900
	7.6
	0.474
	0.823
	221.2



	 
	 
	✓
	 
	3,339,492
	8.3
	0.481
	0.818
	217.7



	 
	 
	 
	✓
	3,114,612
	8.1
	0.467
	0.816
	209.8



	 
	✓
	✓
	 
	3,237,964
	7.8
	0.493
	0.837
	266.5



	 
	✓
	 
	✓
	3,034,108
	7.9
	0.489
	0.832
	251.4



	 
	 
	✓
	✓
	3,439,628
	8.2
	0.487
	0.828
	247.8



	EggplantDet(ours)
	✓
	✓
	✓
	3,183,580
	7.7
	0.503
	0.843
	270.5














3.4 Visual comparative studies




Figures 8
, 
9
 demonstrate EggplantDet’s detection results compared with those of the baseline model and advanced model on the eggplant disease dataset. The figures visually confirms the proposed detection network’s advantages. The results show that EggplantDet achieves the highest detection accuracy across all four categories, significantly outperforming both the baseline and advanced model YOLO11n. These results suggest that the proposed model outperforms others in eggplant disease detection. Consequently, it offers a promising solution for crop disease detection tasks.


[image: Figure contains three columns labeled A, B, and C, each displaying four vertically arranged images of eggplants on a plant. The first row presents original photos with detection boxes and confidence scores for "Healthy" or "Melon Thrips." The second row applies a heatmap overlay highlighting areas of interest. The third row shows close-up views with boxes indicating Melon Thrips-affected regions and their detection scores. The fourth row adds a heatmap overlay to the close-up images, emphasizing affected areas.]
Figure 8 | 
The visualization detection results of different models, (A) Baseline Model; (B) YOLO11; (C) EggplantDet.




[image: Composite figure showing three columns labeled A, B, and C, each with four rows of eggplant images. Top row displays fruit rot with blue bounding boxes and confidence scores, second row uses heatmaps for fruit rot detection, third row shows fruit borer damage with multiple labeled bounding boxes, and fourth row includes heatmaps for borer detection. Each column reflects different detection model results.]
Figure 9 | 
The visualization detection results of different models, (A) Baseline Model; (B) YOLO11; (C) EggplantDet.









4 Conclusion


Crop pest and disease detection technology provides strong support for the development of smart agriculture. To address challenges such as disease scale variations, blurred edge features, and background interference in eggplant diseases, this paper proposes an eggplant disease detection network based on multi-scale edge feature enhancement (EggplantDet), which effectively improves the detection accuracy and localization precision of diseased areas while enhancing detection speed. In the feature extraction stage, the CSP-MSEIE module is incorporated to capture hierarchical features, and the EdgeEnhancer module is used to extract edge information, thereby enhancing the network’s sensitivity to edges. In the feature processing stage, the MCRPN network captures multi-scale contextual information in horizontal and vertical directions and obtains axial global context to explicitly model rectangular key regions, effectively integrating feature information from different levels. Finally, a range of data augmentation techniques is applied to enhance the eggplant disease dataset, thereby boosting the detection model’s ability to generalize. The enhanced detection network outperforms the advanced object detection model YOLO11n, in both detection accuracy and speed. In the future, we will continue to research disease detection networks for more crop varieties and explore lightweight and efficient pest and disease detection technologies to accelerate the transformation of research results into precision crop cultivation applications.


Future work will focus on extending disease detection networks to additional crop species and exploring lightweight, efficient detection technologies to accelerate the deployment of intelligent pest and disease monitoring in precision agriculture.









Data availability statement


Publicly available datasets were analyzed in this study. This data can be found here: https://public.roboflow.com/object-detection/plantdoc/; https://universe.roboflow.com/bohol-island-state-university-vgjlb/eggplant-disease-detection.







Author contributions


HS: Investigation, Formal Analysis, Methodology, Writing – original draft, Data curation, Conceptualization. RF: Formal Analysis, Data curation, Writing – review & editing, Methodology. DK: Writing – review & editing, Funding acquisition, Formal Analysis, Supervision.







Funding


The author(s) declare financial support was received for the research and/or publication of this article. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2022R1A2C2012243).






Acknowledgments


The authors would like to acknowledge the contributions of the participants in this study.







Conflict of interest


The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.







Generative AI statement


The author(s) declare that no Generative AI was used in the creation of this manuscript.


Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.







References

	

Bochkovskiy A., Wang C.-Y., Liao H.-Y. (2020). Yolov4: Optimal speed and accuracy of object detection. arxiv. Available online at: https://arxiv.org/abs/2004.10934.



	

BSCS
(2024).Eggplant disease detection computer vision project. Available online at: https://universe.roboflow.com/bohol-island-state-university-vgjlb/eggplant-disease-detection.



	

Jiang P., Qi A., Zhong J., et al. (2024). Field cabbage detection and positioning system based on improved yolov8n. Plant Methods 20, 96. doi: 10.1186/s13007-024-01226-y, PMID: 38902736



	

Jocher G., Chaurasia A., Stoken A., Borovec J., et al. (2022). Ultralytics/yolov5: V6.2 - yolov5 classification models, apple m1, reproducibility, clearml and deci.ai integrations. doi: 10.5281/zenodo.7002879




	

Jocher G., Qiu J. (2024). Ultralytics yolo11.



	

Krishnaswamy Rangarajan A., Purushothaman R. (2020). Disease classification in eggplant using pre-trained vgg16 and msvm. Sci. Rep. 10, 2322. doi: 10.1038/s41598-020-59108-x, PMID: 32047172



	

Li C., Li L., Jiang H., Weng K., Geng Y., Li L., et al. (2022). Yolov6: A single-stage object detection framework for industrial applications. arxiv. Available online at: https://arxiv.org/abs/2209.02976.



	

Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.-Y., et al. (2016). “Ssd: Single shot multibox detector,” in European conference on computer vision (Springer). 21–37.



	

Liu J., Wang X. (2021). Plant diseases and pests detection based on deep learning: A review. Plant Methods 17, 22. doi: 10.1186/s13007-021-00722-9, PMID: 33627131



	

Liu J., Wang X. (2024). Multisource information fusion method for vegetable disease detection. BMC Plant Biol. 24, 738. doi: 10.1186/s12870-024-05346-4, PMID: 39095689



	

Liu J., Wang X., Zhu Q., Miao W. (2023). Tomato brown rot disease detection using improved yolov5 with attention mechanism. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1289464, PMID: 38053763



	

Maggay J. (2025). Detecting affect states using vgg16, resnet50 and se-resnet50 networks — sn computer science. SN Comput. Sci. doi: 10.1007/s42979-020-0114-9




	

Math R. M., Dharwadkar N. V. (2023). Deep learning and computer vision for leaf miner infestation severity detection on muskmelon (cucumis melo) leaves. Comput. Electrical Eng. 110, 108843. doi: 10.1016/j.compeleceng.2023.108843




	

Ni Z., Chen X., Zhai Y., Tang Y., Wang Y. (2024). Context-guided spatial feature reconstruction for efficient semantic segmentation. arxiv. Available online at: https://arxiv.org/abs/2405.06228.



	

Redmon J., Divvala S., Girshick R., Farhadi A. (2016). You only look once: Unified, real-time object detection. CVPR, 779–788. Available online at: https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html.



	

Redmon J., Farhadi A. (2017). Yolo9000: Better, faster, stronger. CVPR, 7263–7271. Available online at: https://openaccess.thecvf.com/content_cvpr_2017/html/Redmon_YOLO9000_Better_Faster_CVPR_2017_paper.html.



	

Redmon J., Farhadi A. (2018). Yolov3: An incremental improvement. arxiv. Available online at: https://arxiv.org/abs/1804.02767.



	

Redmon J., Farhadi A. (2025).Yolov8 -ultralytics yolo doc. Available online at: https://docs.ultralytics.com/zh/models/yolov8/ (Accessed April 10, 2025).



	

Ren S., He K., Girshick R., Sun J. (2017). Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149. doi: 10.1109/TPAMI.2016.2577031, PMID: 27295650



	

Singh D., Jain N., Jain P., Kayal P., Kumawat S., Batra N. (2019). Plantdoc: A dataset for visual plant disease detection. ArXiv. doi: 10.1145/3371158.3371196




	

Theckedath D., Sedamkar R. (2025). Mobile-based eggplant diseases recognition system using image processing techniques. Int. J. Advanced Trends Comput. Sci. Eng. Available online at: https://www.researchgate.net/publication/339766052_Mobile-Based_Eggplant_Diseases_Recognition_System_using_Image_Processing_Techniques.



	

Tian L., Zhang H., Liu B., Zhang J., Duan N., Yuan A., et al. (2023). Vmf-ssd: A novel v-space based multi-scale feature fusion ssd for apple leaf disease detection. IEEE/ACM Trans. Comput. Biol. Bioinf. 20, 2016–2028. doi: 10.1109/TCBB.2022.3229114, PMID: 37015544



	

Wang C.-Y., Bochkovskiy A., Liao H.-Y. (2022). Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arxiv. Available online at: https://arxiv.org/abs/2207.02696.



	

Wang A., Chen H., Liu L., Chen K., Lin Z., Han J., et al. (2024a). Yolov10: Real-time end-to-end object detection. Adv. Neural Inf. Process. Syst. 37, 107984–108011.



	

Wang X., Liu J. (2024). An efficient deep learning model for tomato disease detection. Plant Methods 20, 61. doi: 10.1186/s13007-024-01188-1, PMID: 38725014



	

Wang H., Sun S., Chang L., Li H., Zhang W., Frery A. C., et al. (2024c). Inspiration: A reinforcement learning-based human visual perception-driven image enhancement paradigm for underwater scenes. Eng. Appl. Artif. Intell. 133, 108411. doi: 10.1016/j.engappai.2024.108411




	

Wang H., Sun S., Ren P. (2023). Underwater color disparities: Cues for enhancing underwater images toward natural color consistencies. IEEE Trans. Circuits Syst. Video Technol. 34, 738–753. doi: 10.1109/TCSVT.2023.3289566




	

Wang C.-Y., Yeh I.-H., Liao H.-Y. (2024b). Yolov9: Learning what you want to learn using programmable gradient information. arxiv. Available online at: https://arxiv.org/abs/2402.13616.



	

Wu D. (2018). Early detection of botrytis cinerea on eggplant leaves based on visible and near-infrared spectroscopy. Trans. ASABE. doi: 10.13031/2013.24504




	

Xie C., He Y. (2016). Spectrum and image texture features analysis for early blight disease detection on eggplant leaves. Sensors 16, 676. doi: 10.3390/s16050676, PMID: 27187387



	

Yan Z., Liang Y., Li Z., Lin D., Dou H., Li N., et al. (2024). Wax patterns, textural properties, and quality attributes of two eggplant (solanum melongena l.) cultivars during storage. Trans. ASABE HortScience.



	

Zhao Y., Lv W., Xu S., Wei J., Wang G., Dang Q., et al. (2024). “Detrs beat yolos on real-time object detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 16965–16974.











Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



Copyright © 2025 Sun, Fu and Kang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.





ORIGINAL RESEARCH

published: 21 October 2025

doi: 10.3389/fpls.2025.1658758

[image: Frontiers: Stamp Date]



Integral terminal sliding mode-based adaptive driving control method of tracked robots



Zhiqiang Li *, Kun Luo, Liang Tao and Yan Zhou


School of Mechanical Engineering, Tongling University, Tongling, China






Edited by: 
Bimlesh Kumar, Indian Institute of Technology Guwahati, India


Reviewed by: 
Mehul Gor, Parul University, India
Dasheng Liu, Shanghai Jiao Tong University, China


*Correspondence: 

Zhiqiang Li
 zhiqiangli@tlu.edu.cn




Received: 03 July 2025


Accepted: 06 October 2025


Published: 21 October 2025


Citation:
Li Z, Luo K, Tao L and Zhou Y (2025) Integral terminal sliding mode-based adaptive driving control method of tracked robots
. Front. Plant Sci. 16:1658758. doi: 10.3389/fpls.2025.1658758




Tracked robots (TR) exhibit significant advantages field applications due to their stability and adaptability to uneven and soft terrains. When the TR operating on soft or uneven terrain, the interaction between the tracks and the ground introduces disturbances, these disturbances leading to challenges in maintaining precise driving control. In this work, we address these issues by proposing an adaptive control strategy for tracked robots. First, the disturbance models are established based on the Bekker pressure-sinkage and Janosi shear theories, enabling a comprehensive understanding of the robot-terrain interaction dynamics. Subsequently, an adaptive integral terminal sliding mode (AITSM) control method is introduced to enhance the robustness and precision of the driving system under complex environmental conditions. Experimental results demonstrate the effectiveness and superior performance of the proposed method in real-world scenarios. This study not only provides a solution for improving the control of tracked robot in outdoor applications but also offers a framework for driving control in a wide range of intelligent field machinery, including agricultural robots, exploration vehicles, and disaster response systems.
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1 Introduction


The deployment of tracked robots (TR) in field applications has become increasingly prevalent due to their exceptional ability to navigate challenging terrains, such as uneven, soft, or vegetation-covered surfaces. Unlike wheeled robots, TR offer superior traction, stability, and load distribution, making them ideal for tasks in agriculture, exploration, and disaster response (Li et al., 2019; Liu and Liu, 2009). However, their performance in real-world environments is often hindered by the complex dynamic interactions between the tracks and the soil. These interactions introduce disturbances, such as uncertain shear forces and pressure subsidence, which are influenced by factors like soil composition, vegetation density, and external loads (Xie et al., 2024). Such disturbances pose significant challenges to achieving precise driving control, limiting the operational efficiency and reliability of TR in practical applications (Zhang et al., 2022).


Researchers have developed various control systems to achieve good TR performance, employing techniques such as fuzzy control (Hacene et al., 2022; Resende et al., 2013) and nonlinear control (Yan et al., 2022). It is well-established that the aforementioned control approaches, which rely on the robot kinematics model, are primarily applicable to structured environments. However, due to the soft soil and the presence of weeds on the soil surface, the field work environment for TR is quite complex, which is a typical unstructured environment (Xu et al., 2023). The attractive properties of sliding mode control (SMC), namely its ease of execution and robustness to perturbations, make it a favored choice for applications in robotics and mechatronics (Gad et al., 2024; Liu et al., 2020). The application of SMC in robotics is well-documented for addressing challenges like parameter uncertainties and disturbances. For instance, Xi et al. (2022) developed a robust adaptive SMC to achieve accurate and smooth control of robot manipulators under such conditions. Similarly, Liu et al. (2022) designed a novel trajectory tracking controller for a spherical robot by combining controller with a hierarchical SMC scheme, enabling precise velocity tracking across complex terrains. Beyond mobile robots, SMC has also been applied to snake robots for velocity tracking, as demonstrated by Mukherjee et al. (2017). In applications where fast response is critical, such as in TR, the Integral Terminal Sliding Mode Control (ITSMC) variant has been the focus of extensive research (Qin et al., 2024; Su and Zheng, 2020; Sun et al., 2021; Van et al., 2019), due to its enhanced performance. Compared to the traditional SMC with infinite convergence time, ITSMC can stabilize at the equilibrium point within a finite time, ensuring global robustness in the state space from the initial moment, and by using integral sliding mode to design disturbance estimators, continuous control can be achieved, and chattering can be eliminated, while ensuring strong robustness and high accuracy of sliding mode control (Nguyen and Pitakwachara, 2024; Qian et al., 2020; Shen et al., 2023). In (Rahmani et al., 2016), a control scheme based on the fraction integral terminal sliding mode control and adaptive neural network was proposed, which deals with the system model uncertainties and the disturbances to improve the control performance of the manipulator. In (Chiu, 2012), integral TSMC is developed for robust output tracking of uncertain relative-degree-one systems by introducing sign and fractional integral terminal sliding modes, and the control system is forced to start on the terminal sliding hyperplane, so that the reaching time of the sliding modes is eliminated.


Inspired by the aforementioned studies, we propose an adaptive control strategy to address the challenges associated with TR driving control in complex terrains. By leveraging the Bekker pressure-sinkage and Janosi shear theories, we establish disturbance models that capture the robot-terrain interaction dynamics. These models provide a foundation for understanding the effects of soil deformation and shear forces on TR motion. Building on this understanding, we introduce an adaptive integral terminal sliding mode (AITSM) control method, which combines the benefits of adaptive control and terminal sliding mode control to enhance robustness and precision. Experimental validation demonstrates the effectiveness of the proposed method in real-world scenarios, showcasing its ability to maintain precise driving control in challenging environments. This study not only advances the field of TR control but also provides a versatile framework for driving control in a wide range of intelligent field machinery, including agricultural robots (Bai et al., 2023; Wang et al., 2022; Zhang et al., 2022), exploration vehicles, and disaster response systems. By addressing the critical challenges of terrain interaction and disturbance rejection, this work contributes to the broader goal of enhancing the autonomy and reliability of field robots in outdoor applications.


The major contributions can be summarized as follows:


	
Based on Bekker pressure subsidence model and Janosi shear model, the dynamic model of TR is established, to facilitate for the subsequent controller design.


	
An AITSM control scheme is developed to ensure accurate and robust driving control performance of the TR under complex field environment.


	
The designed adaptive controller can well compensate for the shear disturbance caused by pressure subsidence during the actual operation of TR, which further improves its operation stability effectively.


	
Due to the adopted recursive terminal sliding surface, the error state can be well guaranteed both far away from and near the equilibrium without the issue of singularity in a fast convergence rate.





The remainder of this article is constructed below. Section 2 describes the TR system modeling. Section 3 presents the AITSM driving control method with the rigorous stability proof. Section 4 gives real-time experiments on the TR platform and corresponding discussions. Section 5 concludes this paper.






2 System modeling




Figure 1a
 shows a tracked robot (model no. TR400), which is mainly composed of a control system and a drive system, respectively. Note that, in the field environment, since the soil is soft and sticky, the TR has complex track-ground contact surfaces, which greatly increases the difficulty of driving control. Therefore, the subsidence displacement and sheer force of the TR should be considered, before designing a control method for driving system. The positive pressure between track and ground satisfies the pressure-subsidence model proposed by Bekker (Li et al., 2019), which is shown in 
Figure 1b
. Besides, as shown in 
Figure 1c
, the relationship between the shear stress of track and the soil deformation satisfies the formula of shear stress and deformation proposed by Janosi (Kayacan et al., 2018). The pressure subsidence and shear can be expressed as Equations 1, 2.


[image: Panel (a) shows a small tracked robot on gravel terrain. Panel (b) is a side-view diagram illustrating forces and pressures from a track interacting with soil. Panel (c) displays a top-down diagram of dual tracks with labeled force and motion vectors. Panel (d) presents a block diagram of a tracked system linked to a controller, motor drive, power source, and sensor, with soil depicted under the track. Panel (e) offers a detailed mechanical diagram of a tracked vehicle, highlighting vectors and forces acting on the tracks.]
Figure 1 | 
Analysis of the contact characteristics between the chassis and the soil. (a) Tracked robot (model no. TR400). (b) Dynamical model of contact between soil and TR track. (c) Disturbance mechanism of TR. (d) Diagram of TR track control. (e) Diagram of track steering dynamics on both sides.





p
=
(

k
c

/
b
+

k
∅

)

z
0

n
k




(1)







τ

l
e
f
t


=
(
c
+

p
L

tan
∅
)
(
1
−
e
x

p

−

j
k



)
,

τ

r
i
g
h
t








=
(
c
+

p
R

tan
∅
)
(
1
−
e
x

p

−

j
k



)





(2)


where 
p

 is compressive stress, 

 

k
c



 is modulus of cohesion of soil deformation, 

 

k
∅



is internal friction modulus of soil deformation, 

 

z
0



 is soil subsidence, 


n
k



 is soil deformation index, 


p
L



 and 


p
R



 are pressure on left and right track unit areas, respectively, 


τ

l
e
f
t




 and 


τ

r
i
g
h
t




 are shear force per unit area of left and right track, respectively, 
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 is soil cohesion, 
∅

 is internal friction angle of soil, j is soil shear displacement, k is horizontal shear modulus of soil.


As shown in 
Figure 1e
, on the soft ground, the shear force between the track and the ground is opposite to the sliding velocity direction of the track. In the 
Figure 1e
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 is Distance from any point to geometric center during steering. According to (2), the shear force acting on the grounding section of the track on both sides can be described as follows (Equations 3, 4).



d

F
1

=

τ

l
e
f
t


d
A
=
(
c
+

p
L

tan
∅
)
(
1
−
e
x

p

−

j
k



)
d
A


(3)



d

F
2

=

τ

r
i
g
h
t


d
A
=
(
c
+

p
R

tan
∅
)
(
1
−
e
x

p

−

j
k



)
d
A


(4)


Where 
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 is Shear force on track plate, A is unit area of track contact ground. From (3), (4), the longitudinal forces acting on both sides of the track are as follows (Equation 5).
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Where 
b

 is load plate width, 
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 and 


δ
2



 are angles between sliding velocity at any point of track grounding section and x-axis direction, 
L

 is track shoe length. The lateral force acting on both sides of the track is as follows (Equations 6, 7).
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Where 


x
1

,
 

x
2



 is X-axis abscissa of any point of trackpad.


Remark: To accurately depict the dynamic interaction between the crawler robot and the soft ground and lay the foundation for the subsequent design of high-performance controllers, this paper adopts the classic Bekker pressure-settlement model and the Janosi shear model for mechanical modeling. The advantage of this modeling method lies in its ability to comprehensively describe the core mechanical characteristics of track-soil contact (i.e., compaction resistance and shear thrust) from both vertical and horizontal dimensions. Its parameters have clear physical meanings and serve as a widely verified theoretical basis in the field of ground mechanics. However, this model is rather sensitive to the accuracy of soil parameters and has limitations under heterogeneous soil conditions. For this reason, this paper will design an adaptive control strategy that does not rely on precise model information to estimate and compensate for the lumped uncertainty composed of model uncertainty and external disturbances online, thereby ensuring the robustness of the system in real and complex environments.


?>The schematic diagram of unilateral track control system is shown in 
Figure 1d
. Note that the desired velocity and steering angular velocity required for TR to track the desired path are obtained through the Pure-Pursuit path tracking algorithm (PPPT) (Zhang et al., 2019). Take one side crawler driving wheel as an example, the 
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 is desired angular velocity of the driving wheel. The actual angular velocity of the driving wheel, 


ω
t



, is actually measured by the angular velocity sensor of the driving wheel. The voltage control signal 
u

 is calculated from the controller, such that the accurate control of the angular velocity of the driving wheel can be realized. The track is driven by the drive motor through the reducer to drive the drive wheel. The system dynamics of the unilateral track system of TR and the DC motor are given by (Equations 8–11).
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Where 
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 and 
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 are the moments of inertia of the unilateral track system and motor, respectively, 
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 are the viscous damping coefficients of the unilateral track system and motor, respectively, 
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 is the control input voltage, 
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 is the motor torque, 
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is the torque transmitted from the motor to the reducer, 
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 is drive wheel torque, and 
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 is torque transmission loss coefficient. Using (9)-(11) into (8) by eliminating 
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, the dynamics of the unilateral track system can be simplified as (Equation 12).
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To facilitate the further controller design, (12) is reformulated as (Equation 13).
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. In this paper, we consider the following parametric variations in (13) as follows (Equations 14, 15).
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 are the nominal parameters of the system, and their values are determined based on the specific physical parameters of the motor and mechanical structure of the TR400 experimental platform. The tracking error of the angular velocity is defined as (Equation 16).
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. The error dynamics can then be obtained from (13) and (16) as follows (Equation 17).
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 represents the lumped uncertainty in the error dynamics.


In terms of the bound derivation of the lumped uncertainty. if the closed-loop control 
u

 is designed to satisfy the following polynomial-type upper bound as (Equation 18).
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Where 
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 are positive constants, then the lumped uncertainty in (17) will be bounded as (Equation 19).
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Where d(t) is defined as (Equation 20).
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with 
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 being positive constants.






3 Design of controller


In this part, an AITSM driving control scheme is developed for the unilateral track system of TR with uncertain dynamics. A precise position tracking performance with finite-time convergence and good robustness can be well ensured, also, the lumped uncertainty bound and the sliding mode parameters are all online updated by the designed adaptive laws, such that the requirements of obtaining the bound information in the controller are successfully eliminated.





3.1 Controller design


Firstly, a recursive integral terminal sliding variable is defined as (Equation 21).
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Where the sliding parameter 
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 is to be adaptively adjusted by the following adaptive law, the fast nonsingular terminal sliding function 
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 is given by Equation 22.
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Where 


k
1



 and 
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 are two positive constants, 
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, the sliding variable 

s
(
t
)


 will be initially starting from the sliding surface 
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. Following this nice feature, the reaching phase of the sliding mode control system can be eliminated, which further enhances the fast response and robustness.


The proposed control law 

u
(
t
)


 is of the following form (Equation 23).
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where u_eq(t), u_sw(t), u_re(t) are defined as Equations 24–26.
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Where the reaching control parameters 
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 are updated by the following adaptive laws (Equations 27–29).
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Where 
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i
=
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 are positive adaptation rates. The block diagram of the proposed AITSM controller is shown in 
Figure 2
, where the right track control system is the same as the left one.


[image: Block diagram illustrating an adaptive integral terminal sliding-mode control system for a drive wheel, showing signal flow from input references through NTSM Surface, RTSM Surface, AITSM Control, Adaptive Laws, motor driver, drive motor, and drive wheel modules, with red dashed feedback loops and labeled signals.]
Figure 2 | 
Block diagram proposed AITSM controller.




In the following context, for the conciseness of the paper, the notions of time for all given variables are omitted. And for the concise of the paper, the notations of time for all variables are thus omitted in the rest of the paper. In practice, due to the measurement noise, certain deviations of the sliding variables from the sliding mode surface always occur, which causes the estimated bounds to continuously increase and experience undesired parameter bursting. The estimated gains may finally drift to undesired values. To tackle this issue, we use the Equations 30 and 31 dead-zone modification mechanism in the adaptation process (Mathew and Hiremath, 2018; Wang et al., 2016):
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Where: 
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 are based on the assessment of the measurement noise level of the system and are tuned through a series of simulation experiments. The aim is to effectively suppress the parameter drift caused by measurement noise while ensuring adaptability.






3.2 Stability proof


Before the stability proof of the proposed control, the following Lemma is given in advance with the corresponding proof given in.


Lemma 1: Given the unilateral track system of TR in (13) and the control law in (25) 
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, such that the following inequality Equation 32 always hold:
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Theorem 1: Consider the unilateral track system TR model in (13) with parametric variations in (14)-(15). The closed-loop error dynamics in (17) converges to zero in a finite time under the control law designed in (23).


Proof: First, we give the first derivative of the sliding variable 
s

 in (21) as follows (Equation 33).
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Next, considering the following Lyapunov function candidate (Equation 34).
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and differentiating V with respect to time, we have Equation 35.
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Where 

Ω
=
m
i
n
(

Γ
s


2

,
 

Γ
0



2

ρ
0



,
 

Γ
1



2

ρ
1



)


, 


Γ
s

=

ξ
1

|
s
|
+

ξ
2

|
s

|


μ
3





, 


Γ
0

=
|
s
|
|

ρ
0

−
1



η
0

+
1
|


, 


Γ
1

=
|
s
|
|

ρ
1

−
1



η
1

+
1
|


. According to Lemma 1 and inequality (36), since the constants 


ρ
i

 
(
i
=
0
,
1
)


 always exist to satisfy 


ρ
i

−
1



η
i

>
−
1


, it can be verified that 

Ω
>
0


 and thus the recursive sliding variable 
s

 can have a finite-time zero-convergence. Thus, the finite-time convergence of the sliding variable 
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. Finally, after 
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 is fulfilled and maintained, the output tracking error of the angular velocity 
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 will correspondingly converge to zero within a finite time.


This completes the whole proof.







4 Experimental study





4.1 Experimental configurations


To validate the effectiveness and practical performance of the proposed Adaptive Integral Terminal Sliding Mode (AITSM) control method, comprehensive field tests were conducted using TR platform. The experimental setup employs Mission Planner as the navigation upper computer system, which automates the ground control station operations and enables autonomous TR navigation through its advanced task planning module. The field test environment and platform are shown in 
Figure 3
. For rigorous performance benchmarking, the proposed AITSM controller is compared against two conventional approaches, a traditional Sliding Mode Controller (SMC) and a Proportional Integral Derivative (PID) controller (Li et al., 2019). All controller parameters have been systematically tuned and are comprehensively documented in 
Table 1
 to ensure fair comparison conditions. The TR’s onboard sensors provide real-time state feedback, while the control algorithms execute at 100Hz sampling frequency.


[image: Panel (a) shows a laptop connected to a tracked mobile robot with electronic components on top, situated on bare soil near vegetation. Panel (b) displays a sensor device mounted on a pole among tall green plants, with visible wiring and components.]
Figure 3 | 
Field test environment and platform. (a) TR400 field test platform. (b) Navigation system base station.





Table 1 | 
Controller parameter values.
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The PID control law is Equation 37.
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The traditional SMC control is as Equations 38, 39. 
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where: 
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p



 is proportional gain of PID controller, 
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i



 is integral gain of PID controller, 
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d



 is derivative gain of PID controller. 
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 is sliding mode surface of SMC, 
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 is sliding mode surface gain of SMC, 
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 is switching gain of SMC.






4.2 Field test study





4.2.1 Case 1: L-shaped path tracking and robustness


To validate the control performance of the proposed Adaptive Integral Terminal Sliding Mode (AITSM) controller under realistic operating conditions, we conducted comprehensive experimental evaluations using an L-shaped path tracking scenario that combines straight-line motion with sharp left turns, a common maneuver required in field operations. As shown in 
Figure 4
, we can clearly see that the designed controller achieves the best path following responses, followed by the SMC as well as PID controllers. It indicates that the TR with the proposed control is relatively stable during driving, particularly during the critical transition phase between straight-line motion and turning, where the PID controller shows substantial tracking errors. This enhanced performance is particularly critical for field robotic operations where precise navigation through challenging terrain is essential to ensure mission success and operational safety. Further examination of the drive motor responses in 
Figures 5
–
7
 provides deeper insights into the controllers’ dynamic performance, 
Figures 5
-
7a, b
 and 
Figures 5
-
7c-d
 showing that while both the AITSM and SMC controllers maintain satisfactory angular velocity tracking, the AITSM achieves significantly lower average tracking errors of 0.023 rad/s and 0.025 rad/s for the left and right wheels respectively, compared to 0.033 rad/s and 0.027 rad/s for SMC and substantially higher errors of 0.094 rad/s and 0.086 rad/s for PID control. More importantly, the angular velocity tracking result of the SMC controller shows a more obvious chattering phenomenon. This is because the SMC forces the system state to move along the sliding surface through high-frequency switching control signals, as shown in 
Figures 5e–f
. This chattering phenomenon poses a greater threat to the control results of the motor and the driving stability of the robot. In contrast, the AITSM controller’s innovative architecture, which combines equivalent control 


u

e
q




 for disturbance compensation with adaptive switching terms 


u

s
w




 for residual uncertainty handling, achieves robust performance while dramatically reducing control signal chattering, as clearly evidenced in 
Figures 5g–j
. This dual-mechanism approach allows the AITSM controller to maintain excellent tracking precision, with 30.3% and 7.4% lower errors than SMC for left and right wheels respectively, and 75.5% and 70.9% improvement over PID, while ensuring smooth actuator operation, making it particularly suitable for field applications where prolonged operation and equipment longevity are critical concerns. The superior performance of the AITSM controller stems from its ability to adaptively adjust control parameters in response to varying terrain conditions and system uncertainties, a feature lacking in both conventional SMC and PID approaches. Furthermore, the experimental data confirms that the AITSM controller’s disturbance rejection capability remains effective throughout the entire operating range, from steady-state straight-line motion to dynamic turning maneuvers, without exhibiting the performance degradation seen in PID control during transient conditions or the high-frequency oscillations characteristic of SMC implementations.


[image: Three labeled line charts show path tracking performance using different control algorithms, comparing desired path versus actual path in meters along X and Y directions. Chart (a) uses the AITSM algorithm, (b) uses SMC, and (c) uses PID. Insets in each chart provide a detailed view of a section where tracking deviations differ. Legends identify solid blue as the desired path and dashed orange as the actual path, with labeled start and end points. Adjacent text clarifies algorithm usage for each chart panel.]
Figure 4 | 
L-shaped path tracking test results (a) Path tracking results of using AITSM control algorithm. (b) Path tracking results of using SMC control algorithm. (c) Path tracking results of using PID control algorithm..




[image: Ten subplots compare two control systems across five metrics: tracking curve, tracking error, control voltage, and two updated parameters, over one hundred seconds. Each subplot uses distinct lines, with insets in (a) and (b) showing detailed tracking curves.]
Figure 5 | 
Angular velocity tracking responses of AITSM control for left and right driving wheels of TR (L-shaped path). (a, b) are the tracking curves of the angular velocity of left and right driving wheels. (c) and (d) are tracking errors of left and right driving wheels. (e, f) are control voltages of left and right driving wheels. (g–j) are updated parameters of left and right driving wheels.




[image: Six-panel scientific graphic comparing system tracking performance. Top row: line graphs (a, b) show desired (ωd) and actual (ωt) tracking curves over 80 seconds with detailed insets highlighting close data alignment. Middle row: panels (c, d) display tracking error, showing minimal error across time. Bottom row: panels (e, f) present control voltage responses, both stabilizing after initial fluctuations.]
Figure 6 | 
Angular velocity tracking responses of SMC control for left and right driving wheels of TR (L-shaped path). (a, b) are the tracking curves of the angular velocity of left and right driving wheels. (c, d) are tracking errors of left and right driving wheels. (e, f) are control voltages of left and right driving wheels.




[image: Six-panel scientific chart comparing two experimental conditions. Panels (a) and (b) show tracking curves (rad/s) over time with zoomed insets, (c) and (d) show tracking error (rad/s), and (e) and (f) show control voltage (V), with each column representing a different condition.]
Figure 7 | 
Angular velocity tracking responses of PID control for left and right driving wheels of TR (L-shaped path). (a, b) are the tracking curves of the angular velocity of left and right driving wheels. (c, d) are tracking errors of left and right driving wheels. (e, f) are control voltages of left and right driving wheels.








4.2.2 Case 2: U-shaped path tracking and robustness


The U-shaped path tracking scenario represents a fundamental and indispensable test case for TR operating in field environments, as it accurately replicates the requirement for lines changing maneuvers while simultaneously evaluating two critical control performance aspects: the system’s ability to maintain trajectory tracking accuracy under significant soil-induced disturbances and its capacity for sustained steering control during continuous directional changes. The actual driving conditions of the TR during the U-shaped path tracking test is shown in 
Figures 8
. As evidenced in 
Figures 9
–
12
, the comprehensive experimental results reveal distinct performance characteristics among the proposed controllers. As shown in 
Figures 9a-c
, both the proposed AITSM controller and conventional SMC demonstrate better trajectory-following capabilities with better robustness, particularly when contrasted with the PID controller which exhibits noticeable deviation, especially during the critical transition phases between straight segments and curved paths. This performance gap becomes even more pronounced when examining the drive motor angular velocity tracking responses shown in 
Figures 10
-
12
. Under the demanding conditions of continuous turning, the AITSM controller maintains better steady-state performance, achieving average tracking errors of merely 0.037 rad/s and 0.021 rad/s for the left and right wheels respectively, representing a 61.8% and 80.0% improvement over the PID controller’s tracking errors of 0.097 rad/s and 0.105 rad/s. The tracking errors of the left and right drive wheels of the SMC controller are 0.029 rad/s and 0.031 rad/s respectively, and the control performance is comparable to AITSM. But SMC’s performance comes at the cost of significant high frequency chattering an inherent limitation of traditional sliding mode control architectures that arises from the discontinuous switching action required to maintain system states on the sliding surface as shown in 
Figures 11e, f
. This chattering phenomenon not only persists throughout the U-shaped path maneuver but also introduces undesirable mechanical stress on actuation components, potentially compromising long term system reliability. In contrast, the AITSM controller’s adaptive control mechanisms successfully mitigate these oscillations while maintaining precision, owing to its dual layer control structure that adjusts switching gains based on real-time system. The proposed controller’s adaptive rate implementation proves effective during continuous commutation phases, as shown in 
Figures 9g–j
. The experimental data further reveals that the AITSM controller’s disturbance rejection capability remains consistently effective throughout all phases of the U-shaped path maneuver, which demonstrating its adaptability to rapidly changing terrain conditions and dynamic loading scenarios. This consistent performance across field operational conditions highlights the controller’s suitability for field applications where unpredictable terrain interactions and prolonged operation requirements demand both precision and reliability.


[image: Three pairs of screenshots display a robot navigation interface on the left and corresponding video frames of a tracked robot navigating outdoors among corn stalks on the right. The interface shows a planned curved yellow path from start to end positions labeled “start” and “end,” with the robot icon moving along the path in each sequential panel. Each matching video frame shows the robot at different stages of following the path in a dirt and plant-filled environment.]
Figure 8 | 
The actual driving conditions of the TR during the U-shaped path tracking test.s.




[image: Three labeled line graphs compare path tracking methods. Each graph shows “desired path” as a blue line and “actual path” as a dashed orange line, with start and end points marked. Figure (a) uses the AITSM algorithm, (b) uses SMC, and (c) uses PID, with each subplot containing an inset showing detail. Panel (c) lists each algorithm beside its corresponding subplot. All axes are labeled with distance in X and Y direction in meters.]
Figure 9 | 
U-shaped path tracking test results. (a) Path tracking results of using AITSM control algorithm. (b) Path tracking results of using SMC control algorithm. (c) Path tracking results of using PID control algorithm..




[image: Ten-panel figure comparing performance metrics from two different systems, labeled a to j. The left column (a, c, e, g, i) and right column (b, d, f, h, j) display time series plots for tracking curves, tracking errors, control voltages, and updated parameters with respective legends and axes labeled. Insets and color differences highlight detailed views and parameter updates for each system.]
Figure 10 | 
Angular velocity tracking responses of AITSM control for left and right driving wheels of TR (U-shaped path). (a, b) are the tracking curves of the angular velocity of left and right driving wheels. (c, d) are tracking errors of left and right driving wheels. (e, f) are control voltages of left and right driving wheels. (g–j) are updated parameters of left and right driving wheels.




[image: Two sets of three time-series plots are shown. Top row: tracking curves with actual (solid blue) and target (dashed red) angular velocity, each with a zoomed inset and labeled (a) and (b). Middle row: tracking error plots labeled (c) and (d), showing small error fluctuations. Bottom row: control voltage signals labeled (e) and (f), with each graph displaying voltage over time. All plots share the same time axis, with vertical axes for tracking curve, tracking error, and control voltage respectively.]
Figure 11 | 
Angular velocity tracking responses of SMC control for left and right driving wheels of TR (U-shaped path). (a, b) are the tracking curves of the angular velocity of left and right driving wheels. (c, d) are tracking errors of left and right driving wheels. (e, f) are control voltages of left and right driving wheels.




[image: Six-panel scientific figure displaying system response data over time. Panels (a) and (b) show line charts comparing two tracking curves with inset graphs for detail. Panels (c) and (d) display tracking error over time with minimal fluctuation. Panels (e) and (f) present control voltage, showing consistent values after initial adjustment. All graphs use seconds for time on the x-axis and include clear legends and colored backgrounds.]
Figure 12 | 
Angular velocity tracking responses of PID control for left and right driving wheels of TR (U-shaped path). (a, b) are the tracking curves of the angular velocity of left and right driving wheels. (c, d) are tracking errors of left and right driving wheels. (e, f) are control voltages of left and right driving wheels.









4.3 Performance comparisons and discussions


For the further control performance comparisons in a quantitively way, the root means square error (RMSE) as well as the maximum error (MAXE) are used, which are defined as:
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sampled tracking error. We can see from 
Table 2
 that, In the L-shaped path test, the proposed controller and SMC controller is comparable, which is reflected in that the MAXE of the left and right driving wheels of the proposed controller is 17.2% and 17.0% higher than SMC respectively, but the RMSE of the left and right driving wheels of the proposed controller is 30.3% and 7.4% lower than SMC respectively. Note that, although the MAXE of proposed controller is higher than SMC controller, it appears at the initial stage of control and has little impact on the subsequent control performance, while the SMC controller, as previously mentioned, has a low MAXE but obvious chattering phenomenon. At the same time, the performance of proposed controller greatly exceeds that of the PID controller, which is reflected in that the MAXE are respectively lower by 85.9% and 88.0%, while the RMSE is respectively lower by 75.5% and 85.8%. The experimental results of the U-shaped path are similar to those of the L-shaped path. The MAXE of the left and right driving wheels of the proposed controller is 28.1% and 30.7% higher than SMC respectively, but the RMSE is 27.6% and 32.2% lower than SMC respectively. The proposed controller is 85.8% and 87.4% lower in MAXE and 61.8% and 80.0% lower in RMSE than the PID controller. By comparison, the proposed controller is superior to SMC controller and PID controller.



Table 2 | 
Comparisons of control performance, unit, rad/s.





	Test Case

	Criteria (rad/s)

	Control performance




	Proposed controller

	SMC controller

	Improvement

	PID controller

	Improvement






	Case1
	
L-left

	
MAXE

	0.058
	0.048
	-17.2%
	0.413
	85.9%



	RMSE
	0.023
	0.033
	30.3%
	0.094
	75.5%



	
L-right

	
MAXE

	0.047
	0.039
	-17.0%
	0.392
	88.0%



	RMSE
	0.025
	0.027
	7.4%
	0.086
	70.9%



	Case2
	
U-left

	
MAXE

	0.057
	0.041
	-28.1%
	0.404
	85.8%



	RMSE
	0.037
	0.029
	27.6%
	0.097
	61.8%



	U-right
	
MAXE

	0.052
	0.036
	-30.7%
	0.413
	87.4%



	RMSE
	0.021
	0.031
	32.2%
	0.105
	80.0%















5 Conclusion


In conclusion, this study successfully developed an Adaptive Integral Terminal Sliding Mode (AITSM) control strategy for TR operating in field environments. The experimental validation across L-shaped and U-shaped path scenarios confirmed the controller’s ability to maintain precision during dynamic maneuvers while adaptively compensating for disturbances, with tracking accuracy improved compared to PID and smoother actuation than SMC. However, the study has limitations, including the reliance on predefined disturbance models (Bekker and Janosi theories), and the need for further optimization of adaptive parameters to balance convergence speed and computational efficiency. Future research should explore the integration of machine learning techniques for disturbances identification, and investigate energy-efficient implementations for prolonged field operations.
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Introduction

The timely and precise detection of foliar diseases in potatoes, a food crop of worldwide importance, is essential to safeguarding agricultural output. In complex field environments, traditional recognition methods encounter significant challenges, including the difficulty in extracting features from small and diverse early-stage lesions, blurred edge features due to gradual transitions between diseased and healthy tissues, and degraded robustness from background interference such as leaf texture and varying illumination.


Methods

To address these limitations, this study proposes an optimized lightweight convolutional neural network architecture, termed LDL-MobileNetV3S. The model is built upon the MobileNetV3 Small backbone and incorporates three innovative modules: a Lightweight Multi-scale Lite Fusion (LF) module to enhance the perception of small lesions through cross-layer connections, a Dynamic Dilated Convolution (DDC) module that employs deformable convolutions to adaptively capture pathological features with blurred boundaries, and a Lightweight Attention (LA) module designed to suppress background interference by assigning spatially adaptive weights.


Results

Experimental results demonstrate that the proposed model achieves a recognition accuracy of 94.89%, with corresponding Precision, Recall, and F1-score values of 93.54%, 92.53%, and 92.77%, respectively. Notably, these results are attained under a highly compact model configuration, requiring only 6.17 MB of storage and comprising 1.50 million parameters. This is substantially smaller than benchmark models such as EfficientNet-B0 (15.61 MB / 3.83 M parameters) and ConvNeXt Tiny (106 MB / 27.8 M parameters).


Conclusion

The proposed LDL-MobileNetV3S model demonstrates superior performance and efficiency compared to several existing lightweight models. This study provides a cost-effective and high-accuracy solution for potato leaf disease diagnosis, which is particularly suitable for deployment on intelligent diagnostic devices operating in resource-limited field environments.



Keywords: potato leaf disease, MobileNetV3 Small, Lite Fusion, Dynamic Dilated Convolution, Lightweight Attention




1 Introduction

As a widely cultivated staple crop worldwide, potato holds substantial nutritional and economic value, playing a critical role in safeguarding food security and promoting the growth of cash crop industries (Kharumnuid et al., 2021). Effective management of potato production is crucial for ensuring both food supply stability and the profitability of agricultural systems. However, throughout the growth cycle of potatoes, their leaves are frequently affected by various diseases, including late blight, early blight, and viral infections (Tejas et al., 2023). These diseases compromise plant health, reduce yield, and degrade product quality, ultimately causing significant economic losses in agriculture. Therefore, achieving efficient and accurate detection of potato leaf diseases is crucial for effective disease management, intelligent agricultural practices, and the improvement of crop productivity (Kaur et al., 2024).

Traditional methods for identifying plant diseases primarily rely on manual field observation and the subjective judgment of agricultural specialists. While these approaches may yield acceptable accuracy in localized scenarios, they often suffer from low efficiency, inconsistent results, and limited scalability. Moreover, they are inadequate for meeting the demands of modern precision agriculture, which requires real-time, data-driven decision-making across large and diverse field conditions. Consequently, traditional techniques fall short in supporting high-throughput, automated monitoring essential for large-scale crop management (Khakimov et al., 2022) (Liu and Wang, 2021).

In recent decades, machine vision and artificial intelligence have developed rapidly. Image recognition techniques driven by deep learning have found widespread use in diagnosing plant diseases (Bhargava et al., 2024). Convolutional Neural Networks (CNNs) have become a focus of research. They can automatically learn image features with strong efficiency. CNNs have demonstrated strong capabilities in identifying leaf diseases and locating affected regions (Lu et al., 2021). CNNs are capable of extracting critical features such as color, texture, edge, and structural information from images. This is achieved through a series of multi-layer nonlinear transformations. Such processing reduces dependence on traditional handcrafted feature design. It also enhances the automation and generalization capabilities of plant disease recognition systems. These technologies offer a promising pathway for deploying low-cost, automated monitoring systems in agricultural fields, greenhouses, and rural environments. For example, Atila et al. (2021) conducted a systematic evaluation using the PlantVillage dataset, which includes 54,306 images. Under a five-fold cross-validation strategy, the EfficientNet-B4 and ResNet50 architectures achieved average classification accuracies exceeding 99%. These results significantly surpassed those of traditional machine learning approaches. Sutaji and Yıldız (2022) proposed a lightweight feature extraction model based on the MobileNetV2 and Xception architectures. The model incorporated a multi-scale depthwise separable convolution structure to improve recognition accuracy. It maintains a low parameter count and computational cost. These characteristics make the model adaptable to mobile agricultural platforms, such as handheld diagnostic devices or drone-mounted systems. Liu et al. (2022a) proposed a hybrid deep learning framework named DenseACNet. The model integrated a channel attention mechanism with data augmentation strategies to enhance the accuracy and robustness of crop disease recognition. This approach achieved strong classification performance on the extended PlantVillage dataset. These studies demonstrate that CNN-based approaches hold strong potential for application in agricultural image analysis.

However, despite their strong recognition performance, deep CNN models still face major limitations. Their large parameter sizes and high computational costs hinder deployment on edge devices, unmanned aerial platforms, and mobile smart farming systems (Abade et al., 2021) (Zawish et al., 2024). For instance, He et al. (2016) introduced the well-known ResNet architecture and developed a deep ResNet-101 model. This model contained over 44 million parameters and requires approximately 7.6 GFLOPs for inference. While it delivered strong results on high-performance servers, it posed major challenges for deployment in resource-constrained environments. Simonyan and Zisserman et al. (Simonyan and Zisserman, 2014) developed the classical VGG-16 model, which achieved high classification accuracy on the ImageNet dataset. However, the model contains 138 million parameters and requires over 15 GFLOPs for inference. These characteristics limit its ability to meet the dual demands of real-time performance and energy efficiency in edge computing environments. To address this issue, researchers have proposed various lightweight network architectures, including the MobileNet family (Howard et al., 2017) (Sandler et al., 2018) (Howard et al., 2019), EfficientNet (Tan and Le, 2019), and ShuffleNet (Zhang et al., 2018). These models reduce parameter size and computational cost by employing techniques such as depthwise separable convolution, neural architecture search, and channel pruning. Such methods enhance deployment efficiency while maintaining recognition accuracy. In the context of smart agriculture, these lightweight models provide a foundation for scalable, real-time monitoring systems applicable to diverse field conditions.

Although lightweight networks offer advantages for deployment, they still encounter major challenges. These include early-stage disease detection, complex background interference, and the identification of small lesion areas (Mohanty et al., 2016). To address these issues, recent studies have increasingly integrated structural optimization with modular enhancements. This approach aims to improve the semantic representation capacity of lightweight models. Specific methods include the Attention Mechanism (Woo et al., 2018), Dilated Convolution (Chen et al., 2018), and Multi-scale Feature Fusion (Lin et al., 2017) (Liu et al., 2018). Woo et al. (2018) introduced the CBAM (Convolutional Block Attention Module), which combines channel and spatial attention mechanisms. This design enhances the model’s discriminative capability in image recognition tasks. Many plant disease studies apply CBAM to focus on key lesion regions and enhance saliency modeling. Xu et al. (2022) developed a multi-scale dilated convolution structure to achieve sparse receptive field coverage. This design strengthened the model’s ability to identify blurred leaf edges and irregularly shaped lesions. Ren et al. (2023) used a multi-layer feature fusion strategy to build shallow enhancement paths. This approach increased the sensitivity to small lesion areas. These modular integration strategies help improve the semantic representation capability of lightweight networks. Nevertheless, achieving a balance between model accuracy and computational efficiency remains a key challenge in practical deployment. For example, the plant disease classification model proposed by Sholihati et al. (2020), which is based on the VGG-16 architecture, demonstrated high recognition accuracy. However, due to its substantial parameter count (138 million) and significant computational cost (15.3 billion FLOPs), the model faces limitations in adapting to the constrained resources of edge computing environments. Charisma and Adhinata (2023) applied the DenseNet201 model, which showed strong performance in extracting features from plant leaves. However, its high computational complexity limited its suitability for real-time detection tasks. Likewise, Khan et al. (2020) introduced a tomato disease identification method based on ResNet50 combined with saliency graph analysis. Although the model achieved 98.6% accuracy on the PlantVillage dataset, its computational load (23 million parameters and 4 billion FLOPs) limited its applicability in edge environments. These studies indicate that enhancing the feature extraction capability of lightweight models for small target detection remains a central challenge in plant disease recognition. Optimizing such models is essential for balancing detection accuracy and computational efficiency. This challenge is particularly critical in agricultural settings, where timely and efficient on-site analysis is vital for early disease intervention and minimizing crop losses.

