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1 INTRODUCTION
The global imperative to combat climate change has necessitated a strategic shift from dual control of energy consumption to dual control of carbon emissions. This transition is more than a policy evolution; it represents a fundamental reorientation toward sustainable development, demanding a profound reassessment of energy production and consumption patterns with a focus on their environmental and carbon footprints. The theoretical underpinnings of this shift are rooted in ecological economics, environmental justice, and the pursuit of a low-carbon economy. Recent progress is evident in advancements such as carbon pricing mechanisms, renewable energy grid integration, energy efficiency standards, and carbon capture and storage technologies, all of which are pivotal in reducing emissions from existing infrastructure.
Against the backdrop of intensifying global climate change and increasingly prominent environmental pollution, strengthening carbon reduction and pollution control has become a core task for countries worldwide in achieving sustainable development. As the world’s largest carbon emitter and a major developing country, China has set strategic goals to peak carbon emissions by 2030 and achieve carbon neutrality by 2060, while advancing comprehensive management of air, water, and soil pollution.
This Research Topic aims to construct an integrated, interdisciplinary framework bridging the theoretical and practical dimensions of the transition to carbon-centric control mechanisms. It seeks to identify, analyze, and overcome inherent barriers in this transition while exploring innovative solutions for effective transformation. Through rigorous review, 44 high-quality research papers have been gathered, covering theoretical exploration, policy application, and future impact prediction in carbon reduction and pollution control, providing valuable academic support for advancing high-quality environmental governance.
2 THEORETICAL FOUNDATION: UNVEILING THE MECHANISMS OF POLICY-POLLUTION-INNOVATION INTERACTION
Theoretical exploration forms the cornerstone of optimizing carbon reduction and pollution control policies. This Research Topic delves into the intrinsic links between environmental policies, economic factors, and environmental outcomes, making in-depth progress in revealing nonlinear relationships and regulatory mechanisms.
A key area of focus is the interplay between environmental regulation, technological innovation, and emission reduction. Yin et al. examine the nonlinear and diminishing marginal returns of environmental technological innovation on emission reduction under command-and-control regulation, finding that technological constraints limit effectiveness and underscoring the need for tailored innovation strategies and region-specific support. Similarly, Zhang and Gao investigate the nonlinear effects of heterogeneous environmental regulations on green innovation, revealing U-shaped relationships for command-and-control and public participation regulations, and an inverted U-shaped relationship for market-incentive regulations, with common prosperity acting as a positive moderator, highlighting the importance of context-aware policy design. Gu and Liu explore the formation mechanism and continuity of the peer effect in local governments’ green governance within China’s broader historical and governance reform context. The research highlights how historical administrative decisions and interest mechanisms shape peer influences, leading to convergence behaviors that affect resource allocation and green governance effectiveness. The findings emphasize understanding these dynamics to enhance policy design and governance modernization.
Economic dynamics also play a complex role. Zhang et al. investigate financial globalization’s nonlinear relationship with carbon emission intensity across 144 countries, uncovering an inverted U-shape: low financial openness increases emissions via fossil-fuel investments, while higher openness shifts capital to renewables, reducing emissions through improved energy efficiency, renewable share, and technological innovation, with spatial spillovers affecting neighboring countries. Meanwhile, Güler et al. find that GDP and foreign direct investment (FDI) generally exacerbate environmental degradation, supporting the pollution haven hypothesis, though urbanization and value-added agriculture contribute positively to sustainability.
Technological and regional mechanisms further enrich theoretical landscape. Wu and Yang demonstrate that CCUS significantly boosts enterprises’ total factor productivity, mediated by improved external environments, enhanced financing, and innovation, with stronger effects in large, state-owned firms and key emitting industries. In urban transportation, Sheng et al. highlight fuel quality improvement as critical for synergistic greenhouse gas and pollutant reductions, while rail transit and low-carbon travel offer notable linkage effects. Regional studies, such as the analysis by Chen et al. of the Wuhan metropolitan area, reveal spatial and temporal homogeneity between PM2.5 and carbon emissions, influenced by factors from meteorology to energy efficiency, with impacts varying across time and space.
Alomair et al. empirically distinguish the effects of natural resource use on environmental sustainability in G20 countries from 1995 to 2019, using carbon emissions and ecological footprint as indicators within a STIRPAT framework. Employing advanced econometric techniques (CS-ARDL, AMG, quantile regression), it finds that both production and consumption of coal and oil significantly harm environmental sustainability, with production exerting a stronger influence. Natural gas exhibits mixed direct and indirect effects. The research also confirms that green policies, including green energy, technology, finance, and environmental taxes, positively promote sustainability. Xie and Wang investigate the impact of green innovation on carbon emissions among publicly listed companies from 2000 to 2022. The results indicate that green innovation significantly reduces enterprise carbon emissions, primarily through improvements in energy efficiency and management specialization. Notably, green invention patents have a stronger carbon reduction effect than green utility model patents. The emission reduction effect is more pronounced in non-state-owned enterprises and in industries characterized by higher pollution intensity and technological complexity.
3 POLICY TOOLS: INNOVATION AND APPLICATION OF MULTI-DIMENSIONAL REGULATION STRATEGIES
The effective implementation of carbon reduction and pollution control goals depends on scientific, multi-dimensional policy tools. This Research Topic explores environmental regulation, green finance, carbon quota allocation, and incentive mechanisms, analyzing their application effects and optimization paths.
Green finance emerges as a powerful lever. Zhang et al. find it significantly curbs urban carbon emissions and intensity, with stronger effects in northeastern, southeastern, non-resource-based, and financially efficient cities, while focusing on intensity reduction in central, western, and resource-based regions. Deng et al. highlight its role in reducing reliance on high-carbon energy and promoting cleaner alternatives, with nonlinear effects beyond a threshold and stronger impacts in eastern regions with mature financial systems. The Green Credit Guidelines Policy (GCGP), as studied by Zhang et al. reduces manufacturing carbon intensity through macro-level industrial upgrading and energy efficiency gains, and micro-level improved investment efficiency and environmental disclosure, with stronger effects in well-governed, low-constraint, and digitally transformed firms, and regions with stricter regulations.
Environmental regulation and public participation also matter. Chen et al. show stronger regulation promotes environmental equity via green innovation transformation, particularly in innovative regions, with green finance and the digital economy enhancing this effect. Wu et al. find increased public participation reduces carbon intensity, with official characteristics like non-local origin and shorter tenure enhancing effectiveness.
Incentives and coordination are key. Lin and Liu reveal that 20%–30% tax incentives combined with ESG digital tools (e.g., blockchain) accelerate stakeholder convergence in emission reduction by 35%. Guo and Xiong develop a flexible inter-provincial carbon allowance allocation scheme, addressing shortcomings in historical or industry-benchmark methods. Meanwhile, Yi et al. note FDI promotes green technology progress, though trade openness weakens this effect, with the Belt and Road Initiative mitigating regional disparities to better leverage trade for green advancement.
Yu and Feng analyze a joint production and green investment decision model for manufacturers financed through green credit under uncertain demand. Using a min-max regret framework, the research derives optimal strategies to enhance decision robustness, validates them through real-world cases, and provides managerial insights for effectively implementing green credit financing in unpredictable market environments. Guo et al. investigate the complex relationship between green trade and carbon emissions in G20 countries from 2000 to 2022 using OLS, moderating effect, and quantile regression models. Contrary to expectations, green trade is found to increase carbon emissions, especially at higher emission quantiles. Political stability weakens the emission-reduction potential of green trade, whereas trade diversification mitigates its carbon-increasing effects. These results suggest that expanding green trade alone may not rapidly achieve carbon reduction goals. The study emphasizes the necessity for governments to adopt cautious, well-designed green trade policies that balance environmental protection with sustainable economic growth and efficient resource allocation, recognizing the challenging and lengthy nature of the green trade development path.
Tang et al. employ a quadrilateral evolutionary game model to examine the strategic interactions among steel producers, construction companies, scrap steel recyclers, and the government in the steel industry’s carbon emission reduction efforts. Key findings highlight that government subsidies are effective in promoting low-carbon production and green consumption. Cost considerations heavily influence steel manufacturers’ and recyclers’ willingness to adopt technological innovations, with subsidies serving as critical incentives. Moreover, carbon benefits from innovation motivate steel producers to comply with environmental regulations. Construction companies’ strategies depend on production costs and the carbon benefits related to steel manufacturers, showing notable threshold effects. Guo et al. use a multi-period difference-in-differences approach to examine the impact of environmental justice reforms, specifically the establishment of environmental courts, on corporate green innovation. Findings reveal that environmental courts significantly promote substantive green innovation more than strategic green innovation. The environmental resources trial courts have a stronger effect than the environmental resources panel courts. Environmental courts improve regional environmental justice efficiency, enhance government environmental awareness, and increase the cost of corporate illegal activities, thereby encouraging green innovation. The effect is more pronounced in regions with a higher presence of non-state-owned enterprises, better legal environments, and lower industry competition.
4 REGIONAL AND INDUSTRY PRACTICES: EXPLORING DIFFERENTIATED EMISSION REDUCTION PATHS
Regional and industry differences significantly influence policy effectiveness, making differentiated paths essential. This Research Topic focuses on typical regions and key sectors to explore tailored emission reduction strategies.
In carbon markets and industry linkages, Xu and Zhu analyze dynamic price spillovers between China’s carbon markets (eight pilots and the national market) and the carbon-intensive building materials industry, revealing strong short-term connectivity (1-day to 1-week) and heterogeneous long-term impacts, emphasizing industry-specific strategies. Shu et al. find that low-carbon city pilot policies reduce carbon intensity over time via enhanced carbon sinks and industrial upgrading, with effects varying by economic development, geography, and resource endowment.
Industrial and agricultural practices show nuanced dynamics. Qin et al. quantify NOx-CO2 reduction synergy in Guangzhou’s industrial sector, finding CO2 cuts drive NOx declines, though natural gas use and energy intensity measures do not enhance this synergy. In agriculture, Jia et al. evaluate the Low-Carbon Agricultural Pilot (LCAP) policy, noting participating companies reduce environmental spending while nonparticipating rice farmers face income losses, with sustainable practices (organic fertilizers, waste recycling) improving both income and ecology, unlike costly energy-saving machinery subsidies.
Regional case studies highlight tailored approaches. Li et al. (2025) identify an environmental Kuznets curve in Qinghai, with population growth driving emissions and primary electricity management offering reduction potential, enabling 2030 carbon peaking under stringent policies. Sun and Onuh simulate Shaanxi’s coal-dominated energy transition, projecting coal’s share falling to 57.8% by 2030, with non-fossil energy at 21% and natural gas at 16%. Urban transportation, as studied by Peng et al. reveals significant emission reduction potential in Wuhan’s “unlocking zone” via targeted transit improvements, supporting sustainable mobility aligned with SDG11.
Collaboration and risk also feature. Xia et al. analyze Yangtze River Basin ecological governance, finding technology enhances relationship-driven cooperation, while institutional frameworks strengthen interactive governance, with internal and external factors playing complementary roles. Chen et al. note geopolitical risks challenge low-carbon economic development (LCED) but stimulate renewable advancements, while LCED mitigates risks via reduced energy dependence and international cooperation.
Xu et al. use Chinese urban panel data and a staggered difference-in-differences (DID) model to assess the impact of the service trade innovative development pilot policy on regional environmental performance. Results show that institutional innovation significantly improves environmental outcomes, primarily by enhancing green innovation capacity and industrial upgrading. The effect is stronger in regions with greater government support, more developed service sectors, and higher openness, providing important policy implications for environmental governance in developing economies. Su et al. address the significant carbon emissions and energy consumption associated with mega sporting events, focusing on transportation, venue construction, and event operations. It critiques existing research for limited case scope, insufficient attention to indirect emissions, and lack of interdisciplinary approaches. By systematically analyzing various types of sporting events and highlighting successful carbon management practices, the study identifies effective strategies such as optimizing venue location, encouraging green transportation, and adopting energy-saving measures throughout event lifecycles. Guan et al. evaluate the efficiency of industrial solid waste management across China’s 31 provinces from 2016 to 2022 using a two-stage Data Envelopment Analysis (DEA) model. Results reveal heterogeneous improvements in circular economy efficiency, with the resource reuse stage averaging below 0.4, indicating considerable room for advancement. The western region exhibits higher waste treatment efficiency (0.65) compared to the eastern (0.53) and central regions. Sensitivity analysis confirms the robustness of these findings.
5 DIGITAL EMPOWERMENT AND GOVERNANCE INNOVATION: NEW DRIVERS OF ENVIRONMENTAL GOVERNANCE
Digital technology is reshaping environmental governance, with data-driven approaches emerging as a new trend. This Research Topic explores open data, big data, and digital infrastructure’s application potential in carbon reduction and pollution control.
Digital transformation drives emission reductions. Shi et al. find that the digital economy has direct and indirect carbon reduction effects, with technological innovation as a stronger mediator than industrial structure, and an inverted U-shaped urbanization threshold. Ren et al. highlight Broadband China’s role in cutting emissions via green technology investment and industrial upgrading, with stronger effects in eastern, larger, and more economically developed cities with stricter regulations.
Digital tools empower specific sectors. Li et al. show digital rural construction reduces agricultural carbon intensity, mediated by improved rural human capital and enhanced by agricultural financial support, with regional and dimensional variations. Zhang et al. note digitization boosts farmers’ environmental awareness and compliance, promoting adoption of green practices, with mandatory and incentive policies both effective, varying by gender and education.
Open data and infrastructure matter. Zhou et al. find that open government data reduces PM2.5 via enhanced regulation, green innovation, and industrial optimization, strengthened by market size and openness, with regional heterogeneity. Yang et al. reveal digital infrastructure improves urban carbon performance via firm green innovation and consumer behavior shifts, with stronger effects in higher-income, better-educated cities, and non-state-owned, high-tech enterprises.
Innovative frameworks emerge. Raza et al. propose a resilience-based haze pollution framework, with resilience driving green infrastructure and sustainability via smart technologies, nature-based solutions, and digital platforms, offering strategies for developing countries. Xu and Wan identify the digital economy’s emission reduction channels: while scale expansion increases emissions, structural upgrading and technological progress outweigh this, with the National Big Data Pilot Zone policy enhancing effects, particularly in eastern and resource-rich regions.
Yang et al. employ a Difference-in-Differences (DID) approach to examine the impact of digital infrastructure on urban total-factor carbon emission performance in China, extending analysis to micro-level mechanisms involving household consumption and enterprise production. Findings show that digital infrastructure improves carbon performance by fostering green innovation in firms and shifting consumer behavior. Heterogeneity analysis reveals stronger effects in cities with higher income and education levels, with non-state-owned and high-tech enterprises exhibiting greater carbon savings. The results underscore the critical role of micro-level actors in leveraging digital infrastructure for sustainable development.
Chen et al. analyze public attitudes toward major waste sorting policies across 46 key Chinese cities using Weibo data and Latent Dirichlet Allocation (LDA) topic modeling. Findings reveal a slight predominance of negative sentiments focused on policy details and implementation challenges, with no major difference in attention topics between sentiment types. High engagement was observed in developed eastern cities such as Shanghai and Beijing, with regional clustering of discussions.
Xu et al. analyze the impact of digital technological innovation on urban carbon emission intensity using panel data from Chinese cities (2012–2019). Results reveal an inverted U-shaped relationship, mediated nonlinearly by energy intensity and government environmental attention. Notably, this pattern is significant only in non-environmentally prioritized cities and consistent across both Broadband China pilot and non-pilot cities.
6 CONCLUSION AND FUTURE PROSPECTS
The 44 studies in this Research Topic provide in-depth insights into the theoretical mechanisms, policy tools, regional/industry practices, and digital empowerment of carbon reduction and pollution control, yielding rich findings. They verify the complexity and diversity of environmental policy effects while offering practical policy recommendations for coordinated pollution and carbon abatement.
Looking forward, key research directions include: strengthening cross-regional and cross-industry synergistic governance to address pollution spillovers and avoid “free riding” or “race to the bottom”; deepening integration of multiple policy tools (e.g., regulation, carbon markets, green finance) to form synergies; exploring emerging technologies (AI, IoT) to enhance policy precision and efficiency; and conducting long-term dynamic research to account for policy time-lag and cumulative effects.
This Research Topic provides a valuable academic platform for scholars to exchange ideas on carbon reduction and pollution control policies. Its findings offer theoretical support and practical guidance for governments to formulate scientific environmental policies, contributing to global sustainable development and building a community with a shared future for mankind.
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Introduction:: At different times, China has pursued different carbon emission reduction targets, so it is crucial to develop a reasonable and flexible allocation scheme for Chinese carbon emissions quotas, referred to as Chinese Emission Allowance (CEA), in order to achieve carbon reduction goals. As important responsible entities for carbon reduction, each province needs to rely on a well-designed CEA allocation scheme to help achieve their emission reduction goals.Methods:: Therefore, based on the utility perspective, this paper constructs allocation principles and methods to formulate the inter-provincial CEA allocation scheme for China in 2030. Specifically, the entropy method, SBM model, improved variable weight function, and ARIMA time series model are sequentially adopted to simulate the re-allocation scheme, examine its rationality, and develop CEA allocation schemes under different principles.Results and Discussion:: The following conclusions are drawn: 1) The allocation scheme formulated based on historical emission simulation methods, industry benchmark methods, and other current CEA allocation methods has certain irrationality, and future CEA allocation should not follow the original methods; 2) The improved variable weight function is better suited for allocation in CEA than the current original allocation method. The allocation scheme developed under this method, which balances fairness and efficiency principles, is more appropriate for the actual reduction of carbon emissions in China.Keywords: CEA, utility, variable weight function, improving allocation methods, allocation principles
1 INTRODUCTION
From 2007 to 2022, China has consistently been the world’s largest emitter of carbon dioxide and the largest consumer of energy. This underscores China’s significant responsibility in addressing climate change and, at the same time, facing substantial pressure for carbon emission reduction. In response, China has decided to implement a series of measures to reduce carbon emissions, with the most crucial being the establishment of a nationwide carbon emissions trading market. The fundamental logic of its operation is to convert carbon emission targets into corresponding CEA totals, initially allocated to various provinces nationwide and then further distributed by each province to specific key emission units. However, due to differences among Chinese provinces in terms of industrial distribution, economic development stages, and emission reduction technologies, the issue of imbalanced carbon emissions among provinces has become particularly prominent (Cong et al., 2022). Consequently, there are varying demands for CEA among provinces. If these demands can be met to different extents, it can enhance the enthusiasm of provinces for carbon reduction, facilitating the overall carbon reduction efforts in China. Therefore, to promote the orderly development of the national carbon emissions trading market (Lin and Huang, 2022) and accelerate the achievement of the “dual-carbon” goals, it is necessary to formulate a reasonable CEA allocation plan that caters to the diverse needs of each province.
In previous studies regarding CEA allocation, the majority of scholars tend to focus on studying CEA allocation schemes from a shallow path perspective, directly investigating CEA allocation schemes under different allocation principles and methods. This is because the formulation of allocation plans requires appropriate allocation principles as allocation guidelines (Zhao and Yang, 2022), using a rational allocation method as the allocation tool. While some literature (Wang and Ge, 2022) provides important references for specific CEA allocation plans, there are still issues such as the complexity of implementing allocation methods. In order to better formulate CEA allocation schemes, some scholars have started conducting research from a deep path perspective, which involves constructing allocation principles and methods from different perspective, including supply and demand, output, and other viewpoints (Wang et al., 2019; Ll et al., 2022). The rationality of the CEA allocation scheme mainly lies in its ability to meet the needs of various provinces for CEA. In economics, “utility” is generally used to represent the degree to which a subject’s demand is satisfied by a product, that is, the “satisfaction” (LIESIO and VILKKUMAA, 2021). Therefore, the extent to which the allocated CEA can meet the needs of each province can be measured using “utility”. Moreover, the level of utility in CEA allocation directly affects the implementation of carbon reduction efforts. However, currently, there are very few scholars conducting in-depth research from the utility perspective. Additionally, with changes in climate and the Chinese context, carbon reduction targets also change. The different carbon reduction targets can be understood as the need to consider CEA allocation based on different allocation principles. Therefore, the question of “which allocation method should be used to flexibly and simply formulate CEA allocation schemes” remains unanswered.
Therefore, in order to develop a CEA allocation scheme that can meet the needs of various provinces in China and comply with the requirements of carbon emission reduction targets, this paper aims to conduct in-depth research and develop a future CEA allocation scheme. Specifically, we will construct distribution principles and methods from a utility perspective to formulate a reasonable inter-provincial CEA allocation scheme for China in 2030. On one hand, we will construct fairness and efficiency principles based on the “utility” indicator in the distribution principles. On the other hand, in the allocation method, this paper uses a variable weight function to construct the objective function of maximizing the utility of CEA allocation, improves the variable weight function, and thus flexibly formulates the Chinese CEA allocation scheme under different allocation principles. This will help achieve the dual carbon targets, facilitate carbon emission reduction work, provide a new, simple, and flexible CEA allocation scheme, and enhance the enthusiasm and compliance rate of provinces as responsible entities for carbon emission reduction.
Consequently, this article’s innovation mainly lies in two aspects. Firstly, it innovates the research perspective by constructing allocation principles and methods based on the utility perspective to develop a reasonable CEA allocation scheme that meets the needs of various provinces. This not only provides a new approach for studying CEA allocation schemes but also broadens the research perspective in the field of resource allocation. Secondly, it innovates the research methods by proposing a method of improving the variable weight function for CEA allocation, which involves using corresponding weighting functions under different principles. This enriches the CEA allocation schemes and provides a flexible and simple method for formulating and adjusting CEA allocation schemes based on changes in carbon emission reduction targets.
The remaining structure of this article includes a review and summary of relevant literature in Part 2, an introduction of the methods and data used to develop specific CEA allocation schemes in Part 3, an analysis of the results in Part 4, and a conclusion of the research findings, as well as an explanation of shortcomings and future research directions in Part 5.
2 LITERATURE REVIEW
In the context of carbon emission reduction, CEA allocation has become a current research hotspot in the field of carbon. Based on the review of relevant literature, it is found that due to different research paths, it can be categorized into two types. The first is the shallow path, which directly investigates CEA distribution plans under different allocation principle (Dong et al., 2018; Zhang et al., 2023) and allocation methods (Zhang and Hao, 2017; LIESIO and VILKKUMAA, 2021). The second is the deep path, which starts by studying allocation principles and methods from different perspectives and then delves into CEA distribution plans. As this paper chooses to study CEA distribution plans along the deep path, a comprehensive review of relevant literature under different research perspectives in this approach is conducted. Furthermore, the text proposes a novel methodology that can cater to the requirements of diverse regions and create adaptable CEA allocation strategies. It endeavors to incorporate utility-based value functions into CEA allocation. Therefore, a focused review of existing research involving allocation methods and variable weighting functions is also carried out.
2.1 Research perspective
While only a small portion of the literature currently delves into the deep pathways of studying CEA allocation issues, in recent years, this approach has gained increasing attention from scholars exploring it from various perspectives. Li et al. (2022), based on a supply-demand perspective, proposed a dynamic adjustment scheme that utilizes price feedback as a response signal. This scheme aims to rapidly reduce the supply risk of CEA. The price mechanism, which is influenced by supply and demand, itself embodies the principles of fair and efficient distribution. Wang et al. (2019), based on an output perspective, constructed a CEA allocation model using the production levels of various sectors as constraint conditions. Using production levels as constraint conditions reflects the consistency of CEA allocation with production levels, embodying the principle of feasibility (Fang et al., 2019).
The utility perspective essentially represents the demand perspective, but there is a lack of scholars considering this issue from a utility perspective. The level of CEA allocation utility directly affects the implementation of carbon emission reduction efforts. One important reason for this may be that the utility assigned to CEA is the satisfaction that each province obtains from the allocation of CEA. Specifically, it can be understood as whether the allocated CEA meets the province’s demand for carbon emissions reduction, and whether it brings about certain benefits. However, quantifying this satisfaction is challenging and comes with a strong subjective component.
2.2 Allocation methods
In terms of allocation methods, there are four broad categories: indicator method, optimization method, game theory method, and hybrid method. Tian et al. (2022) utilized the entropy value method and expert survey method to construct a comprehensive indicator-based allocation of CEA based on historical data, demand, contribution, and other factors. The optimization method, specifically the Data Envelopment Analysis (DEA) model, has been widely used in recent years. Cui et al. (2021) optimized the allocation of CEA in various provinces in China using the ZSG-DEA model. As CEA allocation involves balancing and negotiating the interests of multiple parties, some scholars have considered using game theory methods to achieve the best carbon emission reduction effect. Yao et al. (2023) developed a stochastic game-theoretic model based on existing game theory models and analyzed its feasibility for carbon quota allocation. However, due to the subjectivity in indicator selection, the inconstancy of weight assignment, and the opacity of the game process in these three methods, more scholars choose to use a hybrid method for CEA allocation. Zhao and Yang (2022) proposed a new allocation framework that combines the DEA model with Genetic Algorithm (GA) in a dual-level allocation scheme (DLA-GA). Wang and Ge (2022) also studied the allocation of CEA from multiple dimensions using the entropy value method and the Modified Fixed Cost Allocation Model.
From the above literature, it can be observed that scholars, whether focusing on distribution principles or distribution methods, tend to consider multiple aspects when studying CEA distribution schemes, aiming to obtain more reasonable distribution plans. However, due to the changes in carbon reduction goals, governments need to adjust CEA distribution schemes promptly. Different carbon reduction targets are often reflected in ways guided by different distribution principles. This makes the question of “which distribution method should be adopted to flexibly and simply formulate CEA distribution plans” an urgent issue that needs to be addressed.
2.3 Variable weight function
The weighting function is generated based on the concept of weighting, which was proposed by Li and HAO (2014) after conducting research on other studies. This concept takes into account the significance of fundamental factors and the balance of conditions to enhance the objectivity in selecting indicators. Additionally, a more practical and adaptable index-type state weighting vector was also established. This research offers the possibility of utilizing weighting functions to develop CEA allocation plans based on different principles. Moreover, Yu (2018) demonstrated that weighting functions are defined and constructed based on utility indicators in decision-making problems. Therefore, Moradian and Kia (2021) used a variable weight function for resource allocation in their study on generators. In recent years, weighting concepts and functions have been commonly adopted in evaluation fields. For instance, Liu et al. (2018), Li et al. (2023) and others utilized them to evaluate the vulnerability of countries and food import risks, respectively. Furthermore, improved the variable weight function is extensively implemented in this area. Wu et al. (2023) improved the existing weighting models used to assess the risk of water inrush in coal seam floor, as determining weighting parameters was cumbersome.
While previous studies have attempted to apply variable weighting ideas and functions to various fields, there is limited research applying them to the field of CEA allocation. Therefore, this paper attempts to construct distribution principles and methods based on the utility perspective, utilizing variable weighting functions. It builds an objective function that maximizes the utility of CEA allocation in China, solves for variable weighting parameters under different allocation principles, and formulates CEA allocation plans under different principles based on an improved variable weight function. Additionally, considering the difficulty of expressing other allocation principles, such as feasibility, in utility form, this paper mainly formulates CEA allocation plans for fairness, efficiency, and fairness-efficiency principles in China for the year 2030, with a subsequent analysis to determine the final allocation plan.
3 METHODS AND DATA
3.1 Methods
This paper investigates the 2030 inter-provincial CEA allocation scheme in China based on the utility perspective, the specific details are shown in Figure 1. Firstly, taking the year 2020 as an example, the entropy method is employed to simulate the current inter-provincial allocation method of China’s CEA and formulate allocation plan. Secondly, the SBM (Slacks-Based Measure) model is utilized to examine whether there is any irrationality in the current allocation scheme. Thirdly, if no irrationality is found, the original allocation method will be continued for the year 2030. However, If there are any unreasonable aspects, try using a method of improving the variable weight function. From the utility perspective, a CEA objective function is constructed using improvement of the variable weight function. Different weight parameters β values are obtained, and then, based on the ARIMA time series model predicting the total CEA quantity in 2030, various allocation schemes for inter-provincial CEA are formulated using the variable weight parameters β and an improved variable weight function.
[image: Flowchart illustrating the process of developing the CEA allocation plan for the year 2030. It begins with simulating and evaluating the current CEA allocation using entropy and SBM methods. Inputs include demographic data, GDP, historical carbon, net carbon, energy consumption, and carbon footprint. The evaluation leads to rationality and irrationality outcomes, directing towards either original or new allocations. Original allocation uses methods like historical emissions and intensity reduction, while new allocation focuses on improving variable weight functions. The plan emphasizes utility, fairness, and efficiency.]FIGURE 1 | Research framework.
3.1.1 Developing and simulate the current allocation plan for CEA
3.1.1.1 Entropy method
According to the framework, the first issue addressed in this paper is to examine whether the current inter-provincial CEA allocation scheme in China has any irrationality. To do so, taking the year 2020 as an example, the entropy method is initially employed to simulate the current CEA allocation method and formulate an allocation scheme. Subsequently, the SBM model is utilized to scrutinize this allocation scheme. Due to the current distribution methods in China, which mainly include historical emission methods, historical carbon intensity reduction methods, and industry baseline methods, they are all, in fact, based on the distribution of CO2 emission. Therefore, this paper draws inspiration from Li’s study on the allocation of CEA in the cities of the BOHAI Economic Rim. Li et al. (2021a) used CO2-related indicators, namely, population, GDP, historical CO2, and historical cumulative net CO2 emissions. The entropy method is then applied to allocate CEA, making the allocation scheme more closely aligned with the current practical CEA allocation scheme. Formulas 1–7 are provided for specific cases, where i denotes provinces (i = 1,2,30, as defined in the following text), and j denotes indicators (j = 1,2,30, as defined in the following text).
Normalize the indicators by defining Zij as the normalized value of Pij, where Pij represents the value of indicator j in province i:
[image: Formula for Z-score normalization. \( Z_{ij} = \frac{P_{ij} - \min P_{ij}}{\max P_{ij} - \min P_{ij}} \). Equation labeled as \( (1) \).]
[image: Equation for Z sub i j equals the maximum of P sub i j minus P sub i j, divided by the maximum of P sub i j minus the minimum of P sub i j.]
To calculate the entropy value of a given indicator, denoted by nij, we need to first determine the share of that indicator in the total sum of all provinces’ values for that indicator. This share is represented by yij.
[image: Mathematical formula showing \( y_{ij} = \frac{Z_{ij}}{\sum_{i=1}^{30} Z_{ij}} \), labeled equation 2.]
[image: Equation for entropy is shown as: \( y_{ij} = -(ln)^{-1} \sum_{i=1}^{30} [y_{ij} \times ln(y_{ij})] \). It is labeled as equation (3).]
Calculate the weight, rj, for each indicator j:
[image: Equation showing \( r_j = \frac{1 - n_j}{\sum_i (1 - n_i)} \), labeled as equation (4).]
Build composite index hi:
[image: The image shows a mathematical equation: \( h_i = r_1 y_1 + r_2 y_2 + r_3 y_3 + r_4 y_4 \).]
Calculate the weight wi of province i:
[image: Mathematical expression showing that the weight \( w_i \) is equal to \( \frac{h_i}{\sum_{i=1}^{30} h_i} \), with equation labeled as number six.]
Finally, the allocated amount of DEA for each province should be calculated, using C2020 as the total CEA amount in 2020.
[image: It seems there was an issue with displaying the image. Please try uploading the image again, or provide a URL if it's accessible online.]
3.1.1.2 SBM model
The SBM model, as one of the DEA (Data Envelopment Analysis) models, not only calculates the input-output ratio of input variables but also considers the redundancy of input variables. Therefore, by taking the allocated CEA as the input variable, the SBM model can assess whether the current CEA allocation scheme has issues of wastefulness based on its redundancy. It is worth noting that this is to examine the rationality of the current allocation scheme, not to optimize it. The SBM formula is represented as (3.8), where xio denotes the input variable, yro represents the expected output, bko represents the non-expected output, and si represents redundancy. Since data for the Tibet region is missing, this paper considers a total of 30 Decision Making Unit (DMU), and with the assistance of the DEARUN software, the redundancy of CEA for each province is calculated.
[image: Equation showing the minimum of the variable theta. Theta equals the fraction with the numerator \(1 - \frac{1}{n} \sum_{i=1}^{n} \sum x_{ij}\) and the denominator \(1 + \frac{1}{q+h} \left( \sum_{i=1}^{q} \frac{x_{iy}}{y_{no}} + \sum_{k=1}^{h} \frac{x_{ko}}{b_{ho}} \right)\). Equation eight.]
[image: Subject to the condition \( x_{io} = \sum_{j=1}^{n} \lambda_{j} x_{ij} + s_{i}^{+} \), where \( i \) ranges from 1 to \( m_{1} \).]
[image: Mathematical formula for \( Y_{ro} = \sum_{j=1}^{n} \lambda_{j} y_{rj}^* s_{r}^{\ast} \), where \( r \) ranges from 1 to \( q \).]
[image: Equation representing a mathematical expression: b sub r k equals the sum from j equals one to n of lambda sub j b sub k j plus s tilde sub k, where k equals one, two, and so on up to h.]
3.1.2 Formulating a new allocation plan for CEA in 2030
This paper endeavors to allocate CEA via a novel approach, where utility is first constructed as the basis for distribution principles, followed by the construction of a distribution method through utility and weight functions. Subsequently, improving the variable weight function. Finally, the ARIMA model was employed to forecast the total CEA in China for 2030. Developing a provincial inter-regional CEA allocation scheme for China in 2030.
3.1.2.1 Constructing allocation principles
As this article adopts a deep-path study of the distribution scheme of China’s CEA, the distribution principles are constructed based on utility, with a primary focus on fairness, efficiency, and a combination of both fairness and efficiency. Therefore, drawing inspiration from indicators used to measure income distribution fairness, the Gini Coefficient of individual utility is selected as the indicator to measure the fairness of CEA distribution. When the Gini Coefficient is 0, fairness is maximized. Based on the research of other scholars (MORADIAN H and KIA, 2021) using variable weight functions in resource allocation domains, the mean of individual utility is chosen as the main indicator to measure the efficiency of CEA distribution. Finally, using Matlab software and the FMINCON function for optimization, the variable weight parameters corresponding to fairness and efficiency values under different conditions are calculated. Ultimately, by computing the ratio of efficiency loss to fairness loss, the variable weight parameters under different distribution principles are determined. The specific formula is given by (Equation 9), where F represents fairness, E represents efficiency, FF is the optimal solution for fairness, EE is the optimal solution for efficiency, WF is the fairness loss, WE is the efficiency loss, and ρ is the ratio of fairness to efficiency loss.
[image: The equation shows "rho equals W subscript E divided by W subscript F" with the equation number nine in parentheses.]
Among them:
[image: Equation representing a formula: \( W_E = 1 - \frac{E}{E_F} \).]
[image: Mathematical formula displayed as W sub F equals the absolute value of one minus F divided by F sub T.]
3.1.2.2 The variable weight function
As this paper adopts a utility-based perspective to construct allocation methods, it utilizes a variable weight function to formulate the objective function for maximizing CEA allocation utility, and thus, establishes a new allocation approach. The CEA objective function is primarily composed of the variable weight function and individual utility (Equation 10), where the variable weight function is represented as the normalized Hardarmard product of the constant weight vector and the state weight vector (Equation 11). The state weight vector is crucial for achieving a reasonable CEA distribution. In CEA allocation issues, governments typically focus more on provinces with higher carbon emissions. Traditional methods, such as allocating based on historical emissions, tend to indirectly encourage provinces with higher historical emissions. However, the state weight vector in the variable weight function considers the variation in weight status, enhancing the importance of smaller entities in decision-making. Therefore, the choice of the state weight vector is critical.
[image: Maximization equation: Max(U) equals the sum from i equals 1 to 30 of v sub i times u sub i. Equation number 10.]
In Equation 10, U represents the total utility, vi represents the variable weighting function, and ui denotes individual utility.
[image: Formula for \( V_i \) given as a ratio: \( V_i = \frac{W S_i(X)}{\sum_{j=1}^{30} W S_j(X)} \).]
In Equation 11, Wi denotes the constant weight vector and Si(x) represents the state variable weight vector.
Commonly, there are three types of state weighting vectors, and the specific choice needs to be considered from the perspective of balancing force values. While the importance of individuals with smaller utility is increased using the weighting function, it is also undesirable for the weights after weighting to be overly concentrated on individuals with the smallest state values. Therefore, the first two forms of weighting vectors are not suitable for application in the CEA distribution problem. On the contrary, exponential-type weighting vectors can reflect different degrees of balancing force by setting different weighting parameters. Leveraging these weighting parameters, flexibility in the distribution of CEA among provinces can be achieved. Hence, this paper mainly chooses to use this type of weighting vector to establish the weighting function for CEA distribution.
	(1) The empirical formula: [image: Mathematical expression of \( S_i(X) = \prod_{j=1, j \neq i}^{n} x_j \), where \( i = 1, 2, \ldots, n \).]
	(2) Additive equilibrium functions: [image: Mathematical expression for \( S_i(X) \) equals \( x_i \) raised to the power of negative \( \beta \). Here, \( \beta \) is greater than or equal to zero, and \( i \) ranges from one to \( n \).]
	(3) Exponential form: [image: Mathematical expression representing a survival function where S subscript i of X equals e raised to the power of negative beta times x subscript i. Beta is greater than or equal to zero, and i ranges from one to n.]

The weighting function not only needs to determine the state weighting function but also define the constant weight as an indicator. Considering two aspects, on the one hand, due to significant differences in actual carbon emissions among provinces, their demand for CEA also varies. Only when demand is not considered, should the constant weights be equal among provinces, but this is obviously not suitable for CEA distribution. On the other hand, the size of the constant weight also reflects the importance assigned by decision-makers to individuals. As mentioned earlier, the government usually emphasizes provinces with higher carbon emissions due to considerations of the magnitude of emission reduction pressure. Therefore, this paper chooses to use the mean of the actual carbon emissions (Di) of each province in the past 5 years as the constant weight for each province, as shown in Equation 12.
[image: Equation showing \( W_i = \frac{D_i}{\sum_{i=1}^{30} D_i} \), labeled as equation (12).]
In addition, quantifying individual utility is necessary for constructing the CEA objective function, which reflects the impact of CEA distribution on each province, i.e., the satisfaction generated by each province with the allocated CEA. Although surplus CEA can be traded on the carbon emission trading platform to obtain some income with positive benefits (Zhao et al., 2022), the remaining CEA cannot be stored in the long term to offset future carbon emissions. Additionally, an excess of remaining CEA can lead to lower carbon emission permit prices, reducing income from selling. Therefore, CEA exhibits diminishing marginal utility. Hence, a marginal utility diminishing parameter p ∈ (0,1) is introduced. This parameter is challenging to directly obtain, but when using the SBM model, GDP and carbon emissions are considered as expected and non-expected outputs, respectively. Thus, the mean value of the ratio of GDP to carbon emissions in recent years is chosen as the value of the marginal utility p, i.e., the ratio of expected output to non-expected output. Therefore, the specific formula for individual utility is as shown in Equation 13, where ui represents the utility function for each province, xi is the actual CEA obtained, ci is the CEA input-output ratio for each province, m is the total CEA in 2020, and p = 0.8.
[image: Mathematical equation: \( u_i = c_ix_i^2 \), labeled as equation (13).]
[image: Summation from i equals one to thirty of x sub i equals m.]
So, by substituting the exponential weight vector into Equation 11, we obtain Equation 14. Substituting this into Equation 10 and combining it with Equation 13, we get the final CEA objective function based on the weight function, as shown in Equation 15. The constraint is that the sum of the CEA obtained by the 30 provinces in China, excluding Tibet, must not exceed the total CEA for the country, denoted as m.
[image: The formula depicts \( V_i = \frac{W_i e^{-\beta x_i}}{\sum_{j=1}^{30} W_j e^{-\beta x_j}} \). It is labeled as equation fourteen.]
[image: Mathematical equation showing the maximization of U, given as the sum from i equals one to thirty of the fraction of W_i multiplied by e raised to the power of negative beta x_i over the sum from j equals one to thirty of W_j multiplied by e raised to the power of negative beta x_j. This is then multiplied by c_i and x_i raised to the power of p. The equation is labeled as equation fifteen.]
[image: Subject to the condition that the sum of \( x_i \) from \( i = 1 \) to \( 30 \) is less than or equal to \( m \).]
3.1.2.3 Improvement of the variable weight function
Based on the formulas related to the CEA fairness efficiency loss ratio and objective function, the value of the weight parameter β is obtained by comparing the efficiency principle, fairness principle, and the principle of fairness and efficiency. While the weighting function in the fairness distribution can also be used as a weight for predicting the CEA distribution, it is essential to consider that in the original weighting function, the β parameter is inversely proportional to the weighting function. Additionally, small changes in β can lead to a considerable change in the state weighting vector, causing a severe two-level differentiation of the weighting function, which does not align with the principle of fair distribution from the perspective of distribution differences. Therefore, in calculating the distribution under the fairness principle, the original weighting function formula is adjusted to the form of Wi × [1 - Si(X)]. For the principles of fairness and efficiency, both their weighting functions should be used, leading to the issue of the weights of the two. If a uniform weight of 0.5 is adopted, it is meaningless. However, as this study obtains the β values for fairness and efficiency separately in the second step, an attempt is made to use the respective β values’ proportions as weights. Given that the efficiency parameter proportion is generally smaller, multiplying it with the corresponding β value helps avoid the problem of significant differences in distribution. Therefore, the final formula for predicting CEA distribution is as shown in Equation 16.
[image: Mathematical equations illustrating principles:   1. Efficiency Principle: \( X_l = M \times \frac{W_j S_j(X)}{\sum_{j=1}^{30} W_j(X)} \). 2. Fairness Principle: \( X_l = M \times \frac{W_j[1 - S_j(X)]}{\sum_{j=1}^{30} W_j[1 - S_j(X)]} \). 3. Fairness and Efficiency Principles combined: \( X_l = M \left[ \frac{W_j S_j(X)}{\sum_{j=1}^{30} W_j S_j(X)} \times \frac{\beta_E}{\beta_E + \beta_F} + \frac{W_j[1 - S_j(X)]}{\sum_{j=1}^{30} W_j[1 - S_j(X)]} \times \frac{\beta_F}{\beta_E + \beta_F} \right] \). Number 16 is noted.]
3.1.2.4 ARIMA forecast of total CEA
In order to predict the total carbon emissions in China for the year 2030, a basic analysis revealed a linear correlation between GDP and time. Therefore, for predicting the total carbon emissions, this study opted to use the most widely-used model in time series forecasting - ARIMA, to forecast the GDP in 2030. Furthermore, taking into account the significant pressure China faces in reducing carbon emissions, this study set the target for reducing carbon intensity at 60%.The formula is presented as (3.17), where M represents the predicted CEA total, and I represents carbon intensity.
[image: Mathematical expression showing a formula: \( M = \text{GDP}_{2020} \times I_{2005} \times (1 - 60\%) \).]
3.2 Data
In this study, a sequential approach involving the entropy method, SBM model, weighting function, ARIMA time series model, and improved weighting function is employed. The indicators used include population, GDP, historical CO2 emissions, net cumulative CO2 emissions, and total energy consumption. The net cumulative CO2 emissions refer to the deduction of plant-absorbed CO2 from the CO2 emissions. Specifically, data on population, GDP, total energy consumption, and vegetation area are obtained from the “Statistical Yearbook” of each province. Historical CO2 emissions are calculated using the accounting method proposed by Cong et al. (2014), utilizing the IPCC (2006) method specified in the “National Greenhouse Gas Emission Inventory Guidelines.” This involves calculating the sum of the latest specified emissions in the three carbon emission scopes, resulting in the actual carbon emissions for each province. The specific accounting data are derived from the “China Energy Statistical Yearbook,” “General Guidelines for Comprehensive Energy Consumption Calculation,” and the China Carbon Accounting Database (CEADs), among other sources.
4 RESULTS AND ANALYSIS
4.1 The current CEA allocation plan needs adjustment
Figure 2 depicts the simulation results of the current inter-provincial CEA allocation in China using the entropy method. As shown in the figure, provinces such as Guangdong, Shandong, Jiangsu, and Shanghai receive more CEA. This is mainly attributed to the higher population, GDP, and CO2 emissions in the eastern regions. However, the relatively low forest and vegetation areas result in increased net CO2 emissions. On the other hand, provinces like Inner Mongolia and Qinghai, with lower populations and extensive forest and grassland areas, absorb a significant amount of CO2, leading to lower net emissions and consequently receiving fewer CEA. Although there are some differences compared to the distribution of CEA reported in the “First Compliance Cycle Report of the National Carbon Emission Trading Market” released in 2022, this is mainly because the mentioned report only covers the allocation of CEA in the power generation industry. However, data from other sources, such as “Review and Outlook of China’s Carbon Market,” show consistency with the results obtained through the entropy method. Therefore, it can be generally considered that this study accurately simulates the current inter-provincial CEA allocation in China using the entropy method.
[image: Bar chart displaying GDP of Chinese regions in 2021, measured in trillions of Yuan. Guangdong leads with almost 13 trillion, followed by Shandong and Jiangsu. Several regions show lower GDP below 2 trillion.]FIGURE 2 | Current CEA allocation scheme.
Table 1 provides an examination of the distribution results. Firstly, it is evident that among the 30 provinces, only Beijing, Guangdong, Jiangsu, Inner Mongolia, Qinghai, and Ningxia had zero redundancy in their 2020 CEA allocations. Secondly, provinces such as Guangi, Shanxi, Liaoning, and Gansu exhibited higher redundancy in their CEA allocations. Additionally, Shandong ranked first in the quantity of CEA obtained in 2020, but its redundancy was as high as 2.96. This is primarily due to its elevated historical carbon emissions and a GDP gap compared to regions like Guangdong and Jiangsu. It indicates a substantial degree of waste in Shandong’s CEA allocation, suggesting a need for a reduction in the allocated CEA amount. These findings underscore the significant issue of waste in the inter-provincial distribution of CEA. Therefore, the future allocation of CEA among Chinese provinces should not continue based on the current distribution scheme and requires adjustment.
TABLE 1 | The redundancy of CEA for each province.
[image: Table showing redundancy values for Chinese provinces. Notable values include Shanghai at 3.86, Chongqing at 3.41, Shandong at 2.96, and Gansu at 2.83. Some provinces like Beijing, Inner Mongolia, Guangdong, Jiangsu, Yunnan, Qinghai, and Ningxia have a redundancy of 0.]4.2 The new allocation plan for CEA in 2030
4.2.1 The variable weighting parameter β
To flexibly and conveniently adjust the CEA distribution scheme under different allocation principles, this study utilized the FMINCON function in Matlab to determine the values of variable weight parameters for which the Gini Coefficient and mean utility of each province were obtained under different conditions of fairness and efficiency, as shown in Figure 3. Overall, as the variable weight parameter gradually increased, the fluctuation amplitude of CEA distribution fairness remained relatively small, while efficiency showed a strict decreasing trend after β = 4. Specifically, from a fairness perspective, when β = 17, the Gini Coefficient of utility was minimized. A smaller Gini Coefficient indicates a more equitable distribution. Therefore, this β value is considered the variable weight parameter for fairness orientation. Additionally, since the Gini Coefficient at this point is 0.27, it implies that achieving absolute fairness in CEA distribution is challenging regardless of the value of the variable weight parameter; what can be achieved is relative fairness in distribution. From an efficiency standpoint, when β = one to four, the mean utility was consistently 174.25, the maximum value. However, based on the analysis of the current distribution scheme, there is significant waste in inter-provincial CEA distribution. Therefore, individual provinces should not receive excessively large amounts of CEA. Consequently, this study chose β = 1 as the variable weight parameter for efficiency orientation. It was also observed that the maximum value of mean utility coincided with the total CEA distribution in China, indicating a certain relationship between the efficiency of CEA distribution and its total allocation.
[image: Line graph depicting efficiency and fairness over 20 units. Efficiency starts at 174.25, declines steadily to around 60. Fairness remains constant until unit 12, then rises to 0.3. Both have opposing trends.]FIGURE 3 | Equity and Efficiency of CEA Allocation under Different β
As this paper explores the CEA allocation scheme considering both fairness and efficiency principles, further determination of the β values was conducted by calculating the efficiency-fairness loss ratio using Formula 9, with specific results illustrated in Figure 4. Although there is a certain range of fluctuations in the efficiency-fairness loss ratio, the overall trend indicates an increase with the growth of β values. On the one hand, according to this figure, it is evident that when β = 1, the ratio is 0. In this scenario, an increase in fairness loss does not lead to a reduction in efficiency loss, emphasizing that a β value of one is preferred when efficiency is the guiding principle. Similarly, when β = 17, the ratio approaches infinity, signifying that an increase in efficiency loss cannot reduce fairness loss. This situation represents the optimal scenario for fairness. On the other hand, considering that 4 = 0 and 5 = 5.92, there must be a∈(4,5), where a = 1. Therefore, when <β < 5, efficiency loss exceeds fairness loss, and as β increases, more efficiency loss is required to achieve a reduction in fairness loss. When 4<β<a, efficiency loss is less than fairness loss, and an increase in β results in a greater reduction in fairness loss with less efficiency loss. Thus, based on the dual principles of fairness and efficiency, the β value should be a, and after further calculation, when a = 4.35, β equals 1. Therefore, β = 4.35 is the preferred β value that balances fairness and efficiency principles.
[image: Line graph showing data points from 1 to 17 on the x-axis and -20 to 120 on the y-axis. The line starts flat, rises gradually to 5.92 by point 5, then steadily increases with a sharp spike around point 17, reaching the highest value at 100.]FIGURE 4 | Efficiency to equity loss ratio.
4.2.2 Total CEA in 2030
Based on the ARIMA model used to forecast the 2030 GDP and subsequently applying Formula 17, the calculated total CEA for the year 2030 is 210.73 billion tons. The results differ from the study by GE (2021), mainly due to variations in the chosen reduction rate of carbon intensity. In comparison to the calculation of 253 billion tons by Fang et al. (2018), although some discrepancies exist, it might be attributed to their fixation of GDP growth rate at 6%, resulting in a higher GDP forecast and, consequently, a relatively higher final prediction. However, in reality, the growth rate of GDP is unlikely to remain constant. Therefore, the projected total CEA for China in 2030 in this study appears reasonably justified.
4.2.3 Distributional schemes under different principles
Since the variable weighting parameter β under different allocation principles has been determined, assuming that the total China’s CEA in 2030 is 210.73 billion tons, the allocation scheme for inter-provincial CEA in China in 2030 can be predicted using Formula 16. The allocation schemes guided by different allocation principles are shown in Figures 5–7. Horizontally, there are significant differences in CEA distribution schemes under different principles, especially between those guided by efficiency and fairness. Under the efficiency principle, most CEA is allocated to remote areas such as Inner Mongolia, Qinghai, and Yunnan. Conversely, under the fairness principle, economically developed provinces such as Guangdong, Shanghai, and Beijing receive more CEA, with Guangdong receiving the highest. This may be because under the efficiency principle, the variable weighting parameters are smaller, and remote provinces like Inner Mongolia, due to their lower historical carbon emissions in 2020, receive more CEA even with lower demand. In contrast, provinces with higher population, GDP, and historical CO2 emissions like Guangdong, Shanghai, and Beijing receive more CEA under the fairness principle due to their larger historical emissions and larger variable weighting parameters.
[image: Map of China displaying population density by region using a gradient color scale. Light yellow indicates low density, while dark red indicates high density. An inset shows an island region, maintaining the same color scheme. A scale bar provides distance reference, and a legend explains the color zones.]FIGURE 5 | Allocation plan under efficiency principle.
[image: Choropleth map of China showing regional data categorized into four intervals: 0.1 to 4, 4.1 to 8, 8.1 to 12, and 12.1 to 16. Colors range from light yellow to dark brown, with darker shades indicating higher values. A scale at the bottom represents 2,505,000 to 1,000 kilometers. A small inset map highlights an area.]FIGURE 6 | Allocation plan under equity principle.
[image: Map showing regions in varying shades of orange and brown, representing a gradient from light to dark. The color intensity increases with the values in the key, ranging from 0.1 to 15.]FIGURE 7 | Allocation plan under Equity and Efficiency principle.
From a vertical perspective, under the guidance of the efficiency principle, there is a significant disparity in CEA allocation between Inner Mongolia and Guangdong. Inner Mongolia, Qinghai, and other regions receive a substantial amount of CEA. However, as mentioned earlier, the utility of excess CEA diminishes over time. The surplus CEA cannot be stored for an extended period, and even if sold in the carbon market, the oversupply may lead to a reduction in carbon prices. Therefore, the surplus CEA may not bring additional benefits to these provinces. In contrast, the eastern regions receive only a small portion of CEA, which is insufficient to meet their carbon emission needs for economic development. Notably, Guangdong receives almost no CEA, which appears to be unreasonable. This distribution scheme may lead to dissatisfaction among provinces receiving fewer CEA, hindering the progress of China’s carbon reduction tasks. Therefore, the implementation of such a distribution scheme requires careful consideration.
Under the guidance of the fairness principle, the disparity in CEA among provinces noticeably decreases, with economically developed eastern regions receiving more CEA than the central and western regions. This observation broadly validates Dong’s research findings, indicating a transfer of China’s CEA from the central and western regions with lower input-output ratios to the eastern regions with higher input-output ratios (Dong et al., 2018). However, in this scheme, due to the small variations in the weight function, the distribution is still primarily based on traditional historical CO2 emissions. This makes it challenging to address the issue of asymmetric disclosure of carbon emission information among provinces. Additionally, according to the results of the SBM, there is limited incentive for remote provinces with minimal CEA redundancy. Regions like Inner Mongolia, Qinghai, and Hainan experience only marginal increases in CEA, highlighting certain shortcomings in this distribution scheme.
In the distribution scheme that simultaneously considers both the principles of fairness and efficiency, it reasonably addresses this issue by appropriately increasing the CEA for provinces with less redundancy. Moreover, for provinces with excessive CEA redundancy, such as Shandong, their CEA increment is reduced to minimize the wastage of carbon quotas, as illustrated in Figure 8. While this scheme may impose significant emission reduction pressure on provinces like Jiangsu and Henan, it results in CEA surpluses for regions like Inner Mongolia and Qinghai. The government can formulate policies related to CEA cooperation based on these surpluses. Scholars like Li et al. (2021b) advocate strengthening regional cooperation, allowing for more flexible nationwide CEA distribution and fostering collaboration between eastern and central-western provinces. From a comprehensive perspective, as shown in Figure 7, CEA distribution in this scheme still favors eastern provinces over western provinces, consistent with the findings of Li et al. (2021a) in inter-provincial CEA allocation results. Southern provinces also receive more CEA than northern provinces, with CEA concentrated in southern provinces such as Shanghai, Guangzhou, and Chongqing. Kong et al. (2019), in studying the distribution of CEA, obtained similar allocation results.
[image: Bar chart depicting net land area changes in various Chinese regions. Shandong and Inner Mongolia exhibit the highest positive changes around five. Negative changes are observed in Zhejiang and Guangxi. Data values range from approximately positive six to negative four.]FIGURE 8 | Cea value added.
After a detailed analysis of the three principles-based distribution schemes mentioned above, it becomes evident that the variable weight function can be applied to the CEA distribution problem, and the result of the improved variable weight function is reasonable. However, distribution schemes based solely on the efficiency principle or the fairness principle have their own shortcomings, so this article does not recommend using them for the distribution of China’s CEA in 2030. In comparison to these two distribution schemes, the scheme guided by both fairness and efficiency principles may be more suitable for the distribution of inter-provincial CEA in China by 2030. This is because the latter not only maximizes the utility of CEA distribution but also aligns with the carbon emission demands of each province. It significantly boosts the enthusiasm of provinces to reduce emissions, providing robust support for achieving the “peak carbon” target.
5 CONCLUSION
In order to achieve China’s goal of reaching peak carbon emissions by 2030, it is necessary to ensure the fair distribution of CEA. However, the current CEA allocation scheme has its limitations. Therefore, this paper aims to propose a new allocation method that takes into account the specific needs of each province while also allowing for flexible and simplified adjustments to inter-provincial CEA allocations based on various allocation principles.
The final study has two main conclusions. Firstly, using the entropy method to simulate the current inter-provincial CEA allocation method in China and formulating the current allocation scheme based on this, the study found that the scheme has shortcomings in terms of inefficiency and waste. Therefore, the CEA allocation should not be distributed according to the original method. Secondly, the improved variable weight function is a more suitable distribution method for resource allocation than the current original allocation method. Under this method, the CEA allocation scheme that balances fairness and efficiency principles is more suitable for the inter-provincial CEA allocation in China in 2030. This is because most CEA not only allocate to economically developed and high carbon-emitting provinces, but also to provinces with previously high CEA input-output ratios. These findings not only enrich the CEA allocation scheme but also expand the application of variable weight functions in the field of resource allocation. They also provide a premise and guarantee for the smooth operation of the carbon emission trading market, and more importantly, provide a new method for China to flexibly formulate and adjust CEA allocation schemes.
Certainly, there are some limitations in this study. On the one hand, this article allocates CEA from the perspective of utility, but only investigates two distribution principles, fairness and efficiency, without studying other distribution principles such as feasibility and sustainability. Therefore, future research could explore constructing other distribution principles using the metric of “utility” to make CEA distribution more in line with the needs of future carbon emissions. On the other hand, the paper uses 2020 carbon emission and carbon quota data to predict the 2030 CEA distribution scheme, and these data are currently not directly obtainable. The inaccuracy of the data will undoubtedly impact the calculation results, yet existing carbon databases suffer from issues such as poor data timeliness and significant variations in results due to different statistical methods. To enhance the precision of future research related to carbon, efforts can be directed towards developing standardized methods for measuring carbon emissions and establishing a comprehensive carbon data repository across multiple dimensions.
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Introduction: Energy is the fundamental driving force for world economic and social development. However, the growth of carbon dioxide emissions and increasing environmental challenges are becoming increasingly problematic, limiting the pace of economic development.Methods: To optimize the energy consumption structure and promote the development of low-carbon economy, this study took Shaanxi Province as an example to analyze the impact of low-carbon economy policy variables on the energy consumption structure dominated by coal. The purpose of this study is to examine the influence of policy variables on the evolution of energy consumption structure by constructing a system dynamics model. In addition, this study will explore policy optimization issues.Results: The error of simulation results was within ±10%. The consumption of non-fossil energy increased from 2,196,400 tons of standard coal in 2009 to 22.578 million tons in 2030, which is in line with the development trend. Under these four policy combinations, the share of coal will fall to 57.8 percent by 2030. In addition, the share of non-fossil energy sources will increase to 21 percent and the share of natural gas will reach 16 percent.Discussion: The policy suggestions put forward in this paper are of great significance to the optimization of energy structure led by coal. The model constructed can be effectively applied to practical policy simulation and adjustment, and can provide reference for the development of low-carbon economic policies in other regions.Keywords: low-carbon economy, energy consumption system, system dynamics model, coal, Shaanxi Province
1 INTRODUCTION
Energy has become an indispensable fundamental factor in the advancement of the world economy and society. Since entering the industrial era, mineral energy has occupied a major proportion. When promoting social development, it also releases a large amount of carbon dioxide (CO2), resulting in consistently high CO2 concentrations in the atmosphere (Oh, 2023; Li et al., 2024). With the consumption of energy, social and economic development (ED) has been promoted, and a series of ecological and environmental problems have become increasingly prominent. Moreover, the result is that global warming has been unanimously recognized by the international community (Yuan and Pan, 2023). The global climate change issue appears to be an environmental issue on the surface, but behind it is essentially an energy issue, the fundamental reason being the transformation of ED models. The essence of global climate change governance is the issue of low-carbon (LC) development in the global economic model. China is currently in a critical stage of industrialization and urbanization, facing enormous pressure in terms of ED and energy conservation and emission reduction. To gain a voice internationally, promote economic transformation and development, and alleviate the pressure on resources and the environment, it is urgent to enhance the efficiency of LC ED to achieve a virtuous cycle with the global economy (Liu et al., 2024; Huang et al., 2023). However, current research on LC economy and energy consumption structure (ECS) is mostly optimized on the grounds of constructing multi-objective models or individual predictions. Few scholars, from the perspective of systems theory, use the consumption of heterogeneous energy as an output variable to construct a system dynamics model (SDM) to explore the influence of policy variables on the evolution trend of ECS and the optimization of ECS from a policy perspective. The concept of LC economy was first proposed by the academic community, and a research framework was constructed for the CO2 emissions trajectory of the energy industry sector in different policy choices of countries around the world. It is believed that both developed and developing countries need to take early action for controlling the concentration of CO2 in the atmosphere to twice or lower than pre-industrial levels (Zhang et al., 2023). The research on ECS mainly focuses on the influencing factors of ECS, LC evaluation of ECS, and optimization of ECS (Zeng and Wang, 2023). By analyzing the panel data on 282 cities in China, Ding et al. (2024) explored the relationship between network infrastructure expansion and LC development. The study employed the quasi-natural experiment of “Broadband China” to investigate the impact of network infrastructure expansion on LC development. The findings suggest that such expansion can significantly enhance the prospects of LC development, primarily by optimizing the industrial structure and promoting technology investment. In addition, the study revealed the dual impact of network infrastructure expansion on the efficiency of LC technologies, and the policy effects vary across cities (Ding et al., 2024). Using a non-linear ARDL model and wavelet analysis based on monthly data from 1992 to 2017, Fatima et al. found that global energy prices have an asymmetric effect on CO2 emissions. Wavelet analysis showed that this relationship varied across time scales and sectors, and ignoring non-linearity could lead to misleading conclusions (Fatima et al., 2021). Meo MS confirmed the asymmetric relationship between temperature and CO2 emission by using the NARDL method. In the short term, energy use, population growth, and economic growth (EG) increased emissions. In the long term, energy consumption and EG continued to push up emissions, with a 1% drop in temperature reducing emissions by 5%. The study also supported policies to increase renewable energy consumption (Meo et al., 2023). Adebayo et al. (2021) summarized the relation in CEs, EG, and technological innovation in Brazil, focusing on the optimization of ECS and the advancement of LC economy. This effectively promoted the optimization of Brazil’s ECS and the advancement of LC economy (Adebayo et al., 2021).
In addition, Raihan and Tuspekova (2022) conducted in-depth research on the advancement of LC economy and ECS by using econometric methods and dynamic ordinary least squares method to address the current issues related to global environmental quality improvement and sustainable development. This provided assistance in proposing sustainable development strategies and mitigating environmental degradation. Ullah et al. (2022) addressed the issue of CEs in the transportation sector and constructed an EC prediction model using machine learning algorithms. This effectively promoted the optimization of ECS in the transportation industry and provided development ideas for sustainable development (Ullah et al., 2022). Qu et al. (2021) addressed the issue of greenhouse gas emissions in sustainable development by constructing centralized and decentralized game models using Stackelberg theory. This effectively promoted the optimization of ECS in the supply chain and provided corresponding data reference for the advancement of LC economy (Qu et al., 2021).
The extant research on the LC economy and ECS is primarily concerned with the construction of multi-objective models or single forecasts. However, these studies tend to lack an overarching perspective informed by system theory and do not fully account for the heterogeneous nature of energy consumption. Second, when analyzing the evolution trend of ECS, most studies fail to effectively combine the influence of policy variables on energy structure, resulting in low accuracy of trend analysis. In addition, most of the existing studies focus on the optimization analysis of a single policy and fail to fully explore the comprehensive effects of multiple policy combinations. With the promotion of the global LC economy, the energy structure of Shaanxi Province, which is highly dependent on fossil fuels, has become more unreasonable, and there is a gap with the national optimization trend. Subsequently, optimizing the ECS of Shaanxi Province is crucial for the regional and national LC transition. Therefore, this study makes up for the above shortcomings by constructing the system dynamics model. From the perspective of system theory, this study takes heterogeneous energy consumption as the output variable and comprehensively analyzes the influence of different policy variables on the evolution of ECS in Shaanxi Province. Furthermore, this study examines the influence of diverse policy combinations and determines the most efficacious policy combinations, thereby offering a novel perspective for the optimization of ECS in theory and a scientific foundation for the formulation of regional LC economic policies in practice. The main contributions of the research are as follows: the system dynamics model suitable for Shaanxi Province is proposed, which significantly improves the accuracy and applicability of policy simulation. At the same time, through the policy combination analysis, the effective path to optimize the regional ECS is identified. These innovations provide important support for further optimizing regional energy policies and promoting LC ED.
2 METHODOLOGY
Shaanxi Province is a significant energy-producing region in China, endowed with substantial coal and natural gas reserves. Its EG has historically been closely tied to the energy sector, particularly coal. However, with the promotion of LC economy across the country, Shaanxi faces the challenge of industrial structure transformation, especially in the case of unreasonable ECS. The examination of LC policy practices in middle and middle ecologically fragile regions, which are susceptible to environmental consequences resulting from energy consumption, is beneficial in achieving equilibrium between energy development and environmental conservation. At present, the ECS of Shaanxi Province is extremely unreasonable, mainly coal, and the optimization space is large. An investigation into the evolution of ECSs in Shaanxi Province has the potential to offer insights that can inform LC transformations in other resource-dependent regions. Additionally, the findings may serve as a point of reference for similar regions worldwide.
The optimization of ECS in Shaanxi Province is a multifaceted endeavor, encompassing a range of interrelated factors, including ED, energy consumption, environmental impact, and policy implementation. The system dynamics model can handle this complex system with multiple variables and layers and study its impact on the ECS by simulating the dynamic relationship between these factors. The influence of policy variables on the development trend of ECS is studied in a more systematic way. Therefore, the system dynamics model can fill this gap and study the influence of policy on the evolution of energy structure more systematically. Statistical data are used to build models for verification so as to improve the reliability of prediction and provide a new perspective for the theoretical study of LC economy.
2.1 Analysis of the energy consumption structure and low-carbon economy in Shaanxi Province
At present, there is a problem that the analysis of the evolution trend of regional ECS using LC economic policy variables has not been conducted from a systematic perspective, resulting in poor accuracy in trend analysis. Therefore, this study takes Shaanxi Province as an example and analyzes the evolution trend of regional ECS by constructing a SDM. It is widely believed worldwide that the emergence of the LC economy is mainly aimed at addressing issues such as the greenhouse effect and chemical energy reserves. In the context of economic globalization, the LC economy has gone beyond the scope of technology and economy and has risen to a political level. It is also a game played by countries to fight for the discourse power of future ED (VE et al., 2021; Sheng et al., 2023; Luderer et al., 2022). This study believes that the essence of LC economy is to decrease the consumption of high-carbon energy through various means. Meanwhile, it improves energy utilization efficiency by optimizing the structure of energy and can continuously reduce the concentration of CO2. This approach is the optimal means of attaining a harmonious development of the economy, society, resources, and environment while simultaneously minimizing EC and CO2 emissions and maximizing economic output benefits. The ECS includes primary EC, terminal EC, and partial ECS, and the studied ECS is primary ECS (Pell et al., 2021; Zhang et al., 2022; Jahanger et al., 2022).
On the grounds of this, the study mainly analyzes the current ED status of Shaanxi Province from the overall economic status and industrial structure. It also analyzes its overall ECS from the perspectives of total EC, EC of various industries, and ECS. The analysis of the current ED status of Shaanxi Province from the overall economic conditions and industrial structure is shown in Figure 1.
[image: Map of Shaanxi Province with an arrow pointing right, two charts depicted. The top chart shows GDP and growth rates from 1998 to 2018, comparing Shaanxi's GDP with national growth. The bottom chart displays industrial output and the proportion of primary, secondary, and tertiary industries over the same period.]FIGURE 1 | Analysis results of the current ED status of Shaanxi Province on the grounds of the overall economic situation and industrial structure.
Figure 1 shows that Shaanxi Province, with its energy advantage, has increased its gross domestic product (GDP) from approximately 31.4 billion yuan in 1988 to approximately 24.438 billion yuan in 2018, a growth of only 77.7 times in 30 years. From the perspective of GDP growth rate, the average annual growth rate of GDP in Shaanxi Province has exceeded the national average in the past 20 years and has shown a development trend that is basically in line with the same period in the country. This demonstrates that the economic situation of Shaanxi Province is closely relevant to the macroeconomic situation of the country. Taking 2008 as the dividing line, the GDP of Shaanxi Province maintained an overall growth trend before 2008 but showed an overall decline trend after 2008. The main reason is that after the 2008 global economic crisis, the world economy continued to be sluggish, and China’s EG rate also slowed down. The EG rate of Shaanxi Province also began to decline. In 2014, China entered a new normal, and its traditional advantages gradually weakened. The country was in a stage of medium- to high-speed development, transitioning from extensive development to intensive development and from factor-driven to innovation-driven. Meanwhile, Shaanxi Province has also encountered the same problems during the same period and urgently is essential to transform toward a green and LC development mode to promote economic transformation and upgrading.
The proportion of the primary industry in Shaanxi Province is continuously decreasing in terms of industrial structure. Before 2001, there was a certain growth in the proportion of the tertiary industry (TI). From 2001 to 2014, the proportion of the TI showed a continuous decline. After 2014, the proportion of the TI increased. This is mainly due to the fact that the ED of Shaanxi Province before 2014 mainly relied on the secondary industry. Although the number of the TI is increasing every year, its growth rate is slower than that of the secondary industry, so its proportion in the province continues to decrease. In 2014, China’s economy entered a “new normal”, and Shaanxi Province achieved a transformation of its industrial structure by decreasing the proportion of the secondary industry and growing the proportion of the TI. Since 2014, the proportion of the secondary industry has also shown a trend of first increasing and then decreasing. The secondary industry is mainly resource-dependent. Moreover, the unique energy resources in Shaanxi Province also have the conditions for the western development. The current situation of ECS in Shaanxi Province is shown in Figure 2.
[image: Map of Shaanxi Province alongside two line charts. The top chart shows energy consumption trends from 1998 to 2018 for coal, petroleum, natural gas, and other sources, with total energy consumption increasing. The bottom chart presents the industry proportion of the primary, secondary, and tertiary sectors in Shaanxi from 1998 to 2015, noting changes in their respective proportions.]FIGURE 2 | Current situation of ECS in Shaanxi Province.
From the perspective of total EC, Shaanxi Province has a unique advantage in energy resources, with various energy resource reserves ranking first in the country. However, there are significant differences in the consumption of various types of energy, and EC will continue to be the main driving force for ED in the future. From the perspective of EC in various industries, the EC of the secondary industry has been continuously increasing, maintaining a proportion of around 60% recently. The EC of the TI continues to remain relatively low, at a level of 15%–20%. The EC level of the primary industry is not high. From the ECS, there are generally unreasonable aspects in the ECS of Shaanxi Province, mainly dominated by coal and maintained at around 70% for a long time. The overall consumption of crude oil has increased first and then decreased, falling below 10%. The consumption of gas has steadily increased, currently exceeding 10%. Although the proportion of other energy sources is steadily increasing, it is still at a relatively low level. In addition, due to the high coal consumption in Shaanxi Province, analyzing its CE status is an overall analysis of its implementation of LC economic policies. Due to the lack of a unified calculation method for CO2 emissions in China, this study drew on the relevant calculation formulas in the National Greenhouse Gas Inventory Guidelines released by the United Nations Intergovernmental Panel on Climate Change in 2016 for calculation. Its expression is shown in Equation 1.
[image: Equation showing T equals the sum from j equals 1 to 4 of F sub j times gamma sub j. Displayed with equation number 1.]
In Equation 1, [image: Please upload the image or provide a URL so I can help generate the alternate text.] represents CEs. [image: Please upload the image you would like me to generate alternate text for.] represents the actual consumption of the [image: Please upload the image or provide a URL so I can generate the alt text for it.]-th energy source. [image: Please upload the image or provide a URL for me to generate the alt text.] represents the relevant CE coefficient of the [image: It seems there's a misunderstanding. Please upload an image or provide an image URL, and I can help generate alternate text for it.]-th energy source. The overall CEs in Shaanxi Province are divided by 1998 and have shown a trend of increasing year by year since 1998. However, the growth rate has continued to decrease since 2012, mainly due to Shaanxi Province’s active response to the country’s LC economic policies. Overall, the ECS in Shaanxi Province is characterized by a large total amount and an unreasonable structure. On one hand, Shaanxi Province is currently and has been in a period of ED for a long time. Therefore, the consumption demand for energy will continue to grow, and the difficulty of controlling its total amount will continue to increase. On the other hand, Shaanxi Province’s overall ECS is unreasonable due to its energy distribution form, and there is a significant gap compared to the target. Therefore, optimizing it is imperative (Zhi-Hong et al., 2021; Jiang, 2021; Cai et al., 2023).
2.2 Construction of the energy consumption structure system model in Shaanxi Province
In response to the problems in the ECS of Shaanxi Province, this study constructs a system model of ECS in Shaanxi Province from the perspective of systems theory. The system model constructed by the research is a complex system with multiple elements, levels, and loops, in which many elements interact and constrain each other, forming a dynamic and complicated causal cycle. Compared to traditional economic energy environmental systems, the systems involved in research are more extensive. It includes multiple subsystems such as human beings, technology, economy, energy, environment, and government, and each subsystem is not isolated but affects and restricts each other. In these subsystems, with the government at the center, various powerful policies are implemented to effectively regulate various subsystems such as population, science and technology, economy, energy, and environment. This has led to dynamic changes in the overall system, and it is also a key element that dominates the formulation and implementation of LC economic policies. Therefore, the overall architecture of the constructed system model is shown in Figure 3.
[image: Diagram illustrating relationships between economic, social, and environmental subsystems. Economic development leads to environmental pollution and social development causes energy consumption. Pollution and consumption are linked to restricting development and providing ecological compensation. Government formulation is central to these interactions.]FIGURE 3 | Schematic diagram of the overall architecture of the ECS system model in Shaanxi Province on the grounds of system theory.
In Figure 3, the system model is built on four key assumptions, one of which is that the energy conversion system (ECS) in the system model relies entirely on non-fossil energy sources. This means that all energy supply and conversion processes in the model are assumed to be provided by renewable or other non-fossil energy sources. The CO2 emissions in the system model come from coal, oil, and natural gas, which enter the atmosphere after complete combustion. The hindrance variables of non-mineral resources are not considered in the system model. The heterogeneous EC involved in the system model includes both productive EC and domestic EC. Figure 3 shows that the system model includes five subsystems, namely, population, technology, economy, energy, and environment, with each subsystem mutually constraining and influencing each other. The economic subsystem is the study of the effects of economic aggregate and GDP growth on the energy subsystem, which, in turn, affects the environmental subsystem. The population subsystem refers to the reasonable total population under the relatively stable conditions of subsystems such as economy, energy, and environment. The technology subsystem mainly studies the impact on the energy and environment subsystems under the condition of an increasing technological level. The energy subsystem studies the impact of different types of EC and their changes on the environment and economic subsystems under certain ED levels and population conditions. The environmental subsystem is on the grounds of a certain level of ED and EC and analyzes the impact of CO2 emissions caused by different types of EC on population and EG.
The role of the government subsystem is to analyze the influence of LC economic policy changes on the output variables of subsystems such as economy, energy, and technology. The research model includes the relationships between different variables in population, technology, economy, energy, and government, which constitute the ECS model of Shaanxi Province. The research model takes 2009–2030 as the simulation year for LC economic policies and simulates the impact of simulation schemes composed of relevant policy changes on ECS. The data are sourced from the statistical yearbook and economic statistical bulletin of Shaanxi Province from 2009 to 2022. In addition, mathematical calculation methods, development trend prediction methods, regression analysis methods, and other methods are utilized for determining the parameter settings and relationships between variables in the dynamic model of the system. This is to ensure that the system model can better simulate the relationships between variables and make it more consistent with reality. Among them, the GDP growth rate of the economic subsystem is determined by combining the Cobb Douglas production function with the Solow residual method, and the relevant expression is shown in Equation 2 (Zeytoon-Nejad et al., 2023; Tsachtsiris et al., 2022; Dańska-Borsiak, 2022).
[image: A set of mathematical equations: \( P = KN^{\lambda}G^{\lambda} \) and \( P = KG^{0.7}N^{\gamma}G^{\lambda} \).]
In Equation 2, the second row is obtained by taking the logarithm of the first row and differentiating it separately while keeping the scale return constant. Among them, [image: Please upload the image or provide a URL for the image you would like described.] represents GDP. [image: Please upload the image or provide a URL so I can generate the alternate text for it.] represents technological progress. [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] represents labor force. [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL. Optionally, you can add a caption for additional context.] represents fixed capital. [image: Please upload the image or provide a URL so I can generate the alt text for you.] represents the stock of technological capital. [image: Please upload the image or provide a URL so I can generate the alternate text for it.] represents the stock of labor force. [image: Please upload the image you'd like me to generate alternate text for. You can do this by attaching the image file or providing a link to it.] serves as fixed capital stock. [image: It seems there was an error in your request. To generate alt text, please upload the image or provide a URL. Optionally, you can include a caption for additional context.] represents labor output elasticity. [image: Please upload the image or provide a link to it, and I will generate the alternative text for you.] serves as the elasticity of capital output. Fixed assets are usually horizontal variables, so the perpetual inventory method is used to solve them, and mathematical calculation methods are used to solve their growth rates. The relevant expressions are shown in Equation 3 (Ito et al., 2022; James Peter et al., 2022).
[image: Formulas enclosed in braces. First formula: \( G_t = G_{t-1}(1 - \phi) + L_t \). Second formula: \( S_t = \frac{e(\tau + 1) - e(\tau)}{e(\tau)} \). Labeled as equation (3).]
In Equation 3, [image: Please upload the image or provide a URL, and I'll help you generate the alternate text for it.] represents fixed assets and [image: Please upload an image or provide a URL so I can generate the alternate text for you.] is the year. [image: It seems there was an error with your image upload. Please try uploading the image again or provide a URL so I can assist you with generating the alt text.] serves as the depreciation rate of fixed assets, set at 10.85% in the study. [image: Please upload the image or provide a URL for which you need the alternate text.] represents newly added fixed assets. [image: It looks like you tried to embed an image but it seems to be displaying text instead. Please upload the image file directly or provide its URL for assistance with alternate text creation.] represents the fixed growth rate in year [image: Please upload the image or provide a URL, and I will generate the alt text for you.]. [image: It seems like there was a mistake. Please upload the image or provide a URL so I can generate the alt text for you.] represents the value of fixed assets. As a major speed variable of an economic subsystem, the calculation formula for GDP reduction is determined by the social cost of CEs set by the US Government. The energy-saving, environmental protection investment ratio, new energy investment ratio, and new energy vehicle investment ratio in various economic subsystems are all obtained by taking the average value within the calculation cycle. GDP in the current period over the previous period. Investment in fixed assets covers construction, equipment and other inputs. Investment in energy conservation and environmental protection involves expenditure on energy conservation, emission reduction and environmental protection. Each factor is interrelated and can be analyzed by mathematical model. The relevant equations and parameter determination in the population subsystem are relatively simple, so they will not be repeated here. In the technology subsystem, technology output is an important auxiliary variable, which is mainly determined by multiple linear regression equations. This study also used the Cobb Douglas production function for calculation, and the expression of the relevant parameters after necessary transformation is shown in Equation 4 (Saepudin and Amalia, 2022; Ikeo, 2021).
[image: The image shows a mathematical equation: \(H = BU^f N e^{n/q}\), labeled as equation (4).]
In Equation 4, [image: Please upload the image or provide a URL for the image you would like me to generate alternate text for.] represents technological output and research is expressed in the quantity of patent authorizations. [image: It seems there was an issue with uploading the image. Please try uploading it again, and I'll be happy to help with the alternate text.] represents the actual efficiency of research and development (R&D) investment. [image: It seems there was an issue with viewing the image. Please make sure to upload the image directly or provide a valid URL, and I will help generate the alternate text for you.] represents the actual input of labor force, and the research is expressed in terms of the actual number of R&D personnel. [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] represents capital investment in scientific R&D, and research is expressed as the expenditure of R&D investment funds. [image: Please upload the image or provide a URL so I can generate the alternate text for it.] represents the natural base. [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] serves as the output elasticity of R&D personnel investment. [image: Please upload an image or provide a URL so I can generate the appropriate alt text for you.] represents the actual output elasticity of R&D capital investment. [image: Please upload the image or provide a URL for me to generate the alt text.] represents the relevant influencing factors of investment efficiency. The calculation of the growth rate of scientific and technological level mainly adopts mathematical statistics, which refers to calculation methods such as the fixed-asset growth rate and labor force growth rate. When analyzing the data related to table functions such as the proportion of R&D investment, the growth rate of new R&D personnel, and the proportion of new R&D personnel, the gray prediction method is used and matrix laboratory programs are used to solve them. Other variable equations are determined on the grounds of their own mathematical relationships.
The ECS in the energy subsystem mainly consists of four types: coal, oil, natural gas, and non-fossil energy. This study establishes panel data models with random effect coefficients for various types of EC and major influencing factors on the grounds of stationary and cointegration methods, using F-statistics and similarity tests. The calculation expressions of the four mathematical models are shown in Equations 5, 6.
[image: Equations defining LNCOAL and LNOIL. LNCOAL equals theta plus psi one times LNGDP plus psi two times R plus psi three times M plus psi four times I plus epsilon. LNOIL equals theta plus psi five times LNGDP plus psi six times R plus psi seven times M plus psi eight times I plus epsilon. Equation number five.]
In Equation 5, [image: Mathematical expression displaying "LNCOAL" with a subscript "r" on the letter "L".] represents coal panel data. [image: Please upload the image you'd like me to generate alt text for.] represents intercept. [image: Please upload the image or provide a URL so I can generate the alternate text for you.] represents the coefficient of influence. [image: A decorative blackletter-style letter "R" with flourishes.] represents the permanent population. [image: It seems there was an issue with loading the image. Please try uploading the image file again or provide a URL, and I will generate the alternate text for you.] serves as the proportion of the TI. [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will be happy to help you generate the alternate text for it.] serves as the price of energy. [image: Please provide the image or a URL for me to generate the alternate text. You can also add a caption for more context if needed.] serves as the random error term. [image: Mathematical expression showing "LNOIL" with a subscript "r".] represents oil panel data.
[image: Mathematical expressions in curly brackets showing two equations. The first equation is LNGASₜ as a function of LNGDPₜ, Ωₜ, Mₜ, Iₜ, and variables ψ and ζ with subscripts. The second equation is LNNFEₜ with similar variables. Both include subscripts and constants.]
In Equation 6, [image: It seems like there was an error with the image upload. Please try uploading the image again, and I will help create the alternate text for it.] and [image: It seems there is no image attached. Please upload the image, and I will assist you with generating the alternate text.] represent panel data for natural gas and non-fossil energy. Finally, the parameter definition of the system is mainly on the grounds of the characteristics of the system and combined with relevant authoritative information. Due to space limitations, only a brief explanation of the determination of policy regulatory factor parameters will be provided here. In this model, the IF THEN ELSE function is used to determine the relevant LC economic policy factors, which is a time-varying function. The main purpose is for studying the impact of various policies and combinations on EC, to effectively distinguish the differences between past and future years. Figure 4 shows the overall technical framework for simulation analysis of ECS policy in Shaanxi Province.
[image: Flowchart detailing the analysis of low-carbon economy and energy consumption structure in Shaanxi Province. It highlights concepts such as energy subsystems, policy simulation research, dual policy analysis, and solution dissemination. Branches include concept definitions, current energy structure assessments, and extensive problem analysis, leading to research conclusions and prospects.]FIGURE 4 | Overall technical framework.
3 RESULTS
The simulation values of important variables in the model (such as total population, GDP, and energy consumption) are compared with historical data to check the relative errors of each variable. Through policy simulation, the change trend of ECS and carbon emission under different policy combinations is predicted. In this study, simulations are carried out under existing policies, single policies, and combination policies to verify the impact of policies on ECS. A sensitivity analysis is employed to ascertain the impact of disparate policy schemes on the model output, thereby identifying the optimal policy combination.
3.1 Policy simulation of the consumption structure system
Before simulating the consumption structure system, aiming at verifying the effectiveness of the model, this study first tested the constructed system model. It mainly conducted historical tests on eight important variables in the model, namely, total population (10,000 people), GDP (100 million yuan), coal consumption (10,000 tons of standard coal), natural gas consumption (10,000 tons of standard coal), oil consumption (10,000 tons of standard coal), non-fossil EC (10,000 tons of standard coal), researchers (people), and CEs (10,000 tons), represented by R, L, Q, P, M, U, S, and T, respectively. The test period is from 2016 to 2018, with a step size of 1 year. The historical test results of variables R, L, S, and T are shown in Figure 5.
[image: Two scatter plots labeled (a) and (b) show numerical values over three years. Plot (a) features circles and triangles for historical and simulation values labeled R and L. Plot (b) includes circles, squares, stars, and triangles for historical and simulation values labeled S and T. Different colors and shapes represent distinct data sets. Both plots share a similar layout and scale, with values ranging from 5,000 to 35,000.]FIGURE 5 | Historical test results for variables R, L, S, and T. (A) Historical test results for variables R and L. (B) Historical test results for variables S and T.
Figure 5A shows that the relative error of variable R is maintained between −0.2707 and −0.2578, and the relative error of variable L is maintained between −0.0162 and 0.0045. Figure 5B shows that the relative error of variable S is maintained between −0.0001 and −0, and the relative error of variable T is maintained between 0.0176 and 0.4628. The historical test results of variables Q, P, M, and U are shown in Table 1.
TABLE 1 | Historical test results for variables Q, P, M, and U (10,000 tons of standard coal).
[image: Table comparing historical and simulation values from 2016 to 2018 for variables Q, P, M, and U. Values for Q, P, M, and U are shown for each year, with separate rows for historical and simulation data. Historical values tend to be slightly lower than simulation values across all variables and years.]Table 1 shows that the relative error of variable Q is maintained between −0.1129 and 0.8635, while the relative error of variable P is maintained between −0.1233 and 0.9045. Figure 5B shows that the relative error of variable M is maintained between −3.4570 and 4.0914, while the relative error of variable U is maintained between −0.1658 and 1.9713. According to Figure 5 and Table 1, after historical testing, the relative errors of each variable are less than ±10%, indicating that the model has good fitting ability, can reflect the actual situation well, and can predict the ECS of Shaanxi Province. Therefore, in the simulation of consumption structure system policies, research is conducted to verify from three aspects: maintaining existing policies, single policies, and combination policies. The simulation results of ECS, heterogeneous EC, total EC, and CEs in Shaanxi Province under existing policies are shown in Figure 6.
[image: Three line graphs labeled (a), (b), and (c). Graph (a) shows proportions of categories A, B, C, and D over eight years. Graph (b) displays consumption in thousand tons of standard coal for A, B, C, and D. Graph (c) compares total consumption and carbon emissions over the same period, both showing an upward trend.]FIGURE 6 | Verification results of system models under existing policies. (A) Changes in the energy consumption structure in Shaanxi Province. (B) Results of changes in consumption of heterogeneous energy sources. (C) Results of changes in total energy consumption and carbon emissions.
In Figure 6, 1–8 represent the years 2009–2030, with a 3-year interval. A ∼ D, respectively, represent coal, oil, natural gas, and non-fossil fuels. Figure 6A shows that the proportion of coal consumption is gradually decreasing, but the decline is not significant, basically maintaining around 70%. The proportion of oil has shown a significant decline since 2018. The proportion of natural gas and non-fossil fuels continues to rise, but it is relatively slow. From the current policy perspective, the evolution of ECS in Shaanxi Province in the coming years is basically consistent with the current development trend. By 2030, the proportion of coal consumption in Shaanxi Province will reduce to below 58%, the proportion of natural gas consumption will reach over 15%, and the proportion of non-fossil EC will reach around 20%. This result indicates that under the implementation of existing policies, it is hard for achieving the goal of optimizing the ECS. Figure 6B shows that various types of EC in Shaanxi Province have shown a certain growth trend, meeting the needs of future ED. Among them, by 2030, the consumption of coal, natural gas, and non-fossil fuels will increase to 157.443 million tons of standard coal, 33.0373 million tons of standard coal, and 22.578 million tons of standard coal. The slow increase in oil consumption is in line with the overall development trend. Figure 6C shows that under the current policy support, the total EC and CEs in Shaanxi Province are continuously increasing.
Overall, the system model is effective and scientific, and the actual simulation structure is basically consistent with the trend. However, relying on current policies is difficult to optimize the consumption structure, so research has begun to implement single and combination policies on the system and explore the degree of ECS optimization under government macroeconomic regulation. A single policy includes a single fiscal, industrial, financial, tax, and technology policy. Plan 1 and Plan 2 are set in the implementation of a single fiscal policy. The ratio of energy-saving and environmental protection investment to new energy investment in Plan 1 is 0.05 and 0.03, respectively. Option 2 is 0.06 and 0.04, respectively, while the existing policies are 0.04 and 0.02. Therefore, the simulation results of ECS, heterogeneous EC, total EC, and CEs in Shaanxi Province under the implementation of a single fiscal policy are shown in Figure 7.
[image: Five line graphs (a to e) display various metrics over six years. Graph (a) shows proportions A(X), B(X), A(2), and B(2). Graph (b) shows proportions C(X), D(X), C(1), and D(2). Graph (c) shows coal consumption with A(X), B(X), A(2), and B(2). Graph (d) shows coal consumption with C(X), D(X), C(1), and D(2). Graph (e) shows carbon emissions with N(X), T(X), N(1), T(1), N(2), and T(2). Each graph has distinct trends visually represented with different colored lines and styles.]FIGURE 7 | Simulation results under a single fiscal policy implementation. (A) Proportion of energy A and B, (B) proportion of energy C and D, (C) consumption of energy A and B, (D) consumption of energy C and D, and (E) results of indicators N and T.
In Figure 7, X represents existing policies and N represents total EC. Figures 7A, B show that the ECS after the implementation of the policy has significantly optimized compared to the current policy, with a decrease in the proportion of coal, oil, and natural gas. Among them, Plan 2 has experienced the largest decline, with coal accounting for less than 69% by 2030, while the proportion of non-fossil fuels has increased. As time goes on, the gap between the curves becomes larger and the optimization effect becomes more significant. Figures 7C, D show that under a single fiscal policy, the consumption of energy A ∼ C relative to existing policies is decreasing, while the consumption of energy D is continuously increasing, with a basic gap maintained at approximately 8 million tons of standard coal. Figure 7E shows that with the implementation of a single fiscal policy, both the total EC and CEs are decreasing, and over time, the curve gap is also widening, but the magnitude of the reduction is limited. Overall, the implementation of fiscal policies can effectively change the consumption of various energy sources and undoubtedly optimize the ECS through fiscal policies.
In the single industry policy, Plan 3 and Plan 4 are formed by adjusting the proportion of the TI, which are 47% and 50%, respectively, while the current policy has a proportion of 43% for the TI. Therefore, the simulation results of ECS and heterogeneous EC in Shaanxi Province under the implementation of a single industry policy are shown in Figure 8.
[image: Four line graphs labeled (a) to (d) show changes over eight years. Graph (a) displays the proportion of variables A(X) to B(4). Graph (b) presents the proportion of variables C(X) to D(4). Graphs (c) and (d) illustrate the consumption of standard coal for variables A and C, respectively, measured in 10,000 tons. Each graph depicts trends with multiple colored lines and legends.]FIGURE 8 | Simulation results under the implementation of a single industry policy. (A) Proportion of energy A and B, (B) proportion of energy C and D, (C) consumption of energy A and B, and (D) consumption of energy C and D.
Figures 8A, B show that under the implementation of schemes 3 and 4, the proportion of coal and oil continues to decrease, while scheme 4 will have a minimum of 65% and 5% by 2030, both lower than the implementation results of existing policies. The proportion of natural gas and non-fossil fuels continues to increase, with Plan 4 reaching a maximum of 17% and 12.5% by 2030, which is higher than the implementation results of existing policies. Figures 8C, D show that the increase in coal consumption under the implementation of schemes 3 and 4 is lower than the increase under the existing policy implementation. The consumption growth of oil, natural gas, and non-fossil fuels is higher than the growth under existing policy implementation. Among them, oil as a whole is in a trend of decreasing first and then slowly increasing, which is basically in line with the ED situation. Overall, implementing a single industry policy will help change the consumption of heterogeneous energy. Moreover, with the passage of time, the effect of industrial policies continues to emerge, and the distance between their curves is also further expanding. Therefore, implementing this policy helps optimize the consumption energy structure. In the implementation of a single financial policy, Schemes 5 and 6 are proposed by adjusting loan interest rates, with loan interest rates floating at +3% and −3%, respectively. The current policy loan interest rate fluctuates to 0. Therefore, the simulation results of ECS, heterogeneous EC, and CEs in Shaanxi Province under the implementation of a single financial policy are shown in Figure 9.
[image: Five line graphs labeled (a) to (e) display data over an eight-year period. Graph (a) shows the proportion of A, B over time. Graph (b) presents the proportion of C, D. Graph (c) depicts soda consumption linked to A, B. Graph (d) shows soda consumption for C, D. Graph (e) illustrates sulfur dioxide emissions related to T. Lines are color-coded for each category.]FIGURE 9 | Simulation results under a single financial policy implementation. (A) Proportion of energy A and B, (B) proportion of energy C and D, (C) consumption of energy A and B, (D) consumption of energy C and D, and (E) results of indicators T.
Figures 9A, B show that under the implementation of schemes 5 and 6, the proportion of coal has not changed much, maintaining around 72%, and the rate of decline is lower than the current policy. The proportion of oil is continuously decreasing, with Plan 6 reaching a minimum of 5% by 2030, which is lower than the current policy results. The proportion of natural gas and non-fossil energy is also increasing, but both are below 14%, and the growth of natural gas is below the existing policy growth. Only Scheme 5 for non-fossil energy is higher than the existing policy growth. Figures 9C, D show that under the implementation of Plan 5, the coal consumption, natural gas consumption, and total EC have all decreased compared to existing policies, and the effect has become increasingly apparent over time. However, in terms of oil consumption, the EC between 2023 and 2025 is higher than the current policy and gradually decreases toward equality, while Plan 6 is the opposite. Figure 9E shows that the CO2 growth under Scheme 6 is significantly higher than other schemes. Overall, the rational utilization of financial policies has a promoting influence on the optimization of ECS. In a single tax policy, schemes 7 and 8 are formed by adjusting the tax rates of energy tax and carbon tax, respectively. Scheme 7 has an energy tax and carbon tax rate of +3%, Scheme 8 has a tax rate of +5%, and the current policy is 0. Therefore, the simulation results of ECS, heterogeneous EC, and CEs in Shaanxi Province under the implementation of a single tax policy are shown in Figure 10.
[image: Five graphs show different trends over eight years. Graph (a) illustrates a decrease in proportions A(X) and B(X). Graph (b) highlights increases in C(X), D(X), C(7), and D(8). Graph (c) displays population consumption trends with variations. Graph (d) shows the consumption of coal with an increase in C(X) and D(X). Graph (e) charts carbon emissions, indicating steady levels across T(X), T(7), and T(8). Each graph uses distinct line styles for various data series.]FIGURE 10 | Simulation results under a single tax policy implementation. (A) Proportion of energy A and B, (B) proportion of energy C and D, (C) consumption of energy A and B, (D) consumption of energy C and D, and (E) results of indicators T.
Figures 10A, B show that the proportion of coal and oil is decreasing under the implementation of schemes 7 and 8. However, the downward trend of coal is relatively slow, maintaining around 75%, and the rate of decline in oil is lower than the current policy decline. The proportion of natural gas and non-fossil fuels is constantly increasing. Figures 10C, D show that the consumption of coal, oil, and natural gas, as well as the total EC, has significantly decreased since 2020, and over time, the gap between the consumption and the current policy has become larger. Figure 10E shows that when the carbon tax and energy tax rates rise, CO2 emissions will reduce. When the carbon tax and energy tax rates further rise, CO2 emissions will further decrease. Overall, implementing a single tax policy can effectively reduce fossil EC, and as the intensity increases, the effect becomes better. In the implementation of a single technology policy, Plan 9 and Plan 10 are proposed by changing the factors of the talent introduction policy and R&D investment ratio. Among them, the talent introduction policy factor and R&D investment ratio of Plan 9 are 1.2 and +3%, respectively. Plan 10 is 1.3 and +5%, and the current policy is 1.0 and 0. Therefore, the results of ECS and heterogeneous EC in Shaanxi Province under the implementation of a single technology policy are shown in Figure 11.
[image: Four line graphs display data over eight years. Graph (a) compares proportions A and B. Graph (b) compares proportions C and D. Graph (c) shows consumption of standard coal, contrasting A and B. Graph (d) shows consumption of standard coal, contrasting C and D. Each graph uses distinct colored lines for multiple variables.]FIGURE 11 | Simulation results under the implementation of a single technology policy. (A) Proportion of energy A and B, (B) proportion of energy C and D, (C) consumption of energy A and B, and (D) consumption of energy C and D.
Figures 11A, B show that the changes in the proportion of different energy sources under the implementation of schemes 9 and 10 are not significant compared to current policies, with only natural gas showing the largest change of about 5%. This result indicates that the optimization effect of technology policies on energy structure is limited in the short term. Figures 11C, D show that with the implementation of Scheme 9 and Scheme 10, the changes in EC and total EC are not significant, and their policy effects are weak. However, over time, the gap gradually widens. This result indicates that the implementation of science and technology policies has a certain lag.
Overall, the system model proposed in the study is effective in single policy simulation and can provide reference for optimizing the energy organizational structure in Shaanxi Province. However, the role of technology policy in a single policy is relatively weak, so it is excluded from the combination of three and four policies and used to form fiscal industry finance, fiscal industry tax, industry finance tax, fiscal finance tax, and fiscal industry finance tax policies, which are respectively set as E ∼ I. The parameter values under the relevant combination policies are selected from the data of the second policy in Figures 6–10. The simulation results of the ECS and heterogeneous EC in Shaanxi Province under the combination of policies 3 and 4 are shown in Figure 12.
[image: Four line graphs show data trends over eight years.   (a) Graph shows proportions A, B for variables A(X), A(E), A(F), A(I), B(X), B(E), B(F), B(G), B(H).  (b) Graph displays proportions C, D for variables C(X), C(E), C(F), C(I), D(X), D(E), D(F), D(G), D(H).  (c) Graph indicates coal consumption in thousands of tons (Proportion A, B) for variables A(X), A(E), A(F), A(I), B(X), B(E), B(F), B(G), B(H).  (d) Graph shows coal consumption in thousands of tons (Proportion C, D) for variables C(X), C(E), C(F), C(G), C(I), D(X), D(E), D(F), D(G), D(H).   Lines differ in color and style to distinguish each variable.]FIGURE 12 | Simulation results under the implementation of the combination of three and four policies. (A) Proportion of energy A and B, (B) proportion of energy C and D, (C) consumption of energy A and B, and (D) consumption of energy C and D.
Figures 12A, B show that with the increase in policy combinations, the ECS changes significantly, and different policy combinations have different impacts on each energy source. With the combination of four policies, by 2030, the proportion of coal will decrease to 57.8%, while the proportion of non-fossil fuels will increase to 21% and the proportion of natural gas will decrease to 16%. The fundamental reason for this phenomenon is the close relationship between the change in ECS and each type of EC. It is not only related to its own consumption but also closely relevant to the consumption of other energy sources. Figures 12C, D show that as the quantity of combined policies grows, the consumption of heterogeneous energy sources changes significantly. Among them, under the four policy combinations, coal consumption is the lowest and renewable EC is the highest. However, in terms of renewable EC, a single fiscal and tax policy will increase consumption. Nevertheless, the separate finance and taxation have not undergone any changes. Therefore, the influence of renewable EC is the same across the four policy combinations and remains unchanged across different policy combinations. The continuous implementation of policies as a whole has become increasingly effective.
3.2 Policy scheme evaluation and consumption structure optimization simulation
The sensitivity of different variables in the system model to policies varies in different policy scenario simulations, resulting in different impacts of the same policy scenario on different variables. Therefore, it is difficult to judge the advantages and disadvantages of different schemes separately on the grounds of their ECS. The study takes the number of labor force, fixed-assets investment, coal consumption, oil consumption, natural gas consumption, and non-fossil EC as input indicators. GDP and CEs are used as output indicators, and the relevant data are generated from the SDM. The simulation time interval is from 2023 to 2030. Taking coal and oil consumption as examples, the simulation data on industrial policy-related evaluation indicators are shown in Table 2.
TABLE 2 | Simulation data on evaluation indicators for coal and oil consumption.
[image: Table showing coal and oil consumption from 2023 to 2030 in ten thousand tons of standard coal. Coal consumption is listed for regions Y, E, I, and X, with X showing the highest value in 2030 at 16,063. Oil consumption is also outlined for the same regions, with Y at the highest in 2027 at 1,361.]In Table 2, Y represents industrial policies. Table 2 shows that the simulation data show that the coal consumption under the four combination policies is continuously decreasing, reaching 96.38 million tons of standard coal by 2030. The implementation of the three and four policies on oil consumption has decreased to 9.6 million tons of standard coal and 9.25 million tons of standard coal by 2030, with significant changes. In this simulation data, the evaluation of various schemes is preferred, and the evaluation index is selected as the LC economic efficiency value. The results are shown in Figure 13.
[image: Two scatter plots labeled (a) and (b) compare efficiency values over nine years. Plot (a) features data points for groups Z, Y, J, S, and K with efficiency values ranging from 0.82 to 1.00. Plot (b) shows groups E, F, G, H, I, and O with values between 0.8 and 1.4. Each group is represented by different colored symbols.]FIGURE 13 | LC economic efficiency values of each evaluation scheme. (A) Low-carbon economic efficiency value of a single policy solution. (B) Low-carbon economic efficiency value of combined policy solutions.
In Figure 13, J, S, Z, and K represent a single fiscal, financial, tax, and technology policy, respectively. The horizontal axis 1–8 represents the years 2023–2030, and 9 represents the average value. Figure 13 shows that the average LC economic efficiency of a single fiscal, industrial, financial, tax, and technology policy is 0.9635, 0.9723, 0.9425, 0.9399, and 0.9043, respectively. The average LC economic efficiency of combination policies E, F, G, H, and I is 1.1651, 1.1246, 1.0481, 1.0753, and 1.2724, respectively, while the average LC economic efficiency of current policies is 0.8953. Overall, the overall value of a single policy is higher than the current policy, with the optimal combination of four policies. This policy takes into account the future LC ED of Shaanxi Province, making the coordinated development of the economy, energy, and environment in Shaanxi Province better. It can be regarded as the best policy solution for optimizing the ECS in Shaanxi Province, and the ECS is optimal under this policy combination. On the grounds of this, the ECS results of Shaanxi Province from 2023 to 2030 under this policy combination are shown in Table 3.
TABLE 3 | ECS results of Shaanxi Province from 2023 to 2030 under four policy combinations.
[image: A table displaying the projected energy source percentages from 2023 to 2030. Coal decreases from 70.00% in 2023 to 57.79% in 2030. Petroleum drops from 7.51% to 5.54%. Natural gas rises from 12.44% to 15.94%. Non-fossil fuels increase from 10.06% to 20.73%.]Table 3 shows that the proportion of coal consumption will decrease to 57.79% by 2030, and the decline will be faster in the later stage than in the earlier stage. The proportion of non-fossil EC will increase to 20.73% by 2030, and the growth rate will be relatively fast in the coming period. Throughout the process, the proportion of natural gas consumption has been increasing. Overall, with the support of this plan, the optimization of the ECS dominated by coal is essential, and the system model constructed through research has strong applicability.
4 DISCUSSION
The comprehensive effects of fiscal, industrial, tax, and financial policies are analyzed from the perspective of LC economic benefits, and the potential of energy structure optimization and ecosystem sustainable development under multiple policy combinations is revealed. The research method is similar to the results of Aalizadeh R et al., which can better predict and promote the development of local ECS and LC (Aalizadeh et al., 2021). Compared with the system dynamics model in this study, Ding et al. (2024) mainly focused on causal analysis of statistical data rather than system simulation. Fatima et al. (2021) used the non-linear ARDL model and wavelet analysis to study the impact of global energy prices on CO2 emissions. This method focuses on the volatility analysis of time-series data, which is different from the global analysis of policy changes simulated by the system dynamics model in this study. This study uses a more specific policy mix simulation to optimize the energy structure by region, which is more operable than the macro summary in Adebayo et al. (2021). Qu et al. (2021) used the game model to study the optimization of LC supply chain. The game model is concerned with the interaction between different decision makers, while this study is more concerned with the dynamic changes of the whole system. Adjustments in fiscal, industrial, and tax policies could significantly optimize Shaanxi’s ecosystem and reduce its dependence on high-carbon energy sources. Although a single policy may have a beneficial impact on the energy mix, the effect of a combination of policies is more pronounced.
It is found that the combination of fiscal, industrial, tax, and financial policies can significantly improve the optimization effect of energy structure, which is better than the current policy. Under the optimal policy mix, by 2030, the proportion of coal, natural gas, and non-fossil energy consumption will reach 57.8%, 16%, and 21%, respectively, significantly reducing coal dependence and increasing the use of clean energy. Compared with the current policy focus on the improvement of a single area, the policy mix of this study is more forward-looking and systematic, focusing on the synergies of policies in multiple areas and promoting the overall economic transformation. Through the system dynamics model, the global impact of policy mix on energy structure and economic environment is studied and simulated and more operational suggestions are provided for policymakers.
5 CONCLUSION
At present, there is a dearth of systematic analysis of the evolution trend of regional ECS using LC economic policy variables. This has resulted in an inability to accurately discern trends. Therefore, this study used Shaanxi Province as an example to construct a SDM and analyzed its effectiveness. The experimental results showed that the relative errors of each variable in the historical test were less than ±10%, indicating that the model had good fitting ability. It reflected the actual situation well and could predict the ECS of Shaanxi Province. In the analysis of a single industry policy, Plan 2 experienced the largest decline, with coal accounting for less than 69% by 2030, while the proportion of non-fossil fuels increased. The implementation of a single technology policy had certain lag and short-term limitations. Therefore, by 2030, after implementing the combination policy, the proportion of coal decreased to 57.8%, while the proportion of non-fossil fuels increased to 21% and the proportion of natural gas decreased to 16%. In the evaluation of the plan and simulation optimization of consumption structure, the average LC economic efficiency of the four combination policies was 1.2724, which was better than other plan policies. Overall, the SDM constructed in the study was effective and applicable in the optimization model of ECS in Shaanxi Province. However, the study only analyzed Shaanxi Province and did not explore other regional energy provinces. Therefore, other research methods could be applied to optimize the model and apply it to other regional energy provinces in the future. Although the study offers a system model and policy simulation for optimizing ECS in Shaanxi Province, it is important to acknowledge the limitations to this approach. First of all, it only focuses on Shaanxi and does not consider the differences in other regions or international energy policies. Second, the policy variables do not fully take into account the impact of global market fluctuations, and the environmental and social benefits are evaluated in a single way. It would be beneficial for future studies to be expanded to other regions in order to enhance their applicability. Furthermore, the introduction of more detailed ecological and social benefit assessment indicators would provide a more comprehensive and reasonable basis for policy recommendations in light of global market changes.
6 RECOMMENDATIONS
In light of the aforementioned analysis, it can be posited that the following policies and fiscal policies play a pivotal role in optimizing the ECS. In particular, the support for energy conservation, environmental protection, and the new energy industry is of paramount importance as it facilitates enhanced energy efficiency and curtails the reliance on fossil energy sources. It is therefore recommended that financial investment in energy-saving and environmental protection industries be increased, that the stability and sustainability of funds be ensured, and that support for LC industries, such as new energy vehicles, be enhanced. In addition, the subsidy mechanism should be improved and the development of a LC transportation system promoted. By reducing the proportion of the secondary industry (such as energy and chemical industry) and promoting the development of low-energy TI such as information technology and service industry, it will help reduce the dependence of high-energy industries and promote green transformation. Green finance policy represents a crucial instrument for optimizing the ECS. The establishment of a green credit mechanism and financial incentive system can effectively steer enterprises toward LC transformation. It is advised to reinforce the green credit data sharing and accountability system to guarantee the transparency and efficacy of the utilization of funds. Tax policies, such as energy taxes and carbon taxes, can encourage companies to reduce carbon emissions, and it is recommended that the scope of the tax be gradually expanded to encourage the use of renewable energy. The combined effect of comprehensive fiscal, industrial, tax, and green finance policies can markedly enhance the energy structure, augment the proportion of non-fossil energy utilization, and facilitate the optimization of regional energy structures and the comprehensive advancement of a LC economy.
According to the simulation and evaluation results, research will provide optimization strategies for the formulation of related policies and schemes of ECS in Shaanxi Province in the next year from the following four policy aspects. The initial step will be to augment the input of fiscal policy. From 2014 to 2018, China has continuously increased its fiscal expenditure on energy conservation and environmental protection industries, and the trend is rising. Shaanxi needs to increase such investment as a share of GDP and focus on R&D of equipment in key industries such as energy and chemicals. Concurrently, it is imperative to reinforce the policy governing the special fund in order to guarantee the stability of the financial resources in question. The field of new energy vehicles should also increase financial support, optimize the subsidy evaluation system, and promote industrial development. Second, it should adjust industrial policy. For Shaanxi Province, it should reduce the proportion of the secondary industry, increase the proportion of the tertiary industry, develop low-energy, high-quality industries, and promote the green transformation of the industrial structure of Shaanxi Province. The objective is to enhance the efficacy of green finance policies. It is mainly to build a green credit data-sharing mechanism, implement the green credit accountability system, and strengthen the incentive and constraint functions of green credit. Third, it is imperative that tax policy is optimized. It would be advisable for Shaanxi Province to implement a carbon tax and extend the range of energy taxes that it collects. Through tax collection, enterprises are forced to carry out energy conservation and emission reduction, reduce fossil fuel consumption, and increase non-fossil energy consumption. Fourth, it should promote green finance, build a system for sharing green letter data and an accountability mechanism, and enhance incentives. Fifth, it should optimize tax policy. Shaanxi Province should carry out the general work of carbon tax collection, expand the scope of energy tax, promote conservation, and clean energy use.
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Introduction: Reconciling economic development and emission reduction of polluting gases requires balancing long-term and short-term goals across various markets. As a new production cost, the price of carbon allowances is assumed to affect the supply and demand of carbon-intensive sectors. Therefore, this study examines the dynamic price spillover effects between China as the largest carbon emission market and the carbon-intensive building materials industry in a unified time-frequency framework.Methods: This study measures the dynamic overall and directional spillover effects of carbon and building materials markets in three frequency bands, considering eight carbon pilots and the national carbon market in China and four important building materials.Results: The empirical results show that the bi-directional spillover between carbon and the building materials market shows pronounced characteristics in the time-frequency domain, especially in the short-term frequency band of one day to one week, with strong connectivity. After the launch of the national carbon market, the information spillover from the building materials market to the carbon pilots become stronger. Both the carbon pilots and the national carbon market have significant short- and long-term impacts on the building materials market. In addition, there are differences in the impact of carbon markets on various types of carbon intensive building materials.Discussion: Compliance cycles in carbon markets are likely to induce sharp fluctuations in spillovers between the two markets. Therefore, balancing industrial development and stabilizing carbon prices requires a refined policy design that considers the diversified impacts of carbon markets on different industries at across frequencies.Keywords: carbon market, pilot, building materials, carbon cost, spillovers
1 INTRODUCTION
Carbon dioxide emissions are undoubtedly a major cause of global warming, which restricts the sustained and rapid development of high-emitting industries. To stabilize the emission of greenhouse gases (GHG1), particularly carbon dioxide, at an appropriate level and cope with climate change, many countries have signed the United Nations Framework Convention on Climate Change and its supplementary provisions to the Kyoto Protocol. According to the International Energy Agency (IEA), in 2023, global carbon emissions from the energy sector increased by 1.1%–37.4 billion tons, of which China contributed 12.6 billion tons, ranking first in the world (IEA, 2024). Among all emission sources, the construction industry contributes a significant amount due to the heavy use of materials and equipment (Lu et al., 2016). In the context of carbon peak and carbon neutrality targets, China urgently needs to reduce energy consumption and carbon emissions. Carbon trading is a significant market-based carbon reduction mechanism to achieve the goal of “double carbon,” and also a crucial tool to promote the reform of industrial structure. Chinese government departments issued the Action Plan on Further Strengthening the Construction of Carbon Peak and Carbon Neutral Standard Measurement System (2024–2025)2, which clearly requires accelerating the promotion of carbon emission accounting standards for enterprises in key industries such as building materials, reflecting the importance of the building materials industry to China’s carbon emission reduction. Cutting emissions too fast could create a mismatch between supply and demand for goods, which could feed through to the price of building materials. In the context of the “double carbon” target, is the carbon cost transmitting to the building materials industry? Quantifying the cross-market spillover effects between carbon and building materials markets provides an important policy basis for promoting carbon emission reduction actions.
As one of the pillar industries to promote economic growth, emission reduction actions in the building materials industry are crucial to achieving the global carbon neutrality target. Carbon trading markets are the most fundamental economic instrument to internalizing external costs arising from greenhouse gas emissions. As an incentive-based tool for carbon reduction, carbon markets have flourished in many countries under the development route of the Kyoto Protocol (Zhang et al., 2021). China’s carbon market was a late starter, with carbon pilots in eight provinces and cities across the country starting in 2011. After a 10-year pilot program, China officially launched the national online carbon trading market on 16 July 2021, marking the gradual unification and maturity of China’s carbon trading system. By 30 September 2024, about 3 years after the operation, the cumulative transaction volume of carbon emission quota in China’s national carbon trading market reached 480 million tons, and the cumulative transaction volume reached 28.421 billion yuan. China’s carbon market is the world’s largest carbon market covering GHG, and the carbon market has performed well in controlling GHG emissions (Zhang et al., 2020). However, previous studies find that carbon markets with highly volatile prices can affect the quality and stability of economic development through financial developments and energy and non-energy consumptions (Nasreen et al., 2017; Xu and Salem, 2021; Xu and Li, 2023). In many countries, the construction sector is both a major driver of economic growth and one of the largest energy consumers and carbon emitters, accounting for over 30% of global CO2 dioxide emissions (Shi et al., 2017). Meanwhile, the production and transportation of building materials are the highest carbon emission stages in the whole life cycle of buildings. The building materials industry accounts for 9% of the total energy consumption, making it one of the six energy-intensive industries in China (Luo et al., 2021). Nevertheless, the energy conservation and emission reduction potential of the building materials industry is huge, which is of great significance for the realization of the national long-term carbon emission reduction target, and also provides an important reference for the transformation of all industries to low-carbon development.
As globalization increases and barriers to factor spillovers between financial markets decrease, research interest in the connection between different markets increases. While there are many studies on carbon markets, there are few that have conducted in-depth research on the link between carbon and building materials markets. Many studies find that carbon markets have catalytic effects on CO2 emission reductions in the construction industry (Li et al., 2021; Woo et al., 2021), and the effect is even more pronounced than some other carbon reduction policies (Lu et al., 2012). Due to urbanization and large-scale infrastructure construction, the issue of carbon emissions in the building materials industry has received increasing attention (Zhang et al., 2017). Thereby, in-depth analysis of spillovers between carbon and building materials markets is needed to better leverage the role of carbon emission reduction support tools. Additionally, short- and medium-term development goals should be weighed against the relationship between economic development and emission reduction. Therefore, it is of great significance to study the price transmission characteristics of carbon and building materials markets at time and frequency scales for formulating policies that balance economic development and carbon emission reduction.
Motivated by the policy importance of the inner-connections between carbon and building materials markets, this study attempts to analyze the connectedness between the two within a time-frequency framework. This study contributes to relevant research in three main ways. First, this study empirically measures the spillovers between the carbon emission market and the building materials industry, which to the best of our knowledge has not yet been revealed. The empirical findings show significant spillovers between prices of carbon allowances and building materials. Second, based on the time-frequency spillover approach, this study demonstrates that the dynamic spillover effects existing between carbon and building materials markets are frequency dependent. The short-term spillovers are generally stronger than the medium- and long-term effects, showing the rapid transfer of information between carbon and building materials markets. Meanwhile, the compliance cycle of the carbon market exhibits important impacts on the spillovers between the two markets. Finally, the establishment of a national carbon market does not seem to significantly change the relationship between carbon pilots and the building materials industry. This study has prominent implications for constructing carbon market policies and exploring the links between carbon markets and other industries.
The rest of this study is organized as follows. Section 2 reviews related research. Section 3 provides a brief introduction of the method and descriptive analysis of data. Section 4 reports the empirical results and discussions. Section 5 summarizes this study.
2 LITERATURE REVIEW
A large number of studies on carbon emissions from the building materials industry have emerged in recent years. However, only a small part of them highlights the interrelation between the building materials industry and the carbon trading market.
As one of the important sources of global energy consumption and carbon emissions, the emission reduction actions of the building materials industry are crucial to achieve the global carbon neutrality target. Achieving carbon neutrality by 2060 is relatively challenging than the goal of peaking carbon by 2030 (Ayoub et al., 2020). Governments and companies are seeking effective emission reduction strategies to cope with the increasingly severe global climate change problem. As one of the pillar industries to promote economic growth, the building materials industry also suffers from high demand for energy-intensive materials, high resource consumption and high carbon emissions (Luo et al., 2021). Between 1994 and 2012, emissions related to building materials increased by 224.2 billion kg, an average increase of 27.2% per year, contributing to 63% of the total increase of carbon emissions in China (Lu et al., 2016). With the rapid economic development, the construction industry has higher requirements for building materials, which brings more energy consumption and carbon emissions. For example, in the past, materials such as paint and gypsum were used as decoration for the external walls of civil buildings, while now materials such as stone and glass curtain walls are used as facade, which uses more machinery and equipment in the construction process and consumes more resources (Nadoushani and Akbarnezhad, 2015). Reducing the emission intensity of upstream material industries such as cement and controlling cement consumption are important for reducing carbon emissions in the construction sector (Zhu et al., 2021). Compared with the construction industry, the shadow price of CO2 is lower in the supporting materials industry, which indicates that the carbon reduction potential of the building materials industry is greater (Wang et al., 2018).
Two market-based mechanisms, carbon tax and carbon trading, are superior to emission standard policies in effectively achieving emission targets while maintaining production stability in the construction sector (Lu et al., 2012). Carbon emission trading system (ETS) as a new carbon emission reduction policy tool provides new emission reduction power and opportunities for the building materials industry. Specifically, carbon trading can help reduce the carbon footprint of the construction industry, and the development of a blockchain digital reporting verification (MRV) system can effectively promote the construction industry’s participation in the carbon credit market (Woo et al., 2021). Additionally, carbon market prices and building materials may have a tow-way linkage. Specifically, changes in the price of building materials for real estate and commercial business have an impact on China’s carbon price and vice versa (Xu et al., 2022). Therefore, carbon prices and building material prices are sensitive to changes in each other.
Various markets and sectors have become increasingly connected in terms of price, information, and risks, especially between markets with similar assets that can be subject to pass-through effects (Wang and Guo, 2018). Many different approaches have been used in measuring spillover effects, e.g., multivariate GARCH models including the Markov system switching dynamic correlation GARCH (Balcılar et al., 2016), FIEC-HYGARCH (Liu and Chen, 2013), the full BEKK-GARCH model and the threshold Dynamic Conditional Correlation GARCH (DC-GARCH) (Zhang and Sun, 2016). However, in the analysis of heavy-tailed distributions, the GARCH model has difficulty in dealing with unbounded unconditional moments, and cannot reveal the direction of any time-varying spillovers. Thus, the copula function becomes a more popular tool in recent years. For instance, the GAS-DCS-Copula approach which captures asymmetric risk spillovers (Yuan and Yang, 2020) and the combination of the conditional Value at Risk (CoVaR) and copula method (Xu, 2021). Additionally, the spillover index proposed by Diebold and Yilmaz (2009, 2014) is widely used in investigating spillover effects on energy and environmental assets, for example, Ji et al. (2018a), Ji et al. (2018b), and Chen et al. (2022). Frequency methods such as spectral analysis and wavelet analysis are also used in measuring spillover effects, e.g., Creti et al. (2014), Reboredo and Rivera-Castro (2014), Ftiti et al. (2016), and Chen et al. (2024).
Many studies research the spillover effects of the carbon market or the building market respectively. For example, the spillover effects between carbon and energy prices such as natural gas, coal, electricity (Wu et al., 2020; Zhu et al., 2020). The link between carbon and energy markets changes across frequencies (Dai et al., 2021). In addition, many studies pay attention to the spillover effects between the carbon market and the macro economy, and find that economic uncertainty, economic policy changes and financial markets have produced price, risks or information spillover effects on the carbon market (Pástor and Veronesi, 2013; Jurado et al., 2015; Aloui et al., 2016). Turning to the spillover effects in the construction sector, much of the research is devoted to the spillover effects arising from building energy transformations. For example, temporal spillovers exist from private residential energy transformations, because they lead to new retrofit activities once they are first initiated (Sachs et al., 2019; Egner and Klöckner, 2021).
Overall, previous studies reveal significant relationships between carbon and building materials markets. However, given the importance of building materials in carbon reductions, whether and how carbon prices interact with building materials prices are under-explored. Particularly, most studies resort to the time-domain methods to measure spillover effects, which cannot reveal the frequency-domain properties. Given the importance of the building materials industry in balancing short- and long-term economic development and carbon reductions, this study investigates the time-frequency spillovers between carbon and building materials market. This study considers the different characteristics of the prices in the carbon market and the building materials market in the time domain and frequency domain, and measures the time-frequency spillover effect between the two. Based on the findings, this study contributes to the understanding of the correlation between the two markets, which can help policymakers to better formulate coordinated policies across markets and promote the stability and sustainable development of the markets.
3 METHODOLOGY AND DATA
3.1 Time-frequency spillover effects
To our knowledge, no studies investigate the spillover effects between carbon and building materials markets, much less to the time-frequency scale changes. The spillover effects are likely to vary with frequency due to the different time horizons of participations and activities in distinct markets. This study adopts the time-frequency spillover method put forward by Baruník and Křehlík (2018), which applies the variance decomposition from the Vector Autoregression (VAR) framework to the frequency domain using a spectral representation of the variance decomposition associated with the frequency response to shocks. This approach is an expansion of the method of Diebold and Yilmaz (2012) in assessing the spillover index, which allows for the measurement the dynamic connectedness at different frequencies.
Following the Diebold and Yilmaz connectedness index (Diebold and Yilmaz, 2012), this work considers the following n-variable VAR model:
[image: Equation showing \( y_t = \Phi(L)y_t + \epsilon_t \).]
where [image: Please upload the image you'd like me to generate alternate text for.] is an [image: Please upload the image or provide a URL for it, and I will be happy to help generate the alternate text for you.] vector which includes [image: Please upload the image or provide a URL for me to generate the alternate text.] endogenous variables, [image: It seems like there was a mistake in providing the image. Please upload the image or provide a URL, and I will be happy to generate the alternate text for you.] stands for a [image: Please upload the image or provide a URL, and I will create the alt text for you.] coefficient matrix, where [image: Please upload the image or provide a URL to it, and I will help generate the alternate text for you.] is the lag operator, and [image: Please upload the image or provide a URL for assistance with generating alt text.] denotes a vector white noise process with a potentially non-diagonal covariance matrix [image: A capital Greek letter Sigma, commonly used to represent summation in mathematics.]. The n-dimensional moving average form of Equation 1 can be constructed as:
[image: Mathematical equation representing a time series model: \( y_t = \sum_{j=1}^{\infty} \psi_j \varepsilon_{t-j} + \varepsilon_t \), labeled as equation (2), where \(\psi_j\) and \(\varepsilon_t\) are parameters.]
where [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] denotes a n-dimensional square matrix with infinite lag order.
The method of variance decomposition captures the relationship between variables and gives information on the relative importance of each perturbation term that has an effect on the variables in the VAR model as in Equation 2.
In view of Diebold and Yilmaz (2012), the connectedness measure is shown in Equation 3, which describes the share of prediction variance contributed by errors other than their own.
[image: Mathematical formula for \( C_H = 100 \times \left( 1 - \frac{\text{Tr}(\tilde{\theta}_H)}{\sum \tilde{\theta}_H} \right) \) labeled as equation three.]
where the trace operator is denoted by Tr [image: It seems there was an issue with uploading the image. Please try again, ensuring the file is properly attached or provide a URL if possible.], [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will be happy to help generate the alternate text for you.] represents the forecast horizon. This suggests that connectedness is the proportional contribution of the remaining variables in the system to the decomposition of the variance of the prediction error.
[image: Equation showing \(\tilde{\theta}_{pq}(H) = \frac{\theta_{pq}(H)}{\sum_{q=1}^{n} \theta_{pq}(H)}\) labeled as equation (4).]
As shown in Equation 4, [image: Mathematical expression displaying the symbol theta with a tilde on top, subscript pq, followed by H in parentheses.] measures the connectedness from [image: Please upload the image or provide a URL so I can generate the alternate text for you.] to [image: Please provide the image by uploading it, and I will help generate the alt text for you.] in horizon [image: It seems like there’s no image provided. Please upload the image or provide a URL, and I will generate the alternate text for you.] in the time domain. The above measure can be introduced to many other measures of variable connectedness. Then, the spectrum decomposition technique is introduced in this study to add the above methods to the frequency domain, which can be considered as an indicator of causality on a specific frequency band. Through introducing the frequency response function, this study considers a spectral representation as in Equation 5, which is based on the Fourier transform of the coefficients [image: It seems you've provided a symbol instead of an image. Please upload an image or provide a URL for me to generate the alt text.] where [image: Please provide the image by uploading it or sharing a URL, and I’ll generate the alternate text for you.] denotes frequency:
[image: The equation shows Psi of e to the power of negative i theta w equals the sum from h equals zero to infinity of e to the power of negative i theta rho w h.]
The GFEVD on frequency [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] is then given by Equation 6:
[image: Mathematical equation representing \(\theta_{pq}(\omega)\) as a ratio. The numerator is \(\sigma^{-1}_{qq} \sum_{h=0}^{\infty} (\Psi(e^{-i\omega h}) \Sigma)_{pq}\). The denominator is \(\sum_{h=0}^{\infty} (\Psi(e^{-i\omega h})\Sigma \Psi(e^{-i\omega h}))_{pp}\). Equation labeled as (6).]
where [image: Mathematical expression: \(\theta_{pq}(\omega)\). ] denotes the ratio of the [image: Please upload the image or provide a URL so I can generate the alternate text for you.] th variable’s spectrum due to the shock of the [image: Please upload the image or provide a URL so I can generate the alt text for you.] th variable at [image: Please upload the image or provide a link to the image you would like the alternate text for.], i.e., the frequency, which is then normalized as in Equation 7:
[image: Equation depicting \(\tilde{\theta}_{pq}(\omega)\) as the ratio of \(\theta_{pq}(\omega)\) over the sum of \(\theta_{pq}(\omega)\) from \(h = 1\) to \(n\), labeled as equation (7).]
Baruník and Křehlík (2018) derive a connectedness table for how shocks to one variable affect other variables, based on which, the accumulative connectedness in a frequency band [image: Mathematical equation with variable \( d \) equal to the ordered pair \( (a, b) \).] is defined as in Equation 8:
[image: Equation showing \(\tilde{\theta}_{pq}(d) = \int_{a}^{b} (\hat{\theta}(\omega))_{pq} \, d\omega\), labeled as equation eight.]
Then, the overall connectedness within the frequency band [image: Please upload the image you would like me to describe, and I will generate the alternate text for you.] can be calculated as in Equation 9:
[image: Mathematical formula for C superscript d equals the ratio of two summations. The numerator is the sum from p equals one to n, where p is not equal to q, of theta hat sub p q of d. The denominator is the sum over all p and q of theta hat sub p q of d. Equation number nine.]
For [image: It appears there was an error with the image upload. Please try uploading the image again or provide a URL. Optionally, you can include a caption for more context.], a value close to 1 implies a strong connection between the target variables in band [image: Please upload the image or provide a URL so I can generate the alternate text for you.] Following Křehlík and Baruník (2017), in a given frequency band [image: Please upload the image you would like me to describe, and I will generate the alternate text for you.], the within from connectedness ([image: Mathematical notation showing \( C_p^d \) with a left-pointing arrow, potentially indicating a change or transformation of the variable.]) measures the influence received by variable [image: Please provide the image by uploading it or sharing a URL link, and I will generate the alternate text for you.] from other variables in the system, the within to connectedness ([image: Mathematical notation showing \( C^d_p \) with an arrow pointing to the right beneath it.]) which denotes the portion of influence of variable [image: Please upload the image or provide a URL so I can generate the appropriate alternate text for it.] to the remaining variables; the within net connectedness ([image: The image shows the equation component \( C_{p_{\text{net}}}^{d} \), where \( C \) is the main variable, subscript \( p_{\text{net}} \) indicates a specific parameter, and superscript \( d \) denotes a distinct or derivative characteristic.]) measures the differential value between [image: \( C^d_p \rightarrow \) is a mathematical notation, with \( C \) having a superscript \( d \) and subscript \( p \), followed by an arrow pointing to the right.] and [image: Mathematical notation featuring a capital C with subscript p and superscript d, followed by a leftward arrow.]. A positive or negative value of [image: Mathematical notation showing "C subscript p, net superscript d".] means that the variable [image: It seems there's no image uploaded. Please upload the image, and I'll help generate the alternate text for it.] is a general transmitter or a receiver in the system. Finally, the net pairwise connectedness can be calculated, i.e., [image: Mathematical expression with \( C \) superscripted by \( d \), and subscripted by \( p, q \).].
[image: Mathematical equation with C subscript p equals the sum from q equals l to n of θ subscript ρ, subscript N in parentheses d. Labeled equation number 10.]
[image: Mathematical equation showing \(C^{d}_{p \rightarrow}\) equal to the sum from \(q = 1\) to \(n\) of \(\tilde{\theta}_{q,p}(\mathbf{d})\) with the condition \(p \neq q\). Labelled as equation (11).]
[image: Equation showing \( C_{\text{{part}}}^d = C_{p \rightarrow}^d - C_{p \leftarrow}^d \) with the number 12 in parentheses at the end.]
[image: Equation representing the difference between two angular positions, \(\theta_{qp}(d)\) and \(\theta_{pj}(d)\), given by \(C_{pq}^d = \theta_{qp}(d) - \theta_{pj}(d)\), labeled as equation (13).]
The frequency connectedness is obtained by weighting the spectral power of a time series in a given frequency band. This study uses [image: Mathematical notation showing \( C_p^{d,f} \).], [image: Mathematical notation depicting \( C_{p}^{d,f} \).], [image: Mathematical expression showing the variable \( C_{p_{\text{net}}}^{d,f} \), with subscripts and superscripts in italic font.], [image: Mathematical expression depicting the symbol \( C^{d,f}_{p,q} \) with subscripts \( p \) and \( q \), and superscripts \( d \) and \( f \).] to denote the frequency-from, frequency-to, frequency-net, and frequency-pairwise connectedness in the selected frequency band as shown in Equations 10–13, respectively.
3.2 Data
According to the China Building Energy Consumption Research report3, the carbon emissions in the production stage of building materials account for up to 55.7% of the total emissions in the construction sector, especially in the cement industry and flat glass production. Due to the high energy consumption associated with the production and manufacture of construction materials, the material production stage is one of the phases of construction industries’ life cycle that causes the most carbon emissions and costs after the operation phase (Luo et al., 2021). The large amount of energy-intensive manufacturing of building materials is produced and consumed by the large number and area of buildings and therefore generate significant carbon emissions during the manufacturing process, contributing over 90% of the total building carbon emissions (Bribi’an et al., 2011; Chuai et al., 2015). According to Chen et al. (2022), cement and glass are two of the most important basic building materials in China, and cement is the material with the largest share of embodied carbon in building materials. Therefore, this study focuses on two main indices, i.e., China cement price index and glass futures price. For glass futures, this study uses the closing price of the active contract. The China cement price index is compiled by China Cement Network on the basis of sampling the national cement market survey, reflecting the national cement market price level and fluctuation. To cover as many types of building materials as possible, this study also considers the China clinker price index and fiberboard futures price. Similarly, this study uses the closing price of the active contract of fiberboard futures. The China clinker price index is also compiled by China Cement Network on the basis of the national clinker market survey, reflecting the national cement market price level and fluctuation.
Since 2011, China has set up eight different carbon pilots, all incorporated the building materials industry. Therefore, this study considers the carbon price of the carbon pilots and the carbon price of the national carbon market and compares the two. Specifically, the average of the average transaction prices of eight carbon pilots is used to represent the pilot price following Zhang et al. (2018). For the national carbon market, this study uses the closing price following Xu et al. (2024). Therefore, this study considers two carbon prices and four carbon-intensive building materials. The sample period extends from 19 November 2018 to 30 September 2024, covering 1,396 daily observations. The sample starts at the date decided by the announcement of China cement price index and ends at the time of the end of this study. The data of building materials market and carbon prices are available from the WIND database.
The results of descriptive statistics of the six prices (indices) are shown in Table 1. The standard deviations of glass and fiberboard prices are much larger than those of the other two price indicators, indicating that glass and fiberboard have wild price swings. The median value of return for carbon allowances and most building materials is positive. The only exception is fiberboard return, which is negative. Similar with price fluctuations, the standard deviation suggests that the glass returns are the most volatile among the various building materials. The carbon return of pilots is more fluctuating than of building materials. China’s national carbon emission trading market started online trading in 16 July 2021. Therefore, the observation of the national carbon market, i.e., carbon emission allowances (CEA), is less than that of pilots and the building materials industry. The start of the new trading mode appears to cause a certain impact on traders’ psychology and behaviors (Xu et al., 2023), which may then be transmitted to the returns of carbon allowances, resulting in relatively high volatility. According to the results of the Jarque-Bera test, the null hypothesis of normality is rejected for all return series. Specifically, the return of each index has a kurtosis larger than three, which means that they have thicker tails than the normal distribution. According to the Augmented Dickey-Fuller (ADF) tests, all return series are stationary, which satisfies the requirements of Diebold-Yilmaz method.
TABLE 1 | Descriptive statistics of prices of carbon market and building materials (19 November 2018 to 30 September 2024).
[image: Table showing statistical data for CEA, Pilot, Cement, Clinker, Glass, and Fiberboard. Panel A presents price details with metrics like mean, median, maximum, minimum, standard deviation, skewness, kurtosis, Jarque-Bera, ADF test results, and observations. Panel B displays return data with similar metrics. Probabilities for Jarque-Bera and ADF tests are in parentheses. CEA refers to the China national carbon trading market.]Figure 1 displays the price changes of carbon allowances and building materials. Accordingly, the price trends of cement and clinker between November 2018 and September 2024 are similar, which is reasonable since cement is one of the most important raw materials for clinker. However, the price of glass, another key production material in the construction industry, shows somewhat different trends. Between January 2021 and October 2021, cement price maintains increasing, whereas glass price fells sharply. The movements of cement and glass are similar to each other since then. Cement is the front-end demand of real estate, whereas glass is the back-end demand of real estate. Therefore, this study can observe differences in the prices changes of these two building materials. Differently, the price of fiberboard fluctuates quite sharply. The demand of the downstream industry, i.e., the construction industry, has a great impact on the price of fiberboard. When the economy enters an upward cycle, the downstream demand of real estate, wood furniture and other industries becomes strong, driving up the price of fiberboard. When the economy enters a downward cycle, the demand of downstream industries weakens, leading to a decline in fiberboard prices. However, upstream factors also impact the price of fiberboard. For example, fiberboard is highly dependent on the stable supply of wood, and shortage of wood raw materials is inevitable, particularly during the pandemic, which will lead to an increase in the production cost and price of fiberboard. Before 2021, there is a negative correlation between the carbon price in the pilot areas and the cement and clinker price index. However, different from the price trend of building materials, the carbon price in China’s national carbon market remains relatively stable from January 2022 to June 2023, while the price in the pilot areas continues to rise. Carbon price, as a new cost, seems to be supposed to dampen demand in the construction sector, leading to a decline in the demand and price of building materials. Therefore, there should be a negative relationship between the two. Price movements before October 2021 appears to support this assumption. However, the price trend of carbon and building materials do not show a significant negative correlation thereafter.
[image: Six line graphs depicting trends over time from 2018 to 2020 in various sectors: CEA shows a rising trend; pilot fluctuates but overall increases; cement displays ups and downs; clinker has a similar pattern with noticeable peaks; fiberboard maintains a steady level with a slight decline; glass shows significant volatility with a peak before declining.]FIGURE 1 | Price changes of carbon allowances and building materials.
4 TIME-FREQUENCY CONNECTEDNESS BETWEEN CARBON AND BUILDING MATERIALS MARKETS
In this section, this study analyzes the connectedness between carbon and building materials markets using the methodology proposed by Baruník and Křehlík (2018) based on the log returns of prices and indices summarized in Panel B of Table 1. To show the dynamic spillovers between markets under different frequencies, this study applies the rolling window estimation of three frequency bands: 1 day to 1 week, 1 week to 1 month, and more than 1 month according to the studies such as Caporin et al. (2021) and Xu and Lien (2024). The fixed rolling window is set to 60 observations. Trading in the national carbon market may have altered the spillover effects of the pilot regions with the building materials market. Therefore, this study compares the dynamic spillover effects between the carbon price and the building materials market in the pilot regions before and after July 2021. In addition, the carbon market price trend in the pilot areas is significantly different from those in the national market (see Figure 1). Therefore, this study also provides a comparative analysis between the results of the national carbon market and carbon pilots for the period from July 2021 to September 2024.
4.1 Overall connectedness
Figure 1 displays the dynamic overall connectedness of carbon and building materials markets in the three frequency bands. Plots (a) and (b) show the results for the pilots and the national market, respectively. The overall connectedness is relatively high for most sample periods at short frequencies. Although the spillovers in the other two frequency bands are relatively low, there are some significant increases in certain phases in the time domain, thus suggesting a tight linkage between carbon markets and building materials markets. According to Figure 1, for the pilots, the overall connectedness ranges from 8.76% to 79.50%, from 0.35% to 24.61%, and from 0.14% to 47.78% for the frequencies of 1 day to 1 week, 1 week to 1 month, and more than 1 month, respectively. For the national carbon trading market, the overall connectedness ranges from 9.07% to 78.04%, from 1.18% to 20.15%, and from 0.41% to 10.56% in the short-, medium-, and long-term, respectively. Therefore, the results indicate that the connectedness between carbon and building materials markets appears to be much stronger in the short-term than in the medium- and long-term for both pilot and national carbon markets. This finding is consistent with Ferrer et al. (2018) that correlations in higher frequency bands are stronger than in lower frequency bands. The above results show that the information transmission between price returns of carbon and building materials markets is relatively rapid in the short-term frequency band within 1 week, and the overall connectedness between the two markets is strong due to high frequency shocks.
For the national carbon market, this study observes four peaks of the short-term overall connectedness, which occur in January 2022, the end of November 2022, August 2023 and the end of 2023 (highlighted by the grey area). The average overall connectedness in January 2022 exceeds 26%, well above the average for the entire sample period (16.30%). Similarly, the average overall connectedness reaches 23% at the end of November 2022, and the peaks reach 78% and 23% in August 2023 and at the end of 2023, respectively. For the medium- and long-term frequency bands, three peaks around January 2022, December 2022 and December 2023 can also be observed. In other words, some of the pronounced peaks in medium- and long-term overall connectedness are similar with the short-term fluctuations, but the magnitude is weaker than in the short-term. The peak in overall connectedness generally appears around the beginning and end of the carbon market compliance cycle. The compliance cycle refers to the time from the allocation of quotas to the handover of quotas by key emission units to the competent government departments. Since its official launch in July 2021, China’s national carbon market has successfully completed two compliance cycles. The first is 2019–2020, and the second is 2021–2022. The year of 2021 is the compliance year of the first performance cycle, and 2023 is the compliance year of the second compliance cycle. The compliance cycle enables participants to adjust the carbon allowance according to the actual emissions and quota ownership during the compliance period, which helps to reduce short-term carbon price fluctuations and reduce emission reduction costs. Therefore, when carbon trading is active at the beginning and end of the compliance cycle, the connectedness between carbon and building materials markets also becomes stronger. In August 2023, the price and activity of the national carbon market rise sharply, with the closing price exceeding 70 yuan/ton for the first time. This is mainly influenced by policy, market demand and peak summer energy consumption, which in turn affects production costs and prices in the building materials industry, leading to a surge in short-term spillovers between the two markets.
For the pilot market, four prominent peaks appear for the short-term overall connectedness, which occur in December 2019, January 2022, December 2022, and January 2024. The compliance cycle of local carbon pilots is usually 1 year, which is a departure from the national carbon market. Thereby, Figure 2 shows that the overall spillover effect between the carbon pilot and the building materials market also surges around the start or end date of the compliance cycle. Similarly to the national carbon market, the medium- and long-term spillovers between carbon pilots and building materials industry are weaker than the short-term effects and also show changes related to the compliance cycle (see Figure 2).
[image: Six line graphs display overall spillovers of pilots and the national market over different time bands. Each column represents pilots on the left and the national market on the right. The three rows show data for bands of one day to one week, one week to one month, and over one month. The graphs indicate varying degrees of spillover intensity, with noticeable peaks at different intervals, particularly in the first row. Time is from 2019 to early 2023.]FIGURE 2 | The overall connectedness between carbon pilots and the building materials market (plot a) and between the national carbon market and the building materials market (plot b).
Our findings are consistent with Adekoya et al. (2021), which argues that the overall connectivity between the EU carbon market and financial and commodity markets has similar characteristics in the time domain at different frequencies. However, Adekoya et al. (2021) attribute the fluctuation of the connectivity between carbon market and other markets to Brexit, the collapse of oil prices, stock market fluctuations and the global COVID-19 pandemic. Differently, this work finds that the design of carbon trading policy in China’s carbon market, that is, the setting of compliance cycle, seems to have a more prominent impact on the overall relationship between carbon and building materials markets, because external factors such as macro environment and market adjustment do not cause prominent changes in the overall spillover effects.
4.2 Directional connectedness
To analyze the directional spillover effect between the carbon market and the building materials market in China, this study summarizes the mean values of the frequency-to connectedness ([image: Equation with symbols: \( C_{p}^{d,f} \) followed by an arrow pointing right.]) and frequency-from connectedness ([image: Mathematical notation showing \( C^{d,f}_p \) with a left-pointing arrow next to it, suggesting a directional or operational context.]) in Table 2. The frequency-to connectedness illustrates the influence of one market contributes to the remaining variables in the VAR system, whereas the frequency-from connectedness reflects the influence of one market affected by the others.
TABLE 2 | To, from, and net spillovers at different frequencies.
[image: Three panels present data on carbon pilots and the national carbon market. Panel A shows mean values before July 19, 2021, with spillovers from pilots to Cement, Clinker, Glass, and Fiberboard, divided into short, medium, and long terms. Panel B displays similar data from pilots after July 19, 2021. Panel C lists data for the national carbon market across the same sectors and time frames. Each panel includes "To," "From," and "Net" spillover values. Notes explain the time frames for short, medium, and long terms.]For the carbon pilots, before the establishment of the national carbon market, the mean value of the frequency-to connectedness for the building materials market in each frequency band is close to that for the carbon market. However, since 19 July 2021, the mean value of the frequency-to connectedness for the carbon pilots appears to be smaller than that for the building materials industry in each frequency band. For example, in the short-term, i.e., the band of 1 day to 1 week, the mean value of the frequency-to connectedness for the carbon pilots is 3.116%. In the same frequency band, fiberboard has the smallest mean value of frequency-to connectedness (3.287%) and clinker has the largest one (3.929%) among four building materials. Statistically, the mean frequency-to connectedness for the carbon pilots is significantly smaller than that of the selected building materials (the probability of unilateral test is smaller than 1%). The differences are also significant in the medium- and long-term, which indicates that the information spilled out from the building materials market is more than that from the carbon pilots after the establishment of the national carbon market. This finding is in line with Adekoya et al. (2021) that carbon markets transmit less impact compared with other markets (commodity and financial markets). Comparing Panels A and B, Table 2 suggests that the importance of carbon pilots for the building materials market increases after the launch of the national carbon market. By contrast, the national carbon market transmits less information to the building materials market than the pilots. Panel C suggests that the mean value of the frequency-to connectedness for the national carbon market is 2.705%, which is statistically smaller than the mean value of the carbon pilots in Panel B (3.116%). Meanwhile, in line with carbon pilots, the national carbon market transmits less impact compared with the building materials market Similar with the overall connectedness, the frequency-to connectedness in the short-term frequency band for all variables is significantly greater than that in the other two bands in three panels.
The frequency-from connectedness shows some similar characteristics with the frequency-to connectedness. First, the frequency-from connectedness for the building materials market is smaller than that for the carbon pilots over time horizons of less than 1 week after the launch of the national carbon market, which indicates that the carbon pilots receive more information than the building materials markets. Second, in the medium- and long-term, the impact of the carbon pilots (after July 2021) and the national carbon market on the building materials market is weaker than the reverse impact. Third, the medium-term spillover effects are relatively stronger than long-term ones. Finally, in the short term, the impact of the national carbon market on the building materials market is less than that of the pilots, and the opposite is true in the medium- and long- term.
Table 2 indicates that, in the short-term, the carbon market is quite sensitive to shocks from building materials industry, but has a smaller impact on the building materials market. The result that the carbon price has a limited impact on the price of building materials is consistent with previous empirical results (Xu et al., 2022), which can be attributed to the fact that the coverage of the carbon market is not extensive enough. Although the carbon pilots have covered the building materials sector, there are obvious regional restrictions. The national carbon market has not yet included the building materials industry. Therefore, it can be explained that the spillover effect of the carbon market on the building materials industry is limited.
Figure 3 shows the movements of the frequency-to connectedness and frequency-from connectedness for the pilots (plot (a)) and the national carbon market (plot (b)) at three frequencies. According to Figure 3, for the national carbon market, there is a temporary surge in frequency-to connectedness across all frequency bands at the end of the compliance cycle. For pilots, however, surges typically occur at the beginning of the compliance cycle. Besides the impact of the compliance cycle, the surge can be linked to the Glasgow Climate Agreement, which was signed at the 26th Conference of the Parties to the United Nations Framework Convention on Climate Change on 13 November 2021. The agreement further strengthens the fight against climate change. The conference also reached a consensus on the implementation rules for Article six of the Paris Agreement, which has addressed the issue of double accounting of carbon emissions, and established the basic institutional framework of a global carbon market (COP26, 2021). This has created conditions for the development and influence of carbon markets from a macro policy perspective. Consequently, a significant growth is observed in late November 2021 of the frequency-to spillover for the national carbon market. However, the conference appears to have a limited impact on the pilots, with no major changes in the frequency-to connectedness around November 2021. It can be seen that the impact of global climate policy on the national carbon market is more prominent than that of the pilots.
[image: Four line graphs comparing data trends in pilots and national markets. Graphs (a) and (b) show "To", while (c) and (d) show "From". Each graph has short-term, medium-term, and long-term trend lines with respective axes noted. Dates range from 2019 to 2024 for pilots and from 2021 to 2023 for national markets.]FIGURE 3 | The frequency-to and frequency-from connectedness for the carbon pilots (plot a) and the national carbon market (plot b).
The short-term frequency-from connectedness in Figure 3 is relatively more fluctuating than the frequency-to connectedness for the carbon market. Even so, this study also observes significant increases in the frequency-from connectedness at the beginning and end of compliance cycles. In addition, compliance cycles appear to tend to reduce frequency-from connectedness. Specifically, the frequency-from connectedness around the beginning and end of the compliance cycle of the pilots and the national carbon market is significantly reduced. For example, the frequency-from connectedness of the pilots is reduced at the end of 2019, 2021 and 2022, and the frequency-from connectedness of the national carbon market at the end of 2021 and 2023 is also significantly reduced. Therefore, the impact of the compliance cycle is bidirectional, increasing the information sent by the carbon market while reducing the information received by the carbon market. Compared with the short term, the frequency-from connectedness of the medium- and long-term is much weaker, indicating that the carbon market is mainly affected by the building materials market in the short-term. Since 2019, China’s construction and building materials sectors in general have maintained steady growth, but the rate of growth has slowed down. In 2019–2023, the value added of the construction industry increased by 5.68%, −3.5%, 2.5%, 4.4%, and 7.1% year-on-year. Correspondingly, the frequency-from connectedness of the national carbon market on the building materials industry has also gradually increased, indicating that the influence of the carbon market on the expanded building materials industry becomes stronger. However, the impact of the pilots on the building materials industry does not seem to have this feature. In addition, the operation of the national carbon market does not seem to significantly alter the directional spillover effect between the pilots and the building materials industry.
4.3 Net connectedness
The net connectedness reflects whether a market is the primary sender or recipient of the overall spillover effect. Table 2 also summarizes the mean values of the frequency-net connectedness ([image: Equation showing the term "C subscript p net" with superscripts "d" and "f".]). Positive net connectedness of one market means that it transmits more shocks than it receives from other markets. In contrast, a negative net connectedness denotes that the market is subject to shocks from other markets. According to Table 2, both the pilots and the national carbon market are net information receivers in the frequency band of 1 day to 1 week. However, in the medium- and long-term frequency bands over 1 week, both markets become net transmitters. Comparatively, the net connectedness measured in absolute values of [image: Mathematical expression with the letter "C" followed by superscripts "d, f" and subscript "p, net".] suggests that the pilots are more sensitive to short-term price movements of building materials in the system after the establishment of the national market because the mean value of [image: Mathematical notation showing \( C^{d, f}_{p, \text{net}} \).] is much larger than in Panel A.
Different from directional connectedness, the medium- and long-term net connectedness of the carbon market, including the pilots after the establishment of the national market, is relatively strong comparing with the building materials industry, which indicates that the influence that carbon markets transmit out is stronger than most building materials. This result is somewhat different from the finding of Jiang and Chen (2022), which find that the carbon market has a small impact on other energy markets.
Figures 4, 5 display the fluctuations of net connectedness at three frequencies for pilots and the national carbon market, respectively. After the establishment of the national market, the pilots are mainly the information receiver of the building materials market, as the net connectedness of the pilots is negative during many periods, especially from July 2021 to December 2021. However, in the medium- and long-term, pilots are mainly an information transmitter, although their net spillovers are numerically small. The short-term net connectedness of the national carbon market fluctuates slightly around zero most of the time and is generally stable. Since August 2022, the national carbon market is generally a net information receiver from the building materials market in the short-term with negative net spillovers. However, in March 2023, the national carbon market shows a large net spillover exceeding 5%, showing that the national carbon market transmits information to the building materials market during this period. After that, it returns to the previous level rapidly. Therefore, this study can conclude that the national carbon market and pilots are generally information receivers over the short-term frequency band of 1 day to 1 week. Nevertheless, over the medium- and long-term horizons, the net spillovers of the national carbon market and pilots are positive in most time periods, suggesting that it becomes a net information transmitter in the long run. The spillovers of carbon and building materials markets are neither persistently positive nor negative, thus meaning that each market can be either an information transmitter or receiver in certain periods.
[image: A grid of nine line graphs shows data trends for various materials: pulp, cement, clinker, fiberboard, and glass. Each material is represented with short, medium, and long-term graphs. The graphs plot values over time, with noticeable fluctuations and spikes across different periods. Each graph includes a red baseline for comparison.]FIGURE 4 | The net connectedness of the carbon pilots and building materials markets.
[image: Nine line graphs display trends for different commodities over short, medium, and long terms from 2022 to 2024. Each graph has a black line for data fluctuations and a red line for trend or average. Commodities include CEA, cement, clinker, fiberboard, and glass. Y-axes vary in scale across graphs.]FIGURE 5 | The net connectedness of the national carbon market and building materials markets.
4.4 Pairwise connectedness
Figures 6, 7 show the net pairwise connectedness between carbon and building materials over three frequency bands for the pilots and the national market, respectively. For the pilots, in the short-term frequency band, the carbon market is generally a net information transmitter for clinker and fiberboard. However, for some periods, the pilots can be a net information receiver. Therefore, it appears that the carbon cost has passed through to the building materials market in the short-term, and the impact of carbon pilots on various building materials is different. The average net spillover in the short-term frequency band is positive for all building materials, with the largest for clinker (0.23%) and smallest for fiberboard (0.15%). While the average net spillover is small, the maximum values for fiberboard and clinker exceed 16%, thus showing a strong effect of carbon market on building materials markets. Nevertheless, the medium- and long-term results are somewhat different from the short-term results. As shown in Figure 6, main building materials are generally net information transmitters to the carbon pilots. In the frequency band over 1 week, the average net spillover for all paired variables is negative, in line with the observation of Figure 4. The short-term effects are generally greater than the medium- and long-term impact.
[image: Twelve line graphs show short, medium, and long-term trends for four materials: cement, clinker, fiberboard, and glass. Each row represents a different material, and each column represents a time scale. The x-axis denotes time, while the y-axis represents data values. Notable variations are evident in short and medium-term graphs, with long-term graphs showing more stability. Black lines indicate data trends, and a red line marks a consistent baseline across all graphs.]FIGURE 6 | The pairwise connectedness between the carbon pilots and building materials.
[image: Sixteen line charts show CEA analysis for four different variables: exonent, adaker, floorboard, and alges, each in short, medium, and long-term views. The x-axis represents time from 2020 to 2022, and the y-axis varies for each chart. Black lines show data trends, with red lines indicating averages or benchmarks.]FIGURE 7 | The pairwise connectedness between the national carbon market and building materials.
For the national carbon market, the results are slightly different from the pilots. In the short-term, the national carbon market is generally a net information transmitter of clinker and fiberboard until 2022 and an information receiver after that. For glass, the national carbon market is primarily an information receiver until June 2022. From July 2022, the national market becomes a net information transmitter. In the medium- and long-term, the net connectedness between the national market and the building materials industry is much weaker than in the short-term. Therefore, this study can conclude that the impact of carbon markets on the building materials industry mainly exists in the short-term.
4.5 Robustness tests
To ensure the robustness of the empirical test, this study comprehensively considers various tests. First, this study changes the fixed rolling window to 100 observations when estimating time-varying spillovers. When expanding the rolling window from 60 observations to 100 observations, the main findings remain unchanged. For instance, the short-term spillovers are stronger than the medium- and long-term results, and the carbon market is a net information receiver in the short-term frequency band. Second, this study fine-tunes the value of [image: Please upload the image or provide a URL so I can help generate the alt text for it.]. Specifically, the adjusted frequencies still denote bands of 1 day to 1 week, 1 week to 1 month, and more than 1 month. The difference lies in the specific frequency values. For example, the short-term frequency band changes from five trading days to six trading days. Finally, this study changes the forecasting steps ahead from 100 to 50. The empirical results under the above adjustments remain basically unchanged. For brevity, specific results are not reported here, but are available upon request.
5 CONCLUSIONS AND POLICY RECOMMENDATIONS
Under the carbon peak and carbon neutrality targets, carbon emission reduction has become an urgent task for the Chinese government. In this context, China has launched a unified online carbon trading market, which schedules to cover the building materials industry. Regulated enterprises trading in the unified market are subject to carbon quota constraints, which facilitates the advancement of regulated companies to optimize their industrial structures and better transformation to low-carbon production management mode. As a major contributor to carbon emissions, building material prices are supposed to have an important effect on carbon prices. Conversely, as a new production cost, the price of carbon allowances should affect the supply and demand in the building materials market, thus impacting the price of building materials. However, the spillover effects between building materials and carbon markets are under-explored. Therefore, this study measures and compares the dynamic spillovers between carbon and building materials markets in a time-frequency framework.
There are several major findings. First, the overall and directional spillover effects between the carbon allowance and the four important building materials show significant time-varying characteristics, which are closely related to the compliance cycle of the carbon market. At the beginning and end of the compliance cycle, i.e., in January and December of each calendar year, overall and directional spillovers between the carbon pilots and the building materials market tend to be stronger and more volatile than at other times. Similarly, the spillover effect of the national carbon market fluctuates sharply at the beginning and end of its compliance cycle. Second, the empirical results show that the carbon market affects the building materials market differently in the short and long run. The carbon neutrality target requires the building materials industry to develop towards low carbon emissions. However, the spillover effects of the two markets mainly appear in the short-term, which indicates that the design of carbon market policies should balance their short- and long- term effects. The overall strong connectedness between the carbon market and the building materials industry, especially in the short-term, indicates that the price transmission between the two markets is faster and thus exhibits high market efficiency in the short-term. Third, after the establishment of the national carbon market, the frequency-to connectedness of the carbon market (including the pilots and the national market) tends to be lower than that of the building materials market, while the frequency-from connectedness is higher than that of the building materials market. This makes the carbon market a short-term information receiver of the building materials market. In the medium- and long-term, the carbon market becomes the information transmitter of the building materials market, but the impact is weak. Finally, focusing on various building materials, carbon markets work differently.
These findings generate some important policy implications. Analysis of the price transmission mechanism between carbon and other markets is conducive to promoting industrial synergies and portfolio diversifications. Given the significant bi-directional spillovers between carbon and building materials markets, policymakers should consider additional price shocks when including the building materials sector in carbon market trading. Meanwhile, the connectedness at different frequencies provides important implications for the balance between short- and long-term targets of economic developments and carbon reductions. As one of the most efficient mechanisms for carbon reduction, maintaining the stability of caron price is conducive to promoting the internalization of external costs and optimizing spatial and temporal distribution of carbon emissions. Therefore, shocks in the building materials market should be considered when constructing carbon price policies.
DATA AVAILABILITY STATEMENT
Publicly available datasets were analyzed in this study. This data can be found here: WIND database.
AUTHOR CONTRIBUTIONS
YX: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Writing–original draft. YZ: Funding acquisition, Investigation, Supervision, Writing–original draft.
FUNDING
The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work was supported by the National Natural Science Foundation of China [grant number 72203019], the Fundamental Research Funds for the Central Universities of China [grant number 3162021ZYKA02].
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
ABBREVIATIONS
ADF, Augmented Dickey-Fuller; CEA, Carbon Emission Allowances; CoVaR, Conditional Value at Risk; DC-GARCH, Dynamic Conditional Correlation GARCH; DYCI, Diebold and Yilmaz Connectedness Index; ETS, Emission Trading System; GHG, Greenhouse Gases; IEA, International Energy Agency; MRV, Reporting Verification; VAR, Vector Autoregression.
FOOTNOTES
1The relevant abbreviations are summarized in the abbreviations.
2https://www.gov.cn/zhengce/zhengceku/202408/content_6967197.htm
3https://www.163.com/dy/article/J111CTB305198SOQ.html

REFERENCES
	 Adekoya, O. B., Oliyide, J. A., and Noman, A. (2021). The volatility connectedness of the EU carbon market with commodity and financial markets in time- and frequency-domain: the role of the U.S. economic policy uncertainty. Resour. Policy 74, 102252. doi:10.1016/J.RESOURPOL.2021.102252
	 Aloui, R., Gupta, R., and Miller, S. M. (2016). Uncertainty and crude oil returns. Energy Econ. 55, 92–100. doi:10.1016/j.eneco.2016.01.012
	 Ayoub, A. N., Gaigneux, A., Brun, N. L., Acha, S., and Shah, N. (2020). The development of a low carbon roadmap investment strategy to reach Science Based Targets for commercial organisations with multi-site properties. Build. Environ. 186, 107311. doi:10.1016/j.buildenv.2020.107311
	 Balcılar, M., Demirer, R., Hammoudeh, S., and Nguyen, D. K. (2016). Risk spillovers across the energy and carbon markets and hedging strategies for carbon risk. Energy Econ. 54, 159–172. doi:10.1016/j.eneco.2015.11.003
	 Baruník, J., and Křehlík, T. (2018). Measuring the frequency dynamics of financial connectedness and systemic risk. J. Financ. Econ. 16 (2), 271–296. doi:10.1093/jjfinec/nby001
	 Bribi’an, I. Z., Capilla, A. V., and Us´on, A. A. (2011). Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build. Environ. 46 (5), 1133–1140. doi:10.1016/j.buildenv.2010.12.002
	 Caporin, M., Naeem, M. A., Arif, M., Hasan, M., Vo, X. V., and Shahzad, S. J. H. (2021). Asymmetric and time-frequency spillovers among commodities using high-frequency data. Resour. Policy 70, 101958. doi:10.1016/j.resourpol.2020.101958
	 Chen, W., Yang, S., Zhang, X., Jordan, N. D., and Huang, J. (2022). Embodied energy and carbon emissions of building materials in China. Build. Environ. 207, 108434. doi:10.1016/j.buildenv.2021.108434
	 Chen, Y., Msofe, Z. A., and Wang, C. (2024). Asymmetric dynamic spillover and time-frequency connectedness in the oil-stock nexus under COVID-19 shock: evidence from African oil importers and exporters. Resour. Policy 90, 104849. doi:10.1016/j.resourpol.2024.104849
	 Chen, Y., Wang, C., and Zhu, Z. (2022). Toward the integration of European gas futures market under COVID-19 shock: a quantile connectedness approach. Energy Econ. 114, 106288. doi:10.1016/j.eneco.2022.106288
	 Chuai, X., Huang, X., Lu, Q., Zhang, M., Zhao, R., and Lu, J. (2015). Spatiotemporal changes of built-up land expansion and carbon emissions caused by the Chinese construction industry. Environ. Sci. Technol. 49 (21), 13021–13030. doi:10.1021/acs.est.5b01732
	 COP26 (2021). The glasgow climate pact. Available at: https://ukcop26.org (Accessed November 1, 2021). 
	 Creti, A., Ftiti, Z., and Guesmi, K. (2014). Oil price and financial markets: multivariate dynamic frequency analysis. Energy Policy 73, 245–258. doi:10.1016/j.enpol.2014.05.057
	 Dai, X., Xiao, L., Wang, Q., and Dhesi, G. (2021). Multiscale interplay of higher-order moments between the carbon and energy markets during Phase III of the EU ETS. Energy Policy 156, 112428. doi:10.1016/J.ENPOL.2021.112428
	 Diebold, F., and Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. Econ. J. 119 (534), 158–171. doi:10.1111/j.1468-0297.2008.02208.x
	 Diebold, F., and Yilmaz, K. (2014). On the network topology of variance decompositions: measuring the connectedness of financial firms. J. Econom. 182 (1), 119–134. doi:10.1016/j.jeconom.2014.04.012
	 Diebold, F. X., and Yilmaz, K. (2012). Better to give than to receive: predictive directional measurement of volatility spillovers. Int. J. Forecast. 28 (1), 57–66. doi:10.1016/j.ijforecast.2011.02.006
	 Egner, L., and Klöckner, C. (2021). Temporal spillover of private housing energy retrofitting: distribution of home energy retrofits and implications for subsidy policies. Energy Policy 157, 112451. doi:10.1016/J.ENPOL.2021.112451
	 Ferrer, R., Shahzad, S. J. H., López, R., and Jareño, F. (2018). Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices. Energy Econ. 76, 1–20. doi:10.1016/j.eneco.2018.09.022
	 Ftiti, Z., Fatnassi, I., and Tiwari, A. K. (2016). Neoclassical finance, behavioral finance and noise traders: assessment of gold–oil markets. Finance Res. Lett. 17, 33–40. doi:10.1016/j.frl.2016.01.002
	 International Energy Agency (IEA) (2024). “CO2 emissions in 2023,”. Paris: IEA. Available at: https://www.iea.org/reports/co2-emissions-in-2023 (Accessed March, 2024). 
	 Ji, Q., Xia, T., Liu, F., and Xu, J. (2018a). The information spillover between carbon price and power sector returns: evidence from the major European electricity companies. J. Clean. Prod. 208, 1178–1187. doi:10.1016/j.jclepro.2018.10.167
	 Ji, Q., Zhang, D., and Geng, J. (2018b). Information linkage, dynamic spillovers in prices and volatility between the carbon and energy markets. J. Clean. Prod. 198, 972–978. doi:10.1016/j.jclepro.2018.07.126
	 Jiang, W., and Chen, Y. (2022). The time-frequency connectedness among carbon, traditional/new energy and material markets of China in pre- and post-COVID-19 outbreak periods. Energy J. 246, 123320. doi:10.1016/J.ENERGY.2022.123320
	 Jurado, K., Ludvigson, S. C., and Ng, S. (2015). Measuring uncertainty. Am. Econ. Rev. 105 (3), 1177–1216. doi:10.1257/aer.20131193
	 Křehlík, T., and Baruník, J. (2017). Cyclical properties of supply-side and demand-side shocks in oil-based commodity markets. Energy Econ. 65, 208–218. doi:10.1016/j.eneco.2017.05.003
	 Li, L., Duan, M., Duan, X., and Wang, Y. (2021). The stimulation and coordination mechanisms of the carbon emission trading market of public buildings in China. Front. Energy Res. 9, 715504. doi:10.3389/FENRG.2021.715504
	 Liu, H., and Chen, Y. (2013). A study on the volatility spillovers, long memory effects and interactions between carbon and energy markets: the impacts of extreme weather. Econ. Model 37, 840–855. doi:10.1016/j.econmod.2013.08.007
	 Lu, Y., Cui, P., and Li, D. (2016). Carbon emissions and policies in China's building and construction industry: evidence from 1994 to 2012. Build. Environ. 95, 94–103. doi:10.1016/j.buildenv.2015.09.011
	 Lu, Y., Zhu, X., and Cui, Q. (2012). Effectiveness and equity implications of carbon policies in the United States construction industry. Build. Environ. 49, 259–269. doi:10.1016/j.buildenv.2011.10.002
	 Luo, W., Zhang, Y., Gao, Y., Liu, Y., Shi, C., and Wang, Y. (2021). Life cycle carbon cost of buildings under carbon trading and carbon tax system in China. Sustain. Cities Soc. 66, 102509. doi:10.1016/j.scs.2020.102509
	 Nadoushani, Z. S. M., and Akbarnezhad, A. (2015). Effects of structural system on the life cycle carbon footprint of buildings. Energy Build 102, 337–346. doi:10.1016/j.enbuild.2015.05.044
	 Nasreen, S., Anwar, S., and Ozturk, I. (2017). Financial stability, energy consumption and environmental quality: evidence from South Asian economies. Renew. Sust. Energ. Rev. 67, 1105–1122. doi:10.1016/j.rser.2016.09.021
	 Pástor, J., and Veronesi, P. (2013). Political uncertainty and risk premia. J. Financ. Econ. 110 (3), 520–545. doi:10.1016/j.jfineco.2013.08.007
	 Reboredo, J. C., and Rivera-Castro, M. A. (2014). Wavelet-based evidence of the impact of oil prices on stock returns. Int. Rev. Econ. Finance 29, 145–176. doi:10.1016/j.iref.2013.05.014
	 Sachs, J., Schmidt-Traub, G., Kroll, C., Lafortune, G., and Fuller, G. (2019). Sustainable development report 2019, bertelsmann stiftung and sustainable development solutions Network. NY, USA: SDSN. 
	 Shi, Q., Chen, J., and Shen, L. (2017). Driving factors of the changes in the carbon emissions in the Chinese construction industry. J. Clean. Prod. 166, 615–627. doi:10.1016/j.jclepro.2017.08.056
	 Wang, K., Yang, K., Wei, Y., and Zhang, C. (2018). Shadow prices of direct and overall carbon emissions in China’s construction industry: a parametric directional distance function-based sensitive estimation. Struct. Change Econ. D. 47, 180–193. doi:10.1016/j.strueco.2018.08.006
	 Wang, Y., and Guo, Z. (2018). The dynamic spillover between carbon and energy markets: new evidence. Energy J. 149, 24–33. doi:10.1016/j.energy.2018.01.145
	 Woo, J., Fatima, R., Kibert, C. J., Newman, R. E., Tian, Y., and Srinivasan, R. S. (2021). Applying blockchain technology for building energy performance measurement, reporting, and verification (MRV) and the carbon credit market: a review of the literature. Build. Environ. 205, 108199. doi:10.1016/j.buildenv.2021.108199
	 Wu, Q., Wang, M., and Tian, L. (2020). The market-linkage of the volatility spillover between traditional energy price and carbon price on the realization of carbon value of emission reduction behavior. J. Clean. Prod. 245, 118682. doi:10.1016/j.jclepro.2019.118682
	 Xu, Y. (2021). Risk spillover from energy market uncertainties to the Chinese carbon market. Pac-basin Financ. J. 67, 101561. doi:10.1016/j.pacfin.2021.101561
	 Xu, Y., Dai, Y., Guo, L., and Chen, J. (2024). Leveraging machine learning to forecast carbon returns: factors from energy markets. Appl. Energy 357, 122515. doi:10.1016/j.apenergy.2023.122515
	 Xu, Y., and Li, X. (2023). Green or grey stocks? Dynamic effects of carbon markets based on Chinese practices. Empir. Econ. 65, 2521–2547. doi:10.1007/s00181-023-02439-1
	 Xu, Y., Li, X., Yuan, P., and Zhang, Y. (2023). Trade-off between environment and economy: the relationship between carbon and inflation. Front. Environ. Sci. 11, 334. doi:10.3389/fenvs.2023.1093528
	 Xu, Y., and Lien, D. (2024). Together in bad times? The effect of COVID-19 on inflation spillovers in China. Int. Rev. Econ. Finance 91, 316–331. doi:10.1016/j.iref.2024.01.015
	 Xu, Y., and Salem, S. (2021). Explosive behaviors in Chinese carbon markets: are there price bubbles in eight pilots?Renew. Sust. Energ. Rev. 145, 111089. doi:10.1016/j.rser.2021.111089
	 Xu, Y., Xu, Z., Zhou, Y., Su, C., and Guo, L. (2022). Interactions between carbon prices and the construction industry in China: evidence based on Network-SVAR. Build. Environ. 215, 108936. doi:10.1016/J.BUILDENV.2022.108936
	 Yuan, N., and Yang, L. (2020). Asymmetric risk spillover between financial market uncertainty and the carbon market: a GAS–DCS–copula approach. J. Clean. Prod. 259, 120750. doi:10.1016/j.jclepro.2020.120750
	 Zhang, L., Yang, W., Yuan, Y., and Zhou, R. (2017). An integrated carbon policy-based interactive strategy for carbon reduction and economic development in a construction material supply chain. Sustainability 9 (11), 2107. doi:10.3390/su9112107
	 Zhang, W., Li, J., Li, G., and Guo, S. (2020). Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China. Energy J. 196, 117117. doi:10.1016/j.energy.2020.117117
	 Zhang, Y., Guo, S., Shi, X., Qian, X., and Nie, R. (2021). A market instrument to achieve carbon neutrality: is China’s energy-consumption permit trading scheme effective?Appl. Energy 299, 117338. doi:10.1016/J.APENERGY.2021.117338
	 Zhang, Y., Liu, Z., and Xu, Y. (2018). Carbon price volatility: the case of China. PloS one 13 (10), e0205317. doi:10.1371/journal.pone.0205317
	 Zhang, Y., and Sun, Y. (2016). The dynamic volatility spillover between European carbon trading market and fossil energy market. J. Clean. Prod. 112, 2654–2663. doi:10.1016/j.jclepro.2015.09.118
	 Zhu, B., Huang, L., Yuan, L., and Wang, P. (2020). Exploring the risk spillover effects between carbon market and electricity market: a bidimensional empirical mode decomposition based conditional value at risk approach. Int. Rev. Econ. Finance 67, 163–175. doi:10.1016/j.iref.2020.01.003
	 Zhu, C., Chang, Y., Li, X., and Shan, M. (2021). Factors influencing embodied carbon emissions of China’s building sector: an analysis based on extended STIRPAT modeling. Energy Build. 255, 111607. In press. doi:10.1016/j.enbuild.2021.111607

Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2024 Xu and Zhu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 11 November 2024
doi: 10.3389/fenvs.2024.1463179


[image: image2]
Collaborative governance in action: driving ecological sustainability in the Yangtze River basin
Yue Xia1*†, Ze Tian1† and Chenhui Ding2†
1Business School, Hohai University, Nanjing, China
2Economics and Management School, Dongguan University of Technology, Dongguan, China
Edited by:
Jiachao Peng, Wuhan Institute of Technology, China
Reviewed by:
Narongsak Sukma, Siam Technology College, Thailand
Feifei Zhao, China Three Gorges University, China
* Correspondence: Yue Xia, 18745687340@163.com
†ORCID: Yue Xia, orcid.org/0009-0007-9910-2654; Ze Tian, orcid.org/0009-0005-6552-0327; Chenhui Ding, orcid.org/0000-0003-4806-9317
Received: 11 July 2024
Accepted: 30 October 2024
Published: 11 November 2024
Citation: Xia Y, Tian Z and Ding C (2024) Collaborative governance in action: driving ecological sustainability in the Yangtze River basin. Front. Environ. Sci. 12:1463179. doi: 10.3389/fenvs.2024.1463179

Implementing a collaborative governance framework across administrative boundaries is crucial for preserving the Basin’s ecological integrity and mitigating institutional fragmentation. Based on 19 cases of inter-provincial collaborative governance of ecological environment in the Yangtze River Basin of China, this study uses the fuzzy set qualitative comparative analysis method to explore the influencing factors and complex causal mechanism of the effect of inter-provincial collaborative governance. The results show that technology empowers relationship driving, institutions reinforce interactive driving, and internal and external interaction driving modes promote collaborative governance. Perceived factors are essential in motivating provinces to participate in collaborative governance. External factors play a hygienic role in collaborative governance, and internal factors play a motivated role. The roles of the two types of factors are separate but complementary. In view of this, government should attention to regional environmental concerns, ensuring consistent alignment of internal and external factors and fostering synergies to improve governance effectiveness.
Keywords: watershed ecological environment, inter-provincial collaborative governance, driving paths, fuzzy set qualitative comparative analysis, environmental policy and governance

1 INTRODUCTION
The Yangtze River basin is China’s strategic hub and water source, supporting economic development and contributing significantly to its long cultural history. It covers 11 provinces and cities along the Yangtze River and spans three plates in eastern, central and western China. It is a typical transboundary river. In the long term, promoting the high-quality development of the Yangtze River Economic Belt fundamentally relies on the establishment of a high-quality ecological environment within the Yangtze River Basin. Currently, its ecological environment faces many problems. Firstly, the industrial emissions, agricultural non-point source pollution, and urban domestic waste pollution in the Yangtze River Basin are widespread and pose significant challenges for control (Chun, 2019). Secondly, biodiversity protection is still facing severe challenges, with a high proportion of threatened fish, and some rare and endangered fish, such as Chinese sturgeon and Yangtze sturgeon, cannot continue to reproduce naturally. Finally, the functional degradation of the ecosystem is reflected in various aspects, such as wetland destruction and shoreline development (Chun, 2019). The complexity and integrity of the Yangtze River Basin’s ecosystem determine that its ecological environment issues exhibit cross-regional and trans-basin characteristics. Any ecological environmental problem in a particular area can significantly impact the entire Basin; for instance, the eutrophication issue in the Taihu Basin involves the provinces of Zhejiang and Jiangsu. Therefore, it is necessary to address ecological and environmental challenges from a holistic basin perspective. Establishing a collaborative governance model across administrative regions is often regarded as an effective means to prevent the fragmentation of the Basin’s ecological integrity and to overcome institutional fragmentation. Since 2021, the Chinese Yangtze River Protection Law has also highlighted the concept of coordinated governance of the Basin, which reflects that basin governance should be carried out from the perspective of a unified ecosystem of the Basin as a whole. The regional collaborative governance model aligns with the holistic, extensive, complex, and multi-faceted nature of ecological and environmental issues in river basins. It addresses the limitations of knowledge, resources, and capacities associated with single-theme governance, promotes the coordination of governance policies and the unification of regulations, and enhances information sharing, resource integration, and action coordination among regions, ultimately fostering a synergistic governance effort. Meanwhile, the regional collaboration forms an environmental protection community that can fundamentally overcome “the collective action dilemma” and solve the problems (Yi et al., 2018). What factors influence the effectiveness of this inter-administrative collaborative governance? What pathways do these factors have on the outcomes of collaborative governance? How can the effective inter-provincial collaborative governance of cross-regional environmental pollution be promoted? Addressing these questions will contribute to further refining the inter-provincial collaborative governance mechanism in river basins and provide insights for implementing the ecological protection and high-quality development strategy in the Yangtze River Basin.
Some frameworks and theories have discussed collaborative governance problems, including the function of collaboration of each subject (Woods and Bowman, 2018), collaborative dilemma (He and Wang, 2018), collaborative network analysis (Jie and Liming, 2019), collaborative governance effectiveness (Minwang, 2022) and the internal and external influencing factors of collaborative governance (Jie and Liming, 2019; Liu et al., 2021) However, there is still little systematic analysis of the influencing factors, and quantitative approaches lack. Previous research in China has examined the impact of internal, external, and process factors on collaborative governance effectiveness (Rao and Zhao, 2022). However, they ignored the complexity of the collaborative problem, which involves complex relationships between multi-level concurrent conditions and outcomes. Ecological and environmental regional collaborative governance is the result of the interplay of various internal and external influencing factors rather than being attributable to any single aspect. It reflects the complex relationship between multi-dimensional concurrent conditions and governance outcomes. Within different combinations of influencing factors, the causal mechanisms between individual influencing conditions and governance effects may vary. Unfortunately, existing research neglected this critical aspect, and the preconditions for inter-provincial collaborative governance under the Chinese Basin have not been fully explored (Chen et al., 2015). Recently, qualitative comparative analysis (QCA) has become a popular tool for explaining complex situations related to collaboration (Jager, 2016; Sedgwick, 2017; Hossu et al., 2018). The governance of the ecological environment in the Yangtze River basin in China is a suitable case for exploring the initial conditions for inter-provincial collaborative governance (Fu et al., 2022). Thus, this study adopts QCA to test for the combinations of preconditions for establishing inter-provincial collaboration governance. The purpose is to identify different paths for establishing inter-provincial collaborative governance and outline different collaboration modes for controlling ecological and environmental problems in the Yangtze River basin in China.
Our research makes several meaningful contributions to the literature on inter-provincial collaborative governance and the study of its influence factors effect. Firstly, we attempt to put forward a new theoretical framework based on the existing research and construct a framework of influencing factors for the effect of inter-provincial collaborative governance with reference to collaborative governance and DBO (expectation-faith-opportunity) theory, as well as the antecedent conditions that can be tested. This study can deepen the understanding of inter-provincial collaborative governance, and future empirical research can further enrich the theoretical framework proposed in this work. Furthermore, we incorporate external contextual variables that influence inter-provincial collaborative governance into the analytical framework, thereby enriching the theoretical discourse on collaborative governance. Additionally, integrating theoretical research on individual behavior into the study of collaborative governance issues can provide new insights for addressing these challenges. Finally, this study contributes to the literature exploration of watershed environmental governance and provides new insights into how regional governments can engage in collaborative governance. The research framework is shown in Figure 1. The remaining parts of the paper are organized as follows: Section 2 establishes a theoretical foundation and analytical framework. Section 3 describes the sample, methods, and measures. Section 4 focuses on the empirical tests and results analysis, including Single factor Necessary Condition Analysis and Configuration analysis. Section 5 presents conclusions and policy recommendations.
[image: Flowchart illustrating a collaborative governance model in ecological restoration. It includes sections for introduction, theoretical frameworks of influencing factors, methods (fsQCA), research design, and results. Factors are categorized as external and internal, with sub-factors such as legal and efficiency. Outcomes include pathways to higher collaborative governance. Arrow indicates the connection between sections.]FIGURE 1 | Research framework.
2 THEORETICAL FRAMEWORK
Inter-provincial ecological environmental collaborative governance is an environmental governance model based on the governmental level, which plays a key role as part of many subsystems of cooperative governance (Rao and Zhao, 2022). The roles, interactive behaviors, and interdependencies of government subjects from different sectors, levels, and regions should be fully considered in collaborative governance. Government agencies at all levels should establish non-commissioned relationships, cooperate voluntarily and equally when faced with common interests, coordinate and integrate resources, share risks and benefits, achieve a positive synergy of one plus one greater than two, maximize the overall effectiveness of governance, form a holistic, balanced and mutually supportive system, and tackle issues that individual governments or departments cannot resolve.
The research on influencing factors of collaborative governance can be summarized into internal and external aspects: the main internal influencing factors include collaborative network (Saba et al., 2015), formal cooperation degree (Scott, 2015), and regional collaborative organization (Gerlak and Heikkila, 2006). The main external influencing factors include government support (Mattor and Cheng, 2015), deterioration of environmental problems (Liu et al., 2022), etc. In Western social practices, the primary focus is on the interactions among different participating stakeholders. Research has identified that factors such as previous collaboration experiences, shared beliefs or goals, and resource dependency are key influences on the collaborative motivations of stakeholders (Smith, 2009; Amirkhanyan, 2009). In the Chinese context, the most significant influence on inter-regional governmental collaboration is the top-down institutional arrangements. To achieve specific policy objectives, the central government may employ a range of strategies to intervene in the collaborative behaviors of local governments (Zhou, 2020). Meanwhile, in terms of the ecological environment, the collaborative governance theory holds that the government plays a fundamental role in the governance system. However, there is still a lack of research on the analysis framework of influencing factors of inter-provincial collaborative governance from the perspective of the interaction of internal and external influencing factors. A small number of studies did not divide internal and external influencing factors in detail and analyzed the role of each influencing factor in depth (Mu et al., 2019; Fu et al., 2022). Thus, this paper integrates the core elements of various regional environmental collaborative governance models when discussing the influencing factors of inter-provincial collaborative governance in the Yangtze River Basin. We also introduce Peter Hirstrom’s DBO theory of influencing individual behavior, that is, to explain the mechanism with expectations, beliefs, and opportunities, to explain complex social phenomena by breaking down processes and highlighting elements, with the core of exploring a series of social mechanisms that influence the interaction between individuals and others (Herstrom, 2010). Embedding the interactive behavior at the provincial government level in the DBO theory helps to explain two aspects: First, the motivation of the provinces to engage in synergy, which is the direct cause of cooperative behavior; Second, the structured opportunities for connection between provinces, which constrains the actions of subjects and defines the structure of interaction. The theory assumes that behavior arises due to a combination of the intrinsic expectations and beliefs of the actors as well as external opportunities (Shan and Duan, 2022). It is more helpful in analyzing which factors may influence inter-provincial collaborative behavior. To sum up, we construct a theoretical framework (Figure 2) that further categorizes the dimensions of inter-provincial collaborative environmental governance in the Yangtze River Basin into internal and external influences. External factors include legal, institutional, and technical factors, while internal factors include relational, perceptual, interactive, and effectiveness factors.
[image: Flowchart illustrating the inter-provincial collaborative governance effect on the Yangtze River basin's ecological environment. It highlights external factors: legal, institutional, and technical; and internal factors: relational, perceptual, interactive, and efficacy. Arrows indicate collaboration between these factors.]FIGURE 2 | Theoretical framework for the influencing factors of inter-provincial collaborative governance of ecological environment in China’s Yangtze River basin.
2.1 External factors
2.1.1 Legal factor
The legal environment reflects the central government’s vertical intervention in inter-provincial collaborative governance, with a solid guiding and supervisory function from higher to lower levels of government in China (Mu et al., 2019). The inter-provincial environmental governance laws and regulations formulated by the National People’s Congress, the central government, and relevant departments can effectively provide ideas and directions for inter-provincial environmental collaborative governance. They actively encourage provincial governments to adopt cooperative behaviors in dealing with environmental problems and enhance the effectiveness of environmental collaborative governance (Fan, 2011). Therefore, the laws and regulations provide opportunities and motivation for provincial cooperation, which is one of the critical external motivations for the effective development of inter-provincial collaborative governance in the Yangtze River basin.
2.1.1.1 Institutional factor
Institutional factors are shared factors that influence regional collaborative governance and act on each variable of collaborative governance. Specifically, various provincial-level governments within each province establish cooperative mechanisms through autonomous negotiation and take cooperative actions toward achieving unified collaborative goals (Mu et al., 2019). The institutional factor has an integration function, a rational expression of cooperative consensus that can prevent and resolve cooperative conflicts and accelerate the integration process of collaborative governance (Wu and Zhuang, 2013). Institutional factors influence the orderliness of subject relations and the direction of collaborative interaction, which can guarantee the efficient implementation of regional collaboration and maximize the effectiveness of synergy (Wu and Zhuang, 2013). Therefore, it plays a crucial role in exploring the inter-provincial collaborative governance in the Yangtze River basin.
2.1.2 Technical factor
The technical factor refers to various digital technologies that facilitate effective inter-provincial collaboration, and it is a vital integration tool that can promote collaborative action. In the digital era, digital technologies can realize the dynamic synchronization of regional integration processes and the integration of resources and knowledge across time and space. It makes the connection of subjects in collaborative governance break through physical limitations and become closer. The digital era is gradually changing the collaborative interaction environment and tools of subjects, and various digital platforms greatly enrich the choice of interaction tools and improve the efficiency of interaction. Meanwhile, big data, the Internet of Things, and artificial intelligence can empower ecological environment governance, achieving real-time monitoring, information synchronization and sharing, autonomous decision-making, etc. Therefore, in China’s rapidly developing digital economy, it is essential to introduce the impact of technological factors on inter-provincial collaborative governance.
2.2 Internal factors
2.2.1 Relational factor
In the impact factor research, considering subjective judgments and behavioral attitudes of various actors focuses more on the subjective motivation of the cooperating parties. Inter-provincial collaborative behavior should result from the interaction between internal and external factors. Relational factors mainly include trust: the degree of trust of collaborative actors to other participating actors; interdependence: the ability of provincial actors to share resources or strengthen cooperation to strengthen their respective behavioral capabilities; competition: the psychological needs and behavioral activities of actors trying to outperform or overwhelm other actors; emotions: the psychological activities mediated by the desires and needs of actors (Pan, 2015; Tang et al., 2020; Lili et al., 2015). The relational factors among the provinces in the Yangtze River Basin directly affect the attitude of each province toward cooperative behavior and are the vital intrinsic factors for solid cooperation.
2.2.2 Perceptual factor
Perceptual factors include“risk perception: the subjective judgment of collaborative governance actors on the characteristics and severity of ecological problems in the Yangtze River Basin; quality perception: the extent to which actors’ sensory needs are met to the quality characteristics of ecological management in the Yangtze River Basin; value perception: The overall evaluation of the utility that the subject perceives from the benefits obtained from the ecological environment governance of the Yangtze River Basin and the costs incurred when obtaining the benefits (Pan, 2015; Tang et al., 2020).” The subjective perception of each province determines the level of contribution to governance, and differences in perception of environmental issues may disrupt the collaborative balance and become an obstacle to effective governance.
2.2.3 Interactivity factor
Interactive factors mainly include interactive communication, dynamic feedback, and timely dialogue behavior between actors; information acquisition, the activity process of actors to obtain original information through technical means and ways means; opinion expression, actors can express their views without hindrance and constraints (Pan, 2015; Yaodan, 2018). Effective and benign interactions among provinces can greatly enhance collaborative efficiency, and the efficient operation of the collaboration mechanism requires institutional safeguards and is closely related to the effective interaction of subjects.
2.2.4 Efficacy factor
Efficacy factors include self-efficacy, the subjective judgment of whether the actor can successfully carry out the ecological environment collaborative management behavior; participation efficacy, the subjective judgment of whether the actor is willing to participate in the ecological environment collaborative management behavior of the Yangtze River Basin (Pan, 2015; Yong, 2019). The subjective judgment of the actors on the ecological and environmental collaborative governance model is the internal motivation to promote cooperation. It is an essential internal factor in maintaining long-term cooperation.
3 RESEARCH DESIGN
3.1 Sample selection
The qualitative comparative analysis (QCA) method is applied to small-sample scope research. The research object is the inter-provincial collaborative governance of the ecological environment in the Yangtze River basin area. The number of environmental emergencies in a province can directly reflect the effect of the province’s participation in inter-provincial collaborative governance. The reduction in the number of incidents indicates that collaborative governance measures have been effective in preventing and controlling environmental risks (Liu et al., 2022). The variation in the frequency of environmental emergencies indirectly reflects the operational status of collaborative governance mechanisms. If the collaborative governance framework is robust and functioning smoothly, provinces can form a concerted effort to address environmental issues, thereby more effectively reducing the occurrence of unexpected environmental events. To ensure a comprehensive and effective comparison of sample types, this study analyzes the information on ecological and environmental collaborative governance published by the environmental protection departments or bureaus of various provinces and cities through their official websites and local media. By correlating this data with the annual frequency of environmental emergencies in each province, we select provinces with varying levels of collaborative governance information dissemination and differing frequencies of environmental incidents. Additionally, we consider the economic development of different provinces and the availability of data. Finally, the study selects the main course and tributaries of the Yangtze River Basin, encompassing 11 provinces, autonomous regions, and municipalities directly under the central government—namely, Qinghai, Tibet, Sichuan, Yunnan, Chongqing, Hubei, Hunan, Jiangxi, Anhui, Jiangsu, and Shanghai. Moreover, hundreds of tributaries extend into parts of eight provinces and autonomous regions, including Guizhou, Gansu, Shaanxi, Henan, Guangxi, Guangdong, Zhejiang, and Fujian. In total, 19 provincial-level administrative regions are selected as the research sample.
3.2 Method
Qualitative Comparative Analysis (QCA) is a research approach based on set theory that combines qualitative and quantitative analytical methods. This method holds that a certain outcome variable is the outcome of the combined effect of relevant influencing factors. To identify such configurations, QCA conducts a certain number of cross-case comparisons, applies Boolean algebra to reduce the configurations, uncovers various configurations that lead to the outcome variable, and distinguishes between core conditions and non-core conditions (Ragin, 2008). QCA integrates the advantages of qualitative and quantitative research methods. It explores the commonalities across cases on the basis of an in-depth understanding of individual cases, holds that there can be multiple paths to achieve a certain outcome, makes the research more consistent with realistic logic, breaks through the thinking limitations of traditional quantitative research (Yao et al., 2010), and can effectively deal with multiple concurrent causal relationships across cases. At present, a large number of researchers use the QCA method to carry out a variety of management problems (Guo et al., 2023; Park et al., 2020). The effect of inter-provincial collaborative governance of the ecological environment explored in this study is the result of the joint action of internal and external influencing factors, not only caused by one aspect. It reflects the complex relationship between multi-level concurrent conditions and governance effect. Furthermore, the sample size of 19 in this study is considered moderate and does not meet the “large sample” requirements typically associated with quantitative research. However, it aligns well with the requirements of Qualitative Comparative Analysis (QCA), which focuses on medium to small-sample cases. This approach not only enhances external validity but also preserves case heterogeneity and depth (Schneider and Wagemann, 2013). This research selects seven conditional variables: relational factors, perceptual factors, interactive factors, effectiveness factors, legal factors, institutional factors, and technological factors, as well as the effectiveness of inter-provincial collaborative governance in the ecological environment as the outcome variable. For medium-sized sample studies, the ideal number of conditions typically ranges from 4 to 7. Therefore, the selection of seven conditional variables is appropriate.
QCA methods are mainly divided into crisp set QCA and fuzzy set QCA. Among them, the variables in the csQCA set method take the values of 0 and 1, and such a dichotomy is too absolute to meet the meticulous quantitative standards in the social sciences. When describing inter-provincial collaborative governance, the use of “better” or “worse” cannot accurately reflect the real governance effect. However, fsQCA provides an effective means to deal with multiple categorical variables, and the variables of the fuzzy set take a value between 0 and 1. This paper employs the six-value anchor method of fsQCA, assigning variable values of 0, 0.2, 0.4, 0.6, 0.8, and 1. Data analysis and processing are conducted using fsQCA 3.0 software. This approach addresses the reality that the outcome variable does not conform strictly to binary states of 0 and 1, thereby providing a more nuanced representation of real-world conditions compared to csQCA.
3.3 Measures
The fsQCA method is used to analyze the conditional grouping of factors influencing inter-provincial collaborative governance of the ecological environment and to derive multivariate driving paths affecting inter-provincial collaborative governance of the ecological environment in the Yangtze River basin. The method treats each conditional variable and outcome as an ensemble, and each sample data is uniformly associated with a score in the ensemble. Assigning an ensemble affiliation score to the sample data is calibrated. Therefore, we use a 6-value assignment scheme according to the assignment requirements of fsQCA to variables. To reduce the subjectivity of variable assignment, this research uses the Delphi method, and the specific process is as follows: (1) This paper employs a questionnaire survey to gather subjective information regarding the internal factors of the conditional variables. The subjective perceptions and attitudes of government departments towards ecological and environmental issues also influence personnel at various levels within the province. Therefore, we expand the scope of its survey participants, encompassing 40% from administrative units, 23% from non-governmental environmental organizations, 20% from corporate personnel, and 17% from other sectors. All respondents are affiliated with the collaborative institutions of our research team; (2)This paper collects relevant information on the external factors of the conditional variables and the outcome variables. To ensure the completeness and comprehensiveness of inter-provincial agreement data, the collaborative agreement data for this research is sourced from three main channels: first, inter-provincial environmental cooperation agreements are collected from provincial daily newspapers; this involves conducting full-text searches using the Duxiu newspaper database, followed by manual screening. Second, data is gathered and filtered from the official websites of provincial governments and ecological environment bureaus using the same keywords. Finally, yearbook data is utilized to identify any gaps; the significant events section in each province’s yearbook records major occurrences and regional exchanges for that year, allowing for the supplementation and enhancement of inter-provincial agreement data. Other main information comes from the China Statistical Yearbook on the environment, portal websites of provincial and municipal environmental protection departments/bureaux, local official media and we-media platforms, and academic papers, and is statistically summarized; (3) Invite several experts from our research team to provide information on the collection of preliminary questionnaires and external factors, and after unifying the assignment rules, consult the experts on the assignment of each variable, organize, summarize and count the assignment opinions, and then anonymously give feedback to the experts, consult again, focus again, and give feedback again, until we get consistent opinions on the assignment of variables. The specific variables and assignment settings are shown in Table 1.
TABLE 1 | Variable assignment and setting.
[image: A detailed table categorizing variables related to the effect of inter-provincial collaborative governance on the ecological environment. It includes result and conditional variables such as legal, institutional, technical, perceptual, efficacy, relational, and interactivity factors. Each category is specified with variable assignment criteria, assignment values, and sources of literature, including authors and publication years.]4 RESULTS
4.1 Single factor necessary condition analysis
The necessity test for the condition variables affecting inter-provincial collaborative governance of the high ecological environment and the non-high ecological environment is shown in Table 2. The results show that the consistency coefficients of all the condition variables of inter-provincial collaborative governance of the high ecological environment are less than 0.9, indicating that none of the seven antecedent conditions is necessary to constitute inter-provincial collaborative governance of the high ecological environment. The result verifies the combinatorial nature of the drivers of inter-provincial collaborative governance of the ecological environment in the Yangtze River basin, driven by a complex system in which no single factor has a significant role, and the driving paths are multiple. Table 2 shows that the lack of institutional factors (∼IF, consistency 0.978342) and technical factors (∼TF, consistency 0.939394) is necessary for inter-provincial collaborative governance of a non-high ecological environment. This result inverse proves the vital role of institutional and technological factors in inter-provincial collaborative governance.
TABLE 2 | Univariate necessity analysis of the factors influencing inter-provincial collaborative governance of the ecological environment in the Yangtze River basin.
[image: Table comparing conditional variables with consistency and coverage in high and non-high ecological environment inter-provincial collaborative governance. Variables include legal, institutional, technical, perceptual, efficacy, relational, and interactivity factors, each listed with corresponding consistency and coverage values under both governance scenarios.]4.2 Configuration analysis
The research used fsQCA 3.0 software to analyze 19 cases of data, and the consistency threshold was set to 0.8 based on the number of sample cases and the fsQCA analysis convention (Fu et al., 2022). The results of the fsQCA analysis include complex, intermediate, and parsimonious solutions. Among them, those appearing in intermediate and parsimonious solutions are core conditions, and those appearing only in intermediate solutions are edge conditions. We mainly analyze the results of intermediate solutions and consider the effects of core and edge conditions.
From Table 3, the research identified three pathways leading to high inter-provincial collaborative governance of the ecological environment. Based on the coverage of the solutions, it is clear that these three solutions explain a total of 82.2% of the inter-provincial collaborative ecological governance samples in the Yangtze River basin. According to the difference of sufficient conditions, as shown in Figure 3, the modes of ecological environment inter-provincial collaborative governance can be summarized into three types: technology empowers relationship driving, institution reinforces interactive driving, and internal and external interactive driving.
TABLE 3 | Configuration analysis of ecological environment inter-provincial collaborative governance for high and non-high.
[image: Table comparing conditional variables for high and non-high ecological environment inter-provincial collaborative governance. Columns include H1, H2, H3 for high, and NH1, NH2 for non-high. Rows list factors like Legal, Institutional, and Technical, with symbols indicating presence or absence. Raw coverage, unique coverage, consistency, solution coverage, and solution consistency values provided for each column.][image: Map of China illustrating regions based on driving modes. Yellow indicates technology-empowered relationship driving; orange shows institution-reinforced interactive driving; dark red represents internal and external interactive driving. A scale bar and a compass rose are included for orientation.]FIGURE 3 | Driving mode of inter-provincial collaborative governance of ecological environment in China’s Yangtze River Basin.
4.2.1 Technology empowers relationship driving
Path H1: perceptual factors * relational factors * interactive factors * technical factors * ∼ legal factors * ∼ institutional factors. The path suggests that in the inter-provincial collaborative ecological and environmental governance of the Yangtze River basin, regardless of the presence of efficacy factors in the province, having a high perception of the severity of environmental problems, solid relationships and close interaction with cooperating provinces, and active application of digital technologies will achieve high inter-provincial collaborative ecological and environmental governance effects, even if legal and institutional factors are lacking. Studies have emphasized the central conditional role of horizontal coordination and agreements among provinces. The pathway further found the importance of intrinsic motivation. Moreover, technological factors can enhance internal motivations. Applying digital technology can further deepen environmental perceptions, relationships, and interactions among provinces by breaking the geographical limitations of communication and interaction among provinces and barriers to information sharing, enriching the understanding and awareness of provinces about the severity of ecological and environmental problems and may evolve new modes of cooperation that enhance the effectiveness of ecological and environmental governance.
The representative province of this path is Guangxi Zhuang Autonomous Region. In terms of the internal factors questionnaire survey, Guangxi Autonomous Region scored an average of 3.4 for perceived factors (ranking second among all provinces), 3.65 for relational factors (ranking fourth), and 3.33 for interactive factors (ranking fifth), ranking within the top 30% of all provinces. At the same time, digital technologies are fully utilized to assist ecological collaborative governance. The Yulin Jiu Zhoujiang River Basin ecological environment big data platform has been established, and advanced new technologies such as big data and cloud computing have been fully utilized to promote information sharing on pollution sources, pollutants, and ecological environmental quality. The environmental governance level of crucial river basins and regions has continuously improved, and the monitoring, evaluation, and service capabilities for ecological protection have enhanced. Under the regional information interaction empowered by technology, the excellent rate of surface water quality in the entire region has been maintained at over 96% for five consecutive years.
4.2.2 Institution reinforces interactive driving
Path H2: perceptive factors * institutional factors * interactive factors * effectiveness factors * ∼ legal factors * ∼ relational factors * ∼ technical factors. The path indicates that, within the collaborative environmental governance of the Yangtze River Basin, a province that exhibits a keen awareness of environmental issues, maintains tight communication with cooperating provinces, actively engages in inter-provincial collaborative environmental governance frameworks, and establishes an effective mechanism for inter-provincial cooperation. The province can still attain remarkable ecological and environmental governance outcomes despite lacking legal, relational, and technical support. Institutional factors impose strong constraints on inter-provincial interaction; meanwhile, the process of close interaction can consolidate and improve cooperation mechanisms. In addition, high awareness of environmental issues and full recognition of collaborative governance models by each province, combined with policies related to ecological and environmental governance within each province, can achieve collaborative effects. It can compensate for deficiencies in inter-provincial relations and technology, ultimately promoting ecological and environmental governance.
The representative province of this path is Anhui Province. In terms of internal factors questionnaire survey, Anhui Province scored an average of 3.4 for perceived factors (ranking first among all provinces), 3.47 for interactive factors (ranking third), and 3.25 for efficiency factors (ranking fifth), all ranking within the top 30% of all provinces. In the past 5 years, establishing a collaborative governance mechanism in Anhui Province has exhibited an inside-out development trend. It has been demonstrated through the signing of various agreements, such as ecological and environmental governance cooperation agreements between cities and departments, environmental protection loan cooperation agreements between the provincial Department of Finance and the provincial Department of Environmental Protection, and four cooperative banks in the province, as well as the convergence of two laws on administrative law enforcement and criminal justice for environmental protection. Furthermore, Anhui Province has signed cooperation agreements with Nanjing City, Nanjing Institute of Environmental Science, Shanghai Jiading District, Xuzhou City, Hangzhou City, and the Huaihai Sea Economic Zone to set up a collaborative development of ecological environment joint prevention and control cooperation framework agreement. Additionally, the province has signed a strategic cooperation agreement with Tsinghua University Hefei Institute of Public Security to help promote the transformation of innovative achievements. These efforts have helped to improve the ratio of excellent sections for the province’s Yangtze River basin water quality to 94.8% and the public’s satisfaction rate for the ecological environment to 92.8%.
4.2.3 Internal and external interactive driving
Path H3: perceptual factors * relational factors * efficacy factors * legal factors * technical factors ∼ interactional factors * ∼ institutional factors. The path indicates that despite potential deficiencies in interactional and institutional factors in inter-provincial collaborative ecological and environmental governance within the Yangtze River Basin, significant effectiveness can still be achieved through a robust awareness of environmental challenges, close partnerships with cooperating provinces, a strong commitment to active participation in the model, the practical application of digital technologies, and comprehensive laws and regulations. External factors and internal factors can complement each other. Legal factors provide an opportunity and guarantee for constructing the inter-provincial collaborative governance model, reflecting the guiding role. Moreover, the close relationship between provinces and their own perception and efficiency factors promotes the elaboration of the implementation of the inter-provincial collaborative governance model of ecological environment, which helps each province clarify its positioning in this model and better play its role. In continuous cooperation, with strong relationship coordination and conflict running, the collaborative governance model can play a better role in ecological and environmental governance.
The representative province of this path is Chongqing. In terms of internal factors questionnaire survey, Chongqing scored an average of 3.19 for perceived factors (ranking seventh among all provinces), 3.54 for relational factors (ranking sixth), and 3.75 for efficiency factors (ranking first), all ranking within the top 40% of all provinces. Since the enactment of the “Yangtze River Protection Law,” Chongqing has continuously explored new models of joint enforcement and promoted joint enforcement of the water environment in various city departments. Particular inter-provincial ecological and environmental joint enforcement actions were also carried out in Sichuan and Chongqing, and the inter-provincial synergy model was refined under the guidance of the law. Regarding technical factors, the Chongqing Ecological Environment Big Data Application Center has jointly developed and established the “Basin Water Environment Intelligent Management Platform” with relevant research institutes and universities to achieve the sharing and real-time monitoring of ecological environment information. Under the driving mode of interaction between internal and external factors, the water quality of 74 state-controlled sections of the Yangtze River reached 98.6%, and a total of 1,424 small hydropower plants in the Yangtze River Economic Zone were cleaned up and rectified, with 242 being removed.
When comparing the three paths of technology-enabled relational drive, system-enhanced interactive drive, and internal-external interaction drive, we observe that perceptual factors are common action conditions. Thus, each province’s perception and awareness of the severity of ecological and environmental problems and environmental quality are crucial factors in promoting cooperative ecological and environmental governance.
Meanwhile, we identified two pathways leading to non-high ecological inter-provincial collaborative governance. Based on the coverage of the solutions, these three solutions explain a total of 67.3% of the inter-provincial collaborative ecological environmental governance samples in the Yangtze River basin. Path NH1: ∼perceptual factors*∼institutional factors*∼interactive factors*∼effectiveness factors*∼legal factors*technical factors. This path shows that even if digital technology is actively adopted, the lack of external factors of institutional and legal factors, internal factors of perception of environmental problems, close interaction, and willingness of provinces to participate in collaborative governance actively still leads to non-high inter-provincial collaborative eco-environmental governance effects. Path NH2:∼technical factors*∼legal factors*∼institutional factors*∼relational factors*∼effectiveness factors*interaction factors*perception factors. This path shows that even with a stronger perception of environmental problems and close interaction among provinces, the lack of external factors of technical, legal, and institutional factors, and internal factors of stronger relational and participatory environmental collaborative governance effectiveness still lead to non-high ecological inter-provincial collaborative governance effects.
5 DISCUSSION AND POLICY IMPLICATIONS
5.1 Discussion
Based on the DBO theory and collaborative governance theory, we propose seven antecedent conditions affecting the establishment of inter-provincial collaboration: legal factors, institutional factors, technological factors, perceptual factors, efficacy factors, relational factors, and interactive factors. Focusing on the factors influencing the inter-provincial collaborative governance of the ecological environment in China’s Yangtze River Basin, we used 19 provincial-level administrative regions in the Yangtze River Basin as research samples. We refined the inter-provincial collaborative governance paths using qualitative comparative analysis and analyzed the paths using the relevant case materials to demonstrate the characteristics of different paths.
	(1) This paper identifies different paths to establish inter-provincial collaborative governance of the ecological environment, Outlines different collaborative models to establish control of ecological environment problems, enriches the results of collaborative governance theory, and represents a meaningful advance in the literature. This paper finds three pathways driving inter-provincial collaborative governance of the ecological environment in the Yangtze River Basin.

First, technology empowers relationship driving and involves the interactive alignment of technological factors with perceptual, relational, and interactive factors. This pathway confirms the empowering role of digital applications in cross-provincial collaborative governance models (Huang and Yin, 2022) and further emphasizes the significance of digital applications in collaborative governance based on existing research (Zhou, 2020; MU et al., 2019; Fu et al., 2022). Digital technologies provide technical support for the interconnectivity of information among provinces, enhancing communication efficiency among government departments at various levels both within and outside the provinces, thereby ensuring the smooth operation of the collaborative governance system. Furthermore, this pathway underscores the critical role of social factors in promoting the effectiveness of collaborative governance within the Chinese context, in addition to formal institutional norms (Huang and Yin, 2022). When aligned with technical support, these social factors can significantly enhance the outcomes of inter-provincial collaborative governance, further enriching the discussion on the influencing factors of collaborative governance.
Second, the institutions reinforce interactive driving, which involves the synergistic alignment of institutional factors with perceptual, effectiveness, and interactive factors. This pathway aligns with the influencing factors proposed in existing research, clarifying the core role of formal institutional regulations in the construction and smooth operation of collaborative governance models (Zhan and Chen, 2020). However, this study provides a more detailed analysis that the stronger the perception of the participants of collaborative governance on ecological environment problems, the stronger the efficiency of the collaborative governance model, and the closer the interaction between them, the easier it is to promote the effect of the inter-provincial collaborative governance under the existing institutional environment and refine the analysis of the driving path of collaborative governance.
Finally, the internal and external interaction driving involves the synergistic alignment of legal factors and technological factors with perceptual, effectiveness, and relational factors. This pathway further indicates that central government supervision is crucial for strengthening regional collaborative governance (Chang et al., 2022). However, higher-level governments often struggle to identify the horizontal interactions needed among participants and are unable to provide guidance. Existing research has found that vertical interventions or centralized organizational arrangements may undermine the autonomous horizontal collaboration of participating entities. The results of this paper indicate that vertical intervention through legal factors alone does not significantly enhance the effectiveness of collaborative governance; rather, it requires interaction with the internal influencing factors of participating entities to achieve meaningful outcomes. The framework of internal influencing factors constructed in this study plays a supportive role in assisting higher-level government decision-making, strengthening horizontal collaboration, and promoting the effectiveness of collaborative governance.
	(2) Through the results of Qualitative Comparative Analysis (QCA), this study finds that perceptual factors are key drivers of inter-provincial collaborative governance in the ecological environment of the Yangtze River Basin. This finding enhances the existing exploration of the influencing factors on inter-provincial collaborative governance in ecological contexts and clarifies the importance of internal influencing factors (Shan and Duan, 2022). When comparing the three paths of technology-enabled relational drive, system-enhanced interactive drive, and internal-external interaction drive, we find that the perceptual factors are the common conditions, which reflects that each province’s independent judgment on the severity of ecological and environmental problems in the Yangtze River Basin, the degree of sensory needs for environmental governance quality, and the overall evaluation of the effectiveness of inter-provincial collaborative governance model play a core role in promoting the effect of inter-provincial collaborative governance of ecological environment. It is an important source of motivation for all participants to participate in collaborative governance. Maintaining perceptual factor one causes regional governments to have specific common goals and interests, that is, to reduce environmental pollution and negative externalities through collaborative governance. This view is in line with Richie et al. (2012) that shared goals and interests play an important role in promoting intergovernmental cooperation. Provinces with severe environmental pollution have a high demand for environmental governance. In contrast, provinces with low environmental pollution face negative externalities from neighboring regions and have a high demand for inter-provincial cooperation. Driven by these common goals, it is easier to promote the rapid construction and operation of collaborative governance mode.
	(3) Previous studies have explored the internal and external influencing factors of inter-provincial collaborative governance of the ecological environment (Fu et al., 2022). This study puts it under the same framework, and an in-depth analysis finds that external factors and internal factors play different roles in the inter-provincial collaborative governance of the ecological environment, which deepens the conclusion of the discussion of influencing factors.