Based on these observations, this study introduces a lightweight neural network that integrates multiple modules and builds upon the MobileNetV3 Small architecture. The model aims to achieve high-precision recognition of potato leaf lesions while maintaining suitability for deployment on low-power devices. The main contributions of this work are reflected in the following three innovations: (1) The proposed LF module improves the detection of fine-grained lesions by combining lightweight channel attention with cross-layer feature fusion. This design alleviates the common issue of small target information loss in conventional approaches. (2) The DDC module dynamically adjusts the receptive field through dilated convolutions with multiple dilation rates and adaptive weight allocation. Through this mechanism, the model becomes more adept at identifying lesions with irregular morphology. (3) The LA module guides the network to focus on potential lesion regions using a region-based partition strategy. It also suppresses background noise through local context modeling, thereby improving the model’s edge perception and lesion discrimination. Collectively, these modules contribute to a robust and efficient model that supports intelligent plant disease diagnosis in real-world agricultural settings.

Experimental results demonstrate that the proposed LDL-MobileNetV3S model significantly enhances the recognition performance for potato leaf diseases while maintaining a lightweight architecture. Compared with existing lightweight models, it achieves superior results in key evaluation metrics such as accuracy and recall. These outcomes validate the effectiveness of the multi-module fusion strategy in lightweight neural networks and offer a practical and scalable solution for real-time plant disease diagnosis in agricultural edge computing scenarios.


2 Materials and methods


2.1 Data and processing


2.1.1 Dataset

The dataset employed in this study comprises two primary components: publicly available data and self-acquired data. The majority of the public data were sourced from the PlantVillage platform. The dataset comprised 2400 images of potato leaves gathered under field conditions. These images were predominantly captured under controlled conditions (e.g., consistent lighting and background), resulting in high image quality and clarity. Such controlled environments facilitate the extraction of robust training features for the model. In August 2024, the research team conducted the field component of the self-acquisition process at the Xufeng Potato Experimental Base in Wuchuan County, Hohhot City. Utilizing a Huawei Mate 60 smartphone, they captured images of 2348 instances of potato leaf diseases. This subset of images, which accurately captured field environmental elements such as natural lighting, complex backgrounds, and leaf shading, enhanced the model’s ability to adapt to complex real-world scenarios.

All photographic samples were subjected to rigorous screening and preprocessing to eliminate instances of blurring, duplication, and poor clarity, thereby enhancing the overall quality of the dataset. The final dataset comprises a total of 4748 potato leaf images, encompassing five distinct categories: healthy leaves and four types of diseases. Representative samples for each category are illustrated in Figure 1. To ensure a robust and stable model training process, the dataset was split using a single fixed stratified partition with an 8:1:1 ratio for training, validation, and testing sets. This partitioning strategy also ensured that the categories were evenly distributed across the subsets, thereby mitigating the potential impact of class imbalance on model performance. The specific distribution of the data is detailed in Table 1.

[image: Five-panel comparison of plant leaves labeled A through E: A shows bright green, healthy leaves; B displays leaves with small dark spots, indicating early blight; C has leaves with patches of yellowing and browning, indicating late blight; D depicts leaves with significant dark, necrotic lesions from fungal infection; E shows leaves with mottled yellowing and minor spots, suggesting viral infection.]
Figure 1 | Sample images of potato leaf diseases. (A) Healthy, (B) Early Blight, (C) Late Blight, (D) Fungi, (E) Virus.

Table 1 | Proportional split of potato leaf dataset.


	Split
	Healthy
	Early blight
	Late blight
	Fungi
	Virus
	Sum



	Train
	800
	800
	800
	608
	800
	3808


	Validation
	100
	100
	100
	70
	100
	470


	Test
	100
	100
	100
	70
	100
	470




2.1.2 Data augmentation and preprocessing

Due to the limited number of samples in the potato leaf disease dataset, training a deep neural network remains difficult. Most of the available data originate from controlled laboratory settings, while samples from natural field environments are insufficient. This imbalance restricts the model’s generalization ability in real-world applications. To address this limitation, this study proposes a systematic data augmentation strategy. The method enhances training diversity by simulating various image variations typically encountered in complex field conditions.

The data augmentation technique employed in this study consists of four essential components, the effects of which are illustrated in Figure 2. Initially, the ColorJitter operation is utilized to randomly adjust the brightness, contrast, and other attributes of the images. The objective is to emulate the fluctuating illumination often present in uncontrolled agricultural environments. Subsequently, a series of geometric transformations, including RandomRotation, RandomHorizontalFlip, RandomVerticalFlip, and RandomAffine, are applied to introduce spatial variations. These transformations enhance the feature representation of leaves in diverse orientations and angles, thereby improving the robustness of the model to different leaf poses and viewing perspectives. To simulate the common occurrences of leaf breakage and occlusion in real-world scenarios, the RandomErasing technique is employed to randomly erase a portion of the image. This method introduces variability in the data by simulating partial missing regions, which enhances the model’s robustness to incomplete or obstructed leaf images. Furthermore, the RandomResizedCrop operation is utilized to perform random cropping and resizing of the images. This not only increases the diversity of image perspectives and compositions but also helps in augmenting the dataset by generating additional variations of the leaf images.

[image: Grid of nine labeled plant leaf images demonstrating data augmentation. (A) Original image shows a leaf with spots. (B) RandomResizedCrop and (C) RandomHorizontalFlip alter the leaf's framing and orientation. (D) ColorJitter changes leaf brightness. (E) RandomRotation tilts the leaf. (F) RandomAffine distorts perspective. (G) RandomErasing obscures part of the leaf with a gray box. (H) Combined1 and (I) Combined2 apply multiple augmentations to the leaf. All images display the same leaf with varying transformations.]
Figure 2 | Data augmentation results. (A) Original, (B) RandomResizedCrop, (C) RandomHorizontalFlip, (D) ColorJitter, (E) RandomRotation, (F) RandomAffine, (G) RandomErasing, (H) Combined1, (I) Combined2.
To ensure the stability of the training process and the generalizability of subsequent model transfer, all augmented images were uniformly resized to 224×224 pixels and normalized using the mean and standard deviation values from the ImageNet dataset. Two composite data augmentation schemes were devised to further investigate the impact of various enhancement strategies on model performance. The first scheme, Combined1, integrates luminance adjustment and horizontal flipping to simulate variations in structural orientation and illumination conditions. The second scheme, Combined2, combines random rotation with contrast adjustment to enhance the model’s robustness to angular changes and color perturbations. The proposed schemes serve to examine the contribution of diverse augmentation approaches to improving model generalization and accuracy.

In the primary experiments (including ablation and comparative studies), we employed a unified data augmentation pipeline, in which the aforementioned augmentation techniques were sequentially combined to form a fixed process, thereby effectively enhancing the diversity of the training data. The two composite augmentation strategies (Combined1 and Combined2) were only applied in supplementary comparison experiments to explore the impact of different augmentation combinations on model performance and were not part of the default training pipeline. During validation and standard testing, only image resizing and normalization were applied to ensure fairness in evaluation. For the final model evaluation, test-time augmentation (TTA) was introduced, whereby multiple views of each sample (including flips, rotations, and color perturbations) were generated and their predictions averaged, in order to further improve the stability of the evaluation process.


2.2 Introduction to the MobileNetV3 Small network architecture

Google unveiled MobileNetV3, a small and effective deep neural system designed for situations with limited resources like embedded and mobile gadgets in 2019 (Wang et al., 2020). The architectural principles of MobileNetV1 and V2 are extended and refined in MobileNetV3 Small, which is specifically designed for mobile scenarios with limited processing resources (Zhao and Wang, 2022). Owing to its compact structural design and favorable balance between accuracy and efficiency, MobileNetV3 Small emerges as a highly competitive candidate among various lightweight neural network models. The Small version of MobileNetV3 is particularly well-suited for deployment on end devices that have limited computational power and are subject to power consumption constraints. Compared to its Large counterpart, MobileNetV3 Small exhibits significant advantages in terms of model size and inference time (Qian et al., 2021). In the context of engineering deployment, MobileNetV3 Small offers greater flexibility and convenience. Unlike other lightweight networks such as ShuffleNet, EfficientNet, or Tiny-YOLO (Redmon and Farhadi, 2017) (Redmon and Farhadi, 2018), it maintains a robust capability for image feature extraction while effectively compressing the number of parameters.

The task of crop disease detection necessitates a model capable of real-time operation on mobile terminals or edge devices, in addition to possessing robust identification capabilities (Jiang and Li, 2020). As illustrated in Figure 3, MobileNetV3 Small is selected as the underlying network architecture in this study. This choice is primarily driven by the actual deployment environment, which predominantly consists of field sites where devices often face challenges such as limited computational power, insufficient power supply, and stringent response time requirements.

[image: Diagram showing a plant leaf image passed through multiple convolutional and bottleneck layers in a deep learning model. Final outputs classify the leaf as fungi, virus, early blight, late blight, or healthy, each illustrated with example leaf images.]
Figure 3 | Architecture of the MobileNetV3S model.
The MobileNetV3 Small model employs a lightweight deep neural network architecture. It begins with an input image of size 224×224×3. A 3×3 convolutional layer is first applied for feature extraction and downsampling, reducing the resolution to 112×112×16. This is followed by 11 sequentially stacked Inverted Residual Bottleneck modules. These modules use different convolutional kernel sizes, such as 3×3 and 5×5, depending on the stage. They apply varying channel expansion ratios. Each module may also incorporate the SE attention mechanism and use either the ReLU or HSwish activation function. During the process, the feature map is gradually reduced to a size of 7×7×96. A 1×1 convolution is then applied to expand the channels to 576. Global average pooling is used to summarize spatial features. A feature projection layer, also using 1×1 convolution, generates a 1024-dimensional vector. Finally, a fully connected layer produces the classification results. This structure is well-suited for image recognition tasks on mobile and edge devices, as it balances model accuracy with computational efficiency.


2.3 The LDL-MobileNetV3S classification model for potato leaf diseases

Despite its good lightweight qualities for mobile deployment and edge computing capabilities, MobileNetV3 Small still has certain limitations when it comes to processing images of potato leaf disease in complex agricultural settings. For instance, the model is weak in capturing local fine-grained lesion features due to its insufficient feature expression capabilities, which reduces overall classification accuracy. Potato diseases manifest in real photos in a variety of forms and sizes, and the design’s limited capacity to adapt to illnesses at various scales makes it difficult to establish an efficient multi-scale feature distribution, thereby lowering recognition performance. Lastly, due to the model’s lack of a mechanism to focus on particular locations, it can be challenging to accurately reference the distinct features of the diseased space, this is vulnerable to confusion between categories.

To overcome the stated limitations, this work presents a lightweight architecture that extends MobileNetV3 Small through targeted structural modifications. The improved MobileNetV3 Small model uses standard convolution and multi-layer Bottleneck blocks to extract features. It integrates the Dynamic Dilated Convolution module to enhance multi-scale perception and adds the Lite Fusion module to fuse high-level and low-level features, improving spatial detail representation. The Lightweight Attention module then highlights key information. Finally, global pooling, feature projection, and fully connected layers complete the classification. This design boosts recognition accuracy and feature expression while keeping the model lightweight. Figure 4 shows the entire workflow.

[image: Diagram showing a deep learning model architecture for classifying leaf diseases. The top workflow depicts feature extraction through convolutional and bottleneck blocks. The bottom workflow connects processed features to a linear classifier, outputting categories: fungi, virus, early blight, late blight, and healthy.]
Figure 4 | Architecture of the LDL-MobileNetV3S model.
Three specialized enhancement modules are proposed and incorporated at critical points within the backbone feature extraction stage.

a. Lite Fusion module

To extract information from high-resolution shallow features, the module Lite Fusion is inserted after layers 8, 9, and 10 of the Inverted Residual Bottleneck. These features are channel-enhanced by the SE attention mechanism, downsampled by a 1×1 convolution, and then concatenated with the deeper features of the current layer. The LiteFusion module facilitates cross-layer feature fusion, which effectively addresses the problem of information degradation across network layers. As a result, it substantially enhances the model’s capability to capture fine-grained features, thus enabling the network to more accurately localize and classify small lesions (Chen et al., 2018) (Lin et al., 2017).

b. Dynamic Dilated Convolution module

In the 4th and 5th Inverted Residual Bottleneck, the standard Depthwise Convolution is replaced with Dynamic Dilated Convolution. This module creates three convolution branches with varying dilation rates (1, 3, and 5) and combines their outputs using attention-based weighting for dynamic receptive field modeling. The DynamicDilatedConv module integrates the principles of Dilated Convolution (Yu and Koltun, 2015) and Dynamic Convolution mechanisms (Chen et al., 2020). It adaptively adjusts the receptive field size to capture lesion features at varying scales. This design significantly enhances the model’s ability to identify diverse lesion regions in complex agricultural images. It is particularly effective for detecting lesions with blurred boundaries, small sizes, irregular shapes, or varying diffusion patterns. The dynamic adaptation mechanism allows the model to better address common challenges in real-world scenarios, such as scale variation and uneven lesion spread.

c. Lightweight Attention module

To improve the model’s localization and recognition accuracy under complex backgrounds, insert Lightweight Attention after the last Inverted Residual Bottleneck. This module divides the feature map into multiple fixed windows and applies the QKV self-attention mechanism within each window to highlight the diseased spot region and enhance the local structure modeling ability.

Lastly, the classifier module receives the enhanced higher-order semantic features. The module employs Softmax to classify five different potato leaf conditions and consists of Global Average Pooling (GAP), a Dropout Layer, and a Fully Connected Layer.

Utilizing the model parameters presented in Table 2. Experimental evaluation was performed using a specialized image set focused on potato leaf pathology.


Table 2 | Parameter settings of the LDL-MobileNetV3S model.


	Input size
	Operation
	Expsize
	Output channels
	ICA/SE
	Activation
	Stride



	224×224×3
	Conv2d, 3×3
	–
	16
	–
	HSwish
	2


	112×112×16
	Bottleneck, 3×3
	16
	16
	✓
	ReLU
	2


	56×56×16
	Bottleneck, 3×3
	72
	24
	–
	ReLU
	2


	28×28×24
	Bottleneck, 3×3
	88
	24
	✓
	ReLU
	1


	28×28×24
	Bottleneck (DynamicDilated), 5×5
	96
	40
	✓
	HSwish
	2


	14×14×40
	Bottleneck (DynamicDilated), 5×5
	240
	40
	✓
	HSwish
	1


	14×14×40
	Bottleneck, 5×5
	240
	40
	✓
	HSwish
	1


	14×14×40
	Bottleneck, 5×5
	120
	48
	✓
	HSwish
	1


	14×14×48
	Bottleneck, 5×5
	144
	48
	✓
	HSwish
	1


	14×14×48
	Bottleneck, 5×5
	288
	96
	✓
	HSwish
	2


	7×7×96
	Bottleneck, 5×5
	576
	96
	✓
	HSwish
	1


	7×7×96
	Bottleneck, 5×5
	576
	96
	✓
	HSwish
	1


	–
	LiteFusion Module #1
	–
	+Concat
	✓
	HSwish
	Upsample×2


	–
	LiteFusion Module #2
	–
	+Concat
	✓
	HSwish
	Upsample×2


	–
	LiteFusion Module #3
	–
	+Concat
	✓
	HSwish
	Upsample×2


	7×7×96
	Lightweight Attention
	–
	96
	✓
	HSwish
	–


	7×7×96
	Conv2d, 1×1
	–
	576
	–
	HSwish
	1


	7×7×576
	Adaptive Avg Pool
	–
	576
	–
	–
	–


	1×1×576
	1×1 Conv (Feature projection)
	–
	1024
	–
	HSwish
	–


	1×1×1024
	Dropout (p=0.2)
	–
	1024
	–
	–
	–


	1×1×1024
	Fully Connected
	–
	num_classes
	–
	Softmax
	–




2.3.1 Lite Fusion

Using the concept of Feature Pyramid Network (FPN) and merging the properties of MobileNetV3 Small lightweight structure, this study proposes a feasible LF fusion proximity.

In the disease recognition task, the design of the LF module is critical to boost the functionality of models. It receives low-resolution features from deeper layers, which contain rich semantic information, and high-resolution features from shallower layers, which preserve edge and texture details. The structure is illustrated in Figure 5. To reduce computational costs and match dimensionality, the module first applies channel compression to the high-resolution features using a 1×1 convolution. These characteristics are then weighted using the channel’s focus approach. After that, the high-resolution feature maps undergo bilinear interpolation downsampling to match the size of the low-resolution feature maps. Ultimately, the fused multi-scale semantic features are produced by concatenating the low-resolution features with the compressed high-resolution features in the channel dimension.

[image: Flowchart illustrating three LiteFusion modules for feature fusion in neural networks, each combining high- and low-resolution features through 1 × 1 convolution and SE modules, followed by concatenation, producing output fused features with corresponding shape dimensions.]
Figure 5 | Structural flow diagram of the LF module in the LDL-MobileNetV3S model.
The module combines the low-resolution and high-resolution feature maps, enabling the model to make use of either worldwide and local semantic data to better identify the characteristics of potato leaf diseases. Its precise calculation procedure is as follows:

The high-resolution feature map X∈RB×C×H×W is first supplied into the SE module, where B denotes batch size, C for channel count, and H×W for input feature map spatial dimensions (W stands for width, and H for height). The channel attention method primarily uses the feature vector X, which is computed as shown by (Equations 1–3), to reduce the unimportant inputs in order to improve the expression of the traits and concentrate on more of the important feature channels.

Sc=1H×W∑i=1H∑j=1WXc(i,j)(1)

ec=σ(W2δ(W1Sc))(2)

Xc′=ec·Xc(3)

With Sc standing for the Squeeze output result for the c-th channel, which represents the response strength of the global average for that channel, (Equation 1) determines the average value for each channel by global average pooling. The intrinsic value of the c-th channel of the given input characteristic map at spatial point (i,j) is denoted by the symbol Xc(i,j). (Equation 2) dynamically learns the weights of each channel, where ec is the channel attention weight, W1 is the dimensional reduction FC, which serves to minimize computational effort, W2 is the dimensional enhancement FC, which restores the original dimensional, δ is the function that activates the ReLU, while σ is the Sigmoid normalization. Channel weighting is shown in (Equation 3) to improve the response of the key channels.

Second, 1×1 convolution’s channel compression improves cross-channel information interaction while lowering computation. (Equations 4, 5), respectively, display the computation channel-by-channel formulas and the total convolution operation:

X′=W*X(4)

Xc′′=∑c=1cWc′,cXc(5)

where Wc′,c is the scalar weight in the weight matrix that joins the input channel c to the output channel c′, and Xc′′ indicates the c′ channel in the consequence feature vector.

Since the size of the high resolution feature differs from that of the trait of low resolution, the high resolution feature is downsampled, and its spatial dimension is changed to match that of the functionality for low resolution, per (Equation 6):

X″(i,j)=∑ ∑ Wm,nX′(m,n)(6)

The feature map X" is the result of channel compression, and the bilinear interpolation weights are Wm,n. One of the parameter-free operations, bilinear interpolation may successfully decrease the amount of data on location lost and offers the benefits of easy implementation, quick computation and a smooth transition.

Lastly, channel dimension splicing is performed, and Table 3 displays the splicing dimensions. After channel compression and downsampling, the fused features contain both low-resolution and high-resolution features. The spliced features can then be fed into the deep network for higher-level learning to improve the multi-scale feature identification capabilities.


Table 3 | Input and output dimensions of the LF modules in the LDL-MobileNetV3S model.


	Module name
	Insertion position
	High-resolution input
	Low-resolution input
	Output of fused features



	LiteFusion1
	After 8th Bottleneck
	(48, 14, 14)
	(40, 14, 14)
	(64, 14, 14)


	LiteFusion2
	After 9th Bottleneck
	(48, 14, 14)
	(96, 14, 14)
	(96, 14, 14)


	LiteFusion3
	After 10th Bottleneck
	(96, 7, 7)
	(96, 7, 7)
	(144, 7, 7)




2.3.2 Dynamic Dilated Convolution

In deep learning tasks for image classification and target detection, CNNs typically perform feature extraction from input images using a fixed-size convolution kernel. However, the convolution structure with fixed receptive fields has limitations in handling visual targets with significant scale variations. This is particularly evident in the task of detecting crop diseases in complex backgrounds, where lesions vary greatly in morphology, size, and density. A single-scale convolution kernel finds it difficult to strike a balance between broad semantic details and local specifics, therefore hurting the system’s precision and resilience.

DDC is an effective method to enhance the receptive field modeling capability of CNNs. Traditional dilated convolution expands the receptive field by introducing interval expansion in the convolution kernel to obtain more contextual information without increasing the number of parameters. However, its fixed-dilation-rate design lacks flexibility to accommodate different scale objectives. DDC dynamically adjusts the range of receptive field response by modeling the feature map at multiple scales using multiple convolution kernels with different dilation rates in parallel and implementing a channel attention system to adapted weight each branch’s outputs for fusion, as shown in Figure 6 below.

[image: Flowchart diagram displaying a neural network process starting with input X having dimensions batch, channel, height, width, followed by global average pooling, fully connected softmax, three parallel three-by-three depthwise convolution layers with different dilation rates, channel-wise weighted sum, and output as input X shape.]
Figure 6 | Structural flow diagram of the DDC module in the LDL-MobileNetV3S model.
This strategy effectively distinguishes similar disorders, like early blight (sharp edges) and late blight (fuzzy edges), in the early stage and improves detection performance in complex scenarios such as blurred spot contours and variable scales. The precise method of calculation will be as follows:

Before calculating the channel attention, the features X (B, C, H, W) are first input into the DDC for feature extraction. The channel attention mechanism uses global information to adaptively assign weights with varying expansion rates by computing the global average pooling (GAP). This allows the network to dynamically modify the receptive field according to an input picture. The formulas are given in (Equations 7, 8):

Fgap=1H×W∑i=1H∑j=1WX(i,j)(7)

W=Softmax(Linear(Fgap))(8)

Then, employing multiple expansion rates d (e.g., 1, 3, 5) for the extraction of attributes at various scales, several parallel 3 × 3 depth-separable convolutions are built, which helps capture more discriminative patterns in affected zones, thereby enhancing the model’s decision-making ability. The formula is shown in (Equation 9):

Fi=X*Ki(9)

where di is a convolution kernel that measures 3 × 3 and Ki is the expansion rate; each channel is calculated manually to avert over-computing.

The final feature Fout(B, C, H, W), which aggregates local and global data to enhance the robustness of illness diagnosis, is then produced using dynamic weighted summation. The formula for the calculation is displayed in (Equation 10):

Fout=∑i=1NWi·Fi(10)

With Wi representing the attention weight and Fi representing the output of several expansion rate convolutions.

In an effort to improve the accuracy of detecting potato diseases, this module can broaden the model’s field of perception to concentrate on both local and global disease aspects. Table 4 depicts the precise insertion positions as well as the input and output dimensions.


Table 4 | Input and output dimensions of the DDC module in the LDL-MobileNetV3S model.


	Insertion position
	Input X
	GAP output
	FC + softmax output
	3×3 conv output
	Output after fusion



	Level 4
	(B, 96, 28, 28)
	(B, 96, 1, 1)
	(B, 3)
	(B, 96, 28, 28)
	(B, 96, 28, 28)


	Level 5
	(B, 160, 28, 28)
	(B, 160, 1, 1)
	(B, 3)
	(B, 160, 28, 28)
	(B, 160, 28, 28)




2.3.3 Lightweight Attention

Computer vision applications including target recognition, image segmentation and image classification have made extensive use of the attention mechanism in deep learning models (Ghaffarian et al., 2021). Specifically, the image’s global dependencies might be better captured by the system for self-attention by modeling the correlation between various locations within the features, which improves the model’s feature extraction and image recognition (Hu et al., 2023).

The typical self-attention structure offers multiple advantages when it comes to modeling global information. However, its application in mobile and edge devices is complicated by its high computational cost and numerous parameters. More lightweight and real-time models are needed for disease detection systems in agricultural contexts, they usually run on hardware with little computing power (like drones, farm terminals, or mobile devices). Therefore, the current study introduces a lightweight LA module at the backend of the MobileNetV3 Small model. This module increases the potential of the network to concentrate on sick regions without significantly increasing the model’s computational load, as depicted in Figure 7.

[image: Flowchart illustrating a vision transformer-like attention mechanism. It starts with input X, followed by patch partition, QKV projection producing Q, K, and V, K transpose, scaled dot-product, softmax, attention-weighted sum, reshape plus permute, output projection, and ends with output X.]
Figure 7 | Structural flow diagram of the LA module in the LDL-MobileNetV3S model.
This module expands the capacity of the model to localize the target spots and suppress irrelevant backgrounds through mutual feature modeling and local window partitioning. As a result, it enhances the overall classification accuracy and robustness. The following is the precise formulating process:

Split the input feature X∈RB×C×H×W into a P×P patch: X→Xpatche∈RB×C×HP×P×WP×P. Next, the reorganization of the dimensions: Xpatch→Xflat∈R(B×HP×WP)×C×P×P, In this manner, each patch can be calculated separately.

The Query, Key, and Value (QKV) representations are generated using a shared 1×1 convolution, and the output is subsequently split into three separate components. Query and transposed key scaling and matrix multiplication are used for calculating the attention score. Softmax normalization is then used to obtain the attention weights in (Equation 11):

Attention(Q,K)=Softmax(QKTC)(11)

After calculating the final feature Xattn = Attention × V, Value is weighted and added to the weights that were determined in order to accomplish feature aggregation. The original size of the feature map is then restored through transpose and reshape operations. Finally, using a convolution with a 1x1 projection to produce an output with the same spatial dimensions as the input. Through parameter sharing and localized attention methods, the module drastically decreases computational complexity while still preserving the attention mechanism’s primary benefits that are making it suitable for effective integration into CNN systems.


2.4 Model evaluation metrics

The effectiveness of the modified LDL-MobileNetV3S model in the potato leaf disease classification task is quantitatively analyzed in this paper using a range of evaluation metrics, including incorporating standard classification measures like F1-score, Accuracy, Precision, and Recall. These measurements are employed to meticulously and impartially assess the system’s functionality. Additionally, a confusion matrix is employed for fine-grained misclassification analysis, with the goal of offering a thorough summary of the efficiency of the model on both a general and specific level. The following are the formulas and meanings of these metrics:

From the perspective of classification modeling, accuracy is a frequently utilized measure for assessment. It indicates the proportion of samples that have been correctly classified out of the entire sample population. The computational process is defined in (Equation 12):

Accuracy=TP+TNTP+TN+FP+FN(12)

In this context, the term TP (True Positives) denotes the quantity of samples that the model accurately classified as diseased. The total quantity sample size that the model reliably classified as healthy leaves is known as TN (True Negatives). A sample’s FP (False Positives) reflects the number of instances where healthy leaves were mistakenly identified as diseased by the model. And FN (False Negatives) is the quantity of samples in which the model incorrectly categorized diseased leaves as either healthy or falling into a different group.

The precision rate, which indicates the percentage of genuine diseased leaves among all the leaves predicted to be infected by a certain disease, calculates the percentage of samples in a given category that the model actually predicts to be positive. (Equation 13) shows the formula for calculating precision.

Precision=TPTP+FP(13)

For disease control, high precision in disease detection tasks means that the model is less likely to generate false alarms when predicting a specific disease. This is of symbolic significance, as it indicates that fewer healthy leaves are incorrectly recognized as infected.

Recall is the percentage of all leaves that are truly plagued with a particular condition and are correctly identified, indicating the model’s capacity to detect diseased leaves. (Equation 14) presents its computation formula:

Recall=TPTP+FN(14)

Enhancing the recall rate is crucial for obtaining early warnings and implementing precise disease prevention. It is an essential factor in ensuring agricultural safety and promoting the development of smart agriculture. The level of the recall rate directly affects the detection coverage of diseases.

The F1-score, regarded as the equilibrium value of recall and precision, serves as a comprehensive tool to evaluate how well these two measures are balanced. Its calculation is provided in (Equation 15):

F1−score=2×Precision×RecallPrecision+Recall(15)

Within this research, when assessing the enhanced MobileNetV3 Small model’s functionality, we emphasized not only classification accuracy but also the F1-score. This dual focus ensures that the model minimizes the misclassification of healthy leaves as diseased while maximizing the detection of all diseased leaves in practical applications. The ultimate goal is to provide efficient and reliable support for disease identification, prevention, and control.


3 Results and analysis


3.1 Ablation study

This study was implemented using the following computational and software resources: an Intel(R) Core(TM) i5-8300H CPU operating at 2.30 GHz, equipped with 32 GB of DDR4–2667 compute memory, running on a 64-bit Microsoft Windows 10 operating system. The model building and training were performed using the PyTorch 2.6.0+cpu deep learning framework within a Python 3.11 environment. This paper’s ablation studies are intended to confirm the efficacy of the LF, DDC, and LA modules for MobileNetV3 Small in potato leaf disease detection tasks. The standard MobileNetV3 Small (S0) is used as the baseline model. Based on this, different improvement modules are introduced respectively, and each one module’s effect on the model’s functionality is examined. Table 5 displays the findings of the experiment.


Table 5 | Ablation study results of the LDL-MobileNetV3S model.


	Schema
	Base
	LF
	DDC
	L
	Loss
	Accuracy/%
	Precision/%
	Recall/%
	F1 score/%



	S0
	✓
	 
	 
	 
	0.279
	88.51
	87.17
	86.64
	86.57


	S1
	✓
	✓
	 
	 
	0.022
	90.21
	89.63
	89.28
	89.19


	S2
	✓
	 
	✓
	 
	0.022
	90.64
	89.93
	89.38
	89.41


	S3
	✓
	 
	 
	✓
	0.022
	90.85
	90.11
	89.66
	89.61


	S4
	✓
	✓
	 
	✓
	0.023
	89.36
	88.60
	88.23
	88.13


	S5
	✓
	✓
	✓
	 
	0.021
	91.06
	89.89
	89.67
	89.65


	S6
	✓
	 
	✓
	✓
	0.022
	93.40
	93.25
	92.29
	92.51


	S7
	✓
	✓
	✓
	✓
	0.020
	94.89
	93.54
	92.53
	92.77



The baseline scenario (S0) obtained an F1 score of 86.57%, an accuracy of 88.51%, and a loss value of 0.279 on the test set using the MobileNetV3 Small model for potato leaf disease detection without any improvement modules. This suggests that the standard MobileNetV3 Small is still effective for extracting disease features in this task, but there is room for improvement. To ascertain how each part affects the model’s functionality, this study adds the LF, DDC, and LA modules to the baseline model for testing. The LF module in S1 (S0 + LF) aims to maximize the recognition ability of disease areas at various scales and improve the information interaction across different feature layers. The verification results show that the module increases the accuracy to 90.21%, the F1 score to 89.19%, and reduces the loss value to 0.022. This indicates that LF can significantly enhance the model’s feature extraction capabilities. By dynamically modifying the accepting field of widened convolution, the DDC module in configuration S2 (S0 + DDC) improves the strategy’s capacity to adapt to varying sick section sizes. The experimental results demonstrate the success of DDC in capturing multi-scale disease characteristics, with the module increasing the accuracy to 90.64%, the F1 score to 89.41%, and reducing the loss value to 0.022. The LA module in S3 (S0 + LA) reduces computational overhead while enhancing the method’s focus on the disease region. The experimental results confirm the module’s key role in disease identification, showing that it improves the accuracy to 90.85%, the F1 score to 89.61%, and reduces the loss value to 0.022.

This article evaluates the performance of multi-module combinations to further analyze the synergies between various modules. By incorporating the LF and LA modules, S4 (S0 + LF + LA) improves accuracy to 89.36%, the F1 score to 88.13%, and reduces the loss value to 0.023. The above results show that there is still room for development in this combination’s feature extraction capabilities. When the LF and DDC modules are combined in S5 (S0 + LF + DDC), the accuracy increases to 91.06%, the F1 score improves to 89.65%, and the loss value drops to 0.021. This demonstrates that this combination can effectively enhance the model’s adaptability to the disease area. S6 (S0 + DDC + LA) combines the DDC and LA modules and achieves significant improvement in most metrics, with 93.40% accuracy, 92.51% F1 score and a loss value of 0.022. This suggests that DDC and LA have a strong complementary effect that can help improve the model’s feature extraction capability. Based on the S6 scheme, S7 (S0 + LF + DDC + LA) adds the LF module. The outcomes of the studies demonstrate that this plan performed the best across the board, with an accuracy of 94.89%, an F1 score of 92.77%, and a loss value of 0.020. This indicates that the integration of all three modules can improve classification performance, reduce the loss value, and significantly enhance the ability to detect potato leaf disease.

Based on findings of the experiment, adding the LF, DDC, and LA modules individually can improve the disease detection performance of MobileNetV3 Small. The DDC module shows the most significant improvement, indicating that the DDC enhancement method can more effectively increase the model’s adaptability to disease areas at various scales. By merging several modules, the model’s efficacy can be further enhanced; in particular, S6 demonstrates a significant improvement, suggesting that the combination of DDC and LA can greatly enhance the approach’s capabilities to sense multi-scale signals and focus on disease areas. The fact that S7 achieved the highest accuracy shows that integrating different components optimizes their individual benefits, enabling the model to increase classification accuracy while maintaining low computational complexity and offering a superior solution for mobile deployment. When combined, the enhanced approach presented in this paper is capable of improving MobileNetV3 Small’s detection capacity in the task of detecting potato leaf disease, enhancing its feature extraction capabilities, and providing an effective solution for the intelligent diagnosis of potato diseases while preserving low computational complexity.


3.2 Model effectiveness verification


3.2.1 Confusion matrix

To assess the recognition characteristics of the LDL-MobileNetV3S model for various types of potato leaf diseases, a confusion matrix diagram was created to illustrate the model’s prediction performance in a multi-category classification task, as shown in Figure 8. The values along the main diagonal of the confusion matrix represent the percentage of samples that were correctly classified. The model’s comprehension of the category improved with a greater value. Conversely, the off-diagonal values indicate the number of samples that were misclassified as other categories, which can reflect the degree of confusion between categories.

[image: Side-by-side confusion matrices compare MobileNetV3S and LDL-MobileNetV3S models for plant disease classification among early blight, fungi, healthy, virus, and late blight labels, with LDL-MobileNetV3S showing fewer misclassifications. Both matrices are accompanied by a blue color scale bar from zero to one hundred.]
Figure 8 | Confusion matrix for the LDL-MobileNetV3S model on the validation set. (A) MobileNetV3S, (B) LDL-MobileNetV3S.

3.2.2 Recognition performance for different disease types

To evaluate the effectiveness of the proposed LDL-MobileNetV3S model in recognizing potato leaf diseases, the trained model was tested on a designated test set. The accuracy, precision, and recall for each disease category—including Early Blight, Late Blight, Healthy, Virus, and Fungi—were calculated to comprehensively evaluate the performance of the model. The model performed satisfactorily in identifying the majority of potato leaf diseases. With an accuracy of 94.89%, it accurately categorized 446 out of the 470 test samples. Table 6 displays the comprehensive experimental findings.


Table 6 | Test results for different disease types.


	Category
	Accuracy/%
	Precision/%
	Recall ratio/%



	Early Blight
	100.00
	100.00
	100.00


	Fungi
	90.00
	91.30
	90.63


	Healthy
	95.96
	96.13
	96.02


	Virus
	95.00
	95.95
	95.47


	Late Blight
	93.94
	92.08
	93.17




3.2.3 Heatmap visualization

In this study, the LDL-MobileNetV3S model is utilized to construct feature maps of disease images, and Softmax is employed to classify diseases. To examine the impact of various disease areas on the model’s classification results, which are difficult to intuitively understand based solely on the classification results, this paper employs the Grad-CAM (Gradient-weighted Class Activation Mapping) (Selvaraju et al., 2017) technique to visualize the model’s final layer of feature mapping. A selection of potato leaf disease images was chosen for the experiment, and the outcomes are seen in Figure 9. In the illustration, different regions are colored separately; the closer a hue is to the red area, the more strongly it correlates with the disease data.

[image: Composite graphic contains three rows and four columns comparing potato leaf disease classification. Each column shows early blight, late blight, fungi, and virus-affected leaves. The first row displays original leaf photos, the second row shows MobileNetV3S heatmaps highlighting affected regions, and the third row presents LDL-MobileNetV3S heatmaps with distinct highlighted patterns on disease spots.]
Figure 9 | Heatmap visualization of the model. Rows from top to bottom: Original , MobileNetV3S, LDL-MobileNetV3S. Columns from left to right: (A) Early Blight, (B) Late Blight, (C) Fungi, (D) Virus.
Both the MobileNetV3 Small model and the LDL-MobileNetV3S model can focus on the disease area, as shown in Figure 9. However, for small and dispersed lesions such as leaf spot and early blight, the MobileNetV3 Small model is prone to losing some disease information during the feature transformation process. This results in less precise attention to critical disease locations due to its channel attention mechanism’s inability to effectively integrate spatial information to enhance feature representation; even some non-diseased areas received higher response values. On the other hand, the LDL-MobileNetV3S model employs the LF mechanism within the Bottleneck structure to improve multi-scale feature fusion. It also uses DDC to adapt to disease features at various scales, and incorporates the LA module to help the model better focus on disease areas. As a result, the model avoids misclassifying irrelevant areas and generates a more accurate response with more concentrated disease areas in the Grad-CAM heatmaps.

In summary, the LDL-MobileNetV3S model presented in this paper can greatly increase the model’s accuracy and recognition performance while more precisely concentrating on the key components of potato leaf diseases.


3.3 Comparison of different lightweight models

The aim of this research was to undertake a systematic comparative experiments to assess the efficacy of the proposed LDL-MobileNetV3S model in potato leaf disease detection tasks. This model was compared side by side with popular lightweight and medium complexity convolutional neural network architectures, such as ResNet18 (He et al., 2016), MobileVit (Mehta and Rastegari, 2021), MobileNetV3 (small and large versions), ShuffleNetV2 (Ma et al., 2018), ConvNeXt Tiny (Liu et al., 2022b) and EfficientNet-B0 (Tan and Le, 2019). Each model was trained using the same preprocessing procedure and training strategy on a consistent dataset. Performance metrics such as Loss, Accuracy, Precision, Recall, F1 Score, Model Size, and Parameters were evaluated on the test set. Table 7 presents the findings from the contrasting studies.


Table 7 | Experimental results of different comparative models.


	Model
	Loss
	Accuracy/%
	Precision/%
	Recall/%
	F1 score/%
	Model size/MB
	Params/M



	Mobile Vit
	0.717
	77.95
	78.32
	77.55
	76.34
	5.77
	1.37


	ResNet18
	0.468
	81.58
	80.84
	80.87
	79.89
	18.34
	20.30


	MobileNetV3 Small
	0.218
	88.08
	87.17
	86.64
	86.57
	5.94
	1.45


	MobileNetV3 Large
	0.014
	89.19
	89.10
	88.59
	88.29
	16.25
	4.01


	ShuffleNetV2
	0.247
	90.05
	89.04
	89.18
	88.28
	8.97
	1.20


	ConvNeXt Tiny
	0.343
	91.72
	92.02
	91.72
	91.77
	106
	27.80


	EfficientNet-B0
	0.023
	93.23
	92.86
	92.04
	92.20
	15.61
	3.83


	LDL-MobileNetV3S
	0.020
	94.89
	93.54
	92.53
	92.77
	6.17
	1.50


The bold row indicates the parameter values of the optimized LDL-MobileNetV3S model.


Table 7 shows that classical lightweight models, including ShuffleNetV2 and MobileNetV3 Small, have previously demonstrated strong accuracy, reaching 88.08% and 90.05%, respectively. However, the accuracy of the LDL-MobileNetV3S model has increased to 94.89%, the highest among all the models studied and compared. This is in contrast to EfficientNet-B0 (93.23%) and MobileNetV3 Large (89.19%), suggesting that the three strategies—LF, DDC, and LA—suggested in the present study greatly enhance the model’s capacity to recognize complex illness characteristics.

During the model’s training and testing phases, the Loss value shows the degree of inaccuracy between the actual labels and the predicted outcomes. Compared to the original MobileNetV3 Small (0.218) and ShuffleNetV2 (0.247), the enhanced LDL-MobileNetV3S model achieves the lowest Loss on the test set, at 0.020. Even in terms of loss rate, it outperforms EfficientNet-B0 (0.023), demonstrating better generalization and convergence. This is attributed to the DDC module, which directs the model to more effectively focus on important disease regions while preventing overfitting issues.

In terms of Precision and Recall, the proposed model achieved 93.54% and 92.53%, respectively, indicating a well-balanced performance between detection accuracy and coverage. Notably, the model attained an F1 Score of 92.77%, surpassing performance-optimized models such as EfficientNet-B0 (92.20%) and ConvNeXt Tiny (91.77%), further demonstrating its superiority in comprehensive detection capability.

Depending on the model size and quantity of parameters, the study’s suggested model still maintains a high degree of lightness. While ensuring a significant increase in performance, its model size is only 6.17MB and the number of parameters is 1.509M, which is slightly higher than that of the original MobileNetV3 Small (5.94MB, 1.45M) but much smaller than that of models such as ResNet18, EfficientNet-B0 and ConvNeXt Tiny. As a consequence, this model is highly suitable for resource-constrained mobile terminals and smart detection scenarios in agricultural fields, and it has excellent adaptability for edge deployment. Notably, while maintaining about the same quantity of parameters as the first model, the improved model’s accuracy increased from 88.08% to 94.89%, and its F1 Score increased by nearly 6.2% due to structural optimization. This suggests that structural innovations are more beneficial for real-world applications than simply stacking parameters.

Figures 10, 11 shows the convergence and classification performance of each model during training. It is evident that the LDL-MobileNetV3S model can efficiently learn features from the data and converge rapidly, as shown by the low loss values during training and the rapid decline in the early stages of training. The loss curve of the current model shows more consistent and lower loss values throughout training compared to previous models (such as MobileViT and ResNet18), indicating that it is more adept at optimizing model parameters. Additionally, the model outperforms previous network architectures in terms of accuracy on the test set, demonstrating a quicker rate of accuracy improvement in the early training phases and ultimately stabilizing at approximately 94.89% at 100 epochs. In contrast, other models, including MobileViT and ResNet18, exhibit slower accuracy growth and lower final accuracy.

[image: Line chart titled "Model Loss Curves" compares loss across eight models over one hundred epochs. MobileVit, ResNet18, and ShuffleNetV2 show higher starting loss, while LDL-MobileNetV3S rapidly reaches the lowest loss.]
Figure 10 | Loss curves of different models.
[image: Line chart titled “Model Accuracy Curves” compares the accuracy of eight models across one hundred epochs. LDL-MobileNetV3S and EfficientNet-B0 achieve the highest accuracy, while MobileVit and ResNet18 have the lowest accuracy throughout.]
Figure 11 | Accuracy curves of different models.
The high accuracy of the LDL-MobileNetV3S model is attributed to its lightweight architecture combined with the LF and DDC modules, which enable the model to more effectively capture disease features at multiple scales. In comparison, although EfficientNet-B0 and ShuffleNetV2 also demonstrate relatively strong performance, their final accuracy is lower than that of the LDL-MobileNetV3S model.

In conclusion, the enhanced model suggested in this study’s findings achieves optimal recognition performance while preserving its lightweight characteristics. In the context of crop disease detection, its strong capability in modeling multi-scale lesion regions and its effective attention-based feature selection mechanism are key contributors to the performance improvement. In contrast, although EfficientNet-B0 and ShuffleNetV2 also perform well, their final accuracy is not as high as that of the LDL-MobileNetV3S model.


4 Discussion


4.1 Impact of different improvement modules on model performance

To enhance the model’s ability to identify diverse lesion patterns in potato leaves across both controlled and field environments, the LDL-MobileNetV3S model integrates three novel modules: LF, DDC, and LA. The study examines the extent to which each module contributes to the overall performance improvement by progressively introducing the ablation experiments of the aforementioned modules, as shown in Table 5. This provides a quantitative basis for model structure optimization.

In particular, the LF module enhances the synergy between shallow fine-grained texture information and deep semantic information by combining feature maps at various levels. This improves the model’s ability to distinguish fine-grained lesion patterns even in complex backgrounds typical of field environments. The DDC module incorporates a learnable dilated convolution structure featuring multiple dilation rates. This structure can dynamically modify the receptive field in response to the distribution and shape of the diseased regions within the input image. This allows for the acquisition of richer information while maintaining resolution, significantly boosting the model’s robustness and generalization capabilities, and improving the recognition of diseased patches with complex shapes or fuzzy boundaries. To assist the model in concentrating on crucial regions of the image, the LA module uses a simple spatial concentration function, such as the disease region. This effectively suppresses background interference, increases the capacity of the model to perceive spatial distribution, and increases classification stability and accuracy.

Keeping the computational cost and parameter size of the model minimal, the three modules together enhance the model’s feature extraction and discrimination capabilities at various levels. In the final model (S7), which integrates all the modules, the accuracy rate reaches 94.89%, and the F1 score is 92.77%. This represents the best performance among all the experimental schemes and definitively confirms the efficacy of each structural modification.


4.2 Comparative analysis with mainstream lightweight models

To verify that the improved model is superior, this study conducted comparative trials using a range of representative lightweight neural network models. Table 7 shows that while EfficientNet-B0 achieves an accuracy of 93.23%, its model size is 15.61 MB with up to 3.83 MB of parameters, which is significantly larger than the enhanced model proposed in this study. The model used in this work, however, keeps its level of complexity lower. (the model size is only 6.17 MB, and the number of parameters is only 1.50 MB), better strikes an equilibrium among efficacy and precision, and demonstrates stronger advantages in terms of lightweighting and practicality. It achieves an accuracy of 94.89% and an F1 score of 92.77%.

Furthermore, ShuffleNetV2, as a classical lightweight model, attains a 90.05% accuracy rate, which is lower than the improved model in this study across several metrics. The difference is particularly noticeable in the F1 score and recall rate, demonstrating that the structural improvements introduced in this study significantly enhance the model’s recognition ability. By improving the recognition sensitivity to multi-category disease features and optimizing overall classification performance, the model successfully reduces the rates of omission and misclassification.

In summary, based on a comprehensive evaluation of recognition accuracy, computational resource consumption, and deployment adaptability, the proposed LDL-MobileNetV3S model demonstrates superior overall performance and is more applicable to crop disease detection tasks. It provides a reliable technical foundation for intelligent disease monitoring in the context of precision agriculture.


5 Conclusions

In order to tackle the issues of complex spot morphology, notable scale disparities, and ineffective models in potato leaf disease image recognition, this study proposes a lightweight and effective LDL-MobileNetV3S model. The model’s sensitivity to small spots, robustness to diffuse and fuzzy spots, and responsiveness to critical areas are all enhanced by the addition of the LF, DDC, and LA modules. This creates a deep feature extraction model that better suits the requirements of agricultural applications. The model demonstrates superior performance compared to other competitive models in key metrics such as accuracy, precision, recall, and F1 score, as evidenced by its training and validation on a heterogeneous dataset comprising both laboratory and field natural photographs. It achieves a favorable balance between model compactness and high performance, maintaining a small model size and a limited number of parameters while delivering recognition performance comparable to that of larger networks.

Moreover, the model demonstrates excellent inference performance in the CPU environment. The Median Latency is 18.02 ms, indicating that most inference requests are completed within this time frame, showcasing fast real-time response capability. The 95th Percentile Latency is 22.23 ms, which demonstrates that the model’s inference process is highly stable with minimal performance fluctuations, as most inference times are below this value. The Median FPS is 55.5, meaning the model can process approximately 56 images per second, far exceeding the 30 FPS standard for real-time video streams, confirming the model’s strong real-time processing capability. These results collectively prove that the model is capable of efficient real-time inference with high throughput on resource-constrained edge devices.

The model provides a reliable and efficient approach for the identification of potato leaf disease images, holding promise for a broad spectrum of potential applications. However, the validation of its deployment in real-world application scenarios, including mobile terminals, edge computing devices, and UAV platforms, remains incomplete. While the study has demonstrated commendable performance in detecting potato leaf disease, further research is necessary to thoroughly evaluate the model’s performance metrics, specifically in terms of response time, resource utilization, and real-time performance when deployed on terminal devices. Future research will focus on expanding the field dataset to encompass multi-regional, multi-species, and multi-seasonal scenarios, as well as deploying lightweight models in real-world application contexts. Additionally, the development of a multi-task model architecture will be explored to integrate disease detection, segmentation, and severity grading into a unified framework. This work aims to facilitate the large-scale adoption of deep learning technologies in agricultural production and to provide more intelligent and precise technical support for crop disease monitoring.
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Introduction


Accurate identification of wheat leaf diseases is crucial for food security, but existing prototype-based computer vision models struggle with the scattered nature of lesions in field conditions and lack interpretability. 







Methods


To address this, we propose the Contrastive Deformable Prototypical part Network (CDPNet). The idea of CDPNet is to identify key image regions that influence model decisions by computing similarity measures between convolutional feature maps and latent prototype feature representations. Moreover, to effectively separate the disease target area from its complex background noise and enhance the discriminability of disease features, CDPNet introduces the Cross Attention (CA) Mechanism. Additionally, to address the scarcity of wheat leaf disease image data, we employ the Barlow Twins self-supervised contrastive learning method to capture feature differences across samples. This approach enhances the model's sensitivity to inter-class distinctions and intra-class consistency, thereby improving its ability to differentiate between various diseases. 







Results


Experimental results demonstrate that the proposed CDPNet achieves an average recognition accuracy of 95.83% on the wheat leaf disease dataset, exceeding the baseline model by 2.35%. 







Discussion


Compared to other models, this approach delivers superior performance and provides clinically interpretable decision support for the identification of real-world wheat diseases in field settings.
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1 Introduction


Wheat is one of the three major global food crops, ranking among the highest in both production volume and cultivated area. Its widespread cultivation and stable yields serve as a critical safeguard for global food security. However, disease infestation throughout its growth stages remains the primary challenge limiting stable and high yields (Bao et al., 2021a). Statistics show that leaf diseases, such as leaf blight, mildew, and rust, can lead to annual global wheat yield losses ranging from 10% to 30%. These diseases not only lead to direct yield reductions but also trigger secondary hazards, such as grain quality deterioration and mycotoxin contamination, causing substantial losses in agricultural production (Simón et al., 2021). Therefore, accurate identification of wheat diseases, particularly leaf diseases, is critical for implementing effective control measures and ensuring healthy growth to enhance yields (Nigam et al., 2023).


With advancements in modern technology, machine learning and deep learning techniques are increasingly being applied to crop pest and disease detection. These techniques have shown highly promising results in achieving precise identification of crop pests and diseases using computer vision technology (Deng et al., 2025). Traditional machine learning techniques, such as Support Vector Machines (SVM) (Rezvani and Wu, 2023), Random Forests (Gao et al., 2022), and Decision Trees (Alaniz et al., 2021), have been widely employed in wheat disease detection. These techniques employ various algorithms to extract different features from images, including color, texture, and shape (Syazwani et al., 2022). The extracted features are subsequently used to train an image classifier capable of accurately distinguishing between healthy and diseased wheat. (Khan et al., 2023a) developed an automatic classification framework for wheat diseases based on machine learning techniques, effectively identifying wheat brown rust and yellow rust. (Bao et al., 2021b) presented an approach for detecting leaf diseases and their severity based on E-MMC metric learning, focusing on wheat mildew and stripe rust. However, in machine learning-based algorithms for identifying crop leaf pests and diseases, traditional image processing techniques or manually designed feature-based classification and recognition algorithms are commonly employed (Zhang et al., 2023). These algorithms are typically limited to extracting low-level features and struggle to capture deep and complex image information, failing to fully capture the complexity of sample data, which affects the accuracy of diagnosing localized regions of leaf diseases (Xu et al., 2024).


Recently, deep learning has made significant advancements in the field of crop pest and disease identification, achieving remarkable success in domains such as image processing (Chen et al., 2021b), natural language processing (Zeng and Xiong, 2022), and speech recognition (Kim et al., 2024), owing to its powerful representational capabilities (Zhang et al., 2024; Khan et al., 2023b). Advanced deep learning techniques, such as convolutional neural networks (CNNs) and attention mechanisms, have been applied to crop pest and disease detection (Jia et al., 2023). These methods can automatically, efficiently, and accurately extract target features from large datasets of crop leaf pest and disease images, thereby replacing traditional recognition approaches that rely on manual feature extraction. To facilitate rapid and accurate identification of wheat leaf diseases and reduce agricultural losses, (Jiang et al., 2021) introduced an enhanced VGG16 model integrated with a multi-task transfer learning strategy for detecting wheat leaf diseases. They modified the VGG16 model and employed a pre-trained model on the ImageNET platform for transfer learning and interactive learning. Experimental results demonstrated that this method outperformed single-task models, the ResNet50 model, and the DenseNet121 model. (Dong et al., 2024) presented the SC-ConvNeXt model for wheat disease identification. This network model utilizes ConvNeXt-T for feature extraction and incorporates an enhanced CBAM mechanism to mitigate the effects of interference from complex environmental factors. To improve the accuracy of a single category of wheat disease identification, (Nigam et al., 2023) focused solely on wheat rust and fine-tuned the EfficientNet B4 model for wheat disease recognition. (Chang et al., 2024) proposed the Imp-DenseNet model for identifying the three types of wheat rust, aiming to facilitate wheat rust identification in field environments. (Hassan et al., 2024) advanced the UNET detection model for yellow rust disease detection in wheat, achieving high classification accuracy for wheat diseases.


Deep learning constructs multi-layer neural network models that enable advanced data representation and understanding through hierarchical feature extraction and abstraction. However, as these multi-layer networks become deeper, each layer introduces numerous parameters and nonlinear activation functions (Chang, 2025). Although such architectures excel in handling complex data and tasks, their high complexity and nonlinearity lead to low transparency and poor interpretability (Goethals et al., 2022). Users often struggle to intuitively understand the logical basis behind model decisions, casting doubt on their credibility and perceiving deep models as data-driven “black box” systems (Marcus and Teuwen, 2024). The decision-making process in such models inherently involves high-dimensional nonlinear mappings, with internal reasoning mechanisms that lack explicit interpretability. This fundamentally complicates result attribution and causal inference. In agricultural applications, such as leaf disease identification, researchers have proposed various interpretability methods. These techniques such as feature visualization, attention mechanism analysis, and decision rule extraction (Hernández et al., 2024) aim to unveil the internal reasoning pathways of deep models during disease diagnosis, thereby enhancing model transparency and credibility.


However, most existing intrinsically interpretable models rely on spatially rigid prototypes, which are unable to explicitly explain the geometric changes in disease patterns and complex background feature information. This limitation restricts the provision of detailed explanations and improved recognition accuracy (Ma et al., 2024). Therefore, in this work, we propose an interpretable wheat leaf disease identification model (CDPNet) based on a deformable prototypical part network and contrastive learning. In CDPNet, each prototype comprises multiple prototypical parts that adaptively adjust their spatial positions relative to one another depending on the input image. This allows each prototype to detect object features with greater tolerance of spatial transformations, since the parts within a prototype can move. To identify wheat leaf disease types and uncover the infected regions influencing model decisions, we first employ Deformable ProtoPNet (Donnelly et al., 2022) to calculate the similarity values relating to the convolutional feature maps of the image and the latent prototype features. Generally, a higher similarity score indicates a greater influence of that region on the model’s decision. Secondly, to effectively distinguish the target regions of wheat leaf diseases from complex backgrounds and enhance the model’s feature extraction capabilities, we introduce the CA Mechanism (Lin et al., 2022; Chen et al., 2021a). This mechanism guides the model to focus on spatial contextual features. By amplifying differences between disease areas and surrounding backgrounds, it significantly enhances the discriminative power of disease features, thereby improving recognition performance in complex scenarios. Finally, in practical applications, some wheat leaf diseases exhibit low incidence rates and high image acquisition costs, leading to limited training data. To address this challenge, we introduce the self-supervised contrastive learning strategy Barlow Twins (Zbontar et al., 2021). This approach maximizes similarity between different transformed versions of the same image while minimizing similarity between distinct images, thereby enabling deep exploration of discriminative features across wheat leaf disease instances. In summary, the main contributions of this work are summarized as follows:


	
The deformable prototype network in CDPNet is designed to adaptively adjust relative spatial positions through flexible and dynamic prototype learning, thereby providing clinical interpretability for the identification of wheat leaf diseases.


	
We propose a novel interpretable model for wheat leaf disease identification—the Contrastive Deformable Prototypical part Network (CDPNet). This model is capable of discovering key regions in wheat leaf disease images that influence the model’s decisions. Additionally, it effectively distinguishes between disease target regions and complex backgrounds, and deeply mines latent feature information among samples, offering a more comprehensive and in-depth analytical perspective for disease identification.


	
We have created a real-world wheat leaf disease dataset to facilitate further research on disease identification in practical field environments.


	
Through extensive experimentation using the wheat leaf disease dataset, as well as other public crop disease datasets, the results demonstrate that CDPNet achieves superior identification performance, outperforming classical models, and validating its generalization ability and interpretability.









2 Related work





2.1 Leaf disease identification based on machine learning


The recognition of crop leaf diseases has long been a central research focus within the field of agricultural engineering (Thakur et al., 2022). The application of modern information technologies for diagnosing and identifying crop leaf diseases provides an advanced, systematic, and effective approach (Balakrishna and Rao, 2019). Research on leaf disease identification methods can be broadly categorized into two primary approaches: traditional machine learning techniques and contemporary deep learning approaches.


Machine learning is utilized to automatically analyze large-scale datasets, uncover latent patterns, and apply these insights to subsequent analysis and prediction tasks. With the advancement of image processing technologies, machine learning has been extensively applied to leaf disease identification (Thakur et al., 2022). Researchers employ feature extraction and segmentation techniques to capture key disease characteristics, which are subsequently classified using machine learning algorithms. Under conditions of limited computational resources, machine learning initially emerged as the primary research tool, producing notable results. (Balakrishna and Rao (2019) conducted experiments on tomato leaf diseases, initially categorizing tomato leaves into healthy and diseased classes using the K-Nearest Neighbors (KNN) method, followed by effective sub-classification of diseased leaves using a combination of Probabilistic Neural Networks (PNN) and KNN. (Pattnaik and Parvathi, 2021) utilized the Histogram of Oriented Gradients (HOG) to characterize features extracted from segmented images, which were then input into a Support Vector Machine (SVM) for classification. Due to the relatively low classification difficulty, their test accuracy reached 97%. (Javidan et al., 2023) utilized K-means clustering technology to locate infected regions in images and subsequently accomplished grape leaf disease classification through SVM. However, machine learning-based approaches to leaf disease recognition, while capable of distinguishing certain disease features and generating classification results, continue to exhibit several limitations (Wani et al., 2022): (1) Feature selection limitations: Traditional machine learning approaches require the manual selection of features to describe pest or disease images. However, such features often capture only partial image information. Moreover, the variability of pests and diseases across growing environments renders selected features insufficient to comprehensively represent all relevant characteristics. (2) Feature extraction challenges: Machine learning cannot automatically extract features, necessitating manual extraction, which is also highly sensitive to image noise. (3) Limited generalizability and recognition scope: Trained models can typically recognize only the specific crop pests and diseases on which they were trained, making it difficult to extend recognition capabilities to other disease types. (4) Narrow application scope: Constrained by disease-specific characteristics, these methods are generally limited to learning and classifying features of particular crops in specific regions, which restricts their applicability across a broader range of species.


Compared with traditional machine learning methods, deep learning addresses inefficiencies and low accuracy arising from manually designed features in complex environments. In recent years, alongside the ascent of deep learning advancements, CNNs and Transformers have undergone rapid development (Khan et al., 2023a). The convolutional layers of CNNs utilize a local receptive field design, in which each neuron is connected only to a restricted region of the input image (Quan et al., 2022). This design is well-suited to image data, since local information (e.g., edges, textures) plays a critical role in object recognition (Xu et al., 2024). (Bao et al., 2022) presented an enhanced recognition network called AX-RetinaNet. This model employs an X-module enhanced multi-scale feature integration and channel attention for feature extraction, thereby enabling effective detection and classification of tea diseases, with an identification accuracy reaching 96.75%. To address the issue of abnormal recognition caused by various image distortions in the healthy and diseased parts of coffee plant leaves, (Nawaz et al., 2024) suggested a CoffeeNet model. The model under consideration makes use of a ResNet-50 framework and an attention mechanism for the purpose of extracting features of diverse coffee leaf diseases. To increase the accuracy of classifying plant leaf diseases while keeping the model lightweight, (Zhao et al., 2024) developed a neural architecture termed CAST-Net. This lightweight network model is based on a combination of convolution and self-attention. It further employs a self-distillation method to enhance the precision of leaf disease classification while reducing model parameters and failure cases. The findings indicate that, in comparison with existing models, CAST-Net attains enhanced precision, reduced parameter complexity, decreased training time, and lower computational complexity. The Transformer architecture captures global dependencies among elements of input sequences (Khan et al., 2022b). In image classification, the self-attention mechanism allows the model to incorporate information from all pixels or features when processing each individual one (Xu et al., 2021). This enables Transformers to more effectively capture the overall structure and contextual information of images, providing advantages for classification tasks that rely on global information. (Borhani et al., 2022) proposed a lightweight model based on Vision Transformer for plant disease classification. To better 174 leverage the strengths of both CNNs and Transformers, (Alshammari et al., 2022) utilized a deep ensemble learning strategy to combine a CNN with a vision transformer model for the purpose of classifying Olive Diseases. (Thakur et al., 2023) also proposed a composite model that integrates the advantages of ViT with the innate feature extraction capabilities of CNNS for plant leaf disease recognition.






2.2 Interpretable leaf disease classification using deep neural networks


Image classification, a fundamental task in computer vision, focuses on achieving accurate multi-class categorization based on image content while minimizing error. Machine learning initially demonstrated significant potential in image classification, and within this domain, deep learning gradually emerged as the more suitable approach. CNNs, characterized by local connectivity and translation invariance, align well with the inherent properties of image data. Despite continual improvements in classification accuracy, researchers have identified persistent challenges in deep learning for image tasks, including adversarial robustness, generalization, and fairness. Interpretability research provides a critical pathway to address the “black box” nature of deep learning (Zhang et al., 2025). Its objective is to elucidate model decision-making mechanisms through human-understandable methods, thereby enhancing credibility and robustness. From a modeling perspective, Interpretability research can be broadly categorized into two types: post-hoc interpretation methods and intrinsically interpretable models.


	

Post-hoc interpretation methods. These primarily target black-box models, analyzing them through various algorithms such as visualization analysis, importance analysis, etc., to infer the model’s decision-making procedure. Examples include Feature Attribution, Permutation Importance, and Class Activation Mapping (CAM). For instance, (Mishra et al., 2024) proposed an image-based interpretable leaf disease detection framework (I-LDD) that utilizes Local Interpretable Model-agnostic Explanations (LIME) to obtain explanations for model classifications. Similarly, (Raval and Chaki, 2024) employed LIME technology, taking leaf diseases as an example, and (Chakrabarty et al., 2024) used interpretable artificial intelligence to visualize the decision-making processes of their model, focusing on rice leaf diseases. To offer a more thorough understanding of the model’s interpretability, (Hernández et al., 2024) adopted the Grad-CAM method to visualize the infected regions of grape leaves, explaining the neural network’s attribution to leaf disease detection. (Wei et al., 2022) presented the ResNet-CBAM model for interpretable leaf disease classification and compared three visualization methods: SmoothGrad, LIME, and GradCAM, to conduct post-hoc interpretability of the model. Meanwhile, (Dai et al., 2024) employed t-SNE and SHAP visualization methods to explain whether the model focuses on plant pest and disease characteristics.


	
Intrinsically interpretable models. Intrinsically interpretable models require us to select human-understandable features and adopt models with good interpretability during the problem-solving process (Jiang et al., 2025). This objective is realized through the construction of models that are self-explanatory and which incorporate interpretability directly into their structures. Such models include decision trees, rule-based models, linear models, and attention models. Our model belongs to the category of intrinsically interpretable models, which integrate interpretability into the specific model structure, enabling the model itself to possess interpretability. The model outputs not only the results but also the reasons behind those results, thereby ensuring the reliability and safety of the interpretations. CDPNet discovers key regions influencing model decisions and predicts pest and disease categories by computing similarity of the convolutional feature maps of images to the latent prototype features, thus explaining the model’s decision-making process and attribution. Through flexible and dynamic prototype learning, it achieves accurate identification of wheat leaf diseases in natural field environments along with rich interpretability.










3 Materials and methods





3.1 Dataset acquisition and image preprocessing


This study utilized a hybrid data source to construct a wheat leaf disease dataset. The self-constructed dataset was compiled by the research team under expert guidance through field photography conducted in Fengyang County, Chuzhou City, Anhui Province, from April 15 to May 15, 2024. Fieldwork was conducted daily between 8:00 AM and 6:00 PM. Images were captured using a Vivo Y70s smartphone, covering six common wheat leaf diseases: Brown Rust, Healthy, Leaf Blight, Mildew, Septoria, and Yellow Rust. A total of 1,340 valid images were obtained. 
Figure 1
 illustrates images of wheat leaf diseases from various categories.


[image: Panel (a) shows a wheat leaf with orange rust pustules scattered across its surface. Panel (b) displays healthy green wheat leaves without visible disease. Panel (c) features a wheat leaf with browning and yellowing symptoms. Panel (d) depicts a wheat leaf with small white powdery mildew spots. Panel (e) shows wheat leaves with yellow-brown streaks indicating disease. Panel (f) presents a wheat leaf with a dense yellow-orange stripe likely caused by a fungal infection.]
Figure 1 | 
Samples of wheat leaf disease. (a) Brown Rust, (b) Healthy, (c) Leaf Blight, (d) Mildew, (e) Septoria, (f) Yellow Rust.




To enhance the dataset, this study also incorporated wheat leaf disease images from the Wheat Plant Diseases dataset on Kaggle. This dataset is designed to enable researchers and developers to build robust machine learning models for classifying various wheat plant diseases. It provides a collection of high resolution images depicting real-world wheat diseases without relying on artificial augmentation techniques. Data filtering was performed on this dataset to remove duplicate and misclassified images from the original public dataset. This process resulted in the creation of a wheat leaf disease dataset (WL-Disease) comprising six categories and a total of 6,513 images. The specific categories and their corresponding image counts are detailed in 
Table 1
.



Table 1 | 
Detailed descriptions of the various types of samples within the WL-disease dataset.





	Category

	Number

	Train set

	Test set






	Brown Rust
	1054
	843
	211



	Healthy
	812
	645
	167



	Leaf Blight
	1008
	806
	202



	Mildew
	1328
	1062
	266



	Septoria
	916
	732
	184



	Yellow Rust
	1395
	1116
	279



	Total number
	6513
	5204
	1309










In the WL-Disease dataset, all training images are labeled without annotations on specific image regions. The dataset was randomly divided into training and testing sets at an 80:20 ratio to ensure the validity and fairness of model training and validation.


To facilitate model training, all disease images were uniformly resized to 500 × 500 pixels and converted to JPG format. Data augmentation techniques enhance the effectiveness of neural networks by increasing both the heterogeneity and volume of training data, thereby improving generalization capabilities. Throughout the experiment, due to the limited number of samples per class in the dataset, we applied 10-fold offline data augmentation to mitigate overfitting to specific subsets and improve the model’s stability and accuracy in practical applications. This process included random rotation, 45-degree skew, 10-degree shear operations, 5-strength distortion processing, 50% probability of left-right flip, and color enhancement to expand the training set. 
Figure 2
 shows the comparison before and after image augmentation.


[image: Four panels labeled (a) to (d) show wheat leaves from two perspectives. The top row displays healthy green leaves, with panel (d) in grayscale. The bottom row shows upper leaves with yellow and brown discoloration, indicating disease.]
Figure 2 | 
Samples of image augmentation of WL-Disease dataset. (a) Original image, (b) Left-right flip, (c) Distortion, (d) Color enhancement.








3.2 Problem formulation


Currently, the task of wheat leaf disease identification aims to assign the correct label from a predefined set of categories to an image, achieving precise classification and recognition. A common research approach involves utilizing deep learning algorithms to extract features of wheat leaf diseases and perform recognition. In contrast, this study adopts a methodology that incorporates a deformable prototypical part network with contrastive learning, aiming to achieve interpretable and accurate recognition of wheat leaf diseases. Given a leaf disease image x, its corresponding category label is y ∈ {0,…,c,…,C}. The model learns a mapping function ℱ:ℱ(x) → 

y
^


 capable of predicting the category to which the given image x belongs, where 

y
^


 is the probability that the wheat leaf disease image x belongs to its corresponding category. The objective of this research is to optimize the mapping function ℱ to maximize the predicted probability. Meanwhile, the method automatically identifies the affected regions of wheat leaf diseases, providing interpretable evidence for the final classification results.






3.3 CDPNet network architecture


In this section, we provide a detailed description of the architecture of the proposed interpretable wheat leaf disease recognition model based on a deformable prototypical part network and contrastive learning, which is visualized in 
Figure 3
. CDPNet primarily consists of convolutional layers 
f

, a deformable prototype layer 
G

, and a fully connected last layer h. Given an input image x ∈ X, the convolutional layers f first extract a meaningful image representation 
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 (with height H, width W, and number of channels C). Second, for each prototype, the deformable prototype layer 
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 computes a similarity matrix 
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 (the t-th prototype of class c). The similarity maps contain positive scores indicating where and to what extent prototypes are present in an image. CDPNet uses the highest value of the similarity map as the final similarity score between 
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 and x, indicating how strong the prototype 
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 is present in x. Finally, the similarity scores from the deformable prototype layer 
G

 are aggregated in the fully connected layer h to generate the final classification logits. These logits are normalized using the softmax function to obtain the predicted probability distribution of disease categories. In addition, to facilitate the visualization of prototypes as specific prototypical parts of a sample, the learned prototypes are substituted with the closest feature representation from authentic training images, thereby ensuring interpretability.


[image: Flowchart diagram illustrating a deep learning pipeline for plant disease classification. It shows input leaf images processed through convolutional and normalization layers, attention mechanisms, feature extraction, similarity scoring, and deformable prototype layers leading to final class predictions such as leaf blight or mildew.]
Figure 3 | 
Visualization of the architecture of the proposed CDPNet.







3.3.1 Convolutional layer


The role of the convolutional layers extract information from the input image, which is referred to as image features. These features are manifested through combinations or individual contributions of each pixel within the image, such as texture and color characteristics. Through the convolutional layers, local regional feature extraction of wheat leaf disease images can be achieved, generating the original feature representation of the image. Specifically, the convolutional layers f borrow the convolutional layers from classical models (such as VGG19, ResNet152, DenseNet161, etc.), and then two additional 1 × 1 convolutional layers intended to modify the number of channels present in the top-level feature maps. Meanwhile, we use ReLU as the activation function for all convolutional layers, except for the last layer, which employs the sigmoid activation function. Equation 1 converts the input image x into a feature vector.
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To effectively distinguish the target regions of wheat leaf diseases from complex backgrounds, our core method is to employ a CA mechanism, as shown in 
Figure 4
. CA mechanism enables the model to dynamically construct cross-modal feature correlation matrices, allowing it to adaptively focus on key discriminative features such as lesion textures and color distortions. It also facilitates a more comprehensive integration of contextual information from multiple sources, consequently boosting both the precision and the generalization performance of the recognition task. Firstly, the correlation scores indicating the similarity between the query and keys are determined by calculating the dot product of the query Q and keys K. Secondly, these similarities are transformed into a probability distribution using the softmax function, representing the attention weights of the query with respect to each key. These attention weights are then applied to the values V, ultimately resulting in the output vector. Mathematically, the formula for cross-attention is presented in Equation 2:


[image: Diagram illustrating the transformer attention mechanism, with input matrices passing through three blocks labeled Q, K, and V to generate attention scores highlighted by colored squares, resulting in weighted output matrices.]
Figure 4 | 
Schematic representation of cross attention mechanism.
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where, 


Q



K

T



 represents the dot product of the query and the key, indicating the similarity between the two sequences at different positions; dk
 is the dimension of the key, which serves as a scaling factor to prevent excessively large numerical values.






3.3.2 Deformable prototype layer


The fundamental idea behind the deformable prototype layer 
G

 is to find highly interpretable (i.e., representative) deformable prototypes by calculating the similarity scores s between the convolutional feature maps Z of a test image x and the prototypes P. Each part of these prototypes corresponds to key regions that influence the model’s decision-making processes, and these regions could be visualized. For a CDPNet, the L
2-length of all prototype parts 
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 of all deformable prototypes 
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 is the same. Furthermore, at the spatial location (a,b) of each image feature tensor 
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^



, the corresponding vectors also possess are of equal L
2-length, as shown in Equations 3 and 4.
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Then, the formula for calculating the similarity of deformable prototypes 
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 and the image feature tensor 
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 defined as shown in Equation 5.
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In order to facilitate the deformation of a deformable prototype 
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, it has been proposed that offsets 
δ

 (2D vector) be introduced, thereby enabling each constituent part 
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 of the prototype to migrate in relation to the spatial location (a, b) with respect to the image feature tensor 
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^



 when the prototype is applied. Mathematically, the formula for calculating the similarity of the prototype is defined as shown in Equation 6.
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The maximum similarity with respect to an arbitrary set of positions is given by the following definition.
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Figure 5
 shows the operational process of the deformable prototypes. The input 


z
^



 undergoes processing by the offset prediction function 
δ

, resulting in (b) a grid of offset values. Subsequently, these offsets are utilized to (c) modify the spatial positions of each prototypical part. After this adjustment, the updated prototypical parts are (d) aligned with the input to (e) compute the prototype similarity in accordance with Equation 6.


[image: Diagram illustrating a neural network pipeline where an input image of a plant leaf is processed through convolutional layers to produce an offset field. This field extracts nine prototypical parts shown as colored cubes containing leaf segments, which are compared via prototype similarity. Each pipeline step is labeled with letters and arrows indicating the flow between convolution, offset calculation, part extraction, grouping, and similarity computation.]
Figure 5 | 
CPNet is applied to the latent representation of the Leaf Blight. (a) Put the input features into the offset prediction function to generate (b) an offset field. Then, (c) adjust the spatial position of each prototypical part using these offsets, (d) compare the adjusted parts with the input, and (e) calculate the prototype similarity.








3.3.3 Fully connected layer


The fully connected layer integrates and abstracts the features learned from the preceding layers to facilitate the execution of classification or regression tasks. It performs a linear transformation on the input data using a weight matrix and a bias vector. In the CDPNet model, the fully connected layer multiplies the similarity scores generated by the deformable prototype layer by the weight matrix W in the fully connected layer. The result is then feeds the result into the Softmax layer for normalization. Finally, it generates a prediction result for the given leaf disease and pest image. The prediction of the leaf disease image at this point is calculated as shown in Equation 8.
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 is the parameter matrix, represents the image features, b is the bias term, and 
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 denotes the predicted probability that the input image belongs to the c-th class. Therefore, given an image x, a novel form of cross-entropy is employed: the margin-subtracted cross-entropy. The formula is shown in Equation 9.
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where, 

θ
 


 represents the parameters that need to be learned, and 
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 denotes the connections between the deformable prototypes 
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 and the last layer responsible for computing similarity with the c

'

 classes.






3.3.4 Model learning


As deep learning progresses, approaches for identifying wheat leaf diseases harness deep networks to automatically learn features; however, these methods heavily depend on the availability of a substantial volume of training data. To address the limited availability of wheat image data, we have introduced a self-supervised contrastive learning approach to tackle the challenge of recognition with limited samples. Specifically, 
Figure 6
 shows that we used the Barlow Twins in contrastive learning to conduct feature learning between samples. Barlow Twins represents a self-supervised learning approach for representation learning, stemming from the groundbreaking ideas of the JPT team. Its core lies in minimizing the covariance distance between twin networks, enabling their learned features to be as independent as possible while maintaining similarity. This approach not only enhances the efficiency of the model but also achieves favorable pre-training results even with scarce data.


[image: Diagram illustrating a self-supervised learning workflow where an original image generates two distorted versions, processed through shared encoder and projector networks to produce embeddings, which are compared via empirical and target cross-correlation matrices to optimize feature learning.]
Figure 6 | 
Schematic representation of Barlow Twins.




Barlow Twins is a self-supervised learning method rooted in information theory, with the objective of reducing redundancy among neurons. This approach mandates that neurons remain invariant to data augmentations while being independent of one another. During actual training, the parameters of the neural network are adjusted through backpropagation to maximize the diagonal elements of the cross-correlation matrix and minimize the off-diagonal elements — approaching an identity matrix — thereby achieving the aforementioned goal. It is calculated as shown in Equation 10.
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where 
λ

 is a positive constant trading off the importance of the first and second terms of the loss, 
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where, b denotes the index of the batch, while i and j represent the feature dimensions of the network’s output (i.e., they correspond to the values in the i-th and j-th dimensions of two vectors within the current batch). 


C

i
j




 is the element value at the i-th row and j-th column of matrix 
C

. It is equal to the sum of the products of the i-th dimension of the augmented feature vector 


Z
A



 and the j-th dimension of the augmented feature vector 


Z
B



 for different pairs within the batch. The summation is primarily carried out over the current batch size. Matrix 
C

 is a square matrix, and its dimensions correspond to the output dimension of the network (assuming each embedding dimension output by the network is 
D

, then the dimensions of square matrix 
C

 are 

D
×
D


). The values of matrix 
C

 range between -1 (indicating perfect negative correlation) and 1 (indicating perfect positive correlation).


In order to discover a meaningful feature space in which the image features belonging to class c are found to cluster around the prototypes of the same class while being segregated from features of other classes within a hypersphere, CDPNet employs Stochastic Gradient Descent (SGD) to perform optimization on the features of the convolutional layer f and the deformable prototype layer 
G

. In this process, SGD incorporates both cluster and separation losses and adjusts the angular space. These two losses are defined as shown in Equations 11 and 12.
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where, N represents the total number of inputs, 




z
^
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i
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 denotes the normalized and scaled image feature tensor of input 
i

 at each spatial location, 
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i
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 is the label corresponding to input 


x

(
i
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, and all other values are consistent with the definitions provided in the preceding context.


Although the subtraction margin encourages separation among categories, it does not promote diversity among intra-class prototypes or within prototype parts within a prototype. Specifically, deformations without further regularization often lead to redundancy among prototype parts within a prototype. To mitigate this issue, we prevent this behavior by introducing an orthogonality loss among prototype parts. Its formula is shown in Equation 14.
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where 
L

 is the number of deformable prototypes in class c, 

ρ
L
 


 represents the total number of prototype parts across all prototypes in class c, 
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 is a matrix where each prototype part of every prototype in class c is arranged as a row.


Finally, the overall loss function during the CDPNet training process is formulated as shown in Equation 15.
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4 Results and analysis





4.1 Experimental setup


In this study, the PyTorch framework was utilized. PyTorch is an open-source library designed for deep learning tasks, offering a concise, elegant, efficient, and rapid framework that serves as a deep learning research platform providing maximum flexibility and speed. The experimental environment and parameters used in this study are detailed in 
Table 2
.



Table 2 | 
Test system environment configuration.





	System environment

	Configuration






	Operating system
	Ubuntu 18.04



	GPU
	V100-32GB(32GB)



	CPU
	10 vCPU Intel Xeon Processor (Skylake, IBRS)



	Pytorch
	PyTorch 1.8.0



	Python
	Python 3.8



	Batch size
	32



	Epoch
	50














4.2 Evaluation metrics


We validated the model’s effectiveness on the test set using standard classification performance metrics. These metrics include accuracy, precision, recall, F1-score, and AUC. Their mathematical expressions are as shown in Equations 16–21. All samples were categorized into four groups based on the differences between the true and predicted classes: true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN).
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In addition, we employed the confusion matrix and Receiver Operating Characteristic (ROC) curve to evaluate the model’s performance. The confusion matrix and ROC curve indicate the model’s credibility. The higher the ROC curve is positioned in the top-left corner, the better the model’s performance. Meanwhile, we utilized CDPNet to visualize the prototype image classification activation maps and similarities, aiming to uncover the critical factors underlying the model’s classification decisions and assist researchers in understanding the basis for the model’s final classifications.






4.3 Experimental results and comparative analysis





4.3.1 Performance evaluation of different data augmentation methods




Table 3
 shows the results of experiments conducted using the CDPNet-DenseNet161 model with various data augmentation methods. Six distinct data augmentation schemes were generated by combining different techniques. Scheme 1 involved inputting the original image into the model after normalization (resizing to 224×224×3), resulting in a classification accuracy of 92.25%. Subsequently, the introduction of various data augmentation methods, including skew, shear, distortion, left-right flipping, and color enhancement, to Scheme 1 led to an improvement in model accuracy. Among the augmentation techniques tested, color enhancement produced the most favorable results. The results indicate that Scheme 6 achieved the highest accuracy (95.83%), establishing it as the optimal data augmentation scheme.



Table 3 | 
Comparison of experimental results of different models on wheat leaf disease dataset.





	No.

	Data augmentation methods

	Accuracy (%)






	1
	Resize(224,224)
	92.25



	2
	Resize(224,224)+skew
	92.56



	3
	Resize(224,224)+skew+shear
	93.36



	4
	Resize(224,224)+skew+shear+distortion
	93.82



	5
	Resize(224,224)+skew+shear+distortion+left-right flipping
	94.76



	6
	Resize(224,224)+skew+shear+distortion+left-right flipping+color enhancement
	95.83














4.3.2 Model performance comparisons


To validate the classification performance of the proposed CDPNet model for wheat leaf diseases, comparative experiments were conducted under identical conditions using the WL-Disease dataset, comparing CDPNet with VGG19, ResNet152, DenseNet161, ProtoPNet, and Deformer ProtoPNet models. The comparative results for each model are shown in 
Table 4
. 
Figure 7
 shows the loss value and accuracy comparison curves during the training phase for different model. 
Table 4
 shows that CDPNet outperforms 416 the other models on the WL-Disease dataset with statistical significance. Compared to DenseNet161, the baseline model, CDPNet achieves an accuracy of 95.83%, representing improvements of 2.35%, 3.02%, and 3.65% over Deformer ProtoPNet, ProtoPNet, and DenseNet161, respectively. 
Figure 7
 shows that 419 throughout the entire training process, the CDPNet model consistently outperforms the other four models in both accuracy and loss values, further validating its faster convergence speed. In 
Figure 8
, we explore the effect of varying the prototype count per class on classification performance. CDPNet achieves optimal classification accuracy (95.88%) with 2×2 prototypes configuration, outperforming models with other prototype settings. Therefore, 2×2 prototypes was adopted for all subsequent experiments. 
Figure 9
 presents the sensitivity analysis of CDPNet, based on the DenseNet161 backbone, with respect to its key components. 
Figure 9
 demonstrates the sensitivity of the Barlow Twins component to the hyperparameter λ, which governs the trade-off between invariance and information density in the embedding space. The results indicate that the Barlow Twins are relatively insensitive to this hyperparameter.



Table 4 | 
Comparison of experimental results of different models on wheat leaf disease dataset.





	Model

	Accuracy (%)

	Precision (%)

	Recall (%)

	F1 score (%)

	AUC (%)






	VGG19
	90.38
	90.67
	90.89
	90.50
	97.69



	ResNet152
	91.61
	91.36
	91.08
	91.03
	97.92



	DenseNet161
	92.18
	91.86
	91.63
	91.76
	98.16



	ProtoPNet-VGG19
	91.85
	91.38
	91.45
	91.35
	98.02



	ProtoPNe-ResNet152
	92.16
	91.82
	91.52
	91.66
	98.08



	ProtoPNet-DenseNet161
	92.81
	92.45
	92.63
	92.53
	98.33



	Deformer ProtoPNet-VGG19
	92.15
	91.83
	91.52
	91.65
	98.12



	Deformer ProtoPNe-ResNet152
	92.63
	92.27
	92.11
	92.19
	98.25



	Deformer ProtoPNet-DenseNet161
	93.48
	93.13
	92.89
	92.99
	98.52



	CDPNet-VGG19
	




94.22

c





	




93.72

c





	




93.97

c





	




93.77

c





	




99.16

c








	CDPNet-ResNet152
	




94.89

c





	




94.21

c





	




94.47

c





	




94.29

c





	




99.38

c








	CDPNet-DenseNet161
	




95.83

c





	




95.32

c





	




95.07

c





	




95.13

c





	




99.45

c












cDenotes the test of statistical significance p < 0.001.




[image: Two side-by-side line graphs compare neural network model training over fifty epochs. The left graph shows model accuracy increasing and stabilizing near ninety to ninety-eight percent. The right graph displays model loss decreasing below zero point five. Multiple colored lines represent various models, as identified in the shared legend.]
Figure 7 | 
Comparison of the variation curves for loss values and accuracy across different models. (a) Accuracy curve, (b) Loss curve.




[image: Line chart showing accuracy versus prototypes, with accuracy on the y-axis ranging from 94.2 to 96.0 and prototypes on the x-axis as 1x1, 2x2, 3x3, and 4x4. Accuracy peaks at 2x2 prototypes and gradually decreases for 3x3 and 4x4. Triangles represent data points, and a legend labels the line as “Accuracy.”.]
Figure 8 | 
Impact of CDPNet-DenseNet161 to the number of prototypes selected on accuracy.




[image: Line chart displaying accuracy as a function of lambda, with lambda on the x-axis and accuracy on the y-axis. Accuracy peaks sharply at a lambda of approximately 0.005, then gradually decreases as lambda increases further. A legend identifies the line as representing accuracy.]
Figure 9 | 
Sensitivity of the Barlow Twins component in CDPNet-DenseNet161 to hyperparameter λ.






Figure 10
 shows a confusion matrix that intuitively represents the relationship between predicted results and actual class labels. This illustrates the effectiveness of the model’s classification capabilities. In 
Figure 10a
, Leaf Blight exhibits the lowest classification accuracy (76.4%), with 10.6% of test images being misclassified as Septoria and 7.5% misclassified as Brown Rust. In 
Figure 10d
, Septoria has the lowest classification accuracy (85.5%), where 10.5% of test images were incorrectly classified as Leaf Blight. This phenomenon stems primarily from two factors: On one hand, Leaf Blight exhibits a dispersed feature distribution within the dataset, lacking distinct clustered patterns that complicate accurate model recognition. On the other hand, Septoria shares highly similar disease characteristics with Leaf Blight, with significant overlaps in visual features such as morphology and coloration, further exacerbating classification challenges. Compared to other models, the deeper colors along the diagonal of CDPNet’s confusion matrix indicate that the majority of classification outcomes are concentrated there. This suggests that the CDPNet model achieves higher recognition accuracy for various diseases, particularly for those with dispersed and easily confused disease regions, such as Leaf Blight and Septoria.


[image: Grouped image showing six confusion matrices labeled (a) to (f), each representing classification results for six categories: Brown Rust, Healthy, Leaf Blight, Mildew, Septoria, and Yellow Rust. Each matrix displays prediction accuracy as color-coded values from zero to one, with darker green indicating higher accuracy along diagonals, suggesting strong agreement between predicted and true labels in most matrices.]
Figure 10 | 
Comparison of confusion matrices across different models. (a) VGG19, (b) ResNet152, (c) DenseNet161, (d) ProtoPNet-DenseNet161, (e) Deformer ProtoPNet-DenseNet161, (f) CDPNetDenseNet161.




The ROC curve in 
Figure 11
 helps analyze classification performance across different threshold settings. When comparing the ROC curves of different models, those with a higher AUC indicate better performance. As shown in 
Figures 11a–e
, the AUC values for Leaf Blight and Septoria leaf diseases are comparatively low. From a phytopathological perspective, Leaf Blight and Septoria diseases are often misidentified in the field. This is primarily due to their highly similar visual symptoms, including leaf necrosis and the yellow halo resulting from chlorophyll degradation, which makes reliable visual differentiation difficult. In contrast, 
Figure 11f
 shows that CDPNet demonstrated the highest AUC, achieving superior identification accuracy for these commonly confused diseases. Experimental results indicate that the introduction of the CA mechanism and Barlow twin contrastive learning enabled CDPNet to achieve deeper feature learning for wheat leaf diseases. First, the CA mechanism allows adaptive learning of feature weights across channels, effectively amplifying responses to key disease-related features (e.g., lesion texture, color changes) while suppressing background noise. Second, contrastive learning maximizes similarity between different transformations of the same image while minimizing similarity between different images, thereby optimizing feature relationships across samples and enhancing feature discriminability. As a result, CDPNet improves recognition accuracy for the commonly confused Leaf Blight and Septoria diseases. Moreover, CDPNet’s interpretable outputs (
Figures 12
, 
13
) help agronomists distinguish these diseases by highlighting specific visual patterns used by the model (e.g., lesion shape, distribution), potentially revealing features that are challenging for the human eye to discern.


[image: Six-panel figure containing ROC curve plots labeled (a) through (f), each visualizing receiver operating characteristic for a multi-class classification model, with legend entries for Brown Rust, Healthy, Leaf Blight, Mildew, Septoria, and Yellow Rust. Legends include area under curve values ranging from zero point ninety-two to one point zero zero, indicating high classification performance across classes. Each plot shows true positive rate versus false positive rate, with slight variations in curve shapes and area scores between panels. Panel titles and axis labels are consistently formatted, and each panel includes a diagonal reference line representing random classification.]
Figure 11 | 
Comparison of ROC across different models. (a) VGG19, (b) ResNet152, (c) DenseNet161, (d) ProtoPNet-DenseNet161, (e) Deformer ProtoPNet-DenseNet161, (f) CDPNet-DenseNet161.




[image: Diagram showing a plant leaf with disease symptoms analyzed for leaf blight. Colored boxes highlight prototypical parts on a test image, which are matched to similar regions on two training images. Lines connect corresponding segments, illustrating similarity scoring and class connection values, contributing to a calculated total score for disease classification.]
Figure 12 | 
The reasoning process of a CDPNet with 2×2 deformable prototypes.




[image: Table explaining the classification of wheat leaf disease as leaf blight, including original wheat leaf images, prototypical parts, corresponding training images, activation maps, similarity and class scores, individual logits, and a combined logits calculation illustrating the reasoning process used by the model.]
Figure 13 | 
The reasoning process of CDPNet in deciding the species of the wheat leaf blight.








4.3.3 K-fold cross-validation


To further validate the model’s performance stability on the WL-Disease dataset, we employed k-fold cross-validation, processing the dataset sequentially and randomly dividing it into four parts. In each partition, 20% of the data was used as the test set, while the remaining 80% was combined with the other three parts to create a new training set. This approach ensured that each part served as the test set for one partition. We selected DenseNet161 as the baseline model, trained the CDPNet on the training set, validated it on the test set, and recorded the results. 
Table 5
 displays the results of the 5-fold cross-validation. The WL-Disease dataset achieved an average accuracy of 95.83%, with accuracy fluctuations not exceeding 2% across the cross-validation. The results indicate that CDPNet demonstrates stable performance across different subsets, showcasing strong robustness and excellent generalization ability. The model is not prone to significant performance fluctuations due to changes in data partitioning. This suggests that the model does not overfit to specific subsets but learns general features from the data, exhibiting outstanding generalization performance.



Table 5 | 
CDPNet+DenseNet161 test results based on k-fold cross-validation.





	No of fold

	Accuracy (%)






	1-flod
	95.22



	2-flod
	95.56



	3-flod
	96.13



	4-fold
	95.89



	5-fold
	96.36



	Average
	95.83(± 0.61)














4.3.4 Ablation experiments


To further evaluate the effectiveness of the optimization strategies proposed in this study, ablation experiments were performed. The corresponding results are presented in 
Table 6
, which highlights the contribution of each optimization strategy to model performance. Evaluation metrics included accuracy, precision, recall, F1-score on the test set, as well as the number of model parameters. As shown in 
Table 6
, the incorporation of the CA mechanism and the contrastive loss function improved the model’s recognition accuracy. Compared with the original Deformer ProtoPNet and using DenseNet161 as the baseline, the CDPNet model, integrating both the CA mechanism and the contrastive loss function, achieved an accuracy of 95.83%, representing an improvement of 2.35%. Furthermore, the precision, recall, F1-score, and AUC improved by 2.22%, 2.18%, 2.14%, and 0.93%, respectively. These findings confirm that the integration of the CA mechanism and the contrastive loss function not only avoided adverse effects but also substantially enhanced the recognition performance of CDPNet.



Table 6 | 
CDPNet results of ablation experiment.





	Model

	Cross Attention

	Barlow twin loss

	Accuracy
(%)

	Precision
(%)

	Recall
(%)

	F1
score (%)

	AUC (%)






	Deformer ProtoPNet+VGG19
	 
	 
	92.15
	91.83
	91.52
	91.65
	98.12



	Deformer
ProtoPNe+ResNet152
	 
	 
	92.63
	92.27
	92.11
	92.19
	98.25



	Deformer
ProtoPNet+DenseNet161
	 
	 
	93.48
	93.13
	92.89
	92.99
	98.52



	Deformer ProtoPNet+VGG19
	√
	 
	92.85
	92.35
	92.58
	92.45
	98.31



	Deformer
ProtoPNe+ResNet152
	√
	 
	93.38
	92.72
	92.97
	90.80
	98.46



	Deformer ProtoPNet+DenseNet161
	√
	 
	94.13
	93.55
	93.96
	93.62
	98.85



	Deformer ProtoPNet+VGG19
	 
	√
	93.64
	93.32
	93.07
	93.13
	98.58



	Deformer ProtoPNe+ResNet152
	 
	√
	94.26
	93.66
	93.62
	93.73
	99.25



	Deformer ProtoPNet+DenseNet161
	 
	√
	95.25
	94.77
	95.06
	94.83
	99.30



	Deformer ProtoPNet+VGG19
	√
	√
	94.22
	93.72
	93.97
	93.77
	99.16



	Deformer ProtoPNe+ResNet152
	√
	√
	94.89
	94.21
	94.47
	94.29
	99.38



	Deformer ProtoPNet+DenseNet161
	√
	√
	95.83
	95.32
	95.07
	95.13
	99.45







“√” indicates that this module has been added.








4.3.5 Experimental comparison of public datasets


To validate the generalization ability of the improved CDPNet model, a series of comparative experiments were performed on the PlantVillage and LWDCD 2020 datasets, alongside our self-built dataset. PlantVillage is an open-source plant disease dataset constructed based on image collection of plant leaves. These images were captured under controlled environmental conditions and cover 14 different species of plant. The dataset comprises approximately 54,305 images, categorized into 38 plant disease classes and 1 background image category. For our model training, we selected image data of three different diseases, such as Apple and Corn diseases, from the PlantVillage dataset. The LWDCD 2020 dataset for wheat diseases consists of nearly 7,000 relatively distinct close-up images of wheat diseases, categorized into 12 classes of common wheat diseases in China based on different disease types. Given that our task is wheat leaf disease identification, we selected five kinds of such diseases for model training. Using DenseNet161 as the baseline model, we trained the CDPNet on the training sets of the three datasets and validated it on the corresponding test sets, recording the validation results. 
Table 7
 presents the experimental results of the CDPNet model on the three datasets.



Table 7 | 
CDPNet performance on public datasets.





	Dataset

	Accuracy (%)

	Precision (%)

	Recall (%)

	F1 score (%)

	AUC (%)






	PlantVillage-3
	92.55
	92.69
	92.95
	92.68
	97.83



	LWDCD 2020-5
	93.35
	92.89
	93.61
	92.78
	98.15



	WL-Disease
	95.83
	95.32
	95.07
	95.13
	99.45














4.3.6 CDPNet interpretability analysis


As an interpretable model, CPDNet not only predicts leaf disease categories but also identifies key affected regions that influence model decisions, enabling explainable image classification and recognition of wheat leaf diseases. 
Figure 12
 illustrates how CPDNet identifies evidence of leaf blight in the test image by comparing its latent features with each variable prototype within the category (each prototypical part is displayed in the “Prototypical parts” column). As shown in 
Figure 13
, when variable prototypes scan the input image, they adaptively adjust their spatial positions. Then, the Prototype similarity scores are computed for each center position using Equation 6. Subsequently, the maximum score across all spatial positions is selected using Equation 7 to generate a single “similarity score” for the prototype. This similarity score is multiplied by the class connection score from the fully connected layer to yield the prototype’s contribution to the classification result. Finally, the contribution scores of all prototypes are summed to obtain the final classification score for the category. 
Figures 12
, 
13
 clearly demonstrate that CPDNet can accurately identify regions most affected by Leaf Blight, facilitating the classification and identification of wheat leaves. As a result, CPDNet’s interpretable output mechanism offers agronomists an intuitive visualization tool, enabling them to focus on specific visual features (e.g., lesion morphology, spatial distribution) and uncover potential diagnostic characteristics that are challenging to detect through traditional visual inspection.








5 Conclusion


This work introduces a novel deep learning model with intrinsic interpretability for the identification of wheat leaf diseases. Specifically, we present the CDPNet approach, which identifies key regions influencing model decisions by calculating similarity values between convolutional feature maps and latent prototype feature representations. CDPNet incorporates a CA mechanism to effectively isolate target diseased regions from complex backgrounds, thereby enhancing the model’s feature extraction capabilities. To address the limited availability of wheat leaf disease image data, we employ a self-supervised contrastive learning approach to capture cross-sample features, thereby improving model efficiency. To validate the model’s effectiveness, systematic experiments were conducted using both our self-constructed WL-Disease dataset and two public datasets. The results demonstrate that the proposed CDPNet not only achieves significantly higher accuracy than baseline methods but also provides an interpretable decision-making bases, offering reliable support for practical wheat disease diagnosis in field settings. In summary, the proposed CDPNet model achieves an average accuracy exceeding 92.55% across all three datasets, showcasing its ability to effectively classify and identify diverse crop diseases in real agricultural scenarios.


Future research will focus on developing pre-trained neural network model weights for large-scale plant pest and disease datasets in real-world agricultural settings. This will facilitate the faster convergence of other models when replacing feature extraction network backbones. This research can further alleviate challenges in pest and disease identification within smart agriculture, promoting the intelligent transformation of agricultural practices.
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As of today, pest insects such as thrips and whiteflies cause the loss of 20% - 40% of the global agricultural yield. To reduce chemical pesticide use while maintaining high-quality horticultural standards, early detection of pest infestations is essential. Although AI-assisted pest monitoring systems using sticky trap images exist today, none currently enable effective species-level detection of thrips and/or whiteflies. However, early species-level identification would allow for more targeted, species-specific control strategies, leading to reduced, localized, and more efficient pesticide application. Therefore, in this study, we evaluated the potential and limitations of real-time species-level detection of thrips (Frankliniella occidentalis and Echinothrips americanus) and whiteflies (Bemisia tabaci and Trialeurodes vaporariorum) using non-microscopic, RGB yellow sticky trap images and recent YOLO-based deep learning detection models. To this end, a balanced and labelled image dataset was gathered, consisting of the studied pest species, caught on one type of yellow sticky trap. Subsequently, various versions of the YOLO11 and YOLO-NAS detection model architectures were trained and tested using this dataset at various (digitally reduced) pixel resolutions. All tested high-resolution dataset (pixel size: 5 µm) models achieved species-level detection of the studied pests on an independent test dataset (mAP@50: 79% - 89% | F1@50: 74% - 87%). Even the smallest model (YOLO11n) delivered feasible macro-averaged (mAP@50: 80% | F1@50: 77%) and classwise performance scores (AP@50: 72% - 85% | F1@50: 68% - 82%). The minimum required pixel resolution for feasible species-level detection in greenhouse horticulture was identified as 80 µm for both the YOLO11n and YOLO11x models, enabling the use of modern smartphones, action cameras, or low-cost standalone camera modules. Combined with the low complexity and decent performance of the YOLO11n model, these results demonstrate the potential of feasible, real-time, automated species-level monitoring of (yellow) sticky traps in greenhouse horticulture. Future research should focus on extending this technology to additional pest species, sticky trap types, and ambient light conditions.
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1 Introduction

According to the United Nations (2022), the global human population will reach 9.7 billion by 2050, requiring an increase in food production of approximately 30% - 60% compared to the baseline period of 2005-2010 (Food and Agriculture Organization of the United Nations, 2024; van Dijk et al., 2021). Considering the annual global crop loss of 20% - 40% due to pest insects today (Food and Agriculture Organization of the United Nations, 2024; Gula, 2023), combined with the increasing pressure on the use and authorization of chemical pesticides, this will be a significant challenge. The switch to a more preventive, efficient and integrated pest management (IPM) strategy will therefore be key, requiring fast and objective detection combined with effective local pest control techniques.