Comparing the NH1 and NH2 paths and combining the three paths driving inter-provincial collaborative governance reveals that the absence of external institutional, legal, and technological factors is the dominant factor leading to ineffective inter-provincial collaborative governance. However, external institutional, legal, and technological factors are not the core conditions leading to high inter-provincial collaborative governance, and internal perception, relationship, interaction, and effectiveness factors exist as the core conditions enhancing Internal perceptions, relationships, interactions, and effectiveness factors exist as the core conditions that enhance the effectiveness of inter-provincial collaborative ecological governance. Hence, external factors are the guarantee factors of the inter-provincial collaborative ecological governance model and do not necessarily enhance the effectiveness of inter-provincial collaborative ecological governance. However, their absence inevitably leads to the failure of the collaborative governance model and its ineffectiveness. Internal factors exist as motivating factors for the inter-provincial collaborative ecological and environmental governance model, and their enhanced effects will continuously improve the inter-provincial collaborative ecological and environmental governance effect. The role of internal and external factors should be discussed separately, and the incentive role of internal factors can enhance or not enhance the effect of the inter-provincial ecological and environmental collaborative governance model; in contrast, the guarantee role of external factors can inhibit or suppress the effect of the inter-provincial ecological and environmental collaborative governance model. When both internal and external factors are satisfied together, they can complement each other to form a synergy, i.e., three driving paths, which effectively promote the collaborative governance model; when both internal and external factors have only one moment, they will produce conflicts and weaken the final inter-provincial collaborative governance model effect; when both internal and external factors are missing, the inter-provincial collaborative governance model cannot be effectively implemented and cannot achieve the ecological environment management In the absence of both internal and external factors, the inter-provincial collaborative governance model cannot be effectively implemented and cannot achieve the purpose of ecological environment management. As shown in Figure 4. Putting these two factors in the same framework to explore the impact on the effect of inter-provincial collaborative governance of ecological environment further enriches the theoretical framework of influencing factors of collaborative governance. It clarifies the position of factors at the two levels in the theoretical framework.
[image: Diagram illustrating the inter-provincial collaborative governance effect on the ecological environment in the Yangtze River basin. Internal and external factors contribute to incentive and guarantee effects. Boxes labeled "Improvement," "Non-improvement," "Non-suppression," and "Suppression" are linked with arrows indicating forming synergy, reducing conflict effects, and ineffectiveness of action. Factors include relational, perceptual, interactive, efficacy, legal, institutional, and technical.]FIGURE 4 | Impact of influencing factors of inter-provincial collaborative governance of ecological environment in the Yangtze River basin.
5.2 Policy implications

	(1) Strengthen digital technology embedding and promote interconnection among provinces in the Yangtze River Basin. One of the purposes of inter-provincial cooperation is to break the status quo of “information silos” in each province. Each province should pay attention to taking advantage of the national vigorous development of the digital economy to empower itself and inter-provincial cooperation in ecological and environmental governance and use digital information platforms to build two-way information interaction and communication mechanisms to continuously deepen the level of trust and team cohesion among cooperating provinces, so as to provide sufficient information support for each province to make decisions on environmental issues. We will use the digital information platform to build a two-way information interaction and communication mechanism, continuously deepen the level of trust and team cohesion among the cooperating provinces, provide sufficient information support for each province’s decision-making on environmental issues, further promote the interconnection of the provinces in the Yangtze River Basin, and bring into play the real effect of collaborative governance.
	(2) Pay attention to the differences in environmental quality needs and perceptions of environmental problems among the provinces in the Yangtze River basin and specific analysis of specific problems. This paper analysis shows that perceptive factors co-exist in the three driving paths, so when establishing cooperative relationships, the differential environmental problem perceptions among provinces will lead to problems such as uneven environmental inputs, weak cooperation intensity, and differences in environmental governance preferences when collaborative governance is established, and provinces should focus on reaching consensus on the severity of environmental problems and environmental governance quality, and cultivate self-organization of provinces in the face of complex ecological and environmental problems The provinces should focus on reaching a consensus on the seriousness of environmental problems and the quality of environmental governance, and cultivate the self-organization and self-adaptation ability of each province in the face of complex ecological and environmental problems so that they can quickly identify environmental crises. At the same time, each province should also analyze specific problems according to its own actual ecological and environmental situation and sign cooperation agreements that should have the specificity of each province’s problems, respect the autonomy of local governments, seek common ground while reserving differences, and not ignore differences.
	(3) Use the role of internal and external factors to make them form a synergy and enhance the effect of inter-provincial collaborative ecological and environmental governance. Provinces should make use of the role of external institutional, legal and technical factors to ensure that collaborative governance is carried out in an orderly manner and has procedural measures to resolve conflicts and deviations when they occur. At the same time, provincial governments should fully mobilize all provincial departments to participate in collaborative governance, pay attention to the awareness cultivation of the important role of the inter-provincial collaborative governance model, and continuously promote information interaction and close contact among provinces to make inter-provincial collaborative governance better and more effective. Ultimately, the direction of internal and external factors should always be consistent to form a joint effort to improve the ecological and environmental governance effect vigorously.
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Reducing agricultural carbon emissions is critical to achieving green agricultural development and the “dual carbon” goals. The present study conducts empirical analysis using provincial panel data from 29 provinces in China from 2011 to 2022 combined with econometric models based on the mechanism of the impact of digital rural construction on agricultural carbon emission intensity. The entropy method and carbon emission factor method are used to determine the level of digital rural construction and agricultural carbon emission intensity. The fixed effect and intermediary effect models are used to empirically analyze the impact of digital rural construction on agricultural carbon emission intensity. The results indicate that (1) digital rural construction significantly inhibits agricultural carbon emission intensity, and there are differences in different regions and dimensions of digital rural construction; (2) the construction of digital rural areas can indirectly reduce the intensity of agricultural carbon emissions by promoting the level of rural human capital; (3) financial support for agriculture played significant positive regulatory effect. The policy recommendations are proposed to provide a reference for promoting agricultural carbon reduction and digital rural construction in other countries.
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1 INTRODUCTION
Food production and total agricultural output have grown in recent years, but the accompanying problem of agricultural carbon emissions is becoming increasingly serious. According to the “Global Agriculture Outlook 2022–2031” report, greenhouse gas emissions directly generated by agriculture are projected to increase by 6% over the next decade. As a major agricultural country, China actively undertakes the significant responsibility of reducing agricultural carbon emissions and has introduced various plans to strengthen carbon reduction in agriculture. For instance, in September 2020, China set the goals of “peaking carbon emissions by 2030” and achieving “carbon neutrality by 2060”. In 2022, China issued the “Collaborative Implementation Plan for Pollution Reduction and Carbon Reduction”, which emphasized deepening the implementation of actions to reduce the quantity and improve the efficiency of fertilizers and pesticides to meet carbon reduction requirements. Reducing agricultural carbon emissions while ensuring food security has become a common concern for China and the world.
Agricultural carbon emission refers to the greenhouse gas emissions directly or indirectly generated by various activities in the process of agricultural production. Research on agricultural carbon emissions mainly focuses on carbon sources, carbon emission measurement, influencing factors, and carbon reduction measures. There are six primary sources of carbon emissions (Zhang et al., 2022). The calculation methods for agricultural carbon emissions primarily include the default coefficient of the IPCC (Sperow, 2020) and the life cycle assessment method (Jana and De, 2016). Agricultural carbon emissions influence economic development, urbanization, and energy use (Qing and Yuhang, 2022; Xu and Lin, 2017; Wei Z. et al., 2023). Land use patterns, farmland ecosystems, and soil erosion can affect the carbon balance of agricultural systems (Woomer et al., 2004; Lal, 2003; Kindler et al., 2011). Measures for agricultural carbon reduction mainly involve technological innovation, technological progress, industrial structure optimization (Li G. et al., 2024; Li J. et al., 2024; Wang et al., 2023), collecting environmental taxes (Iyke-Ofoedu et al., 2024), encouraging farmers to join rural cooperatives and adopt socialized services (Wang and Qiu, 2024; Chen et al., 2022), adjusting fertilizer use (Ji et al., 2024), promoting large-scale agricultural land management (Bai et al., 2023), and implementing crop rotation and fallow practices (Zhang et al., 2024). Financial support for agriculture, industrial upgrading and clean agricultural production technologies are effective for reducing agricultural carbon emissions (Wei S. et al., 2023; Du et al., 2023; Guo et al., 2022).
“The Outline of the Strategy for the Development of Digital Countryside” points out that the construction of digital rural countryside refers to the application of networking, informatization and digitalization in agricultural and rural development and the process of promoting the modernization and transformation of agriculture and rural areas, which is not only the strategic direction of rural revitalization but also an important content of the construction of digital China. “The Action Plan for Digital Rural Development (2022–2025)” emphasizes the application of digitalization in rural areas, positioning data as an essential input factor in modern agricultural production. In this context, exploring the impact of digital rural construction on agricultural carbon emission intensity can offer new insights into agricultural carbon reduction and assess the role of digital rural strategies in agricultural development. The Internet can facilitate land circulation among farmers and help them adopt agricultural productive services, thereby improving agricultural green total factor productivity (Liu et al., 2022). Digital inclusive finance can optimize resource allocation and reduce agricultural carbon emissions (Hong et al., 2024; Liu et al., 2024). The higher the level of digital finance development, the stronger its role in financial agglomeration and reducing agricultural carbon emissions (Li, 2023; Zhao et al., 2023). Digitalization can lower carbon intensity by enhancing agricultural technology, human capital levels, and urbanization rates, with regional variations (Wang et al., 2024). The relationship between digital agriculture growth and agricultural green total factor productivity exhibits an inverted U-shaped curve (Zhou et al., 2023).
As a predominantly agricultural country, China serves as a typical representative of global digital rural construction (Zhang et al., 2023). With the promotion of relevant national policies, several critical questions arise: How does the construction of digital rural areas affect the intensity of agricultural carbon emissions? Is there heterogeneity in the effects between different regions? What are the intermediate transmission mechanisms? What factors can regulate the carbon emission reduction effect of digital rural construction on agriculture? Clarifying these issues is essential for evaluating the impacts of rural digital construction, seizing the opportunities it presents, and exploring new strategies for agricultural carbon reduction.
Previous studies on agricultural carbon emissions mainly focused on the measurement of carbon emissions and the decomposition of influencing factors. Compared with previous studies, this paper makes several contributions. First, it innovates in research by exploring the impact of digital rural construction on agricultural carbon emission intensity, aligning with the “dual carbon” strategy, “digital countryside” strategy, thus providing new insights into reducing global agricultural carbon emissions,The construction of digital countryside brings new opportunities for agricultural carbon emission reduction. Second, it innovates in research content by constructing the index system, calculating the levels of digital rural construction and agricultural carbon emission intensity through an index system and clarifying the logical mechanisms between these systems using a combination of literature review and relevant theories. The study empirically analyzes the impact of digital rural construction on agricultural carbon emission intensity. It examines the intermediary effect of rural human capital, the regulatory implications of financial support for agriculture. This is conducive to understanding the logical mechanism behind the construction of digital rural construction to reduce agricultural carbon emission and the direction of policy regulation in various countries. The research provides suggestions for leveraging digital rural construction to achieve low-carbon agricultural development so as to promote the achievement of global carbon reduction targets.
The rest of chapters are arranged as follows: Section 2 offers literature review and research hypotheses. Section 3 introduces the methods, variable selection and description and data source. The results of the study are presented in the Section 4. Section 5 presents the discussion and several policy recommendations. The last section summarizes the conclusions.
2 LITERATURE REVIEW AND RESEARCH HYPOTHESES
2.1 Concept of digital rural construction and index system construction
Foreign scholars have explored the concept of the digital countryside primarily from the perspectives of digital agriculture or technology (Rotz et al., 2019; Engås et al., 2023). In 2019, China issued the “Digital Rural Development Strategy Outline”, providing a specific definition: digital rural construction refers to the application of networking, informatization, and digitization in agricultural and rural development, aiming to promote the modernization and transformation of agriculture and rural areas. There is yet to be a unified standard for evaluating digital rural construction. The calculation method is mainly based on the comprehensive evaluation model using the entropy method. Indicators typically involve the construction of digital rural information infrastructure, digital rural financial infrastructure, and digital rural service platforms (Ping et al., 2024; Hao and Tan, 2022). Some approaches replace the level of digital rural construction with a single indicator, such as the county-level digital rural index (Linghui and Yongxin, 2022).
2.2 The impact mechanism of digital rural construction on agricultural carbon emission intensity
2.2.1 Direct impact mechanism of digital rural construction on agricultural carbon emission intensity
With the implementation of the “Broadband China” and “Digital Rural” strategies, digital technology has become a significant input factor in agricultural production in the new era. Based on the theory of the digital economy, the construction of a digital rural construction can leverage the substitution and integration effects of the digital economy to alleviate the mismatch of agricultural resource factors and improve agriculture’s total green factor productivity (Honghai and Xinmin, 2023). Digital rural construction can reduce farmers’ transaction costs and alleviate market information asymmetry, effectively lowering agricultural production costs and environmental pollution (Rolandi et al., 2021). This construction has accelerated the widespread dissemination of advanced technologies in rural areas (Popescu et al., 2020), and technological innovation is a crucial measure to promote agricultural carbon reduction. It facilitates the recombination and efficient allocation of various production factors, thereby improving production efficiency (Acemoglu and Restrepo, 2018). Due to specific differences in resource endowments among different regions, the impact of digital rural construction on agricultural carbon emission intensity varies across areas.
Hypothesis 1:. Digital rural construction is beneficial for reducing agricultural carbon emission intensity.
Hypothesis 2:. The impact of digital rural construction on agricultural carbon emission intensity has regional differences.
2.2.2 The impact of digital rural construction on agricultural carbon emission intensity through rural human capital
The government can disseminate information on agricultural low-carbon production technologies to farmers through rural digital platforms. Farmers can utilize the Internet and social media to access high-quality educational resources, enabling them to acquire advanced green production technology quickly to enhance their labor skills, knowledge level, and environmental awareness. This can influence rural labor behavior, encouraging farmers to adopt green production practices beneficial for agricultural carbon emission reduction (Ma et al., 2022). The construction of digital rural areas can overcome the limitations of traditional rural areas in terms of talent, resources, time, and space, thereby improving resource allocation efficiency, promoting the enhancement of green total factor productivity in agriculture, and exerting a substitution effect on the rural labor force, alleviating issues related to insufficient rural labor. Digital technology, as a fundamental driver in digital rural area construction, can catalyze changes in agricultural workers’ skills and other elements, forming digital agrarian productivity (Junge and Qinmei, 2023). In promoting digital rural construction, digital technology can lower the cost of farmers’ access to market information (Mary George et al., 2016; Song et al., 2020), enhance human capital by focusing on farmers’ digital literacy, reinforce environmental awareness, and encourage green production practices (Aldieri et al., 2019). The proliferation of rural digitization has paved new pathways for developing low-carbon agriculture.
Hypothesis 3:. The construction of digital agriculture can reduce the intensity of agricultural carbon emissions by promoting the level of rural human capital.
2.2.3 The regulatory of financial support for agriculture in the impact of digital rural construction on agricultural carbon emission intensity
Currently, agricultural management entities in China predominantly consist of small-scale operations, and the construction of digital rural areas constitutes projects with significant externalities and essential public welfare attributes. It is a comprehensive undertaking involving various components, such as network infrastructure construction and the enhancement of rural human capital, which necessitate financial backing. However, farmers typically need more financial resources to undertake such endeavors. The level of economic development and the availability of financial support are critical factors influencing the effectiveness of digital rural construction (Xing et al., 2023). Moreover, financial support for agriculture can facilitate the aggregation of information, technology, and talent, thereby aiding in the high-level development of digital rural areas (Chunlin et al., 2024).
Hypothesis 4:. financial support for agriculture can positively influence the impact of digital rural construction on agricultural carbon emission intensity. Based on the above theoretical analysis, the theoretical framework diagram of the impact of digital rural construction on agricultural carbon emission intensity was constructed, as shown in Figure 1.
[image: Flowchart illustrating the influences on agricultural carbon emission intensity. Financial support for agriculture has a regulatory effect on digital rural construction, which directly impacts agricultural carbon emission intensity. Digital rural construction also has an intermediary effect through rural human capital on agricultural carbon emission intensity.]FIGURE 1 | Theoretical framework diagram.
3 METHODS
3.1 Model setting
3.1.1 Entropy method
AHP and Delphi methods are commonly employed to determine indicator weights, yet they entail significant subjectivity. Therefore, the entropy method is utilized to ascertain the weights of each indicator, enhancing the scientific validity of the evaluation results, which boast high credibility and accuracy. The specific application methods of the entropy method can be found in some literature (Chen and Zhang, 2023).
	①Dimensionless treatment of indicatorsconverting the indicator values of each indicator to 0–1, which can avoid the impact of different indicator dimensions.

[image: Formula for positive indexes: \( X'_{ij} = \frac{X_{ij} - X_{\text{jmin}}}{X'_{\text{jmax}} - X_{\text{jmin}}} \).]
[image: Formula for negative indexes: \( X'_{ij} = \frac{X'_{jmax} - X_{ij}}{X'_{jmax} - X'_{jmin}} \).]
	②Standardized processing of raw indicators

The dimensionless processed indicators are standardized and translated to obtain the standardized indicator values:
[image: Mathematical equation: \(X_{ij}^{new} = 0.99 \times X_{ij}^{old} + 0.01\).]

	③Calculate the proportion of indicator value

[image: Mathematical formula representing P_tij equals X_tij^n divided by the double summation of X_tij^n over t and i.]

	④Calculate the entropy value of the indicator

[image: Mathematical formula for entropy, \( S_j = -\ln(kn)^{-1} \sum_t \sum_i P_{ti} \ln(P_{ti}) \).]

	⑤Calculate the differentiation coefficient of the indicator

[image: Equation depicting the relationship \( G_j = 1 - S_j \), where \( G_j \) is equal to 1 minus \( S_j \).]

	⑥Calculate the weight of the indicator

[image: Mathematical equation showing \( W_j = \frac{G_j}{\sum_{j} G_j} \), where \( W_j \) is a weight, \( G_j \) is a specific value, and \(\sum_{j} G_j\) is the sum over index \( j \).]

	⑦Calculate the comprehensive evaluation value in each province

[image: Mathematical expression showing \( H_i = \sum_{j} (W_j \times X_{ij}^{in}) \).]
3.1.2 Carbon emission coefficient method
The carbon emission measurement method based on IPCC (Intergovernmental Panel on Climate Change) carbon emission coefficient is the common method to estimate carbon emission at present with the advantages of simple calculation process, easy popularization and less data demand. In china there are six primary sources of agricultural carbon emissions (Li et al., 2011), including pesticides, chemical fertilizers, agricultural fuel, agricultural plastic film, agricultural sowing areas, and agricultural irrigation areas. The corresponding carbon emission coefficients are as follows (Li et al., 2011; West and Marland, 2002; Zhi and Gao, 2009; Wu et al., 2007; Dubey and Lal, 2009): 4.9341 kg/kg,0.8956 kg/kg, 0.5927 kg/kg, 5.180 kg/kg, 312.60 kg/km2, 25 kg/hm2. The total agricultural carbon emissions are calculated as follows:
[image: Equation showing "ac" equals the summation of "a sub i" equals the summation of "T" multiplied by "delta sub b," contained within parentheses labeled with a number one.]
Where ac represents the total agricultural carbon emissions, aci represents the carbon emissions of various carbon sources, Ti and δi respectively represent the actual consumption of multiple carbon sources and their corresponding carbon emission coefficients.
3.1.3 Benchmark regression model
To test the impact of digital rural construction on agricultural carbon emission intensity, the benchmark regression model constructed is as follows:
[image: Mathematical equation representing a regression model: intensity subscript it equals a subscript 0 plus a subscript 1 times digicountry subscript it plus a subscript 2 times controls subscript it plus mu subscript i plus lambda subscript t plus epsilon subscript it. Equation 2.]
Where acintensityit is the agricultural carbon emission intensity of Province i in year t, digcountyit is the digital rural construction level of Province i in year t, and controls is a series of control variables. μi and λt refer to the fixed province effect and time effect, respectively, and εit refers to the random disturbance term.
3.1.4 Intermediary effect model
Utilizing the stepwise regression method (Wen and Ye, 2014) for testing, the model is constructed as follows:
[image: Equation for intensity: \( \text{intensity}_{it} = a_0 + a_1 \, cdigcounty_{it} + a_2 \, controls_{it} + \mu_i + \Lambda_t + \epsilon_{it} \) labeled as equation (3).]
[image: Equation for inhuman outcomes: inhuman\(_{it}\) equals \(\beta_0\) plus \(a \times digcounty_i\) plus \(b \times controls_{it}\) plus \(\mu_i\) plus \(\lambda_t\) plus \(\epsilon_{it}\), labeled as equation (4).]
[image: Equation showing "aciintensity sub it = c0 + c1 digcounty sub it + blnhuman sub it + c3 controls sub it + mu sub i + lambda sub t + epsilon sub it".]
Where rural human capital is the intermediary variable, c is the total effect coefficient of digital rural construction affecting agricultural carbon emission intensity; a is the effect of the core explanatory variable of digital rural construction on the intermediary variable of rural human capital; c' is the direct effect of digital rural construction on agricultural carbon emission intensity after controlling the influence of rural human capital; b is the indirect effect of the intermediary variable rural human capital on agricultural carbon emission intensity after controlling the impact of the core explanatory variable digital rural construction.
3.1.5 Regulatory effect model
To further analyze the regulatory effect of financial support for agriculture on the impact of digital rural construction on agricultural carbon emission intensity, the regulatory effect model is developed as follows:
[image: Equation labeled as six, showing a model for accident intensity. It includes variables for county digitalization, financial support, their interaction, and control factors with coefficients m0 to m4, plus error term and constants.]
3.2 Variable selection and description

	(1) Explained Variable. The explained variable in this paper is agricultural carbon emission intensity (variable: acintensity). Agricultural carbon emission is calculated by carbon emission coefficient method (see Equation 1). Agricultural carbon emission intensity is the total agricultural carbon emission ratio to total agricultural output value (Xueqiang et al., 2023).
	(2) Explanatory Variable: The primary explanatory variable in this study is digital rural construction (variable:digcounty). As the establishment of “Taobao Villages” has been prevalent in numerous provinces for several years, it is not considered in this paper. The construction of digital rural information infrastructure primarily indicates the transformation of information dissemination and the proliferation of modern information technology in rural areas. Financial infrastructure mainly represents the digital economic infrastructure. Establishing a digital service platform predominantly reflects the state of digital logistics. The specific index system is outlined in Table 1.
	(3) Intermediary Variables: The intermediary variable in this paper is rural human capital (variable: lnhuman), with per capita years of education in rural areas chosen to represent the development level of rural human capital in each province.
	(4) Regulatory Variables: The regulatory variable in this paper is financial support for agriculture (variable:financialsupport), measured by the proportion of local financial expenditures on agriculture, forestry, and water affairs, local general budget expenditures.
	(5) Control Variables: To account for the influence of other factors on agricultural carbon emission intensity and avoid interference, the following control variables are selected:Urbanization (variable:urbanization): Measured by the proportion of the urban population in different regions at the end of the year. Disaster rate (variable:disasterrate): Measured by the proportion of the affected area as a percentage of the planted crop area. Technological innovation development (variable:lntechnology): Measured by the number of patents granted. Agricultural industry structure (variable:agrstructure): Reflects the development of various industries in the region, measured by the proportion of the primary industry in the regional economy. Agricultural mechanization strength (variable:lnmachstrength): Measured by dividing the total power of agricultural machinery by the cultivated land area. Intensity of science and technology expenditure (variable:tcf): Measured by the proportion of science and technology expenditure to local general public budget expenditure.

TABLE 1 | Index system of digital rural countryside.
[image: Table displaying primary and secondary indicators with units and attributes. Primary indicators include digital rural information infrastructure, financial infrastructure, and digital service platform. Secondary indicators are rural broadband access users, average mobile phone ownership, digital inclusive finance index, and rural delivery route length. Units are ten thousand households, number, and kilometer, with all attributes marked as positive.]3.3 Data source and descriptive analysis
The research sample comprises 29 provinces in China. Due to a significant number of missing values for specific indicators of digital countryside in Xizang and Shanghai, these provinces are temporarily excluded from the calculation to ensure the accuracy of the research. The study period spans from 2011 to 2022. Data sources include the China Statistical Yearbook, China Rural Statistical Yearbook, and the Peking University Digital Financial Inclusion Index. For individual missing data, the interpolation method is employed for completion. The statistical characteristics of essential variables are presented in Table 2.
TABLE 2 | Descriptive statistical results.
[image: A table categorizing variables with columns for classification, variable name, number, mean, standard error, maximum, and minimum values. Categories include explained, explanatory, mediating, regulatory, and controls. Each variable, like "acintensity" and "tcf," shows consistent data with 348 numbers. Mean values range from 0.021 to 10.259, standard errors from 0.014 to 4.960, maxima from 0.068 to 26.100, and minima from 0.004 to 6.219.]A scatter plot and fitting line illustrating the relationship between digital rural construction and agricultural carbon emission intensity were generated using the sample data, as depicted in Figure 2. It is evident that as the level of digital rural construction increases, agricultural carbon emission intensity decreases, indicating a negative correlation between the two variables. This preliminary observation suggests that digital rural construction may reduce agricultural carbon emission intensity, aligning with the theoretical derivation presented earlier in this paper. Further analysis will involve the inclusion of control variables and the adoption of multiple models for verification.
[image: Scatter plot showing the relationship between variables labeled as "disparity" on the x-axis and "generosity" on the y-axis. Data points cluster around a negatively sloped fitted line, indicating an inverse relationship. Each dot represents an observation. The legend includes "ACAtreatby" and "Fitted values".]FIGURE 2 | Scatter plot and fitting line of digital rural construction and agricultural carbon emission intensity.
4 RESULTS
4.1 Baseline regression results
Prior to conducting the baseline regression, the variance inflation factor (vif) was utilized to test for collinearity among variables. The testing revealed that the minimum vif value for each variable was 1.43, the maximum was 4.06, and the average was 2.71,which is significantly less than 10. Therefore, there was no collinearity issue among the variables. Table 3 presents the benchmark regression results of “Digital rural construction-agricultural carbon emission intensity”. The calculation results are obtained by referring to Equation 2. Columns (1) and (2) display the outcomes of the fixed effects model, indicating that digital rural construction significantly reduces agricultural carbon emission intensity. Without control variables, the coefficient of digital rural construction is −0.090, exhibiting a substantial correlation at the 1% significance level. Even after incorporating a series of control variables, the coefficient remains −0.087, still significantly correlated at the 1% level. This suggests that digital rural construction exerts a significant carbon reduction effect on agriculture. Columns (3) and (4) present the results of the random effects model. The Hausman test indicates that chi2 (6) = 25.85, Prob > chi2 = 0.0002, thereby rejecting the null hypothesis and affirming that the fixed effects model is more suitable. The baseline regression results unequivocally demonstrate that digital rural construction significantly diminishes the intensity of agricultural carbon emissions, thereby confirming hypothesis 1.
TABLE 3 | Results of benchmark regression.
[image: Table displaying regression results for various variables in four models labeled (1) Fe, (2) Fe, (3) Re, and (4) Re. Variables include digcounty, urbanization, disasterrate, lntechnology, lnmachstrength, agrstructure, tcf, and _cons, with associated coefficients and significance levels. Significant values are marked with asterisks: one asterisk for p < 0.1, two for p < 0.05, and three for p < 0.01. Additional statistics include the number of observations (N = 348 for each model), R-squared values, adjusted R-squared values, and F-statistics.]4.2 Robustness and endogeneity test results
4.2.1 Robustness test results

	(1) Replace Core Explanatory Variables. Carbon emissions from food production are a significant component of agricultural carbon emissions. To test robustness, the intensity of agricultural carbon emissions is replaced with the carbon emission intensity from food production, and the baseline regression is performed again. The results are presented in Table 4 (1).
	(2) Reduce Sample Size. Municipalities like Beijing, Chongqing, and Tianjin differ markedly from other provinces regarding government resource support and agricultural development. Therefore, these municipalities are excluded from the sample, and the regression analysis is conducted again with the remaining samples. The results, shown in Table 4 (2), indicate that the estimated coefficient of digital rural construction is significantly negative at the 5% level.
	(3) Indentation of Sample Variables. To avoid the interference of extreme values on regression results, all variables are winsorized at the 1% level. The suffix _w is used to denote variables after winsorization. The results are shown in Table 4. After this data adjustment, the estimated coefficient of digital rural construction remains significantly negative at the 5% level, further demonstrating the robustness of the baseline regression results.

TABLE 4 | Results of robustness test.
[image: Regression results table with three models: Fcintensity, Acintensity, and acintensity_w. Coefficients for digcounty are -0.355 (Model 1) and -0.074 (Model 2), both significant; for digcounty_w, it is -0.078 in Model 3, significant. Controls and Year/Province are included in all models. Constant terms and model statistics, such as R-squared and F values, are specified. Significance levels are denoted by asterisks.]The findings from these three robustness tests consistently show a negative and significant coefficient for digital rural construction, affirming the robustness of the baseline regression conclusion: the construction of digital countryside can significantly reduce agricultural carbon emission intensity.
4.2.2 Endogeneity test results
Using the second lag of digital rural construction (L2. digcounty) as an instrumental variable helps avoid endogenous estimation bias caused by two-way causality. The initial phase of digital rural construction creates favorable conditions for subsequent stages, satisfying the relevance requirement. Early-stage digital countryside construction reduces agricultural carbon emission intensity in the current period, meeting the homogeneity requirement. The two-stage least squares method (IV_2SLS) was employed to re-examine the impact of digital rural construction on agricultural carbon emission intensity (see Table 5). In the first-stage regression results, the instrumental variable L2. digcounty is positively correlated with the endogenous variable (discount) at the 1% level, indicating that the chosen instrumental variable is sufficiently associated with the endogenous variable. In the under identification test, the LM value is 112.230, passing the 1% significance test, which confirms the absence of under identification issues. The Cragg-Donald Wald F-value is 4,276.309, exceeding the critical value of 16.38 at the 10% significance level for the Stock-Yogo weak instrumental variable test, indicating no weak instrumental variable issues. The Hansen J statistic indicates no over identification problem, affirming the appropriateness of the selected instrumental variable. After addressing the endogeneity problem using the instrumental variable method, digital rural construction continues to show a significant negative correlation with agricultural carbon emission intensity at the 1% level, confirming the robustness of the result.
TABLE 5 | Regression results of instrumental variables.
[image: A table comparing two models labeled "1st" and "2nd" for variables "Digcounty" and "Acintensity." The first model shows coefficients for L2.Digcounty (0.924) with a significance level of p < 0.01. The second model shows coefficients for Acintensity (-0.135) with similar significance. Both models include controls and year/province dummies. The sample size is 290 for each. Additional statistics include R-squared values, F-statistics, underidentification, weak identification tests, and a Hansen J statistic. Significance levels are indicated by stars.]4.3 Heterogeneity analysis results
4.3.1 Heterogeneity analysis of agricultural functional attributes
Divide the country into two categories based on whether it is a major grain-producing area. The regression results are shown in Table 6. The regression coefficients for digital rural construction are negative and pass the significance tests at 1% and 5%. However, the degree of influence varies across different regions. Digital rural construction significantly inhibits agricultural carbon emission intensity in major grain-producing areas. This effect is due to the country’s favorable resource allocation towards these grain-producing areas. On the one hand, the major grain-producing areas bear the heavy responsibility of maintaining national food security, the state attaches great importance to the development of major grain-producing areas, and has introduced a series of targeted policies to promote the construction of digital countryside, such as providing a number of financial funds for the construction of digital countryside in major grain-producing areas for infrastructure construction, digital technology research and development and application promotion. The main grain-producing areas have relatively good network coverage and perfect infrastructure, which provides the necessary basic conditions for the construction of digital countryside. On the other hand, major grain-producing areas usually have large areas of farmland which facilitate the large-scale application of digital technology in agricultural production. The observed regional differences, attributed to varying resource endowments, confirm hypothesis 2.
TABLE 6 | Results of regional heterogeneity analysis.
[image: A statistical table comparing main grain-producing areas and non grain-producing areas for "Acintensity." Variables include digcounty, controls, year/province, and constant (_cons) with coefficients and t-values. Other data like sample size (N), R-squared, adjusted R-squared, and F-statistic are shown. Statistically significant levels are indicated by asterisks.]4.3.2 The dimensional heterogeneity analysis of digital rural construction
This part analyzes the impact of the sub-dimension of digital rural construction on agricultural carbon emission intensity (see Table 7). Rural broadband access users and the average mobile telephone ownership per 100 rural households significantly reduce agricultural carbon emission intensity, each passing the 1% significance test. The total index of digital inclusive finance within the construction of digital rural finance and the length of rural delivery routes within the construction of digital rural service platforms show no significant effect on carbon emissions. But when the level of digital inclusive finance is above the 0.25 quartile value (lndigfi ≥ 5.106) and the length of rural delivery route is above the 0.75 quartile value (lndelroute ≥ 12.154), the agricultural carbon emission intensity is also significantly reduced, and both pass the significance test of 10%. In other words, with the continuous improvement of digital inclusive finance and the length of rural delivery routes, the effect on agricultural carbon emission reduction will gradually increase, and there is a nonlinear relationship between them. The sub-dimensional construction level is related to the overall level of digital rural construction. The mobile phones and the Internet enables farmers to obtain weather information and information of agricultural materials products earlier, so they can implement scientific and reasonable irrigation and fertilization, and avoid environmental problems caused by excessive use of agricultural materials. The popularization of digital inclusive finance and the construction of express routes require a large amount of investment in the early stage, then the carbon reduction effect will gradually appear in the later stage, so as to achieve the purpose of reducing agricultural carbon emission intensity.
TABLE 7 | Results of dimensional heterogeneity.
[image: A regression table presents results across six models labeled (1) to (6) for the dependent variable "Acintensity." Key variables include "Intel," "Inbroadb," "Indigfi," and "Indelroute," with various coefficients and significance levels marked by asterisks. Controls and time or province effects are included in each model. The number of observations, R-squared, Adjusted R-squared, and F-statistics are reported for each model. Significance levels are denoted by asterisks: *p < 0.1, **p < 0.05, ***p < 0.01.]4.4 Intermediary effect results
The theoretical analysis indicates that digital rural construction can directly reduce agricultural carbon emission intensity and indirectly do so by enhancing the knowledge and skills of laborers, thereby leveraging the “human capital effect”. This paper employs a three-step method to build an intermediary effect model, with the measurement test results shown in Table 8, the calculation results refer to Equations 3–5. The coefficients in columns (1), (2), and (3) are all significantly correlated, suggesting that rural human capital plays a partial mediating role in the carbon reduction effect of digital rural construction on agriculture. The Sobel test was used to verify the robustness of the results of the intermediary effect further. The total utility coefficient of digital rural construction on agricultural carbon emission intensity was −0.087, the effect coefficient of digital rural construction on the intermediary variable rural human capital was 0.113, and the total utility coefficient of rural human capital on agricultural carbon emission intensity was −0.126. These correlations were significant at the 1%, 1%, and 5%, respectively. The direct effect coefficient is −0.073, significantly correlated at 5%, while the indirect effect coefficient is −0.014, accounting for 16.3% of the total effect. The direct effect accounts for 83.7%. The intermediary effect passed both the stepwise test of the three-step method and the Sobel test, demonstrating the robustness of the intermediary effect and confirming hypothesis 3.
TABLE 8 | Results of intermediary effect.
[image: A table shows regression analysis results in three columns labeled (1) Acintensity, (2) Lnhuman, and (3) Acintensity. The table provides coefficients, standard errors, and p-values. Controls for year and province are included. Sobel test results are displayed with coefficients, standard errors, z-values, and p-values. Additional statistics include \( N \) (348), \( R^2 \), Adjusted \( R^2 \), and F-statistics. The proportion of total effect mediated is 0.163, with a direct effect ratio of 0.837. Significance levels are noted: \( p \) < 0.1, \( p \) < 0.05, \( p \) < 0.01.]4.5 Regulatory effect results
Theoretical analysis indicates that financial support for agriculture influences the effect of digital rural construction on agricultural carbon emission intensity. An interaction term between financial support for agriculture and digital rural construction was introduced to test this hypothesis, avoiding collinearity between variables. After decentralizing the data, the variables of financial support for agriculture and digital rural construction were combined to form the interaction term c_digcounty *c_financialsupport. Columns (1) and (2) in Table 9 compare the results before and after introducing the interaction term, the calculation results refer to Equation 6. The coefficients of the main effect of digital rural construction are negative in both cases. After introducing the interaction term, its coefficient is −1.676. The original coefficient of digital rural construction changes from −0.082 to −0.118, showing a more significant effect. This indicates that the negative impact of digital rural construction on agricultural carbon emission intensity is amplified with increased financial support for agriculture, thereby verifying hypothesis 4.
TABLE 9 | Results of regulatory effect.
[image: Statistical table showing regression results for two models under "Acintensity". Variables include "digcounty", "financialsupport", and "c_digcountyc_financialsupport" with coefficients and t-values. Controls and Year/Province are present. Models have sample sizes of 348, with R-squared values of 0.927 and 0.934, Adjusted R-squared of 0.916 and 0.923, and F-values of 3.267 and 5.988. Significance levels are noted with asterisks for p-values less than 0.1, 0.05, and 0.01.]5 DISCUSSION
This study not only elucidated the logical mechanism between digital rural construction and agricultural carbon emission intensity through a literature review and related theories but also comprehensively analyzed the impact path and degree from intermediary effect and regulatory effect. Future development suggestions were proposed to enhance the study’s applicability. The primary regression results indicate that digital rural construction significantly and negatively affects agricultural carbon emission intensity, with regional differences, aligning with previous scholarly findings. Digital rural development can reduce agricultural carbon emissions and improve total factor productivity in agriculture. The higher the level of economic growth, the stronger the carbon emission reduction effect of digital rural construction.
Compared to previous studies, this research has made the following improvements:
	(1) It combines theoretical mechanism analysis with scientific demonstration, verifying digital rural construction’s overall carbon reduction effect and further analyzing its dimensions.
	(2) It emphasizes the critical role of digital rural construction in enhancing rural human capital and underscores the importance of financial support from government.

This study uses China as a case study to analyze the impact of digital rural construction on agricultural carbon emission intensity, providing a valuable reference for other countries aiming for agricultural low-carbon emission reduction. While emphasizing the importance of rural human capital, further analysis is needed on how to promote these aspects in different regions better. Enhancing rural human capital to bolster the role of digital rural construction in reducing agricultural carbon emissions. With the intensification of global climate change, reducing carbon emissions has become a global goal, which requires joint efforts of all countries. Carbon emissions come mainly from human activities and natural processes, such as the burning of fossil fuels (Baoguo et al., 2022), development of industrialization (Zhenshuang et al., 2022), urban land use (Xueqiang et al., 2023) and development of agriculture. About one-fifth of the world’s greenhouse gases come from agriculture according to a report by the United Nations Food and Agriculture Organization. Agriculture must do something active to fight climate change because it is closely related to global sustainable development. Agriculture is an important industry in many countries, especially in developing countries. Digital rural construction can improve agricultural production efficiency by improving the human capital level of farmers, and reduce agricultural carbon emission intensity. Financial support for agriculture played significant positive regulatory effect. Promote the international exchange of China’s digital countryside construction and agricultural carbon emission reduction experience can contribute to the low-carbon development and sustainable development of global agriculture.
Some policy recommendations are proposed according to empirical results:
	(1) Pay more attention to the carbon reduction impact of digital rural construction in agricultural development and accelerate the pace of digital rural construction. Enhancing internet accessibility in rural areas is foundational for the digital rural construction. Cornwall region is the representative of the implementation of the comprehensive strategy of rural digitalization in the United Kingdom, mainly implementing broadband access and digital training to strengthen the construction of digital countryside. The application of digital technology in agriculture can be optimized by the network infrastructure. For example, in the United States, farmers can accurately fertilize, irrigate according to precise data such as soil conditions and crop growth, avoiding the waste of resources and reducing carbon emissions in agricultural production.
	(2) Focus on enhancing rural human capital, recognizing its long-term significance in agricultural productivity. Empowering rural labor with skills enhances productivity. Given the pivotal role of the “human capital effect” in carbon reduction, efforts should promote low-carbon concepts among small and medium-sized farmers. Initiatives like “technology to the countryside” should encourage farmers to adopt new technologies and agricultural methods, ensuring a smooth transmission path for the human capital effect of the digital countryside.
	(3) Increase central financial support for digital agriculture development. Such support plays a vital role in regulating digital countryside construction. Recognizing the infancy of digital agriculture in certain areas, especially those with weak financial resources and infrastructure, the central government should provide targeted subsidies and investments to bolster development. Securing financial investment is paramount for the ambitious project of digital rural construction.
	(4) Formulating differentiated countermeasures to heterogeneity results. In view of regional heterogeneity, major grain-producing areas should play an exemplary role for other regions. For example, integrate agricultural production data, market information and technical services to provide digital services for farmers. From the sub-dimension of digital rural construction, the mobile phones and the Internet played a significant role in promoting agricultural carbon emission reduction which need supportting. But the governments also need to actively promote digital financial inclusion in rural areas. Digital inclusive finance is the product of the combination of digital technology and inclusive finance, which has an important impact on farmers’ employment and production.

6 CONCLUSION
Drawing on provincial panel data from 2011 to 2022, this study employed the entropy and carbon emission factor methods to gauge China’s digital rural construction and agricultural carbon emission intensity. Through panel fixed effect, intermediary effect, regulatory effect, the study explored the impact of digital rural construction on agricultural carbon emission intensity, yielding the following key conclusions:
(1) Digital rural construction significantly reduces agricultural carbon emission intensity, indicating its potential to agricultural carbon emission reduction. This conclusion remains robust even after accounting for endogeneity and robustness testing.
(2) The impact of digital rural construction on agricultural carbon emission intensity varies across regions, with a more pronounced effect observed in major grain-producing areas. Among digital rural construction subdimensions, digital infrastructure construction notably curbs agricultural carbon emissions.
(3) Intermediary effect analysis reveals that digital rural construction indirectly reduces agricultural carbon emissions by elevating rural human capital, harnessing the “human capital effect” to achieve emission reduction. The direct and indirect effects account for 83.7% and 16.3% of the total impact, respectively. Enhanced rural human capital influences planting decisions and behaviors, affecting agricultural carbon emissions. Digital rural construction transcends temporal and spatial constraints, facilitating farmer access to new technologies and bolstering environmental awareness.
	(4) Regulatory effect analysis demonstrates that government financial support for agriculture positively adjusts the impact of digital rural construction, with varying effects across regions based on different levels of financial support.
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Strong judicial support is an important guarantee for a country’s environment to achieve good governance. This paper utilizes a multi-period difference-in-differences approach to examine the impact of environmental justice reform, represented by environmental tribunals, on corporate green innovation and its underlying mechanisms. It is found that environmental courts can effectively promote green innovation in enterprises, and their effect on “substantive green innovation” is more significant than that on “strategic green innovation”. The environmental court is divided into the environmental resources trial court and the environmental resources panel court, and the trial court has a more pronounced effect on promoting corporate green innovation than the environmental resources panel court. The establishment of environmental protection courts can improve the efficiency of regional environmental justice, enhance the government’s awareness of environmental protection, and increase the cost of illegal activities by enterprises, thereby promoting corporate green innovation. The promotion effect of environmental courts on corporate green innovation is more significant in regions with non-state-owned enterprises, better legal environments, and lower levels of industry competition. The main findings still hold after considering robustness tests, such as the endogeneity of environmental court establishment. The study suggests that environmental judicial specialization has a positive impact on corporate green innovation, and that the reform of environmental judicial specialization should be continuously deepened to provide useful insights for the construction of the ecological rule of law and the green transformation of enterprises.
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1 INTRODUCTION
In 2020, China proposed the strategic goals of achieving Carbon Peak by 2030 and Carbon Neutrality by 2060. This demonstrates the government’s efforts to promote the construction of eco-cities and a resource-saving, eco-friendly, and green development system to cope with global climate change. Green technological innovation is considered crucial for achieving Carbon Peak and Carbon Neutrality, as well as for enterprises to coordinate economic development and eco-environmental protection, ultimately accomplishing the sustainability of low-carbon development.
The Chinese government has established several policies and regulations over the decades for the goal of promoting environmental and economically sustainable development. Prior to 2018, China had been adopting a sewage charging system to regulate corporate pollution, tackling the issue of environmental pollution externalities. However, at the macro level, due to the overly uniform charging standards, the adoption of unified charging standards for pollutants of different concentrations has instead stimulated the motives for some enterprises to increase emissions (Zhang et al., 2015). Furthermore, the amount of sewage charges collected is less than the fiscal expenditure on environmental protection, with a poor implementation effect. According to statistics, the national general budget allocated 1.76 trillion yuan for energy conservation and environmental protection expenditures from 2011 to 2015, averaging 352 billion yuan per year. However, during 2003-2015, China generated a total revenue of 2.115 trillion from pollutant discharge fees, averaging 162.7 billion per year, indicating a significant difference in scale (Zhou et al., 2023). At the micro level, during the collection of sewage fees, officials may collect arbitrarily or fail to pay what is due. Since 2018, China has been formally implementing the Environmental Protection Tax Law, which partially alleviated the issues caused by sewage fees. However, in practice, the traditional administrative and legal governance system is relatively inefficient in dealing with complex environmental issues involving water, land, air, and other environmental factors.
In addition, local governments are prone to two extremes in managing pollution. On one hand, they may prioritize protecting local economic development and therefore protect or even condone enterprises in certain highly polluting industries that make significant contributions to the local economy. On the other hand, in some regions, environmental governance has become a mere show project of central environmental supervision due to the incentive mechanism of political promotion. In order to complete environmental tasks, extreme measures are taken, such as directly ordering enterprises to suspend operations, which can negatively impact their normal functioning. The regulatory behavior of local governments regarding the environment not only goes against the central government’s original environmental policy goals but also harms social and public interests. Therefore, China’s environmental pollution governance still lacks a long-term mechanism, and the key to promoting the normalization of pollution governance lies in the construction of the rule of law (Fan and Zhao, 2019). The rule of law is the foundation of environmental pollution governance, effectively ensuring the implementation of environmental protection policies. Enterprises are typically the main source of environmental pollution, and green innovation is a crucial means for them to reconcile the conflicts between production and the environment, thereby promoting sustainable economic development. The transformation of enterprises towards sustainability has become crucial in balancing environmental protection and economic development. Green innovation can achieve sustainability, enhance economic growth potential, reduce carbon emissions, and minimize damage to climate change and biodiversity, making it a key factor in corporate green transformation (Peng et al., 2021; Tan et al., 2024). To address environmental pollution caused by corporate behavior, power abuse and the failure of government to take actions, it is necessary to improve the judicial system. The establishment of environmental courts provides the necessary supervision and regulation of these behaviors, which truly achieves the internalization of enterprise pollution costs.
Promoting green innovation in enterprises has become a major academic focus. Currently, in the context of environmental protection being a consensus, green innovation becomes an important way and a necessary measure in China to build a resource-saving and environmentally friendly society for sustainable development (Yin et al., 2018; Tan et al., 2024). As public environmental awareness improves, enterprises must take on environmental responsibilities while still making profits. Green innovation is seen as a business opportunity by many enterprises. (Huang and Li, 2017; Gao et al., 2024b). However, there is a high degree of substitutability between green and non-green technologies. In the absence of external intervention, most enterprises are unwilling to actively engage in green innovation due to market scale effects and the initial productivity advantage of non-green technologies, leading to increasing levels of environmental pollution. Therefore, achieving green innovation solely through enterprises and the market is challenging (Wang et al., 2022a; Jiang et al., 2023). Accordingly, promoting corporate green transformation requires environmental regulation. Scholars have examined various factors, including environmental regulation (Wakeford et al., 2017; Deng et al., 2021), regulatory intensity (Ziegler and Nogareda, 2009; Luo et al., 2021), government subsidies (Guo et al., 2023), and public opinion (Peng et al., 2021), that exert regulatory pressure on corporate green innovation. Scholars have also examined the relationship between environmental tribunals and environmental governance, including their impact on industrial pollutant emissions (Fan and Zhao, 2019), corporate environmental expenditures (Zhang et al., 2019), and investments (Jinjarak et al., 2021).
Three conclusions can be drawn from the study above. Firstly, environmental regulation inhibits corporate green innovation. It will internalize the external environmental costs of corporate production and operations into private costs, thereby increasing the burden on companies. (Jaffe and Stavins, 1995). Strict adherence to environmental regulations can result in increased operating costs, which may reduce the profit margin of the enterprise. As the total resources of the enterprise are limited, a decrease in profit margin can inevitably lead to a reduction in the enterprise’s R&D investment, hindering its level of innovation and sustainable development. (Yu and Li, 2021). Secondly, environmental regulation can enhance the level of green innovation due to their incentive effect on enterprises. According to the Porter Hypothesis, companies can enhance their production and sales capacity of environmentally friendly products through green innovation, which gives them a competitive advantage in the market. This, in turn, motivates companies to strengthen their research and development efforts, improve their emission reduction technologies, and promote green technological progress (Li et al., 2018; Xie, 2021). Thirdly, the literature suggests a U-shaped relationship between environmental regulation and green innovation. Over time, there is an inflection point between the two (Peuckert, 2014; Li, 2017). As environmental regulation enhances, the impact of environmental regulation on green innovation shifts from an inhibitory to a facilitative effect (Zang and Zhang, 2015).
Specifically, our research differs from previous studies in two key aspects. First, while most earlier studies focus on macro or micro levels, this paper examines the impact of environmental courts on green innovation from a micro-level perspective, specifically at the enterprise level. Second, we further differentiate between trial courts and collegial courts within the environmental court system, investigating their respective impacts on green innovation. Since trial courts and collegial courts handle different cases and impose varying penalties on enterprises, the resulting effects on corporate innovation also differ.
In conclusion, previous literature has primarily focused on analyzing the relationship between environmental regulation and corporate green innovation at the macro and industrial levels in China. However, there still exists a lack of analysis at the micro-level regarding the impact of environmental courts on corporate green innovation. The environmental tribunal serves as a policy experiment to test judicial capabilities. It provides an ideal opportunity to examine the impact of the rule of law construction on corporate green innovation.
This paper has three main contributions. First, most studies focus on the macro level, analyzing the relationship between green regulations and green innovation. Our study examines the influence of local environmental tribunals on corporate green innovation from a micro perspective. The environmental courts are divided into tribunals and collegiate panels to verify their impact on green innovation. This helps to understand its operational mechanism. Second, we examine the role of environmental tribunals in promoting green innovation from three perspectives: local environmental judicial efficiency, government environmental awareness, and corporate illegal costs. This analysis provides a deeper understanding of the impact of environmental tribunals on corporate innovation. Finally, we study the heterogeneity of the impact of environmental tribunals on corporate green innovation from four perspectives: enterprise nature, geographical location, level of the rule of law, and industry competition. Using data from 341 cities in China from 2007-2021, this paper matches the green innovation of local enterprises and uses a multi-period DID model to evaluate the impact of environmental tribunals on corporate green innovation. Our study provides a new perspective on how Chinese enterprises can undergo a green transformation, which can serve as a reference for other countries to achieve green and sustainable development.
The remainder of the paper is set out as follows. Section 2 introduces the institutional background and development overview of the environmental tribunal. Section 3 presents theoretical analysis and research hypotheses. Section 4 introduces the model and data. Section 5 demonstrates the benchmark results of empirical evidence of environmental tribunals on corporate green innovation. Section 6 examines how environmental tribunals impact corporate green innovation. Section 7 offers additional analysis. The final section then draws some conclusions and recommendations from this study.
2 INSTITUTIONAL BACKGROUND AND DEVELOPMENT
As environmental pollution has become a focus of concern for both the government and the public, severe pollution issues have led to a significant increase in legal disputes. According to the China Environmental Justice Development Report (2022), in 2022, courts nationwide accepted a total of 273,177 first-instance environmental resource cases, representing a year-on-year increase of 12.89%. Since 2005, the number of environmental disputes in China has been increasing at an average annual rate of 30%, indicating a time of explosive growth (Wu et al., 2020). Prior to the establishment of environmental courts, China’s environmental judiciary faced two main challenges. Firstly, environmental cases typically require specialized knowledge, which ordinary personnel often lack, making it difficult to render effective judgments. Secondly, environmental pollution cases involve three categories of law: administrative, civil, and criminal. Each category has a wide range of implications and is generally complex. Separate trials of each category of cases would greatly reduce the efficiency of the judicial process. Thus, establishing environmental court can effectively solve these problems. The environmental court has professional talent and can adopt a series of alternative judicial systems to achieve judicial innovation and improve the efficiency of environmental justice. Therefore, the establishment of environmental courts is a natural step, with emerging environmental disputes around the country, and as a long-term mechanism to leverage specialized adjudication and enforcement capabilities.
The establishment of environmental courts has a long history. It is considered an effective way to improve judicial efficiency, reduce environmental pollution, and carbon emissions (Walters and Westerhuis, 2013). Since the 1950s, some countries have begun to explore the system of environmental courts by setting up independent environmental resource adjudicative authorities specifically for environmental pollution cases (Almer and Goeschl, 2010). In 1980, New South Wales, Australia established the world’s first specialized environmental high court, which was able to promptly handle judicial disputes and improve environmental governance efficiency (McClellan, 2009). Subsequently, countries such as Sweden, the United States, and New Zealand also started to establish environmental courts.
In the face of increasing pressure on carbon emissions and environmental governance, China has also begun to attempt to establish environmental courts. In December 2005, the State Council issued the Decision of the State Council on Implementing the Scientific Outlook on Development and Strengthening Environmental Protection. In the context of China’s institutional development, this was the first time that environmental public interest litigation was mentioned. However, this policy only outlines the basic principles and objectives of environmental protection without being legally implemented, thus having a limited practical impact. In November 2007, the first environmental court was established in Qingzhen City, Guizhou Province, China. In January 2013, China implemented the Civil Procedure Law of the People’s Republic of China, which established the first system of environmental public interest litigation at the legal level. In July 2014, the Environmental Resources Trail Courts was officially established in the Supreme People’s Court. Accordingly, several regions have established institutions for environmental resources litigation, marking the official launch of the specialization of environmental judiciary in China. In January 2015, the promulgation of the new Environmental Protection Law further perfected the legal provisions regarding environmental public interest litigation. In July 2015, the Standing Committee of the National People’s Congress (NPCSC) officially passed the Decision on Authorizing the Supreme People’s Procuratorate to Conduct Pilot Projects of Public Interest Litigation in Certain Regions. This decision made prosecutorial authorities the main body of public interest litigation and required the pilot work to be carried out in some cities in 13 provinces. In June 2017, the NPCSC amended the Civil Procedure Law and the Administrative Procedure Law, formally implementing the public interest litigation system nationwide. This system includes administrative public interest litigation and environmental civil public interest litigation, with the parties involved being prosecutorial authorities, social organizations, and individuals.
The data released by the Supreme People’s Court of China shows that, as of the end of 2021, a total of 2,149 specialized environmental resource adjudicative organs and judicature organizations have been established nationwide. It includes 649 environmental resource tribunals (including the Supreme People’s Court, 29 high people’s courts, divisions of the Xinjiang Production and Construction Corps, 158 intermediate people’s courts, and 460 grassroots people’s courts), 215 people’s courts, and 1,285 trail teams (collegial panels). The environmental court uses a “Three-in-one” trial model, where administrative, criminal, and civil cases related to environmental resources are all under the jurisdiction of the environmental court for the trial of environmental public interest litigation events. In 2007, during the pollution incident in Hongfeng Lake in Guiyang, the environmental courts introduced experts to assist enterprises in identifying problems and formulating rectification plans, urging them to make improvements. The environmental courts exercise exclusive jurisdiction over environmental cases within designated areas, which has to some extent addressed the deficiencies of environmental justice in pollution control. After a decade of development, the system for environmental public interest litigation has been continuously improved. It has been formed into an ecological environmental protection regulatory system that includes civil, administrative, and criminal public interest litigation, which safeguards ecological safety, social public interests and people’s health. Figure 1 displays a steady rise in the number of environmental protection courts in China, with the most significant increase occurring in 2016. This growth can be attributed to the NPCSC’s requirement for pilot projects to be carried out in some cities in 13 provinces in 2015, which led to the highest growth rate of 2016.
[image: Bar and line graph showing the number of environmental courts established each year from 2007 to 2022, with a peak of 34 in 2016. The total number of courts consistently increased, reaching 130 in 2022.]FIGURE 1 | The number of environmental courts.
3 THEORETICAL ANALYSIS AND RESEARCH HYPOTHESES
3.1 Theoretical analysis
Porter’s Hypothesis proposes that properly designed environmental regulations can trigger corporate innovation (Porter and Linde, 1995), leading to increased corporate productivity. Early studies on Porter’s Hypothesis primarily aimed to identify environmental regulatory indicators and assess the effectiveness of environmental regulation enforcement (Carrion-Flóres and Innes, 2010). With the introduction of Emissions Trading and Cap and Trade systems in Europe, the United States, and China, researchers have begun to focus on the impact of pollution trading rights and environmental regulations (Calel and Dechezleprêtre, 2016). Environmental pollution has negative spillover effects, while green innovation has positive spillover effects, creating a positive externality. Environmental courts can address this externality and remedy market failure by resolving the contradiction between public and private interests, increasing social welfare, and providing incentives for green innovation. Thus, the environmental courts, being a special system within the Chinese judicial system, have a significant impact on green innovation. 
The Pegu’s tax principle suggests that internalization degree of costs in environmental courts has significantly increased compared to original environmental policies (Wang Y. et al., 2022). After the establishment of environmental courts, firms are faced with two choices: maintain their original levels of pollution emissions, which may result in public prosecution, high litigation costs, and reputational damage, or increase investment in environmental protection to avoid lawsuits, promote green transformation, and produce cleaner products. Enterprises are the main subjects of market activities, providing a variety of values while also generating externalities for the outside world. Negative externalities are particularly severe for heavily polluting enterprises. The establishment of environmental courts can help enterprises transform their initial ideas and focus more on the long-term benefits of green transformation. At the same time, the enforcement of environmental court resolutions is stronger and more strictly regulated. Enterprises are increasingly recognizing the importance of environmental protection and pollution control due to additional costs arising from litigation and reputation. Improving corporate environmental performance and enhancing environmental awareness are some of the benefits (Liu and Xiao, 2022). The establishment of environmental courts has led to increased costs of non-compliance for enterprises. When the costs of violating the law exceed the costs of pollution control incurred for actively improving the environment, firms are more likely to invest in environmental protection (Tian et al., 2022).
3.2 Research hypotheses
Once an environmental court is established, it will be difficult to abolish. Enterprises’ actions to reduce emissions and control pollution will consider both short-term benefits and long-term costs. Green innovation is a crucial factor in long-term pollution control, and the use of green technology can reduce pollutant emissions. By improving the green production process or technology, it is possible to reduce the generation of pollutants at the source, achieve long-term emission reduction, enhance sustainable development capabilities, and improve the competitiveness of enterprises (Yu et al., 2021). According to the Porter Hypothesis, environmental courts can motivate firms to engage in green innovation, thus establishing a competitive advantage (Antonioli et al., 2013). In other words, if there is a reasonable environmental regulation system, firms will be compelled to innovate towards green practices and use this as a form of environmental management decision. In the long term, the benefits of green innovation outweigh the costs of governance incurred by firms in pollution control. Therefore, we proposed the first hypothesis:
Hypothesis 1. The establishment of environmental courts will promote corporate green innovation.
Establishing environmental courts in regions can reduce local protectionism and indirectly encourage firms to increase R&D expenditure for green innovation by improving judicial efficiency. When local protectionism is severe, unprotected firms are less likely to pursue green innovation as their green patents may be infringed upon, and they may face a lower success rate in court (Liu et al., 2022). An independent environmental court system can strengthen the protection of intellectual property rights and ensure a fair competitive environment, thereby stimulating green innovation. By setting up an environmental court specialized in environmental resources, on the one hand, the court can train judges with professional backgrounds to be in charge of environmental cases, improving the accuracy of evidence collection in cases. For instance, utilizing a “Judge plus expert” model can decrease the likelihood of wrongful trials and miscarriages of justice, thereby enhancing the efficiency of judicial processing of environmental cases. On the other hand, a specialized judicial organ with centralized jurisdiction over environmental cases can adopt a special judicial system and make a series of adjustments for specific cases within the legal framework (Edwards, 2013). In practice, environmental courts have implemented a centralized trial mode that hears criminal, civil, and administrative cases related to environmental resources. This ‘Three in one’ trial model promotes close cooperation and a collaborative trial mechanism, unifying the judicial standards and criteria for environmental cases. It effectively standardizes the judicial procedures of environmental cases. By focusing on the trail of environmental pollution, the establishment of environmental courts ensures professionalism and enforcement, improving the efficiency and quality of handling environmental disputes and enhancing law enforcement capacity. Therefore, hypothesis 2 is proposed:
Hypothesis 2. The environmental courts enhance the efficiency of regional environmental justice, imposing the “hard constraints” on enterprises, and encouraging them to pursue green innovation.
The concern of local government for environmental governance will also impact corporate behaviors in pollution control. With the establishment of environmental courts in the region, the local government’s awareness of environmental protection is likely to increase (Jin and Chen, 2022). Environmental courts can improve the government’s awareness of environmental protection through two channels. Firstly, the establishment of environmental courts in a region indicates the central government’s emphasis on local environmental protection. This sets higher requirements for the environmental protection functions of the regional government, making them pay more attention to environmental protection. Secondly, enterprise pollution can directly or indirectly impact the environment that the public depends on for survival. A healthy environment has always been a fundamental demand of society. The level of public concern for environmental protection is reflected in public opinion and media coverage to urge the government to prioritize environmental protection. After the establishment of environmental courts in regions, socially conscious individuals are highly concerned about issues of environmental pollution generated by enterprises, whether for the protection of their own interests or out of a concern for the overall quality of the social environment beyond personal benefits. They use a variety of channels to pressure the local governments to prioritize environmental protection. The government exerts pressure on relevant firms through effective channels, supervising and punishing firms that cause environmental pollution, thereby transferring the pressure of environmental governance to local firms. Improving managers’ green cognition and the intrinsic motivation of enterprises to voluntarily undertake environmental and social responsibilities (Gao et al., 2024a). When firms face stronger government regulation, they will be more inclined towards green transformation (Huang and Zhang, 2018), which is beneficial for enhancing the level of green innovation in the long run. Therefore, we propose hypothesis 3:
Hypothesis 3. Environmental courts enhance environmental awareness of the government, adding a “soft constraint” to enterprises, and encouraging them to pursue green innovation.
The establishment of environmental courts will increase opportunities for environmental protection rights, indirectly raising the production and operation costs of enterprises, and forcing polluting firms to transition to green practices. Due to the increasingly strict environmental penalties, enterprises not only face high legal costs but also potential reputation damage and the risk of losing customers when an environmental pollution incident occurs. Therefore, they tend to undergo green transformation. Environmental courts have the potential to increase the costs of pollution for enterprises more directly than traditional judicial organs in the event of pollution incidents. The outcome of environmental courts’ handling of enterprises can also act as a deterrent, thereby expanding the scope of the rule of law and increasing public confidence in taking judicial protection initiatives in environmental disputes. The public will file more lawsuits against polluting enterprises, and the number of environment-related civil lawsuits will also increase significantly. In view of the above, the establishment of environmental courts will directly increase the environmental pollution costs of enterprises, which is an intangible control on their environmental pollution behavior. To mitigate legal risks, companies will enhance their production methods, implement pollution control equipment, and decrease environmental pollution through eco-friendly transformation. Therefore, hypothesis 4 is proposed:
Hypothesis 4. The establishment of environmental courts increases the cost of violations for enterprises, thereby promoting corporate green innovation.
4 RESEARCH DESIGN
4.1 Sample selection and data sources
This paper focuses on the intermediate environmental courts of Chinese prefecture-level cities as the research sample, excluding grassroots environmental courts. While the number of grassroots environmental protection courts is relatively large, their judicial and enforcement powers are mostly limited to county areas and are more influenced by grassroots governments. Furthermore, the professionalism of grassroots environmental courts needs improvement. Environmental resource cases require specialized and comprehensive judicial background due to their complexity and technicality. Grassroots courts encounter practical challenges in establishing specialized judicial institutions. Cases handled by intermediate environmental courts in prefectural cities are major disputes with wide-ranging impacts. Therefore, the disposal results pronounced by the environmental courts will have a deterrent effect on enterprises located in counties, which is more persuasive than that of the grassroots courts. Lastly, the establishment time of environmental courts at the county level and below is also difficult to verify, so we will not consider county-level environmental courts.
Intermediate environmental courts typically consist of four types: tribunals, circuit courts, collegial panels, and detached tribunals. The most common type established by intermediate and higher people’s courts is the environmental resources tribunals. This court has a fixed personnel composition and broad jurisdiction. Environmental courts may sometimes have jurisdiction and enforcement in different jurisdictions due to their standardization, specialization, and systematization characteristics. The other three types of environmental courts are temporary and often face the embarrassing situation of having many courts and few cases or even no cases to be heard at the beginning of establishment (You, 2018), resulting in a lack of professionalism and systematic mechanisms. Their operating scope and judicial enforcement capabilities are not as effective as those of the environmental resources tribunals. Therefore, this paper focuses on researching the environmental resources tribunals of the Intermediate People’s Court.
We use data from Chinese listed companies from 2007 to 2021 as samples, manually collecting and matching data from intermediate environmental courts in prefecture-level cities and corporate green patents to form the dataset for this paper. The data of the environmental courts comes from searching the relevant city data in the document of the 2021 China Environmental Resources Trials, released by the Supreme Court, and is manually collected and organized based on the official websites of various Intermediate Courts, Legal Daily, and related news reports. Green patent data is sourced from the CRNDS database and the Chinese Patent Database. The remaining data comes from CSMAR and Wind Database. We removed the samples of companies listed in the financial industry, ST, *ST, or PT, as well as those with missing data. Continuous variables were then trimmed at the 1% level on both ends. In the end, our study has a total of 31,342 company-year observations.
4.2 Variable definition and descriptive statistics
4.2.1 Explanatory variable
The establishment of environmental courts is the independent variable (Du) of this study. According to the principle of multi-period DID, if the region established an environmental court in the current year or earlier, Du is 1; otherwise, Du is 0. As of the end of 2021, the intermediate people’s courts established a total of 158 intermediate environmental resources tribunals. Meanwhile, manually collected data that can be used to prove was 147, including 125 environmental resource tribunals, 17 environmental resource collegial panels, and 5 circuit courts. The margin of error is about 7%, mainly due to the probability of omission when manually searching for city names and keywords such as “environmental resources tribunals.” Not all intermediate people’s courts will have official records or news reports after establishing environmental courts. These courts are likely to have relatively weak environmental governance capability and may not attract widespread media attention. The effectiveness of intermediate environmental courts should be a long-term mechanism widely followed by the public media, therefore, the impact of the unsearchable part on the sample regression is limited.
As shown in Figure 2, since the establishment of the first environmental court in China, most regions have set up environmental courts. Currently, 29 provinces and municipalities in China have environmental courts. However, the geographical distribution of environmental courts is mainly in the eastern and southern regions, where economically developed cities in China are also located. It shows spatial geographical consistency between the distribution of courts and economic development.
[image: Map of China showing the presence of environmental courts by region. Regions with environmental courts are marked in dark blue, and regions without them are in light blue. A scale and compass rose are included.]FIGURE 2 | Spatial geographic distribution of environmental courts in 2021.
4.2.2 Dependent variable
Following the research of Fei Fan et al. (2020), corporate green innovation (Patent) is measured by the number of green patent applications. The number of green invention patents is considered as substantive green innovation, while the number of green utility-based patents is classified as strategic green innovation (Wurlod and Noailly, 2018). Figure 3 shows the geographical distribution of green innovation in Chinese enterprises, matching their corporate location with green patent data. The green innovation intensity is concentrated in coastal areas such as the Yangtze River Delta, and this distribution is similar to the actual economic development. After 3 decades of rapid development, most of the industrial transformation and upgrading in coastal areas, such as the Yangtze River Delta, has been completed. Industries with high emissions and energy consumption have shifted to central and western regions. Additionally, the eastern regions, with their abundant talent reserve and R&D resources, have laid a foundation for green innovation.
[image: Map of China displaying regions by concentration of green patents. Darker blue areas indicate higher patent density. Coastal provinces like Guangdong and Shandong show the most activity. A legend indicates patent range and a compass shows orientation.]FIGURE 3 | Geographical distribution of green innovation.
This article aims to differentiate between various green innovation behaviors driven by distinct motivations and to explore the impact of China’s environmental courts on micro-enterprise innovation and its underlying mechanisms. For companies influenced by China’s innovation policies, the anticipation of increased government subsidies and tax incentives leads to a significant rise in their patent applications, particularly for non-invention patents. The selective fiscal and tax support measures associated with these policies often compel companies to engage in “support-seeking” behavior, resulting in a surge in patent applications that prioritize “quantity” over “quality.” This phenomenon indicates that the Environmental Protection Tribunal may not effectively motivate enterprises to pursue substantive innovations that foster technological advancement and competitive advantages. Instead, the focus on increasing the “quantity” of innovations to “seek support” reflects a form of strategic innovation rather than genuine progress.
From this perspective, we categorize enterprise innovation behaviors into two distinct types: First, there is “high-quality” innovation behavior aimed at promoting technological advancement and securing competitive advantages, which we term substantive innovation. Second, there is “strategic innovation,” characterized by a focus on pursuing alternative interests and aligning with regulatory and government innovation strategies by emphasizing the “quantity” and “speed” of innovation.
4.2.3 Control variables
We select the following control variables based on previous literature (Fang and Shao, 2022; Yan et al., 2023): ① Firm size (Size), with the value of the natural logarithm of annual total assets. Generally, larger companies possess a greater capacity to acquire resources, which may influence their business strategies and performance, including their responses to environmental policies and their capacity for green innovation; ② State-owned enterprise or not (SOE), with a value of 1 for state-owned and 0 for others. The distinctions between state-owned and privately-owned enterprises often manifest in their property rights structures, resource acquisition capabilities, and business objectives; ③ The age of firm establishment (FirmAge), with the value of the natural logarithm of the current year minus the year of corporate establishment plus one. This logarithmic processing effectively eliminates the impact of scale on the results. This logarithmic transformation effectively mitigates the influence of size on the results. The establishment year serves as an indicator of a company’s development stage, with differences in resources, experience, and market position between newly established firms and mature enterprises likely affecting their behaviors and performance; ④ The firm’s capital structure (Lev), with the value of dividing total liabilities at the end of the year by total assets. Capital structure significantly influences financial decision-making, risk tolerance, investment behaviors, and how enterprises respond to external changes, including adapting to environmental regulations and pursuing green innovations; ⑤ The firm’s industry (Industry), according to the China Securities Regulatory Commission’s classification of industries in 2012 to divide into different industry codes. Different industries exhibit unique characteristics that may impact corporate behaviors and performance. For instance, technology firms may prioritize innovation more heavily than service-oriented businesses, which might focus on customer experience. Controlling for industry type enables researchers to identify and differentiate the factors that uniquely influence performance within specific sectors; ⑥ Return on equity (ROE), with the value of net profit divided by average shareholders’ equity. ROE is a crucial metric for assessing a company’s profitability, reflecting how effectively it utilizes shareholders’ equity to generate profits. By controlling for ROE, we account for differences in profitability across various firms; ⑦ CEO-chairman duality (Dual). If the chairman and general manager are the same person, represented as 1, otherwise as 0. The dual role is a significant aspect of corporate governance, influencing the company’s decision-making processes, power dynamics, and oversight mechanisms; ⑧ Management ownership ratio (Manho), this ratio indicates the percentage of shares held by management and reflects the alignment of interests between management and the company. When management possesses a higher shareholding ratio, they are typically more motivated to enhance company performance, as their personal wealth is closely tied to the company’s long-term success. In our analysis of green innovation capabilities, we consider the effects of management incentives and corporate governance structures to improve the accuracy and reliability of our findings; ⑨ Return on assets (Netp), the proportion of total profit to total assets, offering insights into how efficiently a company utilizes its assets to generate earnings; ⑩ Regional urbanization rate (Ur), this variable measures the proportion of the urban permanent population to the total population at the end of the year. It reflects the level of urbanization in a region, which can influence policy environments and economic opportunities; ⑪ Regional industrial structure (Ris), the proportion of added value of regional industry to total output as a representation variable of industrial structure. Different levels of urbanization and industrial structure can lead to varying policy environments; for example, urban areas may receive more economic development incentives such as tax breaks and subsidies. By controlling for Ur and Ris, we enhance the accuracy and reliability of our research; ⑫ Industrial development level (GDP), the logarithm of per capita gross domestic product. GDP serves as a vital indicator of the economic scale and market potential of a region or country. By controlling for this variable, we account for the impact of economic development and scale when analyzing corporate green innovation.
4.2.4 Descriptive statistics
The average value of enterprise green innovation Patents is 6.184, with a standard deviation of 32.53. The minimum value is 0 and the maximum value is 1,508, indicating significant differences in the level of green innovation among enterprises. The average value of the policy variable Du is 0.617, which means that during the research period, approximately 62% of the regions where the enterprises are located have established environmental courts. This indicates that environmental courts have not yet become a widespread presence, but recent trends suggest that there will be more in the future. Statistical descriptions of all variables are shown in Table 1.
TABLE 1 | Descriptive statistics.
[image: Statistical table displaying variables with their respective number of observations (N), mean, standard deviation (Sd), minimum (Min), and maximum (Max) values. The table includes variables like Court, Du, Time, and others, with observations mostly being 31,342. Each variable has distinct data, such as Court with a mean of 0.293 and Patent with a mean of 6.184.]4.3 Modeling
Following the study of Kesidou and Wu (2020), this paper sets up prefecture-level cities with intermediate environmental courts as the treatment group, and those without environmental courts as the control group. Using a multi-period DID method, we construct a two-way fixed effect model as follows to test the influence of environmental courts on the green innovation capabilities of enterprises:
[image: Equation depicting a regression model: Patent equals Beta zero plus Beta one multiplied by dual times time, plus Beta two X, plus delta T, plus sigma I, plus epsilon.]
Patentit is an indicator that measures green innovation in enterprises, representing the number of green patents in city i in year t. The main explanatory variable is the policy dummy variable, which is the interaction term product of the city dummy variable and the time dummy variable, i.e., [image: Mathematical expression showing the product of "du" with subscripts "i" "t" and "time" with subscript "t".], representing whether city i has an environmental court in year t. The time dummy variable, time, is defined as 1 if an environmental court was established in that year or after; otherwise 0. The city dummy variable, [image: Mathematical expression showing "du subscript it equals one".] if the city has established an environmental court and [image: Mathematical expression showing "du subscript it equals zero".] if the city has no environmental court. In the text that follows, the Court will be employed to signify the presence of [image: Mathematical expression showing "du" subscript "it" multiplied by "time" subscript "t".]. Xit represents a series of control variables, including firm size (Size), state-owned enterprise or not (SOE), the age of firm establishment (FirmAge), the firm capital structure (Lev), the firm’s industry (Industry), return on equity (ROE), CEO-chairman duality (Dual), management ownership ratio (Manho), regional urbanization rate (Ur), regional industrial structure (Ris), and industrial development level (GDP). [image: Please upload the image or provide a URL for me to generate the alt text.] denotes regional control effect to control for factors that are not observable in each region and do not change over time, such as unique cultural characteristics, natural geography, etc. [image: To generate alternate text, please upload the image or provide a description of the image content you want to be described.] is the time fixed effect to control for characteristics that do not vary across individuals but do change over time, such as fiscal policy, macroeconomic conditions, etc.
The primary objective of this article is to assess the effectiveness of the environmental court and its impact on corporate green innovation. The DID method allows us to quantify the changes that occur before and after the implementation of the policy, as well as to measure the differences in changes between groups affected by the policy and those that are not. This enables a robust evaluation of the policy’s actual effects. Controlling Confounding Factors: During the establishment of the environmental court, various external factors—such as economic cycles and technological advancements—may concurrently influence the research outcomes. The DID method effectively controls for these confounding variables by comparing the changes observed in the treatment group (those impacted by the policy) with those in the control group (those unaffected by the policy).
5 EMPIRICAL ANALYSIS
5.1 Baseline regression results
The results of the regression of environmental courts on corporate green innovation are shown in Table 2. Column (1) controls for time and regional fixed effects with no control variables. The results show that the regression coefficient of the double DID interaction term, Court, is significantly positive at the 1% level, which preliminarily indicates that the establishment of environmental courts has improved the level of corporate green innovation. After adding the city and regional level control variables in Column (2), the coefficient of the interaction term decreased to 1.346. The significance and absolute value of the regression coefficient Court change slightly, about one-third of the coefficient without the control variables. The possible reason for this could be that the control variables play an intermediary role, causing the establishment effect of the environmental court to be absorbed by the control variables, thereby affecting corporate green innovation and reducing the coefficient. This strongly demonstrates the rationality of the selection of control variables and the significant facilitating role of the net effect of environmental court establishment on corporate green innovation. The regression results still support the above findings.
TABLE 2 | Environmental courts and corporate green innovation.
[image: Regression results table showing coefficients for variables across six models. Variables include Court, Du, Size, SOE, Firmage, Lev, Industry, ROE, Dual, Manho, Netp, Ur, Ris, GDP. Significance levels: * 10%, ** 5%, *** 1%. Each model (Patent, Ipatent, Umpatent) includes R² values and time/region effects. Robust standard errors provided.]While the type of patent reflects different innovation motivations, invention patents are considered substantive innovation that drives technological progress (Costantini and Mazzanti, 2012). This paper further examines whether the establishment of environmental courts can improve the quality of corporate green innovation. Patents are distinguished by the type of green patents into the number of green invention patents (Ipatent) and the number of green utility-based patents (Umpatent). The estimated coefficients of Columns (3), (4), (5), and (6) in Table 2 are all significantly positive, and the absolute values of the estimated coefficients in Columns (3) and (4) are larger, indicating that the establishment of environmental courts has a certain enhancing effect on different types of green innovation levels. To a greater extent, the establishment also increases the number of patent applications for green inventions, thus improving the substantive green innovation capacity of enterprises.
Environmental resources tribunals occupy an important position as the core organization for the court to hear cases, maintaining high utility in terms of both quantity and quality. Meanwhile, in order to promote the centralized hearing of ecological environmental cases of natural environment pollution torts under their jurisdiction, a number of intermediate people’s courts have simultaneously established environmental resources collegial panels. Due to the applicability of internal management and personnel composition, the evaluation of system efficiency based on trial efficiency, professionalism and uniformity shows that the widespread establishment of collegial panels lacks legitimacy and rationality (Han, 2019). From the perspective of professionalism and uniformity, collegial panels have not been well implemented in Chinese judicial practice. Most trials in collegial panels often have the problem of “convening without deliberation, convening without discussion” (Ye, 2010), which hinders the improvement of judicial efficiency.
Therefore, do the institutional drawbacks of collegial panels in environmental justice also affect their impact on green innovation? The regression results in Table 3 show that among the environmental courts established by intermediate courts, the environmental resource tribunals (Trial court) can effectively improve the level of corporate green innovation. While compared with the environmental tribunals, the collegial panels (Full court) can also promote the level of corporate green innovation, but the effect is not significant. It can be seen that in the current trial system of Chinese courts, the systematical and operational disadvantages of collegial panels still exist in environmental justice. The current process of legal construction of environmental pollution control in China needs continuous policy experiments to improve the legal mechanism construction of green innovation. More importantly, it is necessary to ensure that the new legal system and operational mechanism can be truly implemented in practice.
TABLE 3 | Different types of environmental courts and corporate green innovation.
[image: Table showing relationships between patent-related variables across four models. Trial court coefficients range from 1.153 to 3.145 with varying levels of significance. Control variables, time, and region effects are included differently across models. Sample sizes (N) are 26,152 or 20,997. R-squared values range from 0.001 to 0.083. Robust standard errors are in parentheses.]5.2 Parallel trend test
The prerequisite for causal inference using the DID is that there are no different trends between the treatment and control groups prior to the policy event, i.e., the green innovation levels of the two groups of cities should maintain a parallel trend. Figure 4 presents the results within a 95% confidence interval, showing that there were no significant differences before the policy was implemented. It indicates that there was no systematic difference in green innovation levels between the experimental and control group cities before the actual establishment of the environmental court, and the parallel trend hypothesis is verified. Therefore, the baseline regression results are not caused by inherent time trends between the two groups of regions. Moreover, the estimated coefficients were not significant in the 2 years immediately following the establishment of environmental courts, but became significantly positive after the third year, with the absolute value of the coefficients gradually increasing. This suggests that the establishment of environmental courts has a certain lagged effect on promoting the level of green innovation in firms, and furthermore, the policy effect gradually strengthened over time.
[image: Line graph showing policy dynamic economic effects over time, with policy timing on the x-axis ranging from -7 to 6. The y-axis represents dynamic economic effects. Data points fluctuate, indicating varying effects, with a notable increase after time zero. Vertical dashed lines represent probable error margins.]FIGURE 4 | Parallel trend test.
5.3 Robustness test
5.3.1 Propensity score matching
Following the work of Blundell and Dias (2010) and Heyman et al. (2007), we use a propensity score matching (PSM) to match year by year from 2007 to 2021, finding a comparable control group for the treatment group in each year. We combine observable control variables to perform a one-to-one matching of the treatment and control group samples. First, we compute the propensity score for each observation and then find the only control group of cities that did not establish environmental courts for the city with environmental courts (treatment group). After deleting the unsuccessful matches of 1,207 samples, we finally obtain 19,790 control group samples corresponding to the treatment group.
To verify the reliability of the results, we conducted balance tests for each year, confirming that there were no significant systematic differences in the control variables between the control and treatment groups. After matching, the sample characteristics of the treatment and control groups tended to be consistent. At the same time, the p-values of the t-test statistics after matching are not significant at the 10% significance level, indicating no significant systematic difference. Overall, the matching results are satisfactory, passing the balance test and effectively eliminating the endogeneity bias. The DID regression after matching is performed on the data as shown in Columns (1) and (2) of Table 4. The test results indicate that the hypothesis remains valid regardless of the inclusion of the control variables.
TABLE 4 | Results of propensity score matching.
[image: Table showing statistical results for three models: two labeled "Patent" and one "Dependent variable replacement." Variables include "Court" with coefficients and standard errors: 3.080 (8.13), 1.411 (2.93), 0.497 (10.87), all significant at 1%. Control, time, and region effects are denoted by "Y" or "N". Sample sizes (N) are 30,135, 19,790, 19,778 with R-squared values of 0.002, 0.084, 0.088. Notes indicate robust standard errors and significance levels.]5.3.2 Dependent variable replacement
Following the related study by Fan and Zhao (2019), we substitute the ratio of R&D investment to operating income (Rd) as the new dependent variable. Specifically, we perform data matching before the regression to ensure the availability and continuity of data and filter out missing data. Estimated by DID to prevent selective bias in the experiment, the regression results in Column 3 of Table 4 show that the regression coefficient of the interaction term Court is significantly positive at the 1% level regardless of whether control variables are included, which is consistent with the regression results above.
5.3.3 Dynamic effect test
Currently, environmental courts in China are still in the developmental stage and have not fully matured. Therefore, we further verify the dynamic benefits of environmental courts on green innovation, considering the lag in their effectiveness. Since the establishment of environmental courts began in 2007 and gradually expanded to different regions, this study designates cities with environmental courts as the experimental group and cities without environmental courts as the control group. The time points for the establishment, 2007, 2008, and 2009, are examined to determine the dynamic marginal effect of environmental court establishment on corporate green innovation over time. The specific results are shown in Table 5. Columns (1), (2), and (3) show the dynamic effect regression results for the years 2007, 2008, and 2009, respectively. The results in Column (1) indicate that the establishment of environmental courts in 2007 did not have a significant effect on corporate green innovation. This may be due to 2007 being the first year of the formal establishment of environmental courts. In Guiyang, only a few cities had started implementing the policy on a pilot basis. Although the effect was not immediately obvious, it began to emerge in the second and third years after implementation (2008 and 2009). Additionally, both Columns (2) and (3) show positive significance at the 10% level, with values of 0.068 and 0.067, respectively. It is evident that in the 2 years following implementation, the effects are not particularly significant, but they do have a certain promotional effect. This indicates that the establishment of environmental courts will promote green innovation in enterprises, further validating the hypothesis.
TABLE 5 | Dynamic effects, counterfactuals, and provincial cluster tests.
[image: Table displaying regression analysis results over different time frames. Variables include Court, Control variable, Time effect, Region effect, R-squared, and N. Court coefficients range from -0.531 to 0.045 with significance levels indicated. Control and Time effects are present across all columns except column four for Control variable. R-squared values range from 0.003 to 0.072. Sample sizes vary from 3,045 to 20,997. Notes emphasize standard errors and significance levels.]5.3.4 Counterfactual analysis
To further test the reliability of the hypothesis results, this paper conducts a counterfactual test by creating a hypothetical treatment group. Since only a few cities had established environmental courts before 2014, we have selected the time interval of 2007-2014. The sample excludes cities that established environmental courts during this interval. A consistency test was conducted, assuming 2009 as the time point for the establishment of environmental courts. We then use the traditional DID method to verify the absence of a shock effect. The green innovation efficiency of enterprises in cities, with or without environmental courts, should remain consistent over time. Furthermore, innovation efficiency trends should remain parallel before and after the establishment of said courts. In Columns (4) and (5) of Table 5, the regression coefficient of Court in the model after adding control variables is 0.433, which is not statistically significant. This shows that providing a specific policy to cities without environmental courts, under the hypothetical policy treatment, does not improve the innovation efficiency of enterprises. This conclusion is not due to systematic factors but rather the establishment of environmental courts, which has a significant impact on the green innovation of enterprises, proving its robustness.
5.3.5 Provincial cluster test
We cluster at the provincial level to compute the standard errors, considering the spatial autocorrelation issues among enterprises within the same province. The results, shown in Column (6) of Table 5, indicate a significant positive interaction term, supporting the hypothesis.
5.3.6 Triple-difference regression
The double-difference estimation strategy has potential problems: apart from environmental regulations, there may be other policies that affect regions with and without environmental courts differently, leading to biased estimation results. To overcome this problem, a triple-difference method is needed. This involves finding another pair of “treatment group” and “control group” that are not affected by environmental regulations. The second pair of treatment and control groups differ only in the impact of other policies, as non-polluting industries are not affected by environmental regulations. To determine the net effect of environmental regulations, we subtract the difference between the second pair of treatment and control groups related to other policies from the difference between the first pair of treatment and control groups (including differences in environmental regulations and other policies).
Based on the analysis above, we construct a triple-difference model (DDD) by multiplying the double-difference model with the third difference (Group) that represents whether the enterprise is a high polluter in the regional dimension. If the enterprise is heavily polluting after the year of the establishment of environmental court in the region, the value of Du*time*group is set to 1; otherwise, it is set to 0. As shown in Column (1) of Table 6, the coefficient of Du*time*group is significantly positive at the 1% level, indicating that the establishment of environmental courts has a significant impact on promoting corporate green innovation. Additionally, this paper conducts grouped tests to determine whether enterprises are in high-polluting industries. The results, shown in Columns (2) and (3), demonstrate that the promotion effect is more significant in high-polluting companies. The promotion effect on high-polluting companies is more significant.
TABLE 6 | Triple-difference test.
[image: A table compares variables across three categories: DDD, high polluting enterprises, and non-high polluting enterprises. It includes variables such as "Du*time*group," "Du*time," "Du*group," and "Group," with associated coefficients and significance levels. Control variable, time effect, and region effect are marked as present ("Y") across all categories. The R-squared values for DDD, high polluting, and non-high polluting enterprises are 0.072, 0.124, and 0.099 respectively, with sample sizes of 20,997, 6,574, and 14,423. Statistical significance is indicated by asterisks.]5.3.7 Exclusion of other policy interference
5.3.7.1 Fixed effects test
To eliminate interference from other policies on baseline empirical tests, this paper controls for the effects of individuals (firms), year, industry*year, and province*year. Other policies, such as industrial policies, local policies, and regional pilot projects, are mainly implemented at the industry and regional levels. Therefore, the fixed effects mentioned above can better control for interference from most other policies. As shown in Column (1) of Table 7, the establishment of environmental courts continues to promote green innovation in enterprises even after controlling for the influence of other policies through the addition of fixed effects.
TABLE 7 | Exclusion of other policy interference.
[image: Table showing regression results across five models with various exclusions (2012, carbon emission pilot, 2013, 2018). Variables include Court, CM*d2013, ERTxd2013, Control variables, Time effect, and Region effect. Court coefficients vary, with statistical significance denoted by asterisks; for example, 2.33**, 1.564***, 1.470***, 1.508***, 2.406***. Control, Time, and Region effects marked by Y. Sample sizes (N) range from 15,045 to 31,330, and R-squared values range from 0.072 to 0.652. Notes mention robustness and significance levels.]5.3.7.2 The respective impact of various environmental regulations
Policy of Green Credit Guidelines. In 2012, the China Banking Regulatory Commission (CBRC) issued the Green Credit Guidelines to promote the development of green credit in banking and financial institutions. The promotion of green credit encourages corporate green innovation. However, it may introduce an upward bias in the estimates of this study. To avoid any potential bias, we removed the sample data from 2012 and conducted a difference-in-differences regression. The results, shown in Column (2) of Table 7, remain significantly positive.
Program of Establishment of Carbon Emissions Pilots. From 2013 to 2015, the Chinese government designated Beijing, Shanghai, Tianjin, Guangdong, Shenzhen, Hubei, and Chongqing as pilot provinces, autonomous regions, and municipalities for carbon emissions trading systems. To mitigate the confusion effect of carbon pilots, our study further controlled the CM×d2013 using 34 pilot cities1 located in the above 7 pilot regions. If the firm is located in one of the 34 pilot cities, CM equals 1; otherwise it is 0. The dummy variable d2013 equals 1 if time t ≥ 2013. In Column (3) of Table 7, the results show that the coefficient Court remains statistically significant.
Ten policies of air pollution. In 2013, Chinese Premier Li implemented ten policies to prevent and control atmospheric pollution during a State Council executive meeting. As a result, various cities proposed PM2.5 emission reduction targets. To mitigate the confounding effect caused by atmospheric policies, we constructed ERT × d2013, an interaction term of emission reduction targets and time dummy variable, to control for their effects. ERT is a variable based on the logic of local government work reports and text analysis to determine whether specific emission reduction targets were set by the municipal government that year. The variable is assigned a value of 1 if prefecture-level governments specifically list quantitative environmental management objectives in their work reports for the year; otherwise, it is assigned a value of 0. The time dummy variable d2013 takes a value of 1 for the year 2013 and thereafter; otherwise, it takes a value of 0. In Column (4) of Table 8, the estimates are significantly positive and remain effective.
TABLE 8 | Regional environmental justice efficiency.
[image: Table showing statistical analysis results for environmental disputes. It compares the number and proportion of disputes across four models. Variables include court influence, control variables, time effect, and region effect. Significance levels are denoted by asterisks: *, **, and *** for 10%, 5%, and 1% respectively. Sample sizes (N) and R-squared values are provided.]Environmental tax and dual-carbon policy. In 2018, the Chinese government enacted the Environmental Protection Tax Law. To exclude the influence of environmental taxes and dual-carbon policy, we removed the sample data after 2018. The results, shown in Column (5) of Table 8, are significantly positive, confirming the hypothesis.
6 MECHANISM TEST AND HETEROGENEITY ANALYSIS
6.1 Mechanism test
The previous section analyzed the impact of establishing environmental courts on green innovation. Building on this foundation, the following section investigates the mechanisms by which environmental courts affect corporate green innovation. The tests include three aspects: regional environmental justice efficiency, government environmental awareness, and corporate violation costs.
6.1.1 Regional environmental justice efficiency
Our paper collects and organizes data on environmental judicial cases at the prefectural level in China Judgements Online. We use the number of environmental pollution liability dispute cases as a proxy variable for regional environmental justice efficiency and conduct the DID test. Additionally, we use the proportion of environmental pollution liability dispute cases to all tort liability dispute cases for robustness testing. After controlling for time and regional effects, the promotion effect remains significantly positive, as shown in Table 8.
However, the influence on environmental justice may not be solely attributed to the establishment of environmental courts. The observed impact is possibly a result of an overall improvement in judicial efficiency in the region. Therefore, there is a risk of overestimating the impact of environmental courts on environmental justice. To eliminate this factor, our study uses the total number of cases of tort liability disputes as a placebo test. The results indicate that environmental courts do not significantly impact the efficiency of adjudicating non-environmental pollution tort disputes. This suggests that the influence of environmental courts on the adjudication of regional environmental pollution disputes primarily comes from the functioning of the system itself.
6.1.2 Government environmental awareness
The establishment of environmental courts has increased the government’s focus on environmental protection. This policy is closely linked to the surrounding environment. When the public demands a better living environment, it reflects the government’s awareness of environmental protection. Improving such awareness creates a soft constraint on enterprises, encouraging them to promote green innovation. Therefore, our paper uses the frequency of environmental words in government reports at the prefecture level as a proxy variable for the government’s awareness of environmental protection. We statistically match different years and include them in a DID regression. The test results, shown in Columns (1) and (2) of Table 9, are both significantly positive. Column (1) does not include control variables, while Column (2) does.
TABLE 9 | Government environmental awareness and the costs of corporate violation.
[image: A table shows regression results for four models analyzing environmental words frequency and violation costs. Each model includes variables like Court, Control variable, Time effect, and Region effect. Statistical significance is indicated with asterisks, and robust standard errors are in parentheses. Key values: Model 1 (Court: 6.522), Model 2 (Court: 6.036), Model 3 (Court: 0.016), Model 4 (Court: 0.025). Sample sizes and R-squared values for models are provided. The notes explain the use of asterisks for significance levels.]6.1.3 Corporate violation costs
This paper measures the cost of corporate violations by calculating the ratio of production costs to operating income. In Columns (3) and (4) of Table 8, the results are significantly positive regardless of the inclusion of control variables. The “combination of trial and enforcement” mode in environmental courts aims to establish a coordinated mechanism to strengthen enforcement power in environmental cases. This mode also addresses the issue of environmental protection bureaus being influenced by local governments. In cases where pollution has significantly affected public life, environmental courts may conduct interviews with defendants or impose behavioral restrictions before trial results. After the verdict, environmental courts have the power to directly enforce the verdict, thus ensuring compliance with the environmental judgment by enterprises that may refuse to accept the court’s ruling. This improves the efficiency of the rule of law and the severity of punishment, reduces the likelihood of local government protection, and increases potential environmental litigation risks and legal costs for enterprises. The firms will therefore improve their environmental management practices to reduce the likelihood of being punished.
6.2 Heterogeneity analysis
This paper further analyzes whether environmental courts show apparent heterogeneity in promoting corporate green innovation from the perspectives of the nature of enterprise ownership, the level of regional rule of law environment, and the degree of industry competition.
Heterogeneity in the nature of ownership is crucial in the study because there are significant differences between SOEs and private firms in terms of access to resources, decision-making mechanisms and incentives to innovate. SOEs may be more influenced by government policies, while private firms are more concerned with market competition and brand image. This difference may lead to differences in their responses to environmental tribunals and their green innovation capabilities, thus affecting the assessment of policy effects.
Level of regional rule of law environment: Heterogeneity in the regional rule of law environment affects firms’ compliance costs and willingness to innovate. In regions with better rule of law environments, firms face stricter environmental requirements, prompting them to increase green technology investment and innovation. In regions with weak rule of law environments, on the other hand, firms may invest less in environmental protection, so studying these differences helps to understand the mechanisms by which environmental tribunals work on green innovation in different rule of law contexts.
Degree of industry competition: Heterogeneity in the degree of industry competition has an important impact on firms’ innovation strategies. In highly competitive industries, firms often need to respond quickly to changes in market demand and policies, and may be more active in green innovation to maintain a competitive advantage. In relatively less competitive industries, firms may be less eager to invest in green technologies, and therefore examining the degree of competition in different industries is critical to understanding the impact of environmental tribunals on green innovation.
6.2.1 The nature of enterprise ownership
Shown in Columns (1) and (2) of Table 10, the results indicate that the establishment of environmental courts has improved the level of green innovation in non-state-owned enterprises, while state-owned enterprises do not show a significant green innovation effect and environmental investment governance dynamics. The reason may be that the nature of state-owned enterprises, under the protection of local governments, determines their stronger bargaining power in the face of environmental regulation (He et al., 2020) and stronger path dependency effects in the process of innovation upgrading (Xu and Cui, 2020). Against the backdrop of strengthening environmental governance and achieving the dual-carbon targets in China, state-owned enterprises need to improve governance mechanisms, strengthen innovation-driven leadership, and achieve green and high-quality development.
TABLE 10 | Heterogeneity test.
[image: Table comparing variables across six contexts: Non-SOE, SOE, legal environment in regions, and industry competition. It includes values for Court influence with statistical significance indicated by asterisks. Control variable, Time effect, and Region effect are marked as 'Y'. Sample sizes (N) and R² values are listed. Notes explain statistical significance levels.]6.2.2 The level of rule of legal environment in regions
The results for the level of the rule of legal environment in regions are reflected in Columns (3) and (4) of Table 10. Columns (3) and (4) show the empirical results for regions with better and general rule of law environments, respectively. Legislative and judicial processes mutually guarantee and promote each other, hence the deterrent effect of environmental courts on polluting firms is influenced by the general legal environment of the region. In a favorable legal environment, investors and enterprises can reasonably expect the establishment of environmental courts to take strict action and show zero tolerance toward illegal pollution emissions. In regions with a better legal environment, the establishment of environmental courts has a more pronounced effect on promoting corporate green innovation, suggesting that a good regional environmental legislation can help promote the rule of environmental law and foster a green orientation in financial markets.
6.2.3 The degree of industry competition
The degree of industry competition is reflected in the results of Columns (5) and (6) of Table 10. The empirical results of Column (5) and (6) are for intense and weak industry competition, respectively. The degree of industry competition indirectly reflects the difficulty of corporate profitability; the more intense the industry competition, the more it will inhibit the level of corporate green innovation. In other words, firms will pay less attention to environmental issues in pursuit of profits from market occupation, resulting in a limited level of green innovation.
7 FURTHER ANALYSIS
We further examine the impact of two different types of green innovation on firm economic benefits. Invention patents and utility-based patents are used to represent substantive and strategic green innovation, respectively. Based on Previous studies which have emphasized the role of green total factor productivity in environmental management, It is a crucial indicator for countries to address environmental challenges, improve environmental performance, and foster sustainable (Jiang et al., 2024). Our paper selects total factor productivity and Tobin’s Q value to measure the economic benefits of firms, and thus constructs models of the impact of the two types of green innovation on the economic benefits of firms. Among them, total factor productivity is estimated by the Levinson-Petrin (LP) method, while Tobin’s Q value is measured by the ratio of enterprise market value to total assets. The regression result in Column (1) of Table 11 is significantly positive at the 1% level, indicating that substantive green innovation has a positive impact on total factor productivity. Furthermore, the results in Column (3) are significantly positive at the 5% level, suggesting that this positive impact is even more pronounced. Similar results are reported in Columns (2) and (4). Therefore, overall, substantive green innovation has a more significant effect on improving the economic benefits of firms. Thus, promoting technological progress and obtaining competitive advantages through substantive innovation can enhance the market value of enterprises and promote their development.
TABLE 11 | Extensibility test.
[image: Table showing the effects of substantive and strategic green innovation on total factor productivity and Tobin Q value. Substantive green innovation shows significant positive coefficients in columns 1 and 2. Strategic green innovation shows positive coefficients in columns 3 and 4. Each model includes control, time, and region effects. Sample sizes and R-squared values are noted for each column. Statistical significance is indicated by asterisks: 10 percent (*), 5 percent (**), and 1 percent (***). Robust standard errors are provided in parentheses.]8 CONCLUSION AND IMPLICATIONS
Currently, the governance of environmental pollution is still a significant challenge in China. In the process of promoting pollution control, the legal system always plays a fundamental role. This paper focuses on environmental courts, which are regarded as a manifestation of ecological rule of law, and explores their impact, effectiveness, and mechanisms on corporate green innovation. This will help in understanding how the ecological rule of law compels enterprises to achieve green transformation and sustainable development goals. Meanwhile, our study also provides countries with experiences on how to balance economic growth and environmental protection.
Our research indicates that environmental courts are effective in promoting corporate green innovation, particularly in terms of substantive innovation. (1) Furthermore, environmental courts have a greater impact on promoting corporate green innovation compared to environmental resources collegial panels. (2) The establishment of environmental courts can improve the efficiency of regional environmental justice and raise government environmental awareness. This can result in increased costs for corporate violations and ultimately promote corporate green innovation. (3) The promotional effect is stronger in regions with non-state-owned enterprises, favorable legal environments, and lower levels of industry competition.
This paper suggests that continuous improvement of the construction of the ecological rule of law is important for achieving harmonious coexistence between the environment and the economy while pursuing rapid economic development. This kind of improvement could motivate enterprises to innovate in pollution control technologies, allowing them to reduce energy consumption and pollutant emissions while engaging in production activities and improving technology levels to enhance international competitiveness. However, the green innovation effect, strengthened by the rule of law, also requires support from complementary measures, such as improving judicial efficiency and government environmental awareness. Therefore, to further promote the process of legalizing environmental governance reforms, it is necessary to strengthen the assessment and supervision of environmental law enforcement in judicial departments. By utilizing the deterrent effect of legal penalties, firms can be “compelled” to undergo green transformation and upgrading. On the other hand, it is also suggested to continuously improve the legal system and raise the level of legal construction in the regions. This can encourage residents to exercise their environmental legal rights, thereby increasing the judicial channels for environmental pollution disputes and ultimately strengthening the level of rule of law in environmental pollution control.
The conclusions highlight that while pursuing rapid economic development, it is crucial to enhance the construction of ecological rule of law to achieve a harmonious coexistence between the environment and the economy. The establishment of environmental protection courts strengthens judicial authority and credibility, and, compared to other governance models, has a lasting impact on corporate environmental governance, facilitating a win-win scenario for both the environment and the economy. Furthermore, the creation of environmental protection courts sends a positive signal to the public, encouraging enterprises to align their behaviors with governmental expectations of social responsibility. This enhances corporate green reputation, meeting the demands of relevant stakeholders. The establishment of such courts promotes a greater emphasis on environmental benefits alongside economic objectives, fostering a harmonious relationship between environmental protection and economic development. This environment can incentivize enterprises to innovate in pollution control technologies, reducing energy consumption and pollutant emissions during production activities, while also motivating them to pursue green innovations that improve their technological capabilities and international competitiveness. Ultimately, this initiative supports sustainable socio-economic development, protects environmental resources through judicial mechanisms, and ensures a livable planet for future generations.
The research presented in this paper acknowledges certain limitations that warrant further exploration. First, the issue of environmental protection enforcement across different administrative jurisdictions becomes increasingly pronounced due to the influence of local protectionist forces. Future studies could delve deeper into government protectionism in this context. Second, subsequent research could refine and expand upon the impact of ecological rule of law construction on other relevant elements of corporate green innovation, promoting proactive environmental governance among enterprises and encouraging them to adopt more active environmental management practices. Finally, in measuring the construction of ecological rule of law, we have chosen to use the establishment of environmental protection courts as a specific policy indicator, relying on manual data compilation from the year of implementation. However, this singular indicator may not fully encapsulate the broader scope of ecological rule of law construction. Thus, developing more precise measurement methodologies and improving access to relevant data is essential for studying the input-output efficiency of ecological rule of law construction in a more comprehensive manner. This area warrants further research to enhance our understanding of ecological rule of law effectiveness.
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Introduction: The recycling and repurposing of industrial solid waste is a crucial element of sustainable development in growing industrialized nations.Methods: An advanced two-stage Data Envelopment Analysis (DEA) model was employed to assess the effectiveness of solid waste management across all 31 provinces in China throughout the period spanning from 2016 to 2022.Results: The research findings suggest the following: (1) The circular economy has shown varying degrees of improvement in efficiency across most regions. (2) The average efficiency of the resource reuse stage is not higher than 0.4, indicating significant room for development that requires serious attention. (3) The western region has a higher average solid waste treatment efficiency of 0.65 compared to 0.53 in the eastern region, while the central region falls at a moderate level. Furthermore, this work employed sensitivity analysis to examine the resilience of regional efficiency research and discovered that the overall findings remain statistically significant. Hence, it is imperative to simultaneously enhance the internal administration of businesses and enhance governmental environmental legislation and regulations, with the aim of attaining the utmost optimization of resource recycling.Discussion: This paper presents policy suggestions for enhancing the solid waste recycling system within provincial government departments, while also establishing the foundation for the expansion of the solid waste treatment industry, which is necessary to accomplish the goal of “double carbon”.Keywords: pollution disposal, resource reuse, solid waste management, circular economy, DEA (data envelope analysis)
1 INTRODUCTION
The combination of industrial development and population growth has presented established and rising nations with a twofold challenge of limited resources and the need for pollution management. Addressing these issues necessitates global collaboration and collective action (Li et al., 2020). Hence, the establishment of an efficient and eco-conscious supply chain is a widely shared objective on a global scale. China’s fast industrialization in recent decades has resulted in climate change, disruption of ecosystems, and shortage of natural resources (Albores et al., 2016). Efficient waste disposal and recycling are crucial for addressing the environmental issues that arise from industrial activity. The waste generated by economic development is mainly industrial solid waste, which includes smelting waste, slag, and electronic waste. These wastes mainly come from heavily polluting industries such as the power industry, iron and steel industry, and manufacturing industry. Among them, electronic waste is currently one of the fastest growing types of waste (Quan et al., 2024). Industrial wastes have the potential to be partially recycled and used as a valuable resource after undergoing treatment. Hence, effective waste recycling management is particularly crucial for the sustainability of China.
To effectively manage and recycle the different types of waste generated throughout industrial production operations, it is essential to accurately categorize them. According to the characteristics of pollution, solid waste can be divided into general industrial solid waste (GISW) and hazardous waste. GISW refers to industrial solid waste that is not listed in the National Catalogue of Hazardous Wastes1 and does not have hazardous characteristics according to the national identification standards and methods. The main source is GISW. GISW encompasses non-hazardous waste generated by several industries, including industrial production, transportation, post and telecommunications. Hazardous waste typically exhibits one or more hazardous traits, including toxicity, corrosiveness, flammability, reactivity, or infectivity2 (Tang et al., 2024). Details on the types and industrial sources of industrial solid waste are shown in Supplementary Appendix SA1. Based on the most recent data from the Ministry of Ecology and Environment of China, the output of conventional industrial solid waste rose from 3.97 billion tons to 4.11 billion tons between 2021 and 2022. However, the comprehensive utilization rate experienced a decline, dropping from 61% to 57.66%. This suggests that the issue of ineffective processing remains present.
In 2019, the output of industrial hazardous waste increased to 81.26 million tons, up from 39.761 million tons in 2015. However, it decreased to 72.818 million tons for the first time in 2020. In 2020, it is important to mention that the usage and disposal of a certain product or resource surpassed its production for the first time. This could be attributed to the higher level of hazard associated with HISW (Guan et al., 2019), which has led to a growing focus on its appropriate disposal.
Countries worldwide have implemented environmental rules in response to the environmental issues caused by economic development and industrial output. These policies are based on the principles of circular economy. China’s developmental plan and environmental laws largely address pollution, waste management, and resource usage by adopting a circular economy approach (Li et al., 2010). Additionally, they embrace the practical business strategy of industrial symbiosis (Li et al., 2020). Despite the continuous efforts of the ecological environment department to enhance the legal system and innovate the environmental service mode, and the development of the environmental protection industry through collaboration with the science and technology department, the government still lacks appropriate methods to evaluate the efficiency and effectiveness of environmental policy. This is primarily due to the imperfect method (Sueyoshi et al., 2017), regional variations in circular economy efficiency (Li et al., 2010), and the scarcity of real-time data.
Regarding the solid waste treatment situation in different regions and cities in China. The Ministry of Ecology and Environment of China’s 2022 China Eco-environmental Statistics Annual Report reveals that Shanxi, Inner Mongolia, Hebei, Liaoning, and Shandong are the top five regions in terms of GISW production. These regions collectively produce 1.79 billion tons of waste, which accounts for 43.4% of the national GISW production. The provinces of Hebei, Shandong, Shanxi, Inner Mongolia, and Henan were the top five performers in the comprehensive usage of GISW. Together, they utilized a total of 910 million tons, which accounted for 38.2% of China’s total comprehensive utilization of GISW. Shanxi, Inner Mongolia, Liaoning, Hebei, and Shaanxi were the top five regions in terms of GISW disposal. Together, they had a total disposal capacity of 590 million tons, which accounted for 67.0% of the national capacity for GISW disposal.
The key to addressing environmental problems rests in waste disposal and recycling. Despite efforts to maximize resource efficiency and minimize pollutant output, pollution remediation remains crucial (Li et al., 2020). In the realm of circular economy, the effective usage of resources is intricately connected to the management of pollution. The purpose of this initiative is to efficiently utilize resources throughout the production phase, actively reduce environmental degradation, and attain the highest possible environmental advantages (Mardani et al., 2017). During the recycling stage, the goal is to optimize the use of resources and minimize the negative environmental effects of manufacturing by reusing industrial waste. However, most literature put forward suggestions on solid waste treatment from the perspective of solid waste treatment means (Su et al., 2021; Tang et al., 2020a; Wang et al., 2023; Wang and Cheng, 2024), and the research on efficiency in the recycling and reuse process is not yet fully mature. Especially, there is a lack of internal structural research to evaluate the efficiency of industrial waste treatment systems and the decomposition efficiency of pollution treatment and recovery subsystems.
In recent years, with the accelerated industrialization process and the deep-rooted concept of a circular carbon economy, environmental research in the field of industrial solid waste recycling has become a focus of global attention, attracting the attention of governments, international organizations and academia in many countries (Nogueira, 2023; Abdullah and Abedin, 2024; Ke et al., 2023; Neves et al., 2024). This trend is particularly pronounced in China, where the resource utilization rate of industrial solid waste has increased significantly, showing good momentum. However, the continuous improvement of the industrialization level of society is also accompanied by the aggravation of resource constraints, posing a severe challenge to the safe disposal strategy of industrial waste.
Kirchherr et al. (2017) pointed out that in the face of increasing waste production and limited natural resource reserves, a deeper understanding and balance between economic needs and environmental protection has become a key research topic that needs to be urgently addressed. The continuous and large-scale generation of industrial solid waste not only aggravates environmental damage, but also accelerates the depletion of natural resources. At present, most countries still rely on traditional methods of solid waste treatment, including open burning, landfilling, direct incineration, composting, and pyrolysis (Maturi et al., 2022). Although these methods have alleviated the problem of waste accumulation to some extent, their side effects should not be ignored. In Europe, for example, according to 2017 data, 23% of municipal solid waste was sent to landfills for disposal, which not only led to the generation and spread of harmful gases and leachate, but also caused serious environmental and health risks (Sauve and Van Acker, 2020).
It is worth noting that the current technology for the reuse and recycling of industrial solid waste faces many limitations, making it difficult to effectively curb the trend of environmental degradation. At the same time, traditional treatment methods are also unable to meet the long-term needs of sustainable development. Therefore, it is particularly urgent to conduct a comprehensive and in-depth exploration of the mechanism for the reuse and recycling of industrial solid waste. This process involves converting waste into reusable resources or energy. The evaluation of its efficiency has become a core indicator for measuring the development level in this field, which is directly related to the improvement of both economic benefits and environmental quality (Majchrowska et al., 2022). By optimizing the recycling process, we can not only significantly reduce the amount of solid waste produced and effectively alleviate the pressure on the environment, but also improve the efficiency of resource recycling, contributing to the harmonious coexistence of economy, society and environment.
At present, there have been many research results on efficiency evaluation at home and abroad. Kundariya et al. (2021) examined emerging strategies and monitoring tools for municipal solid waste treatment, discussed advanced technologies and innovations that cover the environmental and economic aspects of waste management technologies. Tsai et al. (2020) applied the entropy weight method to conduct systematic data-driven literature metrology analysis on municipal solid waste management, determine effective improvement indicators, and provide comparative data between regions. Bui et al. (2022) supplemented the knowledge of sustainable solid waste management and established an effective hierarchical model. It also provides a direction for practice. Chien et al. (2023) devised a structured hierarchy outlining sustainable solid waste interdependencies, transforming ambiguous and intricate features into quantifiable characteristics. Rodrigues et al. (2021) innovatively proposed a four-stage approach based on the AESA theory, aiming at accurately assessing its critical impact on systemic and Joule scales. Although scholars have recognized the importance of solid waste management for environmental protection, most of them focus on solid waste treatment and neglect the evaluation of its recycling and reuse process. In particular, the analysis of the internal structure of industrial waste treatment system is still immature in existing research, and further excavation is urgently needed.
Maximizing economic value with minimal investment and waste emissions is critical for economic systems, also known as ISW efficiency. Eco-efficiency is defined as the ability to produce products and services with little use of natural resources and negative environmental repercussions (Long et al., 2017; Oggioni et al., 2011). Previous studies have primarily assessed ecological efficiency at a single stage, with researchers focused solely on the industrial sectors that directly generate carbon emissions, frequently overlooking government services (Li et al., 2017). Despite the efforts of several researchers. Due to the need for new approaches, assessing the efficacy of these government practical solutions remains difficult (Sueyoshi and Goto, 2019), as do short implementation cycles and a lack of instant data. The influence of government supply of public goods and services on industry and overall efficiency warrants more investigation (De Souza et al., 2021). Many scholars investigated eco-efficiency in China, at the provincial, regional, and national levels (Liou and Wu, 2011).
Undoubtedly, the current research on solid waste treatment exhibits a clear inclination towards specific provinces. While the research object provides a comprehensive analysis, it fails to consider the interplay between economic zones. Furthermore, the aforementioned documents have a limited range of cut-in angles, primarily focusing on the management of solid waste while disregarding the comprehensive industrial waste treatment system. Although early study has been undertaken on the effectiveness of industrial solid waste treatment, there is a lack of in-depth research on regional disparities in China. Given the significant differences in economic development levels and resource conditions across China, it is especially important to conduct a thorough analysis of the efficiency of industrial solid waste treatment in each region, as this is critical for the precise formulation and implementation of appropriate policies. This also improves the precision of policy design and implementation.
The importance of effective management of solid waste for improving overall efficiency is self-evident. However, previous research has been limited to the evaluation of the efficiency of recycling and reuse processes, with a particular focus on the effectiveness of treatment technologies used at the beginning of industrial solid waste generation (De Souza et al., 2022; Luo et al., 2022). This research paradigm faces two core limitations: a single perspective and a lack of breadth; and it ignores the inherent connections and interactions between research objects. Specifically, current research generally exhibits a regional focus, that is, it is mainly concentrated on independent analysis within each province, ignoring the potential synergies and interactions between urban agglomerations and economic zones in solid waste management. In fact, due to close economic and geographical ties, the strategies and practices of solid waste management in provinces within the same economic zone often complement each other, learn from each other, and jointly improve management efficiency. Therefore, broadening the research perspective and considering urban agglomerations and economic zones as a whole is crucial for a deeper understanding and optimization of the solid waste management system. In addition, the existing literature on the effectiveness of industrial solid waste treatment is often limited to micro-level discussions of technical aspects, neglecting the integrity and coordination of the entire waste management process from a macro-system perspective. This one-sidedness has led to an inadequate assessment of the overall management efficiency and environmental impact.
This paper conducts an analysis using 31 regions from 2016 to 2022 as research samples. It employs a two-stage DEA model that takes into account unexpected output and sensitivity analysis. The objective is to evaluate the efficiency of industrial waste treatment in different regions of mainland China, focusing on the circular economy perspective. The two-stage DEA model is employed to assess and compare the effectiveness of solid waste treatment and reuse in different regions. This research examines the variability in efficiency among urban agglomerations by reviewing relevant literature and doing a sensitivity analysis using the one-by-one elimination technique to test the reliability of the findings. By evaluating the efficiency of industrial solid waste disposal in each province, this paper provides a reference for the development of environmental policies in China and other emerging countries. In addition, by analyzing the differences in efficiency among provinces, this paper helps to promote the exchange of experience and technology transfer in waste management between regions, and thus promotes the construction of waste recycling systems.
Compared with the limitations of previous literature in this field, the innovations of this paper are as follows. On the one hand, this research employs a two-stage DEA model to analyze efficiency in the context of circular economy, taking into account the two aspects of waste: pollution treatment and resource reuse. The assessment is decomposed into a pollution treatment stage (PDS) and a resource reuse stage (RRS). The current body of literature on assessing the effectiveness of industrial waste treatment primarily focuses on the treatment of solid waste from a singular standpoint (Tang et al., 2020a; Wang et al., 2023; Tang et al., 2020b; Wang and Cheng, 2024). However, this approach overlooks the reuse phase of solid waste, which hinders the development of appropriate policies and advancements in the waste treatment industry. Conversely, this article adopts a circular economy perspective and thoroughly takes into account the integrity of the industrial waste treatment system. Integrating resource reuse into the efficiency assessment system can greatly enhance resource use.
On the other hand, the research examines the variations in efficiency across the central, western, and eastern areas and conducts a dynamic analysis of the disparity in levels between provinces. Unlike prior studies that just examines disparities among provinces (Ji et al., 2023; Zhang et al., 2021). This paper examines many urban agglomerations simultaneously, considering both the individual components and the collective entity as a whole. The development disparities among the eastern, central, and western areas of China are distinct and representative. Evaluating efficiency based on this classification method helps each region choose a more appropriate approach to maximize resource usage. The effectiveness of solid waste management in specific provinces is not applicable to provinces in various economic zones due to significant disparities in resource allocation and developmental progress across areas. Hence, it is crucial to evaluate the efficacy of solid waste management across the eastern, central, and western regions of China. I Furthermore, sensitivity analysis, commonly employed in the medical domain to assess the reliability of research results, is infrequently implemented in this particular discipline (Tang et al., 2020a; Ji et al., 2023; Wang and Feng, 2020). This research employs sensitivity analysis to further confirm the veracity of the conclusions based on statistical methodologies.
The remainder of this paper is arranged as follows: Part 2 is a Research Methods and Models, Part 3 is an empirical analysis, Part 4 is a discussion, and Part 5 is a conclusion and recommendations.
2 RESEARCH METHODS AND MODELS
2.1 Research methodology on industrial solid waste
There are many methods to evaluate efficiency, mainly including parametric method and non-parametric method. The former includes stochastic frontier analysis, distribution-free method, life cycle method, SFA, TFA, DFA, etc., which is mainly used in the performance analysis of financial institutions, while the latter includes data envelopment analysis, DEA, etc. To measure eco-efficiency, data envelopment analysis (DEA) based on total factor production processes is often used to assess the relative efficiency of decision units (DMU) (Charnes et al., 1978).
The utilization of DEA technology in investigating solid waste efficiency has gained widespread application across numerous countries and regions (Simões and Marques, 2012). For example, Alizadeh et al. (2023) compared the eco-efficiency index of urban solid waste management systems in Iran. Pérez-López et al. (2018) studied the long-term scale efficiency of solid waste treatment services. Efficiency score in DEA is the ratio of output and input, and the weight of input and output will be generated automatically, so large samples or predictive parameter functions are not required. Due to its impartiality, this evaluation method has become the most favored approach in the realm of environmental issues (Lampe and Hilgers, 2015).
After about 40 years of development, Seiford and Zhu (1999), a key DEA model analyzed from two stages was introduced, which deals with the evaluation of system efficiency and its inherent structure. The traditional DEA models are limited to production assessment, ignoring the efficiency of waste treatment and resource reuse, while the two-stage network DEA framework reveals the inadequacy of management within the government and the industry. Managers can implement improved dimensional analysis methods or organizational strategies to improve recycling and reuse efficiency, thereby strengthening cooperation among them to improve ecological efficiency. Utilizing the enhanced DEA model, Zhou and Zhang (2019) examined the disparities and determinants influencing the efficiency of industrial solid waste resource utilization across 31 regions of China in 2017. Li et al. (2020) based on the Environmental Research Protection Institute (EPRA), a two-stage circular economy DEA model was established to accurately evaluate the efficiency of industrial waste recycling, treatment, and reuse in China.
It can be seen that the use of DEA method for solid waste efficiency has been widely recognized by scholars (Tang et al., 2024; Liu et al., 2023; Yang and Li, 2018). The method has been continuously improved. This study aims to address the limits of the standard DEA model and focuses on the circular economy. To do this, focused improvements and optimizations are made to the traditional DEA model framework. Furthermore, to prevent any distortion of the findings due to certain factors, this study used the one-by-one elimination approach to conduct sensitivity analysis and assess the reliability of the conclusion on regional efficiency. Hence, this study employs a two-stage DEA model to assess the effectiveness of solid waste utilization in different locations of China. Additionally, it ingeniously integrates the resource reuse stage into the model to account for its recycling value. Simultaneously, the trustworthiness of the finding is also confirmed using sensitivity analysis.
2.2 DEA model
Data Envelopment Analysis (DEA) was proposed by Charnes et al. (1978), which is used to evaluate the effectiveness of multiple decision-making units (DMUs) with multiple inputs and multiple outputs. The DEA method does not need to assume the form of the production function between the inputs and outputs, and is a non-parametric method of analysis. Since then, scholars have also derived a variety of models such as Slack-Based Measure (SBM) mode (Tone, 2001), Network DEA model (Färe et al., 2007) and Dynamic Network DEA model based on weighted relaxation measures (Tone and Tsutsui, 2014) among many others.
This research introduces a novel approach by incorporating the reuse stage of solid waste into the DEA evaluation system, which is a departure from earlier studies that mostly focused on the treatment of solid waste. Additionally, the paper takes into account the overall integrity of the solid waste treatment system. This research employs a two-stage circular DEA model to evaluate the management level of solid waste in different locations, focusing on solid waste treatment and reuse, from the standpoint of circular economy.
Considering the complete industrial solid waste treatment system, this paper refers to Zhang et al. (2021), which utilizes a two-stage dynamic recycling DDF model, and the specific flow framework diagram is shown in Figure 1.
[image: Flowchart depicting two periods, T and T+1, each with PDS Stage and RRS Stage. Inputs include labor and industrial waste, while outputs involve recycled waste and profits. An arrow shows carry-over of original fixed asset value between periods.]FIGURE 1 | Schematic diagram of the two-stage framework. Source: own analysis.
According to the definition given by the National Bureau of Statistics of China3, the amount of hazardous waste generated refers to the actual amount of hazardous waste generated by the survey target throughout the year. The amount of comprehensive utilization of GISW refers to the amount of solid waste that enterprises have extracted from solid waste or converted into useable resources, energy and other raw materials through recycling, processing, circulation, exchange and other means during the reporting period. The amount of GISW disposal refers to the amount of industrial solid waste that an enterprise incinerates or uses other methods to change the physical, chemical, or biological properties of industrial solid waste to reduce or eliminate its hazardous components during the reporting period. It also refers to the amount of solid waste that is finally placed in a landfill that meets the requirements of environmental protection regulations. The amount of hazardous waste utilized for disposal refers to the sum of the comprehensive utilization and disposal of hazardous waste. Among them, the comprehensive utilization of hazardous waste refers to the amount of hazardous waste consumed in the activities of the survey subjects in the current year that extract substances from hazardous waste as raw materials or fuels. The amount of hazardous waste disposed of refers to the activities of enterprises that incinerate hazardous waste and use other methods that change the physical, chemical, and biological properties of industrial solid waste during the reporting period to reduce or eliminate its hazardous components.
Suppose there are [image: Mathematical expression showing "DMU subscript j", where j ranges from 1 to N.], each containing [image: Please upload the image you want me to generate the alt text for, and I will be happy to help!] cycles [image: It seems there was a mix-up with your message. Could you please upload the image or provide a URL? You can also add a caption for context if necessary.], and [image: Please upload the image or provide a URL, and I will help generate the alternate text for you.] stages [image: It seems there was an error with your request. Could you please upload the image or provide a URL? Optionally, you can add a caption for additional context.]. Each stage contains within it an input [image: If you upload or provide a URL for the image, I'll be able to generate the alt text for you. You can add a caption for context, too.] and an output [image: Please upload the image or provide a URL so I can generate the alt text for you.]. Each stage is connected with [image: Mathematical expression showing \( z \) raised to the superscript \( l \) with subscripts \( j \) and \( t \).] (Link) and each cycle is connected with [image: The image shows a mathematical expression with the variable z subscript j t, and a superscript c.] (Carry-over).
[image: The expression "x subscript ajt superscript PDS is greater than or equal to zero" is shown.] is the input for the PDS stage, mainly employees and number of industrial enterprises. [image: Mathematical expression showing \( x_{ajt}^{RRS} \geq 0 \).] is the input for the RRS stage, mainly investment in solid waste management and environment and utilities management practitioners. [image: Mathematical expression showing \( y_{bjt}^{PDS} \geq 0 \).] is the output for the PDS stage, mainly total profits and hazardous waste generation. [image: Mathematical expression displaying \( y_{ajt}^{RRS} \geq 0 \).] is the output for the RRS stage, mainly comprehensive utilization of waste、waste disposal and comprehensive utilization and disposal of hazardous waste.
[image: Mathematical expression showing \( z^{L1}_{jt} \geq 0 \).] is the connecting link (Link1) from the PDS stage to the RRS stage, which in this paper refers to the waste generation. [image: Mathematical expression depicting \( z_{jt}^{L2} \geq 0 \).] is the connecting link (Link1) from the RRS stage to the PDS stage, which in this paper refers to the recycled solid wastes. [image: Mathematical notation showing the variable \( z^c_{jt} \), where the letter "z" is subscripted with "j" and "t," and superscripted with "c."] denotes the carryover variable for cycle T referring to cycle T+1, which in this paper refers to original value of fixed assets.
Referring to Zhang et al. (2021), the efficiency of [image: It seems you've included a mathematical expression instead of an image. If you have an image you'd like me to describe, please upload it or provide a link.] is shown in Equation 1.
[image: Maximization formula showing the summation from r equals 1 to R. The expression inside the summation includes a xi sub r multiplier for the sum of r sub r to the power of POS times lambda to the power of POS plus r sub r to the power of RBS times lambda to the power of RBS.]
Here, [image: It seems there was an error in submitting the image. Please try uploading the image again or provide a URL if available.] is the positive weight assigned to period [image: Please upload the image or provide a URL so I can generate the alt text for you.]. [image: Mathematical expression showing two variables, \( r_t^{PDS} \) and \( r_t^{RRS} \), indicating possible rates or ratios associated with PDS and RRS at time \( t \).] are the positive relative weights of the PDS an RRS stages in period [image: It seems that the image was not uploaded correctly. Please try uploading the image again, and I will be happy to help with the alternate text.]
S.T.
[image: Mathematical equations are displayed in two columns labeled "PDS stage" and "RRS stage." Each stage contains a series of summation equations, constraints for inputs and outputs, and equations defining good and bad outputs, as well as equalities reflecting the stage operations. The structure of the equations is similar in both columns, with each displaying constraints and equalities relevant to their respective stage.]Here, [image: The expression shows the inequality lambda sub j t superscript PDS is greater than or equal to zero.] and [image: The mathematical expression shows \(\lambda_{jt}^{RRS} \geq 0\).] are the intensity vectors of [image: It seems there might have been an error with the image upload. Could you please try uploading the image again or provide a URL? If you have a caption or context, feel free to add that as well.] corresponding to urban PDS and RRS sub-systems, respectively.
[image: Mathematical equations representing links between PDS and RRS stages. The first equation shows a summation from \(i_{L1} + 1\) to \(i_{PDS}\) equaling a sum from \(i_{L1}\) to \(i_{RRS}\), linking PDS to RRS. The second equation describes a similar summation pattern, linking RRS to PDS.]
[image: Summation equation showing equality between two series: the sum from j equals one to c of z sub j to the power of c times lambda sub j plus one of PDS equals the sum from j equals one to c of z sub j to the power of c times lambda sub rf of RSS. Labeled "Period links."]
The efficiencies of inputs, desirable output and undesirable output are shown in Equations 2–4 respectively (Hu and Wang, 2006).
Input:
[image: Formula representing TFE as the ratio of Target Input to Actual Input, labeled equation two.]
Desirable output:
[image: Equation showing TFE equals Actual Desirable Input divided by Target Desirable Input. The equation is labeled as number three.]
Undesirable output:
[image: The image displays a formula: TFE equals Target Undesirable Input divided by Actual Undesirable Input, annotated as equation (4).]
To test the robustness of regional efficiency analysis, this article uses a one-by-one exclusion method for sensitivity analysis.
2.3 Sensitivity analysis
To test the robustness of regional efficiency analysis, this article uses a one-by-one exclusion method for sensitivity analysis. The Method is as follows.
Research object: The efficiency level of solid waste treatment in the eastern and western regions of China.
Exclusion criteria: ① Research with incomplete or unavailable data; ② Research with unclear experimental methods or unreliable data; ③ Repeated published research.
Literature retrieval strategy: By searching databases such as Web of Science, ScienceDirect, and Spring Link, publicly published research on the efficiency or ecological efficiency of solid waste management in eastern and western China was conducted from 2015 to May 2024, with search terms including China solid waste, industrial sector, ecological efficiency, regional efficiency, etc.
Literature screening: The researchers in this article independently screen based on the inclusion and exclusion criteria of literature, excluding non-regional experiments and literature reviews. They search the full text of positive and negative literature before screening. If there are differences, they should be discussed and resolved, and other researchers should assist in resolving them if necessary.
3 EMPIRICAL ANALYSIS
3.1 Data description and statistical analysis
The dataset in this article covers 31 regions from 2016 to 2022 (including 22 provinces, 5 autonomous regions, and 4 municipalities in Chinese Mainland), and uses 7 years of industrial waste panel data to test the efficiency of waste treatment. Due to insufficient data in some regions, these areas were omitted from the analysis. This article follows the basic classification of industrial solid waste by the Chinese Ministry of Ecology and Environment: GISW and hazardous solid waste, and then selects the corresponding data from the China Environmental Statistics Yearbook. The data mainly comes from the China Environmental Statistical Yearbook, China Population and Employment Statistical Yearbook and China Statistical Yearbook.
Solid waste generated by enterprises during industrial production processes that does not fall into the category of hazardous waste is collectively referred to as GISW. This type of waste covers a wide range, such as tailings, gangue, fly ash, slag generated during the smelting process, slag, and desulfurization gypsum, etc., and there are many different types, each with very different properties (Wang and Cheng, 2024). The main methods of dealing with these wastes are divided into four categories: comprehensive utilization, storage, disposal, and dumping and discarding. According to the China National Statistical Yearbook, dumping and discarding waste accounts for a very small proportion, and comprehensive utilization is the main way to deal with GISW, followed by storage and disposal.
Hazardous waste refers to solid and liquid waste that is included in the national list or identified according to national standards and methods as having hazardous characteristics such as corrosivity, toxicity, flammability, reactivity, infectivity, etc., or that is not clearly specified but may be harmful to the environment and human health (Wu et al., 2024). The scope is very broad, including a wide range of wastes from the medical industry (such as infectious, injurious, pathological, chemical and pharmaceutical wastes), oil sludge and oil feet produced by the petroleum industry, and fly ash generated by the incineration of domestic waste. Given their diverse sources and different natures, the China Statistical Yearbook shows that China’s treatment of hazardous waste is dominated by the strategy of comprehensive utilization as a resource.
More specific classification of solid waste and industrial sources is shown in Supplementary Appendix SA1.
Table 1 shows the descriptive statistical data of the research indicators. The comprehensive utilization of industrial solid waste remains the core approach for its treatment. From 2016 to 2022, the average production, utilization, and disposal of GISW in 31 regions were 38.6 million tons, 21.4 million tons, and 920 million tons, respectively.
TABLE 1 | Chinese industrial solid waste generation and treatment from 2015 to 2021.
[image: Table displaying data from 2016 to 2022 on industrial waste. It shows general industrial solid waste output, utilization, and disposal in billion tons, and hazardous waste output, utilization, and disposal in million tons. For example, in 2022, general waste output was 39.7 billion tons, and hazardous waste output was 86.536 million tons. Source: own analysis.]Figure 2 shows the trend of the production and utilization of industrial solid waste in China from 2016 to 2022. The results showed that the utilization and disposal of GISW remained relatively stable, and there was a slight increase in 2020. Since 2016, the amount of industrial solid waste produced has been rising slowly but steadily. The production of solid waste has been increasing year by year and peaked at approximately 4.41 billion tons in 2020. But that figure then dropped to 3.68 billion tons in 2021, a decline of about 16.6 percent. In 2022, the output of solid waste affected by the environment rose again to 3.97 billion tons, but only increased by about 7.9%, and the production and treatment capacity of GISW still needs to be improved compared with the growth volume.
[image: Two line graphs showing industrial solid waste trends from 2016 to 2022. The first graph shows common industrial waste in billion tons, with output peaking at 44.1 in 2020 and declining to 39.7 in 2022. Utilization and disposal figures are also shown. The second graph displays hazardous industrial waste in million tons, with output peaking at 81.26 in 2020 and decreasing to 72.818 in 2022, alongside utilization and disposal data.]FIGURE 2 | The trend of the production and utilization of industrial solid waste. Source: own analysis.
In contrast, the production and utilization rate of hazardous waste disposal showed a rapid growth trend. In 2021, the amount of utilization and disposal of hazardous waste exceeded the amount of production for the first time, reaching 59.12 million tons. This indicates that the disposal efficiency of hazardous waste in China shows a favorable development trend and further proves the important value of this paper’s analysis of China’s industrial solid waste.
3.2 Total efficiency score of solid waste
Figure 3 shows the overall efficiency score for each provincial administrative region. See Supplementary Appendix SA2 for the values. Among them, Beijing, Qinghai and Xinjiang ranked top with a total efficiency close to 1, indicating that these three regions attach great importance to industrial solid waste disposal and environmental protection, and have achieved good results in solid waste disposal. At the same time, Inner Mongolia, Shanxi and other regions tend to perform well at 0.9 points, maintaining a high efficiency of solid waste treatment. On the contrary, Chongqing, Fujian, Jiangsu and other regions have poor efficiency scores of about 0.38, reflecting the need for further improvement in solid waste management and pollution prevention.
[image: Bar graph showing scores of Chinese cities. Beijing and Qinghai have the highest scores around 1.000, while cities like Fujian and Jiangsu have lower scores near 0.300.]FIGURE 3 | Total efficiency scores in each province. Source: own analysis.
Among the sample regions, Beijing and Qinghai have the highest solid waste management efficiency, at 1. Taking Beijing as an example, the Beijing Economic-Technological Development Area has established a resource exchange for the disposal of solid waste. This not only contributes to the improvement of the integrated solid waste management platform, but also explores a digital management model that serves the entire life cycle of industrial solid waste. In addition, strict environmental supervision, strong policy support and high public awareness of environmental governance have greatly contributed to the improvement of solid waste management efficiency in Beijing.
Among the sample regions, the bottom five are Tianjin, Guangdong (Ji et al., 2023), Chongqing, Fujian and Jiangsu. Take Jiangsu Province and Guangdong Province as examples. Guangdong Province and Jiangsu Province are two of the leading regions in terms of China’s economic development. In 2022, the GDP of the two regions will be 12,911.858 billion yuan and 12,287.6 billion yuan respectively. The rapid economic development has led to a continuous increase in the amount of solid waste generated. Therefore, the contradiction between supply and demand caused by the rapid increase in the treatment capacity of solid waste and the amount generated in Guangdong Province and Jiangsu Province is becoming increasingly prominent. In particular, there is a lack of regional treatment facilities for industrial solid waste and hazardous waste, resulting in an overall low efficiency of solid waste management. In addition, there are historical solid waste stockpiles in some areas of Guangdong Province, and it will take time and resources to solve these problems.
China does face many challenges in solid waste management, and some regions in China have low efficiency in solid waste treatment due to a lack of advanced technology (Li et al., 2020). According to the 2021 Classification Catalogue of Solid Waste and the National Catalogue of Hazardous Waste released by the Ministry of Ecology and Environment of China, there are 209 types of general industrial waste and 467 types of hazardous waste in China, each with a different main component. The Chinese Solid Waste Classification Catalogue and Hazardous Waste Catalogue have a wide variety of waste types, each with different components, which increases the challenge of solid waste treatment. The overly complex and diverse industrial solid waste makes management and treatment more difficult.
Overall, solid waste management in most regions of China still needs significant improvement, with only seven regions achieving an efficiency of over 0.7. In order to solve this problem, the Chinese government has continuously increased investment and issued a series of policies and regulations, such as the Solid Waste Pollution Prevention and Control Law of the People’s Republic of China, to comprehensively strengthen management and governance measures.
3.3 Staged efficiency analysis
Figure 4 shows the efficiency distribution of industrial solid waste in pollution treatment stage (PDS) and resource reuse stage (RRS) in different regions of China from 2019 to 2022. See Supplementary Appendix SA3 for the values.
[image: Heatmap comparing reuse and disposal trends across various provinces from 2019 to 2023. Left side shows reuse in shades of green; right side displays disposal in shades of pink. Vertical axis lists provinces, while horizontal axis covers years. Color intensity represents data values.]FIGURE 4 | Efficiency score and ranking of solid waste disposal and reuse. Source: own analysis.
3.3.1 Stage efficiency score of solid waste pollution treatment stage (PDS)
During the overall study period, the resource reuse stage of most provinces in China has been actively improved, but the performance of industrial solid waste pollution treatment stage is somewhat mixed. Among them, Beijing and Qinghai performed best, and the scores from 2019 to 2022 were 1, continuing to maintain the first place. With the exception of 2019, the efficiency scores of Shanghai and Xinjiang in all years were 1, and Beijing and Shanghai reflected better solid waste treatment efficiency due to their advanced industrial structure. However, Jiangsu, Chongqing, Guangdong and other provinces, due to their special geographical location or high degree of industrialization, are basically lagging behind in the annual ranking, reflecting that these regions have insufficient investment in solid waste treatment technology and facilities while developing the economy, and industrial solid waste management and pollution prevention and control need to be improved.
It can be clearly seen from Figure 4 that the score and ranking of Hebei Province have significantly decreased, and the efficiency of waste treatment and utilization has significantly decreased. In 2019, Hebei Province ranked first in solid waste treatment efficiency and ninth in utilization efficiency. However, it has been experiencing a decline ever since, falling to 22nd place by 2022. These regions accumulate substantial industrial solid waste, yet frequent floods wash about a quarter of it into farmlands, leading to persistent heavy metal contamination that is challenging to break down, thereby diminishing the efficiency of industrial solid waste management. Tianjin faces a similar scenario; its industrial solid waste disposal efficiency score remained high from 2019 to 2021, but plummeted to the lowest rank in 2022 with an efficiency value of 0.2274.
With its unique geographical advantages, Hainan Province has developed into a water-saving city (Zhuang et al., 2022), and its efficiency score has improved significantly. Starting in 2021, Hainan Province will continue to improve its solid waste management, and the efficiency of both stages will remain stable at 1 for the next 2 years. At the same time, Taipei City also remained stable in terms of industrial solid waste disposal efficiency, ranking first from 2019 to 2022, and the utilization efficiency score showed a fluctuating but generally positive trend. This shows that these regions have always attached importance to the management and disposal of industrial solid waste, and efficient and environmentally friendly governance has played an important role. Meanwhile, the government’s policy support and industrial transformation have enabled their solid waste treatment efficiency to increase year by year.
It is also worth noting that there are significant differences in the efficiency of industrial solid waste treatment and utilization in many regions. For example, the efficiency score of industrial solid waste utilization in Hunan and Ningxia from 2019 to 2022 were both 1 point, and the performance was good. However, their industrial solid waste treatment efficiency scores lagged behind in China, ranking behind 25 points. This may be due to the fact that although this area of our country has relatively advanced solid waste recycling technology and means, and has achieved certain results in waste recycling, some industrial areas are basically not close to the city. Under these circumstances, it is difficult for local industries to consume such large quantities of products. Due to higher transportation costs and increasingly stringent environmental protection measures in cities along the river, producers in these areas can only be required to dispose of as much product as possible locally. The huge output and high treatment costs have also produced greater pressure on the treatment of industrial solid waste in these areas.
3.3.2 Stage efficiency score of solid waste resource reuse stage (RRS)
Table 2 shows the efficiency of solid waste treatment investment in the recycling stage from 2019 to 2022.
TABLE 2 | Investment efficiency of solid waste treatment.
[image: Table showing index values for various Chinese provinces from 2019 to 2022. Each row lists a province with corresponding yearly values. Anhui starts at 0.014 in 2019, rising to 0.858 by 2022. Beijing consistently holds a value of 1.000. The average values increase yearly from 0.438 in 2019 to 0.719 in 2022.]As can be seen from Table 2, from 2019 to 2022, Significant improvement in solid waste treatment efficiency across China, signifying positive outcomes in the reuse stage of solid waste (Guo et al., 2021). The average investment efficiency in reuse rose from 0.438 in 2019 to 0.719 in 2022. This surge is primarily attributed to technological innovation, supportive government policies, and heightened public concern for the environment.
From the perspective of individual differences, the efficiency of solid waste reuse among different regions shows a polarization phenomenon (Li et al., 2023). This is mainly related to the investment environment, government support and technical level. Developed regions may have more resources and funds to invest in solid waste reuse, while less developed regions may struggle to attract sufficient investment due to limited resources and technology. In high-efficiency regions such as Beijing, Hunan, Ningxia, Qinghai and Xinjiang, the solid waste reuse efficiency has been maintained at the highest level of 1 for 4 years. However, in some areas, such as Fujian and Jiangsu, the efficiency value was always below 0.4 during the study period, which caused a large gap with other regions. The inefficiency of investment in such developed regions may be due to the unhealthy competitive landscape within the solid waste recycling industry. The emergency of over-motivation will lead to the dispersion of resources, which is not conducive to the formation of effective investment concentration. Several cities in the lower ranking, such as Shandong, Zhejiang, Anhui, have highly developed industrial zones and industrial bases. These developed provinces or cities have rapid economic development, high urbanization rate, and substantial increase in solid waste generation. This is also a significant reason for its inefficiency.
When exploring the regional differences in the efficiency of solid waste reuse, a significant polarization trend is evident, which profoundly reflects the combined impact of core factors such as the investment environment, government policy direction, and technological level. Specifically, some regions have demonstrated significant advantages in the recycling of solid waste and have maintained near-optimal or optimal efficiency levels for many years (e.g., Beijing, Hunan, Ningxia, Qinghai, and Xinjiang, where efficiency indicators have remained near-optimal or optimal for four consecutive years). In contrast, some economically developed regions, such as Fujian and Jiangsu, have long hovered at a relatively low level of solid waste recycling efficiency (with efficiency values consistently below 0.4), creating a significant gap with the high-efficiency regions. Further analysis shows that even in some traditionally developed regions, the investment efficiency of the solid waste recycling industry is unsatisfactory, which may be attributed to the unreasonable competitive structure within the industry. Excessive competition and distorted incentives may lead to ineffective integration and concentration of resources, but instead promote their decentralized allocation, which in turn hinders the formation of efficient investment models and the realization of economies of scale. The lower-ranking cities such as Shandong, Zhejiang and Anhui have highly developed industrial bases. Specifically, the concentration of economic activity and the increase in the level of urbanization have not only promoted socio-economic prosperity, but have also posed more severe challenges to the solid waste management system, including but not limited to the surge in the amount of solid waste generated, the upgrading of the demand for treatment technologies, and the improvement of the resource recovery and recycling system.
According to De Oliveira et al. (2022), Dou et al. (2024) and Iqbal et al. (2024), the investment efficiency of solid waste management refers to the ratio of economic, environmental and social benefits that can be obtained when a certain amount of funds and resources are invested in waste treatment and management. Simply put, it is the relationship between the cost of the input and the benefit obtained in the treatment of solid waste. High investment efficiency means that under the same investment, more benefits can be obtained, including resource recovery, environmental protection, social benefits and other benefits. In order to improve the investment efficiency of solid waste management, comprehensive optimization in technology, management and policy is needed to achieve maximum benefits.
Under the framework of the 2019 investment efficiency assessment of solid waste governance, the results show that only 11 regions have achieved an efficiency level of more than 0.8, while 8 regions have an efficiency level below 0.1. This also shows that most regions nationwide still need to increase their efforts in terms of investment in solid waste governance in order to maximize resource recycling. Efficient investment efficiency in solid waste is not only a key driver of environmental protection and resource conservation, but also an effective way to enhance the environmental image and market competitiveness of enterprises or organizations. The three regions at the bottom of the list are Hainan, Fujian and Guangxi. Entering 2020, the investment efficiency in the field of solid waste treatment has shown a positive trend, with the number of regions with an efficiency of more than 0.7 increasing to 12, accounting for 38.7% of the total sample, indicating an improvement in the overall effectiveness of solid waste management. Although the investment efficiency in solid waste management in some regions such as Sichuan, Inner Mongolia and Tibet is still relatively low, these regions have shown significant signs of improvement compared to the previous year.
However, the 2021 data reveals an unexpected turn of events, with the national average solid waste treatment efficiency slightly decreasing from 0.611 in 2020 to a level close to 0.584 in 2018. Despite fluctuations in the overall trend, it is worth noting that some cities, such as Inner Mongolia, have shown a steady increase in solid waste reuse (Li et al., 2023). In particular, the Inner Mongolia Autonomous Region, which has been among the top producers of GISW in China since 2019, has continued to innovate and optimize its solid waste treatment methods (Guo et al., 2021). Its transformation from relative backwardness to gradually approaching the leading level not only marks the Inner Mongolia Autonomous Region’s remarkable achievements and progress in the field of solid waste treatment, but also verifies the effective use and return of its investment funds. Inner Mongolia has quickly adapted and found a solid waste treatment path that suits the province’s actual situation, successfully promoting a regional green transformation. By 2022, the average investment efficiency of solid waste treatment across the country finally crossed the threshold of 0.7, reaching 0.719. Compared with 2019, the overall resource reuse level has achieved a significant improvement of 28.1%. This achievement not only affirms the efforts and investment made in the early stages, but also lays a solid foundation for future solid waste management. In addition, since 2019, China has also made significant progress in the field of hazardous waste management. The hazardous waste treatment and e-waste dismantling capabilities of some provinces and cities have achieved a qualitative leap, far exceeding historical levels (Guo et al., 2021), which indicates that China is steadily moving towards new heights in environmental protection and resource recycling.
Overall, the level of solid waste reuse in China has shown a significant improvement trend in most regions. With the continuous upgrading of pollution control technology and the enhancement of environmental awareness among citizens, solid waste management has also received more investment. During this period, China’s total investment in environmental pollution control skyrocketed from 101.49 billion yuan (about 14.138 billion dollars) to 903.72 billion yuan (about 125.888 billion dollars). The investment in provincial and municipal environmental infrastructure has increased from 51.55 billion yuan (about 7.181 billion dollars) to 522.299 billion yuan (about 72.756 billion dollars). Provincial and municipal environmental sanitation investment increased from 8.43 billion yuan (about 1.174 billion dollars) to 50.575 billion yuan (about 7.045 billion dollars). These factors collectively promote the recycling and reuse of industrial solid waste, driving investment in related infrastructure construction and economic growth.
In terms of the comprehensive solid waste treatment rates of each region in China from 2019 to 2022, the integrated treatment rate of solid waste is selected in this paper as the ratio of production to comprehensive utilization. See Supplementary Appendix SA4 for details. The closer the treatment rate is to 100%, the higher the efficiency of the province’s comprehensive solid waste disposal and the higher the efficiency of resource reuse. In the event of the value is upwards 100%, it means that the province has effectively treated not only the solid waste of the current year, but also the amount of solid waste stored in the previous year.
The average governance rate of China’s 31 provinces in 2019 was about 62.928%, indicating that the comprehensive governance of China’s provinces in 2019 was in the medium efficiency range. After the “12th Five-Year Plan” (2011–2015), China’s measures in the field of environmentally sustainable development have achieved initial results. Seven provinces and cities, including Tianjin, Shanghai, Zhejiang and Jiangsu, have a processing rate of more than 80%. However, this result is exactly the opposite of the overall efficiency score ranking of the provinces mentioned above, indicating that although these provinces and cities do a good job in the recycling treatment of industrial solid waste, the cost of resources invested in the treatment of solid waste is also high, resulting in a low overall efficiency. In 2020, the average treatment rate across the country’s 31 provinces was about 59.929%. Compared with the previous year, the total amount of solid waste increased and the treatment rate decreased, indicating that the existing solid waste treatment facilities in the year were unable to effectively handle the increased volume of solid waste, which may lead to environmental problems caused by the backlog of solid waste. However, it is gratifying to see that the treatment rate in Shanghai exceeds 100%, reaching 100.17%, and the investment in solid waste treatment this year is in line with the forecast value.
In 2021, the average processing rate of the country’s 31 provinces was about 60.300%. Compared with the previous year, the summation of solid waste is still growing steadily, but the average treatment rate has improved. The average disposal rate in 2022 was only 0.191% higher than in 2021, but the growth rate of industrial solid waste generation increased from 5.426% in 2021 to 8.088%, which indicates that China’s solid waste treatment processing power has significantly improved in 2022.
Although the enterprise information voluntarily released by some provinces has changed every year, to a certain extent, it will affect the accuracy of industrial solid waste generation. But overall, the efficiency of industrial solid waste reuse stage in all provinces and cities has improved to varying degrees, and the efficiency of industrial solid waste treatment in the top 10 cities with industrial solid waste production is also improving.
3.4 Sub-regional analysis
This article divides China into three parts for analysis, namely, the eastern, central, and western regions. The eastern region includes Beijing, Fujian, Guangdong, Hebei, Hainan, Jiangsu, Liaoning, Shandong, Shanghai, Tianjin, and Zhejiang; The central region includes Anhui, Hubei, Henan, Hunan, Heilongjiang, Jilin, Jiangxi, and Shanxi; The west includes Chongqing, Gansu, Guangxi, Guizhou, Inner Mongolia, Ningxia, Qinghai, Sichuan, Shaanxi, Yunnan, Xinjiang, and Tibet. Combine the total solid waste efficiency score with the map of China to obtain Figure 5.
[image: Map of China with provinces shaded in various shades of green. The shading represents efficiency scores, ranging from dark green for high scores to light green for lower scores. A scale bar and a legend indicate the score range from 0.6 to 1.]FIGURE 5 | Distribution of the provincial total efficiency scores across the map. Source: The data results were plotted by ArcGIS 10.8 software.
As can be seen from Figure 5, the average score of 0.6493 in the western region is better than the average score of 0.5694 in the central region, and the average score of 0.5275 in the eastern region is the worst. Ten provinces scored an average of 0.6 or more (six in the west, one in the central region and three in the east). Twelve provinces (2 in western China, 4 in central China, and 7 in eastern China) had average efficiencies below 0.5. In terms of provincial rankings, Beijing and Qinghai performed best, tying for first place, followed by Xinjiang with a score of 0.9867 and Inner Mongolia with a score of 0.8832, with three of the top four in the west. The three worst-performing cities were western Chongqing (0.3875), Fujian (0.3827) and Jiangsu (0.3755), all of which are located in eastern China.
China’s industrial base is mainly concentrated in the eastern coastal areas, especially the Pearl River Delta (the lower Pearl River in Guangdong Province), the Yangtze River Delta (Shanghai, Jiangsu, Zhejiang, and Anhui provinces), and the Beijing-Tianjin-Hebei region (Beijing and Tianjin, two municipalities directly under the central government, and parts of Hebei and Henan provinces). These areas are coastal and have a good level of economic development, with developed transportation networks, rich human resources and a complete industrial chain.
In addition, China’s western regions also have some industrial bases, especially in Xinjiang, Gansu and Qinghai provinces, which have rich and unique natural resources and convenient policy support, attracting some heavy industry and resource processing enterprises. Compared with the eastern region and the central region, the number of industrial bases in the western region is far less than these two regions, but its scale is much larger than the central and eastern regions, and the western region still has great development potential.
According to the list of the top ten provinces in terms of gross domestic product (GDP) for 2022 released by the Chinese government, they are Guangdong, Jiangsu, Shandong, Zhejiang, Henan, Sichuan, Hubei, Fujian, Hunan and Anhui. This distribution pattern clearly reflects the uneven development of China’s regional economy, with the proportion of provinces from the western, central and eastern regions being 10%, 40% and 50% respectively. Further analysis reveals that there is a close and complex correlation between the efficiency of economic development in these provinces and their industrial base layout and overall economic performance. Specifically, the difference in the score of industrial solid waste treatment efficiency, an important indicator for measuring the coordinated development of the economy and the environment, directly reflects the intrinsic relationship between the layout of industrial facilities and the level of economic development. On the one hand, the efficiency of industrial solid waste treatment may be affected by both the uneven geographical distribution of industrial bases and the differences in the level of economic development between regions. Large industrial clusters are often accompanied by high solid waste generation, which to some extent exacerbates the volatility of efficiency scores. On the other hand, there is also a mutually restrictive relationship between industrial solid waste treatment efficiency and the layout of industrial bases and economic development. In highly developed regions, although high productivity promotes rapid economic growth, it may also generate large amounts of solid waste due to intensive industrial activities. If the speed of technological innovation and the waste recycling system fail to keep pace, it may lead to inefficient waste treatment, which in turn poses challenges to environmental protection and resource recycling.
The government of the People’s Republic of China has released information on the top ten provinces in terms of GDP ranking in 2022. These provinces are Guangdong, Jiangsu, Shandong, Zhejiang, Henan, Sichuan, Hubei, Fujian, Hunan, and Anhui. It is worth noting that one province is located in the west, four in the central region, and five in the east. Interestingly, the efficiency scores of these provinces are in direct contrast to the distribution of industrial bases and economic development. This suggests that there is an intricate correlation between the efficiency rating of industrial solid waste and the allocation of industrial facilities and economic progress. On the one hand, the efficiency score of industrial solid waste may be affected by uneven distribution of industrial bases or differences in economic development levels. Large industrial production enterprises usually generate more solid waste, which may lead to fluctuations in the efficiency score of industrial solid waste. On the other hand, there may also be a mutually restrictive relationship between the efficiency score of industrial solid waste and the distribution of industrial bases and economic development. In some areas with high levels of economic development, due to high productivity, a large amount of industrial solid waste may be generated, and the technological level and reuse enterprises at that time may not be able to timely recover and utilize these wastes, thereby reducing environmental protection and resource utilization efficiency. Therefore, the efficiency score of industrial solid waste in these provinces may decrease.
Overall, there is indeed a negative correlation between the efficiency score of industrial solid waste and the distribution of industrial bases and economic development, but this result is also influenced by various factors. In promoting industrial solid waste management and resource utilization, it is necessary to comprehensively consider the industrial structure, economic development level, and technical support of different regions to achieve more efficient solid waste treatment and reuse. Furthermore, to mitigate the impact of any oversight on the outcomes of this section, this study also conducted a sensitivity analysis subsequently. By reviewing relevant literature and analyzing its data, this work aims to assess the reliability of its subregional efficiency findings.
3.5 Sensitivity analysis
3.5.1 Literature search results
After screening out cross references, duplicate articles, and reading titles, abstracts, and full texts from various databases, 7 articles were ultimately included. The basic information included in the literature is shown in Table 3.
TABLE 3 | General characteristics of 7 studies included.
[image: A table presents studies with columns for W and E variables, including number (N), mean, and standard deviation (sd), alongside the research methodology. The studies cited range from Tang et al. (2020b) to Tang et al. (2020a). Methodologies include SBM model, window two-stage DDF recycle model, and various DEA models.]Among them, W(N), W (mean), and W (sd) represent the regional sample size, efficiency mean, and efficiency standard deviation of each literature in studying the workpiece ratio of solid waste management in the western region. Similarly, E(N), E (mean), and E (sd) represent the regional sample size, mean efficiency, and standard deviation efficiency of each literature in studying the workpiece ratio of solid waste management in the eastern region.
3.5.2 Sensitivity analysis results
This article selects the above 7 references (Tang et al., 2020a; Ji et al., 2023; Wang and Feng, 2020; Li et al., 2020; Matsumoto and Chen, 2021; Zhang et al., 2017; Tang et al., 2020b) and uses a fixed effects model to conduct sensitivity analysis on the included studies using a stepwise exclusion method. Using Stata17 software, one article was sequentially excluded and the remaining six articles were merged for meta-analysis. The changes in the merged results were observed to evaluate the stability of the analysis results. The sensitivity analysis results are shown in Figure 6.
[image: Scatter plot showing meta-analysis estimates for several studies, with the lower and upper confidence limits on the x-axis. Studies listed include Tang et al., Ji et al., Wang and Feng, Li et al., Matsumoto and Charr, and Zhang et al. Each study has a point estimate, with confidence intervals indicated.]FIGURE 6 | Sensitivity analysis. Source: own analysis.
The merge result shows a 95% CI of (−1.298, −0.5395), excluding 0. From this, it can be seen that excluding any one study, the combined results of the remaining six studies still have statistical significance, indicating the robustness of the research results in this article.
4 DISCUSSION
Compared with the results of other literature, this study found some similarities and differences.
First, this paper presents a two-stage DEA model that has been modified to evaluate the efficacy of industrial waste treatment in Chinese provinces from a more comprehensive and systematic perspective. In contrast to the single-stage DEA model (Albores et al., 2016; Zhang et al., 2022; Hernández-Sancho and Sala-Garrido, 2009), the two-stage DEA model offers advantages in the areas of internal structure consideration, more precise efficiency evaluation, and subtler evaluation (lo Storto, 2024). In addition, the circular economy perspective completely considers the entire production and consumption system when evaluating the efficiency of waste treatment, resulting in a more precise measure of efficiency.
Second, the results of this paper are in agreement with Yang et al. (2024) in terms of the efficacy of the circular economy in certain provinces, including Sichuan and Guangxi. The circular economy efficiency in Sichuan and Guangxi has experienced varying degrees of development as a result of the growing emphasis on waste management and the continuous advancements in pollution control technology. The findings of this paper also corroborate Zhuang et al. (2022) and Guo et al. (2021) that the circular economy performance in certain cities, such as Heilongjiang and Hainan, has been improving over the study period regarding waste management.
This paper concludes that the western region is more efficient than the eastern region in terms of solid refuse management. This differs from certain literature (Ji et al., 2023), which is primarily concerned with the research method, time duration, and study sample. Furthermore, sensitivity analysis is more frequently employed in the medical field and less frequently in environmental fields, such as solid waste treatment, as an essential component of meta-analysis (Tang et al., 2020a; Ji et al., 2023; Wang and Feng, 2020). The robustness of the findings of this paper is also entirely demonstrated by the results of the sensitivity analysis of the included literature, which was conducted using the one-by-one exclusion procedure.
The research presented in this article is of significant theoretical and practical importance in the assessment of the efficacy of industrial solid waste recycling and the investigation of viable circular economy models. The applicability of the findings must be enhanced due to the constraints of the research topic and data acquisition, despite the fact that this study concentrates on the efficiency of the treatment and reuse stages of industrial solid refuse. The research conclusions are restricted by the fact that the study was conducted between 2019 and 2022. The circular economy of China has been significantly affected by the downward pressure on the economy since 2020, and these changes warrant additional in-depth research. In order to conduct a more thorough and standardized evaluation of the efficacy of industrial solid waste treatment and reuse, future research should consider expanding the time frame, increasing data samples, and incorporating additional factors. This will contribute to the comprehensive and standardized development of waste recycling systems.
5 CONCLUSIONS AND SUGGESTIONS
5.1 Conclusions
This paper utilizes a two-stage DEA model considering non-desired inputs and a sensitivity analysis method to analyze the efficiency of solid waste disposal in each region of China from 2019 to 2022, and draws the following conclusions:
First, from the perspective of the total efficiency of solid waste treatment, the solid waste treatment efficiency in most parts of China has been improved to varying degrees. Due to the large amount of production of industrial solid waste in China, the unbalanced regional development of production and comprehensive utilization of industrial solid waste. Only Beijing, Qinghai and Xinjiang have higher overall efficiency.
Second, from the perspective of the circular economy. The solid waste treatment stage exhibits substantial regional disparities, although the efficiency of each location in the reuse stage has notably increased. Out of all the regions, Beijing and Qinghai achieved the highest performance. Their scores for industrial solid waste treatment and utilization efficiency remained at 1 from 2019 to 2022, consistently securing the top position. Nevertheless, Jiangsu, Chongqing, Guangdong, and other provinces are generally falling behind in the yearly ranking because of their unique geographical position or significant level of industrialization.
In terms of investment efficiency of solid waste management, the performance of different regions in China shows a relatively obvious two-stage differentiation phenomenon. The investment efficiency of most regions is still on the upward trend during the study period. However, in some regions, such as Fujian Province, the investment efficiency was always below 0.2 during the study period. In economically developed areas, there is often a significant generation of industrial solid waste due to high productivity. However, the capacity of technology and recycling enterprises is limited, making it challenging to recycle the waste promptly. This situation has a negative impact on environmental protection and the efficiency of resource utilization.
Thirdly, the efficiency of solid waste management in various regions. In contrast to prior rankings of provincial efficiency, certain provinces and cities, such as Jiangsu and Tianjin, have demonstrated commendable performance in the comprehensive utilization of industrial solid waste. China’s capability for treating solid waste has steadily increased throughout time. The mean score in the western region surpasses that in the central region, whilst the mean score in the eastern zone is the most inferior. The efficiency of industrial solid waste is inversely correlated with the dispersion of bases and economic development. However, this relationship is also influenced by several factors.
In addition, in the sensitivity analysis section, this paper applies the fixed-effects model to merge the results, and the merged results show that the 95% CI is (−1.298, −0.5395) excluding 0. Therefore, excluding any one study, the merged results of the remaining studies are still statistically significant, which further validates the robustness of the conclusions of this paper.
5.2 Suggestion
From an enterprise standpoint, enhancing the effectiveness of industrial solid waste recycling necessitates bolstering internal administration and implementing a systematic approach to classify and recycle solid waste. Enterprises must enhance employees’ environmental consciousness and provide training to ensure they understand the significance of solid waste categorization and recycling. This will help raise their knowledge and passion for solid waste recycling. However, it is essential for businesses to create robust waste classification and recycling facilities to enable efficient separation and recycling of solid waste.
The government bears significant duties and assumes crucial functions in facilitating the optimization of industrial solid waste recycling. To enhance oversight and control over the recycling of industrial solid waste, the government can implement appropriate legislation and regulations to guarantee that firms adhere closely to the applicable guidelines. The government can incentivize firms to enhance solid waste recycling and use by implementing tax policies and incentive systems. This will facilitate investment, building, and operation of solid waste recycling facilities. Simultaneously, the government can enhance the guidance and oversight of the solid waste recycling market, facilitating the efficient exploitation and recycling of solid waste resources.
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Green innovation serves as a driving force for enterprises to enhance their competitiveness and may offer an effective pathway for reducing carbon emissions. This study, using data on green innovation and carbon emissions from publicly listed companies between 2000 and 2022, examines the impact of green innovation on enterprise carbon emissions and its specific transmission channels. The findings reveal that: 1) Green innovation significantly reduces enterprise carbon emissions, and this inhibitory effect remains robust across a series of stability tests. 2) Mechanistically, green innovation primarily decreases carbon emissions through improvements in energy efficiency and the specialization of enterprise management. 3) Compared to the application for green utility model patents, green innovation through the application for green invention patents is more effective in reducing enterprise carbon emissions. The carbon emission reduction effect of green innovation is found to be more pronounced in non-state-owned enterprises compared to state-owned enterprises. Furthermore, when comparing the pollution intensity and technological complexity of industries, the suppressive effect of green innovation on carbon emissions is stronger for enterprises operating in highly polluting and technologically complex industries. The findings of this study provide empirical evidence to support the promotion of green innovation for facilitating the green and low-carbon transition of manufacturing enterprises in developing countries.
Keywords: green innovation, carbon emission, energy efficiency, specialization of enterprise management, sustainable development

1 INTRODUCTION
After China joined the WTO in 2001, its market doors opened wider, prompting a surge in exports driven by the large international demand. China gradually became a manufacturing powerhouse, supplying industrial products worldwide. However, its export structure, primarily consisting of resource-based, labor-intensive products, along with weak domestic environmental regulations, led China to grow as a trading giant at the expense of mounting environmental issues. Notably, these include the low-value chain lock-in and associated carbon emissions transferred through global trade. The Paris Climate Agreement marked a new phase in global carbon reduction efforts (Guo and Xiong, 2024), with China—the world’s largest carbon emitter—placing significant emphasis on energy conservation and carbon reduction in recent years (Wang et al., 2023). In 2020, during the 75th United Nations General Assembly, China proposed its “dual-carbon” goal, aiming to peak carbon emissions by 2030 and achieve carbon neutrality by 2060. Accelerating progress towards these goals has underscored the critical importance of reducing enterprise carbon emissions, as companies play a micro-level role in pollution control and emissions reduction (Han et al., 2024). Meanwhile, green innovation has become a pivotal strategy for economies to pursue green transitions and develop new international competitive advantages. China’s Ministry of Industry and Information Technology (MIIT) has outlined specific emissions reduction targets in the “14th Five-Year Plan for Industrial Green Development,” emphasizing the need to accelerate technological innovation. Green innovation, which carries both knowledge and environmental spillover effects, has the potential to improve enterprise carbon performance (Cai and Li, 2018). Against this backdrop, whether green innovation aids in reducing enterprise carbon emissions is a question worthy of investigation, with particular interest in how it can effectively regulate corporate carbon emissions—a topic of growing societal concern.
Some scholars suggest that green innovation reduces environmental risks through the creation of new products and technologies (Castellacci and Lie, 2017; Chen and Xie, 2024). An increasing number of enterprises are integrating green innovation into their business strategies; however, the effects of green innovation remain debated among scholars. One group has investigated the positive impacts of green innovation on financial performance (Aguilera-Caracuel and Ortiz-de-Mandojana, 2013; De Azevedo Rezende et al., 2019; Vasileiou et al., 2022), knowledge acquisition (Martínez-Ros and Kunapatarawong, 2019), company performance (Küçükoğlu and Pınar, 2015; Arfi et al., 2018; Zhang et al., 2019), enterprise value (Hao et al., 2021; Chen et al., 2022), competitive advantage (Tu and Wu, 2021), energy efficiency (Wurlod and Noailly, 2018; Sun et al., 2019), financing constraints (Zhang et al., 2020), and business sustainability (Li L. et al., 2020). These researchers generally conclude that green innovation has a positive impact on enterprises.
In contrast, other scholars argue that green innovation is inherently uncertain (Li K. J. et al., 2020). Enterprises may lack the necessary financial resources, and those that adopt green innovations often face risks where investment costs exceed returns (Yang et al., 2015; Xia et al., 2020), potentially reducing their motivation for green innovation due to the associated risks (Geng and Zhao, 2020). A series of studies have examined the factors influencing carbon emissions, focusing primarily on green finance (Umar and Safi, 2023), financial accessibility (Wang and Fan, 2024), digital transformation (Zhang et al., 2024; Chen et al., 2024; Liu et al., 2024), the digital economy (Jiang et al., 2024; Li and Zhou, 2024; Yu et al., 2024), economic uncertainty (Ma and Zhu, 2024), monetary policy (Wu et al., 2024), information and communication technology (Wang et al., 2024), and digital infrastructure (Che et al., 2024). Building on this foundation, some scholars have examined the environmental impact of green innovation. For instance, Liu et al. (2022a), using data from 30 provinces, found that green innovation can reduce carbon emission intensity. Xu et al. (2021), analyzing data at the city level in China, reported that green innovation’s impact on carbon emission performance is primarily driven by industrial structure, urbanization, and foreign direct investment effects. Zhao et al. (2024) similarly examined urban data from China and identified the digital economy as a major channel through which green innovation influences carbon emission performance. Singh et al. (2020) explored the impact of green transformational leadership and green human resource management on environmental performance from an enterprise perspective. At the micro level, Wu et al. (2022) suggested that green innovation influences firms’ total factor productivity by affecting technological distance. Peng et al. (2020) believe that green innovation can reduce corporate costs and increase corporate profits to a certain extent, thereby indirectly reducing environmental pollution. Hojnik and Ruzzier (2016) also affirmed that green innovation can alleviate environmental pressure. Different from the above view, Zheng et al. (2023), Zhan and Pu (2024) believe that there is a U-shaped relationship between green innovation and carbon emissions, which initially reduces carbon emissions and promotes carbon emissions once the critical point is reached.
By reviewing existing literature, it is evident that no research has yet focused on the impact of green innovation on enterprises’ carbon dioxide emissions. This paper seeks to address this gap by analyzing the carbon reduction effects of green innovation from a micro-level perspective. The potential marginal contributions of this paper, compared with existing studies, are as follows: 1) The study extends research on green innovation and carbon dioxide emissions to the enterprise level. While current studies on green innovation and carbon dioxide emissions mainly focus on the provincial and urban levels, there is limited exploration at the enterprise level. Using data from publicly listed companies from 2000 to 2022, this study examines the relationship between green innovation and enterprises’ carbon emissions, thereby supplementing research on factors influencing corporate carbon reduction and enriching studies on the environmental benefits of green innovation in the low-carbon field. 2) The study expands the research on the mechanisms through which green innovation influences carbon emissions. Existing research often suggests that green innovation impacts carbon emissions through channels such as the digital economy (Zhao et al., 2024), industrial structure effects, urbanization effects, and foreign direct investment (Xu et al., 2021) at the regional and city levels. However, little attention has been given to mechanisms such as energy use efficiency and management specialization at the enterprise level. This paper explores the mechanisms of energy efficiency and management specialization in depth, contributing to a better understanding of the intrinsic link between green innovation and corporate carbon emissions. 3) The study enriches the research on the relationship between green innovation and carbon emissions. This study examines the heterogeneous effects of green innovation on carbon emissions in enterprises across four dimensions: types of green innovation, enterprise characteristics, the pollution intensity of the industry, and the technological intensity of the industry. This analysis not only supplements existing literature on green innovation and carbon emissions but also provides theoretical support for China’s “dual carbon” goals, offering significant insights for sustainable economic and social development in developing countries.
2 RESEARCH HYPOTHESIS
Enterprise green innovation is primarily reflected in two dimensions: green technological innovation and green managerial innovation. Green technological innovation can drive the development of new digital industries, further optimize industrial structures, (Guo et al., 2019) and reduce enterprises’ reliance on high-carbon-intensive operations, fundamentally altering carbon emissions. With continuous technological advancements, such as the adoption of clean technologies, enterprises can lower the cost of clean energy, decrease energy intensity during production, and ultimately reduce carbon emissions in the production process. Green managerial innovation, on the other hand, enables enterprises to adopt advanced energy management systems, increase the proportion of renewable energy in production planning, optimize resource utilization, and minimize raw material wastage, thereby reducing carbon emissions. Furthermore, enterprises enhance green supply chain management by implementing green procurement policies, setting clear environmental standards for supplier materials (Niu and Liu, 2021), and prioritizing suppliers with strong environmental performance. These measures incentivize suppliers to adopt stricter carbon emission management practices, further lowering overall emissions. Based on this, the following hypothesis is proposed:
H1. Green innovation significantly reduces carbon emissions.
2.1 Enhancing energy efficiency
When enterprises engage in green innovation, two primary approaches in the technological domain are observed. The first involves upgrading and modernizing existing technologies. For instance, enterprises focus on updating current equipment through continuous collaboration with technology suppliers, ensuring ongoing advancements in environmental technologies. Green technological innovation also facilitates the restructuring and optimization of industrial sectors, promoting the transformation of energy-intensive industries. For example, introducing advanced energy-saving technologies and equipment enables sectors such as steel and chemicals to significantly reduce energy consumption per unit of output, achieving a green transition. By consistently upgrading existing clean energy technologies, enterprises can effectively decrease their reliance on fossil fuels and enhance overall energy efficiency (Akther et al., 2024). Additionally, in the realm of production processes, enterprises leverage digital technologies—such as the industrial internet and artificial intelligence—to improve production design processes, retrofit existing equipment, optimize facility management, and achieve intelligent production. These advancements reduce marginal costs and further enhance energy efficiency.
The second approach involves adopting new technologies. This is exemplified by introducing cutting-edge energy-efficient equipment and employing the latest energy-saving technologies to reduce energy consumption. The integration of digital and intelligent technologies is also promoted (Gao et al., 2024). By utilizing digital technologies such as the Internet of Things (IoT), big data, and cloud computing, enterprises can monitor and control energy usage in real-time. Data analytics and intelligent algorithms optimize energy allocation (Hu J. et al., 2024; Hu S. et al., 2024), while advanced AI algorithms predict energy demand, enabling dynamic adjustments to energy supply strategies and minimizing unnecessary waste. Moreover, enterprises actively participate in the research and development of clean energy technologies, such as hydrogen and biomass energy, to explore diversified clean energy solutions. The development of efficient energy conversion technologies, including advanced internal combustion engines, high-efficiency motors, and inverters, also significantly reduces energy losses during conversion processes.
In general, industrial carbon emissions primarily originate from the combustion of fossil fuels (Sun and Onuh, 2024), which are used either as energy sources or as raw materials in production processes. Clearly, improving energy utilization efficiency can reduce carbon emissions at the source (Liu et al., 2022b). Based on this, the following hypothesis is proposed:
H2. Green innovation reduces enterprise carbon emissions by enhancing energy efficiency.
2.2 Enhancing the professionalization of enterprise management
Enterprises engaged in green innovation typically develop systematic strategic plans that define clear goals, steps, and divisions of responsibility. Such well-defined planning enhances internal control mechanisms, facilitating more effective managerial coordination (Wang et al., 2023). During this process, enterprises perform accurate assessments of their resources, gaining a clearer understanding of their green innovation directions. This enables the adoption of targeted management measures to achieve strategic objectives. Additionally, green management innovation effectively mitigates environmental risks. By optimizing processes, enterprises improve their resilience to risks, enabling more efficient and timely responses to policy changes and market demands, thereby increasing the flexibility and precision of managerial specialization. Moreover, when implementing green innovation, enterprises enhance execution methods and performance standards, further professionalizing managerial practices. Green innovation also extends beyond internal operations to encompass external supply chain networks. Green initiatives along the supply chain are often achieved through collaboration among multiple enterprises or departments. To ensure these initiatives are realized, comprehensive inter-organizational cooperation is fostered, providing organizational support for activities. The coordination, task allocation, progress monitoring, and performance evaluation among different enterprises or departments compel enterprises to improve managerial specialization.
As managerial specialization advances, production strategies are adjusted to prioritize environmental impacts over purely economic objectives, promoting low-carbon production practices. Enhanced managerial specialization also leads to more stringent employee selection and training criteria, incorporating dimensions such as green experience and awareness. Enterprises allocate more budgets to employee incentives, fostering creativity and motivation for green initiatives and deepening efforts in low-carbon and emission reduction practices. Employees selected under such criteria are more committed to sustainable development, proactively adopting green technologies to reduce carbon emissions and support long-term sustainability goals. Implementing green supply chain management enhances the environmental performance of the entire production network, satisfying consumer demands for green products across diverse economies and complying with environmental regulations in various export markets. This optimizes supply chain structures, reduces carbon emissions across the supply chain, and fundamentally improves carbon emission performance. Based on this, the following hypothesis is proposed:
H3. Green innovation reduces enterprise carbon emissions by enhancing the professionalism of enterprise management.
The relationships among the three hypotheses proposed in this study are shown in Figure 1.
[image: Flowchart showing the relationship between green innovation and carbon emission. Green innovation leads to energy efficiency (H2) and management specialization (H3), both influencing carbon emission (H1).]FIGURE 1 | Research framework.
3 RESEARCH DESIGN
3.1 Data source
Considering data availability, this study examines A-share listed enterprises from 2000 to 2022. The data sources for this study are as follows:
First, Green innovation data from 2000 to 2022 year: this data originates from the State Intellectual Property Office (SIPO) of the People’s Republic of China. In 2010, the World Intellectual Property Organization (WIPO) introduced the International Patent Classification Green Inventory, an online tool to facilitate the search of environmentally friendly technology patents. Based on the United Nations Framework Convention on Climate Change, this classification divides green patents into seven main categories. Following this classification, we calculate the annual number of green patents for each enterprise. Second, Carbon emission data from 2000 to 2022 year: the annual carbon emissions data are calculated based on enterprises’ disclosures in social responsibility reports, sustainability reports, environmental reports, and the “Guidelines for Enterprise Greenhouse Gas Emissions Accounting and Reporting.” Third, Enterprise characteristic variable from 2000 to 2022 year: these variables are sourced from the China Stock Market and Accounting Research (CSMAR) database. Given data availability, this study selects A-share listed companies on the Shanghai and Shenzhen stock exchanges from 2000 to 2022 as the research sample. To ensure the reliability of the sample data and the accuracy of the regression results, the following procedures are implemented:
	(1) Companies in the financial and insurance sectors are removed, as these enterprises do not operate within the real economy and have unique business models.
	(2) ST, *ST, and SST companies are excluded because they are publicly listed enterprises with abnormal operational conditions.
	(3) Companies with significant data gaps are also removed.

3.2 Variable selection
3.2.1 Dependent variable
The dependent variable in this study is the enterprises’ carbon emissions. Drawing on methodologies from Bolton and Kacperczyk (2021) and Wang Y. et al. (2023), this research measures enterprises’ carbon emissions using data on annual direct, indirect, or total carbon emissions disclosed by publicly listed companies. For enterprises that do not directly disclose these data, carbon emissions are calculated according to the “Guidelines for Corporate Greenhouse Gas Emissions Accounting and Reporting.” Direct, indirect, and total carbon emissions are estimated based on company fossil fuel consumption, electricity use, and heat consumption. This study focuses on carbon emissions generated during the production process and utilizes the natural logarithm of total emissions minus emissions from land-use changes to assess overall carbon emissions (Bolton and Kacperczyk, 2021).
3.2.2 Independent variables
The independent variable in this study is green innovation, encompassing innovations in areas such as technology and production. This paper primarily focuses on green technological innovation. Following Qi et al. (2018), the level of green innovation in enterprises is measured using the ratio of the total number of green patents to the total number of independent patent applications filed within the same year.
3.2.3 Control variables
Existing research has identified multiple factors influencing enterprises’ carbon emissions. To control for the effects of other variables, several critical control variables related to governance structure and financial conditions are incorporated into the model:
	(1) Enterprise Size (SIZE): Measured by the natural logarithm of the total assets at the end of the year.
	(2) Total Asset Growth Rate (TAGR): Calculated as the ratio of the difference between the total assets of the current year and the previous year to the total assets of the previous year.
	(3) Cash Flow (FC): Represented by the ratio of net cash flow from operating activities to total assets at the end of the year.
	(4) Board Size (BOD): Determined by the natural logarithm of the total number of board members.
	(5) Return on Assets (ROA): Defined as the ratio of net profit to shareholders’ equity.
	(6) Intangible Asset Ratio (ITANG): Measured as the ratio of net intangible assets to total assets.
	(7) Management Fee Rate (MF): Calculated as the ratio of management expenses to main business income.
	(8) Financial Leverage (FL): Measured by the ratio of total liabilities to total assets.

Descriptive statistics for the study data are presented in Table 1.
TABLE 1 | Statistical description.
[image: A table displays statistical data for various variables. Each row represents a variable with columns for the sample size (N), mean, standard deviation (sd), minimum (Min), 50th percentile (p50), and maximum (Max). The variables listed are CE, GI, SIZE, TAGR, FC, BOD, ROA, ITANG, MF, and FL, each with 22,743 observations. Mean values range from 0.0043 for ITANG to 22.0380 for SIZE. The standard deviation values and ranges vary, with minima and maxima provided for each variable.]3.3 Empirical model
To investigate the impact of green innovation on enterprise carbon emissions, this study constructs the following econometric model for empirical testing:
[image: Mathematical equation in the image: \( CE_{it} = a_0 + a_1GI_{it} + a_2Z + \phi_t + \theta_f + \epsilon_{it} \), labeled as equation (1).]
In Equation 1, f and t represent the enterprise and year, respectively. The dependent variable, CEft, indicates the carbon emissions level of enterprise f in year t. The explanatory variable, GIft, reflects the overall internal control status of enterprise f in year t. Z denotes a set of control variables, φt represents the year fixed effects, θf denotes the enterprise fixed effects, and εft refers to the random error term.
4 EMPIRICAL RESULTS
4.1 Benchmark regression results
Table 2 presents the baseline regression results. Column (1) shows the regression outcome of GI and CE without any control variables, while controlling for year and enterprise fixed effects. Column (2) incorporates a series of control variables on this basis. The empirical results indicate that, whether or not control variables are included, the estimated coefficient of the explanatory variable GI is significantly negative at the 1% level. This finding demonstrates that green innovation by enterprises can significantly reduce carbon emissions among Chinese enterprises.
TABLE 2 | Estimated results of the benchmark model.
[image: Regression results table with two columns labeled (1) and (2), showing coefficients for variables GI, SIZE, TAGR, FC, BOD, ROA, ITANG, MF, and FL with standard errors in parentheses. Both models include firm and year fixed effects. Observations total 22,743, and the R-squared values are 0.9061 and 0.9558. Significance levels are indicated by asterisks. Note clarifies standard errors are clustered at the firm level.]4.2 Robustness tests
To verify the stability of the empirical results and enhance their credibility, four robustness tests are conducted in this study: substituting explanatory variables, controlling for industry fixed effects, clustering robust standard errors, and applying a 1% bilateral winsorization.
4.2.1 Replacement of independent variable
To eliminate the interference of measurement errors in green innovation on regression results, this study adopts the approach of Wang and Wang (2021) to re-measure green innovation, setting it as the variable GI_new. Green innovation is measured by taking the natural logarithm of the sum of an enterprise’s independent green invention applications and independent green utility model applications for the year, adding one. Column (1) in Table 3 presents the corresponding estimation results, indicating that the coefficient of GI is significantly negative at the 1% level. This finding suggests that, even after replacing the explanatory variable, the regression results remain robust.
TABLE 3 | Robustness tests.
[image: A table shows regression results across five columns with variables \( GI\_new \), \( GI \), and Constant. Coefficients are accompanied by standard errors in parentheses. Industry Fixed Effects (FE), Control Variables, Firm FE, Year FE, Number of Observations, and R-squared values are listed. Industry FE is absent in columns two and four. Control Variables, Year FE, and Observations are consistent across columns. Firm FE is absent in columns three and four. R-squared values vary between 0.9191 and 0.9678. Statistical significance is indicated at different p-values.]4.2.2 Replacement of dependent variable
To eliminate the potential interference of carbon emission measurement errors on the regression results, this study adopts carbon emission intensity as an alternative measure of enterprise carbon emissions, denoted as the variable CE_new. Carbon emission intensity is calculated as the ratio of an enterprise’s annual carbon emissions to the GDP of the same year. The corresponding estimation results are presented in column (2) of Table 3. It is observed that the coefficient of GI on CE_new remains significantly negative, indicating that the regression results remain robust after replacing the dependent variable.
4.2.3 Control industry fixed effects
Considering the potential industry specificity of green innovation, this section controls for industry-fixed effects to examine any changes in the empirical results. As shown in Column (3) of Table 3, controlling for industry-fixed effects indicates that increasing green innovation still has a negative impact on reducing enterprises’ carbon emissions, remaining statistically significant at the 1% level. These findings suggest that, even after accounting for industry effects, enhancing green innovation continues to contribute to lowering enterprise carbon emissions. The empirical results are consistent with the mechanism and analysis presented earlier.
4.2.4 Robust standard error of clustering
To further address potential correlations within the empirical sample and resolve heteroscedasticity issues, clustered robust standard errors are employed to enhance the credibility and authority of the empirical results. The findings are presented in column (4) of Table 3. Clearly, green innovation continues to significantly reduce enterprise carbon emissions, with statistical significance at the 1% level. The empirical results indicate that while heteroscedasticity cannot be entirely eliminated, the use of clustered standard errors confirms a significant negative impact of green innovation on enterprise carbon emissions. These findings are consistent with the mechanisms and empirical results discussed earlier, demonstrating the reliability and validity of the previous analysis.
4.2.5 Bilateral 1% tail reduction
To further exclude the possibility of correlation within the empirical sample and address heteroskedasticity, cluster-robust standard errors are applied, enhancing the credibility and authority of the empirical results. These results are displayed in column (5) of Table 3. Evidently, green innovation continues to contribute to reducing enterprise carbon emissions, with statistical significance at the 1% level. The empirical findings indicate that while heteroskedasticity cannot be entirely eliminated, a significant negative impact of green innovation on enterprise carbon emissions is observed when cluster standard errors are used. This empirical conclusion aligns with the theoretical mechanism and prior empirical results, reinforcing the reliability and authenticity of previous findings.
4.3 Endogeneity test
To ensure the accuracy of baseline regression, it is essential to address potential endogeneity issues in the econometric model, primarily arising from reverse causality and omitted variables. This paper employs the number of green trade agreements signed by enterprises’ export trade partner countries (Number) as an instrumental variable for green innovation, estimating the relationship using two-stage least squares. Given that the provisions included in international green trade agreements explicitly define environmental standards for various traded products, these agreements influence the types and quantities of green products exported by economies, thereby affecting the level of green innovation within enterprises located in those economies. This fully aligns with the relevance assumption of instrumental variables. Moreover, green trade agreements, signed by different economies to establish, maintain, and develop economic and trade relations while pursuing green benefits, are outcomes of political and economic equilibrium among nations. This characteristic satisfies the exclusivity requirement of instrumental variables. This study uses data from the WTO RTAIS (Regional Trade Agreements Information System) database, collating and processing the number of trade agreements that contain green clauses. As the number of green trade agreements is measured at the national level, this study also weights this variable by the trade volume of each enterprise’s exports to different economies, matching it to the enterprise level.
Table 4 reports the results of two-stage estimations. Column (1) presents the first-stage regression outcomes, where the estimated coefficients of the instrumental variables are all significantly negative at the 1% level. Given that the number of instrumental variables does not exceed the number of explanatory variables and the F-statistic values of the instrumental variables are well above the critical value at the 10% significance level in the Stock-Yogo test, weak correlation issues are excluded. Column (2) provides the second-stage regression results, showing that the sign and significance of the estimated coefficient for GI remain consistent with those in the baseline regression, further validating the findings of this study.
TABLE 4 | Estimated results of Instrumental variable regression results.
[image: Table displaying regression results from two stages. In the first stage with GI as the dependent variable, the coefficient for Number is -0.1235 with a standard error of 0.0176, marked as significant. Control variables, firm fixed effects (FE), and year FE are included. In the second stage with CSR as the dependent variable, the coefficient for GI is -0.0423 with a standard error of 0.0684, marked as significant. Kleibergen-Paap rk LM Test value is 19.766 with p-value 0.0000, and Wald F Test is 18.485 with a critical value of 16.38. Sample size is 22,743. Notes explain the statistical formatting.]5 HETEROGENEITY ANALYSIS
5.1 Distinguishing different types of green innovation
Green innovation includes applications for both green invention patents and green utility patents, each differing in technological innovation level and scope of protection, which may affect enterprises’ carbon emissions reduction in varying ways. Compared to green utility patents, green invention patents generally involve higher levels of technological R&D, a more complex review process, and a broader scope of protection, encompassing various aspects such as manufacturing methods, usage methods, and product structure (Li and Zheng, 2016). Based on this, we hypothesize that applying for green invention patents is more effective in reducing enterprises’ carbon emissions than applying for green utility patents.
This study explores the heterogeneous effects of different types of green innovation on reducing enterprises’ carbon emissions by distinguishing between applications for green invention patents and green utility patents. The quantity of green invention patent applications (INVA) and green utility patent applications (UMA) are used to measure the respective application activity for these types of patents. As shown in Table 5, Columns (1) and (2) report the effects of green invention patents and green utility patents on enterprises’ carbon emissions. Notably, the estimated coefficient for green invention patents is higher than that for green utility patents, supporting our hypothesis.
TABLE 5 | Estimated results of distinguishing different types of green innovation.
[image: Regression table comparing "Green Invention Patent" and "Green Utility Model Patent" effects on variables. For INVA, coefficients are -0.0552 for invention and -0.0315 for utility. Both constants are significant: -9.4518 and -7.4973 respectively. Control variables, firm fixed effects, and year fixed effects are included. Observations are 22,743. R-squared values are 0.9347 and 0.8679. Empirical p-value is 0.000. Standard errors are clustered at the firm level with significance levels denoted by asterisks.]5.2 Distinguishing the nature of enterprises
Given the variations in internal control strength among enterprises with different characteristics (Lin et al., 2024), enterprises may exhibit distinct responses when engaging in green innovation. Compared to non-state-owned enterprises (Non SOEs), state-owned enterprises (SOEs) benefit from stronger administrative protections, operate in more stable market positions, and face less competitive pressure. This, to some extent, reduces their inclination toward green innovation, as the implementation of policies is often limited by management structures and vested interests, resulting in outcomes that fall short of expectations. Consequently, we hypothesize that non-state-owned enterprises achieve greater carbon emissions reductions through enhanced green innovation than their state-owned counterparts.
In this study, following Hsieh and Song (2015), we construct a binary variable for enterprise ownership, defining an enterprise as state-owned if its state capital constitutes 50% or more of its paid-in capital, assigned a value of 1; otherwise, it is categorized as non-state-owned with a value of 0. Columns (1) and (2) of Table 6 report the impact of green innovation GI on CE, showing that the estimated coefficient for non-state-owned enterprises is higher than that for state-owned enterprises, thereby validating the above hypothesis.
TABLE 6 | Estimated results of distinguishing the nature of enterprises.
[image: A table compares two groups: SOEs and Non-SOEs. Both have columns labeled CE. For GI, the coefficient is -0.0118 for SOEs and -0.0093 for Non-SOEs, both significant at 1% level. The constant is -10.584 for SOEs and -9.201 for Non-SOEs, both significant at 1% level. Control variables, firm FE, and year FE are present for both. Observations are 9,660 and 13,083, R-squared values are 0.8381 and 0.8529, and empirical p-value is 0.007 for both, with standard errors clustered at the firm level.]5.3 Distinguish the industry pollution levels of enterprises
Enterprises in industries with varying pollution levels may experience heterogeneity in the impact of green innovation on carbon emissions due to differences in pollution emission structures and policy support across industries. Enterprises in high-pollution industries typically engage in daily production activities associated with significant energy consumption and pollutant emissions, often resulting in higher levels of carbon output. Additionally, the government generally places stricter environmental policies and emission standards on high-pollution industries, incentivizing these enterprises to pursue green innovation more actively. Thus, we propose that green innovation is more effective in reducing carbon emissions for enterprises in high-pollution industries than for those in low-pollution sectors.
This study examines the heterogeneity in the impact of green innovation on enterprise carbon emissions by distinguishing the pollution levels of their respective industries. The dummy variable, POLLUTION, is used to measure pollution levels, with the industry median as the cutoff. Industries with pollution levels above the median are classified as high-pollution (POLLUTION = 1), while those below the median are classified as low-pollution (POLLUTION = 0). Results are presented in Table 7; columns (1) and (2) report the impact of GI on CE, revealing that the estimated coefficient for high-pollution industries exceeds that for low-pollution industries, thereby confirming the hypothesis outlined above.
TABLE 7 | Estimated results of distinguishing different levels of industry pollution.
[image: Table comparing high and low industry pollution levels. For high pollution, GI coefficient is -0.0401 with standard error 0.0073. Constant is -7.7618 with 0.0074 standard error. For low pollution, GI coefficient is -0.0347 with 0.0109 standard error, and constant is -5.9933 with 0.0093 standard error. Both models use control variables, firm FE, and year FE. Observations are 11,372 and 11,371, R-squared values are 0.8247 and 0.8291, respectively, with p-value 0.000. Significance levels denoted by asterisks.]5.4 Distinguish the industry technological intensity of enterprises
Enterprises operating in industries with different levels of technological intensity may exhibit varying carbon reduction effects from green innovation due to differences in technological innovation capacity and resource consumption. Compared to enterprises in low-technological-intensity industries, those in high-technological-intensity industries typically possess stronger R&D capabilities and higher innovation capacity, enabling more comprehensive and advanced green innovation. Consequently, the carbon reduction effects of green innovation are more pronounced in high-technological-intensity industries. Furthermore, enterprises in high-technological-intensity industries often face substantial technological investments and higher levels of energy and resource consumption, which provide greater overall emission reduction potential. Based on this, it is hypothesized that the effect of green innovation on reducing carbon emissions is greater for enterprises in high-technological-intensity industries than for those in low-technological-intensity industries.
This study explores the heterogeneous impact of green innovation on enterprise carbon emissions by distinguishing enterprises based on their industry’s technological intensity. Following Lu and Dang (2014), a dummy variable TECH is used to measure technological intensity, calculated as the ratio of R&D expenditure to employee compensation. Industries are classified by the median technological intensity: industries above the median are categorized as high-technological-intensity (coded as 1), while those below the median are categorized as low-technological-intensity (coded as 0). The results, presented in Table 8, show that the estimated coefficients of GI on carbon emissions CE are higher for enterprises in high-technological-intensity industries than for those in low-technological-intensity industries. These regression results confirm the proposed hypothesis.
TABLE 8 | Estimated results of distinguishing different levels of technology intensity.
[image: A table comparing high and low technology intensive industries with variables such as GI and Constant. High technology GI is negative 0.0481 with significance indicated by double asterisks. Constant is negative 4.6018 with triple asterisks. In low technology, GI is negative 0.0281 and constant is negative 5.6035, both with triple asterisks. Control Variables, Firm FE, and Year FE are marked as Yes. Observations are 12,955 and 9,746, with R-squared values of 0.9682 and 0.9646, and empirical p-value is 0.008. Notes specify significance levels.]6 MECHANISM TESTING
Empirical results demonstrate that green innovation significantly reduces carbon emissions in Chinese enterprises. Further investigation is conducted to explore the specific channels through which green innovation impacts carbon emissions in these enterprises. Based on theoretical analysis, energy utilization efficiency and management specialization are identified as critical pathways for green innovation to influence carbon emissions in Chinese enterprises, and empirical tests are carried out to examine these effects.
6.1 Energy efficiency mechanism
This study uses the intensity of energy consumption per unit of GDP to assess energy efficiency (Energy). A higher Energy value indicates a greater energy utilization efficiency for the enterprise. Table 9 presents the results of testing this mechanism. Column (1) estimates the impact of GI on Energy, with the coefficient showing a significant positive effect at the 1% level. This finding suggests that enhancing green innovation in enterprises contributes to improved energy utilization efficiency. Column (2) displays the estimated coefficient of Energy on CE, showing a significant negative effect at the 1% level, indicating that increasing an enterprise’s RISK level can significantly reduce its carbon emissions. Therefore, it can be inferred that strengthening green innovation in enterprises can reduce carbon emissions by improving energy utilization efficiency.
TABLE 9 | Estimated results of energy efficiency mechanism.
[image: Regression table comparing two models labeled Energy and CE. Both models include variables GI and Energy with coefficients 0.0218 and 0.0340 for GI, and 0.1292 for Energy, all statistically significant. Constants are -0.0197 and -0.0488. Standard errors are in parentheses. Each model has 22,743 observations with R-squared values of 0.6945 and 0.5651. Control variables, firm and year fixed effects are included. Statistical significance levels: ***p < 0.01, **p < 0.05, *p < 0.10.]6.2 Management specialization level mechanism
Based on the matching data from the WIOD and labor occupational databases, as referenced by Zhong et al. (2021), the forward decomposition method of trade value-added is applied to measure industry-specific management specialization levels through industry factor returns. Following the approach of Chor et al. (2021), management specialization levels for enterprises (Manage) are calculated using a weighted method, where higher values indicate stronger and more effective management. Table 10 presents the results of tests on the above influence mechanism. Column (1) estimates the effect of GI on Manage, with a positive coefficient significant at the 1% level, indicating that enhancing green innovation in enterprises promotes higher management specialization. Column (2) shows a negative and significant coefficient of Manage on CE at the 1% level, suggesting that improving enterprise management specialization significantly reduces carbon emissions. Thus, it can be inferred that strengthening green innovation in enterprises can lower carbon emissions by enhancing management specialization.
TABLE 10 | Estimated results of management specialization level mechanism.
[image: A table showing the results of regression analyses. Column 1, labeled "Manage," and Column 2, labeled "CE," both include coefficients for GI and Manage with significance indicated by asterisks. Constants, observations, R-squared values, and whether control variables, firm fixed effects, and year fixed effects were used are also presented. The note clarifies that standard errors are clustered at the firm level, with significance levels indicated by asterisks: three for p < 0.01, two for p < 0.05, and one for p < 0.10.]7 CONCLUSION AND POLICY RECOMMENDATIONS
7.1 Conclusion
Based on panel data from A-share listed enterprises in China from 2000 to 2021, this study examines the impact of green innovation on enterprise carbon emissions. It also explores the heterogeneity of these effects by green innovation type, industry pollution level, and enterprise ownership, and investigates the specific mechanisms through which green innovation affects carbon emissions. The findings reveal that:
	(1) Green innovation significantly reduces enterprise carbon emissions, a conclusion that remains robust across various analyses. This reduction primarily occurs through two channels: improved energy efficiency and enhanced enterprise management specialization.
	(2) Compared to applying for green utility model patents, green innovation driven by applying for green invention patents is more effective in reducing enterprise carbon emissions. When examining enterprise ownership, the carbon emission reduction effect of green innovation is found to be more pronounced in non-state-owned enterprises than in state-owned ones. Furthermore, when comparing industries based on pollution levels and technological intensity, the carbon emission suppression effect of green innovation is stronger in enterprises operating in high-pollution and high-technology-intensive industries.