Among all flying insects, the Thysanoptera order (better known as thrips) and Aleyrodidae family (better known as whiteflies) are widely distributed across the globe in both open field agriculture and greenhouse horticulture (Fiallo-Olivé et al., 2019; Mound, 2009; Perring et al., 2018). However, only a small fraction (< 1%) of these thrips and whitefly species are recognized as major agricultural pests. Thrips pests cause damage by feeding on leaf, flower and fruit tissues, which diminishes plant vigour and aesthetic quality. Additionally, some can act as vectors of harmful plant viruses, such as tospoviruses (Mound and Teulon, 1995; Mound et al., 2022). Whitefly pests, by contrast, cause damage by feeding on plant phloem and by excreting honeydew on the leaves, promoting fungal growth (e.g. sooty mould and powdery mildew) (Fiallo-Olivé et al., 2019; Navas-Castillo et al., 2011). Furthermore, some whitefly pests are well-known as vectors of various plant viruses, including begomoviruses, criniviruses, ipomoviruses, torradoviruses and some carlaviruses (Fiallo-Olivé et al., 2019; Navas-Castillo et al., 2011).

As both insect types are relatively small (thrips: 0.5–2 mm | whiteflies: 1–3 mm) and generally occur on the abaxial leaf side, they are easily overlooked by growers (Manners and Duff, 2017; Navas-Castillo et al., 2011). Combined with the high fecundity, short generation times and favourable climate inside horticultural greenhouses, this often results in exponential pest development (Manners and Duff, 2017; Perring et al., 2018). As of today, the western flower thrips (Frankliniella occidentalis), silverleaf whitefly (Bemisia tabaci) and to a lesser extent the greenhouse whitefly (Trialeurodes vaporariorum) are considered among the most problematic agricultural pests due to their global spread, polyphagous nature and - most importantly - their virus-spreading behaviour (Fiallo-Olivé et al., 2019; Kanakala and Ghanim, 2019; Navas-Castillo et al., 2011). Another widely distributed pest species across greenhouses is the so-called poinsettia thrips (Echinothrips americanus). Although it is not recognized as a plant virus vector, E. americanus is also considered an important horticultural pest due to its polyphagous nature, limited initial plant damage and rather low mobility, which increases the risk for delayed detection and exponential growth (Pijnakker et al., 2018; Pundt, 2024; Vierbergen et al., 2006).

Today, monitoring for these pests is generally carried out using glue-covered, brightly coloured (chromotropic) paper/plastic cards (also referred to as sticky traps), followed by frequent (e.g. daily/weekly) manual inspection. Subsequently, all present insects are manually identified using the key morphological traits. E. americanus adults are dark brown with red bands between the abdominal segments and have a unique white patch at the base of their dark wings (Mound et al., 2025). By contrast, F. occidentalis adults are smaller, slender, and vary in colour from pale yellow to nearly black, with narrow, fringed wings and no distinct white markings on the wings (Mound et al., 2025). In T. vaporariorum, the anterior margin of the forewing is curved, while in B. tabaci it is straight (European and Mediterranean Plant Protection Organization, 2004). Furthermore, in resting position, the wings of B. tabaci look more narrow and are pointed posteriorly compared to T. vaporariorum (European and Mediterranean Plant Protection Organization, 2004). Lastly, B. tabaci adults are generally somewhat smaller and have a darker yellow body compared to T. vaporariorum adults (European and Mediterranean Plant Protection Organization, 2004).

Due to its high attractivity to a wide range of insects, the yellow sticky trap (YST) is mostly used for monitoring. Although the material cost is fairly limited, the human labour cost and the non-continuous nature of this method still leave room for improvement. In addition, most personnel are not equipped or trained for accurate pest identification, particularly at the species level. However, continuous species-level monitoring of harmful pests would allow for timely, local and species-specific (non)chemical countermeasures, while taking into account the biology and phenology of the targeted species. Consequently, both the efficiency and efficacy of chemical pesticides would increase, while reducing the dosage, cost, environmental impact and risk of pesticide resistance. Therefore, this approach perfectly aligns with the European Union IPM strategies (The European Parliament and the Council of the European Union, 2009). Furthermore, more reliable risk assessments of virus transmission and the associated economic impact could be made using species-specific detections. Lastly, the success of the applied pest management strategy could also be quantified using such a system.

In an attempt to automate and objectively standardise the monitoring process of pests on sticky traps, various solutions combining a sticky trap with an optical sensor, have been proposed in the literature over the last three decades. A detailed overview can be found in the review articles by Lima et al. (2020), Preti et al. (2021), and Teixeira et al. (2023). Originally, this development started as static, automated and non-specific insect counting systems using basic optical sensors. Later, basic image processing techniques (e.g. filters, binarisation, colour space transformations, thresholding, etc.) were introduced and further evolved into mobile pest differentiation systems using machine learning techniques (e.g. k-means clustering, support vector machines, etc.) (Lima et al., 2020; Preti et al., 2021; Teixeira et al., 2023). During the last decade, many general (e.g. RetinaNet, Faster R-CNN, YOLO) and custom made/adapted versions of general deep learning (DL) model architectures [e.g. PestNet by Liu et al. (2019), TPest-RCNN by Li et al. (2021)] have been reported in the literature. These models allow for more specific pest detection on sticky traps, with generally good performance (mean average precision (mAP), calculated at an intersection over union (IoU) threshold of 50% - mAP@50: approx. 70% - 95%) (Teixeira et al., 2023).

When focusing on recent (2020 - present), good performing (mAP@50: ≥ 80%) DL-based sticky trap detection systems in the literature that specifically target thrips and/or whiteflies, the reported models are mainly (adapted) versions of the YOLO (Niyigena et al., 2023; Teixeira et al., 2023; Wang et al., 2021, 2024; Zhang et al., 2023) and Faster R-CNN (Li et al., 2021; Niyigena et al., 2023; Teixeira et al., 2023; Wu et al., 2024) model architectures. Despite the inclusion of both pest types in some studies, surprisingly only few articles address species-level determination of these pests. While some researchers specify the exact thrips and whitefly species studied, they either exclude other species from the same order/family (Espinoza et al., 2016; Sun et al., 2017; Xia et al., 2015) or group related species under a single detection class (Bauch and Rath, 2005), therefore avoiding the need for species-level differentiation.

To the best of the authors’ knowledge, only Niyigena et al. (2023) have currently reported a detection model capable of differentiating Scirtothrips dorsalis from other thrips species (grouped as a single class) using high-quality YST smartphone images (pixel resolution: 17 µm). Regarding whitefly species differentiation, only Böckmann et al. (2021) described a differentiation model for B. tabaci and T. vaporariorum on RGB sticky trap images, using a bag of visual words approach. However, its success was rather limited (B. tabaci: recall = 72% and precision = 26% | T. vaporariorum: recall = 54% and precision = 98%). In contrast, Gutierrez et al. (2019) reported detection models (SDD and Faster R-CNN) for B. tabaci and T. vaporariorum adults and eggs, but performance for adult detection remained rather modest (precision: 27% - 74%). However, note that the latter models were trained on close-up images of pests/eggs on plants, not on sticky trap images. Finally, as a general remark, most studies only report performance metrics for the originally obtained test dataset, limiting a critical assessment of the models’ generalization properties.

Therefore, in this research, we propose a proof-of-concept species-level detection system for two of the currently most occurring/damaging thrips (F. occidentalis and E. americanus) and whitefly (B. tabaci and T. vaporariorum) species in the Belgian and Dutch greenhouse horticultural sector, using non-microscopic, RGB yellow sticky trap images and recent DL models. To enable real-time detection, two state-of-the-art one-step DL detector architectures were selected, being the recently developed, relatively fast and good performing YOLO11 (Jocher et al., 2025) and YOLO-NAS (Aharon et al., 2024) model families. As a first step, the potential of DL-based species-level detection on sticky trap images was explored. This was done by training various versions, diverging in complexity, of the selected model architectures on a dedicated, high-resolution dataset. Next, the minimum required pixel resolution for feasible species-level thrips and whitefly detection in greenhouse horticulture was determined. This was achieved by training a selection of the proposed models on digitally transformed reduced-resolution datasets. During both steps, the influence of the model architecture and model size on the performance were studied. Furthermore, also the model generalization was studied using both an internal (subset of the original dataset) and external (additional independent dataset) test dataset. As a last step, the obtained theoretical minimum required pixel resolution was translated to various potential (low-cost) sticky trap image acquisition setups. To our knowledge, this is the first study enabling species-level detection of both thrips and whiteflies using RGB sticky trap images and YOLO-based detection models.




2 Materials and methods



2.1 Dataset acquisition



2.1.1 Pest insect rearing and sticky trap collection

To obtain a heterogeneous, high-quality collection of insect-covered yellow sticky traps (YSTs) of various insect densities, residence times and age, F. occidentalis (thrips), T. vaporariorum (whitefly) and B. tabaci (whitefly) strains were reared inside insect-proof cages (Vermandel, The Netherlands) in physically isolated greenhouses/growing chambers at ILVO (Merelbeke-Melle, Belgium). The F. occidentalis strain, previously described by De Rouck et al. (2024), was reared on bean pods (Phaseolus vulgaris) with addition of pollen (Nutrimite, Biobest, Belgium) inside passively ventilated plastic containers. The T. vaporariorum strain was collected from a natural infection in an ILVO greenhouse and was reared on cucumber plants (Cucumis sativus). Both strains were reared in separate cages within the same ILVO greenhouse with an indoor temperature of 20.1 ± 1.7 °C and 55.0 ± 10.9% relative humidity (RH). The B. tabaci strain (MED biotype), previously described by Mocchetti et al. (2025), was reared on tobacco plants (Nicotiana tabacum) inside a separate ILVO growing chamber at 23.5 ± 1.1 °C and 60 ± 3% RH.

Over the course of several months, individuals of all insect populations were regularly caught on one commonly used type of (wet glue) YST in Belgium (Horiver Wetstick, Koppert België B.V., Belgium). This was done by hanging the YSTs inside the rearing cages/containers for several days. Meanwhile, the same type of YST containing a mix of E. americanus (thrips) and other insect species (other than thrips or whiteflies) was collected for two weeks in the greenhouses of Viaverda (Destelbergen, Belgium) after a natural infestation of pot plants. The indoor temperature and RH inside the greenhouses were, respectively, 24.9 ± 5.3 °C and 55.7 ± 16.5%. All sticky traps were stored, protected from ambient light, inside opaque plastic containers until image acquisition (several days to approximately one year) and were later used to construct the so-called internal dataset.

Lastly, to study the generalization of the models, also a smaller, independent additional collection of four YSTs was obtained, containing a mixture of all studied pest species and other non-thrips/-whitefly insects. This collection was acquired at the end of the insect rearing by moving a previously collected E. americanus (thrips) YST across all pest cultivations. Depending on the size and vigour of the pest populations, the YST was left inside each location for several hours to several days until at least ten individuals per pest species were caught on each sticky trap. The mixed YSTs were analogously stored inside opaque plastic containers until image acquisition (several days to months) and were later used to construct the so-called external dataset.




2.1.2 Sticky trap image acquisition

In order to study the potential of species-level pest detection using non-microscopic, high-resolution RGB images, all sticky traps were photographed using a standardized and automated image acquisition setup (see Figure 1A). This setup consisted of a 42.4 MP high-resolution DSLR camera (Sony α7R III, Sony Group Corporation, Japan) with macro lens (Sony FE 50mm F2.8 macro, Sony Group Corporation, Japan), a repro photography stand (Hama, Germany), a circular LED light (LED Ringlamp LR-480, StudioKing, The Netherlands) and a motorized xy gantry (XPlotter, PineconeRobotics, China) with a 3D printed sticky trap mount. The LED light was adjusted to 5500 K (built-in driver) and 2170 Lux (Testo 545 digital Lux meter, Testo AG, Germany), measured in the center of the YST. The camera height was adjusted to the minimum focus distance of the lens (16 cm) after which it was focussed on a paper black/white block pattern. This resulted in a field of view of roughly 3.7 cm x 2.5 cm (7968 x 5320 pixels) per image with a pixel size of roughly 5 µm (see Figure 1B).

[image: Panel A shows a camera imaging setup with a mounted digital camera, ring light, and yellow sticky trap placed on a platform; a computer monitor is visible in the background. Panel B displays a close-up of a yellow sticky trap with insect specimens, overlaid with measurement guides indicating dimensions, pixel resolution, and an inset magnified view of a small insect measuring two millimeters, with a listed resolution of five micrometers.]
Figure 1 | (A) Overview of the automated, high-resolution (pixel size: 5 µm) image acquisition setup and (B) a zoomed example image for F. occidentalis.

All images were taken in manual mode (aperture: f/11 | shutter speed: 1” | ISO: 100) using the corresponding Imaging Edge Desktop - Remote software (v1.2.00.02130 | Sony Group Corporation, Japan) and saved in RAW format (*.ARW). The YST was automatically moved between images by the xy gantry, resulting in 30 images per sticky trap without image overlap. This was needed to avoid any potential data leakage between the training, validation and test datasets. Both sides of the YSTs (A: side with printed grid | B: non-printed side) were photographed using the same protocol. Image acquisition was spread over multiple days and grey card (Control-card, Novoflex, Germany) images for white balance correction were taken at the start and end of each acquisition day.




2.1.3 Image processing and dataset labelling



2.1.3.1 High-resolution datasets

All original images (*.ARW format) were corrected (white balance and lens correction) using the open source Darktable software (v4.4.1) and saved as 8-bit *.jpg images. Subsequently, all images were cropped to a central region of interest of 90% of the original image size to fully exclude any potential image overlap and data-leakage during training/testing. Next, bounding box labels (four classes: one for each studied thrips/whitefly species) were generated using a dedicated Python script based on colour space conversion and image thresholding or an early version of the trained detection model in a later phase. All bounding box labels were later manually verified using the free browser version of CVAT (v2.30.0 | CVAT.ai Corporation, Palo Alto, CA, USA) after which the images were split into smaller image patches, matching the neural network’s image input dimensions (640 x 640 pixels | 3.2 x 3.2 mm). Other insects (mainly originating from the E. americanus greenhouse), not belonging to any of the four studied pest species were left unlabelled in the dataset. The described process is visualized in Supplementary Figure S1 in the Supplementary Material File.

Next, all useful pest image patches were separated from the background (without insect labels) and blurry/dubious image patches using CVAT. Background patches (BG) were subsequently further divided into five subclasses (yellow background, printed grid, light reflections, identification sticker and sticky trap mount) per original pest species dataset. In order to prevent misclassification of other, non-studied insects, an additional image patch dataset (without labels) of all other present insects was also gathered (see Figure 2).

[image: Grid of ten labeled close-up photos showing insects and background features on yellow sticky traps for classification: Frankliniella occidentalis, Echinothrips americanus, Bemisia tabaci, Trialeurodes vaporariorum, other insects, and backgrounds including a plain yellow surface, a printed grid, surface reflections, an identification sticker, and the sticky trap mount. Each photo includes a 1 millimeter scale bar for reference.]
Figure 2 | Overview of the defined image patch types in both the internal and external high-resolution (pixel size: 5 µm) image datasets. The dimensions of each image patch were 640 x 640 pixels, corresponding to 3.2 x 3.2 mm.

The high-resolution dataset was subsequently obtained by homogeneous sampling of 1,000 labels (+ the corresponding image patches) of each studied pest class, 1,000 patches of non-studied insects and 20% BG patches, spread over each background type according to its relevance (25% yellow background | 25% printed grid | 25% reflections | 10% identification sticker | 15% sticky trap mount). Finally, this dataset was randomly split into the training (60%), validation (20%) and test (20%) subsets and is further referenced to in this document as the internal dataset.

The additional collection of mixed insects YST images was processed analogously, but now only a test dataset was gathered consisting of 54 homogeneously sampled insect labels (+ the corresponding image patches) per studied class (maximum available balanced dataset size), combined with 54 image patches of other non-studied insects (mainly originating from the E. americanus greenhouse) and 20% BG patches. This dataset is further referenced to in this research as the external dataset.




2.1.3.2 Reduced-resolution datasets

In order to study the effect of the image (pixel) resolution on the model’s performance/generalization, both the internal and external high-resolution datasets were digitally transformed into reduced-resolution datasets (theoretical pixel size - TPS: 10 µm, 20 µm, 40 µm, 80 µm, 160 µm, 320 µm and 640 µm | see Supplementary Figure S2 in the Supplementary Material File). This was done by resizing the original image patch (640 x 640 pixels) to a smaller dimension (factor 1/2n | n ∈ N) using bilinear interpolation, followed by resizing it back to the original image patch dimension, also using bilinear interpolation. This way, the original dimension (640 x 640 pixels) and field of view (3.2 x 3.2 mm) were maintained in all image patches, while the included pixel information/detail originated from a (theoretical) lower original image resolution (= larger TPS). In order to avoid any potential influence of the resolution downscaling process, a dataset of the original resolution (TPS: 5 µm) was also obtained using the same method.




2.1.3.3 Python environment

All image and dataset processing steps were performed in Python (v3.8.19) using the following main libraries: plantcv (v4.3.1), opencv-python (v4.10.0.82) and pillow (v10.2.0).






2.2 Detection model training and testing



2.2.1 High-resolution dataset models

Various pretrained versions of two state-of-the-art one-stage object detection model families [YOLO11 by Jocher et al. (2025) and YOLO-NAS by Aharon et al. (2024)] were retrained (fine-tuning) in Python until model convergence using the internal high-resolution (pixel size: 5 µm) training and validation datasets. An overview of the studied model versions and corresponding Python libraries is shown in Table 1. To improve the overall generalization of each model, all default data augmentation techniques of both Python libraries were used during training. Considering the proof-of-concept purpose of this study, only the main model hyperparameters (e.g. number of epochs, batch size, initial/warm-up learning rate and epochs, etc.) were adjusted in between (re)training iterations in order to obtain the best configuration per model version (see Supplementary Table S1 and Supplementary Table S2 in the Supplementary Material File). Subsequently, all best model versions were tested on both the internal and external high-resolution test datasets in order to compare both the performance and generalization, relative to the other model versions.


Table 1 | Overview of the studied detection model versions (Aharon et al., 2024; Jocher et al., 2025) that were trained on the high-resolution (pixel size: 5 µm) internal dataset.
	Model type
	Version
	Size (M parameters)
	Developer (year)
	Python package (version)



	YOLO11
	YOLO11n
YOLO11s
YOLO11mYOLO11lYOLO11x
	2.6 9.4
20.125.356.9
	Ultralytics (2025)
Ultralytics (2025)
Ultralytics (2025)
Ultralytics (2025)
Ultralytics (2025)
	ultralytics (v8.3.58) ultralytics (v8.3.58) ultralytics (v8.3.58)ultralytics (v8.3.58)ultralytics (v8.3.58)


	YOLO-NAS
	YOLO-NAS-S YOLO-NAS-MYOLO-NAS-L
	19.0
51.166.9
	Deci AI, Inc. (2024)
Deci AI, Inc. (2024)Deci AI, Inc. (2024)
	super-gradients (v3.6.1) super-gradients (v3.6.1)super-gradients (v3.6.1)







The following test performance metrics (macro-averaged and/or classwise) were extracted for each model version. The corresponding formula to calculate each of these metrics were added to the Supplementary Material File (Equations S1–S6):

	precision@50: The correctness of the model detections, calculated at an IoU threshold of 50%.

	recall@50: The ability to detect all present objects, calculated at an IoU threshold of 50%.

	F1@50: The harmonic mean of the detection precision and recall, calculated at an IoU threshold of 50%.

	AP@50: The average precision or the area under the precision-recall curve for a given detection class, calculated at an IoU threshold of 50%.

	mAP@50: The mean average precision (mAP) or average AP@50 over all detection classes, calculated at an IoU threshold of 50%.

	mAP@50:95: The average of the mAP scores, calculated at various IoU thresholds ranging from 50% to 95%, with a step size of 5%.



All models were tested using the built-in Python package functions or dedicated code if needed. The optimal overall test confidence threshold was obtained from the (smoothed) macro-averaged F1@50 confidence curve, by taking the (lowest) confidence score resulting in the maximum F1@50 value. An overview of all other hyperparameter values that were used during model testing can be found in Supplementary Table S3 and Supplementary Table S4 in the Supplementary Material File. Considering the intended application (automated species-level monitoring in greenhouse horticulture), the authors arbitrarily defined a minimum practical feasibility threshold of 70% for the macro-averaged mAP@50, F1@50, precision@50 and recall@50. However, as this threshold will be highly crop and grower-specific, readers/future users are encouraged to adjust it according to their specific requirements.

To support the interpretation of the model performances, the confusion matrices were also generated. Furthermore, the Gradient-weighted Class Activation Maps (Grad-CAMs) of the last C3k2 model block were created for the smallest, yet practically feasible YOLO11 model version. This was done for the complete external test dataset and an additional mosaic patch containing all four studied pest species (originating from the external test dataset) using the same hyperparameters as during model testing. The obtained Grad-CAMs allowed for a superficial comparison between the most decisive pest features/regions used by the model and the key morphological species characteristics that are listed in the literature (European and Mediterranean Plant Protection Organization, 2004; Mound et al., 2025).




2.2.2 Minimum resolution research

To study the influence of the image (pixel) resolution and model complexity on the model’s performance and generalization, both a small (YOLO11n) and big (YOLO11x) detection model were retrained (see Supplementary Table S9 and Supplementary Table S10 in the Supplementary Material File) and tested (see Supplementary Table S11 and Supplementary Table S12 in the Supplementary Material File) on each of the reduced-resolution datasets. The YOLO11 model type (Jocher et al., 2025) was used for this research due to the faster training/testing process and user-friendly Python library.

Based on the earlier defined practical feasibility threshold of 70% (or other value chosen by the reader/future user) and the obtained test metrics of each reduced-resolution model, the corresponding minimum required image resolution/maximum pixel size for species-level detection could subsequently be determined. Finally, to study the practical feasibility of stand-alone automated species-level detection traps, this value was translated into various potential minimum required photography setups. This was done using the technical specifications of the selected cameras/lenses (see Supplementary Table S17) and Equations S7–S9 in the Supplementary Material File. As the horizontal and vertical angles of view were not listed in the official data sheets of the iPhone 16 Pro and the Sony α7R III, these values were manually calculated using the diagonal angles of view, aspect ratios (width:height) of respectively 4:3 and 3:2, and Equations S10, S11 in the Supplementary Material File.





2.2.3 Technical specifications

Model training, validation and testing were locally executed on a workstation in Python (v3.8.19) using the following main libraries: ultralytics (v8.3.58), super-gradients (v3.6.1) and tensorboard (v2.18.0). The workstation consisted of one NVIDIA RTX A5000 GPU (NVIDIA Corporation, Santa Clara, CA, USA | CUDA version: v12.2.140) and two Intel Xeon Gold T CPUs (Intel Corporation, Santa Clara, CA, USA).






3 Results



3.1 Dataset acquisition



3.1.1 High-resolution datasets

Over the course of several months, dozens of YSTs were collected, photographed, processed and labelled for each pest type, resulting in a heterogeneous internal dataset of 5105 image patches (see Table 2) and an external test dataset of 246 image patches (see Table 3). Due to a limited contamination of the T. vaporariorum cultivation with F. occidentalis individuals, some of the prior image patches contained both insect species. Because of this, the sum of the individual image patches per patch type does not equal the listed total (sub)dataset sizes of the training set, test set and total dataset in Table 2. This also counts for the external dataset (Table 3) as often multiple pest species occurred on the same image patch. However, for the latter dataset this was intended (mixed test dataset). Lastly, as all background images originated from the same sticky traps as the four studied pest species and ‘other insects’ datasets, also the listed total amount of unique sticky trap sides per (sub)dataset does not equal the sum of the individual unique trap sides per image patch type, in both tables.


Table 2 | Detailed composition of the high-resolution (pixel size: 5 µm) internal dataset, consisting of yellow sticky trap image patches.
	Image/label type
	Training set (60%)
	Validation set (20%)
	Test set (20%)
	Total dataset (100%)


	Labels
	Image patches
	Labels
	Image patches
	Labels
	Image patches
	Labels
	Image patches
	Unique sticky trap sides (A+B)



	F. occidentalis (class 1)
	548
	450
	215
	155
	237
	182
	1,000
	787
	23 (11 + 12)


	E. americanus (class 2)
	600
	567
	192
	188
	208
	202
	1,000
	957
	15 (8 + 7)


	B. tabaci (class 3)
	626
	529
	189
	168
	185
	153
	1,000
	850
	10 (5 + 5)


	T. vaporariorum (class 4)
	587
	297
	247
	113
	166
	85
	1,000
	495
	16 (7 + 9)


	other insects (no class)
	–
	621
	–
	194
	–
	185
	–
	1,000
	34 (29 + 5)


	yellow background (BG - no class)
	–
	146
	–
	50
	–
	59
	–
	255
	64 (38 + 26)


	printed grid (BG - no class)
	–
	149
	–
	50
	–
	53
	–
	252
	41 (41 + 0)


	reflections (BG - no class)
	–
	158
	–
	45
	–
	53
	–
	256
	63 (36 + 27)


	identification sticker (BG - no class)
	–
	62
	–
	22
	–
	21
	–
	105
	35 (18 + 17)


	sticky trap mount (BG - no class)
	–
	90
	–
	35
	–
	33
	–
	158
	58 (31 + 27)


	TOTAL
	2,361
	3,062a
	843
	1,020
	796
	1,023a
	4,000
	5,105a
	88 (56 + 32)b





The following abbreviations are used: side A = printed grid front side; side B = non-printed back side; BG = background image.


a Due to a limited contamination of the T. vaporariorum cultivation with F. occidentalis individuals, some of the prior image patches contained both insect species. Because of this, the sum of the individual image patches per patch/label type does not equal the listed total (sub)dataset sizes of the training set, test set and total dataset.

b As all background images originated from the same sticky traps as the four studied pest species and ‘other insects’ datasets, the listed total amount of unique sticky trap sides does not equal the sum of the individual unique sticky trap sides per image/label type.





Table 3 | Detailed composition of the high-resolution (pixel size: 5 µm) external dataset, consisting of yellow sticky trap image patches.
	Image/label type
	Test set (100%)
	Total dataset (100%)


	Labels
	Image patches
	Labels
	Image patches
	Unique sticky trap sides (A+B)



	F. occidentalis (class 1)
	54
	47
	54
	47
	8 (4 + 4)


	E. americanus (class 2)
	54
	54
	54
	54
	7 (4 + 3)


	B. tabaci (class 3)
	54
	51
	54
	51
	4 (2 + 2)


	T. vaporariorum (class 4)
	54
	36
	54
	36
	4 (2 + 2)


	other insects (no class)
	–
	54
	–
	54
	8 (4 + 4)


	yellow background (BG - no class)
	–
	12
	–
	12
	8 (4 + 4)


	printed grid (BG - no class)
	–
	12
	–
	12
	4 (4 + 0)


	reflections (BG - no class)
	–
	12
	–
	12
	8 (4 + 4)


	identification sticker (BG - no class)
	–
	5
	–
	5
	5 (3 + 2)


	sticky trap mount (BG - no class)
	–
	8
	–
	8
	7 (3 + 4)


	TOTAL
	216
	246a
	216
	246a
	8 (4 + 4)b





The following abbreviations are used: side A = printed grid front side; side B = non-printed back side; BG = background image.


a As some image patches contained multiple thrips/whitefly individuals, the sum of the individual patches per image/label type does not equal the listed total (sub)dataset size.

b As all background images originated from the same sticky traps as the four studied pest species and ‘other insects’ datasets, the listed total amount of unique sticky trap sides does not equal the sum of the individual unique sticky trap sides per image/label type.







3.1.2 Reduced-resolution datasets

The resolution downscaling process successfully resulted in eight different reduced-resolution versions (theoretical pixel size - TPS: 5 µm up to 640 µm) of both the internal and external datasets (see Supplementary Figure S2 in the Supplementary Material File).





3.2 Detection model training and testing



3.2.1 High-resolution dataset models

All studied model versions provided comparable general performance scores (mAP@50 and F1@50) for the high-resolution (pixel size: 5 µm) internal test dataset of ≥ 90%, no matter the used model type, version or general complexity (Figure 3A). However, the mAP@50:95 performance score for the internal test dataset was consistently lower for the YOLO-NAS models compared to the YOLO11 models (ΔmAP@50:95 = 8% - 11%).

[image: Paired line charts compare YOLO11 (solid lines with filled circles) and YOLO-NAS (dashed lines with open circles) models by performance score versus model complexity, for internal (panel A) and external (panel B) test datasets. X-axes represent model complexity in millions of parameters with model names annotated above; y-axes denote macro-averaged performance score. Lines show metrics mAP@50, mAP@50:95, precision@50, recall@50, and F1@50, color-coded and identified in the central legend. YOLO11 models generally show higher and more consistent performance across metrics, which dips less with increasing complexity than YOLO-NAS, especially on internal tests.]
Figure 3 | Macro-averaged high-resolution (pixel size: 5 µm) internal (A) and external (B) test dataset performance scores for each of the studied model versions, trained on the internal high-resolution image dataset.

All models clearly performed worse on the external test dataset (Figure 3B), but did show an increasing performance towards higher model complexities. Furthermore, the YOLO-NAS models tended to better generalize to the unseen external test dataset (mAP@50: 85% - 89% | F1@50: 83% - 87%) compared to the YOLO11 models (mAP@50: 79% - 84% | F1@50: 74% - 81%). In general, a performance drop between both test datasets of approximately 10% - 20% and < 10% was observed, respectively, for the YOLO11 and YOLO-NAS model architectures for all performance metrics with an IoU ≥ 50% (mAP@50, precision@50, recall@50 and F1@50). However, the drop in mAP@50:95 scores between both test datasets was less pronounced for the YOLO11 models (approx. 10%), while almost non-existing for the YOLO-NAS models.

When studying the classwise model performances on the high-resolution internal test dataset, all model versions generally performed better (highest mAP@50 and F1@50) for the detection of thrips (E. americanus and F. occidentalis) compared to the detection of both whitefly species (T. vaporariorum and B. tabaci) (Figures 4A, B). However, it should be noted that the absolute differences between the best and worst performing classes were rather limited for all tested model versions (ΔAP@50: 4% - 7% | ΔF1@50: 4% - 10%). The corresponding precision@50 and recall@50 plots for each tested model were visualized, respectively, in Supplementary Figure S4C and Supplementary Figure S4D in the Supplementary Material File.

[image: Four line charts display classwise AP@50 and F1@50 against model complexity in millions of parameters for four insect species, using YOLO and YOLO-NAS models. Panels A and B show results on the internal test dataset for AP@50 and F1@50, while panels C and D depict the external test dataset for the same metrics. Different lines represent F. occidentalis, E. americanus, B. tabaci, and T. vaporariorum, with markers distinguishing YOLO and YOLO-NAS across model complexities. A legend clarifies line and marker meanings.]
Figure 4 | Classwise (A) AP@50 and (B) F1@50 performance scores on the high-resolution (pixel size: 5 µm) internal test dataset and classwise (C) AP@50 and (D) F1@50 performance scores on the high-resolution external test dataset for each of the studied model versions. All models were trained on the internal high-resolution image dataset.

However, considering the external test dataset (Figures 4C and 4D), the overall order of the best performing classes was different for the YOLO11 models, compared to the equivalent model versions, tested on the internal dataset. The general performance drop was largest for the smallest YOLO11 models (YOLO11n and YOLO11s), now performing best on B. tabaci (ΔAP@50: -7% and -5% | ΔF1@50: -10% and -8% | relative to the internal test dataset performance) and worst on F. occidentalis (ΔAP@50: -23% and -25% | ΔF1@50: -25% and -30% | relative to the internal test dataset performance). However, this effect was reduced when using more complex model versions. Apart from a performance drop compared to the internal test dataset, the order of best performing pest classes did not really change for the YOLO-NAS models. The corresponding general performance drop was clearly most significant for both whitefly species (ΔAP@50: -9% to -14% | ΔF1@50: -4% to -14% | relative to the internal test dataset performance). Once again, the precision@50 and recall@50 plots were added to the Supplementary Material File (Supplementary Figure S5C, Supplementary Figure S5D).

Within the YOLO-NAS model series, the YOLO-NAS-L model performed best on the external test dataset, resulting in macro-averaged and classwise performance scores (IoU ≥ 50%) of respectively > 85% and ≥ 75%. For the YOLO11 model series, the largest YOLO11x version performed best on the external test dataset, resulting in 5% - 6% lower macro-averaged performance scores (IoU ≥ 50%) compared to the best YOLO-NAS model (YOLO-NAS-L).

The previously described similar performance of all model versions on the internal test dataset and better generalization to the external test dataset by the YOLO-NAS models are also clearly visible in the confusion matrices (IoU ≥ 50%) of the smallest (YOLO11n) and largest (YOLO-NAS-L) tested model versions (see Figure 5). Although most distinct for the smallest YOLO11n model, the proportion of complete misses (pest insect predicted as background) was in both models higher for the thrips classes in the external test dataset, compared to the internal test dataset. However, regarding the whitefly detections, the percentage of complete misses generally dropped while species-level misclassifications (B. tabaci <=> T. vaporariorum) significantly increased in the external dataset. Lastly, the proportion of false detections (background detected as pest insect) was also higher in the external test dataset for both model versions, while being most pronounced for the YOLO11n model.

[image: Four confusion matrices labeled A, B, C, and D compare classification performance for five classes: Th_Fo, Th_Ea, Wf_Bt, Wf_Tv, and BG. Each matrix includes counts, classification accuracy percentages, and a color gradient from light blue to dark blue indicating frequency. True labels are on the y-axis and predicted labels on the x-axis. Panel A and C matrices display higher accuracy per class compared to panels B and D, as shown by darker diagonal cells.]
Figure 5 | Exemplary confusion matrices (IoU ≥ 50%) after testing the smallest (YOLO11n) and biggest (YOLO-NAS-L) model versions on both the internal and external high-resolution (pixel size: 5 µm) datasets. Both model versions were trained on the high-resolution internal dataset. Both the absolute (center value) and normalized (top left: ground-truth normalized | bottom right: prediction normalized) values are added to each cell. The following model version-test dataset combinations are plotted: (A) YOLO11n - internal test dataset; (B) YOLO11n - external test dataset; (C) YOLO-NAS-L - internal test dataset and (D) YOLO-NAS-L - external test dataset. Hereby the following label abbreviations were used: Th_Fo: F. occidentalis (thrips); Th_Ea: E. americanus (thrips); Wf_Bt: B. tabaci (whitefly); Wf_Tv: T. vaporariorum (whitefly) and BG: background/other insects.

The Grad-CAMs of the smallest, yet practically feasible, high-resolution model version (YOLO11n), indicated that the model mainly focused on the (upper part) of the abdomen of both thrips species, when visible. When occluded, the model also focused on the head and antennae. Regarding the studied whitefly species, the model generally focused on the yellow body and darker white/transparent zones of the wings. An exemplary overview of the classwise YOLO11n Grad-CAMs was added in Supplementary Figure S3 of the Supplementary Material File.




3.2.2 Minimum resolution research

Due to the rather time-consuming neural architectural search (NAS) process during the YOLO-NAS model training and the user-friendly ultralytics Python library, in the end the YOLO11 model architecture was used for the minimum resolution research.

Once again, all tested models performed worse on the external test dataset, compared to the internal test dataset (Figure 6). Furthermore, the differences were generally larger for lower image resolutions (= larger pixel sizes). Both model types showed similar macro-averaged performance (mAP@50, F1@50, precision@50 and recall@50) on the internal test dataset. The model performance dropped almost linearly with increasing pixel sizes. When tested on the external dataset, both model types also performed quite similarly for the smaller (theoretical) pixel size datasets, while for larger pixel size datasets, the YOLO11n models performed generally better. Both the mAP@50, F1@50 and precision@50 scores showed a noticeable, non-linear drop at pixel sizes > 80 µm. In general, none of the reported macro-averaged performance measures (IoU ≥ 50%) dropped below 50% for the full range of studied (theoretical) pixel sizes and model architectures.

[image: Figure containing four line graphs labeled A through D, each showing model performance metrics versus theoretical pixel size in micrometers, with separate lines for different models and datasets. Graph A shows macro-averaged mean average precision at fifty, B shows F1 score at fifty, C shows precision at fifty, and D shows recall at fifty. Each plot includes a horizontal dotted line labeled performance threshold, and a legend indicates YOLO1n and YOLO11x models and distinguishes internal and external test datasets.]
Figure 6 | Macro-averaged internal/external test dataset (A) mAP@50, (B) F1@50, (C) precision@50 and (D) recall@50 performance scores for each of the YOLO11n and YOLO11x model versions, trained on the corresponding reduced-resolution internal datasets (theoretical pixel size: 5 µm - 640 µm). The black dotted line represents the arbitrarily defined minimum required practical feasibility threshold of 70% for greenhouse horticultural applications.

Although the macro-averaged performances of both model types were quite comparable for the external test dataset (Figure 6), the classwise external dataset performances of the YOLO11x models were generally inferior across all dataset resolutions (Figure 7, Supplementary Figures S8, S9). In general, the classwise detection performances (AP@50 and F1@50) on the external dataset were for thrips, and in particular F. occidentalis, strongly affected by the image resolution, showing a steep performance drop for pixel sizes > 80 µm for both model types. The performance for both whitefly species (B. tabaci and T. vaporariorum) on the other hand remained much more stable with increasing pixel sizes. The classwise external test dataset precision@50 and recall@50 were plotted in the Supplementary Material File for each of the reduced-resolution YOLO11n (Supplementary Figure S8C, Supplementary Figure S8D) and the YOLO11x models (Supplementary Figure S9C, Supplementary Figure S9D). For completeness, also the classwise performance (IoU ≥ 50%) on the internal test dataset of all tested model versions/image resolutions were visualized in the Supplementary Material File (Supplementary Figure S6, Supplementary Figure S7).

[image: Four line graphs labeled A, B, C, and D display AP@50 and F1@50 classwise metrics for different thrips species across varying theoretical pixel sizes. Each graph shows performance for YOLOv7n (circular markers) and YOLOv7x (triangular markers) models. Performance threshold lines are present. F. occidentalis, E. americanus, B. tabaci, and T. vaporariorum are distinguished by line color and style per the legend. All graphs indicate performance decreases with increasing pixel size, especially for F. occidentalis and E. americanus.]
Figure 7 | Classwise external dataset (A) AP@50 and (B) F1@50 performance scores for each of the YOLO11n models and classwise external dataset (C) AP@50 and (D) F1@50 performance scores for the YOLO11x models. All models were trained on the corresponding internal reduced-resolution image datasets (theoretical pixel size: 5 µm - 640 µm). The black dotted line represents the arbitrarily defined minimum required practical feasibility threshold of 70% for greenhouse horticultural applications.

The internal test dataset performances of both the 5 µm reduced-resolution YOLO11n (Supplementary Table S13) and YOLO11x models (Supplementary Table S14) were almost identical to those of the corresponding high-resolution dataset models (ΔmAP@50: 0% - 1% | ΔF1@50: 1% | Δmaxclasswise@50: 3% | Supplementary Table S5). However, when tested on the external test dataset, the reduced-resolution 5 µm YOLO11n model (Supplementary Table S15) performed better than the high-resolution dataset YOLO11n model (ΔmAP@50: 5% | ΔF1@50: 5% | Δmaxclasswise@50: 17% | Supplementary Table S7). Meanwhile, the opposite behaviour was observed for the YOLO11x model version (Supplementary Table S7, Supplementary Table S16 | ΔmAP@50: 4% and ΔF1@50: 3% | Δmaxclasswise@50: 13%).

Considering the (arbitrarily defined) minimum macro-averaged practical feasibility threshold of 70% (IoU ≥ 50%), the minimum required (theoretical) pixel resolution for species-level detection was identified as 80 µm (theoretical pixel size - TPS: ≤ 80 µm) for both the YOLO11n and YOLO11x models (Figure 6). Furthermore, almost all classwise AP@50 and F1@50 scores also exceeded this threshold at TPS ≤ 80 µm (Figure 7). By contrast, classwise precision@50 and recall@50 scores did not always comply with the 70% threshold (see Supplementary Figures S8, S9) for TPS ≤ 80 µm.

In Table 4, various alternative sticky trap photography setups, corresponding to the minimum (theoretical) required pixel resolution for the YOLO11n and YOLO11x model versions (TPS: 80 µm), were compared with the camera system used in this research.


Table 4 | Theoretical minimum required photography setups suited for species-level detection of the studied thrips and whitefly species (theoretical pixel size - TPS: 80 µm) for the used high-resolution DSLR camera (bold font), recent smartphone cameras, recent action camera, and some widely used low-budget camera modules.
	Sensor type + lens
	Sensor quality
	Minimum focus distance
	Angle of view (hor. and ver.)
	Max. effectivea working distance (TPS: 80 µm)
	Images per sticky trap
	Approximate unit costb



	Raspberry Pi camera module 2
	8 MP
	10 cm
	H: 62.2°
V: 48.8°
	21 cm
	1
	< € 50


	Raspberry Pi camera module 3
	11.9 MP
	10 cm
	H: 66°
V: 41°
	28 cm
	1
	< € 50


	Arducam Pi Hawk-eye
	64 MP
	8 cm
	H: 72°
V: 54.6°
	52 cm
	1
	< € 100


	Samsung Galaxy A16 LTE (main camera)
	50 MP
	10 cm
	H: 67.6°
V: 53.8°
	48 cm
	1
	< € 150


	GoPro HERO13 Black + macro lens module (16:9 - linear mode)
	27.13 MP
	11 cm
	H: 87°
V: 56°
	29 cm
	1
	< € 500


	iPhone 16 Pro
(ultra wide camera)
	48 MP
	2 cm
	H: 108°
V: 92°
	23 cm
	1
	< € 1,250


	Sony α7R III + FE 50mm F2.8 macro lens
	42.4 MP
	16 cm
	H: 40°
V: 27°
	87 cm
	1
	< € 2,250





All listed cameras are equipped with auto-focus.


a Rounded down to the nearest cm.

b Approximate unit cost (rounded up to the closest multiple of €50) at the time of submission of the manuscript.

The used equations and references to the technical specifications/prices can be found in Supplementary Equations S7-S11 and Supplementary Table S17, respectively, of the Supplementary Material File.The bold values correspond to the imaging setup that was used in this research.









4 Discussion



4.1 Dataset acquisition



4.1.1 High-resolution datasets

The image acquisition and processing methods resulted in a standardized and balanced high-resolution (pixel size: 5 µm) internal dataset, consisting of 1,000 labels per studied pest species on wet glue YSTs and relevant background images. Although the standardized light conditions and high-quality DSLR camera setup are not practically/economically feasible for standalone smart traps in greenhouse horticulture, our standardized dataset did allow an objective evaluation of the species-level monitoring concept. Furthermore, our dataset can be easily converted to various other, more realistic scenarios such as fluctuating light conditions/spectra and camera quality/type using various image processing techniques.

As the morphology (shape, size and colour) of body structures can vary within pest species depending on local environmental conditions, population densities and species genetics (Higgins and Myers, 1992; Mound, 2005; Riley et al., 2011), future datasets should incorporate as much of these variables in order to increase the model generalization. Furthermore, the dataset in this study was limited to one brand of wet glue YSTs, while in practice various manufacturers, trap colours and glue types (wet and dry) are used, depending on the targeted pest insect and farming conditions/location. As suggested by Ong and Høye (2025), to further enhance model generalization across different trap colours without significant performance loss, the training dataset should ideally comprise insect images captured on transparent sticky traps. To overcome the limited chromotropic attraction and lack of background contrast of these traps, the addition of a coloured background behind the transparent trap is suggested to collect the training dataset.

Although theoretically possible by altering the standardized, high-resolution dataset, extending the training dataset with real images taken by various sensor types (e.g. DSLR camera, smartphone camera, action camera, stand-alone camera module, etc.) and lighting conditions could also help the model to better generalize to real-world conditions and mixed imaging setups (Ong and Høye, 2025). Finally, the practical implementation and image acquisition protocol using smaller, standalone camera sensors will most likely also be more feasible compared to the standardized DSLR camera setup that was used in this research.




4.1.2 Reduced-resolution datasets

The high-resolution dataset (pixel size: 5 µm) and the proposed digital resolution downscaling process allowed for a fast and easy creation of various reduced-resolution datasets (TPS: 5 µm - 640 µm). However, the main limitation of this method was the fact that this only resulted in digitally reduced resolution datasets which will to some extend differ (e.g. presence/absence of specific artifacts, distortions, noise, etc.) from images originally taken at lower resolutions. The latter effect is expected to be more significant for lower resolutions (see Supplementary Figure S2 - TPS: 320 µm and 640 µm) as the difference in pixel resolutions is larger compared to the original high-resolution dataset. Furthermore, DSLR camera images provide the best image quality, where other camera systems with reduced sensor sizes (e.g. smartphones and low-cost camera modules) suffer from more noise in the images taken. The latter images are also often digitally optimized to provide better results, increasing the number of artifacts that become visible when zoomed in. Therefore, in future research, lower-resolution datasets should ideally be obtained using lower-resolution camera systems and compared to the reduced-resolution datasets of this research.





4.2 Detection model training and testing



4.2.1 High-resolution dataset models



4.2.1.1 Model performance and generalization

Considering the (arbitrarily defined) minimum macro-averaged practical feasibility threshold of 70% at IoU ≥ 50%, species-level thrips and whitefly detection could be considered as feasible for each of the tested high-resolution dataset (pixel size: 5 µm) models and both test datasets. The reduced, yet still feasible generalization to the external test dataset of all tested models was most likely caused by the rather limited size (1,000 labels/pest species) and heterogeneity (unique sticky trap sides) of the obtained internal high-resolution dataset. Extending the training dataset with more unique image patches could potentially further improve the models’ generalizations. Furthermore, small differences in dataset quality/composition and the limited external test dataset size (246 image patches <=> 1023 image patches) could also have played a role.

The observed better generalization to the external test dataset of more complex model versions supports the findings of Hu et al. (2021), Neyshabur et al. (2014) and Novak et al. (2018). The reason why this relative advantage of more complex models could not be observed for the internal test dataset performances, was most likely due to the more similar image patches during training and testing (same original sticky traps | same acquisition dates), compared to the external test dataset (independent dataset | different acquisition date). As the models do not need to handle (subtle) differences in acquisition settings and dataset quality, the benefit of using more complex models will therefore be limited compared to the increased risk of overfitting.

The lower observed mAP@50:95 scores of the YOLO-NAS models on the internal test dataset were most likely caused by the best model selection method of the super-gradients Python library. For the YOLO-NAS models, this selection was based on the mAP@50:75 validation metric, while for the YOLO11 models (ultralytics Python package) the model fitness (weighted average: mAP@50 = 10% and mAP@50:95 = 90%) parameter was used. Furthermore, Ali and Zhang (2024) reported general YOLO-NAS detection struggles for occluded objects which could also have played a role. The better generalization of the YOLO-NAS models to the external test dataset could be linked to the intrinsic training process. During YOLO-NAS training, both the model architecture and weights are optimized in terms of computational resources and inference time, while limiting the impact on model accuracy (Ali and Zhang, 2024; Terven et al., 2023). As this optimization process generally results in less complex models, the finally obtained YOLO-NAS models might be less prone to overfitting to the original dataset, therefore boosting their generalization.

Regarding the classwise general performance on the internal high-resolution dataset, all models scored best for the detection of thrips (in particular E. americanus) and worst for the detection of whiteflies (mostly B. tabaci), although the absolute differences between the best and worst performing classes were limited. However, when testing on the external dataset, the smallest YOLO11 models (YOLO11n and YOLO11s) performed best for the detection of B. tabaci and worst for the detection of F. occidentalis. Based on the reported confusion matrices, this drop in thrips performance was caused by an increase in complete misses (thrips detected as background). As this effect was reduced when using more complex YOLO11 model versions, we suggest that (subtle) differences in the image acquisition method and lower image quality (less focussed) of the external dataset might have caused this. All YOLO-NAS models performed best for the detection of thrips on the external dataset and resulted in lower general classwise performance drops between the internal and external datasets compared to the YOLO11 models. The increased ratio of YOLO-NAS-L whitefly misclassifications in the external test dataset, as seen in the reported confusion matrices, can most likely also be attributed to differences in dataset composition, especially insect residence times (IRTs), and lower image quality (less focused).

As almost all tested high-resolution models output both macro-averaged and classwise performance metrics (IoU ≥ 50%) of respectively > 70% and > 60% on the external dataset, species-level detection using the proposed high-resolution (pixel size: 5 µm) imaging setup seemed to be possible for the studied pest species. Furthermore, although model performance increased with model complexity, species-level detection also seemed to be possible using the smallest tested model version (YOLO11n), resulting in overall/classwise performance metrics of > 65% (IoU ≥ 50%) for the external test dataset. Furthermore, the Grad-CAMs of this model showed overlap between the class-specific focus regions of the model and the key morphological characteristics of each species, described in the literature (European and Mediterranean Plant Protection Organization, 2004; Mound et al., 2025). Thrips focus areas were mainly concentrated on the abdomen, containing the differently coloured striping pattern and abdominal colour. Key focus areas of the studied whitefly species were the body and dark white/transparent zones of the wings. Differences in species body colour were also described in the literature (European and Mediterranean Plant Protection Organization, 2004). The fact that the model seemed to focus on the transparency of the wings, could be explained by the fast (IRTs: less than seven days) decaying wings of B. tabaci, as described by Böckmann et al. (2021). This observation was also shared by the authors while handling the datasets (data not shown). As the whitefly pests in our datasets had IRTs of several days up to several months, the trained models might possibly fail when applied to YSTs containing fresh whiteflies. However, this issue can most likely be tackled by extending the training datasets with image patches of fresh individuals.

Furthermore, since none of the high-resolution models performed consistently worse for the detection of E. americanus (IRTs: approx. one year) in the external dataset compared to the other detection classes (IRTs: several days to several months), this showcases the potential of species-level detection, even when using older YSTs. However, it should be noted that the decay of E. americanus over time was rather limited in our dataset (data not shown), which could explain this observation. Differences in IRTs between the training and testing datasets are namely known to negatively impact the detection performance, as well as insect decay in general (Böckmann et al., 2021). Enriching the dataset with images featuring a wide range of IRTs and varying stages of decay would likely enhance the models’ generalization/robustness to these factors.




4.2.1.2 Comparison with existing research

The best overall detection results (in this study) for the high-resolution (pixel size: 5 µm) external dataset were obtained using the YOLO-NAS-L model version (mAP@50: 89% | F1@50: 87%) and YOLO11x model version (mAP@50: 84% | F1@50: 81%), clearly complying with the earlier defined macro-averaged practical feasibility threshold of 70% (IoU ≥ 50%). Compared to the only reported species-level detection models on sticky trap images in the literature - developed by Niyigena et al. (2023) using 17 µm pixel resolution and achieving macro-averaged mAP@50 scores of 91% (reflectance dataset) up to 97% (transmittance dataset) for detecting S. dorsalis and other thrips species (included as one class) - all high-resolution models (pixel resolution: 5 µm) that were tested in this study performed similarly on the internal test dataset, with mAP@50 scores ranging from 94% to 95%. However, as Niyigena et al. (2023) focused on different pest species, detected only one species at the species level, and lacked an external test dataset, a more profound comparison could not be made. In addition, as the models of Niyigena et al. (2023) were trained and tested using images, pre-annotated with differently coloured markers per class prior to image acquisition, one could question the generalization of the reported models. Insect detection could, to some extent, rely on the presence or absence of these coloured circles rather than on the insect features themselves. Compared to the best overall performing T. vaporariorum and B. tabaci adult detection model of Gutierrez et al. (2019) on internal test dataset plant images (precision: B. tabaci = 34% and T. vaporariorum = 72%), all high-resolution models in this research performed better on the internal test dataset (precision: B. tabaci = 88% - 96% and T. vaporariorum = 80% - 96%). However, considering the different type/resolution of input images and dataset size, no further comparison could be made.




4.2.1.3 Future directions

To our knowledge, this is the first reported thrips/whitefly species-level detection system using standard RGB (yellow) sticky trap images and YOLO-based detection models. Furthermore, the results indicated that it was very successful to discriminate at the species level (mAP@50: 79% - 89% | F1@50: 74% - 87%). Future research should therefore extend this technology to additional types of pest species, sticky traps, model architectures and ambient light conditions (e.g. light intensity and spectral composition). To accelerate progress and support the development of a universal species-level pest monitoring system based on RGB sticky trap images, the creation and use of an open-access database is recommended by the authors.





4.2.2 Minimum resolution research



4.2.2.1 Model performance and generalization

The macro-averaged and classwise performance metrics of all YOLO11n (smallest) and YOLO11x (largest) models were comparable for the internal test dataset and decreased linearly with increasing pixel size. However, when tested on the external datasets, a clear general (mAP@50 and F1@50) performance drop at pixel sizes > 80 µm was observed for both model versions. This performance drop was mainly caused by a reduction in thrips species detection performance (particularly for F. occidentalis), relative to a slower decaying whitefly species detection performance at lower image resolutions. Despite the larger morphological differences (e.g. colour, body shape, etc.) between the studied thrips species compared to the studied whitefly species, the general lower performance for thrips at lower image resolutions was most likely caused by their relatively smaller body size compared to the studied whitefly species. As a consequence, the number of pixels per individual was lower for these insects, resulting in less cues for the model to base its decision on. Extending the training dataset with more unique image patches and insect morphologies could potentially increase both the classwise thrips and macro-averaged model performances.

In general, the YOLO11n models performed better on the external test dataset at lower pixel resolutions (= larger TPS), compared to the heavily complex YOLO11x models. This showcases that increasing the model’s complexity will not always result in better performance and may even lead to poorer generalization due to overfitting, especially when the size of the training dataset is limited (Jegham et al., 2024). More striking was the fact that none of the macro-averaged performance metrics (IoU ≥ 50%) dropped below 50% for both test datasets, even for the very blurry and pixelated 320 µm and 640 µm theoretical pixel size datasets. However, this was not the case for the classwise performances on the external test dataset (IoU ≥ 50%), which quickly dropped below 50% for F. occidentalis at pixel sizes > 80 µm.

Considering the resolution downscaling process, the 5 µm reduced-resolution dataset images were not altered compared to the original high-resolution images (see source code of the PIL.Image.resize Python package). Consequently, the observed, though very small, differences in internal test dataset performance scores of the 5 µm reduced-resolution and high-resolution dataset YOLO11n and YOLO11x models were probably caused by the different hyperparameters used during training. This could also explain the better generalization to the external test dataset by the 5 µm reduced-resolution YOLO11n and original high-resolution dataset YOLO11x models.




4.2.2.2 Minimum required pixel resolution

Based on the (arbitrarily defined) minimum macro-averaged practical feasibility threshold of 70% (IoU ≥ 50%), a minimum required theoretical pixel resolution of 80 µm (TPS: ≤ 80 µm) could be defined for species-level detection using both the YOLO11n and YOLO11x models. Although the corresponding classwise precision@50 and recall@50 scores did not always exceed this threshold, however, the classwise AP@50 and F1@50 scores generally did. Furthermore, the classwise precision and recall scores can be tweaked by altering the (overall or classwise) detection confidence threshold(s). Consequently, the authors do believe that by further model tweaking, both models’ precision@50 and recall@50 could potentially also exceed/closely approach the defined 70% threshold.

Taking into account this minimum required resolution (TPS: ≤ 80 µm), sticky trap species-level detection was subsequently found to be feasible using various alternative imaging setups, such as recent smartphones, action cameras, or even low-cost (< €50 - €100), standalone camera modules such as the Raspberry Pi camera module 2/3 or Arducam Pi Hawk-eye. Moreover, all listed photography setups (see Table 4) were able to capture a complete sticky trap in a single image with sufficient resolution and feasible working distances for practical implementation. Furthermore, Ong and Høye (2025) found no significant differences in insect detection model performances when their models were trained on high-quality DSLR, webcam or smartphone camera images of similar resolution, showcasing the potential of low-budget, standalone camera modules for species-level detection. Combined with the limited size and good performance of the YOLO11n model, this really paves the way towards feasible, real-time, automated species-level monitoring of sticky traps for use in greenhouse horticulture.





4.2.2.3 Future directions

Lastly, as the reported reduced-resolution model performances were only theoretically defined, future research should empirically validate these results. Furthermore, also the reported minimum required pixel resolution (80 µm) for the YOLO11n and YOLO11x models, should be validated using the proposed (low-cost) camera setups.







5 Conclusions

This study demonstrated that species-level detection of two globally distributed thrips species (F. occidentalis and E. americanus) and two whitefly species (B. tabaci and T. vaporariorum) is achievable using high-resolution (pixel size: 5 µm) RGB images of yellow sticky traps and various YOLO11 and YOLO-NAS detection model versions. Although the model performance increased with higher model complexity, even the smallest studied model version (YOLO11n) resulted in acceptable macro-averaged and classwise performance scores. Considering the arbitrarily defined minimum macro-averaged practical feasibility threshold (IoU ≥ 50%) of 70% for greenhouse horticultural applications, the minimum required pixel resolution allowing species-level detection was found to be 80 µm for both the YOLO11n and YOLO11x models. This image resolution should, in theory, allow the use of various recent smartphones, action cameras, or even low-budget, standalone camera modules, while still requiring only a single image per sticky trap at feasible working distances. Combined with the low complexity and decent performance of the YOLO11n model, this really paves the way towards feasible, real-time, automated species-level monitoring of (yellow) sticky traps in greenhouse horticulture. Future research should further validate the feasibility/adoption in commercial IPM programs and expand this technology to more pest species, sticky trap types, and ambient light conditions.





Life Science Identifiers (LSIDs) in ZOOBANK

	F. occidentalis: urn:lsid:zoobank.org:act:2EA5A102-FC8B-427F-B574-8D69155C1D2F

	E. americanus: urn:lsid:zoobank.org:act:5BE86D34-19DD-4321-8AAD-E53BFAA7EE34

	B. tabaci: urn:lsid:zoobank.org:act:30E31918-A380-44F9-9D97-708E74556A9D

	T. vaporariorum: /
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Abbreviations
AP@50, average precision, calculated at an intersection over union threshold of 50%; BG, background; DL, deep learning; F1@50, F1 score, calculated at an intersection over union threshold of 50%; Grad-CAMs, gradient-weighted class activation maps; IoU, intersection over union, Overlap between the detection bounding box and the ground truth bounding box; IPM, integrated pest management; IRTs, insect residence times; mAP, mean average precision; mAP@50, mean average precision, calculated at an intersection over union threshold of 50%; mAP@50:95, average of the mean average precisions, calculated at various intersection over union thresholds ranging from 50% - 95% with a step size of 5%; NAS, neural architectural search; precision@50, precision, calculated at an intersection over union threshold of 50%; recall@50, recall, calculated at an intersection over union threshold of 50%; RH, relative humidity; Th_Ea, Echinothrips americanus (thrips); Th_Fo, Frankliniella occidentalis (thrips); TPS, theoretical pixel size; Wf_Bt, Bemisia tabaci (whitefly); Wf_Tv, Trialeurodes vaporariorum (whitefly); YST, yellow sticky trap; YSTs, yellow sticky traps.
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Introduction

Target detection is a pivotal technology for precise monitoring of leaf-used Ginkgo biloba diseases in precision agriculture. However, complex plantation environments impose significant constraints on existing detection systems, manifesting as degraded detection accuracy, suboptimal efficiency, and prohibitive computational overhead for edge deployment. This study aims to develop a lightweight deep learning model tailored for real-time disease detection on resource-constrained embedded devices.





Methods

First, a comprehensive multi-class dataset was constructed, containing 7,158 augmented images covering three disease categories: chlorosis, insect pest, and physical damage. Five lightweight architectures were systematically evaluated, and an optimized reconstructed backbone network was adopted. To maintain architectural efficiency, attention mechanisms, an improved detection head, and efficient convolution techniques were integrated, along with a custom feature fusion module designed to address small target feature loss—forming the base model LCNet-FusionYOLO. Subsequently, Layer-Adaptive Magnitude-based Pruning (LAMP) was applied to reduce model scale while enhancing performance, yielding the final PLFYNet model.





Results

The PLFYNet model achieves 94.5% mAP@0.5 with only 3.0M parameters, surpassing the baseline YOLOv7-tiny by 4.8% while using merely half the parameters. Deployment on the Jetson Orin Nano embedded platform demonstrates real-time inference at 50.5 FPS, validating its practical applicability in field scenarios.





Discussion

This work establishes a paradigm for developing high-precision, computationally efficient disease detection systems. By balancing accuracy and resource efficiency, PLFYNet provides a practical edge-based monitoring solution for sustainable Ginkgo biloba cultivation, addressing the key deployment challenges of existing detection systems in complex agricultural environments.





Keywords: leaf-used Ginkgo biloba, lightweight, disease detection, attention mechanism, LAMP




1 Introduction

Ginkgo biloba is a multifunctional agricultural commodity in China, serving ornamental, culinary, and pharmaceutical purposes—its medicinal value lies primarily in foliage containing flavonoids and terpenoid lactones. These bioactive compounds benefit cardiovascular health and cerebrovascular circulation, promote brain cell metabolism (Wang et al., 2022; Zhang et al., 2024), and exhibit antioxidant, anti-inflammatory, and other physiological benefits (Zhang et al., 2023a). This pharmaceutical leaf value makes foliar diseases (e.g., anthracnose caused by Colletotrichum fructicola) particularly damaging, as infections reduce both yield and medicinal compound content.

As the global leader in Ginkgo biloba cultivation, China’s extensive subtropical
plantations have positioned it as a crucial research center for advancing leaf disease management strategies (Sun et al., 2017). The intensification of global climate change and ecological disruptions has amplified disease pressures on leaf-harvested Ginkgo biloba (Zhang et al., 2023b). Insect infestations frequently induce leaf chlorosis and premature defoliation, significantly impeding plant development. Under conducive environmental conditions—particularly elevated temperature and humidity—pests such as Scirtothrips can proliferate rapidly throughout plantations, resulting in substantial economic losses (Mirab-balou et al., 2012). Furthermore, various stressors including natural disasters (hail, frost, excessive precipitation) and anthropogenic factors (mechanical injury, pesticide misapplication) continue to threaten sustainable Ginkgo biloba production.

Recent advances in deep learning, particularly the integration of convolutional neural networks (CNNs) and target detection algorithms, have revolutionized automated plant disease detection by enhancing accuracy and efficiency.They enable early identification of infections.This reduces manual monitoring efforts.It also supports timely pest control measures (Gkountakos et al., 2024; Jiang et al., 2020). However, Ginkgo biloba’s unique characteristics—medicinally valuable foliage with fine-textured lesions and dense plantation canopies—create unmet needs that generic crop detection models fail to address.

Girshick et al.’s R-CNN established the foundational CNN-based detection framework (Girshick et al., 2014), but Ren et al. later noted that even the optimized Faster R-CNN retains excessive computational complexity (Ren et al., 2017)—a critical limitation for edge deployment in remote Ginkgo plantations where high-performance servers are unavailable. The YOLO series addressed real-time demands, yet Omer et al.’s lightweight YOLOv5l, optimized for cucumber diseases, demonstrated that crop-specific customization is essential (Omer et al., 2024); their model achieved high accuracy for cucumber lesions but lacked adaptability to Ginkgo’s tiny, irregular spots (e.g., early anthracnose lesions under 2mm). Even YOLOv7-tiny, a common edge-focused variant, struggles with Ginkgo-specific challenges: its unidirectional PANet fusion leads to high false-negative rates in dense canopies, and conventional CIoU loss fails to precisely localize morphologically diverse lesion. Compounding these issues, Gkountakos et al.’s review highlighted that existing models lose up to 15% accuracy in variable field lightin—a prevalent condition in Ginkgo plantations.

Although these vision-based algorithms enable rapid identification and localization of both emerging and established infections, facilitating timely targeted interventions such as precision fungicide applications, ultimately mitigating economic losses (Wang et al., 2025a; Zhu et al., 2023), several limitations still exist. To address these limitations, we propose PLFYNet, an enhanced lightweight architecture based on YOLOv7-tiny. This model targets the identified gaps through four key innovations. First, it integrates Bottleneck Transformer to capture long-range lesion dependencies (Xie et al., 2025a). This resolves the canopy occlusion issue highlighted. Second, it uses BiECAFusion for bidirectional cross-scale feature interaction. This fixes the small lesion loss problem in crop-specific model. Third, it adopts Shape-IoU loss for accurate bounding box optimization. This overcomes the localization inaccuracies of YOLOv7-tiny noted by Zhao et al. (2023). Fourth, it incorporates DyHead (Duan et al., 2024) to enable robust target representation under variable lighting. We selected the reconstructed PP-LCNet as the backbone after evaluating five lightweight architectures: MobileNetV3, GhostNet, ShuffleNetV2, PP-PicoDet, and PP-LCNet. This backbone significantly reduces computational complexity while maintaining detection performance. Additionally, the model integrates the Efficient Channel Attention (ECA) mechanism. This enhances feature discrimination between similar lesions, such as insect-induced chlorosis and abiotic yellowing. Comprehensive evaluations confirm that LCNET-FusionYOLO is superior to both the original and conventional models in terms of mAP@0.5, false-positive, and false-negative metrics. Further optimization through LAMP pruning, which involves adaptive layer-wise redundancy elimination, results in the final PLFYNet architecture. This architecture has reduced parameters (3.0M), improved real-time capability (50.5 FPS on Jetson Orin Nano), and accelerated inference. It directly addresses the deployment barrier identified in Ren et al. (2017) Faster R-CNN analysis and enables high-precision field detection in dense canopy environments.

The research methodology encompasses three primary phases:

	Dataset Development: We acquired 3, 600 high-resolution Ginkgo leaf images and applied comprehensive augmentation strategies to expand the dataset, effectively mitigating overfitting while enhancing model robustness. Precise disease annotation was performed using Labelme software.

	Architectural Innovation: We developed an optimized detection framework based on YOLOv7-tiny, reconstructing the backbone with PP-LCNet’s DepthSepConv modules to minimize computational overhead. Systematic evaluation of five lightweight architectures (MobileNetV3, GhostNet, ShuffleNetV2, PP-PicoDet, and PP-LCNet) identified the optimal configuration. The selected Light-YOLO variant underwent comparative analysis with SE, CBAM, and ECA attention mechanisms. Performance enhancement was achieved through four integrated components: Bottleneck Transformer for global context modeling, BiECAFusion for multi-scale feature fusion, Shape-IoU for bounding box refinement, and DyHead for target representation. LAMP pruning provided final model compression. Evaluation metrics encompassed parameter count, precision, recall, mAP@0.5, and memory footprint.

	Edge Deployment: The optimized model was successfully deployed on the Jetson Orin Nano embedded platform, achieving 50.5 FPS real-time detection while maintaining accuracy. Comparative analysis validated superior inference speed and precision relative to baseline models.






2 Materials and methods



2.1 Preparation of the dataset



2.1.1 Source of experimental dataset

Data collection was conducted at two strategic locations: the primary site at Changrong Agricultural Development Co., Ltd. in Pizhou, Jiangsu Province (117°52’E, 34°37’N)—China’s premier “Ginkgo Hometown” hosting the nation’s largest commercial plantations—and supplementary sampling from Nanjing Forestry University. The principal research facility features 12 cultivation zones covering 117.07 hectares of leaf-oriented Ginkgo production, with spatial distribution presented in Figure 1.

[image: Composite figure showing three maps: top left highlights Xuzhou in red within Jiangsu Province, bottom left highlights Pizhou in purple within Xuzhou, and right panel shows a satellite view of Pizhou with the Ginkgo Plantation outlined in red.]
Figure 1 | Main dataset collection sites.




2.1.2 Design of datasets

In this work, classifications were developed based on field research. We tracked the one-year growth cycle of Pizhou City’s ginkgo plantations, and the dataset covers representative disease symptoms across annual growth cycles, with main diseases distinguished by professional plantation disease managers. June-September is pest outbreak season; high temperatures bring tender shoots, and pests like Scirtothrips (short cycles, strong drug resistance) outbreak massively. They gnaw leaves rapidly, cutting plantation yields, and these pests are hard to detect (hide in leaves, have protective coloration) while gnawed leaves show obvious symptoms. Thus, such cases are classified as “insect_pest” by leaf characteristics. Physical damage (hailstorms, rain/snow, mechanical operations) has distinct features, so it is categorized as “physical_damage”. Chlorosis, a biotic stress disease, stems from fungi (Alternaria spp., etc.), yellowing is typical of such fungal infections on ginkgo leaves, and it is fully classified as “chlorosis” based on field research. A simplified labeling scheme was adopted: 0-chlorosis (symptomatic manifestation), 1-insect pest, 2-physical damage.

To strengthen model generalization capabilities and prevent overfitting, extensive data augmentation protocols were applied. Transformations included photometric variations (brightness, hue), contrast manipulations, and spatial rescaling, yielding an enriched dataset of 7, 158 images. Dataset partitioning followed an 8:1:1 distribution for training, validation, and testing cohorts, respectively, ensuring methodological rigor in model evaluation. we have conducted generalization verification experiments using the public dataset PlantDoc. PlantDoc is an open-source public dataset for plant disease detection, containing 2, 598 manually annotated images covering 13 plant species and 17 diseases, with an 85% training set and 15% validation set split (Singh et al., 2020).

LabelMe software facilitated precise annotation of the augmented dataset, generating 9, 582 labeled instances categorized as: chlorosis (n=1, 779), insect pest (n=5, 260), and physical damage (n=2, 543). Visual representation of these categories appears in Figure 2, arranged hierarchically with insect-induced damage, physical trauma, and chlorosis symptoms displayed in successive rows. Class balancing was achieved through targeted augmentation of underrepresented categories, particularly enhancing insect pest samples to ensure equitable distribution.

[image: Grid of three rows and five columns showing comparison of ginkgo tree leaves; each column demonstrates a different image adjustment: raw image, changed brightness, changed clarity, altered saturation, and altered color temperature, with noticeable visual differences in leaf color and contrast.]
Figure 2 | Enhanced image of the dataset.

Figure 3 a comprehensive analysis of dataset properties. (a) Class distribution of disease labels :The class distribution histogram displays three categories—chlorosis (red), insect pest (pink), and physical damage (orange)—with insect pest exhibiting the highest frequency due to morphological complexity, necessitating extensive training samples. Loss function weighting compensates for class imbalance. (b) Bounding box size distribution via center point aggregation :Concentrically arranged rectangles illustrate bounding box size distributions centered at coordinate origins. The radial expansion pattern demonstrates damage scale progression from minor peripheral lesions to substantial central deterioration, with intermediate sizes showing highest prevalence. (c) Spatial distribution of label centroid coordinates :Scatter plot analysis of normalized centroid coordinates (range: 0-1) reveals uniform spatial distribution across leaf surfaces, extending from periphery (x, y approaching 0 or 1) to center (x, y ≈ 0.5), confirming comprehensive spatial representation without clustering artifacts. (d) Width-height distribution of bounding boxes for disease regions :Width-height correlation analysis exhibits strong diagonal alignment, indicating predominantly isometric damage patterns (characteristic of puncture wounds), while off-diagonal dispersal represents anisotropic lesions (typical of linear abrasions). The pronounced diagonal concentration confirms regular geometric damage patterns in Ginkgo biloba pathology.

[image: Panel (a) shows a bar chart comparing instances of chlorosis, insect pest, and physical damage with insect pest being the most frequent. Panel (b) displays overlapping red rectangles forming a geometric pattern. Panel (c) presents a blue density scatter plot of variable y against x, showing clustered data. Panel (d) provides a blue density scatter plot of height versus width, indicating a positive correlation with denser points near lower values.]
Figure 3 | Dataset characteristics analysis: (a) Class distribution of disease labels; (b) Bounding box size distribution via center point aggregation; (c) Spatial distribution of label centroid coordinates; (d) Width-height distribution of bounding boxes for disease regions.





2.2 YOLOv7 object detection model

The YOLOv7-tiny architecture offers an optimal balance between model compactness and detection speed, rendering it particularly well-suited for embedded applications on Jetson Orin Nano hardware, enabling real-time pathological assessment of Ginkgo biloba foliage (Zhao et al., 2023; Wang et al., 2023).

The YOLOv7-tiny architecture is structured into four hierarchical stages: initial input processing for image preparation, a feature extraction backbone, an intermediate neck for multi-scale aggregation, and a final detection module. The backbone employs a combination of CBL units (convolutional blocks with batch normalization and LeakyReLU activation) and ELAN modules, which leverage multi-path architectures for enhanced feature representation, complemented by MP layers for progressive spatial reduction. Feature fusion occurs through SPPCSPC modules (Xu et al., 2024), which integrate Spatial Pyramid Pooling with Cross-Stage Partial connections, effectively expanding receptive fields while maintaining parameter efficiency across multiple scales.

The SPPCSPC module employs a bifurcated processing strategy for input features. One pathway directly processes features using a CBL block, while the alternate pathway implements a more complex structure: after initial CBL transformation, it diverges into four parallel streams comprising an identity mapping and three max-pooling operations with distinct kernel dimensions. This dual-pathway design achieves optimal balance between computational efficiency and detection performance via multi-level feature aggregation, as depicted in Figure 4, showing the complete YOLOv7 architecture.

[image: Flowchart illustration of a deep learning model architecture divided into Backbone, Neck, and Head sections, showing input images processed through multiple labeled modules with connecting arrows indicating the computational workflow.]
Figure 4 | YOLOv7 network structure diagram.




2.3 PLFYNet object detection model



2.3.1 Network reconstruction and optimization

A systematic evaluation of five lightweight architectures—MobileNetV3, GhostNet, ShuffleNetV2, PP-PicoDet, and PP-LCNet—was conducted to identify the optimal backbone replacement for YOLOv7-tiny in Ginkgo disease detection applications (Wang et al., 2025b; Shen et al., 2023; Han and Yang, 2021; Lu et al., 2025a). Through comprehensive benchmarking, PP-LCNet emerged as the superior choice, demonstrating exceptional performance metrics.

As a CNN architecture specifically engineered for mobile deployment (Xue and Wang, 2025), PP-LCNet employs a streamlined design featuring sequential convolutional and pooling operations tailored for real-time inference. The architecture’s foundation consists of DepthSepConv blocks, which utilize dual convolutional layers paired with H-Swish activation functions for computational efficiency (Huang et al., 2023). Strategic integration of Squeeze-and-Excitation mechanisms in select modules yields DepthSepConvSE variants with enhanced representational capacity.

A distinctive feature of PP-LCNet is its architectural departure from standard classification models through the incorporation of a 1280-channel 1×1 convolutional layer following global average pooling. This design innovation delivers improved classification performance without compromising inference speed. The overall structure of PP-LCNet is shown in in Figure 5.

[image: Flowchart illustrating a neural network architecture with layers including input, convolution, depthwise separable convolutions, global average pooling, fully connected layers, and branched modules for convolution and squeeze-and-excitation, ending with sigmoid and ReLU activations.]
Figure 5 | PP-LCNet network structure.

Figure 6 depicts the architectural diagram of the modified YOLOv7-tiny incorporating a PP-LCNet-inspired backbone reconstruction based on DepthSepConv modules. The redesigned backbone initiates with a conventional convolutional layer, subsequently progressing through a cascade of DepthSepConv blocks featuring dual kernel configurations: 3×3 and 5×5 convolutions. This heterogeneous kernel design facilitates multi-scale feature extraction by capturing information across diverse receptive field dimensions.

[image: Two-part figure comparing insect pest detection using neural network models on plant leaves. Panel (a) displays a diagram contrasting standard and depthwise separable convolution layers with multiple outputs. Panel (b) shows an original image of green leaves with damaged spots, followed by detection results from Yolov7-tiny and Yolo-PP-LCNet models, each highlighting pest areas with heatmaps and labeled bounding boxes.]
Figure 6 | Architecture of backbone module and its detection performance visualization: (a) The structure of the backbone network with the DepthSepConv basic module; (b) Detection output results.

Table 1 delineates the architectural specifications and parametric configurations of the modified backbone network through five essential components: (i) repetition factor (n), indicating the iteration count for each module; (ii) parameter volume (Params), quantifying trainable weights per stage; (iii) module designation, specifying the computational blocks utilized; (iv) configuration details, encompassing comprehensive parametric settings; and (v) output dimensionality, representing spatial resolution and channel depth (H × W × C).


Table 1 | Backbone network structure and parameterization.
	Serial number
	n
	Params
	Module
	Configuration
	Output size



	0
	1
	464
	Conv
	[3, 16, 3, 2, 1]
	16×320×320


	1
	1
	752
	DepthSepConv
	[16, 32, 3, 1]
	32×320×320


	2
	1
	2528
	DepthSepConv
	[32, 64, 3, 2]
	64×160×160


	3
	1
	4928
	DepthSepConv
	[64, 64, 3, 1]
	64×160×6


	4
	1
	9152
	DepthSepConv
	[64, 128, 3, 2]
	128×80×80


	5
	1
	18048
	DepthSepConv
	[128, 128, 3, 1]
	128×80×80


	6
	1
	34688
	DepthSepConv
	[128, 256, 3, 2]
	256×40×40


	7
	5
	364800
	DepthSepConv
	[256, 256, 5, 1]
	256×40×40


	8
	1
	139008
	DepthSepConv
	[256, 512, 5, 2]
	512×20×20


	9
	1
	276992
	DepthSepConv
	[512, 512, 5, 1]
	512×20×20







Parametric distinctions between modules are evident: Standard Convolution operates with a five-tuple specification (input channels, output channels, kernel dimensions, stride, padding), whereas DepthSepConv employs a reduced four-parameter scheme (input/output channels, kernel size, stride), notably omitting padding specifications and SE attention integration.




2.3.2 The light-YOLO network model integrating the attention mechanism

A comprehensive benchmarking study was conducted on the Ginkgo biloba pathology dataset to assess three prominent attention mechanisms—SE, CBAM, and ECA (Ai et al., 2025; Fareed et al., 2025; Waghumbare et al., 2024)—within the Light-YOLO framework under controlled experimental protocols. Performance quantification employed a four-metric evaluation suite comprising parameter efficiency, detection precision, recall rate, and mAP0.5 Empirical results demonstrated ECA’s dominant performance across all assessed dimensions, warranting its selection for the proposed architecture.




2.3.3 Neck network improvement

The YOLOv7-tiny architecture prioritizes computational efficiency through reduced network depth and parameter count, facilitating deployment on resource-constrained platforms. This architectural parsimony, however, compromises detection performance, manifesting as elevated false negative rates in complex visual environments. Addressing these limitations, we introduce three targeted architectural modifications tailored for Ginkgo biloba pathology detection, emphasizing enhanced discrimination of diminutive lesions within visually cluttered canopy environments:

	Bottleneck Transformer (BoT) Module: Incorporates self-attention mechanisms to model long-range spatial dependencies, augmenting global context awareness. This integration substantially enhances detection sensitivity and localization accuracy for small-scale pathological features.

	Bidirectional ECA-enhanced Feature Fusion (BiECAFusion): Implements bidirectional feature propagation across multiple scales while preserving fine-grained spatial details. This dual-pathway architecture synergistically combines high-level semantic representations with low-level textural features, yielding superior detection robustness.

	Shape-IoU Loss Formulation: Supersedes conventional CIoU with a geometry-aware loss function (Zhao et al., 2024), achieving improved alignment between predicted and ground-truth bounding boxes. This refinement particularly benefits the localization of morphologically diverse disease manifestations.



The structure of the CBL, ELAN, and SPPCPC modules is shown in Figure 7.

[image: Diagram illustrating the structural flow of three neural network modules: CBL (Conv, BN, LeakyReLU), ELAN-Tiny (multiple CBLs and concatenations), and SPP-Tiny (CBLs, three Maxpools, and concatenations), each labeled and color-coded with connecting arrows indicating data flow.]
Figure 7 | CBL, ELAN, and SPPCPC modules.




2.3.4 Fused bottleneck transformer module

The Bottleneck Transformer architecture substitutes ResNet’s conventional 3×3 convolutions with a hybrid attention-convolution design (Srinivas et al., 2021). The module architecture consists of two principal components: a multi-head self-attention (MHSA) mechanism and a nonlinear projection block. The MHSA component performs dimensional decomposition of input features, enabling parallelized computation while establishing global spatial dependencies (Lu et al., 2025b). Following attention computation, the nonlinear projection block employs dual linear transformations to introduce essential nonlinearities. Hierarchical stacking of these modules, as illustrated in Figure 8, yields a deep architecture that synergistically leverages convolutional and transformer paradigms (Yang et al., 2025; Yu and Zhou, 2023). This design logic aligned with the discriminative feature modeling philosophy in DFPNet, which enhances fine-grained target representation via structured feature pyramid (Xie et al., 2024). This design philosophy achieves enhanced feature representation through global context modeling while maintaining computational efficiency. Within the YOLOv7 framework, this integration yields simultaneous improvements in detection accuracy and computational performance, facilitating real-time inference with reduced deployment overhead.

[image: Schematic diagram of a neural network block showing a 2048-dimensional input passing through three sequential layers: 2048, 1×1, 512; 512, MHSA, 512; and 512, 1×1, 2048. A skip connection bypasses these layers, merging at a summation node before producing a 2048-dimensional output.]
Figure 8 | Bottleneck transformer module.




2.3.5 Fused BiECAFusion structure

The original YOLOv7 architecture employs PANet (Path Aggregation Network) for feature aggregation
through unidirectional pathways (Zhang et al., 2023c). This approach exhibits inherent limitations when applied to Ginkgo biloba pathology detection, particularly in preserving discriminative feature representations across scales, resulting in suboptimal learning dynamics. To mitigate these deficiencies, we propose BiECAFusion (Bidirectional ECA-enhanced Feature Fusion), a novel feature aggregation module that facilitates bidirectional information flow while incorporating channel-wise attention mechanisms. The architectural design is detailed in Figure 9.

[image: Diagram labeled (a) illustrates a network structure with labeled boxes and arrows showing the data flow for a fusion mechanism. Section (b) compares an original image of green leaves with pest damage against outputs from two detection models, Yolov7-tiny and Yolo-BiECAFusion, highlighting insect pests with yellow bounding boxes and confidence scores, demonstrating improved detection clarity with Yolo-BiECAFusion.]
Figure 9 | Architecture of BiECAFusion module and its detection performance visualization: (a) Bidirectional ECA-enhanced feature fusion structure; (b) Detection output results.

BiECAFusion is a fundamental redesign of feature fusion strategies. It is specifically developed to tackle the challenges of small lesion detection in complex foliar environments. The module operates in three stages. First, 1×1 convolutions are used for channel dimensionality harmonization. This ensures compatible feature representations across different hierarchical levels. Second, the Efficient Channel Attention (ECA) mechanism is integrated. It dynamically recalibrates channel responses, highlighting discriminative features and suppressing background noise. This is crucial for detecting tiny pathological indicators with minimal spatial coverage. Finally, the bidirectional fusion paradigm retains both fine-grained spatial details and high-level semantic information. It achieves this through reciprocal feature enhancement (Tang et al., 2025; Xie et al., 2025b).

The BiECAFusion Module differs significantly from the traditional concat fusion in FPN/PAN in terms of fusion logic and attention mechanism. Traditional FPN/PAN achieves fusion by simply concatenating high-level (semantic-rich, low-resolution) and low-level (detail-rich, high-resolution) features, where all feature channels are treated equally without adaptive weighting. BiECAFusion replaces the original SE attention with ECA attention and adopts a dual-branch interaction mechanism: it first adjusts the channel dimensions of input features via 1×1 convolution to ensure compatibility, concatenates the features, applies ECA attention to generate channel-wise weights, splits the weights into branches corresponding to input features, and then fuses each branch feature with the weighted feature of the other branch (e.g., x0 + x1_weight, x1 + x0_weight), realizing bidirectional mutual enhancement of cross-level features. Besides, traditional concat lacks an attention mechanism and tends to retain redundant or irrelevant features (e.g., mixing non-lesion leaf textures with critical lesion edges), while BiECAFusion’s ECA attention can adaptively highlight effective channels, focus on high-frequency features like lesion edges, and suppress noise such as irrelevant leaf veins, solving the “feature confusion” problem in traditional fusion.

In this study, BiECAFusion demonstrates three key advantages. First, it enhances lesion edge discrimination: lesion edges are crucial for detecting ginkgo leaf diseases (e.g., yellow spots, brown blight) but easily confused with dense leaf veins, and its ECA attention prioritizes high-frequency edge features, while dual-branch interaction strengthens the correlation between semantic (lesion category) and geometric (edge shape) information, facilitating small lesion recognition. Second, it enables efficient cross-level feature interaction: unlike the one-way fusion of FPN/PAN (high-to-low or low-to-high), BiECAFusion allows x0 to benefit from x1’s details and x1 from x0’s semantics, adapting to ginkgo scenarios where lesions vary greatly in size (from tiny spots to large patches) and require balanced use of multi-scale features. Third, it has a lightweight design: ECA attention removes fully connected layers, which aligns with the study’s goal of developing edge-deployable ginkgo disease detection models, ensuring fusion efficiency without increasing computational burden.

	Dimensional Harmonization: Employing 1×1 convolutions for channel normalization facilitates seamless cross-scale integration while minimizing computational complexity.

	Adaptive Channel Recalibration: The ECA mechanism generates channel-specific attention weights with minimal overhead, selectively amplifying features relevant to small-scale pathological patterns.

	Bidirectional Feature Synthesis: The reciprocal enhancement strategy (x0 + w1x1, x1 + w0x0) establishes complementary interactions between spatially-rich shallow features and semantically-rich deep representations.






2.3.6 Loss function improvement

The YOLOv7 architecture uses a multi-component loss. It covers confidence, localization and classification objectives. For bounding box regression, the baseline uses Complete Intersection over Union (CIoU). CIoU combines overlap ratio, centroid distance and aspect ratio consistency. But CIoU has flaws. It performs poorly when predicted and ground truth aspect ratios are similar. This causes suboptimal convergence.

We adopt Shape-IoU for ginkgo leaf disease detection. It explicitly models geometric links between predicted and target boxes. For irregular ginkgo lesions (e.g., leaf spots), it optimizes shape-aware localization. This fixes CIoU’s flaws and boosts localization accuracy for ginkgo scenarios.

The Shape-IoU loss function is calculated as follows (Equations 1-6):

IoU=|B∩Bgt|
|B∪Bgt|



(1)

ww=2×(wgt)scale
(wgt)scale+(hgt)scale



(2)

hh=2×(hgt)scale
(wgt)scale+(hgt)scale



(3)

distanceshape=hh×(xc−xcgt)2/c2+ww×(yc−ycgt)2/c2

(4)

Ωshape=∑t=w,h

(1−e−ωt)θ,θ=4

(5)

{ωw=hh×|w−wgt|
max(w,wgt)




ωh=ww×|h−hgt|
max(h,hgt)







(6)

The scale parameter is empirically calibrated based on the object size distribution within the training corpus. Directional weight coefficients, denoted as ww and hh for horizontal and vertical axes respectively, are dynamically computed from the geometric properties of ground truth annotations. The comprehensive Shape-IoU loss integrates IoU, shape distance, and shape penalty, as shown in Equation 7.

LShape−IoU=1−IoU+distanceshape+0.5×ΩShape

(7)




2.3.7 Detection head improvement

DyHead constitutes an innovative detection head architecture that employs multi-dimensional self-attention to enhance feature discrimination across scale, spatial, and semantic dimensions (Dai et al., 2021). The framework’s distinctive characteristic lies in its unified attention mechanism that operates orthogonally across feature pyramid levels (L), spatial locations (S), and channel dimensions (C), facilitating holistic feature refinement. Through this tripartite attention strategy, DyHead augments the detection head’s representational power without imposing computational penalties, thereby achieving an optimal balance between detection performance and computational efficiency (Gong et al., 2024). Formally, for a feature tensor F ∈ R^(L×S×C), the self-attention mechanism is expressed as in Equation 8:

W(F)=π(F)·F

(8)

In this formulation, π(·) represents the attention transformation function. Although fully-connected architectures could theoretically model such high-dimensional interactions, the computational complexity of simultaneously learning across all tensor dimensions renders this approach intractable. Consequently, we adopt a factorized attention strategy, decomposing the operation into three consecutive transformations, with each targeting a specific dimensional axis independently.

W(F)=πC(πS(πL(F)·F)·F)·F

(9)

πL(·)
, πS(·)
 and πC(·)
 represent dimension-specific attention transformations corresponding to level, spatial, and channel axes, respectively. Sequential execution of these operators ensures computational tractability while preserving inter-dimensional dependencies. The formulation in Equation 9 inherently supports recursive composition, facilitating the construction of deep architectures through cascaded πL
, πS
, and πC
 modules, as depicted in the architectural diagram of Figure 10.

[image: Diagram illustrating a three-branch neural network attention mechanism with scale-perceived attention, spatial location-aware attention, and task-aware attention, each containing labeled blocks for pooling, convolution, activation, offset, and normalization operations, connected by arrows to indicate data flow.]
Figure 10 | DyHead structure.




2.3.8 Improved network structure

The culmination of these architectural innovations yields LCNET-FusionYOLO, whose comprehensive topology is delineated in Figure 11.

[image: Figure contains two sections. Section (a) shows a detailed block diagram of the LCNet-FusionYOLO model architecture, illustrating data flow through Backbone, Neck, and Head components with annotated Conv, DepthSepConv, ECA-Layer, BiELCAFusion, UpSample, and SPP-Tiny modules. Section (b) presents three images: an original photo of green plant leaves on branches, followed by two color-mapped heatmap outputs with yellow bounding boxes labeled "insect pest: 0.91" from YoloV7-tiny and LCNet-FusionYOLO, comparing their pest detection results.]
Figure 11 | Architecture of LCNET-FusionYOLO model and its detection performance visualization: (a) LCNET-FusionYOLO Network Architecture and (b) Detection output results.




2.3.9 LAMP model pruning

Following model convergence, we implement LAMP (Layer-Adaptive Magnitude-based Pruning) to further compress the architecture for edge deployment (Lee et al., 2020). High-resolution disease image computational demands present significant constraints for resource-limited embedded platforms. To address these challenges, LAMP uses adaptive layer-wise sparsification, where connection importance is quantified by normalized weight magnitudes. The algorithm computes relative significance scores by normalizing squared weight values against the aggregate magnitude of retained parameters within each layer, enabling automatic derivation of layer-specific pruning ratios. This approach ensures optimal model compression while maintaining detection fidelity for embedded applications (Yuan et al., 2025).

The methodology fundamentally balances sparsity optimization with performance preservation through adaptive global pruning. Weight salience is determined via magnitude-based scoring coupled with ℓ2 distortion minimization at the network level. The algorithmic pipeline comprises:

Sorting according to the magnitude of weights: Parameters within each network layer are arranged in descending order based on their absolute values, establishing a magnitude-based hierarchy. LAMP Score Calculation: The algorithm computes normalized importance metrics by evaluating the squared magnitude of each weight relative to the layer’s weight distribution, yielding calibrated significance scores. Global Pooling and Pruning: Layer-specific scores undergo aggregation into a unified importance repository, followed by comprehensive ranking and systematic parameter elimination based on global thresholds. This methodology achieves optimal compression while preserving essential model capabilities.





2.4 Evaluation indicators

Model selection criteria encompass five comprehensive evaluation metrics: detection precision (P), sensitivity/recall (R), mean average precision (mAP@0.5), computational burden quantified through GFLOPS, and temporal efficiency measured via frames per second (FPS). The mAP@0.5 metric specifically denotes the averaged precision values computed across all disease categories at an intersection-over-union threshold of 0.5.

P=TP
TP+FP



(10)

R=TP
TP+FN

 

(11)

AP=∫01P(R)dR

(12)

mAP=∑k=1NAPk
N


(13)

The core evaluation metrics for model performance—Precision, Recall, AP, and mAP—are calculated using Equations 10–13. Within these formulations, TP represents true positive detections where diseased instances are correctly identified, FP indicates false positives arising from misclassification of healthy samples as diseased, FN denotes false negatives occurring when pathological cases are erroneously classified as healthy, and N signifies the total number of disease categories under consideration.




2.5 Experimental environment

The algorithmic model experiments in this paper were conducted on the Ubuntu operating system, with a CPU of 12 vCPU Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10GHz, and GPUs of NVIDIA RTX 3080x2 (20GB). The Python programming language was adopted, and the PyTorch 3.8, CUDA 11.8, and CUDNN deep learning framework was used for model training and inference. The main parameter settings shown in Table 2. All baseline models (YOLOv7-tiny, SSD, Faster R-CNN, etc.) were trained under the same conditions. and the dataset comprised 7, 158 images collected in this study.


Table 2 | Main parameter settings.
	Parameter
	Values



	Initial learning rate
	0.01


	Weight decay
	0.0005


	Epoch
	300











3 Results



3.1 Comparison of ablation experiments



3.1.1 Analysis of network model lightweighting results

Table 3 presents a comprehensive performance analysis of YOLOv7-tiny variants reconstructed with five alternative backbone architectures: MobileNetV3, GhostNet, ShuffleNetV2, PP-PicoDet, and PP-LCNet. The comparative evaluation encompasses computational metrics (parameter count and memory footprint) alongside detection performance indicators (precision, recall, and mAP@0.5).


Table 3 | Lightweighting results for different backbone network models.
	Basic model
	MobileNetV3
	GhostNet
	ShuffleNetV2
	PP-PicoDet
	PP-LCNet
	Parameter (million)
	Memory(MB)
	Precision (%)
	Recall(%)
	mAP@0.5(%)



	YOLOv7-tiny
	 
	 
	 
	 
	 
	6.0
	12.4
	89.9
	83.7
	89.7


	✓
	 
	 
	 
	 
	1.5
	3.2
	88.6
	83.5
	89.9


	 
	✓
	 
	 
	 
	7.2
	14.1
	90.6
	87.6
	91.9


	 
	 
	✓
	 
	 
	4.3
	8.5
	91.1
	87.2
	91.1


	 
	 
	 
	✓
	 
	4.3
	8.7
	82.6
	84.7
	87.7


	 
	 
	 
	 
	✓
	4.4
	8.6
	91.4
	87.7
	91.2







Experimental analysis reveals a consistent trade-off between parameter efficiency and detection performance across all evaluated architectures. While MobileNetV3 achieves substantial parameter reduction (74.5%), its marginal mAP@0.5 gain (0.2%) coupled with notable precision degradation (1.3%) renders it suboptimal for this application. GhostNet exhibits counterproductive behavior, expanding parameters by 56% relative to baseline, thus eliminating it from consideration. The remaining architectures—ShuffleNetV2, PP-PicoDet, and PP-LCNet—demonstrate comparable parameter compression (approximately 28%), with PP-LCNet emerging as the superior variant, achieving 91.2% mAP@0.5. This configuration yields a 26.8% parameter reduction while enhancing recall by 4.0% and preserving precision levels, substantiating the architectural choice.




3.1.2 Analysis of light-YOLO network models incorporating attention mechanisms

Building upon the Light-YOLO architecture, we conducted systematic ablation studies incorporating three prominent attention mechanisms—SE, CBAM, and ECA—to assess their respective contributions to detection performance. Table 4 presents a comprehensive comparative analysis of these attention-augmented variants.


Table 4 | Modelling results incorporating different attention mechanisms.
	Basic model
	PP-LCNet
	SE
	CBAM
	ECA
	Parameter(million)
	Precision (%)
	Recall (%)
	mAP@0.5 (%)



	YOLOv7-tiny
	✓
	 
	 
	 
	4.4
	91.4
	87.7
	91.2


	✓
	✓
	 
	 
	4.8
	91.3
	87.6
	91.4


	✓
	 
	✓
	 
	4.5
	87.5
	89.3
	90.6


	✓
	 
	 
	✓
	4.4
	88.8
	88.8
	93.1







Empirical analysis reveals distinct performance characteristics across the evaluated attention mechanisms. SE module integration incurs an 8.6% parameter overhead while yielding marginal performance shifts—a 0.1% precision reduction offset by equivalent recall improvement and 0.2% mAP@0.5 gain. CBAM demonstrates inferior performance, with mAP@0.5 falling 0.6% below SE-augmented models, suggesting suboptimal feature recalibration for this application. Conversely, ECA exhibits superior efficiency, maintaining parameter parity with the baseline while achieving substantial performance gains: 1.1% recall enhancement and 1.9% mAP@0.5 improvement. These results establish ECA as the optimal attention mechanism for Ginkgo pathology detection, warranting its integration into the PP-LCNet backbone for enhanced detection fidelity.




3.1.3 Performance comparison of fusion improvement modules

Following the empirical validation of ECA as the optimal attention mechanism for the PP-LCNet backbone, we conducted systematic ablation studies to assess individual and combined contributions of the proposed enhancements. The evaluation encompassed baseline YOLOv7-tiny alongside variants incorporating BoT, BiECAFusion, Shape-IoU, and DyHead modifications, culminating in the fully integrated BBSD-YOLO architecture. Performance quantification employed a comprehensive metric suite—parameter count, memory footprint, precision, recall, and mAP@0.5—with comparative results tabulated in Table 5.


Table 5 | Performance comparison of fusion improvement modules.
	Basic model
	BoT
	BiECAFusion
	Shape-IoU
	DyHead
	PP-LCNet
	ECA
	Parameter(million)
	Memory(MB)
	Precision (%)
	Recall (%)
	mAP@0.5 (%)



	YOLOv7-tiny
	 
	 
	 
	 
	 
	 
	6.0
	12.4
	89.9
	83.7
	89.7


	✓
	 
	 
	 
	 
	 
	8.9
	17.2
	92.5
	90.7
	93.1


	 
	✓
	 
	 
	 
	 
	6.0
	8.6
	89.4
	86.3
	90.1


	 
	 
	✓
	 
	 
	 
	6.0
	11.6
	92.4
	91.6
	93.2


	 
	 
	 
	✓
	 
	 
	5.9
	10.5
	91.2
	90.8
	91.2


	✓
	✓
	✓
	✓
	 
	 
	7.8
	12.7
	92.8
	90.2
	93.5


	✓
	✓
	✓
	✓
	✓
	✓
	6.2
	10.2
	94.1
	91.8
	94.1







Table 5 demonstrates consistent performance improvements across all proposed architectural modifications relative to baseline YOLOv7-tiny. The BoT module, while increasing parameters by 48.2% (4.8MB memory overhead), yields substantial gains: 2.6% precision, 7.0% recall, and 3.4% mAP@0.5. BiECAFusion achieves parameter-efficient enhancement, maintaining computational complexity while delivering incremental improvements (0.48% precision, 2.6% recall, 0.4% mAP@0.5). Shape-IoU optimization significantly enhances localization accuracy, contributing 2.5% precision, 7.9% recall, and 3.5% mAP@0.5 gains. DyHead simultaneously reduces parameters while improving detection metrics (1.3% precision, 7.1% recall, 1.5% mAP@0.5). Synergistic integration of these components in BBSD-YOLO achieves optimal performance: 92.8% precision, 90.2% recall, and 93.5% mAP@0.5—representing a 4.9 percentage point improvement over baseline. The complete LCNET-FusionYOLO architecture further elevates performance to 94.1% precision, 91.8% recall, and 94.1% mAP@0.5.