7.2 Policy recommendations
This paper provides empirical evidence identifying the impact of green innovation on enterprises’ carbon emissions, offering new insights for promoting sustainable enterprise development. Based on these findings, the following recommendations are proposed:
(1) The results of this study indicate that green innovation significantly reduces enterprise carbon emissions and enhances environmental benefits. Therefore, enterprises should proactively implement green innovation in the future. Internally, enterprises are encouraged to integrate the concept of green innovation into their corporate culture, embedding green elements such as environmental protection and low carbon into their core values and business strategies. This approach should promote awareness of green innovation among all employees. When formulating development strategies, enterprises are advised to move beyond solely pursuing economic benefits and increasingly prioritize environmental performance, aiming for the synergistic development of economic and environmental benefits. Externally, enterprises can consider learning from international best practices in green innovation and enhancing their own capabilities in this field. Collaboration with trading partners on research and application development in green innovation is also recommended.
	(2) Previous studies have found that, compared to applying for green utility model patents, applying for green invention patents requires higher levels of innovation as well as greater technological depth and breadth. Therefore, green innovation involving green invention patents is more effective in reducing enterprise carbon emissions. Enterprises should tailor patent application strategies based on their specific circumstances, allocating budgets to prioritize green invention patents. When applying for these patents, focus should be placed on increasing both the quantity and quality of patents by refining technical plans and recruiting experienced teams for research and development. After obtaining patents, ongoing maintenance is essential. For utility model patents, enterprises should first broaden the scope of patents across fields and then deepen their application levels within each domain.
	(3) Considering that the carbon emission reduction effect of green innovation is more pronounced in non-state-owned enterprises compared to state-owned enterprises, several findings are highlighted. Green innovation exerts a stronger inhibitory effect on carbon emissions in enterprises operating in highly polluting industries. Additionally, the suppressive effect is more significant in industries characterized by high technological intensity. Non-state-owned enterprises, as well as those in high-pollution and high-tech industries, should place greater emphasis on green innovation and actively adopt green practices. This includes introducing advanced green technologies to optimize energy structures, integrating green technologies into production processes, streamlining workflows, and reducing energy consumption and emissions. Enterprises should also focus on enhancing internal management specialization by assembling teams of executives with green expertise, providing regular training to employees, and disseminating the latest knowledge and methods of green innovation. In green supply chain management, preference should be given to suppliers with green production capabilities and environmental certifications. Low-carbon and environmentally friendly logistics solutions should be adopted to minimize energy consumption and emissions during transportation.
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Introduction: Environmental issues are related to the physical health and welfare level of all human beings, and the mandatory and dominant nature of environmental regulation (ER) effectively solves the difficult problem of unequal environmental obligations and gives impetus to improving environmental equality.Methods: Therefore, based on a sample of 238 prefecture-level cities in China between 2011 and 2020, this paper empirically examines the mechanism and effect of ER intensity on environmental fairness using the Gini coefficient and the Theil index. In addition, this paper further tests the mechanisms of mediating influence and moderating effect of ER on environmental equality.Results: The results of the study found that (1) On the basis of mitigating endogenous problems such as adopting instrumental variable strategies, the increase in the intensity of ER has a significant contribution to the realization of environmental equality. (2) ER contributes to the realization of environmental equality through the green innovation transformation effect, which is more pronounced in innovative regions. (3) The level of development of green finance and the digital economy, as an important instrumental approach to promoting sustainable development, can strengthen the path of environmental policy to mitigate environmental inequality.Discussion: This paper provides suggestions and insights for promoting the implementation of government environmental policies, enhancing the digital transformation of economic development, and promoting the construction of a society-wide green equality system.Keywords: environmental equality, environmental regulation, green finance, digital economy development, public environmental appeals
1 INTRODUCTION
Ecological environment is the basic requirement for realizing green and low-carbon development of the economy, and it is a public product enjoyed by everyone, and the improvement of environmental quality has a real bearing on the quality of life of all human beings (Wei et al., 2024). With the increase in the importance of environmental protection issues, the transformation of the economic growth model to an environmentally friendly one, and the green elements injecting new kinetic energy into the world’s economic vitality, green sustainability has become one of the themes of economic development in the current era (Zhi et al., 2022). However, due to objective factors such as geographic location and natural disasters, and subjective factors such as inadequate environmental monitoring and insufficient government attention to environmental equality issues, phenomena affecting environmental equality such as uneven distribution of pollution, inequitable access to resources, and environmental justice issues still exist objectively (Wu et al., 2024). From an international perspective, the number of threatened animal species is increasing and the number of renewable resources is declining significantly. According to the World Bank, the average methane emissions in the world have been on an upward trend since 2000 and will be around 8.2 million kilotons in 2020. From a domestic perspective, according to the Ministry of Ecology and Environment of the People’s Republic of China, China’s sulfur dioxide emissions from exhaust gases in 2020 will be 3.182 million tons. Among them, emissions of sulphur dioxide from industrial source exhaust were 2.532 million tons, emissions of sulphur dioxide from domestic source exhaust were 648,000 tons, and emissions of sulphur dioxide from centralized pollution control facilities exhaust were 0.03 million tons. The government is not only the defender and protector of public order and people’s rights, but also an important force in adhering to ecological prioritization and green development, and improving the performance of ecological and environmental governance (Ma and Liu, 2022). In the process of implementing the concept of green development and promoting the reform of the ecological civilization system, the U.S. government has taken a series of measures in environmental governance, such as climate plans and energy efficiency standards, to focus on its right to speak in international environmental governance. The Government of France has adopted by decree a national low-carbon strategy and is actively engaged in “green diplomacy” to promote The Paris Agreement. Because of the differences in the nature of the country and its social system, the Chinese Government has emphasized environmental protection and economic growth, focusing on systematic, global and systematic environmental governance, and has achieved a “green development report card” that has attracted worldwide attention (Liu et al., 2024a). As of 2019, China’s forest coverage has increased from 13.95% in 1980 to 23.04% in 2020, and China’s carbon dioxide emissions per unit of GDP will be 3.8% lower in 2021 than in 2020, and a cumulative decrease of 50.8% compared to 2005. It can be seen that the implementation of environmental policies by the Government can, to a certain extent, alleviate the depletion of natural resources and protect the ecological environment.
Therefore, can the increase in environmental regulation (ER) mitigate the inequality of environmental pollution between regions, and what are the underlying mechanisms and mechanisms of action? Broadly speaking, ER refers to the regulations and policies established by governments or other agencies to protect and manage the environment, and can be categorized as command-and-control, market-incentive and informal. ER is expected to be an important driver in solving environmental problems (Duan et al., 2021). Specifically, on the one hand, command-and-control ER can reduce the risk of environmental pollution by establishing emission standards, regulating waste disposal and strengthening environmental management. On the other hand, market-incentivized ER can create an effective environmental governance mechanism by increasing tax subsidies, encouraging green innovation, and disclosing environmental information. In addition, informal ER can make up for the shortcomings of governmental environmental governance by raising public awareness of environmental protection, encouraging public scrutiny and participation, and giving play to the role of industry associations to promote the resolution of environmental inequality issues.
As ecological protection is a global “hot spot”, there is a rich literature on how to realize ecological protection through legal safeguards, economic benefits and social concerns. Firstly, effective resource utilization and environmental protection will be achieved through recycling model applications and biomass utilization (Song et al., 2021), watershed protection and coastal resource management (Wada et al., 2020), and raising environmental standards to attract green consumers (Ambec and De Donder, 2022). Secondly, there has been a great deal of discussion in the relevant literature on how to realize the harmonization of ecological and economic benefits. Strict ER raise the cost of environmental pollution and force firms to improve energy efficiency, thus realizing the dual goals of environmental improvement and economic progress (Hu H. et al., 2023). At the same time, the existing literature has also examined the role of social concern in promoting environmental protection. El Ouadghiri et al. (2021) and others, by analyzing the relationship between continuous public concern about environmental issues and stock market returns, concluded that a high level of public concern about environmental protection can effectively promote the development of sustainable enterprises. He and Shi (2023), chose the level of public concern as a mediating variable to analyze the positive impacts of air pollution on China’s green bond market through increasing public awareness of environmental protection and concern for physical health risks. However, there is an important problem in that insufficient attention has been paid to the impact effects of ER. To this end, this paper conducts an empirical study on ER and environmental equality in the context of China on the basis of combing relevant theories.
In addition, while the existing literature has explored the issue of environmental inequality in some depth, insufficient attention has been paid to the role effects of ER intensity. Using datasets and estimation techniques, Timmins and Vissing (2022) argue that income, race, and land area, among others, affect the realization of environmental justice to some extent, while ignoring the role of environmental policy. Focusing on the firm level, Nian et al. (2022) compare two types of environmental regulations, scale control and intensity control, and find that despite the differences in their mechanistic pathways, both can reduce pollution and improve competitiveness and promote environmental equality, while neglecting the regional aspects of ER effects. To summarize, on the one hand, although the existing literature has paid attention to the significance of laws and regulations, the balance between economic and ecological benefits, and the degree of social participation in realizing ecological protection, the mechanisms and effects of ER on environmental equality have been less discussed. On the other hand, the existing literature varies in its selection of indicators and factors influencing the measurement of environmental equality. For example, Wen and Liu (2022) analyze the role effects of energy saving and emission reduction effects with ER and other mechanisms through quasi-natural experiments and model construction. Gu et al. (2022) combined difference-in-difference and trajectory equilibrium methods to confirm the energy-saving and emission reduction effects of the carbon financial market as an ER policy tool, and that ER also has an incentive effect on the decarbonization transition of resource-based regions. Wu et al. (2024) utilized the Malmquist decomposition method, ER also has a significant driving effect in promoting green development in China. However, less attention has been paid to the effects of ER at the regional level. Therefore, this paper selects the city level as the regional object, and tries to clarify the path of environmental regulation’s influence on environmental equality, and analyze its mechanism of action.
Compared to the existing literature, the marginal contribution of this paper may be reflected in the following aspects: First, in terms of variable selection, this paper focuses on the structural problem of environmental inequality, and measures the degree of environmental equality at the regional level on the basis of the original data of enterprises, which is more accurate and flexible than previous studies in measuring the characteristics of regional differences in environmental equality. Second, in terms of research perspective, this paper incorporates both the intensity of ER and environmental equality in the region into the analytical framework, examining both their synergistic effect on the green transformation of the economy and their transmission effect. The robustness of the article is also better improved with the help of instrumental variables such as work report word frequency. Third, in terms of mechanisms, to clarify the intrinsic mechanism of ER intensity for environmental equality, this paper, on the basis of theoretical analysis and empirical testing, analyzes the “enabler role” played by the green innovation inequality mitigated by ER intensity for the realization of environmental equality. In addition, this paper analyzes the effect of green financial development on mitigating environmental inequality, and explores the realistic path of upgrading the level of digital economic development to realize low-carbon transformation, and comprehensively analyzes the transmission mechanism of ER affecting environmental equality. The above findings can provide empirical support to the relevant sectors in advancing environmental policies and safeguarding human health and safety.
2 THEORETICAL ANALYSIS AND RESEARCH HYPOTHESES
Environmental equality is the sameness of social groups in terms of their exposure to environmental hazards, while environmental inequality implies that an area or group loses some of its rights and benefits because of unequal environmental responsibilities. The essential features of ER, such as government-led, mandatory means and market incentives, have effectively eliminated the problems of unequal environmental obligations caused by unequal economic development, the contradiction between the supply and demand of environmental resource elements, and the failure to strike a balance between equality and efficiency. In addition to having a direct impact on environmental equality by virtue of its self-contained character, ER can also have an indirect impact on addressing environmental inequality by influencing digital economy development (DED) activities in the region. At the same time, given the positive effects of green finance (GF) and DED on sustainable production, the path of ER towards environmental equality may also be affected. Based on this, the research hypothesis of this paper is presented:
ER, represented by command-and-control, market-incentive and informal approaches, plays a key role in protecting natural resources, combating global climate change and preserving the Earth’s ecosystems. In the implementation of environmental protection policies, regions need to consider more environmental factors in their production processes, and appropriate ER intensity can motivate regions to increase R&D investment, stimulate technological innovation, and rationally allocate resources (Yang et al., 2024). Under this mechanism, new production technologies and management models will empower the realization of regional pollution reduction and carbon reduction pathways, thereby improving environmental equality. On the one hand, despite the weakness of environmental regulations in terms of international specialization and trade autonomy (Duan et al., 2021), the environmental gains and losses that environmental taxes bring to firms in the region in terms of added or added or subtracted costs motivate them to adjust their strategies accordingly. It also improves manufacturing productivity by reducing corporate income tax (Yamazaki, 2022), and motivates enterprises in all sectors to raise environmental awareness and emphasize social and environmental responsibility in the production process (Zhang et al., 2023). Specifically, in terms of production costs, and in terms of information disclosure, ER can help to promote openness and transparency of information such as social and environmental governance, bridge environmental information asymmetries, and increase the public’s voice in environmental governance (Acheampong and Elshandidy, 2024). On the other hand, the implementation of environmental regulatory policies can motivate the region to take greater account of the public interest in its operations. Thus, overconsumption of production resources can be avoided to a certain extent, and energy saving and emission reduction synergies can be utilized to reduce the uneven burden of environmental protection (Bareille et al., 2021). Therefore, this paper proposes Hypothesis 1:
Hypothesis 1. An increase in the intensity of environmental regulation can improve environmental equality.
Green transformation and sustainable production is one of the important ways to achieve high-quality economic development. Green technological innovation has significant advantages in the implementation of environmental policies by reducing wasteful consumption of resources, improving environmental adaptability, and promoting industrial optimization and upgrading. Specifically, first, under the constraints of environmental regulations such as carbon trading systems and incentive policies, firms are more willing to utilize clean energy technologies such as solar, wind, and geothermal energy to replace traditional fossil energy technologies and to meet the emission standards of environmental regulations. This will compress overall carbon emissions and enhance the resilience and spillover breadth of regional environmental activities (Hu K. et al., 2023). Second, by utilizing green management technologies such as energy management systems, carbon capture technologies, and environmental monitoring and governance, enterprises can effectively realize intelligent, automated, and digital monitoring and management of the production process, improve their operational and production efficiency, further implement environmental protection targets, and achieve circular and low-carbon development (Shi et al., 2021). Meanwhile, the wide application of green production technologies such as renewable energy technologies, energy-saving technologies, circular economy technologies, pollutant treatment and purification technologies, and intelligent environmental monitoring technologies can effectively optimize the energy consumption structure, protect environmental resources, and reduce environmental damage (Wang et al., 2021). Therefore, this paper proposes Hypothesis 2:
Hypothesis 2. An increase in the intensity of environmental regulation can stimulate green technological innovation and thus mitigate environmental inequality.
GF is the financial practice of practicing the concept of environmentally sustainable development and actively responding to global climate change. The development of GF involves green bonds, green credit, green funds, green investment, carbon trading and other financial products and services that can provide investment support and risk management-type services for environmental protection projects and business initiatives. In the existing practice of GF, the state government of the United States, through Comprehensive Environmental Response, Compensation, and Liability Act and other green finance laws, has clarified the environmental responsibility of banks and guided financial institutions to make green investments or issue green credits, which provides an effective reference for the realization of environmental protection equity. In addition, for developing countries such as Brazil and India, the vigorous development of GF can not only realize green low-carbon economic development and environmental justice, but also participate in global environmental governance through the cooperation of the Climate Finance Coalition. For one thing, GF can provide financial support for businesses to implement eco-sustainability policies. Support the financing, investment and operation of corporate green projects through the issuance of green bonds and the provision of green credit support to effectively address asymmetries in environmental quality (Chang et al., 2022). For another, the advantages of GF in the field of assessing and identifying environmental risks can motivate enterprises to disclose environmental information and assess their own energy consumption and carbon emissions, thus reducing environmental risks and transition costs (Liu et al., 2023). In addition, the government can promote the improvement of the green financial market through preferential tax policies and raising the capital requirements of financial institutions, etc., to send out positive signals to encourage the development of GF, thus promoting the implementation of environmental policies (Yin et al., 2023).
Digital transformation and sustainable production is one of the important ways to achieve high-quality economic development. The DED, with its inherent qualities of sharing, universality, social interaction and innovation, has significant advantages in implementing environmental policies by reducing wasteful consumption of resources, improving the monitoring and planning capacity of enterprises, and promoting the optimization and upgrading of industries (Wang et al., 2021). In the global practice of digital economic development and environmental problem-solving, France has achieved good results by promoting the convergence of digital and ecological transformations with the aim of both reducing the ecological footprint of digital development and supporting ecological transformation through digital and innovation (Liu et al., 2024b). Specifically, for one thing, with the widespread use of the digital economy, the borderline nature of economic activities between regions is gradually weakening. The establishment of sharing systems, such as resource sharing platforms and smart energy management, not only effectively avoids waste and overconsumption of resources, but also makes it easier for the public to understand environmental data and the current state of development, and to participate in the establishment of social environmental justice (Liu Z. et al., 2024). For another, the DED provides advanced methods of data collection, screening, analysis, processing and monitoring, effectively promoting the innovative application of green technology. It has given rise to more sustainable business and economic models that effectively mitigate environmental equity issues (González-Ruiz et al., 2023). At the same time, the wide application of digital science and technology, such as energy management systems, carbon capture technology and intelligent environmental monitoring technology, can effectively optimize the energy consumption structure, protect environmental resources and reduce environmental damage. In view of this, this paper proposes Hypothesis 3.
Hypothesis 3. The level of green finance development and the level of digital economy development play a positive moderating role in the process of environmental regulation to mitigate environmental inequality.
It is worth noting that the inequality index chosen in this paper is relative and has limitations in measuring environmental inequality, and the criteria for calculating the inequality index may also affect the measurement of environmental equity. In addition, whether green technological innovation, as a mediating variable, can effectively realize the transformation and application of green innovation and thus play an important role in the solution of environmental problems remains an issue that needs to be examined in the long term. At the same time, today’s GF practice exists in five major problems, such as low policy effectiveness, single product, insufficient attention to regional differences, international cooperation needs to be strengthened, and little social publicity, etc., while the development of the DED in the field of eco-governance is not widely enough and the problem of its own energy consumption still exists, all of which will affect to a certain extent the process of ER to alleviate the process of environmental inequality.
The mechanism framework of this paper is shown in Figure 1.
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3 METHODOLOGY
3.1 Data sources
In this paper, 238 prefecture-level cities in China are studied, and the mechanism of the role of ER intensity in affecting environmental equality status is explored using a city-year sample between 2011 and 2020. In terms of sample selection, not all prefecture-level cities in China were included due to missing data and implementation of environmental policies in some regions. Among them: (1) Gini coefficients and Theil indices were calculated for each region on the basis of raw data on total industrial sulphur dioxide emissions to characterize environmental inequality; (2) Data on comprehensive utilization rate of industrial solid waste, regional household population at the end of the year, urban employment, regional non-agricultural value, urban infrastructure construction, density of provincial and municipal river networks, etc., were obtained from China Urban Statistical Yearbook, China Energy Statistical Yearbook, China Environmental Yearbook, and CEIC China Economic Database; (3) Green patent authorization. Raw data from annual reports of listed companies, social responsibility reports of listed companies and information on websites of listed companies; (4) Green finance. The standards of credit for environmental protection projects (the proportion of the total credit for environmental protection projects in the province to the total credit in the province), investment in environmental pollution control (the proportion of investment in environmental pollution control to the GDP), and the degree of promotion of environmental pollution liability insurance (the proportion of the revenue from environmental pollution liability insurance to the total premium revenue) were selected to be measured. The raw data were obtained from authoritative statistical yearbooks such as China Science and Technology Statistical Yearbook, China Energy Statistical Yearbook and China Financial Yearbook; (5) Digital economy development. Measured using the percentage of computer services and software employees, total telecommunications services per capita and cell phone subscribers per 100 people within prefecture-level cities, with raw data derived from the China Urban Statistical Yearbook.
In addition, because the sample object is prefecture-level cities, the level of data economic development does not involve variables such as the degree of digital transformation of enterprises in the region for the sake of the macro perspective. The selected GF indicators have certain limitations due to issues such as insufficient information disclosure, green finance exclusivity.
3.2 Variable definition
3.2.1 Outcome variables
Environmental inequality ([image: Please upload the image you'd like me to generate alternate text for.] and [image: Please upload the image or provide a URL, and I will be happy to help generate the alternate text for it.]). Commonly used measures of environmental equality include the Gini coefficient, the Theil index, the Kakwani index of relative deprivation and the Williamson coefficient. Since sulfur dioxide is an important air pollutant in China and is widely used in the measurement of pollution indicators in environmental economics, this paper chooses the Gini coefficient and the Theil index as the measurement methods to calculate the degree of environmental inequality at the regional level on the basis of obtaining raw data on the total amount of sulfur dioxide emissions at the enterprise level. The formula for its calculation is as follows:
[image: Mathematical formula for \( G_i \) is displayed as a fraction. The numerator has a double summation: \(\sum_{i=1}^{n} \sum_{r=1}^{N} |y_i - y_r|\). The denominator is \(2N^{2}\alpha\). Equation number (1) is indicated on the right.]
In Equation 1, [image: It seems like there was an error in uploading the image. Please try uploading it again, and I'll help generate the alternate text for you.] represents the Gini coefficient of the region used to measure the inequality of sulfur dioxide emissions, [image: Please upload the image or provide a URL so I can generate the alt text for you.] is the mean value of sulfur dioxide emissions of the sample firms in the region, [image: The expression depicts the absolute value of the difference between \(y_i\) and \(y_r\).] is the absolute deviation of two-by-two sulfur dioxide emissions of sample firms in the region, and [image: It looks like there was an error in uploading the image. Please try uploading the image again or provide a URL for me to access it. If you have a caption or any specific context, feel free to include that as well.] represents the number of sample firms in the region. The higher [image: Please upload the image or provide a URL so I can assist you in generating the alternate text.] is, the stronger the inequality of sulfur dioxide emissions in the region.
[image: Formula for Theil's index: The index, labeled as theil_i, is the sum from i equals one to n of the fraction of I_it over I_t multiplied by the natural logarithm of I_it times P_it over I_t times P_t. It is equation 2.]
In Equation 2, [image: Sure, please upload the image or provide a URL, and I'll generate the alt text for you.] represents the Theil index used to measure the inequality of sulfur dioxide emissions in region [image: Please upload the image and I'll help generate the alternate text for it.], [image: Please upload the image or provide a URL so I can help generate the appropriate alternate text.] represents the individual firms in the region, [image: Please upload the image or provide a URL so I can generate the alternate text for you.] represents the sulfur dioxide emissions of individual [image: Sure, please upload the image you would like me to generate alternate text for.] in region [image: Please upload an image or provide a URL for the image you would like me to describe.], [image: Please upload the image you'd like me to generate alt text for.] represents the sum of the sulfur dioxide emissions of all individual [image: Please upload the image or provide a URL so that I can generate the appropriate alt text for you.] in region [image: I can't see the image. Please upload it or provide a URL, and I'll help you with the alt text.], H represents the number of individual [image: Please upload the image or provide a URL so I can help generate the appropriate alt text.] in region [image: It appears there is a mistake with the image upload. Please try uploading the image again, and I will be happy to help generate the alternate text for it.], and [image: Please upload the image or provide a URL so I can generate the alternate text for you.] represents the sum of the number of individuals in all regions. The higher the [image: Please upload the image, and I will generate the alt text for you.], the stronger the inequality of sulfur dioxide emissions in the region.
In order to further analyze the dynamic change trend of environmental inequality in each region, this paper adopts a nonparametric test method to estimate the Kernel density of environmental inequality in selected years (King et al., 2020). The results are shown in Figures 2, 3. During the sample examination period, the crest of the kernel density curve generally shifted to the right, indicating that the environmental inequality problem in China’s regions as a whole has been alleviated year by year. The multi-peak pattern of the kernel density curves is evident, with a multipolar phenomenon of environmental inequality. In addition, the peaks of the curves become higher and narrower each year, reflecting a gradual narrowing of the degree of variation in environmental inequality across regions. But the right-hand trailing tail has not changed significantly, implying that spatial disparities in environmental inequality across regions remain.
[image: Line graph showing density distributions of a variable labeled "so2_gini" over four years: 2011, 2014, 2017, and 2020. Each year is represented by a different line style and color. Density peaks around 0.03 and 0.06 for all years, with the 2020 line peaking highest.]FIGURE 2 | Trends in the kernel density of so2gn.
[image: Line graph showing the relationship between a variable labeled on the x-axis (xct_shock) and opgov on the y-axis from 2011, 2014, 2017, and 2020. Each year is represented by a different colored line. The lines exhibit a general declining trend with peaks and troughs. The source is spmapleshock_femhealth_n_0.9900.]FIGURE 3 | Trends in the kernel density of so2t.
In addition, point data on environmental inequality across the samples are presented on a spatial scale. In Figures 4, 5, environmental inequality shows an uneven spatial distribution of concentration, and environmental inequality problems are more concentrated in the eastern coastal region.
[image: Map of China showing population density by province. Areas are shaded in varying intensities of orange, with the darkest indicating the highest density. A legend provides scale and color reference.]FIGURE 4 | Distribution of so2gn.
[image: Map of China showing population density with varying shades of blue. Darker areas indicate higher population density, particularly concentrated in the eastern and southeastern regions. A legend and scale bar are included.]FIGURE 5 | Distribution of so2t.
3.2.2 Variables of interest
Intensity of environmental regulation [image: Please upload the image you'd like me to describe, and I'll generate the alternate text for you.]. ER indicators are quantitative standards for the inputs and outputs of environmental policies, and the existing literature selects the air quality index, the proportion of clean energy, and the domestic sewage treatment rate to construct ER indicators. Due to the controversial data on pollution control investment at the city level in China, this paper uses the comprehensive utilization rate of industrial solid waste to construct an ER intensity indicator at the prefecture-level city level.
3.2.3 Control variables

	(1) Population agglomeration [image: Please upload the image or provide a URL so I can generate the alt text for you.], measured as the logarithm of the household population at the end of the year, causes an increase in household waste emissions and indirectly affects the increase in the intensity of ER (Zhou and Zhang, 2021).
	(2) Economic agglomeration [image: Please upload the image for which you need the alternate text, and I'll help you with that.], calculated from the logarithm of the number of people employed in towns and cities, the agglomeration of economic factors of production creates large amounts of domestic pollution and affects environmental equality (Ali et al., 2022).
	(3) Industrial agglomeration [image: Please upload the image or provide a URL for me to generate the alt text.], measured by the logarithm of the non-agricultural value of the region, can to a certain extent reduce the waste of resources caused by duplicated construction and reduce environmental pollution (Yang et al., 2023).
	(4) Urban infrastructure development [image: Please upload the image or provide a URL so I can generate the alt text for you.], the number of telephone subscribers per capita in the city and the number of public transportation vehicles per capita are indicators that measure infrastructure (Zhao et al., 2022).
	(5) The level of governmental emphasis [image: It appears there's no image to analyze. Please upload an image or provide a URL for assistance.], measured by the ratio of government capital investment to regional GDP, which can have a significant impact on technological innovation, economic growth, and environmental pollution in the region (Zhou and Zhang, 2021).

3.2.4 Mediating variables
Green technology innovation [image: It seems there might have been an error in your request, as no image was uploaded. Please try uploading the image again, and I will gladly help generate the alternate text for you.] is an effective means to realize the dual goals of regional economic development and energy and environmental protection. In this paper, we start from the technological level and use regional green technology innovation as a relevant mediating variable affecting ER and environmental equality. Among them, this paper measures the regional green technology innovation level by the total number of green patents authorized in the region in that year plus one logarithm. In addition, during the sample period of this paper, the regional sample was categorized into low and high ER level regions according to the mean value of the ER level.
3.2.5 Moderating variables
As competition in the market intensifies, the ability to integrate regional resources becomes increasingly important for the region to achieve a favourable competitive position and to address environmental issues. This paper uses the level of GF and DED as moderators affecting the relationship between ER and environmental equality.
(1) On the one hand, the wide application of GF in the field of environmental protection helps to guide green investment, provide green project fund support, and assess risk advantages, among other roles. In the moderator GF measure, green funds are measured as the ratio of total market capitalization of green funds to the total market capitalization of all funds [image: Please upload the image or provide a URL so I can help generate the alternate text.]. With the comprehensive evaluation system composed of green credit, green investment, green insurance, green bonds, etc., the entropy value method is adopted to measure the green financial index [image: Please upload the image or provide a URL, and I will generate the alternate text for you.].
(2) On the other hand, the level of development of the DED, as the target direction of economic development in today’s era, plays a positive role in the fields of sharing and universality, social interaction, innovation and creativity, and at the same time, it is also an effective means of realizing the dual goals of upgrading the industrial structure and energy and environmental protection. In particular, this paper measures regional digitization levels using the percentage of people employed in computer services and software [image: It seems there was an error in uploading the image. Please try uploading the image again or provide a URL if available. Additionally, you can add a caption for more context.], total telecommunication services per capita [image: Please upload the image you'd like me to generate alt text for. You can do so by clicking the "upload" button or dragging the image into the chat.], and the number of cell phone subscribers per 100 people [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.], respectively.
(3) In addition, informal ER can stimulate the awakening of citizens’ environmental appeals and fill the gaps in ER through social publicity and public monitoring. This paper utilizes the logarithmic value of the ratio of the number of searches for “environmental pollution” to the number of Internet users in each province in Baidu Index to measure the public’s concern for the environment [image: Please upload the image you'd like me to generate alternate text for.].
The definitions of the main variables and the results of the descriptive statistics are shown in Table 1.
TABLE 1 | Definition of main variables and descriptive statistics.
[image: Table displaying variables, definitions, and statistics: "envir" represents intensity of ER; "so2gn" and "so2t" indicate environmental inequality from Gini and Theil indices, respectively; "npop" is population agglomeration; "neco" is economic agglomeration; "nind" is industrial agglomeration; "infra" is urban infrastructure development; "gover" indicates governmental emphasis level. Each has consistent N of 2229, with varying means, standard deviations, minima, and maxima.]3.3 Modeling
With the objective of analyzing the mechanism of ER intensity to mitigate the role of regional environmental equality generation, this paper constructs the following benchmark model, as shown in Equation 3:
[image: Equation showing a model: Y_it = β_0 + β_1*envir_it + γ*Controls_it + u_i + r_t + ε_it, labeled as equation (3).]
where [image: Please upload the image or provide a URL for me to generate the alternate text.] is the region and [image: Please upload the image or provide a URL for it. If you have additional context or a caption, feel free to share that as well.] is the year. [image: Please upload the image or provide a URL for me to generate the alternate text.] represents a range of variables reflecting environmental equality, including the regional SO2 emissions inequality index calculated from the Gini coefficient and the regional SO2 emissions inequality index calculated from the Theil index; Representative [image: Text showing "envir" in italic with a smaller subscript "it" also in italic.] represents the intensity of ER in region [image: Please upload the image or provide a URL so I can generate the alt text.] in year [image: Please upload the image or provide a URL so I can help generate the alternate text.] and normalizes it to [image: Text displaying a mathematical equation to normalize a variable. The equation is "envir equals [envir minus mean(envir)] divided by sd(envir)", where "mean" and "sd" denote the mean and standard deviation of "envir".]; [image: Text reads "Controls" with "it" in subscript format.] is the vector consisting of each control variable for region [image: Please upload the image or provide a URL so I can generate the alt text for you.] in year [image: Please upload the image or provide a URL for me to generate the alternate text.]; [image: Please upload the image you'd like me to generate alternate text for.] is the regional individual fixed effect; [image: Please upload the image or provide a URL so that I can generate the alternate text for it.] is the year time fixed effect; and [image: Mathematical expression showing the Greek letter epsilon followed by lowercase italic letters i and t as subscripts.] is the random error term.
In terms of mechanism analysis, mediating effects were analyzed using green technology innovations. The level of GF and DED is also introduced as an interaction term to analyze the moderating effect of ER intensity, as shown in Equations 4 and 5:
[image: Equation describing a mechanism model: Mechanism subscript i t equals beta subscript 0 plus beta subscript 1 times environ subscript i t plus gamma subscript i times controls subscript s t plus lambda subscript t plus alpha subscript i plus epsilon subscript i t. Equation labeled as (4).]
[image: Equation showing a linear regression model. The dependent variable \(Y_{it}\) is modeled with coefficients \(\beta_0\), \(\beta_{1}\) for environment \(envir_{it}\), and \(\beta_{env2}\) interaction with \(W_{it}\), plus \(\beta_{3}\) for another variable \(W_{it}\). It includes a control variable \(\gamma\), error term \(\epsilon_{it}\), and subscripts \(i\) and \(t\) representing individuals and time.]
where [image: Italicized word "Mechanism" with a subscript "it" on a white background.] represents the mediator variable green technological innovation in region [image: I can help with that. Please upload the image you're referring to.] in year [image: Please upload the image or provide a URL so I can generate the alternative text for you.]; [image: Please upload the image, or provide a URL or additional context, so I can generate accurate alt text for you.] represents the moderating variables for Region [image: It seems there's a small error in your message. Could you please try uploading the image again or provide more context?] in Year [image: Please upload the image or provide a URL, and I will help you generate the alternate text for it.], i.e., the level of GF, DED and informal ER; [image: It seems like there is no image uploaded. Please upload the image you want me to generate alternate text for, and I will help you with that.] and [image: A mathematical expression showing the Greek letter sigma (σ) followed by a subscript lowercase letter i.] represent city fixed effects and year fixed effects, respectively, and the other elements have the same meaning as those in Model (3).
4 EMPIRICAL RESULTS
4.1 Baseline regression
Table 2 reports the results of the baseline regression of the impact of ER intensity on environmental inequality based on Equation 1. Where Columns (1) to (2) are environmental inequality calculated from Gini coefficient, Columns (3) to (4) are environmental inequality calculated from Theil index, Columns (1) and (3) are the results without adding control variables, Columns (2) and (4) further adding control variables. The regression results show that the coefficients of the baseline regression results are negative regardless of the inclusion of control variables, i.e., the increase in the intensity of ER helps to improve regional inequality in pollutant emissions and enhances environmental equality, and this effect is significant at least at the 10 percent level. Specifically, controlling for variables, a 10 percent increase in a region’s ER intensity reduces regional emissions inequality by roughly 0.1 percent, as measured by the Gini coefficient; In the case of the Theil index measure, for every 10 percent increase in a region’s ER intensity, regional emissions inequality decreases by roughly 0.02 percent, validating H1.
TABLE 2 | Baseline regression.
[image: Statistical table with four columns labeled (1) so2gn, (2) so2gn, (3) so2t, and (4) so2t, showing regression results. Variables include envir, npop, neco, nind, infra, and gover, with coefficients and t-values. Significance indicated by asterisks at 1%, 5%, and 10% levels. Constants and R-squared values are provided. Year FE and City FE are marked with check symbols. Observations total 2,229 for each model.]4.2 Robustness analysis
In order to test the robustness of the benchmark regression results, the paper first Winsorizes each variable, i.e., regressing all variables again after shrinking the tails by 1% versus 99%. The regression results are reported in Columns (1) through (4) of Table 3. Where Columns (1) and (3) are the results without adding control variables, and Columns (2) and (4) further add control variables. The regression results show that the regression coefficients in Columns (1) through (4) are all negative and significant at the 10 percent level, regardless of the inclusion of control variables, which implies that the effect of ER intensity on increasing environmental equality is still robust after the shrinkage treatment and that the resulting coefficients are generally consistent with the baseline regression results.
TABLE 3 | Winsorized results.
[image: Table presenting regression results for four models: so2gn (1 and 2) and so2t (3 and 4). Variables include envir, npop, neco, nind, infra, gover, and a constant. Coefficients and t-statistics are shown, with significance levels indicated by asterisks. Year and city fixed effects are included. Observations count is 2,229, and R-squared values range from 0.550 to 0.745.]Further validation of the robustness of the model is done by replacing the core explanatory variables in this paper. Because government work reports have the advantage of exogeneity, i.e., the future work plans of higher-level governments have important indications for the implementation of lower-level governments and are not directly affected by the will of lower-level governments. This paper refers to Zhang and Chen (2021), and selects the frequency of words related to “environmental protection” in the work reports of provincial governments to measure the strength of ER of prefecture-level municipal governments [image: Please upload the image you would like me to generate alternate text for. If you have any specific details you want included, feel free to mention them as well.]. The word frequency includes environmental protection, eco-friendly, green, clean, low carbon, green water, green mountains, ecology, air, climate, sulfur dioxide, chemical oxygen demand, haze, particulate matter, carbon dioxide, energy consumption, bulk coal, coal combustion, sewage, stealing emissions, exhaust, pollution, energy saving, emission reduction, desulfurization, denitrification, and so on. The regression results are shown in Column (1) of Table 4. The regression results show that the regression coefficients are negative and significant at the 10% level with the inclusion of control variables, i.e., the increase in the intensity of regional ER still has a significant contribution to regional emissions equality. In addition, in order to test the robustness of the regression model in more depth, the regression was run again by shortening the observation interval and changing the fixed effects, respectively. In particular, Columns (2) through (3) of Table 4 present the results of shortening the observation interval to 2011 to 2020, and the regression coefficients are all significantly negative at the 10% test level. Column (4) of Table 4 then clusters the results to the provincial level based on Column (2) of Table 2. The regression results in Columns (2) to (4) show that, after a series of robustness analyses, the increase in the intensity of ER is still able to robustly mitigate environmental inequality and significantly improve environmental equality.
TABLE 4 | Robustness analysis.
[image: A regression table with four columns showing results for so2t and so2gn across different models. Variables include tool, envir, npop, neco, nind, infra, gover, and Constant. Each cell contains coefficients and t-statistics in parentheses. Significance levels are denoted by *, **, and ***. Year and City Fixed Effects are considered. Observations range from 2,018 to 2,229. R-squared values vary from 0.529 to 0.749.]4.3 Endogenous analysis
In order to mitigate the problem of biased estimation results and the problem of reverse causality caused by endogeneity, the instrumental variables approach is chosen in this paper to further test the relationship between ER intensity and environmental equality. In this paper, the density of provincial and municipal river networks is used as an instrumental variable (Hu H. et al., 2023) for the endogeneity of ER using the two-stage least squares method. On the one hand, the density of provincial and municipal river networks is itself one of the objective ecological indicators of the region. The higher the density of provincial and municipal river networks, the more abundant the water resources are, the lower the cost of using, transporting and storing water resources for enterprises, and the lighter the burden on the environment. And ecological governance is relatively less difficult, environmental policies are easier to implement, and the correlation assumptions of the instrumental variables are met. On the other hand, the density of provincial and municipal river networks is relatively stable in the short term, and the probability of precipitation, flow, and streamflow in the region depends on the local geographic location, terrain topography, and the climatic zone in which they are located, which are natural phenomena that cannot be manipulated artificially, so that the interference of anthropogenic factors can be ruled out to satisfy the assumption of exogeneity of the instrumental variables. The two-stage least squares estimation results are shown in Table 5. Where Column (1) is the result of environmental equality calculated from the Gini coefficient for the dependent variable and Column (2) is the result of environmental equality calculated from the Theil index for the dependent variable.
TABLE 5 | Two-stage least squares estimation.
[image: A table with three columns labeled (1), (2), and (3) representing different stages and variables: "Envir," "so2gn," and "so2t." The "it" row has values: 0.0455 with statistical significance, -0.0557 with significance, and -0.0070 with significance. Rows for "Controls," "Year FE," and "Province FE" have checkmarks. Observations are 2,229 for each column. The "Cragg-Donald Wald F statistic" is 16.81 for column (2), while the "Kleibergen-Paap rk Wald F statistic" is 136.91.]Various statistics were utilized to test the weak instrumental variables, where the first stage F-values for Columns (1) to (2) were all 136.91, which is much greater than the empirical value of 10; The Kleibergen-Paap rk LM statistics were all significant at the 1% level, passing the underidentification test. Meanwhile, the Cragg-Donald Wald F-statistics are all 16.81, which is greater than the Stock-Yogo critical value of 16.38 at 10% bias, thus rejecting the weak instrumental variable hypothesis. In the regression results, the regression coefficient of the instrumental variable in Column (1) is 0.0455 and is significant at the 1% level, indicating that there is a strong correlation between the intensity of regional ER and the density of the river network. In the two-stage regression results, the regression coefficients for Columns (2) and (3) are −0.0557 and −0.0070, respectively, and pass the significance test at the 5% level. In summary, the benchmark regression results remain robust after taking the bias problem and the reverse causation problem into account in the model.
5 MECHANISMS ANALYSIS
5.1 Mediating effect: Green innovation transformation
Regional green technology innovation has important implications for the effective practice of environmental policies (Wang et al., 2021). This paper focuses on the level of green technological innovation, and investigates the mechanism path of ER intensity to further promote regional energy conservation and emission reduction and thus alleviate environmental equality by increasing regional green innovation incentives. The level of regional green technology innovation is measured by the total number of green patents granted in the region in the year plus one logarithmic measure [image: Please upload the image you would like me to generate alt text for.], and regression analysis is conducted with ER. In addition, during the sample period of this paper, the regional sample was divided into low and high ER level regions according to the mean value of the ER level and grouped into regressions. The results are shown in Table 6. The regression results in Column (1) show that in regions with low levels of ER, the level of green technological innovation rises by approximately 0.2% for every 1% increase in the intensity of ER, and this result is significant at the 10% test level. The regression results in Column (2) show that as the intensity of ER increases, the level of green technological innovation in regions with high ER levels also has a certain upward trend, but it is not significant. The regression results in Column (3) show that for every 1% increase in ER intensity, the green innovation transformation effect is approximately 0.16% and significant at the 5% level. It suggests that as the intensity of ER increases, the level of green technological innovation increases to some extent, regardless of whether it is a high or low level of ER or not. In particular, the increase is higher in areas with low ER levels than in areas with high ER levels. Theoretically, as enterprises with low levels of ER are better able to take the initiative in green development, they have more potential for energy saving and emission reduction, product iteration and environmental responsibility, forming a virtuous cycle of “green innovation - green dividend - green innovation”. The green technology transformation effect in regions with high levels of ER is still positive but not significant, which may be due to the fact that regions with high levels of ER have low autonomy in green transformation under high pressure of policies, and need to further stimulate the potential of regional green technology innovation in order to realize the improvement of environmental equality.
TABLE 6 | Regional green innovation mediation effects.
[image: Table displaying regression results across three columns: (1) Low level of ER, (2) High level of ER, and (3) All sample. The coefficient for "envir" is 0.2735 with significance in column one, 0.2006 in column two, and 0.1641 with significance in column three. Constants are negative with high significance across all columns. Controls, Year FE, and City FE are checked in each column. Observations count is 694, 1,535, and 2,229 respectively. R-squared values are 0.780, 0.799, and 0.794.]5.2 Moderating effects
5.2.1 Green finance
GF has a significant impact on corporate sustainability (González-Ruiz et al., 2023), which in turn has an enhancing or inhibiting effect on environmental equality. On the one hand, ER can motivate financial institutions to invest more in environmentally friendly areas such as clean energy projects, environmentally friendly infrastructure construction, sustainable agriculture and forest protection, reducing environmental damage and resource waste (Yang et al., 2024). On the other hand, the development of green financial products such as green bonds, green loans and environmental insurance by financial institutions will not only help to provide financial support for environmental protection projects, but also attract more investors to participate in the field of environmental protection and promote the development of a green economy. In this paper, green funds are measured as the ratio of total market capitalization of green funds to the total market capitalization of all funds [image: It looks like you provided a placeholder for an image but did not upload an actual image. Please upload the image or provide a URL, and I will be happy to assist with generating the alt text.]. With the comprehensive evaluation system composed of green credit, green investment, green insurance, green bonds, etc., the entropy value method is adopted to measure the green financial index [image: Please upload the image or provide a URL so I can generate the alternate text for you.]. At the same time, in order to avoid non-intrinsic multicollinearity, this paper centers the means of each moderating variable. The results are shown in Table 7. The results explore the situational impacts of GF on the intensity of ER, with Columns (1) to (2) as dependent variables and Columns (3) to (4) as explanatory variables. In particular, Columns (1) and (3) show the results of empirical regressions on the moderating effect of the Green Fund, where the coefficients of the interaction terms are negative and significant at least at the 1% level. Columns (2) and (4) are empirically regressed with the GF index as the moderator, and the coefficients of the interaction terms are also negative and significant at least at the 5% level. Of these, the cross-multiplier term between the Green Fund and ER is the most significant, with a mitigating effect on environmental inequality as measured by the Gini coefficient of about 0.3849 percent for every 1 percent increase in the Green Fund. The results indicate that the development of GF can provide financial support and risk management services for environmentally friendly enterprises, promote the effective use of resources and the development of the circular economy, and contribute to the realization of environmental equality.
TABLE 7 | Moderating effects of green finance.
[image: A table displaying regression results across four models labeled (1) so2gn, (2) so2gn, (3) so2t, (4) so2t. Variables include "envir," "fund × envir," "fund," "financial × envir," "financial," and "Constant," each with coefficients and t-values. All models include controls and fixed effects for year and city. Observations count is two thousand one hundred forty-nine for all models, with R-squared values ranging from 0.534 to 0.738. Significance is marked by asterisks.]5.2.2 Digital economy development
The above analysis found that regional ER intensity and environmental equality are strongly correlated, and that stronger ER can motivate firms to seek and develop more sustainable development strategies (Ali et al., 2022). Among them, the DED, with its strong sharing, universality, social interaction and innovation, has a positive role to play in mitigating the imbalance of environmental pollution emissions and promoting stable economic growth. On the one hand, an increase in the intensity of ER can encourage companies and research organizations to invest in environmentally friendly digital technologies and solutions such as smart energy management systems, IoT sensors and big data analytics. On the other hand, the widespread application of digital technology and data analytics in the environmental field can also improve the efficiency and transparency of government regulation and further reduce environmental inequality. In addition, data infrastructure provides a practical basis for DED to empower environmental problem solving, and this paper also includes the construction of digital infrastructure in the parameter system for consideration.
Based on the theoretical analysis, this paper measures the regional digitization level using the percentage of computer service and software employees [image: Please upload the image or provide a URL so I can help generate the alt text for you.], total telecommunication services per capita [image: It seems there was an error with the image upload. Please try uploading the image again or provide a URL, and I'll be happy to help generate the alternate text.], and the number of cell phone subscribers per 100 people [image: Please upload the image for which you would like the alternate text.], respectively, so that they can be used as moderators and regressed (Zhao et al., 2022). The results are shown in Table 8. Columns (1) through (3) are the regression results, and Columns (4) through (6) are used as explanatory variables. In particular, Columns (1) and (4) show the results of the regression with the share of computer services and software employees as a moderator. Columns (2) and (5) show the empirical results of the moderating effect of total telecom services per capita. Columns (3) and (6) are tests of the moderating effect of the measure of cell phone subscriptions per 100 people. The results of each Column show that the coefficients of each cross-multiplier term are negative and significant at least at the 5% level, controlling for the relevant variables, year effect and city effect. Among these, the cross-multiplier between the share of computer services and software workers and ER is the most significant, with a 1 percent increase in it leading to a decrease in environmental inequality measured by the Gini coefficient of roughly 0.3677 percent. The results show that upgrading digitization will help enterprises to achieve pollution reduction and carbon reduction through digital technological innovation and data monitoring and management, meet the government’s ER requirements, and thus promote the process of environmental equality.
TABLE 8 | Moderating effects of digital economy development.
[image: A table displaying regression results across six models, labeled as (1) to (6). The variables include "envir," "comp × envir," "comp," "ele × envir," "ele," "phone × envir," and "phone," with each showing coefficients and t-statistics. Significance is indicated by asterisks: *, **, ***. Controls, year, and city fixed effects are included. Observations are 2,169 for each model, with R-squared values ranging from 0.534 to 0.739.]5.2.3 Public environmental appeals
Considering the role of informal ER in which social groups pursue high environmental quality based on their own interests when formal ER fails, i.e., the general public, the Internet media and environmental non-governmental organizations, etc., impose constraints on government and corporate behavior through various social channels to achieve the development of the environmental protection cause. Currently, the measurement of informal ER mainly includes the exposure of environmental incidents, the number of searches in search engines or the number of letters and visits from the public. This paper utilizes the logarithmic value of the ratio of the number of searches for “environmental pollution” in Baidu index [image: Sure, please upload the image you'd like me to generate alt text for.] by province to the number of Internet users in the region to measure the public’s concern for the environment. The index is used as a moderator for regression, and the results are shown in Table 9. Where column (1) shows the results of so2gn and column (2) shows the analysis of so2t. From the results, it can be seen that the coefficients of each cross-multiplier term are negative and significant at least at the 10% level. For every 1 percent increase in the cross-multiplier between the Baidu index and ER, environmental inequality as measured by the Gini coefficient can fall by roughly 0.0018 percent, and so2t can fall by roughly 0.004 percent. This suggests that informal ER can, to a certain extent, effectively complement formal ER and contribute to the realization of environmental equity.
TABLE 9 | Moderating effects of public environmental appeals.
[image: A regression table with two models: (1) so2gn and (2) so2t. Coefficients for "envir" are -0.0075** and -0.0011**; "baidu × envir" -0.0018** and -0.0004*; "baidu" 0.0021 and 0.0002; "Constant" 0.1905*** and 0.0243***. Controls, Year FE, and City FE are included. Observations are two thousand one hundred fifty-nine for both. R-squared values are 0.735 and 0.529.]5.3 Heterogeneity analysis
Considering that there are differences in the implementation status of environmental policies, the level of economic development, the innovation capacity of green technology, social and environmental awareness, and the resource policies and strategies of regional enterprises in different regions, which have certain impacts on the transmission path of ER and environmental equity. In addition, there is reason to believe that there are significant differences in the sample of prefecture-level cities due to geographic location and historical factors, among other things. Therefore, for the consideration of the above factors, this paper divides the sample into eastern and central and western regions according to geographic location, and its regression results are shown in Table 10. Columns (1) and (2) show environmental inequity as measured by the Gini coefficient, and columns (3) and (4) show the results for so2t. From the regression results, it can be seen that the eastern region is significant at the 5% level and the central and western regions are significant at the 10% level, and that the increase in ER intensity in the eastern region is more effective in achieving environmental equity. The reason for this is that the level of economic development in the eastern region is generally higher, and the economic costs of implementing environmental equity are higher. The introduction of pilot policies and the concept of sustainable development have made enterprises in the region more willing to incorporate sustainable development into their corporate blueprints and implement environmental policies.
TABLE 10 | Regional heterogeneity.
[image: Comparison table showing regression results for Eastern and Central and Western regions across four columns. Column 1 (Eastern) shows a coefficient of -0.0202 with an R-squared of 0.759. Column 2 (Central and Western) has -0.0004 with 0.712 R-squared. Column 3 (Eastern) shows -0.0033 with 0.531 R-squared. Column 4 (Central and Western) has -0.0001 with 0.523 R-squared. Values have significance indicators, controls, year FE, and city FE are marked with checkmarks. Observations are 988 for Eastern and 1,241 for Central and Western regions.]6 CONCLUSIONS AND POLICY RECOMMENDATIONS
Using a sample of 238 prefecture-level cities in China between 2011 and 2020, this paper assesses the pathways of influence and mechanisms of action by which ER intensity affects the state of environmental equality. After a series of theoretical analysis and empirical tests, this paper obtains the following conclusions: First, increases in the intensity of ER significantly reduce regional emission inequalities. Second, green technology innovation plays an important role in the regional low-carbon transition, and an increase in the intensity of ER will lead to an increase in the level of green technology innovation in the region, which will in turn empower enterprises in the region to reduce pollution and carbon emissions and improve environmental equity. Third, GF and DED can strengthen the pathway for environmental policies to mitigate environmental inequality. Based on the above theoretical analysis and mechanism discussion, the policy recommendations of this paper are:
Firstly, to appropriately increase the intensity of ER and establish a fair carbon trading market to create a fair path for emissions. In line with the new growth trend of the global carbon market, drawing on the advanced experience of the United States, the European Union, New Zealand and other countries in the construction of the carbon market and the establishment of voluntary emission reduction contribution targets, we will promote the integration and exchange between China’s domestic carbon market and the world’s carbon market. For one thing, the government should update environmental laws and regulations in a timely manner in accordance with changes in real-life conditions and improve environmental protection supervision. Stricter emission standards and limitations should be set to ensure that ER keep pace with the times, and the staffing and technical support of ER agencies should be strengthened to facilitate the effective implementation of ER policies. For another, the Government provides supportive policies and actively breaks down industry barriers. Increase regional incentives to invest in environmentally friendly facilities through measures such as tax breaks, low-interest loans and improved regulations, and provide political guarantees and legal support for regional promotion of the innovative application of environmental technologies and the breaking down of industry barriers.
Secondly, the government’s decision-making and voice in regional environmental governance should be utilized to improve the mechanism of regional digital transformation role. With the implementation of environmental policies and increased attention to environmental issues, there is a more urgent need for governments to encourage the popularization and application of digital technologies and to change the direction of economic development, which can provide decision-making support and policy leadership for the green transformation and sustainable development of the region. The establishment of scientific green goals and clear environmental responsibility. Through audits of the region’s internal resources, production methods, and environmental impacts, internal resource utilization and environmental impacts are captured, and improvement plans are formulated based on the results of the audits. At the same time, Governments should support digital and low-carbon technology investments and sustainable development projects to ensure that regional development is compatible with environmental protection and sustainable development. Establish an environmental protection incentive mechanism to motivate and recognize companies that excel in green, low-carbon digital transformation. Take the initiative to accept external supervision, disclose information on environmental protection and sustainable development to the public, and increase the transparency of information on regional environmental governance.
Thirdly, emphasis will be placed on the development of green finance and the construction of an inclusive and convenient digital economic system, and the upstream and downstream synergistic effects of energy conservation, emission reduction and technological innovation in the industry will be brought into play. On the one hand, it is necessary to vigorously develop GF and improve information disclosure. Guide green financial funds to environmentally friendly projects and support sustainable resilience in areas such as clean energy, energy-saving technologies and the circular economy. So, a system of standards and indicators for GF should be established to improve the environmental risk management and information disclosure capabilities of financial institutions. On the other hand, it is important to actively promote the innovative use of digital technologies to facilitate the low-carbon transition. The region should actively develop and adopt clean energy technologies, energy-saving technologies, resource recycling technologies, etc., to reduce its own energy consumption and environmental pollution. In addition, it is necessary to actively cooperate with international environmental protection organizations such as UNEP, WWF, IUCN, etc., to share energy-saving and emission reduction information and resources, and to give full play to the technology diffusion effect and the resource aggregation effect on an international scale, so as to make the favorable effect of energy-saving and emission reduction radiate to the entire upstream and downstream of the supply chain, and to realize the best effect of ER.
There are still shortcomings in the research of this paper: first, the sample of this paper is limited to the regional level, and there are deficiencies in the analysis of the enterprise sample. Second, environmental regulation can be categorized more clearly in terms of research ideas. In addition, excessive environmental regulatory intensity may cause problems such as increased economic burden, capital outflow from enterprises, widening of the technology gap and social discontent, etc.
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Achieving synergistic effects in pollution reduction and carbon mitigation is a major national strategy for China. Given the common origins and processes of air pollutants and greenhouse gases, this study constructs a theoretical framework for the study of the synergistic effects of air pollution and carbon emissions. Based on the coupling coordination degree model and the geographically and temporally weighted regression model, it identifies significant factors influencing the synergistic effects of air pollution and carbon emissions and their varying mechanisms of action. Results are as follows: 1) The spatial and temporal trends of PM2.5 pollution and carbon emissions in the Wuhan metropolitan area exhibit homogeneity. The coupling coordination degree between air pollution and carbon emissions shows an initial increase followed by a decrease over time and a spatial pattern of “local clustering of areas with medium–high-level coupling coordination”. 2) Twelve factors significantly impact the synergistic effects of air pollution and carbon emissions at the county level in the Wuhan metropolitan area: number of inversion days, precipitation, temperature, vegetation coverage, number of green patents, total population, regional GDP, per capita regional GDP, proportion of secondary industry, total nighttime light, energy consumption efficiency and built-up area. 3) The impact intensity of these factors on the synergistic effects of air pollution and carbon emissions varies not only over time but also across different regions within the same year. Regions with strong impact forces shift over time. This manuscript provides a solid foundation for theoretical research on and practical strategies for advancing differentiated pollution reduction and carbon mitigation coordination.
Keywords: Wuhan metropolitan area, pollution reduction and carbon mitigation, synergistic effects, coupling coordination degree model, geographically and temporally weighted regression model

1 INTRODUCTION
Under the guidance of the development goals of the new era, global and China’s environmental protection strategies are needed. With the increasingly severe global climate change, countries around the world face the urgent task of addressing the challenge of carbon emissions. As a member of the international community, China actively fulfils its international responsibilities. In September 2020, China proposed the goal of “striving to peak carbon dioxide emissions by 2030 and achieving carbon neutrality by 2060”, making a significant contribution to global climate governance.
The feasibility of coordinated efforts in pollution and carbon reduction lies in the fact that environmental pollutants and greenhouse gas emissions essentially originate from the same processes. They share similar sources, such as fossil fuel consumption, industrial production, transportation and residential activities, and exhibit consistency in terms of emission time and space. Accordingly, pollution and carbon reduction can target the same control objects, enabling coordinated progress in many aspects. Reviewing the research achievements in the field of pollution and carbon reduction, we find that scholars domestically and internationally have conducted extensive research on PM2.5 pollution and carbon emissions. These studies cover various dimensions, including spatiotemporal distribution characteristics (Wang et al., 2013; Guan et al., 2014; Peng et al., 2016; Gregg et al., 2009; VandeWeghe and Kennedy, 2007; Wang et al., 2017), influencing factors (Kola and Ganda, 2024; Zhang et al., 2019; Nam et al., 2014; Cheng et al., 2017; Talukdar and Meisner, 2001; Jiang et al., 2018), policy research (Andrée et al., 2019; Yue et al., 2020; Luo et al., 2018; Pal and Mitra, 2017) and source apportionment (Wei et al., 2021; Thurston et al., 2011; Wu et al., 2018; Geng et al., 2013; Coelho et al., 2022; Wang et al., 2006). Preliminary theoretical system and research paradigm have been formed in the field of PM2.5 and carbon emission research, and practical applications have been implemented at national, provincial, prefectural and county levels. These achievements provide a solid theoretical foundation and practical support for pollution control and the attainment of carbon neutrality goals in China.
Existing research primarily investigates the spatiotemporal distribution characteristics of PM2.5 on various scales, including national, provincial, city, river basin and urban agglomeration levels. Most studies indicate that PM2.5 pollution is influenced by a combination of meteorological and socioeconomic factors (Lim et al., 2020; Ji et al., 2018; Yang et al., 2018; Xu et al., 2020; Ding et al., 2019; Wu et al., 2020; Lin et al., 2013). In 2021 Guo et al. (2021) explored the spatial evolution trends and influencing factors of PM2.5 in the cities of the Yangtze River Delta using methods such as spatial autocorrelation, standard deviational ellipse and panel regression models. They found that from 2000 to 2017, the spatiotemporal heterogeneity of PM2.5 in such cities was the result of the cumulative effects of various factors, with socioeconomic factors being the predominant ones. Yun et al. (2019) focused on meteorological elements and studied the impact of factors such as wind direction, air pressure, temperature and humidity in the Yangtze River Delta region on PM2.5.
Most studies analyse the spatiotemporal distribution differences and influencing factors of carbon emissions, primarily focusing on national, provincial and city scales. Research on carbon emissions on a microscale is lacking, mainly due to the difficulty in obtaining data for smaller administrative regions. The influencing factors of carbon emissions mainly include socioeconomic factors (population density, government fiscal expenditure, economic development, production efficiency, industrial structure, labour force, etc.), energy factors (energy structure, energy intensity, etc.), land use factors (land use scale, structure, spatial patterns, etc.), green technology innovation (green patents, regional innovation index, etc.) and transportation usage (public transportation, fuel-powered vehicles, electric vehicle ownership, etc.).
Currently, research on the spatiotemporal distribution and influencing factors of coordinated pollution and carbon reduction is still relatively scarce domestically and internationally. Many studies exploring the common roots and origins of these two aspects use spatial regression models to examine the influencing factors of air pollution and carbon emissions separately and then identify common factors to validate their shared origins empirically. A few studies have utilised coupling coordination models to assess the synergistic effects of pollution and carbon reduction. These studies have found that energy consumption, land use, urbanisation, economic and industrial structure and transportation networks significantly influence the coordination effects of pollution and carbon reduction. Tang et al. (2019) analysed the spatiotemporal characteristics and influencing mechanisms of the synergistic effects of pollution and carbon reduction in 30 provinces in China from 2011 to 2019. They used a coupling coordination model to analyse the spatiotemporal characteristics of these effects in different regions and a spatiotemporal geographically weighted regression (GWR) model to analyse the spatial evolution and mechanisms of influencing factors. The study concluded that total energy consumption, energy consumption intensity and energy consumption structure are major influencing factors of the synergistic effects. Wang et al. (2023), from the perspective of spatial spillover, found that the spatial clustering and co-occurrence of carbon emissions and air pollution exhibit similarities, showing strong spatial lock-in and path dependence. The clustering of carbon emissions and pollution demonstrates significant spatial spillover effects, manifesting a “beggar-thy-neighbor” effect on adjacent regions. Liu et al. (2022) studied the synergistic effects of pollution and carbon reduction in Tianjin, finding that the primary sources of air pollution and greenhouse gas emissions are industrial sources. To achieve a high level of synergistic effects, Tianjin must reasonably control urbanisation rates, population size and regional GDP, increase the share of tertiary and high-tech industries and continuously reduce energy intensity. Xian et al., (2024) found that the implementation of China’s current emission reduction policies has significantly reduced major air pollutants and slowed the growth rate of CO₂ emissions. The synergistic effects of carbon reduction and pollution reduction policies vary across different sectors, with pollution reduction policies having a stronger suppressive effect on controlling air pollution and carbon emissions.
However, in the face of the challenges of air pollution prevention and control in China and the dual pressure of achieving carbon peaking and neutrality, the need for synergistic and efficient governance of pollution and carbon reduction is particularly urgent. Existing research on the synergy of pollution and carbon reduction is still insufficient, with most studies focusing on policy formulation and pathway exploration (Bai et al., 2022; Dong et al., 2022; Xian et al., 2024; Nam et al., 2014; Chen X. H. et al., 2023), lacking comprehensive analysis of the differences and driving factors of regional air pollution and carbon emissions in spatiotemporal distribution. Moreover, most studies are conducted at the agglomeration or provincial levels (Zhu et al., 2023; Chen X. et al., 2023; Jiang et al., 2023; Chen S. et al., 2023; Xian et al., 2024), with limited research at the county level. Consequently, the suggestions put forward are mostly based on macrolevel coordination and control, which cannot meet the differentiated and individual requirements of policy implementation at the county level, thus failing to effectively achieve the synergistic and efficient governance of pollution and carbon reduction.
Therefore, based on the current state of pollution reduction and carbon mitigation research, this study aims to explore the synergistic effects of pollution and carbon within a coupled system framework. Employing spatiotemporal data mining techniques, coupling coordination models and the geographically and temporally weighted regression (GTWR) model, we analyse the spatiotemporal evolution characteristics and key drivers of these synergistic effects at a county level within the Wuhan metropolitan area. Specifically, we aim to identify critical areas and differing influencing factors, such as meteorology and climate, population and economic dynamics, land use, nighttime light emissions and green patents. The findings will provide theoretical support and practical guidance for implementing differentiated strategies for pollution reduction and carbon mitigation across the regions within the Wuhan metropolitan area.
2 MATERIALS AND METHODS
2.1 Study area
The Wuhan metropolitan area (Figure 1) is the largest city cluster in “central China”, located in its economic hinterland, focusing on domestic demand. With its exemplary economic development, the Wuhan metropolitan area serves as an important carrier for central China to undertake the integrated development of the Yangtze River Delta and a strategic link for the delta to drive the upper reaches of the Yangtze River and even the vast central and western parts of China. Furthermore, as the centre of the superposition of the Yangtze River Economic Belt and the rise of the central part of two national strategic regions, it is an important growth pole of China. Whether from the point of view of economy or strategic position, the Wuhan metropolitan area has a strong regional linkage and a national support role and is a key node and an important pivot point in the construction of a new development pattern.
[image: Map of a county district study area, showing boundaries and names of various districts. A legend in the bottom left indicates county districts and the study area boundary. A compass rose and scale bar are included for orientation and distance measurement.]FIGURE 1 | Overview of the study area. (Including 47 counties).
From an ecological perspective, the Wuhan metropolitan area is a core region of the middle Yangtze River urban agglomeration, bearing significant responsibility for the protection of the Yangtze River. The Wuhan metropolitan area faces multiple environmental pressures, including air pollution, water pollution, soil contamination, and solid waste management, while also being affected by climate change impacts such as extreme weather and flooding. Promoting the coordinated and synergistic effects of pollution reduction and carbon reduction will help improve the ecological environment quality of the Wuhan metropolitan area, protect and restore the Yangtze River ecosystem, enhance urban climate resilience, and create a green, livable environment for residents.
2.2 Theoretical framework
In the context of global climate change and China’s “carbon peak and carbon neutrality” goals, this study focuses on the synergistic effects of pollution reduction and carbon emissions mitigation at the county level within the Wuhan metropolitan area (Figure 2). By analyzing the homology and synergy between pollution and carbon emissions, and drawing on existing research concerning the spatiotemporal distribution characteristics and influencing factors (such as climate, economy, land use, and green technology), this study employs global spatial autocorrelation tests and the GTWR model to explore the spatiotemporal evolution and driving factors of synergy within this region. The research aims to provide a foundation for the development of differentiated pollution and carbon reduction strategies for each county, thereby enhancing the practical application of theoretical insights and the scientific basis of local policies.
[image: Diagram illustrating the synergistic effects of county-level PM2.5 and carbon emissions in Wuhan's metropolitan area. It shows a model with two main categories: air pollution (PM2.5) with climatic, meteorological, and land use factors, and carbon emissions with socioeconomic factors. Key factors include inversion days, precipitation, temperature, built-up area, vegetation, secondary sector proportion, urban innovation, energy consumption, and efficiency. The model suggests reducing carbon and pollution with differentiated strategies.]FIGURE 2 | Theoretical framework.
2.3 Research methods
2.3.1 Synergistic effect model
To effectively evaluate the synergistic effects and development status of the two subsystems of carbon emissions and atmospheric pollutant emissions, this study employs the coupling coordination degree model. This model reveals the coordination differences amongst different regions in terms of CO2 reduction and PM2.5 control. Based on the methodology of Wang et al. (2021), the model has been further optimised to enhance its predictive accuracy and practicality. The specific calculation steps of the model are as follows (Formulas 1–3):
[image: Equation showing \( C = \frac{2\sqrt{U_1 U_2}}{U_1 + U_2} = \sqrt{[1 - (U_2 - U_1)]\frac{U_1}{U_2}} \), labeled as equation (1).]
[image: Mathematical equation showing \( T = aU_1 + bU_2 \), followed by equation number (2) in parentheses.]
[image: The formula displays \( D = \sqrt{C \times T} \), denoted as equation three.]
where U1 represents the level of the atmospheric pollutant system, expressed by the standardised value of pollutant emission concentration; U2 indicates the level of the carbon reduction system, expressed by the standardised value of carbon emissions. Standardisation is applied to eliminate the impact of different dimensions. In this model, C represents the coupling degree between the two systems, and T denotes a comprehensive coordination index. Parameters a and b are adjustable weight coefficients. This research assumes that carbon reduction and air pollution control are equally important processes, so a = b = 0.5 is set. D represents the degree of coupling coordination between the two systems, with a value range from 0 to 1. A value of D approaching 1 indicates good coordination between the carbon reduction and air pollution control systems, signifying significant synergistic effects. Conversely, a value of D approaching 0 suggests poor coordination between the two systems and weak synergistic effects. The rating standards for coupling degree C and coupling coordination degree D are based on the research of Wang et al. (2021).
2.3.2 Global spatial autocorrelation test
This study aims to verify whether a spatial correlation exists in the synergistic effects between PM2.5 and carbon emissions. The global Moran’s index (Moran’s I) is used as the tool for detecting global spatial autocorrelation. The specific calculation formula is as follows (Formula 4):
[image: Mathematical formula for Moran's I: \( I = \frac{N}{S_0} \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} W(i,j)(X_j - \bar{X})}{\sum_{i=1}^{N} (X_i - \bar{X})^2} \).]
where N represents the number of research subjects, [image: Please upload the image you'd like me to generate alternate text for. You can do so by using the image upload feature.] denotes the observation value, [image: It seems like there might be a mix-up. To generate alternate text, you can upload an image directly or provide a URL. Let me know if there's anything else I can help with!] is the mean of [image: Please upload the image or provide a URL, and I will generate the alternate text for you.], and [image: Mathematical expression showing \( S_0 = \sum_{j=1}^{N} \sum_{i=1}^{N} W(i, j) \).]. [image: Certainly! Please upload the image or provide a URL for it, and I’ll create the alternate text for you.] is the spatial weight matrix between subjects i and j.
2.3.3 Spatiotemporal GWR model
The GWR model performs localised regression analysis on spatial cross-sectional data, allowing the identification of spatial heterogeneity within spatial data. However, this model primarily focuses on the spatial nonstationarity of sample data and does not adequately consider the nonstationarity of time series, which may limit its effectiveness and accuracy in modelling and predicting actual economic activities. Therefore Huang et al. (2010), introduced temporal characteristics into the original GWR model, constructing a spatiotemporal GWR (i.e., GTWR) model that considers temporal and spatial nonstationarities.
By processing panel data, this model can effectively reduce model error and parameter estimation error. The formula is as follows (Formula 5):
[image: Mathematical equation displaying \(y_i = \beta_0(u_i, v_i, t_i) + \sum_k \beta_k(u_i, v_i, t_i)x_{ik} + \epsilon_i\), labeled as equation (5).]
where [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is the dependent variable at the i-th sample point, [image: The LaTeX expression shows "x" with two subscripts, "i" and "k".] is the observed value of the k-th independent variable at the i-th sample point, n is the number of sample points, [image: Please upload the image or provide a link, and I will generate the alt text for you.] denotes the spatiotemporal coordinates of the i-th sample point, [image: Mathematical expression showing beta sub k as a function of u sub i, v sub i, and t sub i.] is the regression coefficient of the k-th independent variable at the i-th sample point, [image: Beta sub zero function with variables \( u_i \), \( v_i \), and \( t_i \).] is the spatiotemporal intercept at the i-th sample point, and [image: Please upload the image or provide a URL to the image you would like me to generate alt text for.] represents the residual. In the GTWR model, the regression coefficient [image: Mathematical expression displaying beta sub k as a function of variables u sub i, v sub i, and t sub i.] of the k-th independent variable at sample point i is usually estimated using the least squares method, and its estimated value is as follows (Formula 6):
[image: Mathematical formula depicting a weighted least squares estimator. It shows beta hat (β) as a function of parameters u sub t, v sub t, and t sub t, equaling the inverse of the matrix product X transpose, W evaluated at parameters u sub t, v sub t, and t sub t, and X, multiplied by X transpose, W evaluated at the same parameters, and y. Equation number six is noted.]
where [image: The equation shows: \( \hat{\beta}(u_i, v_i, t_i) \) is the estimated value of \( \beta_k(u_i, v_i, t_i) \).], [image: It seems you want me to generate alt text for an image, but I cannot view images directly here. Please upload the image or provide a URL, and I will create the appropriate alt text for you.] is the matrix composed of independent variables, [image: It appears you included a mathematical expression instead of an image. If you meant to include an image, please try uploading it again or provide a URL.] is the transpose of the matrix, [image: Please upload the image you would like me to generate alternate text for.] is the matrix composed of samples, and [image: The expression represents a function \( W(u_i, v_i, t_i) \) involving variables \( u_i \), \( v_i \), and \( t_i \).] is the spatiotemporal weight matrix. The Gaussian distance function is chosen for [image: Please upload the image you would like me to describe.], and the spatiotemporal weight matrix is obtained using the bisquare spatial weight function. The spatiotemporal distance between samples i and j is (Formula 7):
[image: Mathematical formula for \( d_{ij} \) is shown as the square root of \( \delta \left( (U - u_{i})^2 + (v - v_{j})^2 \right) + \mu (t - t_{j})^2 \), labeled as equation 7.]
The selection of bandwidth affects the establishment of spatiotemporal weights. The corrected Akaike information criterion (AICc) is used to adopt an adaptive bandwidth.
2.4 Data sources
The data sources for this study are mainly divided into the following parts (Table 1):
TABLE 1 | Data Sources for Indicators.
[image: Table listing data sources across different categories: PM2.5 levels, carbon emissions, inversion days, average precipitation and temperature, vegetation coverage, number of green patents, population, GDP, per capita GDP, secondary sector proportion, nighttime lights, electricity and energy consumption, energy efficiency, and built-up area. Data sources include academic and governmental databases, with links to specific datasets.]This study uses the PM2.5 dataset shared by the Atmospheric Composition Analysis Group at Washington University in St. Louis (Canada Dalhousie University Atmospheric Composition Analysis Group PM2.5 dataset). It also utilises the county-level carbon emission data for China from 1997 to 2017 provided by the China Emission Accounts and Datasets. Specifically, it employs the carbon emission data for the 48 county-level units in the Wuhan metropolitan area from 2000 to 2017.
Natural environment data include the number of inversion days, average precipitation, average temperature and vegetation cover. Socioeconomic data consist of total population, GDP, per capita GDP, the proportion of secondary industry, the number of green patents, total nighttime light, electricity consumption, built-up area, total energy consumption and energy consumption efficiency. For administrative boundary data, according to the National Administrative Division Inquiry Platform of the Ministry of Civil Affairs, the administrative boundaries of the county-level units in the Wuhan metropolitan area have not changed since 2000. Therefore, this research uses the 1:1,000,000-scale public basic geographic information data (2021) provided by the National Geographic Information Resources Catalogue Service System as the source for county-level administrative boundary data.
2.5 Technology roadmap
Existing county-level research is limited, failing to address the diverse needs of micro-scale policy implementation. The Wuhan Metropolitan Area, central China’s largest urban cluster, faces significant environmental pressures, including air, water, and soil pollution, as well as waste management challenges. Therefore, this study selects the Wuhan Metropolitan Area as the research object. By analyzing the homology and synergy between pollution and carbon emissions, along with their spatiotemporal distribution characteristics and influencing factors (e.g., climate, economy, land use, and green technology), this study compares the fitting performance of multiple regression models. A global spatial autocorrelation test and a GTWR (Geographically and Temporally Weighted Regression) model are employed to explore the spatiotemporal evolution and influencing factors of pollution and carbon emissions. Finally, the study identifies the trends in regression coefficients of various influencing factors from 2000 to 2017 and analyzes the spatiotemporal heterogeneity of four part factors—climate, economy, land use, and technological innovation—between 2005 and 2017. Based on these findings, the study proposes control strategies and policy recommendations tailored to the county-level scale (Figure 3).
[image: Infographic detailing a study on the Wuhan metropolitan area. Sections include study area map, data input on various factors like climate, energy consumption, and land use. Research methods feature a synergistic effect model with maps and model comparisons using Moran's I, OLS, GWR, and GTWR. The results and discussion section includes multiple thematic maps and policy recommendations.]FIGURE 3 | Technology Roadmap.
3 ANALYSIS AND RESULTS
3.1 Spatiotemporal characteristics of the coupling coordination degree between air pollution and carbon emissions in the Wuhan metropolitan area
On the basis of the coupling coordination degree calculation methods (Formulas 1–3), this study calculates the coupling coordination index (D), coupling index (C) and coordination index (T) for PM2.5 pollution and CO2 emissions in the Wuhan metropolitan area from 2000 to 2017. The coordination coupling levels are preliminarily classified as follows: 0–0.3 for low, 0.3–0.7 for moderate and 0.7–1 for high. Here, U1 and U2 represent the normalised data for PM2.5 concentration and CO2 emissions, respectively, with a range of [0–1].
According to Figure 4, the temporal variation characteristics of the coupling coordination degree between air pollution and carbon emissions (D) in the Wuhan metropolitan area from 2000 to 2017 can be divided into two main phases: an increasing phase and a decreasing phase.
[image: Line graph overlaid on a bar chart showing data from 2000 to 2017. The lines represent different datasets, each marked with distinct symbols. Bars correspond to years, showing fluctuating values, peaking in 2012 and then generally declining. Each axis has a separate scale.]FIGURE 4 | Spatiotemporal characteristics of the coupling coordination degree between air pollution and carbon emissions in the Wuhan metropolitan area (2000–2017).
The first phase, from 2000 to 2011, saw an increase in the coupling coordination degree between PM2.5 pollution and CO2 emissions. It rose from a low-intensity low-coupling state in 2000 to a high-intensity high-coupling state in 2011, with the D value reaching 0.962. During this period, the coupling degree was consistently higher than the coordination degree, indicating that the levels of air pollution and carbon emissions were in a state of coordinated development but with a relatively low intensity. Specifically, the coupling degree reached 0.948, 0.997 and 0.979 in 2006, 2009 and 2011, respectively, showing that the coupling coordination degree between air pollution and carbon emissions was highest in these years, with the two intensities being closest. Meanwhile, the coordination degree steadily increased, reaching 0.946 in 2011, indicating an overall rise in the coordination strength as carbon emissions and PM2.5 concentrations continued to rise.
The second phase spanned from 2013 to 2017, during which the coupling coordination degree between PM2.5 pollution and CO2 emissions continuously decreased, transitioning from high intensity and high coupling in 2013 to medium intensity and low coupling in 2017. The coupling coordination index dropped to 0.226, indicating that during this period, the coordination level was higher than the coupling level, and the rate of decline in coupling was much greater than that in coordination. In 2017, the coordination level reached a moderate level at 0.543, whilst the coupling level dropped to a low level at 0.094. That is, a significant misalignment in the air pollution and carbon emission coupling occurred during this time, with a rapid increase in the disparity between their intensities, specifically characterised by stable CO2 emissions and a rapid decrease in PM2.5 pollution concentrations.
3.2 Analysis of the spatiotemporal evolution characteristics of the air pollution and carbon emission synergistic effects at a county level
To investigate the synergistic evolution of air pollution and carbon emissions at a county level in the Wuhan metropolitan area, this study refers to the findings of Wang et al. (2021) and performs detailed rating and grouping of the coupling coordination degree (with high levels indicating great coupling and coordination between the air pollution and carbon emission systems, i.e., small differences and high emission intensity between the systems). The changes in the coupling coordination degree between PM2.5 pollution and CO2 emissions at the county level from 2000 to 2017 are analysed separately.
From the spatiotemporal distribution of the coupling coordination degree between PM2.5 pollution and CO2 emissions for county-level units in the Wuhan metropolitan area from 2000 to 2017 (Figure 5), most counties were at a moderate coupling coordination level. In 2000, 65% of counties were at this moderate level, and the proportion decreased to 60% in 2007.
[image: Five maps display the spatial distribution of a variable titled "CCI" over the years 2000, 2005, 2009, 2013, and 2017. Each map uses a color gradient from light green, indicating low values, to dark blue, indicating high values. The maps illustrate changes in CCI levels over time, with various regions showing differing intensities. Each map is labeled with its corresponding year.]FIGURE 5 | Spatial and temporal distribution of coupling coordination degree between air pollution and carbon emissions in county-level units of the Wuhan metropolitan area in 2000–2017. CCI, the coupling coordination degree between air pollution and carbon emissions. (A–E), from 2000 to 2017.
The areas with the highest coupling coordination degree between PM2.5 pollution and CO2 emissions were primarily concentrated within the Wuhan urban area. Hongshan District consistently maintained the highest level of coupling coordination from 2000 to 2017, indicating that the PM2.5 pollution concentration and carbon emissions in Hongshan District were not only higher than those in other areas but also highly synchronised.
The analysis of the coupling coordination degree between PM2.5 pollution and CO2 emissions for county-level units outside Wuhan reveals that the levels of coordination varied significantly. Counties with moderate to high coupling coordination levels were predominantly located in economically developed and densely populated areas. However, the specific characteristics and interannual variations of the coupling coordination degree between air pollution and carbon emissions differed amongst these units, indicating that the synergistic effects of pollution and carbon were influenced by various factors.
3.3 Analysis of the influencing factors based on GTWR
Based on Moran’s I test results from Stata software, the global Moran’s I index for the synergistic effect of air pollution and carbon emissions in the Wuhan metropolitan area during the study period was positive and generally remained around 0.21, with minimal fluctuations. This result indicates that the spatial aggregation of the synergistic effect was stable. The normality statistic Z-values all passed the 0.01 significance level test (P < 0.01), suggesting a significant spatial autocorrelation in the coupling coordination index of the synergistic effect of air pollution and carbon emissions in the Wuhan metropolitan area during the study period.
The previous section provided a preliminary explanation of the data indicators used in this study. Coupling coordination degree is employed as the dependent variable, with 14 potential explanatory variables considered. Variance inflation factor (VIF) is a statistical measure used to detect multicollinearity in regression analysis. Multicollinearity occurs when two or more independent variables in a regression model are highly correlated. After collinear indicators are excluded, 12 indicators are integrated into the model (Table 2): temperature inversion days, precipitation, temperature, vegetation coverage, number of green patents, total population, GDP, per capita regional GDP, proportion of secondary industry, total nighttime lights, energy consumption efficiency and built-up area.
TABLE 2 | Test Results After Excluding Collinear Indicators.
[image: Table showing variance inflation factors (VIF) and their reciprocals (1/VIF) for various variables. Variables include GDP with a VIF of 7.99, Built-up Area at 7.26, Total Nighttime Lights at 6.5, Total Population at 6.49, Per Capita GDP at 5.29, and Energy Consumption Efficiency at 4.01. Additional variables are Vegetation Coverage at 3.11, Average Temperature at 2.26, Number of Green Patents at 1.87, Number of Inversion Days at 1.6, Proportion of Secondary Sector at 1.53, and Average Precipitation at 1.53. Mean VIF is 4.12.]3.3.1 Model construction and comparison
Based on the previous spatial correlation analysis results, the synergistic effects of PM2.5 and CO2 emissions in different regions of the Wuhan metropolitan area exhibited significant spatial heterogeneity. Ignoring such spatial differences in subsequent analyses could compromise the accuracy of the research findings. Therefore, this study employs the GTWR model to conduct an in-depth investigation into the factors influencing the intensity of the synergistic effects of PM2.5 pollution and CO2 emissions in the Wuhan metropolitan area from 2000 to 2017.
[image: Please upload the image or provide a URL, and I will generate the alternate text for you.] represents the intensity of the PM2.5 pollution and CO2 emissions (PM2.5–CO2) synergistic effect at sample point i. [image: Please upload the image or provide a URL so I can generate the alternative text for you.], [image: Please upload the image or provide a URL so I can generate the alternate text for you.], [image: It seems like there might have been an error with uploading the image. Please try uploading the image again or providing a URL. If you have a caption or specific details you want included, feel free to share!], [image: Sure, please upload the image or provide a URL so I can help generate the alt text for it.], [image: It seems there was an error with the image upload or description. Please try uploading the image again or ensure the description is correct. You can also provide a brief caption for context if needed.], [image: Please upload or provide a URL for the image you would like me to generate alt text for.], [image: It seems there is no image attached. Please upload the image you want me to describe, and I'll be glad to help with the alternate text.], [image: It seems you referenced an image, but I can't see it. Please upload the image file or provide a link to it, and I'll be happy to help with the alt text.], [image: Please upload the image so I can assist you in generating the alternate text. If you have any specific details or context to provide, feel free to add them as well.], [image: It seems like there might be an error or missing content in your request. Please upload the image or provide a URL, and submit any captions or context if necessary.], [image: It looks like you're trying to provide an image, but the format isn't correct. Please upload an image file or provide a link to the image, and I’ll help you create alternate text for it.] and [image: Please upload the image or provide a link, and I will help create the alternate text for it.] indicate the values of the 12 factors, namely, number of inversion days, average precipitation, average temperature, vegetation coverage, number of green patents, total population, GDP, per capita GDP, proportion of secondary sector, total nighttime lights, energy consumption efficiency and built-up area, at sample point i.
On the basis of the above dependent and independent variables, this research constructs Ordinary Least Squares (OLS) regression, GWR and GTWR models. The reasonableness of the selected GTWR model is validated by comparing the estimation results of the three regression models.
The results of the OLS, GWR and GTWR models for analysing the factors affecting the PM2.5–CO2 synergistic effect in county-level units of the Wuhan metropolitan area are shown in Table 3. The OLS model has an R2 of 0.838 and an adjusted R2 of 0.837, which indicates the lowest fit amongst the three models. The OLS model can only represent the variable relationships at a global average level, ignoring the spatial nonstationarity between different regions, and thus cannot effectively capture local features. The GWR model, which accounts for spatial nonstationarity, has an R2 of 0.921 and an adjusted R2 of 0.922, indicating a better fit compared with the OLS model. The GTWR model, which considers spatial and temporal nonstationarities, has an R2 of 0.991 and an adjusted R2 of 0.991, significantly outperforming the OLS and GWR models. Additionally, the GTWR model has the lowest AICc value of −3,998.44, further demonstrating that the GTWR model, which accounts for spatiotemporal nonstationarity, is the optimal choice. Therefore, this study uses the GTWR model to analyse the spatiotemporal heterogeneity of factors influencing the air pollution and carbon emission synergistic effect in county-level units.
TABLE 3 | Statistical Results of Model Testing.
[image: Table comparing three statistical models: OLS, GWR, and GTWR. R-squared values are 0.838, 0.921, and 0.991. Adjusted R-squared values are 0.837, 0.922, and 0.991. AICc scores are -2166.503, -3390.79, and -3998.44.]3.3.2 GTWR statistical description
Through regression analysis, this research evaluates the impact of different factors on the strength of the PM2.5 pollution and CO2 emission synergistic effect in various county-level units within the Wuhan metropolitan area at different times. To provide a detailed statistical description of the GTWR model coefficients, we use the following metrics: minimum value, first quartile (Q1), median (Q2), third quartile (Q3), maximum value and mean value. These metrics help understand the distribution and central tendencies of the regression coefficients for different factors affecting the spatiotemporal coupling and coordination of air pollution and carbon emissions.
Based on Table 4, various factors, such as temperature inversion days, average precipitation, average temperature, vegetation coverage, number of green patents, total population, GDP, per capita GDP, proportion of secondary sector, total nighttime lights, energy consumption efficiency and built-up area, exhibited different effects on the PM2.5 and CO2 emission coupling coordination strength of the county-level units in the Wuhan metropolitan area over different periods. For specific single influencing factors, their impact on the coupling coordination strength showed significant variability in time and space dimensions.
TABLE 4 | GTWR Model Parameter Estimates.
[image: Table displaying statistical data for various variables, including Intercept, XA, XB, and others. Columns include Minimum, First Quartile, Median, Third Quartile, Maximum, and Mean. Additional metrics at the bottom: R-squared, Adjusted R-squared, SSR, AICc, Sigma, and Bandwidth. Values vary across variables, showing different statistical distributions.]Specifically, temperature inversion days, average precipitation, average temperature, vegetation coverage and number of green patents had negative average values, suggesting that these five indicators generally exerted a negative effect on the coupling coordination strength. Amongst them, vegetation coverage and green patents had the most significant negative impacts, with average regression coefficients of −0.045 and −0.031, respectively. By contrast, total population, GDP, per capita GDP, proportion of secondary sector, total nighttime lights, energy consumption efficiency and built-up area demonstrated positive average coefficients. Amongst these factors, total nighttime lights had the highest coefficient at 0.433, followed by total population and energy consumption efficiency with coefficients of 0.219 and 0.216, respectively. The proportion of secondary sector had the lowest positive coefficient of 0.046.
Regarding maximum values, the factors with the most significant positive effects on the coupling coordination strength were built-up area, GDP and energy consumption efficiency, with coefficients of 1.781, 1.350 and 1.002, respectively. Conversely, the most significant negative effects came from green patents, GDP and vegetation coverage, with regression coefficients of −1.583, −1.255 and −0.557, respectively.
These results indicate that different factors could have positive and negative impacts on the coupling coordination strength of PM2.5 pollution and CO2 emissions. Additionally, the effects of these factors varied significantly across different times and locations. Therefore, this research will adopt a comprehensive approach that incorporates temporal and spatial dimensions to systematically explore how these factors differentially influence the strength of coupling coordination between air pollution and carbon emissions under varying conditions.
4 DISCUSSION
4.1 Temporal trends of GTWR regression coefficients for influencing factors
Figure 6 illustrates the time variation trends of the regression coefficients for different influencing factors through box plots.
[image: Twelve line graphs displaying various datasets, each titled "JY," with panels labeled from A to L. Each graph shows data points with error bars and a black dotted line, representing statistical analysis over different variables.]FIGURE 6 | Time trend of GTWR regression coefficients by factors in 2000–2017.
Regarding specific factors, the effect of temperature inversion days on the strength of PM2.5 pollution and CO2 emission coupling showed a minimal fluctuation over time. The regression coefficients were positive and negative with stable dispersion, manifesting that the differences in the impact of temperature inversion days across regions were relatively stable and did not change significantly over time.
The regression coefficients for average precipitation gradually decreased over time, with the mean coefficient dropping from −0.001 in 2000 to a minimum of −0.04 in 2016. At the same time, the dispersion of the coefficients initially decreased and then increased. That is, the negative impact of average precipitation on the PM2.5 pollution and CO2 emission coupling effect gradually intensified, with the spatial differences first decreasing and then increasing.
The dispersion of the regression coefficients for average temperature remained relatively stable, but the overall values decreased year by year, indicating that the negative impact of average temperature on the air pollution and carbon emission coupling effect gradually increased. The regression coefficients for vegetation coverage were primarily negative, with the mean coefficient continuously decreasing and the dispersion increasing. This result suggests that the negative impact of vegetation coverage on the air pollution and carbon emission coupling effect intensified between county-level units, with increasing regional differences, possibly due to variations in the predominant vegetation types across different areas.
The mean regression coefficient for green patents remained relatively stable, with a balanced distribution of positive and negative values. Green patents had positive and negative effects on the coupling effect of PM2.5 pollution and CO2 emissions across different regions. The dispersion of the coefficients showed a gradual increase, suggesting that the differences in the impact of green patents on the coupling across various areas became pronounced.
Total population and the PM2.5 pollution and CO2 emission coupling effect is positively correlated, meaning that a high population typically results in a great level of coupling intensity. The positive impact of GDP and per capita GDP on air pollution and carbon emission coupling continuously increased. The mean regression coefficient for GDP reached its peak of 0.257 in 2015 before gradually declining, whilst the mean coefficient for per capita GDP steadily rose from −0.01 in 2000 to 0.196 in 2017. The dispersion of these coefficients also increased year by year. The influence of GDP and per capita GDP on PM2.5–CO2 coupling strengthened over time, with the heterogeneity between regions growing because of varying policies, technological levels and energy structures.
The average coefficient for the secondary sector proportion remained relatively stable, but the dispersion of the coefficient significantly increased. Meanwhile, the negative values increased annually since 2010, indicating that some regions achieved notable progress in industrial park renovation and upgrades, as well as the application of green technologies.
The total amount of nighttime lighting is often closely related to total energy consumption. The coefficients for nighttime lighting and energy consumption intensity were positive, indicating a positive correlation between them and the PM2.5–CO2 coupling effect. The average coefficient for nighttime lighting attained its peak of 0.574 in 2004 and then declined annually, reaching 0.261 by 2017. The average coefficient for energy consumption intensity increased from 0.136 to 0.270 by 2017. The variation in coefficients for energy consumption intensity and total energy consumption remained relatively small, indicating that the impact of total energy consumption on the PM2.5 pollution and CO2 emission coordination effect gradually decreased, whilst the influence of energy consumption intensity increased. The coefficient for built-up area showed a minimal change with a slight increase in dispersion, suggesting that regional differences in the impact on air pollution and carbon emission coordination gradually intensified.
4.2 Analysis of the spatiotemporal heterogeneity of meteorological and climatic factors in air pollution and carbon emission coordination effects
Figure 7 depicts that the positive effect of temperature inversion days was primarily concentrated in the northwestern part of the Wuhan metropolitan area, particularly around Tianxianqian and Yunmeng counties. The regression coefficients for temperature inversion days exhibited significant spatiotemporal variability, showing a clear distribution pattern of “high–low–secondary high” from northwest to southeast. Temperature inversion weather conditions can lead to poor atmospheric flow and hinder air convection, resulting in the accumulation and concentration of pollutants and carbon emissions in specific areas.
[image: Twelve color-coded maps of a region showing demographic changes over years: 2005, 2009, 2013, 2017. Each column represents a different demographic attribute labeled as BEN, ATPe, or ATTe, with maps arranged in a four-by-three grid. Darker colors indicate higher values.]FIGURE 7 | Regression coefficients for meteorological and climatic factors in 2005–2017. IDN, the number of inversion days, (A–D) from 2005 to 2017; AP, the average precipitation, (E–H), from 2005 to 2017; AT, the average temperature, (I–L), from 2005 to 2017.
The regression coefficients for precipitation at the county level were generally negative, indicating that precipitation had a significant negative effect on the synergy between PM2.5 pollution and CO2 emissions. Precipitation effectively mitigated the PM2.5 pollution and CO2 emission levels in the Wuhan metropolitan area. The cleaning effect of precipitation was more pronounced under polluted conditions than that under clean conditions, in which precipitation helped remove pollutants more effectively.
The impact of temperature on the synergy between PM2.5 pollution and CO2 emissions exhibited a spatial distribution pattern of ‘high in the northeast, low in the southwest’. In the southwestern part of the Wuhan metropolitan area, the regression coefficients for temperature were predominantly negative. This result reveals that elevated temperatures tended to reduce the synergy between PM2.5 pollution and CO2 emissions in these areas. The rationale is that high surface temperatures promote air convection, which effectively disperses pollutants and lowers atmospheric pollution levels.
Based on the above conclusions, this study reveals that climatic and meteorological factors—such as temperature, inversion, and precipitation—exert a significant influence on the synergy between pollution mitigation and carbon reduction. The impacts of temperature and inversion demonstrate notable spatial heterogeneity, whereas precipitation exhibits an overall negative spatial effect. Furthermore, research by Chen et al. (2020) illustrates that the effects of inversion and temperature on PM2.5 concentrations in Beijing vary regionally with distinct operative mechanisms. Negative impacts are primarily attributed to temperature-induced atmospheric convection and PM2.5 evaporation losses, while positive impacts arise largely from temperature anomalies influencing PM2.5 dispersion and temperature effects on precursor and secondary pollutant generation. This confirms that temperature and inversion effects on pollution-carbon synergy are significantly influenced by spatial heterogeneity, a pattern broadly observed in major Chinese cities like Beijing and Wuhan.
4.3 Temporal and spatial heterogeneity of land use factors in air pollution and carbon emission synergy
Figure 8 presents the regression coefficients for vegetation coverage and built-up area factors at the county level for the years 2005, 2009, 2013 and 2017. The regression coefficients for vegetation coverage across most counties were predominantly negative, revealing that vegetation coverage generally contributed to effective PM2.5 pollution reduction and CO2 emission mitigation. However, the coefficients for Huangpi District, Xinzhou District, Hannan District and Jiayu County were positive, ranging from 0.08 to 0.2. That is, the vegetation coverage in these areas had a positive impact on the PM2.5–CO2 synergy. This positive effect was likely influenced by local agricultural activities, such as burning and field machinery operations. Additionally, different types of vegetation could impact pollution levels through factors such as carbon sequestration and biogenic volatile organic compound emissions.
[image: Eight maps compare economic data in different regions for the years 2005, 2009, 2013, and 2017. The maps are labeled (a) to (h) and show variations in VC, GDP, and BEIA using a gradient from light to dark blue. The shades represent different ranges of economic values as indicated in the legends on each map.]FIGURE 8 | Regression coefficients for land use factors in 2005–2017. VC, the vegetation coverage, (A–D), from 2005 to 2017; BUA, the built-up area, (E–H) is from 2005 to 2017.
The regression coefficients for built-up area varied between positive and negative values, but positive values were predominant, indicating that an increase in built-up area generally had a positive effect on the air pollution and carbon emission synergy. Specifically, the regression coefficients for Huangpi, Xinzhou, Huarong and Jiangxia districts increased each year, rising from a range of 0.04–0.16 in 2005 to 0.30–0.53 in 2017, making them areas with the highest values. Conversely, the regression coefficients for Chongyang and Tongcheng decreased from 0.8 in 2005 to −0.1 in 2017. This trend is attributed to the relatively small annual increase in built-up area in Chongyang and Tongcheng, coupled with the reduced positive impacts on the PM2.5 pollution and CO2 emission synergy due to technological advancements and policy controls. By contrast, areas such as Huangpi and Xinzhou saw significant increases in built-up areas over the years. The rapid urbanisation, changes in lifestyles and consumption patterns and increased emissions from industries and transportation led to a growing impact on the synergistic effects of PM2.5 pollution and CO2 emissions. This impact was reflected in the annually increasing regression coefficients.
The findings of this study indicate that land use factors, such as vegetation coverage and built-up area, play significant roles in affecting pollution-carbon synergy, with spatial heterogeneity evident in both factors’ effects. Previous studies by other scholars provide strong support for these conclusions. For instance, research by Jia et al. (2024) confirms that NDVI and forest cover (FCR) are crucial in reducing PM2.5 and CO2 emissions, suggesting that at the county level, vegetation coverage has varying effects based on plant and crop types. Studies by Feng et al. (2017) and Wang and Shi (2019) validate that the expansion of built-up and urban areas intensifies PM2.5 and CO2 emissions, with built-up area often linked to urbanization, thus affirming that urbanization broadly promotes pollution-carbon synergy.
4.4 Analysis of the spatiotemporal heterogeneity of socioeconomic factors in the synergy of air pollution and carbon emissions
Figure 9 illustrates the regression coefficients for the population size, GDP and secondary industry proportion across different counties for the years 2005, 2009, 2013 and 2017. The regression coefficients for population were generally positive, indicating that population had a positive effect on the synergy of PM2.5 pollution and CO2 emissions. Population activities generate substantial carbon emissions and atmospheric pollutants. A large population often represents high energy consumption and increased transportation emissions, leading to an enhanced pollution–carbon effect.
[image: Twelve maps display data for the years 2005, 2009, 2013, and 2017 across three categories: TFP, GDP, and SSR. Each map uses a gradient from light to dark blue to represent different ranges of values, indicating variations over time and categories within the same geographic region.]FIGURE 9 | Regression coefficients for socioeconomic factors in 2005–2017. TP, the total population, (A–D), from 2005 to 2017; GDP, Gross Domestic Product, (E–H), from 2005 to 2017; SSR, the proportion of secondary sector, (I–L), from 2005 to 2017.
In general, a noticeable regional variation in the GDP regression coefficients occurred. In the urban areas of Wuhan and Ezhou, the regression coefficients decreased annually, transitioning from positive to negative values. This shift indicates that the effect of GDP on the PM2.5 pollution and CO2 emission effect changed from a positive influence on a negative suppression effect in these regions, suggesting that the developed economies reached the turning point of the environmental Kuznets curve. By contrast, less developed areas continued to experience higher levels of PM2.5 pollution and CO2 emissions, given that they have not yet reached the scale of agglomeration effects.
The dispersion of the regression coefficients of secondary industry proportion increased annually, with the minimum value decreasing from −0.036 in 2005 to −0.346 in 2017 and the maximum value rising from 0.212 in 2005 to 0.678 in 2017. However, the number of regions with negative values increased year by year, growing from 5 in 2005 to 25 in 2017, indicating an overall shift towards negative coefficients. High-value areas were mainly in Luotian County and Yingshan County, with regression coefficients ranging from 0.2 to 0.6, showing a strong positive impact of the secondary industry proportion on the regional PM2.5 pollution and CO2 emission effect in these areas. The next highest-value areas were primarily in Macheng City, Hong’an County, Huangpi District and the Xiaogan region, with Huangpi District and the Xiaogan region showing annual increases in their coefficients, ranging between 0.07 and 0.2. Because industrial production is often accompanied with substantial PM2.5 pollution and CO2 emissions, these areas urgently need to advance industrial structure adjustments and promote green transformation of their industries.
This study identifies total population, regional GDP, and the proportion of secondary industry as key factors influencing pollution-carbon synergy. The effects of regional GDP and the proportion of secondary industry exhibit spatial heterogeneity, while total population shows a consistent positive effect across the study area. Additionally, research by Dong et al. (2019) uncovers a nonlinear, inverted-U relationship between per capita GDP and PM2.5 reduction, where economic growth initially promotes PM2.5 reduction but, at a certain economic level, the reduction potential declines, resulting in reduced emissions mitigation. This underscores that the spatial heterogeneity in regional GDP has a significant and widespread impact on pollution-carbon synergy.
4.5 Analysis of the spatial and temporal heterogeneity of urban innovation and energy consumption in air pollution and carbon emission synergy
Figure 10 displays the regression coefficients of green patents, nighttime lighting and energy consumption intensity factors for each county-level unit in 2005, 2009, 2013 and 2017. Overall, the regression coefficients for green patents varied between positive and negative values. In most areas, green patents had a negative impact on the PM2.5 pollution and CO2 emission synergy, indicating that the achievements in green patents effectively promoted the synergistic improvement of pollution and carbon reduction. The inhibitory effect of green patents on the pollution–carbon synergy was most pronounced in the Huanggang region, followed by the Ezhou and Tianxianqian regions. These regions were in a period of economic development, with their main economic activities relying on the secondary and tertiary industries. During the process of promoting the green transformation of the industrial structure in these areas, the innovative technologies introduced by green patents effectively reduced the PM2.5 pollutant and CO2 emissions in production and daily life, resulting in a high level of inhibition on the PM2.5–CO2 synergy in these regions. However, a small number of areas (e.g., Xianning, Tianxianqian, Anlu and Yingcheng) showed positive regression coefficients, i.e., green patents did not significantly inhibit PM2.5–CO2 levels. The low quality of technological resources in these areas during the study period did not contribute significantly to the suppression of PM2.5 pollution and CO2 emissions levels. Additionally, urban technological development is often accompanied with increased economic activities and enhanced PM2.5–CO2 emissions, leading to a positive effect of green patents on pollution–carbon levels in these regions.
[image: Twelve maps showing geographic data distributions for CA, NL, and EC from 2004 to 2017. Each map panel displays variations in color intensity, indicating different data values. Panels (a) to (l) are organized in four rows, representing different years. The color legend ranges from light to dark blue, denoting increasing data values.]FIGURE 10 | Regression coefficients for urban innovation and energy consumption factors in 2005–2017. GA, the number of green patents, (A–D), from 2005 to 2017; NL, the nighttime lights, (E–H), from 2005 to 2017; ECI, the energy consumption efficiency, (I–L), from 2005 to 2017.
The total amount of nighttime lighting is closely related to the total energy consumption. In the study period, the regression coefficients were predominantly positive, indicating that nighttime lighting exerted a positive effect on the PM2.5 pollution and CO2 emission synergy in most regions. High nighttime lighting intensity reflects great energy consumption in the area, leading to high levels of PM2.5–CO2.
The regression coefficients for energy consumption intensity were predominantly positive, indicating that the energy consumption intensity had a positive effect on the PM2.5 pollution and CO2 emission synergy. However, significant regional differences occurred. High-value areas were mainly concentrated in Tianxianqian, Chibi, Chongyang, Tongshan and Xian’an districts, with the regression coefficients increasing from 0.38 to 0.64 in 2005 to 0.64–1.0 in 2017. This finding indicates that the positive impact of energy consumption intensity on PM2.5–CO2 synergy had been growing annually in these areas. By contrast, regions such as Dongxihu, Jiangxia and Xiaonan, despite having high energy consumption intensity, exhibited lower regression coefficients. Consequently, the effect of energy consumption intensity on local PM2.5–CO2 synergy was weaker, potentially due to factors such as energy structure, production technology and policy controls.
This study highlights that green patents, nighttime light intensity, and energy intensity significantly influence pollution-carbon synergy. The innovative inclusion of green patents reveals spatial heterogeneity in their effect on pollution-carbon synergy, with predominantly negative impacts and some positive effects. Similar conclusions are supported by other studies; Dong et al. (2019) demonstrate that technological innovation generally weakens pollution-carbon synergy, while Wang et al. (2024) find that technological innovation increases CO2 emissions but has heterogeneous effects on PM2.5 pollution, with most instances reducing pollution and some causing an increase. This confirms a prevalent trend of significant negative spatial heterogeneity for green patent effects on pollution-carbon synergy. In contrast, nighttime light intensity and energy intensity generally exhibit positive impacts. Research by Dong et al. (2019) further indicates that improvements in energy efficiency may lower the marginal cost of energy services, potentially leading to a rebound effect in energy consumption. Consequently, enhanced energy efficiency may inadvertently increase energy use, hindering PM2.5 reduction efforts. This reinforces the widespread negative impact of energy intensity on pollution-carbon synergy.
4.6 Policies and recommendations
4.6.1 Continuously promote the synergistic process of “carbon reduction” as the primary goal and “pollution reduction” in parallel
Based on the interannual trends of PM2.5 pollution and CO2 emissions in the Wuhan Metropolitan Area, it is evident that while significant progress has been made in PM2.5 pollution control, CO2 emissions remain high. The Wuhan Metropolitan Area needs to build on existing PM2.5 pollution reduction achievements and further strengthen governance, fully leveraging the synergistic effects of air pollution and carbon emissions. Priority should be given to regions with high carbon emission levels for reduction efforts, constructing a governance system that emphasizes “carbon reduction as the primary goal, with pollution reduction in parallel.” There is a need to enhance regional monitoring capabilities for pollution and carbon emissions, improve the integrated monitoring and evaluation system for PM2.5 pollution and CO2 emissions, and strengthen collaborative management. Coordination between carbon reduction measures and pollution control policies should be established, along with unified planning objectives and assessment systems. Additionally, successful experiences from various regions in PM2.5 pollution reduction and CO2 emissions should be actively summarized, and regional exchanges and learning should be encouraged to continuously advance the synergistic process of pollution reduction and carbon reduction.
4.6.2 Actively promote regional technological innovation and energy reform
Research on influencing factors indicates that total energy consumption and energy efficiency significantly impact the synergistic level of PM2.5 pollution and CO2 emissions in the Wuhan Metropolitan Area. As the population grows and the economy continues to develop, social activities will inevitably lead to increased energy consumption, resulting in higher levels of PM2.5 pollution and CO2 emissions. The Wuhan Metropolitan Area should leverage the population and economic agglomeration effects to enhance resource sharing while actively adjusting the energy structure. This includes increasing the use of clean energy, promoting the development of green low-carbon industries, and strengthening the supply of green low-carbon technologies to establish a green low-carbon energy system.
4.6.3 Regional pollution reduction and carbon reduction governance should adhere to the principles of “targeted governance and precise policy implementation”
Exploration of the spatial and temporal heterogeneity of PM2.5 pollution and CO2 emission influencing factors at the county level in the Wuhan Metropolitan Area indicates that PM2.5 pollution and CO2 governance must deeply analyze the dominant factors and adopt different approaches to achieve a “one policy for one area” strategy.
In regions like Hongshan and Jiangxia, where population and economic development factors have a significant impact, it is essential to actively utilize agglomeration effects by controlling population growth in a planned manner, optimizing urban planning and spatial layout, and rationally controlling construction land to reduce environmental pressure caused by overdevelopment. Strengthening public transportation systems and promoting green travel modes, such as subways, buses, and bicycles, can reduce private car usage and traffic congestion. Additionally, optimizing transportation structures, accelerating green economic transformation, improving energy efficiency, and promoting energy-saving buildings, green construction, and low-carbon communities will enhance residents’ levels of green consumption and sustainable living.
In regions such as Xinzhou, Huangpi, and Caidian, which are more influenced by industrial and technological factors, the following measures can be implemented: adjusting industrial structures to gradually eliminate high-pollution and high-energy-consuming outdated production capacity, closing or transforming enterprises that do not meet environmental protection standards, and encouraging the development of a circular economy to promote the green upgrading of industrial parks, achieving effective resource recycling. Support should be provided for the development of low-carbon, clean, and high-tech industries, such as new energy, new materials, and information technology. Furthermore, investment in green technology research and development should be increased, particularly in areas like energy efficiency improvement, pollutant treatment, and carbon capture and storage (CCS). Collaboration between enterprises and research institutions should be promoted to accelerate the application and industrialization of green technologies, while providing policy and financial support to help enterprises upgrade technologies and reduce carbon emissions.
Strengthening environmental management and supervision involves enhancing the enforcement of environmental regulations to ensure that all enterprises comply with environmental protection standards and laws. A comprehensive environmental monitoring system should be established to monitor pollutant emissions in real time and address violations promptly. Stricter environmental impact assessment systems should be implemented for new projects to conduct scientific assessments and prevent potential future environmental issues. Optimizing the energy structure means adjusting energy consumption patterns to reduce reliance on fossil fuels and increase the proportion of clean energy. Promoting energy-saving and emission-reduction technologies, improving energy efficiency, and reducing energy waste are also essential, alongside supporting the development and utilization of renewable energy sources such as solar, wind, and biomass energy.
Regional cooperation and collaboration should be strengthened to jointly address regional environmental issues. Participation in regional environmental protection projects and initiatives, sharing green technologies and management experiences, and integrating resources through regional cooperation can collectively promote the construction and management of green infrastructure. A diversified strategy should be adopted, emphasizing both industrial structure adjustments and technological innovation, as well as strengthening environmental management and optimizing energy structures, to collectively tackle the challenges of pollution reduction and carbon reduction.
5 CONCLUSION
Based on the PM2.5 pollution and carbon emission data from county-level units in the Wuhan metropolitan area between 2000 and 2017, this study employs spatial correlation analysis and standard deviation ellipses to describe the spatiotemporal distribution and dynamic evolution of air pollution and carbon emission synergy from multiple perspectives. Furthermore, a GTWR model is constructed to explore the factors influencing the intensity of PM2.5–CO2 synergy and its spatiotemporal heterogeneity. The main conclusions are as follows:
	(1) From the perspective of their individual evolutionary characteristics, PM2.5 pollution and CO2 emissions in the Wuhan metropolitan area exhibited different trends in 2000–2017. PM2.5 levels initially increased and then decreased, whilst CO2 emissions increased and then stabilised, with a turning point around 2013. The PM2.5 pollution in the Wuhan metropolitan area was significantly higher than national standards. Areas such as Qingshan District, Dongxihu District and Jiang’an District had the highest PM2.5 concentrations, whilst Hongshan District, Jiangxia District and Huangpi District had the highest carbon emissions. The centroid and standard deviation ellipse analyses indicate that PM2.5 and carbon emission centroids were located northwest of the geographic centre of the Wuhan metropolitan area. PM2.5 pollution showed a spatial pattern shifting from southeast–northwest to east–west, whilst carbon emissions demonstrated a southeast–northwest pattern with a contraction trend.
	(2) From the perspective of the coevolutionary characteristics of pollution and carbon emissions, the whole coupling coordination degree between PM2.5 pollution and CO2 emissions in the Wuhan metropolitan area displayed two phases, an increase and a decrease, with a turning point around 2012. Initially, the synergy level improved as the coupling degree increased. However, with the reduction in PM2.5 pollution levels in the later period, the coupling degree decreased, leading to a decline in overall coordination levels. Detailed analysis of county-level units reveals that areas such as Hongshan District, Jiangxia District, Huangpi District and Caidian District within Wuhan, as well as Daya City, Xiaonan District, Qianjiang City, Echeng District, Huangmei County, Huangzhou District, Xianyang City and Tianmen City outside Wuhan, have higher levels of synergistic coordination and should be prioritised for collaborative pollution and carbon reduction efforts.
	(3) In terms of the effectiveness of various factors on the synergistic effects of PM2.5 pollution and CO2 emissions, the factors including temperature inversion days, precipitation, temperature, vegetation coverage, green patents, population, GDP, per capita GDP, secondary industry ratio, nighttime lights, energy consumption intensity and built-up area exhibited varying effects on the PM2.5 pollution and CO2 emission synergy in county-level units of the Wuhan metropolitan area. Factors such as population, GDP, secondary industry ratio, nighttime lights, energy consumption intensity and built-up area generally had positive effects, leading to increased air pollution and carbon emission synergy. Conversely, precipitation and vegetation coverage generally exerted negative suppressive effects. The effects of temperature inversion, temperature, green patents and per capita GDP were mixed. For example, green patents positively influenced the air pollution and carbon emission synergy in regions such as Xiaogan and Xianning but showed a suppressive effect in Huanggang, Tianxianqian and central Wuhan metropolitan areas.
	(4) From the perspective of the spatiotemporal differences in influencing factors, the impact of various factors on air pollution and carbon emission synergy showed significant spatiotemporal heterogeneity. Temperature inversion primarily affected the northwest part of the metropolitan area, with strong effects shifting from Tianxianqian to the vicinity of Yunmeng. Precipitation had a significant negative effect on the overall PM2.5 pollution and CO2 emission synergy, with the most pronounced effects in Xinzhou and Jiangxia. Temperature effects displayed a northeast–southwest pattern, with noticeable positive impacts on the northeastern regions. Vegetation coverage generally showed a negative suppressive effect on the air pollution and carbon emission synergy across most regions. Green patents predominantly exerted a negative effect on pollution levels, although a few areas showed no suppression. Population growth showed a positive effect, which was particularly strong in Huanggang; in regions such as Yingshan and Xishui, it significantly promoted PM2.5 pollution levels. GDP effects varied, with negative impacts in Wuhan and Ezhou and increasing positive impacts in Xiaogan, Xishui and Wuxue. Per capita GDP showed a pronounced positive effect in Tianmen and Qianjiang. The secondary industry ratio had high positive impacts in Luotian County and Yingshan County. Energy consumption intensity showed a strong effect, shifting from northwest to southeast over time. Energy consumption efficiency mainly affected Tianxianqian, Chibi, Chongyang, Tongshan and Xian’an. Built-up area effects showed a trend of receding to the central regions, with high values in Huangpi and Xinzhou.

Owing to limitations in data availability and accessibility, the influencing factors selected in this study may not be comprehensive. Future research could incorporate variables related to transportation and policy to construct a more accurate model and further explore the mechanisms of influence.
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The Chinese government has proposed shifting the regulation of energy consumption and intensity towards a dual control system of total carbon emissions and carbon emission intensity gradually, aiming to promote the continued role of green finance in optimizing resource allocation. To reveal the impact and mechanism of green finance on urban carbon emissions and intensity in China, this paper constructs a general equilibrium model based on endogenous growth theory and employs a two-way fixed effects model for empirical testing. The study finds that: (1) The development of green finance significantly inhibits both the total carbon emissions and carbon emission intensity of Chinese cities. (2) The impact of green finance on urban carbon emissions and intensity exhibits significant regional heterogeneity. In the northeastern regions of China, southeastern regions of the Hu Line, non-resource-based cities, and areas with higher financial efficiency, green finance can significantly reduce both urban carbon emissions and carbon emission intensity. However, in central and western regions and resource-based cities, green finance only suppresses urban carbon emission intensity. (3) Green finance can reduce urban carbon emissions and intensity through two channels: economic scale expansion and technological advancement, while the channel of industrial structure optimization has not yet shown a significant effect. Through research, it can be found that balancing the differences in green finance and carbon emission functions across regions, while fully optimizing the use and allocation mechanisms of resource elements from aspects such as technological innovation, environmental protection, and energy conservation, can enhance the quality and efficiency of economic development. This is of significant importance for green finance in promoting the realization of dual carbon control.


Keywords: green finance, general equilibrium theory, carbon emission intensity, “economic-structural-technical” mechanism, multilevel heterogeneity analysis




1 INTRODUCTION


Climate change is a common challenge faced by all of humanity. The continuous increase in greenhouse gas emissions has negative impacts on agricultural production, socio-economic activities, and human life, hindering the process of global sustainable development (Wang J. et al., 2022). To address the pressing issue of climate change, an array of nations collaboratively signed the “Kyoto Protocol” in 1972, representing one of the seminal international efforts aimed at curtailing greenhouse gas emissions. Since this landmark accord, a number of countries have systematically enacted policies to mitigate greenhouse gas emissions. For instance, Sweden and Canada have introduced carbon taxes to elevate the costs associated with fossil fuel consumption, thereby incentivizing reductions in usage. Meanwhile, the United States has fostered growth in the renewable energy sector, particularly solar and wind energy, through mechanisms such as investment tax credits and production tax credits. These strategic measures underscore the multifaceted approach required at both national and international levels to tackle environmental challenges. As the world’s largest carbon-emitting country, China not only bears the responsibility of reducing carbon emissions but is also constantly exploring new pathways for green development. In October 2021, China committed to reaching peak carbon emissions by 2030 and achieving carbon neutrality by 2060. To better achieve the “carbon peak and carbon neutrality” goals, the Chinese government issued the “Opinions on Gradually Shifting from Dual Control of Energy Consumption to Dual Control of Carbon Emissions” in July 2023. This policy proposed a strategic direction focused on carbon reduction, shifting the regulation of total energy consumption and intensity towards a system of dual control over total carbon emissions and carbon emission intensity, referred to as the dual control system for carbon emissions
1
. It is foreseeable that under the guidance of this system, China’s green economy will develop and transform, further enhancing the importance of market-based emission reduction policy tools such as green finance and carbon finance. The reason for this is that green finance can influence the new market equilibrium in two ways: first, by creating new drivers of development that direct capital into the green, low-carbon, and circular economy sectors; and second, by overcoming environmental and climate risks, gradually diverting capital away from traditional high-energy-consuming and high-emission sectors.

Given the important role of green finance, the Chinese government has, in recent years, been committed to continuously improving the institutional framework for green, low-carbon development and green finance, forming financial policy arrangements that match the dual control of carbon emission intensity and total volume. So, at the urban spatial scale, can green finance effectively curb both carbon emissions and intensity? What is its mechanism of action? Furthermore, given the significant differences in resource endowments, environmental capacity, industrial base, and innovation capabilities between different regions of China, will the impact of green finance on urban carbon emissions and intensity exhibit regional heterogeneity? To answer these questions, this paper constructs a comprehensive theoretical analysis framework to explore the mechanisms by which green finance affects urban carbon emissions and intensity, using relevant data from 260 Chinese cities from 2010 to 2022 and employing two-way fixed effects model. to test the effects of green finance on urban carbon emissions and intensity.

Over the past 20 years, extensive research has been conducted on the drivers of carbon emissions, focusing primarily on micro-level factors such as technological progress (Okushima and Tamura, 2010; Chen et al., 2020), energy efficiency (Zhang et al., 2018), carbon taxes (Mardones and Flores, 2018; Barrage, 2020). Additionally, macro-level and policy factors such as economic growth (Wu et al., 2019), urbanization (Sun and Zeng, 2023; Zhou et al., 2021), and carbon emission trading policies (Xuan et al., 2020; Zhang et al., 2020; Dong et al., 2022) have been widely studied. In recent years, the impact of finance, particularly green finance, on carbon emissions has become a hot topic in academic research.

Early studies mainly focused on the relationship between financial development and environmental pollution or energy consumption. Some scholars argue that financial development exacerbates environmental pollution by relaxing borrowing constraints for households and enterprises, leading to increased consumption, investment, and thus energy consumption and pollution emissions—a phenomenon known as the scale effect (Sadorsky, 2010; Abbasi and Riaz, 2016). On the other hand, some scholars believe that financial development can promote environmental improvement. One explanation is that financial development can provide funding for clean and environmentally friendly production technologies, thus achieving pollution control through the technology effect. Another explanation is that financial institutions can guide market development by responding negatively to polluting enterprises and by publicly supporting environmentally friendly practices (Tamazian et al., 2009; Bekhet et al., 2017).

With the development of environmental concepts and the emergence of green finance, scholars have begun to explore the relationship between green finance and carbon reduction. Some argue that the core of green finance development is to establish an incentive mechanism that reallocates external funds based on corporate pollution levels, thereby internalizing the negative externalities of environmental pollution (Xing et al., 2021). Green finance can restrict the expansion of polluting enterprises through punitive high-interest rates (Fan et al., 2021). Moreover, green finance can help enterprises overcome financial barriers associated with investing in environmental protection and procuring new energy raw materials (Lan et al., 2023), driving capital from high-pollution industries to low-pollution industries by restricting financing for high-pollution enterprises and supporting environmentally friendly ones, thereby achieving industrial carbon reduction. However, some scholars believe that the impact of green finance on carbon emissions is insignificant. For instance, Yu et al. (2021), using a sample of Chinese listed companies from 2001–2017, explored the impact of financing constraints and green finance policies on green innovation. Their findings suggest that green finance policies do not effectively alleviate financing constraints to benefit private enterprises, thereby limiting their green innovation capacity and failing to promote carbon reduction. Building on this, Zhang et al. (2021) used data from 30 Chinese provinces from 2007–2016 and employed a difference-in-differences model to examine the impact of green credit policies on carbon emissions. They found that the carbon reduction effects of green credit policies were not significant in non-resource-based cities.

The impact of heterogeneous green financial instruments on carbon emissions is a major focus of current research, with studies concentrating on two main aspects: green credit and green bonds. In terms of green credit, unlike command-and-control regulatory approaches, green credit relies on market mechanisms to address environmental issues (Lv et al., 2023). It achieves targeted effects through its capital allocation function, guiding societal funds towards environmentally friendly enterprises, increasing financing constraints for high-pollution companies, and thereby raising the proportion of green capital in the market, which reduces pollution from social production (Wen et al., 2021). The carbon reduction effects of green credit are primarily channeled through promoting green technology innovation (Tan et al., 2022) and industrial structure transformation (Xu et al., 2018).

Regarding green bonds, as a new financing tool, one of their main objectives is sustainable climate change management. In addition to their general financing attributes (Flammer, 2021), green bonds have a potential advantage over traditional bonds because they are backed by environmental assets like forests or wetlands, rather than just capital assets. This attracts more environmentally conscious investors (Zhang et al., 2022). In practice, green bonds promote carbon reduction either directly through environmental investment mechanisms and social attention mechanisms, or indirectly by fostering corporate green innovation (Wang T. et al., 2022; Lian et al., 2024).

In summary, while existing literature has extensively discussed the carbon reduction effects of green finance, the focus has largely been on specific types of green financial tools, and the research samples have mainly been at the provincial and corporate levels. There is a lack of direct exploration of the carbon reduction effects of green finance at the city level. To address these research gaps, this paper constructs a general equilibrium model based on endogenous growth theory and uses a two-way fixed effects model to verify the impact of green finance on urban carbon emissions and intensity. Furthermore, it explores the heterogeneity of these effects and possible mechanisms, employs various methods to test the robustness of the results, eliminates endogenous interference, and provides more robust empirical evidence for the proposed theoretical hypotheses, confirming the impact of China’s green finance development on urban carbon emissions and intensity, and clarifying the pathways through which these effects are realized.

The possible marginal contributions of this paper are threefold. First, it defines a unified theoretical analysis framework by constructing a general equilibrium model that encompasses four sectors: environment, households, production, and green finance. This model theoretically elucidates the effects and mechanisms of green finance on urban carbon emissions and intensity. Second, at the urban spatial scale, the paper empirically validates the impact of green finance on the carbon emissions and intensity of Chinese cities, as well as their regional heterogeneity, using a two-way fixed effects model, thereby filling a research gap at the urban level. Third, based on the “scale-structure-technology” theoretical analysis framework, the paper reveals how green finance influences urban carbon emissions and intensity through its effects on economic scale, industrial structure, and technological progress.

The remainder of the paper is organized as follows: Section 2 reviews the relevant literature; Section 3 establishes the theoretical analysis framework and proposes the research hypotheses; Section 4 introduces the research models and variable selection; Section 5 presents the empirical analysis; and Section 6 provides the conclusions and implications.




2 THEORETICAL MODEL AND RESEARCH HYPOTHESES


Direct Impact of Green Finance on Urban Carbon Emissions and Intensity.

To explore the impact of green finance on urban carbon emissions and intensity, this study integrates a multi-sector general equilibrium model with endogenous growth theory, inspired by the approaches of Bovenberg and Lans (1995), and Qi (2023). This integration introduces a green finance sector and technological progress in polluting enterprises to construct a new theoretical analysis model.



2.1 Environment


The fundamental goal of developing green finance is to manage urban environmental pollution. Therefore, this study incorporates an environmental sector into the general equilibrium theory model. The level of environmental quality is adapted from Bovenberg and Lans (1995) and is primarily influenced by two factors: environmental restoration capacity and environmental degradation. The expression is shown as follows in Equation 1:


[image: A mathematical equation showing \(\dot{x} = \eta(e_0 - e) - \varphi qp\), labeled as equation one.]


In the above model, [image: Please upload the image so I can generate the alternate text for it.] represents the optimal environmental value, initially set to 0. The term [image: Please upload the image, and I will generate the alternate text for you.] indicates the deviation from the optimal environmental value, primarily measuring the extent of environmental degradation. The parameters [image: It seems there was an issue with uploading the image. Please try again by ensuring the file is properly attached, or provide a URL if it's hosted online. If you want, you can also provide a caption for additional context.] and [image: Please upload the image or provide a URL so I can generate the appropriate alternate text for you.] represent the environmental restoration coefficient and the environmental pollution coefficient, respectively.

The variable [image: Please upload the image or provide a URL for me to generate the alternate text.] denotes pollutant emissions, which are influenced by the scale of natural resource extraction [image: It seems like there was an error in uploading the image. Please try again by ensuring the file is correctly attached or provide a URL. Let me know if you need further assistance!] and the level of environmental protection technology [image: It seems there was an issue with the image upload. Please try uploading the image again, and feel free to add a caption if you have specific context in mind.]. Specifically, a larger scale of natural resource extraction results in higher pollutant emissions, while a higher level of environmental protection technology reduces pollutant emissions. The formula to p is shown as Equation 2:


[image: Equation showing momentum, represented by p, equals mass M divided by Planck's constant h, denoted as p equals M over h. Labeled as equation two.]





2.2 Household sector


Urban consumers have a preference for a high-quality environment, which is represented in the model Equation 3:


[image: Equation for U is shown as: U equals open bracket c to the power of negative phi minus one, divided by one minus phi, close bracket, plus open bracket negative open parenthesis one minus c close parenthesis to the power of one plus k, plus one, divided by one plus k, close bracket. Equation number three.]


Let [image: Please upload the image you would like me to generate alternate text for.] denote the consumption level, and [image: It appears there is no image attached. Please upload the image or provide a URL for me to assist you with generating the alternate text.] the coefficient of relative risk aversion. The negative utility derived from the deviation of the environmental quality from its optimal value is characterized by the parameter [image: Please upload the image or provide a URL so I can generate the alternate text for it.].

The utility function, with respect to the deviation [image: Please upload the image or provide a URL so I can generate the alternate text for you.], exhibits increasing marginal negative utility, as indicated by the first and second-order partial derivatives of the utility function. This means that the disutility or negative impact on consumers increases as the deviation from the optimal environmental quality becomes larger.




2.3 Green finance sector


For environmental protection purposes, the green finance sector provides different amounts of funding and interest rates to urban polluting enterprises and green enterprises. Specifically, it provides funding [image: The text shows the letter "H" followed by "and interest rate r subscript p" in a mathematical or economic context.] to urban polluting enterprises, and funding L and an interest rate [image: It seems there isn't an image uploaded. Please upload the image or provide a URL so I can generate the alt text for you.] to green enterprises. Thus, the total amount of funding provided by the green finance sector to urban enterprises is given by Equation 4:


[image: Mathematical equation showing "K equals H plus L" with the equation number four in parentheses to the right.]


In addition, let [image: Please upload the image you would like me to generate alternate text for.] (where [image: Please upload the image or provide a URL for me to generate the alternate text for it.]) represent the proportion of the total amount of funding [image: A large, bold letter "K" displayed in black against a white background.] allocated to urban polluting enterprises. The funding received by urban polluting enterprises is as Equation 5:


[image: It seems there is no image provided. Please upload the image or provide a URL, and I will create the alt text for you.]


Assuming the green finance sector earns an interest rate [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] on the funds it acquires, and given that only the urban household sector is involved in savings (with urban enterprise owners being part of the household sector), the returns from urban enterprises are returned to the household sector. Capital required for production by urban enterprises is also provided by urban households. In a frictionless financial market, the difference between the revenue from the funds it provides and the interest rate paid on the funds it acquires is expressed as Equation 6:


[image: The mathematical equation displayed is: \(\pi_0 = r_p H + r_g L - r K\), labeled as equation (6).]





2.4 Production sector


The urban production sector is categorized into two types: urban polluting enterprises [image: Please upload the image or provide a URL so I can generate the alt text for you.] and urban green enterprises [image: Please upload the image you would like me to generate alternate text for.] Urban polluting enterprises are characterized by their consumption of natural resources during production, which results in substantial pollution. This pollution is directly proportional to the scale of natural resource extraction. In contrast, urban green enterprises do not engage in natural resource consumption and, consequently, do not produce pollution. This distinction is made for model simplification purposes, allowing for a clear differentiation in the environmental impact of various types of enterprises, and is expressed as following Equations 7, 8:


[image: Equation showing \( Y_p = A_4 M^{10} H^6 + 7 \) with a reference number (7) beside it.]



[image: Mathematical expression "Y subscript f equals A subscript L divided by eight" followed by equation number eight in parentheses.]


Within which, urban polluting enterprises produce intermediate goods using natural resources [image: A large, bold, black letter "M" is centered on a white background. The letter is rendered in a serif font, with prominent, pointed tips on the top and bottom of each vertical stroke.], capital [image: Please upload the image or provide a URL so I can generate the alternate text for you.], and production technology [image: Please upload the image, and I will generate the alternate text for you.] In contrast, urban green enterprises use production technology [image: It seems like you're referring to a formula or equation rather than an image. If you have an image you'd like me to describe, please upload it or provide a URL.] and capital [image: It seems there was an issue with the image upload. Please try uploading the image again, and I'll be happy to help with the alt text!] to produce intermediate goods. It is noteworthy that, while some scholars (Qi, 2023) suggest that polluting enterprises do not experience technological progress, in reality, these enterprises are also required to adopt green technological innovations to comply with stringent environmental regulations and meet government production and environmental standards.

Assuming that technological progress [image: Please upload the image you would like me to generate alternate text for.] follows the endogenous growth theory framework proposed by Romer, where technological advancement is related to capital allocation, the expressions for technological progress are as Equations 9, 10:


[image: Mathematical equation stating A sub 1 equals D sub lambda of K to the power of h, enclosed in parentheses, followed by equation number nine.]



[image: Mathematical equation: \( A_t = D_1 (1 - \bar{\xi}K)^{\theta_2} \), labeled as equation (10).]


where D and [image: Please upload the image you would like me to generate alternate text for.] are parameters, and [image: Please upload the image or provide a URL for me to generate the alternate text.] represents the proportion of credit allocated to high-pollution enterprises.

After producing intermediate goods, the urban production sector assembles final products using labor inputs, considering the environmental impact [image: Please upload the image or provide a URL for me to generate the alternate text.]. The final production function is thus given by Equation 11:


[image: Mathematical equation showing Y equals Y subscript p raised to the power of omega p multiplied by Y subscript g raised to the power of omega g multiplied by P raised to the power of omega P multiplied by W raised to the power of omega u. Equation number eleven.]





2.5 Dispersed equilibrium


According to the first theorem of welfare economics, when market participants’ utilities are strictly monotonic and information is complete, the general equilibrium market allocation is Pareto optimal. This paper discusses the situation where, in the absence of government intervention, urban economic agents achieve maximum profits through optimal business strategies.

The decision-making of urban polluting enterprises aims to maximize their profit through the optimal combination of natural resources and capital inputs and the formula of it is as Equation 12:


[image: The equation shown is: \( \pi_f = p_{pA1} M^h H^{p_b} - r_f H - p_{M} M \), labeled as equation (12).]


Urban green enterprises seek to maximize their profit through optimal capital investment and the formula of it is as Equation 13:


[image: Equation displaying profit (\(\pi_y\)) as a function of price, quantity, and cost variables: \(\pi_y = p_y A_y L^y - r_y L\).]


Assuming the final product price is normalized to 1, with [image: Sure, please upload the image you'd like me to describe.] being the prices of the products from polluting and green enterprises, respectively, and [image: There seems to be an issue with displaying the image. Please upload the image or provide a URL to it, and I will be glad to help with the alternate text.] representing the wage of urban workers, the profit for urban final firms is as the Equation 14:


[image: Equation labeled fourteen represents profit (\(\pi_f\)) calculated as: price (\(Y_p^{\frac{1}{2}} Y_s^{\frac{1}{3}} P^{-\frac{1}{3}} W^{-\frac{1}{4}}\)) subtracted by costs (\(p_r Y_p + p_\theta Y_s + \omega W\)).]


The urban final firms’ decision is to optimize the production ratio of the two intermediate goods to achieve maximum profit. Hence, the profit-maximizing expression for urban final firms is as Equation 15:


[image: Equation showing a ratio: \( \frac{Y_p}{Y_q} = \frac{\alpha_1 p_q}{\alpha_2 p_r} \). To the right, the number (15) is displayed, possibly indicating the equation's position in the text.]


where [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] is the price of natural resources M. Taking first-order derivatives, the optimal costs for capital and natural resources under dispersed economic conditions for both types of enterprises are are as Equations 16–18:


[image: The equation shows a mathematical expression where \( p_r D_r M^{\beta_0} H^{\alpha + \beta - 1} (\theta_1 + \beta_2) = r_p \). This is labeled as equation (16).]



[image: Mathematical equation showing variables and exponents: \( p_r D_r M^{x-1} H^{a+b} g_1 \beta_1 = p_m \), labeled as equation 17.]



[image: The image shows a mathematical equation: \( p_d D_L^{r_d + 1} (\gamma + \theta) = r_g \), numbered as equation (18).]


As mentioned previously, the financial market is frictionless, so there are no arbitrage conditions. Consequently, the green finance sector provides funding to both types of enterprises at the same interest rate as the deposit rate, expressed as Equation 19:


[image: It seems like there is an issue with displaying the image. Please try uploading the image file directly or provide a link to it.]


From Equations 16, 18, we can get the following Equation 20:


[image: Equation showing the ratio of L to H equals the fraction a subscript 2 times open parenthesis theta subscript 2 plus gamma close parenthesis over a subscript 1 times open parenthesis theta subscript 1 plus beta subscript 2 close parenthesis. Equation numbered twenty in parentheses.]


Thus, the proportion of funding allocated to urban polluting enterprises from the total funding provided by the green finance sector is as Equation 21:


[image: The equation depicts the variable \( \zeta \) as a fraction. The numerator is \( a_1 (\theta_1 + \beta_2) \). The denominator is \( a_1 (\theta_1 + \beta_2) + a_2 (\theta_2 + \gamma) \). A reference number \( (21) \) is at the end.]





2.6 Social planner’s equilibrium


First, solving the Hamiltonian equation:

According to the second theorem of welfare economics, the government can achieve Pareto optimal market allocation by adjusting the initial endowments among different sectors. The social planner’s problem is formulated as follows:


[image: Maximization expression with integral from zero to infinity. The integrand is a sum: the first term is \(\frac{e^{1-\varphi}-1}{1-\varphi}\) and the second term is \(-\frac{(1-e)^{1+k}+1}{1+k}\). Both are multiplied by \(e^{-r t}\) with respect to \(dt\).]



[image: Equation illustrating a savings condition: \( \text{s.t.} K = Y - c = Y_{\text{p}}^{\alpha} Y_{\text{g}}^{1-\alpha} p^{-\alpha} W^{\alpha} - c \).]



[image: Equation depicting a mathematical expression: \( \dot{e} = \eta (-e) - \varphi qp \), where \( \dot{e} \) represents the derivative of \( e \), and \( \eta \), \( \varphi \), \( q \), and \( p \) are variables.]


Where [image: Equation displaying variables and operations: B equals h raised to the power of alpha sub one, beta sub two, multiplied by one minus zeta raised to the power of alpha sub two, gamma sub zero. Omega sub one equals alpha sub one, beta sub one minus alpha sub three. Omega sub two equals alpha one, beta two plus alpha sub two, gamma.]. The current value Hamiltonian function is:


[image: Equation involves several mathematical terms: H equals c^{1-\varphi}-1 over 1-\varphi plus negative (1-\epsilon)^{1+k} plus 1 over 1+k plus λ_1 times (y_v^α_v y_g^α_g p^{-α} w^{α-1} - c) plus λ_2 times (η(1-ε) - ϕp).]


Taking derivatives of the Hamiltonian function yields the first-order conditions for the optimal control problem:


[image: Certainly! Please upload the image you would like me to generate alt text for.]



[image: Equation showing \(\lambda_1 \omega_1 \frac{Y}{M} = \lambda_2 \frac{\varphi}{h}\), labeled as equation 23.]



[image: The equation depicted is: λ̇₁ = ρλ₁ - λ₁ (Y/K) (α₁θ₁ + α₂θ₂ + ω₂), labeled as equation (24).]



[image: Equation showing lambda two equals rho lambda two minus e raised to the power of theta plus kappa lambda two eta, labeled as equation twenty-five.]


The transversality conditions for the optimization problem are: [image: Limit as \( t \) approaches infinity of \( \lambda_1 K \cdot \exp(-\rho t) = 0 \).] and [image: Limit as \( t \) approaches infinity of \( \lambda_2 e \cdot \exp(-pt) = 0 \).]。.

Second, steady-state and balanced growth path:

The analysis of the steady state is based on examining the growth rates of variables [image: A series of blurred letters, "A, K, c, Y, e, and M," with varying sizes and slight overlap, creating a visually dynamic impression.] demoted by [image: It seems there's an issue with the image upload or link. Please try uploading the image again or provide a URL. If you have a caption for additional context, you can include that as well.] Equation 22, we get: [image: Mathematical equation displaying negative phi multiplied by bold lowercase g subscript c equals bold lowercase g subscript lambda.].

From Equation 24, we obtain:


[image: Mathematical equation: \((\alpha_1 \theta_1 + \alpha_2 \theta_2 + W_z) \frac{Y}{K} = \rho + \varphi g_{\epsilon}\). It is labeled as equation 26.]


In the steady state, all variable growth rates [image: You can upload an image or provide a URL for me to generate alternate text. If you have a caption or any additional context, please include that as well.] are constants, so taking the natural logarithm of both sides of the above equation and differentiating with respect to time yields [image: A mathematical equation is shown: \( g_y = g_k \), which is based on the dynamic equation for capital \(\overline{K} = Y - c\).] and Equation 26, we get Equation 27:


[image: Equation showing the fraction \( \frac{c}{K} \) equal to \( \frac{\rho + \phi q_{c}}{\alpha_{t}\theta_{1} + \alpha_{s}\phi_{2} + W_{2}} - g_{K} \), labeled as equation 27.]


Similarly, [image: It seems there is no image uploaded. Please try uploading the image again or provide a URL. If there is any specific context or description you would like to include, feel free to add it.]


From Equation 25, we get Equation 28:


[image: The equation shown consists of the expression \((-e)^k\) divided by \(\lambda_2\), equal to \(\rho + \eta - g_s\), followed by the number twenty-eight in parentheses.]


Similarly, [image: Mathematical expression showing \( k g_e = g_{\lambda_z} \).]


From the environmental dynamics [image: The equation shows the rate of change of a variable \( e \) over time, represented as \(\dot{e} = \eta(-e) - \varphi p\). It includes constants \(\eta\) and \(\varphi\), and variable \( p \).], we get Equation 29:


[image: φM divided by h times negative e equals g subscript c plus η, equation twenty-nine.]


Similarly, [image: It appears that the input is not an image, but a mathematical expression. The expression is: \( g_M = g_e \).]


From Equation 23, taking the logarithm of both sides and differentiating yields: [image: The equation shows \( g_{\lambda_1} + g_Y - g_M = g_{\lambda_*} \).], Thus, the relationship between the growth rate of natural resource extraction and consumption growth rate is given by:


[image: The formula shown is \( g_M = g_c = \frac{1 - \varphi}{1 + k} g_c \) with equation number (30).]


Given [image: Equation showing \( A_1 = D_1 (\zeta K)^{\theta_1} \).], we obtain [image: Mathematical expression displaying \( g_{A_1} = \theta_1 g_{K} \).]; and from [image: Equation representing \( A_2 \) as \( D_1 \) times \([ (1 - \zeta) K]^{\theta_1} \).], we get [image: Mathematical equation displaying \( g_{A_2} = \theta_2 g_K \).]


By taking the logarithmic derivative of the final output production function [image: Mathematical equation showing Y equals Y sub p to the power of a sub one, multiplied by Y sub g to the power of a sub two, multiplied by p to the negative a sub three, multiplied by W to the power of a sub four.], we derive the grow rate as follows [image: Equation of economic output: \( q_Y = \alpha_1 g_{A_1} + \alpha_2 g_{A_2} + \omega_1 g_M + \omega_2 g_K + \alpha_4 n \).], where n represents the growth rate of labor. Substituting Equation 30 and other equivalent relationships between variables, we get:


[image: Equation depicting the variables \( g_Y = g_C = g_K \), representing a fraction. The numerator is \(\alpha_1 \pi (1+k)\). The denominator is \((1+k)(1-\alpha_1 \theta_1 - \alpha_2 \theta_2 - \omega_2) + \omega_1 (\varphi -1)\). It is labeled as equation (3.1).]


When [image: It seems like you didn't upload an image. Please provide the image or a URL, and you can also add a caption for additional context.] and [image: Equation depicting an inequality: \(\alpha_1 \theta_1 + \alpha_2 \theta_2 + \omega_2 < 1\).] the growth rates of urban consumption, capital, and output follow a balanced growth path. The presence of the terms [image: I'm sorry, but I can't generate alt text without an image. Please upload the image or provide a link to it, and I can help you with the description.] in Equation 31 indicates that the promotion of environmental technological progress by green finance enhances the steady-state capital growth rate, which in turn boosts urban consumption and output levels. Under the condition that [image: It seems there was an issue with the image upload. Please try uploading the image again or describe it further for assistance.] is satisfied, the steady-state consumption growth rate along the balanced growth path is positive. Consequently, as per Equation 30, the steady-state growth rate of natural resource extraction [image: It appears there was an issue with displaying the image. Please try uploading the image file again or providing the URL.] is negative. This result aligns with theoretical expectations: as technological progress gradually increases the productivity of urban green and polluting enterprises, the consumption of natural resources decreases, leading to a reduction in urban carbon dioxide emissions. Additionally, the increase in consumption and output levels contributes to GDP growth, thereby reducing urban carbon emission intensity.

Based on the above analysis, we can propose Theoretical Hypothesis 1:


Hypothesis 1. Green finance, under other unchanged conditions, can promote the reduction of urban carbon emissions and decrease carbon emission intensity.





3 THE MECHANISM OF GREEN FINANCE’S IMPACT ON URBAN CARBON EMISSIONS AND INTENSITY




3.1 Economic scale expansion effect


As a derivative of traditional financial activities, green finance similarly integrates social funds through its financial services, improves resource allocation efficiency, and accelerates social capital accumulation. According to the Cobb-Douglas production function, there is a functional relationship between social production and capital; an increase in capital input will lead to an expansion of production scale, thereby enhancing the scale of the economy. Moreover, by incorporating environmental sustainability into its operational principles, green finance endows its financial instruments with green attributes, thus attracting environmentally conscious investors and institutions. Green finance not only broadens the financing channels of traditional finance, thereby expanding the economic scale, but also enhances market stability through the flow of funds into environmental projects.

The expansion of the urban economic scale influences the dual control of carbon emissions from both the supply side and the demand side. On the supply side, the theory of economies of scale, as proposed by British economist Adam Smith in The Wealth of Nations in 1776, suggests that an increase in output during production leads to a decrease in unit costs. The expansion of urban economic scale results in an increase in production scale, achieving economies of scale, which helps improve production efficiency, reduce production costs, and accelerate the specialization and rationalization of production. This allows production sectors to achieve more output with less input, thereby saving energy and resources and reducing carbon emissions and intensity.

However, it should be noted that when the urban economic scale expands beyond a certain range, it may lead to diseconomies of scale. Without changes in industrial structure and pollution emission coefficients, when the input of production factors exceeds the optimal level, diminishing marginal returns may occur, leading to increased production costs, greater consumption of natural resources, higher carbon emissions, and an increase in carbon emission intensity per unit of GDP.

On the other hand, from the demand side, in the early stages of urban economic development, consumers tend to focus more on basic material needs. To meet this widespread demand, market suppliers may increase the input of non-clean production factors. If, at this stage, technological advancements and government regulations fail to effectively curb the environmental pollution caused by expanded production, the scale effect may lead to increased carbon emissions. In this scenario, total carbon emissions and GDP would grow simultaneously, with carbon emission intensity experiencing fluctuations. However, as the level and quality of urban economic development improve and consumer environmental awareness increases, consumers may prefer products that are technologically advanced, resource-efficient, and environmentally friendly. The market’s demand for green products compels manufacturers to increase the production of low-carbon and environmentally friendly products, thereby contributing to the reduction of carbon emissions and intensity. Thus, we propose the following hypotheses:


Hypothesis 2a. Green finance can reduce urban carbon emissions and intensity by expanding economic scale.


Hypothesis 2b. Green finance can increase urban carbon emissions and intensity by expanding economic scale.




3.2 Industrial structure optimization effect


It is generally believed that industrial structure encompasses both industrial upgrading and industrial rationalization (Yuan and Zhu, 2018). Therefore, this paper explores the impact of green finance on urban carbon emissions through these two aspects of industrial structure optimization. On one hand, industrial upgrading refers to the transition of the industrial structure from lower to higher levels, specifically from labor-intensive to capital- and technology-intensive industries. Green finance can facilitate this transition by imposing punitive financing measures, such as raising loan interest rates for polluting industries, thereby increasing the financing difficulties for such industries. This internalizes the negative externalities generated by pollution, forcing these industries to undergo cleaner and greener industrial upgrading. Additionally, green finance channels funds toward clean industries and provides subsidies, reducing operational difficulties and costs, increasing investment returns, and enhancing the attractiveness of clean industries, thereby signaling the market to promote green industrial transformation.

On the other hand, industrial rationalization refers to the enhancement of interrelationships between different sectors of the economy, characterized by the increasing coupling between input structures and output structures, leading to improved efficiency in the utilization of production resources. In the early stages, supported by national policies, green finance may lower the standards for financial access to support the development of clean industries. However, as risk management remains a fundamental principle of the financial sector, green financial institutions may still avoid funding high-risk clean industries. As the market achieves overall industrial greening, clean industries may no longer hold a special advantage in accessing financial institution funds, and risk assessments by these institutions may become more stringent. Consequently, whether in the early or later stages of clean industry development, the risk aversion of green financial institutions will drive clean industries to enhance the rationalization of their industrial structures to improve resource utilization efficiency, increase operational profitability, and improve financial institutions’ risk ratings.

Both industrial upgrading and rationalization lead to a reduction in total industrial carbon emissions, and through the enhancement of economic benefits, further reduce carbon emission intensity. Therefore, we propose the following hypothesis:


Hypothesis 3. Industrial structure plays a significant mediating role in the impact of green finance on urban carbon emissions and intensity.




3.3 Technological progress effect


Technological innovation is inherently uncertain and often subject to the diseconomies of compressed timelines. For enterprises, technological innovation carries significant risks and is influenced by factors such as the heterogeneity of property rights, varying degrees of enterprise maturity, and differing scales of operation. These factors increase the difficulty of innovation and, consequently, the operational costs for enterprises. Green finance, by utilizing various structural tools, leverages the informational and scale advantages of financial markets to effectively allocate funds through capital markets. This process directs financial resources towards environmentally friendly enterprises, providing financing services that alleviate the practical challenges of financing difficulties and high costs caused by the positive externalities of innovation that are hard to internalize. Furthermore, as the green finance system matures, information about green enterprises becomes more transparent and accurate, reducing the information costs associated with adverse selection and moral hazard due to information asymmetry. This improvement attracts more investors to the green industry, offering green enterprises increased financing opportunities. Technological progress, in turn, reduces energy consumption in production processes, thereby decreasing carbon dioxide emissions. Additionally, technological advancements enhance the market competitiveness of enterprises, increasing their profits and thereby reducing carbon emission intensity.

However, the technological progress induced by green finance might also result in an environmental rebound effect, potentially inhibiting carbon reduction efforts. While technological progress is a key means of improving energy efficiency, it does not always lead to reduced carbon emissions. The Jevons paradox offers a detailed explanation of the environmental rebound effect: On one hand, technological progress increases the efficiency of production resources and leads to economic scale expansion, where the resulting income increase causes households to consume more energy, substituting for labor and capital investment in production activities. On the other hand, although technological advancements enhance resource use efficiency, they also lower the unit cost of resource consumption. The principle of maximizing returns may drive social production sectors to invest more in energy-rich production resources to reduce operational costs. Ultimately, the increase in energy consumption leads to a resurgence in environmental pollution, raising carbon dioxide emissions. In this scenario, carbon dioxide emissions grow in tandem with GDP, and the changes in carbon emission intensity remain uncertain. Therefore, we propose the following hypotheses:


Hypothesis 4a. Green finance can reduce urban carbon emissions and carbon emission intensity by promoting technological progress in enterprises.


Hypothesis 4b. The technological progress induced by green finance may cause a rebound effect, leading to an increase in urban carbon emissions, with an uncertain impact on urban carbon emission intensity.

In summary, green finance has a direct impact on the dual control of urban carbon emissions, and this effect is realized through three transmission mechanisms: economic scale, industrial structure, and technological progress. The overall implementation pathway is shown in Figure 1.


[image: Flowchart illustrating different paths to achieve dual control of carbon emissions through green finance. It includes process management, result management, and paths labeled H1, H2a/H2b, H3, and H4a/H4b. The chart highlights uncertainties and restrictions in promoting economic scale and technological advancement, impacting carbon emissions and intensity.]



FIGURE 1 | 
The impact mechanism of green finance on urban carbon emissions and carbon intensity.







4 MODEL FRAMEWORK, INDICATOR MEASUREMENT, AND DATA SOURCES




4.1 Model framework




4.1.1 Baseline model


To investigate the impact of green finance on urban carbon emissions and carbon emission intensity, we construct the following baseline model:


[image: Mathematical equation showing CE_it equals alpha_0 plus alpha_1 multiplied by GF_it-1 plus alpha_2 multiplied by control_it-1 plus u_i plus theta_t plus epsilon_it, labeled as Equation 32.]



[image: Mathematical equation representing a model: \(CI_{i,t} = \alpha_0^0 + \alpha_1^0 GF_{i,t-1} + \alpha_2^0 control_{i,t-1} + \mu_i + \theta_t + \varepsilon_{i,t}^0\). The equation is labeled as number thirty-three.]


Where i and t correspond to cities and years, respectively, carbon emissions ([image: Please upload the image and I can help generate the alt text for it.]) and carbon intensity ([image: It seems there might be an issue with the image upload. Please try uploading the image again, or provide a URL if the image is online. You can also add a caption for additional context.]) represent two dimensions of urban carbon emissions. The superscripts I and Oare used to distinguish between carbon intensity and total carbon emissions. In the two formulas [image: Please upload the image or provide a URL so I can generate the appropriate alternate text for it.] is the constant term, [image: Please upload the image or provide a URL so I can help generate the alt text for you.], [image: Please upload the image or provide a URL for which you need the alternate text.] are coefficients, and [image: Mathematical notation displaying the Greek letter epsilon with subscripts i and t.] is the random disturbance term. [image: Please upload an image or provide a URL so I can generate the alt text for you.] represents the level of green finance development, [image: Please upload the image you want me to generate alternate text for.] represents a series of control variables, [image: Sure, please upload the image you'd like me to describe.] represents the time-fixed effects, and [image: Mathematical notation of the italicized lowercase Greek letter theta followed by a subscript lowercase italic i.] represents the individual fixed effects.




4.1.2 Mediation model


To examine the mechanism through which green finance impacts urban carbon emissions and intensity, the following mediation model is constructed:


[image: Mathematical equation depicting a model: \( M_{i,t} = \beta_0 + \beta_1 GFI_{i,t-1} + \beta_2 control_{i,t-1} + \mu_i + \theta_t + \epsilon_{i,t} \). Equation labeled as (34).]



[image: Mathematical equation expressing \( CE_{it} = \rho_{0} + \rho_{1} GFI_{i,t-1} + \rho_{2} M + \rho_{3} control_{i,t-1} + \mu_{i} + \theta_{t} + \epsilon_{it} \). The equation is labeled as equation (35).]



[image: Mathematical equation showing CLI_sub_t equals beta_0^p plus beta_1^p times GFIL_sub_t-1 plus beta_2^p times M plus beta_0^p times control_sub_t-1 plus mu_t plus theta_i plus epsilon_it, with equation number 36.]


Where [image: It seems there was an issue with the image upload. Please try uploading the image again or provide more details, and I will be happy to help with the alt text.] represents the mediator variable, i and t correspond to cities and years, respectively, [image: It seems like there was an error or confusion with the image upload process. Please try uploading the image file again or provide a direct URL. If there's a caption or additional context you'd like to add, feel free to include that too!] is the constant term, [image: Please upload the image or provide a URL for me to generate the alternate text. If you have a caption or additional context, feel free to include it.] and [image: Please upload the image you'd like me to generate the alternate text for, or provide a URL if it's online.] are coefficients for the core explanatory variable and control variables, respectively. [image: Please upload the image or provide a URL so I can generate the alternative text for you.] represents the level of green finance development, [image: Please upload the image or provide a URL, and I will help generate the alt text for you.] represents a series of control variables, [image: Please upload the image for which you need alternate text.] represents the time-fixed effects, [image: It seems like there was a mistake, as the provided content appears to be a mathematical symbol or formula rather than an image. If you have an image, please upload it, and I'll be happy to help generate the alt text for it.] represents the individual fixed effects, and [image: Mathematical notation showing the Greek letter epsilon, with subscripts i and t.] represents the random disturbance term. The steps to test the mediation model are as follows: When [image: I cannot view images directly. Please upload the image file, and I will help generate the alt text for it.] and [image: Mathematical notation displaying the Greek letter alpha with a subscript of one and a superscript of an uppercase letter O, suggesting a specific variable or parameter.] in Equations 32, 33 are both significant, the significance of [image: It seems there might be a misunderstanding. I cannot see or access the image you are referencing. Please upload the image file or provide a URL for it, and I will be happy to generate the alt text for you.] in Equation 34 is then tested. If [image: It seems like there was an error when trying to upload the image. Could you try uploading the image again? You can also provide more context if needed.] is significant, the final step is to test Equations 35, 36. If both [image: Please upload the image or provide a URL so I can generate the alt text for you.] and [image: It seems like there was an error in your message, as the image did not load. Please try uploading the image again or provide a URL or description.] are significant, there is a partial mediation effect. If only [image: Please upload the image or provide a URL so I can generate the alternate text for it.]s significant, there is a complete mediation effect.





4.2 Variable selection




4.2.1 Explanatory variables


The core explanatory variable in this study is the level of green finance development. While existing literature on green finance measurement often focuses on provincial levels (Yang et al., 2022), this study chooses to measure green finance development at the city level and the specific indicators are shown in Table 1. This decision is based on the fact that cities are major energy consumers and also the primary entities responsible for implementing carbon emission control policies. To measure green finance development, this study uses data from 260 cities in China spanning from 2010 to 2022. The selection of measurement indicators is based on data availability and the actual development context of green finance in China, using the “Guiding Opinions on Building a Green Financial System” released by China in 2016 as a reference. The indicators selected for measuring green finance are green credit, green insurance, green bonds, and green funds. After normalizing the data, the entropy method is employed to calculate the level of green finance development in China. For green credit, the measurement involves summing the short-term and long-term loans of environmental clean industry listed companies in each city, using data from the “Statistical Classification of Energy-Saving and Environmental Protection Clean Industries (2021)” and excluding companies with abnormal trading. Green bonds (Chang et al., 2022) are measured by summing the total issuance of green bonds in each city from 2010 to 2022. In the context of green insurance, considering that China’s green insurance sector remains in its nascent stages and empirical data on environmental liability insurance is currently inaccessible, agricultural insurance is utilized as a proxy indicator. This study quantifies the development level of green insurance by examining the revenue scale of green insurance at the prefecture-level city. For green funds, the issuance of ESG funds from 2010 to 2022 is summed based on the registered cities of fund managers to determine the green fund development level for each city.





TABLE 1 | 
Green finance measurement indicator system.

[image: Table displaying information about the Green Finance System. It includes four secondary indicators: Green Credit, Green Bonds, Green Insurance, and Green Funds. Each has a corresponding tertiary indicator—total borrowing, total issuance of bonds, revenue scale, and total issuance of ESG funds, respectively. All indicators have a positive property.]





4.2.2 Dependent variables


Carbon emission control involves managing both urban carbon emissions (CE) and carbon intensity (CI). In this study, the dependent variables are urban carbon emissions and carbon intensity. The measurement of urban carbon emissions follows the approach by using boundary delineation criteria to classify carbon emission pathways into Scope 1, Scope 2, and Scope 3. Scope 1 refers to all direct emissions within the urban area, including greenhouse gas emissions from transportation, buildings, industrial processes, agriculture, forestry, land use changes, and waste management activities. Scope 2 includes indirect emissions related to energy consumption that occur outside the urban area, such as emissions from purchased electricity, heating, and/or cooling. Scope 3 covers other indirect emissions that are caused by activities within the urban area but occur outside the boundary of Scope 2, including emissions from the production, transportation, use, and disposal of all goods purchased from outside the urban area. Urban carbon emissions are calculated by summing the emissions from these three scopes and taking the logarithm. Urban carbon intensity is obtained by taking the ratio of urban carbon emissions to city GDP, which is then normalized and logarithmically transformed.




4.2.3 Control variables


The control variables for urban carbon emission control are selected based on the following principles: (1) consideration of mainstream theoretical factors, (2) variables commonly used in relevant research by most scholars, (3) factors determined by China’s national conditions, development characteristics, and economic realities, and (4) data availability. Based on these principles and referencing the methods of Tang and Yang (2023) and Wang and Fan (2024), the following control variables are selected:

	• Foreign Direct Investment (FDI): Foreign direct investment can reduce urban carbon emissions through technology spillovers and pollution transfer, while also decreasing urban carbon intensity by providing economic benefits. This study measures FDI as the logarithm of the total amount of foreign direct investment in the city.
	• Government Size (GS): The administrative hierarchy of the urban system is an important institutional arrangement for government intervention in urban development, and the extent of government intervention is closely related to government size. The government can directly impact urban carbon reduction through command-type environmental regulations, with the influence showing a “U” shape—appropriate intervention can promote reductions in urban carbon emissions and intensity, while excessive intervention can lead to increases. This study measures government size as the ratio of fiscal expenditure to GDP.
	• Population Density (PD): The impact of population density on carbon reduction also exhibits a “U” shape. A moderate increase in population density can lead to scale effects that improve pollution reduction and resource utilization, thus lowering urban carbon emissions and intensity. However, excessive population density can result in reduced per capita resource availability and decreased market demand quality, potentially increasing production-side carbon emissions. The impact on carbon intensity remains uncertain. This study measures population density as the ratio of total urban population to city area.
	• Employment Structure (ES): A larger employment structure index indicates a higher proportion of employment in the tertiary sector, suggesting a cleaner and more economically efficient industrial structure, which can reduce urban carbon emissions and intensity. This study measures employment structure as the ratio of employment in the tertiary sector to total employment.
	• Urbanization Rate (UR): Generally, a higher urbanization rate is associated with increased urban infrastructure and industrial facilities, leading to higher urban carbon emissions. However, the impact on carbon intensity due to economic benefits is less clear. This study represents the urbanization rate as the ratio of the urban population to the total population.
	• Human Capital Level (HCL): Higher levels of human capital are associated with greater innovation capabilities, which can help reduce urban carbon emissions and intensity. This study measures human capital level as the ratio of the number of students in higher education institutions to the registered population.
	• Market Scale (MS): Market scale, through improved consumption behaviors and promoted technological innovation, can reduce urban carbon emissions. Additionally, the economic benefits associated with a larger market scale can contribute to lowering carbon intensity. This study measures market scale as the ratio of total retail sales of consumer goods to regional GDP.




4.2.4 Mechanism variables


Based on theoretical assumptions and relevant research by domestic and international scholars, the following mechanism variables are selected:

• Economic Scale (ES): A larger economic scale index indicates a higher level of economic development. This study represents economic scale as the logarithm of city GDP.

• Industrial Structure: This is assessed from two dimensions: industrial structure upgrading (Ais) and industrial structure rationalization (Theil). The measurement methods follow Yuan and Zhu (2018). Industrial structure upgrading is divided into the quantity (Ais1) and quality (Ais2) of upgrading. The quantity of industrial structure upgrading is represented by the structural hierarchy coefficient, reflecting the trend of industrial structure shifting from primary to secondary and tertiary sectors. The calculation method is shown in Equation 37. The quality of industrial structure upgrading is represented by the weighted value of the ratio of industries and the product of labor rates in each industry, reflecting the technological capabilities of industries. The calculation method is shown in Equation 38. Industrial structure rationalization is measured by the Theil index, reflecting the degree of coordination between industries. The calculation method is shown in Equation 39.


[image: Equation showing a mathematical expression: A subscript i, j equals the sum from m equals one to three of y subscript i, j, m multiplied by m, where m equals one, two, three.]



[image: Equation representing a mathematical summation: A_i_s_2_i_t equals the sum from m equals one to three of y_i_m_t times l_p_i_m_t. Here, m represents values one, two, and three. The equation for l_p_i_m_t is y_i_m_t divided by L_i_m_t. Equation number thirty-eight.]



[image: Equation representing Theil index calculation: \( Theil_{i,u} = \sum_{m=1}^{3} y_{i,um} \ln(y_{i,um} / l_{i,um}) \). Here, \( m = 1, 2, 3 \), indicating three distinctive components.]


Where [image: It seems like you've posted a mathematical expression rather than an image. If you have an image you'd like described, please upload it or provide a URL.] represents the proportion of the output of industry [image: Please upload the image you want me to describe. Once you have done that, I can help generate the alternate text for it.] in region I at time [image: Please upload the image or provide a URL, and I can generate the alt text for you.] relative to the total output of the region; [image: It seems that you have provided a mathematical expression rather than an image. If you have an image you'd like me to describe, please upload it or provide a description.] denotes the labor productivity of industry [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL if applicable. You can also add a caption for more context.] in region i at time t; [image: It seems there was a problem with your request. Please upload the image directly or provide a URL to the image so I can help you generate the alternate text. If you have any additional context for the image, feel free to include that as well.] indicates the value-added of industry mmm in region iii at time t; [image: It seems there is no image uploaded. Please try uploading the image again and ensure it is in a supported format such as JPEG, PNG, or GIF. If you encounter issues, feel free to ask for guidance.] refers to the number of employees in industry mmm in region i at time t; and [image: The image shows a mathematical notation with the letter "l" followed by subscripts "i," "m," and "t."] signifies the proportion of industry mmm employees relative to the total employment in region i at time t.

	• Technological Progress: Domestic technological innovation generally arises from internal independent innovation. Therefore, this study measures technological progress from an output perspective, using the logarithm of the number of invention patent applications as an indicator of technological advancement.





4.3 Data sources and processing


Considering the availability of data for green finance measurement indicators, a sample of 260 cities from China’s prefecture-level cities was selected. Data on green finance-related indicators are sourced from Guotai An (CSMAR), CNRDS, and Wind databases. Data for dependent variables are obtained from the “China Energy Statistical Yearbook,” “China Industrial Statistical Yearbook,” and “China Urban Statistical Yearbook,” among others. Data for control variables and mechanism variables come from the “China Urban Statistical Yearbook,” Guotai An (CSMAR), and CNRDS databases. To avoid issues with extreme values and heteroscedasticity, all absolute values are logarithmically transformed to eliminate dimensional errors, and missing or outlier values are excluded. Descriptive statistics for the sample data are shown in Table 2.





TABLE 2 | 
Descriptive statistics of variables.

[image: Table displaying statistical data for ten variables. The columns include "Variable," "obs," "Mean," "sd," "min," and "Max." Each variable, such as CE, CI, and GFI, has 3,380 observations. Mean values range from 0.0057 to 15.6953, standard deviations from 0.0203 to 1.0478, minimums from 0 to 12.3537, and maximums from 0.5104 to 19.1392.]






5 EMPIRICAL RESULTS ANALYSIS




5.1 Baseline regression results


A Hausman test was conducted on the sample data. The p-values for the effect of green finance on urban carbon emissions and intensity were 0.0838 and 0.004, respectively. Given that the null hypothesis was rejected, a two-way fixed effects model was selected. Table 3 presents the estimated results of the impact of green finance on urban carbon emissions and intensity.





TABLE 3 | 
Baseline regression results for the impact of green finance on urban carbon emissions and intensity.

[image: Table displaying four regression models with dependent variables lnCE and lnCI. The GFI coefficient ranges from -0.1187 to -0.1655, all significant at various levels. The constant values are statistically significant, ranging between -0.9686 and 3.7045. Control variables are only included in models 3 and 4. All models include city and time fixed effects with 3,380 observations. The R-squared values vary from 0.4718 to 0.9760. A note explains the significance levels.]


In columns (1) and (2), the estimated coefficients of the core explanatory variable, green finance level, are statistically significant at the 1% level, with values of −0.1187 and −0.3407, respectively. This suggests that a 1% increase in the level of green finance leads to a reduction in carbon emissions and carbon intensity by 11.87% and 34.07%, respectively.

When control variables were added in columns (3) and (4), the estimated coefficients of the core explanatory variable, green finance, are statistically significant at the 1% and 10% levels, with values of −0.1316 and −0.1655, respectively. This indicates that a 1% increase in the level of green finance results in a reduction in carbon emissions and carbon intensity by 13.16% and 16.55%, respectively. However, the coefficients were affected by the inclusion of control variables. Specifically, the suppressive effect of green finance on urban carbon emissions strengthened. In contrast, the effect of green finance on urban carbon intensity weakened.

The results in Table 3 suggest that green finance has a suppressive effect on both urban carbon emissions and intensity, thereby promoting dual control of urban carbon emissions. This supports Hypothesis 1.




5.2 Endogeneity and robustness checks


First, Endogeneity Check: When exploring the contemporaneous relationship between green finance and urban carbon emissions and intensity, endogeneity and self-selection issues may arise. To address potential endogeneity and self-selection problems, this study adopts a lagged regression model, following the methods of and Chen et al. (2024). In this model, the explanatory variable (F.GFI) is the value for period t+1, while the dependent variable and control variables are from period ttt. The results presented in columns (1) to (4) of Table 4 show that the regression coefficients for green finance remain significantly negative, indicating that the research findings are robust.





TABLE 4 | 
Regression results of the lagged regression model.

[image: Statistical table displaying regression results for four models. Columns represent different equations for lnCE and lnCI. Each column includes coefficient estimates, t-values, control variable presence, fixed effects, observations, and R-squared values. Significance is noted with asterisks: *** for 1%, ** for 5%, and * for 10%. The F.GFI variable has coefficients ranging from -0.1136 to -0.3103. The constant term varies, with values and significance indicated. Control variables and fixed effects are noted along with observation counts of 3,120. R-squared values range from 0.4724 to 0.6744.]


Second, Changing Estimation Methods: The estimation method was altered to a random effects model. The results are presented in columns (1) and (2) of Table 5. It is observed that even with this change in method, the regression coefficients for green finance remain significantly negative, indicating that the results are robust.





TABLE 5 | 
Regression results with changed estimation methods and added control variables.

[image: Table displaying regression results with four models: lnCE and lnCI variable groups. GFI coefficients are negative with statistical significance levels indicated by asterisks. Each model includes control variables and fixed effects with 3,380 observations. R-squared values are 0.6213, 0.9663, 0.6215, and 0.5920, respectively. Significance levels are noted: *** for 1%, ** for 5%, and * for 10%.]


Third, Adding Control Variables: To more accurately assess the impact of green finance on urban carbon emissions and intensity, additional control variables were included to account for potential confounding factors. Specifically, education level (EDL) and infrastructure level (ISL) were added as new control variables to the original baseline regression. The results, shown in columns (3) and (4) of Table 5, reveal that the coefficients for green finance remain significantly negative even after adding these controls, confirming the robustness of the findings.

Third, Changing the Sample: On one hand, the baseline regression includes prefecture-level cities, municipalities directly under the central government, and sub-provincial cities. Given that the primary focus of the study is on prefecture-level cities and recognizing the significant differences in economic development, policy support, and other factors between municipalities/sub-provincial cities and prefecture-level cities, the sample was adjusted to include only prefecture-level cities. The results are presented in columns (1) and (2) of Table 6. Even after excluding municipalities and sub-provincial cities, the green finance regression results remain significant, showing that green finance continues to have a suppressive effect on carbon emissions and intensity for prefecture-level cities.





TABLE 6 | 
Regression results excluding municipalities directly under the central government, sub-provincial cities, and low-carbon pilot cities.

[image: A regression table with four models labeled as (1) lnCE, (2) lnCI, (3) lnCE, and (4) lnCI. Each model presents coefficients for GFI and a constant, with GFI values ranging from -0.5079 to -1.7279, and constant values from 3.1574 to 4.7634. T-values are in parentheses. The table includes control variables, city fixed effect, and time fixed effect indicated as "Yes" for all models. Observations range from 2,317 to 3,099, and R-squared values range from 0.5972 to 0.6618. A note explains statistical significance levels.]


On the other hand, considering the potential impact of low-carbon pilot policies on carbon emissions and intensity, low-carbon pilot cities were removed from the original sample. The regression results are shown in columns (3) and (4) of Table 6. After excluding low-carbon pilot cities, the green finance regression results remain significant, continuing to demonstrate a suppressive effect on both carbon emissions and intensity. In summary, the results of this study are robust.




5.3 Heterogeneity analysis


Considering the differences in regional economic development levels, economic development models, and resource endowments in China, as well as varying financial efficiencies, it is important to explore the heterogeneous effects of green finance on urban carbon emissions and intensity. This section examines the heterogeneity in the impact of green finance based on regional differences, resource endowment disparities, and financial efficiency.



5.3.1 Regional heterogeneity


Based on the classification standards of the National Bureau of Statistics of China, the 260 cities in the sample are divided into four regions: Eastern, Central, Western, and Northeastern. The results in Table 7 indicate the following: In the Eastern region, the development of green finance can reduce urban carbon emissions but does not significantly affect carbon intensity. In the Central and Western regions, green finance only has an impact on reducing carbon intensity and does not significantly influence carbon emissions. In the Northeastern region, the development of green finance can significantly reduce both urban carbon emissions and intensity. The possible reasons are as follows: In the Central and Western regions, there are still many high-energy-consumption and low-tech industries. Green finance primarily supports improvements in energy efficiency and the development and application of low-carbon technologies, which helps reduce carbon intensity. However, because energy consumption in these regions still has the potential to increase, the scale and effectiveness of green finance may not be sufficient to significantly reduce carbon emissions. In contrast, the Eastern region is economically developed with a higher proportion of high-tech industries and services. Green finance in these areas can guide enterprises to adopt more efficient energy utilization and environmental protection technologies, thereby reducing overall carbon emissions. However, since the carbon intensity in these regions is already relatively low, there is limited room for further reduction, resulting in a less noticeable impact of green finance on carbon intensity.





TABLE 7 | 
Regional heterogeneity analysis results.

[image: Table showing regression results for lnCE and lnCI across four regions: Central, East, West, and Northeast. Variables include GFI, Constant, Control Variables, City and Time fixed effects. Observations and R-squared values are listed. Significance is denoted at three levels with asterisks.]


Additionally, this study examines whether the location-specific advantages of cities relative to the Hu Line
2
 affect the effectiveness of green finance in reducing urban carbon emissions. The Hu Line divides Chinese cities into two regions based on economic development levels and degrees of agglomeration: the southeastern side and the northwestern side. The results in Table 8 show that for cities on the southeastern side of the Hu Line, the regression coefficients for green finance are −0.1337 and −0.2089, both of which are statistically significant at the 1% level. In contrast, for cities on the northwestern side of the Hu Line, the regression coefficients for green finance are not significant.





TABLE 8 | 
Heterogeneity analysis results by the hu line.

[image: A table presents regression results comparing the impact of a variable labeled "GFI" and constants on "lnCE" and "lnCI" in Southeast and Northeast cities. For lnCE, GFI coefficients are -0.1337 with a t-value of -3.27 for Southeast cities and -0.7162 with a t-value of -0.25 for Northeast cities. The constant is 3.5797 in Southeast cities and 2.0010 in Northeast cities. For lnCI, GFI coefficients are -0.2089 with a t-value of -2.31 for Southeast cities and -4.8860 with a t-value of -1.01 for Northeast cities. The constant is 4.6435 in Southeast cities and 1.9108 in Northeast cities. Control variables, city fixed effects, and time fixed effects are included. There are 3,084 observations for Southeast cities and 267 for Northeast cities, with R-squared values of 0.6749 and 0.3125 for lnCE, and 0.6153 and 0.4552 for lnCI, respectively. Statistical significance is noted with asterisks.]


This suggests that green finance development in northwestern cities has not effectively promoted reductions in carbon emissions and intensity. The likely reason is that, compared to cities on the southeastern side of the Hu Line, northwestern cities are constrained by their economic resources and market environment. Their lower levels of green finance development, combined with resource-dependent production methods, place them at a disadvantage in terms of the spatial flow of factor resources and resource allocation. This limitation restricts the effectiveness of green finance in reducing carbon emissions in these northwestern cities.




5.3.2 Resource endowment heterogeneity


According to the “National Sustainable Development Plan for Resource-based Cities (2013–2020),” the 260 cities in the sample are categorized into resource-based and non-resource-based cities. The results in Table 9 show that: first, green finance development significantly reduces carbon intensity in resource-based cities but does not significantly affect their overall carbon emissions; second, for non-resource-based cities, green finance development significantly reduces both carbon emissions and intensity.





TABLE 9 | 
Resource endowment heterogeneity analysis results.

[image: Table comparing economic variables in resource-based and non-resource-based cities for two models, lnCE and lnCI. Values are given for GFI, constant terms, control variables, city and time fixed effects, observations, and R-squared. Statistical significance is noted at different levels, with significance marked by asterisks and t-values in parentheses.]


The likely reason for these findings is that the industrial structure of resource-based cities relies heavily on resource extraction and heavy industry, which are characterized by high capital intensity and technological lock-in effects. This makes it challenging for green finance to make a substantial impact on overall carbon emissions in the short term. Additionally, while green finance can lower carbon intensity by improving technological efficiency, the high emission characteristics of these industries limit the extent of overall emission reductions.




5.3.3 Financial development heterogeneity


Financial development efficiency reflects the degree of regional financial resource allocation and competitiveness. This is measured by the loan-to-deposit ratio, with the sample of 260 cities divided into regions with high and low financial efficiency based on the annual median. Data is sourced from the annual “China Urban Statistical Yearbook.” Table 10 shows that: For cities with high financial efficiency, the development of green finance can effectively reduce both carbon emissions and intensity. For cities with low financial efficiency, green finance does not have a significant impact on carbon emissions or intensity.





TABLE 10 | 
Heterogeneity analysis of financial development.

[image: A table shows regression results for \( \ln CE \) and \( \ln CI \) based on financial efficiency. The variables include GFI, Constant, Control Variables, City fixed effect, Time fixed effect, Observations, and R-squared. Key results: GFI for high financial efficiency is \(-0.1218^{***}\) and for low is \(-0.2135\); GFI for high \(\ln CI\) is \(-0.1467^{*}\) and low is \(-1.3166\). R-squared values are 0.6031 for \(\ln CE\) high and 0.6362 for low, 0.6634 for \(\ln CI\) high and 0.6765 for low. Significance levels are noted.]


The possible reason is that in regions with high financial efficiency, issues related to information asymmetry are relatively fewer, allowing for better allocation of green finance resources. This enables green finance to be quickly converted into low-carbon technologies and projects, thus improving carbon production efficiency and achieving better carbon reduction effects. Conversely, in cities with low financial efficiency, the low efficiency in resource allocation limits the effectiveness of green finance activities, resulting in negligible impacts.





5.4 Mechanism analysis results


As discussed in the theoretical framework, green finance impacts carbon emissions through various mechanisms, including economic scale, industrial structure, and technological advancement. This section delves into the mechanisms by which green finance influences urban carbon reduction, using indicators for economic scale, industrial upgrading, and technological progress.

First, the mechanism test of economic scale. The regression results for the impact of green finance on urban economic scale are presented in Table 11 (3). The estimated coefficient of the core explanatory variable, green finance, is statistically significant at the 1% level, with a value of 0.1567. This suggests that a 1% increase in the level of green finance leads to a 15.67% increase in urban economic scale. Further analysis examines the effect of economic scale on urban carbon emissions and intensity. The regression results shown in Table 11 (4) and (5) indicate that economic scale significantly impacts urban carbon emissions and intensity, with coefficients of −0.0350 and −0.8988 at the 5% and 1% levels, respectively. This suggests that 1% increase in the level of urban economic scale leads to a 3.5% and 89.88% decrease in carbon emissions and carbon intensity, respectively. These results demonstrate that green finance contributes to the expansion of urban economic scale, which in turn helps reduce carbon emissions and intensity. Specifically, economic scale acts as a partial mediator in the relationship between green finance and urban carbon emissions and a complete mediator for carbon intensity. This implies that the current economic model in China has shifted from reliance on basic necessities to a focus on technology-driven products. Thus, Hypothesis 2b is rejected and Hypothesis 2a is accepted.





TABLE 11 | 
Mechanism test results for economic scale.

[image: Regression results table with five models showing coefficients, standard errors, and significance levels for variables GFI, ES, and Constant. Model (1) and (5) have a high R-squared of 0.9760 and 0.7003, respectively. City and time fixed effects are included in all models. Significant coefficients are marked with asterisks indicating significance levels. Observations total 3,380 across models.]


Second, the mechanism test of industrial structure. The mechanism test for the impact of green finance on industrial upgrading and rationalization is shown in Table 12 (3), (4), and (5). The regression coefficient for the quality of industrial upgrading is 0.6565 and is significant at the 1% level, indicating that 1% increase in green finance lead to a 65.65% increase in the quality of industrial upgrading. However, the regressions for the quantity of industrial upgrading and industrial rationalization are not significant. This may be because the development of energy-saving, environmental protection, and clean production industries in China is relatively recent, and their growth rates still lag behind those of pollution-intensive industries. Therefore, green finance is unable to quickly shift the focus of the industrial structure in the short term. Additionally, except for a few economically developed cities in China, most cities have not adequately considered their locational advantages and industrial development goals, leading to inefficient resource allocation and limited inter-industry linkage. This has negatively affected the rationalization of the local industrial structure, reducing the impact of green finance on industrial rationalization.





TABLE 12 | 
Mechanism test results for industrial structure.

[image: Table displaying regression results for various variables across eight models. Variables include GFI, Ais2, and GFI×Ais2. Each model shows coefficients with t-values in parentheses. Significance levels are denoted by asterisks. Constants and fixed effects for city and time are included, along with observations and R-squared values.]


Further testing of the impact of the quality of industrial upgrading on urban carbon emissions and intensity is shown in Table 12 (6) and (7). After including the mechanism variables, the coefficient for the effect of green finance on urban carbon emissions changes from negative to positive, indicating that the quality of industrial upgrading moderates the carbon reduction capacity of green finance. Therefore, an interaction term between green finance and the quality of industrial upgrading was introduced for further testing, as shown in Table 12 (8). The interaction term’s coefficient for carbon emissions is significantly positive, indicating that the quality of industrial upgrading negatively moderates the carbon reduction capacity of green finance. This explains the change observed in Table 12 (6).

Additionally, the regression results in Table 12 (7) show that the coefficient for industrial structure on urban carbon intensity is positive, indicating that the quality of industrial upgrading has led to an increase in carbon intensity. This may be because green finance, by improving the quality of industrial upgrading, increases the proportion of capital and technology-intensive industries in output activities. Although these high-value-added industries have lower resource consumption and pollution emissions per unit of output compared to traditional industries, their overall scale and growth rate might lead to an increase in absolute resource and energy consumption, thereby offsetting the carbon reduction effects of green finance. In summary, the original Hypothesis 3 is rejected.

The last, the mechanism test of technological progress. The regression results for the impact of green finance on technological progress are shown in Table 13 (3). The coefficient for the effect of green finance on technological progress is 0.4367 and is significant at the 10% level, indicating that 1% increase in green finance leads to a 43.67% increase in technological progress. A. Further examination of the impact of technological progress on urban carbon emissions and intensity is shown in Table 13 (4) and (5). The coefficients for the effects of technological progress on urban carbon emissions and intensity are −0.0095 and −0.0561, significant at the 5% and 1% levels, respectively. This indicates that 1% increase in the level of green finance results in a reduction in carbon emissions and carbon intensity by 0.95% and 5.61%, respectively. The regression results demonstrate that the development of green finance promotes urban carbon emissions control through the channel of technological progress. Technological progress plays a full mediating role in reducing urban carbon emissions and a partial mediating role in reducing carbon intensity. This also indicates that there is no rebound effect as previously theorized. Therefore, Hypothesis 4b is rejected, and Hypothesis 4a is accepted.





TABLE 13 | 
Mechanism test results for technological progress.

[image: Table showing regression analysis results for five variables: lnCE, lnCI, PAI, lnCE, and lnCI. GFI and PAI coefficients and t-values are given. Constants, city and time fixed effects, number of observations, and R-squared values are indicated. Statistical significance is marked with asterisks at 1%, 5%, and 10% levels.]


To further validate the robustness of the mechanism test results, both Bootstrap tests (with 1,000 samples) and Sobel-Goodman tests were conducted, confirming the robustness of the mechanism test conclusions. Due to space constraints, the robustness test results are not presented.





6 RESEARCH OUTLOOK AND CONCLUSION IMPLICATIONS


The dual control of urban carbon emissions and intensity relies on a shift towards cleaner production and operational methods. Research into the effects and mechanisms of green finance on carbon reduction is crucial for achieving a low-carbon transformation of urban economic development and advancing the dual control of carbon emissions and intensity in China. This paper empirically examines the carbon reduction effects of green finance from both total amount and intensity perspectives and further analyzes the channels through which these effects operate. However, several limitations persist. First, due to constraints in data availability, certain green finance instruments are not incorporated into the green finance indicator framework. As a result, the assessment of the green finance level in cities presented in this paper may not fully capture their actual status. It is anticipated that with improved data accessibility in future research, the measurement system can be further refined. Second, owing to limitations in scope, this study does not explore the spatial effects of green finance on urban carbon emission controls. Future research should seek to address this gap in spatial analysis, thereby providing more actionable policy recommendations.

The results indicate that: (1) Green finance has a significant inhibitory effect on both urban carbon emissions and intensity, and this conclusion remains valid after introducing lagged regression models and changing control variables as part of robustness checks. (2) The effect of green finance on urban carbon reduction shows significant regional heterogeneity; it only significantly reduces carbon emissions and intensity in the Northeast region, non-resource-based cities, and areas with higher financial efficiency. In the Central and Western regions and resource-based cities, green finance only reduces carbon intensity and does not effectively reduce carbon emissions. In regions with low financial efficiency, green finance has not yet effectively contributed to carbon reduction. (3) Economic scale and technological progress are effective channels through which green finance achieves carbon reduction. Economic scale partially mediates the effect on urban carbon emissions and fully mediates the effect on carbon intensity, while technological progress fully mediates the effect on urban carbon emissions and partially mediates the effect on carbon intensity. Additionally, green finance has not achieved carbon reduction through industrial structure optimization; specifically, it only promotes the qualitative advancement of industrial structure without significantly affecting the quantity or rationalization of industrial structure. The qualitative advancement of industrial structure negatively moderates the effect of green finance on urban carbon emissions but has a partial mediating effect on carbon intensity.

The main policy implications of this study are as follows: First, green finance is an effective tool for reducing urban carbon emissions and intensity. Therefore, it is necessary to establish and improve a standard and policy support system for green finance to better utilize its resource allocation, risk management, and market pricing functions, guiding various resource elements to orderly gather in urban green and low-carbon fields. Second, considering the regional heterogeneity in the impact of green finance on urban carbon emissions and intensity, differentiated regional green finance policies should be formulated. It is essential to explore region-specific green finance development and reform paths, particularly in China’s Central and Western regions and resource-based cities, with a focus on effectively reducing total carbon emissions. This requires not only innovative green finance policy tools but also coordination with other policy tools such as green finance and fiscal policies. Thirdly, considering the mediating role of economic scale and technological progress, it is essential to fully optimize the utilization and allocation mechanisms of resources and factors from various aspects such as technological innovation, environmental protection, and energy conservation, to enhance the quality and efficiency of economic development. Specifically: To begin with, the government should increase financial support for enterprises engaged in green research projects, establishing special funds to encourage the development of green products with high technological content and added value. An innovation platform that integrates industry, academia, and research should be established to strengthen cooperation between research institutions and enterprises, promoting the transformation and commercialization of green technological achievements. Next it is important to improve environmental protection laws and regulations, intensify the supervision of pollutant emissions, and severely crack down on environmental violations. Strict environmental entry standards should be implemented to control the entry of polluting enterprises from the source. Lastly, industry energy efficiency standards should be developed, and an energy consumption quota system should be applied to high-energy-consuming industries to encourage enterprises in energy conservation and emission reduction efforts. A tiered energy pricing policy should be implemented to use economic levers to incentivize enterprises to actively reduce energy consumption. The construction of renewable energy projects should be accelerated, increasing the proportion of clean energy such as wind, solar, and biomass energy in the energy structure.
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FOOTNOTES




1
The dual control system for carbon emissions refers to the implementation of measures that constrain both the total carbon emissions and the carbon intensity. The focus is on limiting the total consumption and intensity of fossil energy.



2
The Hu Line, also known as the Heihe-Tengchong Line or the Aihui-Tengchong Line, is a population density contrast line in China proposed in 1935. It divides China into two parts: the northwest and the southeast, with roughly equal geographic areas but vastly different population densities and levels of economic activity.
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The steel industry is notable for its significant environmental impact, highlighting the pressing need to promote technological innovation within the sector in order to reduce carbon emissions. This paper utilizes a quadrilateral evolutionary game model to analyze the strategic behaviors of steel producers, construction companies, scrap steel recyclers, and the government throughout the entire steel production, consumption, and recycling processes and their impact on carbon emission reduction. The analysis and simulation of the model provide policy insights for these four key players. The study’s findings are as follows: (i) Government subsidies can effectively stimulate low-carbon production methods and encourage green consumer behavior. (ii) The strategic choices for technological innovation by steel manufacturers and scrap steel recyclers are primarily influenced by cost factors. Government subsidies for technological innovation play a crucial role in incentivizing a smooth transition to low-carbon production methods. (iii) For steel manufacturers, the carbon benefits derived from technological innovation are a critical factor influencing their engagement in such initiatives. If these manufacturers can benefit from environmental regulations, they are more likely to engage in technological innovation. (iv) The strategies of construction companies are influenced by production costs and carbon benefits associated with steel manufacturers, exhibiting threshold effects.
Keywords: iron and steel industry, dual-carbon goals, technological innovation, evolutionary game, subsidize

1 INTRODUCTION
In the context of global low-carbon development, addressing the ongoing environmental degradation is a significant challenge encountered by nations worldwide. In September 2020, China explicitly introduced the “dual-carbon” goals as a long-term strategy for reducing greenhouse gas emissions in the 21st century (Hao et al., 2022), showcasing China’s strong commitment to actively combatting climate change, embracing green and low-carbon development pathways, and fostering the collective advancement of humanity. As a pivotal industry with considerable potential for reducing carbon emissions, the iron and steel sector accounts for 5% of the world’s total energy consumption and contributes 6% of global anthropogenic CO2 emissions (Zhao et al., 2020). By 2021, China’s iron and steel industry is projected to represent approximately 16% of the nation’s overall carbon emissions, posing significant challenges to high-quality economic and social progress (Xu et al., 2022). Carbon emissions in the iron and steel production process primarily originate from fossil fuel combustion and chemical reactions during ironmaking, highlighting the pressing need for technological innovation in the sector to facilitate a transition towards low-carbon practices, a critical contemporary issue facing China.
Technological innovation stands as a pivotal strategy for the reduction of carbon emissions, offering the potential for significant cuts in CO2 output through the integration of sophisticated production methodologies and the adoption of cleaner manufacturing technologies. In light of the imperative to address contemporary climate change, the urgency is heightened for the development of transformative CO2 emission reduction technologies. Notably, the advancement of energy-saving technologies emerges as a paramount initiative in the quest for achieving carbon neutrality within the iron and steel sector (Wang et al., 2022). The enhancement of low-carbon technology innovation and its practical application is crucial for the iron and steel industry to meet its carbon reduction benchmarks. Scholars have illustrated that the expansion and utilization of high-temperature waste heat recovery technologies, coupled with the amalgamation of carbon capture and storage (CCS) methodologies, present a viable approach to diminishing CO2 emissions attributable to iron and steel manufacturing processes (Paltsev et al., 2021). Concurrently, the enhancement of energy efficiency and the optimization of industrial processes constitute an efficacious route for carbon reduction. This approach is capable of yielding substantial decreases in both energy usage and carbon emissions, attributable to systemic energy conservation and the refinement of operational procedures (Sundaramoorthy et al., 2023; Tang et al., 2024). Energy consumption within the iron and steel production sector is primarily concentrated in pivotal processes like blast furnace ironmaking, converter steelmaking, and steel rolling. Coke, serving as the principal raw material for blast furnace ironmaking, stands as the largest fossil fuel directly utilized by the iron and steel industry. The exploration and utilization of alternative fuels, such as hydrogen replacing conventional carbon-based fuels, present a promising avenue for reducing carbon dioxide (CO2) emissions during the iron and steel production process (Liu et al., 2021; Tang et al., 2020). Given hydrogen’s role as a reducing agent with iron ore, yielding water instead of carbon dioxide, it underscores the significance of hydrometallurgy as a clean and revolutionary technology in steel production.
As the world’s largest producer of steel, China accounts for half of the global output (Zhou and Yang, 2016). Within downstream industries, the construction sector remains the largest consumer of steel, representing 58.6% of direct steel consumption in China (Yang et al., 2023). This demand has remained stable, particularly as infrastructure development and urbanization progress are accelerated. However, regulatory policies in the real estate market in recent years have had a certain impact on the demand for construction steel (Yu et al., 2017). With the increasing demand from downstream industries for high-performance, eco-friendly steel materials, it is imperative for steel enterprises to intensify technological innovation and product upgrades. To address the various challenges of environmental pollution, both the steel industry and the construction sector are working together to promote the efficient use and recycling of steel materials through technological innovation and material development.
Achieving carbon emission reduction in the steel industry can be pursued through multiple avenues. The development of a circular economy, which enhances the recycling and utilization of scrap steel and thereby reduces the demand for new iron ore, constitutes an effective means of carbon emission reduction (Companero et al., 2021; Wuebbeke and Heroth, 2014). Driven by the momentum of scrap steel depreciation, there is a projected significant increase in the availability of scrap steel resources and the proportion of scrap steel used in the future (Xin et al., 2023). The construction sector generates a substantial amount of waste steel materials during demolition, maintenance, and construction processes. The recycling and utilization of this waste steel not only conserve iron ore resources and mitigate environmental degradation but also significantly reduce energy consumption and greenhouse gas emissions. Moreover, processed construction scrap steel can be repurposed as recycled steel materials in various sectors, including construction, transportation, and mechanical manufacturing, offering high recycling value. Currently, the scrap steel recycling and processing industry primarily employs advanced sorting technologies, sophisticated shredding techniques, and environmentally friendly treatment methods to achieve carbon emission reductions during the scrap steel processing. However, the application and promotion of these technologies face challenges related to technological maturity, economic costs, policy support, and market acceptance. A well-considered policy can offer substantial support for government regulation (Xu et al., 2024a). Consequently, boosting investment in technological innovation and enhancing policy incentives play a pivotal role in fostering technological innovation and mitigating carbon emissions across the entire iron and steel industry (Rissman, J. et al., 2020).
Carbon emission reduction in the steel industry involves numerous stakeholders, including downstream steel enterprises, scrap steel recyclers, and the government. Companies play a central role in the development of a low-carbon economy (Chang and Lo, 2022), and to encourage active corporate participation in low-carbon transitions, governmental policy support and stringent environmental regulation are essential. Governments worldwide have been implementing regulations and policies to mitigate climate change, aimed at fostering technological innovation for sustainable development (Dhayal et al., 2023). However, the enforcement of environmental policies often incurs substantial costs. To reduce the expenditure on environmental protection and management, governments increasingly rely on regulatory measures such as carbon taxes and subsidies to promote the widespread adoption of low-carbon technologies. To mitigate the environmental effects of pollutants, the government could enforce stringent regulations (Xu et al., 2024b). Some scholars argue that carbon taxes and subsidies positively influence manufacturers’ adoption of low-carbon strategies (Chen et al., 2022; Yang and Nie, 2022). Additionally, a well-constructed regulatory framework can effectively stimulate innovation and enhance productivity (Ahmed, 2020). Furthermore, subsidies for low-carbon consumption by the government can stimulate market demand, thereby driving green production on the supply side (Ma et al., 2021). The incentives for green product consumption implemented by governments, coupled with consumers’ growing positive attitudes towards these products, form the main driving force behind the growth of green product consumption (Hong et al., 2021). From the perspective of guiding social behavior, these subsidy policies not only offer economic rewards but, more importantly, they motivate economic actors to take proactive actions, thus promoting a harmonious coexistence between sustained economic growth and ecological and social wellbeing.
Currently, research on carbon emission reduction in the steel industry is quite extensive; however, most studies have focused on individual aspects, with few considering the integrated approach of production, consumption, and recycling. There is a scarcity of in-depth exploration into the interplay of strategies among different participants and the underlying mechanisms. This study zeroes in on four key players: steel manufacturers, construction companies, scrap steel recyclers, and the government. It examines the behavioral patterns and interactions among these parties under the incentive of government subsidies, aiming to provide practical guidance for technological innovation and carbon emission reduction in the steel industry. Nevertheless, achieving the optimal strategy selection and an ideal state for all parties involves a prolonged process of adjustment. By employing an evolutionary game model, this study aims to reveal the optimal strategies that each party should adopt to maximize the overall benefit of carbon emission reduction in the steel industry, thereby achieving a win-win outcome for technological advancement and environmental protection.
Therefore, this paper proposes a four-party evolutionary game model to investigate the following issues: (1) What are the strategic choices of stakeholders under the current state of insufficient technological innovation incentives in the steel industry, specifically in response to government subsidies for technological innovation and consumer subsidies? (2) What are the main factors influencing technological innovation in the steel industry? (3) How do the strategies of the parties in the game system influence each other? By addressing these questions, this paper aims to offer more flexible policy recommendations for the steel industry to achieve carbon emission reduction. The establishment of a multi-party evolutionary game model can reveal the true reactions of each participant in greater detail, better balance the interests of all parties, and on this basis, the paper attempts to provide practical and feasible suggestions for all stakeholders to promote the low-carbon development of the entire steel production, consumption, and recycling system. Additionally, this paper expands the application of evolutionary game theory by selecting four game entities to construct the model, providing a new perspective for future research on carbon emission issues in the steel industry using evolutionary game theory.
The remainder of this paper is structured as follows: In Chapter 2, a review and in-depth analysis of the relevant literature are conducted to demonstrate the innovation and practicality of this study. In Chapter 3, the research problem of this paper is described, and model assumptions are proposed. In Chapter 4, a stability analysis of the evolutionary game model is conducted, deriving the equilibrium conditions for system stability. Chapter 5 involves the valuation of the model and a sensitivity analysis to study the evolutionary trends of the parties in the system. In Chapter 6, the research findings are discussed, and policy implications for all stakeholders are presented. The final chapter summarizes the entire paper.
2 LITERATURE REVIEW
The structure of this chapter is as follows: The initial section offers a comprehensive overview of the literature concerning the impact of technological innovation on carbon emissions, emphasizing the key role of innovation in steering the steel industry towards sustainability. The second section scrutinizes the multifaceted roles of stakeholders, including steel manufacturers, consumers, and policymakers, in the collective endeavor to reduce carbon emissions. The third section delves into the application of game-theoretic models, particularly evolutionary game theory, to analyze strategic interactions among stakeholders concerning carbon emissions. This section also discusses the novelty and potential contributions of the chosen model to the existing body of research.
2.1 Impact of technological innovation
The persistent global climate crisis has driven numerous countries to establish a comprehensive set of targets aimed at tackling and diminishing carbon emissions and a variety of other greenhouse gases. These targets can be effectively met by embracing and implementing technological innovations. Within the industrial sector, in particular, the role of technological innovation stands out as a potent force in reducing carbon emissions (Xu W. et al., 2023). With the ongoing expansion of the global economy and the heightened consciousness regarding environmental conservation, low-carbon manufacturing has progressively emerged as the prevailing trend in the evolution of new industries. It is widely acknowledged as a crucial pathway to attaining sustainable economic growth (Xiao et al., 2024). Low-carbon manufacturing is significantly driven by advancements in green technologies, which help to reduce carbon emissions during the production process by improving energy efficiency and adopting clean energy sources (Li et al., 2023). To address climate change and promote the transformation of the economy towards low-carbon development, it is crucial to encourage enterprises to adopt innovations in green and low-carbon technologies. Moreover, technological innovation must be achieved through appropriate low-carbon regulation to realize energy saving and emission reduction. The green technological innovation of enterprises is to some extent constrained by low-carbon regulatory policies, while also stimulating the role of these policies in enhancing green efficiency (Ding and Hu, 2022). An economic development model centered on green technological innovation is a key pathway to achieving the low-carbon transformation of the economy (Xu Y. et al., 2023). However, competition among local governments may suppress the positive effects of economic low-carbon transformation and green technological innovation. To foster innovation and application of low-carbon technologies, some scholars have proposed that, due to the limitations of research and development capabilities within a single industry, collaborative innovation involving industry, academia, research, and government (IURG) has become the most feasible solution for low-carbon technological innovation (Cui et al., 2020). Furthermore, several scholars have elucidated the intricate web of causality linking Foreign Direct Investment (FDI), green innovation, and CO2 emissions. Their findings offer crucial policy insights, guiding countries and regions on how to attain environmental sustainability through the lens of green innovation (Ali et al., 2022).
The low-carbon development of China’s steel industry can be achieved through four key actions: improving energy efficiency, shifting towards scrap steel or electric arc furnace routes, advancing material efficiency strategies, and deploying incentive-based innovative technologies (Lin et al., 2021). Low-carbon innovative technologies and revolutionary innovations are crucial for carbon emission reduction, significantly impacting low-carbon development by reducing CO2 emissions. Consequently, the government can stimulate the development of low-carbon technologies by formulating new policies and regulations related to the carbon market, thereby timely influencing the relationship between the carbon market and its participants (Sun et al., 2020). Although technological innovation is an effective way to address carbon emissions, different types of technological innovation may lead to varying environmental performance, and low-carbon technological innovation is key to achieving green production (Shi et al., 2021). Some scholars have found that energy consumption plays a significant mediating role in the impact of technological innovation on carbon emission reduction. The influence of technological innovation on carbon emissions is constrained by the level of energy consumption; low energy consumption significantly promotes the reduction of carbon emissions through technological innovation. However, once energy consumption exceeds a critical level, the facilitative effect of technological innovation on carbon emission reduction can turn into a suppressive one (Zhang et al., 2020). Additionally, other scholars have pointed out that digital technologies indirectly affect carbon emissions by influencing industry structure, technological innovation, and tax structure (Zeng and Yang, 2023; Lin and Ma, 2022).
The escalation of carbon emissions has accelerated low-carbon innovation in cities, with the type of low-carbon innovation exerting varying effects on its outcomes. Environmental awareness acts as an intermediary channel through which carbon emissions influence low-carbon innovation. With the assistance of media, government, and businesses, the growing volume of carbon emissions has heightened public environmental consciousness, altered consumer behavior, and spurred enterprises to quicken their pace of low-carbon innovation (Pan et al., 2021). Some scholars have also noted that the application of artificial intelligence technology has a positive impact on carbon reduction, where green technological innovation, green management innovation, and green product innovation play a moderating role, and corporate green innovation strengthens the impact of artificial intelligence on carbon reduction (Chen and Jin, 2023). Furthermore, government environmental regulation can effectively enhance corporate green innovation, with environmental investment serving as an intermediary. However, the development of environmental regulation in China is relatively lagging, and its positive incentive role remains to be further leveraged (Chen et al., 2023).
In summary, technological innovation plays a crucial role in promoting low-carbon manufacturing and sustainable economic development. Measures such as green technological innovation, inter-departmental collaboration, policy support, and raising environmental awareness can effectively facilitate industrial carbon reduction and achieve a green economic transition. How to achieve the low-carbon transformation of the socio-economic system through technological innovation is an important practical issue. At the same time, considering regional heterogeneity, governments need to formulate and implement region-specific technological innovation strategies for a certain period to promote global carbon reduction efforts.
2.2 Role of stakeholders in carbon emission reduction
The steel industry, as one of the primary sources of carbon emissions, is increasingly important in achieving carbon reduction targets (Wang and Lin, 2016). Steel manufacturers, as the main producers of steel products, directly impact the carbon footprint of the entire steel industry. It is estimated that the CO2 emission intensity of the steel industry is 2.33 tons (CO2/ton), with the production and manufacturing phase being the primary source of CO2 emissions, accounting for 89.84% of the total emissions in the steel’s entire lifecycle (Song et al., 2025). Under the current strategic goals of peak carbon and carbon neutrality, actively promoting energy-saving and low-carbon technologies and increasing the ratio of scrap steel to steelmaking aligns with the requirements of high-quality economic development. In traditional steel production processes, especially the blast furnace ironmaking method, high energy consumption and carbon emissions are significant (He et al., 2017). Therefore, manufacturers have tremendous potential and responsibility in technological innovation and optimization of the production process (Fu et al., 2014). For instance, they can optimize production processes to reduce the energy consumption and carbon emissions per unit of steel products by increasing the blast furnace pellet ratio and the electric furnace scrap rate (Na et al., 2024). They can also adopt advanced steelmaking technologies, utilizing green, pollution-free hydrogen energy, and using hydrogen plasma to reduce iron ore, thereby reducing CO2 emissions at the source (Gajdzik et al., 2023). In addition, steel manufacturers can employ technologies such as Direct Reduced Iron (DRI) to achieve carbon reduction, thus producing low-carbon, green steel products (Nduagu et al., 2022; Sharifi and Barati, 2010).
Construction companies, as major consumers of steel products (Kanyilmaz et al., 2023), have a profound impact on the carbon reduction of the entire industry through their material selection preferences. In the construction industry, material choices not only affect the quality and cost of buildings but also directly relate to their environmental impact, particularly carbon emissions (Xu et al., 2020). With the growing global concern over climate change, an increasing number of construction companies are focusing on steel manufacturers that employ low-carbon production technologies to reduce the carbon footprint of their construction projects (Chen et al., 2018). Initially, construction companies often consider suppliers’ environmental and carbon reduction policies when selecting material suppliers. Steel manufacturers committed to reducing carbon emissions typically adopt advanced production technologies and eco-friendly processes to decrease energy consumption and carbon emissions during production. These companies often highlight their environmental philosophies and carbon reduction measures in their promotional materials to attract construction companies with stronger environmental awareness. Subsequently, the construction industry is also actively exploring how to reduce steel material waste through technical means, thereby reducing carbon emissions (Nadoushani et al., 2018). Steel waste during construction is a serious issue in the construction industry, which not only increases project costs but also adversely affects the environment. Therefore, construction companies should not only focus on optimizing construction technology to reduce steel waste but also establish connections with recyclers to promote the recycling and reuse of scrap steel, as construction scrap steel indeed has significant potential value and environmental benefits (Czarnecki and Rudner, 2023).
Scrap steel recyclers play a crucial role in promoting the circular economy of the steel industry (Hu et al., 2020). In the production and consumption processes of steel, scrap steel, as a renewable resource, significantly contributes to reducing reliance on raw iron ore, saving energy, and lowering environmental pollution (Xuan and Yue, 2017). It is estimated that using scrap steel as raw material instead of iron ore to produce new steel can save a substantial amount of energy and reduce carbon emissions. Recycling 1 kg of scrap steel can reduce 1.5 kg of CO2 equivalent emissions, 13.4 MJ of primary energy, and 1.4 kg of iron ore (Broadbent, 2016). Moreover, scrap steel recyclers improve the quality and efficiency of scrap steel recycling by employing advanced sorting and processing technologies, including magnetic separation, crushing, cleaning, and packaging technologies (Rem et al., 2012; Ferreira Neto et al., 2021), ensuring the purity and consistency of scrap steel materials to meet the requirements of steelmaking processes. However, the efficiency of scrap steel recycling and utilization is influenced by various factors. For example, the construction of recycling channels (Berlin et al., 2022; Gu et al., 2021), scrap steel classification standards (Gao et al., 2023; Xu D. et al., 2023), market demand (Watari et al., 2023), and policy support all affect the recycling and utilization of scrap steel. Therefore, the government and the industry need to work together to improve the recycling rate of scrap steel through reasonable policies, financial support, strengthening technological research and development, and enhancing environmental awareness.
To promote the achievement of carbon reduction targets, the government can formulate clear carbon reduction targets (Bai et al., 2023), provide tax incentives (Tang et al., 2021), and R&D subsidies to encourage enterprises to reduce pollution and carbon emissions (Qi et al., 2023). For consumers, green consumption subsidies and green product certification are also effective ways to motivate green consumption behavior (Yang et al., 2022). Government regulation of firms, facilitated by the strategic implementation of subsidies, effectively enhances economic efficiency while simultaneously promoting environmental sustainability (Chen et al., 2024). Carbon reduction in the steel industry is a systematic project involving multiple industries and links. Steel manufacturers, construction companies, and scrap steel recyclers must work together to achieve carbon reduction through technological innovation and optimized management. At the same time, government policy support and the improvement of the market mechanism are also indispensable. Therefore, steel manufacturers, construction companies, and scrap steel recyclers each play different but interconnected roles, jointly promoting the development of the entire industry towards a lower-carbon and more sustainable direction. It is essential for industry players to leverage innovation and foster collaboration in order to mitigate risks and enhance their own development by capitalizing on the opportunities presented by the emerging market trends (Xiao and Xu, 2024). This paper will analyze these roles in detail and discuss how to more effectively achieve carbon reduction in the steel industry under government subsidies.
2.3 Applications of game theory
Game theory studies the decision-making processes of participants whose actions are interconnected and mutually influential, an analytical framework that has been widely applied across various fields (Eissa et al., 2021; Kaplinski and Tamosaitiene, 2010; Moretti and Vasilakos, 2010). Evolutionary game theory, a further development of game theory, is utilized to analyze and predict the strategic choices and evolutionary processes of individuals in long-term interactions (Estalaki et al., 2015).
Many scholars have conducted extensive research on carbon emission issues across various fields using game theory. To effectively understand the collaborative evolution mechanism among three stakeholders in carbon trading—government, emission reduction enterprises, and carbon control enterprises—Hu and Wang (2023) analyzed the selection mechanism of carbon trading participants’ game strategies through repeated dynamic equations and discussed the main factors affecting the evolution and stable outcomes of carbon trading through scenario simulation. Liu et al. (2022) constructed an evolutionary game model for local government cooperation in emission reduction, finding that the likelihood of the government choosing a cooperative emission reduction strategy increases at different rates based on the benefits and costs of cooperation. Additionally, carbon tax policies affect the likelihood of local governments choosing cooperative emission reduction, with different carbon tax scales having varying impacts on their willingness to cooperate. Cui et al. (2022) built a trilateral game model between enterprises and the government, concluding that carbon prices, additional green technology innovation benefits, and innovation incentives significantly impact corporate strategic choices, with different strategic selections made by enterprises with varying innovation input-output ratios under the same conditions. Li et al. (2022) simulated the evolutionary game path of government and corporate carbon reduction under the “Dual carbon” goals using carbon market transaction data, finding that increasing financial subsidies can improve the probability of high-pollution enterprises reducing carbon emissions, and intensifying carbon emission penalties helps high-pollution enterprises actively reduce emissions. Zhao and Liu (2019) established an evolutionary game framework between the government and enterprises to study the adoption of carbon capture and storage (CCS) technology from a micro perspective, which is significant for policy support, low-carbon power generation revenue, and reducing the cost of CCS adoption for power companies. To encourage enterprises to reduce carbon emissions, Li et al. (2024) constructed a three-party evolutionary game model to explore the interactive behavior between the government, enterprises, and customers, concluding that to encourage enterprises to reduce carbon emissions, it is necessary to guide customers to purchase low-carbon products. Moreover, customers are more sensitive to low-carbon consumption subsidies than to consumption taxes. Xue et al. (2022) studied the dynamic decision-making process of three stakeholders—manufacturing enterprises, government regulatory departments, and media investigation institutions—regarding stable strategies based on evolutionary game theory. The main factors affecting the stable strategies of the three stakeholders were identified as income, subsidies, costs, and losses.
In the steel industry, Liu et al. (2023) established a three-party evolutionary game model between steel enterprises, scrap steel enterprises, and the government and conducted simulation analysis, deriving three evolutionary stable strategies for the formation of scrap steel bases and determining that the optimal strategy is with the participation of steel and scrap steel enterprises and minimal government intervention. This provides unique insights and theoretical support for promoting the development of the scrap steel industry and helping to achieve peak carbon and carbon neutrality strategies. Duan et al. (2017) constructed a two-stage dynamic game model for China’s steel industry, incorporating factors such as carbon tax collection, product subsidies, and carbon capture and storage (CCS) into the emission reduction mechanism, studying the overall emission reduction effects and economic impact of the steel industry. Li et al. (2022) constructed a repeated dynamic game model that includes carbon trading policies and other mixed emission reduction policies, proposing that enterprises should comprehensively consider factors such as emission reduction policies, output adjustment policies, and carbon trading benchmarks to ensure that enterprises and the entire market do not fall into an unbalanced state. Zhang and Zhang (2022) established an evolutionary game model between steel enterprises under the government subsidy mechanism and introduced a carbon quota trading mechanism to determine the optimal collaborative atmospheric pollution management strategy between large and small steel enterprises under government subsidy policies. It was found that government subsidies and the input-output ratio are crucial for enterprises to cooperate in atmospheric pollution control investment, providing unique insights and theoretical support for steel enterprises to achieve carbon reduction.
According to existing research, although game theory has been widely used to analyze the impact of carbon emission policies in the steel industry, these studies have mostly focused on the interactions between the government and steel manufacturers, which are bilateral or trilateral. However, the steel industry is a complex system with multiple stakeholders, and current government subsidy policies tend to favor manufacturers and consumers, neglecting scrap steel recyclers who have significant potential for carbon reduction. This study expands the perspective to the entire steel industry, incorporating steel manufacturers, construction companies, scrap steel recyclers, and the government into an integrated system, to comprehensively analyze the coordinated dynamics and evolutionary trends of all parties in carbon reduction efforts. Through this multidimensional analytical framework, this study aims to reveal how different stakeholders interact, thereby providing a deeper insight into the green transformation of the steel industry. In the research of this paper, traditional game theory is not applicable because it is based on the assumption that participants have complete rationality and can obtain complete information. Obviously, such assumptions are unrealistic for the participants in this study. Enterprises and governments cannot fully grasp each other’s needs and specific situations. In contrast, Evolutionary Game Theory (EGT) provides a more realistic analytical framework, assuming that participants have limited rationality and are in an environment of asymmetric information (Wang et al., 2021). This theory is closer to reality and can better explain and predict the participants’ strategic choices and behavioral evolution under incomplete information.
3 PROBLEM DESCRIPTION AND MODEL ASSUMPTIONS
Through the introduction in Chapter 1 and the literature review in Chapter 2, we have gained an in-depth understanding of the current state of the steel industry and the issues related to carbon reduction. To better construct the model and draw innovative conclusions, the following sections will delve into the core issues of this study and provide a detailed introduction to the model’s construction and the basis of its assumptions. This process will offer us a more comprehensive analytical framework to reveal the new mechanisms of carbon reduction technology innovation in the steel industry. The assumptions are as follows.
	(1) This paper selects steelmaker, construction conpany, scrap recycler, and the government as the game players. The government, as an important player in the game, aims to promote technological innovation in steelmaker and scrap recycler through technological innovation subsidies; at the same time, it uses consumption subsidies to encourage green consumption by construction company. On the basis of maximizing the interests of all parties, the goal is to achieve carbon reduction targets in the production, consumption, and recycling processes of steel, promote the low-carbon transformation of the entire steel industry, and thus improve the level of sustainable environmental development. The strategies of the four parties are: the probability of steelmaker engaging in technological innovation is [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.], and the probability of not doing so is [image: Please upload the image or provide the URL so I can help generate the appropriate alt text.], [image: It seems there is an issue with the image upload. Please try uploading the image again or provide a URL. If you have a caption or additional context, feel free to include that as well.]; the probability of construction company choosing green consumption is [image: Please upload the image or provide a URL, and I'll help you generate the alternate text.], and the probability of choosing traditional consumption is [image: It looks like you might have tried to upload an image or provided a description related to an image. To generate alternate text, please upload the image file or provide a URL to the image. If it's related to an equation or concept, please provide more context.], [image: It seems like there was an error in uploading the image. Please try uploading the image again or provide a URL or caption for additional context.]; the probability of scrap recycler engaging in technological innovation is [image: Please upload an image or provide a URL for me to generate the alt text.], and the probability of not doing so is [image: It seems there might be an error in your request. Please upload an image or provide a URL, and I will generate the alt text for you.], [image: Please upload the image or provide a URL for me to generate the alternate text.]; the probability of the government implementing technological innovation subsidies is [image: Please upload the image you'd like me to generate alt text for.], and the probability of implementing consumption subsidies is [image: It seems like there was an error in providing the image. Please upload the image file or provide a URL, and I will be happy to generate the alternate text for you.], [image: It seems there might have been a mistake with the image upload. Could you please try uploading the image again or provide the URL? Feel free to add a caption for additional context.]. All four entities are assumed to be boundedly rational and continuously adjust their strategies over time to maximize their own interests.
	(2) Assumptions for the strategies of steelmaker. Steelmaker that engage in technological innovation to produce green products will be favored by construction enterprises with stronger environmental awareness, thereby obtaining an additional market revenue [image: Please upload the image or provide a URL so that I can generate the alternate text for you.]. At the same time, steel manufacturers after technological innovation can gain benefits [image: Please upload the image or provide a URL for me to generate the alternate text.] from environmental regulation (Wu et al., 2023). If steel manufacturers do not engage in technological innovation, they will also lose a certain amount of opportunity cost [image: To generate alt text, please upload the image or provide a URL to it.]. In addition, under the technological innovation production model of steel manufacturers, the production cost will increase significantly. This paper sets the unit production cost after technological innovation as [image: Please upload the image or provide a URL, and I will help you generate the alternate text.], and the original production cost as [image: Please upload the image or provide the URL so I can generate the alternate text for you.], with [image: I'm sorry, it seems like there was an error in uploading the image. Please try uploading it again, or if you're pasting a URL, ensure it's correct. You can also add a caption for more context.]. Considering that technological innovation by steel manufacturers will cause an increase in product prices, the unit price of green products is set as [image: It seems like there might be an error in your request. If you have an image you want me to describe, please upload it or provide the correct URL or description.], and the unit price of traditional products as [image: Please upload the image you want me to generate alternate text for, and I'll be happy to help!], with [image: Equation displaying \( P_t > P_q \), indicating that the pressure at time \( t \) is greater than the pressure at time \( q \).]. When steel manufacturers engage in technological innovation, if the government provides technological innovation subsidies, then the unit price of green products will be the same as that of traditional products, [image: It seems there was an issue with the image upload. Please try uploading the image again, or provide a URL if it's hosted online. You can also add a caption for more context.]. If the government does not subsidize the steel manufacturers, then the unit price of green products will be [image: Please upload the image or provide a URL to it, and I will help generate the alternate text. If you have any additional context or details, feel free to include them.].
	(3) Assumptions for the strategies of construction company. When construction enterprises choose green products, they will receive a certain carbon benefit [image: Please upload the image so that I can generate the appropriate alt text for you.]. During the production process of green products, carbon reduction value is achieved, while traditional products only achieve use value and cannot realize carbon reduction (Muslemani et al., 2021). However, whether it is green or traditional products, construction enterprises can earn profits [image: It seems there's no image attached. Please upload the image or provide a URL for me to generate alternate text.] by providing scrapped products to scrap steel recyclers. If construction enterprises want to purchase traditional products, but manufacturers only produce green products, it will lead to product unsellability. Consumers will give up purchasing due to the lack of suitable products, and scrap steel recyclers will not need to recycle. As a result, steel manufacturers will not profit from product sales, and the costs and revenues of construction enterprises and scrap steel recyclers will both be [image: It seems like there was an error with your request. If you have an image to upload, please try again. You can add a caption to provide additional context if needed.].
	(4) Assumptions for the strategies of scrap recycler. Scrap steel recyclers engaging in technological innovation will obtain certain carbon benefits [image: Please upload the image you'd like me to generate alt text for, and I’ll be happy to help!], but technological innovation will increase processing costs. This paper sets the processing cost of scrap steel recyclers after technological innovation as [image: It seems there was an error with the image or text input. Please upload the image or provide a URL, and I can generate the appropriate alternate text for it.], and the original processing cost as [image: Please upload the image or provide a URL so I can generate the alt text for you.], with [image: It seems there is an issue with image upload or link provision. Please upload the image directly or provide a URL, along with any caption if needed.]. Because scrap steel recyclers engaging in technological innovation often have greater benefits compared to not engaging in innovation, the price of scrap steel provided to steel manufacturers will also be higher than usual. Therefore, the prices of scrap steel provided to steel manufacturers before and after technological innovation by scrap steel recyclers are set as [image: It seems there is an issue with uploading the image. Please try uploading the image again or provide a URL. If there is specific information or context for the image you have, feel free to include that as well.] and [image: It seems there's an error with the image upload. Please ensure you attach an image file or provide a URL. Let me know if you need guidance on how to do this!], respectively, with [image: Mathematical expression depicting the inequality \( R_h > R_p \).]. The cost of scrap steel recyclers to recover scrap steel from construction enterprises is [image: It seems like there was an issue with uploading the image. Please try uploading the image again, and I will be happy to help with the alt text.], which is consistent with the revenue from construction enterprises providing scrap steel.
	(5) Assumptions for the strategies of the government. The government incentivizes firms to curb emissions by allocating rational green funds, thereby prompting them to lower their emissions (Chen and Li, 2023). In the model, the government adopts two different forms of subsidies, namely, technological innovation subsidies or consumption subsidies. The government should bear the corresponding costs [image: It seems like there was an error in uploading the image. Please try uploading the image again, and I will help generate the alternate text for you.] in the process of regulatory management of the subsidy system. When the government provides consumption subsidies to all parties, steelmaker, construction company, and scrap recycler will have a deeper understanding of the government’s work, thereby improving the government’s credibility [image: Please upload the image you'd like me to generate alt text for.]. This paper sets the government’s consumption subsidies to steel manufacturers, construction enterprises, and scrap steel recyclers as [image: Please provide the image, and I will generate the alternate text for you. You can upload the image file directly here.], [image: It seems there might be an issue with the image upload. Please try uploading the image again or provide a URL link to it. Additionally, you can include a caption for more context.], and [image: It seems there might have been an error in processing the request. If you are trying to describe an image, please upload it or provide a URL. You can also add a caption for additional context.], respectively, and the government’s technological innovation subsidies to steel manufacturers and scrap steel recyclers as [image: If you can provide an image or a URL, I can help create alt text for it. Alternatively, you can describe the image here for assistance.] and [image: It seems there was an issue uploading the image. Please try again or provide a description of the image.], respectively.