Figure 12 presents convergence analysis comparing baseline YOLOv7-tiny with LCNET-FusionYOLO across training iterations. The visualization reveals LCNET-FusionYOLO’s superior optimization characteristics: accelerated convergence, enhanced asymptotic performance, and improved training stability across all metrics, with particularly pronounced advantages in mAP@0.5 convergence dynamics. YOLOv7-tiny has an unstable Jaccard index when using the AdaDelta optimizer, and this is caused by five flaws. (a) Rigid pruning leads to poor depth-width coupling, no adaptive modules, unbalanced gradient propagation and high-frequency oscillations. LCNet-FusionYOLO (with PP-LCNet and four core modules) uses ECA, BiECAFusion and DyHead to stabilize the Jaccard index. (b) CIoU loss has sharp curvature, which causes gradient spikes and coordinate shifts. LCNet-FusionYOLO’s Shape-IoU ensures gradual regression. (c) Unidirectional PANet dilutes small-target features. BiECAFusion enables bidirectional feature flow to retain these features. (d) The static detection head is sensitive to semantic-scale drift. DyHead’s real-time reparameterization avoids step changes in the Jaccard index. (e) YOLOv7-tiny’s parameter manifold is non-convex, making AdaDelta oscillate. LCNet-FusionYOLO’s implicit regularization smooths gradient updates, resulting in stable Jaccard index curves.

[image: Three line charts compare LNCNET-FusionYOLO and YOLOv7-tiny over 300 epochs. Chart (a) shows mAP@0.5, chart (b) shows precision, and chart (c) shows recall. LNCNET-FusionYOLO consistently outperforms YOLOv7-tiny across all metrics, maintaining higher values as epochs increase. Each chart includes a legend identifying both models.]
Figure 12 | Convergence of indicators: (a) The mAP@0.5 variation curve of LCNET-FusionYOLO and YOLOv7-tiny; (b) The Precision variation curve of LCNET-FusionYOLO and YOLOv7-tiny; (c) The Recall variation curve of LCNET-FusionYOLO and YOLOv7-tiny.





3.2 Comparison of pruning ablation experiments

Post-pruning evaluation employed the speed_up metric, defined as the computational ratio between pruned and unpruned architectures. This metric quantifies efficiency gains, where speed_up = 1.6 corresponds to a 37.5% computational reduction (1 - 1/1.6). The pruning protocol systematically identifies and eliminates redundant structures while preserving essential architectural components. Subsequently, iterative fine-tuning recovers potential performance degradation induced by sparsification.

After LAMP pruning, the model was fine-tuned. It used the same SGD optimizer as pre-pruning training. Key hyperparameters were adjusted to suit the sparse architecture. This ensured stable convergence and performance retention. Core settings are as follows: initial learning rate (lr0) = 0.001, which was reduced from pre-pruning 0.01 to avoid gradient explosion in the sparse model; final learning rate (lrf) = 0.01, which is consistent with pre-pruning and calculated as lr0 × lrf; momentum = 0.937; weight decay = 0.0005; warmup epochs = 3.0; warmup momentum = 0.8; warmup bias lr = 0.1.

Fine-tuning lasted 200 epochs, which is the same as pre-pruning. The learning rate decayed linearly from lr0 to lrf×lr0. We selected lr0 = 0.001 instead of 0.01. The pruned model is more sensitive to high learning rates. Tests showed lr0 = 0.01 caused unstable convergence. lr0 = 0.001 balanced convergence speed and detection performance.

To determine the optimal speed_up, we tested targets from 1.0 to 2.43 with a layer-adaptive magnitude pruning strategy. At speed_up = 2.2, PLFYNet hits 94.5% mAP@0.5 (0.4% higher than pre-pruning LCNET-FusionYOLO). Its parameters drop to 2.98M (50.5% reduction), enabling 50.5 FPS on Jetson Orin Nano (meets <50ms/frame for edge use). Though speed_up = 2.43 is the upper limit, it causes over-pruning: mAP@0.5 falls to 94.2%. Thus, speed_up = 2.2 balances efficiency and performance best. Data supports this in Table 6.


Table 6 | Results of different speed_up data.
	Speed_up
	Parameter(number)
	Memory(MB)
	mAP@0.5 (%)



	1.0
	6.2
	10.2
	94.1


	1.2
	5.2
	9.3
	94.2


	1.4
	4.4
	8.6
	94.2


	1.6
	3.9
	7.6
	94.3


	1.8
	3.4
	6.7
	94.4


	2.0
	3.1
	6.2
	94.4


	2.2
	3.0
	5.9
	94.5


	2.4
	2.9
	5.7
	94.2










3.3 Comparison with mainstream object detection models

In this subsection, the final improved model LCNET-FusionYOLO is experimentally compared with eight other common models. The specific experimental results are shown in Table 7.


Table 7 | Results of comparison with mainstream object detection models.
	Model
	Parameter (million)
	Precision (%)
	Recall (%)
	mAP@0.5 (%)



	Faster R-CNN
	41.1
	83.2
	90.1
	86.9


	SSD
	26.3
	87.6
	88.6
	90.3


	DEIM-n
	3.6
	89.3
	90.2
	90.5


	YOLOv3
	61.5
	87.8
	73.7
	84.6


	YOLOv5s
	7.2
	91.1
	90.2
	92.1


	YOLOv8n
	3.2
	92.4
	89.7
	92.6


	YOLOv11n
	2.6
	92.6
	91.2
	93.0


	RT-DETR-r18
	20.1
	92.7
	89.1
	92.9


	LCNET-FusionYOLO
	6.2
	94.1
	91.8
	94.1


	PLFYNet
	3.0
	94.2
	92.1
	94.5







The LCNET-FusionYOLO and PLFYNet models were experimentally compared with eight other common object detection models in terms of their mAP@0.5 metrics.

The optimization pipeline employed LAMP pruning for systematic weight elimination, followed by structured sparsification and 200-epoch fine-tuning to mitigate performance degradation. This dual-phase optimization yielded PLFYNet, which demonstrates a 0.4% mAP@0.5 improvement over LCNET-FusionYOLO post-refinement, as illustrated in Figure 13.

[image: Line chart comparing mAP at zero point five for twelve object detection models across three hundred epochs, with LightYOLO-GinkgoLeaf and LCNet-FusionYOLO reaching the highest performance near zero point nine five, legend included.]
Figure 13 | Comparison of mAP0.5 Among LCNET-FusionYOLO, PLFYNet, and eight other common models.

Comparative analysis against established architectures reveals PLFYNet ‘s superior efficiency-performance trade-off. Two-stage detectors exemplified by Faster R-CNN achieve competitive recall (90.1%) but suffer from computational intractability (137M parameters) and inferior precision (83.2%) relative to single-stage alternatives. SSD’s multi-scale prediction paradigm reduces complexity (26.3M parameters) yet exhibits suboptimal detection metrics (mAP@0.5: 90.3%, recall: 88.6%). DEIM-n’s architectural constraint—utilizing only P4/P5 feature levels—inherently limits small object detection capability, yielding mAP@0.5 of 90.5%. PLFYNet finally surpasses RT-DETR-r18 by 1.5% in Precision, 3% in Recall, and 1.6% in mAP@0.5, demonstrating superior performance.

Within the YOLO lineage, evolutionary progression demonstrates continuous refinement. YOLOv3’s architectural simplicity (61.53M parameters) correlates with inadequate performance (recall: 73.7%, mAP@0.5: 84.6%). Contemporary variants YOLOv5s and YOLOv8n leverage depthwise separable convolutions to achieve substantial compression (7.22M and 3.16M parameters respectively), though performance remains inferior to PLFYNet. Our proposed architecture, with merely 3.0M parameters, achieves state-of-the-art metrics (precision: 94.2%, recall: 92.1%, mAP@0.5: 94.5%)—surpassing Faster R-CNN by 7.6 and SSD by 4.2 percentage points while utilizing 2.2%-21.8% of their parameters. This validates the efficacy of integrated pruning and architectural optimization in achieving unprecedented efficiency without compromising detection fidelity.

The normalized confusion matrices show that YOLOv7-tiny achieves recall rates of 0.89, 0.85, and 0.88 for chlorosis, insect_pest, and physical_damage, respectively, with a background recall of 0.67 and a main false-positive rate of background misclassified as chlorosis (0.17). In contrast, PLFYNet significantly improves the recall of the three disease classes to 0.96, 0.93, and 0.94, markedly reducing missed detections of insect_pest and physical_damage; however, background recall drops to 0.78. When the model training incorporates over-augmented background noise, the chlorosis false-positive rate increases to 0.12. Overall, PLFYNet markedly enhances disease detection accuracy by strengthening foreground feature extraction at the cost of diminished background discriminability, exhibiting a biased improvement of “more accurate foreground, more confused background, “ making it suitable for applications demanding high sensitivity to diseases. It is shown in Figure 14.

[image: Two side-by-side confusion matrices labeled (a) and (b) compare classification results for chlorosis, insect pest, physical damage, and background FP. Color intensity indicates normalized prediction values, with higher numbers along the diagonals in both matrices. Matrix (b) shows higher diagonal values compared to (a), indicating improved classification accuracy for all categories. A vertical color scale bar is on the right.]
Figure 14 | Confusion matrix :(a) Confusion matrix of YOLOv7-tiny; (b) Confusion matrix of PLFYNet.




3.4 External validation of the public dataset

Table 8 compares the core performance metrics of two models in the relevant task (inferred as plant disease detection based on data characteristics). Among them, PLFYNet performs better, with its precision (56.1%), recall (55.9%), and mAP@0.5 (55.7%) all higher than those of YOLOv7-tiny, indicating that the former is superior in recognition accuracy, missed detection control, and comprehensive detection capability. Our Ginkgo-focused dataset has unique traits and high-quality data, but PlantDoc covers 13 plants and 17 diseases with low-quality data. PLFYNet, pruned for edge use, lacks generalization and feature learning, causing low mAP@0.5. PlantDoc’s uneven distribution of different types of labels leads to a significant reduction in learning outcomes. However, the results are still improved compared to the original Yolov7-tiny model, which is more suitable for marginalised deployments.


Table 8 | External validation results of the public dataset PlantDoc.
	Models
	Precision (%)
	Recall
	mAP@0.5



	YOLOv7-tiny
	51.8%
	55.7%
	52.4%


	PLFYNet
	56.1%
	55.9%
	55.7%










3.5 Models deployed on Jetson Orin Nano



3.5.1 Hardware and environment

The Jetson Orin Nano hardware configuration is shown in Table 9 below:


Table 9 | Jetson Orin Nano hardware configuration.
	Names
	Specifications



	CPU
	6-core Arm® Cortex®-A78AE v8.2 64-bit CPU 1.5MB L2 + 4MBL3


	GPU
	NVIDIA Ampere architecture with 1024 CUDA cores and 32 tensor cores


	Memory
	8GB 128-bit LPDDR5







Jetson Orin Nano Environment Setup: Install Ubuntu 20.04 operating system, configure the model runtime environment with JetPack 5.1, Python 3.8, PyTorch 1.10.0, TorchVision 0.11.0, CUDA 11.8, and CUDNN 8.6. Integrate a CSI camera for hardware acceleration.




3.5.2 Hardware modules and configurations

The hardware deployment configuration centers on the Jetson Orin Nano platform, integrated with essential peripherals including autonomous power management, visual acquisition system, and wireless communication interface for field operations. Mobile deployment utilizes a ROS-enabled robotic platform manufactured by Helloblock, featuring compact form factor, modular architecture, and versatile hardware integration capabilities for dynamic agricultural monitoring applications.




3.5.3 comparison deployed on Jetson Orin Nano

For on-site power supply, we used a 12V/5A battery. During continuous inference, the model’s average power consumption was 9.8W—17.6% lower than the baseline YOLOv7-tiny model (11.9W). To verify robustness, tests were conducted under extreme backlight, backlighting, or canopy occlusion conditions, with an average inference time of 14.6ms (9.5ms in the laboratory environment), which meets the <50ms threshold required for real-time accurate decision-making.

Table 10 presents the real-time detection speed comparison of the three models on Jetson Orin Nano. Figure 15 shows the specific detection results of YOLOv7-tiny (Figure 15a) and PLFYNet (Figure 15b) after final deployment, with the two subfigures comparing their display effects. They respectively demonstrate the detection performance of the three labels (insect pest, physical damage, and chlorosis), and clearly, PLFYNet achieves better detection accuracy.


Table 10 | Speed comparison of real-time detection speed of three models on Jetson Orin Nano.
	Model
	GFLOPS
	Inference (ms)
	NMS (ms)
	FPS



	YOLOv7-tiny
	13.2
	13.1
	2.2
	41.2


	LCNET-FusionYOLO
	13.6
	13.5
	2.6
	40.3


	PLFYNet
	6.2
	9.5
	1.9
	50.5







[image: Three rows of plant leaf photographs are shown in two side-by-side panels labeled (a) and (b). Each row highlights different types of boxes: green for insects detected with confidence scores, blue for physical damage, and red for chlorosis on leaves.]
Figure 15 | The detection results of the YOLOv7-tiny and PLFYNet on Jetson Orin Nano: (a) YOLOv7-tiny; (b) PLFYNet.






4 Conclusions

Addressing the critical requirements for real-time Ginkgo biloba leaf disease detection in edge computing scenarios, this study presents PLFYNet, a lightweight deep learning model that resolves the deployment challenges of high-precision disease detection systems on resource-constrained embedded devices while maintaining detection accuracy comparable to computationally intensive models.

This research makes three main contributions.First, we systematically evaluated five lightweight backbone architectures: MobileNetV3, GhostNet, ShuffleNetV2, PP-PicoDet, and PP-LCNet. We found that the reconstructed PP-LCNet is the optimal backbone for Ginkgo disease detection. Compared to YOLOv7-tiny, it reduces parameters by 26.8% while maintaining competitive accuracy. Second, we developed BiECAFusion to replace PANet. BiECAFusion includes 1×1 convolutions for channel alignment, ECA attention for dynamic weighting, and bidirectional feature interaction (x0 + w1x1, x1 + w0x0). This addresses the small target feature loss inherent in unidirectional fusion.We combined BiECAFusion with Bottleneck Transformer, Shape-IoU loss, and DyHead to create LCNET-FusionYOLO. This model achieves 94.1% mAP@0.5 with 6.21M parameters.Third, we used Layer-Adaptive Magnitude-based Pruning (LAMP) to further compress the model. The model’s parameters were reduced to 3.0M (a 50.5% reduction), and its mAP@0.5 was improved to 94.5%. This shows that strategic pruning boosts both model efficiency and accuracy, ultimately resulting in the PLFYNet model.

Deployment on Jetson Orin Nano validated practical applicability: the model achieved 50.5 FPS inference speed (22.6% improvement over YOLOv7-tiny’s 41.2 FPS) with 94.2% precision and 92.1% recall across three disease categories (chlorosis, insect pest, physical damage). Comparative analysis against eight mainstream detectors revealed superior mAP@0.5 performance using only 2.2%-21.8% of traditional two-stage detector parameters.

Current limitations include: (1) dataset geographical constraints to Jiangsu Province, China, potentially limiting generalization; (2) unexplored performance under extreme weather and illumination conditions; (3) pruning strategy requiring extensive fine-tuning, suggesting opportunities for more efficient compression methods.

Future work encompasses: This study lays a foundation for practically edge-deployable disease detection in precision agriculture and has broad implications for AI-driven sustainable farming practices. Future research will cover multiple dimensions: in terms of data, expand datasets across diverse geographical and environmental conditions, dynamically adjust augmentation strategies based on natural sample distribution, standardize annotation processes via cross-regional collaboration, introduce an augmentation-validation feedback loop, and verify annotation consistency with Kappa coefficient (target ≥ 0.90); in terms of model & hardware, explore knowledge distillation to reduce complexity without accuracy loss, develop adaptive pruning frameworks for hardware-specific optimization, and integrate multi-spectral imaging to enhance disease characterization; in terms of deployment, develop an offline-first mode by integrating LoRa modules. These measures aim to fully improve technical implementation feasibility.
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Broadleaf weed (BLW) infestation is a major challenge in rice cultivation, particularly during the early vegetative stages when competition for resources is most critical. This study aims to enhance early-stage detection and classification of three prevalent BLW species—Monochoria vaginalis (MV), Limnocharis flava (LF), and Sphenoclea zeylanica (SZ)—in rice fields using unmanned aerial vehicle (UAV)-based hyperspectral imaging integrated with machine learning techniques. The research was conducted in a 1-hectare rice plot (Block L5A, Plot 121) near Pusat Benih Padi Felcra Sdn Bhd, Perak, Malaysia, a site characterized by high weed density. Hyperspectral data were acquired using a DJI Matrice 600 UAV equipped with a Resonon Pika L hyperspectral camera flown at 40 meters altitude. ENVI Classic 5.3 software was used to perform supervised classification based on selected regions of interest (ROIs) for training. Three classification algorithms—Support Vector Machine (SVM), Minimum Distance (MD), and Parallelepiped (PP)—were compared at 15, 25, and 30 days after sowing (DAS). Among them, SVM consistently achieved the highest classification accuracy, exceeding 99% for all weed species across all growth stages, with minimal omission and commission errors. Vegetation cover analysis showed an increasing trend in BLW expansion over time, while rice cover fluctuated and soil cover declined, indicating the competitive dominance of weeds. The findings underscore the effectiveness of UAV hyperspectral imaging combined with machine learning—especially SVM—as a scalable, accurate, and efficient approach for early weed detection. This methodology can support precision agriculture by enabling timely and targeted weed management strategies, ultimately improving rice yield and sustainability.
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1 Introduction

Weeds are biological components of agricultural ecosystems and are generally defined as unwanted plants that interfere with human activities or are considered visually undesirable. They represent a significant cause of crop yield loss for farmers (Haq et al., 2024). In rice cultivation, weeds pose the greatest threat as they compete with rice plants for essential resources such as nutrients, light, water, and space (El-Ghandor, 2024). Globally, there are around 30,000 weed species, of which approximately 18,000 are known to cause significant crop losses (Sai et al., 2022). The magnitude of these losses is influenced by multiple factors, including the severity and timing of weed infestation as well as the specific weed species present, since all plants compete for essential resources such as nutrients and water required for growth and establishment (Kanatas et al., 2021; Colbach et al., 2023). Weed infestations can typically reduce rice yields by 10% to 20%, and in cases of severe infestation, the entire crop may be lost (Gao et al., 2022). The degree of damage caused by weeds in rice fields is influenced by factors such as weed species, their density, and the duration of competition with the crop. Additionally, weed persistence and dominance are shaped by the crop type, climate and seasonal conditions, sowing date, and cultivation practices (Ramli et al., 2024).

Broadleaf weeds are a significant concern in rice fields due to their competitive nature and impact on crop yields. Broadleaf weeds frequently have a high seed production rate, allowing them to invade rice fields quickly, and their broad leaves produce extensive shade and can hinder the growth of rice seedlings. This characteristic makes it difficult to control their proliferation once established (Kumar et al., 2017). These weeds, such as Monochoria vaginalis and Lindernia procumbens, can dominate weed communities in rice fields, accounting for up to 60% of the total weed population in some areas. Eclipta prostrata, Mimosa pudica, and Ludwigia hyssopifolia compete aggressively with rice for essential resources. This competition can severely reduce rice yields if not correctly managed. In recent years, changes in rice cultivation practices, particularly the shift toward direct-seeded rice (DSR), have increased the prevalence of broadleaf weeds. The continuous use of grass-specific herbicides in DSR systems has allowed broadleaf weeds and sedges to become more dominant, leading to yield reductions of up to 52-64% (Patidar and Kaur, 2024; Chauhan, 2012).

According to Les (2020), Monochoria is a genus of obligate aquatic herbs that are either annual or facultatively perennial. These plants are well adapted to fluctuating water levels through heterophylly—they produce sessile, linear leaves when submerged and broad-bladed, petiolate leaves when floating or emergent. Monochoria vaginalis (MV), a broadleaf monocot weed common in wetland rice ecosystems, is widespread across major rice-growing areas but is generally absent in drier regions (Athira, 2019). Commonly known as pickerelweed, M. vaginalis is a significant weed in Asian rice fields, competing with rice for essential resources such as nutrients, light, and space (Zhu et al., 2012). It is considered one of the five most prevalent weeds in paddy fields in China (Zhou et al., 2021). This species exhibits rapid growth and is capable of causing up to 44% yield loss (Sujinah et al., 2022). The interference it causes in rice growth and development significantly reduces yield potential (Zhu et al., 2012). Although early-stage M. vaginalis seedlings can be managed with pre-emergence herbicides such as Butachlor, it remains a persistent threat and can cause substantial grain yield losses (Shuman-Goodier et al., 2021). Research has shown that severe infestations can lead to yield reductions of up to 55% (Zhu et al., 2012).

Sphenoclea zeylanica (SZ) Gaertn., commonly known as gooseweed, is an annual herbaceous aquatic weed belonging to the family Sphenocleaceae (Krumsri et al., 2020). It is widely distributed across tropical and warm-temperate regions and is native to the Eastern Hemisphere, including China, Southeast Asia, South Asia, Africa, and Madagascar (Carter et al., 2014). S. zeylanica thrives in both terrestrial and freshwater systems under tropical and warm climates (Vu et al., 2018). It reproduces mainly by seeds, producing large quantities, with most germinating between June and December (Carter et al., 2014). Reddy (2020) reported that the seeds remain viable even after two years of storage under favorable conditions, with germination rates of 6% and 34% at 17 and 48 days after sowing (DAS), respectively.

This weed typically emerges directly from seeds in puddled rice fields and spreads rapidly due to its high seed production capacity. Its adaptability to both waterlogged and moist conditions, including germination under submerged environments, makes it a serious challenge in rice cultivation (Reddy, 2020). The methanol extract of S. zeylanica has been found to suppress the shoot and root growth of several weed species such as Leptochloa chinensis, Chloris barbata, Dactyloctenium aegyptium, Pennisetum pedicellatum, Pennisetum setosum, Hygrophila erecta, Mimosa invisa, Hyptis suaveolens, and Scirpus articulatus (Krumsri et al., 2020). It is considered one of the world’s worst rice weeds, found in at least 28 countries, and is also a problem in cotton, wheat (especially in rice-wheat rotations), and soybean fields. This fast-growing annual weed can reduce rice yields by 45–50%, disrupt harvesting, and delay drying when its biomass remains green and succulent (Rojas-Sandoval, 2023).

Limnocharis flava (LF) is another problematic emergent aquatic weed. Native to tropical and subtropical America, it has become invasive in several Asian countries, including Malaysia, Indonesia, Thailand, Vietnam, Sri Lanka, and India (Nishan and George, 2018). It is a perennial herbaceous plant that can grow up to one meter in height (Zakaria et al., 2018). Belonging to the Limnocharitaceae (or Alismataceae) family, L. flava commonly invades irrigation canals and water systems, where it competes with native aquatic flora for light and nutrients, leading to ecological imbalance (Zakaria et al., 2021). It features glabrous stems and a scapigerous structure, with broad leaves that are rounded to ovate, sheathing with wavy edges and forming clusters above the water. The petioles are triangular with well-developed air spaces (Nishan and George, 2018; Putra et al., 2023). Although initially introduced as an ornamental species due to its attractive foliage and flowers, its aggressive growth and persistence have made it an invasive threat (Song et al., 2024).

In Malaysia and other parts of Southeast Asia, Limnocharis flava has become a serious weed in rice fields and irrigation systems. It has developed resistance to both synthetic auxin herbicides and acetohydroxyacid synthase (AHAS) inhibitors (Zakaria et al., 2021). According to Nishan and George (2018), direct-seeded rice is more affected by this weed than transplanted rice. The plant thrives on fertilized soils, grows rapidly, and has, in some cases, led to rice field abandonment due to uncontrollable infestations. It clogs irrigation channels and drainage systems, reducing water flow and leading to water stagnation in lower areas. During heavy rainfall, it further exacerbates crop damage by obstructing water outflow, causing field submergence (Seneviratne and Wijesundara, 2004; Nishan and George, 2018).



1.1 Hyperspectral imaging and machine learning for weed analysis

Precision weed management integrates cultural, mechanical, and chemical control methods to minimize herbicide use while reducing environmental impact. This balanced approach ensures effective weed control while protecting crop plantations (Agrawal, 2024; Monteiro and Santos, 2022). Precision weed control serves as a bridge between conventional chemical control and automated mechanical weed control, offering a more targeted and sustainable alternative. By identifying specific weed patches, herbicide application can be precisely localized, reducing unnecessary chemical use and improving efficiency. Accurate weed detection is essential for this strategy to be effective (Che'Ya, 2016).

Hyperspectral imaging (HSI) is an integration of modern imaging systems and traditional spectroscopy techniques (Sulaiman et al., 2022). It enables the acquisition of spectral information for each pixel in an image, providing a detailed spectral profile (Bhargava et al., 2024). While RGB imaging has demonstrated high performance in many weed detection applications, particularly for morphologically distinct weeds, its effectiveness can be limited during early growth stages of crop cultivation (Mensah et al., 2024). At these stages, rice plants and broadleaf weeds often share similar morphological and color characteristics, making them difficult to separate based on RGB features alone. Hyperspectral imaging (HSI) provides hundreds of contiguous spectral bands, enabling detection of subtle differences in pigment composition, water content, and internal leaf structure that are not visible to RGB sensors (Pérez-Ortiz et al., 2016). This enhanced spectral resolution allows for more accurate species‐level discrimination under challenging conditions and supports earlier, more targeted weed management interventions.

Machine learning (ML) methods offer a variety of classification algorithms for analyzing remote sensing imagery and have proven effective in identifying unwanted species using remote sensing (Papp et al., 2021). Generally, the ML framework involves learning from ‘experience’, known as training data, to execute the classification, regression, or clustering tasks. These training data are usually regarded as a feature described by a set of attributes or variables. The machine learning model works by predicting the pattern and trend of future events in crop monitoring and assessment (Zhang et al., 2019). The ML model’s performance in a particular task is evaluated by performance metrics that improve with experience over time. As a result, classification techniques have been a prominent research trend in machine learning for many years, informing various studies. This method seeks to create features from the input data. Furthermore, it is highly field-specific and requires significant human effort, leading to deep learning techniques (Alzubaidi et al., 2021).




1.2 Supervised classification model training



1.2.1 Support vector machine

Support Vector Machine (SVM) is a robust classification algorithm that aims to find the optimal hyperplane that best separates data points of different classes. It is particularly effective in high-dimensional spaces and can handle both linear and non-linear classification problems by utilizing kernel functions. The SVM algorithm enhances classification accuracy by maximizing the margin between different class boundaries, contributing to robust generalization in the spectral classification of plant species (Ballanti et al., 2016).




1.2.2 Minimum distance

The Minimum Distance classifier is a simple yet effective algorithm that calculates the spectral distance between each pixel and the mean spectral signature of each class. It assigns pixels to the class with the smallest distance, making it suitable for datasets with well-separated class means (Rose and Seldev, 2014). While less sophisticated than SVM, it offers faster processing times and can be advantageous in scenarios where spectral variability within classes is low.





1.2.3 Parallelepiped

The Parallelepiped classifier uses a set of spectral thresholds defined by the minimum and maximum values of each class’s training data. Pixels falling within the defined spectral “box” are classified accordingly (De Moraes, 2004). This method is computationally efficient and helpful when the spectral ranges of classes are well-defined. However, its reliance on strict boundaries may lead to misclassification in cases of spectral overlap or high variability within classes.

The Parallelepiped classifier uses a set of spectral thresholds defined by the minimum and maximum values of each class’s training data. Pixels falling within the defined spectral “box” are classified accordingly. This method is computationally efficient and helpful when the spectral ranges of classes are well-defined. However, its reliance on strict boundaries may lead to misclassification in cases of spectral overlap or high variability within classes.

By using UAV-based hyperspectral imaging combined with a machine learning technique, this study aims to enhance the detection and classification of the broadleaf weeds (BLW) in rice fields at an early growth stage (Vegetative stage). The selected broadleaf weed species used in this study were Monochoria vaginalis, Limnocharis flava, and Sphenoclea zeylanica. The selection of these species of weeds as the focus of this study was based on their prevalence and significant impact in the study area. The study leverages ENVI Classic 5.3 software for supervised classification, where regions of interest (ROIs) are selected for training the classifier to recognize the spectral signatures of the three targeted weed species and the rice plants. Ultimately, the goal of this research is toward:

	Implements and compares multiple supervised classification methods (SVM, Minimum Distance, Parallelepiped) to identify the optimal algorithm for early-stage weed discrimination.

	Demonstrates the feasibility of UAV-HSI for scalable, non-destructive, high-accuracy weed mapping, which can reduce herbicide use and support sustainable rice production.








2 Methods and procedure



2.1 Study site

The experiment for this study was carried out in a rice field near Pusat Benih Padi Felcra Sdn Bhd (Perak) managed by FELCRA Plantation Services Sdn. Bhd. is located in Bandar Seberang Perak, Kampung Gajah, Perak, Malaysia (postcode 36800). The region’s latitude and longitude are roughly 4.1263° N and 100.9789° E. Block L5A, plot 121 was chosen for the experiment site due to its proximity to the central irrigation canal and the high weed pressure. This particular rice field location is noted for its good soil and favorable environment for rice production. The crop cultivation management program followed the FELCRA procedure which is based on the Rice Check Padi Edisi 2022 guidelines issued by the Department of Agriculture (DOA), Malaysia (Department of Agriculture Malaysia (DOA), 2022). The place has a tropical rainforest climate with consistently high humidity and temperatures throughout the year. The average annual rainfall is approximately 2000–2500 mm, promoting rice farming while creating an environment suitable for weed development. This region’s soil is alluvial mainly, nutrient-rich, and capable of retaining water. These traits are crucial for rice farming, but they also promote the growth of many weeds.

Weed analysis plots were established in three different areas, selected based on preliminary surveys assessing the density of the target broadleaf weed species; Limnocharis flava (LF), Monochoria vaginalis (MV), and Sphenoclea zeylanica (SZ). Density assessments were conducted using hyperspectral image analysis to identify plots with adequate representation of each species. Details of the study plots are described below (Figure 1; Table 1).

[image: Side-by-side map and satellite graphic showing Malaysia’s Peninsular region with a red arrow marking a study area in Perak. The right section displays a zoomed aerial image of Block L5A, highlighting three numbered sections with red boxes and close-up satellite views of each section labeled one, two, and three.]
Figure 1 | Study site for broadleaf weed in rice field at Felcra Berhad (Perak).


Table 1 | Info on study Plot at Blok l5A, Felcra Perak.
	No.
	Plot
	Broadleaf weed on focus
	Plot area (m2)



	1.
	Plot 1
	Limnocharis flava
	2300


	2.
	Plot 2
	Monochoria vaginalis
	2500


	3.
	Plot 3
	Sphenoclea zeylanica
	2200










2.2 Acquisition of hyperspectral imagery

The image acquisition procedure for hyperspectral data collection involves three main stages: preparation and calibration, field operation, and data retrieval. Hyperspectral data was collected by using a UAV (DJI Matrice 600) and the hyperspectral camera, Resonon Pika L (captures data in the 400–1000 nm spectral range with 281 spectral bands). The UAV-based imaging system includes (i) a Resonon Pika L hyperspectral camera (Spectronon Pro, Resonon, Bozeman, MT); (ii) visible-near infrared (V-NIR) objective lenses for the Pika L camera with a focal length of 23 mm, field of view (FOV) of 13.1 degrees, and instantaneous field of view (IFOV) of 0.52 mrad; and (iii) a global positioning system (GPS) and the inertial measurement unit IMU (DJI) flight control system for multi-rotor aircraft, to record sensor position and orientation. Data was collected at 40 meters above the ground.

Time of Day (TOD) refers to the specific period selected for aerial imaging, taking into account lighting conditions, sun angle, and shadows, all of which influence the quality of captured images (Barbosa Júnior et al., 2022). Although research on the direct effects of TOD is limited, the most commonly recommended imaging windows are between 9:00 a.m. and 2:00 p.m., 10:00 a.m. and 3:00 p.m., or 11:00 a.m. and 2:00 p.m (Bongomin et al., 2024; Gonçalves et al., 2022; Mao et al., 2021). These timeframes align with optimal sunlight conditions, providing stable lighting and minimal atmospheric disturbances, which are critical for obtaining high-quality spectral data in vegetation analysis. Proper TOD selection helps ensure consistent and accurate remote sensing measurements, reducing errors caused by shadows or variable light intensity. Data collection schedule is described in Table 2.


Table 2 | Data collection schedule.
	Venue: rice field (Felcra Sdn Bhd, Perak)


	No.
	Date
	Day after sowing (DAS)
	Rice crop stage



	1.
	05/10/2023
	0
	Sowing day


	2.
	20/10/2023
	15DAS
	Stage 1: Vegetative
• Germination
• Seedling emergence


	3.
	30/10/2023
	25DAS
	Stage 1: Vegetative
• 2nd leaf – 5th leaf (1st tiller)


	4.
	05/11/2023
	30DAS
	Stage 1: Vegetative
• Tillering







The camera was mounted on a DJI Ronin-MX gimbal, and the imager was activated via a Resonon flight computer connected to a GPS receiver, using a target map generated in Google Earth. During flight, the Resonon Pika L sensor captured hyperspectral images, while GPS coordinates and flight metadata were recorded for accurate georeferencing. Data was stored on the sensor’s onboard system or transferred in real time to the ground control station. After landing, the hyperspectral data was retrieved, backed up, and prepared for analysis to ensure accuracy and reliability in weed detection.

The hyperspectral raw data obtained are spectrally calibrated but are not corrected for the illumination functions, so the result cannot be directly interpreted. The image capture from the hyperspectral sensor was pre-processed using Spectronon Pro (Resonon). The spectrum of the image will be used to distinguish the spectral signature between rice plants and the broadleaf weeds. The spectral signature was used to identify the selected broadleaf weed species in rice crops for real-time detection of the broadleaf weeds in the rice fields. The region of interest was chosen randomly from the developed 2D maps, and the files were saved in KML format.




2.3 Hyperspectral imagery processing workflow

The methodology flow chart of weed detection analysis is described as Figure 2 below. First step in the supervised classification process involves preprocessing the hyperspectral data. This is to ensures the data quality and prepares it for further analysis. After completing image correction and image mosaicking in SpectrononPro, the image data can be subset to target area in Envi Classic 5.3.

[image: Flowchart illustrating the workflow for hyperspectral image acquisition and analysis, including steps for raw data collection, image correction, mosaicking, ROI selection and labeling, model training, accuracy assessment, and output generation for classifying various land cover types such as broadleaf weed, rice, soil, water, and mixed vegetation.]
Figure 2 | Methodology flow chart for hyperspectral image supervised classification analysis.



2.3.1 Image calibration correction

The process of image correction for hyperspectral images captured using the Resonon Pika L sensor involves several essential steps to ensure the data’s accuracy and usability for analysis, particularly for vegetation and weed detection in rice fields (Figure 3). This pre-processing procedure is run using SpectrononPro software.

[image: Flowchart illustrates the steps of a data processing workflow: Image Correction, White Reference Correction, Radiance from Raw Data, Reflectance from Radiance Data, Georectify Airborne Datacube, ending with Data Integration and Data Analysis.]
Figure 3 | Image calibration correction process flow.

	i. White Reference Correction: This step involves calibrating the sensor to account for varying lighting conditions and sensor sensitivity. A white reference panel, which has a uniform reflectance spectrum, is used during the data acquisition process. By normalizing the hyperspectral data against the white reference, variations caused by lighting inconsistencies or sensor noise are minimized. Denoising techniques improve signal-to-noise ratio and classification accuracy in hyperspectral imagery, making them a valuable preprocessing step for improved analysis (Rasti et al., 2018).

	ii. Radiance from Raw Data: Intermediate-form hyperspectral image data can be processed directly or converted into radiance values and estimates of signal-dependent noise, benefiting image analysis (Skauli, 2009). The raw data acquired by the hyperspectral sensor represents digital counts. These digital counts are converted into radiance values, which express the actual energy measured by the sensor in physical units. This conversion accounts for the sensor’s calibration factors and the spectral response, ensuring that the data is meaningful for further analysis.

	iii. Reflectance from Radiance Data and Spectrally Flat Reference Spectrum: Hyperspectral image exploitation algorithms require reflectance spectra retrieved from observed radiance spectra (Golowich et al., 2018). Radiance data is then converted into reflectance values, which are crucial for identifying vegetation features. This is done by dividing the radiance data by the radiance of the spectrally flat reference (e.g., the white reference panel) captured during the calibration process. Reflectance values eliminate the effects of varying light intensity and are used to derive the actual spectral signatures of the target vegetation and weeds.

	iv. Georectify Airborne Datacube: The hyperspectral data, captured in the form of a hypercube (spatial and spectral dimensions), is georectified to align with real-world geographic coordinates. This involves integrating GPS and inertial measurement unit (IMU) data collected during the flight. The hyperspectral mapping system, which includes a pushbroom spectrometer, photogrammetric camera, and GPS-INS, can georectify pushbroom data fully automatically for agricultural mapping and monitoring applications (Suomalainen et al., 2014).

	v. Data Analysis: Advanced data analysis techniques, such as machine learning or spectral unmixing, are applied to the corrected data. This step identifies spectral signatures unique to weeds and crops, enabling accurate classification and mapping of vegetation. This systematic image correction process ensures that hyperspectral images are accurate, reliable, and ready for use in weed detection and vegetation analysis.






2.3.2 Region of interest selection

In the weed detection analysis using ENVI Classic 5.3, the Region of Interest (ROI) selection is a crucial step in the supervised classification process. The ROI represents specific areas within the hyperspectral image that serve as samples for training and validating the classification algorithm. For this study, the ROI classes included (Table 3):


Table 3 | ROI set for image analysis.
	No.
	Color
	Class



	1.
	Red
	Broadleaf weed (Limnocharis flava, Monochoria vaginalis, and Sphenoclea zeylanica)


	2.
	Green
	Rice plant


	3.
	Purple
	Mixed vegetation (area containing a combination of plant species)


	4.
	Blue
	Water (visible water bodies or waterlogged area)


	5.
	Yellow
	Soil (bare soil regions)







The ROI creation process involved preparing the hyperspectral image and utilizing the ROI tool in ENVI Classic 5.3 to manually or semi-automatically select representative regions. These regions were labeled according to their respective classes, ensuring a diverse and accurate representation of the study area (refer to Table 4).


Table 4 | Number of ROI created for hyperspectral image supervised classification analysis.
	No.
	Cycle/DAS
	Class
	No. of polygon (ROI)
	No. of training ROI (60%)
	No. of validation ROI (40%)
	Total pixel count



	Plot 1: Limnocharis Flava


	1.
	Cycle 1/
15DAS
	BLW_LF
	60
	36
	24
	653


	2.
	Rice Plant
	70
	42
	28
	954


	3.
	Water
	20
	12
	8
	109


	4.
	Soil
	20
	12
	8
	90


	5.
	Mixed Vegetation
	20
	12
	8
	69


	6.
	Cycle 2/
25DAS
	BLW_LF
	60
	36
	24
	463


	7.
	Rice Plant
	60
	36
	24
	750


	8.
	Water
	20
	12
	8
	53


	9.
	Soil
	20
	12
	8
	77


	10.
	Mixed Vegetation
	20
	12
	8
	88


	11.
	Cycle 3/
30DAS
	BLW_LF
	40
	24
	16
	280


	12.
	Rice Plant
	50
	30
	20
	560


	13.
	Water
	15
	9
	6
	109


	14.
	Soil
	15
	9
	6
	43


	15.
	Mixed Vegetation
	15
	9
	6
	42


	Plot 2: Monochoria vaginalis


	16.
	Cycle 1/
15DAS
	BLW_MV
	35
	21
	14
	141


	17.
	Rice Plant
	65
	39
	26
	270


	18.
	Water
	20
	12
	8
	110


	19
	Soil
	30
	18
	12
	191


	20.
	Mixed Vegetation
	20
	12
	8
	88


	21.
	Cycle 2/
25DAS
	BLW_MV
	30
	18
	12
	254


	22.
	Rice Plant
	35
	21
	14
	306


	23.
	Water
	20
	12
	8
	268


	24.
	Soil
	20
	12
	8
	195


	25.
	Mixed Vegetation
	20
	12
	8
	172


	26.
	Cycle 3/
30DAS
	BLW_MV
	35
	21
	14
	377


	27.
	Rice Plant
	35
	21
	14
	397


	28
	Water
	15
	9
	6
	181


	29.
	Soil
	15
	9
	6
	299


	30.
	Mixed Vegetation
	15
	9
	6
	241


	Plot 3: Sphenoclea zeylanica


	31.
	Cycle 1/
15DAS
	BLW_SZ
	35
	21
	14
	114


	32.
	Rice Plant
	40
	24
	16
	204


	33.
	Water
	20
	12
	8
	149


	34.
	Soil
	20
	12
	8
	178


	35.
	Mixed Vegetation
	20
	12
	8
	114


	36.
	Cycle 2/
25DAS
	BLW_SZ
	40
	24
	16
	329


	37.
	Rice Plant
	50
	30
	20
	357


	38.
	Water
	25
	15
	10
	198


	39.
	Soil
	25
	15
	10
	302


	40.
	Mixed Vegetation
	20
	12
	8
	175


	41.
	Cycle 3/
30DAS
	BLW_SZ
	50
	30
	20
	519


	42.
	Rice Plant
	45
	27
	18
	874


	43.
	Water
	25
	15
	10
	705


	44.
	Soil
	25
	15
	10
	644


	45.
	Mixed Vegetation
	20
	12
	8
	340







A critical aspect of the ROI strategy was the distribution of samples into 60% for training and 40% for validation (Sivakumar et al., 2024). The training samples were used to “teach” the classification algorithm, providing known spectral signatures for each class. Meanwhile, the validation samples, which were withheld from the training process, were used to assess the model’s accuracy and its ability to generalize to new, unseen data (Xu and Goodacre, 2018).




2.3.3 Classification execution, validation, and accuracy assessment

Once the training data (ROIs) and algorithm are selected, the classification is executed to assign each pixel in the hyperspectral imagery to one of the predefined classes. ENVI Classic 5.3 generates a classified image in which each pixel is color-coded according to its assigned class. Validation ensures the reliability of the classification results. ENVI Classic 5.3 provides tools for quantitative accuracy assessment:

	Confusion Matrix: Compares the classified image with ground truth data, providing metrics like overall accuracy, user’s accuracy (UA), and producer’s accuracy (PA) (as described in Table 5).

	Kappa Coefficient: Measures the agreement between classification results and ground truth, accounting for chance agreement.




Table 5 | The definition of UA and PA (Congalton, 1991).
	Metric
	Definition
	Formula



	User’s Accuracy (UA)
	Probability that a pixel classified into a given class represents that class on the ground (reliability).
	 


	Producer’s Accuracy (PA)
	Probability that a pixel of a given class in the reference data has been correctly classified (completeness).
	 







These metrics provide a quantitative evaluation of the classification performance, allowing researchers to identify and address potential shortcomings in the workflow. Performance metrics such as precision, recall, and F1-score are also computed to assess the effectiveness of the classification model.






3 Results and analysis

This analysis evaluates the classification performance of three supervised classification techniques—Support Vector Machine (SVM), Minimum Distance (MD), and Parallelepiped (PP)—for distinguishing between the selected Broadleaf Weed, Rice Plant, Mixed Vegetation, Soil, and Water at 15 DAS, 25 DAS, and 30 DAS using ENVI Classic 5.3.



3.1 Detection of broadleaf weed: Limnocharis flava

The classification performance for Limnocharis flava (Blw_Lf) using UAV-based hyperspectral imagery across different growth stages shows a clear trend in favor of the Support Vector Machine (SVM) classifier (Figure 4). At 15 DAS (Table 6), SVM already achieves a high producer accuracy (90.85%) and user accuracy (99.85%), indicating it is highly capable of identifying and correctly labeling LF even at an early stage. In contrast, the Minimum Distance method provides lower performance with 69.86% producer accuracy and 93.65% user accuracy. In comparison, Parallelepiped yields better producer accuracy (77.95%) but a much lower user accuracy (35.87%), suggesting high misclassification of other classes as LF.

[image: Nine classified field maps are shown in a three-by-three grid, comparing SVM, MD, and PP classification methods at 15, 25, and 30 days after sowing. Colors represent broadleaf weed, rice, mixed vegetation, soil, water, and unclassified areas, as defined in the legend below the maps. Classification results vary by method and time, with noticeable differences in the extent and distribution of each class.]
Figure 4 | LF detection in rice field implementing supervised classification algorithm.


Table 6 | Comparison of producer accuracy (PA) and user accuracy (UA) for each algorithm for plant classification (Limnocharis flava) at 15, 25, and 30DAS.
	Classifier/ROI class
	SVM
	MD
	PP


	Class
	Prod. acc. (%)
	User acc. (%)
	Prod. acc. (%)
	User acc. (%)
	Prod. acc. (%)
	User acc. (%)



	PA and UA at 15DAS


	Blw_LF
	99.85
	99.85
	85.3
	98.76
	83.46
	97.15


	Rice
	100
	99.9
	88.68
	99.65
	79.35
	99.87


	Water
	100
	100
	100
	73.65
	81.65
	100


	Soil
	100
	100
	100
	94.74
	84.44
	100


	Mixed Vegetation
	97.1
	98.53
	91.3
	28.77
	53.62
	92.5


	PA and UA at 25DAS


	Blw_LF
	100
	99.78
	80.78
	78.08
	85.96
	87.09


	Rice
	100
	100
	84.53
	98.45
	81.07
	100


	Water
	100
	100
	100
	88.33
	58.49
	100


	Soil
	100
	100
	77.92
	66.67
	90.91
	93.33


	Mixed Vegetation
	98.86
	100
	90.91
	50.63
	48.86
	100


	PA and UA at 30DAS


	Blw_LF
	99.29
	99.64
	87.14
	99.59
	83.57
	90


	Rice
	100
	98.42
	81.96
	95.43
	73.04
	99.51


	Water
	100
	100
	100
	98.2
	65.14
	100


	Soil
	79.07
	100
	62.79
	19.57
	81.4
	39.33


	Mixed Vegetation
	100
	97.67
	85.71
	61.02
	78.57
	89.19







At 25 DAS (Table 6), SVM further improves, achieving perfect scores (100%) in both producer and user accuracy for Blw_Lf, which reflects its robustness and reliability. Minimum Distance also shows improved results (80.78% PA and 78.08% UA), and Parallelepiped performs moderately better (85.96% PA, 87.09% UA), but both still lag behind SVM. By 30 DAS, SVM maintains its high accuracy, with a producer accuracy of 99.29% and user accuracy of 99.64%. Minimum Distance also performs well (87.14% PA and 94.15% UA), while Parallelepiped records good results (83.57% PA, 87.67% UA), though still not as consistently accurate as SVM.



3.1.1 Comparative analysis of classification models for LF detection

Table 7 presents the classification performance of SVM, MD, and PP classifiers for detecting Limnocharis flava at three different growth stages: 15 Days After Sowing (DAS), 25 DAS, and 30 DAS. The analysis is based on Overall Accuracy, Kappa Coefficient, Mean, and Standard Deviation (StDev).


Table 7 | Classification analysis of LF at 15DAS, 25DAS, 30DAS.
	Species/DAS
	Limnocharis Flava_15DAS
	Limnocharis Flava_25DAS
	Limnocharis Flava_30DAS


	Classifier
	Overall accuracy
	Kappa coefficient
	Mean
	StDev
	Overall accuracy
	Kappa Coefficient
	Mean
	StDev
	Overall accuracy
	Kappa coefficient
	Mean
	StDev



	Support Vector Machine
	99.84
	0.99
	2.9
	1.6
	99.96
	0.99
	3.11
	1.72
	99.26
	0.99
	2.68
	1.59


	Minimum Distance
	91.02
	0.88
	3.02
	1.65
	89.81
	0.86
	3.26
	1.7
	84.62
	0.77
	2.58
	0.92


	Parallelepiped
	80.213
	0.71
	3.02
	1.65
	87.54
	0.83
	3.03
	1.65
	75.63
	0.65
	1.54
	1.24







SVM consistently demonstrates the highest classification performance across all time points. The overall accuracy remains above 99%, with a Kappa coefficient close to 1.0, indicating excellent classification agreement. The mean values range between 2.68 and 3.11, with relatively low standard deviation (StDev), suggesting that SVM maintains high stability and precision throughout different growth stages.

At 15 DAS, the overall accuracy is 99.84%, with a Kappa coefficient of 0.9974, indicating a nearly perfect classification. The accuracy further improves slightly at 25 DAS (99.96%), and remains very high at 30 DAS (99.26%). The slight variations in standard deviation suggest that SVM maintains a consistent and robust classification, making it the most reliable model for spectral classification of Limnocharis flava.

MD performs moderately well but exhibits lower classification accuracy than SVM. The overall accuracy drops from 91.02% (15 DAS) to 89.81% (25 DAS) and further declines to 84.62% (30 DAS). Similarly, the Kappa coefficient declines from 0.8783 at 15 DAS to 0.77 at 30 DAS, indicating increased misclassification at later growth stages. The mean values fluctuate between 2.58 and 3.25, with a higher standard deviation compared to SVM, implying that MD is more prone to spectral variability. The decline in accuracy at 30 DAS suggests that MD struggles with classifying mixed vegetation and soil, possibly due to increased spectral complexity as the plants mature.

PP shows the weakest classification performance, with significantly lower accuracy and higher variability. The overall accuracy starts at 80.21% at 15 DAS, drops to 87.54% at 25 DAS, and declines further to 75.63% at 30 DAS. The Kappa coefficient follows a similar trend, dropping from 0.711 to 0.65, indicating substantial classification errors and increased misclassification.