In summary, the game model relationship constructed in this paper is shown in Figure 1, the relevant model parameters are shown in Table 1, and the system’s four-party game payoff matrix is shown in Table 2.
[image: Flowchart illustrating the interaction between government, construction company, steelmaker, and scrap recycler. Arrows represent subsidies, costs, and gains such as consumer subsidies, carbon gains, technological innovations, and market gains. Key elements include government credibility, product prices, and technological and non-technical innovations.]FIGURE 1 | Evolutionary game modeling logics.
TABLE 1 | Model parameter setting.
[image: Nomenclature table for technological innovation in steelmaking, listing abbreviations: \( S_r \) (market gains for steelmaker), \( C_1, C_0 \) (production costs), \( T \) (lost opportunity costs), \( S_c \) (carbon benefits), \( P_t, P_q \) (product prices), \( w_d \) (carbon gains from construction), \( U \) (scrap revenue), \( R_h, R_p \) (scrap recycler revenues), \( C_{r2}, C_{r1} \) (processing costs), \( S \) (carbon gains for recycler), \( R \) (government credibility), \( G_p, G_d, E_d, G_z, E_s \) (government subsidies costs), and \( G \) (regulatory costs).]TABLE 2 | Payment matrix for the four-party game.
[image: A decision matrix showing the strategy selection across different sectors: steelmaker, construction company, and scrap recyclers. The columns are categorized under strategy aspects such as technical and non-technical innovation, green and traditional consumption, and subsidies by the government. Each cell contains a combination of variables and equations representing potential outcomes or strategies pertaining to each sector. The matrix visually organizes these strategic interactions to elaborate various industry decisions and their implications.]4 EVOLUTIONARY GAME ANALYSIS
Based on the replicator dynamics equations of steelmaker, construction company, scrap recycler, and the government, a series of solutions for the replicator dynamics equations of each party are derived, and the stability of the four-party evolutionary game is analyzed.
4.1 Stability analysis of strategies for steelmaker
Steelmakers’ expected revenues under the innovative technological production model and the traditional production model are denoted as [image: Please upload the image you would like me to generate alternate text for.] and [image: Please upload the image or provide a URL so I can help generate the alt text for it.], respectively, with the average expected revenue for both being [image: Please upload the image, and I will generate the alternate text for you.].
[image: Mathematical formula with three equations inside curly braces. The first equation: V11 equals S0 minus C1 plus S1 plus mGY plus γE1 plus γP1 minus γYR1 minus ymE2 plus ymPE2 minus ymP1. The second equation: V12 equals PE2 minus RP2 minus C0 minus T minus γP2 plus γYR2 minus zRH plus zR0 plus yzRH minus yzRP. The third equation: V1 equals xV11 plus one minus x times V12, noted as equation (1).]
From Equation 1, we can derive the replicator dynamics equation for steel manufacturers, which is:
[image: The equation shows \( F(x) = \frac{dx}{dt} = x(V_{11} - V_1) = x(1-x)(V_{11} - V_{12}) \). It continues as \( = x(1-x)(R_p - P_q + S_c - C_1 + C_0 + S_r + T + mG_p + yE_s + yp_q + yp_t - 2yzR_p + zR_h - zR_p - ymE_s + ymP_q - ymP_t - 2yzR_h + 2yzR_p) \).]
Taking the first derivative of [image: It seems you've entered a mathematical expression rather than an image. Please upload the image file or provide a URL, and I can help generate the alt text for it.], then:
[image: Mathematical formula for \( F'(x) \) expressed as the derivative of \( F(x) \) with respect to \( x \). It involves \( (1 - 2x)(V_{11} - V_{12}) \) and expands to include terms with \( R, P, C, S, T, m, G, y, E, z, \) and their derivatives, along with multiple variables \( P_q, S_c, \) and \( C_i \).]
Based on the stability theorem of differential equations, the probability that the strategy of steelmaker is in a stable state must satisfy the following formula: [image: Image shows the mathematical equation \( F(x) = 0 \), representing a function \( F \) of \( x \) set equal to zero.] and [image: The expression \( F'(x) < 0 \) indicates that the derivative of the function \( F(x) \) is negative, suggesting the function is decreasing at \( x \).].
Proof 1. Let [image: Mathematical equation: \( G(y) = (R_p - P_q + S_c - C_1 + C_0 + S_r + T + mG_p + yE_s + yP_q + yP_t - 2yR_p + zR_h - zR_p - ymE_s + ymP_q - ymP_t - 2yzR_h + 2yzR_p) \).], and then find the first-order derivatives of [image: It appears that you've included a mathematical expression rather than an image. If you meant to upload a picture, please try again. If you need help with something else, feel free to ask!] to get [image: Mathematical equation showing \( G'(y) = E_s + P_q + P_t - 2R_p - mE_s + mP_q - mP_t - 2zR_h + 2zR_b \).], it is clear that [image: Equation depicting the derivative of function G with respect to y, denoted as G prime of y, is greater than zero, indicating positive growth.], so [image: Please upload the image you would like me to generate the alt text for.] is a monotonically increasing function with respect to [image: Please upload the image or provide a URL so I can generate the alt text for you.]. [image: I'm unable to generate the alt text without an image. Please provide the image by uploading it or sharing a URL.] gives [image: Mathematical equation with y-star equals negative bracket R sub p minus P sub q plus S sub c minus C sub 1 plus C sub zero plus S sub r plus T plus m G sub p plus z R sub h minus z R sub p bracket divided by Q.][image: Mathematical expression showing \( E_s + P_q + P_t - 2R_p - mE_s + mP_q - mP_t - 2zR_h + 2zR_p \).]. If [image: The equation "y < y*" is displayed, indicating that the variable \( y \) is less than \( y^* \).], then it can be inferred that [image: The mathematical expression "G of y is less than zero" is displayed.], which leads to [image: Mathematical expression showing the function F of x evaluated at x equals zero is equal to zero.] and [image: Mathematical expression showing the function \( F(x) \) evaluated at \( x = 0 \) is less than zero.], which suggests that [image: It seems like there is no image provided. Please upload the image or provide a URL for it, and I will help generate the alternate text.] is a stable strategy point for the evolution of steel manufacturers. If [image: Equation showing "y" is greater than "y" with an asterisk, indicating strict inequality.], then it can be inferred that [image: It seems you've included a mathematical expression. Please upload an image if you want an alt text for it, or explain more about the image you'd like described.], which leads to [image: Mathematical expression showing the function \( F(x) \) evaluated at \( x = 1 \) equals 0.] and [image: Mathematical expression showing the function \( F(x) \) evaluated at \( x = 1 \), with the condition that the result is less than zero.], which indicates that [image: It seems you've referenced a mathematical equation. To help you generate the alternate text for an image, please upload the image or provide a URL.] is a stable strategy point for the evolution of the steelmaker. Otherwise, i.e., [image: Mathematical notation showing the equation \( y = y^* \), indicating that the variable \( y \) is equal to some optimal or specific value \( y^* \).], then [image: The image contains the mathematical equation "G(y) = 0".] and thus [image: The equation \( F(x) = F'(x) = 0 \) is shown, indicating a point where both the function and its derivative are zero.]. Therefore, the stable strategy for the evolution of the steelmaker cannot be determined.
Proof 2. [image: Mathematical equation showing variables for calculating \( y^* \). It involves operations including subtraction, addition, and division, using variables like \( R_p \), \( P_q \), \( S_c \), \( C_1 \), \( C_0 \), \( S_r \), \( T \), \( mG_p \), \( zR_h \), and \( zR_p \).][image: A mathematical expression featuring various summation terms, coefficients, and variables including \(E_s\), \(P_q\), \(P_t\), \(R_p\), and others, arranged in a complex equation with addition and subtraction operations.], and the first-order partial derivatives of the variables of interest with respect to [image: Please upload the image or provide a URL so I can generate the appropriate alt text for it.] give, [image: Partial derivative of y-star with respect to z is less than zero.], [image: Partial derivative equation showing the derivative of y-star with respect to R-subscript-p is less than zero.], [image: The mathematical expression shows the partial derivative of y-star with respect to p-sub-q is less than zero.], [image: Partial derivative of y-star with respect to P-sub-t is greater than zero.], [image: The mathematical expression shows a partial derivative of \( y^* \) with respect to \( s_c \), followed by a greater than symbol and zero.], [image: Partial derivative of y star with respect to c subscript one is greater than zero.], [image: Partial derivative of y-star with respect to c-subscript-zero is less than zero.], [image: Partial derivative of \( y^* \) with respect to \( s_r \) is greater than zero.], [image: Partial derivative of y-star with respect to T is less than zero.], [image: A partial derivative expression showing the derivative of y-star with respect to G subscript p is greater than zero.], [image: Partial derivative of \( y^* \) with respect to \( R_h \) is less than zero.], [image: Partial derivative of \( y^* \) with respect to \( E_s \) is greater than zero.]. Thus [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is positively correlated with [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL so I can help generate the alt text for you.], [image: Please upload the image you would like me to generate the alternate text for.], [image: Please upload the image or provide its URL so I can help generate the alternate text for it.], [image: Please upload the image or provide a URL so I can generate the alternate text for you.], [image: It seems like there was an error or the image was not provided. Please try uploading the image again, or provide additional context if it is text-based.], [image: It seems like there is no image provided. Please upload the image or provide a URL, and I will generate the alternate text for it.] and negatively correlated with [image: It seems there might have been an issue with the image upload. Please try uploading the image again or provide a URL. If you would like, you can also add a caption for additional context.], [image: It seems like you've entered a formula or mathematical symbol instead of providing an image. To generate alt text, please upload the image or provide a URL to it. You can also add a caption for more context.], [image: It seems there's no image attached. Please upload the image you want to generate alternate text for.], [image: It seems there was an error in your request. Please upload the image or provide a URL to generate the alternate text.], [image: It seems there was an error with the image upload. Please try uploading the image again, and I'll help create the alt text for it.], [image: Please upload the image or provide a URL to generate the alternate text.].
	(1) From Proof 1, it can be deduced that as the likelihood of green consumption by construction companies increases, it will lead steel manufacturers to transition from traditional production models to technologically innovative production models. Therefore, for the government, it is imperative to implement relevant policies and incentives to encourage construction companies to purchase green products, thereby promoting the low-carbon transition of steel manufacturers. In addition, the main factors influencing the strategic choices of steel manufacturers include product prices, carbon benefits from technological innovation, production costs after technological innovation, opportunity costs, original production costs, market revenue from technological innovation, the cost of reclaiming scrap steel, technological innovation subsidies, and scrap steel consumption subsidies.
	(2) According to the conclusion of Proof 1, when [image: Mathematical equation with variables: \( R_p, P_q, S_c, C_1, C_0, S_r, T, mG_p, yE_s, yP_q, yP_t, 2, z, R_h, ym \), including operations of addition, subtraction, and multiplication.][image: Equation showing an inequality: negative two y z R subscript h plus two y z R subscript p is greater than zero.], the evolutionary stabilization strategy of the steel manufacturer is to adopt a technologically innovative production model. Threshold [image: Mathematical equation showing \( y^* = -(R_p - P_q + S_c - C_1 + C_0 + S_r + T + mG_p + zR_h - zR_d) \).][image: A mathematical expression consisting of variables and constants: \(E_s + P_q + P_t - 2R_p - mE_s + mP_q - mP_t - 2zR_h + 2zR_p\).], if [image: "y is less than y star."], the steel manufacturer’s evolutionary stabilizing strategy is to adopt the traditional mode of production, and if [image: The expression shows an inequality with \( y \) greater than \( y^* \).], the steel manufacturer’s evolutionary stabilization strategy is to adopt a technologically innovative production model. Otherwise, the steel manufacturer’s evolutionary stabilization strategy cannot be determined.
	(3) Proof 2 shows that when steel manufacturers make technological innovations, they will bring certain market gains from technological innovations and carbon gains, and construction firms will be inclined to buy green products despite the increase in production costs and product prices. At the same time, if the government increases the subsidies for technological innovation for steel manufacturers and the consumption subsidies for steel scrap, construction companies will tend to buy green products, which will constitute a virtuous circle between low-carbon production and green consumption. In addition, the cost of steel manufacturers to recover scrap, the price of conventional products, the original production cost, and the lost opportunity cost will all contribute to the tendency of construction companies to purchase conventional products, which will ultimately affect the strategic choices of steel manufacturers to carry out technological innovation.
	(4) The phase diagram chosen by the steelmaker’s strategy is determined by the relevant parameters, specifically, by [image: Mathematical expression showing the equilibrium condition: \( y^* = -(R_p - P_q + S_c - C_1 + C_0 + S_r + T + mG_p + zR_h - zR_p) / \) resolution 19 444 look 0 0.][image: The image contains a mathematical expression: \( E_s + P_q + P_t - 2R_p - mE_s + mP_q - mP_t - 2zR_h + 2zR_p \).], which is given by the fact that when [image: It seems there is an issue with image uploading. Please try uploading the image again or provide a URL. If you have a specific context or caption, feel free to include that as well.], [image: A mathematical formula is shown: \( z_1 = -(R_p - P_q + S_c - C_1 + C_0 + S_r + T + mG_p)/(R_h - R_p) \). It involves variables and constants like \( R_p \), \( P_q \), \( S_c \), \( C_1 \), \( C_0 \), \( S_r \), \( T \), \( m \), \( G_p \), and \( R_h \).], and when [image: Mathematical expression showing \( y^* = 1 \), with \( y^* \) representing a variable with a star exponent equal to one.], [image: Equation for \( z_2 \): \((E_s + P_t - R_p + S_c - C_1 + C_0 + S_r + T + mG_p - mE_s + mP_q - mP_t) / (R_h - R_p)\).], and since the sizes of [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] and [image: It seems there was an error with the image upload. Please try uploading the image again, and I will be glad to help create alt text for it.] are indeterminable, it may be useful to set [image: I'm unable to view the image you're referring to. Could you please provide a description of the image or upload the image file?]. As shown in Figure 2 and Equation 2, [image: Please upload the image or provide a URL, and if you like, add a caption for more context.] denotes the probability that the steel manufacturer adopts the strategy of technological innovation production mode, and [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] denotes the probability that the steel manufacturer adopts the strategy of traditional production mode.

[image: Formulas for \(D_{11}\) and \(D_{12}\) are shown. \(D_{11} = 1 - D_{12} = 1 - \left(\int_{0}^{x_1}\int_{0}^{z_2} y^* \, dx \, dz + \int_{0}^{z_1} \int_{0}^{x_1} \, dx \, dz\right)\). \(D_{12} = \int_{0}^{x_1}\int_{0}^{z_2} y^* \, dx \, dz + \int_{0}^{z_1} \int_{0}^{x_1} \, dx \, dz\).]
[image: Three diagrams display geometric transformations in a 3D space with axes X, Y, and Z. Each shows a blue curved surface labeled \( D_0 \), \( D_1 \), and \( D_t \), placed within transparent boxes and demonstrating a progressive transformation along the Z-axis.]FIGURE 2 | Phase diagram of strategic options for steelmaker.
4.2 Stability analysis of strategies for construction company
The expected revenues of construction company under green and traditional consumption are [image: Please upload the image or provide a URL for the image you need described.] and [image: Mathematical notation showing the variable \( V_{22} \), with "V" representing a variable and "22" as the subscript.], respectively, and the average expected revenue for both is [image: It looks like you mentioned an image, but I cannot see it. Please upload the image or provide a URL, and I will help generate the alt text for it.].
[image: Equations within a mathematical set are shown: \( V_{21} = x(w_d + U + G_d - P_t - mG_d - mP_q + mP_t) \), \( V_{21} = (1-x)(U-P_q) \), and \( V_2 = yV_{21} + (1-y)V_{22} \).]
From (Equation 3), the equation for the replication dynamics of construction company can be obtained as:
[image: The image displays a mathematical equation for \( F(y) \), which is expressed as \(\frac{dy}{dt} = y(V_{21} - V_2) = y(1-y)(V_{21} - V_{22})\). It simplifies and expands to \(y(1-y)(P_q - U + xw_u + 2xU + xG_d - xP_q - xP_r - xmG_d - xmP_q + xmP_r)\).]
Taking the first derivative of [image: It appears there was an attempt to display an image, but it hasn't been uploaded properly. Please try uploading the image file directly or provide a clear link to it.], then:
[image: The image shows a mathematical equation for the derivative of a function \( F(y) \). It is expressed as \(\frac{dF(y)}{dy} = (1 - 2y)(V_{21} - V_{22})\). This further expands to \((1 - 2y)(P_q - U + xw_d + 2xU + xG_d - xP_q - xP_t - xmG_d - xmP_q + xmP_t)\).]
According to the stability theorem of differential equations, the probability that a construction firm’s strategy is in a steady state must satisfy the following formulas: [image: Mathematical expression showing \(F(y) = 0\).] and [image: Mathematical expression showing the derivative of a function F with respect to y, denoted as F prime of y, is less than zero.].
Proof 3. Let [image: Mathematical expression showing: H(m) = (P_q - U + xw_d + 2xU + xG_d - xP_t - xmG_d - xmP_q + xmP_t) - xP_q, with various variables and constants.], and then find the first-order derivative of [image: The image contains the mathematical expression \( H(m) \).], we get [image: The mathematical expression shows the derivative \( H'(m) = -x(G_d + P_q - P_t) \).], obviously [image: Please upload an image or provide a URL, and I can help generate the alternate text for it.], so [image: It seems like there's a misunderstanding. The text you provided, "H(m)," appears to be mathematical notation rather than an image. If you are referring to an image, please upload it, and I will help generate appropriate alt text for it.] is a monotonically increasing function with respect to [image: Please upload the image you want me to describe, and I'll generate the alt text for you.]. When [image: Mathematical expression showing the function \( H(m) = 0 \).], [image: Mathematical formula for \( m^* \) is presented. It includes a fraction with numerator \( (Pq - U + xWd + 2xU + xPq - xPt) \) and denominator \( (xGd + xPq - xPt) \).]. If [image: It seems there's no image provided. Please upload the image or provide a URL so I can generate the alt text for you.],then it can be inferred that [image: Please provide the image or a URL to the image, and I can help generate the alternate text for it.], which leads to [image: Mathematical expression showing F(y) evaluated at y equals 0, resulting in 0.] and [image: Mathematical expression showing the derivative of F with respect to y, evaluated at y equals zero, is less than zero.], which suggests that [image: Please upload or provide a URL to the image for which you need alternate text.] is the point of evolutionarily stable strategy for the construction firm. If [image: It looks like you've provided a snippet of mathematical notation rather than an image. If you have an image that needs alt text, please upload it or provide a URL.],then it can be inferred that [image: Please upload the image or provide a URL for me to generate the alternate text.], which leads to [image: Mathematical expression displaying "F of y" with a vertical bar notation indicating evaluation at y equals one, set equal to zero.] and [image: The derivative of F with respect to y, evaluated at y equals 1, is less than 0.], which suggests that [image: It seems there was an error in how the image was referenced. Please upload the image file or provide a URL for me to help generate the alternate text.] is an evolutionarily stable strategy point for the construction firm. Otherwise, i.e., [image: It seems like there might be an image not properly shown or described here. If you have an image you want to upload, please do so, and I can help generate the alt text for it.], then [image: I'm unable to view the image you mentioned. Please upload the image or provide a URL, and I'll help you generate the alternate text.] and thus [image: Mathematical expression showing \(F(y) = F'(y) = 0\).]. Therefore, the evolutionary stabilization strategy of the construction company cannot be determined.
Proof 4. [image: Equation displaying \(m^* = \frac{{(Pq - U + xPt)}}{{(xGd + xPq - xPt)}} - \frac{{xWd + 2xU + xGd - xPq}}{{xPt}}\).], and taking the first-order partial derivatives of the variables of interest with respect to [image: Please upload the image or provide a URL so that I can help generate the alternate text for it.] yields that [image: Partial derivative of m star with respect to x is greater than zero.], [image: The mathematical expression shows the partial derivative of \( m^* \) with respect to \( p_t \) is less than zero.], [image: Partial derivative of \( m^* \) with respect to \( P_q \) is greater than zero.], [image: The mathematical expression shows the partial derivative of \(m^*\) with respect to \(\omega_d\), denoted as \(\frac{\partial m^*}{\partial \omega_d}\), which is less than zero.], and [image: Partial derivative of \( m^* \) with respect to \( G_d \) is less than zero.], i.e., [image: Please upload the image or provide a link for me to generate the alternate text.] is positively correlated with [image: Please upload the image you'd like me to generate alt text for.], [image: Please upload the image or provide its URL so I can help generate the alternate text.] is positively correlated and negatively correlated with [image: It looks like you may have tried to upload an image or include a file, but it did not come through. Please try uploading the image again, or describe the image if you need alternative text for it.], [image: The image shows the mathematical expression \( w_d \), where \( w \) is a lowercase letter and \( d \) is a subscript.], [image: Please upload the image or provide a URL for me to generate the alternate text. You can also add a caption for additional context if needed.].
	(1) Proof 3 indicates that as [image: Please upload the image or provide a URL, and I will generate the alternate text for it.] evolves from [image: It seems there was an error in uploading the image. Please try uploading the image again or provide a URL, and I will help generate the alt text for it.] to [image: It seems there was an issue with the image upload. Please try uploading the image again, and I can help generate the alternate text.], [image: Please upload the image or provide a URL, and I'll generate the alternate text for you.] also evolves from [image: Please upload the image or provide its URL for me to generate the alt text.] to [image: Please upload the image you'd like me to describe.]. This implies that as the government inclines towards implementing technological innovation subsidies, construction enterprises will tend to purchase green products. The key factors influencing the strategic choices of construction enterprises are the price of the products, the revenue from selling scrap steel, the government’s consumption subsidies, and the carbon benefits derived from green consumption.
	(2) According to Proof 3, when [image: Mathematical expression: \((Pq - U + xWd + 2xU + xGd - xPq - xPt - xmGd - xmPq + xmPt) > 0\).], the evolutionary stabilization strategy of construction company is green consumption, with the threshold [image: The image shows the formula: \( m^* = (Pq - U + xWd + 2xU + xGd - xPq - xPt) / (xGd + xPq - xPt) \).] If [image: Please upload the image or provide a URL, and I will generate the appropriate alternate text for you.], the evolutionary stabilization strategy of the construction firm is conventional consumption; if [image: It seems there was an issue with the image upload. Please try uploading the image again, and I can help generate the alternate text for you.], the evolutionary stabilization strategy of the construction firm is green consumption. Otherwise, the evolutionary stabilization strategy of the construction firm cannot be determined.
	(3) If the government focuses on implementing technological innovation subsidies, steel manufacturers will be attracted by the benefits of low-carbon production. Due to fierce competition, steel manufacturers will produce a large quantity of green products, leading to the phasing out of traditional products. Consequently, construction enterprises will be more inclined to purchase green products. Therefore, the government’s technological innovation subsidies have a crucial impact on both steel manufacturers and construction enterprises, compelling steel manufacturers to engage in low-carbon production. According to Proof 4, in the short term, the government should primarily increase consumption subsidies to encourage construction enterprises to buy green products. At the same time, the government should regulate the market prices of green products to prevent construction enterprises from favoring the purchase of traditional products. This approach will enhance the carbon benefits derived from green consumption.

[image: Equation with two expressions: D₁₁ equals one minus D₂₂ equals one minus the sum of two integrals, from x₂ to x₁ of m dx dy, and from x₁ to one of dx dy. D₂₂ is the sum of integrals, from x₂ to x₁ of m dx dy, and from x₁ to one of dx dy.]

(4) The phase diagram of the strategy choice of the construction enterprise is determined by the relevant parameters, specifically, by [image: The formula shows \( m^* = \frac{(Pq - U + xWd + 2xU + xGd - xPq - xPt)}{(xGd + xPq - xPt)} \).], when [image: It seems there was an error in your input, possibly displaying code or LaTeX formatting. Please try uploading the image directly or provide the context again.], [image: Mathematical equation showing \( x_1 = \frac{(U - Pq)}{(Wd + 2U + Gd - Pq - Pt)} \).], when [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.], [image: The image is a mathematical formula: \( x_2 = \frac{(U - Pq)}{(Wd + 2U - 2Pq)} \).], it is clear that [image: It seems there was an error or misunderstanding in your request. Please upload the image or provide a URL to the image for me to generate the alternate text.]. As shown in Figure 3 and Equation 4, [image: It seems there may have been an issue with the image upload. Please try uploading the image again or provide a URL. If you want, you can also include a caption for additional context.] denotes the probability of green consumption of construction firms, and [image: It seems like there is no image attached. Please upload the image or provide a URL, and I will help generate the alternate text for it.] denotes the probability of traditional consumption of construction firms.
[image: Three diagrams illustrating geometric shapes within three-dimensional axes labeled with x, y, and z. Each diagram features shaded blue sections labeled \(D_{yz}\), \(D_{xz}\), and \(D_{xy}\) respectively. The shapes indicate intersections of planes with axes, each emphasizing a different orientation in space.]FIGURE 3 | Phase diagram of strategic options for construction company.
4.3 Stability analysis of strategies for scrap recycler
The expected revenues of scrap recyclers under technological and non-technological innovations are [image: Sure, please upload the image or provide a URL so I can help generate the alternate text.] and [image: Please upload the image you would like me to generate alternate text for.], respectively, and the average expected revenue for both is [image: It seems like you've attempted to upload an image, but it didn't come through. Please try uploading the image again or provide a URL. If you have any specific details or a caption, feel free to include that as well.].
[image: Equations showing volumetric flow rates in a chemical system: V̇₁ = m(x-1)(y-1)(G₀-U+S-Ċ₀+Ṙ₀) + xẏm(G₀-U+S-Ċ₀+Ṙ₀), V̇₂ = x(y-1)G₀ - my(x-1)G₀ - (m-1)(x-1)(y-1)(Ė₁-U+S-Ċ₁+Ṙ₁), V̇₃ = x(y-1)(Ė₁-U+S-Ċ₁+Ṙ₁), V̇₂ = (x+y - 2xy - 1)(U-R₀+Ċ₀), V̇₃ = zV̇₄ + (1-z)V̇₂.]
From (Equation 5), the equation for the replication dynamics of the scrap recycler can be obtained as:
[image: Mathematical expression for \( F(z) = \frac{dz}{dt} = z(V_{31} - V_3) = z(1 - z)(V_{31} - V_{32}) \). It involves multiple terms with variables such as \( z \), \( m \), \( x \), \( y \), and constants like \( U \), \( R_p \), \( G_z \), \( S \), \( C_{r2} \), \( R_h \), \( C_{n1} \), and \( C_{r1} \). The expression includes nested terms and parentheses.]
Taking the first derivative of [image: Please provide an image or a URL to the image you would like me to describe.], then:
[image: Mathematical expression for \( F'(z) \) as the derivative \( \frac{dF(z)}{dz} \), showing a complex equation involving multiple variables such as \( z, V_{31}, V_{32}, x, y, m, U, R_p, C_n, G_z, S, C_r, R_h \). The equation is distributed over several lines and includes operations like multiplication, subtraction, and distribution.]
According to the stability theorem of differential equations, the probability that the scrap recycler’s strategy is in a steady state must satisfy the following formulas: [image: It seems there might be an issue with displaying the image you referenced. Please upload the image or provide a URL, and I can help generate the alternate text for it.] and [image: Derivative of the function \( F(z) \) with respect to \( z \) is less than zero, indicating a decreasing function at that point.].
Proof 5. Let [image: A mathematical expression for \( J(y) \) is displayed:  \[  J(y) = \{ m(x-1)(y-1)(U-R_{\rho}+C_{r1})-xmG_{z}  \} \] The equation involves variables \( x \), \( y \), and constants \( m \), \( U \), \( R_{\rho} \), \( C_{r1} \), and \( G_{z} \).][image: Math expression composed of the following terms: \( (y-1) + mxy(G_z - U + S - C_{r2} + R_h) + m(x-1)(y-1) \).][image: Mathematical expression showing the formula: \((G_z - U + S - C_{r2} + R_h) - my(x-1)G_z + mxy(U - R_p + C_{r1}) - (m-1)\).][image: Mathematical equation: (x minus 1)(y minus 1) equals E subscript d minus U plus S minus C subscript r subscript 2 plus R subscript h, minus (m minus 1)(x minus 1)(y minus 1).][image: Mathematical expression: \((U - R_p + C_{r1} - xy(m - 1)) h(E_d - U + S - C_{r2} + R_{in}) - xy(m - 1)(U - R_p + C_{r1})\).], and then take the first-order derivative of [image: It seems like you've shared a mathematical expression, 𝐽(𝑦), rather than an image. If you meant to upload an image, please try attaching the file again. If you need help with something else, let me know!] to obtain [image: Mathematical expression for J prime of y equals open parenthesis two x minus one close parenthesis times open parenthesis Ed plus S minus C sub r2 plus R sub h minus R sub p plus C sub r1 minus mEd close parenthesis.], and it is easy to conclude that [image: Derivative of J with respect to y is greater than zero.] when [image: It seems there's an error in your request. To generate alt text, please upload an image or provide a URL. If you meant to describe an equation, "x > 1/2" is an inequality indicating that x is greater than one-half.], so [image: Please upload the image or provide a URL for me to generate the alternate text.] is a monotonically increasing function with respect to [image: Please upload the image or provide a URL so I can create the alternate text for you.]. When [image: Equation showing \( J(y) = 0 \).], [image: Mathematical equation for y double prime equals negative of the expression in parentheses containing Ed plus S minus Cr2 plus Rh minus Rp plus Cr1 minus mEd plus mGz minus xEd minus xS plus xCr2 minus xRh plus xRp minus xCr1 plus xmEd, all within parentheses divided by an unspecified denominator.][image: Mathematical expression: open bracket two x minus one close bracket open parenthesis E subscript d plus S minus C subscript r two plus R subscript h minus R subscript p plus C subscript r one minus m E subscript d close parenthesis.]. If [image: Mathematical expression showing \( y \) is less than \( y^{**} \).], it can be inferred that [image: \( J(y) < 0 \)], which leads to [image: The mathematical expression reads: "F of z evaluated at z equals zero is equal to zero."] and [image: Derivative of a function \( F'(z) \) evaluated at \( z = 0 \) is less than zero.], which suggests that [image: Please upload the image you would like to have alternate text for, or provide a URL link to the image.] is the point of evolutionary stabilization strategy for scrap recyclers. If [image: Mathematical expression displaying "y is greater than y double prime."], then it can be inferred that [image: Mathematical expression: \( J(y) > 0 \), indicating that the function \( J \) evaluated at \( y \) is greater than zero.], which leads to [image: Mathematical expression showing \( F(z) \) evaluated at \( z = 1 \) equals zero.] and [image: The expression shows the derivative of a function \( F(z) \) evaluated at \( z = 1 \) is less than zero.], which indicates that [image: Please upload the image you want the alternate text for.] is an evolutionarily stable strategy point for the scrap recycler. Otherwise, i.e., [image: Equation displaying \( y = y^{**} \).], then [image: Mathematical expression showing \( J(y) = 0 \).] and thus [image: Mathematical expression showing \( F(z) = F'(z) = 0 \).]. Therefore, the evolutionary stabilization strategy of the scrap recycler cannot be determined.
Proof 6. [image: Mathematical equation depicting a formula for y-double-prime equals negative sum of E-sub-d, S, C-sub-r-two, plus R-sub-h, negative R-sub-p, plus C-sub-r-one, negative mE-sub-d, plus mG-sub-z.][image: A mathematical expression involving various variables: \(xE_d - xS + xC_{r2} - xR_h + xR_p - xC_{r1} + xmE_{d1}\).][image: An algebraic expression featuring multiple variables and operations: \( (2x - 1)(E_d + S - C_{r2} + R_h - R_p + C_{r1} - mE_d) \).], Taking the first-order partial derivatives of the variables of interest yields that [image: Partial derivative of y with respect to m is less than zero.], [image: Partial derivative of y with respect to G sub z is less than zero.], [image: Partial derivative notation showing the partial derivative of y with respect to R sub p is less than zero.], [image: Partial derivative of y star with respect to c sub r one is greater than zero.], [image: Partial derivative of y with respect to s is greater than zero.], [image: Partial derivative notation showing the partial derivative of \( y^{\ast\ast} \) with respect to \( c_{r_{2}} \) is less than zero.], [image: The mathematical expression shows the partial derivative of y with respect to \( R_h \), written as \( \frac{\partial y}{\partial R_h} \), which is greater than zero.], [image: Partial derivative of \(y\) with respect to \(E_d\), denoted as \(\frac{\partial y}{\partial E_d}\), is greater than zero.]. Thus, [image: I'm sorry, but I cannot create an alt text without an image. Please upload the image you want described.] is positively correlated with [image: Please upload the image or provide a URL, and I will assist you in generating alternate text for it.], [image: Please upload the image or provide a URL so I can generate the appropriate alt text for it.], [image: Please upload the image or provide a URL so I can generate the alt text for you.], [image: It seems there was an error in your message. Could you please upload the image again or check the formatting? If you want a description, please provide the image or a detailed description.], and [image: Mathematical notation showing the second derivative of \( y \) with respect to \( x \), symbolized as \( y^{**} \) or \( y^{\text{two asterisks}} \).] is negatively correlated with [image: Please upload the image so I can help generate the alternate text for it.], [image: Please upload the image or provide a URL so I can generate the alt text for you.], [image: It seems like there's an issue with displaying the image. Please upload the image file directly or provide a URL so that I can assist you with generating the alternate text.], [image: It seems there's an error with the image upload. Please try uploading the image again, and I will be happy to help create the alt text for you.].
	(1) Derived from Proof 5, the strategy of the scrap steel recycler varies with the changes in the strategy of the construction enterprise, with [image: Please upload the image or provide a URL to generate the alt text.] gradually evolving from [image: It seems like there might be an error, as the image did not upload. Please try uploading the image again, and I will be happy to help generate the alternate text for it.] to [image: Please upload the image you want me to describe.], and [image: Please upload the image or provide a URL to the image you would like me to describe.] also evolving from [image: Please upload the image so I can generate the alternate text for you.] to [image: Please upload the image or provide a URL so I can generate the alternate text for you.]. As construction enterprises incline towards green consumption, scrap steel recyclers will also be inclined to engage in technological innovation. The strategy of the scrap steel recycler is influenced by factors such as their processing costs, carbon benefits from technological innovation, revenue from selling scrap steel, consumption subsidies for recycling scrap steel, and subsidies for technological innovation.
	(2) Proof 5 demonstrates that when the inequality [image: Mathematical equation: \( m(x - 1)(y - 1)(U - R_p + C_{r1}) - xmG_z(y - 1) + mxy(G_z - U + \).][image: Mathematical equation illustrating variables, constants, and operations. The formula involves terms such as S, Cr2, Rh, m, x, y, Gz, and U. The expression includes addition, subtraction, and multiplication, highlighting relationships among these elements.][image: Mathematical formula displaying \( y(x-1)G_z + mxy(U - R_p + C_{r1}) - (m-1)(x-1)(y-1) \).][image: Mathematical expression: \((E_d - U + S - C_{r2} + R_h) - (m - 1)(x - 1)(y - 1)(U - R_p + C_{r1})\).][image: Mathematical inequality featuring terms such as \( xy(m-1) \), \( E_d - U + S - C_{r2} + R_h \), and \( U - R_p + C_{r1} \), indicating a condition greater than zero.] holds, the evolutionary stable strategy for scrap steel recyclers is to engage in technological innovation. The threshold [image: Mathematical notation showing the second derivative of a variable \( y \), represented as \( y^{\ast\ast} \).] is given by [image: The image displays a mathematical equation: y double prime equals negative parentheses E sub d plus S minus C sub r2 plus R sub h minus R sub p plus C r1 minus m E sub d plus m G z minus x E sub d minus x S plus x C sub r2 minus x R sub h plus x R sub p minus x C r1 plus x m E sub d, all over x.][image: Mathematical expression displaying \((2x-1)(E_{d}+S-C_{r2}+R_{h}-R_{\rho}+C_{r1}-mE_{d})\).]. If [image: Mathematical expression displaying "y is less than y double star".], the evolutionary stable strategy for scrap steel recyclers is not to engage in technological innovation; if [image: I'm sorry, I can't view images directly. Please upload the image or provide a URL for it.], the evolutionary stable strategy is to engage in technological innovation. Otherwise, the evolutionary stable strategy for scrap steel recyclers cannot be determined.
	(3) Proof 6 indicates that the technological innovation of scrap steel recyclers is related to the magnitude of government subsidies. If the government increases the consumption subsidies for scrap steel recyclers that undertake technological innovation, it will stimulate their enthusiasm. In addition, the size of the carbon benefits generated also has a positive effect on promoting technological innovation by scrap steel recyclers. It can be concluded that strengthening the economic support to scrap steel recyclers by the government can, to a certain extent, enhance the vitality of their technological innovation.
	(4) The phase diagram of the strategic choices of scrap steel recyclers is determined by relevant parameters. According to the equation [image: A mathematical equation is shown, involving variables including \( y^* \), \( E_d \), \( S \), \( C_{r2} \), \( R_h \), \( R_p \), \( C_{r1} \), and \( G_z \) with operations of addition, subtraction, and multiplication. The equation includes various coefficients such as \( m \), \( x \), and \( \alpha \).][image: Mathematical expression featuring nested operations: one divided by the product of \((2x - 1)\) and the sum of \((E_d + S - C_{r2} + R_h - R_p + C_{r1} - mE_d)\).], we can deduce that when [image: Equation showing the second derivative of y with respect to x, denoted as \( y^{\star\star} \), equals zero.], [image: A mathematical expression is shown. It states: \( m_1 = -(E_d + S - C_{r2} + R_h - xS + xC_{r2} - xR_h + xR_p - xC_{r1}) \quad\quad R_p + C_{r1} - xE_d - \).][image: Mathematical expression showing the division of a function involving variables: I divided by the difference between G sub z and E sub d, plus x times E sub d.], and when [image: Equation displaying the second derivative of y with respect to time, denoted as y double prime, equals one.], [image: Mathematical equation with variables and constants, expressing \( m_2 \) as a function of \( E_d \), \( S \), \( C_{r2} \), \( R_h \), \( R_p \), \( C_{r1} \), \( x \), and operations including addition, subtraction, and multiplication within braces.][image: Mathematical expression showing a fraction with the numerator as \( E_d - G_z - xE_d + (2x - 1)E_d \).]. It is reasonable to assume [image: Looks like you haven't uploaded an image. Please upload one or provide a URL along with any necessary context or caption.]. As illustrated in Figure 4 and Equation 6, [image: It seems like there was a mistake in your input, as it doesn't include an image. Please upload the image file or provide a URL to it so I can help generate the alternate text.] represents the probability that the scrap steel recycler will undertake technological innovation, while [image: It seems like there might be a mix-up in your request. If you want to upload an image for alt text generation, please try again with a file or a URL. If you meant something else or have a specific question, let me know!] represents the probability that the scrap steel recycler will not undertake technological innovation.

[image: Mathematical expression showing integrals related to parameters \(D_{31}\) and \(D_{32}\). \(D_{31} = 1 - D_{32} = 1 - \left( \int_{0}^{m_{j}} \int_{0}^{m_{j}} y^{**} dzdm + \int_{0}^{m_{j}} \int_{0}^{m_{j}} dzdm \right)\). \(D_{32} = \int_{0}^{m_{j}} \int_{0}^{m_{j}} y^{**} dzdm + \int_{0}^{m_{j}} \int_{0}^{m_{j}} dzdm\). Equation (6).]
[image: Three diagrams display shear deformation of a cube along different planes. The first diagram shows shear in the ZX plane, the second in the YZ plane, and the third in the XY plane. Blue shaded areas represent the deformation direction, indicated by arrows.]FIGURE 4 | Phase diagram of strategic options for scrap recycler.
4.4 Stability analysis of strategies for government
The government’s expected revenues under the implementation of technological innovation subsidies and consumption subsidies are [image: Please upload the image or provide a URL, and I can help generate the alt text for it.] and [image: Please upload the image, and I will be happy to help you generate the alternate text for it.], respectively, and the average expected revenue for both is [image: Please upload the image you would like me to generate alternate text for.].
[image: Mathematical equations involving variables and parameters. Equations describe \(V_{41}\) as a function of \(G\), \(G_p\), \(G_c\), \(E_s\), \(x\), and \(y\); \(V_{42}\) as a function of \(R\), \(x\), \(G_p\), \(G_d\), \(E_d\), and other parameters. \(V_{4}\) is expressed as a weighted average of \(V_{41}\) and \(V_{42}\) with parameter \(m\). Equation number \(7\) is noted.]
From (Equation 7), the government’s replication dynamic equation can be obtained as:
[image: Mathematical expression for \( F(m) = \frac{dm}{dt} = m(V_{41} - V_4) = m(1 - m)(V_{41} - V_{42}) \). Expanded to \( m(1 - m)m(1 - m)(xR - R + yR + zE_d - zG_z + xyG_d - xyG_p - 2xyR - xzE_d - yzE_d + 2xyzE_d) \).]
Taking the first derivative of [image: Please upload the image or provide a URL so I can generate the alternate text for you.], then:
[image: Mathematical expression of the derivative F prime of m, equals the derivative of F of m over the derivative of m, equals open parenthesis 1 minus 2m, close parenthesis, open parenthesis capital V sub A1 minus V sub A2, close parenthesis, equals open parenthesis 1 minus 2m, close parenthesis, m, open parenthesis 1 minus m, close parenthesis, open parenthesis x capital R minus capital R plus y capital R plus z capital E sub d1 minus z capital G sub z plus x y capital G sub d1 minus x y capital G sub p minus 2 x y capital R minus x z capital E sub d1 minus y z capital E sub d1 plus 2 x y z E sub d1, close parenthesis.]
According to the stability theorem of differential equations, the probability that the government’s strategy is in a steady state must satisfy the following equations: [image: Equation displaying \( F(m) = 0 \) on a white background.] and [image: The mathematical expression shown is "F prime of m is less than zero".].
Proof 7. Let [image: Mathematical equation: \( K(z) = m(1-m)(xR - R + yR + zE_d - 2xyR - xzE_d - yzE_d + 2xyzE_d) - zG_z + xyG_d - xyG_p \).], and take the first-order partial derivatives of it to get [image: Equation depicting the derivative \( K'(z) \) equals \( m(m-1)(G_z - E_d + xE_d + yE_d - 2xyE_d) \).], obviously, [image: The image displays the mathematical expression \( K'(z) > 0 \), indicating that the derivative of the function \( K \) with respect to \( z \) is greater than zero.], so [image: The text "k(z)" is displayed in a bold, italic font style, likely representing a mathematical function of the variable \( z \).] is a monotonically increasing function on [image: It appears there was an issue with your image upload. Please try uploading the image again, or provide a URL. Optionally, you can add a caption for additional context.]. [image: It seems there's an error or formatting issue with the image or text you are trying to refer to. Please upload the image directly or provide a proper URL, and I can help generate the alternate text for it.], [image: The equation shown is: z* = -[(R - xR - yR - xyGd + xyGp + 2xyR) / (Gz - Ed + xEd + yEd - 2xyEd)].]. If [image: I'm sorry, I cannot view the image. Please describe the image or upload it so I can help generate the alternate text.], it can be inferred that [image: It seems like you’ve provided a mathematical expression instead of an image. Please upload the image or provide more context for accurate alternate text.], which leads to [image: Mathematical expression showing \( F(m) \) evaluated at \( m = 0 \) equals 0.] and [image: The mathematical expression shows the derivative of function F with respect to m, evaluated at m equals zero, is less than zero.], which suggests that [image: It seems like there was an error in providing the image. Please try uploading the image again or provide a URL. If you have any text details, you can include them for additional context.] is the government’s evolutionarily stable strategy point. If [image: It seems like you've provided a LaTeX snippet rather than an image. The expression "z > z^*" suggests that a variable \( z \) is greater than a specific threshold or critical value, denoted as \( z^* \). If you intended to share an image, please upload it or provide a URL.], it can be inferred that [image: It seems like you have pasted a piece of mathematical text. If you'd like to generate alt text for an image, please upload the image or provide a URL. If this is part of an equation or diagram from an image, please provide the full context.], which leads to [image: I'm unable to view the image you've uploaded. Please upload the image again or ensure that it is correctly linked so I can assist you with generating alt text.] and [image: Mathematical expression showing the derivative of a function \( F' (m) \) evaluated at \( m = 1 \) is less than zero.], which suggests that [image: Please upload the image or provide a URL for me to generate the alternate text.] is the government’s evolutionary stabilization strategy point. Otherwise, i.e., [image: I can't see the image you're referring to. Please upload the image or provide a URL for me to view it.], then [image: It seems there's an issue with displaying the image. Please upload the image file directly or provide a description of it so I can help generate the alt text.] and thus [image: Equation showing \( F(m) = F'(m) = 0 \), indicating both the function F and its derivative are zero at the point m.]. Therefore, the government’s evolutionary stabilization strategy cannot be determined.
Proof 8. [image: Equation depicting a fraction with a complex polynomial form. The numerator includes terms like negative R, multiplied terms of x and y with other variables, and additional constants. The denominator consists of variables G, E, and multiplied terms similar in pattern to the numerator.], taking the first-order partial derivatives of its correlated variables yields, [image: Partial derivative of \( z^* \) with respect to \( x \) is greater than zero.], [image: Partial derivative of z star with respect to R is less than zero.], [image: Partial derivative of \( z^* \) with respect to \( E_d \) is less than zero.], [image: Partial derivative of z-star with respect to G-sub-d is greater than zero.], [image: Partial derivative of z star with respect to G subscript p is less than zero.], [image: Partial derivative of \( z^* \) with respect to \( G_z \) is greater than zero.], so [image: Please upload the image or provide a URL for me to generate the alternate text. Optionally, you can add a caption for additional context.] is positively correlated with [image: To generate alternate text, please upload the image or provide a URL, and include any additional context if necessary.], [image: Please upload the image or provide a URL to generate the alt text.], [image: Please upload the image you would like me to generate alternate text for.], and [image: Please upload the image or provide a URL to enable me to generate the alternate text.] is negatively correlated with [image: Please upload the image you would like me to generate alternate text for.], [image: Please upload the image so I can help generate the alternate text.], [image: It seems you haven't provided an image. Please upload an image or provide a URL, and I can help generate the alternate text.].
	(1) According to Proof 7, the government’s strategy varies with the changes in the strategies of scrap steel recyclers, where [image: Please upload the image you would like to have described.] gradually evolves from [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will help generate the alternate text for you.] to [image: Please upload the image you would like me to generate alternate text for.], and [image: Please upload the image or provide a URL so I can generate the alternate text for you.] also evolves from [image: Please upload an image or provide a URL for me to generate the alternate text.] to [image: Please upload the image or provide its URL, and I will help generate the alt text for it.]. As scrap steel recyclers tend to engage in technological innovation, the government will be inclined to adopt subsidies for technological innovation and research and development. The government’s strategy is influenced by its consumption subsidies and technological innovation subsidies to steel manufacturers, construction companies, and scrap steel recyclers. The magnitude of various subsidy amounts will affect the government’s strategic choices to varying degrees.
	(2) Proof 7 shows that the government’s evolutionary stabilization strategy is to implement a technological innovation subsidy when [image: A mathematical expression involving variables and parameters: \( m(1-m)(xR - R + yR + zE_d - zG_z + xyG_d - xyG_p - 2xyR - xzE_d - yzE_d + 2xyzE_d) > 0 \).], with a threshold [image: Equation representing \( z^* \) as a fraction. The numerator is \(-(R - xR - yR - xyG_d + xyG_p + 2xyR)\) and the denominator is \((G_z - E_{d+} + xE_d + yE_d - 2xyE_d)\).], if [image: Mathematical expression showing "z" is less than "z" with a superscript asterisk, indicating "z" is less than a particular value of "z-star".], the government’s evolutionary stabilization strategy is to implement a consumption subsidy; if [image: It appears you provided a mathematical expression rather than an image link. If you have an image you'd like me to describe, please upload it or provide a URL.], the government’s evolutionary stabilization strategy is to implement a technological innovation subsidy. Otherwise, the government’s evolutionary stabilization strategy cannot be determined.
	(3) According to Proof 8, whether the government increases the consumption subsidies for green consumption by construction enterprises or the technological innovation subsidies for scrap steel recyclers, it can enhance the enthusiasm of scrap steel recyclers for technological innovation. However, the increase in credibility due to government consumption subsidies, as well as the technological innovation subsidies to steel manufacturers and the consumption subsidies to scrap steel recyclers, have a dampening effect on the technological innovation by scrap steel recyclers. Therefore, for the government, it is crucial to strike a balance between consumption subsidies and technological innovation subsidies. Over a certain period, the government needs to establish reasonable subsidy levels based on feedback from various stakeholders and market research.

[image: Mathematical expression with two equations. First, \( D_{41} = 1 - D_{42} = 1 - \left(\int_{0}^{x_3} z^x dx dm + \int_{0}^{x_4} dx dm\right) \). Second, \( D_{42} = \int_{0}^{x_3} z^x dx dm + \int_{0}^{x_4} dx dm \), labeled as equation (8).]
(4) The phase diagram chosen by the government strategy is determined by the relevant parameters, according to [image: Mathematical equation expressing \( z^* \) as a function of several variables: \( R \), \( xR \), \( yR \), \( xyGd \), \( xyGp \), \( 2xyR \), \( Gz \), \( Ed \), \( xEd \), \( yEd \), and \( 2xyEd \).], which means that when [image: It seems like there might be an issue with displaying the image. Please try uploading the image file directly or ensure the URL is correct. If you provide additional context or a caption, it can help in creating a more accurate description.], [image: A mathematical equation is displayed: \( x_3 = \frac{(R - yR)}{(R + yG_d - yG_p - 2yR)} \).], when [image: Please upload the image or provide a URL for me to generate the alt text.], [image: The image shows a mathematical equation: \( x_4 = -(R - E_d + G_z + yE_d - yR) / (E_d - R - yG_d - 2yE_d + yG_p + 2yR) \).], it may as well be set [image: I'm sorry, I can't view the image. Please provide it by uploading it or sharing a link.]. As shown in Figure 5 and Equation 8, [image: Please upload the image or provide a link to it, and I will help generate the alt text for you.] denotes the probability of the government’s implementation of technological innovation subsidies, and [image: Please upload the image or provide a URL so I can generate the alternate text for it.] denotes the probability of the government’s implementation of consumption subsidies.
[image: Three 3D graphs illustrate the integration of a function over different regions. Each graph features a cube with axes labeled \(x\), \(y\), and \(z\), and shaded blue regions representing the areas under consideration, labeled \(D_2\), \(D_1\), and \(D_0\) respectively. The diagrams show progressive steps in the integration process.]FIGURE 5 | Phase diagram of strategic options for government.
4.5 Stability analysis of the four-party strategy combination
The previous section mainly analyzes the evolutionary stability of each of the four parties, and the following section analyzes the evolutionary stability strategy and equilibrium point state under the joint action of the four parties.
[image: Mathematical equations for F(x), F(y), F(z), and F(m) are displayed. Each function represents a differential equation describing the rate of change (d/dt) of a variable in terms of multiplication of the variable itself, a factor, and voltage differences (V) indicating transition rates. The equations for F(x), F(y), F(z), and F(m) include terms: x(1-x)(V11-V12), y(1-y)(V21-V22), z(1-z)(V31-V32), and m(1-m)(V41-V42), respectively.]
Based on the replicator dynamics equations of the four-player game system, the corresponding Jacobian matrix can be derived. The stability of strategies in the four-player game can be judged by the first Lyapunov method: if all the eigenvalues of the Jacobian matrix are negative, then the equilibrium point is an Evolutionarily Stable Strategy (ESS). If at least one of the eigenvalues of the Jacobian matrix is positive, then the equilibrium point is unstable. If all the eigenvalues of the Jacobian matrix are negative except for one that equals zero, then the equilibrium point is at a critical state, and its stability is uncertain. Moreover, the stable solution in a multi-population evolutionary game must be a strict Nash equilibrium, that is, a pure strategy equilibrium. Therefore, in the four-player evolutionary game, this paper attempts to analyze the stability of 16 pure strategy equilibrium points.
[image: Matrix \( J \) represents the Jacobian matrix of partial derivatives. It includes \(\frac{\partial F(x)}{\partial x}\), \(\frac{\partial F(x)}{\partial y}\), \(\frac{\partial F(x)}{\partial z}\), \(\frac{\partial F(x)}{\partial m}\) in the first row, \(\frac{\partial F(y)}{\partial x}\), \(\frac{\partial F(y)}{\partial y}\), \(\frac{\partial F(y)}{\partial z}\), \(\frac{\partial F(y)}{\partial m}\) in the second row, \(\frac{\partial F(z)}{\partial x}\), \(\frac{\partial F(z)}{\partial y}\), \(\frac{\partial F(z)}{\partial z}\), \(\frac{\partial F(z)}{\partial m}\) in the third row, and \(\frac{\partial F(m)}{\partial x}\), \(\frac{\partial F(m)}{\partial y}\), \(\frac{\partial F(m)}{\partial z}\), \(\frac{\partial F(m)}{\partial m}\) in the fourth row.]
4.5.1 Stability analysis of strategy combination under consumption subsidy
The asymptotic stability analysis of the equilibrium point of this replicated dynamic system is shown in Table 3 when the government’s stabilization strategy is to implement consumption subsidies, i.e., when the condition [image: The image contains a mathematical inequality involving multiple variables and parameters: \( m(1-m)(xR - R + yR + zE_d - xyG_p - 2xyR - xzE_d - yzE_d + 2xyzE_d) < 0 \) where various mathematical operations and relationships among variables and coefficients like \( x, y, z, R, E_d, G_p, G_z, G_d, \) and \( m \) are represented.] is satisfied.
TABLE 3 | Evolutionarily stable analysis of equilibrium points of replication dynamic system under consumption subsidies.
[image: A table lists equilibrium points and their corresponding values for variables \( \lambda_1 \), \( \lambda_2 \), \( \lambda_3 \), \( \lambda_4 \), along with the sign and stability classification. Equilibrium points include combinations of zeros and ones. Signs are given with plus, minus, and indeterminate symbols. Stability is noted as either "Unstable" or "ESS" with conditions (a) or (b). A footnote explains symbols and conditions related to evolutionary strategies.]Table 3 indicates the existence of two possible stable strategies, namely, (1,1,0,0) and (1,1,1,0). The strategy (1,1,0,0) signifies that the steel manufacturer engages in technological innovation, the construction company adopts green consumption practices, the scrap steel recycler does not engage in technological innovation, and the government implements consumption subsidies. At this point, the conditions [image: Equation showing \( G_d < G_p + G_r \), where \( G_d \) is less than the sum of \( G_p \) and \( G_r \).], [image: Mathematical expression showing \( P_t < D_s + G_d + D_c \).], and [image: Mathematical expression showing R sub c plus R sub p is greater than G sub n plus R sub b plus R sub h plus R sub f.] are met. This implies that the government’s credibility is greater than the difference between the consumption subsidies for construction companies and the technological innovation subsidies for steel manufacturers. The sum of the carbon benefits from green consumption by construction companies, the income from providing scrap steel, and the consumption subsidies is greater than the price of green products. The difference in processing costs before and after technological innovation by the scrap steel recycler is greater than the sum of the income difference from providing scrap steel, the technological innovation carbon benefits, and the consumption subsidies. When [image: Mathematical equation displaying \( G_d + G_n < G_p + G_r + G_z \).] and [image: Mathematical expression depicting an inequality: \( R_c + R_p < R_b + G_n + R_h + R_f \).], the replicator dynamics system will stabilize at (1,1,1,0). With the scrap steel recycler participating in technological innovation, the government will implement certain technological innovation subsidies and consumption subsidies for the scrap steel recycler. At this time, the government’s credibility is greater than the difference between the consumption subsidies and technological innovation subsidies for all parties. Contrary to some conclusions of (1,1,0,0), the difference in processing costs before and after technological innovation by the scrap steel recycler will be less than the sum of the income difference from providing scrap steel, the technological innovation carbon benefits, and the consumption subsidies.
The preceding analysis illustrates the necessity for the government to exert a guiding influence on the procurement of green products, while steel manufacturers must also manage product pricing judiciously. For scrap steel recyclers to be incentivized to undertake technological innovation, it is imperative that their overall revenue surpasses the differential in costs associated with innovation before and after its implementation, thereby integrating them into the transformation towards low-carbon steel production. Given the current landscape of the steel industry, technological innovation stands as a pivotal element for carbon emission reduction. However, there is a dearth of impetus for carbon reduction technological innovation at present. To facilitate the adoption of technologically innovative production paradigms by steel manufacturers, it is essential for the government to enact technological innovation subsidies as a priority. This strategic approach will foster an environment where engaging in technological innovation becomes a stable strategy for both the steel manufacturers and the scrap steel recyclers.
4.5.2 Stability analysis of strategy combination under technological innovation subsidies
When the government’s stable strategy is to provide subsidies for investment in technological innovation, specifically when the condition [image: Mathematical expression stating \( m(1 - m)(xR - R + yR + zE_d - zG_z + xyG_d - xyG_p - 2xyR - xzE_d - yzE_d + 2xyzE_d) < 0 \).] is satisfied, the asymptotic stability analysis of the equilibrium point within the replicator dynamics system is depicted in Table 4.
TABLE 4 | Evolutionarily stable analysis of equilibrium points of replication dynamic system under technological innovation subsidies.
[image: Table of equilibrium points with corresponding equations, sign patterns, and stability. Equilibrium points include (0,0,0,1), (1,0,0,1), among others. Sign patterns vary, such as (+,+,×,×) for (0,0,0,1). Stability is mainly labeled as Unstable, except for ESS(c) and ESS(d). Notes explain symbols and conditions for ESS.]Table 4 demonstrates that when the government implements technological innovation subsidies, there are two possible stable strategies: the points (1,1,0,1) and (1,1,1,1). The strategy (1,1,0,1) indicates that the steel manufacturer engages in technological innovation, the construction company practices green consumption, the scrap steel recycler does not engage in technological innovation, and the government provides subsidies for technological innovation. At this juncture, the conditions [image: Mathematical expression displaying \( G_p + G_r < G_d \).], [image: Mathematical expression showing \( P_q < D_s + D_c \).], and [image: Mathematical inequality showing \( G_z + R_b + R_h + R_t < R_c + R_p \).] are met. This means that the government’s credibility exceeds the difference between the technological innovation subsidies for steel manufacturers and the consumption subsidies for construction companies. The sum of the carbon benefits from green consumption by construction companies and the income from providing scrap steel is greater than the price of conventional products. The difference in processing costs before and after technological innovation by the scrap steel recycler is greater than the sum of the income difference from providing scrap steel, the technological innovation carbon benefits, and the technological innovation subsidies.
As the net income of the scrap steel recycler increases, that is, when [image: Mathematical expression showing \( R_c + R_p < R_b + G_z + R_h + R_f \).], the scrap steel recycler undertakes technological innovation. At this point, the net income from the government’s implementation of technological innovation subsidies also gradually increases, satisfying [image: Mathematical expression showing \( G_r + G_z + G_p < G_n + G_d \).], and the system stabilizes at (1,1,1,1). This is also the most ideal state within the game system, where both the steel manufacturer and the scrap steel recycler engage in technological innovation, the construction company opts for green consumption, and the government provides subsidies for technological innovation. During the processes of steel production, consumption, and recycling, the government’s various subsidies need to be formulated based on the cost of product production and pricing. The interests of all parties are interwoven, and further analysis and discussion will be conducted in the subsequent simulation analysis section.
5 NUMERICAL SIMULATION AND DISCUSSION
The analysis results presented earlier indicate that the strategies of the steel manufacturer, construction company, scrap steel recycler, and government are interdependent. To more intuitively demonstrate the impact of key elements in the replicator dynamics system on the evolutionary process and outcomes of the multi-party game, numerical simulations of the evolutionary trajectories of each game participant were conducted using MATLAB 2021b software.
The construction industry holds a major share of the demand in the steel market. Therefore, this paper selects the construction company as the downstream consumer of the steel manufacturer. Considering that the steel manufacturer offers a wide range of steel products with significant price differences, we chose the procurement and recycling prices of rebar steel as the data source for the numerical simulation. Through investigation, it was found that the monthly average price of rebar steel HS400E (20 mm) from 20 steel manufacturers in Jiangxi Province is 34.66 (yuan/100 tons). It was also learned that the average untaxed cost of rebar steel from 31 inland steel mills in mainland China is 33.49 (yuan/100 tons). In combination with the price of recycled steel rebar (thickness greater than 6 mm) from a certain environmental protection industry company in Jiangxi, which is 26.60 (yuan/100 tons) (Data sources:https://www.mysteel.com), the specific parameters for this paper are set as follows: [image: It seems there was an error, as no image was uploaded. Please try uploading the image again or provide a URL.], [image: It looks like you've included a mathematical expression or text rather than an image. Please upload the image file or provide a URL to generate accurate alt text.], [image: An equation displaying \( C_0 = 33.49 \).], [image: It seems like there was a mishap with the image upload. Please try uploading the image again, and I'll help you with the alternate text.], [image: It seems you've referenced an equation or value rather than providing an image. If you have an image you'd like me to generate alternate text for, please upload it, and I'll be happy to help!], [image: The mathematical expression shows \( P_t = 37.34 \).], [image: The image shows the mathematical expression \( P_q = 34.66 \).], [image: It seems there might be an issue with the image upload. Please try uploading the image again, and I'll be happy to help with the alternative text. If needed, you can include a caption for context.], [image: It seems like there might be an issue with your request. Could you please try uploading the image again or provide more details about it?], [image: Mathematical notation displaying "R sub h equals 30.80".], [image: It seems there might have been an error in your submission. If you're trying to share an image, please upload it directly or provide a URL. If you need help with an equation or text, let me know!], [image: It appears you mentioned a formula or equation related to critical resolution, but did not provide an image. Please upload the image or provide its URL so I can generate accurate alternate text for it.], [image: I'm unable to view or interpret the content of the image you've uploaded. Please ensure you upload the image or provide the URL for assistance.], [image: It seems like there was an error in displaying the image. Please try uploading the image file again, and I can help generate the alternate text for it.], [image: It seems like there is a technical issue with displaying the image. Please try uploading the image file again, and I will generate the alternate text for you.] , [image: It seems there is no image uploaded. Please upload the image or provide a URL for me to generate the alternate text.], [image: Please upload the image or provide a URL so that I can generate the alternate text for it.], [image: It seems like you've included a mathematical expression rather than an image. If you have an image to upload, please do so, and I can help generate the alt text for it.], [image: Mathematical expression: \( G_z = 0.06 \).], [image: It appears there was an issue with your request as no image file was uploaded. Please upload the image or provide a URL so I can generate the alternate text for you.], [image: It seems there is an issue with the image upload. Please try uploading the image file again or provide a URL to the image. If there's specific context or details you'd like to add, feel free to include those too.]. The initial strategic choices of the game participants are set as [image: Please upload the image or provide a URL so I can generate the alternate text for you.], [image: Please upload the image or provide a URL for me to generate the alternate text.], [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will be happy to assist!], [image: It seems there is no image attached. Please upload the image or provide a URL for me to generate the alternate text.].
5.1 Impact of carbon benefits on system evolution for steelmaker
Figure 6 demonstrates that the carbon benefits derived from technological innovation in the steel manufacturing sector are a key determinant of the strategic evolutionary trends for both steel manufacturers and construction enterprises. Let the set [image: Please upload the image or provide a URL, and I will help generate the alt text for it.] be defined as [image: Please upload the image or provide a URL so I can generate the alt text for you.]. It is apparent from Figure 7A, B that with the increase in carbon benefits from technological innovation [image: Please upload the image or provide a URL, and I'll generate the alt text for you.], steel manufacturers are progressively inclined towards embracing technological innovation in their production processes. However, such innovation in steel manufacturing is likely to result in higher production costs, which will subsequently drive up the prices of steel products. Consequently, construction enterprises, prioritizing their own revenue, may lean towards purchasing conventional products. Therefore, it is imperative that while the government provides technological innovation subsidies to steel manufacturers, it should also extend consumption subsidies to construction companies downstream. This dual approach will incentivize the purchase of green products by construction companies, thereby stimulating steel manufacturers to pursue technological innovation through market demand. Such a strategy will not only encourage the low-carbon transition of steel manufacturers but also contribute to the achievement of carbon reduction goals.
[image: Three line graphs show the interaction between steelmakers, construction companies, scrap recyclers, and the government over time for three different \( S_c \) values: 3.6, 4.2, and 4.8. As \( S_c \) increases, the amplitude and frequency of oscillations vary, with fewer fluctuations observed at \( S_c = 4.8 \), indicating stabilization.]FIGURE 6 | Impact of [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] on the evolution of the system.
[image: Two line graphs are displayed. Graph (A) shows the probability of microsaccade generation versus parameter \(x\) with five differently colored lines for \(\delta_s\) values: 0.007, 0.015, 0.02, 0.03, and 0.05. Graph (B) depicts the probability of gaze redirection versus parameter \(x\) with lines representing different \(\delta_s\) values: 0.001, 0.002, 0.004, 0.005, and 0.008. Both graphs show increasing trends.]FIGURE 7 | (A, B) Impact of [image: Please upload the image you would like me to generate alternate text for.] on steelmaker and construction company.
5.2 Impact of production costs of steelmaker on the evolution of the system
Figure 8 indicates that the production cost of steel manufacturers plays a crucial role in the evolution of strategies within the four-party game. Let [image: Equation displaying a set of numeric values: \(C_1 = \{34.6, 35.6, 36.6, 37.6, 38.6\}\). The numbers appear in ascending order within the set.] and [image: A mathematical expression showing \( C_0 = \{34.49, 33.49, 32.49, 31.49, 30.49\} \), representing a sequence of numerical values.]. It is evident from Figure 9A, B that altering the difference [image: Please upload the image or provide a URL so I can generate the alt text for you.] significantly impacts both steel manufacturers and construction companies. As the disparity [image: Please upload the image or provide a URL to it.] widens, steel manufacturers tend towards traditional production models, while construction companies lean towards green consumption. When the cost difference before and after technological innovation by steel manufacturers is small, they are inclined towards innovation due to the influence of carbon benefits and other potential gains from technological innovation. However, as this cost difference increases, this inclination diminishes gradually, yet it still approaches 1, suggesting that technological innovation by steel manufacturers is an inevitable trend. For the government, reasonably adjusting the subsidy mechanism is particularly important for carbon emission reduction in the steel industry. For construction companies, the greater the cost difference [image: Please upload the image or provide a URL so I can generate the alt text for it.], the more they are inclined towards green consumption. Due to the impact of the cost difference [image: Please upload the image or provide a URL for me to generate the alt text.], the price of steel products from steel manufacturers will inevitably rise, and as prices increase, the carbon benefits from purchasing green products by construction companies also increase, ultimately influencing the strategic choices of construction companies. Additionally, Figure 9C shows that the cost difference [image: Please upload the image or provide a URL to generate the alternate text.] also has a subtle effect on scrap steel recyclers. Although this impact is not significant, it generally increases the probability of technological innovation by scrap steel recyclers, indicating that technological innovation by steel manufacturers has a potential influence on the strategic evolution of scrap steel recyclers.
[image: Three line graphs show the dynamics of interactions among four entities: steelmaker, construction company, scrap recycler, and government. Each graph represents different conditions with C1 and C2 values. The top graph shows cyclical oscillations. The middle graph shows dampened oscillations stabilizing over time. The bottom graph shows rapid stabilization with distinct behaviors for each entity. Time progresses on the x-axis, and participation level is on the y-axis.]FIGURE 8 | Effect of [image: It seems like there might have been an issue with the image upload. Please try uploading the image again, and I will be happy to help with the alternate text.], [image: Please upload the image or provide a URL for which you need alternate text.] on system evolution.
[image: Three graphs labeled A, B, and C show various curves comparing different parameter sets. Each graph has a legend with five parameter sets color-coded. Graph A and B display increasing trends, while Graph C shows almost constant curves with an inset zoom. Axes are labeled E1 to E4 across all graphs.]FIGURE 9 | (A–C) Impact of [image: Please upload the image or provide a URL, and I will generate the alt text for you.], [image: Please upload the image or provide a URL so I can help generate the alt text for it.] on steelmaker, construction company and scrap recycler.
5.3 Impact of government credibility on system evolution
Figure 10 illustrates that the government’s credibility significantly influences the evolutionary process and outcomes of the strategies within the four-party game, with the most substantial impact on the strategic evolution trend of the government itself. Consequently, we define [image: It looks like the image did not load. Please try uploading the image again, and I will help generate the alternate text for you.] as [image: I'm sorry, I can't assist with that request.] to examine the influence of the government’s credibility on the strategic evolution trends of both the government and the downstream construction companies. Observations from Figure 11A indicate that an increase in [image: Please upload the image or provide a URL so I can generate the alternate text for it.] prompts the government to favor the implementation of consumption subsidies, substantiating the notion that enhanced credibility will likely result in higher costs for the government’s consumption subsidy programs. It is imperative for the government to balance its net revenue against budgetary constraints to effectively manage the optimal level of subsidies.
[image: Three line graphs display fluctuations in four variables over time, labeled "Steelmaker(x₁)," "Construction company(x₂)," "Scrap recycler(x₃)," and "Government(x₄)." Each graph represents a different scenario with R values of 0.12, 3.12, and 6.12. The x-axis denotes time (t) from 0 to 100, and the y-axis indicates variable values from 0 to 1. The graphs illustrate varying periodic behaviors, with distinct oscillation patterns as R values change.]FIGURE 10 | Effect of [image: Please upload the image or provide a URL so I can generate the alternate text for you.] on systematic evolution.
[image: Two line graphs labeled A and B depict different data trends over time, with various beta values in the legend. Graph A shows a declining trend in probability, while Graph B shows initially increasing probability that later declines. Each graph uses differently colored lines to represent beta values: 0.02, 0.12, 0.22, and 0.42.]FIGURE 11 | (A, B) Impact of [image: Please upload the image or provide a URL for it, and I will help generate the alternate text for you.] on government and construction company.
Furthermore, Figure 11B discloses that the probability of green consumption by construction companies initially rises with an increase in [image: Please upload the image you would like me to generate alt text for.], followed by a subsequent decline. This suggests that while the government’s consumption subsidies can provide an initial impetus for green consumption among construction companies, the effectiveness of this incentive diminishes over time. Even with rising government credibility, the motivation for green consumption behavior among downstream construction companies does not remain consistently high. In light of these findings, the government may need to explore alternative subsidy policies to encourage green consumption, potentially leveraging market demand to stimulate technological innovation within the steel manufacturing sector.
5.4 Impact of scrap recyclers’ processing costs on system evolution
Figure 12 indicates that the processing costs of scrap steel recyclers exert a notable influence on the strategic evolution of the recyclers themselves, as well as that of steel manufacturers and construction companies. By examining the impact of the differential [image: I'm unable to view images directly. Please upload the image or provide a URL, and I'll be happy to help with the alternate text.] on the evolutionary trajectories of these three stakeholders, and setting [image: Please upload the image or provide a URL so I can assist you in generating the alternate text.] to [image: A mathematical sequence is displayed, featuring the numbers 1.3, 1.4, 1.5, 1.6, and 1.7 enclosed in curly brackets.] and [image: Please upload the image or provide a URL for it, so I can generate the alternate text for you.] to [image: It seems there is no image attached. Please upload the image, or provide a URL or description for the image you would like alternate text for.], the findings from Figure13A demonstrate that an increasing disparity in [image: It seems there's no image to generate alt text for. Please upload an image or provide a URL.] leads to a marked reduction in the likelihood of technological innovation by scrap steel recyclers. This underscores the significance of processing costs as a determinant in the decision-making process regarding technological innovation by recyclers. With enhanced technological innovation subsidies and consumer subsidies from the government, the propensity for such innovation by scrap steel recyclers is likely to increase, as they weigh the costs of innovation against the subsidies they receive. Figure 13B elucidates that steel manufacturers are increasingly inclined towards technological innovation as the differential in processing costs before and after such innovation by scrap steel recyclers grows. This inclination stems from the fact that an increase in processing costs post-innovation among recyclers results in higher prices for the raw materials supplied to steel manufacturers, necessitating the adoption of innovation to bolster profitability.
[image: Three line graphs show dynamic supply-demand effects under construction recycling scenarios. X-axis represents time from 0 to 300; Y-axis represents proportion from 0 to 1. Blue, red, green lines indicate stakeholders: steelmakers, construction companies, scrap recyclers, and government. Top graph: oscillations with \(C_{in}=1.4, C_{ex}=2.5\). Middle: \(C_{in}=1.2, C_{ex}=2.7\). Bottom: \(C_{in}=1, C_{ex}=2.9\). Oscillations dampen as \(C_{in}\) decreases and \(C_{ex}\) increases.]FIGURE 12 | Effect of [image: It seems there was a mistake or an issue with the file upload. Please try uploading the image again or provide a URL if available. You can also include a brief caption for context.] and [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] on system evolution.
[image: Three line graphs labeled A, B, and C compare different function results. Each graph displays curves with distinct colors representing various parameters or datasets, marked in the legend. Graph A shows a steady increasing trend. Graph B features an inset with detailed view, highlighting a curve section. Graph C presents a similar upward trend as others, with curves slightly differing. Axes are labeled with variables and numerical values.]FIGURE 13 | (A–C) Impact of [image: Please upload the image or provide a URL so I can generate the alternate text for you.], [image: Please upload the image so I can assist you with generating the appropriate alt text.] on scrap recycler, steelmaker and construction company.
Furthermore, Figure 13C reveals that the probability of green consumption by construction companies exhibits a downward trend in response to the differential [image: It looks like you're referring to a mathematical expression, not an image. Please upload the image or provide a URL, and I can help generate the alternate text for it.]. This trend can be attributed to the influence exerted by the strategies of scrap steel recyclers on steel manufacturers, which subsequently affects the strategic preferences of construction companies.
5.5 Impact of government subsidies for technological innovation on system evolution
Figure 14 demonstrates that the government’s technological innovation subsidies exert a notable influence on the evolutionary dynamics of all four participants within the game system. In the context of sensitivity analysis, the parameters are adjusted as follows: [image: It seems there is an error in the request. Please upload an image or provide the URL, and I will assist you with creating appropriate alt text.] is set to [image: Please upload the image or provide a URL so I can generate the alternate text for it.] and [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] to [image: Please upload the image or provide a URL, so I can generate the alternate text for you.]. Observations from Figure 15A–C reveal that an increase in the government’s technological innovation subsidies prompts steel manufacturers to lean towards technologically innovative production models, underscoring the positive motivational role of government subsidies on the technological innovation of steel manufacturers. The probability of green consumption by construction companies exhibits an initial rise followed by a subsequent decline. This trend can be attributed to the fact that technological innovation by steel manufacturers augments the supply of green products in the market, which initially boosts the likelihood of green consumption by construction companies. When this probability begins to decline, it suggests that the government should intervene with consumption subsidies to incentivize the purchase of green products by construction companies.
[image: Three line graphs showing different scenarios with variables Gₛ and Gᵣ. Each graph includes lines for steelmaker, construction company, scrap recycler, and government. X-axis ranges from 0 to 200; y-axis ranges from 0 to 1. Graphs depict interactions and impacts over time, with varying oscillation patterns for each stakeholder.]FIGURE 14 | Effect of [image: Certainly! Please upload the image or provide a URL to generate the alternate text.], [image: Please upload the image or provide a URL, and I will help generate the alternative text for it.] on system evolution.
[image: Four graphs labeled A, B, C, and D showing probability against normalized detection times for various curves. Each graph includes a magnified inset highlighting specific curve intersections. Graphs differ in curve shape and intersection point, with key variations in data sets.]FIGURE 15 | (A–D) Impact of [image: It seems there might have been an issue with the image upload. Could you please try uploading the image again or providing a URL? Optionally, you can add a caption for more context.] and [image: Please upload the image or provide a URL for me to generate the alt text.] on quadrilateral subjects.
Furthermore, the probability of technological innovation by scrap steel recyclers also experiences a minor increase due to the marked enhancement in government subsidies. This indicates that there is a reciprocal influence among steel manufacturers, construction companies, and scrap steel recyclers, where the strategic choices of one can significantly sway the strategic propensities of the others. Considering the considerable costs associated with technological innovation subsidies, the government, prioritizing its own interests, is likely to transition from focusing on technological innovation subsidies to consumption subsidies over time. Figure 15D substantiates the finding that the likelihood of the government providing technological innovation subsidies diminishes with an increase in the subsidy amount.
5.6 Impact of government consumption subsidies on system evolution
From Figure 16, it is evident that government consumption subsidies have a significant impact on the evolutionary trends of steel manufacturers, construction enterprises, and the government itself. To further investigate the influence of subsidy amounts, we have established the following sets: [image: Mathematical equation representing the sequence \( G_d = \{0.24, 0.48, 0.96, 1.92, 3.84\} \).], [image: It seems like you've provided mathematical notation rather than an image. If you have an image to describe, please upload it or provide a URL. If you intended to describe data, feel free to provide additional context.], and [image: It seems like there is an issue. Could you please upload the image again or describe it in more detail?]. Figure 17A illustrates that as the amount of government consumption subsidies increases, steel manufacturers are more inclined to adopt technological innovations in their production models, and the likelihood of green consumption by construction enterprises also rises. This suggests that government subsidies, when provided at a certain level, can effectively encourage green production and consumption practices in both the steel manufacturing and construction industries. The fact that steel manufacturers acquire scrap steel from recyclers, thereby securing both raw materials for steelmaking and receiving subsidy income from the government, serves as a strong incentive for them to innovate technologically and engage in green production. Figure 17B indicates that consumption subsidies, acting as a direct source of revenue for green consumption by construction enterprises, significantly enhance the probability of purchasing green products. The larger the subsidy amount, the greater the propensity of construction enterprises towards green consumption. Furthermore, as consumption subsidies grow, the government may place greater emphasis on technological innovation subsidies. Figure 17C confirms that the probability of government technological innovation subsidies increases with the rise in consumption subsidies. As the sole incentive of consumption subsidies diminishes over time, appropriate technological innovation subsidies may be utilized as an additional incentive by the government. Lastly, the impact of government consumption subsidies on scrap steel recyclers is also revealed. Figure 17D demonstrates that government consumption subsidies do indeed provide a certain level of incentive for scrap steel recyclers, further integrating them into the green production cycle.
[image: Three line graphs depicting dynamics over time for steelmakers, construction companies, scrap recyclers, and government entities. The horizontal axis represents time from 0 to 200. The vertical axis shows fluctuating values. Each graph represents different parameters: \(G_d = 0.2, E_s = 0.04, E_d = 0.03\), \(G_d = 0.4, E_s = 0.08, E_d = 0.06\), and \(G_d = 0.8, E_s = 0.16, E_d = 0.12\). Lines vary between oscillatory and steady trends, indicating differing interactions or dependencies among entities. The graphs present distinct behavioral changes among the actors over time with varying intensities.]FIGURE 16 | Effect of [image: Sure, please upload the image you want me to generate alt text for.], [image: Please upload the image or provide a URL so I can generate the alt text for you.] and [image: Please provide the image by uploading it or share a URL, and I will generate the alternate text for you.] on system evolution.
[image: Four graphs labeled A, B, C, and D compare the probability of outage for different conditions. Each graph features multiple colored lines representing scenarios with varying parameters. Legends are included for clarity. Graphs A and D have insets with detailed views of sections of the main plot. Graph A shows rising probabilities, B and C moderate and steadier trends, while D illustrates fine fluctuations. The x-axis is consistent across all graphs, labeled from 0.2 to 1.0, while the y-axis ranges from less than 0.0 to 4.0.]FIGURE 17 | (A–D) Impact of [image: Text "G" followed by a subscript "d" in bold, typically representing the chemical symbol for Gadolinium on the periodic table.], [image: Please upload the image or provide a URL so I can generate the alternate text for you.] and [image: Please provide an image for which you would like me to generate alt text. You can upload the image or provide a URL.] on quadrilateral subjects.
5.7 Impact of government subsidy mechanisms
To further validate the feasibility and effectiveness of government subsidy mechanisms in promoting various stakeholders’ actions, we consider two states: [image: Please upload the image or provide a URL for it, and I will help generate an alternate text for you.] representing the implementation of consumption subsidies, and [image: I'm unable to identify or describe images directly from the text provided. Please upload the image or describe it further so I can help generate accurate alt text.] representing the implementation of technological innovation subsidies. We conduct a simulation analysis of the evolutionary process of different initial strategies among steel manufacturers, construction enterprises, and scrap steel recyclers in a three-dimensional space. Figure 18 reveals that when [image: It seems there is an issue with the image upload. Please try uploading the image again or provide a URL. Optionally, you can add a caption for additional context.], that is, when the government implements consumption subsidies, the strategy choices of steel manufacturers, construction enterprises, and scrap steel recyclers fluctuate due to various factors such as the size of subsidies provided by the government, production costs, and carbon earnings. This fluctuation prevents the formation of a stable strategy. When [image: Please upload the image or provide a URL so I can help generate the alt text for it.], indicating that the government can maintain a certain level of probability for technological innovation subsidies, although a stable strategy is not formed, the probability of steel manufacturers and scrap steel recyclers engaging in technological innovation significantly increases, gradually approaching unity. Meanwhile, the strategy choices of construction enterprises do not exhibit significant changes, remaining at a certain level of probability for non-green consumption strategies. This is consistent with the results of the stability analysis of strategy combinations under different government subsidy policies mentioned earlier.
[image: Two 3D vector field plots showing trajectory changes over time with parameter variations. The left plot represents \( m = 0 \) with dense, circular vector lines, while the right plot shows \( m = 0.9 \) with more curved, spread-out lines. Both plots have axes labeled with \( x \), \( y \), and \( z \) coordinates.]FIGURE 18 | Impact of government subsidy mechanisms on the evolution of parties’ strategies.
6 DISCUSSION
This paper presents findings obtained by constructing and solving an evolutionary game model involving four parties. The discussion is divided into two parts: first, an introduction to the research results, followed by policy implications for stakeholders in steel production, consumption, and recycling. The aim is to foster technological innovation across the entire steel industry and facilitate a low-carbon transition, thereby contributing to the nation’s Dual-carbon goals.
6.1 Research findings
In this paper, we have constructed and theoretically analyzed a four-way evolutionary game model, demonstrating that it supports four Evolutionary Stable Strategies (ESS). The system’s optimal evolutionary stability point is identified as (1,1,1,1), with the necessary conditions for this stability being [image: The mathematical expression reads \( P_q < U + w_d \).], [image: The image shows a mathematical inequality: \( R + G_z + G_p < E_d + G_d \).], and [image: Mathematical expression depicting an inequality: \( C_{r_2} + R_p < S + G_z + R_h + C_{r_1} \).]. Through numerical simulations, we have assessed the impact of six key factors on these four strategic approaches, yielding significant findings. Additionally, we have analyzed the influence of government subsidy mechanisms on the gaming system, focusing on the stable strategy tendencies of steel manufacturers, construction companies, and scrap recyclers in response to technological innovation subsidies and consumption subsidies. The principal research findings are summarized below:
	(1) The paramount factor influencing carbon emission reduction across the steel production, sales, and recycling stages is the production cost of steel manufacturers. This cost differential [image: Please upload the image or provide a URL so I can generate the alt text for it.] post technological innovation significantly impacts the strategic decisions of construction enterprises, scrap recyclers, and the government. While previous studies have focused on the additional production costs incurred during technological innovation, they have overlooked the broader implications of the cost differential (Chen and Wang, 2023). We find that a modest production cost differential correlates positively with the likelihood of technological innovation by steel manufacturers and scrap recyclers, as well as with the propensity for green consumption by construction firms. However, as the cost differential surpasses a certain threshold, the positive correlation between the probability of green consumption by construction firms and the production cost differential inverts to a negative one. This suggests that the increased product price, stemming from higher costs, ultimately affects the net income of construction firms, prompting a strategic shift. Consequently, it is imperative for the government to bolster regulatory and economic support for enterprises, particularly when their capacity for technological innovation is low (Shi et al., 2023).
	(2) The second most influential factor is the carbon returns [image: Please upload the image or provide a URL, and I would be happy to help generate the alternate text for it.] derived from technological innovation by steel manufacturers. With the carbon trading market as the primary source of carbon revenue, the commodification of carbon emissions can serve as a potent catalyst for manufacturers to enhance production efficiency and engage in technological innovation (Fang et al., 2023; Wang et al., 2023). While existing literature has examined the impact of carbon trading on corporate technological innovation (Jia et al., 2024), it has neglected the effects of carbon benefits on stakeholders post-implementation of carbon trading. From an evolutionary game perspective, our study reveals that steel manufacturers are inclined to innovate technologically as carbon benefits escalate. Furthermore, the escalation of carbon benefits leads to increased production costs and product prices for steel manufacturers, which in turn prompts construction companies to prefer traditional consumption patterns.
	(3) The impact of government consumption subsidies ranks third in significance, with the probability of technological innovation by steel manufacturers and scrap recyclers being positively correlated with these subsidies. Generally, the likelihood of green consumption by construction firms is also positively correlated with consumption subsidies. The least influential factors, though still impactful to some degree, include subsidies for technological innovation, processing costs for steel scrap recyclers, and government credibility. Research has indicated that in the nascent stages of technological innovation, governments often extend incentive subsidies to manufacturers to foster innovation (Xu et al., 2024). Conversely, in the later stages, they tend to offer direct subsidies to consumers to promote market acceptance and widespread adoption of innovative products. Our study confirms that this pattern holds in the steel industry, where the potential benefits of both technological innovation subsidies and consumer subsidies influence the government’s subsidy decisions. As the government’s technological innovation subsidies escalate, there is a preference for implementing consumption subsidies, with the likelihood of offering technological innovation subsidies gradually diminishing. The government must rationally adjust the form of subsidies based on its interests. Moreover, as government credibility strengthens, the probability of green consumption by construction enterprises initially increases and then follows a decreasing trend, indicating a waning incentive effect of consumption subsidies over time.
	(4) Lastly, the processing cost differential before and after technological innovation by scrap steel recyclers merits attention. While previous studies have established a tripartite evolutionary game model involving large steel enterprises, small and medium-sized steel enterprises, and the government to explore synergistic emission reduction (Tian et al., 2024), our study broadens this perspective by incorporating scrap recyclers into the game model, thereby enriching the research findings in this domain. We conclude that an increasing processing cost differential [image: Please upload the image or provide a URL for me to generate the alt text.] significantly reduces the probability of technological innovation by scrap recyclers. Processing costs are a pivotal factor influencing their technological innovation, and government subsidies can effectively incentivize the low-carbon transition of scrap recyclers.

6.2 Policy implications
Through comprehensive analysis, this study delineates the future trajectory for carbon reduction in the steel industry, which involves technological innovation by steel manufacturers and scrap steel recyclers, green consumption by downstream construction enterprises, and the implementation of technological innovation subsidies by the government. Building on the deductions from the previous text, this paper proposes policy recommendations for carbon reduction in the production, consumption, and recycling processes of steel.
To alleviate the pressure on steel manufacturers to transition to low-carbon practices, the government should provide reasonable subsidies to inject new momentum into their technological innovation. Green technological innovation is crucial for addressing environmental pollution and achieving sustainable development. However, steel manufacturers often face significant upfront costs and slow returns on investment when engaging in green technological innovation. Despite these challenges, such innovation is essential for the transformation and competitive edge of steel manufacturers. Therefore, the government must offer financial support through technological innovation subsidies to enhance their motivation for green technological innovation. As low-carbon metallurgical technologies advance, steel manufacturing processes will undergo revolutionary changes. Steel manufacturers need to recognize the situation, accelerate high-quality development, improve green technological innovation levels, and reduce pollutant emissions. They should intensify research and development in cutting-edge metallurgical technologies, adopt innovative development concepts, transform resources into valuable assets, enhance resource utilization, and gradually resolve environmental pollution issues.
Encouraging Green Consumption in Downstream Construction Enterprises. The consumption behavior of construction enterprises directly impacts the production methods of steel manufacturers. Their preference for green products can compel steel manufacturers to innovate technologically. The government should maintain a certain level of consumption subsidies to encourage construction enterprises to purchase green products. Additionally, relevant departments should leverage new media platforms to promote the concept of green consumption in the construction sector, gradually encouraging construction enterprises to prioritize green and low-carbon products. The government should strengthen regulation of enterprises, promote green certification of low-carbon products, and encourage the use of credible environmental labels to bolster the resolve of construction enterprises to purchase green products. For construction enterprises, it is advisable to use Building Information Modeling (BIM) technology in the design phase to optimize steel usage, reduce waste from over-purchasing and cutting. During construction, they should use high-precision cutting tools and technologies to ensure accurate steel cutting and minimize leftover waste. It is also essential to enhance on-site management to prevent waste and loss due to improper storage. Finally, establishing cooperative relationships with local scrap steel recyclers ensures that steel from construction waste can be effectively recycled and reused.
Enhancing the Viability and Competitiveness of Scrap Steel Recyclers. The strategic choices of scrap steel recyclers are influenced by their processing costs. While ensuring the normal profit margins of scrap steel recyclers, the government should provide technological innovation subsidies and consumption subsidies to foster healthy competition among recyclers. Large-scale recyclers, due to their substantial business volume, require significant capital, and government departments should increase financial support for scrap steel recyclers. Scrap steel recyclers themselves should gradually establish a comprehensive recycling supply network, promote the scaled and clustered development of the scrap steel industry, and continuously establish new types of scrap steel recycling bases that integrate collection, sorting, processing, and distribution in various regions. By leveraging scaled operations, they can enhance market competitiveness. Additionally, scrap steel recyclers should take advantage of government support to actively optimize production processes and equipment through technological innovation, improve the efficiency of scrap steel recovery and reprocessing, reduce the waste of materials and energy, and achieve the maximum carbon reduction goals at the recycling stage, contributing to the low-carbon and high-quality development of the economy and society.
Strengthening Coordination in Carbon Reduction Across the Steel Production, Consumption, and Recycling Processes. The government, with different interests in implementing technological innovation subsidies and consumption subsidies, has its strategic choices influenced by the strategies of steel manufacturers, construction enterprises, and scrap steel recyclers. As the linchpin of the system, the government should reasonably arrange subsidies and regulate the amount and timing of subsidies. Moreover, the government can also implement a dynamic subsidy system based on the state of social development and the different stages of the low-carbon transition of the steel industry. The study found that the carbon benefits from technological innovation by steel manufacturers are the second most sensitive factor. Therefore, it is crucial for the government to continuously improve carbon emission standards and quotas for the steel industry and integrate them into the legal and regulatory framework. This includes clearly defining the carbon emission requirements that steel manufacturers must adhere to during their production and operational processes, as well as the corresponding punitive measures and penalty mechanisms. Furthermore, the carbon emission quota trading mechanism in the steel industry is not yet mature, and the government must strengthen guidance to encourage voluntary emission reductions by steel manufacturers, enhancing the efficiency of carbon emission management and control. This will promote technological innovation and optimize production processes to reduce carbon emission levels.
7 CONCLUSION
This study, for the first time, introduces the four-player Evolutionary Game Theory (EGT) into the carbon reduction system of the steel industry, encompassing the cyclical processes of production, consumption, and recycling. The paper not only extends the application scope of EGT but also enriches existing research on carbon reduction in the steel industry, offering targeted policy recommendations for all stakeholders. Unlike previous studies, this paper focuses on finding an equilibrium of interests among the system’s entities under government subsidies, an aspect that has not been thoroughly considered in prior research. The main conclusions are as follows.
	(1) This study affirms the critical role of government subsidies in fostering technological innovation among steel manufacturers. Well-targeted subsidies can catalyze low-carbon production processes, which are pivotal for steering the steel industry towards a sustainable and eco-friendly future. Consequently, it is imperative for the government to persist in refining and enhancing policies that subsidize technological innovation within the steel sector. This will not only stimulate technological advancement and innovation for low-carbon production but also ensure the industry’s long-term viability and competitiveness.
	(2) The strategic decisions regarding technological innovation made by steel manufacturers and scrap recyclers are predominantly cost-driven. Subsidies aimed at technological innovation can mitigate a portion of these costs, thereby offering a compelling incentive for embracing low-carbon transformation. It is advisable for the government to contemplate offering increased financial assistance and tax relief to alleviate the financial strain associated with technological innovation. This approach would encourage the adoption of more environmentally conscious and efficient production methods.
	(3) The carbon benefits derived from technological innovation for steel manufacturers are a significant motivating factor. If steel manufacturers stand to gain from environmental regulations, their likelihood of engaging in technological innovation is substantially heightened. This underscores the importance of refining the carbon trading mechanism within the steel industry. The government is encouraged to enhance this mechanism to motivate businesses to decrease carbon emissions through market-based strategies. Additionally, providing financial incentives or subsidies to businesses for carbon reduction efforts could foster a synergistic relationship between technological innovation and environmental regulation.
	(4) The strategies employed by construction companies may be influenced by the production costs and carbon returns of steel manufacturers. There is a positive correlation between the carbon gains of steel manufacturers and the green purchasing tendencies of construction enterprises. When the disparity in production costs for steel manufacturers surpasses a certain threshold, construction enterprises tend to revert to traditional consumption patterns. Therefore, it is recommended that the government and industry bodies collaborate to boost demand for green building materials within the construction sector. Efforts should be made to incentivize construction firms to adopt green materials and low-carbon technologies through the establishment of green building standards and certification programs.

This paper endeavors to offer a set of constructive suggestions to address the complexities of carbon emission reduction in the iron and steel industry. However, it acknowledges its own limitations and suggests that further research is necessary to enhance the understanding of this intricate system. While this study has taken into account 21 factors, it has primarily focused on a subset of key parameters. The technological innovation within the broader context of carbon emission reduction is indeed a multifaceted issue, and there is scope for incorporating additional parameters to achieve a more holistic analysis. Considering the involvement of stakeholders such as the upstream companies of steel manufacturers in the carbon emission lifecycle of the steel industry, it would be beneficial to expand the scope of this research to include these entities. This would provide a more comprehensive view of the carbon emissions across the entire steel life cycle. Furthermore, given the close interconnection between scrap recyclers and steel manufacturers, exploring the potential of merging these two entities within the model could simplify the analysis while still capturing the essential dynamics. This approach merits consideration as a valuable direction for future studies aiming to refine and expand upon the current research.
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With the proposal of the carbon peaking and carbon neutrality strategy, the concept of green and low-carbon began to take root, and the influence of foreign direct investment on the progress of green technology is attracting more and more attention. Based on the panel data of 30 provinces in China from 2011 to 2020, this study examines the effect of green technology progress on FDI and its geographic and policy heterogeneity by using generalized least square regression method, and discusses its mechanism combined with the moderating effect of trade opening. The results show that: (1) the introduction of FDI has a significant positive effect on green technology progress, while the moderating effect of trade openness weakens the positive effect, which has a negative impact on green technology progress; (2) The results of the heterogeneity analysis suggest that the Belt and Road Initiative is an important factor in the moderating effect of trade openness. Beneficiary provinces along the Belt and Road are able to reap the positive effects of trade in terms of green technological advances, while regional differences based on geographic location gradually weaken. This study provides a new policy reference for boosting green technology progress in China and different provinces and helping to achieve the two-carbon goal from the two aspects of introducing FDI and coordinating trade openness.
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INTRODUCTION
At present, the carrying capacity of global resources and environment is facing severe challenges. China, as a major energy consumer, actively embraced its responsibility for environmental stewardship, formally announcing its ambitious objectives of achieving carbon peaking and carbon neutrality1 in 2020, which puts forward higher requirements for accelerating the green transformation of its development mode. Meanwhile, the realization of green technology progress is considered as an important means of green transformation of economic development (Zhao et al., 2022). By regulating pollution generation, emission and treatment, as well as reducing energy consumption, green technology can effectively improve resource and environmental problems in the process of economic development (Levinson, 2009), thus promoting the realization of the two-carbon goal. What’s more, it has also become an important driving force for China to achieve high-quality economic growth in the new era. The sources of green technology progress are usually divided into two aspects: internal technology innovation and external technology introduction. The former mainly relies on independent innovation, while the latter relies on opening up to the outside world (Luo et al., 2021). Due to the unbalanced regional economic development, relying on green technology independent innovation is easy to cause such problems as underpowered and lagging development. Utilize the green technology advancement effect of opening up will be an essential supplement to improve the level of China’s green technology. As for developing countries, foreign direct investment is an important channel for international technology transfer and capital accumulation (Pan et al., 2020). Since the 1970s, China has begun to vigorously implement the economic policy of opening up to the outside world and continuously expand the introduction of foreign direct investment. As the largest recipient of foreign investment among developing countries, China’s total actual foreign direct investment climbed from US $40.7 billion in 2000 to US $163 billion in 2020, an increase of 300 percent over the past 20 years. Although the scale of foreign investment in China continues to expand, the accompanying environmental effects can not be ignored. On the one hand, foreign direct investment plays an important role in introducing international capital, promoting technological progress and increasing employment opportunities. On the other hand, due to low entry barriers and insufficient supervision at the early stage, the quality of foreign investment introduced in China in recent years is uneven, such as extensive utilization of resources and environmental pollution (Zhang et al., 2020). In the context of resource depletion and environmental degradation, which have severely hampered the current economic growth, the research on the impact of foreign direct investment (FDI) on the environment of the host country has become a hot topic for many scholars.
In studies on environmental effects of FDI, two typical hypotheses are pollution halo hypothesis and pollution paradise hypothesis. The pollution halo hypothesis holds that FDI can improve the environmental quality of the host country and effectively protect the ecological environment, which generally supports the promoting effect of FDI on green technology progress (Copeland and Taylor, 2001; Karen et al., 2004; Huang et al., 2022). The pollution paradise hypothesis, also known as the pollution refuge hypothesis, refers to the concentrated flow of pollution-intensive industries into countries and regions with low environmental standards, which results in concentrated pollution and serious damage to the ecological environment, and holds a negative view on the environmental effect of FDI (Markusen and Venables, 1999; List and Catherine, 2000; Singhania and Saini, 2021). A large number of scholars have tried to verify the validity of the two hypotheses by taking different countries or regions as research samples. Most of the classic studies have chosen developing countries as examples (Blomstrom, 1986; Kokko et al., 1996; Demena and Afesorgbor, 2020; Tian et al., 2023) to verify the pollution transfer behavior of developed countries or the “race to the bottom” behavior of underdeveloped regions. As the largest developing country at present, the research conclusions on whether the pollution halo hypothesis of FDI is true in China are still not uniform. Zhang and Zhou (2016), You and Xiao (2022) confirmed the establishment of the pollution halo hypothesis by studying provincial samples in China, while Lu et al. (2023) and Bakhsh et al. (2017) supported the pollution paradise hypothesis in their research conclusions. Based on the above literature review, a great major number of studies have gathered in the analysis of FDI environmental effects, but few literature have paid attention to the spillovers of FDI on green technology innovation. Indeed, the relevance of green technologies to improving environmental sustainability is well documented. In the latest study of Uche et al. (2023), it is discussed in detail how technological innovation can mitigate the negative impact of FDI on the ecological environment of BRICS countries. The realization path of environmental effect shows that green technological progress is conducive to the upgrading of industrial structure, realizing pollution and carbon reduction, and thus improving the ecological environment (Luo et al., 2020). Therefore, this study intends to analyze the impact of FDI on green technology in China to prove its environmental effect.
This study attempts to answer the following research questions: In the context of two-carbon, can the environmental effects of FDI contribute to the improvement of green technology level in China? In addition, will trade openness in foreign economy affect the effect of green technology progress brought by FDI? In order to answer the above research questions, this study started with the panel data of 30 provinces in China from 2011 to 2020, constructed the green technology level index with the green patent data, measured the FDI level with the actual amount of FDI utilized by each province in that year, and adopted the FGLS model regression in the consideration of the heteroscedasticity of panel data and serial correlation. The possible moderating effects of trade openness are comprehensively considered, and regional heterogeneity is studied by dividing sub-samples according to geographical location and policy influence. Based on the empirical test of FDI on China’s green technology progress, this study finally draws the research conclusion.
Compared with the existing studies, the marginal contribution of this study is as follows. First, trade openness is introduced as the moderating variable of FDI’s influence on green technology progress. Different from the existing literature, which often takes environmental regulation and industrial structure as the moderating or intermediary variables, this study pays attention to trade openness, which is also a component of foreign economy with FDI, and takes it as the moderating variable to observe its role in the process of FDI’s effect on green technology progress. Second, regional heterogeneity is discussed by dividing samples in different dimensions. Most studies often divide regions according to the standards of east, central and west. This study takes into account the dual influence of geography and policy on the introduction of foreign investment in the openness up and divides the total sample into three sub-samples according to the geographical location: coastal, inland and neighboring areas. According to the Belt and Road Initiative2, the provinces along the Belt and Road and other provinces are divided into two sub-samples. By analyzing the effect of FDI on green technology progress, this study discusses the relationship between foreign economy and green development in different regions of China, and makes a contribution to the study on spillover effect and environmental effect of opening up.
The rest of this study is as follows. The second part reviews the relevant literature. In the third part, hypothesis 1 and 2 are proposed based on the analysis of the influence mechanism and the moderating effect. The fourth part establishes the research model and estimation idea, empirically tests the previous hypothesis, and further discussion about the regression results is in the fifth part. The last part summarizes the research conclusions and puts forward some policy suggestions.
LITERATURE REVIEW
Green technology is a general term for all types of modern technologies that reduce environmental pollution, energy consumption, and improve the ecological environment (Braun and Wield, 1994). The modern view prefers to distinguish and contrast green technology with traditional technology, and summarizes green technology innovation as technology innovation that achieves both ecological and economic benefits. There are numerous studies on the factors influencing green technological progress, and two paths exist in general: domestic technological innovation and foreign technology introduction (Wang et al., 2016), and an important way of foreign technology introduction is FDI and trade exchanges in the opening up of the country.
At present, there is a lot of research on the impact of FDI on green technology development, and there are three main views on whether FDI as an important international R&D channel can promote green technology progress in host countries: “promotion theory”, “suppression theory” and “uncertainty theory”. The “promotion theory” supports the pollution halo hypothesis (Letchumanan and Kodama, 2000), while the “suppression theory” is consistent with the pollution paradise hypothesis (Leonard, 1984). The “promotion theory” has been recognized by many scholars. Dating back to Romer (1986) who based on the new growth theory, emphasized the technology diffusion effect of international trade and suggested that foreign economic development could lead to domestic technological progress and thus domestic economic growth, and the “promotion theory” is supported by subsequent empirical studies (Amendolagine et al., 2021; Hasan and Du, 2023). The current consensus in academic research focuses on the flow of green technology and innovation through the movement of people and industry chain linkages in the process of industrial optimization, which can reduce carbon emissions and achieve the pollution halo effect (Ahmad et al., 2021; Luo et al., 2021). With the increasing maturity of green technology, the research directions extended from it are gradually enriched. Many scholars have started to discuss the green technology effect of FDI in cluster distribution from a spatial perspective, which also validates the “promotion theory”. Based on inter provincial panel data, Xu and Deng (2012) investigate the geographical clustering of FDI and environmental pollution in China, and reject the idea that the pollution paradise hypothesis is valid in China. Similar to this study, Yu et al. (2021) chose Chinese prefecture-level city data as a sample to demonstrate that the green technological progress effect of high aggregation of FDI significantly promotes the upgrading and aggregation of green total factor productivity in itself and neighboring cities.
Scholars who hold the “suppression theory” have also explored various directions (Feng et al., 2021; Qiu et al., 2021; Pathak et al., 2013), mainly focusing on the negative spillover effects of FDI. Haddad and Harrison (1993) conclude in their study of a Moroccan sample that there is no significant positive effect of FDI on the technological progress of the host country, and even a negative spillover effect. Combining the effects of environmental regulations, Behera and Sethi (2022) in their study of OECD (Organization for Economic Cooperation and Development) country panel data, empirically test the spillover effects of FDI in the short and long run respectively. The results show that FDI in both the long and short run exhibited negative spillover effects, which were detrimental to green technological progress, just validating this conclusion. Scholars who support the “uncertainty theory” suggest that there is uncertainty about the impact of FDI on green technological progress, and the specific direction of impact needs to consider the combined effect of multiple effects of FDI and many realistic problems in the process of investment inflow (Song and Han, 2022). Grossman and Krueger (1992) were the first to construct a “three-effect” model, which decomposed the environmental effects of FDI into scale effects, structural effects, and technology effects. Since then many scholars have attributed the ultimate impact of FDI on the environment and green technology to the superposition or extension of these three effects (Ning et al., 2023).
In addition to FDI, trade openness is another important area of the external economy. On the one hand, similar to FDI, it can also bring about various effects such as economic growth, technological spillovers, and environmental effects (Huang et al., 2018). The classic study by Copeland and Taylor (1994) analyzed the link between trade and technological progress, and proposed for the first time that the twin goals of pollution reduction and economic growth can only be achieved by accessing green technological advances in the context of openness to the outside world. Then the biased technological progress effect of trade openness thus led to a discussion (Acemoglu, 2015). It has been shown that international trade leads capital-intensive countries to focus on capital-oriented technological progress, while labor-intensive countries focus on labor-oriented technological progress (Miller and Upadhyay, 2000). As a labor-intensive country, China is therefore able to achieve green technological progress in favor of environmental protection in labor-intensive clean production (Cao and Wang, 2017). On the other hand, the interconnection between trade openness and FDI is also an important area of economic research. The relationship between trade and FDI can be regarded as the relationship between trade liberalization and capital flows, and there are two theories of substitution and complementarity in academia. The traditional FDI location choice theory represented by the “tariff jump” theory3 in the early days believed that the rise of tariff and other trade barriers would lead to the substitution effect of FDI on international trade. With the development of trade liberalization, the vertical industry chain argument suggests that expanding trade liberalization can promote FDI inflows to industry-linked countries. The theory of substitution is thus challenged. In recent years, green development has become a hot topic, and discussions related to trade and FDI are gradually linked to environmental standards. The negative outputs such as increased resource pressure and ecological damage caused by trade have pushed up the level of environmental regulations and restricted the inflow of different types of foreign investment into the domestic market. While this type of research cannot strongly support the theory of substitution relationship, it has challenged the theory of complementary relationship. Currently, there are more studies on the relationship between FDI and trade openness, and the relationship between trade openness and green technological progress in the existing literature. But there are still some gaps in the studies involving the enhanced or weakened regulatory role embodied by trade openness in the process of FDI exerting its green technological progress effect.
In summary, the existing literature has not reached a consensus on the study of the green technological progress effect of FDI, and this paper is necessary to examine the green technological progress effect of FDI again using Chinese provincial sample data as the research object. The existing literature provides a certain reference role for this paper, but when studying the green technological progress of FDI affecting host countries, little literature has focused on the direct and indirect impact effects played by trade openness as another important channel of international R&D. As the two major channels of foreign opening, can the green technological progress effect of FDI still exert the expected influence under the limitation of trade level in the host country? At the same time, along with the objective economic structure constraints such as industrial structure upgrading, China is now facing a new period of opening up to the outside world, which is more urgent in the process of achieving green technological progress and promoting green development. The issue of the green effect of FDI in China is worth further investigation.
THEORETICAL MECHANISM

	(1) FDI and Green Technology Progress

The direct impact of FDI on the progress of green technology is mainly reflected in many aspects such as capital, technology and material resources. Firstly, as the world’s largest developing country, China’s green technology development starts late compared with that of developed countries. The capital is relatively more scarce in China. Enterprises, as the main body of technology research and development, have a long-term shortage of technology research and development funds. The introduction of FDI can provide a large amount of financial support for China’s green technology development. Secondly, FDI can realize the flow and spillover of green technology through multinational enterprises, and improves the green technology innovation capability based on imitation and secondary innovation, which drives the overall green technology level of the market (Castellani et al., 2022). Finally, in terms of physical resources, the form of vertical industrial linkage promotes multinational enterprises to introduce advanced production equipment and high-quality raw materials from the parent company directly into the host country subsidiary to accelerate the formation of large-scale enterprise production (Ascani and Gagliardi, 2020). FDI also enhances international talent exchange through multinational corporations and others to improve the quality of green innovation talent and promote green technology progress. In addition, the adjustment of FDI introduction structure also affects the development of domestic green technology. When FDI flows more to high pollution and high energy consumption industries, it will increase environmental pollution and green technology pressure in the host country; while when FDI flows to low pollution and low energy consumption industries, it is beneficial to ecological environmental protection and stimulates green technology innovation (Wang et al., 2021). With the adjustment of China’s industrial structure, the proportion of tertiary industry output value rises, the type of FDI foreign investment flowing to the service industry increases, and the structure of FDI introduction is optimized, which stimulates enterprises’ innovation awareness of green technology.
FDI also brings a series of impact effects. When the difference in green technology level between the foreign capital out-flowing country and the in-flowing country is quite large (which usually occurs between developed and developing countries), as foreign enterprises enter the domestic market, local enterprises are more motivated to further increase R&D investment, focus on market demand orientation, and achieve green technology upgrading and reform based on imitation or seeking cooperation, resulting in a learning effect (Fosfuri and Saggi, 2002; Guo and Chen, 2011). In terms of industry chain linkage, due to the synergistic development of the upstream and downstream of the industry chain, the green production methods of the upstream enterprises link the environmental protection processes of the downstream manufacturers’ raw material supply, which makes them more competitive in order to improve the efficiency of resource utilization. And they are motivated to continuously improve the level of green technology, forming a linkage effect. In terms of market competition, foreign enterprises with advanced green technologies raise the green standards in the market, which may form green barriers and discourage domestic enterprises from green innovation on the one hand. On the other hand, it may also force domestic enterprises and trigger a new round of green technology reform. Therefore, there is a double competition effect of FDI (Bernard et al., 2003; Jin et al., 2019).
Based on the above analysis, this study proposes hypothesis H1: The introduction of FDI will have a catalytic effect on the progress of green technology in the host country.
	(2) Trade Openness, FDI and Green Technology Progress

The influence of trade openness on the effect of FDI on green technological progress is mainly reflected in the following two directions. On the one hand, it is the advantage of attracting capital and competitive effect brought by expanding trade openness. First, when trade is highly open, foreign products and services will flow more to the domestic market, attracting overseas investment to set up factories and enterprises in China. Thus trade openness establishes a good production base for foreign investment, which can further bring into play the comparative advantage of FDI. It will expand the fields and ways of economic and technical cooperation, and promote the development of green technology on the basis of economic construction. Second, expanding trade openness will lead to domestic enterprises facing more overseas competitors, stimulating domestic enterprises to participate in international market competition and forcing green technology progress. On the other hand, trade openness will lead to capital crowding out and competition. First, the over-exploitation of resources and pollutant emissions caused by trade openness will increase production costs, crowd out capital investment in green innovation, and easily lead to high environmental regulations, which will affect the inflow of FDI and hinder the spillover and diffusion of green technology. Second, the expansion of market scale brought by trade openness will prompt some enterprises to take the “low-end” route of comparative advantage, which will also bring about the loss of FDI and inhibit the innovation and progress of green technology. In addition, the implementation of trade policy reflects the level of a country’s openness and is also an important factor affecting capital flows in the international capital market. Along with the frequent occurrence of international problems such as global regional wars, energy crises and the rise of trade protectionism, the trade policies of various countries have been fluctuating and generally tightened, leading to the obstruction of international capital flows, which is not conducive to the progress of green technology in developing countries.
Both trade openness and FDI belong to a country’s foreign economic development, and there are also technology spillover, competition effects and other influence mechanisms on green technology. This study takes trade openness as a moderating variable and introduces the interaction term of FDI and trade openness in the model to test the effect. Based on this, this study proposes the second hypothesis H2: there is a moderating effect of trade openness on the green technology progress effect of FDI, but the direction of the effect is uncertain. Figure 1 is a mechanism diagram that clearly shows the mechanism impact of this section.
[image: Flowchart illustrating the impact of Foreign Direct Investment (FDI) on green technology processes. FDI influences capital, technology, and resources, leading to enterprise innovation. It also contributes to learning, linkage, and competition effects. Trade openness impacts the entire process, supporting green technology advancement.]FIGURE 1 | Interaction mechanism of fdi, trade openness and green technology progress.
METHODS AND DATA

	(1) Methods

Since Griliches (1979), Griliches (1986) proposed the theory of knowledge production function, the function has become an important theoretical model basis for studying regional innovation and knowledge flow. Along with the development of endogenous growth theory, the knowledge production function has been widely used to analyze the input-output relationship of innovation activities, involving knowledge spillover effects within different fields. This study draws on the knowledge production function of the following Equation 1:
[image: The formula represents an economic production function: \(Y_t = A_{t}K_{t}^{\alpha}L_{t}^{\beta}e^{\epsilon_t}\), where \(Y_t\) is output, \(A_t\) is total factor productivity, \(K_t\) is capital, \(L_t\) is labor, \(\alpha\) and \(\beta\) are output elasticities, and \(e^{\epsilon_t}\) represents an error term.]
Referring to Griliches, the green technology progress effect of FDI is expanded and studied on the basis of technology spillover of FDI, and other influencing factors are summarized into the control variable set. The Equation 2 is obtained:
[image: Math equation representing GTP as a function involving constants and variables. It includes parameters \(A_f\), \(FD_{fi}\), \(X_{i}^{\beta}\), and \(e^{*}\) with the equation number (2) on the right.]
To eliminate the effect of heteroskedasticity, the selected data and variables were logarithmically processed and further organized to obtain the following model:
[image: Logarithm of price \( \text{Lngtp}_{it} = \beta_0 + \beta_1 \ln f d_{it} + \sum_{i=2}^{6} \beta_i \ln X_{it} + \epsilon_{it} \). Equation (3).]
[image: Mathematical equation representing a model: Ln\(p_{it}\) equals \(\beta_0\) plus \(\beta_1 \ln fdi_{it}\) plus \(\beta_2 \ln open\) plus \(\beta_3 \ln fdi_{it} \cdot \ln open_{it}\) plus the sum from \(i=4\) to 8 of \(\beta_i \ln X_{it}\) plus \(\epsilon_{it}\), labeled as equation four.]
Where [image: Please upload the image you would like me to generate alt text for.] is green technological progress, [image: Please provide the image or a link to it, and I will generate the alternate text for you.] is the level of foreign direct investment, [image: Please upload the image or provide a URL so I can help generate the alternate text.] is the trade opening moderating variable, [image: Please upload the image or provide a URL so I can generate the alt text for you.] is the set of control variables, including energy consumption level, environmental regulation level, industrial structure, urbanization level, human capital. The subscripts [image: Please upload the image you would like me to describe, and I will generate the alternate text for you.], [image: Please upload the image for which you need the alternate text.] denoting different regions and years, respectively, [image: Please upload the image or provide a URL to generate the alt text.] are random disturbance terms. Equation 3 is the baseline regression model, and Equation 4 is the moderating effect model.
	(2) Variables

Explained variable. Green technological progress ([image: Please upload the image for which you need alternate text, and I'll be happy to help!]). Existing studies mainly measure green technological progress from two dimensions, one is to construct proxies through green total factor productivity, and the other is the indicator method. Among them, green total factor productivity mainly measures the level of green efficiency, while the indicator method mainly constructs indicators with R&D expenditure or green patent data. The indicator method has the advantages of intuitiveness, specificity and quantifiability in the measurement process. Green patents are an important tool to promote green technology innovation, and referring to Zhu et al. (2019) and Du et al. (2019), this study constructs variables with data on green patent grants in each province to measure the progress of green technology.
Core explanatory variable. Foreign direct investment ([image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.]). The scale of foreign investment utilized by provinces and cities can reflect the degree of opening up to the outside world, and can also better reflect the spillover effects of capital and technology brought by foreign investment, referring to Dong et al. (2021), the level of foreign direct investment is measured by the actual amount of foreign investment utilized by each province in that year.
Moderating variable. Trade openness ([image: Please upload the image you’d like me to describe, and I’ll generate the alt text for you.]). There is a mutual influence between trade and FDI, and there is a moderating role in the green technological progress effect of foreign openness, refer to Zhang et al. (2018). The level of trade openness in various regions is usually measured by foreign trade dependence or foreign trade ratio, the former is calculated by the ratio of total import and export to GDP. The latter is calculated using total imports and exports as a percentage of gross national product (GNP). The degree of foreign trade dependence can better reflect the degree of national economy’s dependence on foreign trade, so this paper uses the percentage of total foreign trade in GDP of each province to measure the degree of regional trade openness.
Control variables. By combing through the literature, the efficiency evaluation index system of green technological progress is usually built from three dimensions: financial input, physical input, and human input. In this study, environmental regulation variables measured by pollution control investment and energy consumption variables aimed at resource conservation are selected as indirect measures of governmental capital investment, while physical input is mainly reflected in the transformation and upgrading of industrial structure and the construction and improvement of infrastructure. In this paper, industrial structure variables and urbanization variables are selected to measure the intensity of physical input, and we choose human capital variables to measure human input.
Energy consumption ([image: Please upload the image or provide a URL for alt text generation.]). Green technology progress is conducive to reducing energy consumption level, and energy consumption level in turn puts forward requirements for green technology progress. Under the pressure of achieving the double carbon target, the requirement of reducing energy consumption level will have an incentive effect on green technology progress. This study measures energy consumption level by the consumption of 10,000 tons of standard coal in each province.
Environmental regulation ([image: Please upload the image or provide a URL so I can generate the appropriate alt text for it.]). On the one hand, environmental regulation forces enterprises to carry out green technological innovation, and on the other hand, it restricts the introduction of foreign capital. Since industrial pollution is the main cause of environmental pollution, this study measures the level of environmental regulation by the proportion of the completed investment in pollution control by local governments to the value added of industrial industries.
Industrial structure ([image: If you could please upload the image or provide a link to it, I will create the alt text for you.]). China’s economic development in the industrial structure continues to adjust and optimize, and the proportion of tertiary industry gradually increased. This rationalization of industrial structure will undoubtedly promote the level of green technology. The value added of the tertiary industry accounts for GDP is selected to measure the level of industrial structure.
Urbanization ([image: Please upload the image or provide a URL so I can generate the alternate text for you.]). Urbanization development is an important indicator of regional economic development, and affects the industrial development process, infrastructure construction and other objective development environment, thus affecting the progress of green technology. This study uses the urbanization rate of resident population to measure.
Human capital ([image: It seems there's an issue with the image upload. Please try again by selecting the image file or providing a URL. You can add a caption for more context if needed.]). Human capital can reflect the education level and population structure of each region. The popularity of education and the overall level of knowledge have a direct impact on the progress momentum of green technology. The proportion of the population with college education and above in the population aged 6 and above is selected to measure the level of human capital. The metrics of each control variable are referred to common practices in the existing literature (Adeel-Farooq et al., 2021; Morgenstern et al., 2002). Table 1 shows the selection information for all variables.
	(3) Data

This study uses the panel data of 30 Chinese provinces from 2011 to 2020 as the research sample (except Tibet, Hong Kong, Macao and Taiwan). Green technological progress is measured by the number of green patents granted in each province, including green invention patents and green utility model patents, while green design patents are not included due to their low technical innovation. According to the Green Patent List issued by the World Intellectual Property Organization, the international patent classification codes of green patents are obtained, and green patent data can be obtained by searching the patent database of the State Intellectual Property Office of China. Other data are obtained from the China Statistical Yearbook (2012–2021), published by the National Bureau of Statistics of China4. The data of provinces in some years are missing, which have been filled by linear interpolation. The results of descriptive statistics are shown in Table 2.
TABLE 1 | Specific description of variables.
[image: Table listing variables related to green technological progress. Columns include Variable, Abbreviation, Measurement, and Prospective Effect. Variables include Green Technological Progress, Foreign Direct Investment, Trade Openness, Energy Consumption, Environmental Regulation, Industrial Structure, Urbanization, and Human Capital, all with a positive prospective effect.]TABLE 2 | Descriptive statistics of the variables (after the logarithm).
[image: A table displaying statistical data for various variables. Columns include Variable, Observation count (Obs), Mean, Standard Deviation (Std. Dev), Minimum (Min), and Maximum (Max). Variables shown: ln gtp, ln fdi, ln open, ln EC, ln ER, ln str, ln urb, and ln hum, all with 300 observations each. Mean values range from -2.044 to 14.668, with standard deviations from 0.192 to 1.686. Minimum and maximum values for each variable are provided.]From Table 2, it can be seen that the average value of green technology level is 7.461, the standard deviation is 1.315, the minimum value is 3.714, and the maximum value is 10.117. Therefore, it can be seen that the green technology level of each region and province in China varies widely. According to the specific sub-provincial patent data, Jiangsu and Guangdong in coastal areas are strong provinces of green technology innovation with high green technology level, while Qinghai and Ningxia in inland areas are relatively lagging behind in green technology development. The changes of green patents in specific provinces can be seen in Figure 2, the changes of FDI in each province can be seen in Figure 3.
[image: Maps of China from 2011 and 2020 show grain consumption per capita by region with different shades of green. Darker shades indicate higher consumption levels. Both maps include a scale and compass for orientation.]FIGURE 2 | The changes of green patents in specific provinces.
[image: Comparison of two maps of China showing population densities by regions from 2011-2015 and 2016-2020. Regions are shaded in varying intensities of orange, indicating population density, with darker shades representing higher densities. Major cities and territorial borders are labeled. A scale and legend provide additional context, and an inset map offers broader geographic orientation.]FIGURE 3 | The changes of fdi in specific province.
RESULTS AND DISCUSSION

	(1) Benchmark Regression

To evaluate the specific impact of FDI on green technological progress, it is essential to adopt appropriate econometric methods. It is worth noting that the FGLS method can maximize the advantage of panel data and minimize the estimation error, and is often used for regression estimation of panel data when heteroskedasticity and serial correlation problems exist in the sample data. In this study, there are large differences in the data between provinces in the research sample, and the disturbance terms may be different in different provinces. Based on the results of the panel stationarity tests, the FGLS is chosen as the benchmark regression method in this study. The results of the benchmark regression are shown in model (3) in Table 3 below, in addition, ordinary least squares (OLS) and generalized least squares (GLS) are also chosen in this study for regression testing again as shown in model (1) and (2) in Table 3 below to ensure the robustness of the regression results. The following specific results analysis are based on the FGLS model.
TABLE 3 | Results of benchmark regression.
[image: Table showing regression results for three models: OLS, GLS, and FGLS. Each model lists coefficients for variables such as FDI, EC, ER, STR, URB, HUM, and constant, alongside t-statistics in parentheses. Observations and provinces are consistent at three hundred and thirty, respectively. R-squared is 0.836, Wald chi squared values are 1530.35 and 2745.30, and xttest3 is 1662.71. Significance levels are indicated by asterisks, with notes explaining significance at one, five, and ten percent.]The regression results of models (1), (2) and (3) show that there is a significant positive promotion effect between FDI and green technology progress, which is consistent with the expectation of hypothesis 1, and also supports the pollution halo hypothesis. In model (3), the regression coefficient of FDI is 0.307 with positive sign and passes the 1% significance level test, indicating that the introduction of FDI is conducive to the improvement of green technology level, which in turn promotes local green development. Starting from 2012, China’s economy gradually enters the transition period of adjusting industrial structure and realizing innovation-driven adjustment, and the economic growth is dominated by medium-high growth rate. Under the influence of this, the amount of foreign capital utilized in China has declined, and the strategic orientation of actual foreign capital utilization has been adjusted. A notable tendency is to encourage foreign investors to introduce advanced technologies, invest in advanced industries, and support them to set up research centers, etc. Meanwhile, to improve the efficiency of resource allocation and reduce pollution and energy consumption, the structure of FDI attraction is adjusted to reinforce the inspection of the introduction of non-clean FDI and encourage the inflow of clean FDI. On the one hand, with the continuous introduction of clean and high quality FDI with high technology content, it will have a direct impact on the industrial environment, promote the continuous optimization of industrial structure, and provide development conditions for green technology progress. On the other hand, with the improvement of the quality of inflow foreign capital, the competition effect drives the green awareness of local enterprises, and the green standards in the economic market compete to improve, so that the realization of green technology progress will be the inevitable result.
The moderating effect of trade openness is tested by adding the interaction term of FDI and trade openness based on the FGLS method. Models (4) and (5) test the direct effect of FDI on green technological progress, and models (6) and (7) test the moderating effect of trade openness on the effect of FDI on green technological progress. The regression results are shown in Table 4.
TABLE 4 | Results of moderating effect tests.
[image: A table comparing four models with the dependent variable "ln gtp." Variables include "ln fd," "ln open," "ln fd*ln open," "ln EC," "ln ER," "ln str," "ln urb," and "ln hum." Each model shows coefficients and t-statistics in parentheses. Observations are 300 for all models. Additional information includes "Cons," "Province," "Wald chi2," and "xttest3." Significance levels are marked by asterisks; notes indicate significant coefficients at 1%, 5%, and 10% levels.]Models (4) and (5) are the benchmark regression results, and models (6) and (7) are the regression results after adding the trade openness moderating variable and the FDI and trade openness interaction term. The coefficient of FDI is positive when the interaction term between FDI and trade level is not included. After the inclusion of the interaction term, the coefficient of FDI expands, and the sign is still positive and significant at the 1% level. Meanwhile, the coefficient of the interaction term between FDI and trade openness is positive and passes the 1% level of significance test. This verifies and complements hypothesis 2, indicating that there is a reinforcing effect of trade openness as a moderating variable. That means there is a significant positive effect of trade openness on the green technological progress effect of FDI, which is consistent with the findings of Han et al. (2023). This is because: expanding trade openness will achieve a more liberal capital environment and attract more foreign capital inflows, while accelerating the cross-country flow and reallocation of resources, human resources, information and technology, and other factors to promote the green technology level in the home country. In particular, China has been actively participating in the international trade market, expanding the level of openness to the outside world, capturing the positive effects of technology spillovers in terms of trade imports and exports, and striving for a favorable situation in terms of capital flows since it joined the WTO in 2001. With the two-carbon background, green development has become an important issue for all countries. Green service trade and green low-carbon products continue to expand the circulation, leading to an important change in capital flow, and technological innovation has also been promoted. It has been significant that not only China’s domestic total factor productivity improved but also the green technological progress stimulated.
From the perspective of control variables, energy consumption level and industrial structure are significant at the 1% level with positive coefficient sign, which indicates that: energy consumption level push backwards green technology progress. The increasing energy consumption level forces localities to accelerate the R&D and application of green technology, and the influence of this variable is more prominent after the double carbon target is proposed when localities actively seek breakthroughs in carbon reduction and emission reduction. At the practice level, energy consumption anxiety can effectively drive backwards green technology innovation and improve energy use efficiency. The transformation and upgrading of industrial structure is an important force driving the development of green technology. The tertiary industry has low energy consumption, so promoting the development of the tertiary industry can promote the development of energy conservation and emission reduction in the region while the positive impetus exists for green technology progress. The level of human capital does not pass the significance level test of 10%. Referring to the findings of similar literature (Zhang and Hu, 2020), the possible reasons are as below: China’s human structure is not perfect enough to fully adapt to the development of green technology. There is a resource mismatch between high-level talent training and social demand. Creative thinking and innovative practice in higher education is still in short supply, and workers with higher education are unable to effectively translate their knowledge and skills into practical applications for green technology advancement.
Secondly, the regression coefficients of environmental regulation and urbanization are negative and pass the significance level test of 1% and 10%, respectively. As an important factor influencing green technological progress, the reason why environmental regulations inhibit green technological progress is believed to be the increase in production costs in the existing academic views, which weakens the innovation vitality of enterprises and restricts green technological progress. Urbanization inhibits the progress of green technology. The reform of urbanization in China has inevitably promoted the development of local basic industries. This preliminary development of basic industries in urban areas generally suffers from low environmental protection standards, substandard emissions and other problems that easily cause environmental pollution, which is not conducive to green technology progress. At the same time, it is also an urgent problem that we need to solve on the way to achieve the two-carbon goal.
	(2) Heterogeneity Tests

In order to compare the variability of green technological progress and FDI levels in different regions, this study divides the samples of 30 provincial-level administrative regions in China into two dimensions: policy influence and geographical location. First, the samples are divided into two parts: provinces along the “Belt and Road” and other provinces by policy influence5. Tibet, Hong Kong, Macao and Taiwan are not included in the scope of this study.
From the results in Table 5, it is clear that the sub-samples show significant regional heterogeneity when the moderating effect of FDI and trade openness is taken into account in the model. According to the regression results, the sign of the coefficient of the interaction term between FDI and trade openness is positive with a regression coefficient of 0.100 and significant at the 1% level in the provinces along the BRI region. The regression coefficient of FDI increases from 0.314 to 0.347, which again verifies hypothesis 2, indicating that in the provinces along the BRI. There is a positive reinforcement of the green technological progress effect of trade openness on FDI effect, and foreign economic development can have a positive desired impact on green technological progress. Among the sub-samples in other provinces, the sign of the coefficient of the interaction term between FDI and trade opening is negative, and it does not pass the significance test at the 10% level, which cannot verify the moderating effect of trade openness. Furthermore the regression coefficient of FDI decreases from 0.366 to 0.265 after adding the moderating variables with the interaction term, which proves that the conclusion of regional heterogeneity is supported by empirical evidence. This is because the implementation of the BRI helps the trade exchanges of Chinese provinces along the route, accelerates the flow of international capital, and generates effective incentives for FDI as well as trade openness. At the same time, the implementation of cooperative initiatives such as building the Green Silk Road is also conducive to China’s strengthening of green energy investment, promoting green and clean equipment and technologies, etc. The construction of Green BRI not only radiates the sustainable development of the international region, but also brings new opportunities for China’s own green development and international cooperation by advocating green capacity cooperation and sustainable infrastructure construction of Chinese enterprises.
TABLE 5 | The results of sub-samples (divided by policy influence).
[image: Chart comparing regression coefficients for variables across provinces along the "belt and road" and other provinces. Models 8, 9, 10, and 11 compare factors like foreign direct investment, openness, economic complexity, among others. Coefficients and t-statistics are displayed for each variable in each model, with significance levels noted. Summary statistics like Observations, Provinces, Wald chi-squared, and xttest3 are included.]Although there is still much controversy in the discussion on the topic of the BRI, most studies in the existing literature suggest that the BRI can promote international trade and encourage economic development of participating countries (Razzaq et al., 2021). A study by Yu et al. (2020) shows that BRI has a substantial positive impact on China’s export potential. There are also some studies in the literature that confirm the positive impact of the BRI on introducing FDI, enhancing positive effect of BRI on introducing FDI and enhancing China’s capital attraction structure (Li et al., 2022). Related studies have reached a relative consensus on the role of the BRI on green economic growth or trade export promotion in China and along the route. The results of this study, which examine the heterogeneity of Chinese provinces, are to a certain extent consistent with the findings of this literature. We also innovatively propose a new view with the different dimension: the beneficiary provinces along the BRI in China are also positively influenced in terms of green technological progress. This is a win-win situation for the implementation of the BRI. The findings of this study are positive for the practice of the BRI in China and have some reference value for other countries to deepen economic globalization and green growth.
In addition to the sample division in terms of policy dimensions, this paper further enriches the discussion of regional heterogeneity by dividing the sample by geographical location. Different from the traditional geographical division of East, Central, West and Northeast regions in China, the actual situation of trade and foreign investment introduction is more closely linked to the proximity to the coast and neighboring countries’ contacts. So referring to Shi et al. (2018), the sample is divided into three parts by geographical location: coastal areas, inland areas, and bordering areas with neighboring countries. Among them, the division of coastal areas and bordering areas overlaps in Liaoning Province and Guangxi Province. Considering the actual situation, they are both included in coastal areas and bordering areas6. The sub-sample regressions are shown in Table 6 below.
TABLE 6 | The results of sub-samples (divided by geographical location).
[image: A data table compares regression results across different areas: coastal, inland, and bordering. It includes six models labeled 12 to 17, analyzing variables like ln fdi, ln open, and ln ER with coefficients and t-statistics. Models show varying significance levels indicated by asterisks, with observations noted as 110, 130, or 80, and provinces ranging from 11 to 13. Statistical tests like Wald chi-squared and xttest3 with results are also shown, highlighting varying significant coefficients across regions.]The regression results in Table 6 show that there are certain differences in the influence of FDI on green technology progress in different geographical locations. The regression coefficient of FDI shows a sequential decline in coastal, inland and border regions, which corresponds to the economic development level of each region. The moderating effect of trade openness cannot be effectively verified in different geographical locations. The interaction terms between FDI and trade openness fail to pass the significance level test of 10% in both coastal and inland regions. Although the regression results of border regions pass the significance level test of 1%, the coefficient of FDI does not expand accordingly. It cannot be concluded that trade openness effectively enhances the effect of FDI on green technology progress.
The results of the discussion on regional heterogeneity in the two dimensions of policy and geography show that: although geographical location is the initial driving force for regional economic development and the spatial effect of FDI has always been proved by various studies, combined with the realistic background of The Times, artificial political factors have achieved a more important position in China’s economic development at the current stage of opening up, while the advantages and disadvantages of geographical factors are constantly being caught up and narrowed. In economic geography, Krugman (1991) pointed out in his classic study that transportation infrastructure can weaken the spatial blocking effect of geographical location on factor flow. Gawer and Cusumano (2008) also showed that with the rise of digital technology and Internet platform, geographical limitations of regional innovation are constantly being broken through. These also support the results of this study.
	(3) Robustness Tests

Based on the previous empirical tests, the OLS, GLS, FGLS methods results and subsample regression results in Table 3 can test the robustness of the conclusions of this study to a certain extent. Considering that the R&D of green patents has long-term effects and the effects of each explanatory variable may have lags, this study uses lagged one-period explained variables and lagged one-period explanatory variables respectively to test the robustness of the regression results, while alleviating the possible endogeneity problem of the model. Table 7 below shows the lagged one-period explained variables in models (18) to (19) and all explanatory variables in models (20) to (21) with one period lag. According to the test results, it can be find that in the regression results of models (18) to (21), the coefficient signs of FDI and interaction terms are the same as the original results and remain significant; the coefficient signs of control variables are basically consistent with the regression results of the benchmark model. Therefore, the regression results have not changed significantly and the original benchmark regressions are robust.
TABLE 7 | Results of robustness tests.
[image: Table displaying regression results across four models labeled (18) to (21). Each model lists estimated coefficients and t-statistics for variables like ln fdi, ln open, ln EC, ln ER, ln str, ln urb, ln hum, and a constant term. The significance levels are marked with asterisks. Lagged explanatory variables are used only in Models (20) and (21). Observations and provinces are constant at 270 and 30 across all models. Wald chi2 and x-test3 statistics are also provided, indicating model fit and validity. Notes mention significance levels.]CONCLUSION AND POLICY IMPLICATION
Under the Two-carbon background, the realization of green technological progress has become increasingly significant. This study uses data from 30 provinces in China from 2011 to 2020 as a sample and employs the OLS method to verify the impact of FDI on green technological progress, as well as the synergistic effect of FDI and trade openness. The following specific conclusions have been drawn: First, FDI has a significant promoting effect on China’s green technological progress, and the active introduction of foreign investment is conducive to upgrading green technology and promoting China’s green economic development. Second, trade openness has a positive moderating effect on the green technological progress effect of FDI. Expanding foreign trade can strengthen the promoting effect of FDI on China’s green technological progress. Third, the regional heterogeneity results in both policy and geography dimensions show that the policy implementation of the Belt and Road Initiative is an important factor for the moderating effect of trade opening, and the provinces along the Belt and Road Initiative can obtain the positive effect of trade in green technology progress. And the last one, energy anxiety caused by energy consumption and industrial structure upgrading are conducive to the improvement of China’s green technology level.
The policy implications implied in this study are mainly as follow. First of all, China should continue to create a green industrial environment that meets the demand for high-quality foreign investment, guide and regulate the introduction of foreign investment around the country, and promote the upgrading of green technology levels. In order to catch up with the existing gap between China’s actual FDI utilization and that of developed countries, and to make full use of the capital inflow and knowledge spillover effects of FDI, China still needs to actively expand the scale of FDI introduction. Meanwhile it also needs to adjust and improve the structure of domestic FDI introduction actively, and upgrade the green industrial environment, encourage more high-quality, low-pollution, and low-energy FDI inflow. Government should strengthen the local supervision of the introduction of foreign capital, pay attention to the improvement of prevention awareness. Secondly, while introducing FDI, China should coordinate the regulating effects of trade openness, give full play to the policy advantages of the Belt and Road initiative, include more provinces in the radiation of the policy effects, and further break the geographical restrictions of the region, and then make the most of the green technology progress effects of FDI by formulating scientific policies on the introduction of foreign investment. It is committed to expanding the radiation range of low-carbon technologies, and guiding the continuous transformation of the geospatial effect of foreign investment to the economic spatial effect. Thirdly, the national level should actively formulate local FDI encouragement policies, focus on green development fields, and deeply promote the investment attraction work of provinces benefiting from the Belt and Road Initiative. The local level should adjust the investment attraction policies according to the actual situation, reasonably assess the space for green technology development, and formulate different foreign opening policies to promote the inflow of foreign capital while improving the regional green technology innovation capacity should be improved at the same time. Fourthly, the objective environmental requirements for the development of green technology should be coordinated and planned, including the reasonable control of the speed of promoting pollution reduction and carbon reduction, and the promotion of industrial structure transformation and upgrading, etc.
Further research in the future can start from the changes in China’s trade situation, and deeply explore the possible changes in capital flow and the technological innovation brought about by the green effect, the impact of political factors and the influence of economic cycle in global economic development.
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FOOTNOTES
1On 22 September 2020, at the 75th session of the United Nations General Assembly, China clearly proposed to achieve the “dual carbon” goal of carbon peaking by 2030 and carbon neutrality by 2060.
2In September and October 2013, China proposed the cooperation initiative of building the “New Silk Road Economic Belt” and the “21st Century Maritime Silk Road”, referred to as the “Belt and Road”.
3The early empirical literature explains the high level of FDI in some economies as a result of “tariff jumping”: as tariffs increase the cost of exports, foreign firms prefer to skip tariffs and produce in protected markets.
4[Data accessed at http://www.stats.gov.cn/sj/ndsj/].
5Provinces along the Belt and Road include: Inner Mongolia, Liaoning, Jilin, Heilongjiang, Guangxi, Chongqing, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, Shanghai, Zhejiang, Fujian, Guangdong, Hainan; Other provinces include: Beijing, Tianjin, Shandong, Jiangsu, Hebei, Henan, Hubei, Hunan, Sichuan, Shanxi, Guizhou, Jiangxi, Anhui.
6Coastal areas include: Shanghai, Guangdong, Fujian, Tianjin, Liaoning, Guangxi, Zhejiang, Hainan, Shandong, Jiangsu, Hebei; Inland areas include: Henan, Hubei, Chongqing, Sichuan, Shaanxi, Qinghai, Shanxi, Guizhou, Jiangxi, Hunan, Anhui, Ningxia, Beijing; The bordering regions include: Inner Mongolia, Jilin, Xinjiang, Yunnan, Heilongjiang, Gansu, Liaoning, Guangxi.
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In the context of global efforts to combat climate change, highlighted by the 2024 UN Climate Change Conference (COP29) and the growing global emphasis on low-carbon development, this study investigates the impact of China’s low-carbon city pilot policies on carbon emission intensity. Using data from 283 Chinese cities between 2005 and 2021, a multi-period difference-in-differences (DID) model is employed to analyze the effects of these policies. The study also explores the mediating mechanisms, moderating effects, and heterogeneity across cities. The main findings are as follows: (1) The low-carbon city pilot policies significantly reduce carbon emission intensity, with the impact becoming stronger and more stable over time. (2) The reduction in carbon intensity is partially mediated by enhanced carbon sink levels and industrial structure upgrades, although technological investment does not have a significant effect. (3) Environmental regulations negatively moderate the policy’s effectiveness, while fiscal freedom and population growth rates positively influence its impact. (4) The effects of the policy are heterogeneous across cities, driven by differences in economic levels, geographical locations, industrial bases, resource endowments, and population sizes. This paper provides valuable empirical insights and policy recommendations for China’s low-carbon transition and for achieving its carbon neutrality and peak emission targets.
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1 INTRODUCTION
In recent years, the greenhouse effect, driven by extensive carbon dioxide emissions, has become an increasingly urgent issue, drawing global attention to climate change. Since the Kyoto Protocol, effective mitigation of global warming has remained a central concern, with a growing international focus on reducing emissions. At the 2024 Global Low-Carbon Development Conference (COP29), countries reaffirmed their commitment to cutting emissions and promoting low-carbon development (Wang ZS. et al., 2023). As one of the world’s largest carbon emitters, China has taken proactive steps to address carbon emissions, placing climate change governance at the forefront of its agenda. It is expected that China will play a pivotal role in global efforts to reduce emissions, making the study of effective emission reduction policies crucial to advancing the country’s carbon reduction goals.
In 2020, President Xi Jinping introduced the “dual carbon” goals, outlining a strategic framework for achieving carbon neutrality and carbon peaking. These goals provide a blueprint for China’s economic development in the new era, integrating reduced carbon emissions with green transformation. As China transitions to a phase of high-quality economic growth, developing a low-carbon economy is seen as a crucial pathway to aligning economic progress with the “dual carbon” objectives. The 20th National Congress of the Communist Party of China emphasized the need for coordinated efforts to reduce carbon emissions, curb pollution, expand green initiatives, and promote sustainable economic growth. While China is diligently pursuing the goals of “carbon peaking” and “carbon neutrality,” significant challenges remain as of 2024. The gap between current progress and the “dual carbon” targets underscores the urgency of accelerating the effective implementation of low-carbon policies. China’s low-carbon initiatives are crucial not only for global climate governance but also for achieving high-quality economic development. The successful implementation of low-carbon policies requires a delicate balance between economic growth and environmental governance across the socio-economic system. Local governments play a key role in translating national policies into effective local strategies that drive low-carbon and green transformation. These strategies focus on raising industrial governance costs to incentivize enterprises to reduce emissions, while also encouraging residents to adopt energy-saving behaviors. The Ministry of Finance has highlighted the need to optimize policy frameworks and accelerate the creation of financial mechanisms tailored to China’s unique context, emphasizing the urgency of advancing low-carbon policies.
China’s low-carbon city pilot program, launched in 2010, has expanded in three phases, covering numerous provinces and cities across the country. The policy aims to chart a “Chinese-style” path to low-carbon governance, focusing on industrial transformation and other strategic measures. While existing research has assessed the economic and social benefits of the policy, there is limited investigation into its impact on urban carbon intensity (Qiu et al., 2021; Chen et al., 2021; Liu and Yuan, 2023; Liu and Zhao, 2023). Most studies tend to focus on total carbon emissions or per capita emissions, often overlooking the complex interplay between economic development and environmental governance (Zhu et al., 2023a; Huang et al., 2021; Zhu et al., 2023b). Comprehensive and systematic studies on the policy’s “carbon reduction” effects remain scarce. Theoretically, it is crucial not only to assess whether the low-carbon city pilot policy effectively reduces urban carbon intensity but also to understand the mechanisms and factors driving these reductions. Key questions include: What economic and social factors influence the success of low-carbon policies? How do variations in cities' economic development, geographic locations, and resource endowments shape policy outcomes? As China’s economic growth slows, and the challenge of balancing carbon reductions with sustained growth becomes more pressing, addressing these questions is essential for reconciling the goals of high-quality economic development and the dual carbon targets. Gaining this understanding will be vital for policy development and the formulation of “carbon finance” strategies to support China’s green transition.
This study treats China’s low-carbon city pilot policy as a “quasi-natural experiment” and uses a multi-period difference-in-differences (DID) model to evaluate its impact on urban carbon intensity. It also examines the underlying mechanisms driving emission reductions, such as carbon sequestration and industrial upgrading, and explores how the policy’s effects vary across cities with different economic levels, geographic locations, and resource endowments. The primary objective of this study is to provide empirical evidence to optimize China’s low-carbon city pilot policies. In doing so, it aims to assist the government in balancing economic growth with environmental protection, while advancing the “dual carbon” goals and promoting a green economic transformation. The findings will not only enhance the implementation of low-carbon policies in China but also offer valuable insights for global low-carbon transitions. The novelty of this study lies in three key aspects: (1) examining the dynamic effects of carbon reduction, including both overall and stage-specific impacts, to provide data-driven insights for timely policy adjustments and prevent “free-riding” behavior in pilot cities; (2) analyzing the potential mediating and moderating mechanisms underlying the carbon reduction effects, which deepens the understanding of the policy’s internal workings; and (3) exploring the heterogeneity of policy effects by considering factors such as economic development, geographic location, and resource endowments, thereby offering insights for the formulation of tailored, local-level policies.
The remainder of this paper is organized as follows: Section 2 provides a comprehensive review of the literature on low-carbon policies, carbon reduction effects, and low-carbon city pilot initiatives. Section 3 explains the mechanisms of the pilot policies, with specific theoretical hypotheses addressing the direct effects, mediating effects, and moderating effects of the policies. Section 4 outlines the methodology, including the multi-period difference-in-differences (DID) model, data sources, and variable definitions. Section 5 presents the empirical results, covering baseline regressions, dynamic analysis, robustness checks, and an exploration of the policy’s mechanisms and its heterogeneity. Finally, Section 6 concludes with a summary of the key findings, policy implications, and a discussion of future directions for low-carbon policy development.
2 LITERATURE REVIEW
This study primarily explores the relationship between urban carbon emission intensity and low-carbon city pilot policies. Therefore, the existing literature is reviewed and summarized in relation to these two key areas.
2.1 Research progress on the impact of policies on carbon emission intensity
Since the introduction of the low-carbon development concept in China, a variety of policies aimed at reducing carbon emissions have been implemented, with profound impacts on the economy, society, and environment. Research on the effects of these policies has expanded significantly, focusing on their economic, social, and ecological benefits. However, few studies have examined these dimensions in an integrated manner (Wang and Xiao, 2022; Wang ZS. et al., 2022; Shi et al., 2022).
The first area of research focuses on the “carbon market” and the carbon emissions trading system (ETS). Following the signing of the Kyoto Protocol, early studies concentrated on the trading mechanisms of carbon markets (Sandoff and Schaad, 2009). Classical market theory suggests that carbon markets are an effective tool for managing greenhouse gas emissions, offering flexibility and cost advantages (Jiang et al., 2016). As China’s carbon finance market has grown rapidly, its unique advantages—such as low-cost carbon markets and significant emission reduction potential—have become more evident (Zhang et al., 2013). Early studies, including those using CGE (Computable General Equilibrium) and multi-agent models, simulated the effects of emissions trading and confirmed the effectiveness of China’s carbon emissions trading system (Böhringer and Welsch, 2003; Suopajärvi et al., 2014; Li and Jia, 2016; Huang et al., 2023; Cai et al., 2016; Li et al., 2022). Zhang et al. (2017) empirically tested the significant emission reduction effects of carbon market policies using data from pilot cities between 2013 and 2014 (Zhang YJ. et al., 2017). Later studies using the difference-in-differences (DID) model with provincial panel data further confirmed that pilot policies significantly enhance carbon reduction outcomes (Tan et al., 2022; Xu et al., 2023; Song et al., 2023; Lu and Li, 2023; Jiang et al., 2024). To avoid bias in treatment group selection, some scholars applied propensity score matching (PSM) for empirical analysis (Xiao et al., 2023), while others addressed matching errors—due to overlapping provinces and years—using the synthetic control method, which optimally applies weights (Lin and Fu, 2023; Wang CZ. et al., 2024).
Another key area of research focuses on the financial support for carbon emission policies. Financial reforms play a crucial role in the effective implementation of carbon emission governance. Early studies on the relationship between financial development and carbon emissions have yielded mixed results (Sadorsky and Renewable energy consumption, 2009; Shahbaz et al., 2013; Ganda, 2021; Liu et al., 2023). However, with the advancement of financial policies, green credit has become a central focus of research on financial support for carbon emission reduction. Studies have shown that green financial policies can reduce air and water pollution emissions (Zhang AL. et al., 2022) and directly curb CO₂ emissions (Tan and Chen, 2023), with some suggesting a U-shaped relationship between green credit development and technological innovation (Xu and Lin, 2025). As a key tool for financial institutions to fulfill their environmental responsibilities, green credit policies significantly impact energy efficiency, particularly in sectors constrained by green credit. In these sectors, energy intensity tends to decrease, although challenges arise due to a “financing constraints-innovation motivation weakening” cycle (Luo et al., 2023). Additionally, green financial policies, by reducing energy intensity and promoting technological innovation, produce increasing carbon reduction effects over time. This leads to positive spillover effects, although the synergy effect remains insignificant (Fan et al., 2024).
Finally, research on fiscal support for carbon emission policies has gained momentum. China’s fiscal policies, which support the goals of carbon peaking and carbon neutrality, emphasize the need for policies tailored to the country’s national conditions. Early studies on fiscal decentralization, such as those by He Qichun (2015), analyzed the relationship between fiscal decentralization and environmental pollution, finding a positive correlation (He, 2015). Research on transfer payments and local government competition further supports this view, suggesting that fiscal decentralization, coupled with government competition, can exacerbate carbon emissions (Zhang K. et al., 2017; Li, 2022). In contrast, studies on ecological governance and environmental expenditure indicate that fiscal and environmental policies can reduce emissions, though their effectiveness varies regionally (Wang SG. et al., 2024). Later research employing cost-estimation and system dynamics methods demonstrated that clean energy subsidy policies can improve energy consumption structures and reduce pollution intensity, although their effectiveness depends on program design (Zhang et al., 2023). Some studies have also found that energy-saving and emission reduction policies can have negative effects on corporate behavior, particularly in terms of environmental, social, and governance (ESG) performance, with this negative impact intensifying over time (Miao et al., 2023).
2.2 Research progress on the evaluation of low-carbon city pilot policies
The Chinese government has implemented several low-carbon city pilot policies to promote carbon emission reductions. Research on these policies has primarily focused on areas such as green total factor productivity, technological innovation, and employment, with some studies examining low-carbon development pathways and carbon emission levels (Wang KL. et al., 2022; Ma et al., 2021; Wang CA. et al., 2023; Zhao et al., 2024). Most studies highlight the positive effects of these pilot policies, often using methods such as pathway analysis and single- and double-difference models. The widespread use of the difference-in-differences (DiD) model has provided empirical evidence that these pilot policies significantly improve air quality in the regions where they are implemented (Wolff, 2014). Carbon reduction effects are particularly prominent in western cities and regions with lower economic development levels (Zhang JG. et al., 2022). In contrast, carbon emissions in eastern regions have decreased rapidly, with northern regions experiencing higher reduction rates than southern ones (Wen et al., 2022). In terms of mediating effects, studies have found that pilot policies contribute to carbon emission reductions through mechanisms such as industrial structure upgrades, technological innovation, energy efficiency improvements, and the promotion of green innovation (Zhang H. et al., 2022; Pan et al., 2022; Zheng et al., 2023). Additionally, some scholars have explored co-reduction effects, noting that low-carbon cities often experience significant and heterogeneous reductions in both CO₂ and PM2.5 emissions. Improving public transport infrastructure has been identified as a key pathway for achieving these co-benefits (Yang et al., 2023). Moreover, when examining “dual pilot” cities—those participating in both low-carbon and eco-city initiatives—the synergistic carbon reduction effects are found to be stronger, though with a time lag (Li and Zhang, 2024).
Furthermore, some studies emphasize that the carbon reduction effects of low-carbon city pilot policies strengthen over time, though with delays. These reductions primarily occur through decreased energy consumption, lower energy intensity per unit of GDP, industrial decarbonization, and enhanced green technological innovation (Wang and Li, 2023; Zhao et al., 2023). Research also highlights the heterogeneous effects of fiscal pressures and incentives on carbon reduction outcomes (Yang and Peng, 2022). Current studies on low-carbon city pilot policies predominantly involve simulation models, such as those evaluating government subsidies for voluntary carbon reduction, cost-benefit models, and industry-specific analyses. These studies suggest that voluntary carbon reduction strategies have optimal solutions, with innovation gains and government subsidies serving as key drivers of success (Cheng et al., 2015). Other research has explored the relationship between carbon taxes and low-carbon pilot policies, using supply chain game models to demonstrate that changes in pilot proportions are positively correlated with optimal carbon reductions, while carbon taxes and reduction subsidies are negatively correlated under constant carbon reduction (Cao and Zhang, 2018). Additionally, dynamic stochastic general equilibrium (DSGE) models have been applied to simulate the environmental and corporate effects of pilot policies within China’s current fiscal system. These models suggest that while pilot policies may lead to environmental deterioration due to crowding-out effects, they can also optimize corporate financial structures and incentivize enterprises to implement energy-saving measures on their own (Cai et al., 2019). Some studies from the perspective of the green economy argue that although low-carbon city pilot policies drive significant carbon reductions, their effects on green development are not sustained in the long term (Guan and Liu, 2022).
2.3 Research summary
In summary, the academic literature on policies affecting carbon emissions is extensive, but the findings remain complex and inconclusive. Studies on carbon market trading systems generally present optimistic results, while research on green credit and fiscal support policies yields more mixed outcomes. Most studies on low-carbon city pilot policies focus on their economic and social benefits, with relatively few directly addressing their impact on carbon emissions. There are also several areas where existing research could be improved. For example, future studies could refine the construction of dependent variables to better integrate both economic and environmental factors in assessing carbon reduction effects. Additionally, more work is needed to explore the specific pathways and moderating mechanisms that influence policy effectiveness. Finally, the impact of factors such as city economic development levels, resource endowments, and population distribution on policy outcomes remains underexplored. This study seeks to address these gaps by providing a more comprehensive analysis of low-carbon city pilot policies, contributing valuable insights into their effectiveness and offering a more nuanced understanding of the factors that drive carbon reduction.
3 THEORETICAL HYPOTHESES
3.1 Analysis of the effectiveness of low-carbon city pilot policies
Low-carbon city pilot policies are designed to achieve substantial reductions in carbon emissions by integrating various mechanisms, including government performance evaluations, corporate production constraints, and public engagement with low-carbon initiatives. These policies play a vital role in advancing China’s transition to low-carbon and green cities. The effectiveness of these policies is closely tied to several factors. First, government performance is a key determinant of policy effectiveness. An accountability system that assesses government action ensures that policies produce tangible and measurable results, rather than becoming mere formalities that fail to drive real emission reductions. Second, corporate behavior is significantly influenced by environmental regulations and local government policies. In response to low-carbon mandates, businesses are incentivized to adopt cleaner technologies, innovate industrial processes, and upgrade equipment, all of which directly reduce emissions. This process not only contributes to emissions reductions but also fosters a culture of sustainability and innovation within industries. Lastly, public participation is essential to achieving low-carbon objectives. Initiatives like carbon credit systems for residents, along with public awareness campaigns promoting energy-saving and emission-reduction practices, encourage individuals to adopt low-carbon lifestyles, thus contributing to the overall reduction in urban emissions. In summary, the success of low-carbon city pilot policies hinges on the collaboration between government, enterprises, and the public. By aligning these key stakeholders, the policy can effectively reduce urban carbon emissions, making it an essential component of China’s broader low-carbon transition.
Hypothesis 1. The implementation of low-carbon city pilot policies significantly reduces urban carbon dioxide emissions.
3.2 Mediating mechanisms of low-carbon city pilot policies
Building upon existing literature, this study proposes that the effectiveness of low-carbon city pilot policies in reducing carbon emissions can be mediated through three key mechanisms: enhancing carbon sink levels, fostering technological innovation, and upgrading industrial structures. First, low-carbon city pilot policies can reduce carbon intensity by improving carbon sink capacity. Carbon sequestration plays a critical role in carbon reduction strategies. The policies focus on increasing the capacity for carbon absorption, such as by expanding green areas and forests, which not only mitigate the urban carbon footprint but also create additional environmental and social benefits. The development of green spaces enhances the city’s reputation as a “natural oxygen bar,” attracting tourism and improving the quality of life for residents. Second, these policies support emission reductions through technological innovation. Technological advancement is a major driver of emission reductions, particularly in energy-intensive industries. Investments in new technologies can reduce carbon intensity, promote low-carbon economic growth, and lower pollution levels. Upgrades in energy efficiency, such as improved fossil fuel combustion and renewable energy integration, can significantly cut CO₂ emissions. Additionally, innovations in production processes may lead to the establishment of “self-sustaining” systems that actively reduce greenhouse gases during manufacturing, further driving down emissions. Third, industrial structure upgrades are essential for sustained reductions in carbon emissions. Low-carbon city pilot policies promote structural shifts toward low-carbon industries, such as renewable energy sectors (wind, solar, and photovoltaic energy), which are less energy-intensive. This shift reduces reliance on carbon-heavy industries. Moreover, the development of low-emission, low-energy tertiary industries (such as finance, technology, and logistics) ensures that economic growth is aligned with environmental sustainability, creating a balanced, low-carbon economic model. In summary, low-carbon city pilot policies facilitate carbon emission reductions through three primary pathways: enhancing carbon sink capacity, promoting technological innovation, and upgrading industrial structures.
Hypothesis 2. Low-carbon city pilot policies reduce carbon emissions through three mechanisms: enhancing carbon sink levels, fostering technological innovation, and upgrading industrial structures.
3.3 Moderating mechanisms of low-carbon city pilot policies
Building on the previous literature, this study proposes that the effectiveness of low-carbon city pilot policies in reducing carbon intensity can be moderated by three key factors: environmental regulation, fiscal freedom, and population growth rate. First, environmental regulation plays a crucial role in enhancing the effectiveness of low-carbon city pilot policies. As the primary enforcers of environmental standards, governments can strengthen the impact of low-carbon policies by implementing stricter regulations. Stringent environmental policies encourage businesses to transition from high-carbon industries to cleaner, more sustainable production methods. In response, companies may invest in upgrading their technologies to comply with emission standards or collaborate with environmental firms to outsource their carbon reduction efforts. These actions contribute to more significant reductions in carbon emissions, making environmental regulation a key moderating factor. Second, a city’s fiscal freedom can moderate the effectiveness of low-carbon city pilot policies. In cities with limited fiscal freedom, local governments may face pressures to relax environmental standards in order to attract investment, which can result in the relocation of polluting industries and an overall increase in regional carbon emissions. Conversely, cities with greater fiscal freedom benefit from a more competitive environment, where local governments with more financial resources can invest in green technologies, environmental projects, and stricter emission reduction policies. This creates an environment where emission reductions are more effective due to increased government investment and stronger enforcement of environmental regulations. Finally, the rate of population growth in a city can also influence the success of low-carbon city pilot policies. Rapid population growth increases both production- and consumption-related carbon emissions. However, it also presents opportunities for emission reductions, as a growing population drives demand for more energy-efficient technologies and services. Furthermore, a larger population results in increased human capital, which lowers the marginal cost of green and low-carbon transformations for businesses. Additionally, the growing demand for services in the tertiary sector (e.g., finance, technology) can support the development of low-carbon industries and drive further sustainable growth. In summary, environmental regulation, fiscal freedom, and population growth rate all serve as moderating factors that shape the effectiveness of low-carbon city pilot policies in reducing carbon emissions.
Hypothesis 3. Environmental regulation, fiscal freedom, and population growth rate moderate the effectiveness of low-carbon city pilot policies.
4 RESEARCH DESIGN
This section outlines the methodology employed in this study, including the technical roadmap, model construction, data description, and variable definitions. The methodology is designed to assess the impact of low-carbon city pilot policies on carbon dioxide emission intensity (CDEI) across Chinese cities. The section begins with a presentation of the technical approach, followed by the specifications of the model, data sources, and definitions of key variables used in the analysis.
4.1 Technical roadmap
The methodology adopted in this study employs a multi-period difference-in-differences (DID) model. This model is well-suited to estimate the causal effects of the low-carbon city pilot policies on carbon emission intensity (CDEI) by exploiting the variation in policy implementation across different cities over time. The data used in the analysis includes panel data from 283 prefecture-level cities in China, covering the period from 2005 to 2021. These data are sourced from reputable databases, including CSMAR, the “China Carbon Accounting Database,” and the “China City Statistical Yearbook.” Variable selection focuses on key factors related to carbon emissions, economic performance, and the implementation of low-carbon policies. The central variable of interest is the interaction between the low-carbon city pilot policy and carbon emission intensity (CDEI), which serves as the main dependent variable. The analysis includes several models to capture the effects of the policy, such as the baseline model (Equation 1) to estimate the overall impact of the policy on CDEI. In addition, mediation models (Equations 2 and 3) are developed to explore the mechanisms through which the policy affects emission intensity, with particular emphasis on factors such as carbon sink enhancement, technological innovation, and industrial structure upgrades. A moderation model (Equations 4 and 5) is also included to test the moderating effects of external factors, such as economic development, fiscal policies, and environmental regulations, on the effectiveness of the low-carbon city pilot policies. The empirical analysis follows a structured process, beginning with the estimation of the baseline DID model to assess the primary impact of the low-carbon city pilot policies. Subsequent steps include robustness checks and dynamic analysis to ensure the reliability and consistency of the results across different model specifications and data subsets. A comprehensive series of diagnostic tests is conducted to verify the validity of the findings, including tests for parallel trends, model stability, and potential endogeneity concerns. The technical roadmap for this study is presented in Figure 1, which illustrates the flow of the analysis, from model design and data collection to the final empirical results.
[image: Flowchart detailing a research approach for analyzing low-carbon city pilot policies' effects on carbon intensity. It is divided into columns for logical approach, technical roadmap, and research methods. The stages include data collection, raising questions, analyzing issues, and solving problems. Each stage connects with specific methods such as literature review, qualitative analysis, regression analysis, and introducing recommendations and prospects.]FIGURE 1 | Research technical roadmap. Note: This figure illustrates the technical roadmap of the research, outlining the major steps and methodologies employed in the study. It begins with the identification of research objectives and the formulation of hypotheses, followed by data collection and pre-processing. The core analytical techniques, such as regression models, dynamic effect tests, and robustness checks, are then applied. The results are subsequently analyzed for causal relationships, with further tests for heterogeneity and mediation effects to ensure the robustness of the findings. The final step involves interpretation and policy implications based on the results. 
4.2 Model construction
This study evaluates the impact of China’s low-carbon city pilot policies on carbon emission intensity (CDEI) using a multi-period difference-in-differences (DID) model, which treats the policy implementation as a “quasi-natural experiment.” The low-carbon city pilot policy was introduced in three phases: 2010, 2013, and 2017, with the goal of progressively consolidating achievements in low-carbon city construction and promoting the adoption of low-carbon development models. By using panel data, we can observe changes in carbon emissions before and after the policy adoption within the same city, and compare cities that adopted the policy with those that did not at the same time points. To capture the impact of these policies, we use a DID model, with clustered robust standard errors at the city level, and control for both city-specific and time-specific fixed effects. The key dependent variable is carbon emission intensity (CDEI), and the model tests the effects of the low-carbon city pilot policy on CDEI over time, considering potential mediating and moderating factors.
4.2.1 Baseline model
The baseline model is designed to estimate the overall effect of the low-carbon city pilot policy on carbon emission intensity (CDEI). It is specified as follows:
[image: An equation displaying: CDE_{it} equals alpha plus beta times DID_{it} plus gamma times X_{it} plus mu_{i} plus lambda_{t} plus epsilon_{it}.]
Where: CDEIit is the carbon dioxide emission intensity for city i in year t α is the intercept. β is the coefficient of interest, representing the net or total effect of the low-carbon city pilot policy on emission intensity. A significantly negative β indicates that the policy significantly reduces carbon emission intensity. DIDit is a binary indicator for policy implementation, taking the value one if the policy was implemented in city i at year t, and 0 otherwise. γ represents the effect size of control variables on carbon emission intensity. Xit is the vector of time-varying control variables. μi and λt are city and time fixed effects, respectively. εit is the error term.
4.2.2 Mediation model
The mediation model is designed to investigate the pathways through which the low-carbon city pilot policy affects carbon emission intensity. The model adopts an improved causal stepwise regression method, following the approach by Wen Zhonglin et al. (2014), and tests the mediation effects using the Bootstrap method (Wen et al., 2004).
First, the baseline model (Equation 1) is used to estimate the total effect of policy implementation on CDEI. Then, a second equation is introduced to test the effect of policy implementation on the mediating variable:
[image: Mathematical equation for model estimation: \( M_{e_{it}} = \alpha_{1} + \beta_{1} DID_{it} + \gamma_{1} X_{it} + \mu_{i} + \lambda_{t} + \epsilon_{it} \) labeled as equation two.]
Where: Mechit represents the mediating variable through which the policy impacts CDEI. β1 is the effect of the policy on the mediator. γ1 represents the effect size of control variables on the mediator.
Finally, the mediating variable is added to the baseline model to estimate both the direct effect of the policy on carbon emission intensity and the indirect effect through the mediator:
[image: The image displays a regression equation labeled as equation (3): CDEI_it = α_2 + β_2 DID_it + δ Mech_it + γ_2 X_it + μ_i + λ_t + ε_it.]
Where: β2 is the direct effect of the policy on emission intensity. δ is the effect of the mediating variable on carbon emission intensity. The interaction term β1*δ represents the indirect effect of the policy on carbon emission intensity via the mediator.
4.2.3 Moderation model
The moderation model examines how external factors, such as economic development, environmental regulations, and fiscal autonomy, moderate the effectiveness of low-carbon city pilot policies in reducing carbon emission intensity. A positive moderating effect is indicated when both the main effect of the policy (DID) and the interaction effect between the policy and the moderator are significant and have the same sign, while a negative moderating effect occurs when the signs are opposite. The moderation model is specified as follows:
First, the moderator variable is added to the baseline model to test the impact of both the policy and the moderator on carbon emission intensity:
[image: Mathematical equation showing: \( CDE_{it} = \alpha + \beta DID_{it} + \theta Z_{it} + \gamma X_t + \mu_i + \lambda_t + \epsilon_{it} \), labeled as equation (4).]
Where: Zit represents the moderating variable. θ is the coefficient for the moderating variable.
Next, an interaction term between the policy and the moderating variable is introduced to test if the policy effect is moderated by the external factor:
[image: The equation shows a mathematical expression for \( CDE_{it} \). It includes terms \(\alpha\), \(\beta_1\), \(DID_n \times Z_t\), \(\beta DIT_n\), \(\theta Z_t\), \(\gamma X_{it}\), along with \(u_t\), \(\lambda_t\), and \(e_{it}\). This equation is numbered (5).]
Where: DIDit × Zit represents the moderating effect of the policy, testing whether the interaction between policy implementation and the moderator affects carbon emission intensity. β3 is the coefficient of the moderating effect.
4.3 Data description
This study uses panel data from 283 prefecture-level cities in China, spanning from 2005 to 2021. The data is sourced from reputable databases, including the CSMAR database, the China Carbon Accounting Database, and the China City Statistical Yearbook. To account for international currency fluctuations, Foreign Direct Investment (FDI) is converted to Chinese yuan using the annual average exchange rate between the United States dollar and the Chinese yuan. Nominal indicators, such as FDI and regional GDP, are adjusted to real terms using the GDP deflator, with 2005 as the base year. To mitigate potential measurement issues such as heteroscedasticity, logarithmic transformations are applied to key variables such as Carbon Dioxide Emission Intensity (CDEI), Pollution Control Capacity (PCC), Environmental Regulation (EL), and Population Density (PD). Data from autonomous prefectures are included, but regions such as Hong Kong, Macao, Taiwan, and Tibet are excluded from the analysis due to their distinct economic and administrative characteristics. Missing values in the dependent variable are filled using the moving average method, and missing data for other variables are interpolated where necessary. Descriptive statistics for each variable are presented in Table 1, offering an overview of the key characteristics and distribution of the data.
TABLE 1 | Descriptive statistics of variables.
[image: A table presents descriptive statistics for various variables in a study. Columns list symbols, variable names, sample sizes, means, standard deviations, minimums, medians, and maximums for each variable. Examples include Carbon Dioxide Emission Intensity, Per Capita Carbon Dioxide Emissions, and Implementation of Pilot Policies. Sample sizes range from 4,794 to 5,559. The note clarifies that these statistics relate to variables used in the study.]4.4 Variable definition
4.4.1 Dependent variable
Carbon Dioxide Emission Intensity (CDEI): Unlike traditional carbon emission measures such as total CO₂ emissions or per capita CO₂ emissions, CDEI is defined as the logarithm of the ratio of total CO₂ emissions to regional GDP. This measure reflects carbon emissions per unit of GDP, providing insights into both environmental and economic impacts. For robustness checks, Per Capita CO₂ Emissions (PCCDE) is used as a supplementary variable, calculated as the logarithm of the ratio of total CO₂ emissions to the year-end population.
4.4.2 Independent variable
Implementation of Low-Carbon City Pilot Policies (DID): This is an interaction term between policy implementation and time, represented as a dummy variable. If a city adopts the policy, treat = 1; otherwise, treat = 0. The “period” variable equals 1 after the policy implementation and 0 before. The second batch of pilot cities began in 2013, with 2012 serving as the baseline for robustness testing. For cities that undergo multiple rounds of policy implementation, the earliest implementation date is used by default.
4.4.3 Mediating variables
Carbon Sink Level (CSL): Measured by the ratio of green coverage area in built-up areas to the total land area of built-up areas. Increasing carbon sequestration is essential for reducing CO₂ emissions, as it enhances the capacity of urban areas to absorb carbon.
Technological Investment (TI): Measured by the ratio of scientific and technological investment to fiscal expenditure. Technological investment helps firms adopt cleaner technologies, thereby reducing CO₂ emissions through more efficient production methods.
Industrial Structure Upgrading (ISU): Measured by the ratio of GDP from the tertiary sector (services) to total regional GDP. The transition to service-based economies often promotes cleaner, more efficient industries, thus reducing carbon emissions.
4.4.4 Moderating variables
Environmental Regulation (ER): Measured by the comprehensive utilization rate of industrial fixed waste. Environmental regulations, as proposed in the Porter Hypothesis, can stimulate technological innovation, improve resource efficiency, and reduce carbon emissions.
Fiscal Freedom Degree (FFD): Measured by the ratio of general budgetary revenue to general budgetary expenditure. High fiscal freedom provides local governments with more resources to invest in low-carbon initiatives. Low fiscal freedom may lead to fiscal pressures that could undermine the effectiveness of emission reduction policies.
Population Growth Rate (PGR): Measured by the natural population growth rate. As population growth can drive increased energy consumption and carbon emissions, it serves as a proxy for potential future emissions. It may also influence the scale of green transformations in urban areas.
4.4.5 Control variables
Foreign Direct Investment (FDI): Measured by the ratio of actual foreign investment utilization to regional GDP. Increased foreign investment often brings advanced technology and capital that could influence carbon emissions.
Government Support Level (GSL): Measured by the ratio of general budgetary expenditure to regional GDP. Higher government expenditure may reflect greater investment in low-carbon technologies and environmental projects.
Economic Level (EL): Measured by the logarithm of total urban GDP per capita. Economic growth can reduce carbon emissions through economies of scale and technological innovations that drive energy efficiency.
Financial Development (FD): Measured by the ratio of financial loans to regional GDP. The development of the financial sector may facilitate investments in sustainable technologies and businesses that contribute to lower emissions.
Population Density (PD): Measured by the logarithm of the ratio of total population to the total land area. High population density can lead to more concentrated emissions due to higher levels of consumption and waste generation.
Pollution Control Capacity (PCC): Measured by the rate of harmless treatment of domestic waste. This variable captures the potential role of pollution control measures in reducing CO₂ emissions, as effective waste management can complement carbon reduction efforts.
4.5 Justification of methodological approach
This study employs a dynamic Difference-in-Differences (DID) model, which represents a methodological advancement over static models typically used in policy impact studies. The multi-period DID design captures both short-term and long-term effects of the low-carbon city pilot policy, offering a more comprehensive view of its impact on carbon emission intensity. This approach is essential for understanding the policy’s effectiveness over time, considering potential lag effects and changes in policy enforcement. Moreover, this study integrates mediation and moderation analysis, providing deeper insights into how the policy affects carbon emissions through mediators such as carbon sinks, technological innovation, and industrial structure upgrades. It also examines how external factors, such as environmental regulations and fiscal freedom, may moderate the effectiveness of the policy. By exploring these pathways and moderating factors, this study contributes to understanding not just the direct impact of low-carbon policies, but also the mechanisms that drive their effectiveness. Additionally, the study considers heterogeneity in policy impacts across cities with different economic development levels, geographical locations, and resource endowments. This regional variation is critical for tailoring low-carbon strategies to specific urban contexts, ensuring more targeted and effective policies. In conclusion, by addressing gaps in the existing literature and adopting a robust and dynamic methodological approach, this study provides valuable empirical insights into optimizing China’s low-carbon city pilot policies and advancing sustainable urban development.
5 EMPIRICAL RESULTS AND DISCUSSION
5.1 Baseline regression results
The regression results examining the impact of the low-carbon city pilot policy on urban carbon emission intensity are presented in Table 2. The coefficients of the interaction terms for the core explanatory variables are negative and statistically significant at the 1% level, indicating a significant inhibitory effect of the policy on urban carbon emission intensity. In column (6), the coefficient of the DID term is significantly negative (−0.0482), suggesting that the policy implementation reduces carbon emission intensity by 4.82%. This result highlights the substantial emission reduction benefits of the policy, driven primarily by effective policy incentives and improvements in urban environmental governance. Specifically, the phased implementation of the pilot policy has reduced emissions through governmental compliance monitoring, restricting industrial practices, and promoting public awareness of low-carbon lifestyles. These findings show that the policy has successfully met its initial objective of emission reduction, illustrating the effectiveness of combining administrative measures with public engagement. No significant differences are observed across the models, except for variations in coefficient magnitudes, confirming the robustness of the baseline regression results.
TABLE 2 | Baseline regression results.
[image: Table displaying regression analysis results using Ordinary Least Squares (OLS) and Fixed Effects (FE) models. Coefficients and t-statistics are shown for variables like DID, FDI, GSL, among others. Statistical significance is denoted by asterisks, and both year and city fixed effects are included where indicated. The table summarizes results for coefficients, sample size, and R-squared values for six models. The dependent variable is carbon dioxide emission intensity.]Regarding control variables, government support significantly increases carbon emission intensity, likely reflecting that much of the government spending in many cities is directed towards industries, such as manufacturing, which are associated with higher emissions. In contrast, economic development level, fiscal freedom, and technological investment significantly reduce carbon emission intensity. Regions with higher economic development levels often serve as financial and commercial hubs, thus avoiding the concentration of highly polluting industries. Similarly, higher fiscal freedom allows local governments to resist relaxing environmental standards for attracting investment, preventing the entry of polluting firms. Additionally, greater technological investment enables firms to upgrade technologies, phase out outdated production processes, and innovate energy systems, driving industrial transformation and emission reduction. Other control variables are significant in columns (2) and (4), where time and individual fixed effects are excluded, but lose significance in column (6) with the inclusion of fixed effects. This suggests that the impact of these variables is likely influenced by unobserved factors. After controlling for fixed effects, their significance disappears, emphasizing the importance of a two-way fixed-effects model to account for unobserved heterogeneity and reduce estimation bias, thereby improving result reliability.
5.2 Robustness tests
5.2.1 Parallel trends test
The Difference-in-Differences (DID) method is a classic approach for policy evaluation that addresses endogeneity issues arising from omitted variables. However, it relies on the assumption of parallel trends between the treatment and control groups. If this assumption is violated, pre-policy trend differences may bias the estimated results, affecting the accuracy of policy impact evaluations. To test this assumption, this study adopts the event study methodology and introduces interaction terms for the years before and after policy implementation. The test model is specified as follows:
[image: Mathematical equation showing \( CDE_{it} = \alpha + \sum_{k=-6}^{6} \beta_k DID_{it}^k + \gamma X_{it} + \mu_t + \lambda_t + \epsilon_{it} \), labeled as equation six.]
Where, DIDitk represents the interaction term for the kth year before or after policy implementation, and βk represents the impact of the policy on urban carbon emission intensity in the kth year. Other variables remain unchanged. When k < 0, if βk is not significant, the parallel trends assumption holds. When k > 0, if βk is significant, it indicates dynamic effects following policy implementation. To visualize the results of the model (Equation 6), confidence interval plots for the parallel trends test are used. Before policy implementation, the confidence intervals for all periods should include zero, indicating no significant difference from zero, confirming the parallel trends assumption. After policy implementation, if the confidence intervals exclude zero, it signals significant dynamic effects; otherwise, it suggests no long-term impact.
To mitigate potential multicollinearity among the interaction terms, data for the current period in the treated areas are excluded, and data beyond six periods before and after the policy are merged into the sixth period. The parallel trends graph in Figure 2 shows that the coefficients for the six periods before policy implementation are positive but not significantly different from zero, indicating no significant difference in carbon emission intensity trends between the treatment and control groups prior to policy implementation, thus confirming the parallel trends assumption. For the six periods after policy implementation, the coefficients are significantly different from zero, indicating a notable dynamic effect of the policy. Furthermore, the coefficients are negative, suggesting that the policy significantly reduces carbon emission intensity in the treatment group. The absolute values of the coefficients initially increase, then decrease, and eventually stabilize, reflecting the lagged effect of the policy. As the policy is implemented, its effect gradually emerges and stabilizes over time, exerting a significant and sustained inhibitory impact on carbon emissions.
[image: Line graph depicting policy dynamic effects over time with confidence intervals. The x-axis ranges from -5 to 5 labeled as policy timing, and the y-axis represents policy effects. The data points fluctuate above and below a horizontal baseline, with vertical lines indicating variability.]FIGURE 2 | Parallel trend test graph. Note: This graph presents the confidence intervals used for testing the parallel trend assumption in a Difference-in-Differences (DID) analysis. If the confidence interval includes zero, it suggests that the pre-treatment trends of the treatment and control groups are similar, supporting the parallel trend assumption. If the confidence interval does not include zero, it indicates a significant difference in the trends between the two groups before the treatment, violating the parallel trend assumption.
5.2.2 Dynamic effects test
To examine variations in policy effects across different implementation batches, we define the first batch as the period from 2010 to 2012 (DID1), the second batch from 2013 to 2016 (DID2), and the third batch from 2017 to 2021 (DID3). The dynamic effects test results for these three stages are presented in Table 3. The results in column 2 of Table 3 show that the policy effect in the first batch is not statistically significant, though it exhibits an inhibitory tendency. This could be due to the lagged nature of policy implementation, where the effects take time to materialize, and the relatively short duration of the first batch, which limited its visibility. In contrast, the policy effects in the second and third batches are significantly negative, indicating that the low-carbon city pilot policy effectively reduced carbon emission intensity during these phases. However, the inhibitory effect in the third batch is weaker than in the second batch, possibly due to the shorter duration of enforcement or the larger number of cities involved in the third batch. This larger group of cities may have caused disparities in policy execution, with some cities engaging in “free-riding” behavior, which weakened the overall policy impact. From a policy perspective, these findings provide several key insights. First, the observed lag in the policy’s effects underscores the importance of sustained efforts and monitoring during the early stages of policy implementation. Second, the stable and significant inhibitory effects in the second batch highlight the need for balancing the scale and scope of policy implementation. Finally, addressing the issue of free-riding in later batches may require strengthening accountability mechanisms and tailoring policy measures to better align with local conditions, ensuring more effective execution.
TABLE 3 | Results of three-stage dynamic effects test and time placebo test.
[image: Table of regression results showing three-stage dynamic effects and time placebo tests on carbon dioxide emission intensity. Variables include DID, DID1, DID2, and DID3 with coefficients and t-statistics for time intervals from two to five years in advance. Controls, year and city fixed effects, and statistical significance are noted. Observations number 5,557 in column 1 and 4,791 in columns 2 to 6. R-squared and adjusted R-squared values are listed, with statistical significance indicated by asterisks.]5.2.3 Placebo test
To ensure the robustness of the estimated policy effects and eliminate potential biases from omitted variables or unobservable factors, placebo tests were conducted from both temporal and spatial perspectives. First, in the time placebo test, we examined whether the observed policy effects were due to systematic differences in time trends between the treatment and control groups, rather than the actual implementation of the low-carbon city pilot policy. Following the event-study framework, we artificially advanced the policy implementation by 2, 3, 4, and 5 years, creating counterfactual scenarios. The results, presented in Table 3, show that none of the artificially advanced policies were significant at the 5% or 10% levels. This indicates that the counterfactual policy effects are insignificant, supporting the conclusion that there are no systematic differences in time trends between the groups. Thus, the observed inhibitory effects can be attributed to the actual implementation of the low-carbon city pilot policy, rather than spurious correlations or pre-existing trends. Second, a city placebo test was conducted to address the potential influence of unobservable city-level factors or omitted variables. Unlike traditional placebo tests using dummy treatment groups, our approach randomly assigned the DID term to cities, accounting for both temporal and spatial differences. Figure 3 shows the results from 1,000 random draws, with fake regression coefficients on the left and fake p-values on the right. The placebo coefficients are tightly clustered around zero and are statistically insignificant, contrasting sharply with the significant coefficients in the baseline regression. This indicates that the placebo test successfully rules out the possibility of unobserved city-level factors or model misspecification biasing the estimated policy effects. In conclusion, the time and city placebo tests strongly confirm the robustness of the estimated impact of the low-carbon city pilot policy on carbon emission intensity.
[image: Line graph with a sharp, central peak depicting density distribution of estimators around zero. X-axis represents the estimator values, while the left Y-axis shows density, and the right Y-axis shows P values. A legend distinguishes between P values and estimators.]FIGURE 3 | Results of city placebo test. Note: This figure shows the results of the placebo test conducted at the city level. It evaluates whether the estimated treatment effect on carbon dioxide emission intensity is driven by random variation in the data rather than the actual policy intervention. The placebo test is applied by assigning the treatment to cities that did not receive the policy intervention. If the treatment effect is significantly different from zero in the placebo test, it would suggest that the observed effect may not be causal. Conversely, if the effect is close to zero and statistically insignificant, it supports the validity of the treatment effect estimated in the main analysis.
5.2.4 PSM-DID test
To address potential endogeneity issues arising from reverse causality or non-random selection bias, this study employs a multi-period difference-in-differences (DID) model combined with propensity score matching (PSM) as a robustness check. The primary PSM-DID regression uses 1:3 nearest neighbor matching with a caliper of 0.05. Robustness is further tested using alternative matching methods, including nearest neighbor matching, 1:3 nearest neighbor matching with a caliper of 0.01, radius caliper matching with a caliper of 0.01, kernel density matching, and local linear matching. The regression results in Table 4 show that all coefficient values are significantly negative across different matching methods. This confirms the robustness of the PSM-DID results, supporting the conclusion that the low-carbon city pilot policy significantly reduces urban carbon emission intensity. The consistency of negative coefficients across various matching techniques emphasizes the policy’s tangible impact on emission reductions. These results reinforce the validity of the baseline findings, confirming the success of the policy in achieving its environmental objectives. Moreover, the combination of PSM and DID models helps mitigate biases from unobservable factors and selection effects. The findings suggest that cities selected for the low-carbon city pilot program effectively utilized policy interventions to reduce carbon emissions. This highlights the importance of precise targeting and systematic implementation of environmental policies. Policymakers should continue identifying high-carbon cities and tailor pilot policies to local contexts to maximize their effectiveness. Furthermore, the robustness of the PSM-DID results suggests that expanding the program to more cities could yield similar emission reduction benefits while promoting sustainable urban development.
TABLE 4 | PSM-DID regression results with different matching methods.
[image: Table displaying results from PSM-DID regression using different propensity score matching methods. It lists coefficients and t-statistics for the DID variable across six techniques: Basic, Nearest Neighbor, Caliper Nearest Neighbor, Radius Caliper, Kernel Density, and Local Linear Matching. Rows include DID estimates, controls, year and city fixed effects, N, R², and adjusted R² values. Statistical significance is indicated by asterisks, with the dependent variable being carbon dioxide emission intensity.]5.2.5 Endogeneity test
To address potential endogeneity issues, such as reverse causality and omitted variables, this study employs two methods. First, the lagged control variable method is used. Due to the difficulty of identifying a perfect instrumental variable, this study follows prior research by lagging all control variables by one period. This helps reduce bias caused by simultaneous causality between the policy and the outcomes. Second, the predetermined variable method is introduced. Recognizing that initial differences in carbon emission intensity across cities might affect the policy’s effectiveness, the study includes an interaction term of lagged carbon emission intensity and time trend as a predetermined variable, controlling for the impact of initial emission levels. The results in Table 5 show that the coefficient of the core explanatory variable (DID) remains significantly negative even after applying these methods. This confirms that the low-carbon city pilot policy continues to significantly reduce carbon emission intensity, and the results are robust to concerns about endogeneity. These findings suggest that the policy consistently reduces carbon emission intensity, even when accounting for issues like reverse causality and omitted variables. This strengthens the conclusion that the policy has long-term and sustainable impacts. These results provide strong evidence that well-implemented low-carbon policies can effectively reduce emissions. Policymakers should continue to prioritize low-carbon pilot zones and expand such initiatives while considering the impact of initial carbon emission levels in future policy design. Additionally, the findings highlight the importance of addressing endogeneity concerns in policy evaluation to ensure that observed effects are attributed to the policy itself, not confounding factors.
TABLE 5 | Results of endogeneity test, non-random selection test, and same-period policy test.
[image: Table showing results from robustness checks, including endogeneity test, non-random selection test, and same-period policy test. Coefficients and t-statistics for the DID variable are given under various specifications. Statistical significance is denoted by asterisks. Columns detail the effects of lagged controls, predetermined variables, carbon emission trading, air pollution control, and pollutant discharge trading. Each model includes year and city fixed effects.]5.2.6 Non-random selection test
Since the selection of low-carbon pilot cities may not be random, this study investigates the impact of inherent differences in economic development and industrial bases on the selection process. Cities with lower initial carbon emission intensity are more likely to be chosen as pilot cities, as they are better aligned with the policy’s goals. Furthermore, city-specific characteristics may affect carbon emission intensity differently over time, potentially leading to estimation bias. To address these issues, city-specific dummy variables and their interaction terms with a polynomial time trend are incorporated into the baseline regression model. The model is specified as follows:
[image: Mathematical equation for conditional difference-in-differences model: CDE_{it} = \alpha + \beta D_{it} + K_c \cdot f(t) + \gamma X_{it} + \mu_t + \lambda_c + \epsilon_{it}.]
Where Kc represents city-specific attributes, such as whether a city is in a “two-control zone,” a pollution prevention pilot area, or a special economic zone, and f(t) is a polynomial time trend with linear and quadratic terms. The term Kc⋅f(t) accounts for how city attributes influence carbon emission intensity over time.
The regression results for the non-random selection model (Equation 7) in Table 5 show that even after controlling for city-specific attributes and their time-varying effects, the coefficient of the core explanatory variable (DID) remains significantly negative. This result is consistent with the baseline regression findings and provides robust evidence of the policy’s effectiveness in reducing carbon emission intensity. These results indicate that the selection of low-carbon pilot cities is influenced by initial factors such as economic and industrial characteristics. However, non-random selection does not undermine the policy’s overall effectiveness. Policymakers should be aware of potential biases in city selection to ensure a fair and comprehensive evaluation of the policy’s impact. Addressing these selection biases in future initiatives can help ensure a more equitable distribution of resources and policy benefits across cities. Furthermore, the findings suggest that policies targeting cities with distinct economic and industrial profiles may require tailored implementation strategies. Policymakers should consider designing complementary measures to address structural challenges in cities with higher initial carbon intensities, ensuring that low-carbon initiatives have a broader and more inclusive impact.
5.2.7 Concurrent policy test
Since the implementation of the low-carbon city pilot policy may overlap with other policies in terms of timing and geographical scope, this study includes dummy variables for relevant policies to control for potential confounding effects. These dummy variables represent whether a city is a pilot city for “carbon emissions trading” (DID4), a key area for air pollution prevention and control (DID5), or a pilot city for pollutant discharge rights trading (DID6). By incorporating these variables, we can assess the impact of the low-carbon city pilot policy while accounting for the influence of concurrent policies. The regression results in Table 5 show that the coefficient of the core explanatory variable (DID) remains significantly negative across all models. This suggests that even with the presence of other concurrent policies, the low-carbon city pilot policy continues to effectively reduce urban carbon emission intensity. This finding strengthens the robustness of the baseline regression results, indicating that the policy is a key instrument for emission reduction, independent of other environmental and regulatory measures. These results confirm that the low-carbon city pilot policy is an effective and independent tool for reducing carbon emissions, even when other related policies are simultaneously implemented. Notably, the policy’s sustained effectiveness, despite the concurrent implementation of carbon emissions trading and air pollution control measures, suggests that the integration of multiple environmental policies can complement rather than undermine the overall emission reduction goal. This highlights the importance of policy coherence and synergy in addressing urban environmental challenges. The findings encourage further expansion of the low-carbon city pilot policy and emphasize the value of aligning it with other concurrent policies. Furthermore, these results underscore the need for a holistic approach to urban environmental governance, where various policies work in tandem to create a more sustainable future.
5.2.8 Other robustness tests
To further enhance the credibility and robustness of the empirical findings and minimize the influence of confounding factors, this study conducts additional robustness tests. These include excluding municipalities from the sample, shortening the sample period to 2008–2019, adjusting the second batch policy implementation year to 2012 (DID7), replacing the dependent variable with per capita carbon dioxide emissions, and performing two-tailed trimming and censoring at the 1% and 99% quantiles. The results in Table 6 show that the coefficients of the core explanatory variables remain significantly negative across all models, indicating that after applying these robustness procedures, the policy’s effects remain stable. This further confirms the robustness of the baseline regression results. These robustness tests strengthen the conclusion that the low-carbon city pilot policy significantly reduces urban carbon emission intensity. The consistent negative coefficients across various robustness checks reinforce the validity of the original findings, suggesting that the policy’s effectiveness is not sensitive to model specifications or sample variations. This consistency enhances the policy’s credibility and provides a solid foundation for its continued implementation. The findings have several important policy implications. First, the policy’s strong effectiveness across various tests suggests its potential for long-term success in achieving carbon reduction goals. Second, the consistency of results across different robustness checks indicates that the policy can be applied to cities with varying characteristics. This supports the case for scaling up the policy to other cities or regions that have not yet implemented low-carbon initiatives. Furthermore, the robustness tests using different outcome measures, such as per capita carbon emissions, further support the policy’s effectiveness in reducing urban carbon intensity. These findings suggest that expanding low-carbon initiatives to more cities while refining implementation could enhance national and regional efforts to combat climate change.
TABLE 6 | Results of other robustness tests.
[image: Table showing robustness tests with six columns labeled: Exclude samples, Shorten window, Change time points, Change dependent variable, Two-tailed trimming, and Two-tailed censoring. Coefficients and t-statistics are reported for DID and DID7 variables. All models include controls, year and city fixed effects, and sample sizes range from 3,382 to 4,791. Adjusted R-squared values range from 0.964 to 0.973. Statistical significance is noted by asterisks. The table examines carbon dioxide emission intensity.]5.3 Mechanism analysis
5.3.1 Mediation effect
To explore the indirect effects of the low-carbon city pilot policy through three channels—enhancing carbon sink levels, fostering technological investment, and upgrading industrial structures—this study employs the bootstrap method. The results are presented in Table 7. According to the bootstrap method, if the indirect effect is not significant, there is no mediation effect; if both the indirect and direct effects are significant and have the same sign, this indicates a partial mediation effect, with the mediation proportion calculated as the ratio of the indirect effect to the sum of the direct and indirect effects.
TABLE 7 | Results of mediation effect mechanism test.
[image: Table showing mediation effect mechanism test results for carbon sequestration level, technological investment, and industrial structure upgrade. Indirect effects are -0.007, 0.000, and -0.012, while direct effects are -0.155, -0.170, and -0.156 for each category. Sample sizes are 4,723, 4,791, and 4,502 respectively. Statistical significance indicated by asterisks; values in parentheses are t-statistics.]In column (1) of Table 7, we observe that the indirect effect of carbon sink levels on reducing carbon emission intensity is statistically significant at the 1% level (−0.72%), with the direct effect also significant at the 1% level (−15.52%). This indicates a partial mediation effect, with the mediation proportion standing at 4.43%. In other words, 4.43% of the reduction in carbon emission intensity resulting from the pilot policy can be attributed to improvements in carbon sink levels. This reflects the policy’s success in strengthening investments and management in carbon sink projects, such as promoting “green cities” and expanding carbon sequestration areas, which enhance the ecosystem’s ability to absorb CO2. Similarly, column (3) reveals that industrial structure upgrades also contribute to a partial mediation effect on carbon emission intensity reduction. The indirect effect is 1.22%, and the direct effect is 15.64%, with the mediation proportion being 7.24%. This suggests that the policy’s success in reducing carbon emission intensity is, in part, due to its role in upgrading industrial structures, shifting energy consumption patterns, and reducing the share of high-pollution industries. However, as shown in column (2), technological investment does not exhibit a significant indirect effect. While the direct effect of technological investment on carbon emission intensity is significant at the 1% level (−17.03%), the lack of a mediation effect suggests that technological investment does not play a mediating role. Therefore, the reduction in carbon emission intensity resulting from the policy cannot be attributed to increased technological investment. The absence of a mediation effect may be due to factors such as bottlenecks in the development of critical technologies or the failure to capture green innovation aspects of technological investments in the model. In conclusion, these findings suggest that the low-carbon city pilot policy reduces carbon emission intensity primarily through enhanced carbon sink levels and industrial structure upgrades, rather than through technological investment. These results provide empirical support for the hypothesized mediation mechanisms of the policy.
5.3.2 Moderation effect
Table 8 presents the results of the moderation effect analysis, which examines how environmental regulations, fiscal freedom, and population growth rate influence the effectiveness of the low-carbon city pilot policy. Columns (1), (3), and (5) present the regression results for the independent variable (DID), the moderating variables, and their interaction terms, while columns (2), (4), and (6) show the results after centering the variables.
TABLE 8 | Results of moderation effect mechanism test.
[image: A statistical table displays the results of a moderation effect mechanism test analyzing the impact of Environmental Regulation (ER), Fiscal Freedom Degree (FFD), and Population Growth Rate (PGR) on low-carbon policies (DID). Columns present coefficients and t-statistics for various models, marked with significance levels: *** for p < 0.01, ** for p < 0.05, and * for p < 0.1. The table includes controls, year and city fixed effects, with R-squared values around 0.969 to 0.971, reflecting model fit. Interaction terms are centered to mitigate multicollinearity.]From column (2), we infer that both the main effect of DID and the coefficient of the interaction term for environmental regulations (c_DID_c_ER) are significant but have opposite signs. This indicates that environmental regulations do not significantly enhance the inhibitory effect of the pilot policy on carbon emission intensity. In fact, they exhibit a significant negative moderation effect, meaning that stronger environmental regulations in a city do not necessarily align with the low-carbon pilot policy’s objectives and may even reduce its effectiveness. This could be due to a mismatch between the existing regulatory framework and the policy’s goals. To address this, it is recommended to strengthen the enforcement of environmental regulations and improve their alignment with low-carbon policies. Additionally, fine-tuning implementation details and increasing penalties for non-compliance could ensure better coordination between environmental, fiscal, and economic policies. In contrast, column (4) reveals that both the main effect of DID and the interaction term for fiscal freedom degree (c_DID_c_FFD) are significant and have the same sign, indicating a positive moderation effect. This shows that cities with greater fiscal freedom are more effective in implementing green low-carbon policies. Higher fiscal freedom enables local governments to better allocate resources, provide more financial support for environmental protection, and ultimately achieve the dual goals of sustainable development and environmental conservation. The positive moderation effect of fiscal freedom supports existing theories suggesting that fiscal autonomy enables more flexible and effective policy implementation. Similarly, column (6) demonstrates that population growth rate also exerts a significant positive moderation effect. Cities with higher population growth rates exhibit more significant reductions in carbon emission intensity due to the low-carbon city pilot policy. Rapid population growth increases resource demand, which in turn encourages governments and businesses to prioritize environmental protection and low-carbon technologies. This creates a more conducive environment for the successful implementation of the pilot policy. In conclusion, the findings suggest that the effectiveness of the low-carbon city pilot policy is enhanced when cities have weaker environmental regulations, greater fiscal freedom, and faster population growth. These results provide strong support for the conjecture that the moderation effects of these factors play a significant role in influencing the success of the policy.
5.4 Heterogeneity analysis
5.4.1 Economic level heterogeneity
This study explores economic level heterogeneity in two ways. First, cities are grouped by their administrative hierarchy, with municipalities directly under the central government and vice-provincial cities categorized as non-prefecture-level cities. Columns (1) and (2) of Table 9 show significant differences in the effects of the pilot policy across cities with different administrative levels. Specifically, non-prefecture-level cities show better performance compared to prefecture-level cities. Second, based on the “2022 City Business Attractiveness Rankings,” cities are divided into high, medium, and low economic level groups, using third-tier and fourth-tier cities as thresholds. Columns (3) to (5) of Table 9 indicate that the higher the economic development level of the city, the better the effect of the pilot policy. The results from both approaches are consistent, suggesting that cities with higher administrative ranks and better business attractiveness tend to achieve better outcomes with the pilot policy. This can be attributed to several factors. First, higher-ranking cities generally have better access to resources, superior infrastructure, and more favorable policies, all of which facilitate low-carbon initiatives. Additionally, these cities attract more foreign investment and high-tech enterprises, benefiting from technological innovation and spillover effects that reduce carbon emissions. Furthermore, they often have more advanced industrial structures, particularly in the service sector, where industries such as finance are cleaner and more environmentally friendly. In contrast, cities with lower economic development levels are often more industrialized, with high-pollution, high-energy-consuming, and high-emission industries, which hinder reductions in carbon emission intensity. These findings have important policy implications. They suggest that low-carbon pilot policies are likely to be more effective in cities with higher administrative levels and stronger economic foundations, especially those with a more diversified and environmentally friendly industrial structure. To maximize the policy’s effectiveness, it would be beneficial to direct resources and interventions toward cities with lower economic levels, helping them improve their industrial structures and attract cleaner technologies.
TABLE 9 | Results of economic level heterogeneity test.
[image: Table showing the heterogeneity of economic levels in the relationship between low-carbon policy implementation (DID) and carbon dioxide emissions. Columns represent different city types: non-prefecture-level, prefecture-level, high, medium, and low economic levels. The DID coefficients are significant for non-prefecture-level and high economic level cities. Control variables, year fixed effects, and city fixed effects are included across all categories. Sample sizes (N), R-squared (R²), and adjusted R-squared (Adj. R²) are provided for each category. Statistical significance is marked by asterisks, with values in parentheses indicating t-statistics.]5.4.2 Geographical location heterogeneity
This study explores geographical location heterogeneity by dividing China into four regions: Eastern, Central, Western, and Northeastern, based on the classification of the National Bureau of Statistics. As shown in Table 10, columns (1) to (4), the pilot policy yields the best results in the Western region, followed by the Central region, with the weakest results observed in the Eastern region. The effects in the Northeastern region are not significant. This pattern suggests that the effectiveness of the pilot policy declines from West to East. One reason for this is that the Western and Central regions are key areas for energy development, utilization, and industrial upgrading, offering more potential for emission reduction. In contrast, the Eastern region already has a relatively well-structured industrial layout and more advanced government policies, which may limit the improvement potential between pilot and non-pilot cities. Furthermore, the study divides regions into North and South based on the Qinling-Huaihe Line. As shown in Table 10, columns (5) and (6), the policy effects are significantly better in the Southern region compared to the Northern region. This suggests a gradual decline in the effectiveness of the pilot policy from South to North. The Northern region is characterized by higher carbon emissions from heavy industries, making significant reductions more challenging. This highlights the regional disparities in industrial structure and emission profiles, which influence the policy’s success. In summary, the pilot policy shows decreasing effectiveness from the Western to the Eastern regions and from the Southern to the Northern regions. These regional differences emphasize the need to tailor policies to local contexts. In regions with higher emission intensities or more room for industrial upgrading (such as the West and South), the policy is more effective. In contrast, regions with more balanced industrial structures (such as the East and North) may require more targeted interventions to achieve significant reductions in carbon emission intensity.
TABLE 10 | Results of geographical location heterogeneity test.
[image: Table showing the effects of low-carbon policies on carbon dioxide emission intensity across six regions: Eastern, Central, Western, Northeast, Southern, and Northern. The DID values are negative for all except the Northeast and Northern regions. Controls, Year FE, and City FE are consistently marked as "Yes" across regions. Sample sizes (N) and R-squared values vary. Statistical significance is denoted with asterisks: *** for 0.01, ** for 0.05, and * for 0.1. The table notes indicate that the values in parentheses are t-statistics.]5.4.3 Resource endowment heterogeneity
This study further examines the impact of resource endowments on the effectiveness of the pilot policy by dividing the sample into resource-based and non-resource-based cities. Resource-based cities are further categorized into growth, mature, fading, and rejuvenation types, according to the “National Sustainable Development Plan for Resource-based Cities (2013–2020).” The results presented in Table 11, columns (1) and (2), show that resource endowments significantly influence the policy’s effectiveness, with non-resource-based cities generally performing better than resource-based cities. In particular, columns (3) to (6) reveal that only rejuvenation-type resource-based cities experience a significant reduction in carbon intensity after the implementation of the pilot policy. This suggests that the success of the pilot policy is closely tied to the developmental stage of resource-based cities. Cities in the “growth” or “mature” stages, with their dependence on resource extraction and heavy industries, face limitations in reducing carbon emission intensity. In contrast, “rejuvenation-type” resource-based cities, undergoing industrial transformation and restructuring, create a more favorable environment for the success of low-carbon policies. These findings highlight the need for tailored policy approaches, considering the specific resource endowments and industrial structures of cities. Rejuvenation-type cities, focusing on industrial upgrading and environmental improvement, are more likely to benefit from low-carbon policies, while growth and mature resource-based cities may require additional measures to diversify their economies and reduce reliance on high-emission industries.
TABLE 11 | Results of resource endowment heterogeneity test.
[image: Table showing the results of a resource endowment heterogeneity test examining low-carbon policy implementation effects across different city types: non-resource-based, resource-based, growth, mature, fading, and rejuvenation. Notable findings include a significant effect for non-resource-based cities (DID = -0.061***) and rejuvenating cities (DID = 0.150**). Statistical significance is marked by symbols for different p-values, and values in parentheses are t-statistics. Each column includes controls, year fixed effects, and city fixed effects with respective R-squared and adjusted R-squared values.]5.4.4 Industrial foundation heterogeneity
This study investigates the heterogeneity of the pilot policy’s effects across cities with different industrial foundations. The sample of 120 cities is divided into “old industrial base cities” based on the “State Council’s Plan for Adjusting and Transforming Old Industrial Bases (2013–2022).” Among these, 95 are prefecture-level cities, and 25 are non-prefecture-level cities. The results presented in Table 12, columns (1) and (2), show that the policy’s effects are significantly stronger in old industrial base cities compared to non-old industrial base cities. Further analysis in columns (3) and (4) shows that the policy effects are even more pronounced when old industrial base cities are classified as non-prefecture-level cities. This finding aligns with the previous analysis on administrative levels, suggesting that higher administrative levels contribute to more effective policy implementation. The better performance of old industrial base cities can be attributed to several factors. These cities tend to have more mature industrial systems and well-established production processes, which facilitate the rapid implementation of necessary upgrades and technological innovations to reduce emissions. In contrast, non-old industrial base cities may lack the same industrial infrastructure and experience in rapid transformation, making the implementation of low-carbon policies more challenging. Additionally, old industrial base cities, particularly those with higher administrative levels, are more likely to have earlier access to pilot policy programs, resulting in more noticeable and significant reductions in carbon emission intensity.
TABLE 12 | Results of industrial base heterogeneity test and population size heterogeneity test.
[image: A table displaying the results of heterogeneity tests based on industrial base and population size. It includes categories such as non-old industrial base, old industrial base, prefecture-level cities, and various city sizes. Key statistics such as DID, controls, year FE, city FE, sample sizes (N), R-squared, and adjusted R-squared values are shown. Notable significant results marked by asterisks indicate statistical significance. The table is divided into eight columns, summarizing effects per category, with notes explaining significance levels and values in parentheses representing t-statistics.]5.4.5 Population size heterogeneity
This study examines the impact of population differences on the effectiveness of the low-carbon city pilot policy from two perspectives. First, cities are classified based on their location relative to the Hu Huanyong Line, which divides China into regions with varying population densities. According to the results in Table 12, columns (5) and (6), cities east of the Hu Huanyong Line (i.e., those with higher population density) show significantly better policy effects compared to cities to the west. This suggests that higher population density contributes to better policy outcomes, likely due to the greater opportunities for energy efficiency improvements and public transportation use, both of which are key drivers of carbon reduction. Second, cities are categorized by population size, with large cities defined as those exceeding a specific population threshold, as outlined in the “Notice on Adjusting City Size Classification Standards.” The results in columns (7) and (8) of Table 12 show that large cities exhibit significantly better policy effects compared to medium and small cities. This reflects the pioneering role of large cities in implementing low-carbon policies, often serving as leaders and models for others. These findings are likely driven by the higher carbon emissions associated with larger populations, especially in urban areas where population and economic activity are concentrated, leading to higher energy consumption. In large cities, policy interventions, such as energy-efficient housing, public transportation, and green infrastructure, can be more effectively implemented due to their scale and available resources. Additionally, the population density and urbanization in large cities enable more impactful reductions in both residential and transportation-related emissions.
5.5 Generalizability of the findings
5.5.1 Generalizability to other regions in China
The impact of low-carbon city pilot policies may vary significantly across different regions of China. Due to substantial regional disparities in economic development, industrial composition, and population density, the effects observed in cities with high economic activity, such as those in the eastern and coastal regions, may not be directly applicable to cities in the western or less-developed areas. Cities in the eastern regions generally benefit from advanced infrastructure, higher population densities, and greater financial resources to implement low-carbon measures, which may result in more substantial reductions in carbon emission intensity. In contrast, cities in the western regions face challenges such as limited resources, slower industrial upgrading, and lower urbanization rates, which could impede the effectiveness of low-carbon policies. However, the core mechanisms identified in this study—such as enhancing carbon sink capacity, fostering technological innovation, and upgrading industrial structures—are likely to be applicable across different regions. Although the relative impacts of these mechanisms may vary depending on local contexts, the underlying principles of the policies remain relevant. Therefore, while the core components of the policy may be applicable nationwide, their effectiveness will depend on regional characteristics and may require tailored approaches to address the specific challenges of each region.
5.5.2 Generalizability to other developing countries
The findings of this study are also relevant to other developing countries facing similar challenges, such as rapid urbanization and increasing carbon emissions. Many countries in Asia, Africa, and Latin America are experiencing urban growth and industrial expansion, both of which contribute to higher carbon emissions. The policy mechanisms examined in this study—such as strengthening environmental regulations, enhancing fiscal autonomy, managing population growth, and promoting a shift toward low-carbon industries—are applicable in similar contexts within these regions. However, the effectiveness of these measures may be influenced by local factors, such as governance structures, economic conditions, and levels of public awareness. For instance, public participation and environmental awareness may play a more significant role in some countries than in others, thereby influencing the success of these policies. Additionally, the capacity of local governments to implement low-carbon initiatives and the level of technological advancement in these countries may differ, which could impact the effectiveness of the policies.
5.5.3 Limitations in generalizability
Despite the potential relevance of the findings to other regions or countries, there are certain limitations in the generalizability of the results. The institutional, political, and economic context in China is unique and may not be directly comparable to other countries. For example, the strong central government control and coordinated policy-making in China have played a crucial role in the success of the low-carbon city pilot policies. In countries with weaker institutional frameworks or different governance structures, the implementation and outcomes of similar policies may differ significantly. Moreover, variations in the availability of resources, technological capabilities, and public awareness in other countries could affect the implementation of these policies. For instance, countries with underdeveloped infrastructure or lower levels of public awareness may face challenges in achieving the same success in reducing carbon emissions. Therefore, while the mechanisms explored in this study offer valuable insights, their applicability to other regions and countries requires careful consideration of the specific local conditions and challenges. Future research should examine how these mechanisms apply in different contexts and assess the factors that may influence the effectiveness of such policies outside of China.
6 CONCLUSION AND RECOMMENDATIONS
6.1 Conclusion
This study emphasizes the importance of evaluating low-carbon city pilot policies, particularly in the context of China’s ambitious “carbon peaking” and “carbon neutrality” goals. Using data from 283 cities spanning from 2005 to 2021, we employed a multi-period difference-in-differences (DID) approach to assess the impact of the low-carbon city pilot policies on carbon emission intensity. Multiple robustness checks, including dynamic effects, placebo tests, and matching techniques, further validate the results. Additionally, we explored the underlying mechanisms and heterogeneity of the policy’s effects across various urban contexts. The main findings of this study are as follows.
	(1) Significant Reduction in Carbon Emission Intensity: The low-carbon city pilot policy has led to a significant reduction in carbon emission intensity, with the policy’s effects strengthening and stabilizing over time. Although some cities show “free-rider” behavior, robustness checks confirm the validity of the results.
	(2) Mediation Mechanisms: The policy reduces carbon intensity primarily through two channels: enhancing carbon sinks (contributing 4.3% to the reduction) and upgrading industrial structures (contributing 7.1%). However, the impact of technological investment remains minimal, suggesting that greater efforts are needed to scale up green technological innovations.
	(3) Policy Moderation Effects: Local environmental regulations negatively moderate the policy’s effectiveness, while fiscal autonomy and population growth rates positively influence the outcomes. This underscores the importance of balanced local governance in maximizing the policy’s impact.
	(4) Heterogeneity in Policy Effects: The policy’s effectiveness varies across cities depending on economic development, geographical location, industrial foundation, resource endowment, and population size. Cities with higher economic development, more favorable locations (west and south), stronger industrial bases, and larger populations tend to experience greater reductions in carbon intensity.

6.2 Recommendations
Based on the above conclusions, we provide the following policy recommendations.
(1) Strengthen Policy Evaluation Systems: The findings highlight the importance of continuous and comprehensive evaluation of low-carbon city pilot policies. Given the success of the pilot policies in reducing carbon emission intensity, a gradual and expanding approach should be adopted. This involves scaling successful practices from pilot cities to broader regions, while establishing a feedback mechanism for ongoing policy improvement. Local governments should implement robust post-policy performance evaluation systems to monitor long-term effects and ensure sustained carbon reduction. Additionally, measures should be taken to prevent free-rider behavior in cities that benefit from the policy without contributing to its success. The focus should be on stabilizing and sustaining the policy’s dynamic effects to achieve long-term carbon reduction goals.
(2) Enhance Mediation Mechanisms for Carbon Reduction: In order to deepen carbon emission reductions, policies should prioritize enhancing carbon sinks and promoting industrial transformation. To this end, carbon sink enhancement, such as accelerating reforestation and land restoration, should become a core strategy. These efforts can significantly improve the natural carbon storage capacity of ecosystems, thus contributing to long-term emission reductions. Furthermore, industrial upgrading is essential for achieving low-carbon development. Policies should support the transition to low-carbon industries, especially through technological innovation in carbon capture, utilization, and storage (CCUS) technologies. Given the minimal impact of technological investments observed in this study, greater efforts are needed to scale up green technologies and foster innovation in low-carbon solutions. Additionally, local governments should provide targeted incentives for industries to adopt low-carbon production methods, encouraging them to reduce their carbon footprint and shift towards more sustainable practices.
(3) Focus on Modulatory Mechanisms: The study indicates that fiscal autonomy, population growth, and environmental regulations can either amplify or undermine the policy’s effectiveness. To maximize the impact of low-carbon policies, local governments should strengthen environmental regulations to align them better with low-carbon objectives. This may involve introducing higher taxes on carbon-intensive activities and offering subsidies for green technologies and energy-efficient practices, which can incentivize businesses to transition to low-carbon models. At the same time, fiscal autonomy should be carefully managed to prevent the crowding-out effect, where excessive fiscal pressures inadvertently lead to increased carbon emissions. Setting appropriate thresholds for fiscal freedom will help ensure that financial resources are allocated efficiently and sustainably. Lastly, encouraging population growth in cities through migration policies can leverage economies of scale and human capital benefits. Larger cities tend to have more resources and better infrastructure to implement green initiatives, and higher population density can make public transport, waste management, and energy use more efficient. Therefore, policies that facilitate migration to pilot cities can enhance the overall success of low-carbon initiatives.
	(4) Tailored Approaches for Diverse Urban Contexts: The study demonstrates that low-carbon city policies are more effective in cities with higher economic development, stronger industrial bases, and larger populations. Therefore, tailored approaches are necessary to ensure the policy’s success across various urban contexts. The central government should prioritize cities with strong industrial bases, higher economic development, and favorable geographic locations (e.g., southwestern regions) for the initial phase of policy implementation. These cities can serve as models for successful policy deployment. For cities facing specific challenges, such as resource-based cities or those with lower economic development, a phased implementation approach should be adopted. Policies should be customized to suit the local conditions and gradually expand to other regions as cities build their capacity for low-carbon transformation. Moreover, policy assessments should be comprehensive, considering factors like industrial structure, resource endowment, and population demographics. This will help avoid unintended negative consequences in specific contexts and ensure that policies are effective in promoting sustainable urban development.

6.3 Limitations and future research directions
While this study provides important insights into the effectiveness of China’s low-carbon city pilot policies, several limitations remain.
	(1) Limited Scope of Mediating Factors: This study focuses on a few key mediation channels, but future research could examine additional factors such as local innovation systems, public-private partnerships, and social capital. Understanding the role of these factors could provide a more comprehensive view of how low-carbon transitions unfold in various urban contexts.
	(2) Barriers to Technological Investment: The limited impact of technological investments suggests that future studies should explore the barriers to scaling low-carbon technologies, particularly in urban environments. Research could focus on how innovation contributes to emission reductions and identify strategies to accelerate technological development and investment, especially in renewable energy and carbon capture technologies.
	(3) Regional Disparities: Future research should investigate how low-carbon city policies can be tailored to regions facing specific challenges. For example, northern cities may be more reliant on coal, while resource-based cities could experience “carbon lock-in” effects. Longitudinal studies could assess the long-term sustainability of low-carbon city policies and how these policies evolve in different regions over time.
	(4) Behavioral and Social Factors: Further studies could investigate the behavioral and socio-political factors influencing the success or failure of low-carbon city policies. This could include examining the role of public awareness, citizen engagement, and local leadership in driving successful transitions to a low-carbon economy.
	(5) Generalizability of Findings: The findings of this study are based on data from 283 Chinese cities and may not fully apply to other regions or countries with different institutional, economic, or environmental conditions. Future research should explore the generalizability of these findings to other regions, particularly developing countries or cities with varying levels of industrialization and resource endowment. Understanding the context-specific factors that influence the success of low-carbon policies is critical for scaling up similar initiatives globally.

In conclusion, while this study highlights the effectiveness of low-carbon city pilot policies in reducing carbon emission intensity, achieving China’s long-term carbon neutrality goals will require policies that consider regional and urban diversity. Future research will be crucial in refining these policies, overcoming implementation barriers, and ensuring that low-carbon transitions are inclusive and sustainable across different urban contexts.
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Carbon emissions from mega sporting events pose a serious challenge to the sustainable development of the global environment, and the management of carbon emissions and energy efficiency in sporting events has become a focus of attention for both countries and international organizations. However, most existing research focuses on carbon emissions in sporting events is limited by a narrow focus on individual cases, limited attention to indirect emissions, insufficient integration of socioeconomic dimensions, a lack of broader data coverage, the adoption of interdisciplinary methodologies, and an emphasis on lifecycle energy risk management to provide robust support for sustainable event practices and policy development. To remedy these deficiencies, this study systematically compiles the current situation of carbon emissions in sports activities, analyzes the carbon emission characteristics and energy-saving potential of different types of sporting events, and summarizes the excellent cases of carbon emission and energy efficiency management in sports activities. The study reveals that large-scale sporting events generate substantial carbon emissions and energy consumption in transportation, venue construction, and event operation. However, carbon emissions and energy usage can be significantly reduced by optimizing venue locations, promoting green transportation, and implementing energy-saving measures at all stages. This study not only provides empirical data and theoretical support for the management of carbon emissions and energy efficiency in sporting events but also proposes practical and feasible suggestions that are highly important for the sustainable development of future sporting events. The findings have reference value for policymakers and event organizers in planning and implementing energy-saving and low-carbon events, helping promote environmental governance and sustainable development in the sports sector.
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1 INTRODUCTION
Carbon emission governance and energy efficiency improvements have become global concerns, as climate change and energy consumption pose unprecedented challenges to the survival and development of human societies. Carbon dioxide, a major greenhouse gas (GHG), accounts for the vast majority of anthropogenic GHG emissions (Triantafyllidis and Davakos, 2019; Xu and Chen, 2020). In addition to carbon emissions, inefficient energy use exacerbates the environmental crisis, as the growing energy demand for large-scale activities leads to increasing GHG emissions and resource depletion. Global warming and energy inefficiency not only threaten the stability of ecosystems but also pose serious threats to the economy, society, and human health (Sovacool et al., 2022). To address these interrelated problems, countries worldwide have cooperated extensively under multilateral frameworks, such as the Paris Agreement, which aims to limit global average temperature increases to within 2°C above preindustrial levels. Countries have formulated and implemented policies to reduce emissions and improve energy efficiency, such as the Climate Change Act in the United Kingdom, the Global Warming Countermeasures Advancement Act in Japan, and the Clean Energy and Security Act in the United States (Nejat et al., 2015). These efforts focus not only on reducing carbon emissions but also on enhancing energy-saving measures in various sectors.
As the world’s largest emitter of carbon dioxide, China faces a significant challenge in reducing emissions and improving energy efficiency. In the context of global carbon emission governance, China has actively participated in international cooperation and taken strong measures to control GHG emissions while promoting energy-efficient technologies and practices (Lin and Sun, 2010; Deng et al., 2025). Scholars have outlined a six-pronged strategy to drive low-carbon transformation in Chinese cities, aiming to support sustainable development and foster global low-carbon urbanization. This strategy encompasses the establishment of carbon emission monitoring systems, the promotion of enterprise digitalization, the advancement of renewable energy technologies, the enhancement of carbon trading markets and regulatory frameworks, and the widespread adoption of low-carbon principles (Zhao and You, 2020; Xinfa and Jinglin, 2022; Xinfa et al., 2023). Since 2009, China has pushed forward a green and low-carbon economy by establishing carbon emission trading markets and launching pilot programs aimed at both reducing carbon emissions and improving energy savings in industries and urban planning (Pan and Guo, 2024; Liu et al., 2024a). China’s “dual carbon” goals, to peak carbon emissions by 2030 and achieve carbon neutrality by 2060, also prioritize energy efficiency as a key component in meeting these targets (Liu et al., 2022; Xu et al., 2023). Shifting focus to large-scale sporting events shows that the energy demand of large-scale sporting events has significant environmental and economic implications, accompanied by risks such as supply uncertainties, price fluctuations, and potential challenges arising from policy or environmental changes. Adopting systematic energy risk management strategies can help mitigate disruptions and stabilize costs, ensuring the successful achievement of sustainability goals.
Under the overall framework of global carbon emission governance, the carbon emissions of sporting events, as activities with wide-ranging social influence, are receiving increasing attention. Large-scale sporting events are important sources of carbon emissions because of their wide participation and large flow of people and logistics. In particular, a large amount of carbon emissions are generated in the construction of event venues, the operation of events, and the transportation of spectators and athletes (Zhang et al., 2022). Therefore, the study of carbon emission governance in the field of sporting events is not only of academic importance but also plays an important guiding role in practical emission reduction.
International sports organizations have also attached great importance to this issue (Wicker and Thormann, 2022). In 1992, the International Olympic Committee (IOC) incorporated environmental protection into the Olympic Charter for the first time at the Barcelona Olympic Games, proposing that environmental protection is an important part of the modern Olympic movement. Since then, the IOC and the United Nations Environment Programme (UNEP) have jointly established the Sport and Environment Commission, which has further promoted the sustainable development of sporting events (Wicker, 2019). In this context, several major international sporting events, such as the Olympic Games and the World Cup, have begun to implement carbon emission management measures, gradually integrating the green concept into all aspects of these events (Herold et al., 2022). These initiatives not only enhance the sustainability of these events but also provide examples and practical experience for the realization of global carbon emission reduction targets and energy-efficient improvements.
In the field of academic research, studies on the carbon emission management of sporting events have made some progress, but many urgent problems remain to be solved. Studies have shown that the carbon footprint measurement methods for sporting events are being improved (Pedauga et al., 2022; Müller et al., 2021), and many scholars have proposed different carbon emission measurement models and methods to quantify the environmental impacts of sporting activities (Herold et al., 2022). However, most existing studies focus on case studies and lack systematic and comparative studies across event types (McCullough et al., 2020). In addition, how can carbon emissions be effectively reduced while ensuring the quality of the event? How to incorporate low-carbon and energy-efficient concepts at the planning stage of an event still needs to be explored in depth (Cooper, 2020).
Despite increasing attention being paid to carbon emissions and energy efficiency in sports events, existing research remains largely limited to case-specific analyses, restricting the generalizability of the findings across diverse event types and contexts. Moreover, indirect carbon emissions and lifecycle energy consumption are often overlooked, with studies predominantly focusing on direct emissions during events. The socioeconomic implications of carbon governance in sports also remain underexplored, leaving a critical gap in understanding the broader impacts of sustainability initiatives. Additionally, while quantitative methods have advanced, they often lack integration with the qualitative insights necessary for effective planning and decision-making in carbon management. This study addresses these gaps by systematically analyzing carbon emission characteristics and energy-saving potential, including lifecycle impacts, across various types of sporting events. Drawing on exemplary case studies and comparative insights, this study provides a comprehensive framework from which to understand and manage carbon emissions in sports. The findings contribute both to theoretical advancements and practical applications, offering actionable strategies for policymakers and event organizers to implement sustainable, low-carbon practices, particularly in alignment with China’s dual carbon goals.
The advantage of these studies is that they provide a large amount of data support, which provides a theoretical basis on which decision-makers can formulate relevant policies. However, the limitations of the studies are also obvious; first, the limitations of the research object lead to the poor generalizability of the results; second, the research methodology lacks a comprehensive consideration of indirect emissions, energy consumption, and lifecycle emissions; and finally, most existing studies are quantitative analyses, which lack a comprehensive consideration of the impacts of the social and economic aspects in the process of carbon emission and energy efficiency governance. To address the limitations of existing studies, this work employs sustainability and energy efficiency theories to provide a structured analysis of carbon emissions and energy governance in mega sporting events. Sustainability theory focuses on balancing economic, environmental, and social objectives, making it a critical lens through which to evaluate the long-term impacts of sporting events. Integrating renewable energy, waste reduction measures, and sustainable transportation practices into event operations can significantly reduce carbon emissions. Energy efficiency theory highlights the importance of optimizing energy usage to achieve maximum efficiency with minimal environmental impact. Mega sporting events, characterized by high energy demands for venue operations, lighting, and transportation, offer unique opportunities for implementing innovative energy-saving technologies and practices. This framework is applied to explore three core dimensions. The first dimension includes lifecycle carbon emissions, which involves identifying critical intervention points across the planning, execution, and decommissioning stages of events. The second dimension includes technological innovation, which focuses on renewable energy systems and smart technologies to increase resource efficiency. Finally, the third dimension involves socioeconomic impacts, which are examined to understand how low-carbon initiatives can foster community engagement and sustainable economic development. By incorporating these theoretical perspectives, this study contributes to addressing the environmental challenges associated with mega sporting events and provides actionable insights for policymakers and organizers. Therefore, an overview study of carbon emissions and energy efficiency governance in sporting events can not only systematically address the current research progress but also highlight directions for future research, which has important academic value.
To overcome the shortcomings of the existing research, this study adopts a combination of systematic combing and case study analysis. First, this work combines the current situation of carbon emissions in sporting activities in detail and analyzes the carbon emission characteristics and energy consumption patterns of different types of sporting events and their influencing factors. Second, this study summarizes excellent cases of carbon emission and energy efficiency management in sports activities, such as the Olympic Games and the World Cup, and discusses the successes and shortcomings of these cases in terms of carbon emission and energy-saving management. In addition, this work provides thoughts and suggestions on carbon emission and energy efficiency management for sports activities in China and proposes a management path suitable for China’s national conditions to provide theoretical support and practical guidance for the sustainable development of sports activities in the future.
2 CURRENT STATUS OF CARBON EMISSIONS AND ENERGY SAVING FROM SPORTS ACTIVITIES
2.1 Carbon emissions and energy saving from mega sporting events
Mega sporting events are the main focus of carbon emission research in the field of sports. While showcasing the socioeconomic development of venues, large-scale sporting events inevitably generate carbon emissions due to rigid energy consumption. The reason for this is that the expansion of the scale of sporting events attracts many spectators from all over the world, and corresponding facilities must keep up with these growing crowds, leading to an increase in carbon emissions. The construction of event infrastructure and the field of transportation during an event are the main sources of carbon emissions from large-scale sporting events (Ito and Higham, 2023).
In addition to carbon emissions, energy consumption is a significant concern (Xu et al., 2019; Xu et al., 2020). Mega sporting events require enormous amounts of energy for lighting, heating, cooling, and venue operation, making energy risk management critical for reducing the overall environmental impact of such events (Cerezo-Esteve et al., 2022). Energy-saving measures and energy efficiency improvements have become key objectives for host cities aiming to minimize the carbon footprint of these events.
The international community has a long history of concern for green Olympics, with the IOC and the UNEP working together to protect the environment. At recent Olympic Games, environmental protection has become one of the key concerns of host countries. Under the leadership of the Olympic Committee, the organizers of the Olympic Games have made efforts to reduce carbon emissions and have taken various measures to achieve the goal of greening the Olympics.
A significant part of these efforts has been improving energy efficiency in venue operations and promoting energy-saving technologies (Elnour et al., 2022). For example, the use of renewable energy sources, such as solar and wind energy, has helped reduce the degree of reliance on traditional, carbon-intensive energy sources. The integration of clean energy solutions, including hydrogen, wind, and solar power, has accelerated the shift away from carbon-intensive energy systems. In venue construction, low-carbon technologies such as carbon capture and storage, electrolytic metal production, and process optimization have been advanced to increase energy efficiency and resource utilization levels, whereas advanced energy risk management systems have optimized energy use in real time to ensure minimal waste (Xinfa and Xue, 2022; Tang et al., 2024).
The Beijing Olympics made great achievements in implementing the concept of green Olympics, with only 1.18 million tons of carbon emissions being released during the games, which is much lower than that of the London Olympics in 2012 (3.4 million tons), the Rio Olympics in 2016 (4.5 million tons), and the Tokyo Olympics in 2020 (3.01 million tons) (Cooper, 2020). The reduction in carbon emissions during the Beijing Olympics was largely due to the incorporation of energy-efficient technologies (Wu and Zhang, 2008), such as LED lighting in stadiums, energy-efficient cooling systems, and the widespread use of electric vehicles for transportation. These technologies significantly reduced energy consumption and carbon emission levels, setting a new standard for energy efficiency in mega sporting events.
The 2024 Paris Olympics also committed to hosting a green and sustainable sporting event by setting a “carbon budget” that limited carbon emissions to 1.58 million tons of carbon dioxide equivalent for the entire event (Heynen and Vanaraja Ambeth, 2023). Organizers actively promoted energy-saving initiatives, such as through the use of public transportation and encouraging athletes to travel by train to reduce carbon emissions from transportation. Moreover, the Paris Olympics focused on improving energy efficiency across all venues by incorporating smart energy risk management systems and energy-saving technologies in infrastructure design, which included the use of sustainable building materials and energy-efficient heating, ventilation, and air conditioning (HVAC) systems and the integration of renewable energy sources, such as solar panels, to meet part of the energy demand during the event. In addition to these measures, the Paris Olympics in 2024 faced significant climate risks, including projections of extreme heatwaves exceeding historical records by up to 4°C under severe scenarios. To address these risks, organizers implemented adaptive strategies such as modifying event schedules, installing cooling systems in key areas, and leveraging advanced climate models such as CMIP6 to predict and manage extreme weather conditions. These efforts exemplify how proactive planning and technological innovation can mitigate the dual challenges of climate adaptation and carbon reduction.
In contrast, the 2010 Winter Olympics in Vancouver focused on the following two aspects: first, the implementation of public transportation and the increased use of hydrogen power, and second, the construction of low-carbon projects worldwide through cooperation with green energy agencies (Scott et al., 2015). The 2014 Winter Olympics in Sochi constructed specially designed venues using transparent glass structures to save energy (Prudnikova, 2012). Energy-saving designs, such as the transparent glass structures used in Sochi, not only reduce the need for artificial lighting but also improve the energy efficiency of the venues by maximizing the amount of natural light. This approach, combined with the use of renewable energy sources, helped lower the overall energy consumption of the event.
In addition to the use of green buildings and clean energy, the 2018 Pyeongchang Winter Olympics constructed a GHG monitoring system and issued a carbon management report (Kim and Chung, 2018). However, all three of the abovementioned Winter Olympics suffered problems such as venues being quickly deserted after the games, some of the energy being nonrenewable, and the large-scale use of smart technology having yet to be realized. To address these issues, energy efficiency planning must extend beyond the event itself to include designing venues that can be repurposed or used sustainably after the games and ensuring that the energy systems in place, such as solar panels or wind turbines, continue to generate renewable energy for the local grid long after the event has concluded.
The 2022 Beijing Winter Olympics is a more typical example. The green essence of the 2008 Beijing Olympics continued to develop, and moreover, carbon emissions were minimized through the implementation of a series of low-carbon management measures (Wang et al., 2022). For unavoidable and unmitigated emissions, carbon credits or other means were used to offset the remaining carbon emissions. Energy risk management played a crucial role in achieving carbon neutrality at the 2022 Beijing Winter Olympics. During these Olympics, a combination of renewable energy sources, such as wind and solar energy, was utilized, and advanced energy-saving technologies were implemented across venues. Furthermore, smart energy risk management systems were employed to monitor and optimize energy usage in real time, ensuring maximum energy efficiency during the event.
Starting from four aspects—energy, buildings, transportation, and carbon sinks—and through cutting-edge technologies such as artificial intelligence and 5G, all carbon emissions were neutralized. As Juan Antonio Samaranch Jr., President of the IOC Beijing Winter Olympics Coordination Commission, stated, “Even in the difficult times of the pandemic, the Beijing Winter Olympics Organizing Committee will host an extraordinary Winter Olympics.” The incorporation of AI and 5G technologies into energy risk management marked a significant step forward in improving energy efficiency. These technologies enabled the real-time monitoring and optimization of energy use across venues, reducing energy waste and ensuring that the event operated as efficiently as possible.
Overall, the carbon emissions of the Summer Olympics, Winter Olympics, and World Cup show that there is still a long way to go to reduce carbon emissions from mega sporting events, as shown in Table 1.
TABLE 1 | Carbon emissions from selected mega sporting events.
[image: Table listing sports events with venues, years, and carbon emissions. Summer Olympics were held in Beijing (2008, 118 tons), London (2012, 340 tons), Rio de Janeiro (2016, 450 tons), Tokyo (2020, 301 tons), Paris (2024, 158 tons). Winter Olympics were in Vancouver (2010, 25 tons), Sochi (2014, 52 tons), Pyeongchang (2018, 159 tons), Beijing (2022, 130.6 tons). World Cups occurred in Germany (2006, 25 tons), South Africa (2010, 275 tons), Brazil (2014, 227 tons), Russia (2018, 216 tons), Qatar (2022, 363 tons). Data from the Sustainability Report.]In view of the above findings, academics have resorted to the carbon footprint to quantify the carbon emissions of mega sporting events (Zhang et al., 2022; Wilby et al., 2023; Edwards et al., 2016). Factors such as the level, scale, number of spectators, and number of sports programs of large-scale sporting events determine the total amount of carbon emissions from these events. Although existing studies are still fragmented, transportation travel still accounts for a large proportion of the carbon footprint of all types of large-scale sporting events. In addition to carbon emissions, energy consumption plays a significant role in the overall environmental impact of these events. The high energy demands for the lighting, cooling, heating, and powering of various event infrastructures, particularly during peak times, further exacerbate the carbon footprint of such events. Energy efficiency improvements and energy-saving initiatives are essential to complement carbon footprint reduction efforts, ensuring that overall energy use is optimized and reduced.
On a different scale, the challenges of energy consumption and carbon emissions in large-scale sporting events involve several key risks. First, the increased energy demand during events may disrupt operations due to power outages or fuel shortages, raising concerns over supply reliability. Second, volatile energy prices can lead to budget overruns, undermining the execution of sustainability plans. Third, unexpected changes in energy policies or regulations by the host region may necessitate adjustments to management strategies. Finally, extreme weather events, such as storms or heatwaves, can strain the energy infrastructure. These risks not only complicate energy risk management but also threaten event sustainability objectives. Thus, effectively addressing these issues requires embedding risk management within the broader framework of event energy planning.
Dolf and Teehan (2015) counted the travel modes of approximately 40,000 spectators hosted by 10 varsity teams of the University of British Columbia in a single season from 2011 to 2012. The 4% of spectators who chose to travel by air produced 52% of the total carbon footprint of all spectators. It is evident that air travel has extremely high carbon emissions and that the choice of transportation mode of event participants is a key determinant of the total carbon emissions of the event at hand. The energy consumption associated with various transportation modes, particularly air travel, further underscores the need to integrate energy-saving transportation options into carbon reduction strategies. For example, encouraging the use of energy-efficient public transport or electric vehicles can significantly reduce both carbon emissions and energy consumption.
Edwards et al. (2016) conducted a 2-year follow-up study at the University of Arizona, and through the combined efforts of the researchers and event organizers, the total impact of the back-to-school event in 2013 (1,900 t CO2-eq) was 19% lower than that in 2012 (2,400 t CO2-eq). These efforts are reflected in the following: in terms of transportation, initiatives to reduce carbon emissions from transportation trips, including encouraging carpooling trips and providing bus services, were implemented in 2013. Researchers continue to attribute the reduction in carbon emissions to participants traveling closer together. In addition to these transportation-related initiatives, energy-saving strategies played a role in reducing the overall environmental impact of the event. By implementing energy-efficient lighting systems and minimizing energy use during nonpeak hours, event organizers were able to further reduce energy consumption while maintaining event quality.
Tóffano Pereira et al. (2019) calculated the carbon footprint of Premier League clubs during the 2016–2017 season and reported that infrastructure and travel modes were the main sources of carbon emissions. The largest share of GHG emissions at mega sporting events is caused by spectator travel (Musgrave et al., 2021) and the severe impact of spectators’ choice of transportation mode to the stadium (Dosumu et al., 2017). For example, the VfL Wolfsburg sustainability report shows that over 60% of GHG emissions come from spectator travel (Herold et al., 2024). Spectators may come to the stadium on foot, by bicycle, by car, by bus, or by public transport, and their choice of transportation may depend on a variety of intrinsic and environmental factors. Unfortunately, to date, few studies have investigated the environmental impacts of spectator mobility in the context of events, especially considering the carbon footprint of various spectator mode choices (Orr and Inoue, 2019). Moreover, the energy consumption associated with different transportation modes has not been sufficiently explored. Energy-intensive modes of travel, such as private cars or air travel, increase not only the carbon footprint but also overall energy demand. Studies should aim to examine energy-efficient transportation alternatives, such as electric buses or cycling, to provide lower-energy-consuming options for event participants.
In particular, the literature lacks insights into which transportation modes are chosen by different groups of spectators to reach sporting event venues and into the contributions of these different groups to total GHG emissions. On the basis of data measurement, scholars have also proposed corresponding carbon reduction measures, such as reducing long-distance air travel, increasing vehicle usage, and encouraging the choice of low-emission transportation, on the basis of the results of data analysis. These carbon reduction measures can be further enhanced by focusing on energy efficiency improvements. For example, increasing the availability of energy-efficient electric vehicles and optimizing energy use in public transportation systems through smart grids and renewable energy sources can reduce both carbon emissions and energy consumption.
2.2 Carbon emissions and energy risk management of stadiums
The importance of the construction of many stadiums is self-evident given the environmental impacts generated by large sporting events. For the construction of large-scale stadiums and ancillary facilities, event organizers raise a large amount of money through various channels to build stadiums to meet the needs of such events, and a large amount of carbon dioxide is emitted during the planning, design, construction, operation, and dismantling of the whole process. For the 2008 Beijing Olympic Games, Beijing, as the host city, built 12 new venues, covering a total area of 1.4 million square meters and an area of 2.49 million square meters of ancillary infrastructure. This scale of construction also had great ecological impacts on Beijing because of the large area covered by the stadiums (Worden et al., 2012). In addition to carbon emissions, energy consumption during the construction and operation of these stadiums is another critical factor. Energy-efficient improvements, such as the use of energy-saving construction materials and energy-efficient systems for lighting, heating, and cooling, are essential to reduce the overall environmental impact.
The Qatar World Cup invested 6.5 billion dollars in seven world-class stadiums while renovating and expanding one old stadium. Over the past 10 years, Qatar has spent approximately $300 billion on preparing for the World Cup, which is approximately 26 times greater than the 2014 World Cup in Brazil and 21 times greater than the 2018 World Cup in Russia (Al-Jabir and Isaifan, 2023). The Qatar World Cup has made efforts and innovations in several areas, such as clean energy, green transportation, and resource recycling, but as a whole, the carbon emissions consumed by the tournament should still not be underestimated, with 3.63 million tons of carbon emissions during the period. According to the Building Design According to the Greenhouse Gas Accounting Report (GGA Report) for the Qatar World Cup released by FIFA in 2021, the carbon emissions caused by the construction of stadiums for this World Cup event accounted for approximately 24.6% of the total carbon emissions of the event (Ito and Higham, 2023). Energy efficiency measures, such as the use of renewable energy sources and the implementation of smart energy risk management systems, have also been integrated into stadium operations. These measures help reduce energy demand during games, increasing the energy efficiency of such stadiums.
In addition, the transportation of raw materials during the construction of stadiums also increases local transportation carbon emissions (Daddi et al., 2021). The scheduled hosting of the 2022 Beijing Winter Olympics marked Beijing as the world’s first “Double Olympic City.” At the Beijing Winter Olympics, all the newly built venues adhered to the three-star green building certification and the renovated venues adhered to the two-star green building certification through energy-saving renovation, which perfectly interprets the sustainable development bidding concept put forward by the Organizing Committee for the Winter Olympic Games (OCOG). For example, the “Ice Ribbon” of the National Speed Skating Arena adopted a series of green building materials and energy-saving technologies, and its use of air to heat venue management rooms was able to reduce GHG emissions by up to 160 tons per year (Liu et al., 2023). These energy-saving technologies not only reduce carbon emissions but also significantly lower the energy consumption required for venue operations, setting a new standard for energy-efficient sports facilities.
To reduce the carbon emissions brought about by sports stadiums, more than 10 different specifications have been established globally to assess the carbon emission sources of large buildings, such as sports stadiums, like PAS2050 issued by the British Standards Institution (BSI), ISO14067 issued by the International Organization for Standardization (ISO), by the joint efforts of the World Business Council for Sustainable Development (WBCSD) and the World Resources Institute (WRI), the Greenhouse Gas Protocol, etc. The more authoritative international assessment systems are as follows. 1) The Leadership in Energy and Environmental Design (LEED) certification was established by the U.S. Green Building Council in 1998 and is considered the most systematic, authoritative, and widely applied assessment standard for sustainable, green, and low-carbon buildings in the existing assessment systems worldwide (Germain and Penfield, 2010). LEED certification emphasizes energy-efficient improvements by requiring the use of energy-efficient materials, systems, and designs that minimize energy consumption and promote sustainable energy use. 2) The United Kingdom established the Building Research Establishment Environmental Assessment Method (BREEAM) system in 1990 with the core concept of “adapting to local aspects and balancing benefits,” which has provided a practical direction for the construction of buildings that can not only follow the concept of sustainability but also satisfy local requirements (Awadh, 2017). Both the LEED and BREEAM systems advocate reducing energy consumption in buildings through energy-efficient design and smart energy risk management systems. Building information modeling (BIM) information technology, which is currently more widely used in the field of construction than in other fields, has the advantages of improving carbon emissions and energy consumption throughout the lifecycle of sports stadiums.
Scholars in various countries are also making efforts in this area. For example, Rhee and Kim (2021) argued that the public’s concern for environmental protectionism must be greater than the performance of the games played in the stadiums because of the large amount of raw materials used in the construction of sports stadiums and the aggravation of local traffic emissions caused by the construction and operation of these stadiums. Pereira et al. (2017) proposed a stadium facility location problem (FLP), which analyzed the international travel distances and associated carbon footprints of participating sports teams on the basis of quantitative data and explored, via 11 simulation scenarios, how the host country with the closest overall average travel distances for all sports teams can be selected in the planning phase of the event to reduce its negative effects on the environment. Moreover, Triantafyllidis et al. (2018) investigated on-campus venues (high-density areas in cities) versus off-campus venues (low-density areas in suburbs) on the basis of the different areas in which university intercollegiate competition venues are located and concluded that the environmental impact can be reduced by altering the public transportation system in high-density areas; this study revealed that energy-efficient public transportation options, such as electric buses and trains, could further reduce both the carbon emissions and energy consumption associated with spectator and team travel.
Manni et al. (2018) argued that green behaviors in the planning and construction stages of stadiums can be achieved by sourcing locally produced raw materials for the venues; constructing types of “movable venues” such as air-film venues; and using recyclable and environmentally friendly materials as much as possible in the construction of these venues. The use of locally sourced materials also helps reduce the energy consumption associated with transportation during the construction process. Additionally, Dong et al. (2020) proposed that carbon emission accounting research on stadiums can be divided into two dimensions. One dimension considers the macro perspective of the overall accounting of national, regional, provincial, and municipal buildings; the other dimension considers the micro perspective of the accounting of individual buildings. Moreover, Onat and Kucukvar (2020) studied an evaluation model of green stadiums and suggested that the existing lifecycle assessment (LCA) model should be extended by using an advanced lifecycle sustainability assessment framework, in which the impacts of green stadiums on three aspects—society, the economy, and the environment—can be analyzed. Through this evaluation model, not only the reduction potential of the carbon footprint but also the lifecycle cost, economic value added, and impact on human health can be assessed. Energy-efficient improvements are an integral part of LCA, as reducing energy consumption across the entire stadium lifecycle—from construction to operations—directly contributes to decreasing the carbon footprint.
Academics both at home and abroad have begun to explore the scientific site selection, low-carbon construction, sustainable evaluation, and public awareness of environmental protection based on venues.
2.3 Carbon emissions and energy risk management of sports participants
A sports participant is a general term for a person who is involved in sports or sports communication activities (Beaton et al., 2011). Both athletes directly involved in the competition and spectators of sporting events leave a carbon footprint of varying degrees. The carbon footprint of a sport is the total amount of GHG emissions caused by an individual, event, organization, service, or product in the process of sports participation, which is included in energy consumption, raw materials and goods, food, services, transportation, travel, waste management, and equipment. Energy consumption plays a significant role in the carbon footprint of sports participants, particularly in terms of transportation and accommodation. Implementing energy-saving measures, such as using energy-efficient modes of transportation or opting for accommodations with energy-efficient systems, can significantly reduce the overall environmental impact. For example, travel by athletes and spectator tourists accounted for 67% of carbon emissions at the 2010 FIFA World Cup in South Africa (Cartwright et al., 2012). The entire 2005–2012 London Olympics cycle generated approximately 3.4 million tons of carbon emissions, with onsite spectator-related emissions accounting for 20% of total emission (Gold and Gold, 2013), and the carbon emissions from the 2014 Brazilian World Cup amounted to 83% of total emissions. Carbon emissions from spectator tourists at the 2016 Rio Olympics accounted for 55.33% of carbon emissions during the hosting phase and 74% of carbon emissions from the 2018 FIFA World Cup in Russia (Pereira et al., 2017). The carbon equivalents contributed by spectator tourists during the preparation and hosting of the 2018 PyeongChang Winter Olympics accounted for 62% of total carbon emissions in the hosting stage. According to the Qatar World Cup 2022 Carbon Emissions Report, 1.2 million fans arrived in Qatar during the event, which resulted in an average increase of 100,000 tons of carbon emissions per day (Kucukvar et al., 2021).
The study of sports participants focuses on the carbon emissions produced by sports participants during sports activities, which is the latest achievement of applying carbon footprint analysis to sports. Blake (1999) reported that highly educated sports participants may have more environmental knowledge than may less educated sports participants but that this knowledge does not directly trigger “pro-environmental behaviors” among sports participants. The above study confirmed the asymmetry between environmental awareness and behavior, suggesting that there is an “environmental value action gap” in sports activities. Diekmann and Preisendörfer (2003) argued that this gap can be explained by the low-cost hypothesis, whereby sport participants perceive the “higher cost” of using public transportation (because of the loss of convenience) for the trips required for them to participate in sports and are reluctant to forego the use of more convenient modes of travel, such as private automobiles, thus resulting in a greater carbon footprint. Encouraging participants to adopt energy-efficient behaviors, such as using low-carbon transportation options such as electric vehicles or public transport, can help bridge the gap between environmental awareness and action. Promoting energy efficiency and energy-saving measures across all aspects of participation is key to reducing overall emissions.
Wicker et al. (2020) estimated that the average annual carbon footprint of active snow sports participants due to transportation was approximately 431.6 kgCO2-e in 2015 via an online survey of German skiers; he then further analyzed the relationship between individual differences in sport participants and carbon footprint emissions. The regression analyses revealed that there is a significant positive correlation among income level, the actual number of skiing days, and the annual carbon footprint of snow sports participants, whereas there is no significant relationship between the awareness of environmental protection and the carbon footprint. This finding suggests that environmental protection attitudes are not related to behavior, as far as individually generated carbon emissions are concerned. Moreover, Wicker (2019) analyzed the annual carbon footprint of individual sports and its influencing factors, as generated by the transportation trips of active participants in 20 sports (12 individual sports and 8 team sports) in Germany. The results revealed that the annual carbon footprint per capita of team sports (514.0 kgCO2-e) is significantly lower than that of individual sports (1,006.5 kgCO2-e). Three sports—diving, golf, and surfing—have the highest carbon footprints, all exceeding 2,000 kgCO2-e. It is evident that those sports with a greater carbon footprint are tourism- or vacation-driven sports activities, which are highly dependent on natural resources.
In these cases, the energy consumption associated with long-distance travel and accommodation is a significant contributor to the high carbon footprint. Implementing energy-efficient measures, such as promoting sustainable tourism practices or using energy-efficient accommodations, can reduce the carbon and energy impacts of these activities. Similarly, the income effect is likewise mostly positive in 20 summer sports, and the variables related to education are not significant. Additionally, Castaignède et al. (2021) constructed a formula to account for the carbon footprint of marathon participants and conducted an empirical study. The marathon was analyzed, and the key carbon emission sources of participation include mainly transportation carbon emissions, catering carbon emission, accommodation carbon emissions, and solid waste emissions, whereas offsite participants are the core contributors to the carbon emissions of marathon participation. Through empirical investigation, Castaignède et al. (2021) reported that the average carbon footprint of the whole sample of participants in the 2021 Zhengkai International Marathon is 94.57 kg of carbon equivalent, the average transportation carbon footprint is 81.56 kg of carbon equivalent, the average lodging carbon footprint is 3.21 kg of carbon equivalent, the average food and beverage carbon footprint is 8.96 kg of carbon equivalent, and the average solid waste carbon footprint is 0.84 kg of carbon equivalent. The total carbon footprint of the 2021 Zhengkai International Marathon is estimated to be 3,484,904 kg of carbon equivalent, of which the total transportation carbon footprint is 3,005,486 kg of carbon equivalent, the total lodging footprint is 118,289 kg of carbon equivalent, the total food and beverage footprint is 330,176 kg of carbon equivalent, and the total solid waste footprint is 30,970 kg of carbon equivalent.
In addition to carbon footprint measurements, energy efficiency improvements in transportation and accommodation services can further enhance the level of reduction in environmental impact (Si et al., 2020; Liu et al., 2024b). By adopting energy-efficient technologies and services, such as electric buses for transport and energy-saving technologies in hotels, the carbon and energy footprints of participants can be further minimized. In addition to carbon footprint measurement helping improve the public’s understanding of environmental impacts, it also provides information for decision-makers to formulate policies and set priorities in terms if which measures to undertake. For this reason, many companies have developed web-based carbon footprint calculators for public use (Benjaafar et al., 2013). As Collins et al. (2009) suggested, the carbon footprint not only provides a local perspective on measuring the environmental impact of sports but also, importantly, links the environmental impact of sports to the global ecosystem. Although there are subtle differences in the calculation methods of these approaches, they play a catalytic role in promoting individual perceptions of environmental impacts (Blanchard et al., 2011). Although there are few studies on the application of carbon footprint analysis in the field of physical activity, several commonalities can still be found in existing studies; there is no correlation between environmental awareness and an individual’s total annual carbon footprint, and most of the carbon footprint is reflected in the transportation travel of participants, especially the carbon emissions generated by air travel. Moreover, energy-saving behaviors, such as carpooling, the use of public transportation, or low-carbon transportation options such as bicycles, can significantly reduce both carbon emission and energy consumption levels. When sports participants use these energy-efficient modes of travel, the overall carbon and energy footprints of the event are greatly reduced.
3 EXCELLENT CASES OF CARBON EMISSION AND ENERGY RISK MANAGEMENT IN SPORTS ACTIVITIES
3.1 Excellent cases of carbon emission and energy risk management for mega sporting events
As shown in Table 2, the IOC was the first international sports organization to propose sustainable development and introduce the carbon footprint to measure the environmental impact of sporting events. This study takes milestone events as the nodes to sort out the IOC’s efforts for the carbon reduction issue and provides a broad historical staging for it, which is summarized into the budding period (1984–1999), the preparatory period (2000–2010), the trial period (2011–2020), and the improvement period (2021-present).
TABLE 2 | IOC’s “carbon reduction” actions.
[image: Table detailing events and actions related to the Olympics' environmental efforts from 1984 to beyond 2030. It highlights key initiatives: the introduction of environmental considerations in the bidding and hosting of Olympic Games, development of sustainability strategies, and commitments to carbon neutrality and climate action. Specific instances include the Kyoto Protocol in 1997, Turin Winter Olympics' carbon offsets in 2006, the IOC's sustainable development strategy in 2017, and the plan for the Tokyo Olympics in 2020 achieving significant carbon neutrality.]3.1.1 Budding period (1984–1999)
After the 1984 Los Angeles Olympic Games, the environmental costs of noise, pollution, energy consumption, and resource consumption caused by crowds generated by large-scale sporting events received a great deal of attention, thus triggering reflection by the IOC. In 1992, the IOC sent representatives to attend the United Nations Conference on Environment and Development (UNCED) and subsequently made efforts to publicize the concept of controlling climate change in the sports world. In February 1994, the Lillehammer Winter Olympics, for the first time, included environmental protection assessment and measures as the main content of the Olympic Games preparation and hosting stage. The organizing committee set five green goals, which included addressing energy consumption and improving energy efficiency in venue operations. These Olympic Games were the first to incorporate environmental protection into their management, marking the first specific response to the climate issue through programs and measures included in the event hosting process. In August of the same year, the Olympic Centennial Congress held in Paris specifically discussed the issue of sports and the environment and decided to take the environment as one of the three pillars of Olympism, emphasizing that the Olympic Movement must take responsibility for environmental protection. In 1995, the IOC established the Sport and Environment Commission, which included climate and environmental indicators in the bidding criteria and observed them in all Olympic-related activities. In 1996, provisions on the environment and sustainable development were included in the Olympic Charter, which also added provisions related to environmental protection and the fight against climate change, including energy-saving initiatives. The Charter listed the environment, sports, and culture as the three pillars of the modern Olympic Movement (Cantelon and Letters, 2000).
In December 1997, after the Kyoto Protocol was enacted, GHG emissions became the key to measuring global climate control, and the IOC quickly followed up by deciding to comprehensively request the bidding cities for future Olympic Games to focus on improving energy efficiency and reducing energy consumption during the events. In October 1999, the Olympic Movement’s Agenda 21 was signed and adopted at the Third World Conference on Sport and the Environment, drafted with the support of the UNEP. The Agenda set out specific requirements for the Olympic Games in terms of venues, transportation, energy, accommodations, food, and waste. Energy-saving technologies and renewable energy sources were included as energy-related requirements. The IOC took control of event-related climate change as a compliance requirement of bidding city contracts, stipulating that bidding cities must meet the standards of environmental health, nature conservation, climate protection, resource management, and energy risk management, marking the entry of the carbon emission and energy efficiency management of the Olympic Games into the normalized preparatory and hosting work.
3.1.2 Preparatory period (2000–2010)
The IOC’s concern for sustainable development directly promoted that attention be paid to environmental issues by the bidding countries and the organizing committees of the host countries. In 2000, the Sydney Olympic Games took green Olympic Games as their theme, and the OCOG implemented standards for energy conservation, water resources, waste disposal, pollution control, and cultural and environmental protection in the process of planning and organizing the games. Energy conservation measures were particularly emphasized, with a focus on energy efficiency in venue operations and the use of renewable energy sources.
In 2004, when bidding for the 2012 Summer Olympics, London emphasized that environmental quality and sustainability were key elements in its bid. In the 2006 Winter Olympics in Turin, a precedent in Olympic history was set for climate response, with the core goal of being “climate friendly.” With the core objective of “no harm to the climate” and with the support of the UNEP, the Turin Organizing Committee initiated the purchase of equivalent carbon emission offsets. The local government invested approximately 3 million euros to purchase approximately 200,000 tons of carbon emission-reduction credits from Italian domestic enterprises and energy-saving and emission-reduction projects. These credits were used to compensate for the carbon dioxide generated via transportation and the operation of the competition venues during the Olympic Games. In addition to compensating through reforestation and energy-saving projects, the games achieved carbon neutrality for the first time. The integration of energy efficiency technologies in venue construction and the adoption of clean energy sources were pivotal to minimizing the carbon and energy impacts of this event.
The Beijing OCOG (BOCOG) for the 2008 Olympic Games actively took measures to save energy and reduce emissions, thus fulfilling its obligations to protect the environment. These measures included incorporating energy consumption index requirements into construction standards, widely adopting green energy sources such as solar and wind power, and adopting new environmentally friendly building materials. This approach can be considered the embryo of the Chinese strategy of “carbon neutrality” for large-scale sporting events. The IOC, especially the OCOGs, began to experiment with how to formulate a unified carbon footprint methodology in a professional, accurate, open, and transparent manner to monitor the climate response situation related to Olympic events and ensure that mega sporting events are “carbon neutral.” In December 2009, after several years of research and development, the OCOG released the London 2012 Sustainability Plan, which abandons the traditional method of estimating carbon footprints on the basis of the average value of the construction of other venues.
Instead of the traditional estimation based on the average value of other venues and construction data, the LOCOG developed and used advanced carbon footprint techniques and methodologies to estimate the carbon emissions generated during the entire London Olympic cycle (2005–2012). The carbon emissions of the entire Olympic Games was approximately 3.4 million tons of carbon dioxide equivalents, with the development and construction of the venues accounting for 50%, transportation infrastructure accounting for 17%, operations accounting for 13%, and onsite spectator-related emissions accounting for 20% (Ito et al., 2022). The use of advanced carbon footprint analysis was combined with energy-efficient strategies to minimize energy consumption and emission levels across all aspects of the event. On the basis of this result, the LOCOG then determined and planned for the reduction, abatement, and offsetting of carbon credits. Moreover, the Organizing Committee of the 2010 Vancouver Winter Olympics chose to minimize the carbon impact of the event by choosing to use cleaner energy sources and technologies, enriching the city’s public transportation system, energy-efficient green buildings of Olympic venues, and the purchase of offsets to offset the direct carbon emissions of the Olympic Games, among other commitments.
3.1.3 Trial period (2011–2020)
The London 2012 Olympic Games were the first Olympic Games in history to accurately calculate and measure the full cycle of carbon emissions from a single Olympic Games and to achieve “future-proof” carbon-neutral management (Tallec Marston et al., 2015). The LOCOG accurately realized the carbon footprint detection and management of the whole cycle of the event, which provided a more solid basis for the IOC to adopt “net-zero emissions” as the key concept in the event field to address the global climate problem. In addition to carbon neutrality, significant emphasis was placed on energy efficiency in the construction and operation of venues. Furthermore, energy-saving technologies were implemented to reduce energy consumption levels throughout the event lifecycle.
In 2015, the United Nations Sustainable Development Goals (SDGs) were adopted as the blueprint for the world’s development strategy for the next 15 years (2015–2030). As a leader of the global sports order change, the IOC has been paying more attention to sustainability issues in sports and actively leading the new global sports order as a “global governance actor.” In December of the same year, the Paris Climate Change Agreement was adopted and quickly came into force in November 2016, demonstrating the urgency of carbon emission reduction in controlling the global climate problem.
In October 2017, the IOC issued the IOC Sustainability Strategy, which listed the “climate” as one of the five focus areas, requiring that in the planning of sports facilities and organizing events, energy efficiency and energy-saving measures be prioritized to achieve net-zero GHG emissions. In the same year, to establish itself as a “climate-friendly organization,” the IOC reached an agreement with Dow Chemical Company, authorizing it to serve as its official carbon partner. Dow developed the IOC’s overall carbon emission-reduction program and offset the carbon footprint of the IOC’s operations. Through Dow’s innovative energy-saving and carbon reduction technologies, approximately 250,000 tons of carbon emissions generated by the IOC’s operations from 2017 to 2020 were offset, further improving energy efficiency and contributing to the IOC’s status as a “carbon-neutral organization.”
Regarding, the Olympic Agenda, the New Norms, launched in February 2018, state that “By no later than the end of the year, the IOC will be in a position to reduce its carbon footprint.” In June 2018, the IOC issued its Host City Contract-Operational Requirements, which explicitly require host cities to submit a carbon management plan (CMP). This plan must ensure carbon-neutral management and include energy-saving strategies to reduce those GHG emissions generated by the activities of the event organizing committee. Host cities were encouraged to adopt clean energy sources and energy-efficient technologies for transportation, venue construction, and operations to minimize both carbon emission and energy consumption levels.
In addition, the IOC is further transforming itself into a climate-change-positive organization by planting an Olympic Forest and contributing to the UN-supported Great Green Wall project in Africa. On 13 December 2018, the IOC and the Secretariat of the United Nations Framework Convention on Climate Change (UNFCCC) jointly released the Sports for Climate Action Framework, which emphasizes that sports are uniquely positioned to help drive global climate action because of their influence on billions of sports fans and their inspirational power. The framework encourages sports organizations to implement energy-saving and energy-efficient measures in their operations, further aligning the sports sector with global climate protection efforts.
Through these two overarching objectives, the IOC and UN Climate clearly have “sponsor” profiles as policy advocacy coalitions, and the inclusion of more than 270 sports nongovernmental organizations (NGOs) signals a comprehensive response to the IOC’s initiative. In December 2018, the IOC released its Carbon Footprint Methodology for the Olympic Games to provide application guidelines for the carbon-neutral management of the Olympic Games in terms of methodology, organization, and implementation procedures. The methodology emphasizes energy efficiency and the reduction in energy consumption as core elements in achieving carbon neutrality during the Olympics.
On 4 March 2020, the IOC’s executive board passed a resolution to ensure that all upcoming Olympic Games are carbon neutral and committed to significantly reducing the carbon footprint. The Tokyo 2020 Olympic Games undertook significant efforts to reduce emissions, with a carbon footprint of 3.01 million tons of CO2 equivalent. Despite these efforts, these games were made “carbon neutral” through the granting of emission allowances by more than 210 companies in the Tokyo Metropolitan Government and Saitama Prefecture. The integration of energy-saving technologies in venue operations and public transportation helped Tokyo maintain zero growth in CO2 emissions during the hosting period, demonstrating the positive impact of energy efficiency on reducing the environmental impact of large-scale events.
On 15 May 2020, the IOC, the Intergovernmental Panel on Climate Change (IPCC), and the BOCOG jointly released the Sustainability Plan for the Beijing 2022 Winter Olympics and Paralympics, which includes “Low-Carbon Winter Olympics to Combat Climate Change” as a key action and promotes the realization of the commitment to carbon neutrality. Energy-saving measures, such as the use of renewable energy sources and energy-efficient technologies, were central to achieving carbon neutrality during the Beijing Winter Olympics, further cementing the importance of energy efficiency in combating climate change.
3.1.4 Improvement period (2021 to present)
On 13 March 2021, the 137th IOC Plenary Session adopted the 2020 + 5 Olympic Agenda as the IOC’s new strategic roadmap for the next 5 years, in which Routes 2 and 13 clearly set out specific pathways for participation in climate action. The new agenda emphasizes reducing carbon emissions by 50%, demonstrating the IOC’s determination to lead by example. Energy efficiency improvements and energy-saving measures are integral components of this strategy, particularly in terms of reducing energy consumption levels in venues and transportation systems.
Moreover, the IOC’s strategy to address the issue of climate change has begun to expand to the micro level. On the basis of the concept of the strategy, the IOC has clarified the total amount of carbon emissions; established low-carbon and green requirements; and designed a framework for monitoring, reduction, and compensation on the basis of the management of the event cycle. These efforts include optimizing energy use in operations, integrating renewable energy sources, and adopting energy-efficient technologies to minimize energy consumption levels throughout the entire event lifecycle.
In the 2022 Beijing Winter Olympics, the carbon offset program covered 93.7% of the non-directly related credits for the Olympic Games. The greening of public transportation models with green electric energy further contributed to energy savings, as well as carbon offset through the Beijing–Hebei Forestry Sequestration Project, leading to full carbon neutrality. The use of green electricity and energy-efficient public transportation reduced the overall energy demand and enhanced the sustainability of the games.
For the 2024 Paris Olympics, 95% of the existing and temporary venues were low-carbon buildings, reducing emissions by more than 50% compared with the London Olympics standard. Paris aimed to achieve negative carbon emissions, with an estimated 1.65 million tons of CO2-equivalent emissions, making it the first Olympics to make a positive contribution to the climate. Energy efficiency in building design and the implementation of energy-saving technologies were key strategies for reducing the carbon footprint of the Paris Games.
For the 2026 Milan Cortina Olympic Games, the Host City Contract, which committed to carbon neutrality, was signed. Similarly, the 2028 Los Angeles Olympic Games introduced the “Zero Emissions 2028 Roadmap 2.0” to promote zero carbon emissions from transportation in the greater Los Angeles area, reducing total GHGs and air pollution by 25%. The focus on energy-efficient transportation systems, such as electric vehicles and public transport powered by renewable energy, is expected to significantly reduce both energy consumption and emission levels in the region.
After 2030, direct and indirect GHG emissions will be reduced by an additional 50%, demonstrating the IOC’s determination to lead by example, which ensures that the positive impacts of the Olympic Games on the climate will outweigh the negative impacts (Wilby et al., 2023). At the same time, the IOC’s strategy to address climate issues has deepened at the micro level. On the basis of the strategy’s concept, the IOC has clarified the total amount of carbon emissions; set low-carbon and green environmental protection requirements; and designed a framework for monitoring, reduction, and compensation on the basis of event cycle management. Given the efforts of the IOC and the host countries of the Olympic Games, the environmental externalities of large-scale sporting events are not entirely negative. Many positive environmental effects have been generated through the improvement in hardware facilities and the promotion of energy-efficient green buildings, leaving a sustainable Olympic legacy for the local community.
3.2 Excellent cases of carbon emission and energy risk management in sports stadiums
The new and renovated venues of the Beijing Winter Olympic Games embraced the concept of green Olympics and sustainability, leveraging emerging technologies to construct smart and low-carbon venues. A notable feature of the Beijing Winter Olympics was its focus on science and technology, which supported the sustainable development of venues through innovative solutions. These efforts maximized the long-term benefits of Winter Olympic venues. Energy-saving technologies played a key role in reducing the carbon footprint of these venues, with innovative systems focused on energy efficiency. For example, the use of carbon dioxide transcritical refrigeration technology and cadmium telluride power generation glass as energy-efficient construction materials contributed significantly to energy savings.
The Zhangbei flexible DC grid provided renewable energy to competition areas, further enhancing the energy efficiency of the entire Olympic event by reducing the degree of reliance on fossil fuels. These green and low-carbon initiatives were implemented throughout the construction and operation of the venues, emphasizing energy conservation and carbon reduction in every aspect. These measures not only demonstrated China’s technological advancements but also highlighted the long-term sustainability of the Olympic legacy. By focusing on energy efficiency and sustainable technology, the Winter Olympics promoted a shift toward greener production methods and lifestyles, fostering harmonious development among people, cities, and the environment.
3.2.1 Smart venue
In terms of refined event viewing services, the National Speedskating Arena, the only newly built Olympic stadium in Beijing, used thousands of sensors to accurately control the air temperature and humidity on the ice surface, creating a comfortable environment for athletes and improving the quality of viewing services. In addition, these sensors helped optimize energy consumption by ensuring efficient climate control and reducing unnecessary energy use.
The venue applied BIM technology and robotics to solve the construction challenges of the ice-making system, ensuring that the hardware facilities were energy efficient and low carbon. The venue was equipped with various Internet of Things (IoT) sensors to capture operation data both indoors and outdoors. The rooftop meteorological station could autonomously adjust air intake on the basis of outdoor air quality, further contributing to energy savings.
A key innovation was the “Super Brain” system, which promoted the automatic control of the air supply, ice-making, and dehumidification. This system optimized energy use in real time, significantly lowering energy consumption levels across various operations, including epidemic prevention, roof electric windows, and air quality management.
3.2.2 Low-carbon buildings
During the Beijing Winter Olympics, the “Water Cube” was transformed into the “Ice Cube” for curling events. Its green development practices were reflected in the following three key areas. 1) Advanced construction materials: the exterior of the Water Cube was made from environmentally friendly and energy-saving ethylene tetrafluoroethylene (ETFE) membrane material, which is light, strong, durable, and recyclable. The membrane’s high degree of light transmittance (up to 95%) allowed natural light to illuminate the interior, reducing the degree of reliance on artificial lighting and supporting energy efficiency. 2) Multifunctional design: the Water Cube can be converted from an ice rink to a summer sports venue, maximizing its post-Olympics utilization. By enabling easy switching between ice and water functions, the venue ensures long-term use, thus enhancing its sustainability. 3) Energy-saving and emission-reduction measures: from structural design to material selection and technological innovation, energy-saving practices were incorporated throughout the building process. All the venues of the Beijing Winter Olympics were required to meet low-carbon and energy-efficient standards, supporting China’s dual carbon goals by reducing the carbon footprint of large-scale sporting events.
These measures offer a model of green sports building design, providing valuable insights into sustainable venue construction and postevent utilization.
3.3 Excellent examples of carbon governance and energy risk management by sports participants
Increasing the level of construction of open and outdoor green sports spaces, such as green health runways and sports parks, effectively increases residents’ participation in sports while promoting low-carbon lifestyles. This approach helps reduce the carbon emissions of sports participants. Typical examples of transitioning to low-carbon sports participation include the popularization of smart outdoor gyms and the promotion of eco-fitness sports clubs. These efforts also focus on providing free, energy-efficient, low-carbon facilities for bottom-level sports participants.
3.3.1 Smart outdoor gyms
In recent years, with the promotion of 15-minute fitness circles in urban communities and 10-minute fitness circles in certain areas, smart outdoor gyms have become popular venues for public sports activities. A major feature of these gyms is their focus on energy savings and environmental protection. Their power generation comes from the following three sources: the energy generated by participants exercising on the equipment, solar power panels installed on the gym roof, and stored solar energy in internal batteries. This energy-efficient initiative ensures low-carbon fitness options for the general public (Skea and Nishioka, 2008).
3.3.2 Ecological games
Since 2015, Zhejiang Province in China has promoted low-carbon and green fitness activities by organizing ecological games and selecting beautiful ecological leisure and fitness spots. By focusing on natural ecosystems—such as mountains, rivers, lakes, and wetlands—activities such as hiking, mountaineering, cycling, and camping have flourished. These activities take place in environments with excellent air quality, rich in oxygen and negative ions, and with high urban greening and forest coverage rates. These eco-friendly initiatives create sustainable fitness models that meet the energy-saving and low-carbon needs of the public, serving as models for the Yangtze River Delta region and beyond.
3.3.3 Low-carbon facility configuration
The sports participation of new-generation migrant workers in Zhuhai city, China, is shaped by cultural and economic constraints. As a result, their participation focuses on low-carbon, minimal-cost sports programs, such as walking, jogging, and the use of open courts and fitness equipment in city squares. These low-cost and energy-efficient facilities contribute to reducing the carbon footprint of these activities.
4 STRATEGIES AND PATHWAYS FOR CARBON EMISSIONS AND ENERGY GOVERNANCE IN SPORTING EVENTS
As shown in Figure 1, to achieve the comprehensive management of carbon emissions, the following paths are derived by considering the management of carbon emissions from sports activities, including the pregame preparation stage, in-game conduct stage, and postgame continuity stage of large-scale sporting events, along with the construction, operation, and postmaintenance stages of sports stadiums and the awareness, attitudes, and behaviors of sports participants.
[image: Flowchart illustrating carbon governance in sports. It includes three main sections: major sports events, stadiums, and sports participants, each with specific elements. These lead to carbon governance in sports, which is divided into carbon regulation, reducing carbon emissions, and neutralizing emissions, with detailed actions under each category.]FIGURE 1 | Framework for carbon emission governance in sports activities.
4.1 Strengthening carbon emission regulation
Both international organizations and national institutions have regulated carbon emissions governance from policy, system, and regulation perspectives, which include frameworks such as the UNFCCC, the Paris Agreement, the Sustainable Development Strategy, and the Framework for Action on Sport for Climate. These frameworks serve as high-level policy design concepts and act as conceptual guides for organizations such as the IOC and event-organizing committees. In addition to carbon regulation, energy efficiency and energy-saving practices should be key focus areas in governing sporting events, especially in terms of reducing energy consumption levels in venue operations and transportation systems.
To regulate carbon emissions effectively, the main focus should be on implementing more accurate and reasonable emission calculation tools to better quantify the current situation of carbon emissions. Tracking and monitoring the data on carbon emissions generated by sports and publicly releasing these monitored data can leverage public oversight to regulate carbon emissions from sports activities. Although the IOC has issued its Carbon Footprint Methodology for the Olympic Games, which provides guidance for measuring, evaluating, implementing, and incentivizing improvements in the carbon footprint, this methodology, which is based on LCA, is more conducive to large-scale events. This method assesses the GHG emissions and energy impacts of products, organizations, and services throughout their lifecycle, from raw material extraction to transportation, production, distribution, use, and end-of-life disposal.
For smaller events, energy-saving measures and energy-efficient risk management strategies should be tailored, ensuring that energy consumption levels are minimized while maintaining simplicity in the calculation methods. This approach ensures that energy consumption and carbon emissions are both effectively addressed. Additionally, energy consumption data, particularly those related to energy efficiency improvements, should be a central part of the emission monitoring process, ensuring that energy-saving practices are incorporated. For events with carbon emissions, emissions should be announced in a timely manner, and the organization or institution should be tracked and monitored in the long term to facilitate the better management of its carbon and energy usage.
4.2 Reducing carbon emissions and energy savings
Reducing carbon emissions is a goal that every organization and country is working toward. According to the Host City Contract: Operational Requirements, issued by the IOC in 2018, the host city must submit a Carbon Management Plan (CMP) to promote low-carbon and energy-efficient solutions for the Olympic Games, which also aims to compensate for the GHG emissions generated by the event organizing committee’s activities. For example, the Low-Carbon Management Plan for the Beijing 2022 Winter Olympic and Paralympic Winter Games emphasized low-carbon energy substitution, energy-saving venue construction, and energy-efficient transportation upgrades. The OCOG formulated specific emission-reduction measures to ensure that carbon management was implemented from concept to action. Currently, carbon emissions from large-scale sporting events continue to grow, with infrastructure construction and transportation being the primary sources. Thus, these areas are the main focus of carbon emission-reduction management.
Energy-efficient improvements have been crucial in reducing the carbon footprint of transportation and infrastructure. For example, the 2010 Vancouver Winter Olympics used sea ferries, diesel-electric hybrid buses, and high-efficiency aircraft, combined with clean energy sources, to reduce carbon emissions by 18%. The 2018 FIFA World Cup in Russia adopted green building standards and provided public transportation for spectators, encouraging energy-efficient and low-carbon travel. In 2018, for the PyeongChang Winter Olympics, wind power stations were constructed to supply clean electricity, whereas in 2020, for the Tokyo Olympics, the use of existing venues was increased, and fuel cells and electric vehicles were introduced to minimize carbon emission levels.
Energy-saving technologies and the promotion of renewable energy played a significant role in reducing energy consumption during these events. Efforts such as the use of photovoltaic power, wind power, and advanced energy-saving technologies improved energy use efficiency. Low-carbon venue construction, the use of environmentally friendly materials, and recycling practices further minimized energy consumption levels. Furthermore, low-carbon transportation solutions, including new energy vehicles, contributed to reducing the carbon footprint of event logistics.
4.3 Neutralizing carbon emissions
Under the global trend of responding to climate change, an increasing number of host cities and organizations have committed to achieving carbon neutrality for sporting events. By collaborating with international sports organizations such as the IOC and FIFA, these cities and organizations are helping advance global climate action. For example, the Turin Organizing Committee initiated the purchase of carbon emission offsets, buying approximately 200,000 tons of carbon credits from domestic enterprises and energy-saving projects. These credits were used to offset the emissions generated by transportation and competition venues during the Olympics. The 2020 Tokyo Olympic Games received emission allowances from more than 210 companies, making these Games a carbon-neutral event.
The role of energy-saving technologies and energy efficiency in achieving carbon neutrality has become increasingly important. By integrating these solutions, event organizers can offset the remaining emissions and reduce the overall carbon footprint. Specific actions to achieve carbon neutrality can include green planting, standardizing energy use in the carbon market, and formulating energy-efficient carbon neutrality standards. These actions reduce the environmental impact of carbon emissions from sports activities and help achieve the ultimate goal of carbon neutrality.
4.4 Risk mitigation strategies and pathway planning
To effectively address the abovementioned energy-related risks, the following strategies can be implemented. Diversifying energy sources—combining renewables, storage facilities, and traditional energy—reduces the degree of dependence on single-source supplies. Establishing redundant supply chains for critical equipment and fuel ensures energy availability during emergencies. The incorporation of advanced demand forecasting systems powered by big data and AI enhances the responsiveness to energy fluctuations. Additionally, hedging strategies can mitigate price volatility, insurance mechanisms can transfer supply risks, and emergency reserves can address short-term disruptions. These approaches have been successfully applied, such as during the 2010 Vancouver Winter Olympics, where hybrid transportation and renewable energy minimized supply risks.
In this context, carbon reduction plans for large-scale sporting events must integrate energy risk management. First, demand response plans, such as the use of intelligent energy allocation systems to reduce peak demand and optimize distribution efficiency, can be designed. Second, energy storage solutions, such as building battery storage systems and other facilities, can enhance the stability of the energy supply during events. Finally, smart grid technologies can be applied, enabling more flexible and sustainable energy systems to ensure resilience and reliability in event power usage. For example, the Tokyo 2020 Olympics utilized smart grid technology and energy storage solutions to improve energy efficiency during the event while significantly reducing energy supply risk. These practices demonstrate that integrating risk management into energy efficiency is a vital pathway through which to achieve the sustainable development of sporting events.
5 CONCLUSION AND IMPLICATIONS
5.1 Conclusion
In this paper, we systematically analyze the current state of carbon emissions from mega sporting events, examine the primary sources and influencing factors, and highlight both the progress and gaps in current carbon emission governance in sports using data and case studies. The main findings and conclusions from this research are as follows.
	(1) Current situation of carbon emissions and energy savings from mega sporting events. Mega sporting events, especially global events such as the Olympic Games and the World Cup, generate substantial carbon emissions. For example, the carbon emissions of the 2014 World Cup in Brazil reached 2.27 million tons, whereas those of the 2022 World Cup in Qatar were 3.63 million tons. These figures illustrate the significant environmental impact of such events, particularly in the transportation, stadium construction, and event operation phases. The incorporation of energy-saving measures and improvements in energy efficiency throughout an event, especially in transportation and venue management, can play a key role in reducing these emissions.
	(2) Carbon emissions from sports venues. Stadiums generate a large amount of carbon dioxide throughout their entire lifecycle, from planning, design, and construction to operation and demolition. For example, the construction of new venues and supporting facilities for the 2008 Beijing Olympic Games produced considerable carbon emissions. Studies have shown that the low-carbon and energy-efficient design and construction of sports venues can significantly reduce these emissions. However, existing research in this area needs further exploration and improvement.
	(3) Carbon footprint of sports participants. The travel and activities of sports participants are major sources of carbon emissions from mega sporting events. Transport, particularly air travel, is a major contributor to carbon emissions. The carbon footprint of different types of sports activities varies significantly, with team programs generally having a lower carbon footprint than do individual programs. Thus, promoting energy-efficient transportation options, such as electric vehicles or public transport systems, can help reduce the energy consumption and overall carbon footprint of participants.
	(4) Carbon emission and energy risk management measures for sporting events. The IOC and other international sports organizations have introduced various measures to reduce carbon emissions from sporting events. For example, the 2022 Beijing Winter Olympics achieved carbon neutrality through the purchase of carbon credits and the adoption of low-carbon and energy-saving technologies. These successful cases provide valuable references for managing carbon emissions in future large-scale sporting events. When social capital theory is applied, carbon management can be refined by leveraging the interplay among relationships, trust, and norms among stakeholders. Strong relational networks among event organizers, governments, and local communities foster collaboration, enable resource sharing, and enhance the efficiency of energy usage. Institutional and relational trust plays a pivotal role in ensuring compliance with environmental policies and encouraging cooperative behaviors, such as adopting renewable energy and energy-efficient technologies. Moreover, the shared norms within these networks promote collective accountability, motivating stakeholders to align with sustainability objectives and actively contribute to carbon reduction efforts. Furthermore, insights from sustainable tourism governance models underscore the importance of multistakeholder collaboration and the integration of long-term environmental strategies. In parallel with community-based tourism practices, sporting events can achieve sustainability by aligning local development goals with ecological preservation. For example, incorporating community participation in energy-saving initiatives or incentivizing green innovation not only mitigates carbon emissions but also strengthens social cohesion and trust among local populations. These approaches effectively balance economic development, environmental stewardship, and community wellbeing, embedding sustainability into the core operations of sporting events.
	(5) Application of carbon footprint and energy efficiency measurement. Carbon footprint measurement is now widely used to assess the environmental impacts of sporting events and has been instrumental in guiding and optimizing emission-reduction strategies. Through scientific carbon footprint analysis, specific data can support policymakers and event organizers in designing more energy-efficient and sustainable practices. Overall, these findings not only demonstrate the substantial environmental impact of mega sporting events but also highlight the urgency and necessity of carbon governance in sports. By integrating energy-saving strategies and improving energy efficiency, the sector can significantly reduce its carbon footprint, paving the way for more in-depth research and action in this area in the future.

5.2 Implications
Given the challenges faced by mega sporting events in terms of carbon emissions and the inadequacy of existing governance measures revealed in this study, we believe that more comprehensive and concrete actions should be taken to reduce the environmental impacts of sporting events. To address these challenges and achieve more sustainable sports event management, we propose the below targeted countermeasures, which not only focus on current practical issues but also aim to provide long-term guidance for the planning and implementation of future sports events.
The findings of this study effectively address the challenges and strategies of carbon emissions and energy risk management in mega sporting events. However, they can be further enriched by emphasizing their broader global relevance. Sporting events not only contribute to environmental challenges but also serve as influential platforms for promoting sustainability and climate action. This study highlights practical strategies for reducing carbon emissions and improving energy efficiency, highlighting how sporting events can act as role models for addressing global environmental issues. Events such as the Olympic Games and FIFA World Cup, with their vast global audiences, offer unique opportunities to demonstrate innovative energy-saving technologies and inspire the adoption of sustainable behaviors. These efforts can significantly contribute to advancing the United Nations’ SDGs, particularly those focused on climate action and sustainable cities (Xu et al., 2024). This study’s emphasis on lifecycle carbon emissions and renewable energy technologies aligns with the global shift toward low-carbon development. These findings underscore the importance of collaboration among event organizers, policymakers, and industry stakeholders to establish frameworks that enhance energy efficiency and long-term sustainability. By bridging the gap between environmental policy and public engagement, sporting events can play a pivotal role in addressing the climate crisis and driving collective action.
5.2.1 Strengthening of carbon management in the event planning stage
Carbon emission management should be a critical decision-making factor in the planning stage of sporting events. Specific measures include optimizing the locations of event venues, prioritizing existing energy-efficient and low-carbon venues, and reducing the carbon footprint of newly constructed venues. Additionally, the event schedule should be optimized to minimize unnecessary energy consumption, particularly by considering energy-saving technologies for venue operations.
5.2.2 Promotion of green transportation modes
For large-scale sporting events, transportation is one of the primary sources of carbon emissions. Promoting and facilitating energy-efficient and low-carbon transportation modes, such as electric vehicles, public transportation, and carpooling, is recommended to reduce the carbon footprint of spectators and participants. Integrating renewable energy into transportation systems, such as using solar-powered electric buses, can further increase energy efficiency.
5.2.3 Optimization of the carbon emission governance of stadiums
To address the carbon emissions from sports venues, it is recommended that energy-saving and low-carbon technologies be integrated into the design phase of venues. This approach can include the use of renewable energy sources such as solar and wind power, as well as the promotion of energy-efficient building materials and equipment, to reduce the energy consumption and carbon emissions of venues. Installing energy-efficient lighting, heating, and cooling systems can significantly lower energy use during events.
5.2.4 Enhancement of the environmental awareness of sports participants
Sports participants contribute significantly to carbon emissions, and thus, enhancing their environmental awareness is essential. Through publicity, education, and incentives, participants should be encouraged to choose low-energy and low-carbon travel modes and reduce unnecessary resource consumption during events. Promoting the use of energy-efficient equipment and practices during sports activities can further reduce the carbon footprint of participants.
5.2.5 Promotion of carbon-neutral strategies
Carbon neutrality has been practiced in several mega sporting events. It is recommended that this strategy be promoted to offset unavoidable carbon emissions through the purchase of carbon credits or the implementation of carbon offset projects (e.g., tree planting). Incorporating energy-saving technologies and improving energy efficiency at every stage of the event lifecycle can reduce the need for carbon offsets, thus improving the sustainability of events.
These countermeasures are not only applicable to the current management of sporting events but also provide a practical direction to guide future events. Through effective carbon emission management measures, sports events can minimize their negative impact on the environment and become a positive force for sustainable development. Additionally, these proposed countermeasures highlight the importance of cooperation among all parties—the government, event organizers, stadium operators, and participants—working together to achieve carbon neutrality. Through the implementation of these measures, sporting events can serve as models of energy efficiency and environmental protection, leading society toward a more sustainable future.
5.3 Limitations and future prospects
Although this study systematically analyzes the carbon emissions of large sporting events, there are still some shortcomings and directions for future research. Existing research has focused mostly on case studies of specific events, with strong regional limitations and data constraints, making it difficult to obtain universal conclusions. Thus, future research should expand data collection to cover different types and sizes of sporting events to increase the applicability of the findings. Additionally, most studies focus on direct carbon emissions while overlooking the impact of indirect carbon emissions. For example, activities such as advertising, promotion, and product manufacturing by sponsors may also generate significant carbon emissions, yet there is a lack of research in these areas. Future studies should pay more attention to these indirect emissions to comprehensively assess the environmental impact of events. Furthermore, future research should explore energy-saving technologies in areas such as event broadcasting and sponsor operations to minimize the indirect carbon footprint. Finally, the management of carbon emissions from sporting events involves multiple disciplines, including environmental science, economics, and sociology. Future research should deepen interdisciplinary cooperation to explore more effective carbon emission management strategies from multiple dimensions and provide comprehensive support for the sustainable development of sporting events.
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This study presents the maiden empirical evidence disintegrating the impacts of natural resources on environmental sustainability into production and consumption models. For easy trackability of the empirical evidence, environmental sustainability is captured by carbon emissions and ecological footprint in selected G20 economies with ta running from 1995 to 2019. To elaborate the study’s contributions, green policies comprising green energy, green technology, and green finance together with environmental tax, financial development, economic growth, and population are considered as covariates in STIRPAT embedded theoretical framework. The empirical verification anchors on second-generation estimators entailing cross-sectional autoregressive distributed lag (CS-ARDL), common correlated effects mean group autoregressive mean group (AMG), and method of moment quantile regression The fallouts from the analyses reveal that the production and consumption of natural resources based on coal and oil hinder environmental sustainability, although the former has greater effects than the latter. Interestingly, natural gas provides diverging direct and indirect impacts on both pollutants. More so, green policies and environmental taxes support promoting environmental sustainability. Additionally, two channels of causalities, including unidirectional and bidirectional nexuses, are apparent from the estimated model. The study highlights the importance of eliminating fossil fuel subsidies and making substantial investments in green policies as key recommendations for policy action.
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1 INTRODUCTION
The fundamental roles of natural resources in humans’ economic and non-economic activities can hardly be overemphasized. The pertinence of these resources raises significant concerns about the sustainability of the global economy within the context of continuous and inevitable reliance on them (Niu et al., 2023). Among many driving factors, the global population has doubled, and GDP which has experienced an all-time quadruple increase since the 1970s, heightens the pressures on natural resource depletion (United Nations Environment Programme, 2019). Besides, sustaining the expanding global economy, and ensuring continuity in human wellbeing, require extensive use of natural resources. However, the key issues of concern revolving around natural resources utilization center on their detrimental impacts on the environment, ultimately impacting individuals, their quality of life, and exacerbating inequality on both national and international levels. Empirical evidence has indicated how climate change endangers the global ecosystem and threatens the existence and stability of numerous species, expediting the decline of biodiversity by progressively modifying the ecological structure (Abbass et al., 2022; Amin et al., 2023). Consequently, protecting the environment has become a top priority for both individuals and corporations in today’s modern society (Xie et al., 2024). To this end, ensuring sustainable production and consumption of natural resources has become a global responsibility for every region, nation, state, firm, and household to pursue. In specific terms, goal twelve of sustainable development goals (SDG-12) centers around responsible consumption and production with a specific focus on promoting responsible utilization of resources, enhancing sustainable infrastructure and energy efficiency, delivering indispensable services to everyone, establishing lucrative environmentally-friendly employment opportunities, and securing an elevated quality of life for all individuals (United Nations Environment Programme, 2021).
Based on the foregoing among other factors, natural resources have continued to attract the center of academic debates in the last few decades, particularly in an attempt by scholars to balance the tradeoff that exists between achieving economic growth and neutralizing the ensuing environmental complications emanating from natural resources depletion. Consequently, sustainable consumption and production become inevitable, particularly from four motivating arguments. First, the current era has seen the depletion of natural resources occurring simultaneously with the rapid growth of our population. Available evidence unveils that should the global population reach 9.8 billion by 2050, it would require nearly three Earths to sustain the natural resources necessary to maintain our current way of life (Martin, 2023). Second, throughout the previous century, the progress of economic and social development has been accompanied by the deterioration of the environment, posing a threat to the fundamental systems that sustain human life and further progress. To achieve a smooth transition, it is imperative to enhance resource efficiency through sustainable consumption and production. Third, it is crucial to note that, in the process of maintaining sustainable growth and development, natural resources must be consciously utilized while at the same time ensuring the minimization of waste and pollution throughout the production and consumption process. Available evidence has indicated the trend in natural resource depletion in the 20 economies. Based on Figure 1, it can be noted that the G20 countries experienced increasing levels of natural resources depletion from 1995 to 2003. A persistent decline is observable from 2006 down to 2018. The declining rate of natural resources in the G20 economies could be attributed to ensuing deteriorating impacts on the ecosystem. There was a slight rise from 2018 to 2022. The trend in ecological footprint in Figure 2 reveals a persistent increase from 1995 to 2006. A decline from 2006 to 2021 with a sudden rise in 2022. Consequently, it could be suggested that more conscious efforts need to be made to forestall further increases in the level of ecological footprint.
[image: Bar chart showing federal debt as a percentage of GDP from 1995 to 2022. The debt peaks in 2003 at over 30%, gradually declines, and slightly rises again by 2022.]FIGURE 1 | Trend in G20 natural resources rents.
[image: Bar chart showing numbers on Earth from 1995 to 2022. Values increase from 1995, peaking in 2006, before declining steadily to 2022. Y-axis ranges from 85 to 110.]FIGURE 2 | Trend in G20 ecological footprint.
It is worth noting that achieving environmental sustainability through sustainable consumption and production of natural resources requires the interplay of certain macroeconomic variables of which green policies and environmental tax stands out. For instance, the role of green policy in maintaining carbon carbon-neutral environment has been empirically accentuated in recent times. Conceptually, green policy is perceived as any measure that supports the attainment of increased economic expansion and at the same time protects the ecosystem from deterioration (Niu et al., 2023; Wang A. et al., 2023). Basically, green policy seeks to proffer a lasting solution to resolving the dilemma created by the natural resources utilization tradeoff between increasing economic growth rate and demeaning ecological quality. Some of the key factors often identified within the framework of green policy include; green technology, green finance, and green energy which are perceived as viable in promoting economic growth at a decoupling CO2 emission rate (Wang A. et al., 2023).
Environmental tax is another factor that is germane in the process of achieving sustainable consumption and production of natural resources. Environmental also known as green taxes, or pollution taxes, are levies imposed by legislation on both businesses and individuals in order to restrict activities that cause harm to the environment (Brown, 2022). Environmental taxes come in various forms, with some targeting those who release hazardous chemicals into the environment, while others provide incentives for adopting eco-friendly practices. Environmental taxes offer numerous important advantages, including their effectiveness in protecting the environment, enhancing economic productivity, enabling the collection of state funds, and promoting transparency. By adhering to the fundamental principle of “polluters pay”, these taxes play a crucial role in mitigating climate change. Moreover, environmental taxes have demonstrated their success in addressing various issues such as air quality, water pollution, and sewage treatment (Sarpong et al., 2023; Tanveer et al., 2024).
Given the exposited roles of green policies and environmental tax in the drive toward achieving environmental sustainability, it becomes empirically intuitional to assess how a combination of these indicators can be instrumental in offsetting the environmental complications arriving from natural resources depletion. Consequent to the foregoing, the current study seeks to examine the environmental effects of natural resources from the consumption and production angles in G20 nations. The empirical evidence considers the interplay of green policies (vectoring green technology, green finance, and green energy), environmental tax, and financial development. To buttress the theoretical relevance of the study, population, and economic growth are considered as a precondition for exploring the novel STIRPAT model. Specifically, the empirical analyses in this study will proffer practicable answers to the following research questions; (i) is there significant relationship between natural resources and ecological footprint in G20 economies? (ii) Are there significant differences between the consumption and production effects of natural resources on ecological footprint in G20 economies? (iii) to what extent do green policies mitigate ecological damages in the G20 economies? (iv) How effective are environmental tax and financial development in promoting ecological quality in the G20 economies?
The contributions of the current study to the extant studies can be summarized into four viewpoints. First, it is undeniable that empirical studies evaluating the effects of natural resources on the environment are quite enormous, however, the focus has often been directed toward the consumption angle of the nexus. Previous studies have been noted to provide policy implications that suggest how the adverse effects of natural resources consumption on the environment can mitigated. Others lay emphasis on the rents from natural resources. A survey of the current inquiries shows that little evidence has been found to explain how the production of natural resources affects the ecological system. Besides, to the best of our knowledge, no study has investigated how the dual of natural resources consumption and production affects environmental sustainability in G20 countries.
Second, green policies are a recent concept emerging in ecological debates with logical arguments as viable tools that can help achieve long-debated environmental sustainability. However, how these policies can be effective in achieving environmental sustainability in the presence of persistent reliance on natural resources remains a puzzle that is resolved in the literature. Moreover, environmental tax which is equally accorded credence in terms of effectiveness and efficacy of achieving carbon neutral environment is well incorporated in the current study’s model. Hence, this study moves a step forward in its quest to extend the Frontier of knowledge in the literature by considering the nexuses of natural resources consumption and production, green policies, and environmental tax in the drive to sustain the G20 ecosystem. Third, the econometric model often requires a theoretical basis for justifying the proposed model to be specified and the hypotheses to be evaluated. As such, this study adapts the novel STIRPAT framework to the model explicating how the variables of interest emerge and interrelate in an environmental model specified for the G20 economies.
Fourth, to explore the best of the empirical model, the study chooses to evaluate the state hypotheses with advanced estimators that have been accorded significant levels of predictive validity and reliability in the literature. For instance, to measure the short-term and long-term effects of the independent variables, we rely on cross-sectional augmented distributed model and confirm its long-run reliability with the consideration of additional long-run estimators such as common correlated effects mean group and augmented mean group. It is pertinent to mention that the analyses in the current study undergo three phases of robustness checks comprising. One, the consideration of ecological footprint as a new dependent variable is motivated by the fact that ecological footprint is found effective and accurate in assessing the influence of both humans and human activities on the entire ecosystem. Considering ecological footprint is important due to the undeniable fact that our present consumer culture is depleting the world, its ecosystems, and its resources. This depletion is particularly evident among the “most privileged” individuals, who possess greater wealth and can afford to indulge in consumption without consistently demonstrating responsible behavior. Two, the evaluation of the impacts of the exogenous variables on environmental sustainability based on distributional and heterogenous effects following the novel quantile regression. The consideration of quantile regression is prominent due to its ability to decompose the impacts of independent variables into quantiles of six or nine components based on median values, unlike the other estimators that are based on mean values.
The empirical outcomes that emanate from the study unveil some interesting facts worthy of lauding. For instance, with the disintegration of the effects of natural resources on consumption and production, the study provides empirical evidence alluding that coal and oil deter the environment from both angles. It is however interesting to mention that natural gas provides some eye-catching facts elucidating that not all angles of natural gas are detrimental to the environment. Rather, while the production angle of natural gas pollutes the ecosystem, consumption proves supportive of achieving environmental sustainability. More so, the findings reveal the environmental relevance of green policies, environmental tax, and financial development in leading the way through decarbonization.
Examining the different ways that natural resources support or undermine environmental sustainability in the G20 countries is the main goal of this study. It is crucial to recognize some restrictions, though. For example, although the assessment took into account the effects of natural resources from the viewpoints of both production and consumption, it only paid attention to particular elements like coal, natural gas, and petroleum oil. In this approach, the cumulative effects of natural resources were not considered. Furthermore, important policy indicators such as institutional quality and other contaminants measured in the environment were not included in this analysis. Future research projects should take these restrictions into account. The roadmap to delivering the major objectives of the current study is drawn upon the following outline. Aside from the current section, section two reviews relevant studies selected in accordance with the research objectives. Section three focuses on methodology adopted in model the stated nexuses, hypotheses, and estimator techniques. Section four presents the empirical results while the conclusion, recommendations, and limitations are provided in section five.
2 LITERATURE REVIEW
The empirical literature has experienced a significant increase in efforts aimed at investigating optimal practices for the depletion of natural resources that ensure ecological safety amid rising reliance on these resources. This study provides a review of relevant research conducted at the intersection of natural resources and environmental sustainability. Specifically, the review is divided into two subsections: (i) natural resources and environmental sustainability association, and (ii) green policy and environmental sustainability association.
2.1 Natural resources and environmental sustainability association
The significance of natural resources in the global movement towards environmental sustainability has been thoroughly examined, with many discussions highlighting their detrimental impacts on the ecosystem. Starting from the most recent order, (Khan and Hassan, 2024), evaluate the roles of natural resource rents in a sample of 11 emerging economies from 2000 to 2021. The study extends its empirical probe to the effects of high-tech exports, renewable energy, economic growth, and corruption. To ascertain the economic relevance of each exogenous variable, the study relies on Westerlund cointegration test in validating the long-term cointegration relationship between the variables under study whereas Moment of Moment Quantiles Regression (MMQREG), Augmented Mean group, Canonical Cointegration regression, Fully Modified OLS, and Dynamic OLS are employed to assess the stated hypotheses. Findings indicate natural resources rent rive significant surge in CO2 emissions thereby hindering the attainment of environmental sustainability. Besides, high-tech exports and economic growth escalate the emissions surge. Conversely, corruption and renewable energy appear to be negative predictors of CO2 emissions surge implying they both support the drive toward environmental sustainability. (Wang et al., 2024) explore how the nexuses of natural resources consumption, globalization, globalization, renewable energy use, and agricultural practices impact the ecology in China from 1990 to 2020. The study uncovered that natural resources can decrease CO2 emissions in certain economies. Conversely, globalization and agriculture have been found to simultaneously increase CO2 emissions. Fortunately, the utilization of renewable energy sources has proven to be a positive factor in reducing CO2 emissions.
Furthermore, (Sadiq et al., 2024), investigate how natural resources and green finance moderate the impact of fintech on environmental sustainability in China between 2013 and 2022. The study enhances the existing model and examines the practicality of environmental regulations and government measures. Several regression-based models indicate that China’s fintech development contributes to climate quality by facilitating the reduction of CO2 emissions. However, the volatility of natural resources weakens climate sustainability, while green finance plays a positive role in mitigating this effect. Additionally, environmental laws and business structures have a negative impact on environmental quality. The improvement of climate quality largely depends on government actions. Moreover, the carbon intensity related to fintech is found to vary across different quartiles. Lastly, the impact of fintech on carbon emissions differs among various subsamples based on the COVID-19 pandemic. (Han et al., 2024). the extent to which natural resources drive zero-emissions amidst the interplay of government debt and political stability in a panel study comprising China, India, Pakistan, and Kazakhstan, utilizing cross-country data from 2001 to 2021. The study conducts longrun test by relying on Westerlund panel cointegration test which affirms the existence of a long-term equilibrium relationship between the variables. Besides, the main analyses reveal the existence of a statistically insignificant yet favorable correlation between economic growth and the transition to zero emissions. Furthermore, it was evident from the analyses that a significant and negative correlation between CO2 emissions and political stability. The relationship between GDP and CO2 emissions exhibits a non-linear pattern, with emissions increasing up to a certain threshold as GDP grows. More apparently, natural resources use negatively impacts the transition to zero emissions, as there exists a direct connection between natural resources and CO2 emissions. The robustness of the empirical outcomes was confirmed through Iterated Generalized Least Squares (IGLS) analysis.
In a piece of separate evidence, Ashraf et al. (2024) investigate the correlation between natural resources and CO2 emissions in the top ten producing countries from 2001 to 2021. The additional impacts of digital commerce, renewable energy consumption, environmental technology, and economic development are evaluated. The empirical results indicate that economic development and environmental technology have a significant impact on increasing the ecological footprint. Conversely, the utilization of renewable energy sources, digital commerce, and the availability of natural resources contribute to a reduction in the ecological footprint over time (Fan and Wang, 2024). probe the correlation between resource efficiency and green economic growth in the BRICS countries from 1990 to 2021. The results clearly demonstrate that adopting sustainable consumption and production methods encourages the formation of multi-stakeholder partnerships that promote a green economy. Furthermore, greenfield exhibits different risk and return profiles compared to traditional industries within the current private financial systems.
The assessment of the interplay of natural resources and government regulation in CO2 emission mitigation constitutes the center of research interest for (Li et al., 2023) in China from 2008 to 2018. The key findings uncover that sturdy environmental regulation can diminish the reliance on natural resources and increase its contribution to CO2 emissions. In addition, it is noted that in numerous regions, there exists a positive correlation between natural resources dependency and CO2 emissions, while regions with high reliance on natural resources exhibit a negative correlation between environmental legislation and carbon dioxide emissions. Lastly, natural resources dependency may expedite certain factors. (Wang K. et al., 2023). utilizes advanced econometric statistical models to analyze the connections between natural resources, sustainable energy, human capital, and CBCE in the G7 economies from 1976 to 2020. TCSARDL estimator, the study finds that imports have a positive relationship with CBCE, while exports have a negative relationship in developed countries. To ensure the reliability of the findings, the results are further validated using the AMG and CCEMG methods (Zhou et al., 2023). analyze the impact of economic globalization, natural resources, economic growth, and distributed energy sources on CO2 emissions in RCEP countries from 1990 to 2020 based on advanced estimators comprising Granger panel causality tests, quantile regression, and cointegration analysis. The empirical evidence demonstrates that the abundance of natural resources, economic growth, and the use of non-renewable energy sources contribute to increased CO2 emissions, leading to environmental degradation in RCEP countries. However, these countries can mitigate their CO2 emissions by adopting renewable energy sources and embracing economic globalization. The empirical findings from the study conducted by (Tanveer et al., 2024) reveal the deteriorating effects of fossil fuels on environmental sustainability in Pakistan.
2.2 Green policy and environmental sustainability nexus
The role of key variables such as renewable energy in the group of green energies has been empirically established in the literature. For instance, (Qamruzzaman and Karim, 2024) investigate the essential function of green policies in achieving carbon neutrality by analyzing the synergistic effects of green finance, green technology innovation, and the adoption of green energy. The emanating findings underscore the importance of green finance mechanisms in mobilizing resources for sustainable initiatives, such as energy-efficient technologies and renewable energy projects. Furthermore, the study reechoes the criticality of green technology innovation in expediting technological advancement, reducing emissions, and fostering economic growth (Qing et al., 2024). estimate the extent to which financing green initiatives and renewable energy sources promote the drive toward carbon neutrality goals and ensure sustainable economic growth in 12 provinces in China from 2000 to 2019. The study employs dynamic and fully modified ordinary least squares methodologies for analysis. Results indicate that green financing and renewable energy play significant roles in addressing challenges such as climate change and environmental degradation, thereby establishing a foundation for economic sustainability (Yang et al., 2024). examine the ecological energy transition (fossil fuels, nuclear, and renewable energy) amidst the intervening roles of urbanization, structural change, and environmental technology within the BRICS nations from 1996 to 2019. The primary findings indicate that urbanization and reliance on fossil fuels impede the BRICS’ initiatives toward achieving a environmental sustainability by exacerbating carbon emissions. Conversely, nuclear energy, renewable energy, environmental technology, and structural changes contribute significantly to enhancing environmental sustainability by facilitating reductions in CO2 emissions.
Furthermore (Han et al., 2024), employ the advanced STIRPAT model to examine the symmetrical effects of eco-digitalization, green technology, green finance, and renewable energy on environmental sustainability in China. Utilizing quarterly data spanning from the first quarter of 1995 to the fourth quarter of 2019, the research applies the ARDL model to evaluate the proposed hypotheses. The findings indicate that eco-digitalization, green technology, green finance, and renewable energy contribute to environmental sustainability in China by mitigating CO2 emissions and reducing the ecological footprint. Conversely, the factors of wealth and urbanization are associated with an increase in pollutant levels (Wang et al., 2023a). evaluate the impact of green policies vectoring green energy, green finance, and green innovation on environmental sustainability, specifically as it relates to CO2 emissions, ecological footprint, and PM2.5 air pollutants within the BRICS nations from 1995 to 2019, in the context of eco-digitalization and urbanization. The empirical evidence relies on second-generation estimators alongside the STIRPAT framework. The study finds that green energy, green finance, green innovation, and eco-digitalization contribute positively to environmental sustainability Conversely, urbanization and increased wealth are detrimental to environmental sustainability, as they exacerbate the identified pollutants (Abdul et al., 2022). examine how China’s carbon intensity is affected by renewable energy, foreign remittances, globalization, financial development, and economic growth. The study used multiple diagnostic tests and the linear Autoregressive Distributed Lag (ARDL) approach on data spanning from 1990 to 2020. The linear ARDL methodology’s results show that renewable energy contributes to lessening environmental damage. On the other hand, the decline in China’s environmental conditions is a result of globalization, financial development, economic expansion, and foreign remittances. Furthermore, the results imply that renewable energy has a detrimental short- and long-term impact on environmental deterioration.
2.3 Research gaps
The appraisal of the existing body of studies reveals some lacunas that remain unfilled and perhaps could be held responsible for the apparent inconclusiveness in the literature. For instance, despite the overwhelming interest in the study of the nexus between natural resources and environmental sustainability, the consideration of the consumption and production arguments remains largely neglected. Besides, the consideration of the roles of green policies together with environmental tax and financial development is a novel idea that is scarce in the extant literature. These among others are eminent gaps that the current study fills.
3 METHODOLOGY
3.1 Scope, data, and source
The analysis of this study focuses on production and consumption effects of natural resources including coal, gas, and oil on environmental sustainability in G20 economies. The empirical evidence, based on panel data from 1995 to 2019, extrapolates to the role of green policies comprising (green energy, green technology, and green finance), environmental tax, population, and economic growth. The endogenous variable which is environmental sustainability is measured by two indicators such as CO2 emissions and ecological footprint. The scope of the analysis from 1995 to 2019 is based on three criteria. First, the year 1995 was chosen because several important variables such as green technology, green finance, and environmental tax were not observed in the previous year. Second, 2019 is strongly selected because most explanatory variables are not available beyond 2020. Third, the estimates used in this study require the panel data to be highly balanced, which seems reasonable for the period 1995–2019. The study focuses on the G20 due to their considerable impact on three critical environmental challenges: increasing pollution and waste, the deterioration of nature and biodiversity, and the intensifying effects of climate change. These issues arise from the unsustainable production and consumption practices of G20 nations, which pose significant threats to global economies (Andersen, 2023). Besides, in 2021, global carbon dioxide emissions reached 38.0 billion tons, with around 81% originating from G20 nations. Among these, China, the United States, and the European Union were the leading contributors to CO2 emissions (United Nations Environment Programme, 2021). Furthermore, the G20 countries have acknowledged the critical need to enhance productivity growth and improve the efficiency of natural resources utilization, particularly in response to the accelerating depletion of these resources worldwide. In this context, they have undertaken several important initiatives. A primary focus for G20 economies has been the adoption of advanced technologies and methodologies aimed at optimizing the extraction, processing, and consumption of resources (Shah et al., 2024). Considering the high level of economic development occasioned by advancement in technological innovation and advocacy for the transition to 100% renewable energy (Ibrahim, 2022), the roles of G20 in the drive for green policy initiatives cannot be overemphasized. Table 1 provides detailed information about the dataset, including variable names, units of measurement, and data sources.
TABLE 1 | Details of empirical data.
[image: A table categorizing variables with descriptions and sources. Outcome variables include CO2 emissions and ecological footprint, from World Development Indicators and Global Footprint Network. Production variables like coal, natural gas, and petroleum are sourced from the International Energy Administration. Consumption variables are similar, with the source noted as IEA. Control variables encompass green technology, finance, energy, environmental tax, financial development, population, and GDP per capita, sourced from OECD and WDI.]3.2 Theoretical framework and strategic modeling
The present study examines the impact of natural resources on the environment of G20 economies, drawing upon the theoretical framework of Dietz and Rosa’s (1997) STIRPAT model. This model takes into account the influence of multiple environmental factors, allowing for non-monotonic or uncorrelated outcomes (Qi et al., 2023). The basic model of this framework is commonly employed to analyze various aspects of environmental quality as thus:
[image: The equation represents a formula: I equals beta raised to the power p sub i, multiplied by A sub i raised to the power alpha i, multiplied by T raised to the power beta, multiplied by pi sub i.]
In accordance with Equation 1, the variable I denotes the aggregate carbon dioxide emission and remains constant, while the index coefficients P, A, and T are expressed as follows [image: It appears that the image reference isn't visible. Please upload the image or provide its URL, and I’ll help you create the alternate text.]. The error is denoted as [image: Please upload the image or provide a URL so I can generate the alternate text for it.]. A linear representation of this model can be expressed in Equation 2.
[image: Mathematical equation displaying a logarithmic function: ln I_t equals β_0 plus σ_1 times ln(P_t) plus σ_2 times ln(A_t) plus σ_3 times ln(T_t) plus π_t, labeled as equation (2).]
In accordance with the objectives of the present study, we adhere to the works of (Wang A., et al., 2023; Xing et al., 2023; Zhu et al., 2022) to explicate the STIRPAT model. The fundamental model posits:
[image: Equation representing SUSENV as a function of several variables: Natres, Grepol, Afflue, and Pop, with constants a0 to a4, concluding with an error term, a. The equation number is (3).]
Based on Equation 3, SUSENV denotes CO2 emissions, Natres stands for natural resources encompassing two variations such production and consumption. Grepol denotes green policies vectoring green technology (GTECH), green finance (GFINANCE), and green energy (GENERGY). Afflue denotes affluence and Pop represents population.
Equation 4 can be expanded to incorporate the full set of the indicators including other covariates such as environmental tax (EnvTax), and financial development (FDV) as thus:
[image: Equation displays a model for environmental sustainability (SUSENV) involving multiple variables: coal prices, gas prices, oil prices, green technology, financial development, general energy consumption, GDP per capita, population, environmental taxes, and foreign direct investment, with corresponding coefficients.]
Equation 5 depicts the production channel model. To estimate the consumption channel effects of natural resources, we restate the model for the consumption indicators as thus:
[image: Equation for SUSENVit, representing a model: SUSENVit equals α0 plus α1 times coalCOit plus α2 times gasCOit plus α3 times oilCOit plus α4 times gtechit plus α5 times gjfinanceit plus α6 times genegyit plus α7 times GDPPCit plus α8 times Popit plus α9 times EnvTaxi,t plus α10 times FDVit plus αu.]
Both pr and co are suffixes denoting production and consumption channels respectively.
3.3 A priori expectations
In the context of a specific model that encompasses a particular relationship; economic intuition typically offers a crucial elucidation of the feedback mechanism between exogenous and endogenous variables. In order to comprehend this relationship within the realm of environmental sustainability in G20 economies, it becomes imperative to grasp the reasons and mechanisms through which natural resources instigate variations in CO2 emissions and ecological footprint. To achieve this objective, we draw upon insights derived from prior empirical studies. Beginning with natural resources, it is imperative to clarify that the depletion of available resources provides negative externalities to the environment in the form of pollution that degrades the quality of the ecosystem (Xu and Hu, 2024). For instance, the processes involved in the production of coal, oil, and natural gas emit substantial quantities of CO2 emissions all of which do not exit the atmospheric system. This is especially true considering the fact that these economies are fossil fuel dependent (Balsalobre-Lorente et al., 2023; Ibrahim and Ajide, 2021a). The resultant effects of these emissions hinder the ecological system. Notable strands of empirical studies allude to the deteriorating effects of natural resources on the ecosystem (Akram et al., 2023; Saud et al., 2023; Xiaoman et al., 2021). Consequently, a direct nexus is anticipated thus [image: Expression involving a fraction with the numerator delta CO2 and the denominator delta NATRES, less than zero.].
The quantity of research substantiating the significance of environmentally friendly policies for the preservation of the environment has witnessed a substantial surge in the past few decades. The majority of these studies center their attention on the potential of green policy indicators, such as green technology, green finance, and green energy, to foster economic expansion. This correlation signifies progress in mitigating environmental issues stemming from economic activities. It has been demonstrated that the adoption of green policies effectively curtails CO2 emissions and other associated pollutants (Nassani et al., 2021; Niu et al., 2023; Wang A., et al., 2023). Consequently, the aforementioned relationship presents the prospect of a connection between CO2 emissions and the implementation of green initiatives [image: The mathematical expression shows the derivative of CO2 with respect to GREPOL, represented as δCO₂/δGREPOL, which is less than zero.].
Population growth is an inherent occurrence that poses a significant obstacle to sustainable development due to the increasing demands of the population for finite resources. Furthermore, population pressure is deemed particularly detrimental to the environment as it perpetuates the ongoing depletion of existing natural resources, consequently impacting the emission of greenhouse gases in an adverse manner. Consequently, population has been empirically acknowledged as the catalyst for CO2 emissions (Alnour et al., 2022; Chen et al., 2022; Zhang et al., 2021). Consequently, a direct relationship is expected with CO2 emissions as thus [image: Fraction showing the change in carbon dioxide levels over the change in population is greater than zero.].
The environmental effects of tax revenues have been noted to be effective in moderating the surge in ecological pollutants. Precisely, the societal expenses associated with coal are manifested in the form of environmental taxes, which are regarded as the primary policy instrument for regulating carbon emissions. The escalation in prices of carbon-emitting commodities leads to a reduction in their demand. Notable strands of empirical studies affirm the carbon-mitigating impacts of environmental tax revenue (Bigerna et al., 2023; Safi et al., 2021; Wolde-Rufael and Mulat-Weldemeskel, 2022). Consequently, we anticipate a negative association between carbon emissions and environmental tax revenue as follow [image: The formula \(\frac{\delta CO_2}{\delta EnvTax} < 0\) denotes that the derivative of carbon dioxide emissions with respect to the environmental tax is negative, indicating emissions decrease as the tax increases.] s. The impact of affluence through economic growth on the environment has garnered the interest of scholars in the field of environmental studies. Notably, studies have indicated that economic growth can effectively escalate the rise in CO2 emissions (Ahmed et al., 2022; Qi et al., 2023; Xing et al., 2023). This association is articulated as follows [image: The mathematical expression \(\frac{\delta CO_2}{\delta GDPPC} < 0\) represents the derivative of carbon dioxide emissions with respect to GDP per capita being less than zero, indicating a decrease in emissions as economic productivity increases.].
The correlation between financial development and CO2 emissions has been extensively examined, with two notable findings. The first empirical observation posits that financial development fosters higher carbon emissions by providing financial resources to organizations and government agencies, thereby stimulating increased economic activity. This heightened economic activity results in greater energy resource consumption, predominantly derived from fossil fuels, consequently exacerbating CO2 emissions growth. Hence, a direct relationship is inferred. Conversely, financial development may enhance the accessibility of financial services for individual households to acquire energy-efficient appliances, while also motivating companies to modify their business practices. On the basis of the two arguments, two directions of effects are anticipated comprising direct and indirect as thus [image: Partial derivative equation showing delta CO2 over delta FDV is less than zero.] and [image: Partial derivative of CO subscript 2 with respect to FDV is greater than zero.].
3.4 Estimation strategies
Conventional evaluation methods are employed to assess the extent to which natural resources, green policies, environmental tax, and other covariates contribute to environmental sustainability, particularly in G20 countries, with the aim of deriving the most pertinent and precise empirical findings. This examination encompasses various aspects, including the level of consistency in the slope coefficient, the presence or absence of cross-sectional dependence in the slope coefficients, the stationarity and long-term behavior of the series, the assessment of the long-term impact of external indicators on the resultant variable, and the causality of the estimated model. Recent empirical studies, such as those conducted by Akram et al. (2023), Lanre Ibrahim et al. (2022), and Shen et al. (2023), are carefully scrutinized to uncover these aspects. Figure 3 provides a visual representation of the aforementioned steps.
[image: Flowchart detailing the process of confirming slope homogeneity and cross-sectional dependence. It splits into 'Yes' and 'No' paths. The 'Yes' path involves CADF and CIPS unit root tests and Westerlund long-run test leading to AMG-CCEMG-CS-ARDL for long-run estimation. The 'No' path includes IPS and ADF unit root tests and Kao and Pedroni long-run tests leading to FMOLS-DOLS for long-run estimation. Both paths converge to heterogeneous evaluation using panel quantile regression, followed by causality evaluation, concluding with recommendations and identifying limitations and research opportunities.]FIGURE 3 | Steps involved in the empirical verification.
The criteria for selecting each method are methodical and adhere to established guidelines found in the literature. For example, assessing the nature of dependency and heterogeneity within the model via cross-sectional dependence (CSD) and slope heterogeneity tests (SHT) is essential for determining whether to employ first-generation or second-generation techniques. When both CSD and SHT are identified in the model, second-generation methods are considered the most suitable. Conversely, if these conditions are not met, first-generation techniques are regarded as appropriate. The appropriateness of second-generation methods for instance, will lead to the choice of Westerlund cointegration technique due to its robustness to handle the potential disruption that could arise from CSD and SHT. The assessment of long-term impacts is affected by prior conditions, with the cross-sectional autoregressive distributed lag (CS-ARDL), common correlated effects mean group (CCEMG), and augmented mean group (AMG) identified as the most suitable approaches. The selection methods for additional robustness analyses are similarly influenced.
When determining the suitability of data sets and estimates for regression analysis, the empirical process depicted in Figure 3 recommends the consideration of two factors. Specifically, it is advisable to conduct cross-sectional dependence tests and homogenous slope tests to ascertain whether the data is influenced by an unknown common component. The presence of the two tests necessitates the use of the second-generation estimator, which is more effective in identifying spurious series through unit root tests such as cross-sectionally augmented ADF (CADF) and cross-sectionally augmented IPS (CIPS) unit root tests. In the absence of either test, first-generation estimators such as the standard ADF and IPS unit root tests may be deemed acceptable for unit root analysis. The choice of approach (first or second order) determines the estimator to be employed in subsequent analyses. On the other hand, the existence of cross-sectional dependence and slope heterogeneity leads to the adoption of second-generation methods. In such a situation, cross-sectional autoregressive distributed lag (CSARDL) is adopted to estimate the short and long-run estimates. Among many other reasons, CSARDL estimator is capable of controlling for the econometric issues arising from cross-sectional dependence and slope heterogeneity. The ability of the estimator to simultaneously estimate the short-run and longrun estimates without losing track of the efficiency further accentuates the reason for adopting it. Furthermore, common correlated effects mean group (CCEMG), augmented mean group (AMG), and method of moment quantile regression (MMQR) are employed as robustness checks for the main estimator. These estimators efficiently subdue the inconsistency in the estimated results that could be attributed to cross-section dependence and slope heterogeneity.
3.5 Descriptive analysis
This study investigates three channels that delineate the types and features of data employed to empirically assess established objectives. Initially, the summary statistics depict the mean values of each indicator during the study period. Furthermore, normality tests are furnished to indicate whether the variables’ distribution is normal or non-normal. To gain a comprehensive comprehension of the numerous environmental indicators chosen in GG20, we commence with their preliminary analyses in Table 2. The descriptive analysis reveals the mean value of 10.08 for carbon emissions in G20 economies. Regarding the indicators of natural resources, it is evident that consumption pattern in oil resources averaging 9.69 is the highest among the classes of natural resources followed by natural gas and coal with mean values of 6.15 and 4.38 respectively. The mean values in production pattern of natural resources reveal that oil with the highest value 5.07 followed by natural gas production averaging 4.65 and oil production with a mean value of 3.64. The mean values of the conduction and production patterns suggest that the G20 economies are more reliant on nonrenewable sources of energy than renewable resources. Evidence abounds justifying the fossil-dependent nature of the G20 on fossil fuels energy resources for production and other economic (Balsalobre-Lorente et al., 2023). The mean values of green policies vectoring green energy, green finance, and green technology are provided thus 166.20, 2,149.9, and 2,735 respectively with the general depiction of thriving moments of these macroeconomic indicators in G20 economies. Environmental tax averaging 1.97 suggests an evolving policy era of the environment indicators. Population, economic growth, and financial development average 1,010, 38,722, and 123 respectively. The dataset is observed to be abnormally distributed considering the values of the skewness, kurtosis, and Jarque-Bera in Table 2.
TABLE 2 | Description of empirical dataset.
[image: Statistical table displaying descriptive statistics for various variables: CO2 emissions, coal consumption (COALCO), coal production (COALPR), gas consumption (GASCO), gas production (GASPR), oil consumption (OILCO), oil production (OILPR), green energy (GENERGY), green finance (GFINANCE), green technology (GTECH), environmental tax (ENTVAX), population (POP), GDP per capita (GDPPC), and economic growth (FDV). Statistics include mean, median, maximum, minimum, standard deviation, skewness, kurtosis, Jarque-Bera, and probability.]4 PRESENTATION OF FINDINGS
4.1 Preliminary findings on data interdependence, correlation, and homogenous slope coefficients
Table 3 presents the outcomes of the preliminary tests conducted with a specific focus on the dependency of the series based on Pesaran (2015) and Pesaran (2004). Based on these results, it can be inferred that the probability values are statistically significant, indicating a strong interdependence among the cross sections. The conformity of the findings to rule of thumb is further reinforced by the 1% level of significance, and this conclusion is supported by correlation coefficients ranging from 67% to 98%. This suggests that macroeconomic shocks in one of the G20 economies can have both positive and negative impacts on others. The active engagement of the G20 countries in regional and global intergovernmental organizations adds credibility to these findings. Moreover, these countries engage in trade with each other and collaborate to adopt a unified stance on certain economic matters. Interactions between countries can lead to either positive or negative effects when one country experiences macroeconomic shocks. By analyzing the delta significance and corrected delta-tilde statistics, it is evident that the result of slope homogeneity contradicts the null hypothesis of a unity slope. The fact that the political systems and ethnic composition of the G20 countries are highly diverse supports the conclusion. It is worth noting that the heterogeneity of the slope and cross-sectional CSD demonstrates that the first-generation unit root test is not appropriate for estimating the unit-roots of a series. On the other hand, empirical evidence has indicated that second-generation unit root testing is sufficient and dependable.
TABLE 3 | Interdependence, homogeneity, and correlation analyses.
[image: A table displays variables with Pesaran (2004 and 2015) values and correlations. CO₂ shows values of 15.800** and 15.796*** with a correlation of 0.875. COALCO, COALPR, GASCO, GASPR, OILCO, OILPR, GTECH, GFINANCE, GENERGY, ENVTAX, POP, GDPPC, and FDV have specific values and correlations. Slope heterogeneity reveals a delta t-statistic of 9.042 with a p-value of 0.000, and an adjusted delta t-statistic of 10.965 with a p-value of 0.000. Significance is noted by *, **, and *** for 10%, 5%, and 1% levels respectively.]4.2 Stationarity test results
This work employs second-generation approaches to ascertain the stable state of the series, taking into account the dependence of the cross-section and the variability of the slope. The obtained results, presented in Table 4, utilize the cross-sectionally augmented IPS (CIPS) and cross-sectionally augmented ADF (CADF) tests. Upon applying the first difference, the data reveals that all variables exhibit stationarity, indicating an I (1) order of integration. To address the two econometric inquiries raised earlier, this study conducts a panel cointegration test based on cross-sectional dependence and feedback of the slope heterogeneity test (Westerlund, 2007), offering a resolution. The group (Ga) and panel (Pa) statistics are employed to assess the likelihood of a lasting association under the assumption that no long-term relationship exists. The outcomes from Table 5 demonstrate that despite the alternative hypothesis proposing the presence of a long-term relationship, the null hypothesis is refuted. This discovery implies that a long-term relationship does indeed exist among natural resources, green policies, environmental tax, economic growth, and population in G20 economies.
TABLE 4 | Feedback of panel unit root analyses.
[image: Table comparing cross-sectional IPS (CIPS) and cross-sectional ADF (CADF) test results. Variables such as CO2, COALCO, and more are assessed at level and first difference. Significance levels are denoted by asterisks, where one, two, and three asterisks indicate 10%, 5%, and 1% significance respectively.]TABLE 5 | Cointegration results.
[image: Table displaying statistical analysis results with four rows and columns titled: Statistic, Values, Z-values, and P-values. Statistics include Gt, Ga, Pt, and Pa. Values range from -3.455 to -21.331, Z-values from -5.164 to -17.044, all with P-values at 0.000.]4.3 Main empirical outcomes
Examining the impact of regressors on outcome variables in long-term relationships is more advantageous due to the existence of long-term relationships among the measures. This research employs a cross-sectional dependent technique (CS-ARDL) to assess both short-term and long-term associations among the dependent and independent indicators. Additionally, two supplementary estimators, CCEMG and AMG, are employed to provide further evidence for the long-term effects of CS-ARDL. As evident from the empirical outcomes provided in Table 6. It is pertinent to mention that our analysis focuses on two angles through which natural resources impact the environment which are the consumption and production angles.
TABLE 6 | Feedback from Short-run and Longrun analyses based on carbon emissions model.
[image: A table comparing the impact of various variables on carbon emissions across different models. It includes short-run and long-run values for both consumption and production models using CS-ARDL, CCEMG, and AMG estimations. Variables include COAL, GAS, OIL, GTECH, GFINANCE, GENERGY, ENVTAX, FDV, POP, and GDPPC, with significance levels indicated by asterisks denoting 10%, 5%, and 1% significance levels, respectively. The table also displays R-square/RMSE values.]Based on the outcomes presented in Table 6, it is apparent that two of the three measures of natural resources consisting of coal and oil have both short-term and long-term positive effects on CO2 emissions. The reported carbon-inducing effects are apparent from the consumption and production channels. The AMG and CCEMG estimators provide complementing outcomes fortifying the CS-ARDL feedback. Consequently, it can be inferred that the continued growth in both coal and oil in the G20 economies will further endanger the sustainability of the environment for the present and future generations. A result of this nature indicates that a continuous dependence on oil poses substantial threats to the Group’s commitment to achieving net zero emissions by 2050. Furthermore, it is quite interesting to mention that the impacts of gas on carbon emissions from both consumption and production display some significant level divergences in terms of facilitating and hindering environmental sustainability in the G20 economies. For instance, the production channel advances positive effects on CO2 emissions implying that a rise in natural gas production leads to a corresponding increase in CO2 emissions. Conversely, the consumption channel provides substantial support for environmental sustainability as apparent from the significantly negative coefficient of natural gas on CO2 emissions.
The feedback on the effects of green policies shows significant support for achieving sustainability targets in the G20 countries. This is obvious from the various impacts exerted by each of the green policy indicators. For instance, green technology (GTECH) is observed to significantly reduce carbon in the short and long run, and from both angles of consumption and production. Analogously, green finance (GFINANCE) and green energy (GENERGY) prove to be substantial in mitigating the surge in CO2 emissions across the various levels of assessments as depicted earlier. In essence, the totality of green policies appears as driving factor of environmental sustainability in the G20 economies. The role of environmental tax in moderating the rise in CO2 emissions is empirically supported by the significant and negative coefficient values in the short run and long run from both angles of consumption and production. The moderating roles of financial development are evident in the longrun suggesting that advancements in the financial sectors of the G20 economies will provide substantial support for green environment projects. The provision of financial support for the growth of renewable energy will result in significant reduction in fossil fuel consumption.
The twist of the foregoing effects is evident in the way population growth and economic growth hinder sustainability targets in the economies. Both indicators are noted to exacerbate environmental degradation by inducing significant surge in CO2 emissions. In conclusion, all the models indicate temporary disparities, with a correction rate of 61% for the consumption model and 57% for the production model. The noteworthy adaptation rates of these two models underscore the significant adverse environmental effects caused by natural resources, particularly their rigid reliance on and incapability to adjust to policy alterations aimed at mitigating resource exhaustion.
A summary of the empirical outcomes as explicated above is presented in Figure 4. Going by the diagram, it is evident that the inducing effects of coal, petroleum oil, population, and economic growth are explicated with positive signs. The moderating impacts of natural gas, green technology, green finance, green energy, environmental tax, and financial development are exposited with negative signs.
[image: Diagram illustrating factors influencing carbon emissions. Central hexagon labeled "Carbon Emissions" is surrounded by eight speech bubbles: "Coal," "Oil," "Natural Gas," "Population," "Economic Growth," "Green Technology," "Green Finance," and "Green Energy," each with a plus sign indicating a positive relationship.]FIGURE 4 | Summary of the effects of the estimated model.
4.4 Discussion of results
The current study provides empirical evidence to substantiate the environmental effects of natural resources from consumption and production angles in G20 countries. The empirical model allows for examining the additional roles of green policies, environmental tax, and financial development estimated within the STIRPAT theoretical framework. The outcomes of the Table 6 hypotheses test show that coal and oil exert positive impacts on CO2 emissions in the short and long run. The observed carbon-generating effects are reflected in consumption and production patterns. Consequently, the continuous growth of coal and oil by the G20 economies poses an additional threat to the environmental sustainability of current and future generations. This outcome demonstrates that despite the commitment of the G20 economies to zero emissions by 2050, continuous reliance on coal and particularly petroleum products will serve as a deterrent to achieving the set goals. The escalating impacts of coal and oil on environmental pollutants hinder the strides toward sustaining the G20 environments and this has triggered renewed attention and commitments by the group of economies to phasing out these two pollution drivers. For instance, on 16 April 2023, the climate and environment ministers of the G20 nations issued a statement emphasizing the global reduction of emissions from fossil fuels, particularly coal power. They reiterated their commitment to fully or predominantly decarbonize their energy sectors by 2035, aiming to achieve zero energy systems by that time. Additionally, they vowed to accelerate the elimination of all remaining burning fossil fuels to prevent global temperatures from surpassing a 1.5-degree increase (Powering Past Coal Alliance PPCA, 2023).
Moreover, it is worth mentioning that the influence of natural gas from production angle hinders the attainment of environmental sustainability which could be exposited from two angles. First, transmission pipeline drilling is employed for the extraction of natural gas, with routine inspections conducted on wellheads and motor-driven lines to ensure efficient gas production. Compressors are utilized to regulate the pressure of the gaseous gasoline as it traverses through the transportation pipeline. The processes involved in the drilling emit some significant volumes of pollution into the atmosphere. Second, methane, which is the primary constituent of natural gas, escapes during the process of drilling wells, mining, and transporting gas via pipelines. In terms of heat retention over a hundred years, methane is three times more effective than CO2 emissions.
On the flip side, the channel of natural gas effects on CO2 emissions indicates it drives environmental sustainability by mitigating CO2 emissions. The moderating effects of natural gas are evident in the roles it plays in emitting minimal pollutants in comparison to petroleum oil. The moderating impacts of natural gas consumption are evident from the notably negative coefficient of gaseous CO2 emissions from both perspectives. A substantial strand of empirical evidence affirms the exacerbating roles of natural resources on the environment (Luo et al., 2024; Ahmad et al., 2023; Wang et al., 2023b; Xiaoman et al., 2021). Besides, studies such as (Ibrahim and Ajide, 2021b; Wang Z. et al., 2023) specifically accentuate the roles of natural gas in the promotion of environmental sustainability.
Within the G20 nations, there is unanimous backing for the attainment of sustainability objectives when discussing the effects of eco-friendly measures. The distinct influence of each green policy indicator is readily apparent. To illustrate, the empirical findings from this study demonstrated that green technology significantly diminishes CO2 emissions both in the short and long run, encompassing aspects of production and consumption. As previously mentioned, green energy and green finance hold crucial roles in curbing peak CO2 emissions across all levels of assessment. On the whole, it appears that the environmental sustainability of G20 economies is primarily propelled by their initiatives in the realm of green practices. Considering the aforementioned factors, available facts unveil that the G20 economies have committed to guiding the global energy market towards achieving zero emissions by 2050. This commitment aims to facilitate a technology-driven shift towards achieving net zero emissions, which will be supported by relevant policies of which green policies are not negligible (International Energy Agency, 2021). The extant studies have documented the efficacy of green policies from the varying components in promoting environmental sustainability through the mitigation of carbon emission surge particularly as it relates to green technology (Xu and Hu, 2024; Radmehr et al., 2023; Sharif et al., 2023); green finance (Qi et al., 2023; Shen et al., 2023), and green energy (Akram et al., 2023; Sharif et al., 2023).
Furthermore, the estimated models reveal that there is empirical evidence confirming the effectiveness of environmental taxes in reducing CO2 emissions. The coefficients for both short-term and long-term effects are significant and negative when it comes to consumption and production. The implication is that an increase in carbon prices occasioned by high rates of taxes on carbon-related products will inversely result in decrease in demand for such products. The eventual result will be a significant decline in carbon emissions. Hence, we can infer that environmental taxes inversely relate to carbon emission surge. Specifically, empirical evidence from the work of Shi et al. (2022) reveals that environmental taxes exert a statistically notable impact on conventional energy usage, resource rents, and renewable energy consumption. Furthermore, they propose that environmental taxes serve as an efficacious approach for G20 nations to curtail emissions. Regarding the roles of financial development in facilitating environmental quality, results from the current study show that long-term financial developments and dampening effects play a crucial role, indicating that the financial sectors of G20 countries have a significant impact on environmental projects. Furthermore, providing financial support for the expansion of renewable energy leads to a substantial decrease in the reliance on fossil fuels. Appreciable strands of empirical studies confirm the significance of financial development to the achievement of environmental quality (Acheampong, 2019; Baloch et al., 2021; Li et al., 2022).
The inducing roles of population on carbon emissions are empirically accentuated from the estimated model for the G20 economies. This is evident from the coefficient of population that is positive and statistically significant across models. The ecological implications of population can be justified from the viewpoint of the fact that the growing population results in increased demand for basic needs of humans of which food is not negligible. This is because food is a fundamental requirement for the survival of human beings, and as the world and population continue to expand, the demand for it also rises. To meet this growing need, extensive deforestation takes place as a consequence of agricultural development. The inability of forests to counterbalance the effects of heightened CO2 emissions leads to a rise in temperatures. A burgeoning strands of studies attested to the aggravating effects of population on the environment (Alnour et al., 2022; Chen et al., 2022; Zhang et al., 2021). The results on economic growth-carbon emissions nexus show that the former is a positive predictor of the former suggesting that a significant rise in the rate of economic expansion leads to a corresponding increase in the level of CO2 emissions in G20 economies. Although the G20 economies are basically categorized as developed nations, the continuous dependence on fossil fuels in the majority of the economic activities contributes to the direct relationship between economic growth and environmental pollution in these countries. The majority of empirical findings have established the existence of positive nexus between economic growth and environmental pollution (Ahmad et al., 2023; Ahmed et al., 2022; Wang A. et al., 2023).
4.5 Robustness analysis
The present study extends its contributions to the extant studies by considering robustness analyses from two different angles. First, a different outcome variable is considered with a specific focus on ecological footprint. The second robustness focuses on estimating the distributional effects of the exogenous variables on environmental sustainability based on quantile regression.
4.5.1 First robustness analysis based on consideration of ecological footprint as outcome variable
To extend the empirical contributions of the current study, we conduct a robustness analysis based on two the consideration of ecological footprint as an outcome indicator and evaluation of the heterogenous effects of the exogenous indicators. The heterogeneous analyses are examined following the novel quantile regression estimator. The results of the first robustness are presented in Table 7 showing that coal, gas, and oil significantly drive ecological footprint across consumption and production models. The implication of the presented feedback is that continuous depletion of natural resources will further aggravate the ecological footprint in the G20 economies. The results of the green policies unveil that green technology (GTECH), green finance (GFINANCE), and green energy (GENERGY) moderate the surge in ecological footprint. The moderating impacts of environmental tax are empirically accentuated across the two models suggesting that an increase in carbon-related tax will bring about substantial decline in the level of ecological footprint. Financial development significantly moderates ecological footprint suggesting that the financial sector can be effective in promoting investment in green growth. Conversely, population and economic growth significantly exacerbate the environment by adding to the stock of ecological footprint. The correction to the disequilibrium with a correction rate of 36% for the consumption model and 26% for the production model.
TABLE 7 | Feedback from Short-run and Longrun analyses based on ecological footprint model.
[image: Table displaying the effects of various variables on the ecological footprint across consumption and production models. Columns include CS-ARDL, CCEMG, and AMG for both short-run and long-run effects, indicating significance levels represented by asterisks. Variables include COAL, GAS, OIL, GTECH, GFINANCE, GENERGY, ENVTAX, FDV, POP, and GDPPC, along with their estimated impacts and significance levels. R-square/RMSE values are provided at the bottom, and a note clarifies the significance level notation.]4.5.2 Second robustness analyses based on computation of the computation of the heterogenous effects of the independent variables
The current study employs quantile regression estimator, which offers a conditional distribution of the heterogenous impacts of regressors on the outcome variables, to enhance understanding of environmental sustainability in the G20 countries. Furthermore, the quantile regression estimates presented in Table 8 are categorized into lower, middle, and upper quantiles. Following the results, it is evident that the inducing effects of coal and oil are significant across the quantiles. The implications of the results are that from the very first stage of producing and consuming both coal and oil, their ensuing effects contribute to the aggravating nature of pollution on the environment. Conversely, natural gas proves to be a significant resistance to environmental degradation from the middle to the upper quantiles. One possible explanation of the mitigating impacts of natural gas could be given from the view that it emits less than coal and oil and equally has the potential to promote sustainability than others. Available evidence reveals that burning natural gas emits fewer pollutants and carbon dioxide (CO2) into the atmosphere compared to burning coal or petroleum products for the same energy output. As such, developed countries like the United States have witnessed a rise in the utilization of natural gas for both automotive fuel and power generation, primarily due to its environmentally friendly combustibility (Energy Information Administration EIA, 2022).
TABLE 8 | Outcomes Quantile regression analyses.
[image: A table displaying various indicators impacting carbon emissions across different quantiles. It includes variables such as COALPR, GASPR, and OILPR, with coefficients and standard errors across 15th to 90th quantiles. Asterisks denote significance levels: one asterisk for 10%, two for 5%, and three for 1%. The significance is presented alongside each coefficient. Consistent formatting is maintained throughout, facilitating easy comparison of effects across quantiles.]The moderating effects of green technology (GTECH) on carbon emissions are well established from the lower to upper quantiles which are indicative of the facts that technology substantially controls the surge in environmental pollution. The feedback on green finance shows that its impacts on carbon emissions are evident in the middle and upper quantiles. The finding is intuitional on the ground that it takes a while before the moderating impacts of green projects are apparent on environmental degradation. The distributional effects of green energy are equally evident from the middle to upper quantile suggesting the rigidity in transiting from fossil fuels to renewable energy. The rate of reliance on fossil fuels usually makes it difficult for households and firms to move higher on the energy ladder to renewable energy. Environmental tax proves significant in reducing the level of carbon emissions across the three phases of the quantiles. The declining roles of financial development on carbon emissions are apparent from the middle to upper quantiles. On the contrary, population and economic growth escalate the emission surges across the three quantiles.
4.6 Analyses of the panel causality nexuses
To ascertain the extent of causality between the dependent and independent indicators in an empirical study, it is imperative to conduct a causality test, as the presence of substantial effects of regressors on the outcome variables does not necessarily indicate a causal relationship between them. This research employs Dumitrescu Hurlin panel causality tests, which are adaptable to account for variations in slopes and cross-sectional dependence. Based on the results in Table 9, it is evident that the three indicators of natural resources have bidirectional causality with CO2 emissions. The implication of the two-way causal nexuses is that policy measures that are directed toward halting the depletion of natural resources (coal, oil, and natural gas) will have significant impacts in reducing CO2 emissions. For instance, attempts toward phasing out coal in recent times have seen appreciable reductions in the surging CO2 emissions. Conversely, policy initiatives implemented with the aim of reducing CO2 emissions may have significant impacts on minimizing the depletion rates of natural resources. In case, policy measures favor depletion of natural resources, it is most likely that CO2 emissions will escalate.
TABLE 9 | Empirical results on the causality nexuses.
[image: A table presents data on various energy and financial models with CO2 emissions. It includes columns: Model, W-stat, Zbar-stat, and Conclusion. The table indicates whether the relationship is bidirectional or unidirectional. Significance levels are marked by asterisks, with explanations at the bottom for 10%, 5%, and 1% significance.]There is a two-way causality observed between green technology (GTECH) and CO2 emissions suggesting both have the tendency to cause each other inversely. By implication, policy measures implemented to promote green technology will see substantial decline in CO2 emissions. For instance, the promotion of research and development (R&D) may lead to the discovery of production techniques that reduce CO2 emissions significantly. On the other hand, the drive toward reducing could result in the adoption of green technology as a tool to achieve such ecological target. There is a unidirectional causality reported in the relationship between green finance, green energy, environmental tax, financial development, economic growth, and population. This implies that policy measures directed to promote green finance, green energy, and environmental tax will have ensuing impacts in reducing CO2 emissions. The causality in the case of population implies that any policy that triggers a rise in population growth will exacerbate the level of CO2 emissions. The one-way causality in the nexus of economic growth with CO2 emissions suggests that policy measures that enhance expansion in the general level of production will lead to a rise in the level of CO2 emissions.
5 CONCLUSION, RECOMMENDATIONS, GLOBAL IMPLICATION, AND LIMITATIONS
5.1 Conclusion
This research investigates the two main channels (comprising consumption and production) through which natural resources (decomposed into coal, oil, and natural gas) impact environmental sustainability vectoring CO2 emissions and ecological footprint in G20 countries from 1995 to 2019. To position the relevance of the study at the center of the extant literature, the roles of green policies, environmental tax, financial development, population, and economic growth are carefully examined. The empirical analyses encompass series of validations specifically with the consideration of second-generation tests such as cross-sectional dependence test and slope homogeneity test to ascertain the status of the dataset in undergoing first-generation or second-generation evaluation. Upon the confirmation of cross-sectional dependence and slope heterogeneity, second-generation unit rot tests such as CIPS and CADF are adopted to assess the stationarity status of the series. The empirical results of the tests support the utilization of quantile regression, augmented group mean (AMG), common correlation effect mean (CCEMG), and cross-sectional ARDL (CS-ARDL). Given the variability of the slope and the interconnectedness of the models, panel causality tests, as proposed by Dumitrescu and Hurlin (2012), must be employed. The outcomes from the estimated consumption and production models reveal that natural resources from coal and oil sources both deter environmental sustainability by positively driving an increase CO2 emissions and ecological footprint. The effects of natural gas are divergent depending on the angle from which the impacts are evaluated. It was evident the production channel of natural gas deteriorates the environment by driving both pollutants whereas the consumption channel improves the environment by significantly mitigating both pollutants. The components of green policies comprising green technology, green finance, and green energy significantly moderate the surge in CO2 emissions. The pertinent roles of environmental tax in moderating the surge in CO2 emission are never without notice following the inverse relationship between environmental tax and the two environmental pollutants. It becomes clear that increasing carbon tax discourages further consumption of carbon-related products leading to eventual reduction in the overall carbon levels. Financial development proves substantial in supporting environmental sustainability with the mitigation of CO2 emissions and ecological footprint in G20 countries. The empirical outcomes unveil the inducing effects of population and economic growth in escalating the surge in CO2 emissions and ecological footprint. It should be noted that the feedbacks from CS-ARDL are largely supported by the outcomes from CCEMG and AMG.
5.2 Recommendations
The policy implications enlisted below are believed to be highly fundamental in supporting the sincere endeavors to tackle environmental concerns in the G20 countries.
	1. The reduction of negative environmental impacts caused by coal and oil can be achieved in the G20 nations through the elimination of substantial subsidies for fossil fuels and the implementation of higher prices and taxes on products and services related to both indicators. By adopting these strategies, there will be a substantial decrease in the consumption of coal and oil and a greater encouragement towards adopting clean and eco-friendly energy sources.
	2. Investing in the various components of green policies offers the opportunity to maintain the carbon dioxide reduction advantages associated with them. A comprehensive initiative is anticipated to be launched by various G20 governments, aiming to enhance the promotion of green policies. For instance, green energy such as nuclear power could be adopted in electricity generation as alternative to coal. Given the limited progress in green policies in the G20 countries, proactive and intensified promotion efforts become imperative for the objective to be achieved as a way of contributing to the region’s environmental sustainability.
	3. The role of environmental tax in mitigating environmental pollutants proves effective. Hence, the governments of the various G20 countries should consciously drive policies that will specifically target increase in tax rates on carbon-related products. The proceeds from the tax can be invested into green policies such as increasing investment in green technologies through the sponsoring of research and development.
	4. In order to maintain the inhibitory impact of green technology, it is imperative for the government to endorse technical advancements. Specifically, the utilization of funding and support from all G20 nations should be directed toward promoting research and development in ecological sustainability. Furthermore, it is crucial for diverse media outlets and educational establishments to collaborate in order to educate the nation about the significance of implementing ecological technologies.
	5. The transition to a zero-carbon environment can be pursued and coordinated by the government through the implementation of projects that comply with green finance initiatives. A deliberate injection of national resources into green projects could be pursued by the governments of the G20 nations.
	6. The government has the ability to effectively handle the influx of migrants to urban areas by focusing on the development of rural regions in a manner that entices individuals with well-paying employment prospects, standardized infrastructure, and essential social services. The completion of the capital project and the appeal for international assistance to enhance the quality of life in rural areas will greatly alleviate the strain on the capital region.

5.3 Global implications
The findings of the present study, while concentrating on the G20 economies, carry substantial global implications for both developed and developing nations. The issue of natural resources depletion, a significant contributor to the increasing global warming, is observable in countries around the world. The insights derived from this research serve as valuable reference points for nations globally to comprehend the differing impacts of each natural resources component. Furthermore, in light of the growing significance of green policies, this study has successfully enhanced the empirical understanding of each green component’s role in addressing the persistent rise in greenhouse gas (GHG) emissions. Notably, the statistical significance attributed to green energy further supports the notion that a transition to 100% renewable energy will mitigate the escalating GHG emission rates. Additionally, it is important to highlight the empirical evidence demonstrating the effectiveness and critical role of green finance in fostering environmental sustainability within the G20, which serves as a clear reference for broader global applications.
5.4 Limitations and future research opportunities
The current study primarily examines the ways in which natural resources influence environmental sustainability in G20 countries. However, it is important to acknowledge certain limitations. For example, while the analysis considers the effects of natural resources from both consumption and production perspectives, it is restricted to specific components, namely, coal, natural gas, and petroleum oil. The overall impact of natural resources as a whole is not addressed in this research. The empirical evidence presented in this study is confined to the G20 economies. While it is possible to generalize findings to other economies, conducting a replication of this research for those regions would be advantageous. For instance, intergovernmental organizations such as the G7, E7, and N11 could derive substantial benefits from studies of this kind. Moreover, this research does not encompass important policy indicators, such as institutional quality and various metrics related to environmental pollutants. Future investigations could gain from addressing these gaps.
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As the share of the digital economy’s output continues to rise each year, the emergence of new industries such as e-commerce, mobile payments, and cloud computing has opened new avenues for carbon emission reduction (CER). Based on panel data from 30 provinces in China, this article systematically analyzes the CER pathways of China’s digital economy (DE) from the perspectives of direct effects, indirect effects, threshold effects, and heterogeneity analysis. The main conclusions are as follows: (1) China’s DE has a significant CER effect. (2) The DE can indirectly reduce regional carbon emissions (CE) by industrial structures and technological innovation, with the mediating effect of technological innovation being more significant than that of industrial structure. (3) Urbanization has threshold effects on the CER effect of China’s DE. Under the influence of urbanization, there is an inverted U-shaped relationship between DE and CE. (4) Heterogeneity analysis finds that, compared to other types of provinces, the CER effect of DE is stronger in non-resource-based and economically developed provinces. (5) We propose five tailored recommendations for CER: fostering the synergistic development of the DE and industrial structure, strengthening the role of technological innovation, advancing urbanization and carbon reduction in a differentiated manner, formulating distinct policies for resource-based and non-resource-based provinces, and enhancing the construction of digital infrastructure in less-developed regions. This article not only establishes a more comprehensive connection between the DE and CER, but also reveals the differences in the role of technological innovation, industrial structure optimization, urbanization and other factors in the carbon reduction effect of the DE through the comparison of different paths and mechanisms.
Keywords: digital economy (DE), carbon emission reduction (CER), impact pathways, mediation effects, threshold effects

1 INTRODUCTION
With the increasingly severe global climate change situation, carbon emission reduction (CER) has become a focal point of international concern. As the share of the digital economy’s output continues to rise each year, the emergence of new industries such as e-commerce, mobile payments, and cloud computing has opened new avenues for CER. At its core, the digital economy (DE) leverages data, information technology, and digital tools to optimize resource allocation, enhance productivity, and foster innovation. This helps to reduce carbon dioxide emissions across both production and daily life (Abbas et al., 2022). Furthermore, the Climate Action Roadmap highlights that the application of digital technology could potentially cut global CE by around 15% (Mustajoki et al., 2024). Consequently, the CER effect of DE has become a prominent topic of interest within academic circles. As the world’s largest carbon emitter, China plays a pivotal role in global climate governance, with its success in carbon reduction exerting significant influence on the international stage (Afshan et al., 2023). The rapid development of its DE offers abundant practical insights into low-carbon transformation. Meanwhile, the stark disparities in economic development, resource endowment, and industrial structure across China’s regions provide an ideal context for examining the relationship between the DE and carbon reduction. Additionally, China’s accelerated urbanization presents both challenges in energy consumption and opportunities for integrating the DE with green development. Guided by its goals of peaking CE by 2030 and achieving carbon neutrality by 2060, China’s low-carbon policies not only support research into digital economy-driven carbon reduction pathways but also offer valuable lessons and policy references for other nations (Liu et al., 2023).
Existing research indicates that the DE can significantly influence regional CE through multiple pathways. For instance, the widespread adoption of digital technologies such as cloud computing, facial recognition, and artificial intelligence has reduced resource waste, thereby improving the efficiency of industrial production and urban management (Liu et al., 2020). The proliferation of online services has also decreased the consumption of transportation energy (Imran et al., 2023). Moreover, the DE drives industrial restructuring and technological upgrading (Chang et al., 2023). While numerous scholars have explored the CER effects of DE, few have integrated these factors into a comprehensive analytical framework. There remains a need for systematic research on the multiple pathways and conditions through which the DE affects regional CE. Additionally, studies on the regional disparities and nonlinear characteristics of the DE’s CER effects are still relatively scarce. To address the aforementioned research gaps, this study conducts a systematic analysis of the synergistic pathways through which the DE, industrial restructuring, technological innovation, and urbanization impact China’s CE. First, the study employs a System Generalized Method of Moments (SYS-GMM) model to test the direct effects of the DE on regional CE. Second, a mediation model is constructed to analyze the indirect effects of the DE on CE through industrial structure and technological innovation. The study then introduces urbanization as a threshold variable to explore the nonlinear relationship of the DE’s CER effects across different stages of urbanization. Finally, the heterogeneity of the CER effect of DE was examined from the perspectives of resource endowment and economic level.
This study provides a comprehensive framework for academics and policymakers, uncovering the multifaceted pathways through which the DE fosters regional carbon reduction. Against the backdrop of a major nation like China, the findings hold extensive practical applications and policy implications. The novelty of this research is reflected in several key aspects: first, it adopts a systematic analytical approach to holistically examine the impacts of the DE, industrial structure optimization, technological innovation, and urbanization levels on regional CE, distinguishing it from prior studies that focused solely on direct or indirect effects. Second, the study introduces urbanization levels as a threshold variable to analyze the nonlinear carbon reduction effects of the DE across different stages of urbanization, addressing a gap in the literature. Third, it explores the regional heterogeneity of the DE from the perspectives of resource endowment and economic development, revealing variations in its emission-reduction effects. Finally, by employing the SYS-GMM model to analyze direct impacts and a mediation effect model to investigate indirect mechanisms, the study provides a detailed and multidimensional perspective, enhancing both the depth and breadth of the research.
2 LITERATURE REVIEW
As environmental issues stemming from climate change grow increasingly severe, scholars have conducted extensive research on CER. Numerous scholars have explored the effects of factors such as energy endowment, economic openness, technological progress, industrial upgrading, and FDI on regional CE (Shaari et al., 2021; Hu et al., 2021; Wen et al., 2021; Wu et al., 2021; Rauf et al., 2023). DE, as a new economic growth point, has been validated at both macro and micro levels for its impact on regional CE. The rise of the DE has introduced new pathways for regional CER. Existing research findings primarily examine the CER the DE from the following three perspectives (Sadiq and Ali, 2024).
Firstly, extensive research has been conducted on the direct impact of the DE on regional CE. Theoretical research reveals that the direct impact of the DE on CE lies in a dual dynamic: the enhancement of energy efficiency and resource utilization, coupled with the growth in energy demand. Through the widespread adoption and application of information technology, the DE significantly reduces energy waste in traditional production and daily life. Innovations such as the industrial internet, smart manufacturing, online office platforms, and e-commerce effectively lower CE. However, the development of the DE has also led to energy-intensive activities, such as data center operations, high-performance computing equipment manufacturing, and logistics distribution, contributing to increased CE. This results in a coexistence of both positive and negative direct impacts (Haita et al., 2022). Empirical research highlights both linear and nonlinear effects. Linear studies indicate that DE can significantly reduce CE. For instance, research by Karaki et al. indicates that the DE directly lowers CE in high-energy-consuming industries by driving digital transformation and enhancing production efficiency (Karaki et al., 2023). However, scholars like Salahuddin et al. hold a contrasting view, arguing that the rapid expansion of DE has led to a sharp increase in electricity consumption and the construction of new infrastructure, thereby raising regional CE (Salahuddin and Alam, 2015). Additionally, some scholars have found that the CER effect of DE is non-linear. As the DE progresses, its CER effects may exhibit threshold effects or an inverted “U”-shaped curve (Li and Wang, 2022). This relationship is similar to the Environmental Kuznets Curve, which posits that environmental degradation accompanies early stages of economic growth, but environmental quality improves with higher economic levels (Hassan et al., 2020).
Secondly, the indirect effects of the DE on CE has garnered widespread attention from scholars. Theoretical research suggests that the DE drives the growth of the tertiary sector, particularly low-energy, high-value-added industries, thereby reducing the overall carbon intensity of industrial activities. Digital technologies facilitate green innovation and its diffusion, promote the transition of energy structures toward cleaner alternatives, and provide new momentum for emission reductions. The digital platform economy optimizes resource allocation, minimizes production redundancies, and supports the widespread adoption of low-carbon production and consumption models. However, theoretical studies also highlight challenges, such as the rebound effect in consumption and the imbalance in technological diffusion, which influence the indirect effects of the DE on CE. While improving production efficiency, the DE may stimulate expanded consumption demand—manifested in activities like online shopping and instant delivery—that leads to increased CE. Moreover, regional disparities in the adoption of digital technologies may exacerbate short-term imbalances in CE across regions (Dinda, 2004). Empirical studies reveal that the DE indirectly influences CE through multiple pathways, including industrial structure upgrading, technological innovation, and green finance. Numerous studies indicate that digital technologies have facilitated the transformation of traditional industries into low-carbon and high-value-added industries. Cheng et al. note that the DE indirectly reduces CE in developed regions by promoting the intelligent and green transformation of manufacturing (Cheng et al., 2023). Furthermore, the DE enhances energy utilization efficiency by promoting technological innovation and upgrading. Adebayo’s research highlights that the DE has also fostered construction of smart transportation systems, which reduce transportation CE (Adebayo et al., 2024). In addition, digital technologies have spurred innovation in green financial instruments, such as carbon trading platforms and the digital issuance and management of green bonds (Zhang and Qian, 2023). The widespread application of these tools has facilitated financing for low-carbon projects, consequently leading to reductions in CE.
Thirdly, as research has deepened, scholars have discovered that the CER effects of the DE are influenced by a multitude of elements, including economy, policy, industry, and technology. Studies indicate that in regions with higher levels of economy, the CER effects of the DE are more pronounced. For example, Wang et al. found that in the economically advanced coastal areas of eastern China, the development of the DE, supported by superior digital infrastructure and higher technological capabilities, leads to significant reductions in CE (Wang and Zhong, 2023). The formulation of policies also plays a key role in shaping the CER effects of the DE. Yang et al. discovered that under varying intensities of environmental policies, the CER effects of the DE exhibit considerable differences. In the presence of market incentive and public participation environmental policies, the CER effects of the DE become more significant (Yang and Liang, 2023). Furthermore, industrial structure is a key player influencing the CER effects of the DE. Lyu et al. found that industrial upgrading enhances the CER of DE (Lyu et al., 2023).
To sum up, scholars have analyzed the CER effects of DE from multiple perspectives. While these studies provide valuable insights into the relationship between the DE and CE, there remain several deficiencies regarding the pathways, influencing factors, and heterogeneity of their effects. (1) The analysis of pathways through which the DE influences CER tends to be overly one-dimensional, often focusing on either direct or indirect effects without adopting a comprehensive perspective. Some studies incorporate an analysis of influencing factors, such as marketization level, technological capability, or policy environment, when discussing direct or indirect effects; however, the scope and depth of these analyses remain insufficiently broad. (2) Regarding the influencing factors of the DE on CER, existing literature predominantly focuses on aspects such as economic level, relevant policies, market demand, and technological intensity. While these elements are indeed essential in forming the CER effects of the DE, the overemphasis on them results in a relatively narrow research perspective, particularly lacking in-depth exploration of urbanization—a critical area of development. (3) The current literature’s analysis of the heterogeneity in the CER effects of the DE often centers around geographical differences, which leads to noticeable limitations in certain respects. Conditions such as varying economic development levels, policy environments, and natural resource endowments can significantly influence the CER effects of the DE.
Therefore, this study systematically analyzes the CER pathways of the DE from the perspectives of direct effects, indirect effects, threshold effects, and heterogeneity analysis. Additionally, it introduces urbanization level as a threshold variable to examine the nonlinear characteristics of the DE’s CER effects at different stages of urbanization. The study further explores the heterogeneity of the DE’s influence on regional CE based on resource endowments and economic development levels. This comprehensive approach aims to enhance the understanding of the CER effects of the DE in varied contexts, providing theoretical insights and empirical support for policymakers.
3 THEORETICAL ANALYSIS AND RESEARCH HYPOTHESES
Building on the aforementioned summary of existing research, this study establishes a theoretical analysis framework encompassing four dimensions: direct effects, indirect effects, threshold effects, and heterogeneity analysis, as illustrated in Figure 1. This framework will facilitate an in-depth exploration of the CER effects of the DE in China and, based on this analysis, will propose research hypotheses.
[image: Diagram showing the relationship between the digital economy and carbon emissions. Direct effects include threshold effects related to urbanization and heterogeneity analysis concerning economic level and resource endowment. Indirect effects involve mediating effects of industrial structure and technological innovation.]FIGURE 1 | Theoretical analysis framework for CER effects in the DE.
3.1 Direct effects
The DE directly promotes regional CER through various pathways, primarily manifesting in two aspects. Firstly, centered on data and information technology, the DE exhibits characteristics of low-cost diffusion and increasing returns to scale. It is widely applied in urban energy management, transportation management, and industrial production optimization, thereby enhancing resource utilization efficiency and reducing CE. Secondly, the technological innovations empowered by the DE transform people’s work and lifestyles. The prevalence of online work, education, healthcare, and shopping has diminished energy consumption associated with daily commuting and commercial activities, significantly lowering regional CE (Chen L. et al., 2023). Consequently, this study proposes the hypothesis H1: The DE contributes to the reduction of regional CE.
3.2 Indirect effects
3.2.1 Industrial structure effects
The DE promotes regional industrial structure optimization through the following pathways, thereby reducing CE (Liu et al., 2022): (1) Advancing Industrial Digitalization: It facilitates the integration of the Internet, big data, and artificial intelligence into traditional industries, enhancing production efficiency. (2) Fostering Low-Carbon Emerging Industries: The DE has given rise to new industries, such as information technology and e-commerce, which are inherently low in CE. (3) Optimizing the Service Sector: The integration of digital technologies with the service industry has popularized online services and remote work, leading to reduced energy consumption in transportation and office spaces. (4) Enhancing Industrial Cluster Effects: The DE promotes the formation of industrial clusters, improving collaborative efficiency and reducing redundant infrastructure and logistics transport.
These optimizations collectively drive the digitalization of regional industries, foster low-carbon emerging sectors, refine the service industry, and strengthen industrial cluster effects, effectively reducing CE. Therefore, this study proposes the hypothesis H2: The DE indirectly facilitates regional CER by optimizing the industrial structure.
3.2.2 Technological innovation effects
The DE accelerates regional technological innovation, thereby contributing to CERs through the following mechanisms (Wang et al., 2023). (1) Resource Aggregation: The DE fosters the concentration of innovative resources such as talent, capital, and technology, creating an efficient innovation ecosystem that enhances collaboration and technology sharing among enterprises. (2) Increased R&D Investment: The DE attracts greater investment in technological research and development from both enterprises and governments, facilitating the generation and application of new technologies. (3) Optimized Innovation Environment: The proliferation of digital technologies provides technical support for innovation, lowering the barriers to entry and expediting the commercialization of innovative outcomes. (4) Emergence of New Industries: The rise of emerging industries not only serves as a crucial domain for technological innovation but also drives the overall improvement of regional technological standards.
These technological advancements collectively enhance energy and resource utilization efficiency, promote the application of clean energy, and transform production and consumption patterns, resulting in a significant reduction in urban CE. Therefore, this study proposes the hypothesis H3: The DE indirectly reduces regional CE by promoting technological innovation.
3.3 Threshold effects
The effects of the DE on urban CER exhibit significant variation across different stages of urbanization, potentially demonstrating nonlinear characteristics that reflect a threshold effect (Jiang et al., 2022). In the early stage of urbanization, due to underdeveloped infrastructure and lagging industrial structures, DE technologies (such as the Internet of Things, big data, and intelligent management systems) are challenging to implement effectively. As a result, the CER impact is limited, and there might even be increased energy consumption and CE due to the construction of digital infrastructure and rising consumption demand. For instance, the growth of e-commerce can lead to higher demand for high-carbon logistics. In the intermediate stage of urbanization, as infrastructure gradually improves, the DE plays a more prominent role in optimizing industrial structures and enhancing resource utilization efficiency. Particularly in the development of emerging industries and smart city initiatives, the application of low-carbon technologies is accelerated, leading to a noticeable reduction in CE. However, due to insufficient infrastructure and management levels, the CER potential is not yet fully realized. Upon reaching the advanced stage of urbanization, urban infrastructure becomes highly modernized, and the DE permeates all aspects of urban life. Digital technologies are fully integrated into energy management, traffic coordination, industrial production, and urban planning, significantly enhancing resource utilization efficiency and minimizing CE, thereby maximizing the CER effect.
In summary, this study proposes the hypothesis H4: The impact of the DE on CE exhibits a nonlinear threshold effect that varies with the level of urbanization.
3.4 Heterogeneity analysis
Analyzing the heterogeneity of the DE’s impact on regional CE through the dimensions of resource endowment and economic development levels provides a more comprehensive understanding of its CER effects and potential across different contexts. Such a multidimensional analysis helps in formulating targeted policy measures to optimize the trajectory of digital economic development, thereby achieving sustainable development goals at the regional level.
3.4.1 Resource endowment heterogeneity analysis
Resource-based regions typically face higher CE, but the DE can drive innovation in green extraction technologies, leading to more efficient resource development. In contrast, non-resource-based regions can leverage the data economy to enhance resource utilization efficiency and optimize industrial structures, potentially achieving CER more rapidly (Xu and Cai, 2024). Therefore, this study proposes hypothesis H5: Resource endowment moderates the CER effect of the DE. Compared to resource-based regions, the CER impact of the DE is more pronounced in non-resource-based areas.
3.4.2 Economic level heterogeneity analysis
Economically developed regions possess superior technology and infrastructure, which allows the DE to have a more significant positive impact on CER. In contrast, less developed regions may face the risk of increased CE during the initial stages of digital economic development. However, as economic conditions improve and infrastructure is enhanced, the potential for CER gradually emerges (Zheng and Fen, 2023). Therefore, this study proposes hypothesis H6: Economic development level moderates the CER effect of the DE, with more pronounced effects observed in economically developed regions.
4 RESEARCH DESIGN
4.1 Variable selection
As shown in Table 1, the variables in this study include the interpreted variable, core explanatory variable, control variables, mediating variables, and threshold variable. Drawing from the Four-Aspects Framework of the DE proposed in the China Digital Economy Development Report (2020) by the China Academy of Information and Communications Technology (CAICT), we constructed an evaluation index system for assessing the level of the DE, as illustrated in Table 2 (Su et al., 2022). This evaluation index system was used to assess regional DE levels, and the results served as the core explanatory variables.
TABLE 1 | Explanation of regression model variables.
[image: Table detailing variables related to carbon emissions. Categories include Interpreted, Core Explanatory, Control, Mediation, and Threshold Variables. Definitions, units, and symbols are provided for each. For example, "Carbon Emissions" is measured in hundred million tons, symbolized as "CE". Control variables include "Economic Level" defined as "Regional Population/GDP", with the symbol "EL". Other symbols include "DEI" for Digital Economy Intensity, "IS" for Industrial Structure, and "UC" for Urbanization Construction.]TABLE 2 | Evaluation index system for DE.
[image: Table with hierarchical categories showing "Digital Economy" as Level 1. Level 2 includes "Digital Industry," "Industry Digitalization," "Digital Governance," and "Data Valorization." Level 3 specifies metrics like "Number of Employees," "Per capita telecommunications services," and various index measures with units such as "Ten Thousand People" and "Enterprises."]4.2 Model construction
To comprehensively analyze the impact of the DE on regional CE, this study employs three main econometric models: the SYS-GMM model, the mediation model, and the threshold model.
The SYS-GMM model is well-suited for dynamic panel data analysis, effectively addressing endogeneity issues caused by lagged dependent variables while controlling for heteroscedasticity and serial correlation. Given the significant temporal dependence of carbon emission intensity and the potential reverse impact of CE on DE development, the SYS-GMM approach enhances estimation efficiency and ensures the robustness of the model results by constructing instrumental variables for both the differenced and level equations (Fatima et al., 2022). Therefore, study uses the SYS-GMM model to conduct in-depth analysis of the direct impact of the DE on China’s CE. The SYS-GMM model constructed is shown in Equation 1 below. In Equation 1, i and t denote cities and years, respectively; CE represents regional CE, while DEI serves as the level of regional DE. EL, PS, OL, and ER correspond to the variables economic level, population size, degree of openness, and intensity of environmental regulations, respectively. [image: Please upload the image or provide a URL so I can generate the alt text for you.] and [image: Please upload the image or provide a URL so that I can generate the alternate text for it.] correspond to city-specific fixed effects and time fixed effects, while [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] denotes the random error term.
[image: Mathematical equation representing a regression model: lnCE_it equals alpha_0 plus alpha_1 lnCE_it-1 plus alpha_2 lnDE_it plus alpha_3 lnEL_it plus alpha_4 lnPS_it plus alpha_5 lnOL_it plus alpha_6 lnER_it plus v_t plus u_i plus epsilon_it, labeled as equation (1).]
To validate hypotheses H2 and H3, which propose that the DE indirectly influences regional CE by optimizing industrial structure and promoting technological innovation, we construct mediation models based on Equation 1, as shown in Equations 2, 3. The mediation model decomposes the total effect into direct and indirect effects, unveiling the pathways through which DE development influences carbon emission intensity. By incorporating industrial structure optimization and technological innovation as mediating variables, the model delineates the mechanisms through which the DE impacts CE via multiple indirect channels (Amara et al., 2023). In this context, M represents the mediating variables, which include industrial structure and technological innovation. The remaining variables are consistent with those in Equation 1.
[image: Equation displaying a regression model where the natural logarithm of \( M_{it} \) is expressed as a function of several variables: \( \beta_0 \), \( \beta_1 \ln DE_{it} \), \( \beta_2 \ln EL_{it} \), \( \beta_3 \ln PS_{it} \), \( \beta_4 \ln OL_{it} \), and \( \beta_5 \ln ER_{it} \), with error terms \( v_t \), \( u_i \), and \( \epsilon_{it} \).]
[image: Equation showing a model: lnCE<sub>it</sub> = γ<sub>0</sub> + γ<sub>1</sub>lnCI<sub>i,t-1</sub> + γ<sub>2</sub>lnM<sub>it</sub> + γ<sub>3</sub>lnDEI<sub>it</sub> + γ<sub>4</sub>lnEL<sub>it</sub> + γ<sub>5</sub>lnPS<sub>it</sub> + γ<sub>6</sub>lnOL<sub>it</sub> + γ<sub>7</sub>lnER<sub>it</sub> + ν<sub>i</sub> + u<sub>t</sub> + ε<sub>it</sub>.]
Furthermore, to validate hypothesis H4, we construct a threshold model, as illustrated in Equation 4. The threshold model effectively identifies potential nonlinear relationships and phase-specific characteristics between variables, making it well-suited to uncover the complex dynamics between DE development and carbon emission intensity (Ostadzad, 2022). At different stages of DE development, its impact on CE may transition from promotion to suppression. By employing segmented analysis to capture this threshold effect, the model provides targeted and stratified policy recommendations. Here, UC and [image: Calligraphic lowercase Greek letter eta, resembling a stylized "n" with a descender.] respectively represent the level of regional urbanization and the threshold value. The remaining variables are consistent with those in Equation 1.
[image: Mathematical equation showing a model with various logarithmic variables, including lnCE, lnCI, lnDEI, lnUC, lnEL, lnPS, lnOL, and lnER. The equation includes interaction terms, coefficients a0 to a7, and error components νt, ui, and εit, labeled as equation (4).]
4.3 Data description
This study analyzes the relationship between the DE and CE in China, based on data from 30 provincial-level administrative regions from 2011 to 2023. The data sources include https://data.csmar.com/, https://www.ceads.net.cn/, https://www.stats.gov.cn/sj/ndsj/, and https://www.cei.cn/. For missing values, interpolation methods were employed to fill the gaps. To mitigate the impact of inflation, monetary values were adjusted to 2011 as the base year. The descriptive analysis results of the variables are shown in Table 3.
TABLE 3 | Variable description statistical results.
[image: Table displaying statistical data for various variables, including CE, DEI, EL, PS, OL, ER, IS, TI, and UC. Each row shows the mean, standard deviation, minimum, and maximum values for that variable.]5 EMPIRICAL ANALYSIS
5.1 Empirical analysis of direct effects
The regression results of the SYS-GMM model are shown in Table 4. Firstly, the AR (1) test shows a p-value less than 0.05, indicating the presence of first-order autocorrelation, which aligns with our expected results. The AR (2) test, with a p-value greater than 0.1, suggests that there is no issue of second-order autocorrelation, thereby passing the autocorrelation test. The Hansen test yields a p-value greater than 0.1, indicating that there is no problem of over-identification. In summary, the SYS-GMM model constructed in this study is valid.
TABLE 4 | Regression result of Equation 1.
[image: Table displaying variables and coefficients, with statistical significance indicated by asterisks: ** for p < 0.05 and *** for p < 0.01. Variables include \( \text{lnCE}_{it-1} \), \( \text{lnDEI}_{it} \), \( \text{lnEL}_{it} \), \( \text{lnPS}_{it} \), \( \text{lnOL}_{it} \), \( \text{lnER}_{it} \), with coefficients ranging from -0.471 to 0.247. Tests include Hansen Test (0.252), AR(1) Test (0.001), and AR(2) Test (0.421).]From the perspective of the core explanatory variable, the [image: It seems like there was an error in uploading the image. Please try uploading the image again or provide a URL, and I can help generate the alternate text for it.] coefficient is negative. This indicates that China’s DE has a suppressive effect on CE. Hypothesis H1 has been validated. The underlying reason is that the DE not only transcends the spatial and temporal barriers of information dissemination, thereby reducing transaction costs and optimizing the spatial allocation of resources, but it also enhances the capacity for carbon emission management. Moreover, it can promote the transformation of traditional industries towards low-carbon, facilitate the development of clean energy, and drive the low-carbon transformation of cities.
Based on the analysis of the dependent variable, it was found that the estimated coefficient of [image: The mathematical expression depicts the natural logarithm of "CE" at a previous time point, denoted by subscript "i" for the entity and "t-1" for one period before the current time.] is significantly positive. Indicating that regional CE have characteristics of sustainability and inertia. That is, the CE of the region this year are affected by last year’s CE. This persistence can be attributed to the short-term stability of factors such as regional production structure, energy consumption patterns, and technological levels, as well as the lag in policy and market adjustments.
Finally, regarding the control variables, the regression coefficient for [image: Please upload the image, and I will help generate the alt text for you.] is significantly positive, while the coefficients for [image: Please upload the image you'd like me to generate alternate text for.] and [image: The image shows the mathematical expression "lnER" with serif font styling, implying a specific typographic emphasis.] are significantly negative, and the coefficient for [image: Please upload the image or provide a link to it so I can generate the alternate text for you.] is not significant. First, the results indicate that the expansion of economic activities is accompanied by an increase in CE. This is especially true when economic growth relies heavily on energy-intensive industries, aligning with the expectations of this study. Second, foreign investment contributes to CER in China, as foreign-enterprises typically bring more advanced green technologies and stricter environmental standards, and they generally favor high-value-added, low-carbon industries. Third, strengthening environmental regulations helps to curb CE, as such regulations increase production costs, compelling enterprises to improve production processes and operational practices, thereby facilitating regional low-carbon transitions.
5.2 Empirical analysis of mediating effects
The regression results of the mediation models are shown in Table 5. Columns (1) and (2) in Table 5 are the regression results of the mediating effect of industrial structure. Column (1) reveals that the coefficient of [image: Please upload the image or provide a URL for me to generate the alt text.] on the mediating variable [image: Please upload the image or provide a URL so I can generate the appropriate alternate text for you.] is significantly positive, indicating that the DE fosters the transformation of China’s industrial structure. Column (2) shows that the coefficient of [image: If you provide the image by uploading it or using a URL, I can generate the alt text for you.] is −0.318, with an absolute value smaller than the absolute value of the regression coefficient of [image: It seems there's an error with the image upload or link. Please try uploading the image again or provide a URL. If you have any additional context or a caption, feel free to include it.] (−0.471) in Equation 1. After introducing the mediating variable, the CER of the DE remains significant, But the coefficient has weakened and the mediating variable has a significant impact. This indicates a partial mediating effect via industrial structure, suggesting that the CER effect of the DE is not solely dependent on this pathway but can also directly influence the dependent variable through other means. This finding supports hypothesis H2. For instance, in Beijing, the service sector accounted for 84.8% of GDP in 2023, and the share of information technology industries within the service sector has been steadily rising. By promoting the development of the service sector and high-tech industries, Beijing has significantly reduced its dependence on traditional, high-pollution industries, achieving effective control over CE.
TABLE 5 | Regression results of mediation effect.
[image: A table displaying the mediation effects of industrial structure and technological innovation. Columns are labeled with variables: lnCE (current period), lnDEI, lnEL, lnPS, lnOL, lnER, lnIS, lnTI. Effects are shown with coefficients and significance levels. The bottom part includes a Hansen Test, AR(1) Test, AR(2) Test, and R-squared values. Significance levels are indicated by asterisks, with three for p < 0.01, and two for p < 0.05.]Columns (3) and (4) are the regression results of the mediating effect of technological innovation. Column (3) indicates that the coefficient of [image: It seems there's an issue with the image upload. Please try uploading the image again or provide a URL. You can also add a caption for additional context.] on [image: If you can provide an image or a URL, I can help generate alt text for it. Please upload the image or share the link.] is significantly positive, suggesting that the DE can promote regional technological innovation. Column (4) shows that the coefficient of [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is −0.281, with an absolute value smaller than the regression coefficient of [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] (−0.471) in Equation 1. This indicates that the mediating effect through technological innovation is also a partial mediating effect. TI serves as an effective channel for the DE to exert its CER function, thereby validating hypothesis H3. For example, Alibaba collaborated with Hangzhou Energy Group to develop an intelligent power grid system based on digital technology. This system optimizes electricity dispatching, reducing energy waste, and is expected to lower CE by more than 300,000 tons annually.
Moreover, Columns (2) and (4) reveal that the regression coefficient of the mediating variable [image: It seems there is an issue with the image upload or link. Could you please try uploading the image again or provide a URL? You can also include a caption for context if needed.] is greater than that of [image: Please upload the image or provide a URL to it, then I can help generate the alt text for you.]. This indicates that compared to the IS, TI plays a more critical role in DE’s CER. This can be attributed to the fact that adjustments and upgrades in industrial structure require a prolonged transition period, often involving the reallocation of resources, corporate transformation, and retraining of the workforce. In contrast, the CER effects brought about by technological innovation are more direct, widespread, and exhibit significant spillover benefits.
5.3 Empirical analysis of threshold effects
The CER effect of the DE is influenced by various economic factors. Therefore, this study introduces UC as a threshold variable to further analyze the CER effect of DE under different urbanization levels. According to the Hansen test principle, this study used Bootstrap method to repeatedly sample 300 times and conducted urbanization threshold effect test on the sample data. The results are shown in Tables 6, 7. Table 6 shows that [image: Please upload an image or provide a URL so that I can generate the alt text for you.] only passed the single-threshold test. The single-threshold estimate and its 95% confidence interval are shown in Table 7. The estimated value of the single threshold for the variable [image: If you provide the image or a URL, I can help generate the alternate text. You can upload the image directly here.] and its 95% confidence interval are displayed in Table 7.
TABLE 6 | Threshold effect test.
[image: A table displaying threshold test results with four columns: "Threshold variable", "Threshold", "Fstat", and "Prob.". The variable is "lnUC". For a single threshold, Fstat is 41.08 with a probability of 0.003. For a double threshold, Fstat is 31.66 with a probability of 0.265. For a triple threshold, Fstat is 23.18 with a probability of 0.327.]TABLE 7 | Threshold calculation.
[image: Table displaying a Single Threshold model with three columns: Threshold, Lower, and Upper. The corresponding values are negative zero point one four six, negative zero point one five nine, and negative zero point one three four.]The calculation results of [image: Please upload the image or provide a URL so I can generate the alt text for you.] threshold effect are shown in Table 8. The threshold variable [image: Please upload the image or provide a link so I can generate the alternate text for you.] passed the significance test, both when it was less than −0.146 and when it was greater than −0.146. When [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is less than −0.146, the impact coefficient is 0.172, indicating that the DE can increase CE at this time. At this initial stage of urbanization, due to underdeveloped infrastructure and a lagging industrial structure, DE technologies struggle to be effectively applied, leading to limited CER outcomes. Additionally, the construction of DE and the growth of new electronic consumption demand contribute to increased CE. When [image: Please upload the image or provide a URL so I can generate the alternate text for you.] exceeds −0.146, the impact coefficient is −0.371, showing that the DE has a significant inhibiting effect on regional CE. As infrastructure gradually improves, the DE plays a more pronounced role in optimizing industrial structures and enhancing resource utilization efficiency. Especially in the development of emerging industries and smart city construction, it promotes the application of low-carbon technologies, significantly reducing regional CE. For instance, the urbanization rate in Jiangsu Province has reached 72%. Against a backdrop of high urbanization, the integration of the DE with urban management has greatly enhanced the efficiency of urban energy use. Real-time monitoring and optimization of urban traffic, energy, and water supply systems through big data and IoT technologies have effectively reduced CE. In contrast, regions with lower urbanization levels, such as Gansu and Guizhou, show a more limited effect of the DE on CER. For example, the urbanization rate in Gansu Province was only 55% in 2023. Due to underdeveloped infrastructure and low DE levels, its CER effect is weak.
TABLE 8 | Threshold effect regression results.
[image: Table displaying regression analysis results with variables and coefficients. Variables include lnDEI for lnUC ≤ 0.146 and lnDEI for lnUC > 0.146, with coefficients of 0.172*** and -0.371***, respectively. Controls are present. Constant has a coefficient of 0.472***. Adjusted R-squared is 0.806. Probability > F is F = 0.000. Significance levels: *** p < 0.01, ** p < 0.05.]The conclusions above indicate that the relationship between DE and CE, influenced by regional urbanization levels, exhibits an inverted “U” shape, thereby confirming hypothesis H4. This suggests that the DE can only truly unleash its CER potential and facilitate regional low-carbon and sustainable development when urbanization levels reach a certain threshold.
5.4 Heterogeneity analysis
5.4.1 Resource endowment heterogeneity analysis
Natural resources are a key factor affecting the CER of a region. Thus, this study conducts a heterogeneity analysis of the CER effects of the DE from the perspective of resource endowments. Based on the List of Resource-Based Cities in China and the criteria for identifying resource-based provinces, this paper designates Shanxi, Shaanxi, Guizhou, and Gansu as resource-based provinces, while categorizing the others as non-resource-based provinces. The heterogeneity analysis results based on the perspective of resource endowment are shown in columns (1) and (2) of Table 9. In both columns, the coefficients of [image: Please upload the image or provide a link to it, and I will generate the alternate text for you.] are significantly negative. This indicates that DE can effectively reduce CE in two types of provinces. Moreover, its impact is more pronounced in non-resource-based provinces, thereby validating hypothesis H5. Currently, the industrial structure of China’s resource-based provinces is relatively singular, heavily reliant on fossil fuels, with insufficient development of emerging strategic industries. The difficulty of industrial structure transformation greatly limits the CER effect of DE. For instance, in Ningxia, the coal and petrochemical industries dominate the provincial economy. Despite recent efforts to promote digital mining and smart grid technologies, the overall reduction effect remains limited.
TABLE 9 | Heterogeneity analysis based on resource endowment and economic level.
[image: Table comparing economic indicators across provinces by resource endowment and economic level. Variables include \( \text{lnCE}_{it-1} \) and \( \text{lnDEI}_{it} \) with statistical significance noted. Tests include Hansen, AR(1), and AR(2). Controls applied with significance levels at \( p < 0.01 \) and \( p < 0.05 \).]5.4.2 Economic level heterogeneity analysis
Given that economically developed regions possess well-established infrastructure and human resources, they are better positioned for the rapid advancement of the DE. This study further analyzed the CER effect of DE from the perspective of economic level differences. This study divides 30 provinces in China into economically developed provinces and economically underdeveloped provinces based on their average GDP. The heterogeneity analysis results based on the perspective of economic level are shown in columns (3) and (4) of Table 9. In both columns, the [image: Please upload the image or provide a URL for me to generate the alt text.] coefficients are significantly negative, indicating that the DE significantly promotes CER in both economically developed and underdeveloped provinces. Furthermore, the CER effect of the DE is greater in economically developed provinces than in their underdeveloped counterparts, thus validating hypothesis H6. Compared to underdeveloped provinces, economically developed regions enjoy superior digital infrastructure, higher levels of digital technology, and greater capacities for digital trade. Additionally, these developed provinces benefit from significantly higher levels of financial investment and talent support in the realm of the DE, resulting in more pronounced CER benefits. For instance, Shanghai’s “Smart Energy Platform” employs digital technology to achieve efficient energy management, significantly reducing the city’s CE. In contrast, underdeveloped regions in the western part of China experience lagging CER effects due to insufficient DE development. For example, in Guizhou Province, the DE accounts for only about 10% of GDP, with energy consumption still primarily reliant on coal. Even when efforts are made to promote digital platforms for energy management, the overall effectiveness of carbon emission control remains relatively limited.
6 DISCUSSION
This study systematically analyzes the mechanisms by which the DE contributes to CER in China. Through examinations of direct and indirect impacts, threshold effects, and heterogeneity analysis, it arrives at multi-layered conclusions. This section will conduct a horizontal and vertical comparative analysis of the research findings in relation to existing studies, exploring the differences between this study and other relevant research and further elucidating the underlying causes of these discrepancies.
The findings of this research indicate that the DE has a significant CER effect. Existing literature similarly confirms the potential of the DE in CER. For instance, Li et al. found that digital technologies optimize energy efficiency, thereby reducing CE (Li et al., 2022). However, Zhang et al. posited that in certain less developed regions, the catalytic effect of the DE may be constrained by inadequate infrastructure (Zhang W. et al., 2022). This observation aligns with our study’s conclusion that the CER effects of the DE are not significant in some areas. This discrepancy suggests that while the DE exhibits considerable CER effects, its efficacy is influenced by regional development levels. By further differentiating the CER effects between developed and underdeveloped regions, this study deepens this conclusion. Developed regions, leveraging advanced digital infrastructure and high levels of technological reserves, can more effectively unlock the carbon reduction potential of the DE. In contrast, in underdeveloped regions, inadequate infrastructure and lagging technological capabilities may constrain the carbon reduction effects of the DE. Therefore, we recommend tailoring strategies to local conditions to maximize the carbon reduction benefits of the DE. This includes enhancing broadband networks and data center construction in underdeveloped regions while fostering technological research and industrial clustering in developed regions (Chang et al., 2024).
The empirical analysis results show that DE indirectly reduces China’s CE by optimizing industrial structure and accelerating technological innovation. And the mediating effect of accelerating technological innovation is greater than that of optimizing industrial structure. This conclusion is consistent with many related literature. Such as, Wang et al. indicate that the DE promotes technological advancement and application, thus accelerating the CER process (Wang et al., 2022). Similarly, Cheng et al. suggest that the DE fosters industrial transformation, contributing to the acceleration of CER (Cheng et al., 2023). However, unlike existing research, this study reveals that the mediating effect of technological innovation surpasses that of industrial structure optimization. The investigation indicates that technological innovation, driven by the rapid spread of technology, can yield rapid CER effects. In contrast, optimizing the industrial structure typically requires a longer adjustment period. Furthermore, technological innovation possesses cross-industry spillover effects, making its CER impact more pronounced. Industrial structure adjustments are constrained by factors such as regional economic structure and resource endowments. This is particularly evident in China’s central and western regions, where traditional heavy industries dominate, leading to a lag in the CER effects of industrial structure optimization. Thus, while both pathways contribute to reducing CE, the immediacy and breadth of technological innovation render it a more critical factor in driving CER efforts in the context of the DE. Technological innovation, through the widespread application of digital technologies and cross-sectoral spillover effects, can rapidly achieve carbon reductions with more pronounced overall outcomes. In contrast, industrial structure optimization, involving deep adjustments to the economic framework, is constrained by factors such as regional resource endowments and the proportion of traditional heavy industries. This process requires longer adjustment cycles, leading to relatively delayed effects. Therefore, we recommend that governments intensify support for technological innovation, encouraging the application of digital technologies in energy conservation and environmental protection. Simultaneously, regional coordinated development should be promoted by optimizing industrial structures, with a focus on supporting green transitions in central and western regions to reduce reliance on traditional heavy industries (Shi et al., 2023).
This study finds that the relationship between the DE and CE presents an inverted “U” shape influenced by urbanization factors. With the continuous expansion of regional urban areas, the CER effect of the DE shifts from promoting regional CE to suppressing them. This conclusion is similar to the findings of Musah et al., who noted that in the early stages of urbanization, increased urban construction and energy demand lead to higher CE (Musah et al., 2021). However, as urbanization deepens, the gradual improvement of digital infrastructure enhances energy efficiency, resulting in a decline in CE. The research conclusion of this study further validates the findings of scholars such as Musah. It underscores the importance of reaching a certain level of urbanization for the DE to fully leverage its potential for CER. This relationship emphasizes the need for targeted policies that foster digital infrastructure development alongside urbanization to ensure sustainable environmental outcomes. The impact of the DE on CE exhibits an inverted “U”-shaped pattern, highlighting the phased characteristics of digital economic development during urbanization. Its carbon reduction potential can only be fully realized after reaching a certain level of urbanization. Therefore, we recommend implementing phased, differentiated policies. In the early stages of urbanization, efforts should focus on guiding low-carbon city construction and enhancing the application of clean energy and green building technologies. In the mid-to-late stages, investments in digital infrastructure should be increased to improve energy efficiency and promote the application of digital technologies in energy management, traffic optimization, and other domains (Wu et al., 2023).
This study found that DE exhibits CER effects on both resource-based and non-resource-based provinces, with a greater effect on non-resource-based provinces. The analysis of economic level heterogeneity indicates that the CER effect of the DE is significantly higher in economically developed regions compared to less developed ones. The conclusion regarding the heterogeneity of resource endowments is supported by numerous scholars. For instance, research by Chen et al. shows that resource-based provinces rely heavily on traditional energy sources, which limits the development of the DE due to the difficulties associated with transforming their industrial structure (Chen S. et al., 2023). In contrast, non-resource-based provinces, characterized by more diversified industrial structures, are more amenable to the adoption of digital technologies, thus exhibiting stronger CER effects. In comparison to existing heterogeneity studies related to economic levels, this research further emphasizes that, despite the challenges posed by weaker economic foundations in less developed areas, increasing investment in digital infrastructure can still enhance CER effects. This is particularly true when driven by technological innovation, highlighting the potential for digital transformation to promote sustainable development even in economically disadvantaged regions. Resource-based provinces, constrained by their reliance on traditional energy and the challenges of industrial transformation, face limitations in realizing the carbon reduction potential of the DE. In contrast, economically developed regions, with robust infrastructure and abundant technological resources, excel in fostering synergy between the DE and carbon reduction. Therefore, we recommend that resource-based provinces accelerate industrial transformation, reduce dependence on traditional energy, and promote the deep integration of digital technologies with energy management. For economically underdeveloped regions, we propose increasing fiscal support and targeted investment to prioritize digital infrastructure development. Establishing technological innovation platforms is essential to narrowing regional disparities in the development of the DE and its carbon reduction effects (Zhang J. et al., 2022).
In summary, this study not only establishes a more comprehensive connection between the DE and CER but also compares different pathways and mechanisms involved. It indicates that the CER effect of DE is constrained by many factors. This further highlights the necessity for differentiated policies tailored to various regions and stages of development, ensuring that CER strategies effectively leverage the unique characteristics and challenges of each area.
7 CONCLUSION, POLICY IMPLICATIONS AND LIMITATIONS
7.1 Conclusion and policy implications
This study systematically analyzes the carbon reduction pathways of China’s DE from the perspectives of direct impacts, indirect effects, threshold effects, and heterogeneity analysis. The main conclusions are as follows: First, the development of the DE can significantly reduce regional CE. Second, the DE can indirectly lower regional CE by optimizing industrial structures and promoting technological innovation, both of which constitute partial mediation effects. Furthermore, technological innovation currently plays a more significant role in the carbon reduction effect of the DE compared to industrial structure optimization in China. Third, urbanization levels exhibit a significant threshold effect on the carbon reduction impact of the DE, showing an inverted “U-shaped” relationship between the DE and CE. Fourth, the carbon reduction effects of the DE are more pronounced in non-resource-based provinces and economically developed regions. Based on these findings, we propose the following five carbon reduction recommendations.
	(1) Promote Synergy Between the DE and Industrial Structure: Governments should accelerate the digital transformation of traditional industries, particularly in resource-dependent provinces and economically underdeveloped regions (Xu and Cai, 2024). Encourage the application of digital technology in energy intensive industries and accelerate industrial transformation. For instance, Shanxi, a typical resource-dependent province, relies heavily on high-energy-consuming industries like coal. Due to the significant proportion of heavy industry in its industrial structure, the CER effects are often less pronounced than in non-resource-based provinces. Therefore, it is recommended that Shanxi accelerate industrial adjustment, especially by increasing investment in new energy and high-tech industries. Additionally, in economically underdeveloped western regions like Guizhou and Gansu, efforts to advance the DE should be coupled with the digitalization of the coal industry. Improve the production efficiency of the coal industry through digital technology.
	(2) Strengthen the Core Role of Technological Innovation in CER: Increase investment in technological integration, especially in the innovative integration of digital technology and energy technology (Zhang et al., 2021). Governments should incentivize companies to develop and adopt low-carbon technologies while providing innovation support for small and medium-sized enterprises (SMEs). This study reveals that the role of technological innovation in the CER effect of DE is higher than that of industrial structure. Economically developed eastern regions, such as Guangdong, Jiangsu, and Zhejiang, have already made substantial progress in technological innovation. These regions should further leverage their technological advantages to promote the application of cutting-edge technologies like 5G, IoT, and big data across energy, transportation, and manufacturing sectors. Although less developed regions, such as Ningxia and Qinghai, may not have the same economic advantages, they can still benefit by learning from the innovation experiences of the more advanced eastern provinces. Encourage the integration of digital technology and energy technology to improve the efficiency of traditional energy extraction.
	(3) Promote Coordinated Development of Urbanization and CER with Differentiated Approaches: Regions with varying levels of urbanization should adopt differentiated policies to coordinate urbanization and CER efforts. Areas with lower urbanization levels should focus on strengthening infrastructure development and optimizing energy use, while highly urbanized regions should prioritize improving urban management efficiency, promoting smart city development, and advancing low-carbon initiatives. For western provinces with lower urbanization rates, such as Sichuan and Yunnan, it is essential to avoid excessive reliance on traditional fossil fuels during urbanization. Efforts should be made to adopt clean energy solutions and high-efficiency building technologies. In new urban planning, integrating digital technologies with low-carbon concepts can drive the construction of green and smart cities. For the highly urbanized eastern coastal regions like Shanghai and Beijing, efforts should focus on further enhancing urban management efficiency. Promoting the application of low-carbon technologies such as smart transportation, intelligent buildings, and smart grids will be key to achieving sustainable urban development (Ayres and Williams, 2004).
	(4) Differentiated Policy Design for Resource-Based and Non-Resource-Based Provinces: Resource-based provinces should focus on promoting industrial transformation and ecological protection, reducing dependence on traditional energy industries (Chen, 2022). Non-resource-based provinces should continue to leverage the advantages of the DE to drive the widespread adoption and innovation of low-carbon technologies. For resource-based provinces like Inner Mongolia and Xinjiang, the government should gradually reduce the proportion of resource industry structure and promote the development of clean energy industries. Additionally, these regions can foster the growth of DE-related ecological industries (such as smart agriculture and green tourism) to replace traditional high-pollution sectors. Non-resource-based provinces like Jiangsu and Zhejiang have already been at the forefront of DE development and industrial structure optimization. These regions should continue to build on their strengths in DE and technological innovation, further expanding the application of low-carbon technologies across various industries.
	(5) Enhance Digital Infrastructure Development in Underdeveloped Regions: The government should accelerate the infrastructure construction of central and western provinces, narrow the gap in the DE, and thus enhance their CER capabilities (Kim, 2006). For underdeveloped areas like Gansu and Guizhou, it is recommended to boost investments in digital infrastructure, promoting the widespread application of big data and 5G networks. This will support the broad development of the DE in these regions. For instance, Guizhou has been actively developing its big data industry in recent years, gradually elevating the level of DE development and creating favorable conditions for CER.

7.2 Limitations and future recommendations
This study reveals the carbon reduction effects of DE development and its mechanisms, but certain limitations remain. First, the panel data used in this research has temporal and spatial constraints. Due to data availability issues, the study covers a relatively limited timeframe and does not include all regions. Future research could extend the time series and expand the geographical scope to examine the differential impacts of the DE on CE across various development stages and regions. Second, this study adopts a macro-level empirical analysis. While it uncovers the overall impact of the DE on CE, the mechanisms at the micro level require further exploration. For instance, how specific industries leverage digital technologies to reduce CE and whether the carbon reduction effects of the DE vary across different industrial structures are questions for future investigation. Lastly, this study focuses primarily on the mediating effects of industrial structure optimization and technological innovation in the relationship between the DE and CE. Future research could incorporate additional potential mechanisms, such as improvements in resource allocation efficiency and heightened public environmental awareness, to comprehensively understand the multifaceted impacts of the DE on low-carbon transitions.
Future research should address these limitations, broaden data sources, and deepen the exploration of mechanisms to enhance understanding of the relationship between the DE and carbon reduction. First, incorporating non-traditional data sources such as remote sensing data, IoT monitoring data, and internet big data can compensate for the limitations of panel data. These high-frequency data sources can dynamically capture real-time relationships between digital economic activities and carbon emission changes, providing more precise evaluations. Second, integrating industry-specific data will enable an in-depth analysis of the contributions of specific digital technologies (such as artificial intelligence, big data, and cloud computing) to carbon reduction in various sectors. It is essential to investigate how these technologies operate within different industries and their potential in promoting green supply chains, enhancing energy efficiency, and minimizing waste. Third, employing spatial econometric methods can reveal the cross-regional spillover effects of the DE on CE. For instance, future research could explore whether the development of the DE in developed regions indirectly impacts CE in surrounding underdeveloped areas through industrial relocation or technology diffusion, and assess the positive and negative aspects of such spillover effects. Finally, examining the synergy between DE development and climate policies (such as carbon taxes and carbon trading markets) is crucial. Research could investigate how policy support amplifies the carbon reduction effects of the DE while analyzing the potential hindrances of overly aggressive or poorly coordinated policies on digital economic development.
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Green credit financing (GCF) is a specialized financial service offered by banks, aimed at incentivizing borrowers to engage in environmentally sustainable investments, and thus promote sustainable development. It is worth noting that in the practical economic environment, the ability of enterprises to adapt their production and green investment decisions to unforeseen market demand is critical for their green credit financing. This paper investigates a joint production and green investment optimization problem of manufacturers financed through GCF under uncertain demand. Only the interval bound of the demand are known. The problem is initially formulated as a min-max regret model to maximize robustness. Based on problem characterizations, an optimal joint production and green investment decision is proposed. To determine the effectiveness of the proposed decision, computational experiments are conducted on real-world instances. Besides, sensitivity analysis is conducted to derive managerial insights on the implementation of GCF under uncertain demand.
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1 INTRODUCTION
In the past decades, global warming has led to a series of economic, social and ecological problems that constantly threaten the human living environment (Cai et al., 2020). The increasing carbon emissions have accelerated global warming, causing widespread concern among the government and the public (Dou et al., 2019). In the face of environmental protection and sustainable development issues caused by global warming, it has become increasingly important to control or reduce carbon emissions (Nagurney and Yu, 2012; Liu, 2023). Many governments and the public sector have taken positive actions to help limit carbon emissions, such as enacting laws and regulations to enforce carbon emissions limits, creating carbon cap-and-trade mechanisms, establishing carbon offset systems, levying carbon taxes, encouraging low-carbon investments, and guiding enterprises to transform into green technologies (Song and Leng, 2012). One of the important means to reduce carbon emissions is to incentivize firms to make green technology transitions by providing them with green credit financing.
Green credit financing (GCF) is a financial service provided by banks to encourage borrowers to make green investments and achieve sustainable development (An et al., 2021). It can significantly reduce carbon emissions and other environmental pollution, and promote industrial and economic development (Wang et al., 2022). Unlike other financing models, this financing is subject to rigid constraints on carbon emissions. The prerequisite for obtaining a loan is that the borrower must apply for the loan for green investment, undertake green transformation and upgrading, and ensure that it meets pre-established environmental standards (An et al., 2021). Compared with the traditional credit financing model, on the one hand, the interest rate of green credit financing is lower, which greatly reduces the repayment pressure of loans and alleviates the financial difficulties of enterprises; on the other hand, previous studies have found that green credit financing can promote the transformation of enterprise green technology, optimize enterprise capacity structure to promote economic growth, and achieve a win-win situation of ecological and economic benefits (Chen et al., 2021). Hence, GCF is considered to be a bridge between economy and environment (Ji et al., 2021).
Although GCF reduces the environmental impact of corporate operations, the uncertain demand environment in the process of business operation poses great challenges to capacity, loan, and green investment decisions. For instance, Karabuk and Wu designed a strategic capacity planning model to study the impact of uncertainty on enterprise capacity decisions, and they observed that capacity uncertainty induces more capacity expansion, while demand uncertainty leads to higher levels of outsourcing (Karabuk and Wu, 2003). Im, Kang and Shon constructed a panel data model to study the impact of uncertainty on the target capital structure and financing decision of enterprises, the results showed that the increase of uncertainty reduces the debt tax shield and increases the potential financial distress cost (Im et al., 2020). Kaczmarek pointed out that the investment decision of enterprises depends on the future economic situation, which is determined by many factors that are difficult to predict and determine (Kaczmarek, 2015). Therefore, if enterprises want to promote green technology transformation by introducing GCF, they must fully consider the uncertainty of demand and deal with it. For the demand in the real world, it is usually difficult to be certain due to some accidental factors such as the product market prospects, green technology investment level and carbon emission reduction level. In other words, production and green investment decisions often have to be made under uncertain environments, which increases the complexity of the enterprise production and operation. Most existing studies deal with uncertainties by assuming that the demand obeys a given probability distribution based on a large amount of historical data. However, for the fluctuations in the business environment or the development of new green technologies, even the probability distribution of product demand in some extreme cases is unavailable. Hence, we apply the robust approach to address such an uncertain demand environment. Specifically, this paper structures the uncertain demand through interval scenarios, where the product demand can vary within a specified range defined by lower and upper bounds. The educated guess of the product demand is represented by its lower and upper bounds.
In the academic area, though there are abundant studies exploring the production and operation strategies of enterprises supported by green credit, few of them focus on the uncertain demand, especially considering the uncertain demand under interval scenarios. Considering the uncertainty demand under interval scenarios will make our model more realistic. In this paper, we introduce the min-max regret theory to construct a robust optimization decision model for the evolutionary characteristics of enterprises facing uncertain risks, while considering the carbon emission constraint mechanism brought by green credit. This paper can provide a new perspective for the study of green credit and enterprise greening transition. Based on the above background, we mainly study the following questions: (1) How to build a risk-resistant decision-making system for firms’ production and green technology inputs based on uncertain demand supported by green credit? (2) What is the optimal strategy for firms’ production and green technology input decisions supported by green credit? (3) What is the pathway of green credit to support the promotion of green transformation of enterprises?
To explore the above problems, this paper further analyzes the structural characteristics of the problem based on the regret value theory and robust optimization theory on the basis of establishing the uncertain model of demand information, explores the relevant properties of the optimal production and green technology input decisions, and narrows the search space of the optimal strategy under the uncertain environment, so as to reduce the complexity of the problem. The relevant influencing factors of the optimal decision-making are also analyzed to condense the relevant conclusions on the production and green technology input of enterprises based on uncertain demand under the support of green credit.
Our essential contributions are reflected in the following three aspects. First, a new robust model for the optimal joint production and green investment decision that considers interval demand data is formulated to minimize the maximum regret on the enterprise revenue function. The model can hedge against demand uncertainty especially even the probability distribution of demand cannot be obtained. Second, based on the establishment of a model for uncertain demand information, this paper delves into the worst-case scenarios under uncertainty, establishes the mapping relationship between maximum regret and optimal decisions for production and green technology investment, and subsequently identifies the optimal strategy that minimizes the maximum regret. Third, based on the conclusions derived from relevant research, this paper conducted numerical experiments and sensitivity analyses, yielding corresponding management insights. The relevant regulatory authorities should establish appropriate carbon emission caps based on both favorable and unfavorable environmental conditions to optimally leverage the GCF in stimulating enterprises to engage in green production and invest in green technologies. To maximize the incentive effectiveness of GCF, various governmental strategies, including discounted loans, flexible repayment schedules, and other forms of subsidies or incentives, should be cautiously explored to better facilitate the implementation of green credit policies.
2 LITERATURE REVIEW
This study is related to the literature in two research streams: (1) Production and Operation Management considering green finance under deterministic scenario; (2) Production and Operation Management considering green finance under uncertain environments. This section briefly reviews the research of the above two fields and explains the differences between our research and previous literature.
2.1 Under deterministic scenario
This study focuses on GCF, which belongs to the category of green finance. Therefore, we first review the literature on production and operation management considering green finance under deterministic scenario.
Some studies have analyzed green finance in conjunction with the green production behavior of firms. For instance, Lv, Fan and Lee examined the impact of green credit policy on firms’ green productivity using a double difference model and found that the implementation of green credit can significantly increase the green productivity of heavy polluters (Lv et al., 2023). Based on the context of transition insurance and green credit services, Liu et al. constructed a dynamic stochastic general equilibrium model covering the banking and insurance sectors, and they found that green credit incentives not only curb carbon emissions, but also increase the likelihood of producers’ energy transitions, which promotes low-carbon economic growth (Liu et al., 2023). Cui, Wang and Wang established an evolutionary game model including four players: government, financial institutions, enterprises and consumers, and used simulation methods to analyze the influence of each parameter on the changes and development of green financial market. The results show that the integrity of the green financial system has a positive impact on sustainable development and clean production (Cui et al., 2020). In addition, related studies have mainly focused on considering the impact of carbon emission caps brought about by green finance on enterprises’ operational decisions (Zhang and Xu, 2013; Feng et al., 2022; Lee and Yoon, 2022). At the same time, some studies have also treated carbon cap as a penalty mechanism for profit function, that is, if the enterprise exceeds the pre-established carbon emission cap in production and operation, it will get a certain profit penalty, and the expected profit of the enterprise will be reduced (An et al., 2021). As seen, the above literature has focused more on green production under green finance but has not considered possible investments in green technologies.
Other studies have considered both green production and green technology input decisions of firms under green finance policies. For example, Chen et al. integrated green credit policy with business decision-making and innovation behavior into a unified analytical framework to explore how to guide enterprises to carry out green production and low-carbon technological innovation (Chen et al., 2022). Wang and Wang suggested that upgrading industrial structure through green production and increasing investment in green innovation are the key influential paths to accelerate green transformation (Wang and Wang, 2023). Zhang studied the causal effect of green credit policy on green production and revisited the Porter hypothesis. By categorizing R&D into environmentally induced R&D and production R&D, it was found that green credit policy significantly increased green total factor productivity growth (Zhang, 2021). Tian et al. argued that green credit can guide the flow of funds from energy-consuming and highly polluting industries to technologically advanced emerging industry sectors, thus supporting the development of green industries and curbing emissions from polluting industries (Tian et al., 2022). Liu, Xia and Lee pointed out that green credit optimizes corporate debt financing by alleviating financing constraints, reducing debt costs and extending debt maturity structure, drives green technological innovation and encourages enterprises to carry out green production (Liu et al., 2024). In addition, relevant studies have analyzed carbon emission caps to green production and green technology investment, and they pointed out that with the support of green finance, enterprises can realize the unity of economic and environmental benefits through green production and increased investment in green technology (Bouchery et al., 2012; Yang et al., 2020; Li et al., 2022). All of the above studies are based on deterministic scenarios and do not consider the impact of uncertain environments on the production and operation management of enterprises.
2.2 Under uncertain environments
The general fluctuation of business environment is an important factor affecting the operation and management of enterprises. Many researchers have discussed manufacturers’ operational decisions under uncertain environments.
Some studies have mostly explored the research on firms’ production and green technology input decision-making based on the uncertainty of economic policy, monetary policy, product supply. For instance, Zhang and Kong introduced the condition of economic policy uncertainty to explore the relationship between green credit policy and firms’ green technology inputs, and found that economic policy uncertainty is negatively related to firms’ green technology inputs (Zhang and Kong, 2022). Based on the background that manufacturers are subject to supply uncertainty and financial constraints, Wu and Shang established a Stackelberg game model to study the equilibrium green credit financing problem in a green supply chain with government subsidies and supply uncertainty, and analyzed how subsidy interest rates, supply uncertainty, and supply correlation affect the financing decision of equilibrium green credits as well as green products’ R&D investment decision (Wu and Shang, 2021a). In addition, some scholars explored the impact of green credit policy on corporate production and green technology innovation behavior from the perspectives of climate policy uncertainty environment and overall external uncertainty environment (Xu et al., 2021; Hoang, 2022; Du and Guo, 2023). The above-mentioned studies have paid more attention to the management of business production operations in various types of uncertain environments, but have ignored the demand uncertain environment that is directly related to the core business of a company.
Regardless of how other uncertainties change, they ultimately need to be reflected through market demand. And the uncertainty of demand directly determines how companies make production plans, inventory strategies, and sales forecasts (Zhang et al., 2018; Zhang et al., 2022; Liao et al., 2019). Under such a setting, other studies have explored firms’ production and green technology input decisions in environments with uncertain demand information. Assuming that demand is uncertain and dependent on certain green investments, and that such uncertain demand obeys an associated probability distribution, Cohen, Lobel and Perakis extended the current understanding of the pricing newsvendor model, incorporated external influences from the government, and quantified how uncertainty in demand affects corporate production and green technology investment (Cohen et al., 2016). An et al. compared the optimal operational decisions and profit levels of both supply chain parties under green credit financing and commercial credit financing by considering a manufacturer with carbon emission limitations as well as financial constraints in a demand uncertainty scenario. They found that under relatively strict carbon emission policies, manufacturers can set appropriate green investment ranges and realize win-win situations with suppliers (An et al., 2021). Wang, Zou and Geng discussed green technology investment decisions in a decentralized supply chain under demand uncertainty, they found that providing corresponding incentives can optimize supply chain operation decisions and better guide retailers to participate in green technology investment (Wang et al., 2021). Wu and Shang established a Stackelberg game to study the information leakage and optimal green operation decision of supply chain under uncertain demand, the results showed that if suppliers disclose demand information, they will invest more in green product development (Wu and Shang, 2021b). The above literature considers the impact of green credit on firms under uncertain demand, but all of them are based on probability distributions to portray demand uncertainty. Unlike them, this paper considers describing the demand uncertainty environment through interval scenarios.
3 METHODOLOGY
3.1 Preliminary
This paper studies a single-period revenue maximization problem for a financially constrained manufacturer who sells a class of products to the market. The problem entails the following assumptions:
	• There is a two-stage decision-making process for the manufacture to maximize its revenue under uncertain demand. The first stage decision is choosing appropriate financing channel to obtain the loan for production, and the second is making decisions on production quantity q and green investment K.
	• The manufacturer can obtain a green loan called GCF from a bank which requires the manufacturer to meet the carbon emission constraint;
	• The demand of the product cannot be learned in advance, but varies uniformly within a closed interval [image: It looks like there might have been an error in displaying the image. Could you please upload the image file or provide a link to it? This way, I can help you create the appropriate alt text.] . We use a set S to denote all the possible scenarios. A scenario [image: It seems like there was an error in your message, and I cannot view the image. Please upload the image file directly or provide a URL, and I will help you generate the alternate text.] represents a possible representation of the demand [image: Mathematical expression showing that \(d_s\) is an element of the closed interval \([d, \overline{d}]\).].
	• The unit price and unit production cost of the product is assumed to be p and c respectively. Then the sales and the production cost of the manufacturer is [image: Mathematical expression showing "p" multiplied by the minimum of two values in a set, denoted as "d sub s" and "q".] and [image: It seems there was an error with the image upload. Please try uploading the image again or provide a URL if it is hosted online. Additionally, you can include a caption for context if you like.] respectively. Besides, the manufacture undertakes a green investment K for sustainable operations. Hence, the total loan amounts of the manufacture is [image: The image shows the mathematical expression \(cq + K\).].
	• The manufacturer’s initial carbon emission per unit of production quantity is denoted as C. Then the final carbon emission after green investment is [image: I'm sorry, but I cannot generate alternate text for this image without actually seeing it. Please upload the image or provide a URL.], where θ is the unit carbon emission reduction due to green investment, and θK is the carbon emission reduction per unit product.
	• The bank offers the manufacturer GCF only if his carbon emissions do not exceed a certain carbon cap T, i.e., [image: The image shows a mathematical inequality: \((C - \theta K)q \leq T\).]. If the manufacturer’s carbon emissions exceed the cap, the bank immediately announces the suspension of the loans and requests loan recovery, which results in the bankruptcy of the manufacturer. Therefore, the carbon emissions constraint under GCF is a hard constraint.

Because of uncertain demand, we adopt a robust approach to find a green production and finance decision that minimizes the maximal deviation from the optimum under all possible scenarios. To identify the performance of a robust decision, a criterion called min-max regret is widely adopted which seeks a decision closing to the optimal one by bounding the magnitude of missed opportunities. More concretely, for a green production decision under a determined finance channel, which includes production quantity q and green investment K, the corresponding revenue under a scenario s is denoted as [image: Mathematical expression displaying the function \( u((q, K), s) \).]. The optimal revenue under that scenario is denoted as [image: Please upload the image or provide a URL, and I will generate the alternate text for you.]. Then the regret of the decision [image: It seems there's an issue with the image link you provided. Please try uploading the image again or ensure the URL is correct. You can also add a caption for more context if you'd like.] under scenario s can be calculated in Equation 1 as
[image: It seems there is no visible image uploaded. Please upload the image file or provide the URL so that I can generate the appropriate alternate text for it.]
Define the scenario maximizing the regret of decision [image: It seems there might have been an error with the image upload or input. Please try uploading the image again, or provide a URL if available. Optionally, you can add a caption for additional context.] as its worst-case scenario sw. The corresponding maximum regret of decision [image: It seems there's no image attached. Please upload the image or provide a URL for me to generate the alternate text.] is
[image: Mathematical equation defining \( R_{\text{max}}(q, K) \) as the maximum response function \( R \) of \( (q, K) \), with \( s \) in the set \( S \), represented by: \( R_{\text{max}}(q, K) = R((q, K), s_{u}) = \max_{s \in S} R((q, K), s) \).]
The following technical lemma is useful in analysis of the main result.
Lemma 1. For a given function [image: The formula represents a function of q, \( f(q) = [p - (1 + I)c]q + \frac{(1 + I)T}{\theta_q} \), where p, I, c, T, and \(\theta_q\) are variables or constants.], [image: Mathematical expression showing \( f\left(\frac{T}{C}\right) = f\left(\frac{(1+I)C}{\theta [p - (1+I)c]}\right) \).].
Lemma 2. For any positive real number [image: It appears there was an error with the input. Please upload the image file directly or provide a URL to the image for me to generate the alternate text.], [image: Equation showing \( f(q) = \left[ p - (1 + I)c \right] q + \frac{(1+I)T}{\theta q} \).] takes its minimum value when [image: Formula showing \( q_0 = \sqrt{\frac{(1+I)T}{\theta[p-(1+I)c]}} \), where \( I \), \( T \), \( \theta \), \( p \), and \( c \) are variables.].
We omit the proof of Lemma one and 2, since they can be easily proved by quadratic-root formula and extremum principle.
Lemma 3. For any positive real numbers [image: It seems like you have included some mathematical notation instead of an image. Please upload the image file you want the alternate text for, and I will be happy to help!], if [image: It seems like you've provided a mathematical expression instead of an image. To generate alt text, please upload the image file or provide a URL to the image.], [image: It seems like you've entered a mathematical expression, \( f(q) \). To generate alternate text for an image, please upload the image or provide its URL. If you have a caption or context for the image, feel free to include that as well.] takes its maximum value when [image: It seems there was an issue with your request. Please upload the image or provide a URL so I can generate the alternate text for you.] or [image: Please upload the image or provide a URL so I can generate the alternate text for you.].
Proof. [image: The image shows a mathematical function: \( f(q) = [p - (1 + l)c]q + \frac{(1 + l)N^T}{\theta q} \).] is a hyperbolic function of [image: Please upload the image you would like me to generate alt text for.] as shown in Figure 1. If [image: The image shows the mathematical expression \( q_0 \leq q_1 \).], [image: Please upload the image so I can help generate the alt text for it.] is an increasing function of [image: Please upload the image or provide a URL so I can generate the alternate text for you.] in its domain. The maximum value [image: The equation shows \( f_{\text{max}}(q) = f(q_2) \), indicating that the maximum function value of \( f \) at \( q \) is equal to its value at \( q_2 \).]. If [image: The mathematical expression shows "q sub 0 is greater than or equal to q sub 2".], [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is a decreasing function of [image: Please upload the image or provide a URL so I can generate the alternate text for you.] in its domain, and the maximum value [image: Mathematical expression showing \( f_{\text{max}}(q) = f(q_1) \).]. Otherwise [image: It seems you attempted to provide an image, but it is not visible here. Please try uploading the image again or provide a URL for it. If you have a caption or context, feel free to include that as well.], [image: Equation showing \( f_{\text{max}}(q) = \max\{f(q_1), f(q_2)\} \).]. In any cases, the maximum value of [image: Please upload the image or provide the URL for me to generate the alt text.] is acquired at either [image: It seems there was an error with the image upload. Please try uploading the image again, and I would be happy to help generate the alt text for you.] or [image: It seems there's no image visible here. Please upload the image or provide a URL.]. The lemma is proved.
[image: Three graphs labeled a, b, and c display a function \( f(q) \) against \( q \). Graph a shows \( q_1 < q^* < q_2 \) with the curve passing below the points. Graph b shows \( q^* < q_2 \leq q^* \) with curves passing through the points. Graph c shows \( q_1 \leq q^* < q_2 \) with curves approaching a minimum. Axes are labeled \( f(q) \) and \( q \).]FIGURE 1 | Illustration of [image: Please upload the image you'd like me to generate alternate text for, or provide a URL if it's online.]. (A) [image: Mathematical expression showing inequalities: \( q^* \) is less than \( q_1 \), which is less than \( q_2 \).], (B) [image: The mathematical inequality shows \( q_1 < q_2 \leq q^* \).], (C) [image: Mathematical expression illustrates that \( q_1 \) is less than or equal to \( q^* \), which is less than \( q_2 \).].
Lemma 4. For given function [image: The equation describes a piecewise function \( g(q) \). For \( q \leq \frac{T}{C} \), \( g(q) = [p - (1 + I)c]q \). Otherwise, \( g(q) = f(q) - \frac{(1 + I)C}{\theta} \).] with the domain [image: It seems there is no image provided. Please upload the image or provide a URL, and optionally add a caption for context.] and [image: Mathematical expression: \( q_3 > \frac{T}{C} \).], then its maximum value can be calculated in Equation 3 as
[image: A mathematical equation for \( g_{\text{max}}(q) \) involving piecewise functions. It includes conditions based on \( q_3 \), \( q_0 \), and \(\frac{T}{C}\). The equation consists of expressions with parameters \((1+I)C\) and \(\theta[p-(1+I)c]\), and involves inequalities that guide the different cases for \( g_{\text{max}}(q) \).]
Proof. Because [image: Equation displaying: \( Ip - (1 + I) c \left( \frac{T}{C} \right) = f \left( \frac{T}{C} \right) - \frac{(1 + I) c}{\theta} \).], [image: Sure, please upload the image or provide its URL so I can help generate the alternate text.] is a continuous function of [image: Please upload the image or provide a URL so I can generate the alternate text for you.]. Besides, [image: It seems the text may not have been captured correctly. Please upload the image or provide a detailed description so I can assist you effectively.] is a linear function of [image: Please upload the image you would like me to analyze.] in [image: Mathematical expression showing an interval from zero degrees to pi divided by c.] and a hyperbolic function of [image: Please upload the image or provide a URL so I can generate the alternate text for you.] in [image: There is no image provided. To generate alternate text, please upload an image or provide a URL. Optionally, include a caption for context.], as shown in Figure 2.
If [image: The mathematical expression shows the fraction T over C is less than or equal to q subscript zero.], [image: It seems there is a misunderstanding. The text provided, \( g(q) \), seems to be a mathematical expression rather than an image. Could you please provide the image or link for which you need alt text?] takes its maximum value at [image: Equation depicting \( q = \frac{T}{C} \), where \( q \) represents the result of the division of \( T \) by \( C \).] or [image: It seems there was an error in your request. If you meant to upload an image, please try doing so again. If you have a URL, you can paste it here, and optionally add a caption for context.] according to Lemma 3. Specially, when [image: \( q_3 \leq \frac{(1+I)C}{\theta[p - (1+I)c]} \)], [image: Mathematical expression showing inequality and function notation: \( f(q_3) \leq f\left(\frac{(1+i)C}{\theta |p - (1+i)C|}\right) = f\left(\frac{T}{C}\right) \).], [image: The equation illustrates that the function \( g_{\text{max}}(q) \) is equal to \( g_{\text{max}}\left(\frac{T}{C}\right) \), indicating a relationship between the variables \( q \), \( T \), and \( C \).]; When [image: \( q_3 > \frac{{(1+I)C}}{{\theta [p - (1+I)c]}} \).], [image: The mathematical expression is \( f(q_3) > f\left(\frac{(1+\theta)C}{\theta|p - (1+\theta)C|}\right) = f\left(\frac{T}{C}\right) \).], [image: Mathematical expression depicting an equality between two functions of q. The function \( g_{\text{max}}(q) \) is equal to \( g_{\text{max}}(q_3) \).];
If [image: Equation showing the expression T divided by C is greater than q subscript zero.], [image: It seems like there was an issue with the input. Please upload an image or provide a URL, and optionally, include a caption for context.] is an increasing function of q and takes its maximum value at [image: Please provide the image or a link to it so I can generate the alternate text.]. The lemma is proved.
[image: Two line graphs compare the function \(x(q)\) against \(q\). Graph (a) shows a non-linear curve with peaks and troughs, labeled at points \(\frac{T}{C}\) and \(q_b\). Graph (b) displays a linear, increasing function with the same labels at \(\frac{T}{C}\) and \(q_b\). The condition \( \frac{T}{C} \leq q_b \) applies to (a) and \( \frac{T}{C} > q_b \) to (b).]FIGURE 2 | Illustration of [image: It seems there was an issue with processing your request. Please try re-uploading the image or check the link.]. (A) [image: A mathematical expression displays the fraction T over τ, followed by the less than or equal to sign, and the variable q subscript zero.], (B) [image: Mathematical expression showing I subscript C is greater than q subscript zero.].
3.2 Decisions of GCF under deterministic scenario
We first analysis the optimal production and green investment decisions of GCF under a deterministic scenario s. Denote the optimal production and green investment decisions with the maximal revenue under scenario s as [image: The image shows a mathematical notation: \((q_s^*, K_s^*)\).], and the corresponding revenue can be calculated in Equation 4 as
[image: Mathematical equation depicting a profit function: \( \pi_i = \max((q_i, K_i), s) = p \min \{d_i, q_i\} - (1 + r)(cq_i + K_i) \).]
Note that the optimal production quantity cannot exceeds the demand under scenario s, i.e., [image: The mathematical expression shows \(q_s^* \leq d_s\), indicating that the optimized quantity \(q_s^*\) is less than or equal to demand \(d_s\).], otherwise it would lead to wasted production and green investment. Hence,
[image: The image shows a mathematical equation: \(u_t = p q_{t-1} - (1 + r)(c q_t + K)\), labeled as equation (5).]
Consider the carbon emission constraint [image: Mathematical expression showing an inequality: the product of the difference between \( C \) and \( \theta K_s^* \) and \( q_s^* \) is less than or equal to \( T \).], if [image: Mathematical expression showing \( q_s^* \leq \frac{T}{C} \).], any green investment is unnecessary because the carbon emissions do not exceed the cap. Then [image: Mathematical equation displaying K subscript s asterisk equals zero.], and
[image: Mathematical equation depicting utility \( u_i^* \) as a product of price \( p \), cost adjustment \( (1 + D)c \), and quantity \( q_i \), with equation number six.]
Otherwise [image: The mathematical expression shows \( q_s^* > \frac{T}{C} \).], according to Equation 5, [image: The image shows the mathematical notation for \( u_{G,s}^{\ast} \), which could represent a variable or parameter, typically used in scientific or mathematical contexts.] is a monotonic decreasing function of [image: Please upload the image or provide a URL, and I will generate the alternate text for you.]. The carbon emission constraint implies that [image: \( K_s^* \geq \frac{C}{\theta} - \frac{T}{\theta q_s^*} \).]. In order to achieve a maximum revenue, [image: \( K_s^* = \frac{C}{\theta} - \frac{T}{\theta q_s^*} \)], and
[image: Equation for expected profit \( u_i^s \): \( u_i^s = \left[ p - (1 + D)c \right] q_i^s + \frac{(1 + I)T}{\theta q_i^s} - \frac{(1 + I)C}{\theta} = f(q_i^s) - \frac{(1 + I)C}{\theta} \). Equation number (7).]
In conclusion, according to Equations 6, 7,
[image: Mathematical equation depicting a function \( u_i = g(a_i) \). It shows a piecewise function with two cases: \( [p - (1 + I)c]q_i \) if \( q_i \leq \frac{T}{C} \), and \( f(q_i) - \frac{(1 + I)C}{\theta} \) otherwise. It is labeled as equation (8).]
Because the optimal production quantity [image: Please upload the image or provide a URL, so I can generate the alternate text for it.] depends on the demand [image: Please upload the image or provide a URL for it, along with any caption or context you might have. This will help me generate accurate and helpful alt text.], we have following two lemmas to derive the optimal revenue under demand [image: It seems like there might be an issue with the image upload or link. Please make sure the image file is correctly attached or provide a URL to the image. Once you do that, I can help generate the alternate text for it.].
Lemma 5. When [image: The equation shows the fraction T over C is less than or equal to q subscript zero.],
[image: A mathematical equation presented as a piecewise function for \( u_s^* \). It includes three conditions: \( [p - (1 + I)c]d_s \) if \( d_s \leq \frac{T}{C} \); \( [p - (1 + I)c] \frac{T}{C} \) if \( \frac{T}{C} < d_s \leq \frac{(1 + I)C}{\theta [p - (1 + I)c]} \); and \( f(d_s) - \frac{(1 + I)C}{\theta} \) otherwise. The equation is labeled as equation (9).]
Proof. According to Equation 8, if the demand under scenario s is [image: Mathematical inequality showing \( d_s \leq \frac{T}{C} \).], which implies [image: The equation shows \( q_s^* \leq \frac{T}{C} \).], [image: Equation: \( u_s^* = \left[ p - (1 + I)c \right] q_s^* \).]. Because [image: Mathematical inequality stating that \( q_s^* \) is less than or equal to \( d_s \), which is less than or equal to \( \frac{T}{C} \).], [image: Please upload the image or provide a URL so that I can generate the alternate text for it.] gets its maximum value when the optimal production quantity is [image: Equation showing \( q_s^* = d_s \), with a star symbol above \( q_s \).], and
[image: It appears you've provided a mathematical equation. However, I don't have the ability to view the image directly; if you have a specific image containing this equation, please upload it or provide a link, and I can help generate alt text for it.]
Otherwise [image: Mathematical inequality showing \( d_s > \frac{T}{C} \), where \( d_s \) is greater than the fraction \( T \) over \( C \).]. Because [image: Mathematical equation showing \( u_s^* = g(q_s^*) \).] with the domain [image: It seems like there was an issue with the image link. Please try uploading the image file directly or share a valid URL.], according to Lemma 4, [image: Certainly! Please upload the image or provide a URL for me to generate the alt text.] gets its maximum value when [image: Equation showing \( q_s^{\star} = \frac{T}{C} \), where \( q_s^{\star} \) is the variable on the left side and \( T \) is divided by \( C \) on the right side.] if [image: Equation representing an inequality: \( d_s \) is less than or equal to \(\frac{(1+I)C}{\theta[p-(1+I)c]}\).], or [image: Mathematical equation showing \( q_s^* = d_s \).] if [image: Mathematical inequality showing \(d_s\) is greater than \(\frac{{(1+I)C}}{{\vartheta [p - (1+I)c]}}\).]. Therefore, when [image: Mathematical expression showing \(d_s\) is greater than \(\frac{T}{C}\).],
[image: A mathematical equation defining \( u^*_i \) with conditional cases. The first case applies if \( \frac{T}{C} < d_i \) is less than or equal to a fraction, involving \( \theta \), \( C \), \( p \), and \( I \). The second case provides a different function \( g(d_i) \) otherwise. The equation is labeled as equation 11.]
According to Equations 10, 11, the lemma is proved.
Lemma 6. When [image: Equation depicting a mathematical inequality: T divided by C is greater than q subscript zero.],
[image: Equation defining variable \(u_i\) with conditional expressions: \(u_i = \begin{cases} [p - (1 + I)c] d_s, & \text{if } d_s \leq \frac{T}{C} \\ f(d_s) - \frac{(1 + I)C}{\theta}, & \text{otherwise} \end{cases} \). This is labeled as equation (12).]
Proof. If the demand under scenario s is [image: Mathematical expression showing \( d_s \leq \frac{T}{C} \).], [image: Mathematical equation depicting optimal utility: \( u^*_s = [p - (1 + I)c] q^*_s \).]. Because [image: \( q_s^* \leq d_s \leq \frac{T}{C} \)], [image: It seems there was an issue with the image upload. Please try uploading the image again, or provide a URL if possible. Feel free to add a caption for additional context.] gets its maximum value when the optimal production quantity is [image: Equation showing \( q_s^* = d_s \).], and
[image: Mathematical expression showing \( u_t = \left[ p - (1 + r)c \right] d_t \), labeled as equation (13).]
Otherwise [image: Mathematical expression showing \(d_s\) is greater than \(\frac{T}{C}\), where \(d_s\) represents a variable, and \(\frac{T}{C}\) represents the fraction with \(T\) as the numerator and \(C\) as the denominator.], according to Lemma 4,
[image: Equation showing \( u_i = g(d_i) = f(d_i) - \frac{(1+I)C}{\theta} \), labeled as equation fourteen.]
According to Equations 13, 14, the lemma is proved.
The relationship between [image: It seems there is no image provided. Please upload the image or provide a URL, and I will generate the alternate text for you.] and [image: Please upload the image you want me to describe, or provide a URL to the image.] is illustrated in Figure 3. We can get the following lemma.
[image: Two graphs depict relationships between variables \( w'_t \) and \( d_i \). In graph (a), \( T/C \leq q_t \), showing an initial flat segment followed by an upward curve. In graph (b), \( T/C > q_t \), displaying a continuous upward curve. Both graphs include labeled axes and reference lines at \( T/C \).]FIGURE 3 | The relationship between [image: Sorry, I cannot view or generate alt text for the image without it being uploaded. Please try uploading the image again.] and [image: Please upload the image or provide a URL for me to generate the alternate text.]. (A) [image: Equation showing the expression T over tau is less than or equal to q subscript zero.], (B) [image: The mathematical expression shows a fraction T over tau greater than q subscript zero.].
Lemma 7. The optimal revenue [image: It seems like there might have been an error in uploading the image. Please try uploading it again or provide a URL if available. Optionally, you can add a caption for more context.] is a continuous and non-decreasing function of [image: Sure, please upload the image or provide a URL for me to view and generate the alternate text.].
Based on the above analysis, we can determine the optimal production and green investment decisions of GCF under deterministic scenario s as follows:
Theorem 1. The optimal production and green investment decisions of GCF under deterministic scenario s can be calculated in Equation 15 as
[image: Mathematical expression consisting of a piecewise function \( q(s, K_s) \). It defines multiple conditions involving variables \( d_s \), \( T \), \( C \), \( I \), \( \theta \), \( p \), and \( q_0 \). The function specifies outcomes based on comparisons between these variables, addressing scenarios when \( T/C \) is less than or equal to \( q_0 \) and greater than \( q_0 \). The equation ends with the notation \( (15) \).]
3.3 Decisions of GCF under uncertain environment
While for the uncertain environments where the demand is uncertain but lies in an interval [image: Please upload the image or provide a URL, and I will help you generate the alternate text.], the revenue of any decision [image: It seems there was an error in the text you provided. Could you please upload the image or try again with the correct image URL or file? If you have more details about the image, feel free to share them.] under scenario s is
[image: Mathematical expression displaying a utility function: \( u((q, K), s) = p \min(d, q) - (1 + D)(cq + K) \), annotated as equation (16).]
Similar as that pointed out in Section 4, [image: Formula with variables: \( u((q,K),s) \).] is also a decreasing function of K, and takes its maximum value when [image: It seems there was a mistake in your input or the image was not uploaded correctly. Please try uploading the image again or provide a URL. If you want, you can also include a caption for context.] if [image: Mathematical expression showing \( q \leq \frac{T}{c} \).], or [image: K equals C divided by theta minus T divided by theta subscript q.] if [image: Equation showing "q is greater than T over C".]. We can naturally get the green investment decision once the production decision is determined. To simplify the expression, we only consider the production decision q. Hence,
[image: The mathematical expression defines a function \( u(q,s) \). It consists of two cases: \( p \min \{d_s, q\} - (1 + r) c q \) if \( q \leq \frac{T}{C} \), and \( p \min \{d_s, q\} - (1 + r) \left( c q + \frac{C}{\theta} - \frac{T}{\theta q} \right) \) otherwise.]
Because we cannot learn the exact value of [image: Please upload the image for which you would like me to generate alternate text.] in advance under uncertain environment, we derive the maximum regret of the production decision q under GCF based on whether [image: The image shows the mathematical expression "q is less than or equal to d sub s".] or [image: It seems like there is no image uploaded. Please upload the image or provide a URL for the image you would like to have described.].
Lemma 8. When [image: Mathematical expression showing "q is less than or equal to d sub s".], the maximum regret can be calculated in Equation 18 as
[image: Equation showing \(R_{\text{min},\ i}(q) = u_i^* - q(q)\) labeled as equation 18.]
and.
	1) if [image: Equation depicting a relationship between temperature and a variable: \( \frac{T}{c} > q_0 \), where \( T \) is divided by \( c \) and compared to \( q_0 \), suggesting an inequality.] or [image: \( \frac{T}{C} \leq q_0 \)] and [image: The mathematical inequality shows \( q > \frac{{(1 + I)C}}{{\theta [p - (1 + I)c]}} \), where \( q \), \( I \), \( C \), \( \theta \), \( p \), and \( c \) are variables or constants.], [image: The image contains the mathematical expression "R sub max, 1 of q" representing a function or value related to R with subscript "max, 1" and variable q.] decreases with [image: Please upload the image or provide a URL, and I can help generate the alt text for it.];
	2) Otherwise [image: Equation showing \( \frac{T}{C} \leq q^0 \).] and [image: The mathematical formula shows an inequality: \( q \leq \frac{{(1+I)C}}{{\theta [p - (1+I)c]}} \).], [image: Mathematical notation showing "R subscript max,1 of q".] is minimized when [image: Mathematical equation showing q equals T divided by C.].