The mean values are consistently lower (between 1.54 and 3.03), and the standard deviation is higher compared to SVM, highlighting that PP lacks robustness and stability. The lower accuracy at 30 DAS suggests that PP struggles significantly with separating Limnocharis flava from other vegetation and soil.



3.1.1.1.1 Vegetation cover analysis in rice _LF

The vegetation cover analysis in the rice field, based on SVM classification, provides key insights into the dynamics of different land cover categories—BLW_LF, Rice, Mixed Vegetation, Water, and Soil—at three growth stages: 15 Days After Sowing (DAS), 25 DAS, and 30 DAS (Figure 5). The first chart illustrates the percentage distribution of vegetation cover across these time points, while the second chart highlights the rate of change in cover percentage from 15 DAS to 30 DAS.

[image: Bar chart illustrating vegetation class cover distribution percentages at 15, 25, and 30 days after sowing (DAS) for a LF plot, showing rice as the dominant cover type which increases from 74.93 percent at 15 DAS to 85.22 percent at 30 DAS, while other categories including Blw_LF, Mix_Vege, Water, and Soil decrease or remain low. Data table below the chart provides percentage values for each class at each time point.]
Figure 5 | Vegetation class cover distribution (%) for Plot 1_LF.

The results in Figure 6 indicate that rice vegetation exhibited the most significant increase over time, starting at 74.93% at 15 DAS, rising slightly to 75.96% at 25 DAS, and reaching a peak of 85.22% at 30 DAS. This 10.29% increase in rice coverage suggests successful crop establishment and dominance in the field, likely suppressing competing plant species. In contrast, broadleaf weed (BLW_LF) presence increased gradually, from 6.02% at 15 DAS to 8.1% at 25 DAS, and further to 9.6% at 30 DAS. This 3.58% increase implies that while rice growth is dominant, some weed expansion still occurs, highlighting the need for early weed management interventions.

[image: Bar chart titled “Vegetation Class Cover Distribution (%)_MV Plot” displays distribution percentages for Blw_MV, Rice, Water, Soil, and Mix_Vege over 15, 25, and 30 days after sowing (DAS), with Rice consistently showing the highest percentage. Data table below the chart lists values for all classes and time points.]
Figure 6 | Vegetation class cover distribution (%) for Plot 2_MV.

A significant trend observed is the drastic reduction in mixed vegetation coverage, which declined from 7.71% at 15 DAS to 5.74% at 25 DAS, and finally to just 1.42% at 30 DAS (Figure 7). This 6.29% decrease indicates that as rice plants grow and canopy coverage expands, mixed vegetation species are either suppressed, absorbed into other classes, or outcompeted. A similar downward trend is seen in water and soil coverage. Water coverage shrank from 4.76% at 15 DAS to 2.22% at 25 DAS, and further to 1.89% at 30 DAS, reflecting potential field drainage, reduced irrigation, or increasing vegetation coverage over previously exposed water surfaces. Likewise, soil exposure increased slightly between 15 DAS (6.58%) and 25 DAS (7.98%), but then sharply declined to 1.87% at 30 DAS, suggesting that as rice and weeds grow, they effectively cover the bare soil, reducing its visibility in hyperspectral classification.

[image: Bar chart showing vegetation cover rate changes in percentage between 15 and 30 DAS_LF for five categories: Blw_LF (3.58%), Rice (10.29%), Mix_Vege (-6.29%), Water (-2.87%), and Soil (-4.71%). Positive changes occur in Blw_LF and Rice, while Mix_Vege, Water, and Soil show decreases.]
Figure 7 | Vegetation cover rate changes (%) for LF in 15DAS – 30DAS.

From a comparative perspective, rice exhibited the highest rate of positive change (+10.29%), followed by broadleaf weeds (+3.58%), while mixed vegetation (-6.29%), water (-2.87%), and soil (-4.71%) all experienced declines. The increase in rice dominance and reduction in other classes indicates that proper crop establishment can effectively outcompete weeds and other vegetation types, but the persistent increase in broadleaf weeds suggests the need for improved weed management strategies to minimize competition for nutrients and space.






3.2 Detection of broadleaf weed: Monochoria vaginalis

The classification results for Monochoria vaginalis (MV) using three algorithms, which are SVM, MD, and PP, at three different growth stages (15, 25, and 30 DAS) demonstrate varying levels of accuracy in hyperspectral image analysis (Figure 8). Overall, SVM consistently outperforms the other methods across all stages. At 15 DAS (Table 8), SVM achieves high producer accuracy (92.91%) and user accuracy (97.04%) for Blw_MV, indicating excellent detection and reliability. In contrast, Minimum Distance shows lower producer accuracy (63.12%) and user accuracy (77.39%), while Parallelepiped performs moderately in producer accuracy (84.40%) but poorly in user accuracy (39.27%), suggesting a high rate of false positives.

[image: Grid of nine classified land cover maps arranged in three rows by date (MV_15DAS, MV_25DAS, MV_30DAS) and three columns by method (SVM, MD, PP), with each map using colors to indicate broadleaf weed (red), rice (light green), mixed vegetation (dark green), soil (yellow), water (blue), and unclassified (black), as described in the legend below.]
Figure 8 | MV detection in a rice field implementing a supervised classification algorithm.


Table 8 | Comparison of producer accuracy and user accuracy for each algorithm for plant classification (Monochoria vaginalis) at 15, 25, and 30DAS.
	Classifier/ROI class
	SVM
	MD
	PP


	Class
	Prod. acc. (%)
	User acc. (%)
	Prod. acc. (%)
	User acc. (%)
	Prod. acc. (%)
	User acc. (%)



	PA and UA at 15DAS


	Blw_MV
	92.91
	97.04
	63.12
	77.39
	84.40
	39.27


	Rice
	97.04
	95.27
	90.37
	79.48
	33.70
	86.67


	Water
	100
	100
	100
	96.49
	72.73
	100


	Soil
	100
	100
	72.25
	89.61
	79.58
	82.61


	Mixed Vegetation
	90.91
	90.91
	56.82
	45.45
	36.36
	91.43


	PA and UA at 25DAS


	Blw_MV
	96.46
	92.11
	79.92
	80.56
	83.86
	70.30


	Rice
	89.54
	85.09
	76.47
	83.27
	74.84
	77.63


	Water
	100
	100
	100
	94.04
	67.16
	100


	Soil
	98.46
	98.97
	84.62
	97.06
	87.69
	68.67


	Mixed Vegetation
	73.84
	87.59
	65.12
	54.11
	15.12
	61.90


	PA and UA at 30DAS


	Blw_MV
	96.55
	99.45
	91.51
	95.04
	83.82
	79.60


	Rice
	89.20
	77.01
	51.76
	56.13
	72.61
	58.03


	Water
	100
	100
	100
	92.82
	74.03
	100


	Soil
	100
	100
	95.00
	78.26
	80.00
	99.31


	Mixed Vegetation
	63.81
	80.00
	33.46
	40.76
	5.45
	66.67







At 25 DAS (Table 8), classification accuracy improves for all methods. SVM remains the best performer with a producer accuracy of 96.46% and user accuracy of 92.11% for Blw_MV. Minimum Distance also improves (79.92% and 80.56%, respectively), and Parallelepiped shows better results compared to 15 DAS, although its accuracy (83.86% PA, 70.30% UA) still trails behind SVM. By 30 DAS, the classification performance peaks. SVM achieves nearly perfect accuracy for Blw_MV, with 96.55% producer accuracy and 99.45% user accuracy. Minimum Distance also shows high accuracy (91.51% PA, 95.04% UA), while Parallelepiped, although improved, remains the least reliable (83.82% PA, 79.60% UA).



3.2.1 Comparative analysis of classification models for MV detection

Table 9 presents the classification performance of SVM, MD, and PP classifiers for detecting MV at three different growth stages: 15 DAS, 25 DAS, and 30 DAS. The analysis is based on Overall Accuracy, Kappa Coefficient, Mean, and Standard Deviation (StDev).


Table 9 | Classification analysis of at 15DAS, 25DAS, 30DAS.
	Species/DAS
	MV_15DAS
	MV_25DAS
	MV_30DAS


	Classifier
	Overall accuracy
	Kappa coefficient
	Mean
	StDev
	Overall accuracy
	Kappa coefficient
	Mean
	StDev
	Overall accuracy
	Kappa coefficient
	Mean
	StDev



	SVM
	97.77
	0.97
	3.50
	1.65
	95.06
	0.94
	3.6
	1.6
	95.01
	0.93
	3.67
	1.61


	MD
	85.49
	0.82
	3.59
	1.62
	88.17
	0.85
	3.57
	1.6
	86.16
	0.81
	3.92
	1.45


	PP
	72.02
	0.66
	2.88
	2.14
	79.11
	0.74
	3.22
	1.8
	82.18
	0.75
	2.77
	2.02







Among the three classifiers, SVM consistently achieved the highest accuracy, with 97.77% at 15 DAS, 95.06% at 25 DAS, and 95.01% at 30 DAS. This high accuracy is supported by a Kappa coefficient above 0.93 for all time intervals, indicating strong agreement between the predicted and actual classifications. The MD classifier performed moderately well, with an accuracy of 85.49% at 15 DAS, 88.17% at 25 DAS, and 86.16% at 30 DAS, along with a Kappa coefficient ranging from 0.807 to 0.851. However, PP had the lowest accuracy, with 72.02% at 15 DAS, 79.11% at 25 DAS, and 82.18% at 30 DAS, and a significantly lower Kappa coefficient (ranging from 0.657 to 0.753), indicating weaker classification reliability.

The mean values indicate the general effectiveness of each classifier, with SVM maintaining the highest mean values (3.5 at 15 DAS, 3.6 at 25 DAS, and 3.7 at 30 DAS). MD has relatively stable mean values, though slightly lower than SVM, while PP consistently shows the lowest mean values, reflecting its weaker classification performance. The standard deviation (StDev) values provide insight into classification stability, with SVM having the lowest standard deviation values across all time points, signifying more consistent classification performance. MD and PP show higher standard deviation values, particularly PP, which exhibits the highest variation in classification performance, suggesting that its results are more inconsistent.



3.2.1.1 Vegetation cover analysis

The vegetation cover analysis in the rice field using Support Vector Machine (SVM) classification at 15 DAS, 25 DAS, and 30 DAS provides insights into the distribution and rate of change of different vegetation classes over time (Figure 6). The first bar chart illustrates the percentage cover of various land cover classes—Monochoria vaginalis (Blw_MV), Rice, Water, Soil, and Mixed Vegetation—at different growth stages, while the second bar chart highlights the rate of change (%) in vegetation cover between the different time intervals.

At 15 DAS, rice dominates the plot, covering 45.65% of the area, followed by soil (25.60%), water (9.64%), mixed vegetation (11.85%), and broadleaf weed Monochoria vaginalis (7.26%). As the rice matures at 25 DAS, its cover decreases significantly to 34.79%, indicating competition with other vegetation classes or changes in spectral response due to canopy development. During this period, mixed vegetation expands from 11.85% to 20.10%, and water coverage increases from 9.64% to 15.54%, likely due to water management practices in the rice field. By 30 DAS, rice cover increases slightly to 35.92%, while mixed vegetation remains high at 19.37%, and soil coverage increases substantially to 29.82%. Water cover, on the other hand, decreases significantly to 6.19%, suggesting a reduction in flooded areas as the rice field transitions into later growth stages.

Figure 9 provides a clearer view of the rate of change (%) in vegetation cover between time intervals. The broadleaf weed (Blw_MV) cover slightly increases by 1.44% over time, indicating gradual weed spread, which may become a concern for rice productivity if not controlled. Rice cover exhibits the most significant decline (-9.73%), primarily between 15 DAS and 25 DAS, possibly due to increased weed competition, water dynamics, or spectral confusion in the classification process. Water cover also decreases (-3.45%), reflecting reduced flooded areas as the rice field progresses toward maturity and water levels stabilize. In contrast, soil cover increases by 4.22%, indicating more exposed areas, possibly due to drying conditions or changes in crop structure. Mixed vegetation experiences the highest positive change (7.51%), suggesting the expansion of non-rice vegetation, including weeds and other plant species, which could affect rice growth if not managed effectively.

[image: Bar chart showing vegetation cover rate changes in percentage for five categories: Blw_MV increases by 1.44 percent, Rice decreases by 9.73 percent, Water decreases by 3.45 percent, Soil increases by 4.22 percent, and Mix_Vege increases by 7.51 percent.]
Figure 9 | Vegetation cover rate changes (%) for MV in 15DAS – 30DAS.

Rice cover decreases significantly between 15 DAS and 25 DAS, followed by a slight recovery at 30 DAS. This may indicate a competitive effect from weeds or changes in the spectral reflectance of rice at different growth stages. Mixed vegetation increases sharply, particularly between 15 DAS and 25 DAS. This suggests that non-rice plant species are establishing dominance, requiring early intervention strategies for effective weed control.

Water cover initially increases from 15 DAS to 25 DAS but declines sharply by 30 DAS. This may be due to changes in field management practices, such as water drainage or evaporation. Soil exposure increases, particularly between 25 DAS and 30 DAS. This could be linked to drier field conditions or the reduction of water levels, leading to increased bare soil detection. Broadleaf weed cover is increasing steadily over time, suggesting the potential for more aggressive weed infestation if not controlled. This highlights the need for timely weed management practices, such as herbicide application or manual weeding, to maintain rice yield.






3.3 Detection of broadleaf weed: Sphenoclea zeylanica

The classification of Sphenoclea zeylanica (Blw_SZ) analysis shows that the Support Vector Machine (SVM) algorithm consistently delivers the highest classification performance across all growth stages (Figure 10). At 15DAS (Table 10), SVM achieves a producer accuracy of 98.25% and a user accuracy of 96.55%, indicating strong capability in correctly detecting and labeling this weed even in its early stage. In contrast, Minimum Distance records lower accuracy (78.95% PA and 80.36% UA), and Parallelepiped performs moderately (85.09% PA and 67.83% UA), showing a tendency for more misclassifications compared to SVM.

[image: Comparison of three classification methods—SVM, MD, and PP—for mapping agricultural land cover in a rectangular field at three time points (SZ_15DAS, SZ_25DAS, SZ_30DAS), showing distinct colored sections for broadleaf weed (red), rice (light green), mixed vegetation (dark green), soil (yellow), water (blue), and unclassified (black), with a color legend provided for reference.]
Figure 10 | SZ detection in rice field implementing supervised classification algorithm.


Table 10 | Comparison of producer accuracy and user accuracy for each algorithm for plant classification (Sphenoclea zeylanica) at 15, 25, 30DAS.
	Classifier/ROI class
	SVM
	MD
	PP


	Class
	Prod. acc. (%)
	User acc. (%)
	Prod. acc. (%)
	User acc. (%)
	Prod. acc. (%)
	User acc. (%)



	PA and UA at 15DAS


	Blw_SZ
	98.25
	96.55
	78.95
	80.36
	85.09
	67.83


	Rice
	100
	100
	99.02
	89.78
	77.45
	100


	Water
	100
	98.68
	100
	84.18
	32.89
	100


	Soil
	100
	100
	88.20
	93.45
	85.39
	100


	Mixed Vegetation
	96.49
	100
	49.12
	72.73
	84.21
	44.04


	PA and UA at 25DAS


	Blw_SZ
	99.70
	98.80
	60.79
	65.57
	89.06
	80.94


	Rice
	99.72
	99.44
	61.62
	67.07
	70.31
	98.43


	Water
	100
	100
	91.92
	83.11
	69.70
	100


	Soil
	100
	100
	98.01
	100
	83.11
	100


	Mixed Vegetation
	97.71
	100
	88.00
	78.17
	81.14
	90.45


	PA and UA at 30DAS


	Blw_SZ
	99.70
	98.80
	60.79
	65.57
	89.06
	80.94


	Rice
	99.72
	99.44
	61.62
	67.07
	70.31
	98.43


	Water
	100
	100
	91.92
	83.11
	69.70
	100


	Soil
	100
	100
	98.01
	100
	83.11
	100


	Mixed Vegetation
	97.71
	100
	88.00
	78.17
	81.14
	90.45







At 25DAS (Table 10), SVM remains the top performer with 99.70% producer accuracy and 98.80% user accuracy for Blw_SZ. This high consistency proves SVM’s robustness as the plant grows. Minimum Distance, on the other hand, drops significantly in user accuracy to 65.57%, even though it still correctly identifies some Blw_SZ cases (60.79% PA). Parallelepiped performs relatively better than Minimum Distance with 89.06% PA and 80.94% UA, but still cannot match the precision of SVM.

At 30DAS (Table 10), all methods show some improvement, but again SVM leads with 99.04% producer accuracy and 99.42% user accuracy, showing nearly perfect classification. Minimum Distance slightly improves (73.03% PA and 67.68% UA), but remains less reliable. Parallelepiped results (81.50% PA and 54.44% UA) indicate that it still misclassifies a significant portion of other classes as Blw_SZ.



3.3.1 Comparative analysis of classification models for SZ detection

The classification analysis of Sphenoclea zeylanica (SZ) using SVM, MD, and PP at 15, 25, and 30 Days After Sowing (DAS) reveals distinct trends in classification accuracy, Kappa coefficient, and standard deviation (StDev) across different growth stages. The comparison highlights the strengths and limitations of each classification method in distinguishing SZ from rice plants, mixed vegetation, soil, and water (Please refer Table 11).


Table 11 | Classification analysis of SZ at 15DAS, 25DAS, 30DAS.
	Species/DAS
	SZ_15DAS
	SZ_25DAS
	SZ_30DAS


	Classifier
	Overall accuracy
	Kappa coefficient
	Mean
	StDev
	Overall accuracy
	Kappa coefficient
	Mean
	StDev
	Overall accuracy
	Kappa coefficient
	Mean
	StDev



	SVM
	99.35
	0.99
	3.5
	1.58
	99.62
	0.996
	3.41
	1.53
	99.68
	0.996
	3.32
	1.56


	MD
	88.69
	0.86
	3.39
	1.59
	80.5
	0.764
	3.34
	1.59
	84.32
	0.811
	3.44
	1.66


	PP
	77.69
	0.74
	2.77
	2.02
	81.96
	0.786
	2.43
	2.14
	56.86
	0.488
	1.84
	1.35







Among the three classification methods, SVM consistently outperformed MD and PP in all three time periods, with the highest overall accuracy and Kappa coefficient. At 15 DAS, SVM achieved an overall accuracy of 99.35% and a Kappa coefficient of 0.992, indicating highly accurate classification with minimal misclassification. This accuracy remained high at 25 DAS (99.62%) and 30 DAS (99.68%), with a consistently high Kappa coefficient of 0.996 at both stages. The results suggest that SVM maintains strong classification stability and reliability across all growth stages of SZ.

The MD classifier performed moderately well, but with significantly lower accuracy compared to SVM. At 15 DAS, MD achieved an accuracy of 88.69%, which declined to 80.5% at 25 DAS and 84.32% at 30 DAS. The Kappa coefficient also followed a similar pattern, decreasing from 0.863 (15 DAS) to 0.764 (25 DAS) before recovering slightly to 0.811 at 30 DAS. This fluctuation in accuracy indicates that MD struggles to maintain classification consistency over time, particularly at 25 DAS, where it recorded the lowest accuracy.

The mean classification accuracy across different days remained highest for SVM, with values around 3.5 at 15 DAS, 3.41 at 25 DAS, and 3.32 at 30 DAS, demonstrating minimal variation across growth stages. The standard deviation (StDev) for SVM also remained low (1.576 at 15 DAS, 1.528 at 25 DAS, and 1.564 at 30 DAS), indicating that the model performed consistently with minimal fluctuations.

MD showed a slightly lower mean classification value compared to SVM, with more variation in its accuracy over time. At 15 DAS, the mean was 3.39, which slightly dropped to 3.34 at 25 DAS but increased to 3.44 at 30 DAS. The standard deviation remained relatively stable but was slightly higher than SVM, with values of 1.59 at 15 DAS, 1.52 at 25 DAS, and 1.66 at 30 DAS. Parallelepiped, on the other hand, showed the lowest mean classification values and the highest standard deviation, indicating poor stability and high variability in classification performance.



3.3.1.1 Vegetation class cover

The vegetation class cover analysis for Sphenoclea zeylanica (SZ) plots at 15, 25, and 30 Days After Sowing (DAS) presents insights into how different vegetation classes change over time (Figure 11). The distribution of vegetation classes shows notable shifts in cover percentage for broadleaf weed (SZ), rice, water, soil, and mixed vegetation from 15 DAS to 30 DAS. Sphenoclea zeylanica (Blw_SZ) increased its coverage from 6.13% at 15 DAS to 8.05% at 25 DAS and 9.71% at 30 DAS. This growth suggests that SZ is expanding in coverage, possibly due to favorable growth conditions or competition with other vegetation.

[image: Bar chart titled “Vegetation Class Cover Distribution Percentage SZ Plot” shows five categories—Blw_SZ, Rice, Water, Soil, Mix_Vege—across 15, 25, and 30 DAS intervals. Rice consistently has the highest cover percentage.]
Figure 11 | Vegetation class cover distribution (%) for Plot 3_SZ.

Rice cover fluctuated slightly, decreasing from 38.11% at 15 DAS to 36.25% at 25 DAS before rising again to 39.51% at 30 DAS. The decline at 25 DAS could indicate competition with other vegetation or variability in plant canopy development, but the recovery at 30 DAS suggests that the rice plants continued to develop. Water coverage increased from 24.00% at 15 DAS to 28.73% at 25 DAS, likely due to field irrigation or natural water retention. However, by 30 DAS, water cover dropped to 26.20%, which might indicate water absorption by plants or a reduction in standing water due to evaporation and soil infiltration.

Soil exposure also varied, rising from 17.94% at 15 DAS to 20.64% at 25 DAS, possibly due to changes in vegetation density or water levels. However, it dropped significantly to 15.46% at 30 DAS, suggesting that the vegetation cover increased, reducing visible soil. Mixed vegetation (Mix_Vege) saw a drastic decline, starting at 13.82% at 15 DAS, plummeting to 6.32% at 25 DAS, and slightly recovering to 9.12% at 30 DAS. This suggests that mixed vegetation was outcompeted by SZ, rice, or other dominant classes, leading to a significant reduction in its coverage.

Figure 12 quantifies the net rate of change (%) in vegetation cover from 15 DAS to 30 DAS. Sphenoclea zeylanica (Blw_SZ) exhibited the highest positive change, increasing by 3.58%, confirming its expansion over time. Rice also increased slightly, with a net gain of 1.39%, indicating stable growth despite minor fluctuations. Water cover rose by 2.21%, reflecting a moderate increase, likely influenced by field conditions and irrigation. Soil coverage decreased significantly by -2.48%, meaning that vegetation gradually covered more of the exposed ground. Mixed vegetation suffered the most significant decline, with a drastic decrease of -4.71%, suggesting significant suppression or competition from other plant species like SZ and rice. The vegetation dynamics observed in the SZ plots indicate that Sphenoclea zeylanica (SZ) is expanding its coverage over time, which could pose a potential weed problem in rice fields. While rice cover remained relatively stable, the reduction in mixed vegetation suggests that SZ and rice may be outcompeting other plant species.

[image: Bar chart titled Vegetation Cover Rate Changes (%) showing five categories: Blw_SZ has the highest positive change at 3.58 percent, followed by Water at 2.21 percent and Rice at 1.39 percent. Soil decreases by 2.48 percent, and Mix_Vege shows the largest negative change at negative 4.71 percent. Each bar is depicted in a different color.]
Figure 12 | Vegetation cover rate changes (%) for SZ in 15DAS – 30DAS.







4 Discussions

The progressive improvement in classification accuracy across growth stages (from 15 to 30 DAS) can be attributed to several biophysical and canopy structural changes. At early stages, spectral confusion between rice and broadleaf weeds tends to be higher due to smaller leaf area and more pronounced soil background interference (Roslin et al., 2021). As the crop and weed canopies develop, increased canopy cover reduces soil reflectance influence and enhances spectral separation among classes. This phenomenon is supported by studies demonstrating that better-developed canopies amplify between-species spectral variability, thus improving classification performance (Dai et al., 2024; Zhang et al., 2025). Additionally, advances in radiative transfer modeling and 3D canopy representation have shown that leaf biochemical traits such as chlorophyll content become more distinctly expressed as plants mature, further aiding classification (Zhang et al., 2025). Collectively, these factors explain the accuracy trends observed in our study.

Among the classifiers, SVM consistently outperformed MD and PP at all growth stages. SVM achieved the highest classification accuracies, often exceeding 99%, and demonstrated strong agreement with ground truth data, as evidenced by high kappa coefficients. This finding aligns with existing literature that highlights SVM’s suitability for high-dimensional hyperspectral data due to its capacity to manage small training datasets and non-linear class separability (Melgani and Bruzzone, 2004; Camps-Valls and Bruzzone, 2005). Its robustness and ability to generalize well in complex agricultural scenes make SVM a top choice for vegetation classification (Li et al., 2021).

For Limnocharis flava, SVM achieved near-perfect accuracy at all stages, while MD and PP were less consistent. PP performed worst due to rigid decision rules prone to spectral confusion in heterogeneous crop environments (Thenkabail et al., 2011; Manakos et al., 2000). For Monochoria vaginalis, all classifiers improved over time, but SVM maintained the highest accuracy. MD showed moderate gains but remained sensitive to within-class variability (Pal, 2005), and PP’s high producer but low user accuracy indicated frequent false positives. For Sphenoclea zeylanica, SVM again excelled, achieving 98.25% PA at 15 DAS (Plaza et al., 2009), while MD fluctuated in accuracy and PP remained the least reliable due to its simplistic rectangular decision rules.

The proportion of weed pixels showed a clear increasing trend from 15 DAS to 30 DAS, indicating progressive weed pressure over time. At 15 DAS, weed presence was relatively low, but early detection at this stage is critical because intervention can prevent rapid population growth and competition for resources. By 25 DAS, weed coverage had increased substantially, suggesting that delayed management may require higher herbicide doses or more labor-intensive control measures. At 30 DAS, peak weed pressure was observed, coinciding with greater canopy closure, which can hinder mechanical or targeted chemical control. This pattern mirrors findings by Abdul Khaliq and Amar Matloob (2011), who reported that weed density peaks between 20 and 30 DAS and that competition beyond 20 DAS causes severe yield losses. These results suggest that the most effective intervention window would be between 15 and 25 DAS, when weed plants are still small, easier to control, and before they cause significant yield losses.

The vegetation cover analysis reinforced these findings. In all three plots, rice vegetation covers generally increased over time, indicating successful crop establishment. Between 15 to 25 DAS, rice cover exhibits a modest increase reflecting the gradual establishment of seedlings during early vegetative growth. Meanwhile, broadleaf weeds showed a gradual but steady increase, suggesting active competition and the importance of early weed control. These results are consistent with findings by Ali et al. (2020), who emphasized that broadleaf weeds, if not managed early, can establish quickly and reduce rice productivity. Mixed vegetation, water, and soil cover all declined, especially by 30 DAS, likely due to the expansion of crop canopy that obscured bare ground and open water. In 30 DAS, rice also entered tillering phase, characterized by accelerated leaf area development and rapid canopy closure, causing more pronounced coverage changes over shorter time periods. Such dynamics are commonly reported in agricultural remote sensing studies as crops grow and dominate the spectral scene (Zhou et al., 2008).

This study also has several limitations. The classification methods, particularly MD and PP, were susceptible to spectral overlap between classes, especially during early growth stages when plant physiological characteristics were similar. Pixel-based classification errors may contribute to minor fluctuations in coverage percentage. Environmental factors such as variable illumination, soil background reflectance, and atmospheric noise may have further contributed to misclassification (Al-Badri et al., 2022). While SVM consistently provided higher accuracy, it still requires careful parameter tuning to avoid overfitting and to generalize across different field conditions. Future research could explore advanced machine learning models such as Random Forests, Convolutional Neural Networks (CNNs), or Transformer-based architectures, which may capture complex spectral–spatial relationships more effectively. Additionally, fusing hyperspectral data with other modalities (e.g., LiDAR or thermal) may help overcome spectral confusion and improve robustness.

The classification outputs generated in this study have practical potential in supporting UAV-based weed scouting and enabling site-specific herbicide applications. Such approaches can help reduce herbicide usage, lower production costs, and minimize environmental impact (Allmendinger et al., 2024). However, barriers to large-scale adoption remain, including the high cost of hyperspectral sensors, the need for skilled data analysts, and UAV operational limitations for covering extensive farmland. Addressing these challenges through cost reduction, automated image processing pipelines, and integration with precision agriculture platforms will be essential for practical implementation.




5 Conclusions

SVM consistently outperformed MD and PP in classifying all three broadleaf weed species at 15, 25, and 30 DAS (Table 12). At 15 DAS, SVM achieved an accuracy above 99% for all three weed species, with low omission and commission errors, ensuring minimal misclassification. At 25 DAS, SVM maintained over 99% accuracy, confirming its ability to distinguish Limnocharis flava, Monochoria vaginalis, and Sphenoclea zeylanica from other spectral classes. At 30 DAS, SVM continued to be the most stable classifier, with 99%+ accuracy, proving its effectiveness in differentiating weeds from rice even at later growth stages. SVM is the best choice for classifying all three broadleaf weeds, with consistently high accuracy and minimal misclassification.


Table 12 | Comparison of accuracy level for all algorithm for plant classification at 15DAS, 25DAS, and 30DAS.
	Broadleaf weed species
	Best classifier
	Accuracy at 15 DAS
	Accuracy at 25 DAS
	Accuracy at 30 DAS



	Limnocharis flava
	SVM
	99.30%
	99.50%
	99.60%


	Monochoria vaginalis
	SVM
	99.20%
	99.40%
	99.50%


	Sphenoclea zeylanica
	SVM
	99.35%
	99.62%
	99.68%


	Limnocharis flava
	MD
	87.80%
	82.50%
	85.20%


	Monochoria vaginalis
	MD
	85.90%
	80.10%
	83.30%


	Sphenoclea zeylanica
	MD
	88.69%
	80.50%
	84.32%


	Limnocharis flava
	PP
	76.50%
	80.20%
	56.80%


	Monochoria vaginalis
	PP
	77.30%
	81.10%
	58.60%


	Sphenoclea zeylanica
	PP
	77.69%
	81.96%
	56.86%







The vegetation cover analysis at 15, 25, and 30 DAS showed key trends in broadleaf weed expansion in rice fields. All three broadleaf weeds showed increasing coverage over time, indicating their rapid spread and competition with rice. Rice cover fluctuated, decreasing slightly at 25 DAS before recovering at 30 DAS, suggesting that weeds and other vegetation impact rice growth. Mixed vegetation declined significantly, showing that broadleaf weeds outcompeted other plants. Soil cover decreased over time, reflecting increased vegetation dominance in the field. These results highlight the importance of early detection and management of broadleaf weeds to prevent them from negatively impacting rice yield. By improving the precision of weed identification through hyperspectral imaging, this study contributes to developing better-targeted weed control strategies, leading to more sustainable agricultural practices and optimized crop yields.
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/*************************************************************
 *
 *  MathJax.js
 *  
 *  The main code for the MathJax math-typesetting library.  See 
 *  http://www.mathjax.org/ for details.
 *  
 *  ---------------------------------------------------------------------
 *  
 *  Copyright (c) 2009-2012 Design Science, Inc.
 * 
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 * 
 *      http://www.apache.org/licenses/LICENSE-2.0
 * 
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

if (!window.MathJax) {window.MathJax = {}}

MathJax.isPacked = true;
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OPS/images/fpls.2025.1676798/MathJax.js
/*************************************************************
 *
 *  MathJax.js
 *  
 *  The main code for the MathJax math-typesetting library.  See 
 *  http://www.mathjax.org/ for details.
 *  
 *  ---------------------------------------------------------------------
 *  
 *  Copyright (c) 2009-2012 Design Science, Inc.
 * 
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 * 
 *      http://www.apache.org/licenses/LICENSE-2.0
 * 
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

if (!window.MathJax) {window.MathJax = {}}

MathJax.isPacked = true;
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/*************************************************************
 *
 *  MathJax.js
 *  
 *  The main code for the MathJax math-typesetting library.  See 
 *  http://www.mathjax.org/ for details.
 *  
 *  ---------------------------------------------------------------------
 *  
 *  Copyright (c) 2009-2012 Design Science, Inc.
 * 
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 * 
 *      http://www.apache.org/licenses/LICENSE-2.0
 * 
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

if (!window.MathJax) {window.MathJax = {}}

MathJax.isPacked = true;