Proof. According to Equation 17 when [image: The expression "q is less than or equal to d sub s" is displayed.],
[image: Mathematical equation for \( u_0(q, s) = g(q) \) with piecewise conditions. The first condition is \([p - (1 + l)c]q\) if \(q \leq \frac{T}{C}\). The second condition is \(f(q) - \frac{(1 + l)C}{\theta}\) otherwise. Referenced as equation (19).]
The subscript “1” of [image: The image shows the mathematical expression "u subscript 1, open parenthesis q, s close parenthesis".] in Equation 19 is used to distinguish the revenue when [image: Mathematical expression displaying "q is less than or equal to d sub s".]. The regret of the production decision q under scenario s when [image: Mathematical expression showing \( q \leq d_s \), where \( q \) is less than or equal to \( d_s \).] can be calculated in Equation 20 as
[image: Mathematical equation displaying \( R_1(q, s) = u_i - g(q) \), labeled as equation 20.]
According to Lemma 7, [image: Please upload the image or provide a URL so I can help generate the alternative text for it.] is non-decreasing with [image: Please upload the image or provide a URL so I can generate the alternate text for it.], the worst-case scenario exists when the demand equals its upper bound. We use scenario [image: Please upload the image or provide a URL so I can generate the appropriate alt text for it.] to denote that scenario, i.e., [image: Mathematical equation showing \( \bar{d_s} = \bar{d} \).]. The corresponding maximum regret can be calculated in Equation 21 as
[image: The formula displayed is \( R_{\text{NNLS}}(q) = u_i - g(q) \), labeled as equation 21.]
In order to minimize the maximum regret [image: The formula shows R subscript max,1 within parentheses q, where R stands for a variable or function, subscript max,1 indicates a specific condition or limit, and q is the variable being evaluated.], we should find the appropriate decision on production quantity [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL, and I will help generate the alternate text for it.] to maximize [image: It seems there might have been an error with the image upload. Please try uploading the image again or provide a link to it.]. According to Lemma 4, if [image: The expression displays a fraction \( \frac{T}{C} \) that is greater than \( q_0 \).] or [image: \( \frac{T}{C} \leq q_0 \)] and [image: The mathematical inequality shows \( q > \frac{{(1+I)C}}{{\theta [p - (1+I)c]}} \).], [image: Mathematical expression displaying \( R_{\text{max}, 1}(q) \).] decreases with [image: Please upload the image you'd like me to generate alternate text for.]; Otherwise [image: The inequality \( \frac{T}{C} \leq q_0 \) is shown.] and [image: The image shows an inequality: \( q \leq \frac{(1+I)C}{\theta [p - (1+I)c]} \), where \( q \) is a quantity, \( I \), \( C \), and \( c \) are constants, \( \theta \) is a parameter, and \( p \) is another variable.], [image: Mathematical expression showing R sub max comma 1 with argument q, indicating a maximum rate or value parameterized by q.] is minimized when [image: Equation depicting the formula for specific charge: \( q = \frac{T}{C} \), where \( q \) is the specific charge, \( T \) is the total charge, and \( C \) is the capacitance.]. The lemma is proved.
Lemma 9. When [image: I'm sorry, I can't see the image you are referring to. Please upload the image file or provide a URL so I can help generate the alternate text.], the maximum regret can be calculated in Equation 22 as
[image: The equation \( R_{\text{max}_2}(q) = u_i^* - pd + \left\{ \begin{array}{ll} (1+l)cq, & \text{if } q \leq \frac{T}{C} \\ (1+l)\left(cq - \frac{T}{\theta q} + \frac{C}{\theta}\right), & \text{otherwise} \end{array} \right. \) represents a conditional expression where \( R_{\text{max}_2}(q) \) is defined based on the value of \( q \) compared to \( \frac{T}{C} \), with parameters \( u_i^*, pd, l, c, T, C, \) and \( \theta \).]
which increases with [image: Please upload the image you'd like me to generate alternate text for.].
Proof. According to Equation 17, when [image: Sure, please upload the image you would like me to describe.],
[image: Equation depicting a piecewise function \( u_2(q, s) \) with two cases. The first case is \( pd_s - (1 + l) cq \) if \( q \leq \frac{T}{C} \). The second case is \( pd_s - (1 + l) \left( cq - \frac{T}{\theta_q} + \frac{C}{\theta} \right) \) for other conditions. The equation is labeled as (23).]
The subscript “2” of [image: I'm unable to view or interpret handwritten equations or text directly, but it seems like you provided a mathematical expression. If you have an image to share, please upload it for assistance with generating alternate text.] in Equation 23 is used to distinguish the revenue when [image: It seems there might have been an error in uploading the image. Please try uploading it again or provide the image URL. Additionally, you can add a caption for more context.].
The regret of the production decision q under scenario s when [image: To generate alternate text, please provide the image by uploading it or sharing its URL. You can also add a caption for additional context.] can be calculated in Equation 24 as
[image: Mathematical equation displaying \( R_i(q, s) = u_i - u(q, s) \).]
Because
[image: Mathematical equation with piecewise function for \( u_i - p d_i \), showing three conditions based on \( d_s \) relative to \( \frac{T}{C} \) and \( \frac{(1 + I) C}{\theta [p - (1 + I) c]} \). Equation references equation number \( (25) \).]
which is decreasing with [image: Please upload the image or provide a URL so I can generate the alt text for you.], the worst-case scenario exists when the demand equals its lower bound. We use scenario [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] to denote that scenario, i.e., [image: Equation showing \( d_s = \overline{d} \).]. According to Equation 25, the maximum regret is 
[image: The equation shown is \( R_{\text{max},2}(q) = u_i^* - p d + \left\{ \begin{array}{ll} (1 + l) c q & \text{if } q \leq \frac{T}{C} \\ (1 + l) \left( c q - \frac{T}{\theta q} + \frac{C}{\theta} \right) & \text{otherwise} \end{array} \right. \), labeled as equation \( (26) \).]
which increases with [image: Please upload the image or provide a URL for me to generate the appropriate alt text.]. According to Equation 26, lemma 9 is proved.
In conclusion, once a production decision is determined under uncertain environment, if the production quantity is less than the actual demand, i.e., [image: The image displays a mathematical expression: \( q \leq d_s \), where \( q \) is less than or equal to \( d \) subscript \( s \).], [image: \( R_{\text{max}}(q) = R_{\text{max,1}}(q) \)]. Otherwise, if the production quantity is more than the actual demand, i.e., [image: Please upload the image or provide the URL so I can generate the alternate text for you.], [image: Equation showing \( R_{\text{max}}(q) = R_{\text{max},2}(q) \), with both terms as functions of \( q \).]. Because min-max regret criterion focuses on hedging against the worst-case performance, [image: Mathematical equation displaying the maximum function: \( R_{\text{max}}(q) = \max \{ R_{\text{max},1}(q), R_{\text{max},2}(q) \} \).]. Based on the above analysis, we can determine the robust production and green investment decisions of GCF with minimal maximum regret under uncertain environment as follows:
Theorem 2. The robust production and green investment decisions of GCF with minimal maximum regret under uncertain environment can be calculated in Equations 27, 28 as
[image: Equation q sub t equals a piecewise function. The first case is T over C if T over C is less than or equal to q sub zero and T over C is less than d plus one over p times open parenthesis u sub i star minus u sub i close parenthesis is less than or equal to the fraction open parenthesis one plus I close parenthesis C over theta open square bracket p times open parenthesis one plus I close parenthesis C close square bracket. The second case is d plus one over p times open parenthesis u sub i star minus u sub i close parenthesis otherwise. Equation number twenty-seven.]
[image: Equation showing \( K_r \) defined by a piecewise function: zero if \( q_f \leq \frac{T}{C} \); otherwise, \( \frac{C}{\bar{\theta}} - \frac{T}{\bar{\theta} q_f} \). It is labeled as equation (28).]
Proof. According to Lemma 8, 9, when [image: Mathematical expression showing T divided by C is greater than q subscript zero.], [image: Mathematical expression showing "R sub max, 1" as a function of variables "q" and "K", written as \( R_{\text{max},1}(q,K) \).] and [image: Mathematical expression displaying R sub max comma 2 as a function of q and K.] are decreasing and increasing function of [image: Please upload an image or provide a URL, and I’ll be happy to help generate the alternate text for it.] respectively as shown in Figure 4. Hence, [image: The expression contains the function \( R_{\text{max}}(q, K) \), likely representing a mathematical formula or equation, with variables \( q \) and \( K \).] is minimized when [image: Equation depicting \( R_{\text{max},1}(q, K) = R_{\text{max},2}(q, K) \).], i.e., [image: Mathematical equation showing \( q = d + \frac{1}{p}(u_s^* - u_s)\).].
Similarly, when [image: Mathematical expression: T divided by C is less than or equal to q subscript zero.] and [image: Formula showing \( q > \frac{{(1+I)C}}{{\theta [p - (1+I)c]}} \), where \( q \), \( I \), \( C \), \( \theta \), \( p \), and \( c \) are variables.], [image: Mathematical expression showing \( R_{\text{max,1}}(q, K) \).] and [image: Mathematical expression displaying \( R_{\text{max}, 2}(q, K) \), representing a function or relationship involving the variables \( q \) and \( K \).] are also decreasing and increasing function of [image: Please upload the image or provide a URL so I can generate the alternate text for you.] respectively as shown in Figure 5. Hence, [image: Mathematical expression showing "R sub max" with variables "q" and "K" in parentheses.] is minimized when [image: Equation showing q equals d plus the reciprocal of p times the difference between u sub s star and u sub s bar.].
Otherwise, when [image: The mathematical inequality \( \frac{T}{C} \leq q_0 \) is shown, where \( T \), \( C \), and \( q_0 \) are variables or constants.] and [image: The formula represents an inequality: \( q \leq \frac{(1+I)C}{\theta[p-(1+I)c]} \).], we derive the minimal maximum regret through a further discussion on the relationship between [image: An equation displaying a fraction with the variable "t" as the numerator and "c" as the denominator.] and [image: Mathematical expression with a lowercase "d" plus one over "p" multiplied by the difference of "u sub s star" and "u sub s bar".].
As shown in Figure 6A, if [image: Mathematical expression: Negative d plus the fraction one over p times the difference between u sub s star and u sub s underbar is greater than the fraction T over C.], which implies [image: \( R_{\text{max}, 1}\left(\frac{T}{C}\right) > R_{\text{max}, 2}\left(\frac{T}{C}\right) \) depicts a mathematical inequality comparing two maximum rates, \( R_{\text{max}, 1} \) and \( R_{\text{max}, 2} \), as functions of the ratio \( \frac{T}{C} \).], and thus [image: Mathematical equation showing \( R_{\text{max}} \left( \frac{T}{C} \right) = R_{\text{max,1}} \left( \frac{T}{C} \right) \).]. Because [image: The equation "R sub max, 1 (q)" is shown, likely representing a function or formula involving variables and possibly used in mathematical or scientific contexts.] takes its minimum value at [image: Equation showing \( q = \frac{T}{C} \), where \( q \) is the quotient, \( T \) is the numerator, and \( C \) is the denominator.], [image: I can't view the image directly, but based on the description provided, it seems to be representing a mathematical inequality involving functions of \( R_{\text{max}} \). The expression states that \( R_{\text{max}}(q) \) is greater than or equal to \( R_{\text{max},1}(q) \), which is in turn greater than or equal to \( R_{\text{max},1}\left(\frac{1}{C}\right) \).] holds for any feasible production quantity [image: Please upload the image or provide a URL to it, and I will help generate the alternate text for you.]. Hence, [image: Mathematical notation depicting \( R_{\text{max}}(q) \), representing a function or expression related to the maximum value of a variable or parameter \( q \).] is minimized when [image: Equation depicting \( q = \frac{T}{c} \), where \( q \) equals the ratio of the variable \( T \) to constant \( c \).].
Otherwise [image: The mathematical inequality shows \(d + \frac{1}{p}(u_s^* - \underline{u}_s) \leq \frac{T}{C}\).]. As shown in Figure 6B, because [image: The expression shows "R sub max comma 1 of q" in italics.] decreases with [image: It seems like there might have been an error in uploading the image. Please try uploading the image again or provide a URL if applicable.] when [image: The mathematical inequality \( q \leq d + \frac{1}{p} (u_{s^*} - u_s^*) \) is shown, with variables \( q \), \( d \), \( p \), and \( u_s^* \), indicating a relationship that involves subtraction and scaling.], [image: Mathematical expression showing \( R_{\text{max}}(q) \geq R_{\text{max},1}(q) > R_{\text{max},1} \left( d + \frac{1}{p} \left( u_{s}^* - u_{s} \right) \right) \).] holds for any [image: \( q \leq d + \frac{1}{p}(u_s^* - u_{\underline{s}}^*) \).]. Similarly, because [image: Formula depicting R sub max,2 of q, often used to represent a maximal value or result function with a subscripted variable context.] increases with [image: Please upload the image or provide a URL so I can create the alternate text for it.] when [image: Mathematical inequality showing \( q \) is greater than \( d \) plus the fraction \( \frac{1}{p} \) multiplied by the difference between \( u_s^* \) and \( u_{\bar{s}}^* \).], [image: Inequality equation showing \( R_{\text{max}}(q) \geq R_{\text{max},2}(q) > R_{\text{max},1} \left( d + \frac{1}{\rho}(u_s^* - u_{\xi}^*) \right) \).] holds for any [image: The mathematical expression is \( q > d + \frac{1}{p} (u_{\bar{s}}^{\ast} - u_{\underline{s}}^{\ast}) \).]. Hence, [image: The image contains the mathematical expression \( R_{\text{max}}(q) \), where \( R \) denotes a function with a subscript "max," and \( q \) is the variable within the parentheses.] is minimized when [image: The equation displays \( q = d + \frac{1}{p}(u_s^* - u_s^-) \).]. The theorem is proved.
[image: Two line graphs compare maximum regret against the variable \( q \). In graph a), a blue curve decreases, and a red line increases, intersecting at a point marked by a vertical dashed line. Graph b) shows similar curves with the intersection shifted right. Labels and mathematical expressions indicate different conditions on each graph.]FIGURE 4 | Illustration of [image: The text "R sub max of Q" is written in a blurred, italicized font.] when [image: Equation showing \( \frac{T}{c} > q_0 \), where \( T \) is divided by \( c \) and greater than \( q_0 \).]. (A) [image: The formula shows \( \frac{T}{C} \leq d + \frac{(u_i^* - u_i^*)}{\rho} \).], (B) [image: \( \frac{T}{C} > \underline{d} + \frac{(u_s^* - u_s^*)}{\rho} \).].
[image: Graph showing maximum regret versus variable \( q \). Three curves are represented: blue for \( R_{\text{max},1}(q, K) \), red for \( R_{\text{max},2}(q, K) \), and yellow for \( R_{\text{min}}(q, K) \). The x-axis is marked with \( \frac{T}{C} \) and \( e_{d^*}\neq 0^{-}(\mu - \mu_i) \).]FIGURE 5 | Illustration of [image: Mathematical expression displaying "R sub max of q" in italics.] when [image: The mathematical expression shows a fraction T over c, followed by the less than or equal to symbol, and q subscript zero.] and [image: The mathematical inequality shows \( q > \frac{(1 + r)C}{\theta [p - (1 + r)C]} \), where \( q \), \( r \), \( C \), \( \theta \), and \( p \) are variables or constants in the expression.].
[image: Two graphs compare maximum regret against variable \( q \). The left graph, labeled (a), shows three curves: blue and red curves intersect, while the yellow curve lies above them. Parameters include \( d + \frac{1}{p} (u_r - u_i) > \frac{T}{C} \). The right graph, labeled (b), displays similar curves with conditions \( d + \frac{1}{p} (u_r - u_i) \leq \frac{T}{C} \). Blue, red, and yellow lines represent different \( R \) values.]FIGURE 6 | Illustration of [image: The formula "R sub max (q)" is displayed, indicating a mathematical expression or notation related to maximum value functions involving the variable q.] when [image: Fraction T over C is less than or equal to q subscript zero.] and [image: Mathematical expression showing \( q \leq \frac{(1+i)C}{\theta[p-(1+i)C]} \).]. (A) [image: Mathematical expression: \( \underline{d} + \frac{1}{p}(u_s^* - \underline{u}_s) > \frac{I}{C} \).], (B) [image: A mathematical expression: \(\underline{d} + \frac{1}{p} (u_s^* - \underline{u}_s) \leq \frac{I}{C}\).].
4 FURTHER ANALYSIS
4.1 Decisions analysis
According to Theorem 2, when [image: Mathematical inequality showing \( q r \leq \frac{T}{C} \).], the manufacturer is relieved of the concern of potential default when opting for GCF, even in the absence of any green investment. Hence, we define [image: It seems like there is no image provided. Please upload the image or provide a URL so I can help generate the alternate text for it.] as the safe yield. Besides, given that [image: Mathematical equation showing \( f\left(\frac{T}{C}\right) = f\left(\frac{(1+I)C}{\theta |p - (1+I)c|}\right) \).], we define [image: A mathematical fraction with numerator \((1 + I)C\) and denominator \(\theta [p - (1 + I)c]\).] as the dual safe yield. Consistent with the formal definition of the safe yield, when [image: The equation "qr is less than or equal to T divided by C".], it can be inferred that GCF is essentially a distinct subset of conventional credit instruments, characterized by their notably reduced interest rates. In this case, GCF is not sufficient to incentivize manufacturers to engage in green investments. In other words, GCF can promote the green transformation of the manufacturing industry only when [image: The mathematical expression shows "q sub r greater than T divided by c".].
In order for GCF to play a positive role in the green transformation of the manufacturing industry, we discuss the robust production and green investment decisions of GCF from the following six cases.
Case 1. The safe yield does not exceed the dual safe yield., i.e. [image: The inequality shows T over C is less than or equal to the fraction of open parenthesis one plus I close parenthesis times C over theta times open bracket p minus open parenthesis one plus I close parenthesis times c close bracket.].
Case 1.1. [image: Mathematical expression showing d is less than or equal to the average d which is less than or equal to T divided by C.].
Because [image: Mathematical expression showing the inequality q subscript r is less than or equal to d bar, which is less than or equal to T over C.], GCF cannot promote manufacturers to engage in green investments.
Case 1.2. [image: Mathematical inequality showing \( \underline{d} \leq \frac{T}{C} < \bar{d} \leq \frac{(1+I)C}{\theta [p - (1+I) \kappa]} \).].
According to Lemma 5,
[image: Equation depicting \( u_i = \left[ p - (1 + n)c \right] \frac{T}{C} \) labeled as equation (29).]
[image: Mathematical expression displaying \( u_i = \left[ p - (1 + l)c \right] d \), followed by a comma and equation number thirty in parentheses.]
According to Equations 29, 30, [image: Mathematical equation depicting a relationship with variables, including \( d + \frac{1}{p}(u_{i^*} - u_{s^*}) \), and an expression involving fractions with \( \rho \), \( T \), and \( C \). The equation shows a sequence of equalities and inequalities comparing the terms.].
According to Theorem 2, [image: Mathematical equation: \( q_r = \underline{d} + \frac{1}{p} \left( u_s^* - \underline{u_s^*} \right) \leq \frac{T}{C} \).]. Consequently, GCF cannot promote manufacturers to engage in green investments.
Case 1.3. [image: The mathematical inequality shows \( \underline{d} \leq \frac{T}{C} < \frac{(1+I)C}{\theta | p - (1+I)c |} < \overline{d} \).].
According to Lemma 5,
[image: The image shows a mathematical equation: \( u_i = f(\bar{d}) - \frac{(1 + h)C}{\theta} \), labeled as equation 31.]
[image: The image shows a mathematical equation: \( u_i = \left[ p - (1 + r)c \right] d \), with the equation number (32) to the right.]
According to Equations 31, 32, [image: Mathematical equation with variables and constants: \( \bar{d} + \frac{1}{\rho}(u_{\dot{s}}^{*} - u_{\dot{s}}) = \bar{d} + \frac{(1+\eta)c}{\rho}(d - \bar{d}) + \frac{1+\eta}{\rho \theta}(T_{d} - C) \).].
According to Theorem 2, only when [image: Mathematical inequality showing a complex expression with terms such as \(\overline{d}\), \(\frac{(1+\theta)k}{p}\), and \(\frac{(1+\theta)C}{\delta p - (1+\theta)k}\), involving variables \(d\), \(T_{d}\), \(C\), \(\theta\), \(k\), and constants.], GCF can effectively incentivize manufacturers to engage in green investments, and the robust production and green investment decisions are [image: Equation showing \( q_r = \bar{d} + \frac{(1 + l)c}{p}(d - \bar{d}) + \frac{1 + l}{p \theta}(T_d - C) \).] and [image: Equation showing \( K_r = \frac{C}{\theta} - \frac{T}{\theta_{qr}} \).] respectively.
Case 1.4. [image: The mathematical expression displays a sequence of inequalities: \( \frac{T}{C} < \underline{d} < \overline{d} \).].
Because [image: Mathematical inequality showing \( q_r \geq \frac{d}{T} > \frac{T}{C} \), indicating a relationship between the variables \( q_r \), \( d \), \( T \), and \( C \).], GCF can effectively incentivize manufacturers to engage in green investments.
Case 2. The safe yield is larger than the dual safe yield., i.e. [image: The equation \( \frac{T}{C} > \frac{(1+I)C}{\theta [p - (1+I)c]} \) is displayed, showing a comparison of two fractions.].
Case 2.1. [image: Mathematical expression showing an inequality: \( \underline{d} \leq \overline{d} \leq \frac{T}{C} \).].
Because [image: Mathematical inequality displaying \( q_r \leq \bar{d} \leq \frac{T}{C} \).], GCF cannot promote manufacturers to engage in green investments.
Case 2.2. [image: Mathematical expression showing an inequality: lowercase d with an underscore is less than or equal to T divided by C, which is less than d with a bar over it.].
According to Lemma 6,
[image: Equation showing \( u_i = f(\bar{d}) - \frac{(1 + l)C}{\theta} \) with a reference number (33) on the right.]
[image: Equation with variable \( u_i^* \) defined as \([ p - (1 + \eta)c ] d\). The equation is labeled as number 34.]
Hence, [image: Mathematical equation depicting a relationship between multiple variables: \(d + \frac{1}{p}(u_{is}^* - u_s^*) = \bar{d} + \frac{(1 + l)c}{p} (d - \bar{d}) + \frac{1 + l}{p \theta} (T_d^* - C)\).].
According to Theorem 2, only when [image: The mathematical expression shows a complex inequality involving variables and fractions: \(\bar{d} + \frac{{(1 + l)k}}{p}(d - \bar{d}) + \frac{{1 + l}}{p \theta}(T_d - C) > \frac{T}{C}\).], GCF can effectively incentivize manufacturers to engage in green investments, and the robust production and green investment decisions are [image: Equation showing \( q_r = \bar{d} + \frac{(1+i)c}{\rho}(d-\bar{d}) + \frac{1+i}{p\theta} (T_d - C) \).] and [image: Equation representing \( K_r = \frac{C}{\theta} - \frac{T}{\theta_{q_r}} \).] respectively.
Case 2.3. [image: Mathematical inequality showing \(\bar{d} \geq d > \frac{T}{C}\).]
Because [image: Mathematical expression showing the inequality where \( q_r \) is greater than or equal to \( d \), which is greater than \( \frac{T}{C} \).], GCF can effectively incentivize manufacturers to engage in green investments.
Table 1 summarizes the results of the above six cases. According to Table 1, when [image: Equation showing \(d > \frac{T}{c}\), where \(d\) is greater than the fraction of \(T\) over \(c\).], the GCF can effectively incentivize manufacturers to engage in green investments. When [image: Mathematical formula showing \( \bar{d} \leq \frac{T}{C} \).], GCF cannot promote manufacturers to engage in green investments. When [image: Mathematical inequality showing the relationship of \( \underline{d} \leq \frac{T}{C} < \overline{d} \), with \( \underline{d} \) and \( \overline{d} \) representing lower and upper bounds, respectively, for the fraction \( \frac{T}{C} \).], in order for GCF to play a positive role in the green transformation of the manufacturing industry, it is essential that the demand must simultaneously satisfy the conditions where
[image: Mathematical expression involving a minimum and maximum function. The minimum function includes terms d̄, d, plus a fraction with numerator (1 plus D sub c) times d minus d̄, divided by p, and another term 1 divided by p theta, times (T over d minus C). This is greater than the maximum function with terms T over C, times theta, over p minus (1 plus D sub c), denoted as equation 35.]
TABLE 1 | Analysis of influencing factors of optimal production and green investment decisions of GCF under uncertain environment.
[image: Mathematical table depicting different cases and corresponding states. The table includes formulas comparing \( \frac{T}{C} \) with various expressions involving parameters like \( d \), \( \bar{d} \), \( \theta \), and \( p \). States are marked as either "Negative" or "Positive" based on the cases.]4.2 Managerial insights
Observing the expressions on the right-hand side of the greater-than symbol in Equation 35, [image: It seems there is no image attached. Please upload an image or provide a URL for me to generate the alternate text.] is naturally greater than [image: The mathematical expression shows a fraction with numerator open parenthesis one plus I close parenthesis times C, and denominator theta times open bracket p minus open parenthesis one plus I close parenthesis times c close bracket.] when parameters [image: It seems there is no image uploaded. Please provide an image or URL, and I will be happy to generate the alternate text for you.] exhibit a substantial numerical magnitude relative to parameters [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.]. This case implies lenient carbon emissions constraints in GCF, advanced emissions reduction technologies, high-priced products, low-interest rate of GCF, low initial carbon emissions, and cost-efficient production processes. Hence, we define the case when [image: The mathematical inequality shows \( \frac{T}{C} > \frac{(1+I)C}{\theta[p-(1+I)c]} \), where \( T \), \( C \), \( I \), \( \theta \), \( p \), and \( c \) are variables.] as the favorable environment. On the contrary, the case when [image: The equation shows a fraction on the left, T divided by C, is less than or equal to a fraction on the right, where the numerator is (1 plus I) times C and the denominator is theta times the quantity of p minus (1 plus I) times c.] is defined as the unfavorable environment. We call the parameters [image: Please upload the image or provide a URL so I can generate the alt text for you.] and [image: Please upload the image or provide a URL, and I will help you generate the alternate text.] as the promotion and inhibition parameters respectively. The greater the promotion (resp. inhibition) parameters are, the more favorable (resp. unfavorable) the environment is.
A detailed analysis of the promotion of green production and green technology investment in manufacturing companies by GCF under favorable and unfavorable environmental conditions is conducted as follows.
When considering the carbon emission cap T in accordance with Equation 35, it is worth noting that GCF plays a crucial role in promoting green transformation when [image: Minimization expression involving symbols: min over variables d̅, d with terms including (1 + l) c over p times (d − d̅), plus 1 + l over pθ times (T_d − C), compared to (1 + l) C over θ[p − (1 + l)c].] in an unfavorable environment. Because [image: Mathematical expression showing the minimum of two terms: \( \bar{d} \) and \(\bar{d} + \frac{(1+I) c}{p} (d - \bar{d}) + \frac{1+I}{p \theta} (T_{d} - C) \).] increases with T, it can be concluded that a relatively lenient carbon emission cap is more likely to make Equation 35 holds. Therefore, a lenient carbon emission cap of GCF is more conducive to encouraging manufacturing enterprises to invest in green technologies in the unfavorable environment.
While in the favorable environment, GCF effectively prompts green transformation when [image: The mathematical expression depicts a minimization problem involving variables and constants. It is expressed as the minimum of the terms: \(\bar{d}\), \(\underline{d}\), \(\frac{(1+I) c}{p} (d - \bar{d})\), and \(\frac{1+I}{p \theta} (T_d - C)\), which is greater than \(\frac{T}{C}\).]. By observing the rate of change of [image: Mathematical expression representing the minimization of the sum of variables \( \bar{d}, \underline{d} \), an expression involving \(\frac{(1+I)c}{p}\) multiplied by \( (\underline{d} - \bar{d}) \), and a term \(\frac{1+I}{p \theta}\) multiplied by \( (T_d - C) \).] and [image: If you're trying to provide an image, please upload it, or if you have a URL, share it. If you're referring to a specific concept or equation, please provide more details.] with respect to T, a larger value of T is more likely to make Eq (38) holds if [image: Mathematical inequality featuring a fraction with numerator one plus I and denominator p theta d, greater than or equal to the fraction one over C.]. Otherwise, when [image: The mathematical expression shows a fraction \((1 + I) / (p \cdot \theta \cdot d)\) which is less than the fraction \(1 / C\).], a smaller value of T is more favorable for holding Equation 35. Note that [image: Please upload an image or provide a URL to generate the alternate text.] are inhibition parameters and [image: Please upload the image or provide more context or a URL for me to help you generate the alternate text.] are promotion parameters. Therefore, in a more favorable environment, there is a greater need to establish stringent carbon emission cap of GCF to encourage manufacturing enterprises to undertake green technology investments. Conversely, in a less favorable environment, a more lenient carbon emission cap is required.
Similarly, concerning the manufacturer’s initial carbon emission per unit of production quantity [image: Please upload the image or provide a URL so I can generate the alternate text for you.], it can be found that [image: Mathematical expression involving the minimum of two values: the first is \(\bar{d}\). The second is \(\bar{d} + \frac{{(1+I)c}}{p}(d-\bar{d}) + \frac{{1+I}}{p\theta}(T_d - C)\).] and [image: It seems there was an error with the image upload. Please try uploading the image again or provide a URL. If there’s a caption or context, feel free to add that as well.] decrease with [image: Please upload the image or provide a URL so that I can generate the appropriate alternate text for you.], while [image: Fraction with numerator \((1+I)C\) and denominator \(\theta[p - (1+I)c]\).] increases with [image: Please provide the image or a URL to the image so I can generate the appropriate alt text for you.]. Hence, in the unfavorable environment, GCF can only promote green technology investment in manufacturing enterprises with initially low carbon emissions. Only in the favorable environment can the GCF potentially encourage high carbon-emitting enterprises to invest in green technologies. This is because a favorable environment enables manufacturing enterprises to reduce carbon emissions at lower costs, eliminating concerns about loan recalls due to non-compliance with the carbon emission cap. Therefore, even with initially high carbon emissions, the low-interest advantage would attract manufacturing enterprises to opt for GCF and reduce carbon emissions through green technologies.
As for the interest rate I in accordance with Equation 35, given that [image: Mathematical expression showing that the average distance \( \bar{d} \) is greater than \( \frac{T}{C} \), where \( T \) and \( C \) are variables.], i.e., [image: The mathematical expression displays the fraction T over d, minus C, is less than zero.], [image: Minimum of the set containing values: d̅, overline d plus open parenthesis one plus I times c close parenthesis over p times open parenthesis d minus overline d close parenthesis, plus one plus I over p theta times open parenthesis T subscript d minus C close parenthesis.] is non-increasing with I, while [image: The image shows a mathematical expression: the fraction \(\frac{{(1+I)C}}{{\theta [p - (1+I)c]}}\).] is increasing with I. Consequently, in both favorable and unfavorable environment, GCF with a lower interest rate is consistently advantageous for encouraging manufacturing enterprises to invest in green technologies. Hence, it is advisable to explore strategies such as government-discounted loans, flexible repayment options, and other government incentives or subsidies to minimize loan interest rates.
Similarly, as for production cost c and the unit carbon emission reduction rate [image: Please upload the image or provide a URL for which you would like the alt text generated.], which reflects the green technological capabilities of manufacturing enterprises, it can be concluded that there are two additional important pathways to incentivize manufacturing enterprises to invest in green technologies through the GCF: the reduction of production costs and the improvement of carbon emission reduction efficiency.
5 NUMERICAL RESULTS
In the previous section, we characterize the optimal production and green investment decisions of GCF for the manufacturer under deterministic scenario and uncertain environment. Next, in this section, we conduct numerical analysis to further analyze the performance of the strategy.
5.1 Instance generation
In order to make numerical experiments more convincing, we use real-world data to do numerical analysis. We selected a listed power generation company in China, which invested in carbon capture and storage technology to reduce carbon emissions. Firstly, as pivotal recipients of green financial policies, state-owned enterprises (SOEs) exhibit green credit financing behaviors that directly mirror the effectiveness of policy implementation. By examining how SOEs leverage green credit under uncertain demand conditions to make decisions regarding green production and green technology investments, we can assess the impetus provided by green financial policies for the green transformation of SOEs. Secondly, SOEs generally possess robust information disclosure systems and comprehensive data records, facilitating easier access to research data with high reliability. This aids in drawing more precise conclusions when analyzing green credit financing behaviors. Finally, SOEs occupy a significant position in the Chinese economy, and their green credit financing behaviors are broadly representative. Selecting SOEs as research cases aids in deriving conclusions and recommendations that are more widely applicable to other types of enterprises, thereby providing theoretical references and practical guidance for optimizing and promoting green financial policies and enhancing policy implementation efficiency. The instance generation is summarized in Table 2.
TABLE 2 | Parameters of instances.
[image: Table displaying various parameters from 2016 to 2022 with an average column. Parameters include unit product price, unit product cost, and initial carbon emissions per unit product, among others. Numeric values are given for each year and averages, with a carbon cap per unit and loan interest rate noted.]The unit price and unit production cost of the product parameters are adapted from the company’s Annual Reports. The relevant data are as follows: p = 0.3966, 0.4140, 0.4185, 0.4170, 0.4136, 0.4319, 0.5099, 0.4288 and c = 0.1681, 0.2259, 0.2396, 0.2232, 0.2091, 0.3164, 0.3726, 0.2503. The manufacturer’s initial carbon emission per unit of production quantity is based on the annual Environmental, Social and Governance Report, which implies C = 813.89, 870.86, 856.42, 858.48, 862.21, 862.24, 860.19, 854.90.
As for the value of θ, we refer to some related studies on CCS technology investment and An et al. (An et al., 2021). In their study, the green investment cost is 100 million yuan/year, and the unit carbon emission reduction due to green improvement is set 77 g CO2/kWh. Therefore, we set the per-unit carbon emission reduction after green input to be θ = 0.77. Besides, we set the carbon cap per unit of product [image: It seems there might have been a mistake; I cannot see the image. Please upload the image file or provide its URL, and I will create the alternate text for you.] as 650. Furthermore, because the specific interest rate of the green credit projects has not been announced to the public, we select the carbon reduction project loan interest rates disclosed by the listed banks with a large scale of green credit in China, and collect a total of 6,649 carbon emission reduction support loan projects, and finally the weighted average loan interest rate is 3.40%.
Finally, the demand of the product in our study is uncertain, but varies uniformly within a closed interval [image: If you can upload the image or provide a URL, I can help generate the alternate text for it.]: The minimum sales volume of the company in 7 years is 29107400, the maximum sales volume is 40600415, and its annual sales volume fluctuates sharply, with the maximum fluctuation even reaching 25%. Therefore, the lower bound of the product demand is set as 29107400/(1%–25%) = 23285920, while the upper bound of the product demand is set as 40600415 * (1 + 25%) = 50750518.75.
5.2 Strategy evaluation
5.2.1 Comparative analysis of robust strategy and experience strategy under uncertain environment
In Section 3, we determine the robust strategy (RS) of GCF with minimal maximum regret under uncertain environment. Meanwhile, in the face of uncertain demand environment, the enterprise can also choose the experience strategy (ES) that considers the demand as the upper and lower bounded mean based on the specific production situation as well as the historical product demand.
In order to assess the performance of the proposed robust strategy, experiments are conducted on the enterprise’s 2016-2022 as well as average year instances within the demand interval [23285920, 50750518.75] to compare and analyze the robust strategy as well as the experience strategy. Because Theorem 2 provides the [image: Please upload the image or provide a URL so I can generate the alt text for you.] and [image: Please upload the image or provide a URL for it, and I can help generate alt text for you.] under the RS. We apply Lemma 8 and Lemma 9 to obtain the maximum regret value [image: The mathematical expression illustrates the equation \(Reg\_RS = Rrs_{max,1} = Rrs_{max,2}\), indicating equivalence between these three terms.] under the robust strategy. We use [image: I'm sorry, I cannot view the image directly. Please upload the image or provide a URL to it, and I will help generate alt text for you.] to record the deviation between the robust solution and the optimal solution. Moreover, Theorem 1 provides the [image: Please upload the image or provide a URL so I can generate the alternate text for you.] and [image: Please upload the image or provide a URL so I can generate the alternate text for you.] under the ES. We also apply Lemma 8 and Lemma 9 to derive the maximum regret value [image: The equation shows "Reg_ES equals max of Res_max,1 and Res_max,2", indicating the maximum value between Res_max,1 and Res_max,2 is used for Reg_ES.] under the experience strategy. We use [image: It seems like there was an issue with displaying the image. Please ensure you upload the image correctly, or provide a URL if it's hosted online. If you have any additional context or a caption, feel free to include that as well.] to record the deviation between the experience solution and the optimal solution. The computational results are shown in Table 3. Column 1 of Table 3 denotes the year. Columns 2-4 present the values of p, c, and C. Columns 5-6 record the target values (minimal maximum regret) of the ES and RS respectively. Our experiments show that the regret value of our proposed algorithm is always lesser.
TABLE 3 | Regret value experiments for 2016-2022 and average year instances.
[image: A table shows data from 2016 to 2022, including "Year," "p," "c," "C," "Reg_ES," "Reg_RS," and "Gap_Rmax." The "p" values increase from 0.3966 in 2016 to 0.5099 in 2022. The "Reg_ES" values range from 2,969,611.023 to 5,290,335.299, while "Reg_RS" values vary between 2,170,915.905 and 2,839,600.007. The 2021 and 2022 "Gap_Rmax" values are markedly higher at over 104 compared to other years. The average year data shows "p" at 0.4288, "c" at 0.2503, and "C" at 854.90.]Besides, we can observe from column 5-6 in Table 3 and Figure 7 that [image: I'm sorry, there seems to be a problem with displaying the image. Please upload the image file or provide a URL, and optionally add a caption for additional context.] is always lower than [image: It seems like something went wrong. Could you please upload the image again or provide more details?] , especially significant in 2021 and 2022. By comparing 2020 and 2021, at similar levels of initial carbon emissions per unit of product, the greater the difference between p and c, the smaller the difference in regret values between the two strategies; while the closer the price and cost per unit of product, the greater the difference in regret values. Therefore, the closer the price of the product is to the cost, the more effective the optimization effect of the robust strategy is.
[image: Line graph comparing two strategies, robust (red) and experience (blue), from 2016 to 2023. The experience strategy shows significant peaks in 2021 and 2023, while the robust strategy remains relatively flat. The average is marked on the right.]FIGURE 7 | The minimal maximum regret value of the robust strategy and experience strategy under uncertain environment.
To evaluate the quality of robust strategy solution, the indicator [image: Formula for calculating Gap_R_max, expressed as \((\text{Reg\_ES} - \text{Reg\_RS}) / \text{Reg\_RS} \times 100\%\).] represents the average percentage deviation of the robust solution and the experience solution. According to the indicator [image: Mathematical notation displaying "Gap-R sub max".], the gap between experience regret value [image: I'm unable to view or interpret the content of an image directly. Please upload the image or provide a URL for me to assist you with generating alternate text.] and robust regret value [image: Please upload the image for which you need alternate text.] ranged from 4.75% to 106.16% (37.87% on average). Hence, it indicates that our proposed robust strategy possesses good robustness and can handle the risk caused by the uncertainty of demand information well, which better reflects the effectiveness of our strategy.
5.2.2 Comparative analysis of robust strategy revenue and optimal revenue under deterministic scenario
Next, we restrict the decision to the deterministic scenario, and take the full information setting as well as consider the case where the product demand information is deterministic. Assume that the firm’s product demand is the mid-point of the demand interval scenario, i.e., [image: It seems there was an issue with providing the image. Please try uploading the image again. If you have additional context or a caption, feel free to include it.]. Then, we take experiments to compare and analyze the robust strategy revenue and optimal revenue under the deterministic scenario.
Under the deterministic demand, we compute [image: Please upload the image or provide a URL so I can generate the alt text for you.] and [image: It seems like you provided some text, possibly from an image file name or a placeholder. To generate accurate alt text, please upload the image or provide a URL. If the text represents an equation or specific notation, let me know the context or describe the image further.] through Theorem 1, and then apply Equation 4 to derive the optimal revenue [image: Please upload the image or provide a URL for the image you would like me to generate alt text for.] in the deterministic case. In contrast, our proposed robust strategy first disregards this deterministic scenario and assumes that the demand still falls in the uncertain environment, and subsequently, we find the corresponding [image: Please upload the image or provide a URL so I can generate the alt text for you.] and [image: Please upload the image or provide a URL so I can generate the alternate text for you.] through Theorem 2, and apply Equation 16 to obtain the revenue [image: Please upload the image or provide a URL for me to generate the alt text.] under the robust strategy. The computational results are reported in Table 4.
TABLE 4 | Revenue experiments for 2016-2022 and average year instances.
[image: Table displaying yearly data from 2016 to 2022 with columns for various metrics: q* (constant at 3718219.38), qᵣ, K*, Kᵣ, u*, uᵣ, Gap_u. Notable entries include Gap_u peaking in 2021 at 23.61. Average values are provided at the bottom.]Column 1 of Table 4 denotes the year. Columns 2-5 present the values of [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.], [image: It seems like there is no image uploaded. Please upload the image or provide a URL, and optionally include a caption for additional context.], [image: Please upload the image or provide a URL so that I can generate the alternate text for you.], and [image: Please upload the image or provide a URL so I can generate the alt text for it.]. Columns 6-7 record the objective values (the optimal revenue) of the mid-point scenario [image: Please provide the image or a URL so that I can generate the alternate text for you.] and the robust strategy respectively.
Besides, the indicator [image: The formula calculates Gap_u as the ratio of the difference between u star and u r to u r, multiplied by one hundred percent.] is used to record the average percentage deviation between the robust strategy revenue and the optimal revenue. We can observe from column 8 in Table 4 that the gap between the optimal revenue [image: It looks like you tried to add some text or a symbol instead of an image. Please upload the image directly, and I will help you generate the alternate text for it.] and the robust revenue [image: It seems like there wasn't an image uploaded. Please upload the image you would like the alternate text for, and I'll be happy to help!] ranged from 1.71% to 23.61% (9.58% on average). Moreover, according to Figure 8, it can be seen that the revenue under the robust strategy is smaller than but closer to the revenue under the deterministic scenario. It can be concluded that although the goal of the robust optimization algorithm in this paper is to better deal with the risk of uncertainty and make the decision as robust as possible; however, in the deterministic environment, even if we still apply our algorithm mechanically, the revenue is closer to the optimal revenue. In other words, the robust optimization strategy in this paper is not only risk-resistant, but also guarantees the return in the average case. Therefore, under the current level of carbon emission cap, the robust strategy can simultaneously promote the green transformation of enterprises while ensuring the established benefits.
[image: Line graph showing revenue trends from 2016 to 2022 for robust strategy (red) and optimal revenue (blue). Both lines start high, dip in 2019 and 2020, and rise again by 2022. Red line is consistently lower than blue.]FIGURE 8 | The revenue of the robust strategy and the mid-point scenario under deterministic environment.
5.3 Sensitivity analysis
Since robust strategy can always output near-optimal solutions under uncertain environments and deterministic scenarios, we further investigate to conduct the sensitivity analysis. Because the fluctuations of [image: It seems there was an issue with your image upload. Please try again by uploading the image file, and optionally provide a caption for additional context.], I and demand intervals have a large impact on the decision results, we analyze their impact on the optimal production and green technology investment decisions as well as on the optimal end-of-period cash flows of this power producer. For better understanding, the trend of the results obtained by the robust strategy are shown in Figures 9–11.
[image: (a) Line graph showing the trends of variables \( q_t \) and \( K_t \) across different carbon cap units, with \( q_t \) decreasing (red) and \( K_t \) increasing (blue). (b) Line graph displaying the trend of \( u_t \), which increases with higher carbon cap units, in blue. Both graphs plot variables against carbon cap per unit of product.]FIGURE 9 | The impact of green credit carbon constraints on decision-making and revenues. (A) Trends of the [image: It seems like there was a mistake in your message regarding image upload. Please make sure to upload the image or provide a valid URL so I can generate the alternate text for you.] and [image: Please provide the image or a URL to generate the alternate text.]. (B) Trends of the [image: Please upload the image or provide a URL so I can generate the alternate text for you.].
[image: Two graphs compare data points.   Graph (a) shows red and blue lines depicting trends of \(q_t\) and \(K_t\) respectively, against the base interval of \(C^0(T)\).   Graph (b) shows a blue line depicting the trend of \(u_t\) against the same base interval. Both graphs indicate a downward trend.]FIGURE 10 | The impact of green credit interest rates on decision-making and revenues. (A) Trends of the [image: Sure, please provide the image you need the alt text for by uploading it here.] and [image: Please upload the image or provide a URL so I can generate the alternate text for it.], (B) Trends of the [image: Please upload the image you would like me to generate alternate text for.].
[image: Two graphs illustrate different trends. (a) shows trends of \( q_x \) and \( K_x \) with two lines in red and blue, both increasing over the x-axis. (b) depicts the trend of \( u_x \) with a blue line curving upwards.]FIGURE 11 | The impact of green credit on decision-making and revenues under the fluctuation of demand interval. (A) Trends of the [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] and [image: Please provide the image by uploading it or sharing a URL, and I can generate the alt text for you.]. (B) Trends of the [image: Please upload the image or provide a URL to generate the alternate text.].
Firstly, we consider the case of [image: Please upload the image or provide a URL so I can generate the alternate text for you.] ∈ [ 500, 800]. From Figure 9, it can be observed that when [image: It seems there was an error in displaying the image. Please upload the image file or provide a description or URL of it so I can help generate the alt text.] ∈ [500,540], the upper limit of carbon emission per unit product is negatively related to [image: If you upload an image or provide a URL, I can help generate the alt text for it. Please do so, and I'll be happy to assist!]; when [image: Please upload the image you would like me to describe. If you have any additional context or a caption, feel free to include that as well.] ∈[540,800], it is positively related to [image: Please provide the image or a link to it so I can generate the alternate text for you.]. Moreover, the upper limit of carbon emission per unit product is positively related to the manufacturer’s revenue [image: It seems there was an error in your input. Please upload an image or provide a URL, and I can help generate the alternate text for it.] and negatively related to the optimal green technology investment decision [image: Please provide the image by uploading it or giving a URL. That will allow me to generate the alternate text for you.]. It can be found that the lower the carbon emission cap per unit of product brought by green credit implies that the greater the degree of carbon emission constraints set by the government or the bank, the higher the green technology investment cost that the manufacturer has to bear. Therefore, under the more stringent carbon emission cap constraints, the enterprise will be more inclined to choose green credit to undertake green technology investments and carry out green production.
Next, we consider the case of green credit interest rate I ∈ [0.01, 0.05]. According to Figure 10, it can be seen that the green credit interest rate is negatively related to the manufacturer’s optimal production decision, optimal green technology investment decision, and revenues. The lower green credit interest rate means the more favorable lending provided by the bank, the smaller the investment cost of green and low-carbon technology that the manufacturer has to bear, and then the manufacturer tends to increase the investment in green and low-carbon technology. Hence, GCF with lower interest rates is always beneficial in encouraging manufacturing firms to invest in green technologies. It is more urgent to explore strategies such as government discounted loans, flexible repayment options, and other government incentives or subsidies to minimize loan interest rates.
Finally, we liberalize the restriction on the demand information interval and adopt a setting where the demand information fluctuates according to the alpha coefficient. That is, d = [37018219.38 *1/α, 37018219.38 *α]; α ∈ [1, 2].
Figure 11 shows that the ups and downs of the manufacturer’s production decisions, green technology investment decisions and revenues in response to fluctuations in the demand interval. As the degree of fluctuation in the demand interval rises, the manufacturer’s production, green technology investment, and revenues all increase significantly. This is because under the current carbon emission constraints and strong market demand, enterprises are more willing to apply for green credits for green production and increase green technology inputs in order to increase their market share.
6 CONCLUSION
This paper analyzes a critical issue in joint decision-making for enterprise production and green technology investment under uncertain demand environments, while simultaneously considering carbon emission constraints. The problem is formulated as a robust min-max regret model aimed at achieving maximum total revenue, seeking an optimal trade-off between production and green technology investment. To optimize the solution to this problem, a robust optimization algorithm is proposed that characterizes uncertain demand through interval scenarios and introduces a min-max regret criterion to find an approximate optimal solution within an acceptable revenue range.
The proposed algorithm is tested using real-world instances. The results demonstrate that, under uncertain environments, our robust optimization algorithm exhibits superior robustness compared to experience methods. It effectively handles the risks associated with uncertainty in demand information and reflects the effectiveness of the strategy. Besides, in deterministic scenarios, our robust optimization algorithm not only demonstrates strong risk resistance but also guarantees revenue under average conditions. Therefore, implementing robust optimization techniques in uncertain environments to formulate robust optimization strategies against the uncertain risks involved in enterprises’ production and green technology investment decision-making processes represents an optimal approach.
The present study offers the following managerial insights: (1) The financial support provided by green credit, coupled with carbon emission constraints, exerts significant influence on firms’ production decisions and investments in green technologies. On one hand, green credit policies alleviate financial distress for enterprises. On the other hand, enterprises also confront pressures stemming from the carbon emission constraints imposed by green credit. Consequently, under the dual support and constraint of green credit, enterprises are incentivized to advance further towards green transformation and development. (2) Sensitivity analysis reveals that enterprises are more inclined to opt for green credit for financing green technology investments and operations under stricter carbon emission caps, lower interest rates, and robust market demands. Hence, it is imperative for governments to collaborate with financial institutions in designing the terms of green credit, including carbon emission constraints and interest rates, and to guide the market accordingly. This will encourage enterprises to actively leverage green credit to empower their production processes and thereby achieve green transformation.
The limitations of this paper are as follows: Firstly, in this study, the manufacturer’s decisions are limited to a single decision cycle, whereas in reality, multi-period decisions are often interconnected, the selection of empirical cases remain to be further enriched and expanded. Besides, the paper does not classify enterprises based on their production scale and level of greenness. Therefore, in future research, we will categorize enterprises prior to investigating the uncertainty risks involved in production and green technology investment decision-making processes across different enterprise types. Thirdly, we recognize that the implementation effects of green credit policies vary across different industries, regions, and enterprises. Therefore, in subsequent research, we plan to conduct a deeper analysis of these variations and their underlying causes. By collecting and analyzing more relevant data, combined with field research and expert interviews, we aim to uncover the implementation effects and influencing factors of green credit policies in various contexts. These limitations will simultaneously serve as directions for further research in this paper.
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Introduction: As a major source of pollutant and CO2 emissions, the industrial sector faces the dual challenge of pollution control and carbon reduction. Accurately identifying the synergy between pollutant and carbon emissions in different regions’ industrial sectors is crucial for developing regional policies for coordinated pollution reduction and carbon abatement.Methods: This study takes Guangzhou as a case study to quantitatively assess the synergistic effect of NOx and CO2 emissions reduction in its industrial sector. First, the LMDI decomposition method was applied to analyze the factors influencing the change in NOx emissions in Guangzhou’s industrial sector. Next, the CFGLS model was used to quantify the synergistic effect between NOx and CO2 emissions. Finally, a robustness check was conducted on the results.Results and discussion: The findings indicate that the synergistic effect in carbon reduction is the most significant driver of NOx reduction in Guangzhou’s industrial sector, with a 10,000-ton reduction in CO2 emissions leading to a 0.4-ton decrease in NOx emissions. The interaction effect analysis shows that increasing the use of natural gas and reducing energy intensity do not amplify this synergy. The results could provide valuable insights for coordinated pollution reduction and carbon abatement policies designing in Guangzhou’s industrial sector.Keywords: synergistic emission reduction, CO2 emission, NOx emission, industrial sector, CFGLS model
1 INTRODUCTION
The control of pollutants has long been a focal point in environmental concerns. Human energy activities have generated numerous pollutants such as SO2, NOx, PM2.5, etc., causing significant damage to the ecological environment and posing risks to human health (Burnett et al., 2018; Turner et al., 2016). Concurrently, the substantial emission of greenhouse gases has led to global warming, with climate risks becoming increasingly imminent. Thus, measures to control carbon emissions and gradually achieve net-zero emissions are emerging as an international consensus. China is confronted with the dual tasks of pollutant control and carbon reduction. In terms of pollutant control, the State Council of China has issued the “New Action Plan for Pollution Control,” outlining phased targets and implementation roadmaps. Regarding carbon reduction, China made significant commitments during the 75th session of the United Nations General Assembly: China aims to peak its carbon emissions by 2030 and strive for carbon neutrality by 2060. Environmental protection policies and climate actions are crucial topics for realizing China’s green development, with the Chinese government actively seeking pathways to synergistically advance both processes.
There is potential for synergistic emission reductions between CO2 and pollutants, as highlighted in studies such as (He et al., 2010), which quantified the synergistic effects of multiple pollutants. Synergistic governance is considered the most cost-effective approach to reduce both CO2 and pollutant emissions (Xue et al., 2023). Effective synergistic governance requires policies tailored to the specific characteristics of different regions and industries. Previous research has mainly focused on regional or urban levels (Chen et al., 2023; Jia et al., 2023; Shi et al., 2023), with limited studies on specific industries, leading to a lack of localized empirical research for industry-specific emission reduction policies. The industrial sector, as a major source of both pollutants and CO2 emissions, plays a critical role in achieving carbon neutrality. Therefore, quantifying and comprehensively analyzing the synergy between CO2 and pollutant emissions in the industrial sector is essential for formulating effective emission reduction policies.
According to data from the Ministry of Ecology and Environment of China, the NOx emissions from China’s industrial sector in 2022 amounted to 3.333 million tons, accounting for 32.7% of total industrial air pollutant emissions. Research indicates that from 2013 to 2019, the concentrations of PM2.5 and SO2 in 74 key Chinese cities decreased by 47% and 75%, respectively, while NOx concentrations only declined by 23%, indicating limited progress in NOx control (Chu et al., 2022). CO2 and NOx reduction in the industrial sector are key to achieving decarbonization and cleaner production. This paper uses Guangzhou’s industrial sector as a case study, decomposing the factors influencing NOx emissions with an extended Kaya-LMDI model and quantifying the synergistic effect of CO2 and NOx reductions using robust econometric models. It also examines the factors affecting the synergy through an interaction effect model, followed by a robustness check of the results.
This study aims to answer the following questions: 1) What are the factors influencing NOx emissions in Guangzhou’s industrial sector? 2) How can the synergistic effect of CO2 and NOx emission reductions in Guangzhou’s industrial sector be quantified? 3) How do changes in energy structure and energy intensity impact the synergy between CO2 and NOx reductions? The findings of this study will provide localized empirical evidence for coordinated emission reduction policies in Guangzhou’s industrial sector and offer insights for broader policy development in other industrial sectors.
The structure of this paper is outlined as follows: Section 2 reviews relevant studies; Section 3 introduces the research methods and data sources used; Section 4 presents the decomposition results of LMDI, followed by analysis and discussion of the results; Sections 5, 6 discuss the estimation results of synergistic effects and conduct robustness checks; finally, the last section summarizes the research findings and presents corresponding policy suggestions.
2 LITERATURE REVIEW
The concept of carbon emission reduction synergistic effects was first proposed by the IPCC in 2001. It refers to that GHG emission reductions can simultaneously lead to other socio-economic benefits, the most important part of which is to significantly contribute to synergistic emission reductions of pollutants (Dong et al., 2019). Research by Yi et al. (2023) supports the existence of synergistic effects, as they found that over the past decade, China has achieved the majority of pollutant reduction through coordinated governance efforts. Jia et al. (2024) evaluated the synergistic effects of PM2.5 and CO2 using a synergistic coordinate system and emission reduction elasticity coefficients, finding that synergistic effects exist across all major sectors. Jiao et al. (2020) analyzed the synergistic benefits of CO2 and atmospheric pollutant reduction measures in Guangzhou’s transportation sector using the LEAP model, revealing that promoting the electrification of the transportation sector can achieve the maximum synergistic benefits. Yu et al. (2020) decomposed the factors influencing the synergistic effects of CO2 and pollutant reduction in China’s power sector, indicating that the key to achieving coordinated emission reduction in the power industry lies in adjusting the energy structure and upgrading technologies. Zeng and He (2023) quantified the synergistic emission reduction effects of China’s transportation sector, and based on provincial data, their research showed that every 10,000 tons of CO2 emissions reduced in the transportation sector could lead to a reduction of 11,950 tons of pollutants.
Research on NOx synergistic effects is relatively scarce. Existing studies on NOx synergistic effects are mostly based on model simulations and scenario analyses (Feng et al., 2018; Shi et al., 2024; Yang et al., 2023). These models rely on a series of assumptions and are difficult to comprehensively explain the real world, with results serving only as trend references. Econometric methods and the LMDI method are widely used in NOx emission studies. Wang et al. (2019) used a geographically weighted regression model to analyze the driving factors of NOx emissions from energy consumption in 30 provinces of China, revealing significant north-south differences influenced by economic development and energy intensity. Ding et al. (2017) employed the LMDI method to analyze the driving factors of NOx emissions in provinces of China and regional challenges in emission reduction, finding that improvements in energy efficiency and technological advancements are the main drivers of emission reductions and regional controls on NOx would be more effective. In addition to national-level studies, some scholars have conducted in-depth studies on NOx emissions in individual regions (Xu et al., 2020; Zhang et al., 2015), while research on NOx emissions in more finely segmented sectors and industries is relatively scarce.
Research also indicates that appropriate policies can enhance the synergistic effect of CO2 and pollutant emission reductions. Bollen et al. (2009) used the integrated assessment model MERGE to simulate the synergistic effects of air pollutant and greenhouse gas emissions reductions, finding that some long-term climate change strategies simultaneously improve air quality in the short term. Plachinski et al. (2014) found that low-carbon policies in the U.S. power sector have synergistic effects in reducing PM2.5 emissions. Also, similar results were obtained in studies by Bollen and Brink (2014) and Alam et al. (2018), which used local data from the EU and Ireland, respectively. In terms of research of China, Yang et al. (2017) pointed out that, under China’s carbon peaking and carbon neutrality scenarios, pollutant emissions will be significantly reduced. Yang et al. (2017), highlighted the significant potential for CO2 and pollutant co-reduction in China’s industrial sector based on large-scale industrial enterprise data. However, the key to formulating appropriate synergistic emission reduction policies for the industrial sector lies in the rigorous quantification and empirical analysis of the synergistic effects. As specific targeted research is still limited this paper aims to expand existing insights in this area.
After summarizing existing literature, it is found that most studies focus on the synergistic effects between PM2.5 and SO2, few studies focus on the synergistic effects of NOx and CO2 reduction. Second, studies on synergistic effects are mainly conducted at the provincial or national level, lacking research on individual sectors. Third, research on synergistic effects of NOx and CO2 reduction in the industrial sector is limited, while the industrial sector serves as a major source of CO2 and NOx emissions. Fourth, research methods for synergistic effects are mostly based on model simulations and scenario analyses, while empirical and quantitative analyses are scarce.
Apart from previous studies, the main contributions of this paper are as follows: 1) Based on extended Kaya model and LMDI method, this paper decomposes the influencing factors of NOx emissions variation in the industrial sector of Guangzhou City and identifies the presence of synergistic effects; 2) Employing rigorous econometric models, this paper quantifies the synergistic effects of carbon reduction and NOx, deriving empirically-based conclusions and circumventing the drawbacks associated with excessive assumption; 3) This paper identifies the interaction between synergistic effects and factors such as energy structure and energy intensity, which can offer policy insights for effectively leveraging synergistic effects of carbon and NOx reduction.
3 METHOD AND DATA
3.1 LMDI decomposition method
LMDI method is a technique used to decompose changes in energy or carbon emissions (Ang, 2005). It decomposes overall changes into contributions from individual factors based on the logarithmic mean of the Divisia index. The advantage of this method lies in its ability to handle zero values and absence of residuals. Building upon the Kaya identity, we extend the relationship between NOx emissions and CO2 emissions, energy structure, industrial output, etc. In this expanded framework, the LMDI method can be meaningfully applied to decompose NOx emission factors.
The NOx emissions from the industrial sector of Guangzhou City can be decomposed into the following factors in Equation 1:
[image: Equation showing the calculation of \( NOXM_t \) as the sum over \( i \) of \( NOXM_{it} \), which equals the sum of \( \frac{NOXM_{it}}{CM_{it}} \times \frac{CM_{it}}{E_{it}} \times \frac{E_{it}}{IVA_{it}} \times IVA_{it} \).]
Here, i represents the i-th industry in industrial sector, and t represents the t-th year. [image: The expression displays the mathematical variable "NOXM" with a subscript "t".] represents the total NOx emissions from the industrial sector of Guangzhou City in year t. [image: Please upload the image or provide a link so I can generate accurate alt text for you.], [image: It seems like there is no image uploaded. Please provide the image or a URL, and I will be happy to help generate alternate text for it.] and [image: It seems like there was an issue with uploading the image. Please try again by using the image upload feature. If you want to provide additional context, feel free to include a caption.] represent the CO2 emissions, energy consumption, and industrial value added of the i-th industry in year t, respectively.
Let [image: Greek letters arranged as ΔΝΟΧΜ.] represents the change in pollutant emissions from the base year [image: It seems there was an error with the image upload. Please try uploading the image again, and I will help generate the alternate text for it.] to the target year [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.], then [image: Text with Greek letters ΔΝΟΧΜ, appearing in a stylized font against a plain background.] can be expressed as follows in Equation 2:
[image: Equation showing the change in NOXM, defined as NOXM after time t minus NOXM at time 0, equals the sum over i of CSE, ES, EI, and IV variables for time t, minus the sum of those variables for time 0. The result equals ΔNOXMCSE, plus ΔNOXMES, plus ΔNOXMEI, plus ΔNOXMIVA.]
Through further decomposition using the logarithmic index method, we can obtain the following Equations 3–6.
[image: The formula represents the change in NOXM related to CSE. It is an equation involving a summation over i, with a fraction where the numerator is the difference between NOXM and its reference value, multiplied by the natural logarithm of the ratio of CSE to its reference value. The denominator is the difference in the natural logarithm of NOXM values.]
[image: Equation showing the calculation of \(\Delta NOXM_{ES}\) as the sum over \(i\) of the difference between \(NOXM_{i}\) and \(NOXM_{i}^{o}\) divided by the natural logarithm of \(NOXM_{i}\) minus \(\ln NOXM_{i}^{o}\), multiplied by the natural logarithm of the ratio of \(ES_{i}\) to \(ES_{i}^{o}\). Marked as equation (4).]
[image: Equation for Delta NOXM with subscript EI. It equals the sum over i of the difference between NOXMi and its reference value, divided by the logarithmic difference of NOXMi and its reference, times the natural logarithm of the ratio of EIi to its reference, equation five.]
[image: Equation six shows the formula for \(\Delta NOXM_{MVA}\), which equals the sum of the differences in \(NOXM_i'\) and \(NOXM_i^o\) over the logarithmic difference of \(NOXM_i^o\), multiplied by the natural logarithm of the ratio of \(IVA_i^t\) to \(IVA_i^b\).]
As derived above, the NOx emissions from the industrial sector of Guangzhou City can be decomposed into four parts: [image: The image shows the mathematical expression "ΔNOXM with a subscript CSE."] represents the synergistic effect of CO2 reduction on NOx reduction; [image: Greek letters and subscript form an equation, featuring capital delta, followed by N, O, X, M, and an E and S in subscript.] represents the energy structure effect, reflecting the impact of changes in total energy carbon emission factors on NOx emissions; [image: Mathematical notation showing the expression "Delta NOX M subscript EI".] represents the energy intensity effect, reflecting the impact of changes in energy intensity on NOx emissions; [image: ΔΝΟΧΜ with subscript ΙVΑ.] represents the industrial output effect, reflecting the impact of changes in industrial sector output on NOx emissions.
3.2 Two-way fixed-effects model of NOx reduction
To further quantify the synergistic effects between CO2 and NOx, we established an econometric model for NOx reduction. Building upon the decomposition results of the LMDI, this model takes the NOx reduction quantity as the dependent variable and the CO2 reduction quantity as the core explanatory variable, with the estimated coefficient [image: It seems there was an issue with providing the image. Please upload the image or describe it in more detail so I can help generate the alternate text for it.] representing the amount of NOx reduction per unit of CO2 reduction. To control other factors’ influences, variables reflecting energy structure, energy intensity, and industrial production scale were included in the model. Moreover, considering the differences in industry structure, energy preferences, and policy factors among various industrial sectors, individual and time fixed effects were introduced to account for common shocks. The two-way fixed-effects model is formulated as follows in Equation 7:
[image: Mathematical equation showing a model: NMRₖₜ equals β₀ plus β₁CMRₖₜ plus β₂ESₖₜ plus β₃EIₖₜ plus β₄IVA₁ₜ plus β₅IVA₂ₖₜ plus γₜ plus δₖ plus εₖₜ, labeled equation seven.]
where i represents the i-th industry and t represents the year. [image: Certainly! Please upload the image you'd like me to analyze, and I can generate the alternate text for it.] represents NOx reduction and [image: Sure, please upload the image or provide a URL for me to generate the alt text.] represents CO2 reduction; [image: Please upload the image or provide a URL so I can generate the alternate text for it.] denotes the energy structure, given that the carbon emission factor of natural gas is relatively low, the energy structure is represented by the proportion of natural gas in the industry’s energy consumption; [image: It seems like there might have been an error with the image upload. Please try uploading the image again, and I'll be happy to help with the alternate text.] stands for energy intensity; [image: Please upload an image or provide a URL for me to generate the alternate text.] indicates industrial value added; [image: I cannot view or analyze the image directly. Please upload the image or provide a detailed description so I can help generate the appropriate alt text.] represents the quadratic term of industrial value added. The introduction of this term aims to observe whether there exists an inverted U-shaped curve relationship between industrial value added and NOx reduction, which assists the government in formulating corresponding emission control strategies according to different stages of industrial economic development. [image: If you have an image you would like me to describe, please upload it or provide the URL. Let me know if you need help with this!] represents the unobserved random error term. [image: Please upload the image or provide a URL so I can generate the alternate text for it.] represents industry fixed effects, representing the unobserved effects of each industry that do not vary over time, such as differences in energy demand and industrial production processes among industries. [image: It seems there was an issue with the image upload. Please try uploading the image again to receive an accurate alt text description.] represents time fixed effects. Considering that including time dummy variables might lead to a loss of estimation parameters’ degrees of freedom and increase variance, in order to save model parameters, a time trend term is introduced into the model to control time effects, which include various factors such as energy prices and environmental policies.
The fixed effects model employed in this study is based on the following statistical assumptions regarding the properties of the error term.
1) The error term has a zero mean and is uncorrelated with the explanatory variables, individual fixed effects, and time fixed effects: [image: Expectation of epsilon sub it given x sub it, gamma sub t, and delta sub i equals zero.] 2) The error term is homoscedastic, with no contemporaneous correlation across panels or serial correlation within panels. 3) The relationship between the dependent variable and explanatory variables is assumed to be linear, consistent with the theoretical framework underpinning this study. These assumptions will be validated and tested in Section 5 to determine the appropriate regression model.
3.3 Variable descriptions and data sources
The basic data used in this study primarily come from the Guangzhou Statistical Yearbook from 2011 to 2022. Based on the national economic industry classification of China, we subdivide Guangzhou’s industrial sector into ten main industries: Power (PWR), Petrochemicals (PET), Textiles (TEX), Paper and Printing (P&P), Biopharmaceuticals (BioPhar), Iron, Equipment Manufacturing (EM), Information Technology (IT), Building Materials (BM), Other Industries. The CO2 emissions of each industry were calculated according to the following Equation 8.
[image: Mathematical equation expressing E as the sum of the products of A subscript i and µ subscript i, denoted as E equals summation of A subscript i times µ subscript i.]
where: E represents the total CO2 emissions of the industry, [image: Please upload the image or provide a URL. If there's any additional context or description you'd like to include, feel free to add that as well.] represents the consumption of the i-th type of fuel in the industry, [image: Please upload the image you would like me to generate alternate text for.] represents the carbon emission factor of the i-th type of fuel.
The fuel consumption data is sourced from the energy consumption data provided in the Guangzhou Statistical Yearbook, while the carbon emission factors are sourced from the “Guidelines for Compilation of Greenhouse Gas Inventories for Cities and Counties (Districts) in Guangdong Province (Trial),” respectively.
The formula for calculating the dependent variable, NOx reduction, in the econometric model is as follows in Equation 9.
[image: Mathematical equation showing \( NMR_t = NOX{M_{t+1}} - NOX{M_t} \), labeled as equation (9).]
Here, [image: To generate the alt text, please upload the image or provide a URL. If you like, you can also add a caption for more context.] represents the NOx reduction for the i-th industry in year t.
The formula for the core explanatory variable, CO2 reduction, is as follows in Equation 10:
[image: Equation showing CMR\(_t\) equals CM\(_{t-1}\) minus CM\(_t\), marked as equation ten.]
where [image: Please upload the image so I can generate the alternate text for it.] represents the CO2 reduction for the i-th industry in year t.
The summary of all variables is presented in Table 2. The descriptive statistics of variables are presented in Table 3.
TABLE 1 | CO2 emission factors for different energy consumption categories.
[image: Table listing energy consumption categories and their carbon emission factors. Anthracite: 1.909, Fuel Oil: 3.0472, Diesel Oil: 3.1451, Liquefied Petroleum: 2.9240, Natural Gas: 21.650, Liquefied Natural Gas: 2.8639, Electricity: 6.379.]TABLE 2 | Summary of variables.
[image: Table detailing variables related to environmental and economic metrics. Includes columns: Variable, Definition, Unit, and Source. Variables are NMR (NOx reduction), CMR (CO₂ reduction), ES (Proportion of Natural Gas Consumption), EI (Energy Intensity), and IVA (Industrial Value Added). Units vary by metric, and sources include survey data and Statistical Yearbook data. All economic data are adjusted to 2011 comparable prices.]TABLE 3 | Descriptive statistics of variables.
[image: Statistical table displaying five variables: NMR, CMR, ES, EI, and IVA. Each has 120 observations. Means are 0.568, 17.971, 11.733, 0.785, and 559.947 respectively. Standard deviations are 2.051, 144.102, 9.719, 0.752, and 608.378. Minimum values are −1.301, −269.958, 1.839, 0.125, and 30.117. Maximum values are 15.447, 1146.876, 54.867, 4.365, and 3137.979.]4 LMDI DECOMPOSITION RESULTS ANALYSIS
4.1 Overall decomposition results
Since the “12th Five-Year Plan” period, Guangzhou has actively engaged in pollution reduction and carbon reduction efforts, improving its energy structure and optimizing industrial layout through measures such as technological improvement, energy substitution, and eliminating outdated production capacity. By 2022, the energy intensity of Guangzhou’s industrial sector had decreased by 55% compared to 2011, while the CO2 and NOx emissions reductions reached 26.063 million tons and 63,949 tons, respectively, representing a decrease of 29.5% and 85.4% compared to 2011.
With LMDI method, we decomposed the annual changes in NOx emissions in Guangzhou’s industrial sector from 2011 to 2022 into four influencing factors: CO2 synergistic reduction effect (CSE), energy structure effect (ES), energy intensity effect (EI), and industrial output effect (IVA), with “Total” representing the total change in NOx emissions for that year. The specific decomposition results are shown in Figure 1.
[image: Bar chart showing cumulative changes in nitrogen oxides (NOx) emissions by mode from 2008 to 2020, measured in thousand tons. Categories represented include Total, EVA, L2, E5, and G5R. Emissions vary significantly, with notable reductions from 2010 to 2015.]FIGURE 1 | The decomposition result of NOx emission change in Guangzhou Industrial sector.
As shown in Figure 1, the NOx emissions from Guangzhou’s industrial sector exhibits an overall downward trend from 2011 to 2019, with the most significant decrease in 2016. There is a slight increase in 2021, followed by a continued decrease in 2022. As the main factor contributing to the increase in NOx emission, the industrial output effect has a consistent positive impact on NOx emissions, indicating that the expansion of production scale leads to a corresponding increase in emissions of pollutants such as NOx.
The main contribution to NOx reduction comes from the synergistic effect of carbon reduction, with an average annual carbon reduction synergy effect of 4,650 tons from 2011 to 2022, indicating significant potential for NOx reduction through carbon synergy. The energy intensity effect contributes an average of 3,025 tons per year to NOx reduction, second only to the carbon reduction synergy effect. Years with negative energy intensity effects are accompanied by a decrease in energy intensity, indicating that improvements in energy efficiency could effectively reduce fossil fuel consumption so that promote NOx reduction. Compared to other effects, the energy structure effect is not significant, suggesting that overall changes in energy carbon emission factors in Guangzhou’s industrial sector are not pronounced, indicating significant potential for the industrial sector’s energy clean-up.
In summary, the synergistic effect of carbon reduction, energy intensity effect, and industrial output effect have a significant impact on NOx reduction in Guangzhou’s industrial sector, while the energy structure effect has a weaker influence. The industrial output effect has a positive impact, leading to a noticeable increase in NOx emissions with an increase in industrial output. The synergistic effect of carbon reduction and the energy intensity effect contribute mainly to negative effects. Among all influencing factors, the contribution of the synergistic effect of carbon reduction to NOx reduction is the largest, making it the most important pathway for NOx reduction.
4.2 Decomposition results by industry
Figure 2 illustrates the decomposition results of NOx emission changes in the 10 industry categories of Guangzhou’s industrial sector. The total emission change is obtained by subtracting the NOx emissions in 2022 from those in 2011 for each industry, representing the total emission change from 2011 to 2022. Due to the significant disparity in emission levels between the electricity industry and other industries, the decomposition results are presented as the contribution of each influencing factor to the absolute value of the total effect. The specific calculation method is described in Equation 11.
[image: Formula showing "Contribution equals Effect sub i over absolute value of Total", with equation number eleven on the right.]
[image: Stacked bar chart showing the contributions of different factors (IYA, BI, ES, CSE) to changes in NOx emissions across various vehicle types, with percentages ranging from -200% to 150%. Each vehicle type shows positive or negative contributions from these factors.]FIGURE 2 | Decomposition results of NOx emission changes by industry.
Consistent with the analysis in Section 4.1, we decomposed the NOx emission changes in each industry into the sum of four influencing factors. They are the CO2 synergistic emission reduction effect (CSE), energy structure effect (ES), energy intensity effect (EI), and industrial output effect (IVA).
From Figure 2, it is evident that the synergistic effect of carbon emissions contributes the most to NOx reduction in each industry, indicating that the synergistic effect of carbon reduction is an important pathway for NOx reduction in the industrial sector. Additionally, the contribution of the CO2 reduction synergistic effect to NOx reduction varies significantly across different industries. The power industry exhibits the highest one, with the synergic effect accounting for a reduction of 41,111 tons of NO, and followed by the building materials and petrochemical industries, with contributions of 5,373.3 tons and 3,972.5 tons, respectively. The contribution of energy intensity effect to NOx reduction is second only to the synergistic effect of carbon reduction, and technological progress and improved energy efficiency in each industry significantly promote NOx reduction. The energy intensity effect in the iron industry is positive, which is related to the increase in energy intensity in the iron industry from 2011 to 2022. The iron industry should actively conduct technological research and development, optimize production processes, and reduce energy intensity to improve economic benefits while reducing emissions of pollutants such as NOx. The industrial output effect has a significant positive impact on NOx emissions, indicating that the expansion of production scale leads to a corresponding increase in emissions of pollutants such as NOx. The industrial sector should further transform its current production methods towards sustainable production, introducing negative carbon technologies and pollution control technologies to address environmental externalities during the production process.
Compared to other effects, the energy structure effect is not significant. Except for power and iron, the energy structure effect in other industries is positive, indicating that these industries need to quickly transition their energy structure to increase the proportion of clean fuels, achieving the goal of synergistic carbon reduction and pollution reduction.
In summary, carbon emission synergistic effect and energy intensity effect serve as significant means and pathways for NOx synergistic reduction in Guangzhou’s industrial sectors. All industries should take proactive measures to reduce CO2 emissions while enhancing technological innovation to improve energy efficiency, thereby effectively leveraging energy intensity effects to facilitate the reduction of pollutants such as NOx. There is ample room for optimizing the energy structure across various industrial sectors in Guangzhou. Continuous efforts should be made to increase the proportion of high-quality clean energy usage and explore potential fuel substitutions to lower energy emission intensity factors, transitioning towards a sustainable energy structure.
5 ANALYSIS AND DISCUSSION OF ECONOMETRIC MODEL RESULTS
The variables included in the econometric model (7) may be non-stationary sequences, which can lead to “pseudo-regression.” Therefore, before conducting regression analysis, we perform unit root tests on the variables involved in the econometric model. Considering the relatively small panel sample size, we employ the IPS test. The results of the IPS test are presented in Table 4.
TABLE 4 | IPS test result.
[image: Table displaying IPS test unit root results for variables with their P-values. In the "Levels" section: NMR is -2.8395 (0.0023), CMR is -1.0597 (0.1446), ES is 0.7143 (0.7625), EI is -3.4785 (0.0003), IVA is -2.2822 (0.0112). In the "First difference" section: NMR is -11.5221 (0.0000), CMR is -7.2065 (0.0000), ES is -1.8303 (0.0336), EI is -12.6974 (0.0000), IVA is -3.3077 (0.0005).]The results indicate that some variables are non-stationary at the level, but the first-difference series of all variables reject the null hypothesis of having a unit root at least at the 0.05 significance level. Therefore, all variables are first-order integrated. To determine the potential cointegration relationships, we conduct the Kao cointegration test between the explanatory and dependent variables. The results of the Kao cointegration test are presented in Table 5.
TABLE 5 | Kao cointegration test result.
[image: Table displaying statistical test results, including the test type, statistic, and p-value: Modified Dickey-Fuller t, -2.8764, 0.0020; Dickey-Fuller t, -8.1490, 0.0000; Augmented Dickey-Fuller t, -2.1177, 0.0171; Unadjusted modified Dickey-Fuller t, -7.7627, 0.0000; Unadjusted modified Dickey-Fuller t, -10.0633, 0.0000.]The results of the Kao cointegration test strongly reject the null hypothesis that there is no cointegration relationship between the dependent and explanatory variables. There exists a “long-term equilibrium” relationship among the variables, allowing for regression analysis using the original variable sequences. Furthermore, to address the possibility of multicollinearity among the variables, we computed the VIF statistic. The results in Table 6 show that all VIF, values are below 10, indicating that multicollinearity is not a concern among the variables (Hair et al., 2009).
TABLE 6 | VIF test.
[image: Table displaying variables and their Variance Inflation Factor (VIF) values. IVA has a VIF of 7.990, IVA2 has 7.430, EI has 1.190, ES has 1.050, CMR has 1.020, and the mean value is 3.730.]Moreover, to ensure the effectiveness of the fixed effects model we employed, a Hausman test is conducted to select the appropriate estimation model. The results of the Hausman test are presented in Table 7. The test results strongly reject the null hypothesis, indicating that in this study, the fixed effects model is more suitable than the random effects model.
TABLE 7 | Result of Hausman test.
[image: Table displays results of the Hausman test: Statistic is 18.25 and p-value is 0.0011.]To employ the most appropriate estimation methods, we conduct tests for between-group heteroskedasticity, within-group autocorrelation, and between-group contemporaneous correlation on the panel data. The test results are presented in Table 8. The Modified Wald test results strongly reject the null hypothesis of “homoskedasticity,” indicating the presence of between-group heteroskedasticity in the panel data.
TABLE 8 | Results of the tests.
[image: Table with three statistical tests: Between-group heteroscedasticity test shows Modified Wald’s test with a statistic of 17927.25 and P-value of 0.0000. Within-group autocorrelation tests show Wooldridge’s test with a statistic of 0.084 and P-value of 0.7790. Intergroup simultaneous correlation tests show Pesaran’s test with a statistic of 9.513, and Friedman’s test with a statistic of 49.031, both with a P-value of 0.0000.]We perform the Wooldridge test for within-group autocorrelation, and the results indicate that the null hypothesis of “no first-order within-group autocorrelation” cannot be rejected, suggesting no issue of within-group autocorrelation in the panel data. Additionally, we conduct Pesaran’s test and Friedman’s test for between-group contemporaneous correlation, and both tests strongly reject the null hypothesis of “no between-group contemporaneous correlation,” indicating the need to consider the issue of between-group contemporaneous correlation.
Table 8 results indicate that there is between-group heteroskedasticity and between-group contemporaneous correlation in the panel data of Guangzhou’s industrial sectors. Thus, appropriate estimation methods are required to estimate the fixed-effects model. In this case, the OLS method cannot provide consistent estimates, and instead, the FGLS method is needed. Specifically, the FGLS can only handle within-group autocorrelation, whereas the comprehensive FGLS (CFGLS) estimation can simultaneously address issues of between-group heteroskedasticity, within-group autocorrelation, and between-group contemporaneous correlation. We employ the CFGLS model to estimate the synergistic effects between CO2 and NOx emission. Additionally, for comparison, we will report the results of both FE, FGLS and CFGLS methods.
The estimation results of the CFGLS model, which effectively addresses between-group heteroskedasticity and between-group contemporaneous correlation, indicate significant synergistic effects between CO2 and NOx emission reduction. As shown in Model (3) of Table 9, the estimated coefficient of the core explanatory variable CMR (CO2 emission reduction) on the dependent variable NMR is 0.0004, significant at the 0.001 level. It is noteworthy that the variables used in the model are measured in CMR (in ten thousand tons) and NMR (in thousand tons), implying that each ten thousand tons of CO2 reduction results in a 0.4-ton reduction in NOx emissions. The coefficient of ES is significantly positive, which indicates that actively improving the energy structure and increasing the proportion of natural gas usage is one of the ways to reduce NOx emissions. Furthermore, the estimated coefficient of the variable EI, representing energy intensity, is significantly negative, indicating that a reduction in energy intensity significantly promotes NOx reduction, consistent with the decomposition results of LMDI. The improvement in energy efficiency brought about by technological progress is an important way to promote NOx reduction. The coefficient of the first-order term of industrial value-added is significantly positive, while the coefficient of the second-order term is significantly negative, indicating a reverse U-shaped relationship between industrial value-added and NOx reduction, with the potential for NOx reduction increasing first and then decreasing with the development of industrial economy.
TABLE 9 | Estimated results of different methods.
[image: Regression results are presented with six models: FE, FGLS, and four CFGS methods. Variables like CMR, ES, EI, IVA, IVA2, and interactions with CMR are included. Coefficients and standard errors in parentheses show significance levels. Observations total 120, with fixed effects for sector and time. Statistical significance is indicated by asterisks: * for p < 0.05, ** for p < 0.01, *** for p < 0.001.]To explore the differences in synergistic effects among different industries, we introduced interaction terms between industry dummy variables and CMR, as shown in Model (4) of Table 9. The interaction term between the dummy variable for the Power industry and CMR is significantly negative, indicating that the synergistic emission reduction potential of the Power industry is significantly greater than that of other industries.
To further investigate the factors influencing the synergistic effects of CO2 and NOx reduction, the interaction effects between CMR and other variables are analyzed. In Model (5), the interaction term between variable ES and CMR is added. It is found that the coefficient of the interaction term is positive but close to zero. This suggests that adjusting the energy structure to increase the proportion of natural gas consumption does not significantly promote synergistic effects.
In Model (6), the interaction term between variable EI and CO2redu is added. The results show that the coefficient of the interaction term is significantly positive, indicating that a decrease in energy intensity does not promote synergistic effects; instead, it weakens them. According to the energy rebound effect, a decrease in energy intensity improves energy efficiency, leading to a decrease in the effective price of energy services. The lower price stimulates more energy demand, which may result in increased energy consumption and emissions of pollutants such as NOx.
6 ROBUSTNESS TESTS
6.1 Lagging the core explanatory variables by one period
The core explanatory variable CMR may suffer from endogeneity issues. To address potential endogeneity concerns, we lagged the core explanatory variable by one period and conduct the regression again. The lagged variable LCMR represents the CO2 emission reduction from the previous period, which cannot affect the current period’s NOx emission reduction and is uncorrelated with the disturbances of the current period. The regression results, as shown in Model (1) of Table 10, still exhibit significantly positive coefficient estimates for the core explanatory variable, indicating a significant synergistic effect between CO2 and NOx reduction. The regression results for other variables are also similar to the baseline results, which confirm the robustness of the baseline results.
TABLE 10 | Results of robustness tests.
[image: A regression table with two models represented as columns labeled (1) and (2), both using CFGLS method. Variables include LCMR, CMR, ES, EI, IVA, IVA2, T, and a constant. Each variable's coefficient is provided with standard errors in parentheses. Significant levels are marked with asterisks, with notes indicating significance: * for p < 0.05, ** for p < 0.01, and *** for p < 0.001. Both models have 110 observations and include sector and time fixed effects.]6.2 Excluding exceptional years
Due to the impact of COVID-19, the Chinese government implemented strict measures to restrict outdoor activities and industrial production in 2020, leading to a sharp decrease in CO2 emissions (Liang et al., 2023). Research from Nanchang, China, also indicates that compared to the same period in 2019, the pandemic in 2020 resulted in a 2% reduction in CO2 emissions, with reductions of 54.5% and 18.9% in the power and manufacturing industries, respectively. Furthermore, CO2 emissions in 2021 increased by 14.3%–14.9% compared to 2019, indicating a rapid recovery of economic activities to pre-pandemic levels (Hu et al., 2022). The “unexpected” decline in emissions from industrial activities in 2020 due to the pandemic may interfere with the research results. To address this, we exclude the data from 2020 and conduct the regression again to verify the robustness of the results. Since industrial activities and emission levels in 2021 have essentially returned to pre-pandemic levels, data from that year are not excluded. The regression results, as shown in Model (2) of Table 10, indicate that the estimated coefficient for the core explanatory variable CMR remains significantly positive, and other coefficients are similar to the baseline regression results, demonstrating the robustness of our baseline regression results.
7 CONCLUSION
Pollutant emissions and carbon emissions share the same origin, promoting synergies in reducing pollution and carbon emission has become an inevitable choice to facilitate the comprehensive green transformation of China’s economic and social development. This paper, focusing on the industrial sector of Guangzhou City, employs LMDI method to decompose the change in NOx emissions into the effects of four influencing factors. Additionally, a two-way fixed effects model is employed to quantify the synergistic reduction effects between CO2 and NOx.
The LMDI decomposition results indicate the following: 1) The largest driver of NOx reduction in Guangzhou’s industrial sector is the synergistic reduction effect resulting from CO2 mitigation, followed by the emission reduction effect due to decreased energy intensity. 2) Economic growth in the industrial sector is the primary driver of increased NOx emissions. 3) All industries within the industrial sector exhibit significant synergistic reduction effects between CO2 and NOx, with the power industry having the highest synergistic reduction effect.
Based on the LMDI decomposition results, the CFGLS model was used to quantify the synergistic reduction effects between CO2 and NOx in Guangzhou’s industrial sector. The key conclusions are as follows: 1) The synergistic reduction effect between CO2 and NOx is significant at the 0.01 level, with a reduction of 10,000 tons of CO2 leading to a reduction of 0.4 tons of NOx. 2) Increasing the proportion of natural gas usage can effectively promote NOx reduction. 3) There is an inverted U-shaped curve between NOx reduction and industrial added value, indicating that NOx reduction potential first increases and then decreases with industrial economic development. 4) The study of interaction effects shows that the synergistic carbon reduction effect in the power industry is higher than in other industries, highlighting the need to prioritize synergistic reduction in power industry.
This paper identifies the influencing factors of NOx emissions in Guangzhou’s industrial sector and quantifies the synergistic reduction effects between NOx and CO2. It can provide valuable insights into achieving joint NOx and CO2 reductions through synergistic effects in the industrial sector.
This study decomposes the factors influencing NOx emissions in Guangzhou’s industrial sector, quantifies the synergistic emission reduction effects between NOx and CO2, and analyzes the impact of changes in energy intensity and energy structure on this synergy, providing comprehensive and robust conclusions. However, several limitations should be acknowledged. Due to data availability, the panel data used in this study covers the period from 2011 to 2022. Future research could expand the time span by incorporating additional data sources, thereby providing results based on a larger sample. This study focuses only on Guangzhou’s industrial sector, future research could integrate data from multiple regions to provide more generalizable empirical conclusions. While this study offers a thorough analysis of the synergistic effects, it does not delve into specific synergistic emission reduction measures, and future studies could explore this aspect further.
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Digital infrastructure, serving as the fundamental carrier of data elements, allows China to balance economic growth with reduced carbon intensity, opening new pathways for sustainable economic development globally. This study employs a Difference-in-Differences (DID) approach to investigate the impact of digital infrastructure on urban total factor carbon emission performance, and extend the research perspective to a micro level, focusing on mechanisms involving household consumption and enterprise production. The results demonstrate that (1) Digital infrastructure can enhances urban carbon performance by promoting green product innovation of enterprises and changing consumers’ consumption patterns (2) Heterogeneity analysis indicates that cities with higher income and educational levels among residents experience a more significant improvement in carbon performance, and digital infrastructure’s impact varies when combined with enterprise characteristics and technological capabilities, with non-state-owned enterprises and high-tech enterprises having relatively higher carbon-saving effects. The research results of this paper emphasize role of micro-subjects in the process of digital infrastructure affecting total-factor carbon emission performance, which has important theoretical and practical significance for guiding future economic policies and strategies.
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1 INTRODUCTION
Sustainable development is a common goal of all countries in the world, and finding the balance between economic development and environmental protection is a challenge for all countries. Total factor carbon emission performance is an evaluation metric that comprehensively assesses expected economic output and unintended carbon dioxide emissions, accurately reflecting the coordination between economic growth and carbon emissions (Bai et al., 2019). This metric not only serves as a crucial assessment tool for China but also for sustainable development globally. As the world’s second-largest economy, China is also committed to promoting global climate governance while promoting economic development. Its balanced strategy has had a profound impact on green economic growth at home and abroad. At the same time, China is increasingly concerned about the improvement of domestic “digital power” and “computing power” (Gong et al., 2023).
With the advent of the digital economy, data elements have emerged as key production factors, profoundly influencing total factor carbon emission performance. Data elements, characterized by their inherent cleanliness, have partially replaced traditional production factors, bridging the gap between economic growth and reduced carbon intensity and optimizing the input structure of production factors (Aghion et al., 2005). Digital infrastructure, as the core application of data elements, reshapes the allocation of production factors and promotes digital production methods, stimulating new productive forces and thereby enhancing total factor carbon emission performance. However, the potential high-emission characteristics associated with the construction and operation of digital infrastructure may pose constraints on its role in improving carbon performance. Thus, this paper seeks to address a core question: Can digital infrastructure effectively enhance urban total factor carbon emission performance?
Enterprises and residents, as key market players, contribute to economic growth through their production and consumption activities, but they also inevitably exacerbate urban carbon emissions. Which are important factors affecting the performance of total factor carbon emission, but often be ignored in previous studies. During the digital economic development phase, enterprises and residents are inevitably affected by the input of data elements. As the cornerstone of the digital economy, digital infrastructure fundamentally transforms production and consumption patterns, thus influencing carbon emission performance on a macro-regional scale.
Specifically, during the construction and improvement of digital infrastructure, enterprises and consumers—its direct beneficiaries—can leverage the information advantages it provides to enhance efficiency and optimize the entire chain from production and distribution to consumption (Chang et al., 2024). Through digital platform, enterprises can optimize resource allocation and internal management, which helps to improve enterprise efficiency; at the same time, it can help enterprises to learn new technologies and promote production change. For consumers, through information sharing, the use of digital infrastructure will affect consumers to change their preferences, influence their consumption concepts, and encourage consumers to pursue online and offline actions for environmental protection (Ge et al., 2022). This transformation not only promotes green products and green consumption but also facilitates a low-carbon transition in economic growth.
The construction of broadband network infrastructure is an important representative of the digital infrastructure construction, as a strategic public infrastructure of national importance, it plays an essential role in economic and technological advancements. To further promote broadband network construction and achieve sustainable socio-economic development, the State Council issued the “Broadband China” strategy and implementation plan in 2013, followed by the approval of 120 “Broadband China” pilot cities in 2014, 2015, and 2016. Supported by policy, these pilot cities significantly enhanced their digital infrastructure construction levels, potentially influencing the behavior of market participants and urban green development.
Therefore, this study adopts the “Broadband China” strategy as a policy experiment, employing a DID method to explore the influence effect of urban digital infrastructure development on the performance of urban total factor carbon emission in China. At the same time, unify the enterprise and consumers into the same research system, from the perspective of micro market, through the mechanism of inspection and heterogeneity analysis to explore the influence of enterprise and consumers on the digital infrastructure to urban total factor carbon performance, explore the green supply and demand cycle in the market, carry a more comprehensive investigation about enterprise and consumer together influence in the process of carbon reduction.
As the economic resources and other conditions of developing countries differ greatly from those of developed countries, the green development path of developed countries is inapplicable to some extent. As a member of developing countries, China’s green development path is conducive to its own sustainable development, and also universal for developing countries. By exploring the green economic effect of digital infrastructure, can help developing countries under the limitation of resources, they can improve domestic green development level by improving the level of digital infrastructure to achieve the effect of killing two birds with one stone, or encourage developing countries to optimize the allocation of domestic resources, reduce the digital infrastructure resource allocation to better development of green economy. Therefore, exploring how China’s digital infrastructure affects total factor carbon emission performance is crucial for promoting green economic development in China and other developing countries globally.
The possible marginal contribution of this paper as follows: firstly, enrich the related research on the impact of digital infrastructure development on urban total factor carbon emission performance, provides reference value for green development in developing countries by taking Chinese cities as the research object; Secondly, to explore the role of market micro-entities in the national green development from the micro perspective of enterprises and residents, combining enterprises and residents as producers and consumers to explore the role of green product innovation and green consumption within a unified framework, Provide new perspectives and evidence for digital infrastructure influencing total factor carbon emission performance, it expanding the existing literature and has important theoretical and practical significance for guiding the future economic policy and environmental strategies.
The rest of this paper is arranged as follows: the second part is the literature review; the third part explains the theoretical mechanism and proposes the research hypothesis; the fourth part is the research design, introduces the construction of data, model and main indicators; the fifth part is empirical analysis; the sixth part is divided into mechanism inspection and heterogeneity analysis; and the seventh part is the conclusion and policy suggestion.
2 LITERATURE REVIEW
Existing literature exploring the impact of digital infrastructure on urban carbon emission performance employs various methods and perspectives. Some studies use the “Broadband China” policy as a quasi-natural experiment case for digital infrastructure construction (Yao et al., 2023) or employ entropy methods to construct indicator systems for measuring the level of digital infrastructure construction (Kou and Xu, 2022). These studies, mostly based on panel data from Chinese cities, form two representative viewpoints. On one hand, some studies suggest that the construction of digital infrastructure can effectively enhance urban carbon emission performance and promote low-carbon development. On the other hand, some argue that the impact of digital infrastructure construction is complex, with potential differences between short-term and long-term effects. These studies provide a rich theoretical foundation and diverse analytical perspectives for this paper.
One category of literature suggests that digital infrastructure can improve urban carbon emission performance, promoting low-carbon urban development. Scholars generally believe that digital infrastructure construction can achieve urban energy-saving and emission reduction goals by enhancing green innovation levels (Sun, 2022; Han et al., 2022; Liu et al., 2024) and reducing energy intensity (Lu et al., 2023; Wan et al., 2023). Additionally, Haseeb et al. (2019) argue that digital infrastructure construction can improve urban total factor carbon emission performance through industrial structure transformation. Yu and Hu (2024) state that the aggregation of digital service industries plays a crucial role in enhancing urban carbon performance via digital infrastructure. From a micro perspective, increasing attention is being paid to enterprises and residents as users of digital infrastructure and environmental pollution contributors. Du et al. (2023) suggest that digital infrastructure can improve carbon emission performance by increasing public environmental awareness. Peng H. R. et al. (2024) posit that digital infrastructure can also promote carbon reduction by encouraging green lifestyle changes among residents. Wang and Li (2023) observe that the carbon reduction effect of the digital economy is related to residents’ income levels. Li et al. (2024) find that the digital economy facilitates low-carbon development by alleviating financing constraints for enterprises. Guo et al. (2024) propose that digital infrastructure promotes enterprises’ green transformation for carbon reduction.
Another category of literature argues that the impact of digital infrastructure construction on urban carbon emission performance is nonlinear. Wang C. Q. et al. (2023) state that digital infrastructure construction could increase carbon emissions for a prolonged period, inhibiting improvements in carbon performance. Lan and Zhu (2023) believe that digital infrastructure has a nonlinear relationship with carbon rebound effects and total carbon factor productivity, influencing its impact on regional carbon performance. Tang and Yang (2023) argue that digital infrastructure significantly increases carbon emissions through mechanisms such as inducing per capita energy consumption, total energy input, diminishing marginal productivity, and increasing energy intensity. Hu et al. (2023) suggest that regions should leverage industrial upgrades and environmentally sustainable regional cooperation to mitigate the negative nonlinear impacts of digital infrastructure on carbon reduction.
Reviewing the existing literature reveals that scholars have closely linked digital infrastructure construction with carbon emission issues, focusing on the impact of economic construction on ecological development. This provides valuable insights for this study. However, empirical research on the specific effects of digital infrastructure on carbon emission performance yields inconsistent conclusions, indicating the need for further exploration in this field. Current research predominantly adopts a macro perspective, focusing on how technological innovation, green technology development, and industrial structure upgrades affect carbon performance. In contrast, studies exploring the micro mechanisms of digital infrastructure construction’s impact on carbon emission performance from the behaviors of market micro-entities—enterprises and consumers—are relatively scarce. Existing studies often analyze the carbon reduction behaviors of enterprises and consumers separately, overlooking the complex, interdependent relationships between them. This study incorporates both entities into a unified research framework for comprehensive analysis, revealing how digital infrastructure influences urban carbon emission performance and its micro-mechanisms. This approach provides a solid theoretical basis for formulating more comprehensive and effective carbon reduction strategies.
3 THEORETICAL MECHANISMS AND RESEARCH HYPOTHESES
3.1 Digital infrastructure construction and total factor carbon emission performance
Total factor carbon emission performance, based on production theory, is measured by considering multiple factor inputs, evaluating the combined effects of economic output and carbon dioxide emissions. Digital infrastructure, as a fundamental carrier of data elements, can alter existing production factor configurations through the application of data elements, thus influencing expected economic outputs and unintended carbon dioxide emissions, ultimately affecting urban total factor carbon emission performance.
Due to the significant reliance of digital infrastructure on energy, which generates considerable carbon emissions, the impact of digital infrastructure on urban carbon performance is complex. On one hand, urban digitalization and intelligentization increase information accessibility, leading to efficient resource allocation and improved energy utilization. When energy efficiency improves, carbon emissions per unit of energy usage remain constant, but the generated economic increment increases, enhancing total factor carbon emission performance. On the other hand, considering the energy rebound effect, digital infrastructure might have a counterproductive impact on urban carbon performance. First, the construction of digital infrastructure itself might increase carbon emissions due to its high energy consumption during construction and operation (Avom et al., 2020). Secondly, while digital infrastructure promotes economic growth, current economic and social energy consumption mainly relies on fossil fuels. Economic growth resulting in expanded output scales and technological advancements can lead to increased energy consumption and corresponding carbon emissions (Khazzoom, 1980).
From a macro perspective, digital infrastructure construction promotes clean energy substitution for traditional energy and the replacement of material inputs with data elements, making urban activities cleaner and more efficient by mitigating factor misallocation (Ge et al., 2022). This can effectively reduce carbon emissions while fostering economic growth, thus improving total factor carbon emission performance. However, digital infrastructure requires substantial funding, and given limited resources, the initial investment costs, maintenance costs, and training costs can squeeze investments in energy-saving and carbon-reducing initiatives. The cost effect of digital infrastructure construction could hinder improvements in carbon performance (Salahuddin and Alam, 2015). On a micro level, the introduction of data elements alters enterprise production scales, and digital platforms influence how enterprises and consumers access information, affecting the traditional supply-demand chain of products in the market. The supply of green products and the green consumption chain emerging from this can further impact urban total factor carbon performance.
In summary, digital infrastructure can enhance urban carbon performance by improving energy efficiency, utilizing clean energy to replace fossil fuels, and exhibiting the energy rebound and cost effects that suppress improvements in carbon performance. Thus, the impact of digital infrastructure construction on urban carbon performance exhibits a complex bidirectional relationship. Based on this, the following competing hypotheses are proposed.
Hypothesis 1a. Digital infrastructure positively impacts urban total factor carbon emission performance.
Hypothesis 1b. Digital infrastructure negatively impacts urban total factor carbon emission performance.
3.2 Digital infrastructure construction, consumer behavior, and carbon emissions
For consumers, digital infrastructure construction can reduce carbon emissions in household activities by altering lifestyles and consumption habits, thereby enhancing total factor carbon emission performance. The rapid advancement of digitalization promotes sustainable green consumption (Peng Y. et al., 2024). Digital infrastructure construction makes life more convenient, promoting paperless learning and working methods. Internet platforms enable consumers to complete shopping, medical consultations, and other activities online, encouraging the development of second-hand markets and shared services. In 2023, the national online retail sales of physical goods reached 13,017.4 billion yuan, reflecting a notable shift from offline to online consumption, a hallmark of modern consumption modes (Ru and Deng, 2023). This convenience and resource recycling reduce consumer energy demand, particularly lowering energy use during travel, and subsequently cutting carbon emissions.
Moreover, internet applications and environmental public welfare campaigns significantly influence consumer consumption concepts, enhancing low-carbon consciousness through virtual low-carbon behaviors that translate into real-world low-carbon actions. For example, participants in the “Ant Forest” program are more likely to choose walking or public transportation over private cars to earn “energy points.” Similarly, influenced by environmental awareness, consumers may prefer clean fuels when selecting energy sources, promoting low-carbon energy consumption patterns (Ma, 2020). When purchasing vehicles, consumers may increasingly prefer new energy vehicles, thus reducing the use of chemical energy and significantly lowering carbon emissions, enhancing total factor carbon emission performance. Based on this, the following hypothesis is proposed.
Hypothesis 2. Digital infrastructure construction influences total factor carbon emission performance by altering consumer consumption patterns.
3.3 Digital infrastructure construction, enterprise production, and carbon emissions
Digital infrastructure construction can transform enterprise production modes by facilitating corporate transformation and upgrading, affecting total factor carbon emission performance during production. In enterprise production, digital infrastructure construction empowers businesses to optimize resource allocation, enhance production factor efficiency, reduce unit energy consumption, and improve capacity utilization rates (Fu et al., 2024). Furthermore, digital facilities enhance enterprise information systems, prompting companies to establish databases and new digital systems that simulate production and emissions processes to improve efficiency. The lowered information acquisition threshold strengthens inter-enterprise cooperation, diversifies resources for green technology innovation, and enhances overall human capital, fostering green technology advancements driven by talent. This contributes to upgrading production processes, reducing costs, and encouraging investments in energy-saving and carbon-reducing efforts, ultimately promoting green production and product innovation.
Additionally, digital infrastructure has led to the emergence of internet-based online revenue businesses, which greatly substitute data elements for traditional energy, thereby driving economic development while significantly reducing energy consumption and carbon emissions. The appearance of these low-carbon enterprises fosters competition, influencing the flow and allocation efficiency of production factors, eliminating high-energy-consuming firms, and reducing the proportion of highly polluting enterprises. This leads to a decrease in energy consumption and carbon emissions per unit of output, ultimately enhancing carbon performance (Wang et al., 2024). Simultaneously, reallocating resources promotes investment in low-carbon technological innovation, contributing to low-carbon industrial development (Ang, 1999). Based on this, the following hypothesis is proposed:
Hypothesis 3. Digital infrastructure construction influences total factor carbon emission performance by altering enterprise production.
Based on the above analysis and hypotheses, the article proposes the theoretical framework diagram in Figure 1.
[image: Diagram illustrating the relationship between the 'Belt and Road' strategy, digital infrastructure construction, and total factor carbon emission performance. Key components include cost effect, rebound effect, energy efficiency, factor substitution, and market demand, highlighting inhibiting and enhancing pathways.]FIGURE 1 | Theoretical framework diagram.
4 RESEARCH DESIGN
4.1 Model construction
Based on the approved list of cities involved in the “Broadband China” strategy by the Ministry of Industry and Information Technology and the National Development and Reform Commission of China, 82 cities implementing the strategy were selected as the treatment group, while the remaining cities that did not implement the strategy formed the control group. To examine whether the “Broadband China” strategy improved the total factor carbon emission performance of pilot cities, a gradual Difference-in-Differences (DID) model was constructed as the Equation 1:
[image: Equation depicting a model: UE_{it} = α₀ + α₁DID + γControl_{it} + μ_t + φ_i + ε_{it} (1).]
Where: [image: Please upload the image you would like me to generate alternate text for.] and [image: Please upload the image, and I will help you generate the alternate text.] represent cities and years; The dependent variable ([image: Please upload the image or provide a URL for me to generate the alternate text. If there's any context or a caption you'd like to include, feel free to add that as well.]) represents “total factor carbon emission performance”; The core explanatory variable ([image: It seems like there's an issue with the image upload. Please try uploading the image again, or provide a URL if it's hosted online. You can also add a caption for more context.]) is a dummy variable for the “Broadband China” pilot cities; [image: Certainly! Please upload the image you'd like me to describe.] variables include city-level indicators such as “government size,” “city size,” and “economic development level”; [image: Please upload the image or provide a URL to it, and I can help generate the alternate text.] indicates city fixed effects, [image: Please upload the image or provide a URL so I can generate the appropriate alternate text for it.] represents time fixed effects, and [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is the random disturbance term.
4.2 Variable descriptions
4.2.1 Dependent variable
Following the approach by Zhou et al. (2010), capital, labor, and energy are considered primary input factors, with CO2 emissions as the undesirable output and GDP as the desirable output. The non-radial directional distance function (NDDF) is used to measure total factor carbon emission performance ([image: Please upload the image or provide a URL, and I can help generate the alternate text for it.]) at the city level. Capital is represented by capital stock, calculated using Zhang et al. (2004) estimation method. Labor is represented by the year-end number of urban unit employees in each city, while energy consumption is estimated using data from nighttime lighting values to decompose provincial energy consumption data into individual cities, based on the method of Shi and Li (2020). The final formula for total factor carbon emission performance is as the Equation 2:
[image: Equation labeled as (2) defines UEI. It is expressed as \((C - \beta_{C}C) / (C/Y)(Y + \beta_{Y}) = (1 - \beta_{C}) / (1 + \beta_{Y})\).]
Where: [image: Please upload the image you'd like me to create the alt text for.] represents the collection of individual inefficiency factors impacting each type of input or output; The larger the [image: It seems like there might have been an error in uploading the image. Please try uploading it again, and I’ll be happy to help with the alternate text.] value, the higher the total factor carbon emission performance.
4.2.2 Core explanatory variable
Given that the “Broadband China” strategy involved pilot cities in three batches from 2014 to 2016, a multi-period DID model was used. An interaction term [image: I'm unable to view images directly. Please upload the image or provide a detailed description so I can help generate alternate text for it.] was set, where: [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] is a dummy variable (1 for pilot cities and 0 otherwise). [image: Please upload the image you would like described, and I can generate the alt text for you.] is a time dummy variable (1 for post-policy periods and 0 otherwise). The analysis excludes sub-provincial cities and cities with severe data gaps, ultimately retaining 82 pilot cities and 103 control cities.
4.2.3 Control variables
To account for potential confounding factors, a series of control variables were included: The logarithm of per capita GDP ([image: The text reads "ln prgdp" in a mathematical script style, with "prgdp" in italicized lowercase letters.]) measures economic development levels; The ratio of local government fiscal expenditure to regional GDP represents government size ([image: Please upload the image or provide a URL for me to generate the alternate text. Optionally, you can add a caption for additional context.]); Industrial structure ([image: Please upload the image or provide a URL so I can generate the alternate text for you.]) is measured using an index that assigns scores of 1, 2, and 3 to the primary, secondary, and tertiary sectors, respectively, based on their share in GDP; Population density represents city size ([image: Sure, please upload the image or provide a URL so I can assist you better.]); For mediation analysis involving enterprises, additional variables include the age of listed companies ([image: Sure, please upload the image or provide a URL, and I'll help generate the alt text for it.]), growth rate of total operating revenue ([image: It looks like you mentioned an image, but there is no image visible in your message. Please upload the image or provide a URL for it, and I will be happy to generate the alternate text for you.]), sales profit rate ([image: Please upload the image you would like me to generate alternate text for.]), and debt-to-asset ratio ([image: Please upload the image or provide a URL so I can help generate the alternate text for it.]).
4.2.4 Mechanism variables
The paper explores the roles of household consumption and enterprise production in influencing total factor carbon emission performance via digital infrastructure. On the consumer side, Zhou et al. (2022) identify electrification of energy consumption as a key factor in achieving carbon peak and carbon neutrality goals. To measure shifts toward digital consumption and the use of new energy vehicles, residential electricity consumption ([image: Please upload an image or provide a URL so that I can generate the alternate text for you.]) is used as an indicator of changing consumer behaviors.
On the enterprise side, due to data limitations, annual reports of A-share listed companies were analyzed as proxies for social responsibility reports. Following Chiou et al. (2011), green product innovation ([image: Please upload the image or provide a URL for me to generate the alternate text.]) was evaluated based on textual analysis of these reports. Innovation was scored on four dimensions: Use of environmentally friendly materials in product design; Adoption of degradable packaging; Assessment of product recyclability; Efficient use of resources in product design and adherence to green product labels.
Based on the level of textual description of the above indicators in the annual corporate report, each indicator will be assigned a score of 0, 1, or 2 for no description, having a description, and quantification or detailed description, respectively. The final score will be the sum of the scores for the four indicators.
4.3 Data sources and descriptive statistics
Due to data limitations on residential electricity consumption, which are only available until 2019, and the restricted number of cities with matching corporate data, this study uses panel data from 185 prefecture-level cities in China from 2010 to 2019, amounting to 1,850 observations. Data sources include the China Urban Statistical Yearbook, China Energy Statistical Yearbook, China Statistical Yearbook, the National Geophysical Data Center (NGDC), the China Emissions Accounts Database (CEADs), CSMAR, the National Bureau of Statistics, various provincial statistical yearbooks, and municipal statistical yearbooks. Missing data were supplemented using interpolation methods. Descriptive statistics of key variables are presented in Table 1.
TABLE 1 | Descriptive statistics of key variables.
[image: Table showing variables related to economic analysis with columns for Variable, Description, Observations, Mean, Standard Deviation, Minimum, and Maximum values. Variables include UEI, DID, dop, gov, ui, and lnprgdp, each with 1850 observations. They vary in mean, standard deviation, minimum, and maximum, with descriptions such as total factor carbon emission performance and economic development level.]5 EMPIRICAL RESULTS ANALYSIS
5.1 Baseline regression
The baseline regression results of the impact of digital infrastructure on urban total factor carbon emission performance are shown in Table 2. Under the control of city and year fixed effects, control variables were gradually added to the regression. From the regression results in each column, it can be observed that the estimated coefficients of the core explanatory variable [image: It seems there is no image uploaded. Please upload the image you would like me to generate alt text for.] are significantly positive at the 5% level, indicating that cities implementing the “Broadband China” strategy significantly enhance their total factor carbon emission performance. Specifically, from the estimated coefficient in column (5), it can be observed that after adding all control variables, the core explanatory variable [image: Please upload the image, and I can help you generate the alternate text for it.] is 0.0228, which is significant at the 1% level, implying that the “Broadband China” strategy increases the total factor carbon emission performance of pilot cities by 2.28% compared to non-pilot cities.
TABLE 2 | Baseline regression results.
[image: Table displaying regression results with variables: DID, dop, gov, ui, and lnprgdp across five models. Each column presents coefficients with t-statistics in parentheses. Significance levels are indicated with stars: three stars for p < 0.01, two for p < 0.05. Elements include constant terms, city and year fixed effects, number of observations, and R-squared values. Observations number 1850 across models.]This verifies Hypothesis 1a: Digital infrastructure positively impacts urban total factor carbon emission performance.
5.2 Parallel trend test
Using the DID model requires satisfying the parallel trend assumption, which states that the treatment and control groups should exhibit parallel changes before policy implementation. Following Beck et al. (2010), the parallel trend test was conducted. The results are illustrated in Figure 2, using the year before the implementation of the “Broadband China” strategy as the base period. Before the policy implementation, there was no significant difference in total factor carbon emission performance between pilot and non-pilot cities. The differences became significant 2 years after policy implementation. Due to the time needed for digital infrastructure construction, application, and the influence on market participants like consumers and enterprises, short-term differences may not be obvious immediately after the policy announcement, indicating a lag effect in policy impact. This observation meets the parallel trend assumption, validating the use of the DID method.
[image: Line graph showing dynamic effects over time, with years relative to policy implementation on the x-axis and dynamic effect on the y-axis. Points from pre5 to post4 indicate fluctuations, gradually increasing post-implementation. Error bars show variability. A vertical line marks policy implementation.]FIGURE 2 | Parallel trend test.
5.3 Placebo test
To address potential unobserved variables at the city-year level that may confound policy evaluation effects, a placebo test was conducted. A randomly generated experimental group list for “Broadband China” pilots was created, and the baseline model was repeated 500 times. As shown in Figure 3, the kernel density distribution of estimated coefficients and their P-values approximately follow a normal distribution, suggesting robustness in the regression results.
[image: Density plot showing a curved line peaking at around 150,000 on the vertical axis labeled "Density." The horizontal axis is labeled "Eccentricity," ranging from -0.015 to 0.015.]FIGURE 3 | Placebo test.
5.4 Robustness test
The baseline regression results suggest that digital infrastructure construction, represented by the “Broadband China” strategy, can enhance urban total factor carbon emission performance. The robustness of these findings was further verified through various methods, including changes in model specifications, adjustments to policy timelines, exclusion of other policy interferences, removal of extreme values, and replacement of core explanatory variables.
5.4.1 Changing model specification
To mitigate potential sample selection bias, a Propensity Score Matching-Difference-in-Differences (PSM-DID) method was employed to strengthen the comparability between treatment and control groups. As shown in column (1) of Table 3, the [image: It seems like there was an error when you tried to upload the image. Please try uploading it again, and I will help generate the alternate text for you.] coefficient remains significantly positive at the 1% level, confirming that digital infrastructure construction has a robust positive impact on urban carbon performance.
TABLE 3 | Robustness test regression results.
[image: Table showing results of four regression models comparing different policy impacts. Columns are labeled PSM-DID, Changed policy time, Excluded other policies, and Excluded extreme values. Each column lists values for DID, Smart City Dummy, Constant, Control Variables, City FE, Year FE, Observations, and R-squared. The DID coefficient ranges from 0.0107 to 0.023, with varying significance levels. Constants range from -2.344 to -1.711. All models use control variables and fixed effects. Observations vary from 1795 to 1850. R-squared values range from 0.686 to 0.776.]5.4.2 Changing policy timeline
To better verify the carbon performance effect of digital infrastructure, a counterfactual test was conducted by adjusting the policy implementation timeline. The years in which cities were approved as “Broadband China” pilot cities were shifted 2 years earlier. The results, shown in column (2) of Table 3, indicate a positive but insignificant [image: It seems there's an issue with providing the image. Please try uploading the image again or provide a URL if available.] coefficient, differing from the actual results, demonstrating that changes in carbon performance are significantly related to the “Broadband China” strategy.
5.4.3 Exclusion of other policy interferences
The “Smart City” initiative, implemented from 2012, coincides with the “Broadband China” strategy. To exclude potential interference, the reform timelines of “Smart City” pilot cities were controlled. As shown in column (3) of Table 3, even after controlling for “Smart City” pilot impacts, the core explanatory variable [image: It looks like there was an issue with the image upload or description. Please make sure to upload the image or provide a URL so I can help generate the alternate text.] remains positively significant at the 1% level, further supporting the baseline results.
5.4.4 Exclusion of extreme values
To exclude the influence of extreme values, a 5% trimming of the dependent variable [image: It seems like there might have been an error in uploading the image. Please try uploading the image again, ensuring the file is attached correctly. If you have any additional context or a description to provide, feel free to include it.] was performed, and the impact of pilot cities on urban carbon performance was re-evaluated. As shown in column (4) of Table 3, the core explanatory variable [image: It seems there was an issue with the image upload. Please try uploading the image again, or make sure the URL is correct. If you have additional context or a caption, feel free to include that as well.] remains significantly positive at the 5% level, confirming the robustness of the baseline results.
5.4.5 Replacing core explanatory variable
To further verify the impact of digital infrastructure on urban total factor carbon emission performance, the article adopts the method of replacing core explanatory variables. Six indicators are selected from two aspects: digital infrastructure input and digital infrastructure output. An evaluation index system for digital infrastructure is constructed using the entropy method, as shown in Table 4. Simultaneously, due to the inaccessibility of data on the length of optical fiber cables and the number of internet broadband accesses at the prefecture-level cities, the article draws on the approach of Wang Q. et al. (2023) to convert the two indicators of provincial-level optical fiber cable length and internet broadband access quantity to the city level based on the proportion of total telecommunications business income of the corresponding city to that of its province. Finally, the six indicators are applied to the entropy method to form the replaced explanatory variable, the Digital Infrastructure Evaluation Index ([image: Please upload the image or provide a URL for me to generate the alternate text.]).
TABLE 4 | Digital infrastructure evaluation index system.
[image: Table displaying digital infrastructure indicators. It includes subsystems such as Digital Infrastructure Input and Output. Indicators for input are Optical Fiber Length, Internet Broadband Access Ports, and Related Employees; all calculated positively. Indicators for output are Telecom Business Volume Per Capita, Mobile Phone Penetration Rate, and Internet Penetration Rate; similarly, all are positive.]Regression analysis was performed on the dependent variable using the replaced explanatory variable, controlling for fixed effects of city and year, and gradually adding control variables. The regression results are presented in Table 5. It can be observed that after replacing the core explanatory variable, the estimated coefficient of the digital infrastructure evaluation index ([image: It seems there's an error or the image did not upload correctly. Please try uploading the image again and make sure the file size is within the limit. If you have any additional context or a description, feel free to add it.]) is significantly positive at the 5% level, indicating that digital infrastructure still has a significant promoting effect on urban total factor carbon emission performance. This provides evidence for the article’s competitive Hypothesis 1a, which states that digital infrastructure enhances urban total factor carbon emission performance, and simultaneously demonstrates the robustness of the baseline regression results.
TABLE 5 | Regression results after replacing the core explanatory variable.
[image: A table presents regression analysis results with five models listed as columns (1) to (5). Variables include "dig," "dop," "gov," "ui," and "lnrgdp." Coefficients and t-statistics are shown in parentheses. Each model also specifies constant terms, city fixed effects, year fixed effects, number of observations, and R-squared values. Significance levels are indicated by asterisks: * for p < 0.10, ** for p < 0.05, *** for p < 0.01.]5.5 Endogeneity treatment
To mitigate potential endogeneity issues, the Two-Stage Least Squares (2SLS) method was adopted for testing. Following the approach of Fang et al. (2023), an interaction term was constructed using the distance from each city to Hangzhou and the time trend, and logarithmic processing ([image: Please upload the image or provide a URL so I can generate the alternate text for you.]) was applied. This served as an instrumental variable for the “Broadband China” strategy. The results are presented in Table 6. Specifically, the results in column (1) demonstrate the rationality of selecting the instrumental variable. Additionally, cities closer to Hangzhou are more likely to become “Broadband China” pilot cities. In column (2), the coefficient of the core explanatory variable [image: Please upload the image or provide a URL so I can generate the appropriate alternate text.] is significantly positive, indicating that even after considering endogeneity, digital infrastructure still enhances urban total factor carbon emission performance.
TABLE 6 | Regression results of endogeneity treatment.
[image: Table showing results of a two-stage regression analysis. First stage: DID (-110.420***, t-statistic -4.48); Second stage: UEI (0.106**, t-statistic 2.30). Control, city, and year fixed effects included. Number of observations: 1850. Non-identification test result: 13.58, probability value 0.0002. Weak identification test statistic: 20.09, critical value 16.38. Note on significance levels: * p < 0.05, ** p < 0.01.]6 MECHANISM TEST AND HETEROGENEITY ANALYSIS
6.1 Mechanism test
The above empirical results indicate that digital infrastructure can effectively improve urban total factor carbon emission performance. Based on the previously discussed mechanisms, this section further explores the roles of enterprise production transformation and consumer behavior transformation in the impact of digital infrastructure on carbon performance. Specifically, as the Equations 3, 4, following the approach of Baron and Kenny (1986), this study tests the underlying mechanisms.
[image: Mathematical equation \( M_{it} = \alpha_0 + \beta DID + \gamma Control_{it} + \mu_i + \phi_t + \epsilon_{it} \) labeled as equation (3).]
[image: Mathematical equation: UE subscript i t equals alpha subscript zero plus beta DID plus theta M subscript t plus gamma Control subscript i t plus H subscript t plus phi subscript i plus epsilon subscript i t, labeled as equation 4.]
Where: [image: It seems like there was an issue with uploading the image. Please try uploading it again or provide a URL. Let me know if you have any questions!] represents the mechanism variables, measured by household electricity consumption ([image: Please upload the image or provide a URL for me to generate the alternate text.]) and enterprise green product innovation ([image: Please upload the image or provide a URL so I can generate the alternate text for it.]), reflecting green consumer behavior and green products in the market.
The results, shown in Table 7, indicate that digital infrastructure promotes household consumption transformation, thus enhancing total factor carbon emission performance. Digital infrastructure increases residential electricity consumption, and this increase contributes to better carbon performance. This suggests that as digital infrastructure construction advances, residents adopt more digitalized lifestyles, shifting from traditional chemical energy to electricity. Changes in energy consumption structures directly impact total carbon emission performance, showing that the transformation of consumer behavior acts as a partial mediator in the influence of digital infrastructure, supporting Hypothesis 2.
TABLE 7 | Mechanism test regression results.
[image: Table displaying the results of a regression analysis with four models labeled EIc (1), UEI (2), gp (3), and UEI (4). Each model includes variables: DID, elc, gp, Control Vars, City FE, Year FE, Constant, Observations, and R². Significance levels are indicated by asterisks, with values in parentheses representing t-statistics. Observations range from 1850 to 23620, and R² values range from 0.075 to 0.809.]When exploring the mediation effect of enterprise green product innovation, the data was matched further, incorporating firm-level control variables and encompassing 185 cities with 3,203 listed companies from 2010 to 2019, totaling 23,620 data entries. The results, presented in columns (3) and (4) of Table 7, reveal that digital infrastructure fosters green product innovation among enterprises, subsequently improving total factor carbon emission performance. Thus, enterprise green product innovation partially mediates the relationship between digital infrastructure and carbon performance, confirming Hypothesis 3.
In the market, digital infrastructure enhances consumer engagement in green consumption and increases the preference for green products, reducing pollution from consumer activities. Simultaneously, it stimulates enterprise innovation in green products, reducing production-side pollution. There is a reciprocal influence between consumers’ green behaviors and enterprises’ green products. Enterprises’ green products influence consumer purchasing behavior, reshaping consumption patterns. Conversely, consumer demand for green products drives enterprises toward transformation, increasing their investment in and output of green products. Consumer oversight also influences enterprises to adopt greener production methods. Therefore, digital infrastructure indirectly promotes urban total factor carbon emission performance by creating a self-reinforcing cycle of green production and consumption in the market.
6.2 Heterogeneity analysis
To further investigate the potential heterogeneity in the enhancement of urban total factor carbon emission performance by digital infrastructure across various levels, the article explores from the perspectives of consumers and enterprises. Considering that residents’ green consumption behaviors and concepts are related to real economic conditions, the article incorporates the heterogeneity of residents’ income levels for analysis; at the same time, residents’ green consumption concepts and their acceptance and usage of digital infrastructure are acquired by learning, with high quality and level often achieved through learning and training, thus the level of education of residents is taken as another grouping condition for the heterogeneity analysis of consumers. From the perspective of enterprises, the extent to which enterprises accept and use digital infrastructure and their pursuit of green products are often related to corporate management and production technology levels, therefore, enterprise ownership and technological level are taken as grouping conditions for the heterogeneity analysis from the enterprise perspective.
The heterogeneous results of the “Broadband China” strategy on total factor carbon emission performance are shown in Table 8. Based on the disposable income of urban residents, cities are categorized into high-income and low-income groups. Cities with a disposable income above the mean are designated as high-income cities, while those below are considered low-income cities. Through heterogeneity analysis using interaction terms, it can be seen that digital infrastructure is more effective in improving total factor carbon emission performance in high-income cities compared to low-income cities.
TABLE 8 | Heterogeneity analysis regression results.
[image: Table displaying regression analysis results for four types of heterogeneity: Income, Education, Ownership, and Technology levels. It includes coefficients, t-statistics, and significance levels for each model, with variables like DID interactions, control variables, city and year fixed effects, constants, observations, and R-squared values. Significance is indicated by asterisks, with notes explaining the levels of significance.]Due to data availability, the number of local university students is used as a proxy for residents’ education level. Cities with a student population above the mean are considered high-education cities, and those below are low-education cities. As shown in column (2) of Table 8, digital infrastructure has a more significant impact on improving total factor carbon emission performance in high-education cities compared to low-education cities. This may be because consumers’ application of data elements and their low-carbon behaviors are related to their education levels. Consumers with higher education levels tend to have better low-carbon literacy and engage in more environmentally friendly behaviors.
Therefore, digital infrastructure construction can effectively improve urban total factor carbon emission performance by influencing residents’ consumption behavior transformation, especially when combined with high income and education levels of urban residents. Meanwhile, higher education and income levels of residents can influence their consumption patterns in terms of thinking and behavior, further promoting green development in cities.
From the perspective of businesses, the heterogeneous effects of digital infrastructure on total factor carbon emission performance are shown in columns (3) and (4) of Table 8. Enterprises are classified into state-owned and non-state-owned enterprises, as well as high-tech and non-high-tech industry enterprises, based on ownership and industry. The results indicate that digital infrastructure has a more pronounced effect on promoting total factor carbon emission performance in non-state-owned enterprises and high-tech industry enterprises compared to state-owned enterprises and non-high-tech industry enterprises. This may be due to the higher flexibility and autonomy of non-state-owned enterprises in rule-making, allowing for more flexible application of digital infrastructure and greater carbon reduction effects. On the other hand, high-tech industry enterprises enjoy more policy subsidies and technical support than non-high-tech industry enterprises, and they have advantages in talent and technology application. Therefore, the application of data elements such as digital infrastructure has a greater impact on high-tech industry enterprises, potentially promoting green product innovation and improving total factor carbon emission performance to a greater extent.
7 CONCLUSION AND POLICY RECOMMENDATIONS
Balancing economic development and ecological protection is a critical challenge faced by countries worldwide. Digital infrastructure contributes to economic growth while simultaneously generating positive environmental effects. This study uses the “Broadband China” strategy as a quasi-natural experiment, analyzing panel data from 185 cities between 2010 and 2019. By applying the Difference-in-Differences (DID) model, the study examines the impact of digital infrastructure, represented by the “Broadband China” strategy, on urban total factor carbon emission performance. The analysis includes both enterprise and consumer perspectives to explore the internal mechanisms of this impact. The main conclusions are as follows:
	(1) Digital infrastructure, represented by the “Broadband China” strategy, significantly enhances urban total factor carbon emission performance. This conclusion holds after a series of robustness tests and treatments for endogeneity.
	(2) Mechanism tests indicate that the “Broadband China” strategy improves urban carbon performance by promoting green product innovation among enterprises and encouraging the green transformation of consumer behaviors.
	(3) Heterogeneity tests show that from the consumer perspective, digital infrastructure more effectively enhances total factor carbon emission performance in regions with higher resident income and education levels. From the enterprise perspective, digital infrastructure has a more substantial impact on non-state-owned enterprises and high-tech enterprises compared to state-owned and non-high-tech enterprises.

Compared with previous studies, this paper through the empirical analysis affirmed the digital infrastructure in improving the positive role of urban carbon performance, which is consistent with the studies of Chang et al. (2024). The micro subject production-trade-consumption cycle process has carried on the preliminary analysis, the enterprise green product innovation and green consumption into the research framework, put forward the enterprise production and consumption micro main body plays an important role under the macro policy, which is some additions to the existing literature in this paper.
7.1 Policy implications:
Based on the above conclusions, the study offers the following policy recommendations.
(1) Strengthen Digital Infrastructure Construction to Support Green Urban Transformation: Governments should promote the construction of next-generation digital infrastructure, such as 5G, big data, and artificial intelligence. By increasing investment in digital infrastructure, governments can stimulate domestic demand and drive economic growth. Expanding support for digital resources will amplify their role as substitutes for traditional inputs. Digital infrastructure significantly boosts urban total factor carbon emission performance. Given China’s industrial structure, economic growth tends to impact the environment; therefore, leveraging digital elements’ environmental advantages can help achieve economic growth while reducing pollution, aligning ecological and economic goals. For developing countries, enhancing digital infrastructure can foster both digital economic growth and green development within resource constraints. China is now combining digitization with computing power and electricity, putting forward policies such as “east digitization and west calculation” to address regional differences. It means digital infrastructure construction will be conducive to urban development in the new era, and combine digital infrastructure construction with other production factors may have a more far-reaching impact on the green development of cities.
	(2) Recognize the Roles of Micro-Entities in the Context of Macro Policies: In designing and implementing policies, it is crucial to consider local conditions and allow for flexibility and autonomy. Governments should support enterprises in upgrading and transitioning to greener models, enhance regulatory oversight, and offer greater support to low-energy, low-pollution companies. High-pollution enterprises should undergo targeted reforms. Increased support for non-state-owned and high-tech enterprises is essential, recognizing their vital role in digital-driven carbon reduction.
	(3) Emphasize Consumer Engagement and Education for Sustainable Consumption: Governments should collaborate with community organizations to enhance residents’ disposable incomes and educational levels, fostering environmental awareness and encouraging green consumption habits. Publicity efforts and incentives for sustainable consumer behavior should be strengthened to reshape consumption patterns. By influencing consumer demand, governments can phase out low-carbon performance industries and enterprises, enhancing overall urban carbon performance. The circular interaction between green production and consumption behaviors, reinforced by government influence, can significantly improve urban total factor carbon emission performance.
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Introduction: Do environmental technologies always yield desirable returns? This study addresses this question through the lens of command-and-control environmental regulation. It explores the theoretical and empirical mechanisms influencing the efficacy of technology in reducing emissions, focusing on the non-linear characteristics of technological returns under equilibrium conditions.Methods: A socio-economic model integrating pollution discharge issues was developed to examine the marginal effects of emission reduction technology. Empirical validation was conducted using green patent data from Chinese listed companies (2005–2020) and pollution emissions data from various cities. Fixed effects models and generalized random forest models were employed to analyze the relationships.Results: The analysis revealed that technological innovation exhibits diminishing marginal returns in reducing emissions due to existing technological constraints. The results were further dissected by categorizing patents and city characteristics, shedding light on the factors influencing emission reduction effectiveness.Discussion: The findings emphasize the importance of addressing the non-linear nature of technological innovation in environmental regulation. Policy recommendations include fostering tailored innovation strategies and supporting cities with unique characteristics to maximize technological impact on emission reduction.Keywords: environmental technology, green patents, treatment effects, fixed effects model, generalized random forest
1 INTRODUCTION
The role of environmental technologies in pollution control has garnered substantial attention in recent years. As economic activities continue to take a toll on ecological systems via channels like greenhouse gas emissions, water contamination and soil pollution, the urgency for curbing pollution and improving environmental quality becomes ever more pressing (Barbieri, 2015; Liu et al., 2021). Investments into abatement-enabling technologies, which aid the reduction, capture, and treatment of industrial and human waste, are thus considered crucial means towards sustainability (Fujii and Managi, 2019).
China’s system for evaluating local government officials gives equal priority to economic growth and environmental protection, which forces local governments to balance both aspects in their assessments (Yin and Wu, 2022). Compared to strategies like reducing production at polluting companies or relocating industries, utilizing environmental technologies for emission reduction presents a less direct impact on economic growth. This makes the promotion and development of such technologies a more viable option for addressing environmental challenges (Shen et al., 2021). However, it is important to consider that, according to the theory of diminishing marginal returns, the benefits of investing in environmental technology R&D do not always follow a straightforward, linear path (Solow, 1956).
In the last 2 decades, China has increasingly recognized the significance of environmental protection alongside economic development. From 2006 to 2021, there has been a remarkable growth in green patent technologies, particularly in highly polluted regions like North China and the Yangtze River Delta, as shown in Figures 1A, B. While this trend highlights the potential of technological solutions, it is crucial to explore whether ongoing investments in environmental technologies consistently result in desirable outcomes, as diminishing returns may limit the efficiency of such investments over time. This presents a vital area for further research and policy consideration.
[image: Two maps of China compare urban development data. Map A shows the location and estimated population sizes of prefecture-level cities, with darker shades indicating higher populations. Map B illustrates the area of land above the standard of living threshold, with darker shades representing larger areas. Both maps include a legend for context.]FIGURE 1 | Distribution Maps of Green Patent Counts in Chinese Cities, 2006 (A) vs. 2021 (B).
Given the voluntary nature of environmental disclosure, there is a scarcity of literature directly examining the relationship between environmental technology investment and environmental performance. While most studies affirm a positive correlation between investment in environmental R&D and pollution reduction (Anderson, 2001; Yi et al., 2020), some have revealed nonlinear relationships (Li L. et al., 2021; Li W. et al., 2021). If such nonlinearity exists, advancements in environmental technology may not always yield optimal outcomes. For instance, data from the statistical yearbooks of China’s Ministry of Ecology and Environment show that although capital allocated to environmental protection capacity-building in 2019 increased by 70.1% compared to 2016, pollutant reductions in wastewater and waste gas were largely limited to 13%–18%. This suggests that while investments in environmental technology are crucial, they may encounter diminishing returns at higher levels of investment. Local governments, which are primarily responsible for environmental protection in China, should consider this when allocating subsidies and support for environmental R&D. Failing to do so may result in inefficient use of fiscal resources.
Existing research on the causality between environmental technology and pollution has often relied on methods such as adding higher-order terms to explanatory variables or applying threshold regressions (Du et al., 2019; Luo et al., 2023). However, the Ordinary Least Squares (OLS) approach, with its necessity for predefined model forms, is particularly vulnerable to interference from confounding factors, and it simplistically assumes treatment effects to be constant. The Generalized Random Forests (GRF) method offers a non-parametric alternative that addresses these limitations, moving beyond the constraints of traditional approaches (Athey et al., 2019). This innovative approach autonomously selects covariates to mitigate confounding effects and makes efficient use of covariate information in identifying treatment effects, offering a richer array of statistical features.
This study aims to elucidate the causal relationship between environmental technology R&D investment and pollution reduction. By establishing a social planning problem based on command-and-control environmental regulations, this study first analyzes the mechanisms influencing the emission reduction effects of environmental technologies under equilibrium conditions. Then, using green patent and pollution emission panel data of listed companies across cities in China from 2005 to 2020, it estimates the emission reduction impacts of environmental protection technologies on wastewater, nitrogen oxides, and industrial smoke dust. In addition, besides the traditional OLS method, the study also employs the GRF method to assess the kernel density distribution of the green technology emission reduction effects, and further analyzes the patent categories and city characteristics to identify key factors for formulating targeted pollution emission reduction policies. Therefore, the following three research questions underpin this study.
	1. How do environmental technologies affect pollution emissions?
	2. What are the differences in the impacts of different categories of environmental technologies on pollution emissions?
	3. Which city characteristics can influence the pollution emission reduction effects of environmental technologies?

The potential marginal contributions of this paper can be summarized into three main aspects: First, it analyzes and discusses the issue from the perspective of local governments by constructing a theoretical model aimed at maximizing the welfare of social planners. This theoretical model, yet to be fully discussed, aims to shed light on why solely depending on technological solutions for emissions reduction might not be adequate. Second, it seeks to answer how local environmental regulators can promote the pollution reduction effects of environmental technologies. By examining the heterogeneity in green patent categories and urban characteristics, this study enriches the policy reference contributions of this type of research literature. Third, it enhances the methodological application of causal inference for such problems. The study attempts to use machine learning-based causal inference methods to provide new evidence for the gradually diminishing emission reduction effects of environmental technologies, thereby enriching the details of such treatment effects. Additionally, this paper presents unique findings based on the analysis of emission reduction effects for different pollutants, revealing that due to the varying difficulties in research and development technologies, the convergence speed of their emission reduction effects also varies. A too rapid convergence might render the overall emission reduction effect insignificant.
The remaining contents are organized as follows: Section 2 reviews literature; Section 3 covers theoretical analysis and develops hypotheses; Section 4 details research design and methodology; Section 5 analyzes the treatment effects of green technologies with robustness checks; Section 6 explores patent categories’ heterogeneous impacts; Section 7 re-assesses effects using generalized random forest models and explores factors of variability; Section 8 discusses and Section 9 concludes. See Figure 2 for an overview of the article.
[image: Flowchart titled "Diminishing Returns on Environmental Technology Investments: A Causal and Heterogeneity Analysis with Evidence from China." It outlines research elements: Research Subject, Literature Review, Theoretical Analysis, Methodology, and Empirical Analysis. Key components include environmental consequences, technology advancements, hypothesis development, methodologies, variables, and data sources. It concludes with discussions and conclusions. The chart connects research processes with context, analyzing literature and empirical data to address environmental technology investment issues.]FIGURE 2 | General picture of research.
2 LITERATURE REVIEW
In environmental economics, research centered on the Porter Hypothesis predominantly explores the influence of environmental regulations on the progress of sustainable technologies (Barbieri, 2015; Liu et al., 2021). This discourse builds upon Nordhaus’s Dynamic Integrated model of Climate and the Economy (Nordhaus, 1994), with scholars developing and refining models for a greener economy. The model was expanded to embrace learning-by-doing in renewable energy and knowledge spillovers (Otto et al., 2008). In a separate effort, the integration of climate policy-induced technical changes was advocated, supporting subsidies on clean production and pollution taxation to promote environmentally friendly economic development (Acemoglu et al., 2012).
However, does technological advancement in the environmental sector translate into improved environmental performance? This question has been explored in a few studies. On a theoretical level, Induced innovation and learning spillovers were integrated into the model, estimating the energy savings and emission reduction effects of investments in clean technology R&D (Popp, 2010). On the empirical side, research is scarce due to the voluntary nature of corporate environmental information disclosure and the difficulty in distinguishing and measuring investments in environmental R&D at the regional level. Most literature supports a positive linear relationship between environmental R&D and environmental performance. For instance, R&D expenditure was identified as a key factor in reducing Japan’s carbon emissions (Cole et al., 2013), while a positive correlation was found between firms’ R&D investments and the reduction of industrial particulate emissions (Jiang et al., 2014). Some studies assess the effects of technological emission reductions from regional or industrial perspectives, yet their conclusions remain focused on discussions of whether there is a linear correlation (Alam et al., 2019; Carrión-Flores and Innes, 2010; Luo et al., 2023).
Given that the availability of environmental technologies is fixed over a certain period, the returns on investment in these technologies may be nonlinear according to the theory of diminishing marginal productivity (Solow, 1956). Only a few studies have explored this characteristic. Exploring the nonlinear dynamics between environmental R&D investments and environmental performance, an inverse “U-shaped” relationship between R&D expenditure and carbon emission reductions was observed across firms in 52 countries, providing insights into the peak points of marginal effects (Li L. et al., 2021). Similarly, this pattern was also identified within 30 provinces and 32 economic sectors in China, highlighting the complexities of environmental R&D investments’ impact on environmental performance (Li W. et al., 2021). Both studies contribute valuable insights into the discussion of marginal effects’ peak points. However, they gently navigate around the challenge of precisely segregating the fraction of R&D investments dedicated explicitly to environmental objectives, both at the corporate and regional levels.
Furthermore, this topic presents unexplored areas. First, the emission reduction mechanisms of environmental technologies warrant deeper analysis. Current literature, primarily using theories like diminishing marginal productivity, could benefit from integrating economic models for richer insights. Second, technological emission reduction exhibits widespread regional heterogeneity. Although some literature mentions this issue (Costantini et al., 2013; Li et al., 2017), existing studies seldom delve deeply into it. Third, distinguishing investments in environmental technologies more precisely remains a challenge. Studies typically use R&D spending or patent counts as proxies, but these do not specifically pinpoint environmental R&D efforts, highlighting a need for refined causal identification approaches. Lastly, while the nonlinear effects of emission reductions are commonly analyzed through econometric methods, employing machine learning or non-parametric statistics might reveal more detailed findings, though their use in empirical research is less common.
3 THEORETICAL ANALYSIS AND HYPOTHESIS DEVELOPMENT
Within a directive environmental policy framework, this study proposes a simple theoretical model to illustrate that environmental or green technology investments may not always yield expected returns. Unlike previous analyses that emphasize market-driven mechanisms (Acemoglu et al., 2012; Aghion et al., 2016), this study considers China’s environmental governance issues as a societal planning problem, wherein the government can directly adjust enterprises’ production scales. Specifically, while Acemoglu et al. (2012) explore the dynamic effects of carbon taxes and research subsidies on innovation direction, and Aghion et al. (2016) focus on the path dependency of technical change in response to fuel prices, this study highlights the unique institutional features of China’s dual-track policy system. Despite China’s piloting of market-based instruments like emissions trading since the 1990s, administrative measures and command-and-control policies have remained predominant in industrial production interventions until 2020 (Tang H. et al., 2020; Tang K. et al., 2020).
In this societal planning issue, total social utility depends on consumption [image: Please upload an image or provide a URL, and I will create the alt text for you.] and pollution emissions [image: Please upload the image you would like me to generate alternate text for, or provide a URL if it is available online.]. In the current scenario, enterprise labor input remains fixed, and ignoring capital depreciation. In other words, each enterprise’s production function is a function of the capital input [image: Certainly! Please upload the image or provide a URL so I can assist with generating the alternate text.]. Societal pollution emissions result from summing individual enterprise emissions, calculated as one minus the pollution treatment rate function, [image: It seems like you've mentioned a mathematical expression instead of an image. Could you please provide the image or a URL to it for me to generate the alt text?], multiplied by the product output [image: Please upload the image or provide a URL for the image you would like me to describe.]. Here, [image: Please upload the image or provide a URL for the image you want described.] represents the impact of environmental R&D investment [image: It seems like there's no image uploaded. Please try uploading the image again or provide the URL. If you have any specific context or a caption, feel free to add that as well.].
Social planners optimize enterprise production scales to maximize the social utility function [image: I'm sorry, it seems like you attempted to upload an image, but it hasn't come through. Could you please try uploading the image again, or provide a description or URL?], subject to consumption meeting national income equality, and short-term total investment capped at [image: Please upload the image or provide a URL for me to generate the alternate text. Optionally, you can provide a caption for additional context.], with total pollution below [image: Please upload the image or provide a URL so I can assist with generating alternate text.]. In essence:
[image: Maximization function notation displayed, showing "max" with respect to variables K sub 1, K sub 2, through K sub n, of the utility function U in terms of C and E.]
[image: A mathematical equation set within curly braces, showing a system of equations and constraints. The equations involve summations and functions denoted by \( C \), \( Y_i \), \( K_i \), \( E \), and \( k_i \), with conditions \( g(k_i) \leq 1 \), \( g'(k_i) \geq 0 \), and \( 0 \leq \delta_i < 1 \). The constraints include total sums for \( K_i \) and \( E_i \) not exceeding \( K_{max} \) and \( E_{max} \).]
Typically, the total utility function [image: Mathematical notation representing a function \( U(C, E) \), where \( U \) is a function of variables \( C \) and \( E \).] is positively correlated with consumption C and negatively correlated with emissions E. [image: It seems like you're referring to a mathematical expression, not an image. Please upload an image or provide a URL for which you need alt text.] is the production function for enterprise [image: Please upload the image or provide a URL so I can generate the alternate text for you.] with respect to capital input [image: Please upload the image you want me to generate alternate text for, and I'll be happy to help!]​. Assuming [image: Please upload the image or provide the URL so I can generate the appropriate alt text for you.] is monotonically non-decreasing with environmental R&D investment [image: It seems there was an error in displaying the image. Please upload the image file or provide a URL, and I will generate the alt text for you.]. The proportion of pollution emission reduction caused by a unit increase in environmental investment [image: It seems there was an error in your message with an unexpected character string. Please provide the image by either uploading it or giving its URL, and I will gladly create the alternate text for it.] can be denoted as [image: Mathematical equation representing the multivariate relative extremum, MRE sub i, equal to the derivative of function g evaluated at k sub i.], and [image: It seems there might be an issue with the image link or upload. Could you please try uploading the image again or provide more context?] can be simplified as a proportion of the total capital input [image: Please upload the image file or provide a URL for me to generate the alt text.] for enterprise [image: Please upload the image or provide a URL for me to generate the alt text.], with [image: Please upload the image or provide a URL for me to generate the alternate text.] reflecting its share.
The above scenario is based on a command-and-control environmental policy framework, where the government can adjust the scale of enterprise production through administrative orders, pollution taxes, and similar measures. With emission rights trading, businesses decide between reducing emissions or buying rights, weighing governance costs against rights acquisition costs. Some studies have examined this issue (Liu et al., 2020; McGartland and Oates, 1985).
It is evident that more output increases social utility, but also generates more pollution, which reduces social utility. To delve deeper into the aforementioned planning problem, it can be assumed that the production function for each enterprise follows the constant returns to scale Cobb-Douglas production function:
[image: Economic formula representing output for a firm: \(Y_i = AK_i^{\alpha} L_i^{1-\alpha}\), where \(0 < \alpha < 1\). \(Y_i\) is output, \(A\) is total factor productivity, \(K_i\) is capital, and \(L_i\) is labor.]
Where the technological level [image: Please upload the image you would like me to generate alternate text for.] and labor input [image: Please upload the image or provide a URL for me to generate the alt text.] can be considered as fixed values in the short term, and [image: Please upload the image you'd like me to generate alternate text for.] is the output elasticity of capital. The marginal effect of environmental technology investment on total societal pollution emissions is:
[image: Partial derivative equation with respect to \( k \): \(\frac{\partial E}{\partial k} = \sum \left[ (1 - g(k_i)) \frac{\partial Y_i}{\partial k_i} - MRE_i \cdot Y_i \right]\).]
[image: Summation formula shown, with terms: \(\frac{1 - g(k_i)}{\delta_i} \cdot \frac{\alpha}{K_i} - MRE_i\) and \(\frac{1 - g(k_i)}{k_i} \cdot \alpha - MRE_i\), each multiplied by \(Y_i\). Equation labeled as (1).]
The above equation indicates that whether an increase in the unit environmental investment can reduce total pollution emissions depends on the sum of the marginal effects of environmental investments by each company. In fact, if there is only one enterprise, social planners would have the enterprise invest [image: Please upload the image for which you need alternate text.] in production, while the enterprise would choose an appropriate [image: Please upload the image or provide a URL, and I’ll help create the alternate text for it.] to meet the emission limit [image: It seems like the request is unclear or incomplete. Please provide an image or a URL to the image for which you want alternate text. You can also add a caption for additional context.]. Due to both [image: Please upload the image or provide a URL so I can generate the alternate text for you.] and [image: The mathematical expression shows "1 minus g of k".] being positive, it must hold that:
[image: Partial derivative of E with respect to δ equals negative of the term within brackets: MRE times k plus the product of one minus g of k, α, and the fraction Y over δ, which is less than zero.]
This indicates that as the proportion of environmental investment increases, pollution emissions will correspondingly decrease. However, when the problem involves multiple enterprises, differences in the research and production capabilities of each company introduce uncertainty into the sign of the term within the brackets in Equation 1, making the marginal effect of environmental investment on total societal pollution emissions uncertain. Factors include the functional form of g(k), R&D investment, and output quantity as weights. To further discuss the sufficient conditions for the existence of equilibrium solutions, this paper assumes the utility function to be in its simplest linear form:
[image: Equation displaying "U equals C minus beta times E".]
Where β is the coefficient representing the aversion to pollution per unit of societal consumption, typically assumed to be greater than 0. Alternatively, assuming a Constant Elasticity of Substitution (CES) utility function form also yields similar conclusions. If equilibrium exists, the corresponding first-order condition is:
[image: Equation depicting an economic or mathematical expression: \(\frac{\alpha Y_{t}}{K_{t}} = \frac{1 - \beta \delta \cdot MRE_{t}}{1 - \beta (1 - g(k_{t}))}\) or \(K_{t} = \frac{[1 - \beta (1 - g(k_{t}))] \cdot \alpha Y}{1 - \beta \delta \cdot MRE_{t}}\).]
The above equation indicates that if an equilibrium exists, the marginal output of capital for each company at the equilibrium state should be distributed according to the environmental efficiency ratio based on its utility function. In addition, the existence of equilibrium should also satisfy second-order conditions. Specifically, at the equilibrium point [image: Please upload the image or provide a URL for me to generate the alternate text.], it should hold that:
[image: The mathematical expression \( g''(k) \cdot k_f^2 + 2a g'(k) k_f + a(a-1) g(k) < 0 \) represents an inequality involving second and first derivatives of a function \( g(k) \), constants \( a \) and \( k_f \), and an inequality sign.]
[image: The formula shows a derivative inequality: g double prime of k sub i is less than negative 2 a g prime of k sub i times k sub i plus alpha times alpha minus 1 times g of k sub i, all divided by k sub i squared.]
The right-hand side of above inequality is always non-negative, imposes a crucial requirement: the second derivative of the pollution treatment rate function around [image: Please upload the image or provide a URL to generate the alternate text.]​ must be negative. This condition indicates that the environmental R&D efficiency is marginally decreasing near the stable point, which generally aligns with real-world scenarios. Due to the finite stock of basic science behind specific pollutant reductions over a certain period, there are constraints on available technology development. This results in diminishing marginal effects of R&D investment on pollution treatment rates, explaining the nonlinearity of environmental technology’s emission reduction effects. Rational enterprises cease further investment in environmental R&D when the marginal effect diminishes to zero, aligning with our previous assumption of non-negativity for [image: Derivative notation \( g'(k_i) \), representing the derivative of function \( g \) with respect to variable \( k_i \).]. Therefore, it can be proposed the following research hypothesis:
Research Hypothesis: The marginal effect of environmental R&D investment on pollution reduction is nonlinear, potentially leading to a diminishing actual technological emission reduction effect.
To further assess the economic value of green innovation, we simplify the model to a single firm scenario, where R&D investment [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] is a fixed proportion [image: Please upload the image you'd like me to describe, and I will generate the alt text for you.] of capital input [image: Please upload the image so I can generate the alt text for it.]. The marginal benefit of emission reduction (MB) can be expressed as:
[image: The formula displayed is M subscript B subscript R subscript P equals beta A K raised to the power of alpha g prime of delta K delta.]
while the marginal cost of green innovation (MC) is:
[image: Mathematical equation representing marginal cost, defined as MC subscript t equal to one minus alpha A K to the power of negative e minus one, multiplied by the expression in parentheses, one minus beta plus beta g delta K.]
When [image: Mathematical expression showing "MB" with subscript "RP" is less than "MC" with subscript "GI".]​, further investment in green innovation no longer yields economic benefits. This analysis highlights the importance of balancing the costs and benefits of green innovation in policy design, particularly in determining optimal investment levels to maximize social welfare.
4 METHODOLOGY AND DATA
This section outlines the methodologies employed, specific model configurations, variable definitions, and the selection and characteristics of the sample used in the study.
4.1 Methodology
The empirical section aims to examine whether there is a nonlinear emission reduction effect associated with environmental technology R&D investments, with a focus on whether the marginal effects diminish as investments increase. To achieve this objective, this study employs a fixed-effects model augmented with quadratic terms to estimate the treatment effects. Fixed effects absorb unobserved factors, mitigating omitted variable bias for more accurate estimation of treatment effects. The inclusion of quadratic terms for explanatory variables in the model also helps capture potential nonlinear treatment effects. This model specification is inspired by relevant literature (Li L. et al., 2021), and its form is set as follows:
[image: Equation showing the relationship between emissions and patents: Emission_{it} = β₀ + β₁Patents_{it} + β₂Patents²_{it} + γₖΣXₖ + μᵢ + τₜ + ε_{it}.]
In the above equation, [image: The image contains the italicized text "Emission" followed by a subscript "it".] represents the dependent variable, corresponding to the emissions of three types of pollutants in the ith city in the tth year. [image: The text is rendered in an italic serif font, with "Patents" and a subscript "it".] is the core explanatory variable. In this study, the total count of green patents aggregated at the enterprise level is used as a proxy variable for green technology investment. [image: It seems like there was a mix-up, and I didn't receive an image. Please upload the image, and I'll be happy to help with the alt text.] signifies the treatment effects of green patents on pollution emissions. [image: It seems there is no image attached. Please upload the image or provide a URL, and I will help generate the alternate text for it.] is the intercept term of the regression, [image: Please upload the image or provide a URL so I can generate the alternate text for you.]​ denotes the control variables, and the vector [image: It seems there was an error in your input. If you can provide the actual image or a more detailed description, I would be happy to help generate the alternate text. You can upload the image or describe it here.] represents their respective coefficients. The model controls for individual fixed effects [image: Please upload the image you would like me to describe.] and time fixed effects [image: It seems like there's an issue with displaying the image. Please try uploading the image again or provide a URL so I can generate the alternate text for you.] . [image: Please upload the image or provide a URL for me to generate the alternate text.] is the random error term.
However, linear models based on the aforementioned method, when estimating the effect of the treatment variable W on the outcome variable Y based on control variables X, require a predefined model form, and the treatment effect τ is also assumed to be constant. In this case, confounding factors need to be fixed in advance, hence nonlinear treatment effects might not always eliminate endogenous interference. To address this issue, this paper also re-estimates treatment effects using the generalized random forests (GRF) method (Athey et al., 2019). This approach represents a recent development in machine learning for causal inference, relaxing constraints on model form and the constancy of τ (Rubin, 2005). The GRF model, by estimating the propensity score [image: It seems you want to generate alternate text for an equation image. However, there is no image provided. Please upload the image, and I will help you create the alt text for it.] and [image: Mathematical expression displaying \( m(x) = E[Y_i \mid X_i = x] \), representing the expected value of \( Y_i \) given \( X_i \) equals \( x \).], leads to the following central form:
[image: Mathematical equation displaying \( Y_i - m(x) = \tau(W_i - e(x)) + \varepsilon_i \).]
In this formulation, as long as either m(x) or e(x) can be accurately estimated, the conditional treatment effects [image: Expression showing the conditional average treatment effect: tau(X_i) equals the expected value of Y(1) minus Y(0) given X_i equals x.] can be estimated with greater consistency. Moreover, given the forest model’s ability to freely choose covariates, this method can enhance estimation accuracy by providing a larger, dimensionally invariant set of covariates. Unlike traditional linear models that assume a constant treatment effect, the GRF method allows for the estimation of heterogeneous treatment effects across cities, accounting for differences in regulatory frameworks, economic conditions, and technological adoption. Compared to linear models, this non-parametric statistical method can yield the distribution of treatment effects, thereby offering richer statistical information conducive to a deeper exploration of the trends in treatment effects over time.
Leveraging previous foundational work (Breiman, 2001; Robinson, 1988), the algorithm first places the covariate split “greedily” in the spanning tree stage to maximize the squared difference of treatment effects, and then estimates the treatment effects based on the adjusted Equation 2 after building the random forest model. In the model fitting process, GRF assigns importance scores based on the frequency of covariate usage, estimating the optimal linear projection of the treatment effects on a series of the most significant covariates, thereby capturing heterogeneous treatment effects. This feature is beneficial for further contemplating which city characteristics can affect the magnitude of the treatment effects and how they do so, thereby positively influencing policy formulation.
This study employs Stata 16.0 for estimating the fixed effects model, the “grf” package in R for fitting, estimating, and visualizing the GRF model, and Python 3.7’s “jieba” library among others for text analysis.
4.2 Variables
This paper employs various urban-level pollutants as dependent variables, encompassing sewage emission (Emission_sewage), nitrogen oxide emission (Emission_NOx), and industrial smoke and dust emission (Emission_sd). These three pollutants with good data quality at the urban level are selected for their reflection of varying technological challenges in pollution control. Sewage emission control technologies, such as biological and chemical treatments, are the simplest. Nitrogen oxide (NOx) emission reduction techniques, like Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR), represent intermediate complexity. Industrial smoke and dust emission mitigation, requiring advanced Electric-Bag Composite Dust Removal, poses the greatest technical challenge.
This study employs aggregated city-level green patent data of listed companies as the primary explanatory variable. Although R&D spending could more closely indicate environmental innovation efforts, the use of green patents is dictated by challenges in obtaining firm-specific pollution data and distinguishing the environmental portion of R&D investments due to voluntary disclosure practices. The patents are classified per the United Nations Framework Convention on Climate Change into six categories: waste management, nuclear power, transportation, energy conservation, alternative energy production, and administrative regulation and design, with the possibility of patents overlapping across categories.
Informed by literature (Du et al., 2019; Du and Li, 2019), this paper selects control variables influencing both pollution emissions and green technology outputs. Key variables include the logarithm of per capita GDP (LnPGDP), treated to approximate growth rates while maintaining variables in a comparable dimension, and the ratio of government R&D investment to GDP (Ratio_rd), addressing technological support’s impact. Foreign direct investment (FDI) and industrial structure (IS) are assessed to gauge polluting enterprises’ prevalence in cities. Additionally, environmental regulation is assessed using Python text analysis on city government work reports, extracting and categorizing relevant Chinese terms. The frequency of these terms is normalized to formulate the Environmental Regulation index (ER), indicating local governments’ focus on environmental concerns, with detailed vocabulary presented in Table 1.
TABLE 1 | Text analysis word frequency statistics of each category name and some representative words.
[image: A table with two columns: "Category" and "Representative vocabulary." Categories include Environmental protection, Environmental pollution, Energy consumption, and Collaborative development classes. Each category lists relevant terms, such as air quality, greenhouse gases, recycling, and public participation. Notes specify the data source as government reports from Chinese cities, 2005 to 2020, with terms translated from Chinese.]In the GRF model section, this paper constructs a covariate set with theme-related variables from the China City Statistical Yearbook, including per capita GDP, government research and education spending as ratios to GDP, and broadband subscribers per household registration, etc. Descriptive statistics for the main variables involved are presented in Table 2.
TABLE 2 | List of variables and descriptive statistics.
[image: Table displaying variables related to emissions and green patents. It includes explained variables like sewage and nitrogen oxide emissions, and explanatory variables like green patents in various categories. The table also features control variables in fixed effects models, instrumental variables, and representative covariates in another model. Each variable has columns for mean, standard deviation, minimum, and maximum values.]4.3 Data source
The green patent data used in this paper comes from the China Stock Market Accounting Research Database (CSMAR, https://www.gtarsc.com/). The dataset consists of 173,674 green patent records spanning from 1992 to 2021. Frequency analysis revealed that the data for 2021 significantly fell below the average level of the preceding 3 years. To ensure data accuracy, the 2021 data were excluded. The patent records include the securities code of the involved listed companies, the fiscal year, the company name, the relationship between the company and the relevant listed company, the patent application date and authorization date, and whether the patent is an invention. Since there is a lack of pollution emission data at the enterprise level, the data was aggregated to the city level based on the postal codes of office addresses of the listed companies in the database.
This study’s city-level socio-economic data, sourced from the China City Statistical Yearbook, underwent preprocessing to enhance reliability: Cities with significant data gaps or administrative changes were excluded. Missing patent data were set to zero, and were verified and adjusted using local and provincial yearbooks. Interpolation methods filled remaining gaps, ensuring missing values constituted less than 0.5% of the data, minimizing their impact on analyses. This paper identify outliers as those values exceeding three standard deviations above the mean, and we have applied Winsorization to a minimal number of extreme values to ensure they do not become leverage points in the estimation of treatment effects within linear model. The refined dataset comprises a balanced panel for 217 cities from 2005 to 2020.
5 TREATMENT EFFECT OF GREEN TECHNOLOGIES ON POLLUTION EMISSIONS IN FIXED MODEL
5.1 Baseline regressions
This paper initially estimates Equation 2, with results presented in Table 3. In columns (1), (3), and (5), the regression estimates include only the quadratic term of the total number of green patents, the variable s_total_p with the prefix “s_” represents the square of the total number of patents. Columns (2), (4), and (6) present the estimates with the inclusion of city-level control variables.
TABLE 3 | Estimated results of baseline regressions.
[image: A table presents regression results showing the impact of various variables on emissions, analyzed in six models. The dependent variables are Emission_sewage, Emission_NOx, and Emission_sd, with independent variables including total_p, s_total_p, LnPGDP, Ratio_rd, FDI, IS, and ER. Coefficients and standard errors are listed, with significance levels indicated by asterisks. The R-squared values, number of observations, and number of cities, as well as fixed effects for city and year, are provided. Robust standard errors clustered at the city level are noted.]The estimated results indicate that green patents have a certain emission reduction effect on sewage and nitrogen oxides, which is statistically significant at a 5% significance level. However, the treatment effect on industrial smoke and dust is not statistically significant. For the two pollutants where the treatment effect is significant, the estimated coefficient for the linear term of green patents, i.e., the marginal effect of pollution reduction, is negative. Simultaneously, the quadratic term coefficient is positive, suggesting a diminishing marginal effect on pollution reduction with an increase in the number of green patents.
Using sewage emissions as an example, the marginal effect can be expressed in a linear form: −12.4349 + 0.0018 × number of patents. This indicates that at the initial stages of environmental technology application, each patent contributes to a reduction of approximately 12.43 tons in sewage emissions. However, as the number of patents increases, their marginal effect diminishes, approaching a reduction effect close to zero when the green patent count nears 6,908. The results partially validate the research hypothesis, yet the impact on industrial smoke and dust did not exhibit statistical significance. Subsequent sections aim to explain this phenomenon by examining the nuanced categories of patents and the convergence rate of their marginal effects.
5.2 Robustness test
5.2.1 Endogeneity issues
The potential bidirectional causality between patents and emissions introduces endogeneity issues. This paper adopts strategies from the literature on addressing peer effects (Bentolila et al., 2010; Card and Krueger, 1996) and selects the total number of independent patents obtained by all listed companies in a city within the year as an instrumental variable (IV) for the linear term of patents. This variable is directly related to the city’s green patents but not directly to emissions. Additionally, given the potential endogeneity of the quadratic term, the square of the instrumental variable (IV_sq) is introduced as an additional instrument for the quadratic term of patents. Using the two-stage least squares method, results are presented in Table 4.
TABLE 4 | Results of instrumental variable estimation of green patents on pollution emissions.
[image: Statistical table showing regression results across various models. The columns represent different stages and emissions: First stage, Emission_sewage, Emission_NOx, and Emission_sd. Variables include total_p, s_total_p, IV, IV_sq, and constants with associated coefficients, standard errors, observations, R-squared values, and other statistical measures. Control variables, city, and year fixed effects are included. Note specifies the explanatory variable for "First stage" is the number of green patents; "Second stage" and "AET" are emissions of the corresponding pollutants.]Table 4, Columns (1) and (2), report the first-stage regressions for the linear and quadratic terms of patents, respectively. Column (1) takes the total number of green patents as the dependent variable and uses the original instrumental variable (IV) as the primary explanatory variable. The estimated coefficient of IV passes the 1% significance level test, indicating a strong correlation between IV and the total number of green patents. Similarly, Column (2) uses the square of the total number of green patents as the dependent variable and employs both IV and its square (IV_sq) as explanatory variables. The coefficient of IV_sq is also significant at the 1% level, confirming the relevance of the quadratic instrument.
Columns (3) to (7) present the second-stage and approximate exogeneity test (AET) results for the three pollutants. Columns (3), (5), and (7) show the second-stage regression results for sewage, nitrogen oxide, and industrial smoke and dust emissions, respectively. The second-stage estimations indicate that the marginal abatement effects of green patents on sewage and nitrogen oxide emissions remain significant, with the absolute values of the coefficients increasing compared to the baseline regression. For industrial smoke and dust emissions, however, the abatement effect of green patents remains insignificant.
Columns (4) and (6) provide the results of the approximate exogeneity test (AET) for sewage and nitrogen oxide emissions, respectively. This test involves simultaneously regressing the explanatory variable and the instrumental variables on the dependent variable. The results confirm that the instrumental variables (IV and IV_sq) are exogenous to the dependent variables, as their coefficients become insignificant in this test. This supports the validity of the instrumental variable strategy employed in this study.
5.2.2 Metric accuracy issues
Constrained by the available data, this study is limited to measuring the impact of green technology on pollution emissions at the city level. However, this measurement approach faces three main challenges.
Firstly, the aggregated green patent data’s challenge is their broad indicator, obscuring direct links to specific pollutants, necessitating a refined analysis of patent categories to assess impacts on three pollution types more accurately in later sections. Secondly, focusing solely on patents from listed companies overlooks broader innovation efforts. To rectify this, the study incorporates data from the Chinese Research Data Services Platform (CNRDS, http://www.cnrds.com), encompassing city-specific green patents across all entities. Regression analyses, incorporating this comprehensive variable (GP_citylevel), are detailed in Table 5 (1)–(3), showing consistent trends with the baseline. Thirdly, the geographic specificity of green patent utilization is questioned, as technologies may be applied beyond the originating city’s borders. To ensure accuracy, the study meticulously validated green patent allocations against company locations, adjusting the green patent count (newGP) accordingly. This refined approach, aimed at better aligning patent use with actual company locations, yielded improved estimation accuracy for pollution impacts, as demonstrated in Table 5 (4)–(6), where the results exhibit enhanced coefficients and significance levels for the treatment effects on major pollutants, ensuring the estimation remains robust.
TABLE 5 | Estimates with replacement variables and samples.
[image: A regression table displaying the impact of variables on emissions. Columns are labeled Emission_sewage, Emission_NOx, and Emission_sd. Variables include GP_citylevel, s_GP_citylevel, newGP, s_newGP, with constants. Observations range from 2,517 to 3,195, with R-squared values between 0.015 and 0.466. Control variables, city FE, and year FE are listed as yes. There is a note on the loss of sample size due to missing values.]5.2.3 Verification of nonlinear characteristics
In the baseline regression, a quadratic term was introduced to capture the nonlinear relationship between green patents and emission reductions. However, this approach may not fully represent the nonlinear dynamics. For example, if the relationship follows an upward-opening parabola, emissions could theoretically increase beyond a certain threshold of green patents, which contradicts practical expectations. To further validate the nonlinear characteristics, this section employs the Bins method, dividing green patents into quintiles and estimating the treatment effects of each group on three pollutants. The results are presented in Table 6, Panel A. Columns (1), (3), and (5) report the effects of group means (Bin_mean) on the three pollutants, consistent with the baseline regression, showing no significant emission reduction effect for industrial smoke and dust. Columns (2), (4), and (6) present the effects of group dummies, with the first quintile (Bin_dummy1) omitted to avoid multicollinearity. The coefficients indicate a diminishing marginal reduction effect for sewage and nitrogen oxides, with emission reductions decreasing as the patent quintiles increase. However, industrial smoke and dust do not exhibit a similar pattern. Notably, the highest quintile shows a relatively strong reduction effect, likely due to stricter emission requirements in densely populated, R&D-intensive cities like Beijing and Shanghai.
TABLE 6 | Bins grouping regression and threshold regression estimates.
[image: Table showing treatment effects by quantile binning and threshold regression. Panel A presents data on variables such as Bin_mean, Bin_dummy, with columns for Emission_sewage, Emission_NOx, and Emission_sd. Displayed are coefficients, errors, number of cities, and control variables. Panel B showcases threshold regression with similar variables, thresholds, F-statistics, and R-squared values across three emission categories. Data spans multiple cities with various fixed effects.]Additionally, threshold regression was applied to re-estimate the baseline model, as shown in Panel B, columns (7)–(9). Sewage and nitrogen oxides exhibit significant single-threshold characteristics, while industrial smoke and dust do not. By examining the coefficients before and after the threshold values (412 patents for sewage and 275 for nitrogen oxides), the reduction effects demonstrate a diminishing trend, gradually approaching zero or a minimal level without reversing.
To further explore these dynamics, this study employs the Quantile-on-Quantile (QQ) regression method (Sim and Zhou, 2015). Green patents and pollutant emissions were divided into 5% quantiles by year, and quantile regressions were conducted for each combination of independent and dependent variable quantiles. The coefficients were averaged across years, and the results are visualized in three-dimensional plots (Figures 3A–C). Darker colors indicate higher reduction effects. The plots reveal a nonlinear pattern where the reduction effect decreases as the number of green patents increases, eventually converging near zero. Industrial smoke and dust (Figure 3C) exhibit a smoother convergence, with a rapid decline around the 40% patent quantile and a post-convergence effect slightly above zero, which may explain its overall insignificance. Additionally, while sewage and industrial smoke and dust show reduced effectiveness in high-pollution quantiles, nitrogen oxides display multiple fluctuations. These findings not only validate the robustness of the baseline regression but also supplement the underfitting of the quadratic model by providing detailed insights into the nonlinear characteristics.
[image: Three 3D surface plots depict different climate data variables: CO2 Emissions, Air Pollution Index, and CO2 PPM. Each plot shows peaks and troughs corresponding to varying data intensity, with color gradients ranging from purple to yellow, indicating low to high values. Axes are labeled with numeric values, and each plot is titled at the top.]FIGURE 3 | Quantile-on-Quantile (QQ) regression results for green patents’ treatment effects on pollutant emissions. Note: The three-dimensional plots illustrate the relationship between green patent quantiles (x-axis), pollutant emission quantiles (y-axis), and the estimated treatment effects (z-axis) for sewage (A), nitrogen oxides (B), and industrial smoke and dust (C).
6 SEGMENTED ANALYSIS OF GREEN PATENT CATEGORIES
In this section, the paper estimates the emission reduction effects of three pollutants according to six subcategories of green patents. The analysis continues to employ a panel fixed-effects model, incorporating quadratic terms for patents, with the results displayed in Table 7. In Table 7, panel A–C represents three types of pollutant emissions as explanatory variables, and columns 1–6 represent the different categories with the patents as explanatory variables.
TABLE 7 | Estimates of six categories of green patents on emissions of three types of pollutants.
[image: Table displaying coefficients and R-squared values for the impact of various energy-related variables on emissions across four panels labeled A to D. Panels include sewage emissions, NOx emissions, and industrial smoke and dust emissions. Each panel details linear and quadratic coefficients with standard errors for variables like waste energy production and nuclear power. R-squared values indicate model fit, while variables explore different coefficients for industrial emissions with green patents and invention patents. The table also notes control variables and features such as year and city fixed effects.]Panels A and B report the estimated impacts of various patent categories on sewage and nitrogen oxide emissions, respectively, revealing certain similarities. Notably, patents in the nuclear power and administration and design categories exhibit relatively large absolute values for the linear term coefficients, with some significance. This suggests a higher initial emission reduction effect for these two patent types. The study also examines the quadratic term coefficients, which relate to the rate of marginal effect decline. Peak patent numbers for sewage and nitrogen oxide in these categories are similarly close, with nuclear power patents diminishing to zero marginal abatement effect at 122 and 132 patents, and administration and design at 358 and 375 patents, respectively. Particularly, the administration and design category shows a very high intercept for nitrogen oxide emissions, at −1,300.0253 tons, indicating that regulatory technologies are highly effective in early-stage pollution control for this pollutant.
Panel C presents the estimation results for industrial smoke and dust emissions, which, similar to the baseline regression, do not show sufficient statistical significance. The paper then re-estimates these effects using the quantities of invention patents across six categories, with findings reported in Panel D. Uniquely, the linear and quadratic coefficients of invention patents in the alternative energy production category demonstrate 5% significance. According to this analysis, the patent count at which marginal abatement effect declines to zero is 16,358. This outcome suggests that high-quality alternative production technologies might be an effective means to reduce industrial smoke and dust emissions.
7 REASSESSING TREATMENT EFFECTS AND IDENTIFYING KEY URBAN FACTORS
In this section, a Generalized Random Forest (GRF) model is employed to reevaluate the treatment effects of green patents. Additionally, we identify key urban factors influencing these treatment effects by leveraging the frequency with which covariates are used in constructing the model.
The algorithm initiates by estimating propensity scores ([image: Please upload the image or provide a URL so I can help generate the alternate text for it.]) and conditional expectations ([image: Please upload the image or provide a URL so I can generate the alternate text for you.]), utilizing selected dependent, treatment variables, and a covariate set, with the aim of enhancing the robustness and accuracy of causal effect estimations. This involves two key hyperparameters critical to the model’s optimization: parameter 1, which sets the covariate significance threshold for model inclusion, and parameter 2, determining the causal forest model’s number of trees. These parameters are pivotal, with parameter one varying from 0 to 0.5 in increments of 0.05, and parameter two spanning from 100 to 1,500 trees in steps of 100, to systematically explore the parameter space for the optimal model configuration. This exploration aims to identify the settings that yield the highest model fit, culminating in the estimation of the average treatment effect (ATE) based on the optimally configured causal forest model.
7.1 Re-estimation and convergence characterisation of treatment effect
Following the outlined process to identify the optimal GRF models for various pollutants, this paper employs the optimal model to estimate the kernel density distribution of the treatment effects of green patents. The GRF model not only estimates the average treatment effects of green patents but also reveals how these effects evolve over time and across regions. This dynamic perspective is crucial for understanding the long-term impacts of emission reduction policies, highlighting the diminishing returns of green patents in some contexts and the persistence of high-impact effects in others. Such insights are pivotal for tailoring policy interventions to regional characteristics. In the estimation strategy, cities are used as clustering units to ensure that random sample division can be organized by city. Additionally, the study divides the sample into different time intervals to observe whether the marginal abatement effects decrease over time, as hypothesized.
Table 8 reports the model fitting outcomes and average treatment effect estimates for the quantity of green patents concerning three pollutants, where the sample is divided into three time periods: 2005–2010, 2011–2015, and 2016–2020. The fourth column of the table reports the overall estimates for the period 2005–2020. Where the MFP (mean forest prediction) indicator tests the superiority of model fit, and the closer the indicator is to 1, the better the model fit. The DFI (differential forest prediction) indicator verifies whether the model has heterogeneity characteristics regarding covariates, and ATE (average treatment effect) reports the results of the average treatment effect.
TABLE 8 | GRF model fitting and average treatment effect estimation for green patents on three types of pollutants.
[image: Table showing emissions data across three periods: 2005–2010, 2011–2015, and 2016–2020, plus an overall period. Panels A, B, and C display sewage, nitrogen oxide, and industrial emissions, respectively. Each panel includes indicators: MFP, DPF, and ATE with optimal parameters. Values include statistical significance indicators such as ** and ***.]Panels A–C of Table 8 respectively present the model fitting outcomes and treatment effect estimates of green patents for sewage, nitrogen oxide, and industrial smoke and dust. The model fittings under the optimal parameter settings exhibit statistically significant results, indicating a good fit for the models.
Table 8’s “All period” spans 2005–2020, matching the fixed effects model’s timeframe. Re-estimating green patents’ ATE on pollutant emissions, the GRF model found significant effects for sewage and nitrogen oxide, but not for industrial smoke and dust, with ATEs of −3.7625, −14.3727, and 0.3612 tons, respectively. Comparatively, the fixed effects model, with its intercepts and slopes, is not directly comparable to the GRF model. Yet, treating the GRF model’s 2005–2010 ATEs as the fixed model’s baseline (intercepts can be regard as initial ATEs), GRF estimates (−31.968, −200.693, −27.707 tons) surpass fixed model’s intercepts (−12.435, −73.183, 7.068 tons) in magnitude and significance at 1%.
The findings suggest that green patent technologies initially exhibit a favorable ATE, but their marginal returns may diminish over time, a hypothesis this study aims to test. This paper illustrated the distribution of the treatment effects of green patents on three types of pollutants over time through the kernel density in Figures 4–6 observing similar results.
[image: Four line graphs show the density versus emission reduction effect. Graph (A) shows a peak near zero with a range from negative two hundred fifty to five. Graph (B) displays a sharp peak centered near zero to five. Graph (C) has a peak near zero with slight fluctuations, ranging from negative fifty to five. Graph (D) shows a similar sharp peak as (B), within a range of negative fifty to twenty.]FIGURE 4 | Kernel density distributions for green patents’ treatment effects on Sewage emissions. Note: the distributions are displayed for 2005–2010 (A), 2011–2015 (B), 2016–2020 (C), and the entire time span (D), aligned with the baseline regression timeframe.
[image: Four line graphs labeled (A), (B), (C), and (D), each showing the density of emission reduction effects on the x-axis. Graph (A) ranges from -1000 to 0, with a peak around -200. Graph (B) ranges from -250 to 50, peaking near -50. Graph (C) ranges from -30 to 0, peaking at approximately -5. Graph (D) spans from -150 to 0, with a peak around -50. All graphs have similar density trends with varying scales.]FIGURE 5 | Kernel density distributions for green patents’ treatment effects on Nitrogen oxide emissions. Note: the distributions are displayed for 2005–2010 (A), 2011–2015 (B), 2016–2020 (C), and the entire time span (D), aligned with the baseline regression timeframe.
[image: Four density plots labeled A, B, C, and D compare emission reduction effects. All plots show a distinct peak, with varying x-axis ranges: A (−200 to 150), B (−50 to 150), C (−25 to 25), D (−300 to 300). The y-axis represents density.]FIGURE 6 | Kernel density distributions for green patents’ treatment effects on Industrial smoke and dust emissions. Note: the distributions are displayed for 2005–2010 (A), 2011–2015 (B), 2016–2020 (C), and the entire time span (D), aligned with the baseline regression timeframe.
Key insights include.
	(1) Green patents’ average effects on pollutants decrease over time, with varying speeds of convergence. The 2005–2010 period showed higher average reduction effects for all pollutants (Figures 4–5A), but sewage and industrial smoke and dust emissions nearly converged in the next period (Figure 4B, Figure 6B). Sewage saw a subsequent increase (Figure 4C), possibly from technological breakthroughs, with limited impact on industrial smoke and dust emissions (Figures 5C, 6C).
	(2) All categories showed a “long tail” in their kernel density, possibly due to the challenge of precisely identifying whether green patents were utilized for specific pollutant control. Left-skewed tails suggest some reduction in emissions, as with sewage and nitrogen oxides, while right-skewed tails indicate general ineffectiveness in pollution reduction (Figure 6B).
	(3) The dispersion trend in the treatment effect densities decreases, with the y-axis scale and kurtosis coefficient increasing over time. This suggests a reduction in effective emission reduction technologies, as average effects gradually converge to zero. For instance, the kurtosis coefficient for industrial smoke and dust emissions increased from 3.1 in 2005–2010 (Figure 6A) to 11.6 in 2016–2020 (Figure 6C).

7.2 City-level features influencing treatment effects
In constructing a GRF model, each covariate is assigned a score reflecting its frequency of use in the nodes of spanning trees. The Best Linear Projection (BLP) is then utilized to estimate the linear influence of covariates on the treatment effect [image: Mathematical notation showing the Greek letter tau followed by a function of x, written as τ(x).]. This study separately estimated the top 10 covariates for three pollutants using models from 2005 to 2020. Covariate rankings were determined by node-splitting importance for each pollutant, scoring from 10 (highest) to 1 (lowest), with an overall score aggregated from all three pollutants. Results are in Table 9.
TABLE 9 | Best Linear Projection (BLP) estimation and importance ranking of treatment effects of green patents for three pollutants.
[image: Table comparing environmental pollutants across four categories: Sewage, Nitrogen Oxide, Industrial Smoke and Dust, and All Pollutants. Each column lists covariates with their BLP coefficients or ranking scores. Explanatory notes define terms like Gov_income and Resident_loan. Values are marked with asterisks to indicate significance levels.]This study organizes covariates into two main categories: Intrinsic Factors and External Support. Intrinsic Factors combine objective conditions and development pressures, capturing the city’s foundational attributes such as industrial structure index (Indust_stru), share of domestic enterprises (Dome_pro), and employment in key sectors (i2g2_labor for manufacturing, i2g1_labor for mining), alongside development challenges like population growth rate (PGR), per capita GDP (PGDP), and real estate sector metrics (i3g6_pro). These variables reflect the economic, industrial, and demographic fundamentals driving environmental policy outcomes.
External Support groups together technology and financial support variables, focusing on the facilitation of green technology through government R&D initiatives (Ratio_rd for R&D expenditure, i3g7_labor for R&D personnel) and education (Ratio_ED for education expenditure), as well as financial resources available for environmental efforts (Institution_save for financial institution deposits, Resident_save for resident savings). This classification highlights the pivotal role of government policy, research and development, and financial mechanisms in supporting the adoption and effectiveness of green technologies and initiatives.
Table 9 reveals key factors affecting green patents’ treatment effects on three pollutants: sewage, nitrogen oxide, and industrial smoke and dust. For sewage, government R&D investment (Ratio_rd) and financial institutions’ deposits (Institution_save) are pivotal, as they directly enhance cities’ capacities to adopt and implement green technologies. For nitrogen oxide, population growth and density (PD) play significant roles by facilitating technology spillovers in more densely populated areas, while government R&D support (Ratio_rd) further amplifies these effects. For industrial smoke and dust, employment in specific industries like real estate (i3g6_pro) and construction (i2g4_labor) reduces the effectiveness of green patents, suggesting that cities with higher proportions of industrial workers may require tailored policy interventions to offset these challenges.
Government support for R&D emerges as a critical external factor across all pollutants, highlighting its importance in enhancing the effectiveness of green patents in emission reduction. The heterogeneous analysis further reveals that cities with higher R&D investment and education expenditure tend to benefit more from green technologies. This implies that national and local governments should prioritize funding for regions with strong technological infrastructure while offering targeted support to less-developed areas to bridge the gap in technological adoption and effectiveness.
8 DISCUSSION
Unlike much of the literature based on endogenous growth models, this article frames the discussion of the relationship between environmental R&D and pollution reduction within a social planning issue, examining the factors that influence the marginal effects of technological emission reduction under command-and-control environmental regulations. It finds that the difficulty of R&D is a pivotal factor, and the existence of an equilibrium solution implies bottlenecks in technological development, highlighting that overcoming these bottlenecks in environmental technology is key to avoiding this predicament.
This study confirms the nonlinear relationship between environmental technology and pollution reduction through a panel fixed effects linear regression model, aligning with conclusions from some existing research (Li L. et al., 2021; Li W. et al., 2021). However, unlike (Li L. et al., 2021), which focuses on the strategies of firms at the turning point of R&D investment, this paper provides new evidence through a re-estimation of the treatment effect kernel density using the GRF model. It suggests that the presence of a turning point is not fixed; there is still potential for marginal emission reduction effects to increase with the advancement of new technologies. Nevertheless, the common trend is that the marginal benefits of technological emission reductions gradually converge to zero, with the rate primarily dependent on the difficulty of R&D.
The treatment effect estimates for green patent subcategories show that nuclear and administrative patents have larger first-order coefficient absolute values compared to other subcategories, indicating a favorable emission reduction effect in the early stages of technology application. These first-order coefficients, or intercept terms of marginal effects, represent the treatment effects before diminishing returns begin. A larger absolute value suggests a more significant initial emission reduction effect, especially for countries just starting technological emission reduction. Unlike nuclear technology, administrative patents, such as pollution monitoring technologies, have lower technical barriers and wider applicability, aligning with existing literature conclusions (Jiang et al., 2014).
Identifying urban characteristics and optimal linear projection results, urban development pressures emerge as the primary factors influencing the effectiveness of green patents in emissions reduction. Local officials in China face dual pressures from urban economic development and environmental performance assessments. These include factors like industrial structure, population, and economic growth, with population growth rate (PRG) showing a heterogeneous treatment effect on the reduction of nitrogen oxides—cities with higher PRGs achieve greater emissions reductions. Our analysis of urban characteristics underscores the importance of tailoring environmental policies to local conditions. For instance, cities with higher population growth rates may achieve greater reductions in nitrogen oxide emissions through green technologies, suggesting that policymakers should consider demographic trends when allocating resources. Furthermore, government expenditure on education and R&D, as well as financial market support, play critical roles in enhancing the effectiveness of green patents. Policymakers should leverage these insights by increasing investments in education and R&D, while also fostering financial mechanisms that support environmental innovation.
The study also highlights two other critical factors: the government’s expenditure ratio on education and R&D, and the capital stock in financial markets, underscoring the importance of policy support and financial investment in R&D outcomes. This finding differs from Li et al. (2017), which identified technology adoption as the primary heterogeneous factor (Costantini et al., 2013; Li et al., 2017). Furthermore, our cost-benefit analysis highlights the importance of balancing the marginal benefits of emission reduction against the marginal costs of green innovation, offering policymakers a critical framework for optimizing resource allocation in environmental technology investments.
9 CONCLUSION
This paper constructs a planning problem aimed at maximizing social utility under command-and-control environmental regulations and analyzes the impact mechanism of technological emission reductions. By discussing the difficulty of technology under equilibrium conditions, it posits a research hypothesis on the nonlinear marginal effects of environmental technology. The hypothesis is tested through an estimation of the emission reduction effects of green patents held by Chinese listed companies from 2005 to 2020 on three types of pollutants in various cities, using linear regression and Generalized Random Forest models. The analysis further incorporates the heterogeneity of treatment effects across patent categories and city characteristics, offering policy insights.
The findings of this study highlight the diminishing marginal returns of green patents, suggesting that policymakers should adopt a more strategic approach to environmental technology investment. Specifically, local governments should prioritize subsidies for technologies with significant early-stage emission reductions, such as those in nuclear power and administrative design categories. Additionally, increased R&D support is needed for technologies targeting more challenging pollutants, such as industrial smoke and dust, to overcome existing bottlenecks. By aligning fiscal resources with the marginal effectiveness of green technologies, policymakers can maximize the environmental benefits of their investments. Additionally, the preliminary cost-benefit analysis underscores the need for policymakers to carefully evaluate the economic value of green innovation, ensuring that investments yield maximum social and environmental returns.
However, the identification of treatment effects is limited by the scarcity of firm-level emission data, necessitating further refinement for a more precise assessment of the impact of environmental technologies. For this study, potential sources of statistical uncertainty in our estimates may include biases in data recording, the possibility of omitted variable bias, underfitting in the linear model, and inaccuracies in the pre-estimated parameters of the GRF model. Additionally, the theoretical analysis, rooted in a centralized planning context, suggests the need for further exploration into how technological emission reductions perform under diverse environmental regulatory frameworks, such as decentralized economies with market-based instruments like emission trading or pollution taxes. Such comparisons could provide a more comprehensive understanding of the effectiveness of environmental technologies across different governance structures.
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Introduction: Green finance plays a pivotal role in the transition to a low-carbon economy by influencing energy consumption patterns. Despite growing interest in this area, the relationship between green finance and the optimization of end-use energy consumption remains underexplored, particularly in the context of regional disparities.Methods: This study investigates the impact of green finance on end-use energy consumption structure across 30 provinces in China from 2014 to 2021. A system Generalized Method of Moments (GMM) model and a panel threshold model are employed to analyze the relationship, incorporating nonlinearities and regional heterogeneities.Results: The findings indicate that green finance significantly reduces reliance on high-carbon energy sources and fosters cleaner energy consumption, particularly in provinces with advanced green financial systems. The effects are nonlinear, becoming evident only after green finance surpasses a certain threshold. Stronger impacts are observed in eastern regions due to mature financial infrastructures, whereas central and western regions experience comparatively weaker outcomes.Discussion: Contrary to expectations, mediating factors such as industrial structure, energy efficiency, and green innovation have limited explanatory power for the observed impacts. These results highlight the need for tailored green financial policies and enhanced regional support mechanisms to accelerate sustainable energy transitions. This research underscores the transformative potential of green finance in energy governance and its contribution to achieving sustainable development goals.Keywords: green finance, end-use energy consumption structure, sustainable energy transition, GMM model, threshold effects
1 INTRODUCTION
As global carbon emissions continue to soar, reaching an estimated 31.5 billion tons in 2023, nearly matching the peak levels of 2019 (IEA, 2023), the urgency for effective climate action is more pronounced than ever. The energy industry chain, a substantial contributor to these emissions, stands at the forefront of the decarbonization challenge (Peng et al., 2023a; 2023b). Greening this chain involves intricate upgrades across all sectors—upstream, midstream, and downstream—with the downstream sector playing a critical role in driving green transformations from a market demand perspective (Zhang et al., 2022).
China, as the world’s largest emitter, contributing approximately 30% of global emissions (BP, 2023), faces significant scrutiny. Its energy structure, heavily reliant on coal, which accounts for 60%–70% of its total energy consumption, positions the country at a critical point for achieving substantial carbon footprint reductions (Liu et al., 2019; Zhao et al., 2022). Addressing this, the study highlights how optimizing the energy consumption structure (ECS) not only serves as an environmental imperative but also represents a critical strategy for achieving China’s carbon neutrality goals.
In this context, green finance emerges as a powerful lever for sustainable development, aimed at supporting projects that minimize pollutant emissions and promote environmental benefits. Despite its pivotal role, empirical studies scrutinizing the specific impacts of green finance on the adjustment of energy consumption structures, especially considering regional disparities, remain scarce (Jin et al., 2021; Wu et al., 2023). Prior research has affirmed green finance’s role in bolstering renewable energy and enhancing the accessibility of low-carbon technologies (Shang et al., 2023); however, its nonlinear spillover effects on energy consumption structures have not been extensively explored.
This manuscript not only fills this gap by systematically assessing the influence of green finance across different regions of China but also delves into the nonlinear spillover effects and the mediating role of industrial structure in transforming the energy landscape. By building on the existing literature, this study extends the discourse by providing nuanced insights into the implementation effects of green finance policies, thereby offering robust policy recommendations aimed at optimizing the national energy structure and advancing sustainable development goals.
For the contributions, our study is the first to reveal the systematic impact of green finance on the structure of end-use energy consumption in China. Additionally, we highlight the issue of regional heterogeneity, which has not been thoroughly explored in related research. This heterogeneity poses a real challenge faced by many countries (not just China, as mentioned in this study) in implementing policies. Finally, our research provides financial tools for implementing the clean-up of the energy supply chain, driven by the green upgrading of end-use energy consumption, offering new suggestions for green development.
The remainder of this study is structured as follows: Section 2 briefly reviews the related literature. Section 3 presents the methodology, variables, and data sources. Section 4 presents and discusses the corresponding estimation results and findings. Section 5 concludes the study.
2 LITERATURE REVIEW
2.1 Green finance and energy consumption structure
In recent years, as the global climate crisis has intensified, green finance has emerged as a crucial instrument for governments committed to sustainable development and energy transition. It supports the reduction of dependence on high-carbon energy sources and enhances the energy consumption structure by financially backing clean energy initiatives, energy-saving projects, and environmental technology innovations. Numerous studies have documented the pivotal role of green finance in facilitating new energy transformations. For instance, Wang et al. (2023) underscored that green finance could effectively reduce the public’s reliance on high-carbon sources like coal, thereby fostering a shift toward low-carbon technologies. Similarly, research by Peng et al. (2023a) and Fan et al. (2024) demonstrates that green finance significantly bolsters environmental stewardship and supports the renewable energy sector.
Furthermore, Lee and Lee (2022) delved into the broader implications of green finance for the evolution of the global energy structure, highlighting its potential to bolster clean energy investments. However, most existing research has primarily focused on the overarching impact of green finance on energy structures, with less attention given to the specific mechanisms at play. The direct influence of green finance on structural changes in energy consumption through resource optimization remains a fertile area for future investigation, as does the empirical exploration of how green finance interacts with energy consumption structures across different Chinese regions.
Recent advancements in this field reveal regional disparities in the impact of green finance on energy structure optimization. For example, Lv et al. (2021) observed that while the eastern regions of China experience significant enhancements in energy structure optimization through green finance, the impact is considerably weaker in the central and western regions, which suffer from less favorable green economic conditions. Zhao et al. (2022) utilized panel data from various provinces to demonstrate that green finance policies are particularly influential in energy-intensive industries and are crucial for promoting technological innovations in clean energy. Supporting this view, Sun and Chen (2022) provided empirical evidence that green finance policies indirectly promote energy efficiency, especially among new energy firms.
Additionally, Wu et al. (2023) noted that green finance not only facilitates the transformation of traditional energy sectors but also accelerates the shift toward renewable energy by fostering green technological innovations. Zhou et al. (2022) further argued that green finance is vital for spurring innovations in energy technologies, which are essential for the rapid deployment of clean power systems. Liu et al. (2023) found that while green finance policies are effective in developed regions, they do not significantly impact less-developed areas due to inadequate infrastructure and financial support.
Finally, studies by Lee et al. (2023), Hu et al. (2023), and Liang and Li (2024) emphasize the importance of green finance in supporting infrastructure development and environmental protection projects, improving energy efficiency, and reducing the reliance on high-carbon energy. Hu et al. (2023) compared green finance policies across leading economies, highlighting the necessity for policy coherence and durability to foster low-carbon technologies and mitigate greenhouse gas emissions. Wu et al. (2024) suggested that investments in green finance facilitate the development of low-carbon energy systems through energy technology innovation, propelling the transition toward greener energy consumption and helping achieve emission reduction targets.
Thus, hypothesis 1 is proposed: Green finance has a significant positive impact on China’s end-use energy consumption structure.
2.2 Nonlinear spillover effects of green finance
As the global promotion of green finance continues, scholars have increasingly focused on its nonlinear spillover effects on the energy consumption structure. Research indicates that the impact of green finance on energy structures is not straightforwardly linear but may exhibit threshold effects. Once green finance investment reaches a certain scale, its influence on optimizing energy structures becomes particularly pronounced. Hansen (1999) introduced the threshold model as an effective tool for analyzing such nonlinear relationships, and this approach has been extensively applied to study the nonlinear effects across various contexts. Sun and Chen (2022) observed a distinct nonlinear relationship between the development of green finance and its impact on energy consumption structures at certain investment levels. Furthermore, Zhou et al. (2022) highlighted that at high investment levels, the spillover effects of green finance are more evident, fostering significant advancements in new energy technologies.
Gu et al. (2023) provided empirical evidence showing variations in the energy consumption engineering structure between China’s eastern and western regions, thus underscoring the differential impacts of green finance across these diverse geographic areas. They emphasized that green finance has a more substantial impact on industries in the eastern part of China than those in the western regions. Similarly, Zhao et al. (2022) noted that the policy effects of green finance demonstrate nonlinear trends across regions with varying levels of economic development. High-income areas experience marked improvements in energy structure transformation due to green finance, whereas low-income regions experience relatively minor effects. Although these studies offer valuable insights into the nonlinear spillover effects of green finance, comprehensive and systematic research exploring these effects across different regions of China is still limited.
Therefore, hypothesis 2 is proposed: Green finance has a nonlinear spillover effect on the end-use energy consumption structure.
2.3 Analysis of the mediating effects of green finance on energy consumption structure
The mediating role of industrial structure in the impact of green finance on energy consumption has been a key focus in the literature. Studies, such as those by Baron and Kenny (1986), have explored mediation models to understand the links between financial and economic variables, including how green finance indirectly influences energy consumption through industrial adjustments. Hayes (2009) noted the significant impact of industrial transformation on regional energy structures, although empirical research on this mediation is still lacking.
Recent studies have further examined this relationship. Ge et al. (2022) found that optimized industrial structures enhance the positive effects of green finance on energy optimization. Xiong et al. (2023) similarly concluded that green finance indirectly affects energy consumption by driving industrial restructuring, especially in highly industrialized regions. These findings suggest a feedback effect where green finance and industrial structure interplay to influence energy consumption, although regional variations in this mechanism require further exploration. In addition to the industrial structure, factors like energy efficiency and green innovation also serve as mediators in the relationship between green finance and energy consumption.
Energy efficiency is particularly significant, reducing carbon intensity in energy use. Wang et al. (2016) highlighted that green finance supports investments in energy-saving technologies, improving firm energy efficiency and thus enhancing the energy structure. Zhang et al. (2019) also demonstrated that green finance boosts energy efficiency, notably in energy-intensive industries. Additionally, green innovation serves as a crucial channel; green finance drives research and deployment of new energy technologies, supporting green patents and clean energy innovations (Zhang et al., 2022). Guo et al. (2023) emphasized green finance’s role in supporting R&D for green technologies, reducing production costs, and speeding up technology commercialization, which aids in energy transformation.
Recent empirical findings support these concepts. Zhao et al. (2022) observed that green finance more effectively enhances energy efficiency in the eastern provinces than in the central provinces. Zhou et al. (2022) noted that green finance plays a significant role in aiding green technological innovation, which is crucial for optimizing energy structures, particularly in traditional sectors. Xu et al. (2023) found that green finance is instrumental in promoting technological innovation in energy conservation, influencing energy usage structure on the demand side, and facilitating structural transformations in power consumption. Wang et al. (2022) discussed how green finance accelerates market-oriented adoption of new energy technologies through financial subsidies to clean energy projects, optimizing the energy consumption structure. Finally, Cai and Zhang (2024) confirmed that as green finance policy application intensifies, its impact on enhancing energy efficiency in high-pollution industries strengthens. Li et al. (2022) examined path dependency in energy structure transformation and emphasized the importance of policy continuity in restructuring energy consumption.
Thus, hypothesis 3 is proposed: Green finance affects the end-use energy consumption structure through the mediating effects of industrial structure, energy efficiency, and green innovation.
2.4 Regional heterogeneity analysis of green finance
The uneven development across China’s regions results in varied impacts of green finance on local energy structures, which exhibit distinct regional characteristics. Research has shown that green finance is more developed in the eastern regions, leading to stronger policy effects, whereas the central and western regions face development lags due to economic disparities (Zhao et al., 2022). Zhou et al. (2022) noted that although the influence of green finance policies on energy consumption structures in eastern China is nearing saturation, it is significantly less effective in the central and western regions due to imbalances in infrastructure and financial support. Wang et al. (2022) highlighted that although there is greater potential for green finance development in the central and western regions, realizing this potential requires enhanced resources and support. This underscores the necessity for research into regional heterogeneity to ensure a well-balanced deployment of energy policies across all areas.
With the increasing maturity of green finance policies, researchers have focused on how regional disparities influence policy outcomes. Wang et al. (2016) observed that the impact of green finance on optimizing energy consumption structures is more pronounced in the eastern regions, which benefit from stronger economic foundations and financial support. Conversely, the effectiveness of green financial policies in the central and western regions is constrained by infrastructural and economic developmental limitations, resulting in lesser benefits (Zhang et al., 2022). Fang et al. (2024) also pointed out challenges in promoting new energy technology innovation and reducing carbon emissions in these regions as limited capital and technology availability impede the effectiveness of green finance policies.
Additionally, the heterogeneity of regional economies is influenced not only by tangible factors like economic development levels but also by intangible aspects such as policy implementation intensity, financial market maturity, and social capital participation. Zhang et al. (2023) found that in the eastern region, a well-developed financial market and efficient policy implementation lead to more significant and rapid effects of green finance on energy structure changes. In contrast, in the central and western regions, lower social capital participation results in delayed policy impacts, thereby weakening the effectiveness of green finance initiatives.
Based on this, hypothesis 4 is proposed: The impact of green finance on China’s end-use energy consumption structure shows regional heterogeneity.
2.5 Research gaps
In summary, existing studies have preliminarily examined the link between green finance and energy consumption structure, yet several research gaps remain. However, there has been little systematic research into the regional heterogeneity of its impact on energy consumption structure in China. Second, the existing research mainly focuses on the direct effects of green finance on energy consumption structure, without specifically examining how it operates through industrial structure to influence such this structure. Last but not least, a few studies argued that green finance has nonlinear spillover effects; however, such nonlinearity remains largely unverified in empirical studies. Hence, in this context, by establishing an empirical model to comprehensively assess the impacts on China’s energy consumption structure and exploring its nonlinear spillover effects and regional heterogeneity, this study can help fill the gap in previous research.
3 DATA AND METHODOLOGY
3.1 Data and description
This study uses panel data collected from 30 provinces in China (excluding Tibet, Hong Kong, Macau, and Taiwan) between 2014 and 2021. The data mainly come from Chinese Statistical Yearbook, the China Industrial Statistical Yearbook, and the annual statistical bulletins on economic and social development of provincial-level regions, published by province-level statistics departments across the country. Additional data are sourced from other local yearbooks, which are also available in databases like Wind or CSMAR. These data provide comprehensive statistical information on the economy, industry, and energy in individual provinces, serving as a reliable empirical basis for academic research on regional economic development.
The time series chart of China’s Green Finance Index from 2014 to 2022 shows a clear upward trend, indicating a steady improvement in the level of green finance development during this period (Figure 1). From 2014 to 2016, the growth was relatively slow, with the index increasing slightly from approximately 2.1 to 2.2, suggesting that green finance was still in its early stages. However, between 2016 and 2018, there was a noticeable acceleration in growth as the index increased sharply to approximately 2.3, reflecting heightened policy support and the introduction of innovative financial instruments. After 2018, although the rate of increase moderated, the upward trajectory remained consistent, with the index reaching approximately 2.5 by 2022. This indicates that China’s green finance market is maturing, with a broader adoption of green financial tools. The growth during this period is likely driven by the Chinese government’s strong push toward achieving its “dual carbon” goals, along with the expansion of green bonds, green credit, and other financial instruments. Looking ahead, that green finance development is expected to continue growing, although at a potentially more stable pace, reflecting the maturation of the green finance system.
[image: Line graph titled "Green Finance Over Time" showing the Green Finance Index from 2014 to 2021. The index increases steadily from 2.1 in 2014 to 2.4 in 2021. Time is on the x-axis, and the index level is on the y-axis.]FIGURE 1 | Green finance over time.
The scatter plot in Figure 2 reveals a complex relationship between green finance and energy consumption structure. The relationship exhibits clear nonlinear characteristics: at lower levels of the Green Finance Index, the energy consumption structure shows high variability. As the index increases, the energy consumption structure becomes more concentrated, but at higher levels (above 3), the variability increases again. This suggests that the relationship between green finance development and changes in the energy consumption structure is not a simple linear one.
[image: Scatter plot showing the relationship between the Green Finance Index on the x-axis and the Energy Consumption Structure on the y-axis. Numerous data points exhibit a wide distribution, suggesting variability in the relationship between these two variables.]FIGURE 2 | Scatter plot of green finance vs energy consumption structure.
Additionally, the scatter plot reflects significant regional heterogeneity. At various levels of green finance development, different regions display distinct patterns in energy consumption structure, especially at the lower and higher ends of the Green Finance Index, where regional disparities are more pronounced. This indicates that beyond green finance, factors such as local energy policies and economic structures also play key roles in shaping energy consumption patterns across regions.
3.2 Model
The baseline regression model is formulated as follows Equation 1:
[image: The image shows a statistical equation for ECS_{it}, representing a model with various coefficients. It includes parameters a_0, a_1 multiplied by GreFint, a_2 multiplied by CVit, and additional terms μ_t, δ_t, and ε_it.]
where [image: I'm sorry, but I can't generate alt text without seeing the image. Please upload the image or provide a URL for me to assist you.] represents the energy consumption structure of province [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] in year [image: Please upload the image for which you need alternate text, and I will be glad to help you with that.], [image: Text reads "GreFin" with subscript italicized "it". The font appears stylized and italicized.] represents the green finance of province [image: Please upload the image or provide a URL for it, and I will help generate the alternate text.] in year [image: It seems there's no image uploaded. Please provide the image or a link to it, and I'll generate the alternate text for you.], and [image: It looks like you're trying to display a mathematical expression, but I can't process the image directly since no image was uploaded. The expression "CV" with a subscript "it" indicates a context, such as an equation or notation. If you need help with an image, please upload it or provide more details.] refers to the control variables. [image: The image depicts a mathematical symbol, mu, represented as a lowercase Greek letter with a subscript "i" to the right, typically used in statistical or mathematical contexts.] and [image: It seems there was an error in uploading the image. Please try again by attaching the image file or providing a URL, and I will help generate the alternate text for it.] represent the fixed effects of the provinces and years, respectively, while [image: Mathematical notation showing the letter "e" indexed with "i" as the subscript and "t" as the superscript.] is the random error term.
Regarding the issue of endogeneity, a bidirectional causal relationship may exist between green finance and the energy consumption structure. Specifically, green finance may influence adjustments in the energy consumption structure, while changes in the energy consumption structure could also feed back into the development strategies of green finance. Additionally, unobservable characteristics of provinces, such as local policies and environmental regulations, may simultaneously affect both green finance and the energy consumption structure, leading to potential endogeneity. To address this issue, the study employs the system GMM model, using the lagged first-order explanatory variables as instrumental variables to mitigate potential endogeneity bias. During the model validation process, the Arellano–Bond test is used to check for autocorrelation issues (e.g., AR (1) and AR (2)), and Sargan and Hansen tests are applied to verify the validity of the instrumental variables. Furthermore, the difference-in-Hansen test (GMM levels and IV levels) further validates the robustness of the model’s treatment of endogeneity.
Next, the study adopts a panel threshold model to examine the nonlinear contagion effect of green finance on the energy consumption structure. The scale of green finance may undergo significant changes, and due to its characteristics, it alters the structure of energy consumption only after reaching a certain threshold. Traditional linear regression models cannot completely grasp these nonlinear relationships. The panel threshold model is helpful in discovering differentiated impacts of green finance on the energy consumption structure at various points, offering a clear advantage over linear models by accounting for nonlinear effects. The single-threshold model is as follows Equation 2:
[image: Mathematical equation depicting a model: ECS_sub_t equals theta_0 plus theta_1 times GreFin_sub_it times I(GreFin_sub_it less than or equal to pi) plus theta_2 times GreFin_sub_it times I(GreFin_sub_it greater than pi) plus theta_3 times CV_sub_it plus mu_sub_i.]
[image: It seems there was an error in uploading the image. Could you please try uploading it again? If you need help, let me know!]
where [image: Please upload the image or provide a URL, and I will help you generate the alt text.] is an indicator function and [image: Please upload the image or provide its URL so I can help generate the alternate text for it.] represents the threshold value. When green finance [image: Stylized text reading "GreFin" with a subscript "it." The font appears italic and bold.] exceeds or falls below threshold [image: Please upload the image or provide a URL to it, and I will help generate the alternate text for you.], its impact on the energy consumption structure is measured using [image: It seems there is no image provided. Please upload the image or provide a URL and optionally add a caption for additional context.] and [image: Certainly! Please upload the image, and I will generate the alternate text for it.], respectively.
This study uses a mediation effect model to assess the mediating role that green finance plays in the transition of the energy consumption structure. Industrial structure is chosen as the mediator variable since changes in the industrial structure impact the mode and amount of energy consumption. Baron and Kenny (1986) and Hayes (2009) indicated that upgrading the industrial structure positive contributes to improving energy efficiency. The intermediary role of the industrial structure, thus, can rationally explain how green finance will change industry-related factors and then reshape the energy consumption structure. The mediation effect model is divided into two steps: first, the impact of green finance on the mediator variable (i.e., industrial structure) is regressed as follows Equation 3:
[image: Equation represents a regression model: \(Med_{it} = \beta_{0} + \beta_{1}GreTim_{it} + \beta_{2}CV_{it} + \mu_{i} + \delta_{t} + e_{it}\).]
Then, the combined impact of green finance and the mediator variable on the energy consumption structure is regressed as follows Equation 4:
[image: Equation showing ECS as a function of various variables. ECSₛ is equal to γ₀ plus γ₁GreFinᵢₜ plus γ₂Medᵢₜ plus λₛCνₜ plus μᵢ plus δₜ plus εᵢₜ, labeled as equation four.]
By testing whether [image: It seems like you tried to input an image, but it did not come through. Please upload the image file directly or provide a URL.] is significant, the study demonstrates the validity of the industrial structure as a mediator variable. If [image: If you upload the image or provide a URL, I can help generate the alternate text for it.] is significant, it suggests that the industrial structure plays a mediating role in the impact of green finance on the energy consumption structure, supporting the hypothesis of an indirect effect of green finance.
3.3 Variables
The key variables selected in this study include energy consumption structure, green finance, and industrial structure, along with a series of control variables to comprehensively analyze the impact of green finance on the energy consumption structure. The first level of the energy consumption pattern was used as the dependent variable in this study. China has large reserves of coal, but high carbon content of coal production and utilization is one of the main sources of China’s carbon emissions; it contributes to approximately 60%–70% of the nation’s overall carbon emissions (Zhao et al., 2022). Accordingly, it is important to cut down on coal as a key step in meeting carbon reduction targets. This study uses the proportion of coal consumption to total energy consumption to represent the energy consumption structure. Specifically, coal consumption includes the terminal consumption of seven coal-related energy sources, while total energy consumption comprises the terminal consumption of 20 related energy sources. This indicator allows the assessment of regional differences and progress in optimizing the energy consumption structure.
Second, green finance is the explanatory variable, and its calculation is based on the comprehensive evaluation framework proposed by Fan et al. (2024). The calculation steps for the green finance index are as follows:
Construction of the original matrix: we create a matrix with [image: Please upload the image or provide a URL so I can generate the alternate text for it.] rows and [image: Please upload the image or provide a URL so I can generate the alternate text for you.] columns, represented as Equation 5
[image: Sure, please upload the image or provide a URL to it so I can generate alt text for you.]
where [image: It seems like you're trying to describe an image, but I need the actual image uploaded or linked to generate an alt text for it. Please provide the image, and I will be happy to help.] represents the value of the [image: It seems you intended to upload or describe an image but there is no image provided. Please try uploading the image again or provide a URL. If you add a caption, it can help with context.]th indicator in year [image: It seems there is no image attached. Please upload the image or provide a URL for it.].
Normalization of the data: we calculate the proportion of the [image: Please upload the image or provide a URL so I can assist you in generating the alternate text.]th indicator in year [image: It seems there might be an issue with the image upload. Please try uploading the image again or provide a link to it, and include any context or captions if needed.] as Equation 6:
[image: Mathematical equation labeled as (6). It shows \( Y_{ij} = \frac{X_{ij}}{\sum_{j=1}^{m} X_{ij}} \).]
The entropy value of the [image: Please upload the image so I can generate an appropriate alt text for it.]th indicator is calculated as follows Equation 7:
[image: Mathematical formula showing the calculation of \( E_j \). It is defined as:  \[ E_j = -\frac{1}{\ln m} \sum_{i=1}^{n} Y_{ij} \ln Y_{ij} . \]  Equation number 7 is indicated to the right.]
The weight of the [image: Please upload the image or provide a URL, and I will help you generate the alternate text for it.]th indicator is calculated as follows Equation 8:
[image: Mathematical expression for w sub j equals d sub j divided by the sum from i equals one to n of d sub i, where d sub j equals one minus E sub j, labeled equation eight.]
The green finance index for province [image: Please upload the image for which you want to generate alternate text. If you have any specific context or details to add, feel free to include that as well.] in year [image: Please upload the image or provide a URL so I can generate the appropriate alternate text for it.] is calculated based on the weights as Equation 9:
[image: Mathematical formula showing \( Gf_{it} = \sum_{{j=1}}^{n} w_{j} Y_{ij} \). The formula is labeled as equation nine.]
Third, the industrial structure is considered the intermediary variable in this paper, measured by the level of industrialization. The transition in both the energy consumption structure and industrial structure, as intermediary factors, is of great significance.
The influence of urbanization on the energy consumption structure is reflected by the proportion of the permanent population to the total population, with a higher proportion indicating a more urbanized city. The education level is represented by a province’s investment in education relative to GDP, explaining the potential for human capital to optimize the energy consumption structure. A measure of innovation input is included to investigate the effect of innovation on changes in the energy consumption structure, which measures the amount of money spent on R&D investment using the ratio of R&D expenditure to GDP. Similarly, the per capita GDP growth rate is included to capture changes in energy demand due to local economic expansion. The urbanization rate, which may also influence the population concentration in urban areas, can affect energy demand. The effect of foreign direct investment (FDI) on the regional economy and energy consumption structure is represented by the FDI measure. Finally, the air quality index (AQI) compliance rate reflects improvements in air quality, which could potentially increase the demand for clean energy in different regions.
4 RESULTS AND DISCUSSION
4.1 Benchmark regression
Table 1 presents the results of the benchmark regression. The Hausman test (p = 0.94) suggests that the random-effects model is more appropriate for data analysis than the fixed-effects model. The coefficient of green finance (GreFin) in the random-effects model is −0.0936 and is highly significant at the 1% level, indicating that green finance has a significant negative impact on the energy consumption structure. This implies that as the green finance develops, it helps suppress high-carbon energy consumption, thus adjusting the structure of energy consumption. The GDP per capita coefficient is approximately 0.112, but it is insignificant, indicating that economic growth does not have an obvious direct influence on shaping the energy consumption structure in this context.
TABLE 1 | Benchmark results.
[image: A table comparing fixed and random effects models. Variables include GreFin (-0.0844*** fixed, -0.0936*** random), GDPpc (0.106, 0.112), Urban (0.0579, 0.0664), Education (-0.0368, -0.00273), RnD (0.0525, 0.0548), FDI (-0.00127, -0.00139), and AQI (0.224***, 0.229***). Constants are 1.153*** and 1.170***. Observations are 232 each. R² is 0.156, with a Hausman test value of 2.30 (0.94). T-statistics are in parentheses. Significance codes: *p < 0.10, **p < 0.05, ***p < 0.01.]Moreover, the coefficient of the urbanization level is 0.0664, although it is not statistically significant. However, the positive coefficient suggests that urbanization may promote energy demand, thus reshaping the structure of energy consumption. The education coefficient (−0.00273) shows that education has no significant impact on the structure of energy consumption. The coefficient for innovation input (R&D), which is 0.0548, is also not significant, suggesting that the RnD does not have a substantial impact on the energy consumption structure. The FDI coefficient is −0.00139 and is not significant, indicating that the consumption structure of energy is relatively little affected by foreign capital. Notably, the AQI with a coefficient of 0.229 is significant at 1% level, suggesting that air quality improvements are associated with a better energy consumption composition.
4.2 Robustness test
In the robustness test, key variables were first replaced. In the first model, the average annual growth rate of coal, natural gas, and oil production (FOGGR) was used to replace the ECS. The replacement is based on the production of coal, natural gas, and oil changes in reflecting changes in fossil fuel energy used as raw material to structure changes, which is representative of adjustments in the energy consumption structure. For the second model, data from the four direct-controlled municipalities (Beijing, Shanghai, Tianjin, and Chongqing) were excluded because these cities have different economic structures compared to other provinces and may show different energy consumption patterns and policy orientations, which could potentially affect the regression results. The robustness of the regression results is, thus, ensured by removing the data from these municipalities.
As can be observed from Table 2, the coefficients for GreFin are negative and significant in the two models, which proves that our results relating green finance to the energy demand structure are robust. The results reveal that green finance exerts significant negative effects on the average annual growth rate of coal, natural gas, and oil production at a 5% level in model 1, implying that greener modes of financing decrease the proportion of high-carbon energy consumption (GreFin coefficient is −0.0174). In model 2, the GreFin coefficient is −0.0854 with a level of significance less than 1%, which proves the significantly negative impact of green finance on the energy consumption structure. The results of the robustness tests provide further evidence for the fact that green finance can promote structural optimization of energy consumption by showing that the negative impact of green finance on the consumption structure is significant even when key variables are substituted or when data from municipalities are deleted, thus demonstrating the robustness of this conclusion.
TABLE 2 | Robustness test.
[image: A table displays regression results for two models, FOGGR and ECS. Variables include GreFin, GDPpc, Urban, Education, RnD, FDI, AQI, and Constant. Each variable lists coefficients with t-statistics in parentheses. Significant levels are indicated by asterisks: one for p < 0.10, two for p < 0.05, and three for p < 0.01. Observations are 232 for FOGGR and 208 for ECS. R-squared values are 0.302 for FOGGR and 0.311 for ECS.]4.3 Endogenous checks
This study will use a system GMM model to control potential endogeneity and analyze the impact of green finance on the energy consumption structure (Table 3). The results show that the coefficient of lagged structure energy consumption is 0.9882, reflecting dynamic properties, with the current state of energy consumption closely linked to its previous state. The estimated coefficient of green finance is −0.0141, which is statistically significant at a 5% level, which suggests that a well-established green financial system will help fundamentally optimize the energy consumption structure by decomposing dependence on high-carbon energy sources.
TABLE 3 | Endogenous checks.
[image: A table presents regression results with variables, coefficients, standard errors, t-values, and P-values. Variables include LI.ECS, GreFin, GDPpc, Urban, Education, RnD, FDI, AQI, and Constant. Tests include Arellano–Bond, Sargan, Hansen, and Difference-in-Hansen, with corresponding results.]For the endogeneity tests, the Arellano–Bond test of serial correlation shows that there is first-order autocorrelation, while second-order autocorrelation is insignificant. Hence, one can contend that the system GMM model fits well. We also conducted Sargan and Hansen tests to confirm the instrumental variables’ validity. The p-value for the Sargan test is 0, which suggests that the instruments used are problematic under this test. Still, the p-value for the Hansen test is 0.372, which really indicates the validity of instruments in the model. Although the tests differ in their results, the latter Hansen test is considered more robust when faced with heteroscedastic cases. In addition, difference-in-Hansen tests validate the instruments further in both GMM and IV stages. The fact that the p-value of GMM levels is equal to 0.983 and IV levels is equal to 0.624; both values are greater than 0.05, which shows that these instruments are correctly specified at both levels.
4.4 Threshold effect
The threshold effect model was used to show the nonlinear effects of green finance on the energy consumption structure (Table 4). The threshold effect test indicates that the threshold value is 0.8253, with bounds between 0.6542 and 0.8264, suggesting that green finance levels within this range will be considered low. When the level of green finance development is lower than the threshold, function GreFin(0) has no significant effect on the energy consumption structure, and its influencing coefficient is only 0.0292, indicating that at low levels of green finance development, there are no obvious optimization effects toward the energy consumption structure. However, when green finance reaches the threshold of GreFin(1), its coefficient is −0.0756, and it is significant at a 1% level, gauging that over a certain point, it shows significant improvement in avoiding high-carbon energy structures.
TABLE 4 | Threshold model.
[image: A regression analysis table shows variables, coefficients, standard errors, t-values, and p-values. Notables include: GDPpc coefficient 0.1565, AQI t-value 3.58, GreFin (1) t-value -2.59 with p-value 0.01. Key measures include R-squared values: within 0.1792, between 0.1858, overall 0.1782, and F-value 5.32. Threshold bounds range from 0.6542 to 0.8264.]The control variables have some different performances. The coefficient of the AQI is 0.251, which indicates that a better AQI can also promote the optimized energy consumption structure. On the contrary, other control variables like GDP, education level, and R&D input are insignificant, which might be substituted by green finance or difference of place. The threshold model estimation reveals that while the advancement of green finance positively contributes to constraining the energy consumption structure beyond a certain threshold, a little effect is observed for those lower levels regardless of the energy consumption structure. The R-squared values for the model (within 0.1792, between 0.1858, and overall 0.1782) indicate good model fit, and the F-value of 5.32, with Prob > F being 0, further validates the overall effectiveness of the model.
4.5 Mediation analysis
The mediation analysis results show a weaker indirect influence of green finance on the energy consumption structure through the industrial structure, which may be attributable to the lack of a direct driving effect of green finance on the industrial structure (Table 5). In the first model, GreFin plays a significant role in decreasing volume production costs with a coefficient of −0.0936, which is statistically significant at a 1% level. This means that green finance could help energy by increasing the efficiency of using forms. With regard to the second model, although the impact effect of green finance on the industrial structure is 0.00208, it is not significant, indicating that green finance has not effectively driven industrial structural adjustment or optimization. The reason is that the green finance policy implementation focuses more on short-term financial innovation and investment in green projects instead of having a significant impact on the transformation or upgrading of the industrial structure in a short period.
TABLE 5 | Mediation analysis.
[image: A table displays regression results across three models labeled (1) ECS, (2) Industrialize, and (3) ECS. Variables include GreFin, GDPpc, Urban, Education, RnD, FDI, AQI, Industrialize, and a constant. Each row shows coefficients with t-statistics in parentheses. Significance levels are indicated by asterisks: one for p < 0.10, two for p < 0.05, and three for p < 0.01. All models have 232 observations. The R-squared values are not specified.]The influence of the industrial structure on the energy consumption structure is quite evident in the third model, with a coefficient of 0.678, and it turns out that it plays an important role in adjusting the energy consumption structure by regulating the industrial structure. However, since green finance’s influence on the industrial structure is weak, its indirect effect on the energy consumption structure through the industrial structure is not significant. The reason could be that green finance policies lag in industrial structural adjustment or barriers to the implementation of these policies, such as the shortage of technological innovation and weak incentives, can block green finance from transmitting along with the industrial structure for optimizing energy consumption structures. To summarize, the former channels of green finance have a more powerful direct impact on the energy consumption structure, while the latter indirect impact is weak. This may be because green finance has not yet generated enough momentum to drive industrial structural adjustment, and as a result, industrial structure has not emerged as a significant mediating factor in this process.
4.6 Heterogeneity analysis
The heterogeneity analysis results show significant differences in the impact of green finance on the energy consumption structure across eastern, central, and western regions (Table 6). The impact of green finance on the energy consumption structure has been different in eastern, central, and western regions. The coefficient of green finance in the eastern part is −0.0373, which is insignificant, suggesting that the promoting effect of green finance on the energy consumption structure in this region is relatively negligible. Given that the eastern region is more economically developed, green finance policies may have a higher marginal effect due to richer experience. However, the coefficient of central part is −0.186, which is significant at a 5% level; this means that green finance has a negative but significant effect on the energy consumption structure, significantly promoting its optimization. This may be because the central region is in a critical phase of economic transformation and industrial restructuring, where the introduction of green finance plays a more prominent role in optimizing the energy consumption structure.
TABLE 6 | Heterogeneity discussion.
[image: Table displaying regression results for three regions: East, Middle, and West. Variables include GreFin, GDPpc, Urban, Education, RnD, FDI, AQI, and Constant. Each variable has coefficients with t-statistics in parentheses. Significance is marked with asterisks: * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Observations are 72 for East and Middle, 88 for West.]The coefficient of green finance in the western region is −0.136 and is significant at a 1% level, indicating that it has a positive promoting effect on energy savings in the western region. Green finance policies will be more effective in the western region because it is less developed than the eastern region. In short, the heterogeneity analysis reveals that the impact of green finance varies significantly across regions, with the central and western regions benefiting more from the optimization of their energy consumption structures. These findings suggest that green finance policies should be tailored to regional differences to maximize their effectiveness in promoting energy structure transformation.
4.7 Discussion
The results of this study not only corroborate the enhancing effects of green finance on China’s energy consumption structure adjustment, which is consistent with previous studies (for instance, Wang et al., 2016; Zhao et al., 2022) but also enrich the literature by inferring nonlinear spillover impacts and spatial differences. Although the early literature emphasizes the linear relationship between green finance and energy consumption structure, our threshold model beyond a certain level also shows that there may be an objective existence of threshold effects. This enriches the existing literature by highlighting the nonlinear dynamics, suggesting that the policy effects intensify once green finance development reaches a certain level.
Our findings suggest that green finance is crucial for optimizing the energy consumption structure, and existing research indicates that optimizing the terminal energy consumption structure plays a key guiding role in the green upgrading of the entire energy industry chain (Peng et al., 2023b; Lu et al., 2024; Peng et al., 2024). Green finance channels fund into low-carbon and renewable energy projects, reducing reliance on fossil fuels and effectively promoting the increased use of clean energy. By adjusting the energy consumption structure, green finance not only guides innovation and investment in the upstream and midstream of the industrial chain but also plays a vital role in driving the green transformation of the entire industrial chain.
5 CONCLUSION
This study evaluated the influence of green finance on China’s energy consumption structure, revealing both significant impacts and distinct regional heterogeneity. The research confirmed green finance’s crucial role in promoting sustainable energy practices, especially in reducing greenhouse gas emissions from high-carbon sources. Through empirical analyses, including a baseline regression model and a threshold regression model, it was determined that the effects of green finance are nonlinear, becoming prominent only after surpassing a specific threshold. This provides a solid theoretical foundation for understanding how green finance facilitates the transition toward sustainable energy consumption, although the anticipated indirect effects through the industrial structure were not significant, possibly due to the delays in industrial upgrading.
In light of these findings, it is recommended that government support for green finance be further expanded, enriching mechanisms such as issuing more green bonds, extending green credit, and establishing new green funds to reduce financial costs for green projects and enhance capital flow toward clean energy. Moreover, differentiated green financial policies should be implemented based on regional economic development levels and energy consumption characteristics, with enhanced policy support in central and western regions to accelerate local energy structure optimization. Additionally, increasing requirements for high-energy and high-pollution industries and encouraging the adoption of low-carbon technologies and fuels through incentives like tax relief and subsidies could further support the clean energy transition.
However, there is a limitation to this study. Existing studies have not paid much attention to the impact of changes in energy consumption on both ends of the industrial chain, upstream and midstream, and its economic driving force. Subsequent studies can further explore these impact mechanisms to develop a more comprehensive view of how green finance affects the whole chain in the energy industry via changes in consumption patterns. Moreover, the inclusion of other possible intervening variables and a longer follow-up period could contribute to increased richness in terms of research results. Future research should explore the lagging effects of green finance on industrial restructuring and consider other mediating variables, such as green technology innovation. This could deepen the understanding of the interaction between energy consumption, the industrial chain, and policy implementation, contributing to a more comprehensive framework for sustainable development. By addressing these limitations and exploring new avenues, future studies can offer more nuanced insights into the mechanisms driving the energy industry’s transformation and the broader implications for enhancing the energy consumption structure.
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This study employs Chinese urban panel data and a staggered difference-in-differences (DID) model to investigate the effects of China’s service trade innovative development pilot policy on environmental performance and its underlying mechanisms. The findings indicate that institutional innovation in the service trade sector substantially enhances regional environmental performance, and this conclusion remains valid after a series of validity tests and robustness tests. The mechanism test results show that institutional innovation can improve environmental performance mainly by promoting green innovation ability and industrial structure upgrading. Heterogeneity analysis found that regions with greater government support, a higher level of service industry development, and a higher degree of openness were more likely to rely on institutional innovation to improve their environmental performance. This research offers valuable policy insights for advancing institutional innovation in service trade and formulating pollution control strategies in China and other developing nations.
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1 INTRODUCTION
In recent years, with the rapid development of global service trade, more and more countries have realized the key role of service trade in promoting economic growth, industrial transformation, environmental protection and so on. According to the World Trade Organization (WTO), global trade in services has continued to grow faster than trade in goods, especially in the areas of digital transformation and green economy, and the role of trade in services is becoming more prominent. As the world’s second largest economy, China’s service trade development history and achievements are particularly remarkable (Hu et al., 2022). In 2022, China’s foreign trade in services reached a record high of 889.1 billion U.S. dollars, ranking second in the world for nine consecutive years. This achievement reflects the increasing status of China’s service industry in the national economy, and service trade has become an important part of China’s foreign economic cooperation and a new growth point. Especially in the field of green development and environmental protection, the role of China’s service trade is becoming more and more prominent. According to the report of the International Energy Agency (IEA), China has witnessed significant growth in the import and export of green technologies and services, and the international market demand for green technology services provides new development opportunities for Chinese enterprises.
In China, the pilot policy for the innovation and development of trade in services, which was implemented in 2016, was deepened in 2018 and further expanded in 2020. It represents an important example of institutional innovation in trade in services and serves as a key experimental platform for promoting institutional opening-up in China. The policy leverages advantages in innovative capital, technology, the policy environment, and other resources. It attracts industrial agglomeration, promotes exchanges and cooperation among different industries and organizations, and accelerates technology spillovers and knowledge diffusion across related industries. While promoting industrial integration and the rise of emerging urban service industries and new economic sectors (Zeng et al., 2020), it also creates opportunities for the advancement of green technologies and the concentration of pollution control facilities within enterprises (Wu et al., 2020; Li et al., 2021). According to the Opinions on Promoting High-quality Development of Trade in Services through High-level Opening-up, issued by the General Office of the State Council in September 2024, China is promoting green and low-carbon development through institutional innovation in trade in services, particularly in the fields of energy conservation, environmental protection, and ecological governance. It strives to improve environmental performance and reduce pollution emissions by importing and exporting green technologies and services. These policies not only help promote the spread of green technology and optimize industrial structure but also provide new impetus for China’s competitiveness in the field of international green service trade. Internationally, other economies are also attempting to promote green development through similar services trade policies. For example, under the framework of the “Green Deal,” the EU supports the green transformation of its member states by deepening cross-border trade in green services and promotes the realization of green technologies and sustainable development goals. In contrast, the relationship between service trade innovation and environmental performance in China is still in the exploratory stage, and there is an urgent need to reveal the specific effects and mechanisms of policy implementation through systematic research.
Based on this, this paper focuses on the pilot policy of innovative development in the trade of services, which has been progressively implemented since 2016. By utilizing panel data from Chinese cities as a sample, the study employs the staggered difference-in-differences (DID) model to investigate the impact and mechanism of institutional innovation in China’s service trade on environmental performance. It offers an in-depth analysis of the environmental effects resulting from institutional innovations and explores the varying outcomes of these effects across different groups. The study reveals that China’s institutional innovation in the trade of services has a substantial positive impact on environmental performance, enhancing the pilot region’s environmental metrics by 0.4544 percentage points. Secondly, institutional innovation enhances environmental performance primarily by fostering green innovation capabilities and facilitating the upgrading of industrial structures. Ultimately, regions that benefit from robust government backing, advanced service industry development, and a greater openness to international exchanges are more adept at leveraging institutional innovation to enhance the environmental performance of their pilot areas. The study’s findings not only facilitate a rational evaluation of the efficacy of implementing institutional innovation, as exemplified by the pilot policy on the innovative development of trade in services, but also further the systematic liberalization of this sector. Additionally, they offer valuable empirical evidence and policy insights into the alignment and compatibility of institutional innovation in trade in services with the principles of green development. Moreover, they contribute to the advancement of innovative development within the trade in services sector and the formulation of anti-pollution strategies, particularly in developing nations such as China.
The marginal contributions of this paper are as follows:
First, this study focuses on the impact of institutional innovation in trade in services on environmental performance, which has significant theoretical and practical implications. In the context of global climate change and sustainable development, China has set dual carbon goals—carbon peak and carbon neutrality—which impose higher requirements for the green transformation of the service industry. Service trade is an essential part of the service sector, and its institutional innovation plays a crucial role in improving environmental performance. Therefore, this study not only responds to national strategic needs but also aligns with the global trend of green development.
Second, although pilot policies for the innovative development of trade in services have been implemented for many years, there is a lack of systematic assessment of their impact on environmental performance in the existing literature. Specifically, in research on the relationship between institutional innovation and environmental performance, few studies have used pilot policies in service trade innovation as a quasi-natural experiment to explore the specific impact of institutional innovation on environmental performance. This study fills this research gap and provides new perspectives and empirical evidence for future studies.
Third, this study makes significant contributions both theoretically and practically. At the theoretical level, using a staggered difference-in-differences model, it not only examines the impact of institutional innovation in service trade on environmental performance, but also explores the two mechanisms of green innovation capability improvement and industrial structure upgrading, providing a new theoretical framework for understanding the relationship between institutional innovation and environmental performance. At the practical level, this study reveals the varying environmental effects induced by institutional innovation across different regions and heterogeneous groups. It offers targeted policy recommendations for policymakers, particularly concerning government support, service industry development, and the degree of openness, while providing empirical evidence for optimizing policy design and implementation.
Fourth, in terms of research methods, this study employs two-stage difference-in-differences estimators to test the potential influence of heterogeneous treatment effects. This approach enhances the robustness of the research findings and provides methodological guidance for future studies. By using this method, this study can more accurately assess the impact of institutional innovation on the environmental performance of trade in services, offering a more reliable basis for policy evaluation and formulation.
2 LITERATURE REVIEW
Institutions are gradually formed with the development of productive forces and the expansion of social communication (Lin and Liu, 2000) and are the rules of organizations, manifested in the structure of relationships and the form of rules (Liu et al., 2024). Institutional innovation refers to the transformation, optimization, or reconstruction of the existing institutional system to create a more efficient and fair social operation mechanism, covering dimensions such as the market system, science and technology system, financial system, innovation policy, and others (Liu et al., 2019). It involves the selection, creation, construction, and optimization of the social norm system, including the adjustment, improvement, reform, and replacement of the system. This paper will focus on the impact of institutional innovation in service trade on environmental performance. Existing studies mainly cover three aspects: first, the factors influencing environmental performance; second, the mechanisms through which institutional innovation influences environmental performance; third, the relationship between institutional innovation and environmental performance in service trade.
2.1 Influencing factors of environmental performance
Research on environmental performance generally focuses on two levels: regional and enterprise. At the regional level, factors affecting environmental performance mainly include national environmental audits (Li and Sun, 2019), government environmental audits (Zeng and Li, 2018), and coordinated efforts to promote pollution reduction and carbon emissions (Zheng and Zhang, 2024). These factors work together to enhance the environmental behavior of enterprises in the region and promote the implementation of green development policies. At the enterprise level, the main factors affecting environmental performance include the introduction of digital products (Shao and An, 2023), government environmental subsidies (Wang and Zheng, 2020), green human resource management (Zahid et al., 2020; Gill et al., 2021), and green innovation (Singh et al., 2020; Rehman et al., 2021). These factors improve environmental performance by optimizing production methods, enhancing resource utilization efficiency, and reducing pollution emissions.
2.2 The impact of institutional innovation on environmental performance
Institutional innovation affects environmental performance through multiple channels. For example, it can enhance resource allocation, strengthen environmental regulations, and improve government governance capacity, thereby fostering proactive involvement and synergy in environmental governance between enterprises and local governments (Han et al., 2023; Bai and Ding, 2023). In this process, the quality of institutions directly impacts the ability of economic entities to coordinate in their production and business activities, which in turn influences the improvement of environmental performance (Musa et al., 2021). Institutional innovation can also enhance environmental performance by optimizing the market system. China has long leveraged institutional innovation to foster enterprise development and refine the market economy system (Sun et al., 2024). providing enterprises with clearer environmental requirements and market incentives. These innovations have not only strengthened corporate environmental responsibility but also facilitated the widespread adoption and application of green technologies. Institutional innovation is also reflected in the collaborative cooperation among various stakeholders within a region. In regional environmental governance, a cooperation mechanism involving the government, enterprises, and social organizations has gradually taken shape, driving the joint achievement of pollution reduction and green innovation (Zheng and Zhang, 2024).
2.3 Institutional innovation and environmental performance in service trade
According to the environmental spillover effect theory of Copeland and Taylor (2004), international trade may affect national environmental protection policies through the “environmental spillover effect”. The study of Assogbavi et al. (2023) shows that international trade not only directly affects the economic activities of various countries, but also indirectly affects the global distribution of carbon emissions. The open international market may push the country to strengthen environmental regulation to cater to the global market demand for green products. With the development of globalization and international trade, the role of service trade in promoting economic growth and environmental protection has received increasing attention. Zhao and Fang (2024) studied the practical effects of service trade innovation in China’s A-share listed companies, focusing on energy conservation and emission reduction. Their research shows that service trade not only promotes the structural transformation of the economy, but also contributes to the achievement of energy conservation and emission reduction targets to some extent. Therefore, the role of international trade in promoting global environmental cooperation, especially how to reduce negative impacts through international agreements and green trade policies, is a direction worthy of further exploration.
Although existing studies have extensively explored the role of institutional innovation in environmental protection, there are relatively few studies on the relationship between institutional innovation and environmental performance in the field of service trade. Especially in China, with the promotion of “carbon peak” and “carbon neutral” goals, green transformation and sustainable development in the field of service trade have become urgent issues to be solved. China launched the service trade innovative development pilot policy in 2016, which is seen as an institutional innovation aimed at promoting the green development and international competitiveness of the service industry. Existing studies have shown that institutional innovation can promote the transformation and innovation of the service industry in environmental governance by improving the efficiency of resource allocation, optimizing industrial structure, and promoting the introduction of green technology (Dai and Ma, 2024). This provides a new perspective and practical basis for studying the impact of institutional innovation on environmental performance in the field of service trade. By studying the impact of service trade innovative development pilot policies on environmental performance, this paper hopes to fill the research gap on the relationship between institutional innovation and environmental performance in the field of service trade, and provide policy inspiration for the green development of service trade in China and even the world. Through quantitative and qualitative analysis, we hope to reveal the mechanism and path of institutional innovation in promoting green transformation and improving environmental performance. This study not only expands the research on the relationship between institutional innovation and environmental performance, but also provides a new theoretical basis for the interaction between service trade and green development.
3 INSTITUTIONAL INNOVATION CONTEXT AND RESEARCH HYPOTHESES
3.1 Context of institutional innovation
The National Development and Reform Commission of China, in its “Outline for the Innovative Development of the Services Sector (2017–2025),” advocates for the acceleration of the innovative advancement of the services sector. This initiative aims to bolster the emergence of new growth drivers for the service economy, serving as a pivotal strategy to comprehensively enhance the nation’s overall strength, international competitiveness, and capacity for sustainable development. In this context, to enhance China’s service trade promotion system and establish a hub for service trade system innovation, in February 2016, the State Council endorsed the Pilot Program for Innovative Development of Trade in Services. This initiative approved the launch of pilot programs for the innovative development of trade in services across 15 regions (Specifically, these include: Tianjin, Shanghai, Hainan, Shenzhen, Hangzhou, Wuhan, Guangzhou, Chengdu, Suzhou, Weihai and Harbin New District, Nanjing Jiangbei New District, Chongqing Liangjiang New District, Guizhou Guian New District, and Shaanxi Xixian New District), including Tianjin. It also stipulated the exploration of policies and institutions tailored to foster the innovative development of the service trade sector. In June 2018, the State Council endorsed the “Comprehensive Plan for the Deepening Innovative Development of the Trade in Services Pilot Program.” This initiative led to the inclusion of two new pilot zones in Beijing and the Xiong’an New Area, while also extending the scope of the existing pilot programs in Nanjing Jiangbei New Area and Harbin New Area to encompass the entire city. The directive aims to encourage these pilot zones to delve into the establishment of institutional mechanisms, policy measures, and opening strategies that are tailored to the innovative and developmental needs of the service trade sector. The ultimate goal is to foster the emergence of a new paradigm for comprehensive opening-up. The “Pilot Overall Program” has been expanded to encompass 28 regions, with a focus on fully leveraging the supportive role of the service trade sector in stabilizing foreign trade and foreign investment. It also aims to foster the transformation and upgrading of foreign trade, as well as to promote high-quality development.
After analyzing the policy documents, we found that once a city is selected as a pilot for the innovative development of service trade, a series of measures will be taken to promote green innovation and optimize the industrial structure. Specifically:
Combining financial innovation with policy support to ease financial pressure and incentivize green innovation: Pilot cities have implemented financial innovation measures and policy support to ease financing difficulties and incentivize green innovation. These measures include encouraging financial institutions to support service enterprises in pilot cities, particularly small and medium-sized enterprises that align with industrial policies, as well as providing financial support for key areas such as research and development, energy conservation, environmental protection, and environmental services. For example, after becoming a pilot city, Shanghai set up a service trade innovative development fund to attract private capital into key service trade areas. In 2018, Weihai relaxed the list of pilot enterprises for service trade branches, expanded the reach of cooperative banks, and increased financing channels for enterprises. Additionally, technologically advanced service enterprises and technology-based SMEs (small and medium-size enterprise) in the city can enjoy tax incentives that encourage the introduction of high-end service products and green technology R&D. After being selected, Chongqing Liangjiang New Area expanded the scope of technologically advanced service enterprises and technology-based SMEs, and provided tax incentives, implementing zero tax rates and tax exemptions for cross-border VAT (value-added tax) on services.
Fostering new industries and business models to promote industrial upgrading: The selected pilot cities actively adapt to emerging trends in service trade, strengthen cross-sectoral cooperation by deepening reforms and fostering continuous innovation, and cultivate new industries and business models to promote the upgrading of industrial structures. For example, Hainan leverages Haikou High-tech Zone and Hainan Ecological Software Park to build characteristic service outsourcing industrial clusters. Wuhan emphasizes the development of technology services, computer and information services, financial services, cultural services, and other emerging fields. Tianjin, by accelerating the construction of the “Double Innovation Special Zone,” promotes the agglomeration of high-tech services and vigorously develops new business models such as cloud computing and big data.
3.2 Research hypotheses
Drawing on new institutional economics theory and green innovation theory, and considering the dual mechanisms of institutional innovation and industrial upgrading, this study explores how service trade innovative development pilot policies can enhance the environmental performance of pilot areas through green innovation and industrial upgrading. New institutional economics theory emphasizes the guiding role of institutions in economic behavior, arguing that institutional innovation is a key driver of economic growth and industrial upgrading. Particularly, service trade innovation policy, as a form of institutional innovation, can effectively change enterprise behavior and promote green innovation and industrial transformation by optimizing market rules, policy frameworks, and incentive mechanisms. These policies support green technology innovation by fostering technological advancements, capital flows, and market openness through institutional arrangements. Green innovation theory posits that technological innovation, especially green technological innovation, plays a crucial role in improving environmental performance and achieving sustainable development. Institutional innovation further supports the development and application of green technologies through knowledge spillover, technology diffusion, and policy incentives. Under the service trade innovative development pilot policies, regions can promote the innovation and application of green technologies by lowering technical barriers, accelerating technology transfer, and strengthening cross-border collaboration.
Combining these two theoretical perspectives, this study views service trade innovative development pilot policies as institutional innovation, which ultimately improves the environmental performance of pilot areas through two mechanisms: enhancing green innovation capabilities and promoting industrial upgrading.
3.2.1 Enhancement mechanism for green innovation capacity
Innovation ability refers to an organization’s capacity to generate, develop, and implement new ideas, technologies, products, or services. This process involves knowledge acquisition, research and development, innovation management, technology application, organizational learning, and market adaptation. The innovation of the service trade system has the potential to elevate the green technological innovation levels within pilot regions by facilitating factor substitution, policy incentives, knowledge spillovers, and technology diffusion. The pivotal role of green technology innovation in enhancing environmental performance and governance has been affirmed by numerous scholars (Zheng et al., 2022; Liu, 2023). Initially, regarding factor substitution, as the service industry’s two-way opening intensifies and expands, pilot regions have the opportunity to lower barriers to entry for foreign suppliers. This facilitates the influx of foreign capital and high-end service sectors, thereby complementing and substituting for scarce local services or raw materials. Moreover, by outsourcing services, inefficient and non-core operations can be transferred, enhancing the enterprise’s specialization level and fostering an increase in green innovation capabilities. Secondly, regarding policy incentives, the state aims to bolster and refine the support mechanisms for service enterprises in the pilot area to foster innovative development. Consequently, enterprises within the pilot zone are incentivized to proactively boost their investment in technological research and development. This encourages the reallocation of capital and other resources, advancing the development of clean energy and the creation of eco-friendly organizational and management structures. These initiatives are designed to enhance the productivity of the service industry within the pilot area and effectively enhance environmental performance. In conclusion, institutional innovation plays a pivotal role in fostering a liberalized trade environment for services. It not only accelerates the spatial mobility, agglomeration, and dissemination of knowledge and technology but also enhances opportunities for direct interactions among highly skilled professionals (Bai et al., 2020). For instance, the circulation and clustering of knowledge- and technology-intensive service components, including information and communication services, R&D, and design services, along with their interaction and integration with the manufacturing sector, can not only directly disseminate and diffuse advanced knowledge and technology across all facets of corporate production, but also afford enterprises the opportunity to learn from cutting-edge technology and managerial expertise, thereby fostering the accumulation of human capital and innovative knowledge within the pilot region.
3.2.2 Mechanism for upgrading industrial structure
The upgrading of industrial structure refers to the process by which the proportion of high-value-added and high-technology industries in a country’s or region’s industrial structure gradually increases, driven by economic development and changes in market demand, while the proportion of low-value-added and low-technology industries gradually decreases. Institutional innovation has introduced a range of favorable conditions, a more relaxed policy environment, and innovative resources to the pilot zones. This has effectively enhanced the industrial spatial layout and economic growth model of these areas. Consequently, it has facilitated the upgrading of the industrial structure by integrating industries and fostering market competition. Firstly, regarding the integration of the two sectors, the productive service industry and the manufacturing industry exhibit a profound technological interdependence and a symbiotic relationship in terms of intermediate supply and demand. Pilot regions can leverage policy incentives to expedite the aggregation of service components, thereby facilitating the refinement and upscale of service linkages. This approach not only offers distinctive, high-quality intermediate service products to manufacturing enterprises but also enhances industrial collaboration across various sectors and levels. It further strengthens the capacity of low-tech and traditional enterprises to evolve into high-tech and modern entities (Zhuang et al., 2021). Additionally, it establishes a solid foundation for enhancing their own environmental performance, creating favorable basic conditions. Secondly, regarding market competition, trade facilitation enhances the competitive landscape within the service sector, encourages the reallocation of production factors from less efficient industries to those with higher efficiency, and also fosters the transformation and upgrading of the manufacturing industry within the confined space and market conditions. And foreign-invested enterprises frequently possess advanced production technologies, abundant management expertise, and stringent environmental governance standards. These factors can stimulate domestic companies to align with international norms through competitive and exemplary effects, thereby propelling the industrial structure of the pilot region towards high-end sectors. The upgrading of the industrial structure can facilitate the transition of industrial development from being driven by factors to being driven by innovation, and from extensive to intensive, green, and low-carbon models. The upgrading of industrial structure can promote the transformation of industrial development from factor-driven to innovation-driven, and from extensive to intensive, green and low-carbon. The increase in the proportion of high-end producer services such as finance will accelerate the transformation of urban industrial structure from labor - and capital-intensive to knowledge - and technology-intensive (Jalil and Feridum, 2011), which can reduce the generation and emission of urban pollutants and improve environmental performance.
Therefore, the following research hypothesis is proposed: institutional innovation, exemplified by pilot policies aimed at the innovative development of the trade in services sector, can enhance the environmental performance of the pilot regions. This enhancement primarily occurs through two mechanisms: firstly, by bolstering green innovation capabilities, and secondly, by facilitating the upgrading of the industrial structure.
4 DATA DESCRIPTION AND MODELING
4.1 Data sources and sample selection
This study examines the institutional innovation of pilot policies for the innovative development of trade in services as a quasi-natural experiment. It designates regions with established pilot policies for the innovative development of trade in services as the treatment group, and regions without such policies as the control group. The study employs a staggered difference-in-differences methodology to assess the impact of these institutional innovations on environmental performance. Given the delayed initiation of the third batch of pilot regions, this paper primarily concentrates on the initial two groups, comprising a total of 17 regions. Taking into account the regulations aimed at reducing sulfur dioxide emissions and preventing and controlling air pollution during the “11th Five-Year” plan period, along with the significant amount of missing data for certain variables, and to mitigate the potential impact of the COVID-19 pandemic on various aspects of service trade and empirical outcomes (Mao and Guan, 2022; Li and Ma, 2023), the research period has been established from 2011 to 2019. Among them, the list of pilot regions and their respective implementation timelines are derived from the documents released by the Ministry of Commerce, as well as from each pilot region; the carbon emission data were obtained from the China Carbon Accounting Databases (CEADs); and other data were obtained from the database of the China Research Data Service Platform (CNRDS), the Statistical Yearbook of Chinese Cities, the Statistical Yearbook of each province, and the Statistical Yearbook of each city.
Before the empirical analysis, the samples were processed as follows: First, in order to ensure the comparability between the treatment group and the control group, 70 large and medium-sized cities and 12 port cities in China are used as the base samples. One reason is that the selection of pilot sites for the innovative development of trade in services across the nation is not entirely random. It primarily takes into account regions with a well-developed service industry and service trade, predominantly opting for regional central cities. Therefore, it is difficult for most cities to obtain pilot services trade innovation development (Chen, 2021). China’s 70 large and medium-sized cities are basically national or regional center cities, with strong homogeneity among cities (Cao, 2020). The second reason is that the pilot zones are likely to be urban areas characterized by superior technological infrastructure and a higher degree of international integration.1 Therefore, referring to the study conducted by Wang and Meng (2013), 14 new inland river ports and 17 coastal port cities are taken into consideration; however, only 12 port cities are actually added to the list, as some of them already fall within the category of the 70 large and medium-sized cities mentioned previously.2 The final reason is that due to insufficient data, both Sanya and Dali are excluded from the list of 70 large and medium-sized cities. Consequently, the foundational research sample for this paper comprises 80 cities. Second, considering the availability of pilot data for state-level new areas and the heterogeneity of control policies, this paper excludes Harbin, Nanjing, Chongqing, Guiyang, and Xi’an from the original list of 80 cities. After screening, the final study sample was 75 cities, of which the treatment group was 11 cities: Tianjin, Shanghai, Haikou, Shenzhen, Hangzhou, Wuhan, Guangzhou, Weihai, Chengdu, Suzhou and Beijing.
4.2 Modeling and variable definition
Since the pilot policy on innovative development of trade in services has been implemented in stages, this study employs a staggered difference-in-differences approach and utilizes a two-way fixed-effects model to assess its impact on environmental performance. The econometric model is set as Equation 1:
[image: Mathematical equation representing a linear regression model: ln E P subscript i t equals alpha plus beta multiply I D i t plus gamma multiply Controls subscript i t plus mu subscript i plus lambda subscript t plus epsilon subscript i t, equation one.]
where i and t represent region and year, respectively. The explanatory variable [image: The expression shows the natural logarithm of \(EP\) subscripted with \(it\).] is regional environmental performance. The core explanatory variable [image: Please upload the image or provide a URL so I can generate the alternate text for you.] indicates whether or not institutional innovation was implemented in region i in year t. The core explanatory variable is a control variable representing the series of other factors that may affect environmental performance. [image: Italicized text reads "Controls" with the subscript "it" in a lighter font.] is a control variable representing a series of other factors that may affect environmental performance. [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] represents the region fixed effect, which is used to control the factors of regional characteristics that do not change over time; [image: It looks like there was an issue uploading the image. Please try uploading the image again or provide a URL, and I can help generate the alternate text.] represents the year fixed effect, which is used to control the factors such as macroeconomic fluctuations that do not change over time; [image: Please upload the image you'd like me to describe. Once you do, I can help generate the appropriate alt text for it.] is the error term. The focus of this paper is on the coefficient [image: Please upload the image or provide a URL for me to generate the alternate text.], [image: Please upload the image or provide a URL for me to generate the alternate text.] should be significantly positive if institutional innovation improves environmental performance.
4.2.1 Explained variable
Regional environmental performance (lnEP). In this paper, the environmental performance is represented by GDP per unit of pollution emission (GDP/SO2), which can not only eliminate the impact of scale factors, but also meet the requirements of high-quality economic development in China at the present stage, that is, taking into account the optimal balance between social and economic development and environmental protection. In general, measuring environmental performance should take into account sulfur dioxide, carbon dioxide, PM2.5, solid waste, and other emissions. However, data on environmental pollution in China’s service sector is currently scarce, as emissions from this sector tend to be more dispersed and difficult to quantify compared to those from the industrial sector. Therefore, considering that China’s environmental pollution is mainly coal-smoke type air pollution, and SO2 will bring acid rain and other associated pollution problems (Antweiler et al., 2001), especially in China’s environmental statistical database, SO2 data is the most complete and reliable. As a result, this paper chooses the proportion of regional GDP to industrial SO2 emissions to measure regional environmental performance.
4.2.2 Core explanatory variable
Institutional innovation (did), which is represented in this paper by the pilot policy for innovative development of trade in services. According to the list of pilot regions issued by the State Council to assign a value to did, if region i set up a pilot in year t, then region i in year t and the following years [image: It seems there was a mistake with your request. Could you please try uploading the image again? If there is any specific context or detail you want to provide, feel free to include that as well.] = 1, otherwise [image: It seems you intended to upload an image, but it did not come through. Please try uploading the image again, and I will be happy to help with the alternate text.] = 0. When defining the specific year for the establishment of pilot areas, it is considered that the implementation of pilot policies in each area is contingent upon the time when the plan is released in that particular area. Furthermore, the fact that the release time of the specific policy implementation content in some areas falls in the second half of the year poses a challenge, as it can hinder the policy from having a significant impact within that same year.
Therefore, June 30 is used as the cut-off point, and if the pilot program is announced before that date, it will be regarded as the implementation of the pilot policy in the same year; Otherwise, it is deemed to be implemented in the following year (Zhang and Tao, 2016). In the end, Chengdu and Suzhou were implemented in the current year, while the rest of the treatment group areas were implemented in the following year.
4.2.3 Control variables
The control variables include: the level of economic development (lnpgdp), measured by the regional GDP per capita; the level of foreign direct investment (fdi), measured by the ratio of the product of the amount of actual foreign investment utilized and the average exchange rate of the current year (US dollar to renminbi) to the regional GDP; and the level of financial development (finance), measured by the ratio of the financial institution’s year-end loan balance to the regional GDP; The degree of government intervention (lngovexp), measured by the total government fiscal expenditure; and environmental regulation (envreg), measured by the ratio of completed investment in industrial pollution control to the value added of the secondary industry. The descriptive statistics of the main variables are shown in Table 1.
TABLE 1 | Descriptive statistics of main variables.
[image: A table displays variables with their symbols, names, observed values, averages, standard deviations, minimum, and maximum values. Variables include environmental performance, institutional innovation in trade, economic development levels, foreign direct investment, financial development, government intervention, environmental regulation, green patent applications, and industrial structure upgrading. Observed values range from 664 to 675, with varied averages, deviations, and value ranges.]5 EMPIRICAL RESULTS AND ANALYSIS
5.1 Baseline regression results
Table 2 reports the baseline results on the impact of institutional innovation in trade in services on regional environmental performance. Column (1) of Table 2 controls only for the core explanatory variables did and fixed effects, while column (2) further incorporates all control variables. From the regression results, it can be found that the coefficient of the institutional innovation in trade in services variable (did) is significantly positive at the 1% level regardless of the inclusion of control variables, which suggests that institutional innovation contributes to the environmental performance of the pilot regions. For instance, in column (2), it is observed that institutional innovation results in a 0.4635 percentage point enhancement in environmental performance within the pilot region relative to the control group. Consequently, this demonstrates that institutional innovation in the trade of services positively influences the environmental performance in the pilot region, thereby corroborating the research hypothesis.
TABLE 2 | Baseline regression results.
[image: Table showing regression analysis results for two models labeled \( \ln EP \) with variables including \( did \), \( \ln PgdP \), \( Fdi \), \( FinI \), \( \ln Gov \), and \( Er \). Coefficients, standard errors, and significance levels are provided. Both models indicate city and year fixed effects, with 664 observations each. R-squared values are 0.9405 for model (1) and 0.9476 for model (2). Significance codes: *** \( p < 0.01 \), ** \( p < 0.05 \).]5.2 Parallel trend test and dynamic effects analysis
The application of staggered DID requires the fulfillment of the parallel trend assumption, and there may be dynamic effects on the impact of institutional innovation in trade in services on environmental performance. Therefore, this paper draws on Liu and Mao (2019) to construct a model to test the parallel trend assumption and identify the differences in the impacts of different years of policy implementation on environmental performance by taking the previous year of institutional innovation implementation as the base period, and the model is set as Equation 2:
[image: Equation showing a model: ln(C_it) = α + β_k ∑(from k=-8 to k=+3) did_k,it + γControls_it + μ_i + λ_t + ε_it.]
Where k = 0 in the year of institutional innovation implementation, [image: Stylized Greek letter beta with subscript k.] indicates the difference in environmental performance between the treatment and control groups in the kth year of institutional innovation implementation compared to the previous year of institutional innovation implementation. When k < 0, [image: It seems there was an error in providing the image. Please upload the image file or paste the URL so I can generate the alternate text for you.] is not significantly different from 0, it means that the parallel trend assumption is satisfied; when k ≥ 0, [image: Please provide the image or a URL where it can be accessed, and I will generate the alternate text for you.] portrays the dynamic effect of institutional innovation. Due to the sample size problem, periods 8 and 7 before the implementation of institutional innovation are combined into period 6 before the implementation, and period 3 after the implementation of institutional innovation is combined into period 2. As illustrated in Figure 1, there is no significant difference between the environmental performance of the treatment group and the control group before the implementation of institutional innovation, which satisfies the parallel trend hypothesis. Due to the lag of policy effect, environmental performance was significantly improved only in the second year after the implementation of institutional innovation, which verified the existence of environmental effects of institutional innovation in trade in services3.
[image: Line graph displaying regression coefficients over time, with the x-axis labeled "Periods since the event" ranging from -6 to 2, and the y-axis labeled "Regression coefficients" from -1.5 to 1.5. Data points with error bars are plotted along the timeline, showing varying coefficients. A vertical dashed line indicates the event.]FIGURE 1 | Parallel trends and dynamic effects test.
5.3 Heterogeneity treatment effect test
For the staggered DID model, the traditional two-way fixed effects estimator has been mostly used in the previous literature. The validity of these traditional two-way fixed effects estimators is based on the assumption of homogeneity of treatment effects. However, in the presence of heterogeneous treatment effects, the traditional two-way fixed effects estimators can be biased (De Chaisemartin and D’Haultfoeuille, 2020; Goodman-Bacon, 2021). To solve this problem, the existing literature puts forward three solutions (group-period average treatment effect estimator, interpolation estimator, and stacked regression estimator), each of which has its own advantages and disadvantages. The core idea, however, is to find a reasonable control group or use the control group to calculate a reasonable counterfactual result.
In this paper, the potential heterogeneous treatment effects may come from “bad control group” and “dynamic policy effect”. First, due to the inconsistent implementation times of the service trade innovation development pilot, cities that set up the pilot earlier (such as Chengdu and Suzhou) may serve as the control group for cities that established the pilot later, which could lead to estimation bias. Second, in a dynamic context, the estimated coefficients for each phase may be cross-contaminated across periods, making them difficult to explain, which indicates that the pilot policy for the innovative development of trade in services exhibits significant temporal dynamics. Considering the small sample size of this paper, a large number of samples will be lost when calculating the group-period treatment effect, which may affect the estimation efficiency, and the stacked regression estimator may cause the problem of data reuse (Liu et al., 2022). Therefore, this paper uses the two-stage difference-difference method in the interpolated estimator to evaluate the impact of institutional innovation in trade in services on environmental performance (Gardner, 2022). Specifically, in the first stage, the city and year fixed effects are estimated using the unprocessed observation data ([image: Please upload the image or provide a URL so I can generate the alt text for you.] = 0), as shown in Equation 3, and the parameters [image: Please upload the image or provide a URL so I can generate the appropriate alternate text for you.], [image: Mathematical notation showing the symbol for mu with a circumflex accent and a subscript i.] and [image: The image shows the mathematical notation for a parameter estimation, represented by the Greek letter lambda with a hat symbol on top, followed by a subscript t.] are estimated. In the second stage, the dependent variable with the fixed effects removed and the policy treatment variable are both used in regression to identify the average treatment effect, as shown in Equation 4, where [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] is the robust estimator after correcting the estimation bias of the traditional bidirectional fixed effect difference-in-differences model.
[image: Equation image reading: "lnC_it = α + γControls_i,t + μ_t + λ_i + ε_it (3)" written in a mathematical format.]
[image: Mathematical equation showing a logarithmic function: ln C_i_t = ln C_i_{t-n} - γ Controls_i_t - μ_i_t - λ_t = δ did_t + ε_i_t, labeled as equation (4).]
Based on Formulas 3, 4, the impact of institutional innovation in trade in services on environmental performance is evaluated. The regression results are shown in Table 3. It can be found that in the case of using the staggered differential robust estimator, regardless of whether the control variables are added, the institutional innovation of trade in services still significantly improves the environmental performance of the pilot area. It indicates that the heterogeneity treatment effect has limited impact on the estimation results, which verifies the reliability of the findings.
TABLE 3 | Results of the heterogeneity treatment effect test.
[image: Table displaying regression results with two models for the dependent variable lnEP. Both models show significant did coefficients: 0.4665 in model (1) and 0.4303 in model (2) with standard errors in parentheses. Model (1) has no controls, while model (2) includes controls. Both models include City FE and Year FE, with 664 observations each. Significance is marked as ***p < 0.01.]5.4 Endogeneity analysis
Considering that the selection of cities for the implementation of institutional innovations in trade in services may not be completely random, this part uses two-stage least squares (2SLS) and PSM-DID to test the possible endogeneity of the policy variables. Firstly, combining with existing research, the interaction term of geographic centrality and the lagged one-period value added of the tertiary industry is adopted as an instrumental variable to conduct the 2SLS estimation (Guo and Lan, 2021)4. In general, cities with higher geographical centrality have more accessible regional networks, better urban openness, and are more likely to implement institutional innovation. Moreover, the geographical index is strictly exogenous, does not affect regional environmental performance, and meets the requirements of relevance and exclusivity. The results in column (1) of Table 4 show that the estimation results of the first stage. The K-P LM and K-P Wald F tests indicate that the model is identified and the instrument variables are strong. The instrumental variable (DistanceStr3) is a strong and significant predictor of the policy variable. Column (2) shows the estimation results of the second stage. The coefficient of the core explanatory variable remains significantly positive. Secondly, in order to make the characteristics of the pilot and non-pilot areas as consistent as possible, there is put-back sampling according to 1:2 caliper nearest-neighbor matching, which matches the pilot areas on a year-by-year basis. The reason for using 1:2 matching is that 1:2 matching strikes a balance between bias, efficiency, and robustness while ensuring that the sample size remains sufficient for meaningful analysis. The regression results using the PSM-DID method are presented in Table 4, Column (3), and show that the coefficients on the core explanatory variables remain significantly positive. It can be seen that institutional innovation can still significantly improve the environmental performance of the pilot districts after further mitigating potential endogenous problems.
TABLE 4 | Results of endogeneity analysis.
[image: Regression table showing three columns:   Column (1) titled "First stage" with variable "did"; DistanceStr3 coefficient is 0.0251 with a standard error of 0.0058. Observations are 589.  Column (2), titled "Second stage lnEP," has a coefficient of 1.4971 with a standard error of 0.5162. Observations are 589 with an R-squared of 0.8496.  Column (3), also "Second stage lnEP," has a coefficient of 0.2844 with a standard error of 0.1382. Observations are 328 with an R-squared of 0.9460. All controls, City FE, and Year FE are labeled "Yes."   Statistical notes are included below.]5.5 Robustness tests
5.5.1 Placebo testing
Drawing on the existing literature (Li et al., 2016), this paper adopts a random sampling method to construct a false treatment and control group, as a way to obtain a new sample re-estimation. In order to improve the reliability of the placebo test, the above process is repeated 500 times, thus generating the corresponding 500 estimated coefficients to obtain Figure 2, where the vertical dashed line indicates the correct estimated coefficients. Theoretically, if the benchmark regression result is indeed brought about by institutional innovation, then the estimated coefficient of the policy variable should not be significantly different from 0. The estimation results in Figure 2 show that the estimated coefficients of the policy variable did follow a normal distribution and have a mean value around 0. Therefore, the possibility that the impact of institutional innovation in trade in services on environmental performance stems from other factors is low, indicating that the policy effects derived from the benchmark regression are relatively robust.
[image: A probability density plot shows a bell-shaped curve centered at zero on the x-axis labeled "Estimated coefficients." The y-axis is labeled "Probability density," ranging from zero to 2.5. A dashed vertical line is near the right, slightly above zero.]FIGURE 2 | Placebo test.
5.5.2 Excluding other contemporaneous policy effects
Given the predominant implementation of institutional innovations in regional centers or highly open cities, these pilot regions are often subject to multiple national-level policies that can potentially influence their environmental performance. In order to exclude other contemporaneous policy influences, this paper mainly considers: first, the Pilot Free Trade Zone policy (did01). The 11 pilot regions of service trade system innovation in this paper have successively set up free trade pilot zones, so this policy may bring some interference to the environmental performance of the region. Second, National-level New Zone policy (did02). Among the 11 service trade system innovation regions, four cities (Guangzhou, Chengdu, Tianjin and Shanghai) have been affected by the National-level New Zone policy before the implementation of system innovation, and it is necessary to exclude the impact of this policy on environmental performance. Therefore, this paper further incorporates the dummy variables of the Pilot Free Trade Zone policy and the National-level New Zone policy on the basis of model (1), the construction method is similar to that of the core explanatory variables, and the estimation results are reported in Table 5. It can be seen that the estimated coefficients of the core explanatory variable [image: Please upload the image or provide a URL so I can help generate the alt text.] are all significantly positive, which suggests that, after the exclusion of the effects of the Pilot Free Trade Zone policy and the National-level New Zone policy, the institutional innovation of trade in services still can significantly improve environmental performance, indicating that the research findings are robust.
TABLE 5 | Test results excluding the effects of other contemporaneous policies.
[image: A table displaying regression results for the dependent variable \( \ln EP \) across three models. Each column represents a model with coefficients for variables: \( did \), \( did01 \), and \( did02 \). All models include controls for city and year fixed effects, with 664 observations and R-squared values around 0.95. Robust standard errors are given in parentheses. A note indicates significance at the 0.01 level.]5.5.3 Adjustment of the study sample
Two main kinds of robustness tests are mainly conducted: First, full sample regressions5. Column (1) of Table 6 reports the regression results for the sample of 275 districts. Second, the inclusion of cities belonging to new national-level districts6. Column (2) of Table 6 reports regression results for 81 regions, including 75 basic research samples and six cities, Chongqing, Guiyang, Anshun, Xi’an, Xianyang and Baoding. Combining columns (1) to (2) of Table 6, it can be found that the estimated coefficients of the core explanatory variable did remain significantly positive, further validating the robustness of the findings.
TABLE 6 | Results of other robustness tests.
[image: Table showing regression results for three models with variables and coefficients. Variables include "did," "Controls," "City FE," and "Year FE." Coefficients for "did" are 0.5635, 0.4617, and 0.0746 with significance levels indicated by asterisks. Robust standard errors are provided. Observations are 2,250, 718, and 598, with R-squared values of 0.9209, 0.9441, and 0.9630. A note indicates clustering at the district level and sample sizes for different models.]5.5.4 Replacement of explanatory variables
In this paper, environmental performance is mainly expressed in terms of GDP realized per unit of industrial SO2, but other pollutants are also emitted in the process of regional development. Under the constraint of the “double carbon” goal of carbon peak and carbon neutrality, reducing carbon emissions is an important task for China to realize sustainable development. Therefore, in order to more fully examine the impact of institutional innovation on environmental performance, based on data availability, this paper selects the share of regional GDP in CO2 emissions (lngco2) as a new regional environmental performance indicator. The carbon dioxide emissions data are sourced from the China Emissions Accounts and Datasets (CEADs). As of 4 January 2025, the database has released carbon emission data for 290 Chinese cities from 1997 to 2019. The results in column (3) of Table 6 show that the estimated coefficients of the core explanatory variable did are significantly positive, indicating that after taking into account the different pollution emission behaviors that regions may have due to different pollutants, institutional innovation in trade in services still has an uplifting effect on environmental performance, which further supports the findings of the study.
6 FURTHER ANALYSIS
6.1 Test of action mechanism
The results of the previous study show that the innovation of trade in services system can significantly improve the environmental performance of the pilot region, while what is the acting mechanism behind it needs to be further examined. According to the research hypothesis, the mechanism of action may include both green innovation capacity enhancement and industrial structure upgrading, and the mechanism testing model is set as Equation 5:
[image: Mathematical equation depicting a model: \( M_{it} = \beta_0 + \beta_1 did_{it} + \gamma Controls_{it} + \mu_i + \lambda_t + \epsilon_{it} \), labeled as equation (5).]
[image: It seems there was an error in describing the image. Please upload the image or provide a URL, and I will create alternate text for you.] denotes the mechanism variable. Green innovation capacity is measured by the number of green patent applications per 10,000 people (patapp) and the number of green patents obtained per 10,000 people (pataut), and the data are obtained from the database of China Research Data Service Platform (CNRDS). Industrial structure upgrading is measured by the ratio of value added of tertiary industry to value added of secondary industry ([image: Please upload the image or provide a URL for me to generate the alternate text.]) (Gan et al., 2011). The coefficient [image: Please upload the image or provide a URL for it, and I will generate the alt text for you.] indicates the impact of institutional innovation on the improvement of regional green innovation capacity and industrial structure upgrading.
6.1.1 Green innovation capacity enhancement mechanisms
Table 7 reports the results of the test of the mechanism of action. Among them, the results in columns (1) and (2) show that the innovation of the services trade system can significantly increase the number of green patent applications and acquisitions per 10,000 people in the pilot region, and promote the improvement of green innovation capacity. The service industry is more environmentally friendly and resource-saving industry, and manufacturing agglomeration brings more environmental pollution problems (Levinson, 2010). Institutional innovation has attracted large-volume service industry agglomeration, which can reduce pollution control in manufacturing industry through clean outsourcing services and incentivize manufacturing enterprises to innovate low-carbon emission reduction technologies. In addition, the coordinated interaction between manufacturing and service industries can not only enable the sharing and dissemination of advanced production technologies and scarce resource elements within the pilot region, generating technological externalities, but also improve the resource utilization efficiency of the pilot region by strengthening the rational allocation of resources, reducing the consumption of intermediate inputs, reducing the cost of technological innovation, and jointly promoting the enhancement of green innovation capacity.
TABLE 7 | Results of mechanism of action tests.
[image: Statistical results table showing regression outputs for three models: "patapp," "pataut," and "indstru." The coefficient for "did" is 4.4738 with standard error 1.4717 in "patapp," 1.6380 with standard error 0.5562 in "pataut," and 0.1510 with standard error 0.0804 in "indstru." Controls, city, and year fixed effects are included. Observations are 675 for each model, with R-squared values of 0.8892, 0.9184, and 0.9443 respectively. Note indicates significance levels and district-level clustering errors.]6.1.2 Mechanisms for upgrading the industrial structure
The results in column (3) of Table 7 show that institutional innovation in trade in services can also improve environmental performance by influencing the upgrading of regional industrial structure. For a long time, China’s industrial development has mainly relied on scale expansion, with a relatively crude model, low energy utilization, high resource and environmental costs, and serious challenges to the development of a green economy. Systematic innovation in trade in services can promote the transformation and development of trade in services by virtue of preferential policies and a facilitated business environment, and provide a better platform for industrial upgrading in pilot regions. As an integrated carrier of innovative development and a frontline of cooperation in science and technology innovation, the pilot regions will see the innovative factors and resources triggering changes in the mode of production and organization and continuously penetrating into various industrial fields, accelerating the transformation and upgrading of the traditional industries while emerging new industries. In addition, the advanced knowledge and technology of the service industry can also affect the manufacturing industry through the spillover effect, and promote the upgrading of the entire industrial structure through the integration and coordinated development of the two.
6.2 Heterogeneity analysis
6.2.1 Heterogeneity in the degree of government support
Mechanism analysis shows that innovation in the trade in services system can significantly improve environmental performance by promoting the green innovation capacity of pilot regions. However, there are some differences in government support in different regions, which leads to a large gap between the absorption and transformation capacity of advanced resources in each region, and the lower absorption capacity will inhibit the pilot regions from realizing their own green development by means of advanced service products and clean and green technologies. Therefore, this paper adopts the proportion of government expenditure on education, science and technology to GDP to measure government support (govsu). When government support is higher than the mean, govsu is assigned a value of 1, and when government support is lower than the mean, govsu is assigned a value of 0. Then govsu and its interaction term with institutional innovation ([image: Please upload the image or provide a URL so I can generate the alt text for you.] ) are incorporated into the model, and the estimation results are reported in column (1) of Table 8. It can be seen that the coefficient of the interaction term is significantly positive, indicating that regions with stronger government support are more able to improve environmental performance through institutional innovation. The reason behind this result may be that regions with greater government support can provide more resources and policy backing for green innovation, thus enhancing the R&D capacity and technology absorption capabilities of innovation entities. Specifically, higher government support can not only directly improve the efficiency of green technology research, development, and promotion, but also optimize resource allocation through policy guidance, thereby promoting the transformation and application of innovative results. In this context, institutional innovation can more effectively enhance the green innovation capacity of pilot areas, further improving environmental performance. Therefore, government support, as a key factor, plays an important role in promoting green development and environmental improvement, particularly in areas where resources and technology are relatively scarce. In these regions, government support has become a crucial driving force behind the green transformation.
TABLE 8 | Results of heterogeneity analysis.
[image: A table displaying regression results for the dependent variable lnEP across three models. Variables include did_govsu, govsu, did_serlev, serlev, did_open, and open, with respective coefficients and standard errors in parentheses. Statistically significant results are noted with asterisks: three for p < 0.01, two for p < 0.05, and one for p < 0.10. All models include control variables, city fixed effects, and year fixed effects, with observations totaling 664 for each model. R-squared values are 0.9502, 0.9483, and 0.9497 respectively.]6.2.2 Heterogeneity in the level of development of services
As institutional innovation in services trade to promote industrial structure upgrading is another channel to improve its environmental performance, are regions with a higher level of services development more able to rely on institutional innovation to improve their environmental performance? This paper adopts the proportion of added value of the tertiary industry to GDP to measure the development level of the service industry (serlev). When the level of service industry development is higher than the mean, serlev is assigned a value of 1. When the level of service industry development is lower than the mean, serlev is assigned a value of 0. Then serlev and its interaction term with institutional innovation ([image: I'm sorry, but I cannot see or analyze the image directly. Please provide a description or upload the image file so I can help generate the alt text.] ) are incorporated into the model, and the estimation results are reported in column (2) of Table 8. It can be seen that the coefficient of the interaction term is significantly positive, indicating that regions with higher levels of services development are more able to improve their environmental performance through institutional innovation. This may be because the service sector itself has strong green development potential. Compared with traditional manufacturing, service industries such as finance, information technology, consulting, and modern logistics not only have lower resource consumption and pollution emissions, but can also promote green transformation through technological innovation and industrial upgrading. For example, the financial industry can promote the implementation of green projects through green financing, environmental protection investment, and other means, while the information technology industry can improve resource use efficiency and reduce carbon emissions through digital means. As a result, the development of the service sector offers greater scope and potential to drive sustainable improvements in environmental performance. In addition, the service industry is usually more flexible than traditional industries and can quickly adapt to market demand and policy changes, which makes the implementation cost of institutional innovation in the service industry lower and its effect more significant. Regions with high service levels are generally better able to respond to and take advantage of changes in environmental policy and market demand, thereby promoting green innovation and the adoption of green technologies. With the gradual introduction and application of green technologies, these regions can achieve greater progress in reducing resource waste and improving energy efficiency, thus significantly improving environmental performance.
6.2.3 Heterogeneity in openness to the outside world
Accompanied by the deepening of institutional innovation, the expanding two-way openness of the service industry, and the increasing availability of advanced service products, regions relying more on openness to the outside world may be able to realize more effective green development. This paper adopts the proportion of the amount of FDI actually utilized by the region to the regional GDP to measure the degree of openness to the outside world (OPEN). When the degree of openness to the outside world is higher than the mean, open is assigned a value of 1, and when the degree of openness to the outside world is lower than the mean, open is assigned a value of 0. Then open and its interaction term with institutional innovation ([image: It appears there was an issue with displaying the image. Please try uploading the image again, and I will help generate the alternate text for it.] ) are incorporated into the model, and the estimation results are reported in column (3) of Table 8. It can be seen that the coefficient of the interaction term is significantly positive, implying that the more open to the outside world a region is, the more it can improve its environmental performance through institutional innovation. First, regions with a higher degree of openness to the outside world can improve the efficiency of applying green technologies by introducing and absorbing advanced external resources, based on institutional innovation, thus enhancing environmental performance. Second, such regions generally enjoy more policy support and market opportunities. In the context of globalization, they can participate in more international green trade and cooperation, promoting the development of green industries. Institutional innovation provides a more flexible policy environment, encouraging these regions to adopt and innovate green technologies more actively, thus supporting sustainable development. Additionally, market competition resulting from openness to the outside world can also be an important factor. In more open regions, the competitive pressure between companies and governments may be greater, incentivizing them to improve efficiency and green performance through innovation. In this competitive environment, institutional innovation can not only optimize resource allocation but also encourage enterprises to focus more on environmental protection and the introduction and implementation of green technologies. Therefore, the degree of openness to the outside world has become a key factor in promoting green development, especially in areas reliant on external resources. The improvement in openness provides more opportunities and impetus for institutional innovation, making it more likely to achieve a win-win outcome for both environmental protection and green development.
7 CONCLUSION AND POLICY SUGGESTION
Focusing on institutional innovation in service trade characterized by the development of innovative systems, this paper examines the impact of institutional innovation on environmental performance based on panel data from 75 cities in China between 2011 and 2019 using a staggered difference-in differences model. The main findings are as follows: first, institutional innovation in China’s trade in services significantly improves environmental performance, raising the average environmental performance of pilot regions by 0.4635 percentage points, and the conclusion still holds after a series of validity tests and robustness tests. The result is consistent with existing research (Zheng and Zhang, 2024), further demonstrating the positive role of institutional innovation in promoting green development and enhancing environmental performance. Second, institutional innovation improves the environmental performance of the pilot regions mainly by promoting the improvement of green innovation capacity and industrial structure upgrading. This finding is consistent with the research of Musa et al. (2021), emphasizing the role of institutional quality and innovation capability in promoting environmental performance. At the same time, it aligns with Sun et al. (2024), who argues that optimizing the market economy system and promoting technological innovation can effectively drive the implementation of corporate environmental responsibility. Third, regions with stronger government support and higher levels of service industry development and openness to the outside world are better able to rely on institutional innovation to improve their environmental performance. This result echoes the findings of Han et al. (2023), indicating that government governance capacity and the degree of market openness are important factors in driving environmental governance.
As a core component of the service industry, institutional innovation in service trade has a profound impact on improving environmental performance. Although innovation policies for trade in services have been implemented in many regions for years, systematic assessments of their environmental performance remain inadequate. This paper explores the relationship between institutional innovation and the environmental performance of service trade using a staggered difference-in-differences model and a quasi-natural experiment. The study analyzes the mechanisms through which improvements in green innovation capability and industrial structure upgrading affect environmental performance, and reveals the heterogeneous effects of policy implementation across different regions and groups. These findings not only enrich the theoretical framework regarding the relationship between institutional innovation and environmental performance, but also provide a new perspective for the academic community, filling gaps in the existing literature. Furthermore, the study offers both a theoretical foundation and practical guidance for policymakers, particularly regarding the specific impacts of service trade system innovation on environmental performance, which holds significant practical implications.
The conclusions can provide valuable policy insights for promoting the innovative development of trade in services and pollution reduction in developing countries such as China. Firstly, we should further expand the opening-up of the service industry and deepen the innovative development of service trade. The first step is to broaden the scope of opening up in the service industry, allowing for unrestricted flow of technology-intensive and environmentally friendly service factors. The second step involves continuously summarizing and promoting institutional innovation experiences in pilot regions, while exploring a policy system that aligns with the innovative development of trade in services. Secondly, establish a platform that integrates industry, academia, and research to optimize the environment for green technological innovation. This can be achieved by gradually formulating innovation policies, increasing investment in science and technology as well as education, and providing corresponding financial support for green technological innovation. Additionally government departments should encourage collaboration between schools and enterprises while building an innovative platform that combines production, learning, and research to continuously enhance the capacity for green technology innovation, Thirdly, implement differentiated development strategies to promote the upgrading of regional industrial structures. On the one hand, while phasing out heavily polluting and underperforming industries, it is imperative to encourage and guide increased investment in clean service sectors. On the other hand, for emerging green enterprises, it is crucial to fully leverage innovative and preferential policies as guiding mechanisms, fostering deep integration between emerging and traditional industries, thereby propelling sustainable development.
8 RESEARCH LIMITATIONS AND FUTURE PROSPECTS
Although this paper provides useful insights into the impact of institutional innovation in trade in services on environmental performance, some limitations remain.
First, the analysis is based on panel data from 75 cities in China. While the data set is large, the generalizability of the results may be affected to some extent by regional differences. Therefore, future studies could consider expanding the sample to include data from additional countries or regions to enhance the external validity of the conclusions.
Additionally, future research should focus on the dynamic effects of institutional innovation in service trade and its long-term impacts. Since the effects of policies tend to accumulate gradually, short-term data may not fully capture their long-term impact on environmental performance. Consequently, future studies could extend the time span of the research to more thoroughly assess the long-term effects of policy implementation.
With the continuous advancement of the global green development initiative, the interaction between institutional innovation in trade in services and other international environmental protection policies, progress in green technology, and the global supply chain warrants further exploration. Future research could broaden the international perspective and further analyze the mechanisms through which transnational institutional innovation affects environmental performance.
DATA AVAILABILITY STATEMENT
The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.
AUTHOR CONTRIBUTIONS
HX: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Resources, Software, Supervision, Writing–original draft, Writing–review and editing. SW: Formal Analysis, Investigation, Software, Writing–review and editing. LL: Data curation, Investigation, Methodology, Resources, Supervision, Writing–review and editing.
FUNDING
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was funded by the Philosophy and Social Science Research Project of Hubei Provincial Department of Education (Grant No. 23Y085).
GENERATIVE AI STATEMENT
The author(s) declare that no Generative AI was used in the creation of this manuscript.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
FOOTNOTES
1https://baijiahao.baidu.com/s?id=1674185459448881087&wfr=spider&for=pc
2Wuhu, Nantong, Suzhou, Weihai, Jingzhou, Maanshan, Zhenjiang, Taizhou, Yingkou, Rizhao, Lianyungang and Shantou.
3Unfortunately, missing data for 2020 and 2021 for some of the important variables makes the timeframe of this paper’s study 2011–2019, which leads to only 2 periods after the implementation of the pilot policy in most of the treatment group districts, and does not allow us to see the change in the dynamic effects in the 3rd or even longer period after the implementation.
4The calculation is based on the nearest distance from each city to the top ten ports, which are: Dalian Port, Tangshan Port, Tianjin Port, Qingdao Port, Lianyungang Port, Shanghai Port, Ningbo Port, Xiamen Port, Guangzhou Port and Qinzhou Port.
5The full sample of 285 cities, excluding Dali, Sanya, Harbin, Nanjing and the cities belonging to the Xixian New Area, the Two Rivers New Area, the Gui’an New Area, and the Xiong’an New Area, leaves 275 cities.
6The cities of Nanjing and Harbin are not added here to control for the policy’s own heterogeneity
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The transition from a carbon-intensive economy to a carbon-neutral one has become a critical global objective to address climate change. This study examines the relationship between Low-Carbon Economic Development (LCED) and Geopolitical Risk (GPR) in China by focusing on the challenges and opportunities they present. We use a qualitative analysis to identify that rising GPR, exacerbated by market instability, resource allocation conflicts, and trade disputes, significantly hinders LCED progress. However, these geopolitical tensions also act as a catalyst for accelerating the development of renewable energy, reducing reliance on traditional energy sources, and fostering low-carbon technologies. Furthermore, LCED can ameliorate GPR by decreasing dependence on energy imports, promoting international cooperation, and encouraging scientific innovation. These findings suggest actionable policy recommendations to support the global transition to a low-carbon economy. This research underscores the potential LCED has as a fundamental tool for resolving geopolitical tensions and uniting global efforts to combat climate change.
Keywords: low-carbon economic development, geopolitical risk, time-dependent interrelationships, China, granger causality test

1 INTRODUCTION
1.1 The relationship between LCED and GPR worldwide
This study investigates the linkages between LCED and GPR. When facing up to address the global challenge of climate change, the transition towards a LCED experiences a growing appeal among countries (Ren et al., 2023a; Xing et al., 2023). While low-carbon economic transitions are seen as a pathway to environmental sustainability (Li et al., 2024; Zhao et al., 2023a), they are deeply enmeshed in the processes of national economic restructuring, industrial transformations, and regional energy resilience (Tong et al., 2023; Zheng et al., 2021). These impact the whole of the geopolitical arena for that matter (Hunjra et al., 2024). Low-energy, low-pollution, low-emission economic model accords with the consensus of the international community to combat global warming and achieve green development (Chen et al., 2024a; Meng et al., 2023). Some countries, previously strained in their geopolitical relationships, have managed to ease and improve them through cooperation in the low-carbon realm (Andrews-Speed et al., 2014). For instance, China and the United States released a “U.S.-China Joint Statement on Climate Change”, pledging to lower greenhouse gas emissions together (Jayaraman, 2014). The cooperation in this area has helped build the Paris Climate Accords of 2015 (Cheng, 2020) and has had a calming effect on the fraught geopolitical relations between two countries (Liu et al., 2023). Nonetheless, the intricacies of domestic policies required to develop a low-carbon economy are commonly finding ground in international policy disagreements and trade disputes (Ren et al., 2024; Böhringer et al., 2022). In other words, GPR is influenced by these deviations and conflicts as well as global interaction, government stability, and policy change (Caldara and Iacoviello, 2022).
For example, the European Union’s efforts to abate carbon leakage through the planned Carbon Border Adjustment Mechanism (CBAM) met with much opposition to the extent of aggravating global tension (Sun et al., 2023). In turn, GPR also influence energy strategies, economic paradigms, and global governance frameworks (Ugurlu-Yildirim and Ordu-Akkaya, 2022; Scheffran, 2023). In effect, they present a double challenge to the transition to a low-carbon economy. Over the past several decades, as efforts to reign in carbon dioxide (CO2) emissions have deepened, resource management has become a flashpoint for international tension and the basis for new geopolitical games (Shang and Luo, 2021; Blondeel et al., 2021; Zhang et al., 2021). Thus, the question “Is Low-Carbon Development Mitigating or Exacerbating Geopolitical Conflicts?” justifies an in-depth investigation. Furthermore, the March toward low-carbon economic growth goes well beyond traditional environmental and economic spheres, rising up to become a key driving force in the global geopolitical context.
1.2 The LCED and GPR in China
China offers an ideal substrate for studying the above issues. Firstly, from a geographic viewpoint, it is bordered by 14 nations via land and 8 additional countries by means of the sea, boasting the hold of vital international sea routes for trade like the South and East China Seas (Wang et al., 2021). This unique location exposes China to far more intricated geopolitical wrinkles over relative border and regional security issues (Zhao et al., 2021). Secondly, it is the largest importer of oil and natural gas and the largest emitter of CO2 in the world (Li et al., 2023a; Chen et al., 2022a; Huang et al., 2023). As such, its energy security and economic stability are exposed to the fluctuations of the global energy markets and geopolitics (Song et al., 2019; Li et al., 2020a) if chaos in the Middle East or some other international tension would affect China’s energy supply chain (Ren et al., 2023b). In order to decrease its dependence and reduce GPR, China has initiated a number of measures such as promoting low-carbon development, initiate energy mix, raise energy efficiency, develop renewables, and move towards sustainable economy (Xin-Gang and Ying, 2023; Qi et al., 2023a). Lastly, amidst the ever-shifting global geopolitical dynamics, China’s political and economic advancements have gained attention and resistance from the United States and its allies (Lippert et al., 2020). Scholars concur that China is balancing conflicting geopolitical environments (Almujeem, 2021; Rogelja and Tsimonis, 2020). Western countries use their advantages in energy and low-carbon technologies to increase R&D costs for low and middle-income countries through mechanisms like carbon taxes to maintain their global economic dominance (Nong et al., 2021). In contrast, China’s “30–60” vision—peaking CO2 emissions by 2030 and achieving carbon neutrality by 2060—demonstrates its commitment to adjust its energy structure and lead a new global energy revolution (Ren et al., 2022). By establishing its own standards for calculating carbon footprints and enhancing its CO2 discourse, China would improve its bargaining position internationally. It can also use the historical carbon debt of the developed countries as a bargaining chip (Zhao et al., 2022). This mixture of intertwined LCED and GPR confirm China as the ideal sample compared to the rest of the world for offering a unique insight into this linkage.
1.3 Theoretical analysis of the relationship between LCED and GPR
To deepen the understanding of the intricate interplay between Low-Carbon Economic Development (LCED) and Geopolitical Risk (GPR), this study introduces a conceptual model grounded in environmental economics and international relations theories. The “Double Dividend Hypothesis” in environmental economics (Bovenberg and De Mooij, 1994) suggests that policies promoting LCED have a dual benefit: not only do they reduce greenhouse gas emissions, but they also stimulate economic growth through innovation and efficient resource allocation. Specifically, technological innovation plays a crucial role in this process, as advancements in renewable energy, energy efficiency, and carbon capture technologies help mitigate GPR. By fostering energy independence and reducing reliance on volatile fossil fuel markets, LCED becomes a stabilizing force in geopolitics, helping to mitigate conflicts over energy resources. This process also includes energy security adjustments, wherein countries diversify their energy sources to ensure stability and security, reducing vulnerability to geopolitical tensions and external disruptions in energy supply chains. Furthermore, international cooperation in climate governance, such as agreements like the Paris Climate Accords, enhances diplomatic relations and contributes to easing tensions between nations with competing energy interests (Cheng, 2020). As nations work together to achieve shared environmental goals, the potential for conflicts driven by resource competition diminishes.
On the other hand, the “Complex Interdependence” theory in international relations (Keohane and Nye, 1973) underscores the interconnectedness of global economic and environmental systems. This interconnectedness often transforms competitive dynamics into cooperative relationships. For instance, nations investing in low-carbon technologies often form strategic partnerships, promoting technology sharing and resource pooling. These collaborations not only reduce the likelihood of conflict but also enhance the mutual benefits derived from shared innovation in green energy. However, this interaction is not entirely unidirectional. High levels of GPR can disrupt LCED by creating uncertainty in energy markets, delaying cross-border investment, and imposing barriers to the transfer of green technologies (Scheffran, 2023; Zhao et al., 2021). Moreover, geopolitical tensions can inadvertently accelerate LCED development, as countries strive to reduce dependence on external energy sources and invest in building resilient energy infrastructures. These adjustments, driven by geopolitical risks, push countries to innovate and enhance their energy security through technological and policy-driven strategies.
This conceptual model underscores the bidirectional and time-sensitive nature of LCED and GPR. It highlights the need for a comprehensive approach that integrates environmental and geopolitical strategies to achieve sustainable development while mitigating risks. Figures 1, 2 visually illustrate this dynamic, showing how LCED and GPR interact through mechanisms of mitigation, collaboration, and disruption. This framework provides a theoretical foundation for the subsequent analysis of China’s experience and policy implications.
[image: Flowchart illustrating the relationship between LCED and GPR. Central arrows connect LCED to GPR through four stages: Mitigation of energy conflicts, Enhancement of international cooperation, Resource scarcity, and Trade disruptions.]FIGURE 1 | The impact mechanism of LCED on GPR.
[image: Flowchart showing the process from GPR to LCED. Middle steps include policy push for energy independence, increased investment in renewable energy, market uncertainty, and technology restrictions, connected by arrows.]FIGURE 2 | The impact mechanism of GPR on LCED.
1.4 Contribution of the study
This study offers the following contributions to the extant literature. While previous research has discussed the impact of LCED on GPR (Wang et al., 2023; Hunjra et al., 2024), LCED is a gradual and non-static process (Ding et al., 2023). Even though many countries have recently turned their attention to low-carbon development, there is a lack of research on the long-term effects of LCED on GPR. Our study fills this gap by exploring the bidirectional causality between China’s LCED and GPR over a ten-year period. It delves deeper into how the long-term implementation of its low-carbon economic policies has changed China’s position in the global energy market and how this shift has affected its political relations with other major energy producing and consuming countries. Secondly, to more accurately capture the time-varying features of the causal connection between the two, we use a monthly sub-sample rolling window causality test to unveil their changing interrelationships over the 2013–2023 period. We also adopted the GPR index proposed by Caldara and Iacoviello in 2017, which captures the intensity of geopolitical events, to more accurately measure the state of development of GPR. We chose the China Low Carbon Index, a representative sample of 40 companies' securities in the LCED sector, to more comprehensively reflect the overall performance of LCED. Through full-sample and sub-sample tests, we identified a bidirectional causal relationship between the two across several sub-periods. This signals that GPR have both advantageous and disadvantageous effects on LCED. In turn, LCED has a negative effect on GPR. Ultimately, as China vigorously pushes forward with its low-carbon transformation, the situation of geopolitical tensions has been alleviated. Finally, this study will provide strategic recommendations for policymakers to better understand the impact of China’s LCED on GPR and how to advance the LCED agenda globally while safeguarding the country’s energy security and economic interests.
This study is structured as follows: Section 2 unveils the existing research. Sections 3, 4 present the methodologies and data. In Section 5, the quantitative analyses are discussed. Section 6 sums up the conclusions and recommendations.
2 LITERATURE REVIEW
The notion of a low-carbon economy (LCED) has gained widespread recognition as a critical strategy to mitigate greenhouse gas emissions and address the multifaceted challenges of climate change (Tong et al., 2020). However, a growing body of literature highlights the evolving conflicts of interest between LCED and geopolitical risk (GPR), which have become central to international competition (Rasoulinezhad et al., 2020; Feng et al., 2024; Safi et al., 2023). These geopolitical tensions are not limited to energy disputes but also encompass issues such as carbon pricing and the allocation of carbon emission rights, with implications for both international relations and economic strategies (Wang et al., 2022a). Consequently, the dynamic interplay between LCED and GPR has garnered significant attention from environmental economists and policymakers, who now recognize its complexity and relevance in shaping global sustainability (Ladislaw et al., 2015; Wang and Liu, 2015).
On one hand, the transition toward a low-carbon economy has prompted a shift in the geopolitical landscape, as countries strive to secure resources vital for green technologies, such as critical minerals used in batteries, wind energy, and photovoltaics. This resource competition has introduced new geopolitical risks, particularly in regions rich in minerals like lithium, cobalt, and rare earth elements (Cui et al., 2023). Nakano (2021) emphasizes that these materials are predominantly sourced from a small number of low- and middle-income countries, creating supply chain vulnerabilities and exacerbating geopolitical tensions. In fact, research by Bannon and Collier (2003) demonstrates that resource wealth can fuel geopolitical conflict, while Burgis (2015) highlights how mineral wealth in the Democratic Republic of Congo has led to armed conflict and long-term instability, further underscoring the link between resource dependence and GPR. Additionally, the “resource curse” hypothesis (Auty, 2002) provides valuable insight into how countries rich in natural resources are often plagued by political instability and rent-seeking behavior, which heightens their vulnerability to geopolitical crises.
However, there are contrasting views on the impact of the low-carbon transition on GPR. Several studies have suggested that the proactive development of renewable energy and the diversification of energy sources can mitigate geopolitical risks. For example, the transition to low-carbon energy can reduce a nation’s dependence on fossil fuel imports, making it less vulnerable to market fluctuations and geopolitical conflicts associated with resource scarcity (Newbery et al., 2018). Gozgor and Paramati (2022) argue that energy diversification enhances regional stability, while Siciliano et al. (2021) assert that renewable energy promotes energy self-sufficiency and strengthens international relations by reducing dependence on finite energy sources. This shift towards renewables is not just a strategic necessity for climate change mitigation but also a means to foster technological innovation, as evidenced by the Belt and Road Initiative, which has facilitated clean energy cooperation between China and regions like Central Asia and Southeast Asia (Liu et al., 2022; Xu et al., 2023). Such cooperation has not only contributed to technological advancements but has also enhanced regional energy security, offering a model for countries seeking to reduce their geopolitical risks through energy transition.
In contrast to the growing body of research emphasizing the complexity and variability of GPR, recent studies have focused on the temporal aspects of this relationship. The time-dependent variability of LCED’s impact on GPR has been largely overlooked in existing literature, particularly in the case of China. Research by Zhao et al. (2021), using the Nonlinear Cointegrating Autoregressive Distributed Lag (NARDL) approach, found that GPR’s impact on carbon pollution can behave differently across countries, such as those in the BRICS group. Similarly, Adams et al. (2020) pointed out that while geopolitical tensions may initially lead to a temporary increase in CO2 emissions, the long-term effects tend to favor green energy investment and technological advancement, thus eventually reducing emissions. This “investment effect” has been further supported by Sweidan (2021), who noted that changes in geopolitical risk could spur countries to increase their investments in green technologies, thus mitigating the negative impact on CO2 emissions.
From a theoretical perspective, the resource dependence theory (Pfeffer and Salancik, 2015) highlights the vulnerability of countries that rely heavily on finite natural resources, making them prone to external shocks and geopolitical conflicts. Such dependencies often lead to political alliances or trade-offs, further aggravating geopolitical tensions. Conversely, the low-carbon transition can reduce this dependence, helping countries avoid the pitfalls of the resource curse while promoting greater economic and political stability. As a global strategy, the low-carbon economy offers a unique opportunity to reshape GPR by diversifying energy supplies and promoting technological innovation, thereby contributing to both environmental and geopolitical security.
Despite these advances, three critical knowledge gaps persist. First, existing studies predominantly treat the LCED-GPR relationship as static, neglecting its time-dependent dynamics and country-specific heterogeneity. Second, the mechanisms through which short-term geopolitical conflicts translate into long-term low-carbon transitions remain underexplored, particularly in resource-dependent economies like China. Third, there is limited empirical evidence on how geopolitical risks influence green technology investments and their subsequent impact on carbon emissions. This paper addresses these gaps by (1) employing a dynamic analytical framework to capture temporal variations in the LCED-GPR nexus, (2) integrating regional case studies to reveal context-specific pathways, and (3) examining the role of geopolitical risks in driving green technology investments and their long-term effects on emissions reduction. Through this approach, we provide new insights into optimizing the geopolitical dividends of low-carbon transitions while mitigating associated risks.
3 METHODOLOGY
This study employs the rolling-window Granger causality test to investigate the dynamic and bidirectional relationship between LCED and GPR in China. By using a combination of bootstrap full-sample Granger causality test, parameter stability test and sub-sample rolling window causality test, we aim to uncover time-varying interactions and establish actionable insights. The methodological structure is designed to ensure statistical rigor and robustness.
3.1 Research hypothesis
The relationship between LCED and GPR is conceptualized within a feedback loop framework. On the one hand, GPR can disrupt LCED by creating economic and trade uncertainties, hindering investments in renewable energy and low-carbon technologies. On the other hand, advancements in LCED can reduce geopolitical tensions by fostering energy independence, technological innovation, and cross-border cooperation. To formalize this relationship, we test the following hypotheses:
H01: LCED does not Granger cause GPR.
If LCED influences GPR, it implies that low-carbon strategies, such as reducing reliance on fossil fuels or increasing renewable energy investments, have significant geopolitical implications, potentially alleviating tensions over resource allocation and energy security.
H02: GPR does not Granger cause LCED.
If GPR influences LCED, it suggests that geopolitical uncertainties, such as trade wars or resource conflicts, drive countries to accelerate their energy transitions to enhance resilience and reduce vulnerability.
3.2 Bootstrap full-sample causality test
Studies within the classical vector autoregression (VAR) framework present certain limitations. Firstly, the statistics used for testing Granger causality need to follow a specific asymptotic distribution law. Otherwise, the analysis results may be biased (Sims, 1980; Qin et al., 2023a; Chen et al., 2024b). The Residual Bootstrap (RB) technique was here adopted to circumvent this problem. This technique is suitable for Granger causality tests that do not conform to the standard normal distribution (Shukur and Mantalos, 2004). Additionally, in studies with insufficient sample sizes, using Monte Carlo simulations to optimize the Wald test method also introduces errors (Shukur and Mantalos, 2004). The Likelihood Ratio (LR) test proposed by Shukur and Mantalos in 2000 offers a more accurately correct the model when dealing with small to medium samples (Shukur and Mantalos, 2000). Therefore, this study employs the modified LR test based on RB technology to explore the correlation between LCED and GPR. The following Equation 1 shows the bivariate VAR (p) system for this study:
[image: Equation showing a time series model: \( X_t = \beta_0 + \beta_1 X_{t-1} + \ldots + \beta_p X_{t-p} + \varepsilon_t \), for \( t = 1, 2, \ldots, T \).]
where the p-value is chosen according to the Schwartz Information Criterion (SIC), which indicates the optimal lag order. We denote the variable X as: [image: Mathematical equation showing \( X_t = (LCED_t + GPR_{2t})' \).], and then we obtain Equation 2.
[image: Matrix equation representing a vector autoregression model with variables LCED and GPR. It includes coefficients \(\beta_{10}\), \(\beta_{20}\), lag polynomial terms \(\beta_{11}(L)\), \(\beta_{12}(L)\), \(\beta_{21}(L)\), \(\beta_{22}(L)\), and error terms \(\varepsilon_{1t}\), \(\varepsilon_{2t}\). Equation number is (2).]
The error term [image: Mathematical notation showing epsilon subscript t equals the transpose of a vector with two components: epsilon subscript 1t and epsilon subscript 2t.] is assumed to follow a white-noise process:
[image: Expression showing \(\xi_t = w_t\), where \(w_t\) follows a normal distribution with a mean of zero and a covariance matrix \(\Sigma\).]
Where [image: Please upload the image or provide a URL so I can generate the alternate text for it.] is a white-noise vector with zero mean and constant covariance matrixΣ, and it represents the purely random component of the system. This white-noise assumption ensures that the error terms are uncorrelated over time, satisfying the stationarity requirement of the VAR framework. [image: Mathematical expression: \(\beta_{ij}(L) = \sum_{k=1}^{p} \beta_{ij,k} L^{k}; \, i, j = 1, 2\).]. L are the lag operators; then [image: Mathematical expression illustrating time series notation: \( L^k X_t = X_{t-k} \). It represents the k-th lag operator applied to a time series variable \( X_t \).]. We can put out the null hypothesis that LCED and GPR do not significantly exhibit Granger causality, that is [image: Mathematical expression: Beta subscript twelve comma k equals zero, where k ranges from one to p.], and vice versa, [image: The mathematical expression shows that for \( \beta_{21,k} = 0 \), the variable \( k \) ranges from 1 to \( p \).].
3.3 Stability test of parameters
It is generally believed that the coefficients of the VAR model used in full-sample causality tests remain constant over the observation period (Su et al., 2020). In practice, however, these coefficients are often unstable, which may lead to biased results. To address this problem, Andrews (1993) and Plobberger (1994) proposed three methods: the Sup-F, Ave-F, and Exp-F. Among them, the Sup-F is mainly used to detect mutations in the model structure, while the Ave-F and Exp-F are used to assess the stability of the parameters. In addition, the LC test proposed by Nyblom (1989) helps to determine whether the coefficients exhibit random wandering. Due to the variation of coefficients over time, the relationship between LCED and GPR may also become unstable. In this case, using a full-sample approach for testing may not yield accurate results. Therefore, this study turns into a sub-sample approach to more accurately capture the evolution of the dynamic relationship between LCED and GPR.
3.4 Sub-sample rolling window causality test
Balcilar et al. (2010) proposed a rolling window method that allows a complete time series to be divided into multiple smaller sub-sequences. These sub-sequences can be rolled sequentially and accurately identify the time-varying characteristics between variables (Balcilar et al., 2010). Moreover, when performing rolling window estimation, a balance needs to be found between parameter accuracy and the representativeness of the sub-samples. Choosing an appropriate window size is crucial: a larger window improves estimation precision but may make the subsample less representative, whereas a smaller window has the opposite effect. Pesaran and Timmermann (2005) addressed the issue of parameter instability in their 2005 study by proposing a restriction on the minimum width of the window. In this study, we first set the total length of the time series to be T and the width of the rolling window to be r. Thus, the length of each sub-sequence is r, and the starting points of the sequence are, in order, r, r+1, … , t, yielding a total of T-r+1 time series. Next, for every sub-sample, we used the RB-based revised-LR technique in order to figure out their causal link. Finally, we summarized the LR statistics and p-values of these sub-samples in chronological order. The mean [image: Mathematical expression showing \( N_b^{-1} \sum_{k=1}^{p} \hat{\beta}_{21,k}^* \).] and [image: Mathematical notation displaying a summation: N sub b superscript negative one times the sum from k equals one to p of beta hat sub twelve comma k asterisk.] can denote the effect of LCED on GPR, and vice versa. [image: Please upload the image or provide a URL so I can create the alt text for you.] indicates the number of times a bootstrap is repeated, and [image: Mathematical notation showing the symbol beta with a subscript of 21,k, an asterisk superscript, and a circumflex accent above the beta.] and [image: Mathematical notation showing beta hat with superscript star, subscript one two comma k.] are bootstrap estimators in the VAR model. In this section, the confidence interval is 90%, with the lower limit equal to the fifth quantiles of [image: Mathematical expression featuring a beta symbol with a circumflex and a star above it, followed by subscripts one, two, and k.] and the upper limit equal to the 95th quantiles of [image: A mathematical expression showing a beta symbol with a circumflex accent and a star superscript, followed by subscript numbers two, one, and letter k.] (Balcilar et al., 2010).
4 DATA
We selected monthly data from 2013.1 to 2023.12 to examine the correlation between China’s LCED and GPR. This time frame was selected because China has undertaken several of significant regulations and actions pertaining to climate change adaptation which have had profound impacts on global low-carbon development. These include the establishment of the National Low-Carbon Day (2013), the signing of the Paris Agreement (2016), the introduction of the “Two Carbon” target (2020), the launch of the national carbon market (2021), the release of the Glasgow Climate Agreement (2021), and the publication of the Green Finance Development Plan (2023). In this paper, we have chosen an index that reflects the performance of stocks of listed companies related to China’s LCED - CS Low Carbon Index. This LCED Index visualizes the changes in economic activities in this sector and better reflects China’s LCED (Chen et al., 2024c). In addition, China experienced a series of geopolitical changes and international relations adjustments during this period. In 2013, President Xi Jinping announced the “BRI” project, which strengthened China’s economic ties with the countries along the route but also triggered concerns in the West (Rolland, 2017). In 2014, China’s construction of islands in the South China Sea led to tensions with neighboring countries, particularly The Philippines and Vietnam (Rolland, 2017). The South China Sea triggered tensions with neighboring countries, especially disputes with The Philippines and Vietnam (Biedzynski, 2015). In 2018, the trade war between China and the U.S. increased transnational economic uncertainty (Park, 2020). In 2020, the outbreak of the global COVID-19 pandemic had profound impacts on the social, legal, economic, political, and technological dimensions around the world (Teng et al., 2020; Shaik et al., 2023). In 2021, the US military’s withdrawal from Afghanistan altered the geopolitical landscape of South and Central Asia, impacting China’s peripheral security environment (Manish and Kaushik, 2023). The escalation of the Russia-Ukraine conflict in 2022 heightened global geopolitical tensions, and simultaneously affected China’s energy security (Zhou and Lu, 2023). This paper uses the GPR Index, a measure that assesses the threat of terrorism, trade disputes, and political tensions (Caldara and Iacoviello, 2022). Higher values of the LCED and GPR indices imply better development of China’s low-carbon economy and higher geopolitical risk. The trend of LCED and GPR is shown below:
Figure 3 displays the fluctuations in the LCED and GPR indices over the period from 2013 to 2023. The relationship between LCED and GPR is marked by several significant phases, reflecting both internal and external dynamics:
[image: Line graph showing GPR and LCED indices from 2013 to 2023. The GPR (solid line) has fluctuations with peaks in 2015, 2017, 2020, and 2023. The LCED (dashed line) shows a significant peak in 2021, with fluctuations from 2016 onward. GPR values range from 50 to 350, LCED values from 2,000 to 14,000.]FIGURE 3 | Trends of LCED and GPR. Notes: The dotted line on the right axis indicates the LCED trend while the solid line on the left axis represents the GPR trend. The x-axis represents years while and the y-axis represents the indexes of LCED and GPR.
2013–2015: A pivotal period for China as the country introduced the LCED policy, focusing on energy savings, CO2 emission reductions, and green energy development. The LCED index rose sharply from 2,915 to 7,133, indicating a positive response to these policies. However, this period also saw economic challenges, including a bear market, which caused the LCED index to fall to 4120 by 2015.
2016–2019: During this phase, the implementation of LCED policies matured, with a stabilizing effect on the LCED index. The LCED continued to show slow but steady growth as China’s low-carbon policies took root. In contrast, the GPR index saw some volatility, reflecting geopolitical tensions, particularly territorial disputes in the South China Sea, which increased GPR from 83 to 139.
2020–2021: The announcement of China’s carbon peak and carbon neutrality targets marked a new stage for LCED, driving a sharp rise in the LCED index. This was coupled with strong governmental support and market attention toward a carbon-neutral economy. At the same time, the GPR index fluctuated dramatically, with geopolitical events like North Korea’s nuclear tests and the COVID-19 pandemic further contributing to instability in global relations. These factors contributed to substantial shifts in GPR, culminating in a significant peak in 2021–2022.
2021–2023: Geopolitical factors, such as deteriorating Sino-American relations, the Russia-Ukraine conflict, and other global tensions, led to a sharp rise in GPR from 58 to 319, while the post-pandemic economic recovery drove a temporary resurgence in high-energy-consuming industries, negatively impacting the development of the low-carbon economy. This was reflected in a decline in the LCED index from 11,983 to 5,290, showing the negative impact of geopolitical instability on China’s green energy transition.
Table 1 provides the GPR and LCD descriptive statistics. These two have maximum values of 11,983.26 and 318.95, and minimum values of 2,900.190 and 58.42. Furthermore, the mean values of LCD vs GPR are 5,906.718 and 102.106, demonstrating the dramatic features of the chosen variables. Positive skewness reflects the right-skewed nature of LCD and GPR. Additionally, according to the Jarque-Bera test, these variables have a significant non-normal distribution. The use of Granger causality test based on VAR system causes a series of errors. Therefore, we used the RB-based revised-LR technique and sub-sampling technique to more accurately identify the changing transmission mechanism between LCD and GPR.
TABLE 1 | Descriptive statistics for LCED and GPR.
[image: A table comparing statistical data between LCED and GPR. Both have 132 observations. LCED has a mean of 5,906.718, median of 5,094.245, maximum of 11,983.26, and minimum of 2,900.190. Its standard deviation is 2,241.937, skewness is 1.064, and kurtosis is 3.148. The Jarque-Bera value is 25.009 with a probability of 0.000. GPR has a mean of 102.106, median of 96.72, maximum of 318.95, and minimum of 58.42. Its standard deviation is 32.467, skewness is 2.965, and kurtosis is 17.931. The Jarque-Bera value is 1,419.589 with a probability of 0.000. Notes indicate significance at a 1% level.]To ensure the robustness of the analysis, we conducted an outlier analysis on the LCED and GPR data. Outliers were identified using the Interquartile Range (IQR) method, where any data points falling below [image: I'm unable to view the image. Please provide a description or additional details so I can help create the alternate text.] or above [image: Equation showing an upper threshold for detecting outliers in a dataset, expressed as Q3 plus 1.5 times the interquartile range (IQR).] were flagged as potential anomalies. Additionally, Z-scores were computed to identify observations with absolute values greater than 3, which are considered extreme. Visual inspections using boxplots and time-series plots were also performed to confirm the identified outliers. For outliers caused by real-world geopolitical or economic events (e.g., trade disputes, policy announcements, or energy crises), these data points were retained to preserve the integrity of the analysis. Conversely, data anomalies stemming from measurement errors or irregular reporting were corrected using median imputation to ensure consistency. Robustness checks were conducted by running the analysis both with and without the flagged outliers. The results remained consistent, affirming that the presence of these outliers did not significantly alter the study’s conclusions.
5 QUANTITATIVE ANALYSES AND DISCUSSIONS
In this study, after taking first order differences for both LCD and GPR, we employed the ADF, PP, and KPSS tests to examine the stationarity of the two variables (Dickey and Fuller, 1981; Phillips and Perron, 1988; Kwiatkowski et al., 1992). From the test results shown in Table 2, we observe these two variables are essentially stationary. Therefore, we used LCED and GPR to construct a bivariate VAR model and examined the full-sample causal relationship between these two variables.
TABLE 2 | Results of unit root tests.
[image: Table presenting statistical test results for variables LCED and GPR. For LCED: ADF is -8.625 (0) ***, PP is -8.595 [8]***, KPSS is 0.252 (3). For GPR: ADF is -14.714 (0) ***, PP is -22.759 [20]***, KPSS is 0.109 (22). Notes mention *** and ** indicate significance at the 1% and 5% levels, respectively.]We set the optimal lag length to 6 based on SIC and the number of Bootstrap repetitions to 1,000. Table 3 below shows the results of the full-sample causal relationship between the two variables. We can observe that LCED and GPR do not significantly exhibit Granger causality. This represents that LCED cannot have any effect on GPR and vice versa. This outcome deviates from previous studies (Wang et al., 2022b; Borozan, 2024; Chen et al., 2024d).
TABLE 3 | Outcomes of bootstrap full-sample method.
[image: Statistical table showing results for Granger causality tests. Hypothesis one: LCED is not the Granger cause of GPR, with a statistic of 1.384 and p-value of 0.53. Hypothesis two: GPR is not the Granger cause of LCED, with a statistic of 4.04 and p-value of 0.12. Notes mention 1,000 bootstrap repetitions were used to calculate p-values.]Previous studies analyzed time series data under the assumption of no structural breaks and a single causal relationship (Balcilar et al., 2010). If structural mutations occur in the VAR (s) system, there must be an unstable Granger causality between LCED and GPR (Sun and Su, 2024). Thus, in order to address this issue, we examined the temporal stability of the LCED and GPR parameters in the aforementioned models through Sup-F, Ave-F, and Exp-F tests (Andrews, 1993; Andrews and Plobberger, 1994). Moreover, to determine if parameter changes follow a random walk, we employed the Lc test (Nyblom, 1989; Hansen, 2002). Table 4 demonstrates the results of the test.
TABLE 4 | Outcomes of parameter stability techniques.
[image: Table displaying statistical test results for LCED, GPR, and VAR(s) process. For LCED: Sup-F 60.421, Ave-F 18.383, Exp-F 25.943, all with p-value 0.000. For GPR: Sup-F 52.628, Ave-F 14.947, Exp-F 21.826, all with p-value 0.000. For VAR(s): Sup-F 27.226, Ave-F 19.207, Exp-F 11.372 p-value 0.043, Lc 3.536 p-value 0.065. Asterisks indicate significance levels: 1%, 5%, and 10%.]The Sup-F test shows that the LCED, GPR and VAR (s) systems underwent structural changes at the 1% and 5% levels, respectively. Furthermore, the Exp-F and Ave-F tests proved that the parameters progressively alter with time. Meanwhile, the Lc test indicates that the original hypothesis is rejected at the 5% level. This means that the parameters do not follow a random walk process. These tests demonstrate that there is a constantly changing relationship between LCED and GPR. Therefore, this study employs a rolling window sub-sample method to accurately capture the time-varying relationship between LCED and GPR. We set the width for the rolling window to 241 months to improve the accuracy of the results. Figures 4–7 illustrate the rolling results of sub-samples from January 2015 to December 2023. From the test results, we observe whether the null hypothesis that LCED is not Granger cause of GPR or, conversely, GPR is not Granger cause of LCED is accepted or rejected at the 10% significance level. Additionally, we can the direction of their mutual influence.
[image: Line chart showing data trends from 2015 to 2023. Values range from 0 to 0.9 with noticeable peaks around 2018, 2019, and 2021. The line fluctuates with a general upward trend.]FIGURE 4 | Examining the null hypothesis that LCED is not a Granger cause of GPR. Notes: The study uses 1000 bootstrap iterations to count p-values. The dashed line shows that the p-value is 0.1 and the solid line represents the Bootstrap p-values. The x-axis represents years while the y-axis represents the Bootstrap p-value.
[image: Line graph displaying the sum of coefficients and their bounds from 2015 to 2023. The sum of coefficients is shown with a solid line, the lower bound with a dashed line, and the upper bound with a dotted line. Values fluctuate between approximately -7 to 4, with significant variations around 2017 and 2020.]FIGURE 5 | Coefficients of the influence from LCED to GPR. Notes: The period where NUC exhibits significant Granger causality to LCED which is represented by the shadow bars. The x-axis represents years while the y-axis represents the Sum of Rolling-Window Coefficients.
[image: Line graph showing data fluctuations from 2015 to 2023. The values peak around 2016 and 2019, with significant drops around 2017 and post-2019, stabilizing near zero by 2023.]FIGURE 6 | Examining the null hypothesis that GPR is not a Granger cause of LCED. Notes: The study uses 1,000 bootstrap iterations to count the p-values. The dashed line shows the p-value of 0.1 while the solid line represents the bootstrap p-values. The x-axis represents year while the y-axis represents the Bootstrap p-value.
[image: Line graph depicting the sum of coefficients and their upper and lower bounds from 2015 to 2023. The sum fluctuates between positive and negative values, peaking around 2016 and 2021, with a noticeable dip in 2018 and 2020. The graph includes a labeled legend.]FIGURE 7 | Coefficients of the influence from GPR to LCED. Notes: The period where NUC exhibits significant Granger causality to LCED which is represented by the shadow bar. The x-axis represents years while the y-axis represents the Sum of Rolling-Window Coefficients.
Figures 4, 5 indicate the original hypothesis that LCED does not Granger cause GPR is rejected at the 10% significance level from March 2015 to May 2015; from December 2015 to March 2016; and from March 2018 to July 2018, respectively. In all these periods, the influence of LCED on GPR is negative.
From March to May 2015, LCED grew significantly from 4,918 to 7,133, while GPR declined from 112 to 76. This period underscores how advancements in renewable energy and international cooperation in climate policy can mitigate geopolitical risks. First, building on the foundation of the 2014 “U.S.-China Joint Statement on Climate Change,” China made further commitments to reduce greenhouse gas emissions. In March 2015, multiple high-level meetings between the two nations deepened collaboration on climate change, which not only contributed to achieving global climate goals but also alleviated tensions in their bilateral relations (Lu and Zhu, 2022). This highlights how shared environmental objectives can serve as a platform for reducing geopolitical risks. Second, China substantially increased its investment in renewable energy. As reported by Sun (2020), the Inner Mongolia Autonomous Region launched several large-scale wind power projects during this period. These projects helped to diversify China’s energy mix and reduce dependence on coal and other traditional energy sources, thereby mitigating risks associated with global energy market volatility. By decreasing reliance on fossil fuels imported from geopolitically unstable regions, such investments significantly enhance energy security and reduce vulnerabilities to external shocks. Third, China’s leadership in establishing the Asian Infrastructure Investment Bank (AIIB) in 2015 further promoted green and sustainable infrastructure development across the region (Morris, 2023). A portion of the AIIB’s funds was allocated to renewable energy projects, fostering regional cooperation in low-carbon economic development and reducing tensions over energy resource competition. Additionally, China’s 863 Program (National High Technology Research and Development Program) accelerated the development of clean technology projects such as electric vehicles, battery storage, and smart grids (Su et al., 2015). For instance, the launch of BYD’s electric vehicle in April 2015 marked a significant milestone for the global electric vehicle industry, showcasing how technological advancements can reduce carbon footprints and contribute to global climate goals (Wang et al., 2017). These developments not only bolster China’s leadership in green technologies but also reduce reliance on fossil fuel-based energy, which has historically been a source of geopolitical conflict. These examples illustrate how LCED can act as a stabilizing force in the global geopolitical landscape by addressing underlying dependencies that fuel conflicts. However, they also highlight the importance of sustained investment and international cooperation to ensure that such progress remains resilient to geopolitical shocks.
Between December 2015 and March 2016, China’s low-carbon economy was further developed. This was mainly due to China’s active participation in climate change issues in the international arena. At the 2015 Paris Climate Change Conference, China worked with other countries to promote the Paris Agreement (Zhao et al., 2023b). This spirit of cooperation has enhanced trust with major economies and to some extent reduced the issue of geopolitical tensions arising from climate change. On this basis, China continues to participate in and promote international climate cooperation. In 2016, China launched collaboration initiatives in developing countries, including 1,000 climate change assistance slots, 100 coping and adapting programs, and 10 carbon-free demonstration areas. Additionally, China continued to advance international collaboration in sustainable energy and the construction of low-carbon smart cities (Weigel and Demissie, 2021). Furthermore, China and the nations along the BRI have inked several agreements for green energy cooperation (Cheng and Wang, 2023). For example, China’s green energy projects with Kazakhstan have promoted the development of renewable energy in Kazakhstan (Yesmurzayeva and Mrzabayeva, 2023). This has not only increased the energy autonomy of these countries but also reduced geopolitical tensions arising from energy dependence.
In contrast to the previous two periods, from March 2018 to July 2018, LCD and GPR exhibited completely opposite trends. This means that the growth of China’s green economy was hindered, leading to a rise in geopolitical risk. This was primarily due to the China-U.S. trade war. Following American taxes on Chinese commodities, China responded by imposing duties on American goods. This move led to the blocking of cooperation between the two countries in new energy technologies and clean energy equipment (Pepe et al., 2023). For example, the U.S. tariffs on Chinese photovoltaic (PV) products have made Chinese PV firms less competitive internationally and hindered the development of clean energy globally. In addition, the trade war has disrupted supply chains in both countries (Sullivan, 2022). It has also increased production costs and market uncertainty especially in the production of clean energy equipment and supply chain lines. The investment climate has also deteriorated, with international investors’ confidence in the markets of both countries declining. GPR were exacerbated by growing political tensions between the two countries. Meanwhile, in the first half of 2018, international oil prices experienced significant fluctuations causing a profound impact on China (Khan et al., 2021). The high costs and risks associated with finding alternative sources of oil made difficult for China to reduce its dependence on fossil fuels in the short term. This not only increased the difficulty of transitioning to renewable energy but also slowed the pace of developing a low-carbon economy. Furthermore, the economic pressures and energy supply risks associated with high oil prices have led to increased competition for China in the international energy market, as well as increased geopolitical tensions with other energy-importing countries (Gong et al., 2022).
Figures 6, 7 show the p-values and the direction of GPR’s influence on LCD. From July 2017 to September 2017; June to October 2020; and February 2022 to December 2023, the original hypothesis that GPR does not Granger lead to LCED is rejected at the 10% significance level. Only during June to October 2020 is the effect of GPR on LCED positive while in the other two periods the effect of GPR on LCED is negative.
China’s declining GPR in 2017 provided favorable conditions for the LCED. Reduced GPR usually mean more stable international relations. This facilitates the country’s focus on promoting internal economic transformation and sustainable development policies. A stable geopolitical environment bolstered the confidence of domestic and foreign investors in the Chinese market, leading to a large inflow of capital into the renewable energy sector (Guo and Shi, 2024). Between July and September 2017, several large-scale wind power and photovoltaic (PV) projects received financial support and accelerated construction (Sun, 2020). Additionally, the Chinese government expanded its backing for low-carbon technologies and renewable energy, such as wind energy, solar energy, and electric vehicles (Guilhot, 2022). The Chinese government further clarified subsidy standards and application processes to ensure the availability of funds and the smooth advancement of projects (Wu et al., 2022). For example, the National Energy Administration (NEA) issued the “2017 Photovoltaic Power Generation Construction Implementation Plan,” which provides clear subsidy support for new PV power generation projects (Li et al., 2020b). Local governments have also introduced purchase subsidy policies and charging infrastructure construction plans for electric vehicles, which have driven the rapid growth of the new energy vehicle market.
In complete contrast to the previous cycle, the rise in GPR from June to October 2020 has instead led to further LCED growth. This means that despite the rise in geopolitical risk due to global uncertainty due to the intensifying trade war between the US and China, and the global COVID-19 outbreak, it also promoted the development of China’s low-carbon economy to some extent. The uncertain international situation spurred China to accelerate the localization and diversification of its supply chains, particularly in low-carbon technologies and materials (Panwar et al., 2022). This strategic pivot aimed to reduce reliance on external instability while enhancing domestic capacities. First, China prioritized the development and utilization of its domestic rare earth resources, which are critical for renewable energy technologies such as wind turbines and electric vehicles. By introducing supportive policies for rare earth mining and processing enterprises, China secured key material supplies essential for its energy transition (Li et al., 2023b). Second, the localization of the battery materials industry chain became a focus. Substantial investments in lithium and cobalt production facilitated domestic production of key battery components, enhancing the autonomy and resilience of China’s new energy vehicle supply chain (Melin et al., 2021). Moreover, the Chinese government’s “dual circulation” development strategy, introduced during this period, emphasized mutual reinforcement between domestic and international markets (Tan et al., 2023). This strategy prioritized internal economic development, directing more resources toward low-carbon technologies and renewable energy, thereby accelerating the growth of related industries. Additionally, China’s international commitments, such as President Xi Jinping’s September 2020 pledge at the United Nations General Assembly to achieve carbon neutrality by 2060, provided further impetus. This commitment not only demonstrated China’s determination to combat climate change but also catalyzed domestic policy innovation and market demand for low-carbon infrastructure (Han et al., 2021; Tong et al., 2023). These developments underscore how heightened GPR can act as a catalyst for low-carbon investments, as countries seek to strengthen domestic resilience and reduce dependence on volatile global supply chains.
From 2022 to 2023, GPR has had a negative impact on LCED. We analyze it in three time periods. From February 2022 to April 2022, GPR sharply increased from 139 to 319, while LCD declines from 10,921 to 9,152. It stems largely from the expansion of the Russia-Ukraine conflict in February 2022. The conflict was not an only military concern in Europe but also had global effects on the political and economic grounds. The global energy market went into chaos, pushing oil and gas prices to the extreme legible limit (Balsalobre-Lorente, 2023). Being a big importer of global energy, China is confronted with the challenge of sporadic energy supply and prices, which in the short term, compels it to turn back more to conventional fossil fuels in order to guarantee energy security (Liu, 2024). The challenges and uncertainties for China to promote LCED were thus exacerbated. From April to July, international focus on the Russia-Ukraine conflict waned (Chen et al., 2022b). Oil and gas prices started to slip, and the energy market slowly stabilized. This to some extent reduced the uncertainty of energy supply in China and also re-configured the external environment for a low-carbon economy. In this context, the NEA released a series of policies to facilitate low-carbon economic development, including the “14th Five-Year Plan for a Modern Energy System,” which further supports investment and construction of wind and photovoltaic power plants (Yang et al., 2023). However, from July 2022 to December 2023, the GPR rose again, and the LCED declined. There are three reasons behind this phenomenon. First, in August 2022, U.S. Speaker of the House visited Taiwan. This act was regarded by China as a serious interference in China’s internal affairs, which led to a further deterioration of the U.S.-China relations (Al Obaidy, 2023). Moreover, China held extensive military drills across the Taiwan Strait, intensifying geopolitical tensions. Second, between 2022 and 2023, China and its neighbors’ territorial disputes in the South China Sea grew more intense. Countries like The Philippines sought international arbitration. Additionally, the U.S. and its allies conducted multiple “freedom of navigation” operations, sending warships and aircraft through disputed waters in the South China Sea, further escalating tensions (Murphy and Turek, 2024). Deteriorating diplomatic relations have hindered international cooperation on low-carbon technologies and environmental policies. As a result, multinational corporations and international organizations have delayed or cancelled investments in low-carbon projects in China. Moreover, tensions in the South China Sea have also affected the stability of global supply chains, increasing production costs and project implementation difficulties in low-carbon industries (Qin et al., 2023b). Finally, the U.S. and its allies imposed multiple technological blockades on China, particularly in high-tech products, advanced manufacturing, and new energy technologies (Piao, 2023). These sanctions include export bans on semiconductors and high-end chips, restrictions on communications equipment, and export restrictions on key manufacturing equipment, affecting China’s development of 5G networks and smart grids. For new energy technologies, the U.S. has restricted exports of solar energy, electric vehicle batteries, and wind power technologies, and put pressure on key raw material supply chains, increasing production costs (Canuto, 2023). These sanctions have significantly hindered China’s progress in low-carbon technology R&D, industry chain stabilization and international cooperation. Consequently, the development of the low-carbon economy experienced a downward trend during these 2 years.
6 CONCLUSION AND RECOMMENDATIONS
In this paper, we investigated the relationship between Low-Carbon Economic Development (LCED) and Geopolitical Risk (GPR) in China, emphasizing the dynamic interplay between these two factors. We first tested the relationship between the two using the full sample Granger causality test, followed by parameter stability tests that highlighted the continuously evolving nature of this relationship. To capture these dynamic effects more accurately, we applied a sub-sample rolling window causality estimation. The results revealed that LCED negatively impacts GPR, suggesting that the development of a low-carbon economy can reduce geopolitical risks. Conversely, GPR influences LCED in both positive and negative ways: while instability in the geopolitical environment can hinder LCED progress, rising geopolitical risks can also spur nations to reduce their dependency on external instability by accelerating the transition to a low-carbon economy.
This study not only sheds light on the domestic context of China’s low-carbon transition but also offers valuable insights for broader global transitions. The bidirectional relationship between LCED and GPR underscores the significance of reducing geopolitical dependencies to build resilient and sustainable economic systems. In the context of the global transition to circular economies and decarbonization, these findings carry substantial policy implications. Specifically, reducing reliance on finite and geopolitically sensitive resources such as rare earth elements and lithium is crucial. By promoting resource efficiency through recycling, reuse, and sustainable management, countries can mitigate tensions arising from the global competition for these materials. This aligns with the principles of a circular economy and offers a path toward greater global cooperation. For developing nations, China’s strategies—such as its investments in renewable energy, the localization of supply chains, and energy diversification—serve as important models for decarbonization pathways. By prioritizing renewable energy and building local industries for low-carbon technologies, nations can reduce their vulnerability to external shocks and improve their energy security. For example, China’s “dual circulation” strategy and Belt and Road Initiative (BRI) showcase how a combination of international cooperation and domestic policy alignment can drive low-carbon transitions while promoting regional stability. China’s commitment to carbon neutrality by 2060 further provides a compelling example for other developing nations, demonstrating how clear, long-term commitments can attract investment, incentivize technological innovation, and contribute to global climate goals. In conclusion, the findings from this study emphasize the broader geopolitical and economic implications of low-carbon transitions. By reducing geopolitical dependencies, fostering international cooperation, and aligning energy policies with sustainability goals, countries can pave the way for a more resilient, secure, and environmentally stable global economy. This research not only contributes to the understanding of LCED and GPR in the context of China but also offers valuable lessons for the ongoing global transition to sustainable development, offering pathways for mitigating geopolitical tensions while advancing climate goals.
The above-mentioned findings suggest the following policy recommendations. Firstly, governments should focus on diversifying the supply of energy and lowering reliance on a single energy source. To that end, they can increase investment in and development of renewable energy, especially renewable energy sources such as solar, wind and hydropower. In addition, countries should strengthen international cooperation on low-carbon technology and environmental policies through multilateral platforms and bilateral cooperation mechanisms. This will not only show China’s optimistic approach to combating climate change but also garner support and understanding from the international community to mitigate geopolitical conflicts. Secondly, at the corporate level, companies should implement a low-carbon supply chain management system and reduce their carbon footprint by selecting low-carbon suppliers and optimizing the supply chain structure. At the same time, ensuring the diversity and resilience of the supply chain can also effectively mitigate the potential threats due to the escalation of GPR. Finally, social organizations should encourage the public to take an active role in carbon-free initiatives, such as energy conservation and green travel. Governments can also support the implementation of low-carbon public behaviors through policy incentives, such as tax incentives and subsidies. Promoting the development of low-carbon economies within regions through community participation and local government support can enhance local resilience and mitigate the negative impacts of escalating GPR.
This study reveals the complex relationship between China’s Low-Carbon Economic Development (LCED) and Geopolitical Risk (GPR), but several limitations warrant further exploration. First, while the study utilizes existing LCED and GPR indices, these may not fully capture the impact of non-market factors, such as policy uncertainty or social dynamics, on their interaction. Future research could expand this framework by incorporating a broader set of indicators, including regional low-carbon project data, socio-economic variables, and other geopolitical or environmental factors, to uncover more nuanced and dynamic relationships at different scales and levels. Additionally, environmental variables such as climate-related risks (e.g., natural disasters or extreme weather events) could offer further insights into how environmental changes influence both LCED and GPR. Second, while the study is grounded in China’s experience, the generalizability of the findings to other countries or regions may be limited due to contextual differences in geopolitical and economic conditions. Future studies could explore the applicability of China’s low-carbon transition model to other regions, particularly emerging economies or those with varying levels of development. This research could provide tailored policy recommendations that consider local challenges, resource endowments, and geopolitical contexts, thereby fostering more context-specific strategies for global decarbonization efforts. Third, as the world transitions to low-carbon and circular economies, understanding the interplay between LCED and GPR is crucial for crafting more inclusive and resilient energy policies. This understanding not only helps reduce resource dependence and mitigate supply chain vulnerabilities but also promotes global low-carbon economic development through strengthened international cooperation, technology sharing, and policy alignment. In particular, enhancing cooperation on technological innovation, energy diversification, and cross-border green investments can contribute to achieving sustainable geopolitical stability, providing pathways for countries to jointly address both environmental and geopolitical challenges. Furthermore, integrating additional variables, such as regional trade dynamics, security risks related to energy supply chains, or the role of multinational corporations in the low-carbon transition, could help further illuminate the broader economic and geopolitical impacts of LCED. As future research continues to develop in this field, it will be crucial to incorporate these multidimensional factors to gain a deeper understanding of the forces shaping the global low-carbon economy.
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Introduction: As the world’s largest carbon emitter, China’s decarbonization efforts are critical to global climate governance. Existing studies have mainly focused on carbon emissions at the national level in China, with less attention paid to the provincial level, especially in analyzing less developed regions in northwest China (e.g., Qinghai Province). This study explores specific carbon reduction pathways for less developed provinces, represented by Qinghai Province, by analyzing in depth the potential carbon emission risks in the province.Methods: Using data from Qinghai Province’s 14th Five-Year Plan and Vision 2035 documents, we developed three carbon reduction scenarios (baseline, moderate, and stringent). We used the extended STIRPAT (Stochastic Impacts of Population, Affluence, and Technology Regression) model and ridge regression to analyze the impacts of five key drivers: population size, primary electricity utilization, GDP per capita, primary industry output, and agricultural fertilizer use. Scenario projections are complemented by advanced visualization techniques to improve policy relevance.Results: Our analysis reveals three important findings: (1) an environmental Kuznets curve pattern emerges between GDP per capita and carbon emissions; (2) population growth is recognized as a major driver of carbon emissions, with each 1% increase in population leading to a 3.184% rise in carbon emissions; and (3) the strategic development of primary electricity shows a huge potential for emission reduction. With stringent environmental protection measures, Qinghai can cap its carbon emissions by 2030, in line with national climate goals.Discussion: These findings challenge conventional assumptions about underdeveloped regions’ climate roles, demonstrating that targeted provincial strategies can significantly contribute to national decarbonization goals. The inverted U-curve relationship suggests economic development and emission reduction can be synergistic post-threshold GDP levels. We recommend prioritized investments in renewable energy infrastructure and population-optimized urbanization policies. This provincial-level modeling approach provides a replicable framework for other developing regions balancing economic growth with climate commitments.Keywords: data analysis, relationship analytics, decarbonisation pathways, Environmental Kuznets Curve hypothesis, CO2 emission, sustainability, visual analysis
1 INTRODUCTION
The global acceleration of industrialisation and urbanisation has intensified carbon emissions, positioning them as a pivotal challenge in addressing climate change. The 2015 Paris Agreement underscored this urgency by setting a long-term temperature control goal, urging nations to strive to limit global warming to 1.5°C. Achieving this target necessitates unprecedented global efforts, including rapid decarbonisation and enhanced policy measures (Rogelj et al., 2018). Despite such initiatives, the global greenhouse effect remains unmitigated, highlighting the need for targeted interventions. As the largest developing nation and the world’s leading carbon emitter, China’s efforts in carbon reduction hold critical global significance. Comprehensive datasets and analyses of China’s carbon emissions from 1997 to 2015 have spotlighted its pivotal role in global mitigation strategies (Shan et al., 2018).
China’s ambitious “dual-carbon” targets—peaking emissions by 2030 and achieving carbon neutrality by 2060—reflect its commitment to sustainable development and global climate governance. However, existing research has predominantly focused on national-level analyses or economically advanced provinces, often neglecting the carbon dynamics of less developed regions (Yang et al., 2022; Wang et al., 2021; Ma et al., 2021; Zhang et al., 2022). Studies investigating regional disparities reveal that less developed provinces, such as those in northwestern China, possess significant yet underexplored carbon potential (Zha et al., 2010; Liu et al., 2011; Zhu et al., 2012; Fan et al., 2013; Li et al., 2024; Wang et al., 2016; Chandler et al., 2002). For instance, while provinces like Fujian and Guangdong have been examined for their carbon drivers, Qinghai Province remains underrepresented in these analyses despite its unique socio-economic and environmental profile.
Qinghai Province, located in northwestern China, exemplifies the intricate interplay between economic growth, resource utilisation, and environmental sustainability. With a GDP ranking 30th nationwide and carbon emissions accounting for only 0.5% of the national total, Qinghai represents a microcosm for studying the nuanced drivers of carbon emissions in less developed regions (Economic Performance, 2023; Chen et al., 2024; Zhao X. et al., 2022; Guan et al., 2021; Tian et al., 2024). Its socio-economic structure, marked by a rising secondary industry share and ambitious clean energy initiatives, presents a compelling case for examining the balance between industrialisation and environmental stewardship (Chen et al., 2020; Liu et al., 2021; National Development and Reform Commission of the People’s Republic of China, 2022; O rganic et al., 2024; Xiong et al., 2016; Si et al., 2024; World Development, 2021; Carbon-Neutral Future, 2022; National Bureau of Statistics, 2023).
However, existing studies often overlook critical dimensions in Qinghai’s carbon emission dynamics. While methodologies such as the Tapio decoupling model and logarithmic mean division index (LMDI) decomposition have revealed correlations between economic development and carbon emissions (Zhao X. et al., 2022), their applicability to less developed provinces require further refinement. Additionally, despite Qinghai’s strides in green agricultural practices, studies have not thoroughly explored the localised impacts of emission reduction initiatives (Liu et al., 2021; National Development and Reform Commission of the People’s Republic of China; O rganic et al., 2024). Furthermore, Qinghai’s clean energy potential—88.2% of its total power generation is from renewable sources—remains insufficiently analysed in terms of its mitigating effects on carbon emissions (Si et al., 2024; World Development, 2021; Carbon-Neutral Future, 2022; National Bureau of Statistics, 2023; Zhao C. et al., 2022).
Research methodologies employed in previous studies also present limitations. Analyses often lack advanced visualisation techniques to effectively communicate findings, and broad regional studies dilute the specificities of less developed provinces like Qinghai (Fang et al., 2019). The scalable STIRPAT model, an extension of the foundational IPAT framework, provides an opportunity to address these gaps by capturing the intricate causal relationships in environmental dynamics (Rokhmawati et al., 2024; Dietz and Rosa, 1997; Shahbaz et al., 2016). The Environmental Kuznets Curve (EKC) hypothesis further complements this approach, offering insights into the interplay between economic growth and environmental degradation (Hassan et al., 2024; Aminzadeh et al., 2021). However, these theoretical frameworks have rarely been applied in conjunction with robust statistical methods to study Qinghai Province’s unique characteristics.
To address these limitations, this study employs the extended STIRPAT model and EKC hypothesis to examine the drivers of carbon emissions in Qinghai Province. By focusing on key factors such as economic growth, energy development, and agricultural practices, the study aims to elucidate the main contributors to carbon emissions and evaluate the province’s progress toward its carbon peak target. The study also incorporates advanced econometric techniques, including the ADF test and Johansen’s cointegration equation, to ensure data accuracy and mitigate potential methodological biases (Lv and Wang, 2016; Adewale Alola, 2021; Li J. et al., 2023; Wang et al., 2019).
In doing so, this research fills critical gaps in existing literature, providing nuanced insights into the carbon dynamics of less developed regions. The findings are expected to inform targeted policy measures, facilitating Qinghai’s alignment with China’s broader “dual carbon” goals and contributing to global climate change mitigation efforts.
This focused analysis lays the groundwork for the subsequent section, which formulates specific hypotheses to investigate Qinghai Province’s carbon emission drivers.
2 RESEARCH HYPOTHESIS
Against the backdrop of China’s dual-carbon target and the unique socio-economic and environmental characteristics of Qinghai Province, this study aims to explore the drivers of carbon emissions in less developed regions. The extended STIRPAT model and the Environmental Kuznets Curve (EKC) hypothesis are the theoretical foundations of this study. The STIRPAT model, an extension of the IPAT framework, provides a powerful analytical tool to study the impacts of human activities on environmental pressures, especially carbon emissions (York et al., 2003). Meanwhile, the EKC hypothesis offers insights into the relationship between economic growth and environmental degradation, proposing an inverted U-shaped curve that suggests environmental quality improves after a certain level of economic development (Dinda, 2004).
Based on these theoretical frameworks, the following hypotheses are proposed:
Hypothesis 1. Economic growth is the most important driver of carbon emissions in Qinghai Province.
As industrialisation accelerates in Qinghai Province, the demand for energy-intensive activities is expected to increase, leading to a rise in carbon emissions. This hypothesis aligns with previous studies demonstrating that economic growth is a primary driver of carbon emissions, particularly in developing regions (Wang and Zhang, 2021).
Hypothesis 2. Strong development of primary electricity will effectively mitigate carbon emissions.
This assumption is based on the premise that clean energy sources such as solar, wind, and hydropower can significantly reduce carbon emissions. The abundance of clean energy resources in Qinghai Province and its strategic position in China’s clean energy policy provide a unique opportunity to test this hypothesis. The extended STIRPAT model incorporates energy-related variables to provide a nuanced analysis of the impact of primary electricity development on carbon emissions. A study validating the dual role of renewable energy in reducing carbon emissions and promoting economic growth supports this premise, providing essential guidance for energy policy formulation (Saidi and Omri, 2020).
Hypothesis 3. Qinghai Province’s per capita GDP and carbon emissions support the EKC hypothesis.
This hypothesis is based on the EKC framework, which suggests that environmental degradation initially worsens with economic growth but eventually improves at higher income levels. By examining the relationship between GDPs per capita and carbon emissions in Qinghai Province, this study seeks to verify the applicability of the EKC hypothesis in less developed regions. A study examining the relationship between economic complexity and carbon emissions in EU countries, based on the EKC framework, supports the hypothesis’s applicability in different contexts (Neagu, 2019).
Hypothesis 4. Under at least one scenario, Qinghai Province will reach its carbon peak in 2030.
This scenario evaluates the feasibility of Qinghai Province achieving China’s dual-carbon target. By modelling three economic development scenarios—high economic growth (FLW), medium economic growth (FBU), and green development (FHG)—this study assesses the effectiveness of policy interventions in reducing carbon emissions. Previous studies employing scenario analysis have demonstrated that targeted policy interventions can enable Chinese provinces to achieve their carbon peak targets (Sun et al., 2022).
Based on these hypotheses, this study aims to reveal the impact of various factors on regional carbon emissions. The findings are expected to provide an empirical basis for formulating and optimising carbon emission reduction policies in Northwest China, as well as offer a reference for nationwide carbon emission management strategies.
3 MATERIALS AND METHODS
Our study covers data collection, cleaning, and analysis. The collection included three official data sources: the Qinghai Provincial Bureau of Statistics, the Qinghai Provincial Statistical Yearbook, and the China Statistical Yearbook and the data cleaning was carried out using the screening method (the observation time series of the model is between 2001 and 2021). The purpose of this study is to predict the carbon emissions in Qinghai Province by building the extended STIRPAT model, which contains several variables, including the amount of agricultural fertiliser used in Qinghai Province. Firstly, all the variables in the model were tested for smoothness using the ADF (Augmented Dickey-Fuller) method, and the Johansen cointegration test was used to verify the cointegration of the variables that did not pass the smoothness test, and the cointegration of the variables that did not pass the smoothness test. Tests for cointegration of the variables, grey scale correlation, and VIF analysis of the smoothed data revealed strong correlations and multicollinearities between some of the variables involved in this model. To avoid covariance and overfitting, this study used ridge regression to construct the equations to predict the carbon emissions in Qinghai Province from 2022 to 2035. Three scenarios, FLW, FAU and FHG, are simulated in this study, and the specific time of Qinghai Province’s arrival at the carbon peak and the carbon emissions under the three scenarios are compared to verify whether they can meet the target of the Qinghai government to reach the carbon peak before 2030, and to put forward reasonable suggestions.
3.1 Data sources
Data was sourced from three reputable official datasets that are pertinent to the research objectives and inquiries. The selection of publicly accessible datasets was strategic, as they offer greater transparency and ease of access, facilitating the research community’s validation and replication of results. Such datasets, issued by governmental bodies, international organisations, or authoritative entities, are endowed with heightened credibility and authority. Furthermore, these sources are typically subject to rigorous quality control and oversight, which minimises the potential for data inaccuracies or manipulation. The comprehensive nature of these datasets, with minimal gaps, also helps to mitigate the effects of data bias.
We collected primary electricity production and total primary energy production from the Qinghai Provincial Bureau of Statistics (Bureau of Statistics, 2024), population size, GDP per capita, coal production, industrial output, primary industry output, total energy consumption, fertiliser use, and related data from the Qinghai Provincial Statistical Yearbook (Statistical Yearbook, 2023), and data related to the level of urbanisation from the China Statistical Yearbook (China Statistical, 2023).
The study implemented an outlier screening technique to bolster the data’s reliability. This involved the initial identification of outliers, followed by their subsequent removal to mitigate their effects on data analysis and modelling (Soule et al., 2005).
The fundamental concept of the outlier screening method is to pinpoint and eliminate data points that deviate significantly from the norm within a dataset, thereby minimising their influence on subsequent analysis and modelling. This approach is predicated on establishing a set of thresholds corresponding to each variable’s intrinsic meaning and context. Data points that fall outside these predefined thresholds are classified as outliers and are earmarked for additional processing. For instance, in the case of Qinghai Province’s fertiliser usage data for the year 2000, a null value was encountered, leading to its exclusion from the dataset.
3.2 Socioeconomic profile of Qinghai
Table 1 shows the data sources, and Figure 1 shows the administrative divisions and geographic location of Qinghai Province, which is mapped by ArcMap 10.8.
TABLE 1 | Significance and source of the six independent variable representations.
[image: Table showing symbols, drivers, calculation methods, and data sources for Qinghai Province. Symbols include C for carbon dioxide emissions, P for population, A for economic development level, E for electricity production level, R for primary sector, and V for agricultural technology level. Calculation methods and data sources are specified for each driver.][image: Map of Qinghai, China, showing various administrative subdivisions in different colors. Each region, such as Golug, Haibei, and Haidong, is labeled. An inset map highlights Qinghai's location within China. A scale bar and compass are included.]FIGURE 1 | The rows and districts and geographic location of Qinghai Province.
In this study, PyCharm 2024.2.1 was used to plot the trend of total population and urbanisation rate in Qinghai Province from 2010 to 2022, as shown in Figure 2. The total population of Qinghai Province grew from 5,634,700 in 2010 to 5,950,000 in 2022, with an average annual growth rate of about 0.44 per cent. Although the growth rate is relatively flat, it shows an overall trend of steady growth. It is worth noting that the population growth rate in Qinghai Province has accelerated in recent years, which may be related to factors such as the province’s economic development, policy guidance and population migration. The urbanisation rate in Qinghai Province rose from 44.72 per cent in 2010 to 61.51 per cent in 2022, with an average annual growth rate of approximately 1.33 percentage points.
[image: Bar and line chart showing total population and urbanization rate from 2010 to 2022. The total population remains steady around 800,000 persons, while the urbanization rate increases from about 50% to 60%.]FIGURE 2 | Trends in resident population and urbanisation rate in qinghai province, 2010-2022.
In this study, PyCharm 2024.2.1 was used to map the trend of disposable income of all residents in various parts of Qinghai Province from 2010 to 2022, as shown in Figure 3. Disposable income per capita in all regions of Qinghai Province has grown significantly. Although the growth rate fluctuates between years and regions, the overall trend of positive growth has been maintained. In the initial period (e.g., 2010–2015), the growth rate may be relatively fast, reflecting a phase of rapid economic development. Over time, the growth rate may gradually stabilise or slow down slightly, which may be related to a number of factors such as economic restructuring, policy changes and the external environment. There are differences in growth rates between different regions. Generally speaking, regions with relatively developed economies and optimised industrial structures (such as Xining City, with an annual growth rate of 12.3 per cent) are likely to grow faster. In contrast, regions with relatively backward economies and a single industrial structure (such as some of the Tibetan Autonomous Prefectures, with an annual growth rate of 10.4 per cent) are likely to grow at a slower rate.
[image: Bar chart showing disposable income per capita from 2010 to 2022 across various regions, including Golog Tibetan Autonomous Prefecture and Xining City. Income generally increases over time, with notable differences between regions.]FIGURE 3 | Trends in disposable income of all residents in Qinghai Province by region, 2010-2022.
Utilising Tableau 2023, longitudinal trend plots were created for six key variables. These plots aimed to provide a holistic overview of the variables’ progression and to discern which variables might hold greater significance than others over time.
For the construction of these trend graphs, data from 2001 to 2021 was initially gathered and processed. Subsequent steps included data aggregation, filtering, and grouping to showcase the interrelationships and trends among the variables more effectively. In the graph design phase, considerations were given to elements such as colour schemes, labelling, and line styles to ensure a clear and precise representation of the variables’ changes.
The trend charts display the trajectories of the six variables from 2001 to 2021, enabling viewers to observe their development and recognise significant patterns.
3.3 Analysing the carbon-emission drivers
To ascertain the reliability of the input data, the study employs the ADF (Augmented Dickey-Fuller) test to assess the stability of the independent variables. This test extends the autoregressive component of the series using a regression model and evaluates the regression’s underlying assumptions. The ADF test ascertains the presence of a unit root in the series by examining if the autoregressive coefficients significantly deviate from one. A unit root’s presence signifies a non-stationary series, whereas its absence indicates stationarity (Liang et al., 2021).
According to Table 2, when the significance is less than 0.05, it can be judged as a smooth series by the ADF test, and from this principle, we find that the three independent variables entered the model are non-smooth series.
TABLE 2 | The results of the ADF (Augmented Dickey-Fuller) test for the model variables.
[image: Table showing variables, ADF statistics, significance levels, and stability. Variables: ln P, ln A, ln R, ln V, ln E. ADF stats: -5.483, -2.831, -4.135, -1.997, -1.205. Significance: 0.000, 0.054, 0.001, 0.288, 0.672. Stability: stable, unstable, stable, unstable, unstable. Asterisks indicate 1% significance level.]The non-stationary series will cause pseudo-regression. To avoid this problem, three non-stationary series will be used for the cointegration test. Engel-Granger (E.G.,) cointegration test method is only applicable to judge the cointegration between two independent variables. Johansen cointegration test applies to three or more independent variables, and the method is more explanatory of the independent variables (Grabowski and Welfe, 2016). In this study, we used the Johansen cointegration test. The Johansen cointegration test’s interpretation dictates that the null hypothesis is to be rejected if the trace statistic surpasses the 5% critical value. As depicted in Table 3, the hypothesis of no more than one cointegration relationship among the variables is rejected, thereby affirming the presence of a cointegration relationship among them.
TABLE 3 | The results of the Johansen cointegration test.
[image: Table displaying cointegration assumptions with corresponding trace statistics and five percent thresholds. For no cointegration relationship, the trace statistic is 70.135 with a threshold of 29.796. For up to one relationship, the trace statistic is 17.928 with a threshold of 15.494. For up to two covariates, the trace statistic is 4.017 with a threshold of 3.841.]The data series entered into the model passed the ADF test with the Johansen cointegration test, and these methods ensure the smoothness of the data. In this study, to further ensure the reliability of the model, we developed a grey correlation analysis model, which is represented as Equation 1:
[image: Mathematical equation showing \( K_i(k) \) defined as the ratio of two expressions. The numerator is the minimum over \( i \) and \( k \) of the absolute difference \(|X_0(k) - X_i(k)|\) plus \(\rho\) maximum over \( l \) and \( k \) of \(|X_0(k) - X_l(k)|\). The denominator is the minimum over \( i \) and \( k \) of \(|X_0(k) - X_i(k)|\) plus \(\rho\) maximum over \( l \) and \( k \) of \(|X_0(k) - X_l(k)|\). The equation is labeled as (1).]
The Grey Relational Analysis (GRA) model is a multivariate analysis method used to explore the correlation between different variables. The core idea of the model is to identify the degree of similarity, association, and influence between variables by calculating the degree of association between them (Gerus-Gościewska and Gościewski, 2022).
where the reference series [image: Mathematical equation describing a sequence \(X_0\) defined as \(\{X_0(k) \mid k = 1, 2, \ldots, n\} = (X_0(1), X_0(2), \ldots, X_0(n))\), where \(n\) denotes the total number of elements.], [image: It seems like you're referring to a mathematical notation or function. If you have an image you want described, please upload it, and I'll help create the alt text for you.] denotes the value corresponding to year k; Comparison series [image: A mathematical expression describes a sequence of sets: \( X_i(k) \) for \( k = 1, 2, \ldots, n \). Each set equals \( (X_i(1), X_i(2), \ldots, X_i(n)) \), where \( i \) ranges from 1 to \( m \).], [image: It seems like there was an error in your request. Please upload the image or provide a URL so I can help generate the alternate text for it.] denotes the corresponding value in year k of the ith comparison series. ρ ∈ 0,1 is the resolution coefficient. The larger ρ is, the larger the resolution is; the smaller ρ is, the smaller the resolution is. We take the resolution coefficient of 0.5 here, and the carbon emission is taken as the reference series, and other data series are taken as the Comparison series,k the smallest is 2001, the largest is 2021. Its analysis results range from −1 to 1, reflecting the strength and direction of the correlation. Correlation values approaching −1 signify a robust negative correlation, whereas those near 1 denote a robust positive correlation. A correlation close to 0 suggests a negligible correlation (Maidin et al., 2022). This approach is resilient across diverse data distributions and is not significantly affected by outliers.
After establishing the grey correlation analysis model, we summarised the grey correlation coefficient matrix, which is used to measure the degree of similarity between two sequences. Its main purpose is to identify the key factors affecting the target variable by calculating the correlation between sequences of different variables. This complements our analytical approach and provides additional data clustering and correlation analysis perspectives. We found that there are some coefficients higher than 0.9 in the grey correlation coefficient matrix, which suggests that there is a strong correlation between these data series, and there may be a problem of multicollinearity (Mausam et al., 2023).
To mitigate the impact of multicollinearity on the regression model, the variance inflation factor (VIF) for the six variables was evaluated. Detecting multicollinearity involves examining if the VIF surpasses 10, signifying its presence. A VIF exceeding 100 points to severe multicollinearity, may render the ordinary least squares (OLS) regression method inapplicable due to the potential for unstable or inexplicable coefficient estimates. Ridge regression tackles multicollinearity by incorporating a regularisation term, thereby enhancing model stability and generalizability. Adjusting the ridge parameter diminishes the influence of multicollinearity on the coefficient estimates, yielding more dependable outcomes (Li et al., 2024).
Research by (Firinguetti et al., 2017) indicated that ridge regression offers superior explanatory power compared to PLS regression, particularly with a limited number of independent variables (Firinguetti et al., 2017). Consequently, ridge regression was selected as the analytical technique to ensure the precision and reliability of the model.
3.4 Constructing the expanded STIRPAT model
Having confirmed the dataset’s suitability for linear regression analysis, the study applied the STIRPAT model. This model can be mathematically represented as Equation 2:
[image: Mathematical equation showing the linear relationship for perceived intensity \( I = aP^bA^cT^d\epsilon \), where \( a \), \( b \), \( c \), and \( d \) are constants, and \( \epsilon \) denotes error.]
Where [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] stands for environmental impact, [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is generally expressed in terms of population size, GDP per capita, and energy consumption per unit of GDP, and [image: Please upload the image so I can generate the alternate text for it.] is the model constant term, [image: Please upload the image you would like me to generate alternate text for.] is the error term [image: It seems like there is a misunderstanding or a formatting issue. If you have an image, please upload it or provide a URL to the image. If you need help with something specific, please let me know!] are the ecological elasticities.
Within the model framework, the variable I denotes the environmental impact, with P, A, and T representing population size, GDP per capita, and energy intensity, respectively. The constant term of the model is denoted by [image: Please upload the image or provide a URL so I can generate the alternate text for you.], while [image: Please upload the image you would like me to generate alternate text for.] signifies the error term. The coefficients [image: Please upload the image for which you would like the alt text, or provide a URL if available.], [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.], and [image: Please upload the image or provide a URL, and I can help generate the alt text for it.] correspond to the ecological elasticities. Natural logarithms are applied to both sides of the equation and converted into a form suitable for multiple linear regression analysis, which is represented as Equation 3:
[image: The equation \( \ln I = \ln a + b \ln P + c \ln A + d \ln T + \ln \varepsilon \) is shown, labeled as equation three.]
Where [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL if it's hosted online. Additionally, you can add a caption for context if needed.], [image: Please upload the image you would like me to generate alt text for.], [image: Please upload an image or provide a URL for me to generate the alternate text.], [image: It seems there was an issue with image upload. Please try uploading the image again, and I will be happy to help create the alternate text for it.], [image: It seems there was an error when you tried to upload the image. Please try uploading it again, and I will help you generate the alternate text.], [image: It looks like there was an attempt to upload an image, but it did not come through. Please try uploading the image again, and I will help with the alt text.], [image: It seems there is no image provided. Please upload the image or provide a URL for it, and I will generate the alt text for you.], [image: Please upload the image, and I will help you generate the alternate text for it.], and [image: Please upload the image you want to generate alt text for.] retain their definitions as outlined in Equation (2).
This extended STIRPAT model (Lohwasser et al., 2020) was then used to examine the relationship between annual CO2 emissions and various independent variables (including population, GDP per capita, primary industry output, fertiliser use, and primary electricity production as a percentage of total energy production) in Qinghai Province employing linear regression, which is represented as Equation 4:
[image: Mathematical equation showing a logged function: ln C is equal to beta sub zero plus beta sub one ln P plus beta sub two ln A plus beta sub three ln R plus beta sub four ln V plus beta sub five ln E.]
Where [image: It seems there might be an issue with displaying the image. Please upload the image again or provide a URL. Additionally, you can add a caption for more context if needed.] stands for CO2 emissions, [image: Please upload the image you would like me to describe, and I'll help you with the alternate text.] stands for population size, [image: Please upload the image or provide a URL for it so I can generate the alternate text for you.] stands for affluence (GDP per capita), [image: Please upload the image or provide a URL so I can generate the alternate text for you.] stands for primary sector output, [image: Please upload the image or provide a URL so I can generate the alternate text for you.] stands for fertiliser use, and [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] stands for primary electricity production as a percentage of total energy production.
Ridge trace plots were generated using SPSS 24.0 to ascertain the minimum value of K, at which point the standardised regression coefficients of the variables become stable. These plots offer a visual aid for selecting suitable ridge parameters and enhancing model performance. Origin was utilised to graph the comparison between the model’s fitted and actual carbon emissions values, with the visualisation technique facilitating a more precise assessment of the model’s accuracy.
Drawing from the 14th Five-Year Plan data for Qinghai Province, three carbon emission modelling scenarios were devised: the high economic growth scenario (FLW), the baseline scenario (FBU), and the green scenario (FHG). The green scenario incorporates stricter environmental protections, such as reduced fertiliser usage and controlled primary industry output.
By integrating data from these three carbon emission simulation scenarios into the ridge regression model, carbon emissions for Qinghai Province can be forecasted. PyCharm2023 software was employed to visualise the predicted data, allowing for an intuitive examination of trends, changes, and patterns within the prediction outcomes. This visualisation provides a more comprehensive understanding of the model’s predictive capabilities for carbon emissions in Qinghai Province.
4 RESULTS
Using the various data visualisation techniques outlined, we have plotted graphs to help illustrate our findings.
Figure 4 shows the trend of the six variables included in this model from 2001 to 2021. According to Figure 4, we find that C, A, R, P, and E show an overall increasing trend, and V shows an overall decreasing trend between 2001 and 2021.
[image: Six line graphs labeled A to F, each showing trends over time. Graph A shows canola yield per hectare with fluctuations. Graph B depicts a steady increase in frio grass yield per hectare. Graph C shows a rise in pin radiata wood production. Graph D illustrates changing wheat production. Graph E presents a slight upward trend in mungbean yield per hectare. Graph F indicates variability in tree nuts production. Each graph is marked with the year on the x-axis and specific yield or production measurement on the y-axis.]FIGURE 4 | Trends in annual carbon dioxide emissions and their influencing factors in Qinghai Province, 2001-2021. (A) Carbon dioxide emissions. (B) Economic development level. (C) Primary sector output. (D) Fertiliser use. (E) Resident population. (F) Level of primary electricity.
Table 2 presents the results of the ADF test, which shows that A, V and E are not smooth series (p > 0.05) while all other variables are smooth (p < 0.05).
Table 3 displays the outcomes of the Johansen cointegration test, which validates the existence of a robust, long-term association among the variables. The test results indicate a stable linear relationship, reinforcing the linear regression analysis findings.
Table 4 shows the matrix of grey correlation coefficients between the six variables in the model.
TABLE 4 | Grey correlation coefficients for six variables.
[image: A correlation matrix table with variables: ln C, ln A, ln P, ln R, ln E, and ln V. The diagonal contains 1s, indicating perfect correlation with themselves. Notable correlations include 0.758 between ln C and ln A, 0.998 between ln A and ln P, and 0.678 between ln C and ln V. Negative correlations are observed with ln E and ln V at -0.155.]According to the grey correlation analysis model in Table 4, we found that the grey correlation coefficients between some of the variables are higher than 0.9, presenting a strong correlation, so we tested the variables entered the model for multiple covariance detection (VIF), and the test results are shown in Table 5.
TABLE 5 | Results of covariance detection between multiple variables.
[image: A table displaying variables with their Variance Inflation Factor (VIF) values. Variables ln A, ln P, and ln R have VIFs greater than one hundred, while ln E is 10.128 and ln V is 3.28.]In multicollinearity detection, when VIF>10 indicates the existence of covariance between variables, and when VIF>100 indicates the existence of severe covariance. According to Table 5, we found that some of the variables have serious multicollinearity. To avoid the effect of multicollinearity on the model’s reliability, we used ridge regression to construct the prediction model. Ridge regression deals with the problem of multicollinearity through the introduction of the regularisation term, and it performs well in terms of both stability and generalisation ability, and it has good explanatory power of the variables (Firinguetti et al., 2017).
Table 6 shows the results of the Shapiro-Wilk test for carbon dioxide emissions in Qinghai Province, and Figure 5 illustrates the standard Q–Q plot derived from the Shapiro–Wilk test, which verifies that the dataset utilised in this study conforms to a normal distribution, with a p-value of 0.122 exceeding the 0.05 threshold. This affirmation permits the execution of linear regression analysis on the data.
TABLE 6 | Results of Shapiro-Wilk test.
[image: Table displaying four columns: "Variable" with "ln C", "Test statistic" with "0.927", "Degrees of freedom" with "21", and "Significance" with "0.122".][image: A normal Q-Q plot with measured values on the x-axis and expected normal values on the y-axis. Red circles represent data points, following closely along the blue reference line, indicating normal distribution.]FIGURE 5 | Standard Q–Q plot of annual CO2 emissions.
Table 7 illustrates the projected contribution of each input variable to the model’s value-added between 2021 and 2030, with adjustments made following Qinghai Province’s 14th Five-Year Plan.
TABLE 7 | The qinghai province CO2 emission control strategies: SLA, BAU, and VEH modelling policies.
[image: Table comparing three scenarios: FLW, FBU, and FHG across five columns labeled A, P, R, E, V. FLW has percentages 8, 0.5, 5, 0.5, -1.8; FBU has 6, 0.5, 4, 1, -2; FHG has 4, 0.5, 3.5, 1.5, -2.2.]Table 8 displays the findings from the ridge regression analysis. The F-value derived from the ridge regression, as shown in Table 8, was determined to be highly significant, with a p-value less than 0.01, signifying the statistical significance of the regression model. The R2 value of 0.952 suggests that the model accounts for the majority of the influential factors effectively, with the fitted data points closely aligning with the regression line. This alignment denotes a robust performance and high reliability of the model. The regression equation is as follows:
[image: Equation for natural logarithm of C: ln C equals negative 25.546 plus 0.183 ln A plus 3.184 ln P plus 0.611 ln V minus 0.403 ln E plus 0.217 ln R. Equation number 5.]
TABLE 8 | The results of the ridge regression analysis.
[image: Statistical table showing regression analysis results. Variables include Constant, ln A, ln P, ln V, ln E, and ln R. Coefficients, standard errors, t-values, and p-values are provided. R-squared is 0.952, adjusted R-squared is 0.936, F-statistic is 59.173 with p equal to 0.000.]Projections of CO2 emissions in Qinghai Province based on the extended STIRPAT model:
[image: Equation for C: C equals EXP of negative 25.546 plus 0.183 times the natural log of A plus 3.184 times the natural log of P plus 0.611 times the natural log of V, minus 0.403 times the natural log of E plus 0.217 times the natural log of R.]
Based on Equations 5, 6, it can be concluded that the independent variables in the model have a significant effect on the annual carbon dioxide emissions in Qinghai Province. Among these factors, the most influential one is the population size, which increases carbon emissions by 3.184 per cent for every 1 per cent increase. The weakest factor is the level of economic development, with carbon emissions rising by 0.183 per cent for every 1 per cent increase.
Figure 6A depicts the correlation between the regression coefficients and the K value, with the Y-axis representing the standardised coefficients of the independent variables and the X-axis representing the K value. The selection criterion for K is based on the smallest value at which the standardised regression coefficients of the independent variables begin to stabilise. Figure 6B shows the relationship between R2 and K value, while a reference line is set around 0.172. When the coefficient is before 0.172, it fluctuates a lot, and when it passes 0.172, the independent variable’s standardised coefficient gradually stabilises.
[image: Two line graphs are presented. Graph (a) plots regression values against the variable K, with multiple colored lines representing different data sets (IA, IB, and others). Graph (b) shows Rsq values decreasing as K increases, with a noticeable negative slope. Both graphs have labeled axes.]FIGURE 6 | The ridge traces of the model variables, the relationship between R2, and the ridge regression coefficient K (A) illustrates the link between the regression estimates of the variables and the ridge regression coefficient K, while (B) details the connection between the model’s R2 value, indicative of its goodness-of-fit, and the ridge regression coefficient K.
Figure 7 Juxtaposes the fitted and actual values of carbon emissions, where the black curve signifies the actual values, the red curve represents the fitted values, and the cyan-filled area denotes the discrepancy between the fitted and actual values. Analysis of Figure 7 reveals that the fitted curve closely mirrors the actual curve, with a minimum error rate of 0.09% and an average error rate below 8.3%. This proximity suggests a high degree of reliability for the fitted curve.
[image: Line graph showing carbon dioxide emissions in millions of tons from 2000 to 2020. The black line represents real values, the red line indicates projected values, and the shaded area shows variance. Emissions peak significantly around 2012, then gradually decline, with slight fluctuations towards 2020.]FIGURE 7 | Comparison of predicted and actual values from ridge regression.
Figures 8A–C show three scenarios of carbon emissions and GDP per capita projections for Qinghai Province from 2022 to 2035, highlighting the temporal fluctuations in emissions and GDP per capita. The FHG scenario predicts an earlier peak in carbon emissions, specifically before 2030, whereas the FBU and FLW scenarios do not project such a turning point within the same timeframe. Figures 8A–C also show the curvilinear relationship between expected GDPs per capita and carbon emissions in Qinghai Province over the same period. It is evident that as per capita wealth increases, environmental pollution peaks and subsequently declines, a pattern reflected in the inverted U-shaped curve. This trend aligns with the Environmental Kuznets Curve (EKC) hypothesis (Chen et al., 2019; Tenaw and Beyene, 2021; Dogan and Inglesi-Lotz, 2020).
[image: Three line graphs labeled (a), (b), and (c) show data for fuel oil consumption and GDP from 1970 to 2000. Graph (a) depicts fuel oil consumption for a 0°C to 1°C temperature rise. Graph (b) shows a 1°C to 2°C increase. Graph (c) illustrates a 2°C to 3°C rise. Each graph shows a blue line for consumption and a green line for GDP growth, indicating how different temperature scenarios impact these metrics over time.]FIGURE 8 | Carbon emissions and GDP per capita in qinghai province under three policy scenarios, 2022-2035. (A) FLW-High. (B) FBU-Mid. (C) FHG-Low.
5 DISCUSSION
This study examines the factors influencing carbon emissions in Qinghai Province using panel data from 2001 to 2021. The extended STIRPAT model revealed that population size is the primary positive driver of carbon emissions, while GDP per capita has the weakest influence. Under the three economic growth scenarios (FLW, FBU, FHG), Qinghai’s carbon emissions are projected to peak between 41.1 and 46.7 million tons by 2030, with only the FHG scenario achieving China’s peak carbon emission target within the specified timeframe.
The goodness-of-fit value (R2 = 0.952) validates the reliability of the model, and the findings align with prior studies demonstrating that renewable energy consumption significantly reduces carbon emissions (Wu et al., 2024). According to this study’s equations, a 1% increase in primary electricity use leads to a 0.403% reduction in carbon emissions, while a 1% increase in fertiliser use results in a 0.611% increase in emissions. Additionally, a 1% increase in population size raises emissions by 3.184%, confirming population growth as a more significant driver than economic development. The Environmental Kuznets Curve (EKC) hypothesis is supported, as the relationship between GDPs per capita and carbon emissions follows an inverted U-shaped trajectory, consistent with findings from other regions (Bibi and Jamil, 2021).
Under the FHG scenario, stricter environmental policies and renewable energy development lead to Qinghai Province achieving its carbon peak by 2030, corroborating earlier research that highlighted the importance of environmental protection policies for carbon reduction (Fang et al., 2019). These findings confirm Hypotheses 2, 3, and 4, while Hypothesis 1 is not supported, as population size exerts a greater influence than economic growth on carbon emissions.
5.1 Renewable energy sources
The results indicate that expanding the use of primary electricity is an effective strategy for reducing carbon emissions, consistent with a 2020 study that highlighted the dual benefits of renewable energy in promoting economic growth and environmental sustainability (Saidi and Omri, 2020). The adoption of renewable energy sources in Qinghai Province aligns with global trends and plays a critical role in achieving carbon reduction goals. A phased approach, beginning with pilot projects in high-potential areas, coupled with financial incentives, can further accelerate the transition to renewable energy.
5.2 Fertiliser uses in agriculture
The study demonstrates that optimising fertiliser use significantly reduces carbon emissions, a finding supported by previous research using the PSM-DID method (Du et al., 2023). Rationalising fertiliser application in Qinghai Province can enhance agricultural sustainability while mitigating environmental impacts. Training programs, extension services, and financial assistance could encourage small-scale farmers to adopt efficient fertilisation techniques.
5.3 Population growth and economic development
Population growth is identified as the most substantial driver of carbon emissions in Qinghai Province, with a 1% increase in population size leading to a 3.184% rise in emissions. This result aligns with studies from populous Asian nations that underscore the influence of population expansion on carbon emissions (Rehman and Rehman, 2022). Sustainable urban planning, including improved public transportation, energy-efficient buildings, and green spaces, can mitigate the environmental impacts of population growth. Economic policies encouraging low-carbon industries and promoting carbon trading schemes will further support emission reduction efforts.
5.4 Long-term carbon reduction policies
The findings confirm that stringent environmental policies and renewable energy expansion are essential for Qinghai Province to achieve its carbon peak by 2030. This aligns with research from BRICS nations, which demonstrated the effectiveness of enhanced tax revenues, renewable energy use, and stricter regulations in reducing emissions (Li et al., 2023).
Strategic recommendations include:
	• Raising public environmental awareness to foster community participation in carbon reduction initiatives.
	• Advancing agricultural technologies to reduce emissions while maintaining productivity.
	• Promoting economic restructuring to support industries with smaller carbon footprints.
	• Enhancing renewable energy development to reduce reliance on fossil fuels.
	• Encouraging low-carbon practices in primary industries.

These strategies provide a roadmap for Qinghai Province to balance economic growth with environmental sustainability, aligning with China’s dual-carbon targets.
While the study provides valuable insights, its scope was confined to panel data analysis without direct collaboration with environmental specialists or practical validation. The extended STIRPAT model, while robust, may not capture all factors influencing carbon emissions, requiring further refinement and validation in future research.
6 CONCLUSION
6.1 Research findings and implications
This study investigates the drivers of carbon emissions in Qinghai Province by analysing economic activities, primary industry output, year-end resident population, primary electricity consumption, and agricultural fertiliser use. To enhance the model’s relevance to local conditions, the extended STIRPAT model integrates renewable energy utilization. Statistical methods such as the ADF test and Johansen cointegration test ensure the robustness and predictive accuracy of the model.
The findings highlight that population size is the most significant driver of carbon emissions, while GDP per capita has the smallest impact. The relationship between economic development and carbon emissions follows an inverted “U”-shaped curve, validating the Environmental Kuznets Curve (EKC) hypothesis and supporting Hypothesis 3. If stricter environmental protection policies are implemented, Qinghai Province could achieve peak emissions by 2030, aligning with Hypothesis 4.
Policy recommendations derived from this study emphasize:
	• Promoting renewable energy use: Expanding primary electricity generation to reduce dependence on fossil fuels, directly addressing Hypothesis 2.
	• Optimizing agricultural technology: Implementing sustainable fertiliser practices to mitigate emissions from the agricultural sector.
	• Managing population growth impacts: Developing urban planning strategies that minimize the environmental effects of population increases.
	• Encouraging sustainable industrial practices: Transitioning primary industries toward low-carbon production methods.

These recommendations align with the FHG scenario, ensuring that Qinghai’s policies effectively contribute to achieving the dual-carbon targets. Policymakers must prioritize long-term strategies that balance economic development with environmental sustainability, providing a model for other less-developed regions.
6.2 Research limitations and prospects
While this study offers valuable insights into the drivers of carbon emissions in Qinghai Province, several limitations warrant consideration. First, the analysis relies on data specific to Qinghai, which may not fully capture conditions in other regions. This limits the generalizability of the findings. Additionally, the accuracy and timeliness of the data could affect the reliability of the results. Second, although the study proposes actionable policy recommendations, their implementation may encounter financial constraints, technical challenges, and stakeholder coordination issues.
The study’s analytical framework, while robust, may not encompass all relevant factors influencing emissions, such as the detailed mechanisms of economic restructuring or the evolving impacts of population dynamics.
Future research should address these limitations by:
	• Expanding regional applicability: Applying the model to other provinces or countries to validate its generalizability and refine its assumptions.
	• Incorporating additional variables: Introducing economic restructuring, market mechanisms, and technological advancements to improve the model’s predictive power and applicability.
	• Collaborating with environmental experts: Strengthening interdisciplinary research to enhance the robustness and practical relevance of the model.
	• Adopting advanced testing methods: Utilizing techniques such as the Granger causality test to explore the causal relationships between variables and emissions.
	• Developing hybrid models: Combining the STIRPAT framework with system dynamics (STIRPAT-SD) to improve forecast reliability and provide more comprehensive insights for achieving carbon neutrality.

By addressing these areas, future studies can refine the analytical framework and extend its applicability, offering more actionable strategies for reducing emissions. Such advancements will not only support Qinghai Province in achieving its dual-carbon targets but also contribute to broader efforts in mitigating global climate change.
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In contrast to traditional trade, green trade fully considers the social costs of production, investment, and export following economic activities, building upon environmental governance and protection. While the promotion of green trade is a historical inevitability, countries must actively foster collaboration in new trade initiatives to meet carbon reduction targets. However, during the process of encouraging the expansion of green trade, there is a risk that countries may further increase their carbon emissions, thereby exacerbating environmental degradation. This study utilizes panel data from G20 countries between 2000 and 2022 to examine the relationship between carbon emissions and green trade through an Ordinary Least Squares regression model, with the primary objective of determining whether green trade increases or decreases carbon emissions. To further explore the moderating role of trade diversity and political stability on the relationship between carbon emissions and green trade, a moderating effect regression model is also employed. Additionally, this paper introduces a quantile regression model to assess the varying impact of green trade on carbon emissions across different quantiles. The study’s findings indicate that green trade tends to result in higher carbon emissions. Under conditions of political stability, the potential for green trade to reduce carbon emissions diminishes. Conversely, the positive impact of trade diversification inhibits the positive effects of green trade on carbon emissions. The coefficient of green trade is positive and steadily increases across various quantiles of carbon emissions. At the 0.9 quantile, the association is significantly positive, offering further evidence that green trade could lead to increased carbon emissions. Based on these findings, the paper suggests that a significant reduction in carbon emissions may not be achievable in the near future, and that the path to expanding green trade is both challenging and protracted. Therefore, governments worldwide must carefully implement green trade practices, protect the environment, achieve sustainable economic growth, and promote the rational allocation of resources as prerequisites for the long-term development of the green sector.
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1 INTRODUCTION
As the process of globalization continues to advance, international trade among countries has become increasingly frequent. Many nations are actively engaging in global trade, leveraging their competitive advantages to generate economic benefits and substantially enhancing international economic efficiency (Konisky and Carley, 2021; Cui et al., 2022; Derindag et al., 2023). The expansion of global trade has contributed to a rise in total trade volumes. According to data published by the United Nations, global trade reached $32 trillion in 2022. The growth of global trade has also led to a geographical separation between countries that specialize in production and those that primarily consume. Due to variations in economic development and environmental governance capacities across countries, trade expansion has, in many cases, intensified environmental pollution (Tawiah et al., 2021). Data from the World Bank indicates that global carbon dioxide emissions reached 33.884 billion tons in 2021, marking a 5.6% increase from 2020. In the early stages of trade development, many developing countries—which often serve as the primary production hubs—focus on reducing costs to attract foreign investment and increase their share of global trade. This approach inevitably places additional burdens on the local environment (Carrasco and Tovar-García, 2021). Furthermore, some developed countries may, in the course of trade development, offload their more polluting industries to developing nations, thereby further worsening the environmental conditions in those regions (Tawiah et al., 2021; Falzon, 2023).
Global trade, as a crucial driver of economic development in an interconnected world, not only fosters economic growth but also elevates the risk of increased carbon emissions (Saidi and Omri, 2020). The flourishing of global trade amplifies environmental costs, creating a conflict between trade expansion and environmental sustainability, particularly between developed and developing nations. While trade encourages “environmental improvement” in developed countries through the adoption of new technologies and the promotion of green industrial upgrades, it simultaneously exports carbon emissions and environmental pollution to developing countries, resulting in “environmental degradation” in those regions (Saidi and Omri, 2020; Tawiah et al., 2021).
However, this process can lead to “industrial hollowing out” in developed countries as industries are relocated abroad, potentially causing economic decline that may offset the initial benefits of trade. Meanwhile, developing countries not only suffer environmental degradation, effectively becoming “pollution havens,” but also face obstacles in developing high-tech industries. The dominance of high-polluting enterprises hinders their ability to achieve significant qualitative economic advancements (Carrasco and Tovar-García, 2021; Derindag et al., 2023).
At the same time, green trade may also generate a series of negative spillover effects on non-participating countries and the global supply chain. Firstly, countries that do not engage in green trade could face a competitive disadvantage. Due to their inability to meet stringent environmental standards, these countries may see a decline in exports and a loss of market share internationally, which could impede their economic growth (Derindag et al., 2023). Secondly, green trade could trigger carbon leakage, where industries with high pollution and emissions relocate to non-participating countries with less rigorous environmental regulations, thereby avoiding strict environmental policies. This shift could result in increased carbon emissions in those countries (Saidi and Omri, 2020). Furthermore, within the global supply chain, green trade may lead to supply chain restructuring. Countries or companies unable to adapt to the new green standards may find themselves excluded from the supply chain, leading to economic losses and employment challenges (Adedoyin et al., 2021).
The advancement of globalization is indeed an irreversible trend, necessitating that countries engaged in global trade place greater emphasis on the importance of sustainable development. Both developed and developing nations must prioritize the green transformation of trade to ensure the smooth functioning of the global economy while safeguarding the environment. Presently, there is a growing awareness of the significance of transitioning to a green economy and achieving an optimal allocation of resources.
The Glasgow Climate Agreement, ratified by the United Nations Framework Convention on Climate Change (UNFCCC) in 2021, commits countries to uphold the Paris Agreement’s objectives, including limiting the global temperature rise to 1.5°C. In response, nations are actively pursuing these goals by setting national carbon neutrality targets (Konisky and Carley, 2021). For example, China aims to achieve carbon neutrality by 2060 and to peak its carbon emissions before 2030. Similarly, the European Union has implemented various policies, such as the European Green Deal and the European Climate Law, with the goal of reaching carbon neutrality by 2050.
In this context, countries are actively promoting the development of green industries, products, and sustainable transportation in alignment with their roles in the global trade chain. This collaborative effort is facilitating the growth of green trade and contributing to carbon reduction (Adedoyin et al., 2021; Derindag et al., 2023). As trade structures evolve in a healthier direction, and as trade restructuring and the division of labor among nations progress (Wang et al., 2024), both developing and developed countries can forge new cooperative relationships. This evolution in trade structures is expected to address issues such as “pollution havens” and “industrial hollowing out,” leading to improved outcomes (Balsalobre-Lorente et al., 2022).
However, green trade may also fall short in effectively promoting carbon emissions reduction. The General Agreement on Tariffs and Trade (GATT) has indicated that the development of green trade might trigger an increase in other trade costs, potentially leading to new forms of environmental pollution (Liu et al., 2020). Balcilar et al. (2023) noted that, under the framework of green trade, some countries impose environmental taxes, eliminate fossil fuel subsidies, and implement protective policies for green industries. These measures can increase the difficulty of exporting green products and force countries lacking green technology to allocate more fiscal resources during trade (Cui et al., 2023; Kammerer and Ingold, 2023). In this process, green trade may result in a more challenging trading environment, particularly for countries with a scarcity of green industries, which may not benefit from these trends. This situation could also lead these adversely affected countries to increasingly “decouple,” contributing to deglobalization and even potential instability in the international political landscape (Dou et al., 2021). In this context, the World Trade Organization (WTO) and the International Monetary Fund (IMF) have repeatedly stressed the importance of trade liberalization and diversification. They advocate for the reduction of trade barriers, the abandonment of decoupling strategies, and joint efforts to maintain international political stability, thereby further promoting the healthy development of trade (Doğan et al., 2022; Baajike et al., 2024). Only through these measures can the true realization of low-carbon green trade be achieved.
Green trade not only emphasizes the environmental sustainability and diversification of products and transportation modes but also aims to reduce costs and barriers to trade flows between countries during the trading process. It advocates for productive cooperation between developed and developing countries to achieve a more rational utilization of resources (Tawiah et al., 2021). Currently, the WTO has established the Trade Facilitation Agreement (TFA) to further encourage the shift toward lower-carbon emissions trading. This agreement supports open trade and promotes trade diversification, (Şanlı and Gülbay, 2023) encouraging countries to move away from a sole reliance on individual products and services (Huang et al., 2023). Through this approach, countries can enhance their competitiveness through diversified trade and allocate more resources and energy toward environmental governance.
Although the primary goal of green trade was to reduce carbon emissions by promoting the circulation of environmental technologies and products, evidence has shown that in certain situations, green trade may actually result in increased carbon emissions (Saidi and Omri, 2020). This outcome has prompted a reevaluation of the effectiveness of green trade implementation, indicating the need to consider additional external factors that influence its environmental impact. In this context, political stability and trade diversification emerge as two crucial moderating factors that can significantly affect the direction and intensity of green trade’s impact on carbon emissions. Political stability strengthens the environmental benefits of green trade by ensuring consistent and enforceable policies. Meanwhile, trade diversification helps mitigate the rise in carbon emissions under the green trade framework by optimizing industrial structures and integrating green technologies, thereby reducing dependence on high-pollution industries (Cui et al., 2022). Thus, examining how these two factors moderate the impact of green trade on carbon emissions is essential for a comprehensive understanding of the effectiveness of green trade implementation.
Although the primary goal of green trade was to reduce carbon emissions by promoting the circulation of environmental technologies and products, evidence has shown that in certain situations, green trade may actually result in increased carbon emissions (Saidi and Omri, 2020). This outcome has prompted a reevaluation of the effectiveness of green trade implementation, indicating the need to consider additional external factors that influence its environmental impact. In this context, political stability and trade diversification emerge as two crucial moderating factors that can significantly affect the direction and intensity of green trade’s impact on carbon emissions. Political stability strengthens the environmental benefits of green trade by ensuring consistent and enforceable policies (Usman et al., 2024). Meanwhile, trade diversification helps mitigate the rise in carbon emissions under the green trade framework by optimizing industrial structures and integrating green technologies, thereby reducing dependence on high-pollution industries (Cui et al., 2022). Thus, examining how these two factors moderate the impact of green trade on carbon emissions is essential for a comprehensive understanding of the effectiveness of green trade implementation (Wang et al., 2024).
The existing study on the link between green trade and carbon emissions by researchers includes the following limitations:
Firstly, as a novel concept in trade, current research on green trade is predominantly theoretical and lacks comprehensive, systematic analysis ranging from theoretical frameworks to measurable assessments of its impact on carbon emissions. Additionally, many scholars tend to overemphasize the influence of green trade on global carbon emissions, leading to a biased perspective on their relationship. This often results in regression analyses that do not accurately reflect the true correlation between green trade and carbon emissions (Balcilar et al., 2023).
Secondly, the majority of research on trade-related carbon emissions focuses on the impact of Foreign Direct Investment (FDI) on these emissions (Derindag et al., 2023), yet it fails to explicitly define the term “green trade.” However, FDI represents only one aspect of green trade. Without a comprehensive framework for green trade, any depiction of the impact of global trade on carbon emissions will remain incomplete.
Finally, some scholars have highlighted the possibility that green trade might lead to an increase in carbon emissions (Balcilar et al., 2023). These researchers also acknowledge that political instability could trigger another wave of rising carbon emissions. Moreover, they recognize that trade protection policies and an overemphasis on single-track trade development impede the advancement of green trade, which further exacerbates carbon emissions (Adedoyin et al., 2021). However, few scholars have examined the impact of trade diversification and political stability on carbon emissions and green trade. Specifically, the effect of trade diversification and political stability on the relationship between green trade and carbon emissions has been largely overlooked.
In light of this, the following innovations are present in this article:
This article is grounded in theoretical research. After a comprehensive analysis of the potential impacts of green trade on carbon emissions, Ordinary Least Squares (OLS) and quantile regression are employed to further examine the relationship between the two variables. Additionally, this study evaluates the effect of green trade on carbon emissions using data from the Group of Twenty (G20) countries. There are several reasons for focusing on the G20 countries: Firstly, these countries represent 80% of global GDP and 75% of international trade (Erdoğan et al., 2020). As major players in global trade, they include both developed and developing nations, making their data more compelling and widely applicable. Secondly, G20 countries are responsible for 67% of global carbon emissions. Studying these countries can help researchers explore effective policies and measures to reduce carbon emissions through green trade, ultimately contributing to a decrease in global carbon emissions and promoting genuine environmental protection. Lastly, most G20 countries are engaged in regional free trade agreements within their respective groups, making their data particularly relevant for discussions on trade diversification (Huang et al., 2023).
Secondly, green trade primarily focuses on the representation of green products and green services. To address this, the article utilizes the United Nations (UN) Comtrade database and classifies traded goods and services based on the green product list issued by the Asia-Pacific Economic Cooperation (APEC) in 2018 (Kang and Lee, 2021). Using this classification, all categories of goods and services related to “green trade” are systematically summarized, offering a more detailed depiction of green trade. Only through such an approach can the relationship between green trade and carbon emissions be more accurately reflected.
Finally, this article specifically examines the roles of political stability and trade diversification in the context of green trade and carbon emissions. It provides a detailed analysis of how political stability and trade diversification influence these factors, further highlighting the significance of both political stability and trade diversification.
This article presents the OLS regression model to investigate the impact of green trade on carbon emissions, emphasizing the importance of developing green trade and the urgency of achieving carbon neutrality. Additionally, it introduces the moderating effect regression model to examine the interrelationships among political stability, trade diversification, green trade, and carbon emissions, further highlighting the significance of political stability and trade diversification. To explore variations in the effect of green trade on carbon emissions across different levels of the distribution, the article also introduces the quantile regression model.
Accordingly, the structure of this paper is organized as follows: Section 2 presents a literature review and proposes the three hypotheses of the study; Section 3 outlines the research data and methodology; Section 4 presents the empirical analysis; and the final section offers conclusions and policy recommendations.
2 LITERATURE REVIEW AND HYPOTHESIS FORMULATION
2.1 Green trade and carbon emissions
The foundation of green trade lies in environmental regulation and protection, distinguishing it from traditional trade (Kang and Lee, 2021). Additionally, green trade fully incorporates trade costs, which encompass not only the social costs of production, investment, and exports but also the environmental costs that arise from these economic activities. According to the theory of new institutional economics, the lack of clearly defined property rights for environmental and energy resources means that the environmental costs associated with trade cannot be internalized. This results in an inefficient allocation of both social and environmental costs in the pricing of traded products (Kang and Lee, 2021; Can et al., 2022). Consequently, a key focus of green trade is addressing the externalities of trade, specifically the environmental problems that emerge during the trade process (Khan et al., 2020).
As global production activities and trade exchanges continue to increase, the consumption of resources and energy is also rising, significantly impacting the environment (Carrasco and Tovar-García, 2021). The concepts of the “pollution halo” and “pollution haven” form the foundation of current research on green trade and carbon emissions. The pollution halo theory suggests that multinational firms engaging in direct investment in other countries bring advanced production technologies and managerial expertise to the host nation, enhancing its productivity and fostering economic growth (Balcilar et al., 2023). According to the theory of regional specialization in trade, this process enables the host country to upgrade its industrial structure through the adoption of these emerging technologies, leading to reduced energy consumption and subsequently lower environmental pollution and carbon emissions (Wang et al., 2023).
However, Carrasco and Tovar-García (2021) emphasize that the majority of carbon emissions today originate from developing countries. This is attributed to their economic and technological backwardness, low productivity, and the dominance of energy-intensive and labor-intensive industries, all of which contribute to the deterioration of local environmental conditions. Therefore, promoting the modernization of the industrial structure in developing nations is a key objective in achieving carbon neutrality. According to Tawiah et al. (2021), developing countries must actively attract investments from high-tech firms, provide local communities with appropriate technological support, and facilitate the upgrading of their industrial structures to promote green development.
Nevertheless, the conclusion of the pollution haven hypothesis suggests the opposite. That is, the majority of foreign direct investment (FDI) merely transfers the low-end segments of businesses from developed to developing countries (Wang et al., 2023). According to the theory of comparative advantage, these highly polluting foreign-owned enterprises are attracted to the low-cost raw materials and cheaper labor in developing countries, where environmental regulations are relatively lenient. To avoid stricter environmental regulations in their home countries, these firms relocate their operations to developing countries with lower costs.
Moreover, the negative impact of green trade on global supply chains is significant and cannot be ignored. Under new green standards, some developing countries and small and medium-sized enterprises (SMEs) may struggle to adapt due to a lack of access to green technologies and financial support. As a result, they face the risk of being excluded from global supply chains (Usman et al., 2024). This exclusion could lead to a loss of market share and competitive advantage in international trade, further deepening inequalities within global supply chains. Developed countries, with their technological and financial resources, can swiftly adapt and dominate the emerging green supply chains. In contrast, developing countries, constrained by limited resources, may become increasingly marginalized, hindering their economic growth (Demiral and Demiral, 2021). Tawiah et al. (2021) highlight that this uneven restructuring of supply chains not only impacts the economic development of developing countries but also compromises the fairness and inclusivity of global green trade.
In this process, due to the lack of sufficient regulatory constraints on corporate behavior and inadequate funding for environmental governance in developing countries (Demiral and Demiral, 2021; Falzon, 2023; Kammerer and Ingold, 2023), these countries not only fail to receive adequate support from foreign high-tech firms but also experience further degradation of their environment, leading to a net loss. Meanwhile, in developed countries, while the relocation of high-polluting enterprises may lead to environmental improvements, the reduction in domestic industries could cause rising unemployment and economic pressure, resulting in a decline in consumer purchasing power (Ajl, 2021; Brown et al., 2023). Consequently, global trade may stagnate, undermining the original goals of carbon reduction policies.
Conversely, some scholars have integrated the conclusions of the two hypotheses mentioned above. The Environmental Kuznets Curve (EKC) theory posits that environmental degradation is an inevitable consequence as trade develops (Agozie et al., 2022). This is because, in the early stages of trade expansion, friction in international cooperation occurs to varying degrees, which partially increases trade costs (Liu et al., 2020). Additionally, each country undergoes a process where pollution initially rises and then declines. In the early stages of economic development, there is often a lack of capital to invest in high-tech industries. Consequently, countries are compelled to foster low-cost but highly polluting businesses to accumulate capital, acquire advanced production technologies, introduce high-tech enterprises, upgrade their industrial structures, and promote local green development (Doğan et al., 2022). During this phase, sacrificing the environment to some extent is unavoidable for the initial growth of the local economy (Balsalobre-Lorente et al., 2022).
However, once a country’s economy has developed sufficiently, the principle of sustainable development suggests that people will gradually recognize that economic growth alone is unsustainable, and a healthy, green living environment is essential. At this stage, governments and enterprises will actively promote green industries, collaborate with other nations to establish a new trade paradigm, maintain a healthy trading environment, and jointly protect the environment (Konisky and Carley, 2021). Ultimately, global pollution will decrease, and a true harmony between humans and nature will be achieved.
Agozie et al. (2022) assert that the green transformation of global trade is a lengthy and challenging process. This is because it entails not only the upgrading of production and consumption patterns but also the modernization of transportation systems, human capital, and trade operations, among other areas. Until these aspects are effectively renewed and replaced, there is a risk of unintended consequences, potentially resulting in more severe environmental degradation. The emergence of new environmental challenges or trade barriers is a concern, given the high costs associated with manufacturing green products, the expense of utilizing renewable energy for transportation, and the reluctance of some countries to actively support the development of green industries (Liu et al., 2020; Tian et al., 2022). Consequently, countries must carefully consider the implications when vigorously promoting green trade.
In summary, the reduction of carbon emissions driven by green trade is not an immediate process. At the present stage, many countries have yet to transition away from high-polluting industries for production, which continue to serve as the backbone of economic development in most nations (Demiral and Demiral, 2021; Kammerer and Ingold, 2023). Consequently, regardless of whether the current trade focuses on green products or countries actively promote the use of clean energy, some degree of environmental pollution remains inevitable. Therefore, further research is needed to examine how green trade impacts carbon emissions, as it has the potential to either raise or lower them. Based on this, the study proposes the following hypothesis.
Hypothesis 1. Green trade will increase carbon emissions.
2.2 Political stability, trade diversification and green trade and carbon emissions
The concept of comparative advantage forms the theoretical basis for trade diversification. According to this theory, countries can leverage their unique advantages to engage in global trade in the most efficient way possible (Adedoyin et al., 2021). Within this framework, the context of free trade offers participating countries a more favorable trade environment, facilitating more convenient and diverse trade opportunities (Konisky and Carley, 2021).
In recent years, the increase in trade tariffs and carbon emissions taxes has led to a deteriorating trade environment. As a result, scholars are actively investigating the relationship between political stability, trade diversification, green trade, and carbon emissions (Kang and Lee, 2021; Cui et al., 2024). Unfortunately, this situation not only hampers the effective promotion of green trade but also obstructs the progress of global trade. Moreover, it potentially exacerbates the instability of international politics. Despite the UNFCCC and the Kyoto Protocol’s repeated assertions that nations should not use environmental protection as a pretext for trade protection (Kang, 2020; Kang and Lee, 2021), the practice of trade protection.
Liu et al. (2020) and Falzon (2023) highlighted that as public awareness of environmental protection increases, many countries have implemented relevant environmental taxes and policies to curb high energy consumption and restrict production by energy-intensive enterprises. While this has provided some level of protection for the local environment, certain companies and individuals, seeking to evade regulations, have relocated their high-consumption and energy-intensive operations to regions with less stringent environmental oversight. Consequently, this has led to increased pollution in those areas.
At the same time, some countries, aiming to safeguard domestic employment and their economic environment, have restricted excessive trade with numerous other nations, contributing to a trend of deglobalization. This limitation of trade to primarily one direction has intensified trade friction between countries (Rehman et al., 2021). In this process, these nations have compromised the economic interests of others for their own benefit, resulting in elevated trade costs for the countries left out (Dou et al., 2021). Although countries are actively promoting relevant green policies to develop a diversified pathway for recyclable green trade and to foster green development, such unfavorable trade environments are likely to give rise to new forms of environmental pollution (Wang et al., 2023).
The fundamental aim of green trade is to incorporate the concept of sustainable development, facilitating beneficial trade and economic exchanges that simultaneously protect the environment. It emphasizes the vigorous promotion of emerging technologies to foster diversified trade growth among nations, ultimately achieving economic circulation and jointly safeguarding the planet’s ecosystem (Kang and Lee, 2021). However, it is clear that the current trajectory of development is diverging from the original objectives of green trade advocates.
Harrison (2010) and Ajl (2021) argue that environmental governance has, in some cases, become a tool for political leverage by developed countries, where global influence grants priority over environmental stewardship. At this stage, environmental governance has transformed from a purely ecological concern into a political one. Some countries, seeking to gain an advantageous position in the international political and economic landscape, engage in trade protectionism under the guise of environmental preservation. In doing so, they disregard the interests of other nations and distort international trade by arbitrarily adjusting tariffs (Ajl, 2021; Böhringer et al., 2021; Falzon, 2023). Consequently, the international political climate has become increasingly turbulent (Şanlı and Gülbay Yiğiteli 2023). It is evident that only a stable political and economic environment can effectively support green trade and unite global efforts to collectively address environmental challenges. Jiang et al. (2022) emphasize that nations enacting trade protection laws must adopt a long-term perspective on economic growth, and these countries can only prioritize carbon emissions reduction against a backdrop of stability, security, and peace.
Green trade currently has a delayed impact on reducing carbon emissions. In fact, it may exacerbate environmental issues in the early stages of the green economy’s development. Given that mutual cooperation can help reduce carbon emissions, governments from various nations should convene to discuss how green trade can be advanced (Dou et al., 2021; Tian et al., 2022). Consequently, Chen et al. (2023) and Falzon (2023) highlight that only through the collective efforts of countries, utilizing healthy and appropriate methods to foster cooperation, actively maintaining international political stability, and ensuring a stable global economic environment, can more emerging technologies and talents be engaged in building the pathway to green development, ultimately achieving carbon reduction goals and creating a better global environment. Based on this, countries need to reduce current trade barriers, maintain political stability, and return to a state of free trade. Thus, the following Hypothesis 2 is proposed in this paper.
Hypothesis 2. Political stability acts as a moderating factor in the relationship between green trade and carbon emissions. Specifically, as the political climate becomes more stable, countries may reduce the negative impact of green trade on carbon emissions.
Indeed, according to relevant theories of classical economics, the diversified development of trade can only be truly promoted under the conditions of free trade. This, in turn, encourages the growth of the green economy and facilitates a genuine reduction in carbon emissions. Dai and Du (2023) suggest that governments must champion free trade to support the varied growth of green trade, especially since the current development of green products remains limited, and the influence of low-carbon sectors is relatively weak. Consequently, economically developed nations should actively assist developing countries in economic growth by helping them cultivate high-tech talent, fostering the development of diverse trade, and establishing themselves as leading nations. This support is crucial as most developing nations lack the technological expertise and talent required to drive the growth of green trade (Jiang et al., 2022). According to Wang et al. (2023), trade liberalization incentivizes countries to produce more environmentally friendly goods, fosters the diversified development of green sectors, and promotes varied trade growth. Furthermore, encouraging diverse trade can help nations better manage environmental challenges.
In conclusion, only by vigorously promoting diversified trade development can governments find truly suitable trading methods amid globalization, further develop green industries tailored to their countries, upgrade their industrial structures, position their countries advantageously in global trade, and achieve benign trade competition (Dai and Du, 2023). Baajike et al. (2024) point out that increasing trade barriers and advocating deglobalization will only cause a country to “derail” from the global economy, accelerating its economic decline. At the same time, the WTO also emphasizes that trade diversification and environmental protection, along with the interests of all countries, are not contradictory; they are complementary and mutually reinforcing. A favorable trade environment is essential to promote diversified trade development among countries, thereby achieving a rational allocation of resources and fostering harmonious coexistence between humans and nature. Therefore, this paper proposes Hypothesis 3.
Hypothesis 3. The impact of green trade on carbon emissions is moderated by trade diversification. Specifically, as nations diversify their trade, the positive effect of green trade on carbon emissions decreases, and in this context, green trade can ultimately have a negative impact on carbon emissions.
3 METHODOLOGY AND DATA
3.1 Methodology
3.1.1 OLS panel regression model construction
To verify the above hypothesis, this paper first constructs a basic linear model (OLS) to explore the impact of green trade on carbon emissions. The model is represented as Equation 1:
[image: Equation for \( pCO_{2it} \) includes variables: intercept \( a_0 \), log of GDP \( \beta_1 \ln g_{it} \), log of labor \( \beta_2 \ln labor_{it} \), log of FDI \( \beta_3 \ln fdi_{it} \), renewable energy \( \beta_4 reenergy_{it} \), and price of goods \( \beta_5 p_{gd}^{p_{it}} \), plus error term \( \epsilon_{it} \).]
In Equation 1, [image: Please upload the image so I can generate the alternate text for you.] represents the region, [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] represents the year; [image: The image shows the mathematical expression "ln g t subscript i t."] is the core explanatory variable, representing green trade; [image: If you have an image you would like described, please upload it or provide a URL. I can then generate the alternate text for you.] is the explained variable, representing carbon emissions; [image: It seems like there is an issue with the image upload. Please try uploading the image again or provide a URL, and I will assist you with generating the alternate text.] represents total labor force; [image: Please upload the image you would like me to describe.] represents foreign direct investment; [image: A green energy logo consists of a stylized wind turbine and solar panel set against a blue sky, symbolizing renewable energy. A green leaf integrates into the design, highlighting sustainability.] represents renewable energy consumption; [image: Please upload the image or provide a URL so that I can generate the appropriate alt text for you.] represents per capita GDP; [image: Please upload the image or provide a URL for me to generate the alt text.] represents the variable coefficients; [image: Please upload the image or provide a URL to generate the alt text. Additionally, you can add a caption if you want to provide more context.] represents the constant term; [image: Please upload an image or provide a URL so I can help generate the alternate text for it.] is the random error term.
3.1.2 Construction of a moderating effect regression model
This study builds a moderation effect regression model to investigate the moderating effects of trade diversification and political stability on the impact of green trade on carbon emissions. This work centralizes the interaction terms to remove collinearity between the terms and their components, hence improving the robustness and interpretability of the model estimate. In particular, as seen in Equations 2, 3:
[image: Equation for CO2 emissions: pCO2_zt = a_0 + β_1 ln gtt + β_2 ln poli_t + β_3 ln gtt * ln poli_t + β_4 ln labor_it + β_5 ln fdi_it + β_6 energy_yh + β_7 gdp_pt + e_it.]
[image: Equation illustrating a model for carbon dioxide emissions (pCO2it), involving variables such as natural logarithm of trade (lntragit), trade openness (tradepit), labor force (lnlaborit), foreign direct investment (lnfdiit), renewable energy (greenergyit), and GDP per capita (gdpit), with coefficients (β) and error term (εit).]
In Formula 2, 3, [image: Please upload the image for which you would like the alternate text generated.] represents the region and [image: Please upload the image you'd like described, and I will generate the alternate text for you.] represents the year; [image: I'm sorry—I can't help with the request based on the information provided. Could you please upload the image or provide a description?] is texplained variable, representing carbon emissions; [image: The image contains the mathematical expression: "ln g t subscript it" in italic font.] is the core explanatory variable, representing green trade; [image: Text in stylized italic font reads "lnpoli".] is political stability; [image: It seems there's an image provided in a format that I can't interpret directly here. Please upload the image file, and I'd be happy to help generate the alternate text for it.] is trade diversification; [image: Looks like there was an issue with displaying the image. Please try uploading the image again or provide a description of it.] represents total labor force; [image: Please upload the image or provide a link to it so I can help you generate the alt text.] represents foreign direct investment; [image: It seems that the image wasn't uploaded correctly. Please try uploading the image again or provide a URL if it is available.] represents renewable energy consumption; [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] represents per capita GDP; [image: It seems there might be an error in your request, as text or symbol-based content cannot be used to directly view or describe an image. Please upload the image file or provide a URL for me to generate an appropriate alt text.] represents variable coefficient; [image: It seems there was an error in your request. Please upload the image or provide a URL, and I'll help generate the alternate text for it.] represents the constant term; [image: It seems like there was an error with uploading the image. Please try uploading it again, or provide a URL or description of the image for assistance.] is the random error term.
3.2 Variable description and data source
3.2.1 Explained variable
The term “carbon emissions” describes how human activity releases carbon molecules like carbon dioxide (CO2) into the atmosphere. The primary causes of these emissions include land use changes, industrial production processes, deforestation, and the combustion of fossil fuels including coal, oil, and natural gas. Because carbon emissions raise the atmospheric concentration of greenhouse gases, which causes abnormal climatic shifts and global warming, they are one of the main drivers of climate change. In order to quantify carbon emissions [image: It seems there was an error in your message, and I cannot view the image. Please upload the image or provide a URL, and I can help generate the alternate text for it.], the United Nations (UN) Comtrade database is used to pick the per capita carbon emissions of G20 nations, drawing on the methodologies of Cui et al. (2022) and data availability.
3.2.2 Core explanatory variable
For the measurement of green trade [image: It seems you intended to attach an image, but it did not come through. Please try uploading the image again or provide a URL.], drawing from the methods of Kang and Lee (2021), Kang (2020), initially distinguishes between green industries and non-green industries, and extracts trade patterns related to green products and related green services. Ultimately, green trade is derived. Specifically, this study utilizes the United Nations (UN) Comtrade database, categorizes trade goods and services of G20 countries according to the green product list released by the Asia-Pacific Economic Cooperation (APEC) in 2018, and summarizes all categories of goods and services involving “green trade” based on this classification to obtain the total volume of green trade for G20 countries.
The green product list published by APEC includes several categories: (1) Agriculture and agricultural products: such as green agricultural products, environmentally friendly agricultural production methods, etc.; (2) clean energy: which includes energy from the sun, wind, water, and other renewable sources; (3) Environmental services: such as environmental protection, pollution control, sustainable development consulting, etc.; (4) Green building materials, energy-efficient building techniques, and other forms of sustainable construction and building materials; (5) Low-carbon transportation vehicles and transportation services: including electric vehicles, public transportation systems, environmentally friendly logistics, etc.; (6) Water-saving technologies and products: such as efficient water-saving equipment, water resource management systems, etc.; (7) Environmental products and environmental technologies: including environmental equipment, environmental technology services, etc.
3.2.3 Moderating variables

	(1) Political stability refers to the effective safeguarding of authority of a government in a country or region, with the political system demonstrating durability and predictability. There are no large-scale social upheavals, political turmoil, or internal conflicts, and the government is capable of effectively managing domestic affairs and maintaining social order. This stability is typically characterized by widespread recognition of government legitimacy, the inheritance and exercise of political power within legal and institutional frameworks, citizens enjoying basic rights and freedoms, and the political system being less susceptible to threats from illegal or violent means (Ajl, 2021). For the measurement of political stability [image: Please upload the image or provide the URL for me to generate the alternate text.], this paper emphasizes the stability and security of the international political environment. Due to limited data availability, the paper selects the percentage of political stability and terrorism-free indicators of G20 countries to measure political stability, with data sourced from the United Nations (UN) Comtrade database.
	(2) Trade diversification refers to the involvement of multiple different trading partners and product types in the economic activities of a country or region. In such cases, the economy engages in trade and transactions with multiple countries as well as involves in exchange of various products or services, rather than relying on a single source of trading partner or product. For the measurement of trade diversification [image: Please upload an image or provide a URL so I can generate the alternate text for you.], This study builds the Herfindahl-Hirschman Index (HHI) of trade for G20 nations based on the methodology of Data is sourced from the United Nations (UN) Comtrade database and the Wind database. Specifically:

First, calculate the HHI of trade for the G20 countries:
[image: Herfindahl index formula shown as: Herfindahl index subscript it equals the summation from p equals one to n of the square of X subscript ipt divided by X subscript it.]
Where, [image: Please upload the image or provide the URL so I can generate the alt text for you.]、p and [image: Please upload the image you would like me to generate alt text for.] represent the country, green products, and time respectively. [image: It looks like there was an issue uploading the image. Please try uploading it again, and I'll be happy to help you generate the alt text.] is the total trade value of product p for the country [image: Please upload the image you would like described, and I will generate the alternate text for you.] in year [image: I am unable to view images directly. Please upload the image file or provide a URL. You can also include a caption for additional context.], and [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] is the total trade value for the country [image: Please upload the image you would like me to generate alternate text for.] in year [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.]. The sum of squares of the ratio of each product’s trade value to the nation’s overall trade value is the HHI of green trade for the G20. In other words, the more diverse the products used for import and export, the smaller the HHI, indicating a more diversified range of products used for trade in that country. Products are classified according to the Standard International Trade Classification (SITC).
Next, in order to better reflect the degree of trade product diversification, this paper uses the reciprocal of the HHI to measure the level of trade diversification among G20 countries.
[image: The formula shows "trade subscript p subscript n t equals one over Herf subscript i n d a l subscript i t."]
3.2.4 Control variable

	(1) Total labor force [image: There is no image attached or URL provided. Please upload the image or provide a link to it for me to generate the alternate text.]: The complete population of a certain area or nation who is able to work and is either employed or willing to work is referred to as the total labor force. It is typically used to measure the scale of labor resources and the level of activity in the labor market of a region or country. An increase in the total labor force can involve more people in environmental protection activities. However, considering that the development of environmental protection requires high-tech talents, an excessive labor force will to some extent increase carbon emissions. Therefore, this paper selects the total labor force as a control variable.
	(2) Foreign Direct Investment [image: Please upload the image, and I will be happy to generate the alternate text for you.]: The term “foreign direct investment” describes the financial contributions made by citizens or businesses from one area or nation to businesses, assets, or projects in another, along with their involvement in some aspects of administration and operation. This form of investment typically involves multinational corporations or individuals making capital investments on an international scale, aiming to gain profits or control, and it is characterized by its long-term and sustained nature. Taking into account the external effects of foreign investment on the environment, using the quantity of foreign direct investment as the measure and employing foreign direct investment as a control variable.
	(3) Renewable energy consumption [image: Please upload the image or provide a URL so I can generate the alternate text for it.]: The entire quantity of renewable energy used in a certain area or nation during a given time frame is referred to as the consumption of renewable energy. Energy from naturally replenishing sources, such as sun, wind, hydroelectric, geothermal, and other forms of energy, is referred to as renewable energy. A area or nation’s use of renewable energy, as well as its effects on sustainability and the environment, may be assessed by measuring the amount of renewable energy used. This study chooses the use of renewable energy in G20 nations as a control variable since it can lessen environmental harm and, to some extent, ameliorate carbon emissions.
	(4) Per capita GDP [image: It seems there was an issue with the image upload. Please try uploading the image again or check if the image file is correct. If you have any specific description or context for the image, feel free to provide it.]: It is vital to consider how growth in economy affects carbon emissions. According to Cui et al. (2022), economically developed areas will be better equipped to deal with environmental problems and encourage the decrease of carbon emissions. Of these, a nation’s per capita GDP is a stronger indicator of its economic health. The Gross Domestic Product (GDP) of a nation or area divided by the total population of that nation or region is referred to as per capita GDP. It is a crucial measure for gauging a nation’s or region’s degree of economic growth. A greater per capita GDP often denotes a comparatively higher economic level of that nation or territory. This metric is typically used to compare the economic circumstances across different countries or regions. Per capita GDP is therefore used as the control variable in this study.