if(document.getElementById&&document.childNodes&&document.createElement){if(!window.MathJax){window.MathJax={}}if(!MathJax.Hub){MathJax.version="2.1";MathJax.fileversion="2.1";(function(d){var b=window[d];if(!b){b=window[d]={}}var f=[];var c=function(g){var h=g.constructor;if(!h){h=new Function("")}for(var i in g){if(i!=="constructor"&&g.hasOwnProperty(i)){h[i]=g[i]}}return h};var a=function(){return new Function("return arguments.callee.Init.call(this,arguments)")};var e=a();e.prototype={bug_test:1};if(!e.prototype.bug_test){a=function(){return function(){return arguments.callee.Init.call(this,arguments)}}}b.Object=c({constructor:a(),Subclass:function(g,i){var h=a();h.SUPER=this;h.Init=this.Init;h.Subclass=this.Subclass;h.Augment=this.Augment;h.protoFunction=this.protoFunction;h.can=this.can;h.has=this.has;h.isa=this.isa;h.prototype=new this(f);h.prototype.constructor=h;h.Augment(g,i);return h},Init:function(g){var h=this;if(g.length===1&&g[0]===f){return h}if(!(h instanceof g.callee)){h=new g.callee(f)}return h.Init.apply(h,g)||h},Augment:function(g,h){var i;if(g!=null){for(i in g){if(g.hasOwnProperty(i)){this.protoFunction(i,g[i])}}if(g.toString!==this.prototype.toString&&g.toString!=={}.toString){this.protoFunction("toString",g.toString)}}if(h!=null){for(i in h){if(h.hasOwnProperty(i)){this[i]=h[i]}}}return this},protoFunction:function(h,g){this.prototype[h]=g;if(typeof g==="function"){g.SUPER=this.SUPER.prototype}},prototype:{Init:function(){},SUPER:function(g){return g.callee.SUPER},can:function(g){return typeof(this[g])==="function"},has:function(g){return typeof(this[g])!=="undefined"},isa:function(g){return(g instanceof Object)&&(this instanceof g)}},can:function(g){return this.prototype.can.call(this,g)},has:function(g){return this.prototype.has.call(this,g)},isa:function(h){var g=this;while(g){if(g===h){return true}else{g=g.SUPER}}return false},SimpleSUPER:c({constructor:function(g){return this.SimpleSUPER.define(g)},define:function(g){var i={};if(g!=null){for(var h in g){if(g.hasOwnProperty(h)){i[h]=this.wrap(h,g[h])}}if(g.toString!==this.prototype.toString&&g.toString!=={}.toString){i.toString=this.wrap("toString",g.toString)}}return i},wrap:function(i,h){if(typeof(h)==="function"&&h.toString().match(/\.\s*SUPER\s*\(/)){var g=new Function(this.wrapper);g.label=i;g.original=h;h=g;g.toString=this.stringify}return h},wrapper:function(){var h=arguments.callee;this.SUPER=h.SUPER[h.label];try{var g=h.original.apply(this,arguments)}catch(i){delete this.SUPER;throw i}delete this.SUPER;return g}.toString().replace(/^\s*function\s*\(\)\s*\{\s*/i,"").replace(/\s*\}\s*$/i,""),toString:function(){return this.original.toString.apply(this.original,arguments)}})})})("MathJax");(function(BASENAME){var BASE=window[BASENAME];if(!BASE){BASE=window[BASENAME]={}}var CALLBACK=function(data){var cb=new Function("return arguments.callee.execute.apply(arguments.callee,arguments)");for(var id in CALLBACK.prototype){if(CALLBACK.prototype.hasOwnProperty(id)){if(typeof(data[id])!=="undefined"){cb[id]=data[id]}else{cb[id]=CALLBACK.prototype[id]}}}cb.toString=CALLBACK.prototype.toString;return cb};CALLBACK.prototype={isCallback:true,hook:function(){},data:[],object:window,execute:function(){if(!this.called||this.autoReset){this.called=!this.autoReset;return this.hook.apply(this.object,this.data.concat([].slice.call(arguments,0)))}},reset:function(){delete this.called},toString:function(){return this.hook.toString.apply(this.hook,arguments)}};var ISCALLBACK=function(f){return(typeof(f)==="function"&&f.isCallback)};var EVAL=function(code){return eval.call(window,code)};EVAL("var __TeSt_VaR__ = 1");if(window.__TeSt_VaR__){try{delete window.__TeSt_VaR__}catch(error){window.__TeSt_VaR__=null}}else{if(window.execScript){EVAL=function(code){BASE.__code=code;code="try {"+BASENAME+".__result = eval("+BASENAME+".__code)} catch(err) {"+BASENAME+".__result = err}";window.execScript(code);var result=BASE.__result;delete BASE.__result;delete BASE.__code;if(result instanceof Error){throw result}return result}}else{EVAL=function(code){BASE.__code=code;code="try {"+BASENAME+".__result = eval("+BASENAME+".__code)} catch(err) {"+BASENAME+".__result = err}";var head=(document.getElementsByTagName("head"))[0];if(!head){head=document.body}var script=document.createElement("script");script.appendChild(document.createTextNode(code));head.appendChild(script);head.removeChild(script);var result=BASE.__result;delete BASE.__result;delete BASE.__code;if(result instanceof Error){throw result}return result}}}var USING=function(args,i){if(arguments.length>1){if(arguments.length===2&&!(typeof arguments[0]==="function")&&arguments[0] instanceof Object&&typeof arguments[1]==="number"){args=[].slice.call(args,i)}else{args=[].slice.call(arguments,0)}}if(args instanceof Array&&args.length===1){args=args[0]}if(typeof args==="function"){if(args.execute===CALLBACK.prototype.execute){return args}return CALLBACK({hook:args})}else{if(args instanceof Array){if(typeof(args[0])==="string"&&args[1] instanceof Object&&typeof args[1][args[0]]==="function"){return CALLBACK({hook:args[1][args[0]],object:args[1],data:args.slice(2)})}else{if(typeof args[0]==="function"){return CALLBACK({hook:args[0],data:args.slice(1)})}else{if(typeof args[1]==="function"){return CALLBACK({hook:args[1],object:args[0],data:args.slice(2)})}}}}else{if(typeof(args)==="string"){return CALLBACK({hook:EVAL,data:[args]})}else{if(args instanceof Object){return CALLBACK(args)}else{if(typeof(args)==="undefined"){return CALLBACK({})}}}}}throw Error("Can't make callback from given data")};var DELAY=function(time,callback){callback=USING(callback);callback.timeout=setTimeout(callback,time);return callback};var WAITFOR=function(callback,signal){callback=USING(callback);if(!callback.called){WAITSIGNAL(callback,signal);signal.pending++}};var WAITEXECUTE=function(){var signals=this.signal;delete this.signal;this.execute=this.oldExecute;delete this.oldExecute;var result=this.execute.apply(this,arguments);if(ISCALLBACK(result)&&!result.called){WAITSIGNAL(result,signals)}else{for(var i=0,m=signals.length;i<m;i++){signals[i].pending--;if(signals[i].pending<=0){signals[i].call()}}}};var WAITSIGNAL=function(callback,signals){if(!(signals instanceof Array)){signals=[signals]}if(!callback.signal){callback.oldExecute=callback.execute;callback.execute=WAITEXECUTE;callback.signal=signals}else{if(signals.length===1){callback.signal.push(signals[0])}else{callback.signal=callback.signal.concat(signals)}}};var AFTER=function(callback){callback=USING(callback);callback.pending=0;for(var i=1,m=arguments.length;i<m;i++){if(arguments[i]){WAITFOR(arguments[i],callback)}}if(callback.pending===0){var result=callback();if(ISCALLBACK(result)){callback=result}}return callback};var HOOKS=MathJax.Object.Subclass({Init:function(reset){this.hooks=[];this.reset=reset},Add:function(hook,priority){if(priority==null){priority=10}if(!ISCALLBACK(hook)){hook=USING(hook)}hook.priority=priority;var i=this.hooks.length;while(i>0&&priority<this.hooks[i-1].priority){i--}this.hooks.splice(i,0,hook);return hook},Remove:function(hook){for(var i=0,m=this.hooks.length;i<m;i++){if(this.hooks[i]===hook){this.hooks.splice(i,1);return}}},Execute:function(){var callbacks=[{}];for(var i=0,m=this.hooks.length;i<m;i++){if(this.reset){this.hooks[i].reset()}var result=this.hooks[i].apply(window,arguments);if(ISCALLBACK(result)&&!result.called){callbacks.push(result)}}if(callbacks.length===1){return null}if(callbacks.length===2){return callbacks[1]}return AFTER.apply({},callbacks)}});var EXECUTEHOOKS=function(hooks,data,reset){if(!hooks){return null}if(!(hooks instanceof Array)){hooks=[hooks]}if(!(data instanceof Array)){data=(data==null?[]:[data])}var handler=HOOKS(reset);for(var i=0,m=hooks.length;i<m;i++){handler.Add(hooks[i])}return handler.Execute.apply(handler,data)};var QUEUE=BASE.Object.Subclass({Init:function(){this.pending=0;this.running=0;this.queue=[];this.Push.apply(this,arguments)},Push:function(){var callback;for(var i=0,m=arguments.length;i<m;i++){callback=USING(arguments[i]);if(callback===arguments[i]&&!callback.called){callback=USING(["wait",this,callback])}this.queue.push(callback)}if(!this.running&&!this.pending){this.Process()}return callback},Process:function(queue){while(!this.running&&!this.pending&&this.queue.length){var callback=this.queue[0];queue=this.queue.slice(1);this.queue=[];this.Suspend();var result=callback();this.Resume();if(queue.length){this.queue=queue.concat(this.queue)}if(ISCALLBACK(result)&&!result.called){WAITFOR(result,this)}}},Suspend:function(){this.running++},Resume:function(){if(this.running){this.running--}},call:function(){this.Process.apply(this,arguments)},wait:function(callback){return callback}});var SIGNAL=QUEUE.Subclass({Init:function(name){QUEUE.prototype.Init.call(this);this.name=name;this.posted=[];this.listeners=HOOKS(true)},Post:function(message,callback,forget){callback=USING(callback);if(this.posting||this.pending){this.Push(["Post",this,message,callback,forget])}else{this.callback=callback;callback.reset();if(!forget){this.posted.push(message)}this.Suspend();this.posting=true;var result=this.listeners.Execute(message);if(ISCALLBACK(result)&&!result.called){WAITFOR(result,this)}this.Resume();delete this.posting;if(!this.pending){this.call()}}return callback},Clear:function(callback){callback=USING(callback);if(this.posting||this.pending){callback=this.Push(["Clear",this,callback])}else{this.posted=[];callback()}return callback},call:function(){this.callback(this);this.Process()},Interest:function(callback,ignorePast,priority){callback=USING(callback);this.listeners.Add(callback,priority);if(!ignorePast){for(var i=0,m=this.posted.length;i<m;i++){callback.reset();var result=callback(this.posted[i]);if(ISCALLBACK(result)&&i===this.posted.length-1){WAITFOR(result,this)}}}return callback},NoInterest:function(callback){this.listeners.Remove(callback)},MessageHook:function(msg,callback,priority){callback=USING(callback);if(!this.hooks){this.hooks={};this.Interest(["ExecuteHooks",this])}if(!this.hooks[msg]){this.hooks[msg]=HOOKS(true)}this.hooks[msg].Add(callback,priority);for(var i=0,m=this.posted.length;i<m;i++){if(this.posted[i]==msg){callback.reset();callback(this.posted[i])}}return callback},ExecuteHooks:function(msg,more){var type=((msg instanceof Array)?msg[0]:msg);if(!this.hooks[type]){return null}return this.hooks[type].Execute(msg)}},{signals:{},find:function(name){if(!SIGNAL.signals[name]){SIGNAL.signals[name]=new SIGNAL(name)}return SIGNAL.signals[name]}});BASE.Callback=BASE.CallBack=USING;BASE.Callback.Delay=DELAY;BASE.Callback.After=AFTER;BASE.Callback.Queue=QUEUE;BASE.Callback.Signal=SIGNAL.find;BASE.Callback.Hooks=HOOKS;BASE.Callback.ExecuteHooks=EXECUTEHOOKS})("MathJax");(function(d){var a=window[d];if(!a){a=window[d]={}}var c=(navigator.vendor==="Apple Computer, Inc."&&typeof navigator.vendorSub==="undefined");var f=0;var g=function(h){if(document.styleSheets&&document.styleSheets.length>f){f=document.styleSheets.length}if(!h){h=(document.getElementsByTagName("head"))[0];if(!h){h=document.body}}return h};var e=[];var b=function(){for(var j=0,h=e.length;j<h;j++){a.Ajax.head.removeChild(e[j])}e=[]};a.Ajax={loaded:{},loading:{},loadHooks:{},timeout:15*1000,styleDelay:1,config:{root:""},STATUS:{OK:1,ERROR:-1},rootPattern:new RegExp("^\\["+d+"\\]"),fileURL:function(h){return h.replace(this.rootPattern,this.config.root)},Require:function(j,m){m=a.Callback(m);var k;if(j instanceof Object){for(var h in j){}k=h.toUpperCase();j=j[h]}else{k=j.split(/\./).pop().toUpperCase()}j=this.fileURL(j);if(this.loaded[j]){m(this.loaded[j])}else{var l={};l[k]=j;this.Load(l,m)}return m},Load:function(j,l){l=a.Callback(l);var k;if(j instanceof Object){for(var h in j){}k=h.toUpperCase();j=j[h]}else{k=j.split(/\./).pop().toUpperCase()}j=this.fileURL(j);if(this.loading[j]){this.addHook(j,l)}else{this.head=g(this.head);if(this.loader[k]){this.loader[k].call(this,j,l)}else{throw Error("Can't load files of type "+k)}}return l},LoadHook:function(k,l,j){l=a.Callback(l);if(k instanceof Object){for(var h in k){k=k[h]}}k=this.fileURL(k);if(this.loaded[k]){l(this.loaded[k])}else{this.addHook(k,l,j)}return l},addHook:function(i,j,h){if(!this.loadHooks[i]){this.loadHooks[i]=MathJax.Callback.Hooks()}this.loadHooks[i].Add(j,h)},Preloading:function(){for(var k=0,h=arguments.length;k<h;k++){var j=this.fileURL(arguments[k]);if(!this.loading[j]){this.loading[j]={preloaded:true}}}},loader:{JS:function(i,k){var h=document.createElement("script");var j=a.Callback(["loadTimeout",this,i]);this.loading[i]={callback:k,message:a.Message.File(i),timeout:setTimeout(j,this.timeout),status:this.STATUS.OK,script:h};h.onerror=j;h.type="text/javascript";h.src=i;this.head.appendChild(h)},CSS:function(h,j){var i=document.createElement("link");i.rel="stylesheet";i.type="text/css";i.href=h;this.loading[h]={callback:j,message:a.Message.File(h),status:this.STATUS.OK};this.head.appendChild(i);this.timer.create.call(this,[this.timer.file,h],i)}},timer:{create:function(i,h){i=a.Callback(i);if(h.nodeName==="STYLE"&&h.styleSheet&&typeof(h.styleSheet.cssText)!=="undefined"){i(this.STATUS.OK)}else{if(window.chrome&&typeof(window.sessionStorage)!=="undefined"&&h.nodeName==="STYLE"){i(this.STATUS.OK)}else{if(c){this.timer.start(this,[this.timer.checkSafari2,f++,i],this.styleDelay)}else{this.timer.start(this,[this.timer.checkLength,h,i],this.styleDelay)}}}return i},start:function(i,h,j,k){h=a.Callback(h);h.execute=this.execute;h.time=this.time;h.STATUS=i.STATUS;h.timeout=k||i.timeout;h.delay=h.total=0;if(j){setTimeout(h,j)}else{h()}},time:function(h){this.total+=this.delay;this.delay=Math.floor(this.delay*1.05+5);if(this.total>=this.timeout){h(this.STATUS.ERROR);return 1}return 0},file:function(i,h){if(h<0){a.Ajax.loadTimeout(i)}else{a.Ajax.loadComplete(i)}},execute:function(){this.hook.call(this.object,this,this.data[0],this.data[1])},checkSafari2:function(h,i,j){if(h.time(j)){return}if(document.styleSheets.length>i&&document.styleSheets[i].cssRules&&document.styleSheets[i].cssRules.length){j(h.STATUS.OK)}else{setTimeout(h,h.delay)}},checkLength:function(h,k,m){if(h.time(m)){return}var l=0;var i=(k.sheet||k.styleSheet);try{if((i.cssRules||i.rules||[]).length>0){l=1}}catch(j){if(j.message.match(/protected variable|restricted URI/)){l=1}else{if(j.message.match(/Security error/)){l=1}}}if(l){setTimeout(a.Callback([m,h.STATUS.OK]),0)}else{setTimeout(h,h.delay)}}},loadComplete:function(h){h=this.fileURL(h);var i=this.loading[h];if(i&&!i.preloaded){a.Message.Clear(i.message);clearTimeout(i.timeout);if(i.script){if(e.length===0){setTimeout(b,0)}e.push(i.script)}this.loaded[h]=i.status;delete this.loading[h];this.addHook(h,i.callback)}else{if(i){delete this.loading[h]}this.loaded[h]=this.STATUS.OK;i={status:this.STATUS.OK}}if(!this.loadHooks[h]){return null}return this.loadHooks[h].Execute(i.status)},loadTimeout:function(h){if(this.loading[h].timeout){clearTimeout(this.loading[h].timeout)}this.loading[h].status=this.STATUS.ERROR;this.loadError(h);this.loadComplete(h)},loadError:function(h){a.Message.Set("File failed to load: "+h,null,2000);a.Hub.signal.Post(["file load error",h])},Styles:function(j,k){var h=this.StyleString(j);if(h===""){k=a.Callback(k);k()}else{var i=document.createElement("style");i.type="text/css";this.head=g(this.head);this.head.appendChild(i);if(i.styleSheet&&typeof(i.styleSheet.cssText)!=="undefined"){i.styleSheet.cssText=h}else{i.appendChild(document.createTextNode(h))}k=this.timer.create.call(this,k,i)}return k},StyleString:function(m){if(typeof(m)==="string"){return m}var j="",n,l;for(n in m){if(m.hasOwnProperty(n)){if(typeof m[n]==="string"){j+=n+" {"+m[n]+"}\n"}else{if(m[n] instanceof Array){for(var k=0;k<m[n].length;k++){l={};l[n]=m[n][k];j+=this.StyleString(l)}}else{if(n.substr(0,6)==="@media"){j+=n+" {"+this.StyleString(m[n])+"}\n"}else{if(m[n]!=null){l=[];for(var h in m[n]){if(m[n].hasOwnProperty(h)){if(m[n][h]!=null){l[l.length]=h+": "+m[n][h]}}}j+=n+" {"+l.join("; ")+"}\n"}}}}}}return j}}})("MathJax");MathJax.HTML={Element:function(c,e,d){var f=document.createElement(c);if(e){if(e.style){var b=e.style;e.style={};for(var g in b){if(b.hasOwnProperty(g)){e.style[g.replace(/-([a-z])/g,this.ucMatch)]=b[g]}}}MathJax.Hub.Insert(f,e)}if(d){if(!(d instanceof Array)){d=[d]}for(var a=0;a<d.length;a++){if(d[a] instanceof Array){f.appendChild(this.Element(d[a][0],d[a][1],d[a][2]))}else{f.appendChild(document.createTextNode(d[a]))}}}return f},ucMatch:function(a,b){return b.toUpperCase()},addElement:function(b,a,d,c){return b.appendChild(this.Element(a,d,c))},TextNode:function(a){return document.createTextNode(a)},addText:function(a,b){return a.appendChild(this.TextNode(b))},setScript:function(a,b){if(this.setScriptBug){a.text=b}else{while(a.firstChild){a.removeChild(a.firstChild)}this.addText(a,b)}},getScript:function(a){var b=(a.text===""?a.innerHTML:a.text);return b.replace(/^\s+/,"").replace(/\s+$/,"")},Cookie:{prefix:"mjx",expires:365,Set:function(a,d){var c=[];if(d){for(var f in d){if(d.hasOwnProperty(f)){c.push(f+":"+d[f].toString().replace(/&/g,"&&"))}}}var b=this.prefix+"."+a+"="+escape(c.join("&;"));if(this.expires){var e=new Date();e.setDate(e.getDate()+this.expires);b+="; expires="+e.toGMTString()}document.cookie=b+"; path=/"},Get:function(c,h){if(!h){h={}}var g=new RegExp("(?:^|;\\s*)"+this.prefix+"\\."+c+"=([^;]*)(?:;|$)");var b=g.exec(document.cookie);if(b&&b[1]!==""){var e=unescape(b[1]).split("&;");for(var d=0,a=e.length;d<a;d++){b=e[d].match(/([^:]+):(.*)/);var f=b[2].replace(/&&/g,"&");if(f==="true"){f=true}else{if(f==="false"){f=false}else{if(f.match(/^-?(\d+(\.\d+)?|\.\d+)$/)){f=parseFloat(f)}}}h[b[1]]=f}}return h}}};MathJax.Message={ready:false,log:[{}],current:null,textNodeBug:(navigator.vendor==="Apple Computer, Inc."&&typeof navigator.vendorSub==="undefined")||(window.hasOwnProperty&&window.hasOwnProperty("konqueror")),styles:{"#MathJax_Message":{position:"fixed",left:"1px",bottom:"2px","background-color":"#E6E6E6",border:"1px solid #959595",margin:"0px",padding:"2px 8px","z-index":"102",color:"black","font-size":"80%",width:"auto","white-space":"nowrap"},"#MathJax_MSIE_Frame":{position:"absolute",top:0,left:0,width:"0px","z-index":101,border:"0px",margin:"0px",padding:"0px"}},browsers:{MSIE:function(a){MathJax.Hub.config.styles["#MathJax_Message"].position="absolute";MathJax.Message.quirks=(document.compatMode==="BackCompat")},Chrome:function(a){MathJax.Hub.config.styles["#MathJax_Message"].bottom="1.5em";MathJax.Hub.config.styles["#MathJax_Message"].left="1em"}},Init:function(a){if(a){this.ready=true}if(!document.body||!this.ready){return false}if(this.div&&this.div.parentNode==null){this.div=document.getElementById("MathJax_Message");if(this.div){this.text=this.div.firstChild}}if(!this.div){var b=document.body;if(MathJax.Hub.Browser.isMSIE){b=this.frame=this.addDiv(document.body);b.removeAttribute("id");b.style.position="absolute";b.style.border=b.style.margin=b.style.padding="0px";b.style.zIndex="101";b.style.height="0px";b=this.addDiv(b);b.id="MathJax_MSIE_Frame";window.attachEvent("onscroll",this.MoveFrame);window.attachEvent("onresize",this.MoveFrame);this.MoveFrame()}this.div=this.addDiv(b);this.div.style.display="none";this.text=this.div.appendChild(document.createTextNode(""))}return true},addDiv:function(a){var b=document.createElement("div");b.id="MathJax_Message";if(a.firstChild){a.insertBefore(b,a.firstChild)}else{a.appendChild(b)}return b},MoveFrame:function(){var a=(MathJax.Message.quirks?document.body:document.documentElement);var b=MathJax.Message.frame;b.style.left=a.scrollLeft+"px";b.style.top=a.scrollTop+"px";b.style.width=a.clientWidth+"px";b=b.firstChild;b.style.height=a.clientHeight+"px"},filterText:function(a,b){if(MathJax.Hub.config.messageStyle==="simple"){if(a.match(/^Loading /)){if(!this.loading){this.loading="Loading "}a=this.loading;this.loading+="."}else{if(a.match(/^Processing /)){if(!this.processing){this.processing="Processing "}a=this.processing;this.processing+="."}else{if(a.match(/^Typesetting /)){if(!this.typesetting){this.typesetting="Typesetting "}a=this.typesetting;this.typesetting+="."}}}}return a},Set:function(b,c,a){if(this.timer){clearTimeout(this.timer);delete this.timeout}if(c==null){c=this.log.length;this.log[c]={}}this.log[c].text=b;this.log[c].filteredText=b=this.filterText(b,c);if(typeof(this.log[c].next)==="undefined"){this.log[c].next=this.current;if(this.current!=null){this.log[this.current].prev=c}this.current=c}if(this.current===c&&MathJax.Hub.config.messageStyle!=="none"){if(this.Init()){if(this.textNodeBug){this.div.innerHTML=b}else{this.text.nodeValue=b}this.div.style.display="";if(this.status){window.status="";delete this.status}}else{window.status=b;this.status=true}}if(a){setTimeout(MathJax.Callback(["Clear",this,c]),a)}else{if(a==0){this.Clear(c,0)}}return c},Clear:function(b,a){if(this.log[b].prev!=null){this.log[this.log[b].prev].next=this.log[b].next}if(this.log[b].next!=null){this.log[this.log[b].next].prev=this.log[b].prev}if(this.current===b){this.current=this.log[b].next;if(this.text){if(this.div.parentNode==null){this.Init()}if(this.current==null){if(this.timer){clearTimeout(this.timer);delete this.timer}if(a==null){a=600}if(a===0){this.Remove()}else{this.timer=setTimeout(MathJax.Callback(["Remove",this]),a)}}else{if(MathJax.Hub.config.messageStyle!=="none"){if(this.textNodeBug){this.div.innerHTML=this.log[this.current].filteredText}else{this.text.nodeValue=this.log[this.current].filteredText}}}if(this.status){window.status="";delete this.status}}else{if(this.status){window.status=(this.current==null?"":this.log[this.current].text)}}}delete this.log[b].next;delete this.log[b].prev;delete this.log[b].filteredText},Remove:function(){this.text.nodeValue="";this.div.style.display="none"},File:function(b){var a=MathJax.Ajax.config.root;if(b.substr(0,a.length)===a){b="[MathJax]"+b.substr(a.length)}return this.Set("Loading "+b)},Log:function(){var b=[];for(var c=1,a=this.log.length;c<a;c++){b[c]=this.log[c].text}return b.join("\n")}};MathJax.Hub={config:{root:"",config:[],styleSheets:[],styles:{".MathJax_Preview":{color:"#888"}},jax:[],extensions:[],preJax:null,postJax:null,displayAlign:"center",displayIndent:"0",preRemoveClass:"MathJax_Preview",showProcessingMessages:true,messageStyle:"normal",delayStartupUntil:"none",skipStartupTypeset:false,"v1.0-compatible":true,elements:[],positionToHash:true,showMathMenu:true,showMathMenuMSIE:true,menuSettings:{zoom:"None",CTRL:false,ALT:false,CMD:false,Shift:false,discoverable:false,zscale:"200%",renderer:"",font:"Auto",context:"MathJax",mpContext:false,mpMouse:false,texHints:true},errorSettings:{message:["[Math Processing Error]"],style:{color:"#CC0000","font-style":"italic"}}},preProcessors:MathJax.Callback.Hooks(true),inputJax:{},outputJax:{order:{}},processUpdateTime:250,processUpdateDelay:10,signal:MathJax.Callback.Signal("Hub"),Config:function(a){this.Insert(this.config,a);if(this.config.Augment){this.Augment(this.config.Augment)}},CombineConfig:function(c,f){var b=this.config,g,e;c=c.split(/\./);for(var d=0,a=c.length;d<a;d++){g=c[d];if(!b[g]){b[g]={}}e=b;b=b[g]}e[g]=b=this.Insert(f,b);return b},Register:{PreProcessor:function(){MathJax.Hub.preProcessors.Add.apply(MathJax.Hub.preProcessors,arguments)},MessageHook:function(){return MathJax.Hub.signal.MessageHook.apply(MathJax.Hub.signal,arguments)},StartupHook:function(){return MathJax.Hub.Startup.signal.MessageHook.apply(MathJax.Hub.Startup.signal,arguments)},LoadHook:function(){return MathJax.Ajax.LoadHook.apply(MathJax.Ajax,arguments)}},getAllJax:function(e){var c=[],b=this.elementScripts(e);for(var d=0,a=b.length;d<a;d++){if(b[d].MathJax&&b[d].MathJax.elementJax){c.push(b[d].MathJax.elementJax)}}return c},getJaxByType:function(f,e){var c=[],b=this.elementScripts(e);for(var d=0,a=b.length;d<a;d++){if(b[d].MathJax&&b[d].MathJax.elementJax&&b[d].MathJax.elementJax.mimeType===f){c.push(b[d].MathJax.elementJax)}}return c},getJaxByInputType:function(f,e){var c=[],b=this.elementScripts(e);for(var d=0,a=b.length;d<a;d++){if(b[d].MathJax&&b[d].MathJax.elementJax&&b[d].type&&b[d].type.replace(/ *;(.|\s)*/,"")===f){c.push(b[d].MathJax.elementJax)}}return c},getJaxFor:function(a){if(typeof(a)==="string"){a=document.getElementById(a)}if(a&&a.MathJax){return a.MathJax.elementJax}if(a&&a.isMathJax){while(a&&!a.jaxID){a=a.parentNode}if(a){return MathJax.OutputJax[a.jaxID].getJaxFromMath(a)}}return null},isJax:function(a){if(typeof(a)==="string"){a=document.getElementById(a)}if(a&&a.isMathJax){return 1}if(a&&a.tagName!=null&&a.tagName.toLowerCase()==="script"){if(a.MathJax){return(a.MathJax.state===MathJax.ElementJax.STATE.PROCESSED?1:-1)}if(a.type&&this.inputJax[a.type.replace(/ *;(.|\s)*/,"")]){return -1}}return 0},setRenderer:function(d,c){if(!d){return}if(!MathJax.OutputJax[d]){this.config.menuSettings.renderer="";var b="[MathJax]/jax/output/"+d+"/config.js";return MathJax.Ajax.Require(b,["setRenderer",this,d,c])}else{this.config.menuSettings.renderer=d;if(c==null){c="jax/mml"}var a=this.outputJax;if(a[c]&&a[c].length){if(d!==a[c][0].id){a[c].unshift(MathJax.OutputJax[d]);return this.signal.Post(["Renderer Selected",d])}}return null}},Queue:function(){return this.queue.Push.apply(this.queue,arguments)},Typeset:function(e,f){if(!MathJax.isReady){return null}var c=this.elementCallback(e,f);var b=MathJax.Callback.Queue();for(var d=0,a=c.elements.length;d<a;d++){if(c.elements[d]){b.Push(["PreProcess",this,c.elements[d]],["Process",this,c.elements[d]])}}return b.Push(c.callback)},PreProcess:function(e,f){var c=this.elementCallback(e,f);var b=MathJax.Callback.Queue();for(var d=0,a=c.elements.length;d<a;d++){if(c.elements[d]){b.Push(["Post",this.signal,["Begin PreProcess",c.elements[d]]],(arguments.callee.disabled?{}:["Execute",this.preProcessors,c.elements[d]]),["Post",this.signal,["End PreProcess",c.elements[d]]])}}return b.Push(c.callback)},Process:function(a,b){return this.takeAction("Process",a,b)},Update:function(a,b){return this.takeAction("Update",a,b)},Reprocess:function(a,b){return this.takeAction("Reprocess",a,b)},Rerender:function(a,b){return this.takeAction("Rerender",a,b)},takeAction:function(g,e,h){var c=this.elementCallback(e,h);var b=MathJax.Callback.Queue(["Clear",this.signal]);for(var d=0,a=c.elements.length;d<a;d++){if(c.elements[d]){var f={scripts:[],start:new Date().getTime(),i:0,j:0,jax:{},jaxIDs:[]};b.Push(["Post",this.signal,["Begin "+g,c.elements[d]]],["Post",this.signal,["Begin Math",c.elements[d],g]],["prepareScripts",this,g,c.elements[d],f],["Post",this.signal,["Begin Math Input",c.elements[d],g]],["processInput",this,f],["Post",this.signal,["End Math Input",c.elements[d],g]],["prepareOutput",this,f,"preProcess"],["Post",this.signal,["Begin Math Output",c.elements[d],g]],["processOutput",this,f],["Post",this.signal,["End Math Output",c.elements[d],g]],["prepareOutput",this,f,"postProcess"],["Post",this.signal,["End Math",c.elements[d],g]],["Post",this.signal,["End "+g,c.elements[d]]])}}return b.Push(c.callback)},scriptAction:{Process:function(a){},Update:function(b){var a=b.MathJax.elementJax;if(a&&a.needsUpdate()){a.Remove(true);b.MathJax.state=a.STATE.UPDATE}else{b.MathJax.state=a.STATE.PROCESSED}},Reprocess:function(b){var a=b.MathJax.elementJax;if(a){a.Remove(true);b.MathJax.state=a.STATE.UPDATE}},Rerender:function(b){var a=b.MathJax.elementJax;if(a){a.Remove(true);b.MathJax.state=a.STATE.OUTPUT}}},prepareScripts:function(h,e,g){if(arguments.callee.disabled){return}var b=this.elementScripts(e);var f=MathJax.ElementJax.STATE;for(var d=0,a=b.length;d<a;d++){var c=b[d];if(c.type&&this.inputJax[c.type.replace(/ *;(.|\n)*/,"")]){if(c.MathJax){if(c.MathJax.elementJax&&c.MathJax.elementJax.hover){MathJax.Extension.MathEvents.Hover.ClearHover(c.MathJax.elementJax)}if(c.MathJax.state!==f.PENDING){this.scriptAction[h](c)}}if(!c.MathJax){c.MathJax={state:f.PENDING}}if(c.MathJax.state!==f.PROCESSED){g.scripts.push(c)}}}},checkScriptSiblings:function(a){if(a.MathJax.checked){return}var b=this.config,f=a.previousSibling;if(f&&f.nodeName==="#text"){var d,e,c=a.nextSibling;if(c&&c.nodeName!=="#text"){c=null}if(b.preJax){if(typeof(b.preJax)==="string"){b.preJax=new RegExp(b.preJax+"$")}d=f.nodeValue.match(b.preJax)}if(b.postJax&&c){if(typeof(b.postJax)==="string"){b.postJax=new RegExp("^"+b.postJax)}e=c.nodeValue.match(b.postJax)}if(d&&(!b.postJax||e)){f.nodeValue=f.nodeValue.replace(b.preJax,(d.length>1?d[1]:""));f=null}if(e&&(!b.preJax||d)){c.nodeValue=c.nodeValue.replace(b.postJax,(e.length>1?e[1]:""))}if(f&&!f.nodeValue.match(/\S/)){f=f.previousSibling}}if(b.preRemoveClass&&f&&f.className===b.preRemoveClass){a.MathJax.preview=f}a.MathJax.checked=1},processInput:function(a){var b,i=MathJax.ElementJax.STATE;var h,e,d=a.scripts.length;try{while(a.i<d){h=a.scripts[a.i];if(!h){a.i++;continue}e=h.previousSibling;if(e&&e.className==="MathJax_Error"){e.parentNode.removeChild(e)}if(!h.MathJax||h.MathJax.state===i.PROCESSED){a.i++;continue}if(!h.MathJax.elementJax||h.MathJax.state===i.UPDATE){this.checkScriptSiblings(h);var g=h.type.replace(/ *;(.|\s)*/,"");b=this.inputJax[g].Process(h,a);if(typeof b==="function"){if(b.called){continue}this.RestartAfter(b)}b.Attach(h,this.inputJax[g].id);this.saveScript(b,a,h,i)}else{if(h.MathJax.state===i.OUTPUT){this.saveScript(h.MathJax.elementJax,a,h,i)}}a.i++;var c=new Date().getTime();if(c-a.start>this.processUpdateTime&&a.i<a.scripts.length){a.start=c;this.RestartAfter(MathJax.Callback.Delay(1))}}}catch(f){return this.processError(f,a,"Input")}if(a.scripts.length&&this.config.showProcessingMessages){MathJax.Message.Set("Processing math: 100%",0)}a.start=new Date().getTime();a.i=a.j=0;return null},saveScript:function(a,d,b,c){if(!this.outputJax[a.mimeType]){b.MathJax.state=c.UPDATE;throw Error("No output jax registered for "+a.mimeType)}a.outputJax=this.outputJax[a.mimeType][0].id;if(!d.jax[a.outputJax]){if(d.jaxIDs.length===0){d.jax[a.outputJax]=d.scripts}else{if(d.jaxIDs.length===1){d.jax[d.jaxIDs[0]]=d.scripts.slice(0,d.i)}d.jax[a.outputJax]=[]}d.jaxIDs.push(a.outputJax)}if(d.jaxIDs.length>1){d.jax[a.outputJax].push(b)}b.MathJax.state=c.OUTPUT},prepareOutput:function(c,f){while(c.j<c.jaxIDs.length){var e=c.jaxIDs[c.j],d=MathJax.OutputJax[e];if(d[f]){try{var a=d[f](c);if(typeof a==="function"){if(a.called){continue}this.RestartAfter(a)}}catch(b){if(!b.restart){MathJax.Message.Set("Error preparing "+e+" output ("+f+")",null,600);MathJax.Hub.lastPrepError=b;c.j++}return MathJax.Callback.After(["prepareOutput",this,c,f],b.restart)}}c.j++}return null},processOutput:function(h){var b,g=MathJax.ElementJax.STATE,d,a=h.scripts.length;try{while(h.i<a){d=h.scripts[h.i];if(!d||!d.MathJax){h.i++;continue}var c=d.MathJax.elementJax;if(!c){h.i++;continue}b=MathJax.OutputJax[c.outputJax].Process(d,h);d.MathJax.state=g.PROCESSED;h.i++;if(d.MathJax.preview){d.MathJax.preview.innerHTML=""}this.signal.Post(["New Math",c.inputID]);var e=new Date().getTime();if(e-h.start>this.processUpdateTime&&h.i<h.scripts.length){h.start=e;this.RestartAfter(MathJax.Callback.Delay(this.processUpdateDelay))}}}catch(f){return this.processError(f,h,"Output")}if(h.scripts.length&&this.config.showProcessingMessages){MathJax.Message.Set("Typesetting math: 100%",0);MathJax.Message.Clear(0)}h.i=h.j=0;return null},processMessage:function(d,b){var a=Math.floor(d.i/(d.scripts.length)*100);var c=(b==="Output"?"Typesetting":"Processing");if(this.config.showProcessingMessages){MathJax.Message.Set(c+" math: "+a+"%",0)}},processError:function(b,c,a){if(!b.restart){if(!this.config.errorSettings.message){throw b}this.formatError(c.scripts[c.i],b);c.i++}this.processMessage(c,a);return MathJax.Callback.After(["process"+a,this,c],b.restart)},formatError:function(a,c){var b=MathJax.HTML.Element("span",{className:"MathJax_Error"},this.config.errorSettings.message);b.jaxID="Error";if(MathJax.Extension.MathEvents){b.oncontextmenu=MathJax.Extension.MathEvents.Event.Menu;b.onmousedown=MathJax.Extension.MathEvents.Event.Mousedown}else{MathJax.Ajax.Require("[MathJax]/extensions/MathEvents.js",function(){b.oncontextmenu=MathJax.Extension.MathEvents.Event.Menu;b.onmousedown=MathJax.Extension.MathEvents.Event.Mousedown})}a.parentNode.insertBefore(b,a);if(a.MathJax.preview){a.MathJax.preview.innerHTML=""}this.lastError=c;this.signal.Post(["Math Processing Error",a,c])},RestartAfter:function(a){throw this.Insert(Error("restart"),{restart:MathJax.Callback(a)})},elementCallback:function(c,f){if(f==null&&(c instanceof Array||typeof c==="function")){try{MathJax.Callback(c);f=c;c=null}catch(d){}}if(c==null){c=this.config.elements||[]}if(!(c instanceof Array)){c=[c]}c=[].concat(c);for(var b=0,a=c.length;b<a;b++){if(typeof(c[b])==="string"){c[b]=document.getElementById(c[b])}}if(c.length==0){c.push(document.body)}if(!f){f={}}return{elements:c,callback:f}},elementScripts:function(a){if(typeof(a)==="string"){a=document.getElementById(a)}if(a==null){a=document.body}if(a.tagName!=null&&a.tagName.toLowerCase()==="script"){return[a]}return a.getElementsByTagName("script")},Insert:function(c,a){for(var b in a){if(a.hasOwnProperty(b)){if(typeof a[b]==="object"&&!(a[b] instanceof Array)&&(typeof c[b]==="object"||typeof c[b]==="function")){this.Insert(c[b],a[b])}else{c[b]=a[b]}}}return c}};MathJax.Hub.Insert(MathJax.Hub.config.styles,MathJax.Message.styles);MathJax.Hub.Insert(MathJax.Hub.config.styles,{".MathJax_Error":MathJax.Hub.config.errorSettings.style});MathJax.Extension={};MathJax.Hub.Configured=MathJax.Callback({});MathJax.Hub.Startup={script:"",queue:MathJax.Callback.Queue(),signal:MathJax.Callback.Signal("Startup"),params:{},Config:function(){this.queue.Push(["Post",this.signal,"Begin Config"]);var b=MathJax.HTML.Cookie.Get("user");if(b.URL||b.Config){if(confirm("MathJax has found a user-configuration cookie that includes code to be run.  Do you want to run it?\n\n(You should press Cancel unless you set up the cookie yourself.)")){if(b.URL){this.queue.Push(["Require",MathJax.Ajax,b.URL])}if(b.Config){this.queue.Push(new Function(b.Config))}}else{MathJax.HTML.Cookie.Set("user",{})}}if(this.params.config){var d=this.params.config.split(/,/);for(var c=0,a=d.length;c<a;c++){if(!d[c].match(/\.js$/)){d[c]+=".js"}this.queue.Push(["Require",MathJax.Ajax,this.URL("config",d[c])])}}if(this.script.match(/\S/)){this.queue.Push(this.script+";\n1;")}this.queue.Push(["ConfigDelay",this],["ConfigBlocks",this],["ConfigDefault",this],[function(e){return e.loadArray(MathJax.Hub.config.config,"config",null,true)},this],["Post",this.signal,"End Config"])},ConfigDelay:function(){var a=this.params.delayStartupUntil||MathJax.Hub.config.delayStartupUntil;if(a==="onload"){return this.onload}if(a==="configured"){return MathJax.Hub.Configured}return a},ConfigBlocks:function(){var c=document.getElementsByTagName("script");var f=null,b=MathJax.Callback.Queue();for(var d=0,a=c.length;d<a;d++){var e=String(c[d].type).replace(/ /g,"");if(e.match(/^text\/x-mathjax-config(;.*)?$/)&&!e.match(/;executed=true/)){c[d].type+=";executed=true";f=b.Push(c[d].innerHTML+";\n1;")}}return f},ConfigDefault:function(){var a=MathJax.Hub.config;if(a["v1.0-compatible"]&&(a.jax||[]).length===0&&!this.params.config&&(a.config||[]).length===0){return MathJax.Ajax.Require(this.URL("extensions","v1.0-warning.js"))}},Cookie:function(){return this.queue.Push(["Post",this.signal,"Begin Cookie"],["Get",MathJax.HTML.Cookie,"menu",MathJax.Hub.config.menuSettings],[function(d){var f=d.menuSettings.renderer,b=d.jax;if(f){var c="output/"+f;b.sort();for(var e=0,a=b.length;e<a;e++){if(b[e].substr(0,7)==="output/"){break}}if(e==a-1){b.pop()}else{while(e<a){if(b[e]===c){b.splice(e,1);break}e++}}b.unshift(c)}},MathJax.Hub.config],["Post",this.signal,"End Cookie"])},Styles:function(){return this.queue.Push(["Post",this.signal,"Begin Styles"],["loadArray",this,MathJax.Hub.config.styleSheets,"config"],["Styles",MathJax.Ajax,MathJax.Hub.config.styles],["Post",this.signal,"End Styles"])},Jax:function(){var f=MathJax.Hub.config,c=MathJax.Hub.outputJax;for(var g=0,b=f.jax.length,d=0;g<b;g++){var e=f.jax[g].substr(7);if(f.jax[g].substr(0,7)==="output/"&&c.order[e]==null){c.order[e]=d;d++}}var a=MathJax.Callback.Queue();return a.Push(["Post",this.signal,"Begin Jax"],["loadArray",this,f.jax,"jax","config.js"],["Post",this.signal,"End Jax"])},Extensions:function(){var a=MathJax.Callback.Queue();return a.Push(["Post",this.signal,"Begin Extensions"],["loadArray",this,MathJax.Hub.config.extensions,"extensions"],["Post",this.signal,"End Extensions"])},Message:function(){MathJax.Message.Init(true)},Menu:function(){var b=MathJax.Hub.config.menuSettings,a=MathJax.Hub.outputJax,d;for(var c in a){if(a.hasOwnProperty(c)){if(a[c].length){d=a[c];break}}}if(d&&d.length){if(b.renderer&&b.renderer!==d[0].id){d.unshift(MathJax.OutputJax[b.renderer])}b.renderer=d[0].id}},Hash:function(){if(MathJax.Hub.config.positionToHash&&document.location.hash&&document.body&&document.body.scrollIntoView){var d=document.location.hash.substr(1);var f=document.getElementById(d);if(!f){var c=document.getElementsByTagName("a");for(var e=0,b=c.length;e<b;e++){if(c[e].name===d){f=c[e];break}}}if(f){while(!f.scrollIntoView){f=f.parentNode}f=this.HashCheck(f);if(f&&f.scrollIntoView){setTimeout(function(){f.scrollIntoView(true)},1)}}}},HashCheck:function(b){if(b.isMathJax){var a=MathJax.Hub.getJaxFor(b);if(a&&MathJax.OutputJax[a.outputJax].hashCheck){b=MathJax.OutputJax[a.outputJax].hashCheck(b)}}return b},MenuZoom:function(){if(!MathJax.Extension.MathMenu){setTimeout(MathJax.Callback(["Require",MathJax.Ajax,"[MathJax]/extensions/MathMenu.js",{}]),1000)}if(!MathJax.Extension.MathZoom){setTimeout(MathJax.Callback(["Require",MathJax.Ajax,"[MathJax]/extensions/MathZoom.js",{}]),2000)}},onLoad:function(){var a=this.onload=MathJax.Callback(function(){MathJax.Hub.Startup.signal.Post("onLoad")});if(document.body&&document.readyState){if(MathJax.Hub.Browser.isMSIE){if(document.readyState==="complete"){return[a]}}else{if(document.readyState!=="loading"){return[a]}}}if(window.addEventListener){window.addEventListener("load",a,false);if(!this.params.noDOMContentEvent){window.addEventListener("DOMContentLoaded",a,false)}}else{if(window.attachEvent){window.attachEvent("onload",a)}else{window.onload=a}}return a},Typeset:function(a,b){if(MathJax.Hub.config.skipStartupTypeset){return function(){}}return this.queue.Push(["Post",this.signal,"Begin Typeset"],["Typeset",MathJax.Hub,a,b],["Post",this.signal,"End Typeset"])},URL:function(b,a){if(!a.match(/^([a-z]+:\/\/|\[|\/)/)){a="[MathJax]/"+b+"/"+a}return a},loadArray:function(b,f,c,a){if(b){if(!(b instanceof Array)){b=[b]}if(b.length){var h=MathJax.Callback.Queue(),j={},e;for(var g=0,d=b.length;g<d;g++){e=this.URL(f,b[g]);if(c){e+="/"+c}if(a){h.Push(["Require",MathJax.Ajax,e,j])}else{h.Push(MathJax.Ajax.Require(e,j))}}return h.Push({})}}return null}};(function(d){var b=window[d],e="["+d+"]";var c=b.Hub,a=b.Ajax,f=b.Callback;var g=MathJax.Object.Subclass({JAXFILE:"jax.js",require:null,config:{},Init:function(i,h){if(arguments.length===0){return this}return(this.constructor.Subclass(i,h))()},Augment:function(k,j){var i=this.constructor,h={};if(k!=null){for(var l in k){if(k.hasOwnProperty(l)){if(typeof k[l]==="function"){i.protoFunction(l,k[l])}else{h[l]=k[l]}}}if(k.toString!==i.prototype.toString&&k.toString!=={}.toString){i.protoFunction("toString",k.toString)}}c.Insert(i.prototype,h);i.Augment(null,j);return this},Translate:function(h,i){throw Error(this.directory+"/"+this.JAXFILE+" failed to define the Translate() method")},Register:function(h){},Config:function(){this.config=c.CombineConfig(this.id,this.config);if(this.config.Augment){this.Augment(this.config.Augment)}},Startup:function(){},loadComplete:function(i){if(i==="config.js"){return a.loadComplete(this.directory+"/"+i)}else{var h=f.Queue();h.Push(c.Register.StartupHook("End Config",{}),["Post",c.Startup.signal,this.id+" Jax Config"],["Config",this],["Post",c.Startup.signal,this.id+" Jax Require"],[function(j){return MathJax.Hub.Startup.loadArray(j.require,this.directory)},this],[function(j,k){return MathJax.Hub.Startup.loadArray(j.extensions,"extensions/"+k)},this.config||{},this.id],["Post",c.Startup.signal,this.id+" Jax Startup"],["Startup",this],["Post",c.Startup.signal,this.id+" Jax Ready"]);if(this.copyTranslate){h.Push([function(j){j.preProcess=j.preTranslate;j.Process=j.Translate;j.postProcess=j.postTranslate},this.constructor.prototype])}return h.Push(["loadComplete",a,this.directory+"/"+i])}}},{id:"Jax",version:"2.1",directory:e+"/jax",extensionDir:e+"/extensions"});b.InputJax=g.Subclass({elementJax:"mml",copyTranslate:true,Process:function(l,q){var j=f.Queue(),o;var k=this.elementJax;if(!(k instanceof Array)){k=[k]}for(var n=0,h=k.length;n<h;n++){o=b.ElementJax.directory+"/"+k[n]+"/"+this.JAXFILE;if(!this.require){this.require=[]}else{if(!(this.require instanceof Array)){this.require=[this.require]}}this.require.push(o);j.Push(a.Require(o))}o=this.directory+"/"+this.JAXFILE;var p=j.Push(a.Require(o));if(!p.called){this.constructor.prototype.Process=function(){if(!p.called){return p}throw Error(o+" failed to load properly")}}k=c.outputJax["jax/"+k[0]];if(k){j.Push(a.Require(k[0].directory+"/"+this.JAXFILE))}return j.Push({})},needsUpdate:function(h){var i=h.SourceElement();return(h.originalText!==b.HTML.getScript(i))},Register:function(h){if(!c.inputJax){c.inputJax={}}c.inputJax[h]=this}},{id:"InputJax",version:"2.1",directory:g.directory+"/input",extensionDir:g.extensionDir});b.OutputJax=g.Subclass({copyTranslate:true,preProcess:function(j){var i,h=this.directory+"/"+this.JAXFILE;this.constructor.prototype.preProcess=function(k){if(!i.called){return i}throw Error(h+" failed to load properly")};i=a.Require(h);return i},Register:function(i){var h=c.outputJax;if(!h[i]){h[i]=[]}if(h[i].length&&(this.id===c.config.menuSettings.renderer||(h.order[this.id]||0)<(h.order[h[i][0].id]||0))){h[i].unshift(this)}else{h[i].push(this)}if(!this.require){this.require=[]}else{if(!(this.require instanceof Array)){this.require=[this.require]}}this.require.push(b.ElementJax.directory+"/"+(i.split(/\//)[1])+"/"+this.JAXFILE)},Remove:function(h){}},{id:"OutputJax",version:"2.1",directory:g.directory+"/output",extensionDir:g.extensionDir,fontDir:e+(b.isPacked?"":"/..")+"/fonts",imageDir:e+(b.isPacked?"":"/..")+"/images"});b.ElementJax=g.Subclass({Init:function(i,h){return this.constructor.Subclass(i,h)},inputJax:null,outputJax:null,inputID:null,originalText:"",mimeType:"",Text:function(i,j){var h=this.SourceElement();b.HTML.setScript(h,i);h.MathJax.state=this.STATE.UPDATE;return c.Update(h,j)},Reprocess:function(i){var h=this.SourceElement();h.MathJax.state=this.STATE.UPDATE;return c.Reprocess(h,i)},Update:function(h){return this.Rerender(h)},Rerender:function(i){var h=this.SourceElement();h.MathJax.state=this.STATE.OUTPUT;return c.Process(h,i)},Remove:function(h){if(this.hover){this.hover.clear(this)}b.OutputJax[this.outputJax].Remove(this);if(!h){c.signal.Post(["Remove Math",this.inputID]);this.Detach()}},needsUpdate:function(){return b.InputJax[this.inputJax].needsUpdate(this)},SourceElement:function(){return document.getElementById(this.inputID)},Attach:function(i,j){var h=i.MathJax.elementJax;if(i.MathJax.state===this.STATE.UPDATE){h.Clone(this)}else{h=i.MathJax.elementJax=this;if(i.id){this.inputID=i.id}else{i.id=this.inputID=b.ElementJax.GetID();this.newID=1}}h.originalText=b.HTML.getScript(i);h.inputJax=j;if(h.root){h.root.inputID=h.inputID}return h},Detach:function(){var h=this.SourceElement();if(!h){return}try{delete h.MathJax}catch(i){h.MathJax=null}if(this.newID){h.id=""}},Clone:function(h){var i;for(i in this){if(!this.hasOwnProperty(i)){continue}if(typeof(h[i])==="undefined"&&i!=="newID"){delete this[i]}}for(i in h){if(!h.hasOwnProperty(i)){continue}if(typeof(this[i])==="undefined"||(this[i]!==h[i]&&i!=="inputID")){this[i]=h[i]}}}},{id:"ElementJax",version:"2.1",directory:g.directory+"/element",extensionDir:g.extensionDir,ID:0,STATE:{PENDING:1,PROCESSED:2,UPDATE:3,OUTPUT:4},GetID:function(){this.ID++;return"MathJax-Element-"+this.ID},Subclass:function(){var h=g.Subclass.apply(this,arguments);h.loadComplete=this.prototype.loadComplete;return h}});b.ElementJax.prototype.STATE=b.ElementJax.STATE;b.OutputJax.Error={id:"Error",version:"2.1",config:{},ContextMenu:function(){return b.Extension.MathEvents.Event.ContextMenu.apply(b.Extension.MathEvents.Event,arguments)},Mousedown:function(){return b.Extension.MathEvents.Event.AltContextMenu.apply(b.Extension.MathEvents.Event,arguments)},getJaxFromMath:function(){return{inputJax:"Error",outputJax:"Error",originalText:"Math Processing Error"}}};b.InputJax.Error={id:"Error",version:"2.1",config:{},sourceMenuTitle:"Error Message"}})("MathJax");(function(l){var f=window[l];if(!f){f=window[l]={}}var c=f.Hub;var q=c.Startup;var u=c.config;var e=document.getElementsByTagName("head")[0];if(!e){e=document.childNodes[0]}var b=(document.documentElement||document).getElementsByTagName("script");var d=new RegExp("(^|/)"+l+"\\.js(\\?.*)?$");for(var o=b.length-1;o>=0;o--){if((b[o].src||"").match(d)){q.script=b[o].innerHTML;if(RegExp.$2){var r=RegExp.$2.substr(1).split(/\&/);for(var n=0,h=r.length;n<h;n++){var k=r[n].match(/(.*)=(.*)/);if(k){q.params[unescape(k[1])]=unescape(k[2])}}}u.root=b[o].src.replace(/(^|\/)[^\/]*(\?.*)?$/,"");break}}f.Ajax.config=u;var a={isMac:(navigator.platform.substr(0,3)==="Mac"),isPC:(navigator.platform.substr(0,3)==="Win"),isMSIE:(window.ActiveXObject!=null&&window.clipboardData!=null),isFirefox:((window.netscape!=null||window.mozPaintCount!=null)&&document.ATTRIBUTE_NODE!=null&&!window.opera),isSafari:(navigator.userAgent.match(/ (Apple)?WebKit\//)!=null&&(!window.chrome||window.chrome.loadTimes==null)),isChrome:(window.chrome!=null&&window.chrome.loadTimes!=null),isOpera:(window.opera!=null&&window.opera.version!=null),isKonqueror:(window.hasOwnProperty&&window.hasOwnProperty("konqueror")&&navigator.vendor=="KDE"),versionAtLeast:function(x){var w=(this.version).split(".");x=(new String(x)).split(".");for(var y=0,j=x.length;y<j;y++){if(w[y]!=x[y]){return parseInt(w[y]||"0")>=parseInt(x[y])}}return true},Select:function(j){var i=j[c.Browser];if(i){return i(c.Browser)}return null}};var g=navigator.userAgent.replace(/^Mozilla\/(\d+\.)+\d+ /,"").replace(/[a-z][-a-z0-9._: ]+\/\d+[^ ]*-[^ ]*\.([a-z][a-z])?\d+ /i,"").replace(/Gentoo |Ubuntu\/(\d+\.)*\d+ (\([^)]*\) )?/,"");c.Browser=c.Insert(c.Insert(new String("Unknown"),{version:"0.0"}),a);for(var t in a){if(a.hasOwnProperty(t)){if(a[t]&&t.substr(0,2)==="is"){t=t.slice(2);if(t==="Mac"||t==="PC"){continue}c.Browser=c.Insert(new String(t),a);var p=new RegExp(".*(Version)/((?:\\d+\\.)+\\d+)|.*("+t+")"+(t=="MSIE"?" ":"/")+"((?:\\d+\\.)*\\d+)|(?:^|\\(| )([a-z][-a-z0-9._: ]+|(?:Apple)?WebKit)/((?:\\d+\\.)+\\d+)");var s=p.exec(g)||["","","","unknown","0.0"];c.Browser.name=(s[1]=="Version"?t:(s[3]||s[5]));c.Browser.version=s[2]||s[4]||s[6];break}}}c.Browser.Select({Safari:function(j){var i=parseInt((String(j.version).split("."))[0]);if(i>85){j.webkit=j.version}if(i>=534){j.version="5.1"}else{if(i>=533){j.version="5.0"}else{if(i>=526){j.version="4.0"}else{if(i>=525){j.version="3.1"}else{if(i>500){j.version="3.0"}else{if(i>400){j.version="2.0"}else{if(i>85){j.version="1.0"}}}}}}}j.isMobile=(navigator.appVersion.match(/Mobile/i)!=null);j.noContextMenu=j.isMobile},Firefox:function(j){if((j.version==="0.0"||navigator.userAgent.match(/Firefox/)==null)&&navigator.product==="Gecko"){var m=navigator.userAgent.match(/[\/ ]rv:(\d+\.\d.*?)[\) ]/);if(m){j.version=m[1]}else{var i=(navigator.buildID||navigator.productSub||"0").substr(0,8);if(i>="20111220"){j.version="9.0"}else{if(i>="20111120"){j.version="8.0"}else{if(i>="20110927"){j.version="7.0"}else{if(i>="20110816"){j.version="6.0"}else{if(i>="20110621"){j.version="5.0"}else{if(i>="20110320"){j.version="4.0"}else{if(i>="20100121"){j.version="3.6"}else{if(i>="20090630"){j.version="3.5"}else{if(i>="20080617"){j.version="3.0"}else{if(i>="20061024"){j.version="2.0"}}}}}}}}}}}}j.isMobile=(navigator.appVersion.match(/Android/i)!=null||navigator.userAgent.match(/ Fennec\//)!=null)},Opera:function(i){i.version=opera.version()},MSIE:function(j){j.isIE9=!!(document.documentMode&&(window.performance||window.msPerformance));MathJax.HTML.setScriptBug=!j.isIE9||document.documentMode<9;var v=false;try{new ActiveXObject("MathPlayer.Factory.1");j.hasMathPlayer=v=true}catch(m){}try{if(v&&!q.params.NoMathPlayer){var i=document.createElement("object");i.id="mathplayer";i.classid="clsid:32F66A20-7614-11D4-BD11-00104BD3F987";document.getElementsByTagName("head")[0].appendChild(i);document.namespaces.add("m","http://www.w3.org/1998/Math/MathML");j.mpNamespace=true;if(document.readyState&&(document.readyState==="loading"||document.readyState==="interactive")){document.write('<?import namespace="m" implementation="#MathPlayer">');j.mpImported=true}}else{document.namespaces.add("mjx_IE_fix","http://www.w3.org/1999/xlink")}}catch(m){}}});c.Browser.Select(MathJax.Message.browsers);c.queue=f.Callback.Queue();c.queue.Push(["Post",q.signal,"Begin"],["Config",q],["Cookie",q],["Styles",q],["Message",q],function(){var i=f.Callback.Queue(q.Jax(),q.Extensions());return i.Push({})},["Menu",q],q.onLoad(),function(){MathJax.isReady=true},["Typeset",q],["Hash",q],["MenuZoom",q],["Post",q.signal,"End"])})("MathJax")}};
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/*************************************************************
 *
 *  MathJax.js
 *  
 *  The main code for the MathJax math-typesetting library.  See 
 *  http://www.mathjax.org/ for details.
 *  
 *  ---------------------------------------------------------------------
 *  
 *  Copyright (c) 2009-2012 Design Science, Inc.
 * 
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 * 
 *      http://www.apache.org/licenses/LICENSE-2.0
 * 
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

if (!window.MathJax) {window.MathJax = {}}

MathJax.isPacked = true;
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/*************************************************************
 *
 *  MathJax.js
 *  
 *  The main code for the MathJax math-typesetting library.  See 
 *  http://www.mathjax.org/ for details.
 *  
 *  ---------------------------------------------------------------------
 *  
 *  Copyright (c) 2009-2012 Design Science, Inc.
 * 
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 * 
 *      http://www.apache.org/licenses/LICENSE-2.0
 * 
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

if (!window.MathJax) {window.MathJax = {}}

MathJax.isPacked = true;
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/*************************************************************
 *
 *  MathJax.js
 *  
 *  The main code for the MathJax math-typesetting library.  See 
 *  http://www.mathjax.org/ for details.
 *  
 *  ---------------------------------------------------------------------
 *  
 *  Copyright (c) 2009-2012 Design Science, Inc.
 * 
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 * 
 *      http://www.apache.org/licenses/LICENSE-2.0
 * 
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

if (!window.MathJax) {window.MathJax = {}}

MathJax.isPacked = true;
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/*************************************************************
 *
 *  MathJax.js
 *  
 *  The main code for the MathJax math-typesetting library.  See 
 *  http://www.mathjax.org/ for details.
 *  
 *  ---------------------------------------------------------------------
 *  
 *  Copyright (c) 2009-2012 Design Science, Inc.
 * 
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 * 
 *      http://www.apache.org/licenses/LICENSE-2.0
 * 
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

if (!window.MathJax) {window.MathJax = {}}

MathJax.isPacked = true;
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Modules Parameters GFLOPs mAP@0.5 AP@0 Precision Recall Size
YOLOV5n 218M 58G 87.8% 65.5% 91.8% 82.6% 127MB
YOLOv6n 4.16M 11.6G 86.4% 68.4% 92.7% 83.5% 8.18MB
YOLOv8n 2.68M 6.8G 88% 68.3% 92.5% 84.3% 7.98MB
YOLOV9 6.19M 221G 88.7% 69% 92.7% 85.1% 6.01MB
YOLOv10n 2.26M 6.5G 87.9% 59.6% 89.4% 79.1% 7.16MB
YOLOvlin 2.58M 6.3G 88.1% 68.4% 94.5% 82.6% 7.45MB
YOLOv11- 1.3M 3.1G 89.8% 70.1% 93.9% 84.8% 4.7MB

MSDFE-RiceD

‘The optimal data for cach term is expressed in bold.
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YOLOv11 88.1 68.4 258 6.3
YOLOV11+FlexiC3k2Net 88.7 70.1 346 63
YOLOv11+EMFFM 88.5 69.8 263 58
YOLOv11+Inner-WIloU 89.1 70.6 259 64
YOLOV11+FlexiC3k2Net+EMFEM 89.4 703 3.64 59
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Parameter Value

Image size 640
Batch size 32
learning rate 0.01

epoch 300
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Type Train Val Test Total

Rice blast 2539 648 372 3559
Baterial blight 2918 704 370 3992
Fusarium wilt 951 592 257 1800

‘ 397 4113

BrownSpot 2857 859
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ype

Rice blast

BrownSpot

Fusarium wilt

Baterial blight

of th:

The main character sease

Spindle or oval gray-white to brown lesions appeared on the leaves, with yellow halos. Brown dots appeared on stem nodes and panicle necks,
which may lead to fracture. Brown oval or irregular spots are formed on the grains (Shang, 2021).

The lesion usually starts from the leaf tip or leaf margin. At first, it is dark green water stain, and then expands into a short strip spot, and then
extends up and down along the leaf margin or midrib to a long strip spot, and finally turns to gray white and curls inward (Feng et al., 2022).

The leaves first appeared dark green, and then the lower leaves expanded from the tip along both sides of the leaf margin to the base to become
yellowish brown, and produced many rust-like spots of different sizes of reddish brown or dark brown. Finally, the spots merged into plaques, and
the leaves gradually withered (Qi et al., 2021).

Rice bacterial blight is mainly manifested as yellow-green to dark-green water-soaked stripes on the leaves, and then develops into corrugated
spots along the leaf margin or midrib, which can lead to yellowing, curling or wilting of the leaves in severe cases (Qi et al, 2021).
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Yolov8 FAFM HARFM head Parameters(M) GFLOPS(G) P (%) R (%) map0.5(%) map0.5-0.95 (%)

v 3.01 8.1 938 87.6 933 86.5
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v 4 349 9.6 924 882 942 87.7
v v v 351 9.3 93.4 87.7 942 87.4
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"/" indicates the activation of the corresponding module.
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FPN 3.15 9.0 93.4 86.1 93.2 86.8 56.4
BIFPN 2.00 7.1 925 87.4 93.2 85.9 97.6
PA-FPN 3.49 9.6 92.4 88.2 94.2 87.7 56.3
AFPN 2.60 8.4 93.7 87.2 93.1 86.8 54.4

PF-FPN 3.96 10.6 94.3 87.0 95.0 883 425
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Model Parameters(M) GFLOPS(G)
Faster-RCNN 41.41 121.4
SSD 14.50 15.8
Yolov7-tiny 6.04 13.1
Yolov8n 3.01 8.1
Yolov8s 11.20 28.5
RT-DETR 19.89 57.0
Yolov10s 8.04 245
PD-YOLO 3.96 10.6
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Recall (%) AP 0.5 (%)

Faster-RCNN 71.5 67.8 714 49.8 6.90
SSD 623 63.0 623 395 499
Yolov7-tiny 76.5 710 764 51.0 1089
Yolovsn 748 70.4 755 527 1018
Yolovss 75.6 719 769 53.7 86.6
RT-DETR 77.8 703 736 514 299
Yolovi0s 743 714 755 519 67.3
PD-YOLO 75.4 71.4 76.8 53.6 429

The bold values in the table indicate the optimal performance of each method
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Faster-RCNN 67.1 78.6 67.1 63.9 7.05
SSD 71.9 68.8 719 65.0 499
Yolov7-tiny 92.5 88.6 94.0 84.1 102.3
Yolov8n 93.8 87.6 933 86.5 109.7
Yolov8s 89.8 90.6 94.2 87.1 87.9
RT-DETR 90.1 90.3 92.5 85.9 318
Yolov10s 89.7 86.7 92.7 86.5 724
PD-YOLO 94.3 87.0 95.0 88.3 425

The bold values in the table indicate the optimal performance of each method






OPS/images/fpls.2025.1506524/table1.jpg
Application
Scenario

Improvement Methods

Parameters
(M)

GFLOPS
(G)

mAP

GTCBS-YOLOV5s (Shao et al., 2023)

YOLOV7-G (Yu et al., 2024)

YOLO-Riny (Xu et al., 2024)

YOLOV8-DMAS (Zheng et al., 2024)
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