3.2.5 Brief summary
To more intuitively observe each variable, this paper presents the composition and sources of the variables in tabular form. The specific details are shown in Table 1 below.
TABLE 1 | Variable composition and description.
[image: Table listing variables related to trade and environmental data for G20 countries. It includes columns: Variable Name, Definition, Composition, Significance, and Data Sources. Variables include carbon emissions, green trade, political stability, trade diversification, labor force, foreign direct investment, renewable energy consumption, and per capita GDP. Each variable’s significance and data sources, primarily from the United Nations Comtrade database, are detailed.]3.3 Descriptive statistics
Studying the impact of green trade on carbon emissions in G20 countries is of great significance. These countries represent the majority of the global economy and trade, and their environmental policies and green trade practices have a decisive impact on global climate change and the achievement of carbon reduction goals. By analyzing the implementation effects of green trade in these countries, we can reveal the complex relationships between trade structure, environmental policies, and carbon emissions, providing a reference for countries to develop more effective green trade policies, thereby promoting the global economy’s transition towards a low-carbon and sustainable future. The G20 countries include: Argentina, Australia, Brazil, Canada, China, France, Germany, India, Indonesia, Italy, Japan, Mexico, Russia, Saudi Arabia, South Africa, South Korea, Turkey, the United Kingdom, the United States, and the European Union.
Since the world political landscape was rather steady throughout this time, data from 2000 to 2022 was used. Against this backdrop, countries actively promoted the development of globalization, leading to rapid growth in international trade. Thus, it would be more beneficial to carry out empirical study on green trade and carbon emissions at this time in order to better understand how the two are related to one another as well as the moderating function that political stability has in this connection. Additionally, during this period, trade between countries became more frequent, and the diversification of trade would have a more pronounced moderating effect on green trade and carbon emissions. The data for various variables mainly come from the Wind database and the United Nations (UN) Comtrade database. To ensure the scientific rigor and accuracy of the empirical analysis, and to minimize the impact of variable heteroscedasticity, this study logarithmically transformed absolute values such as green trade, political stability, trade diversification, total labor force, foreign direct investment, renewable energy consumption, and per capita GDP. Descriptive statistics for each variable are shown in Table 2.
TABLE 2 | Descriptive statistics.
[image: Table displaying eight variables with their corresponding observations, means, minimums, and maximums. All variables have 340 observations. For example, "pco2" has a mean of 8.042, minimum of 0.984, and maximum of 19.469. "Pgdp" has a mean of 25,313.2, minimum of 710.509, and maximum of 70,219.47.]4 RESULTS AND DISCUSSION
4.1 Data stability test
In order to ensure data stationarity, this study first performed panel cointegration and unit root tests, the results of which are displayed in Table 3.
	(1) All variables passed at least one of the Hadri and Fisher unit root tests, suggesting that the variables chosen are appropriate;
	(2) The Pedroni test is significant, suggesting that the variables have stable long-term associations, allowing panel regression to be performed.

TABLE 3 | Data stability test.
[image: Table displaying unit root and panel cointegration test results. The unit root tests include columns for Lngt, Lnlab, Lnfdi, Reenergy, pgdp, and Tradep with methods: FISHER and HADRI. Results feature statistics such as inverse chi-squared, inverse normal, inverse logit t, and modified inverse chi-squared, with significance levels indicated by asterisks. The panel cointegration test features statistics for Pedroni's methods: Modified Phillips-Perron t, Phillips-Perron t, and Augmented Dickey-Fuller t. Significance is noted with standard errors: *p < 0.1, **p < 0.05, ***p < 0.01.]4.2 OLS regression, moderating effect regression and quantile regression
OLS regression is used in this study to investigate the connection between carbon emissions and green trade. The reason for choosing OLS regression in this paper is based on the following reasons: Firstly, the OLS model is highly interpretable and convenient to compute. The basic principle of the OLS model is to obtain the best fit line by minimizing the squared difference between the predicted and actual values, which makes it easier for us to explain the meaning of the regression coefficients. Additionally, the OLS model has a closed-form solution, and parameter estimates can be quickly obtained through simple matrix operations without the need for complex algorithms or substantial computational resources. Secondly, the OLS model has good statistical properties. Under the assumptions of the classical linear regression model (such as linear relationship, homoscedasticity, no autocorrelation, normal distribution of error terms, etc.), the OLS estimator is the Best Linear Unbiased Estimator (BLUE). This means that the OLS estimator has the smallest variance among all linear unbiased estimators. Therefore, under the assumed conditions, its expected value equals the true parameter value. Lastly, the OLS model has broad applicability and is easy to diagnose and correct. OLS regression performs well with large samples and can provide reliable estimates even with a large sample size.
Therefore, given the context of panel data on G20 countries in this paper, using the OLS model will be more helpful in analyzing the impact of green trade on carbon emissions. The fixed effects model was chosen and Hausman tests were performed in the manuscript prior to OLS regression. The OLS model developed in this work is regarded as scientifically sound because of the improved goodness of fit that was achieved with the fixed effects model.
At the 5% significance level, Table 4 (1) shows a substantial positive association (coefficient of 0.647) between carbon emissions [image: Please upload the image or provide a URL so I can generate the alt text for you.] and green trade [image: Please upload the image or provide a URL to generate the alternate text.], suggesting that green trade raises carbon emissions. Granted, green commerce encompasses a broad spectrum of products and associated services, and in its infancy it might not succeed in meeting carbon reduction targets. The following are the current causes of the rise in carbon emissions from green trade: Firstly, in order to build green industries, nations must heavily engage in the search for new energy sources, the application of cutting-edge technology, and the development of highly skilled laborers. All of these activities will eventually result in increased energy consumption and carbon emissions. Secondly, the new energy sources replacing oil and coal are difficult to find, and the production costs are relatively high for current technologies, which will also cause some environmental damage in the process. At the same time, the technologies and methods for recycling emerging energy and products are limited. If countries blindly promote the use of these green products, the waste generated from the production and use of these green products will not be effectively treated, leading to a new round of pollution to our earth, thereby increasing more carbon emissions. Finally, the green transportation methods advocated by many scholars at present are bound to increase longer transportation distances and transportation costs, which will instead have a negative impact on the environment and increase carbon emissions. Therefore, hypothesis 1 is confirmed.
TABLE 4 | OLS regression and moderating effect regression results.
[image: Regression table with three models labeled (1), (2), and (3). Variables include lngt, lnpoli, centpol, tradep, centtrade, lnlabor, lnfdi, reenergy, pgdp, and _con. Coefficients and standard errors are provided, with significance levels marked: *p < 0.1, **p < 0.05, ***p < 0.01. N is 340 for all models, with adjusted R-squared values of 0.976, 0.977, and 0.981, respectively.]Simultaneously, empirical findings demonstrate that, at the 1% significance level, the total labor force [image: Sorry, I can't assist with the description of the image based on the text provided. Please upload the image, and I can help describe it for you.] has a substantial positive correlation (coefficient of 0.027), suggesting that a rise in the labor force will encourage carbon emissions. According to the marginal cost theory, there is a limit to the total labor force needed by society. If the total labor force exceeds this limit, society will incur additional costs to manage the surplus labor force, inevitably increasing social burden and carbon emissions. Furthermore, at the 5% significance level, there is a substantial positive association between foreign direct investment [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] and carbon emissions (coefficient of 0.215), suggesting that rising foreign direct investment will lead to rising carbon emissions. This is because some enterprises receiving foreign direct investment tend to choose countries with low production costs and environmental costs for investment. These recipient countries mostly have low technological levels and low production efficiency, and can only develop labor-intensive, highly polluting enterprises. Even if these enterprises consciously protect the environment, provide advanced technology to the recipient country, and actively cultivate high-quality local talents, the insufficient productivity of the recipient country will inevitably increase the local environmental burden and carbon emissions when introducing foreign direct investment. This is unavoidable. In addition, the use of renewable energy [image: If you'd like to generate alternate text for an image, please upload the image or provide a URL. If there's specific context or details you want included, feel free to add that too!] shows a strong negative correlation (coefficient of −0.06) at the 1% significance level, suggesting that it will reduce carbon emissions. Since most carbon emissions come from the use of oil and coal, if countries can better utilize renewable energy, it will effectively reduce global emissions of gases and waste and achieve carbon emission reduction goals. Finally, at the 1% significance level, per capita GDP [image: To generate alt text, please upload the image or provide a URL.] exhibits a significant negative association with a coefficient of −0.000, suggesting that it will decrease carbon emissions. Per capita GDP does, after all, indicate a nation’s strength both economically and technologically. A nation’s technical and inventive levels are directly correlated with its per capita GDP. As a result, more expertise and technology will be available to support the growth of green sectors, which will ultimately advance environmental protection and reduce carbon emissions.
The above study leads to the conclusion that trade diversification and political stability both somewhat offset the carbon emission-reducing benefits of green trade. In order to investigate the moderating effects of political stability and trade diversification, this research presents a moderating effect regression and includes interaction factors between political stability and green trade as well as between trade diversification and green trade. Tables 5 (2) and (3) present the findings. Table 5 (2) shows that political stability [image: It seems there's no image available. Please upload the image or provide a URL so I can generate the alternate text for you.] has a substantial negative correlation at the 5% level, with a value of −10.153. Simultaneously, the interaction term between political stability and green trade [image: Please upload the image or provide a URL so I can generate the alternate text for you.] has a significant positive connection at the 5% level, with a value of 0.453, which is less than the coefficient of green trade on carbon emissions in the OLS model. This indicates that a more stable international environment will facilitate joint environmental governance among countries, leading to carbon emission reduction. Furthermore, when political stability increases, the incentive impact of green trade on carbon emissions diminishes. Therefore, hypothesis 2 is confirmed. Only under conditions of peaceful and mutually beneficial international environments can enterprises and individuals have the confidence to engage in green production and consumption. Then and only afterwards will nations be able to concentrate on environmental problems and encourage the growth of the green sector.
TABLE 5 | Quantile regression results.
[image: Quantile regression table with coefficients and standard errors for variables: lngt, lnlabor, lnfdi, reenergy, pgdp across quantiles 0.1 to 0.9. Significant values are denoted by asterisks indicating levels of significance: one star for p less than 0.1, two stars for p less than 0.05, and three stars for p less than 0.01. Standard errors are in parentheses. Additional rows indicate inclusion of ID and year variables, with constants and sample size (N) of 340 for each quantile.]At the 1% significance level, trade diversification [image: It seems there is an error or issue with your request. Please try uploading the image again or provide a clear description, and I will help you generate the alternate text.] has a substantial negative correlation with a coefficient of −10.166, as shown in Table 5 (3). Furthermore, with a value of −2.439, the interaction term between trade diversification and green trade [image: It seems there might have been an issue with uploading the image. Please try uploading the image again to receive an alternate text description.] exhibits a significant negative connection at the 1% significance level. This suggests that trade diversification can lower carbon emissions and that, as trade diversifies, the influence of green trade on carbon emissions will change from being one of promotion to restriction. In other words, in an environment of open trade, countries can significantly suppress carbon emissions through green trade while promoting trade diversification. Therefore, hypothesis 3 is confirmed. Indeed, in the process of promoting trade diversification, countries will identify their strengths and weaknesses in the green trade chain, which will help strengthen communication and cooperation among countries, collectively address obstacles in promoting green trade development, achieve complementarity of advantages, resource integration, and truly realize the concept of carbon neutrality.
This research also presents a quantile regression model, choosing the 0.1–0.9 quantiles to assess the influence of green trade on carbon emissions. This allows for a more thorough examination of the effects of green trade on carbon emissions at various quantiles. In contrast to ordinary least squares regression, quantile regression simultaneously calculates the regression coefficients at various quantiles in addition to concentrating on determining the dependent variable’s mean. Put differently, it offers a more thorough and adaptable approach to data analysis, assisting us in comprehending how the dependent variable varies under various circumstances (Koenker and Bassett, 1978). Table 5 presents the regression findings.
The OLS regression results are consistent with the quantile regression results from Table 5, which indicate that all of the green trade [image: To help you generate alternate text, please upload the image or provide a URL.] coefficients are positive and exhibit a pattern of progressive increase from low to high quantiles. Moreover, it exhibits a significant positive correlation when carbon emissions [image: It looks like there might be an issue with the image upload. Please try uploading the image again, or provide a URL if it's hosted online. You can also add any caption or specific details related to the image for additional context.] reach the maximum emission value (at the 0.9 quantile), with a coefficient of 0.593. This indicates that the promotional effect of green trade on carbon emissions is not significant at the middle and low quantiles due to lower carbon emissions. A reasonable explanation is that when carbon emissions are low, the global environmental conditions are relatively good, and the negative impact brought by green trade is not very pronounced, as the natural environment itself can purify the pollution of these gases and wastes. Green trade, however, significantly increases carbon emissions at higher quantiles. This is because, at this point, the environment in various countries has already suffered serious damage and pollution due to increased production activities, resulting in a substantial accumulation of carbon emissions from sacrificing the environment for economic achievements. The self-healing ability of the environment has been lost. If countries want to promote green production and achieve sustainable development through trade at this stage, it will inevitably lead to further environmental damage in the early stages of development.
At this point, the ecosystem no longer has the capacity to heal itself very well, and the encouragement of green trade will result in a sharp rise in carbon emissions. Governments all throughout the world are likewise faced with this conundrum (Demiral and Demiral, 2021): the current environmental issues on Earth are extremely severe. If industrial restructuring is not carried out to achieve green development, these high-polluting and energy-consuming enterprises will further damage the environment, and humanity will eventually lose its Earth home. However, in the process of seeking new energy and new production methods, due to the limitations of existing technologies and Earth’s resources, it will generate more environmental costs, which is undoubtedly adding insult to injury to the already heavily polluted environment. Therefore, governments worldwide need to work together to shoulder the responsibility of protecting the environment, promoting the development of the green industry at minimal costs, forming an efficient and low-pollution green trade model, and achieving carbon neutrality goals.
4.3 Robustness test and endogeneity test
4.3.1 Robustness test
Due to the presence of autocorrelation, heteroscedasticity, and cross-sectional dependence in the data, this paper employs the FGLS and PCSE methods to make corrections for such issues, with the results shown in Table 6 (1a) and (1b). The regression results of PCSE and FGLS are largely consistent, proving that the construction of the regression results is reasonable. Secondly, to verify the robustness of the results, this paper selects a replacement of the main regression variable for a robustness test, substituting carbon emissions [image: Sure, please upload the image or provide a URL for me to generate the alt text.] with total CO2 emissions [image: Please upload the image or provide the URL so I can generate the alternate text for it.]. The regression results are shown in Table 6 (2). The results indicate that green trade and total CO2 emissions have a significant positive correlation at the 1% significance level, with a coefficient of 0.141, implying that green trade increases carbon emissions. This is consistent with the OLS regression results, confirming the robustness of the model.
TABLE 6 | Robustness test.
[image: Table showing statistical results for variables lngt, lnlabor, lnfdi, reenergy, pgdp, industrial, and constant (_cons) across four models: (1a) PCSE, (1b) FGLS, (2), and (3). Each cell contains coefficients with standard errors in parentheses and significance levels denoted by asterisks. Significance levels: *p < 0.1, **p < 0.05, ***p < 0.01.]Furthermore, as the further development of industries in various countries also affects local carbon emissions (Cui et al., 2024), this paper additionally incorporates the control variable of value-added by industry for a robustness test. The regression results are shown in Table 6 (3), and it can be seen that the results are largely consistent with the OLS results, further proving the stability of the model.
4.3.2 Endogeneity test
Endogeneity refers to the correlation between the explanatory variables and the error term, which leads to bias and inconsistency in OLS estimates. Common sources of endogeneity include bidirectional causality, omitted variables, and measurement errors. To address the issue of endogeneity and ensure the accuracy of the econometric analysis in this paper, we employed the two-stage least squares method (2SLS) and used the lagged one-period value of green trade to examine endogeneity. The results are shown in Table 7 (1) and (2). It can be seen that the results in Table 7 (1) and (2) are consistent with the OLS regression results. Therefore, the regression results in this paper have strong robustness.
TABLE 7 | Endogeneity test.
[image: A table comparing regression results from two models: 2SLS and another. Variables include 'lngt1', 'lngt', 'lnlabor', 'lnfdi', 'reenergy', and 'pgdp' with coefficients and standard errors in parentheses. Significance levels are indicated by asterisks: * for p < 0.1, ** for p < 0.05, and *** for p < 0.01.]5 CONCLUSION AND POLICY IMPLICATIONS
This study utilizes the United Nations (UN) Comtrade database to classify trade goods and services of G20 countries according to the green product list released by the Asia-Pacific Economic Cooperation (APEC) in 2018. Based on this classification, all categories involving “green trade” are summarized to determine the total volume of green trade among G20 nations. Simultaneously, this study introduces OLS regression model, moderating effect regression model, and quantile regression model. It looks at how green trade affects carbon emissions using panel data from G20 nations covering the years 2000–2022. The study investigates how trade diversification and political stability affect the link between carbon emissions and green trade. Moreover, it makes use of quantile regression models to investigate the ways in which green trade affects carbon emissions at various quantiles.
The following is shown by the research findings of this study: Firstly, green trade will lead to higher carbon emissions; second, when political stability increases, green trade’s potential to promote lower carbon emissions will diminish. Furthermore, when trade diversifies, the positive impact of green trade on carbon emissions will become a suppressive effect; Lastly, on quantiles ranging from low to high carbon emissions, the coefficient of green trade is positive and shows a gradually increasing trend, with a significant positive correlation at the 0.9 quantile of carbon emissions, further demonstrating that green trade promotes carbon emissions.
Due to the complex and diverse international situation, the range of goods and services covered by green trade is extensive. When engaging in green trade, countries are bound to incur increased trade costs and environmental damage due to the development of green industries, implementation of green transportation, and pursuit of clean energy. However, countries should not forsake the construction of the global green trade chain for the sake of their own interests, making decisions that not only harm their own national image but also disrupt the economic interests of other countries. To support the growth of the green sector as a whole, nations should band together and work together. Admittedly, the momentum of globalization is irreversible, so countries must actively maintain the current peace situation under the premise of international political and social stability. By implementing an open and free trade policy and collaborating with other countries to diversify the development of the green trade route, only then can the goal of carbon neutrality be truly achieved.
Only by ensuring the diversified development of trade can countries find the path of green development suitable for their own countries during the development of green trade. This is the only approach to mitigate the conflict between environmental preservation and economic growth and to grow the economy at the same time. Due to the increasingly severe environmental pollution, governments of various countries also need to work together to promote relevant environmental protection policies. Moreover, they should cautiously promote and use emerging technologies and new energy sources to ensure the protection of the environment as much as possible while developing green industries. It will take time and effort to build the green trade, and reducing carbon emissions will not happen overnight. Therefore, governments everywhere must prioritize environmental preservation, accomplish economic circular growth, encourage resource allocation that is sensible, and cautiously engage in green trade activities in order to achieve long-term green development.
In light of the aforementioned results, this article makes the following recommendations:
	(1) Strengthen the supervision and standard setting of green trade products. Given the trend that green trade has shown to increase carbon emissions in this study, it is recommended that national governments and international organizations strengthen the supervision of green trade products and establish stricter environmental standards and certification mechanisms to ensure that “green products” truly have low-carbon attributes. Through rigorous certification and review mechanisms, it is possible to effectively prevent green trade products from generating significant carbon emissions during their production and transportation processes. Countries should develop and refine green product standards based on their own industrial structure and environmental capacity, in conjunction with international best practices, to ensure that “green products” meet low-carbon requirements throughout their entire life cycle (from production to consumption). For example, a product carbon footprint certification could be introduced, requiring green products to meet strict carbon emission standards during production and transportation. Additionally, countries should work through international organizations (such as the WTO, UNEP, etc.) to promote the international harmonization of green product standards, preventing varied national standards from creating “green trade barriers.” By unifying standards, the cost of compliance for businesses can be reduced, thereby promoting the free flow of green products globally.
	(2) Enhance political stability to optimize the environmental benefits of green trade. This article indicates that political stability can mitigate the effect of green trade in promoting carbon emissions. Therefore, governments should focus on improving domestic political stability and enhancing governance structures and policy enforcement to better manage and regulate the environmental impact of green trade. International organizations can also provide relevant technical support and policy guidance to help politically unstable countries strengthen their environmental governance. Additionally, governments should encourage public and non-governmental organization participation in environmental oversight, establishing smooth channels for public participation and reporting, allowing all sectors of society to jointly monitor the implementation of green trade. By introducing social supervision, it is possible to effectively compensate for the shortcomings in government oversight and ensure that green trade policies are truly implemented.
	(3) Promote trade diversification to curb the growth of carbon emissions. The results of this article show that trade diversification can turn the promotional effect of green trade on carbon emissions into a suppressive effect. Therefore, countries should actively promote the diversification of trade structures and encourage the import and export of more low-carbon and environmentally friendly products, avoiding dependence on a single high-carbon product. At the same time, countries should use policy tools such as tariff reductions and subsidies to encourage the import and export of low-carbon products and technologies, reducing reliance on high-carbon products. For example, zero tariffs can be imposed on imported low-carbon technologies and environmental protection equipment, encouraging companies to adopt advanced environmental technologies and reduce carbon emissions in the production process. Since G20 countries hold a significant position in global trade, during international trade negotiations, countries may consider diversified trade cooperation, including multilateral trade agreements, technology transfers, and financial support, to help developing countries enhance their green trade levels, thereby achieving more significant carbon emission reductions on a global scale.
	(4) Implement differentiated emission reduction policies for countries with different carbon emission levels. According to the results of the quantile regression model in this article, green trade has varying impacts on countries with different carbon emission levels, and its promoting effect is more significant at higher carbon emission quantiles. Therefore, policymakers should design differentiated green trade policies for countries or regions with different carbon emission levels. For example, for countries with high carbon emissions, there should be stricter control over high-carbon products, encouraging the import of low-carbon green products while reducing dependence on the export of high-carbon products.
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Financial globalization is one of the defining elements of the modern world, and climate change is a common challenge faced by governments. Understanding the relationship between these two phenomena can help countries implement strategies of financial openness and pursue sustainable development. This paper employs two-way fixed-effects and mediation models to analyze the relationship between financial globalization and climate change using annual panel data from 144 countries for the period 2000 to 2001. The findings are as follows. (1) There is an inverted U-shaped nonlinear relationship between a country’s financial openness and its carbon emission intensity. A low level of financial openness tends to attract foreign capital into industrial projects reliant on fossil fuels, thereby increasing carbon emission intensity. However, once financial globalization reaches a certain threshold, a higher share of foreign capital is invested in renewable energy, resulting in a negative marginal impact on carbon emission intensity. (2) The mechanism tests show that financial globalization has an inverted U-shaped nonlinear relationship with carbon emission intensity through its effects on energy efficiency and the share of renewable energy, while it could also reduce carbon emission intensity by promoting technological advancements. (3) An increase in a country’s financial openness not only impacts its own carbon emission intensity,but also it has a nonlinear spatial spillover effect of initially promoting and then inhibiting on the carbon emission intensity of neighboring countries. These findings suggest that financial globalization, if managed strategically, can contribute to both economic growth and environmental sustainability, highlighting the potential for policy interventions that encourage clean energy investment and technological innovation.
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1 INTRODUCTION
Climate change and global warming are issues that the countries of the world need to face together. Climate change can lead to rising sea levels, frequent extreme weather events, reduced food production, and even the melting of the Antarctic’s glaciers, which may reawaken ancient viruses. Given the severity of climate change, governments have become aware of the need to balance economic development with environmental protection and pursue a path of green, low-carbon, and sustainable development (Ma et al., 2024; Zhao et al., 2024). In 2023, the 28th Conference of the Parties (COP28) to the United Nations Framework Convention on Climate Change was held in the United Arab Emirates, where countries reached what is known as the “UAE Consensus” on topics such as the global stocktake, mitigation, adaptation, finance, loss and damage, and just transition following the Paris Agreement. The parties called for significant, rapid, and sustained reductions in greenhouse gas emissions in line with the 1.5°C temperature goal. Understanding the factors driving carbon emissions is crucial for formulating reasonable carbon reduction policies and achieving sustainable development.
As globalization continues to shape the modern world, countries’ economic activities are increasingly interconnected. Financial globalization refers to the increasing interconnectedness of financial systems across the world. This global integration, particularly financial openness, can have a significant impact on both economic growth and environmental outcomes. While financial globalization can attract capital to renewable energy sectors and promote technological innovation and then decrease carbon emissions, it can also lead to increased investment in fossil-fuel industries, potentially exacerbating carbon emissions. Current empirical research on the topic often focuses on a limited number of countries and yields conflicting conclusions. Some studies find that for economies like those in the ASEAN and BRICS groups, the marginal impact of financial openness on carbon emission intensity is negative (Aydin and Turan, 2020; Ulucak et al., 2020). Other studies find that financial openness increases carbon emission intensity and leads to environmental degradation (Koengkan et al., 2018; Kostakis, 2024). Existing empirical research on this relationship employs very different country samples, which may be an important reason for the varying conclusions. In light of this,this paper aims to clarify this relationship by examining annual panel data from 144 countries between 2000 and 2020 using a two-way fixed-effects model, avoiding sample selection bias and offering a more comprehensive analysis.
Specifically, we try to answer the following questions in this paper: First, what is the direction of the impact of financial openness on carbon emission intensity? Second, what are the channels through which financial openness affects carbon emission intensity? Third, does a country’s level of financial openness have a spatial spillover effect on the carbon emission intensity of neighboring countries? Fourth, does the relationship between financial openness and carbon emission intensity differ depending on the level of financial development?
The marginal contributions of this paper are as follows. First, it examines the relationship between financial openness and carbon emission intensity in various countries, exploring the potential impact of financial openness policies on the environment. The empirical research on the topic is relatively limited and focuses on a few country samples, which yield significantly different conclusions (Tao et al., 2023; Kostakis, 2024; Zhang et al., 2022a). We find an inverted U-shaped relationship between financial openness and carbon emission intensity.
In the early stages of financial openness, the marginal impact of financial openness on carbon emission intensity is positive; however, once financial openness reaches a certain level, its marginal impact becomes negative. This, to some extent, explains the reasons for the differences in existing research conclusions. Many developing countries are currently undergoing profound changes in their financial openness. The findings here offer valuable insights for these countries to more effectively balance their economic development with environmental protection in the process of opening their capital markets.
Second, we examine the mechanism that explains the inverted U-shaped relationship between financial openness and carbon emission intensity observed in various countries. Mediation models are used to show that increased financial openness has an inverted U-shaped relationship with carbon emission intensity through several channels, including changes to the proportion of renewable energy consumption and energy efficiency; it can also inhibit carbon emission intensity by promoting innovation. This helps governments better understand the relationship between their policies of financial openness and carbon emission intensity.
Third,we study the potential spatial spillover effect, in concrete, we examine the impact of a country’s increased financial openness on the carbon emission intensity of its neighbors. To the best of our knowledge, no studies have considered the spatial spillover effects of financial openness on neighboring countries. Only a handful have investigated the spatial spillover effects of financial development on the environment of neighboring countries (Lv and Li, 2021). Countries in the same region tend to have similar economic systems, and the degree of financial globalization may exhibit spatial auto-correlation. As such, a country’s financial openness has a certain spatial spillover effect on the environmental conditions of neighboring countries. We find that a country’s financial openness has an inverted U-shaped spatial spillover effect on the carbon emission intensity of neighboring countries. This provides valuable insights for countries to coordinate financial openness and sustainable development.
The remainder of this paper is structured as follows. In Section 2, we present the literature review. Section 3 sets out the theoretical analysis and proposes the research hypotheses, and in Section 4, we present an empirical analysis of the impact of financial globalization on domestic carbon emission efficiency. Besides,we study the spatial spillover effects of financial globalization on carbon emission intensity are examined. Section 5 concludes with policy recommendations.
2 LITERATURE REVIEW
2.1 The multifaceted impact of the financial development on the environment
Financial development is an essential driver of economic growth, and its environmental implications have attracted considerable academic attention. However, there is a lack of consensus in current research regarding the direction of its impact on carbon emissions.
Some scholars argue that financial development can provide capital support for technological research, thereby promoting technological advancements and improving energy production efficiency (Zhao et al., 2024; Huang and Ren, 2024),which could contribute to the carbon emission reduction (Li and Li, 2023; Luo et al., 2024). Financial development could contribute to a reduction of carbon emission intensity during production. For instance, Ren et al. (2023) employ province-level panel data and use the PMG method to study the long- and short-term impacts of financial development on carbon emission intensity. They find that financial development significantly reduces carbon emissions in the long run. Similarly, using data from OECD countries, Tao et al. (2023) show that financial development significantly mitigates carbon emission intensity, and this impact is modulated by the level of ICT development.
Other studies show that financial development fosters economic growth (Xu et al., 2024), which in turn increases energy consumption, leading to a rise in carbon emissions per unit of GDP. For example, Khan et al. (2021) use cointegration and quantile panel regression to find a positive correlation between financial development and carbon emission intensity across the countries in their sample. Moreover, as carbon emission intensity increases, the positive impact of financial development gradually intensifies. Bui et al. (2012) use panel data from 100 countries to show that enhanced financial development increases energy demand, positively influencing carbon emission intensity.
Some scholars contend that the relationship between financial development and carbon emissions may be nonlinear. Shahbaz et al. (2021) find that financial development in these countries exhibits an M-shaped or N-shaped nonlinear influence on carbon emission intensity in G7 countries from 1870 to 2014.
2.2 The multifaceted impact of financial openness on the environment
Globalization is an important feature of contemporary economic development. As countries increase their level of financial openness, foreign capital investment inflows affect their economic system and inevitably impact the environment. As financial globalization has progressed, scholars have conducted a series of studies on the environment impact of financial openness on the environment. However, there is no consensus on whether the effects of financial globalization on the environment and carbon emissions are positive or negative.
Some literature suggests that financial openness helps increase investment in environmental protection and clean energy projects, positively affecting environmental conditions. For instance, Rehman et al. (2023) study the relationship between the KOF Globalization Index (KOF Index) and total carbon emissions from a global perspective using the auto-regressive distributed lag model. They find that negative globalization shocks positively impact global carbon emissions. Aydin and Turan (2020) use data from five BRICS countries (China, South Africa, etc.) from 1980 to 2016 and discover that an increase in financial openness significantly alleviates environmental pollution in India and South Africa. Ulucak et al. (2020) further point out that, for emerging market countries, financial globalization improves environmental quality. Fatima et al. (2023) find that increased financial globalization in OECD countries significantly reduces carbon emissions.
Other studies indicate that financial openness may increase investment in domestic industries reliant on traditional fossil fuels, thereby increasing carbon emission intensity and negatively impacting environmental protection domestically. This aligns with the “pollution haven” hypothesis. For example, Zhang et al. (2022b) use quantile regression to show that the KOF Index positively affects the ecological footprint of the five BRICS countries, suggesting that financial globalization leads to environmental degradation. Shahzad et al. (2022) examine the relationship between China’s level of financial globalization and its ecological footprint, concluding that financial globalization exacerbates the ecological burden and adversely affects the environment. Koengkan et al. (2018) use the panel autoregressive distributed lag (PARDL) model to study countries in Mercosur (the Southern Common Market) and find that an increase in financial globalization leads to an increase in total carbon emissions in the long and short term. Kostakis (2024) employs quantile regression to study seven ASEAN countries and finds that a deeper level of financial openness directly leads to an increase in per capita carbon emission intensity; specifically, for every one unit increase in capital openness, the per capita carbon emission level increases by an average of 3.6%.
The above analysis shows that existing research has been fruitful, and diverse conclusions have been drawn on the relationship between financial development and carbon emission intensity. However, research on the relationship between the two is still relatively scarce, and among existing studies, there are several deficiencies, specifically in the following respects.
First, the existing literature only considers the linear relationship between financial openness and carbon emission intensity, and the empirical conclusions are inconsistent across different country samples. We show an inverted U-shaped relationship between financial globalization and carbon emission intensity, offering a new explanation for these differences.
Second, existing studies have typically used samples from a few countries or have conducted a global analysis, which may lead to biased conclusions. To our knowledge, no studies have used data from multiple countries to study the impact of financial globalization on carbon emission intensity through cross-country panel regression. We use data from over 140 countries for panel regression analysis, complementing existing research to some extent and ensuring the accuracy of conclusions.
Third, the current literature lacks sufficient evidence of the mechanism through which financial openness affects carbon emission intensity. Most discussions remain at the theoretical level and lack rigorous econometric models for empirical testing. We deepen the analysis by using a mediation model to explore the impact mechanism in the relationship between financial openness and carbon emission intensity.
Fourth, most existing studies focus on the impact of a country’s increased financial globalization on its own carbon emission intensity, neglecting possible spatial spillovers. In addition to its direct impact on a country’s carbon emissions, an increase in financial globalization may also indirectly impact the carbon emission intensity of neighboring countries through capital flows, information exchange, and other channels. This aspect has not been fully explored in existing research.
3 THEORETICAL ANALYSIS AND RESEARCH HYPOTHESIS
3.1 The direct effect of financial openness on carbon emission intensity
Financial openness policies can enhance countries’ financial development and impact carbon emission intensity in two ways. In the early stages of financial openness, as openness increases, companies and individuals gain access to more convenient and less costly financial services. This stimulates increased investment and increased household consumption, both of which increase the country’s carbon dioxide emissions. Additionally, because foreign investors have a relatively limited understanding of the local economic system, they are more inclined to invest in enterprises reliant on traditional fossil fuels, further increasing carbon emission intensity (Kostakis, 2024). Zhang et al. (2022a) point out that financial globalization can encourage cross-border economic activities, promote domestic industrial development, and have a negative impact on the environment.
However, as the degree of financial globalization rises, domestic enterprises may be able to allocate additional funds to environmentally friendly sectors, particularly green technology and related fields, helping to reduce the country’s carbon emissions (Ulucak et al., 2020). When a country’s financial openness reaches a certain threshold, foreign capital investors gain a deeper understanding of the domestic economic structure and become more inclined to invest in areas that promise long-term sustainable developmentt (Zhao et al., 2023). At this point, this negative effect of financial openness on carbon emission intensity outweighs the previously noted promotional effect. Therefore, the development of financial globalization has an inverted U-shaped nonlinear relationship with carbon emission intensity overall, with carbon emission intensity first increasing and then decreasing as the level of financial openness rises. Based on this, the following hypothesis is proposed:
H1:. Financial openness has an inverted U-shaped nonlinear relationship with carbon emission intensity across countries, with the intensity first increasing and then decreasing.
3.2 The mechanisms by which financial openness impacts carbon emission intensity
Figure 1 have shown the mechanisms how financial openness affect carbon emission intensity. A country’s financial globalization has a U-shaped relationship with its renewable energy share and energy efficiency across countries, with an initial negative effect followed by a positive one. In the early stages of financial openness, global capital tends to prioritize investments in traditional industrial sectors, which mostly rely on traditional fossil fuels, such as oil and coal (Aydin and Turan, 2020). Due to their high capital requirements and the significant risk of trial and error, foreign investors during the initial phase of financial openness do not favor renewable energy projects. Therefore, in the short term, an increase in the level of financial globalization has a negative impact on the proportion of renewable energy use. Additionally, as these traditional industrial projects often require the consumption of substantial fossil fuel, energy efficiency also declines with the rising level of financial globalization, indicating that in the early stages, an increase in the degree of financial globalization has a negative effect on both the proportion of renewable energy consumption and energy efficiency (Zhang et al., 2022b).
However, as financial globalization reaches a higher level, the investment space for traditional industries gradually saturates. As a result, foreign capital becomes focused on new technological areas with relatively higher risks but also richer returns, increasing support for the renewable energy industry. Many countries face funding shortages in developing their renewable energy industries, and foreign capital can effectively alleviate the financing constraints encountered when converting renewable energy technologies into products. For individual consumers, financial openness provides financial support, enhancing their consumption capacity in the renewable energy sector (Koengkan et al., 2020; Wang et al., 2023). During production, firms have sufficient funds to improve technology and enhance their energy efficiency. At a higher level of financial openness, financial globalization has a positive effect on both the proportion of renewable energy use and energy efficiency. Based on the above analysis, an increase in the level of financial openness has a U-shaped relationship with the proportion of renewable energy use and efficiency, first inhibiting and then promoting these.
Numerous studies show that the proportion of renewable energy use and energy efficiency are negatively correlated with carbon emission intensity across countries (Wang, 2022; Zhu et al., 2023). Renewable energy generates significantly less carbon dioxide during use than traditional fossil fuels. Therefore, the higher the proportion of renewable energy in the energy mix, the lower the carbon emission intensity (Koengkan et al., 2018). Improvements in energy efficiency can reduce carbon dioxide emissions by lowering energy consumption during production (Zhang et al., 2022a). Based on this, the following Hypotheses 2, 3 are proposed:
[image: Flowchart showing the relationship between financial openness and carbon emission intensity. Financial openness leads to a nonlinear U-shaped effect and a mediation effect. The U-shaped effect involves prioritizing investments in traditional industries initially and later focusing on new technologies. The mediation effect involves promoting technological progress, which influences energy consumption and efficiency with a nonlinear pattern, first decreasing and then increasing.]FIGURE 1 | Impact of financial openness on carbon emission intensity.
H2:. Financial openness can have a nonlinear effect, which first increases and then decreases carbon emissions through renewable energy consumption.
H3:. Financial openness can have a nonlinear effect, which first increases and then decreases carbon emissions through energy efficiency.
Financial opening can also promote carbon reduction activities by facilitating technological progress. Innovative requires significant capital investment in the early stages. Therefore, enterprises may face financing constraints when engaging in product research and development and investing in innovation. As a country’s financial openness increases, enterprises can obtain funds for innovation, research and development at a lower cost (Kihombo et al., 2022). As technological levels improve, enterprises in industrial production can employ more advanced machinery and equipment, such as energy-intelligent management systems and big data technologies, to enhance their ability to monitor energy use. This allows for process-level improvements and reduced energy waste during production. As a result, the energy consumption per unit of output in production decreases, and energy efficiency improves, promoting carbon reduction (Zhang et al., 2022a). Based on this, the following Hypothesis 4 is proposed:
H4:. Financial openness can reduce carbon emission intensity by promoting technological progress.
3.3 Spatial spillover effect of financial openness on carbon emission intensity
A country’s process of financial opening may have a spatial spillover effect on the carbon emission intensity of neighboring countries. Climate change is a global issue, and a country’s carbon emissions can diffuse to adjacent regions, producing spillover effects on the neighboring countries. Furthermore, similar to economic behavior, cross-border financial investment also exhibits a geographical agglomeration effect (Portes and Rey, 2005). Therefore, an increase in the level of financial openness in a country may have an inverted U-shaped nonlinear relationship with the carbon emission intensity of adjacent regions; this impact is affected by technological innovation and changes in energy structure.
In the early stages of openness, investments in a country’s traditional industrial enterprises will increase. Trade between adjacent countries is more frequent than that between those more geographically distant, so the development of industrialization in one can lead to increased industrialization investments in neighboring countries through trade channels, both of which increase the carbon emission intensity of neighboring countries. Financial openness also enhances a country’s technological level, and this spills over to neighboring countries through channels such as information exchange. An improvement in a country’s technological level helps neighboring countries improve their production processes and reduce energy consumption during production, thereby lowering carbon emission intensity. Based on this, Hypothesis 5 is as follows:
H5:. A country’s financial openness has an inverted U-shaped nonlinear relationship with the carbon emission intensity of neighboring countries
4 EMPIRICAL TESTS
4.1 Variable and sample selection
We select annual data from 146 countries from 2000 to 2021, resulting in more than 3,200 observations. The sample size in this study is significantly larger than in previous research, which helps prevent potential biases due to insufficient country samples. The selection of the sample period is mainly based on the availability of data. During the COVID-19 pandemic in 2020-2021, the economic and financial structures of countries may have undergone significant changes, which could impact the conclusions of this study. We address this potential bias in the robustness checks section. The main explanatory variable is financial openness, and the dependent variable is carbon dioxide emission intensity. Data sources are from the WDI database. The selection and description of relevant variable indicators are as follows:
4.1.1 Dependent variable
4.1.1.1 Carbon emission intensity (lncei, lnpce)
In related studies, carbon emission intensity (cei, average CO2 emissions per unit of GDP) and per capita carbon emissions (pce) are often used as proxies for carbon emissions (Dong et al., 2022). Following Dong et al. (2022), we adopt carbon emission intensity (cei) as the proxy for carbon emission levels in the baseline analysis; in the robustness check, we use each country’s per capita carbon emissions (pce) as the dependent variable. To reduce the characteristic of heteroskedasticity, we take the logarithm of the data indicators.
Drawing on Dong et al. (2022), we select the following control variables: economic development, urbanization level, trade openness and population density. The selection and description of indicators for each variable are as follows.
4.1.2 Explanatory variables
4.1.2.1 Financial globalization level (kof,KA)
Drawing on Koengkan et al. (2018) and Shahzad et al. (2022), we adopt the financial sub-index from the KOF Index compiled by Gygli et al. (2019) as a proxy for the level of financial openness for the baseline analysis. This index encompasses several factual indicators of financial globalization: foreign direct investment, international debt, portfolio investments, balance of payments, and reserves. In the robustness check, we select the KA index compiled by Chinn and Ito (2008) as the proxy for financial openness in a legal sense. Higher values of KOF and KA indicate a higher level of financial globalization in a country.
4.1.3 Control variables
4.1.3.1 Economic development level (gdp_per)
Per capita GDP is used to represent the level of economic development; generally, a higher level of economic development is associated with lower carbon emission intensity.
4.1.3.2 Urbanization level (urban)
The proportion of the urban population to the total population is used as a proxy for the level of urbanization, with data sourced from the World Development Indicators (WDI) database. Urbanization may increase population concentration and accelerate industrialization, increasing carbon emission activities. There is often a positive correlation between a country’s level of urbanization and its carbon emission intensity.
4.1.3.3 Trade openness (trade_open)
Trade openness is measured by the proportion of imports and exports to GDP, with data sourced from the WDI database. Trade openness affects consumption and the production of intermediate and final goods in a region; there is typically a positive correlation between trade openness and CO2 emissions (Zhang et al., 2017).
4.1.3.4 Population density (pop_density)
The per capita land area is used as the proxy for population density. Higher population density is associated with higher carbon emission intensity.
4.1.4 Mediating variables
4.1.4.1 Renewable energy use ratio (renewable)
The proportion of renewable energy use in total energy consumption serves as the proxy variable for renewable energy use intensity. A higher value indicates a greater proportion of renewable energy use.
4.1.4.2 Energy efficiency (energy_int)
The energy intensity level of primary energy from the WDI database is used to represent energy efficiency. A higher value indicates higher energy consumption per unit of GDP.
4.1.4.3 Technological progress (technology)
Drawing on relevant references, we use the number of patent applications per capita as the proxy variable for technological progress. The number of patent applications is sourced from the WIPO database, and the total number of patent applications is divided by the total population to measure the technological level of each country.
Data Specification and description analysis could been seen in Table 1, 2.
TABLE 1 | Data description and data source.
[image: Table displaying types of variables along with index, variable concept, measurement, and data source. Dependent variables include carbon emission intensity and per capita carbon emission. Explanatory variables cover financial openness indices. Control variables address economic development, population density, urbanization, and trade openness. Intermediary variables focus on renewable energy usage, energy efficiency, and technology progress. Data is sourced from WDI, Gygi et al. (2019), Chinn and Ito (2008), and WIPO.]TABLE 2 | Descriptive statistical analysis of variables.
[image: A table showing various statistics for different variables: "co2 efficiency" with 3,212 observations, mean of 1.626, standard deviation 0.575, minimum 0, maximum 3.775; "kof" with 3,366 observations, mean 4.022, standard deviation 0.331, minimum 2.834, maximum 4.598; "gdp per" with 3,294 observations, mean 8.548, standard deviation 1.446, minimum 5.542, maximum 11.766; "Urban" with 3,381 observations, mean 57.264, standard deviation 23.428, minimum 8.246, maximum 100; "Trade open" with 3,084 observations, mean 0.871, standard deviation 0.517, minimum 0.1, maximum 4.373; "Pop density" with 3,381 observations, mean 4.223, standard deviation 1.522, minimum -1.991, maximum 8.983.]4.2 Model principles
4.2.1 Baseline regression
We employ static panel regression to investigate the relationship between financial openness and carbon emission intensity. This method is the most common methodology in empirical studies. We could use this method to conduct further reserach such as spatial spillover effect. The PARDL model is commonly used in the related literature (Wang et al., 2023); this model is one of the panel time series models that are more suitable for data with a large number of time periods (T) and a small number of cross-sectional units (N). However, in this study, we have a relatively large number of countries and a short interval, making panel regression a more appropriate choice.
As shown in Equation 1, we employ a panel regression model to examine the relationship between the degree of financial globalization and carbon emission intensity across countries. We assume that the relationship between the financial openness and carbon emission intensity may be nonlinear. To mitigate the impact of potential omitted variables and endogeneity, the model includes both country and year-fixed effects. Given that the relationship between the two may be nonlinear, we include linear and quadratic terms of financial globalization in the baseline regression.
[image: Equation for \(\text{lnccfir}\) is shown: \(\beta_0 + \beta_1 \text{koi}_{it} + \beta_2 \text{koi}_{it}^2 + \beta_3 X_{it} + \lambda_t + \mu_i + \epsilon_{it}\).]
In this context, [image: Italic lowercase letters "l", "n", "c", "e", "i", with the letter "t" in subscript.] denotes the logarithmic value of carbon emission intensity for each country, [image: It seems like you have included mathematical expressions instead of an image. If you meant to describe an image, please upload it, and I can help generate the alt text for it.] represents the degree of financial openness for each country, [image: It seems you're mentioning a mathematical notation, specifically "X" with the subscript "it". This usually denotes an indexed variable, commonly used in equations or datasets. If you intended to upload an image, please try again.] represents the control variables [image: It seems like you're trying to describe a mathematical symbol. The symbol "λ_i" typically represents an eigenvalue in mathematics, with "λ" being the Greek letter lambda and "i" as a subscript indicating which eigenvalue in a sequence it refers to. If you meant to provide an image, please upload it or provide a URL.] and [image: Please upload the image you would like me to generate alternate text for.] respectively representing the fixed effects that do not change over time and across countries, and [image: Greek letter epsilon with subscripts i and t, often used in mathematics or statistics to represent error terms or residuals in equations.] is the random error term, which are other factors that could affect lncei and are uncorrelated with independent variables and control variables. We assume that [image: The image shows the Greek letter epsilon with the subscript "it." It appears to be in a mathematical or statistical context, possibly representing an error term in an equation.] is normally distributed and there is no autocorrelation.
4.2.2 Intermediary-effect model
In addition to having a direct impact on carbon emission intensity, financial globalization can also indirectly impact emission intensity by influencing factors such as the proportion of renewable energy use, energy use efficiency, and technological progress. We examine the mechanism through which the level of financial openness affects carbon emission intensity across countries using a mediation model as shown in Equations 2, 3.
[image: Mathematical equation representing a model: \( mid_{it} = a_0 + a_1 ko f_{it} + a_2 ko f_{it}^2 + a_3 X_{it} + \lambda_i + \mu_t + \varepsilon_{it} \). The equation is labeled with the number two.]
[image: Equation labeled "(3)" showing a linear model: \(\text{Incei}_{it} = \gamma_0 + \gamma_1 \text{kof}_i n + \gamma_2 \text{kof}_i t + \gamma_3 \text{midc}_{it} + \gamma_4 X_{it} + \lambda_t + \mu_i + \varepsilon_{it}\).]
In this context, [image: If you upload the image or provide a URL, I'll be happy to help generate the alt text for it.] denotes the corresponding mediation variable and the meaning of the remaining variables is consistent with those for Equation 1.
4.3 Panel regression analysis
4.3.1 Baseline results
With the panel setting in Equation 1, we conduct panel regression using the degree of financial openness as the explanatory variable and the carbon emission intensity as the dependent variable. As presented in Column (1) of Table 3, only the first and second terms of financial openness were incorporated in the regression. The level of economic development is included as a control variable in Column (2), and all control variables are included in Column (3). The results in Columns (1), (2), and (3) of Table 3 show that the first term of kof is significantly positive at the 1% level, while the second term of kof is significantly negative at the 5% level.
TABLE 3 | The nonlinear effect of financial openness on carbon emission intensity.
[image: Regression table showing coefficients of variables kof, kof2, gdp_per, Urban, Trade_open, and Pop_density across three models of lncei. Significant coefficients are marked with asterisks. Model (1) has the highest kof coefficient at 1.626. The gdp_per variable consistently has a negative coefficient. Population density has a positive significant effect in model (3). Constants and adjusted R-squared values are also provided, with all models including country and time fixed effects.]Financial openness has a nonlinear U-shaped relationship with carbon emission intensity. For instance, as shown in Column (3), the regression coefficient of financial openness is 0.86, indicating that when financial openness lever increase by one standard deviation of 0.331,the carbon intensity per unit of GDP will decrease by an average of 28.5%. Among the relevant control variables, the coefficient of economic development is significantly negative, suggesting that an increase in income levels has a negative impact on carbon emissions. In contrast, an increase in levels of urbanization, trade openness, and population density has a positive effect on carbon emission intensity. Some studies find that financial openness on carbon emission intensity (Aydin and Turan, 2020; Ulucak et al., 2020). Other studies find that financial openness could lead to an increase carbon emission intensity (Koengkan et al., 2018; Kostakis, 2024). Our study provide a general conclustion about the relationship between the two variables.
4.3.2 Robustness test
4.3.2.1 Change in variable measurement
In the results of the baseline analysis, following Gygli et al. (2019), the sub-index of finance of KOF globalization Index serves as the proxy variable for the level of financial openness. Another commonly used measure of financial openness is the Chinn–Ito Financial Openness Index (Chinn and Ito, 2008), which we then employ as the explanatory variable and re-run the panel regression, with the results summarized in Column (1) of Table 4.
TABLE 4 | Robustness test (change data measurement).
[image: A regression table with three models labeled (1) lincei, (2) lnpc, and (3) lnpce. Variables include kof, kof2, KA, KA2, gdp_per, Urban, Trade_open, Pop_density, and a Constant. Each variable shows coefficients with significance levels and t-statistics in parentheses. Observations count, R-squared, country FE, and Time FE are listed: model (1) shows R-squared 0.263, model (2) 0.391, and model (3) 0.403, with country and time FE as YES across all models.]We select carbon emission per unit of GDP as the proxy for the level of carbon emissions across countries as the dependent variable in the baseline regression. We then use carbon emission per capita (lnpce) as the dependent variable. The results are shown in Columns (2) and (3) of Table 4. As seen in Table 4, under different specifications, regardless of whether we use the Chinn–Ito Financial Openness Index or the KOF Index, the regression coefficient of the quadratic term is significantly negative at the 1% level; the regression coefficient of the linear term is significantly positive. Thus, there is a nonlinear inverted U-shaped relationship between financial openness and carbon emissions, which is consistent with the results of the baseline regression.
4.3.2.2 Panel quantile regression
In the baseline analysis, we examine the overall relationship between financial openness and carbon emission intensity across countries using static panel regression. However, the relationship may vary at different values of carbon emission intensity. We investigate this using a panel quantile regression model. The results in Table 5 show that at various quantile points of carbon dioxide emission intensity, the regression coefficients of the linear term of financial openness are significantly positive, while the coefficients of the quadratic term are mostly significantly negative at the 1% level. This further demonstrates the inverted U-shaped nonlinear relationship between financial openness and carbon emissions across countries. The conclusions of this paper are robust.
TABLE 5 | Impact of financial openness on carbon emission tensity at various quantile values of lncei.
[image: Quantile regression table displaying coefficients for variables such as kof, kof2, gdp_per, Urban, Trade_open, and Pop_density across quantiles 0.9 to 0.1. Significant values are marked with asterisks. Each row includes coefficient values and standard errors in parentheses. Observations and fixed effects (Country FE, Time FE) are consistent across models.]4.3.2.3 Other robstness test
In addition to changing the measures of the main variables and conducting panel quantile regression, we conduct several further robustness checks. First, to avoid the impact of the COVID-19 pandemic on our conclusions, we shorten the sample period and run the panel regression for the period 2000 to 2019, with the results summarized in Column (1) of Table 6. Second, in addition to its impact on current carbon emission intensity, financial openness may be affected by carbon emission intensity in reverse. We avoid the issue of reverse causality by lagging all explanatory variables by one period and re-run the regression, with the results summarized in Column (2) of Table 6.
TABLE 6 | Other robustness test.
[image: Regression results table with six models labeled (1) to (6), showing coefficients and standard errors for variables: L.Incei, kof, kof2, gdp_per, Urban, Trade_open, Pop_density, and _cons. The table includes additional details like number of observations (N), R-squared values, and flags for country fixed effects, time fixed effects, AR(1), AR(2), and Hansen p-value. Each model column presents different estimates and significance levels.]Third, considering the potential issues of cross-section dependency, auto-correlation, and heteroskedasticity, we use the method proposed by Driscoll and Kraay (1998) to correct the covariance matrix and obtain robust standard errors, ensuring the accuracy of statistical inference. The regression results are summarized in Column (3) of Table 6. Fourth, extreme values of variables may have an impact on the regression results. Therefore, we winsorized all variables at the 1% and 99% levels for each year and re-run the regression analysis, with the results summarized in Column (4) of Table 6. Finally, to alleviate the issue of reverse causality and considering the lagged effect of carbon emission intensity in the preceding periods, we use the systematic GMM method to analyze the relationship between financial openness and carbon emission intensity through systematic dynamic panel regression, with the results summarized in Column (5) of Table 6.
The results in Columns (1) to (5) of Table 6 show the regression coefficients of the linear term of KOF are significantly positive at the 10% level, while the coefficients of the quadratic term are significantly negative. This verifies that the level of financial globalization has an inverted U-shaped relationship with carbon emission across countries, confirming the accuracy of Hypothesis 1.
4.3.3 Mechanism test
In the theoretical analysis in Section 3.2, we found that the inverted U-shaped nonlinear relationship between financial openness and carbon emission intensity is effected through changes in the share of renewable energy consumption and energy efficiency, as well as by promoting technological progress to facilitate carbon reduction. We then use mediation effects to explore the mechanism by which financial openness impacts carbon emission intensity with these indicators as mediating variables. The results are summarized in Tables 7, 8, and 9.
TABLE 7 | Intermediate effects test of renewable energy consumption ratio.
[image: A table showing regression results with five models for variables including "kof," "kof2," "KA," "KA2," "Renewable," "gdp_per," "Urban," "Trade_open," "Pop_density," and constant terms across columns labeled "lncei" and "renewable." Each variable has corresponding coefficients and t-statistics, some indicating significance with asterisks. The table also includes sample sizes (N), R-squared values (R²), and fixed effects indications for country and time.]TABLE 8 | Intermediate effects test of energy efficiency.
[image: A regression table displaying results for five models with dependent variables 'energy_int' and 'lncei'. It includes various independent variables like 'kof', 'kof2', 'KA', 'energy_int', and others. Coefficients, t-values, and significance levels are given for each model. Rows provide additional statistics like number of observations (N), R-squared values, and fixed effects indicators.]TABLE 9 | Intermediate effects test of technology progress.
[image: A table displaying regression results for various models and variables. Columns represent different models labeled (1) through (5), with dependent variables such as lncei, technology, lnceii, and lnpce. Rows show coefficients for variables like kof, kof2, Technology, gdp_per, Urban, Trade_open, Pop_density, and _cons, including statistical significance indicated by asterisks. The number of observations (N), R-squared values, and fixed effects for countries and time are also noted.]As shown in Column (2) of Table 7, when the dependent variable is the share of renewable energy use in total energy consumption, the coefficient of the linear term of the KOF Index is −21.39, and the coefficient of the quadratic term is 2.48, both significant at the 10% level. It suggests that financial globalization has a U-shaped relationship with renewable energy use, initially causing an increase before leading to a decrease.
This conclusion also applies to energy efficiency. As shown in Column (2) of Table 8, when energy intensity is taken as the dependent variable, the coefficients of the linear and quadratic terms of the KOF Index are significantly positive and negative, respectively, at the 1% level. Because of the inverse relationship between energy intensity and energy efficiency, this result demonstrates the U-shaped effect of financial openness on energy efficiency.
In the early stages of financial openness, foreign capital invests in traditional industries and fossil energy sectors, increasing the proportion of traditional energy in the energy mix and reducing energy efficiency. However, when financial globalization reaches a certain level, foreign capital investment in renewable energy sectors increases and improves energy consumption in production processes, thereby exerting a negative effect on the share of renewable energy use and energy efficiency. Overall, financial globalization has a U-shaped nonlinear relationship with renewable energy consumption and energy efficiency across countries.
However, both the share of renewable energy usage and energy efficiency have consistently negative marginal effects on carbon emission intensity, as shown in Column (3) of Tables 7, 8. When carbon emission intensity is taken as the dependent variable, the coefficient of renewable energy use is negative, and that of energy intensity is significant at the 1% level. The above indicates that while financial globalization has a U-shaped relationship with the share of renewable energy consumption and energy efficiency, both have negative effects on carbon emission intensity. We verify the robustness of our conclusions by replacing the main explanatory variable from the KOF Index with the KA financial openness index in Columns (4) and (5) of Tables 7, 8; the conclusions are consistent with those obtained using the KOF Index, validating Hypotheses 2, 3.
Financial openness can also promote carbon reduction by facilitating technological progress. With reference to Yi et al. (2024), we use the number of patents granted per capita in each country as a proxy for the country’s level of technological progress and conduct mediation tests. As shown in Column (2) of Table 9, when the dependent variable is the degree of technological progress in each country, and only the linear term of the KOF Index is included, its regression coefficient is significantly positive at the 10% level. However, in Column (3), when both the linear and quadratic terms of the KOF Index are included in the regression model, neither is significant, indicating that financial globalization has a unilateral positive effect on the level of innovation.
However, as shown in Columns (4) and (5) of Table 9, technological progress has a unilateral negative impact on carbon emission intensity and per capita carbon emissions. This also suggests that an increase in the level of a country’s financial openness will decrease carbon emissions by promoting technological progress, validating Hypothesis 4. Financial globalization can alleviate financing constraints and funding constraints, thereby promoting technological innovation. With the improvement in the level of technological innovation, more environmentally friendly new materials can be used in industrial production, and processes can be improved, thereby reducing carbon emission intensity. In other words, financial openness can reduce carbon emission intensity by promoting technological innovation, validating Hypotheses 4.
4.4 Heterogeneity analysis
4.4.1 Results of heterogeneity analysis by level of financial development
The relationship between the level of financial openness and carbon emission intensity may vary depending on the level of financial development. We investigate this potential heterogeneity by dividing the sample into a high-financial-development group and a low-financial-development group based on the median financial development of each country in each year. As shown in Table 10, within each sub-sample, the regression coefficient of the linear term of financial openness is significantly positive at the 1% level, while the regression coefficient of the quadratic term is significantly negative. There is, thus, an inverted U-shaped relationship between financial openness and carbon emission intensity, consistent with the results of the benchmark analysis.
TABLE 10 | Heterogeneity analysis of different values of financial development.
[image: A table presents regression results with two models. Variables include kof, kof2, gdp_per, Urban, Trade_open, and Pop_density. Coefficients and t-values are given for each model. Model (1) has an R-squared of 0.525 with 1,525 observations. Model (2) has an R-squared of 0.237 with 1,401 observations. Both models include country and time fixed effects.]We further consider heterogeneity by graphing the marginal impact of financial openness on carbon emission at each value of financial openness for each sub-sample. As shown in Figure 2, at a certain level of financial openness, the marginal coefficient of financial openness on carbon emission intensity is smaller for the sub-sample of countries with a high level of financial development than for the sub-sample with a low level of financial development. This suggests that for higher levels of financial development, the marginal negative impact of financial openness on carbon emission intensity is stronger.
[image: Line graph showing the marginal impact of FDI on CO2 levels versus KOF index. Two lines are plotted: a blue solid line for high financial development levels, and a red dashed line for low financial development levels. Both lines slant downward, indicating a negative correlation.]FIGURE 2 | The relationship between kof and marginal impact of financial openness on carbon emission intensity at different level of financial development. Note:Since kof has an inverse U-shaped relationship on cei,kof will have a linear relationship between financial openness with marginal impact of financial openness on carbon emission intensity.
When a country’s financial development is relatively high, the resource allocation efficiency of its financial market will be higher, the degree of competition in its financial system will be greater, and the development in areas such as green finance will be more advanced. Foreign capital entering the country may be more willing to invest in long-term sustainable development and low-carbon technologies, thereby increasing the negative effect of financial openness on carbon emission intensity.
4.5 Spatial spillover effects of digital economy development on carbon emissions
4.5.1 Spatial auto-correlation test
Before examining spatial panel relationships, it is necessary to first establish a spatial distance matrix. Following the approach of Yao et al. (2023), we select the reciprocal of the squared distance between national capitals as the elements of this matrix. The data on distances between national capitals are sourced from the CEPII database. We first employ the global Moran’s index to test the presence of spatial dependency for carbon emission intensity and the KOF Index for each country, analyzing whether there is a significant positive correlation between the degree of financial globalization and carbon emission intensity among adjacent countries.
As shown in Table 11, between 2000 and 2021, the global Moran’s I index for carbon emission intensity ranged from 0.2 to 0.3, while for financial globalization, this value was mostly above 0.3, indicating the presence of positive spatial auto-correlation between countries’ financial globalization indices and carbon emission intensity. In terms of significance, the p-values of the Z-test statistics are all less than 0.01, suggesting that the spatial auto-correlation test is also statistically significant. For two geographically adjacent countries, the patterns of change in carbon emission intensity and financial openness are similar. Notably, over time, and especially in recent years, the Moran’s I index for carbon emission intensity among countries shows an upward trend. For instance, in 2010, the spatial Moran’s I index for carbon emission intensity among countries was 0.234, which rose to 0.332 in 2021. There is an increase in the spatial auto-correlation between countries’ carbon emission intensities. This suggests that when studying the impact of financial globalization on carbon emission intensity, the potential spatial spillover between variables should be considered. Therefore, we use a spatial panel model to analyze the impact of an increase in the level of countries’ financial openness on the carbon emission intensity of neighboring countries.
TABLE 11 | Global Moran’s index of carbon emission intensity and the financial openness index.
[image: Table displaying data from the years 2000 to 2021, comparing two metrics, Lncei and KOF, each with two columns labeled I and Z. Values are provided for each year, showing changes over time.]4.5.2 Spatial panel-regression results
The development of the financial openness in a particular region influences the carbon emission levels within that region and may impact the carbon emissions of neighboring regions. Next, we employ a spatial panel regression model to investigate this potential effect.
First, we select the appropriate spatial panel regression model through the likelihood ratio (LR) test. The results of the LR test indicate that, at the 1% significance level, we can reject the null hypothesis that the spatial Durbin model (SDM) can be degraded into the spatial error model or spatial autoregressive model (with LR test values of 78.16 and 68.44, respectively, and corresponding p-values of less than 0.0001). Therefore, we choose the SDM model to study the spatial spillover effects of financial openness on carbon emission intensity in other regions. We use the Hausman test to compare the applicability of the fixed- and random-effects model. As shown in Table 12, at the 1% significance level, there are significant differences between the fixed- and random-effects model in the regression coefficients, suggesting that the fixed-effects model is more appropriate.
It is worth noting that the coefficient of spatial lagging terms might not fully capture the spatial spillover effects of financial globalization on carbon emission intensity in SDM (Elhorst, 2012). Therefore, we both summarize the coefficients estimated by the SDM model and the direct, indirect, and total impacts of each explanatory variable on carbon emission intensity. The indirect impact represents the spatial spillover from neighboring countries on a country’s carbon emission intensity. From Table 13, for the indirect effect of financial openness on neighboring countries, the regression coefficient for the first-order term of the KOF Index is 8.147, and the coefficient for the second-order term is −1.022, both significant at the 1% level (with the inflection point of the KOF index being 3.99). This indicates that a country’s financial globalization has an inverted U-shaped nonlinear spillover effect on carbon emission intensity in neighboring countries, confirming the accuracy of Hypothesis 5.
TABLE 12 | Spatial model selection test.
[image: Table comparing model selections with LR statistics, P values, and conclusions. All comparisons have significant P values less than 0.001. Conclusions reject that SDM is not better than SAR and SER models, and FE is not better than RE model.]TABLE 13 | Spatial spillover effects of financial globalization on carbon emission intensity.
[image: A table displays regression results with variables: kof, kof2, gdp_per, Urban, Trade_open, and Pop_density across columns labeled Main, Wx, Direct, Indirect, and Total. Each entry lists a coefficient with asterisks indicating significance and t-statistics in parentheses. Observations count is 2,814, with country and time fixed effects labeled as "YES."]5 CONCLUSION AND POLICY IMPLICATIONS
Climate change poses a global challenge, and financial globalization is an important feature of the modern economy. Analyzing the relationship between these two factors can help governments better implement carbon reduction policies. This paper uses cross-country panel data from 146 countries from 2000 to 2021 to study the impact of financial globalization indices on carbon emission efficiency across different countries. The research findings of this paper are as follows.
Firstly, there is an inverted U-shaped nonlinear relationship between a country’s degree of financial openness and its carbon emission intensity. That is, financial globalization initially has a positive effect on a country’s carbon emission intensity, but after a certain turning point, its impact turns negative. This conclusion remains valid after changing the measure for the explained and explanatory variables, conducting quantile regression, altering the sample interval, and employing dynamic panel regression. This result goes some way to explain the differences in the literature regarding the impact of financial openness on carbon emission intensity. At different stages of financial openness, the impact on carbon emission intensity will vary significantly. The turning point, where the relationship changes from positive to negative, is particularly significant in countries with more developed financial systems, which are better equipped to handle the technological and energy efficiency improvements associated with financial openness.
Second, we compared the impact of financial openness on carbon emission intensity under different levels of financial development. We showed that with a higher level of financial development, the negative effect of financial openness on carbon emission intensity is stronger. This suggests that countries at different stages of financial development experience different impacts from financial openness. Countries with more advanced financial systems are better able to leverage financial openness to promote clean technology and energy efficiency, thus mitigating the environmental impact of financial globalization.
Third, we used a mediation model to examine the mechanism by which financial openness impacts carbon emission intensity across countries. We found that financial openness has an inverted U-shaped nonlinear relationship with carbon emission intensity through the proportion of renewable energy use and energy efficiency. However, financial openness also unilaterally inhibits carbon emission intensity by promoting technological progress. The promotion of technological progress is a key factor in reducing carbon emissions, as it encourages more efficient energy use and facilitates the transition to renewable energy sources.
Fourth, considering the apparent spatial auto-correlation between financial globalization levels and carbon emission intensities among countries, we used an SDM model to study the impact of a country’s financial openness on the carbon emission intensity of neighboring countries. The results indicate that the development of a country’s financial openness may have an inverted U-shaped spatial spillover on the carbon emission intensity of neighboring countries, first increasing and then decreasing. Currently, there are few studies that consider the environmental impact of financial openness on neighboring countries, and this paper provides a useful supplement. At the same time, the research in this paper suggests that countries in a region should, to some extent, cooperate and coordinate in the process of financial openness. These research conclusions lead to the following insights. These spillover effects highlight the importance of regional cooperation in aligning financial and environmental policies to avoid negative externalities.
Firstly, governments should implement different strategies at different stages of financial openness to achieve optimal environmental effects. Our conclusions show that the impact of financial openness on carbon emission intensity exhibits phased changes as a country progresses in its process of opening. Therefore, in the initial stage of financial liberalization, countries need to focus their attention on identifying and mitigating the potential negative environmental impacts of financial globalization. At this stage, countries should strengthen their regulatory frameworks and prioritize investments in cleaner technologies to prevent the adverse environmental effects of early financial openness. Once financial openness reaches a relatively high level, countries should actively leverage international resources to incentivize domestic investment in green projects, aiming to reduce carbon emissions and thereby enhance the country’s overall environmental performance and efficiency.
Second, in the process of financial openness, governments should actively guide foreign capital flows to high-tech and environmentally friendly industries, giving new impetus to carbon reduction activities. This study points out that financial openness can effectively promote technological progress and increase the proportion of renewable energy in total energy consumption, thereby advancing carbon reduction. Therefore, policymakers wishing to reduce domestic carbon emissions should attract foreign investment through preferential measures into areas that improve energy use efficiency and optimize energy structures. Governments can also incentivize investment in green technologies and renewable energy by providing targeted subsidies or tax incentives.
Third, considering the potential spatial spillover effects of a country’s financial openness on the carbon emissions of neighboring countries, regional economies should establish coordination and cooperation mechanisms for financial openness to prevent carbon emission issues resulting from policy inconsistency. Regional agreements or platforms focused on green finance could help align environmental policies, promote shared investments in sustainable projects, and create a unified approach to addressing climate change. At the same time, building green financial cooperation platforms is an effective way for regional economies to jointly address the challenges of climate change and achieve efficient environmental governance.
In the current study, we focused on the impact of financial openness on carbon emission intensity. However, carbon emission levels are only one aspect of human activities’ impact on the environment. Future research could explore the effect of financial openness policies on ecological footprints. Additionally, it would be valuable to investigate the impact of financial openness on micro-level firms to enrich the content of the paper. Beyond financial openness itself, future studies could also examine the synergetic effects between financial openness and domestic financial policies (such as green finance) on environmental outcomes. We believe these directions for future research will provide new insights and contributions to the field.
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Carbon emissions have emerged as a critical global environmental challenge, with public participatory environmental regulation becoming an increasingly vital governance tool in promoting carbon reduction. This study employs panel data from 278 prefecture-level cities in China spanning 2011–2020 to construct a public participatory environmental regulation index through policy text analysis, empirically examining its impact mechanism on carbon emission intensity. The findings reveal that: (1) public participatory environmental regulation significantly reduces carbon emission intensity; specifically, baseline regression results indicate that a one-unit increase in public participatory environmental regulation intensity leads to a 0.05 unit decrease in carbon emission intensity, significant at the 1% level; (2) mediation analysis demonstrates that public environmental participation serves as a significant intermediary between environmental regulation and carbon emission reduction; (3) heterogeneity analysis indicates that official characteristics significantly moderate policy effectiveness, with regulations implemented by non-local, shorter-tenured, and less-educated officials showing stronger inhibitory effects on carbon emissions compared to their counterparts. These findings underscore the importance of strengthening public participation mechanisms in environmental governance and considering official characteristics in policy implementation. This study provides both theoretical foundations for optimizing public participatory environmental regulation policies and practical implications for enhancing carbon reduction effectiveness.
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1 INTRODUCTION
Currently, global climate change has become a major challenge facing humanity, with reducing carbon emissions and achieving low-carbon development emerging as a common aspiration of the international community (Nakhli et al., 2022; Wang et al., 2023). As a key participant in global carbon reduction, China is actively assuming the responsibilities of a major nation, contributing Chinese wisdom and solutions to global climate governance. To this end, China has solemnly committed to the international community to strive to achieve carbon peaking before 2030 and carbon neutrality before 2060. Realizing this ambitious goal requires a deep understanding of the factors influencing carbon emissions and exploring effective governance pathways.
To address the challenge of carbon emissions, academia has conducted extensive and in-depth research on the characteristics and influencing factors of carbon emissions. Research shows that carbon emissions exhibit significant regional differences and industry-specific characteristics (Wang et al., 2023; Wang et al., 2022; Zhang et al., 2023). Regarding the influencing factors of carbon emissions, traditional research has primarily focused on industrial structure (Wang and Wang, 2021; You and Zhang, 2022), energy structure (Wu et al., 2021), and technological progress (Kou et al., 2022; Li et al., 2023). However, optimizing and adjusting these influencing factors requires effective policy guidance and institutional guarantees. Although China has established a carbon reduction system based primarily on command-and-control and market-based environmental regulations, this system still faces numerous problems such as high regulatory costs, severe information asymmetry, and low implementation efficiency, resulting in practical dilemmas of “government failure” and “market failure” (Diebecker and Sommer, 2017; Ge et al., 2020).
Public participatory environmental regulation, as a key component of the modern environmental governance system, breaks through the traditional single governance model of “government-led, passive corporate response.” By activating social forces and strengthening public supervision, it forms a diversified governance pattern where government regulation, market incentives, and public participation work in synergy, providing a new governance pathway for carbon reduction (Chang et al., 2022; Chu et al., 2022). Existing research consistently demonstrates that this governance model has played a positive role in promoting technological innovation (Cao and Chen, 2024; Tang and Li, 2022), improving environmental governance effectiveness (Song and Majeed, 2023; Zhao and Cheng, 2024) and promoting carbon reduction (Guo et al., 2024; Tang and Li, 2022; Yang et al., 2024). Despite extensive research on the effectiveness of public participation in environmental management, significant limitations remain in measurement methods. Current research primarily adopts four types of indicators: (1) complaint-based data, such as measurements derived from the 12,369 environmental protection complaint system (Jiao Y et al., 2024; Zhou et al., 2024); (2) media attention metrics, utilizing media coverage frequency as a proxy for regulatory intensity (Wang and Jia, 2021; Zhang Y et al., 2022); (3) environmental NGO evaluations, employing indices such as the Pollution Information Transparency Index (PITI) or environmental reputation indices (Birkey et al., 2016; Cao and Chen, 2024); and (4) public subjective intention measures, constructing indicators through surveys on public environmental participation or environmental awareness (Jiao J et al., 2024; Triguero et al., 2016).
However, existing measurement methodologies exhibit several significant limitations. First, when governments guide public participation in environmental governance, they typically establish comprehensive institutional frameworks through multiple complementary policies, encompassing stakeholder identification, participation channels, procedural standards, and rights protection. Single indicators employed in existing research fail to capture this comprehensive policy framework. For instance, complaint data merely reflects public participation through petition channels, while media coverage only indicates the intensity of social supervision—neither fully represents the complete policy system of public participatory environmental regulation. Second, these indicators overemphasize outcome measurements of government-guided public participation while neglecting the policy essence of public participatory environmental regulation. Environmental petition data, media coverage, and public participation metrics primarily reflect participatory behavioral outcomes within the government-established institutional framework, failing to directly measure governmental policy efforts in institutional design, channel development, and procedural standardization. Third, outcome-oriented measurements (such as complaint quantities) potentially suffer from endogeneity issues. Changes in these indicators might stem from either strengthened governmental regulation or passive responses to deteriorating environmental conditions, making it difficult to establish clear causal relationships between environmental regulatory policies and governance outcomes. Fourth, indicators obtained through questionnaires or environmental organization evaluations are susceptible to sample selection bias and varying evaluation standards, raising concerns about reliability and comparability.
To address these methodological limitations, this study adopts a direct policy-text approach, systematically analyzing environmental policies from 278 prefecture-level cities in China from 2011 to 2020. Through policy text analysis, we measure public participatory environmental regulation intensity by evaluating both policy attribute strength and implementation intensity, empirically examining its carbon reduction effects. Furthermore, considering that public participatory environmental regulation aims to achieve environmental governance objectives by activating social supervision, we incorporate public environmental participation into our analytical framework, investigating how such regulation influences carbon emission intensity through public participation mechanisms. Additionally, as local government officials are primary agents in environmental policy formulation and implementation, their personal characteristics may influence policy tool selection and implementation effectiveness (Shi et al., 2020). Therefore, we examine the heterogeneous effects of official characteristics including age, origin, education level, and tenure to deepen understanding of policy implementation variations.
This study makes several distinctive contributions to the existing literature. First, to construct a comprehensive index for measuring public participatory environmental regulation intensity at the prefecture-level city level in China through policy text analysis. Second, to empirically examine the impact of public participatory environmental regulation on carbon emission intensity using panel data from Chinese cities. Third, to investigate the mediating role of public environmental participation in the relationship between public participatory environmental regulation and carbon emission intensity. Fourth, to analyze the heterogeneous effects of local official characteristics (age, origin, education level, and tenure) on the effectiveness of public participatory environmental regulation in reducing carbon emission intensity. Finally, based on the empirical findings, we aim to provide policy recommendations to optimize public participatory environmental regulation and enhance carbon reduction effectiveness.
2 THEORETICAL FOUNDATION AND HYPOTHESIS DEVELOPMENT
2.1 Public participatory environmental regulation and carbon emission intensity
Public participatory environmental regulation, as a bottom-up governance instrument, primarily constrains corporate environmental behavior through environmental information disclosure, public supervision, environmental complaints, and whistleblower incentives, effectively addressing both “government failure” and “market failure” (Chu et al., 2022). This regulatory approach creates sustained social pressure by expanding public discourse rights and supervisory powers in environmental governance.
On the institutional side, governmental design expands public participation space by activating public attention to social issues. A distinctive feature of public participatory environmental regulation is its comprehensive information disclosure system, including mandatory corporate environmental information disclosure and key polluter information publicity mechanisms, which substantially reduce public costs in accessing environmental information (Li et al., 2021; Zhang H et al., 2022). Additionally, diversified supervision channels, such as the “12,369″environmental protection hotline and online reporting platforms, provide convenient institutionalized pathways for public participation in environmental governance (Jiao Y et al., 2024; Zhou et al., 2024). This transparent institutional design enhances both public right to information and the timeliness and effectiveness of environmental supervision.
On the social mobilization side, activated social forces generate effective constraints on enterprises (Almeida et al., 2018; Liao, 2018). Another key feature is the multi-tiered social supervision system. Environmental organizations provide technical support through professional monitoring and data analysis (Cao and Chen, 2024; Li et al., 2018); media outlets amplify environmental issues through public opinion supervision (Zhang Y et al., 2022); and the public exerts direct pressure through complaints and reports (Jiao Y et al., 2024; Zhou et al., 2024). This multi-stakeholder collaborative supervision significantly enhances the professionalism and influence of social oversight.
Furthermore, multi-stakeholder collaborative participation facilitates the development of effective environmental governance mechanisms (Chu et al., 2022). Public participatory environmental regulation effectively integrates government supervision with social oversight (Hensengerth and Lu, 2019). The government enhances participatory effectiveness by promptly responding to public complaints and strictly investigating environmental violations. Enterprises, under social supervision pressure, increase their environmental governance investments, while continued public attention drives stronger regulatory oversight. This virtuous interaction mechanism among government guidance, enterprise response, and public participation creates sustained pressure for emission reduction.
As public participation mechanisms continue to mature, the political opportunity structure in environmental governance continuously optimizes. Governments persistently improve information disclosure systems, broaden participation channels, and strengthen reporting incentives, providing enhanced institutional guarantees for public participation. The growing professional capabilities of environmental organizations and expanding media supervision coverage increase the effectiveness of public participation. Enterprises increasingly recognize the importance of proactively addressing public environmental demands, incorporating emission reduction targets into their development strategies.
Based on political opportunity structure theory, public participatory environmental regulation exerts significant inhibitory effects on corporate carbon emissions through comprehensive information disclosure systems, multi-tiered social supervision mechanisms, and collaborative governance between government and society. Therefore, we propose the following hypothesis:
H1. Public participatory environmental regulation is negatively associated with carbon emission intensity.
2.2 Public participatory environmental regulation and public environmental participation
As a bottom-up governance mechanism, public participatory environmental regulation not only provides institutional safeguards for public participation but also enhances public participation capacity and motivation through multiple channels.
Primarily, public participatory environmental regulation establishes diversified participation channels, reducing institutional barriers to public engagement (Zhou et al., 2024). Through the establishment of environmental information disclosure platforms, environmental protection hotlines, and online complaint systems, convenient participation pathways are provided for diverse social groups. The implementation of mandatory environmental information disclosure systems significantly enhances information accessibility, enabling timely public access to corporate environmental behavior information. The establishment of rapid response mechanisms for environmental complaints and whistleblower reward systems further enhances participation convenience and incentivization (Leng et al., 2022). This institutionalized participation mechanism not only reduces participation costs but also strengthens public confidence in engagement.
Furthermore, public participatory environmental regulation promotes environmental awareness and participation capacity among the public. Governments enhance public environmental cognition through environmental education initiatives, dissemination of environmental knowledge, and organization of environmental protection activities. Environmental organizations strengthen public monitoring capabilities through professional training and technical support (Wang et al., 2020; Zhao et al., 2022), while media outlets enhance public environmental risk awareness through environmental news coverage and case studies (Zhang Y et al., 2022). This sustained capacity building not only expands the scope of participating groups but also elevates the professionalism of participation.
Additionally, public participatory environmental regulation establishes effective feedback mechanisms, enhancing public participation satisfaction. Governments demonstrate tangible participation outcomes through prompt handling of environmental complaints, public disclosure of investigation results, and reporting of rectification measures (Li et al., 2022). Enterprises strengthen public participation confidence through responding to public demands, improving environmental behavior, and proactive information disclosure (Zhang G et al., 2019). Environmental organizations and media reinforce the social impact of public participation by tracking and reporting environmental problem resolution processes (Zhang J et al., 2019). This virtuous feedback mechanism helps the public recognize the value of their participation, stimulating sustained engagement motivation.
In summary, public participatory environmental regulation significantly promotes public environmental participation through institutional innovation, capacity building, and feedback mechanism optimization. The combination of diversified participation channels, continuous capacity enhancement, and effective feedback mechanisms jointly drives public environmental participation toward higher levels of development. This deepening participation further strengthens the governance effectiveness of public participatory environmental regulation. Therefore, we propose the following hypothesis:
H2. Public participatory environmental regulation is positively associated with public environmental participation.
2.3 Public environmental participation and carbon emission intensity
Public environmental participation inhibits corporate carbon emissions through multiple mechanisms. As a crucial social supervision force, it not only directly constrains corporate environmental behavior but also indirectly promotes emission reduction by activating institutional effectiveness. This bottom-up environmental governance model generates sustained social pressure for emission reduction.
On the direct supervision front, public environmental participation constrains high-carbon emission behaviors through environmental complaints, media exposure, and online monitoring, promptly detecting and exposing corporate environmental violations (Jiao Y et al., 2024; Wang and Jia, 2021; Zhang Y et al., 2022; Zhou et al., 2024). This social supervision pressure directly impacts corporate reputation, exposing enterprises to risks of brand image damage and market share decline. Previous research indicates that enterprises must address stakeholder demands to maintain their social image and market position (Barić, 2017; Vos, 2003). Consequently, under public supervision pressure, enterprises proactively adopt emission reduction measures. Additionally, professional monitoring and data analysis conducted by environmental organizations (Cao and Chen, 2024) enhance both public supervision accuracy of corporate environmental behavior and provide decision-making references for government environmental governance improvement.
On the institutional activation front, public environmental participation indirectly promotes corporate emission reduction. Sustained public attention and complaint reporting compel governments to strengthen environmental law enforcement, improving regulatory implementation efficiency (Zhou et al., 2024). Media’s continuous coverage intensifies social attention to environmental issues, driving stronger governmental governance measures (Wang and Jia, 2021; Zhang Y et al., 2022). This bottom-up supervision pressure enhances both the targeting and deterrence of environmental governance.
Furthermore, public environmental participation influences corporate behavior through green consumption and social evaluation. Research indicates that enhanced environmental awareness drives consumers toward green product choices (Hidalgo-Crespo et al., 2022; Testa et al., 2021), compelling corporate transformation through market mechanisms. Public attention to corporate environmental reputation affects financing costs and market access, motivating enterprises to prioritize environmental governance investments (Hussainey and Salama, 2010). Environmental organizations’ corporate performance evaluations directly impact corporate reputation, promoting proactive environmental responsibility (Birkey et al., 2016). This combined effect of market constraints and social evaluation creates sustained pressure for emission reduction.
In conclusion, public environmental participation significantly inhibits corporate carbon emissions through direct supervision constraints, institutional effectiveness activation, and market reputation influence mechanisms. This multi-dimensional social supervision pressure drives enterprises to continuously improve environmental behavior and achieve emission reduction targets. Therefore, we propose the following hypothesis:
H3. Public environmental participation is negatively associated with carbon emission intensity.
2.4 The mediating role of public environmental participation
Based on political opportunity structure theory, public participatory environmental regulation inhibits corporate carbon emissions by stimulating public environmental participation. This mediating effect demonstrates how environmental regulation achieves emission reduction targets through activating social supervision forces, with public environmental participation serving as a crucial bridge connecting institutional supply with emission reduction outcomes.
First, public participatory environmental regulation provides the institutional foundation for public environmental participation. As a bottom-up governance tool, it reduces institutional barriers to public participation through establishing diversified participation channels, including environmental information disclosure platforms, environmental protection hotlines, and online complaint systems. The implementation of mandatory environmental information disclosure systems enhances information accessibility, while rapid response mechanisms for environmental complaints and whistleblower reward systems strengthen participation incentives. This institutionalized participation mechanism not only provides convenient participation pathways but also enhances public participation capacity through professional training and technical support. The government’s timely handling of environmental complaints and feedback further strengthens public participation confidence and sense of achievement.
Second, public environmental participation inhibits corporate carbon emissions through multiple mechanisms:1. Direct Supervision Mechanism: The public promptly identifies and constrains high-carbon emission behaviors through environmental complaints, media exposure, and online monitoring. Environmental organizations enhance supervision precision through professional monitoring and data analysis.2. Institutional Activation Mechanism: Sustained public attention and complaint reporting compel governments to strengthen environmental law enforcement, improving regulatory implementation efficiency. Policy recommendations from environmental organizations and continuous media coverage drive governmental improvements in environmental governance.3. Market Constraint Mechanism: The public generates market pressure for corporate emission reduction through green consumption choices and social reputation evaluation.
In summary, public environmental participation plays a crucial mediating role between public participatory environmental regulation and corporate carbon emissions. Public participatory environmental regulation stimulates public participation through institutional innovation, while public participation drives corporate emission reduction through multiple mechanisms, ultimately achieving environmental regulatory governance objectives. Therefore, we propose the following hypothesis:
H4. Public environmental participation mediates the relationship between public participatory environmental regulation and carbon emission intensity.
3 RESEARCH DESIGN
3.1 Sample and data sources
This study selects 2011–2020 as the research period. The year 2011 marks the first year of China’s “12th Five-Year Plan” implementation, during which carbon emission intensity reduction was formally incorporated as a binding target, signaling the systematic advancement of market-based environmental regulation policies. Choosing 2011 as the starting year allows for a comprehensive observation of the entire process of market-based policy instruments from their inception to gradual refinement. Additionally, 2020 holds special significance for environmental regulation research. In this year, China made its “dual carbon” commitment to the international community, marking a new development stage for market-based environmental regulations. Simultaneously, 2020 concluded the “13th Five-Year Plan,” by which time the effects of various policies had become evident and the data relatively complete.
This study examines prefecture-level cities in mainland China, using the 293 prefecture-level cities officially designated in the 2020 National Administrative Division of Cities as the baseline sample. To ensure sample consistency, we exclude cities that were elevated to prefecture-level status after 2011. Additionally, we eliminate samples with severe data deficiencies, such as Lhasa and Sansha, resulting in a final analysis sample of 278 prefecture-level cities. Data on public participatory environmental regulations are primarily sourced from official government documents and reports. Data on official characteristics are collected from authoritative online sources including Xinhua News Agency, People’s Daily Online, and Baidu Encyclopedia, with mayoral appointment dates primarily verified through contemporary political news when specific dates are not explicitly stated. Additional data are obtained from the China City Statistical Yearbook, municipal statistical yearbooks, and municipal economic and social development statistical bulletins.
3.2 Variable selection and measurement

	(1) Carbon Emission Intensity (CI)

Following established literature that utilizes carbon emission intensity as a key indicator for assessing carbon reduction performance (Cheng et al., 2018; Li et al., 2024; Wang et al., 2016)), we measure carbon emission intensity as the ratio of carbon emissions to GDP. This metric effectively reflects the carbon emissions generated per unit of economic output, providing a standardized and comparable measure across regions and over time. To calculate total carbon emissions, based on the Intergovernmental Panel on Climate Change (IPCC, 2006) guidelines and considering data availability in China, we consider eight primary energy sources known to be significant contributors to carbon emissions: coal, fuel oil, crude oil, coke, kerosene, gasoline, diesel, and natural gas. These energy sources represent the major fossil fuels consumed in China and are comprehensively covered in official energy statistics, ensuring data reliability and accuracy for carbon emission calculations. The calculation formula is Equation 1:
[image: CO₂ emissions are calculated using the formula: CO₂ equals the sum of CO₂ᵢ, which equals the sum of Eᵢ times NCVᵢ times CEFᵢ times COFᵢ times forty-four divided by twelve.]

	(2) Public Participatory Environmental Regulation (public)

This study employs policy text analysis to measure public participatory environmental regulation intensity. We adopt this approach because policy text analysis allows us to directly capture the essence of government-led public participation initiatives by focusing on the policy design itself, rather than relying solely on outcome-based measures which may be influenced by various confounding factors and suffer from endogeneity issues. By analyzing policy documents, we can systematically quantify the government’s efforts in establishing institutional frameworks, participation channels, and procedural standards for public involvement in environmental governance. The specific measurement steps are as follows, ensuring a robust and valid methodology for quantifying this complex policy construct:
	Step 1: Policy Text Collection. We selected 2011–2020 as the study period, which represents a critical phase in China’s advancement of ecological civilization and establishment of modern environmental governance systems, accumulating rich practical experience in carbon emission control policies. Based on high-frequency word statistics and expert opinions, we identified 26 key carbon reduction terms, including “low-carbon,” “carbon peak,” “carbon neutrality,” “carbon reduction,” “decarbonization,” “carbon dioxide,” “carbon source,” and “carbon sink.” Finally, we retrieved 4,465 policy documents of various types including “opinions,” “notices,” “decisions,” and “plans.”
	Step 2: Public Participatory Environmental Policy Screening. Public participatory environmental regulation refers to a regulatory approach where governments, through institutional design and policy arrangements, establish standardized participation channels and procedures to guide and safeguard public participation in environmental decision-making and supervision through various forms such as environmental petitions, information disclosure, public hearings, and environmental assessment notifications, thereby achieving environmental governance objectives (Zhou et al., 2024; Chu et al., 2022). Based on these core elements and through in-depth discussions with environmental policy experts, we systematically screened and identified policy texts exhibiting characteristics of public participatory environmental regulation.
	Step 3: Content Analysis Unit Determination. Considering both research objectives and operational feasibility, we defined the analysis units as specific regulatory provisions within policy texts. Through systematic review of 4,465 policy documents, we constructed a three-tier coding system (“document number-chapter-specific provision”) based on regulatory tool frequency and relevance.
	Step 4: Policy Attribute Strength Assessment. Based on the legal effectiveness of policy texts, combined with administrative levels and document types, we established a five-level scoring system: local regulations (ordinances, provisions) - 5 points; government rules (regulations, measures, detailed rules) - 4 points; government administrative documents (schemes, plans, methods) - 3 points; government guidance documents (opinions, notices) - 2 points; departmental rules (opinions, notices) - 1 point.
	Step 5: Policy Implementation Strength Assessment. We constructed quantitative criteria encompassing dimensions such as action plan support, indicator constraints, and responsibility assessment specificity to evaluate carbon reduction policy implementation strength.
	Step 6: Data Processing. The data processing was conducted in three steps. First, we calculated the policy formulation intensity for each environmental policy text based on policy attribute strength; second, we computed the implementation supervision intensity for all prefecture-level cities annually according to environmental target responsibility and assessment evaluation systems; third, after obtaining these two sets of data, we used Equation 2 to calculate annual values of public participatory environmental regulation intensity for 278 prefecture-level cities during 2011–2020, generating panel data of public participatory environmental regulation intensity for each prefecture-level city over the years.

[image: Formula showing a summation from 2011 to 2020, where TEP subscript i,j equals the sum of PEA subscript i,j times P subscript i,j.]
Where i represents the year, N denotes the number of policies issued in year i, and j indicates the jth policy issued in year i. [image: Upload the image or provide a URL for me to generate the alt text.] represents the policy attribute strength of provision j. [image: Please upload the image or provide a URL so I can generate the alternate text for you.] represents the policy strength of environmental target responsibility system and assessment evaluation system in year i. Thus, [image: Please upload the image or provide a URL, and optionally, include a caption for additional context.] can represent the public participatory environmental policy intensity in year i. In practice, an environmental policy continues to influence carbon dioxide emissions as long as it has not been abolished by the government. Therefore, the effectiveness of environmental policies in reality is not merely exerted by policies introduced in the current year but is cumulative of all effective environmental policies up to a certain point. Hence, when measuring, we must also consider the stock of environmental policies, making appropriate adjustments based on policy validity periods, modifications, and abolitions.
(3) Public Environmental Participation (index): This variable reflects public attention to and participation in environmental issues, measured by the “average daily search frequency of ‘carbon emissions’ in Baidu Index.”
(4) Control Variables.
Economic Growth (growth): Represented by “regional GDP growth rate” to control for the scale effect of economic activity on carbon emissions. Higher economic growth typically implies increased industrial production and consumption activities, which, without effective environmental regulations, can lead to higher carbon emissions. Therefore, controlling for economic growth allows us to isolate the specific impact of public participatory environmental regulation beyond the general effect of economic expansion.
Population Density (lnpop): Expressed as the” logarithm of total population per unit area,” considering the potential impact of population concentration on environmental quality and carbon emissions. Densely populated areas often experience higher resource consumption, waste generation, and environmental pressure, potentially leading to increased carbon emission intensity. Controlling for population density helps to account for the variations in carbon emissions attributable to population distribution.
Foreign Direct Investment (lnfdi): Quantified by the “logarithm of actual utilized foreign direct investment,” as FDI may influence environmental conditions through technology transfer and other mechanisms. The impact of FDI on carbon emissions is complex and debated, with possibilities of both “pollution haven” effects (relocating polluting industries to regions with lax regulations) and “pollution halo” effects (introducing cleaner technologies and management practices). Including FDI as a control variable allows us to account for these potential influences on carbon emission intensity.
Human Capital (hum): Measured by the “ratio of higher education students to total regional population,” as human capital levels may affect environmental policy implementation and green technology innovation. Regions with higher human capital are likely to have a more skilled workforce capable of adopting and innovating cleaner technologies, as well as a more environmentally conscious public that can effectively participate in environmental governance. Controlling for human capital helps to isolate the impact of public participatory regulation from the influence of human capital advantages.
Industrial Structure (str): Represented by the “ratio of secondary industry value-added to GDP,” as different industrial structures contribute differently to energy consumption and environmental pollution. Secondary industries, particularly heavy industries, are generally more energy-intensive and contribute more significantly to carbon emissions compared to tertiary industries. Controlling for industrial structure accounts for the heterogeneity in carbon emission intensity arising from varying economic structures across regions.
During indicator calculation, GDP, foreign direct investment, and other indicators were adjusted using 2000 as the base year, with foreign direct investment converted to RMB using current exchange rates to ensure comparability across different years and control for inflation and exchange rate fluctuations. Table 1 is the variable measurement scale of this paper.
TABLE 1 | Variable measurement.
[image: Table listing variables, acronyms, and their measurements: Carbon Emission Intensity (CI) as Total Carbon Emissions to GDP, Public Participatory Environmental Regulation (public) as policy document measurement, Public Environmental Participation (index) as Baidu Index search frequency, Regional Economic Growth (growth) as GDP growth rate, Foreign Direct Investment (lnfdi) as logarithm of utilized investment, Population Density (lnpop) as logarithm of population per area, Human Capital (hum) as ratio of students to population, and Industrial Structure (str) as ratio of industry value-added to GDP.]3.3 Model construction
Following existing research (Baron and Kenny, 1986), we develop a three-step approach to examine the impact of public participatory environmental regulation on carbon emission intensity and the mediating role of public participation:
	Step 1: Estimate the impact of public participatory environmental regulation on carbon emission intensity using Equation (3). Here, [image: It seems there was a mistake in capturing or representing the image. Please provide the actual image or describe it so I can help create the alternate text for it.] is the dependent variable representing carbon emission intensity; [image: The text shows "public" in regular font, followed by \( i, t \) in a smaller subscript.] is the core explanatory variable representing public participatory environmental regulation; [image: Certainly! Please upload the image you want described, and I can help generate the alternate text for it.] represents a series of control variables. The model controls for both city-specific fixed effects and time fixed effects.

[image: Equation showing a regression model: CI_{i,t} equals alpha_0 plus alpha_1 times public_{i,t} plus the sum of Control variables, Province, and Year effects, plus error term epsilon_{i,t}, labeled as equation (3).]

	Step 2: Estimate the impact of public participatory environmental regulation on public environmental participation using Equation 4. Here, [image: The image shows the mathematical expression "index" with subscripts "i, t" in italic font.] is the dependent variable representing public environmental participation; [image: A mathematical expression reads "public" with subscripts "i" and "t".] is the core explanatory variable representing public participatory environmental regulation. Control variables remain consistent with Equation 3, and the model controls for both city-specific fixed effects and time fixed effects.

[image: An equation representing a model: \( \text{index}_{ij} = \alpha_0 + \alpha_1 \text{ public}_{ij} + \sum \text{Control} + \sum \text{PROVINCE} + \sum \text{YEAR} + \epsilon_{ij} \).]

	Step 3: Estimate the mediating effect of public environmental participation using Equation 5. Here, [image: Please upload the image or provide a URL so I can assist you in generating the alternate text.] is the dependent variable representing carbon emission intensity; [image: The image shows the word "public" with subscripts "i, t" used for clarity in mathematical or technical contexts.] and its quadratic term are core explanatory variables; [image: If you upload an image or provide a URL, I can help create the alt text. Let me know if you have any questions!] represents the mediating variable for public environmental participation. Control variables remain consistent with Equation 3, and the model controls for both city-specific fixed effects and time fixed effects.

[image: Equation labeled (5) involves dependent variable \(CI_{i,t}\) as a linear function of coefficients \(\alpha_0\), \(\alpha_1\), \(\alpha_2\), variables \(public_{i,t}\), \(index_{i,t}\), summation of \(Control\), \(PROVINCE\), and \(YEAR\), plus error term \(e_{i,t}\).]
4 EMPIRICAL ANALYSIS
4.1 Descriptive statistics
The above figure displays the spatial distribution of carbon emission intensity at the prefecture-city level in China, generated using ArcGIS software. Based on Figure 2, we observe significant temporal and spatial heterogeneity in carbon emission intensity patterns. From a temporal perspective, high-intensity regions are primarily concentrated in central China, with their scope gradually diminishing, reflecting carbon reduction achievements in heavy industrial areas. Low-intensity regions maintain relative stability in western and eastern coastal areas, indicating either inherently cleaner industrial structures or successful industrial transformation in these regions. Medium-intensity regions show slight expansion in eastern areas, revealing potential impacts of industrial transfer. From a spatial distribution perspective, a distinct “three-zone” pattern emerges: The eastern coastal zone predominantly features low carbon emission intensity, benefiting from advanced industrial structures and technological levels; the central transition zone shows concentrated high-intensity areas, primarily due to heavy industry concentration and coal-dominated energy structures; the vast western zone generally maintains low intensity, closely related to its relatively lower industrialization level. The evolution trend from 2011 to 2020 indicates gradually narrowing regional disparities in carbon emission intensity, with high-intensity areas becoming more spatially concentrated and low-intensity areas expanding. This transformation trend aligns with China’s strategic goals of carbon peak and carbon neutrality.
[image: Diagram illustrating the relationship between public environmental participation, public participatory environmental regulation, and carbon emission intensity, influenced by officials' characteristics such as tenure, age, origin, and educational level. Arrows indicate directional relationships.]FIGURE 1 | Research framework mechanism diagram.
[image: Four maps of China from 2011, 2014, 2017, and 2020 showing population density gradients. Darker blues indicate higher densities, with noticeable increases over the years. Legends and scale are included.]FIGURE 2 | Spatial distribution of carbon emission intensity in China’s prefecture-level cities.
Table 2 presents descriptive statistics for all variables, including means, standard deviations, minimum and maximum values. The carbon emission intensity (CI) shows a mean value of 0.028, indicating relatively low carbon emissions per unit of economic output. Its standard deviation of 0.027 suggests modest variation across cities and years, while the range from 0.002 to 0.153 highlights significant regional and temporal differences in emission intensity. Public participatory environmental regulation (public) exhibits a mean value of 2.055 which is relatively low compared to its maximum value of 4.344. The standard deviation of 0.840 indicates moderate variation in public participation levels across regions, with values ranging from 0 (no participation) to 4.344 (high participation). Public environmental participation (index) demonstrates a mean value of 0.914, suggesting relatively low average public attention to and engagement in environmental issues. The standard deviation of 0.864 reveals considerable variation in public participation behavior, ranging from 0 (no participation) to 3.840 (high participation).
TABLE 2 | Descriptive statistical analysis of main variables.
[image: Table displaying statistical data with columns for Count, Mean, standard deviation (sd), minimum (min), and maximum (max). The rows represent categories: CI, public, index, pop, growth, fdi, str, and hum. Each row has a Count of 2780 with varying Mean, sd, min, and max values, such as CI with a Mean of 0.028 and public with a Mean of 2.055.]4.2 Baseline regression
Table 3 presents detailed results of public participatory environmental regulation’s impact on carbon emission intensity, providing a foundation for in-depth analysis. A careful interpretation of the data yields the following findings:
TABLE 3 | Impact of public participatory environmental regulation on carbon emission intensity.
[image: A table presents regression results across three models. Variables include public, index, pop, growth, fdi, str, and hum, with coefficients, standard errors, and significance levels. Model one and three use CI, while model two uses index. Significance is marked as *** for p < 0.01, ** for p < 0.05, and * for p < 0.1. N is two thousand seven hundred eighty, with adjusted R-squared values of 0.973, 0.678, and 0.393 for models one, two, and three, respectively.]Column (1) demonstrates that public participatory environmental regulation exerts a significant linear inhibitory effect on carbon emission intensity. The regression coefficient of −0.004 is significant at the 1% level, indicating that increased public participation significantly reduces carbon emission intensity. This result validates Hypothesis 1, confirming that public participatory environmental regulation serves as an effective carbon reduction tool by enhancing public environmental awareness and participation to promote low-carbon development.
Column (2) reveals the impact of public participatory environmental regulation on public environmental participation. The regression coefficient of 1.242 is significant at the 1% level, clearly demonstrating that public participatory environmental regulation significantly promotes public environmental participation. This finding confirms Hypothesis 2, which posits a significant positive relationship between public participatory environmental regulation and public environmental participation.
Column (3) presents regression results incorporating public participatory environmental regulation, public environmental participation, and carbon emission intensity. Public environmental participation shows a regression coefficient of −0.007 on carbon emission intensity, significant at the 1% level. Simultaneously, public participatory environmental regulation maintains a coefficient of −0.025 on carbon emission intensity, also significant at the 1% level. These results further demonstrate that public environmental participation plays a crucial mediating role in how public participatory environmental regulation influences carbon emission intensity. In other words, public participatory environmental regulation affects carbon emission intensity both directly and indirectly through promoting public environmental participation. This finding validates Hypothesis 4, confirming the mediating effect of public environmental participation.
4.3 Robustness tests
4.3.1 Excluding 2020 data to control for pandemic impact
Table 4 presents detailed robustness test results of the mediating effect of public environmental participation after excluding specific years’ data. The results demonstrate that public environmental participation maintains its significant positive mediating role in the relationship between public participatory environmental regulation and carbon emission intensity, even after excluding data from special periods.
TABLE 4 | Results excluding 2020 data.
[image: Statistical table with three columns labeled (1), (2), and (3), showing results for CI, index, and CI respectively. Rows list variables: public, index, pop, growth, fdi, str, hum, and _cons with coefficients and standard errors. Significant levels are indicated with asterisks, with standard errors in parentheses. Note explains significance levels: *p < 0.1, **p < 0.05, ***p < 0.01. N is 2502 for each column, with Adj-R² values of 0.974, 0.677, and 0.386.]4.3.2 Excluding sub-provincial cities
To ensure model robustness, we conducted a data screening by excluding sub-provincial cities. Considering that sub-provincial cities possess certain advantages over other cities in terms of administrative level, economic development, innovation factor concentration, and innovation capacity, these differences might introduce bias when analyzing the overall data, potentially affecting the accuracy and universal applicability of our conclusions. Therefore, we excluded these cities’ data to more accurately capture and assess development patterns in other Chinese cities and regions. After excluding sub-provincial cities, regression analysis results shown in Table 5 remain largely consistent with our previous findings. This confirms our model’s robustness even after excluding these special cities, and demonstrates that our conclusions and hypotheses are generally applicable across different city types.
TABLE 5 | Results excluding sub-provincial cities.
[image: A regression table with three columns labeled (1) CI, (2) index, and (3) CI. Rows include variables: public, index, pop, growth, fdi, str, hum, and _cons. Each cell contains coefficient estimates and standard errors in brackets. Significance levels are indicated by asterisks, with thresholds noted below: * for p < 0.1, ** for p < 0.05, and *** for p < 0.01. Sample size (N) is 2660 throughout, with Adj-R² values: 0.973, 0.666, 0.392.]4.3.3 Alternative dependent variable
To further ensure result robustness and reliability, we employed per capita carbon emission intensity as an alternative measure for carbon emission intensity. This substitution of the dependent variable represents a common robustness testing approach, aimed at examining the stability of research conclusions under different measurement criteria. The results presented in Table 6 remain fundamentally consistent with our previous analysis.
TABLE 6 | Results with alternative dependent variable.
[image: Table presenting regression results across three models labeled (1), (2), and (3). Variables include public, index, pop, growth, fdi, str, hum, and _cons. Coefficients with standard errors in brackets are shown. Significance levels are indicated by asterisks: one asterisk for p < 0.1, two for p < 0.05, and three for p < 0.01. The table includes sample size (N) of 2780 and adjusted R-squared values for each model.]4.4 Endogeneity analysis
When exploring the relationship between environmental regulation and carbon emission intensity, it is essential to address potential bidirectional causality. While environmental regulation theoretically aims to reduce carbon emission intensity through pollution control, changes in carbon emission intensity may conversely influence government environmental regulation strategies.
To address this endogeneity concern, we introduce instrumental variables (IVs) to avoid direct endogenous associations between environmental regulation and carbon emission intensity. Our IV selection is based on correlation with explanatory variables while maintaining independence from error terms. Specifically, we employ the average public participatory environmental regulation levels of other cities as instruments. Public participatory environmental regulation depends on public environmental awareness, participation willingness, and action capability. Other cities’ participation levels influence the studied city’s public attitudes and behaviors through information dissemination and social networks, thereby indirectly affecting its regulatory intensity. This social influence and demonstration effect establishes the correlation basis between instrumental and explanatory variables. Unlike direct environmental regulation, other cities’ public participatory environmental regulation levels have no direct causal relationship with the studied city’s carbon emission intensity, operating instead through socio-cultural and psychological mechanisms, thus satisfying exogeneity requirements.
To ensure IV validity, we employ the Anderson canonical correlation LM statistic for endogeneity testing. This test examines whether instruments correlate with explanatory variables while remaining independent of error terms. Significant LM statistics indicate effective instruments capable of addressing endogeneity concerns. Additionally, we conduct weak instrument tests using the Cragg-Donald Wald F statistic to verify instrument strength, specifically examining whether instruments sufficiently correlate with explanatory variables. Significant F statistics at the 5% level confirm instrument strength, ensuring IV estimation consistency and efficiency.
Through these methodological strategies, we successfully address the endogeneity between environmental regulation and carbon emission intensity, obtaining more accurate and reliable model estimates. The results maintain statistical significance and directional consistency with previous analyses, further validating our research hypotheses and conclusions.
In summary, the empirical analysis presented in this section robustly demonstrates the significant negative impact of public participatory environmental regulation on urban carbon emission intensity. This finding provides strong empirical support for Hypothesis H1 and underscores the effectiveness of public participatory environmental regulation as a tool for carbon reduction. Importantly, this section contributes theoretically by developing and validating a novel text-based index for measuring public participatory environmental regulation intensity. This index offers a more nuanced and direct measure of policy effort compared to outcome-based indicators, addressing a critical gap in existing literature and providing a valuable methodological contribution for future research in this domain. Table 7 is the result of the endogeneity test of this article.
TABLE 7 | Endogeneity test results.
[image: A table titled "CI" presents coefficients and standard errors. Variables include: public (-0.028***, 0.006), pop (-0.010***, 0.000), growth (-0.011***, 0.001), fdi (-0.077***, 0.028), str (-0.042***, 0.008), hum (0.003, 0.019), and _cons (0.248***, 0.010). Other statistics: idstat (1485.976), widstat (3174.005), N (2780). Stars indicate significance levels: *p < 0.1, **p < 0.05, ***p < 0.01. Standard errors are in brackets.]5 OFFICIAL CHARACTERISTIC HETEROGENEITY
Under China’s decentralized system, environmental regulation policy implementation largely depends on the balance between economic and environmental considerations, and local government officials’ governance philosophy—specifically, how they interpret and implement the concept that “lucid waters and lush mountains are invaluable assets.” Within the decentralized administrative system, local officials often control substantial fiscal and economic resources, wielding significant administrative power to intervene in market resource allocation and make relatively independent economic decision (Shi et al., 2020). Variations in officials’ educational background, professional experience, and economic development philosophy may lead to differences in environmental regulation policy formulation and implementation, thereby affecting carbon emissions (Shi et al., 2020). Therefore, to examine whether individual characteristics of different officials influence the relationship between various types of environmental regulation (command-and-control, market-incentive, and public participatory) and carbon emissions, this study analyzes four official characteristics: tenure, education level, age, and origin.
5.1 Official age
Previous research indicates that prefecture-level city party secretaries and mayors experience significantly decreased promotion probability and increased likelihood of secondary positions once they exceed 54 years of age (Ji et al., 2014). To examine the influence of different age groups, we categorize officials based on whether their age is greater than or equal to 54 years. The dummy variable ‘age’ is assigned a value of 1 for officials younger than 54 years and 0 otherwise, examining the impact of environmental regulation on carbon emissions.
Based on empirical results shown in columns (1) and (2) of Table 8, public participatory environmental regulation shows no significant impact on carbon emissions regardless of official age. This may be attributed to several factors: First, the effectiveness of public participatory environmental regulation largely depends on public environmental awareness and participation capacity. Under China’s current policy environment, public participation depth and breadth may not have reached the critical threshold necessary to significantly impact carbon emissions. This condition persists regardless of official characteristics like age, as public participation effectiveness depends more on overall social environment and institutional design. Second, the contradiction between information asymmetry and policy complexity is a crucial factor. Carbon emission control involves complex technical and economic issues, and the public may lack sufficient expertise for effective decision-making participation. This information asymmetry may limit actual public participation effectiveness, preventing significant impact on carbon emissions. Regardless of official age, this gap between professional knowledge and public cognition likely persists, affecting policy effectiveness. Additionally, the integration level between public participation mechanisms and traditional governance models warrants attention. China’s environmental governance has traditionally followed a top-down model, and introducing public participatory policies may face institutional inertia. These institutional transformation challenges may not significantly vary with official age as they involve systemic adjustments rather than individual decision-making differences. Policy implementation time lag is also an important consideration. Public participatory policies may require extended periods to cultivate public awareness and participation capacity before substantively affecting carbon emissions. Finally, the synergistic effects between public participation and other types of environmental regulation policies might explain this phenomenon. Public participatory policies might primarily function in raising environmental awareness and promoting information transparency rather than directly affecting carbon emissions. This indirect effect may require combination with other environmental regulation types (market-incentive or command-and-control) to significantly impact carbon emissions. The complexity of such synergistic effects may make it difficult to observe significant impacts when examining public participatory policies alone, and this situation would not change with differences in official age.
TABLE 8 | Heterogeneity test based on official age.
[image: Table showing regression results for two age groups: age equals one and age equals zero. Variables include public, pop, growth, fdi, str, hum, and _cons with their coefficients and standard errors. Significant results are marked with asterisks indicating significance levels. Sample sizes and adjusted R-squared values are provided at the bottom.]5.2 Official origin
Since the 1990s, the central government has established a series of cadre exchange systems, significantly impacting talent team building and urban development. Local officials from different origins exhibit varied personal experiences that may influence the relationship between environmental regulation and carbon emissions. The central government’s official exchange system has had a prominent influence on talent development and urban growth. To further verify the influence of official origin, we conduct group tests based on whether officials are local, with the dummy variable ‘source’ assigned a value of 1 for local officials and 0 otherwise.
According to columns (1) and (2) in Table 9, when officials are locally promoted, public participatory environmental regulation shows no significant impact on carbon emissions. However, when officials are from other regions, such regulation significantly reduces the city’s carbon emission intensity. This may be attributed to several factors: locally promoted officials might have deeper connections with existing interest groups, potentially facing greater resistance or tending to maintain the status quo when promoting public participation. In contrast, non-local officials may be more inclined to break through existing interest patterns and more actively promote public participation mechanisms. Non-local officials might bring new governance concepts and experiences, helping break local inherent decision-making patterns and more effectively promoting public participatory environmental policy implementation. Furthermore, non-local officials may focus more on establishing achievements, thus being more willing to try innovative governance approaches, including deepening public participation. The effectiveness of public participatory policies largely depends on information transparency and diversification. Non-local officials might be more inclined to break information barriers and promote multi-stakeholder participation, thereby improving policy targeting and effectiveness. Meanwhile, non-local officials may face greater political pressure and performance evaluation, potentially motivating them to more actively seek public support and participation to achieve better environmental governance outcomes. While locally promoted officials might better understand local conditions, this familiarity could lead to reduced sensitivity to existing problems. In contrast, non-local officials might bring new perspectives, more easily identifying and addressing long-overlooked environmental issues. The effectiveness of public participation mechanisms also depends on public enthusiasm and capability. The arrival of non-local officials might inspire greater public participation enthusiasm as they may be viewed as reform promoters. Additionally, different regions’ public participation experiences and models might be cross-regionally transmitted through non-local official transfers, promoting best practices dissemination. However, this finding also raises further research questions, such as how to maintain policy continuity while fully leveraging the advantages of officials from different origins, and how to design more effective public participation mechanisms that can function positively under officials with different backgrounds.
TABLE 9 | Heterogeneity test based on official origin.
[image: A table displaying regression results for two models with variables: public, pop, growth, fdi, str, hum, and _cons. Model (1) has source = 1, and model (2) has source = 0. Numbers in brackets are standard errors. Significance levels are denoted by asterisks: * for p < 0.1, ** for p < 0.05, and *** for p < 0.01. Sample sizes are 1177 and 1603, respectively, with both having an Adjusted R-squared of 0.970.]5.3 Official education level
Education level typically reflects an individual’s formal education attainment, indicating psychological quality at work and knowledge accumulation in problem-solving (Hambrick and Mason, 1984). Although officials at all levels have shown significant improvement in educational attainment since China’s reform and opening up, considerable differences in education levels still exist among officials. To further analyze the impact of officials’ education level on the relationship between environmental regulation and carbon emissions, we conduct group tests using master’s degree as the threshold. The dummy variable ‘education’ is assigned a value of 1 for officials with master’s degrees or above, and 0 otherwise.
According to columns (1) and (2) in Table 10, when officials have higher education levels, public participatory environmental regulation shows no significant impact on carbon emission intensity. However, when officials have lower education levels, such regulation actually reduces carbon emission intensity. Several factors may explain this phenomenon: First, from a policy cognition and implementation capability perspective, highly educated officials might tend to adopt more theoretical, technology-oriented policy implementation methods while relatively neglecting the substantive implications of public participation and local specificities. This “elitist” decision-making model may create a disconnect between policy implementation and public needs, weakening the actual effectiveness of public participation. In contrast, officials with lower education levels might tend to adopt more practical and flexible implementation strategies, placing greater emphasis on absorbing and responding to public opinion, thereby more effectively mobilizing public participation in environmental governance. Second, from an institutional incentive and innovation motivation perspective, public participatory environmental regulation, as a new governance model, demands higher requirements for officials’ communication, coordination abilities, and innovative thinking. Officials with lower education levels might more actively explore innovative policy implementation methods, including more effective integration of public opinion and local resource mobilization, due to greater promotion pressure and performance evaluation pressure, thereby achieving more significant carbon reduction results. In contrast, highly educated officials might overly rely on existing knowledge systems and experience patterns, finding it difficult to fully utilize the advantages and innovative potential of public participation when facing complex environmental governance issues. Furthermore, officials’ risk attitudes and sense of responsibility may be key factors affecting policy implementation effectiveness. Officials with lower education levels might maintain more cautious and responsible attitudes toward new policy tools, paying more attention to details and practical effects during implementation, thereby promoting the effective operation of public participation mechanisms and achievement of carbon reduction goals. This prudent attitude may lead them to place greater emphasis on grassroots feedback and public demands, better balancing environmental protection and economic development relationships during policy implementation.
TABLE 10 | Heterogeneity test based on official education level.
[image: A table showing regression results with two columns for "education = 1" and "education = 0". Variables include public, pop, growth, fdi, str, hum, and _cons, each with coefficients and standard errors. Significant levels are marked with asterisks: *p < 0.1, **p < 0.05, ***p < 0.01. Sample sizes (N) are 2351 and 429, with both having an Adjusted R-squared of 0.970.]5.4 Official tenure
Tenure generally refers to the time period during which officials exercise formal power (Jiang and Li, 2021). In the context of “competition for growth,” some scholars argue that newly appointed officials tend to adopt strategies that stimulate rapid economic growth in the short term, potentially adversely affecting the environment (Deng et al., 2019). However, other studies find that longer-tenured local officials are more likely to establish political connections with local enterprises and protect their polluting behaviors to maintain economic growth and stable tax sources (Li and Lu, 2021), thus hampering environmental governance efficiency. A third perspective suggests an inverted U-shaped relationship between official tenure and environmental governance, with officials’ attention to environmental governance showing a trend of first decreasing, then increasing, and finally decreasing again during their tenure. Cao et al. found a U-shaped relationship between party secretary tenure and PM2.5 concentration (Cao et al., 2019); Zhang and Gao’s research revealed a weak inverted U-shaped relationship between time constraints and economic growth, as provincial governors are more likely to adopt drastic measures to meet performance assessments when their terms are ending (Yu et al., 2019), sometimes at the expense of environmental protection.
According to columns (1) and (2) in Table 11, when officials’ tenure is greater than or equal to 5 years, public participatory environmental regulation shows no significant impact on carbon emissions. However, when officials’ tenure is less than 5 years, such regulation significantly reduces carbon emission intensity. This may be attributed to several factors: First, officials with shorter tenures face greater achievement pressure and innovation motivation, potentially leading them to adopt more open and active policy implementation methods, emphasizing public participation and rapidly mobilizing societal engagement in environmental governance. This approach may encourage enterprises to adopt clean production technologies more quickly while stimulating public awareness in monitoring high-emission behaviors, effectively reducing carbon emission intensity. In contrast, longer-tenured officials may develop relatively rigid governance patterns, with declining emphasis on public participation over time, potentially leading to gradual decrease in environmental protection enthusiasm among enterprises and the public. Second, from institutional incentive and policy innovation perspectives, shorter-tenured officials are more likely to experiment with new governance approaches, including broadly introducing public participation mechanisms, to achieve significant results within their limited terms. This innovation orientation may promote more effective enterprise-government-public collaboration models, accelerating low-carbon technology promotion and application. Longer-tenured officials might overly rely on existing management models and interest networks, lacking sufficient innovation motivation, potentially allowing high-emission enterprises’ inertial behaviors to persist uncorrected. Furthermore, the evolution of relationships between officials and local interest groups is a key factor affecting carbon emissions. Shorter-tenured officials may not yet have formed close ties with local interest groups, making it easier to maintain neutral positions, objectively handle public feedback, and effectively promote carbon reduction. This relative independence may facilitate more equitable environmental policy implementation, avoiding inappropriate protection of high-emission enterprises. Conversely, longer-tenured officials may have established deep local relationship networks, potentially favoring vested interests in policy implementation, leading to excessive tolerance of high-emission enterprises. Notably, shorter-tenured officials focus more on short-term visible policy outcomes, aligning with public participatory environmental regulation characteristics, capable of improving policy transparency and public satisfaction in the short term. This short-term orientation may motivate officials to adopt more active measures, such as increasing penalties for high-emission enterprises and enhancing environmental protection incentive policies’ attractiveness, achieving significant carbon reduction effects in a relatively short period.
TABLE 11 | Heterogeneity test based on official tenure.
[image: A regression table with two columns labeled tenure equals one and tenure equals zero. Variables listed are public, pop, growth, fdi, str, hum, and _cons. Coefficients for each variable are shown with standard errors in parentheses. Statistical significance is indicated by asterisks: one for p less than 0.1, two for p less than 0.05, and three for p less than 0.01. Sample sizes are 299 and 2481 with an adjusted R-squared of 0.970 for both.]The analysis of official characteristic heterogeneity reveals nuanced findings regarding the effectiveness of public participatory environmental regulation. Specifically, regulations implemented in regions governed by non-local, shorter-tenured, and less-educated officials exhibit a stronger inhibitory effect on carbon emissions. These results not only support Hypothesis H4, highlighting the complex interplay between official characteristics and policy effectiveness, but also contribute several key theoretical insights. First, this section provides empirical evidence supporting the mediating role of public environmental participation in the environmental regulation-carbon emission intensity nexus, further elucidating the policy transmission mechanisms at play. Second, the identification of heterogeneous effects based on official characteristics adds valuable nuance to the literature on policy implementation and local governance, suggesting that local leadership attributes significantly shape the effectiveness of environmental regulations. Finally, these findings contribute to the political opportunity structure theory by demonstrating its applicability in explaining the varying effectiveness of public participatory environmental regulation in China, where official characteristics can be viewed as shaping the political opportunity structure for policy implementation and public engagement.
6 RESEARCH CONCLUSIONS AND POLICY RECOMMENDATIONS
6.1 Research conclusions
This paper examines the impact of public participation-based environmental regulation on carbon emission intensity and its underlying mechanisms, using panel data from 278 prefecture-level cities in China during 2011–2020 and constructing a public participation-based environmental regulation index through policy text analysis. The research yields the following major conclusions:
First, public participation-based environmental regulation significantly reduced carbon emission intensity. Through institutional arrangements such as environmental information disclosure platforms, environmental complaint systems, and public supervision channels, public participation-based regulation effectively constrained corporate environmental behavior, prompting companies to proactively control carbon emissions. This result validates the political opportunity structure theory, indicating that government-led public participation mechanisms can effectively complement “government failure” and “market failure,” becoming an important governance tool for promoting carbon reduction.
Second, public environmental participation played a significant mediating role between public participation-based environmental regulation and carbon emission intensity. Public participation-based environmental regulation enhanced public environmental participation by lowering institutional barriers to participation, raising public environmental awareness and participation capabilities, and establishing effective feedback mechanisms. In turn, public environmental participation inhibited corporate carbon emissions through multiple mechanisms including direct supervision and constraints, institutional effectiveness activation, and market reputation impacts. This finding deepens the understanding of how public participation-based environmental regulation functions, revealing the important role of social forces in environmental governance.
Third, official characteristics significantly influenced the implementation effectiveness of public participation-based environmental regulation policies. The research found that officials who were appointed from other regions, had shorter terms in office, or lower education levels showed more significant inhibitory effects on carbon emissions through public participation-based environmental regulation policies. This result reflects that within China’s distinctive cadre management system, officials’ individual characteristics may affect environmental regulation policy implementation through various pathways, including policy cognition, implementation capability, innovation motivation, and risk attitude.
6.2 Research contributions
First, this study innovatively constructs measurement indicators for public participation-based environmental regulation, expanding the theoretical boundaries of environmental regulation research. Working directly with environmental policy texts, this research systematically reviewed environmental policies issued by 278 prefecture-level cities in China from 2011 to 2020, innovatively constructing a public participation-based environmental regulation index that incorporates both policy attribute intensity and implementation strength. This method overcomes the limitations of existing research that relies on single indicators such as environmental complaint data, media reporting frequency, environmental organization evaluations, or subjective public intentions. It not only comprehensively reflects the policy system of public participation-based environmental regulation but also avoids potential endogeneity problems associated with results-oriented indicators. Based on this measurement indicator, the research systematically examines the impact of public participation-based environmental regulation on carbon emission intensity for the first time, expanding the research boundaries of environmental regulation theory, enriching theoretical understanding of environmental regulation classification and mechanisms, and providing empirical support for constructing a diversified co-governance environmental management system.
Second, this study reveals the mediating role of public environmental participation, establishing a transmission mechanism for how environmental regulation affects carbon emissions. The research clarifies the mediating mechanism of public environmental participation between public participation-based environmental regulation and carbon emission intensity, constructing a theoretical logic chain of “institutional supply-social response-environmental performance.” Through empirical testing, the research finds that public participation-based environmental regulation promotes increased levels of public environmental participation by stimulating social supervision forces, lowering institutional participation barriers, and enhancing public environmental awareness and capabilities. In turn, public environmental participation significantly inhibits corporate carbon emissions through multiple mechanisms including direct supervision and constraints, institutional effectiveness activation, and market reputation impacts. This finding not only deepens understanding of the transmission mechanisms of public participation-based environmental regulation but also provides empirical support for multi-agent co-governance theory, revealing the important role of social forces in environmental governance. The research results show that public participation-based environmental regulation significantly reduces carbon emission intensity, and this effect is realized through the mediating role of public environmental participation, providing new empirical evidence for understanding the driving factors of carbon reduction in China.
Finally, this study introduces heterogeneity analysis of official characteristics, enriching theoretical explanations for differences in environmental policy implementation effectiveness. The research incorporates official characteristics into the environmental governance research framework, systematically examining how officials’ age, origin, tenure, and educational background moderate the implementation effects of public participation-based environmental regulation policies. The research finds that officials who are appointed from other regions, have shorter terms in office, or lower education levels show more significant inhibitory effects on carbon emissions through public participation-based environmental regulation policies. This result challenges traditional expectations regarding highly educated officials with longer tenures, revealing that official characteristics affect environmental regulation policy implementation through various pathways, including policy cognition, implementation capability, innovation motivation, and risk attitude. This finding provides a new theoretical perspective for understanding the heterogeneity of environmental policy implementation, as well as new empirical evidence for official selection and environmental governance assessment, offering important implications for improving China’s distinctive cadre management system and enhancing environmental regulation policy implementation effectiveness.
6.3 Policy recommendation
The empirical findings of this study offer significant practical implications for optimizing environmental governance and achieving carbon reduction targets, particularly within the context of China’s ambitious “dual carbon” goals and global climate governance efforts. Based on our analysis, we propose the following policy recommendations:
	(1) Optimize the Design and Implementation of Public Participatory Environmental Regulation Policies. Our research confirms the effectiveness of public participatory environmental regulation in reducing carbon emission intensity. Therefore, policymakers should prioritize the continued optimization and robust implementation of such policies. This entails enhancing policy system comprehensiveness by adopting comprehensive policy frameworks that encompass diverse participation channels, clear procedural standards, and robust rights protection mechanisms for public participants. Strengthening policy implementation and supervision requires ensuring effective execution through concrete action plans, measurable indicator constraints, and well-defined responsibility assessment systems at all levels of government. Additionally, policy design and implementation should be tailored to local contexts, considering regional variations in economic development, social conditions, and environmental challenges.
	(2) Develop Strategies to Enhance Public Environmental Participation. The mediating role of public environmental participation underscores its importance in translating environmental regulation into tangible carbon reduction outcomes. Policymakers should improve environmental information transparency by increasing the accessibility of environmental data, pollution sources, and policy details. Expanding public participation channels beyond traditional petition systems through online platforms, social media engagement, and community-based environmental initiatives will facilitate broader public involvement. Investing in public environmental education and awareness campaigns will enhance citizens’ understanding of environmental issues, carbon reduction strategies, and their roles in environmental governance.
	(3) Consider Official Characteristics in Cadre Management and Policy Implementation. Our findings on the heterogeneous effects of official characteristics suggest that local leadership attributes play a significant role in policy effectiveness. In regions where strong regulatory enforcement is needed, consider assigning officials with characteristics associated with higher regulatory effectiveness, such as non-local officials who may be less constrained by local vested interests. Providing targeted training programs for officials at all levels is particularly relevant for those with lower education levels. While shorter tenures may sometimes be associated with stronger regulatory effects, excessive turnover can disrupt policy continuity, making it crucial to balance fresh perspectives with policy stability.
	(4) Contributing to China’s “Dual Carbon” Goals and Global Climate Governance. By effectively implementing public participatory environmental regulation and adopting these policy recommendations, China can significantly accelerate its progress towards achieving its ambitious goals of peaking carbon emissions before 2030 and achieving carbon neutrality by 2060. China’s experience in leveraging public participation for environmental governance can provide valuable insights for other countries seeking to enhance their climate action. Promoting public participation as a key element of environmental regulation globally can foster more inclusive, effective, and sustainable pathways towards a low-carbon future. By implementing these recommendations, governments can harness the power of public participation to strengthen environmental regulation, accelerate carbon reduction, and contribute to a more sustainable future.

7 LIMITATIONS AND FUTURE RESEARCH DIRECTIONS
While this study contributes valuable insights into the impact of public participatory environmental regulation on carbon emission intensity, it is important to acknowledge certain limitations that warrant consideration in future research.
First, the geographic scope of this study is limited to prefecture-level cities in mainland China. While focusing on China, a major carbon emitter, provides significant insights within this context, the generalizability of our findings to other regions or countries may be constrained due to differences in political systems, socio-economic contexts, and environmental governance structures. Second, our measurement of public environmental participation relies on the average daily search frequency of “carbon emissions” in Baidu Index as a proxy. While Baidu Index provides a readily available and dynamic measure of public attention, it may not fully capture the depth and breadth of actual public participation behaviors, such as offline activism or engagement through other platforms. Finally, the analysis period of this study concludes in 2020. While this period represents a crucial phase in China’s environmental governance development, extending the analysis timeframe to include more recent years, as data becomes available, could provide further insights into the evolving dynamics of public participatory environmental regulation and its long-term impacts on carbon reduction.
To address these limitations and further advance research in this area, several directions for future research are suggested. Comparative studies across different countries or regions could investigate the generalizability of our findings and explore the contextual factors that shape the effectiveness of public participatory environmental regulation in diverse settings. Future research could also explore alternative measures of public environmental participation, such as integrating survey data, social media data, or data from environmental NGOs to provide a more comprehensive assessment of public engagement. Extending the analysis timeframe to investigate the longer-term impacts of public participatory environmental regulation and examining the dynamic effects over time would provide a more nuanced understanding of policy effectiveness. Finally, future studies could explore the synergistic effects of public participatory environmental regulation with other types of environmental regulation policies, such as command-and-control regulations or market-based instruments, to identify optimal policy mixes for maximizing carbon reduction and environmental governance outcomes.
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The rapid expansion of the digital economy presents substantial opportunities for achieving the “dual carbon” objectives in China and globally. Understanding how the digital economy contributes to carbon emission reduction is essential for promoting high-quality economic growth. This study examines the mechanisms through which the digital economy affects carbon emissions, with a focus on the “production side” of the social reproduction process. Using panel data from 30 provincial-level regions in China between 2012 and 2022, this study employs a dual fixed-effects model and a mediation effect model to analyze the impact of the digital economy on carbon emissions. It explores three key channels–scale effects, structural effects, and technological effects. Additionally, a moderating effect model is applied to assess the role of the National Big Data Comprehensive Pilot Zone (NBDCPZ) policy in enhancing the carbon reduction effects of the digital economy. The findings indicate that: (1) The digital economy plays a significant role in reducing carbon emissions, with its effects being more pronounced in eastern regions and areas with abundant energy resources and higher levels of digital economic development. (2) On the production side, technological progress and structural upgrading mediate the reduction of carbon emissions, whereas scale expansion increases emissions. However, the combined effect of technological progress and structural upgrading outweighs the negative impact of scale expansion. (3) The moderating effect analysis reveals that the NBDCPZ policy amplifies the carbon reduction effects of the digital economy, further strengthening its prohibitive influence on emissions. As nations increasingly prioritize sustainable development, this study provides valuable insights into the mechanisms by which the digital economy contributes to emission reduction. The findings highlight the need for region-specific policies that leverage digital transformation to achieve carbon neutrality goals.
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1 INTRODUCTION
The escalating global environmental crisis has made sustainable development a central concern for all nations, with climate changes because of the greenhouse effect, attracting worldwide attention. A series of changes of climate and environment such sea-level rise, glacier melting, global warming, and smog have shown us that the environmental changes caused by greenhouse gases are increasingly affecting our survival. This has grown into an urgent issue that countries around the world have to tackle now and in future (Li et al., 2022). Countries around the world are striving to tackle the dual challenge of reducing environmental degradation caused by climate change without sacrificing national economic growth (Bai et al., 2022). This dilemma has pushed nations to move from basic assumptions to innovative solutions, to balance economic development with environmental management. Since 2011, China has experienced rapid economic expansion, outpacing many nations. However, this progress has come at a significant cost, particularly in terms of environmental pollution, resulting in China becoming the world’s largest carbon emitter (Zhang et al., 2022). In response, the Chinese government has prioritized addressing environmental problems associated with carbon emissions a top priority. During the 20th National Congress of the Communist Party of China, China’s government has put forward the “double carbon” goal which called for a proactive and gradual approach to reaching carbon-peaking and carbon-neutrality. Currently, the Chinese economy continues to grow at a medium-to-high rate undergoing urbanization and industrialization, both of which are associated with serious energy consumption. The dependence of these processes indicates China’s dependence on energy will continue for a long time. This implies that China is going to face a tremendous pressure to balance economic development with reducing carbon emissions for a long time. So, the digital economy has become a ray of hope due to its enormous potential in the context, providing China with a promising path to address this dilemma effectively. In the “14th Five-Year Plan and the 2035 Vision,” China’s government outlined plans to fortify the construction of a digital government and society, improve the digitizing of social governance and public service, speed up low-carbon and green development, continuously enhance environmental quality, and intensify the battle against pollution. The China’s resolve to advance the digital economy, lower pollution levels, and enhance green governance is reflected in these policies. China’s growing commitment to resolving environmental problems and advancing sustainable development is shown in the growing emphasis on the digital economy (Niu et al., 2024).
The new digital era is coming rapidly as a new round of industry transformation and digital technology revolution. A new economic form is emerging as a result of digital technology innovation and development, including the platform economy, sharing economy, and smart cities. China’s digital economy has experienced significant growth. In 2005, its scale was 2.6 trillion yuan, and rose to the amount of 45.5 trillion in 2021, according to the “China Digital Economy White Paper (2022)”. The size is 39.8 percent of the country’s GDP in the same period. Additionally, in 2015, the national government established a pilot program called the National Big Data Comprehensive Pilot Zone (NBDCPZ), with Guizhou province serving as the first listed region. This indicates that traditional economic growth model of China will become difficult to sustain in the future (Wang H. et al., 2023), but the digital transformation across various industries in China has opened a new prospect for green economic growth and transformation of the traditional economic model (Hu et al., 2023). The digital economy, characterized by rapid development, broad reach, and profound effect, plays a crucial role in transforming the global economic environment, optimizing the structure of the global economy, and achieving economic globalization. It provides new momentum for the countries to achieve their “dual carbon” targets.
In the reproduction process of society, carbon emissions are principally produced because of human production activities (Gao et al., 2021; Sousa and Bogas, 2021). Based on this, how exactly the digital economy influence emissions? What are the potential pathways? The research considers multiple dimensions of the “production-side”, and integrates the effects of scale, structure and technology into a theoretical framework to analyze the emission-reduction pathway for the digital economy, followed by empirical testing. Moreover, whether other forces’ involvement will have an impact on the digital economy’s ability to decrease emissions of carbon dioxide. For example, China has been committed to develop digitization and big data, launching the NBDCPZ in Guizhou province in 2015. Chen and Li (2023) and Wei and Zhang (2023) used panel data to verify the expected effort of the NBDCPZ in decreasing emissions of carbon dioxide and strengthening urban sustainable. Thereby, the research further investigates whether the NBDCPZ affects the digital economy’s effect on decreasing carbon dioxide emissions. It has grand practical and theoretical sense for our country to achieve its goals including transition to the low-carbon economy and “dual-carbon” as soon as possible, while also providing valuable insights to achieve the formation of low-carbon model by using of digital economy for other countries and economies.
2 LITERATURE REVIEW
2.1 Digital economy and carbon emissions
Research of the association about the emissions of carbon dioxide and digital economy is abundant, existing studies contain various perspectives and findings. Scholars have presented two contrasting views on influence of the digital economy on emissions of carbon dioxide. A viewpoint suggests that the digital economy may promote an increase in carbon emissions. Some scholars argue that the development of the digital economy does not effectively curb carbon emissions as expected. They have found that the digital economy may exacerbate carbon dioxide emissions (Xue et al., 2022). These scholars believe that the digital economy is highly reliant on large-scale data storage and processing, which often requires extensive data centers. The operation of these data centers demands a large amount of electricity, particularly when renewable energy is not sufficiently utilized. In such cases, the electricity used tends to come from traditional fossil fuels, resulting in increased carbon emissions. More specifically, while digital technologies can reduce carbon emissions in certain areas, technological progress often leads to significant increases in resource consumption, ultimately driving an overall rise in carbon emissions. Furthermore, the processes of storing, transmitting, processing, and analyzing data expand the demand for electricity (Sui and Rejeski, 2002). The growth of China’s digital economy, for example, not only fails to decrease emissions but also has actually intensified emissions of carbon dioxide because of the rise in electricity consumption (Zhang et al., 2022). Meanwhile, the expansion of the digital economy has driven the production and upgrading of various electronic devices. The production and rapid upgrading of devices such as smartphones, computers, and servers not only lead to excessive resource consumption but also generate large amounts of electronic waste (Dong et al., 2023).
Digital economy enhances energy efficiency to aid in carbon reduction while supporting economic growth according to one perspective. This perspective is supported by Meng and Zhao (2022), who argue that improving energy efficiency leads to fewer emissions of carbon dioxide. Firstly, it was discovered that digital economy may successfully achieve its carbon benefits by decreasing regional carbon emission intensity. For instance, Liu (2024) assessed the digital growth level of Chinese cities, and their research confirms that the construction of digital cities effectively lowers carbon intensity. Secondly, improvements in total carbon emission performance also have a connection to the digital economy. Some researchers used total factor carbon productivity to assess carbon emission performance. They discovered that internet infrastructure significantly reduces emissions of carbon dioxide and enhances total factor carbon productivity (Kou and Xu, 2022). In addition, under the environment of e-commerce pilot policy, the influence of digital technologies on emissions of carbon dioxide and transmission mechanisms are investigated (Wang H. et al., 2023), finding that e-commerce policies have a beneficial impact. Additionally, constructing and improving digital infrastructure is one of the fundamental prerequisites for advancing the digital economy. The urban development model, which leverages smart mobile devices, virtualization platforms, and other digital infrastructure, provides a certain technological foundation for the low-carbon economic transition. For instance, the spread of internet infrastructure in the digital era contributes to supporting low-carbon transformation in resource-dependent regions (Pan et al., 2023).
Carbon dioxide emissions are primarily influenced through pathways such as technological advancements, energy utilization efficiency, and energy structure (Yi et al., 2022). Huang and Lin (2024) found that improving energy efficiency and promoting energy structure transformation are two essential mechanisms for carbon reduction in the digital economy. Zhao et al. (2022) also pointed out that the digital economy is able to minimize emissions of cities through optimizing the efficiency and structure of energy. Additionally, Xie et al. (2023) analyzed the effect pathway from one aspect of technical innovation, showing that the innovation of digital technologies enhances synergy and collaboration among innovation entities. They argued that the digital economy fosters an overall innovative environment through technological advancements, thus catalyzing technological innovation to achieve carbon reduction. From the standpoint of urbanization, Lu and Chen (2022) empirically tests the impact of digital economy and new-type urbanization on carbon emissions, and found the improvement of the new-type urbanization level curbs carbon emissions reduction.
2.2 National big data comprehensive pilot zone policy and carbon emissions
China has been dedicated to developing big data in order to advance the creation of new digital technologies and improve global competitiveness. A key step in this effort is the establishment of the NBDCPZ. The first phase began in 2015, when Guizhou was designated as the first region. And in 2016, other regions were added into the second batch, like Beijing-Tianjin-Hebei, Shanghai and Inner Mongolia. By leveraging its unique production factor, the NBDCPZ policy effectively unleashes the value of digital innovation and foundational resource, improving big data application and utilization, promoting disruptive changes and sustainability in production methods (Liu and Li, 2023). This process will significantly reduce carbon emissions in various regions. Wu et al. (2024) used provincial panel data and applied the Difference-in-Differences Model (DID) to assess the influence of the construction of the NBDCPZ on the agricultural carbon emission levels. They found that the establishment of the NBDCPZ effectively lowered the region’s agricultural carbon emission levels, with industry upgrading and technical innovation playing a major role in the inhibitory effect. At the same time, the digital drive model of the policy pilot zone helps the transition of agricultural production model to low carbon, which may significantly lower the levels of agricultural carbon dioxide emissions (Li et al., 2023). Similarly, Liu et al. (2023) found that the launching of the NBDCPZ encourages urban sustainable development. Bu et al. (2023) also taken the NBDCPZ as a quasi-natural experiment, and concluded that new digital technology considerably lowers the level of carbon emissions.
2.3 Research gap
Although various scholars have examined the influence of the digital economy on the emissions of carbon dioxide, with extensive studies about its mechanisms, most prior research has been focusing on individual aspects such as energy consumption, energy structure, technical innovation, and urbanization. Few research has systematically integrated multiple dimensions of the production process into a unified framework to investigate how the digital economy impacts emissions, and the contribution of government intervention has often been overlooked. Therefore, this paper seeks to make the following contributions. First, this paper innovatively constructs a theoretical framework that encompasses several dimensions of the “production-side”, including output scale, energy structure, and technological progress, examining whether the digital economy creates an effect of inhibiting the emissions of carbon dioxide and the specific pathways or mechanisms involved, both theoretically and empirically. Second, regarding the mechanism of the technological progress effect, previous research has primarily analyzed this effect from the single perspective of technical innovation or total factor productivity. However, the research investigates the dual effects of total factor productivity and energy cost efficiency brought by the digital economy, providing more comprehensive and deeper analysis of the mechanism of technological effects. Third, unlike existing literature, we also explore the moderating role of the NBDCPZ on the influence of the digital economy on emissions of carbon dioxide, rather than solely researching the direct role of the NBDCPZ in carbon dioxide emissions. It examines whether the NBDCPZ and the digital economy create synergistic or interactive effects on carbon reduction, offering insights into the relationship between mitigating environmental pollution and developing the digital economy.
The rest of the research is as follows: Section 3 describes the theoretical framework and hypotheses. Section 4 details the method and data. Section 5 presents the empirical findings. Section 6 presents conclusions and policy recommendations.
3 THEORETICAL BASIS AND RESEARCH HYPOTHESIS
3.1 Digital economy and carbon emissions
Ren et al. (2021) argued that the digital economy compresses spatial and temporal distances because of the feature of its development, facilitating cross-spatial and temporal dissemination and sharing of information. This, in turn, lowers the cost of acquiring information and helps reduce emissions of carbon dioxide. Notably, comprising information enterprises, e-commerce companies, and internet firms, these digital industries have made an initial contribution to carbon reduction. Compared to the previous traditional manufacturing industry, the digital industry is greener and more focus on carbon reduction and ecological protection. For instance, in response to the “dual carbon” goals, several Chinese internet companies have publicly stated the carbon neutrality targets and their plans for action. Furthermore, e-commerce companies, particularly those in the internet retail sector, can generate substantial net ecological benefits, as online shopping typically results in a lower carbon footprint compared to brick-and-mortar retail, especially in contexts where car-dependent lifestyles prevail (Buldeo Rai et al., 2022). Such as electronic finance and e-books, the adoption of these digital e-commerce tools can raise awareness of carbon reduction among businesses and consumers. And by optimizing production, delivery, and consumption processes, these tools contribute to reducing emissions of carbon dioxide and minimizing waste of resources (Elheddad et al., 2021).
Moreover, the application of digital technologies, including data analysis, intelligent control, monitoring systems, and resource sharing, has been found to support eco-design innovations and the development of green products (Dubey et al., 2019), thereby enhancing carbon reduction efforts. Digital technologies have been shown to optimize production processes, save consumption of energies, mitigate climate change, and decrease air pollution, such as AI, big data and cloud computing (Li et al., 2020). The emergence of these technologies also expands the capabilities of big data platforms, enabling precise measurement, statistical analysis, evaluation, and supervision. This, in turn, provides technical support for market improvements, regulation, verification, and administrative oversight, helping to achieve more accurate carbon reduction targets (Yang et al., 2022). In conclusion, the digital economy can better help companies and countries optimize supply chain management, reduce energy consumption and ecological impacts, and increase transparency, controllability, and manageability in carbon reduction initiatives. Additionally, the digital industry can leverage its strengths to help other industries reduce their emissions of carbon. This will enhance the degree of industrial digitization, stimulate the rapid expansion of green and intelligent sectors, increase their added value, and lower related carbon dioxide emissions. Thereby, the research proposes:
Hypothesis 1. Digital economy contributes to lowering carbon emissions.
3.2 The impact mechanism of digital economy on carbon emissions
3.2.1 Scale effect
Digital optimization can help industries improve production efficiency, reduce resource waste, and lower carbon emissions per unit of output. This is achieved through technologies such as smart scheduling, data analysis, and Internet of Things device monitoring. For example, in manufacturing, digital technologies can optimize production processes, reduce energy consumption, and minimize raw material waste, thereby improving carbon emission efficiency (Geissdoerfer et al., 2016). This efficiency improvement results in a reduction in carbon emissions for the same level of output. However, they may also lead to an increase in total carbon emissions. For example, When production efficiency improves and energy use decreases, lower costs may lead to increased production, thus offsetting the energy-saving effects (Peng et al., 2023). The emergence and growth of the digital economy offer new potential for economic growth. Its inherent advantages in production specialization and labor division, promoting social welfare and growth of economic scale in participating countries or regions, lead to higher emissions of carbon and a series of related environmental issues (Narayan et al., 2016). Developing the digital economy demands a large amount of data centers and information technology equipment, which are associated with significant electricity consumption, especially in developing countries where urbanization started later but is growing rapidly. So, the intense electrical demand and the considerable energy consumption features of digital infrastructure have long been controversial. For example, Sun et al. (2024) points out that regional economic growth does not necessarily enhance carbon emission efficiency; on the contrary, it may accelerate energy consumption. The expansion of economic output is often accompanied by increased carbon emission pressure, ultimately leading to a rise in total carbon emissions. Digital technologies’ promotion and commercialization have shortened the spatial and temporal distances among industries, reduced the cost of transactions and information acquisition, accelerated the knowledge spillover and the flow of factors of production among enterprises, regions, and countries, and supplemented the accumulation of new energy resource and technological innovation in enterprises (Maillat, 1998). All these factors have further expanded the regional scope and output scale of traditional production. Because of existing a bidirectional causal relationship, whenever economic growth increases or decreases, it will stimulate a corresponding increase or decrease in emissions (Mardani et al., 2019). Therefore, as a new and important potential of global economic growth, while promoting investment and economic expansion, the digital economy also increases the consumption and demands for energies to some extent, which results in an overall increasing in carbon emissions. Furthermore, according to some research, they suggested that digital technologies have improved productive efficiency, resulting in demand expansion and energy rebound effects, which contributed to a higher carbon emission level (Lange et al., 2020). Thereby, this research proposes:
Hypothesis 2a. Digital economy increases carbon emissions by scale expansion effect.
3.2.2 Structure effect
The new structural economics indicates that the energy structure at specific stages of development is a critical factor influencing the association between the emissions of carbon dioxide and the digital economy. The energy structure not only affects the consumption and demand for energy, but determines the quantities and types of air pollutants. Thus, it can be used as an essential indicator for directly assessing the efficiency and economic benefits of energy use. The process of optimizing and transforming energy structure is the process of realizing energy technology innovation and industrial economic structural upgrading. This upgrade not only promotes vertical growth within industries but also influences the development of adjacent industries through horizontal specialization. Ample evidence suggests that, the digital economy as a new “economic engine”, will profoundly influence and shape energy systems, which in turn impact emissions of carbon dioxide (Xue et al., 2022; Huang and Lin, 2024). Theoretically, the digital economy has distinct advantages in fostering an innovation-driven, service-oriented, and resource-efficient society. It facilitates the transition of energy structures toward cleaner, low-carbon systems, thereby contributing to carbon emission reductions. Digitalization enhances the optimization of energy structure, which propels decarbonization of energy structure from the sides of demand and supply (Yang et al., 2022). From the side of supply, the digital transformation of energy systems upgrades production methods for various energies and supports the development of cleaner alternative energies (Lyu et al., 2023). The general use of digital technologies enhances the technical capabilities of renewable energies and increases the proportion of new energies in overall consumption. Additionally, digital transformation enables the digitization and intelligence of energy systems, advancing the exploitation and storage of renewable energies (Wang B. et al., 2023). On the demand side, the digital economy can not only facilitate the growth of new energy enterprises but promote a shift in domestic consumer behavior toward cleaner consumption patterns (Sun et al., 2023). Thereby, this paper proposes:
Hypothesis 2b. Digital economy lowers carbon emissions by structural upgrading effect.
3.2.3 Technological effect
Through digital services and technologies, the digital economy has transformed service processes across various industrial sectors and driven innovations in production technologies, improving productivity and energy efficiency in many industries, thus contributing to a low-carbon transition (Sun et al., 2024). Compared with the traditional economy, the digital economy alters the traditional model’s constraints on economies of scale, introduces new assumptions for conventional production factors like labor and capital, and incorporates digital elements to lower the excessive consumption of traditional energies. So the green total factor productivity (Deng et al., 2022) and low-carbon total factor productivity (Li and Liao, 2022) have been significantly enhanced by the digital economy. A series of innovative and digital technologies have been created due to the digital economy. The diffusion of these digital technologies and their deep integration across industrial sectors have minimized transaction costs to the greatest extent. Additionally, big data analysis and digital platforms improve the interaction and understanding between customers and producers, alleviating supply-demand mismatches and excessive resource consumption. It is well known that the development model of the traditional economic has the characteristics of excessive consumption of energies and environmental degradation. While promoting economic growth, it also causes environmental issues such as high energy depletion and air pollution. In the digital economy, however, data elements can partially replace traditional labor and capital factors, promoting technical innovation, lowering energy consumption and improving total productivity, so as to mitigate negative impacts on the climate and environment (Li et al., 2021). According to the majority of recent studies. The, the digital economy fosters social innovation. And the spatiotemporal nature of digital technologies enhance the application and diffusion of technological innovations in various sectors, enhancing energy efficiency and driving carbon reduction. For example, the role of digital economy in lowering emissions of carbon dioxide is faced with significant innovative capability threshold and energy endowment threshold. The rise in energy consumption and advancement in non-eco-friendly technologies mostly affect local emissions of carbon in the short term, whereas advancement of green technologies is as the predominant factors in the long term (Li and Wang, 2022). Moreover, Xie et al. (2023) analyzed the effect pathway from one aspect of total factor productivity, showing that the innovation of digital technologies enhances synergy and collaboration among innovation entities, so as to accomplish carbon reduction. In this research, in order to better analyze the technological effects mechanism, the technological progress effects are divided into two aspects: technical innovation (total factor productivity) and energy efficiency (Total factor energy efficiency). Therefore, the study proposes:
Hypothesis 2c. Digital economy reduces carbon emissions by technological progress effects.
3.3 The moderating role of national big data comprehensive pilot zone policy
The Chinese government included Guizhou province in the first batch of NBDCPZ in 2015, making it the first region in the country to build such a zone. And in 2016, China started to add other regions into the second batch of the construction list, such as Inner Mongolia, Shanghai and Beijing-Tianjin-Hebei, forming a total of eight zones. By leveraging its unique production factor features, the NBDCPZ policy perfectly unleashes the value of digital innovation and foundational resources, improving big data applications and utilization, promoting disruptive changes and sustainability in production methods (Liu and Li, 2023). This process will significantly reduce carbon emissions in various regions. Specifically, with government empowerment, big data development receives more support, and its innovative applications in the pilot regions will further improve the transparency of emissions data and carbon reduction efficiency across different regions. For example, with the combination of resources for big data in these pilot areas, those relevant regulatory agencies may depend on the digital platforms and data infrastructure for collecting dynamic data statistics, so as to enhance the transparency and openness of the carbon regulating process, reduce the excessive consumption of resources in productive process, and curb speculative activities including illegal emissions and excessive carbon emissions (Lan et al., 2023). Based on big data analysis of the effectiveness of different emission reduction measures, the government can identify efficient policy options, adjust carbon taxes, carbon trading markets, and subsidy policies, in order to maximize emission reduction effects while minimizing economic losses (Wang et al., 2023). Additionally, the unique digital economy model formed by the digital production factors in the pilot regions can help agricultural production to achieve a low-carbon transformation, and significantly lower agricultural carbon emissions (Li et al., 2023). Finally, the deeper utilization of the digital technologies in the pilot regions of the NBDCPZ policy can enhance governance efficiency by rapidly collecting, organizing, and analyzing data, resulting in lower carbon emissions. For instance, the government can mine extensive business information by digital big data platforms, which contribute to formulate feasible economic policies, lower the cost of information searches, and promote emission reductions (Gomber et al., 2017). Additionally, new digital carbon emission measurement technologies can help the government manage carbon emissions by data collection, accurate analysis and real-time monitoring of emission levels. Therefore, this research proposes:
Hypothesis 3. The NBDCPZ policy positively augments the digital economy’s contribution to carbon reduction.
To present the theoretical framework and transmission mechanism of this study more clearly, Figure 1 illustrates the relationships and interactive paths between the variables.
[image: Flowchart depicting the impact of the digital economy on carbon emissions. It shows scale, structural, and technological effects leading to factors like output scale, energy structure, total factor productivity, and energy efficiency, all influenced by NBDC/PGZ policy. These contribute to direct, mediation, and moderation effects on carbon emissions, corresponding to Hypotheses 1, 2, and 3.]FIGURE 1 | The mechanism of the digital economy on carbon emission reduction.
4 METHOD AND DATA
4.1 Methods
4.1.1 Benchmark model
To explore the direct effect of the digital economy on emissions of carbon dioxide, setting the benchmark model as follows:
[image: Mathematical equation displaying CE_it = β_0 + β_1 DE_it + β_2 control_it + η_i + γ_t + ε_it, labeled as equation (1).]
In the Formula 1, [image: Please upload the image you want described, and I'll generate the alternate text for you.] denotes the province, [image: Please upload the image, and I will help generate the alternate text for it.] denotes the year. [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.] is the carbon emissions; [image: It seems like your request is missing an image. Please upload the image or provide a URL to generate alternate text.] denotes development of digital economy. [image: The image shows the word "control" in italicized font, with the letters "it" written as a subscript next to it.] denotes all control variables. [image: The image shows the mathematical symbol eta with a subscript i, often used to denote a variable or parameter in scientific equations.] and [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] respectively denotes regional fixed effects and time fixed effects. [image: Statistical symbol "ε subscript it" representing an error term, commonly used in econometrics for panel data to denote error for individual i at time t.] denotes the error term.
4.1.2 Mediation effect model
In order to study the potential pathway through which the digital economy affects carbon emissions from the production side perspective, the study constructs the mediation effect model as follows:
[image: Statistical equation depicting a model. SCI subscript it equals beta subscript zero plus beta subscript one DE subscript it plus beta subscript two control subscript it plus eta subscript i plus gamma subscript t plus epsilon subscript it, labeled as equation two.]
[image: Mathematical equation representing a model: ES_it equals beta_0 plus beta_1 DE_it plus beta_2 control_it plus eta_i plus gamma_t plus epsilon_it, labeled as equation 3.]
[image: The equation represents a model for TFP (Total Factor Productivity) with variables including \(\beta_0\) (intercept), \(\beta_1 DE_{it}\) (a variable with coefficient \(\beta_1\)), \(\beta_2 control_{it}\) (a control variable with coefficient \(\beta_2\)), \(\eta_i\) (individual-specific effect), \(\gamma_t\) (time-specific effect), and \(\epsilon_{it}\) (error term), denoted by equation (4).]
[image: Equation labeled (5) represents a model: \( \text{TFEE}_{it} = \beta_0 + \beta_1 \text{DE}_{it} + \beta_2 \text{control}_{it} + \eta_t + \gamma_i + \epsilon_{it} \).]
In the Formula 2-5, [image: It seems there might be a misunderstanding. Please upload the image file or provide a URL, and I will help you generate alternative text for it.], [image: Please upload the image or provide a URL so I can help generate the alternate text for it.], [image: It seems like there was an error in your request. Please upload the image or provide a URL, and I will generate the alternate text for you.], and [image: It seems there's a formatting issue or missing image upload. Please try uploading the image directly or provide a link, and I'll help with the alt text.] are all production-side mediating variables. [image: Certainly! Please upload the image or provide a URL so I can generate the alt text. If there's additional context you'd like to include, feel free to add a caption.] represents scale effect, [image:  Please upload the image or provide a URL so I can help generate the alternate text.] represents structural effect, and [image: It seems like you attempted to include an image, but it did not come through. Please try uploading the image again or provide a URL. If you wish, you can also add a caption for context.] and [image: Please upload the image or provide a URL for me to generate the alt text.] represent technological effects.
4.1.3 Moderating effect model
In order to study the moderating role of the National Comprehensive Big Data Pilot Zone policy in the process of digital economy affecting carbon emissions, the study construct the moderating effect model as follows:
[image: Regression equation for \(CE_{it}\) includes: \(\beta_0\), \(\beta_1 DE_{it}\), \(\beta_2 DID_t\), \(\beta_3 DID_t \times DE_{it}\), \(\beta_4 control_{it}\), \(\eta_i\), \(\gamma_t\), and \(\epsilon_{it}\). Formula labeled as equation (6).]
In the Formula 6: [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] represents the dummy variable for the NBDCPZ policy.
4.2 Variables and data
4.2.1 Explained variable
Carbon Emissions (CE): Data on carbon dioxide emissions come from the Carbon Emission Accounts and Datasets (CEADs) database. Much study has been conducted on measuring emissions of carbon dioxide, and most studies use the IPCC emission factors when calculating emissions of carbon dioxide. However, the emission factors based on field measurements in the CEADs database can more accurately represent China’s carbon emissions (Guan et al., 2021).
4.2.2 Explanatory variable
Unlike the traditional economic model, the digital economy’s primary production factor is data. The digital economy takes new information networks for the primary carriers, with the comprehensive application of information and communication technologies serving as the key propelling force, forming a more efficient, unified, and rational new economic model. With reference to existing research (Zhang et al., 2022; Chen et al., 2023), the study comprehensively builds a digital economy indicator system. Following principles of scientific rigor, hierarchy, and data availability, a series of variables are selected (Table 1).
TABLE 1 | Comprehensive indicator system of digital economy development level.
[image: Table listing digital indicators including Digital Infrastructure, Digital Industry Development, and Digital Financial Inclusion Index. Each has secondary indicators with units and all attributes are marked as positive. Examples include domain numbers with a unit of ten thousand and mobile phone penetration per one hundred people.]To determine the comprehensive index of digital economy development level, it is necessary not only to establish specific indicators that are available but also to assign weights to the relevant indicators. Generally, existing weighting methods include subjective and objective weighting methods. Regarding subjective weighting methods, the weights are assigned based on the relative importance of indicators through subjective judgment, such as Principal Component Analysis (PCA), Delphi method, and AHP method. On the other hand, objective weighting methods assign weights based on the raw information of the indicators, such as cluster analysis, standard deviation method, entropy method, and range method. Subjective weighting methods may be influenced by personal biases, leading to imbalanced weighting of indicators and thus failing to reflect the comprehensive index well. Therefore, considering the above, to avoid inaccuracies in index measurement caused by subjective weighting, the entropy method, an objective weighting method, is adopted to assign weights to the indicators. To ensure the time-series comparability of the relevant indicators, first, dimensionless processing is applied to indicators with different properties and units. In order to avoid the uneven distribution caused by large differences in indicator values, the data is standardized.
Since there are no negative indicators in this study, only the standardization formula for positive indicators is provided, as shown in Equation 7.
[image: Equation representing feature scaling: \( x_{ij} = \frac{x_{ij} - \min(x_{i})}{\max(x_{i}) - \min(x_{i})} \) for normalization, where \( x_{ij} \), \( \min(x_{i}) \), and \( \max(x_{i}) \) are dataset values.]
Here, j represents indicator and i represents province. [image: The formula represents the maximum value of a set of variables \(x_j\).] and [image: Mathematical expression for the minimum of a set \( x_j \).] respectively denote the maximum and minimum values of the indicator, and [image: Please upload the image or provide a URL for me to generate the alternate text.] denotes the dimensionless result.
After normalizing the indicators, the study calculates the objective weight for each indicator according to the entropy method. Then the share of indicator j in province i can be expressed as, as shown in Equation 8:
[image: The formula shows the variable φ_ij equal to X_ij divided by the sum of X_ij from i equals one to n, presented as equation eight.]
Next calculating the information entropy of each sub-indicator, expressed as, as shown in Equation 9:
[image: Formula displaying epsilon subscript f equals negative one over ln m, times the sum from i equals one to m of phi subscript i, times ln phi subscript i, with the condition zero less than or equal to epsilon subscript f less than or equal to one. It is equation nine.]
Information entropy redundancy degree is calculated as, as shown in Equation 10:
[image: Please upload the image or provide a URL so I can generate the alt text for you.]
For each indicator, the weight assigned is calculated and expressed as, as shown in Equation 11:
[image: Mathematical equation representing component \(\omega_j\) as the ratio of \(d_j\) to the sum of \(d_j\) from \(1\) to \(m\), with the condition \(1 \leq j \leq m\).]
Based on the calculated index weight [image: It seems you tried to include an image, but it did not come through. Please try uploading the image again or provide a URL.] and the standardized index [image: It seems there was an error or formatting issue with your request. Please try uploading the image again or providing a detailed description so I can help create the alt text.], the following can be used to derive the composite index of the digital economy ([image: It seems there is an issue with displaying the image or content correctly. Please try uploading the image directly or providing a working URL. You can also add a caption for additional context.]) as shown in Equation 12:
[image: Formula showing DE sub i equals the sum from j equals 1 to m of omega sub j times x sub i j, with the equation number in parentheses as 12.]
4.2.3 Mediating variables

	①Output scale (SC), represented by each province’s GDP, the GDP index is chosen as the conversion index and adjusted to the base year of 2000. ②Energy structure (ES), denoted by the percentage of coal consumption account for the consumption of energies. ③Technological progress, reflected in this study by two factors: total factor productivity (TFP) and total factor energy efficiency (TFEE).

For the TFP and TFEE indicators, this study refers to existing literature and to calculates TFP and EN by slack-based global DEA model (Chang et al., 2023). Specifically, the DEA model can be described by Equations 13–17, assuming constant returns to scale (CRS):
[image: Mathematical equation representing total factor productivity: \( TFP = \mu^* = \min \pi - \frac{1}{I} \sum_{i=1}^{I} \frac{S_i^1}{x_{90}} \).]
[image: Equation showing constraints s.t. \(\pi + \frac{1}{s_1} \sum_{e=1}^{n} \frac{S_e}{y_{e0}} = 1\); \(X A + S^c \leq x_0 \pi\), labeled as (14).]
[image: The image contains a mathematical inequality: \( Y \Lambda - S \geq \gamma_j^0 S^x S^t \Lambda \geq 0 \), with index \( j_i = 1, \ldots, N_I \), and equation number \((15)\).]
[image: Equation sixteen shows pi as a fraction with one in the numerator. The denominator is one plus a fraction. The fraction comprises one over st multiplied by the sum of z sub c divided by y sub zero, from c equals one to n.]
[image: The image contains mathematical equations: \(S^* = \pi x^*, S' = \pi s', \Lambda = \pi \zeta\) followed by equation number (17).]
where μ∗ denotes TFP, [image: Please upload the image or provide a URL for me to generate the appropriate alt text.] and [image: Please upload the image or provide a URL so I can generate the alt text.] respectively denote the slack vectors of output [image: It seems there is an error with uploading the image. Please try uploading the image again, and make sure it is in a supported format. Feel free to include any context or a caption if necessary.] and input [image: Please upload the image or provide a URL to generate the alternate text.]. [image: Please upload the image or provide a URL so I can generate the alternate text for you.] and [image: To generate alternate text, please upload the image you are referring to.] respectively represent the value of output and input. Y and X represent matrix vectors of output and input, respectively; [image: It seems like there was an error in providing the image. Please try uploading the image again or provide a link to it, and I would be happy to help you with generating alt text.] represent the intensity vector for the convex set of output and input of production function set.
In order to measure TFP, similar to many scholars (Chen and Golley, 2014), capital stock and labor are used as inputs, while GDP is chosen as the output. When measuring TFEE, energy input is additionally included as an input, and the unexpected output is additionally included. The specific variables are as follows:
	1) Input variable: Capital input. Similar to other references (Zhu et al., 2018), this paper applies the perpetual inventory method to evaluate capital stock due to the lack of official data. The calculation method is shown in Equation 18:

[image: Mathematical equation showing relationship: \( K_{t} = K_{t-1} \times (1 - r_{t}) + I_{t} / P_{t} \), labeled as equation (18).]
As shown in the above formula, r, I, K, P respectively denote the fixed depreciation rate, fixed investment, capital stock, and price index. Setting 2001 as the base year [image: It seems like there may have been an error or the image did not upload correctly. Please try uploading the image again, and I will be happy to help generate alt text for it.], and the growth rate method is used for the calculation. Labor input is calculated by using each province’s employed population. Additionally, data about energy input is calculated from each province’s energy balance tables.
	2) Output variables: The GDP of 30 provinces is selected as the expected output, and each province’s GDP index is taken as the conversion index, adjusted to the base year of 2000. Industrial [image: Please upload the image or provide a URL so I can generate the alternate text for you.] emissions, industrial wastewater, and emissions of industrial smoke and dust are taken as unexpected output variables.

4.2.4 Moderating variable
This paper uses the national big data comprehensive pilot zone policy variable (DID) as the moderating variable. The sample period for this study is from 2012 to 2022. In 2015, the Chinese government included Guizhou Province in the first batch of National Big Data Comprehensive Pilot Zones, making it the first region in the country to implement such a pilot project. In 2016, the government added Beijing-Tianjin-Hebei, the Pearl River Delta, Shanghai, Henan, Chongqing, Shenyang, and Inner Mongolia to the second batch of pilot zones. Noteworthily, to truly reflect the policy impact, we set the implementation time of the national big data integrated pilot area in the pilot program to 2016. Therefore, this paper sets 2016 as the point of policy impact (Zhang and Ran, 2023). In detail, DID equal one after enacting the National Big Data Comprehensive Pilot Zone policy in the corresponding province, and zero otherwise.
4.2.5 Control variables
With reference for previous research (Wang and Li, 2021; Du et al., 2023), the following control variables are chosen for the investigation. Industrialization level (IN), calculated by the percentage of industrial added value accounts for each province’s GDP. Openness level (OP), calculated as the percentage of actual FDI accounts for each province’s GDP. Research and development investment (RD), calculated as the percentage of RD investment accounts for each province’s GDP. Labor level (LD), measured by the natural logarithm of the employed quantity in each area. Urbanization level (UR), denoted by the percentage of urban population accounts for each province’s population.
4.2.6 Data sources
The sample data of the research comprises panel data from 30 Chinese provinces for the period 2012–2022. Because of existing potential reasons such as data availability, Hong Kong, Taiwan, Macau, and Tibet have been excluded from this examination. The variables data mainly comes from the CEADs database, the “China Statistical Yearbook,” the “China Industrial Statistical Yearbook,” the “China Energy Statistical Yearbook,” and provincial statistical yearbooks from various years. The definitions and descriptive statistics for these variables are respectively shown in Tables 2, 3. Descriptive statistics for the variables can be found in Table 3. As can be seen, the average value of DE is 0.1531, with a maximum value of 0.7120 and a minimum value of 0.0241. This indicates that the development level of digital economy is relatively low in most provinces, suggesting significant room for growth. The average value of CE is 10.3042, with a maximum value of 11.0705 and a minimum value of 8.7657, indicating the carbon emissions in each province are relatively high. The maximum value of SC is 4.9335, the minimum value is 0.5423, and the mean value is 0.8259. This implies that there are still certain differences in the economic development levels among the provinces in China.
TABLE 2 | Definition of each variable.
[image: Table detailing variables related to carbon emission analysis: explained variable (carbon emission), explanatory variable (digital economy development), mediating variables (output scale, energy structure, technological progress), manipulating variable (national big data policy), and control variables (industrialization level, research and development investment, openness level, labor level, urbanization level). Each variable includes a name, scalar notation, and definition.]TABLE 3 | Descriptive statistics of main variables.
[image: Table displaying statistical data for various variables. Columns include variable names, number of observations (330 for all), mean, standard deviation, minimum, and maximum values. Variables listed are CE, DE, SC, ES, TFP, TFEE, DID, IN, RD, OP, LD, and UR, with corresponding statistical values for each.]5 RESULTS AND ANALYSIS
5.1 Benchmark regression results
To control time and individual differences, the investigation uses the two-way fixed-effects model. Table 5 demonstrates the results without and with control variables. As shown in the table, we can observe that the coefficient of the digital economy is notably negative at the 1% level. This finding supports Hypothesis 1 of this paper, which states that the digital economy exerts a suppressing influence on emissions. This implies that the digital economy, as a new economic engine, plays an important role in effectively mitigating the contradiction between economic development and carbon emission reduction. Because aggressively encouraging the growth of the digital economy across regions can provide better data analysis and information sharing and enhance the availability and accuracy of environmental monitoring data to optimize supply chain management and address deficiencies in environmental governance. Moreover, by leveraging digital technology, digital services, and digital platforms as the main elements or forms, the development space in various fields can be further restructured and expanded, thereby better alleviating the pressure of carbon emissions across regions at its source. The regression results also indicate that the industrial development level lowers carbon emissions, primarily because industrial advancement is often accompanied by greater investment in and usage of renewable energy sources (e.g., nuclear energy and solar). These sources produce little to no carbon emissions compared to traditional fossil fuels, such as oil and coal. Conversely, the level of openness to foreign trade tends to increase carbon emissions, likely because trade liberalization stimulates the growth of international trade, which also raises demand for logistics and transportation, especially in international shipping and aviation—both of which rely heavily on high-carbon-emitting fuels. The transportation sector constitutes a considerable portion of emissions of carbon dioxide, so the expansion of international trade also leads to more emissions of carbon dioxide.
5.2 Robustness tests and endogeneity analyses
Although the article uses the two-way fixed-effects model and controlled for variables affecting carbon emissions as much as possible to minimize measurement errors, endogeneity bias may still occur because of existing omitted variables and reverse causality in the model estimation. For example, regions with high carbon emissions tend to have weaker foundations for digital economic development due to the dominance of heavy industries, indicating the presence of an endogeneity problem with mutual causality. Therefore, to ensure the reliability of the estimate results, the study further conducts robustness tests and endogeneity analyses.
5.2.1 Robustness tests

	1) Replacing the explanatory variable. The digital economy mentioned earlier was estimated by the entropy weight method. To test the robustness of the estimate results, this research further re-estimates the digital economic development levels of various provinces by employing principal component analysis, referred to as DE2, and continues to examine the model. In column 1) of Table 4, the estimate findings have been revealed. It is clear that the influence of the digital economy on emissions of carbon dioxide remains significantly negative, showing a significant suppressive impact for emissions of carbon. It corresponds with the previous estimate results.
	2) Part of the sample was removed. Additionally, this research considers the significant discrepancies in degrees of digital economic development across regions, particularly noting that the economic scale of the four municipalities—Chongqing, Tianjin, Shanghai and Beijing—is significantly greater than other provinces. Therefore, the data of these four municipalities are removed in the paper, and continues to examine regression testing. In column 2), the regression results are presented. It is clear from the table that the digital economy’s coefficient remains significantly negative, still showing a significant suppressive impact for emissions of carbon dioxide. It corresponds with the previous estimated results again.
	3) Using city-level data samples, this paper considers the robustness of the regression results from a data perspective. In order to obtain more robust and reliable results, the regression is performed again using city-level data. The results are shown in column (3) of Table 4, where the coefficient of digital economy (DE) remains significantly negative at the 1% level, further confirming that the digital economy has a significant inhibiting effect on carbon emissions, consistent with the previous baseline regression results.

TABLE 4 | Results of robust test.
[image: A regression table with three models showing coefficients for variables: DE, DE2, IN, RD, LD, OP, and UR. Each model reports coefficients and standard errors. Significant coefficients are marked: *p < 0.1, **p < 0.05, ***p < 0.01. Observations are 330, 286, and 2793, with adjusted R-squared values 0.9697, 0.9679, and 0.9884, respectively. Controls, product fixed effects (Pro FE), and year fixed effects (Year FE) are included in all models.]5.2.2 Endogeneity analyses
In order to tackle the potential endogeneity issue, the paper adopt the instrumental variable method. Regarding the instrumental variable, referring to the established literature (Chen et al., 2023), we select the historical data of post and telecommunications in 1984 as instrumental variables, denoted as IV. It uses two-stage least squares to test for endogeneity. The results are shown in Table 5. Results show that the effect of the digital economy on carbon emissions reduction is significant. Furthermore, the Anderson canon Corr. LM statistics significantly reject the null hypothesis that the equation is under-identified and the instrumental variable is irrelevant. The Cragg Donald Wald F statistic is 61.984, which is greater than the Stock-Yogo weak ID test critical values of 10% maximal IV size (16.38), so there are also no weak instrumental variables. Therefore, the instrumental variables selected in this paper are reasonable and effective.
TABLE 5 | Results of endogeneity analysis (Instrumental variable method).
[image: A regression table shows two models comparing variables DE and CE. DE has a coefficient of -5.9477 with a standard error of 1.8139. The variables IV, IN, RD, LD, and OP are significant, indicated by asterisks, showing a relationship in both models with varying coefficients. The table includes 330 observations and an R-squared of 0.4389. Additional statistical tests, Anderson canon Corr. LM and Cragg Donald Wald F, are reported at 59.121 and 61.984, respectively. Standard errors are provided in parentheses, with significance levels noted.]Additionally, this paper adopted system-based generalized moment estimation (SYS-GMM) to test endogeneity. The analysis findings are presented in Table 6, and the digital economy still effectively lowers emissions of carbon dioxide. In summary, after robustness and endogeneity tests, the previous estimated results are further supported.
TABLE 6 | Results of endogeneity analysis (SYS-GMM).
[image: Table displaying regression results with variables DE, IN, RD, LD, OP, UR, and a constant under column (1) labeled CE. Each variable has an associated coefficient and standard error in parentheses. Observations number 330 with controls and fixed effects (Pro FE, Year FE) indicated as "YES." AR(1) and AR(2) tests show values of 0.051 and 0.540, respectively, and the Hansen test has a value of 0.769. Significance levels are marked by asterisks: ***p < 0.01, **p < 0.05, *p < 0.1.]5.3 Heterogeneity analyses
5.3.1 Heterogeneity analysis based on regional administrative divisions
The research sample is divided into three regions: Western China, Central China, and Eastern China, to examine the regional heterogeneity of the effect. According to the results, which have been displayed in columns (1)–(3) of Table 7, the digital economy’s coefficient is negative at the 1% significance level in Eastern China, it has better emission reduction outcomes in Eastern China. This result can be explained by several factors. First, the eastern region is economically advanced with a strong industrial structure and a high proportion of service and high-tech industries, leading in digital transformation. In contrast, the central and western regions are underdeveloped, with heavy industry and a high carbon emission base, limiting emission reduction effects. Second, the eastern region has advanced digital technologies like AI and big data, which improve carbon efficiency in industries. However, the central and western regions lack digital infrastructure and technical talent, hindering energy efficiency improvements. Third, the eastern region benefits from strong government support for green policies, while the central and western regions face weaker enforcement and limited resources, reducing policy effectiveness.
TABLE 7 | Heterogeneity analysis based on regional administrative divisions.
[image: Table showing regression results for three models labeled CE-E, CE-C, and CE-W. Variables include DE, IN, RD, LD, OP, and UR. Coefficients and standard errors are listed, with significance levels indicated by asterisks. Adjusted R-squared values are 0.5292, 0.9344, and 0.9629. Observations, and fixed effects are included.]5.3.2 Heterogeneity analysis based on energy endowments
Additionally, a heterogeneity analysis based on energy endowment is conducted. Energy endowment is measured in this article by the total fixed-asset investment in the energy industry (Hu and Xiao, 2007). Then based on the average of the energy endowment across regions, areas are classified as either energy-abundant or energy-scarce. Table 8 presents the findings, indicating that in energy-abundant regions, the digital economy has a more apparent inhibitory effect on emissions of carbon dioxide. This finding aligns with most previous research (Sun and Wu, 2024; Yu et al., 2024), which suggests that the suppression effect is more significant in regions with relatively abundant energy. Compared to low-energy-consuming areas, high-energy-consuming regions experience relatively slower economic growth. The development of these regions relies on consumption of traditional resource and energy, which is comparatively inefficient. Along with the diffusion and application of digital technology, the growth of the digital economy will be able to help market participants in deeper understanding relationships in energy markets and pricing, thereby enhancing the effectiveness of allocating energy resources. Additionally, the use of new digital technologies can assist industries in enhancing energy efficiency, alleviating excessive energy consumption and ultimately lowering emissions of carbon dioxide.
TABLE 8 | Heterogeneity analysis based on energy endowments.
[image: Regression table comparing variables for Energy-A and Energy-S with coefficients and standard errors. Significant figures: DE, RD, OP; where RD is positive for Energy-S. Observations: 169 for Energy-A, 160 for Energy-S. Adjusted R-squared: 0.8406 and 0.7584, respectively. Note on significance levels included.]5.3.3 Heterogeneity analysis based on the development level of the digital economy
The sample data is categorized according to the average level of digital economy development, dividing regions into those with high and low level of development. Table 9 presents the findings of heterogeneity test, indicating that there is a more significant reduction in emissions in areas with higher level of digital economy. In contrast, there is no substantial reduction in emissions in regions with lower level of digital economy. Typically, digital economy development is linked to higher production efficiency and improved resource utilization. A more advanced digital economy allows businesses to optimize production processes through information technology, reducing resource waste, which in turn leads to higher output and less carbon emissions. Conversely, in regions with lower digital economic development, the use of digital equipment and infrastructure may raise energy demand. Due to less advanced technology, energy efficiency remains low, and traditional energy supply systems struggle to support low-carbon development, and the influence of reduction in emissions is not significant (Li et al., 2024).
TABLE 9 | Heterogeneity analysis based on the development level of the digital economy.
[image: A data table presents regression analysis results with variables DE, IN, RD, LD, OP, and UR under two models, DE-H and DE-L. Each variable includes coefficients with standard errors in parentheses. Significant levels are marked with asterisks. The table also lists observations, adjusted R-squared values, and whether controls, Pro FE, and Year FE are included. Standard errors are detailed in the note below the table.]5.4 Further discussion
5.4.1 Mediation effect analysis
On the basis of the previous section, we examine three mechanisms on the production-side: the scale, structural, and technological effects. The estimated results for production-side variables (output scale, energy structure, and technological progress) as explanatory variables are provided in columns (1)–(4) of Table 10. According to column (1), the digital economy’s coefficient is positive at the 5% significance level, suggesting that it positively promotes the growth of output scale. The application of digital technology will be able to enhance the automation and accuracy of the production process, reducing production time and resource wastage, thereby increasing overall production efficiency. This increased efficiency leads to a larger scale of output. An increase in the scale of output is usually accompanied by an increase in production activities, which typically consume large amounts of energy. Even with improvements in production technology, if the scale of output grows rapidly, the absolute amount of energy consumed may still rise, leading to more emissions of carbon dioxide. In addition, growth in the scale of output may result in the generation of more waste, such as an increase in industrial waste and packaging materials. If waste is not managed properly (e.g., by incineration), this could further increase carbon emissions. Thereby as the economic scale expands, although the carbon footprint of individual products may decrease, increased overall production will raise energy input and consumption, leading to a rise in total carbon emissions levels (Wang and Chen, 2023; Zhu and Lan, 2023), confirming Hypothesis 2a of this paper.
TABLE 10 | Estimated results of mediation effects.
[image: A table showing regression results across four models labeled SC, ES, TFP, and TFEE, each with coefficients and standard errors for variables DE, IN, RD, LD, OP, and UR. Significant levels are marked with asterisks. Constants, observations, adjusted R-squared values, and controls are also listed, with footnotes explaining significance levels.]As shown in column (2), the digital economy’s coefficient is negative at the 1% significance level, showing that it can promote an upgrade in the energy consumption structure, lowering the percentage of coal consumption account for the consumption of energies. This is because digital technology makes energy management smarter and more efficient. One hand, with smart grids and energy management systems, the monitoring and deployment of power supply and consumption can be carried out in real time, thus optimizing energy use and reducing energy waste. On the other hand, this intelligence helps to integrate more renewable energies, more efficiently into the energy mix. It enhances the competitiveness of renewable energy sources and promotes their share in the energy mix. Furthermore, a large number of studies have shown that the transformation of the energy structure towards a clean and low-carbon direction can significantly improve carbon reduction efficiency, thereby effectively promoting environmental protection and sustainable development (Huang and Lin, 2024), confirming Hypothesis 2b.
According to columns (3) and (4), the digital economy’s coefficient is significantly positive, suggesting that it can promote technological progress through increasing both total factor productivity and total factor energy efficiency. This is because digital technologies optimize all aspects of the production process, lower waste of time and resources, and increase productivity. For example, intelligent robots and automated production lines applied in the manufacturing industry can significantly improve productivity and product quality, thereby boosting TFP and TFEE. And the digital economy lowers the cost of information acquisition and dissemination, making it easier for businesses and individuals to access new knowledge and technology. This flow of information accelerates the rate of technology diffusion and innovation, driving productivity and technological progress upwards. Higher TFP means that the same or greater output can be achieved with fewer resources, thus reducing excessive consumption of resource and carbon emissions. Simultaneously, the utilization of digital technology boosts TFEE, making energy production more efficient per unit, thereby decreasing energy waste and carbon emissions. These economic mechanisms work together, making the digital economy a strong potential for driving reduction of carbon dioxide emissions (Li and Wang, 2022). Additionally, when considering patent data to measure technological progress for empirical analysis, the empirical results are consistent with the above conclusion, namely, that the digital economy can promote carbon reduction through technological progress, confirming Hypothesis 2c.
Meanwhile, the Table 11 ultimately displays the negative effect of the digital economy on carbon emissions, revealing that the digital economy finally lowers carbon emissions. The further analysis indicates that structural effect and technological effect are manifested as reducing carbon emissions in the mechanism test, while scale effect is manifested as promoting carbon emissions. The combined suppressive action of the structural and technological effects on carbon reduction outweighs the promoting action of the scale effect. The suppressive action ensures the digital economy plays its expected role in reducing emissions.
TABLE 11 | Results of baseline regression.
[image: Table of regression results with two models for dependent variable CE. Model (1) shows DE coefficient as -0.7376 with significance at 1% level, and constant as 1.1355 at 1% significance. Model (2) shows DE coefficient as -0.5346 at 1% significance, IN as -0.0964 at 5% significance, and constant as 0.7627 at 1% significance. Adjusted R-squared for models are 0.7870 and 0.8216 respectively. Observations for both models are 330. Significance levels are indicated with asterisks.]5.4.2 Moderating effect analysis
Based on Model (6), examining the role of the NBDCPZ policy in the process of the digital economy influences emissions of carbon dioxide, the Table 12 presents the estimation results. The coefficients of the digital economy, and its interaction term with the policy variable are both significantly negative, revealing that government support can further improve the digital economy’s carbon-reduction impact. This is due to the fact that carbon emission measurement systems based on new digital technologies can rapidly develop with strong government support. These technologies enable data collection, accurate analysis and real-time monitoring of emissions data. By collecting and analyzing data on carbon emissions from various industries, the government can implement other policies that are more effective. This data-driven policy can enhance the government’s efficiency in managing carbon emissions while avoiding negative impacts on economic growth, thereby achieving more effective carbon reduction (Shen and Wang, 2024). National big data policies not only provide technical support but may also incentivize businesses to adopt digital and low-carbon technologies through financial subsidies, tax incentives, and other measures. These policy incentives can accelerate the spread of green technologies, thereby boosting the emission reduction effects of the digital economy. Additionally, big data policies can help promote the establishment of smart cities and lower carbon emissions in cities through intelligent traffic management, energy-saving buildings and waste management. The construction of smart cities makes urban resources more reasonable and further reduces carbon emissions. In fact, the emission reduction effects of the digital economy are not singular. They often benefit from the interaction and synergy of multiple policies. Big data policies provide the data support and technical platform for the low-carbon transformation within the digital economy. Through big data analysis and optimization, businesses can more efficiently implement energy-saving and emission reduction measures, while governments can make more precise policy adjustments based on real-time data (Liu and Zhou, 2023).
TABLE 12 | Estimated results of moderating effects.
[image: Regression table displaying variables and coefficients for CE. DE: -0.2667*** (0.0684), DID: 0.0525*** (0.0094), DID*DE: -0.4312*** (0.0423), IN: -0.0521 (0.0429), RD: -1.2109** (0.4990), LD: 0.0201 (0.0246), OP: 0.1222*** (0.0226), UR: -0.0261 (0.0641), Constant: 0.9375*** (0.1895). Observations: 330, Adjusted R-squared: 0.8756. Controls, Pro FE, and Year FE are included. Significance levels: ***p < 0.01, **p < 0.05, *p < 0.1.]Meanwhile, in order to compare the different effects of the policy across various pilot areas, the paper conducted a regional heterogeneity analysis of the NBDCPZ policy based on Formula 1. The results of the heterogeneity analysis are shown in the Table 13. The results in the table show that they are very similar to the findings on the regional heterogeneity of the digital economy. The impact of the national big data policy is more significant in the eastern and central regions, while its impact in the western region is small, or even insignificant. This is because, compared to the western region, the eastern and central regions generally have stronger implementation capabilities and resource support for policy implementation. For example, they invest more in policy promotion, technology research and development, and talent introduction, which allows big data policies to be implemented more smoothly and achieve results in these areas. In contrast, the western region may face issues such as insufficient policy enforcement and inadequate financial and technical support, resulting in weaker policy influence.
TABLE 13 | Analysis of the regional heterogeneity.
[image: Table displaying regression analysis results with three models: CE-E, CE-C, and CE-W. Variables include DID, IN, RD, LD, OP, and UR with coefficients and standard errors listed. Observations, adjusted R-squared values, and the presence of controls, Pro FE, and Year FE are noted. Star symbols indicate significance levels, with thresholds defined in the note below the table.]6 RESEARCH CONCLUSIONS AND POLICY IMPLICATIONS
Digital economy development is crucial for supporting the attainment of China’s “dual carbon” goals and accelerating low-carbon growth. It represents an essential pathway for fostering green, low-carbon economic progress. In the study, output scale, energy structure, and technological progress are all incorporated into the theoretical and empirical framework, analyzing the digital economy’s effect pathway for carbon emissions from the perspective of production-side. Moreover, the study examines the moderating role of the NBDCPZ policy in the process of digital economy on emissions reduction.
The results reveal three key findings: 1) The digital economy demonstrates a substantial effect of lowering emissions of carbon dioxide, supported adequately by a series of robustness and endogeneity tests. Heterogeneity tests indicate that it is more effective in translating the digital economy’s influence for carbon reduction in eastern region, and the reduction effort is more obvious in regions with abundant energy resources and higher digital economic development. 2) As presented by the mediation effect analysis, while digital economy increases emissions of carbon dioxide through the scale effect, it simultaneously reduces emissions of carbon dioxide via structure and technology effects, with the sum of latter two effects outweighing the former. 3) The moderating effect analysis indicates that the NBDCPZ policy enhances the digital economy’s carbon-reduction impact, demonstrating that a governance model combining market mechanisms and government intervention can improve carbon emissions control efficiency.
The research offers the following policy insights based on the aforementioned conclusions. First, increasing investment in digital infrastructure to facilitate the spread and use of digital technologies, especially in energy-intensive and less developed regions. This can boost the digital economy’s emissions reduction potential across different areas. In addition, governments and enterprises should increase research investment of green technologies, especially smart grid, renewable energy integration and low-power equipment, so as to make technological progress the driving force of achieving low-carbon economy, thus changing the production function in the long run, decoupling economic growth from resource consumption and achieving sustainable low-carbon development. Meanwhile, encouraging the digitization of supply chain management, especially in the transportation and logistics areas. Through logistics path optimization, storage management and other means, reduce unnecessary transportation, so as to reduce emissions of carbon dioxide. Based on regional characteristics, differentiated digital economy and emission reduction policies should be formulated. For example, the eastern region can focus on promoting technological innovation and green finance, while the central and western regions should prioritize addressing infrastructure construction and the widespread adoption of digital technologies.
Secondly, the utilization of the digital economy in industrial production ought to be strengthened to promote technological advancements and energy structure transitions, fostering green technology innovation and digital transformation across industries. This will reduce carbon emissions in both production and business operations. Specifically, it is the digital economy containing digital technology that can help transform the traditional industries featuring high emissions, low efficiency and high energy consumption. These technologies also facilitate the eliminating out outdated, energy-intensive production models, shifting the energy structure toward cleaner, low-carbon alternatives. Moreover, raising the traditional industries’ digitalization level can optimize industrial processes and organizational structures, mitigating carbon emissions associated with output scale effects. Building an economic ecosystem and value chain that integrates digital technologies with low-carbon practices will further lower emissions of carbon dioxide by harnessing the advantages of digital platforms.
Thirdly, National Big Data Comprehensive Pilot Zone policy ought to be actively promoted, leveraging digital technologies to further innovate big data applications, enhance control over greenhouse gas emissions, and support the accomplishment of the dual carbon targets. Policymakers should capitalize on the opportunity presented by the pilot zone initiative, utilizing institutional advantages and tailoring policy implementation to the specific conditions, development foundations, and resource capacities of each region. A staggered and customized approach to advancing the NBDCPZ policy is essential. Additionally, strengthen policy synergies with big data zones: Expand and enhance the influence of big data zones to foster further collaboration between the government and private sectors. This can encourage the digital economy to integrate more effectively with carbon reduction strategies.
This study has the following limitations. First, the analysis is based on provincial-level data from 2012 to 2022. However, due to differences in data collection standards and scopes across provinces, there is some data heterogeneity, which may affect the reliability of the analysis results. Second, although this study constructs a comprehensive digital economy index based on existing literature, the rapid development of digital technologies has led to increasingly diverse ways of constructing digital economy indicators. Therefore, the existing indicators may not fully reflect the complexity of the digital economy. Third, this study primarily analyzes the impact mechanism of the digital economy on carbon dioxide emissions from the production perspective. However, since the impact of the digital economy on carbon emissions is complex and diverse, focusing solely on the production aspect has certain limitations.
To address the limitations mentioned above, this study proposes the following recommendations for future research. First, to further improve the research, future studies could consider collecting data at more granular levels, including city-level or enterprise-level data, to further examine the digital economy’s carbon reduction effects at a more detailed scale. Second, as digital technologies continue to evolve, future research could optimize and expand the indicators of the digital economy to form a more comprehensive and accurate evaluation framework, leading to more reasonable conclusions. Third, future research could consider analyzing the impact mechanism of the digital economy on carbon emissions from a consumption perspective, further exploring the multidimensional impact of the digital economy on carbon emissions and helping to understand its potential and challenges on the consumption side.
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This study investigates the impact of economic growth and foreign direct investment (FDI) on China’s sustainable development goals (SDGs), specifically Zero Hunger (SDG 2), Life Below Water (SDG 14), and Life on Land (SDG 15). It examines ecological footprints and load capacity factors (LCFs) in cropland, fishing, forest, and grazing land using Fourier bootstrap autoregressive distributed lag (ARDL) cointegration analysis and fully modified ordinary least squares (FMOLS) estimators. The study covers the period from 1979 to 2022. Key findings reveal that while GDP and FDI often exacerbate environmental degradation, urbanization and value-added agriculture, forestry, and fishing (FAFGDP) improve sustainability in some areas. The study confirms the pollution haven hypothesis for most models, suggesting that China’s legal and regulatory frameworks may inadequately mitigate FDI’s adverse environmental effects. The Environmental Kuznets Curve (EKC) hypothesis is not supported as GDP growth generally increases ecological footprints. However, trade openness and urbanization show positive influences on environmental sustainability. Policy recommendations include enhancing energy efficiency, promoting renewable energy, implementing green technologies in agriculture and urban development, and revising FDI policies to incentivize environmentally friendly practices. These strategies are crucial for achieving China’s sustainable development goals and mitigating the pressures of human activities on natural resources.
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INTRODUCTION
Sustainable development is a growth model that satisfies current needs without compromising the ability of future generations to meet theirs. This approach aims to balance economic growth, social equity, and environmental sustainability. The United Nations’ 17 Sustainable Development Goals (SDGs) target eliminating poverty, protecting the planet, and ensuring peace and prosperity for all by 2030 (Sugiawan et al., 2023). The following variables are vital for measuring the sustainable management and use of natural resources.
The cropland footprint indicates the use of agricultural land for food production, highlighting the need for efficient and sustainable land use to ensure food security and ecosystem health. The cropland load capacity factor measures the pressure agricultural lands can sustainably bear, influencing food production sustainability. Similarly, the fishing grounds footprint (FGF) tracks the use of fishing areas for seafood, emphasizing the importance of sustainable practices to prevent overfishing and marine resource depletion. The fishing load capacity factor assesses the sustainable capacity of fishing grounds, determining the level of fishing activity that ecosystems can sustainably support.
The forest product footprint measures the consumption of forest products like timber and paper, underlining the need for sustainable forest management to conserve biodiversity and combat climate change. The forest load capacity factor evaluates how much resource extraction forests can sustainably support. The grazing land footprint represents the use of grazing areas for livestock, indicating the land required for meat and dairy production, and stresses the importance of sustainable grazing to prevent soil erosion and biodiversity loss. The grazing load capacity factor measures the sustainable utilization capacity of grazing lands, determining the sustainable level of livestock activity. These variables, known as sustainable development indicators, are essential for achieving sustainable development goals. Effective and sustainable resource management is crucial for preserving our capacity to meet the needs of future generations (Klimovskikh et al., 2023; Ulussever et al., 2024). Each indicator helps develop and implement strategies for sustainable resource use and management.
Several economic, social, and environmental factors influence sustainable development indicators. These include GDP, foreign trade openness, urbanization, agriculture, forestry, fishing value-added (AGR), and foreign direct investment (FDI). GDP can impact sustainable development indicators by improving agricultural technologies and practices, enhancing fishing technologies, and promoting the sustainable use of forest and livestock resources (Yang and Solangi, 2024). Foreign trade openness (OPN) can increase the demand for natural resources in international markets, potentially complicating their sustainable management. However, it also offers opportunities to import and adopt sustainable practices and technologies (Hasan and Du, 2023). Higher urbanization (URB) can convert agricultural and forest lands into urban areas, affecting their use and sustainability while increasing the demand for seafood, thereby putting pressure on fishing grounds (Bhattarai and Adhikari, 2023). Conversely, urban expansion can reduce the extent of grazing areas. Agriculture, forestry, and fishing value-added (AGR) can promote efficient and sustainable resource use, encouraging better management practices and technological innovations. FDI can provide the necessary financing and technology for sustainable resource management, although it can also lead to overuse and environmental degradation in some cases (Renyong and Sedik, 2023).
Therefore, GDP and FDI can facilitate the adoption of sustainable practices in agriculture, forestry, and fishing. OPN can increase natural resource demand while promoting sustainable technologies and practices. Higher URB can impact natural resource use and sustainability, often reducing agricultural and forest lands. Figure 1 illustrates the proportion of the Chinese population within the global population in 2023.
[image: Pie chart showing two segments: China in blue at 18 percent and Other Countries in red at 82 percent. A legend at the top identifies the colors.]FIGURE 1 | Population of China (2023) (World Bank, 2024a).
In 1961, the Chinese economy made up roughly 1.01% of the global GDP, but by 2023, this share had increased to 18.5% (World Bank, 2024a). Additionally, as depicted in Figure 1, China, with its swiftly growing economy and a population of 1.410 billion in 2023, comprises approximately 18% of the global population. This substantial GDP and population underscore the importance of sustainable natural resource management. Sustainable development is vital for sustaining China’s long-term economic growth, preventing environmental degradation, and ensuring social equity. Advancements in sustainable development goals will yield numerous benefits for the Chinese economy. For instance, efficient and sustainable agricultural land use will enhance food security, reduce import reliance, and boost agricultural production. Given China’s responsibility to feed a significant portion of the world’s population, progress in this area is crucial. Enhancing the sustainable use capacity of agricultural land is essential for maintaining soil fertility and ensuring ongoing agricultural production, thereby providing stability in the agricultural sector and supporting rural economic development.
Decreasing per capita use of fishing grounds will aid in protecting marine ecosystems and promoting sustainable fishing practices, ensuring the sustainable use of marine resources and bolstering economic sustainability in the fishing sector (Kemp et al., 2023). Increasing the sustainable use capacity of fishing grounds will prevent overfishing, protect marine ecosystems, ensure the sustainability of seafood production, and safeguard the livelihoods of local communities (Soeparna and Taofiqurohman, 2024). Reducing per capita use of forest products will foster forest conservation and sustainable forest management, helping preserve biodiversity and combat climate change (Rosenfeld et al., 2024). Enhancing the sustainable use capacity of forest ecosystems will protect their ecological functions and ensure the continued sustainable production of forest products, providing economic sustainability in the forest product sector and supporting rural livelihoods (Tampekis et al., 2024). Decreasing per capita use of grazing lands will prevent pasture overuse and maintain soil fertility, enhancing sustainability in the livestock sector and ensuring food security (Caradus et al., 2024). Increasing the sustainable use capacity of grazing lands will mitigate the negative impacts of livestock activities on ecosystems and maintain the long-term productivity of pastures, supporting economic sustainability in the livestock sector and strengthening rural economies (Li et al., 2024).
Therefore, the sustainable use of natural resources prevents environmental degradation and ecosystem destruction, playing a critical role in preserving biodiversity and combating climate change. Sustainable agricultural, forestry, and fishing practices support long-term economic growth and stability by promoting efficient resource use and building resilience against economic crises. Adopting sustainable practices in the agriculture and livestock sectors helps increase food production and security, essential for feeding China’s growing population. Sustainable development enhances economic opportunities in rural areas, protects local communities’ livelihoods, reduces income inequality between rural and urban areas, and ensures social equity. Achieving sustainable development goals will bolster China’s environmental leadership on the global stage and contribute to worldwide sustainability efforts.
Improvements in China’s sustainable development indicators will support long-term economic growth, ensure environmental protection, enhance social equity, and significantly contribute to global sustainability efforts. Consequently, the efficient and sustainable management of natural resources is crucial for China to achieve its sustainable development goals. The following information illustrates the proportions of the Chinese economy in global meat, milk, and egg production in 2021.
As shown in Figure 2, China accounted for 14% of global meat production in 2021 and approximately 37% and 5% of global egg and milk production, respectively. This substantial share in global production underscores the importance of sustainable natural resource management in China. Sustainable development indicators are crucial for strategic decision-making to ensure agriculture, livestock, and fishing sustainability (Yang and Solangi, 2024). For example, producing feed crops for meat and milk requires extensive agricultural land. The per capita agricultural land footprint is vital for efficient resource use.
[image: Three pie charts compare China's egg-related market. The first chart shows "Major, Other" with a larger red section and smaller blue section. The second chart represents "Eggs" with similar proportions. The third chart, "Shells, Excluding Duck," displays a dominant red section at ninety-five percent and a small blue section at five percent.]FIGURE 2 | Meat, egg, and milk production in China (2021) (Food and Agriculture Organization of the United Nations, 2024).
Efficient agricultural land use ensures sustainable feed crop production, meeting the livestock sector’s needs and supporting meat and milk production sustainability.
Optimizing the feed crop production capacity guarantees the livestock sector’s continuity. Enhancing the agricultural lands’ load capacity ensures sustained and efficient feed production, stabilizing meat and milk production.
Fish and seafood production plays a crucial role, particularly for fish feed. The per capita fishing grounds footprint measures the efficiency of resource use. Sustainable fishing practices protect fish and seafood stocks, supporting fish feed production and enhancing feed resource sustainability in the livestock sector. Protecting fish stocks for fish feed production is critical, and optimizing the fishing load capacity ensures the protection and sustainability of fish stocks for fish feed production (Naghdi et al., 2024).
Forest products, such as feed additives and agricultural equipment, are used in various ways in the agriculture and livestock sectors. The sustainable use of forest products meets these sectors’ needs and supports their sustainability. Sustainable forest ecosystem use ensures biodiversity protection and indirectly supports agricultural and livestock activities. Increasing forest load capacity ensures forest resource protection and sustainable use, indirectly supporting the agriculture and livestock sectors.
Grazing lands are fundamental for meat and milk production in the livestock sector. The per capita grazing land footprint ensures efficient land use. Efficient grazing land use supports livestock sector sustainability and increases the animal product (meat and milk) production capacity. Optimizing environmental sustainability in livestock activities is necessary. Increasing the load capacity of grazing lands reduces the negative impacts of livestock activities on ecosystems and supports sustainable livestock production (Henn et al., 2024).
Therefore, China’s significant share in global meat, milk, and egg production necessitates the efficient and sustainable use of natural resources. Sustainable development ensures food security, environmental protection, economic sustainability, and long-term planning.
Conversely, economic sustainability and strategic long-term planning in agricultural production are vital for sustainable development. Figure 3 depicts the agricultural output of the top 10 economies with the highest global agricultural production in 2020.
[image: Bar chart titled "Agricultural production" comparing production values of nine countries. China leads with 997,680,965, followed by India, the USA, Brazil, Russian Federation, Indonesia, Turkey, Pakistan, and Argentina. Values are on the horizontal axis.]FIGURE 3 | Agricultural production (2022) (Food and Agriculture Organization of the United Nations, 2024).
China’s status as the world’s second-largest producer of softwood and hardwood (including bamboo) (Statista, 2024; Wang et al., 2023), along with its leading role in agricultural production, as depicted in Figure 3, highlights the critical need for sustainable development indicators to sustainably manage and use natural resources. Key variables such as cropland footprint per capita, cropland load capacity factor, fishing grounds footprint per capita, fishing load capacity factor, forest products’ footprint per capita, forest load capacity factor, grazing land footprint per capita, and grazing load capacity factor are essential for ensuring the sustainability of China’s natural resources and minimizing environmental impacts.
Thus, China’s prominent role in softwood and hardwood production and agriculture requires the efficient and sustainable use of natural resources. Sustainable development ensures food security, environmental protection, economic sustainability, and long-term planning.
Alternatively, economic sustainability and strategic, long-term planning in agricultural production are crucial for sustainable development. Figure 3 illustrates the agricultural output of the top 10 economies leading global agricultural production in 2020.
Upon examining Figure 4, it is evident that the agricultural sector’s contribution to China’s GDP was 37.5% in 1965, decreasing to 29.6% in 1980, 14.7% in 2000, 9.3% in 2010, and further decreasing to 7.1% in 2023. In contrast, the industrial sector’s contribution to GDP was 35.1% in 1965, increasing to 48.1% in 1980, 45.5% in 2000, 46.5% in 2010, and then decreasing slightly to 38.3% in 2023. This significant shift from an agriculture-based economy to a highly industrialized economy highlights the increased importance of managing resource sustainability and environmental impacts. Sustainable development indicators are thus critical for ensuring sustainable growth throughout China’s industrialization process.
[image: Bar chart comparing agriculture, forestry, and fishing (blue) with industry including construction (red) as percentages of GDP. Industry consistently surpasses agriculture across multiple data points.]FIGURE 4 | Agricultural and industrial sector revenues in China from 1962 to 2023 (World Bank, 2024a).
The transition from an agriculture-based economy to one characterized by intense industrialization necessitates the efficient and sustainable use of natural resources (Herman, 2024). Sustainable agricultural and fishing practices are vital for securing the production capacity to feed China’s large population and ensuring food security. Managing natural resources sustainably helps protect forest, agricultural, and marine ecosystems while maintaining biodiversity. Sustainable practices also support economic stability and growth in agriculture, forestry, and fisheries (Sharma et al., 2024).
China must develop and implement long-term strategies for the sustainable management of natural resources to ensure that the needs of future generations are met.
Policy actions concerning cropland, fishing, forests, and grazing are crucial for various SDGs, particularly Zero Hunger (SDG 2), Life Below Water (SDG 14), and Life on Land (SDG 15), while also indirectly influencing others like No Poverty (SDG 1) and Climate Action (SDG 13). Strengthening the supply chain, conserving natural resources, and preventing environmental degradation on land, in forests, and in marine environments are essential initiatives for promoting sustainability in all countries.
Due to its vast population, which constitutes approximately 17.72% of the global population, China’s unique position makes sustainable resource management critical. China’s substantial contribution to global meat, milk, and egg production (14%, 4.49%, and 36.83%, respectively) and its significant share in global fish and aquaculture production underscore the importance of sustainable practices for global food security in these sectors. Additionally, China is a major producer of softwood and hardwood, emphasizing the need for sustainable management of its forestry resources.
Given China’s role as a major agricultural producer and its massive transformation toward industrialization, sustainable management of its natural resources is crucial for national and global supply chains. The research aims to test the Environmental Kuznets Curve (EKC) and load capacity curve (LCC) hypotheses in China, focusing on cropland, fishing, forests, and grazing lands using Fourier bootstrap autoregressive distributed lag (ARDL) cointegration and FMOLS estimators with the Fourier function. With reference to all concepts evaluated in the study, the study provides comprehensive knowledge on sustainable agriculture and fishing using advanced econometric approaches. Focusing on the demand and supply sides of all relevant dependent variables plays a vital role in mitigating degradation and enriching productivity in terms of the EKC and LCC hypotheses; this study represents one of the first comprehensive investigations into the scope of sustainable agricultural and fishing. Moreover, Fourier bootstrap ARDL cointegration analysis provides more consistent results compared to the methods that ignore structural changes, and the FMOLS estimators confound the concerns of serial correlation and endogeneity by achieving asymptotic efficiency. Furthermore, the FMOLS estimators yield more reliable results in small samples and help eliminate bias caused by missing series. This study is a pioneering effort in separately focusing on all relevant ecological indicators to enhance understanding and policymaking in sustainable development.
LITERATURE REVIEW
With the globalization process, discussions on the environment have increased. In this context, researchers have conducted many studies. The environmental issue was first associated with economic growth. The effects of economic growth on the environment have been addressed in numerous studies. In this context, the EKC hypothesis, which argues that there is an inverted U-shaped relationship between real GDP and CO2 emissions, is frequently researched (Li et al., 2024; Aydin and Degirmenci, 2024). The validity of different forms of the EKC hypothesis has been investigated for various periods and countries. It has been observed that time series and panel data methodologies are used very frequently. In these studies, CO2 emissions are generally preferred to represent environmental conditions. It has been determined that GDP per capita is used as the economic growth variable. Increased industrialization, high growth in global production, and the acceleration of liberalization steps have made foreign direct investments important. In this context, the relationship between foreign direct investments and the environment has begun to attract attention. Research has increasingly focused on the environment–foreign direct investment relationship. These studies tested the validity of the pollution haven and pollution halo hypotheses. The pollution haven hypothesis argues that foreign direct investment not only contributes positively to the economic development of developing countries but also forms the basis of environmental degradation experienced in these countries. On the other hand, the view that foreign direct investment reduces environmental degradation in developing countries supports the pollution halo hypothesis (Destek et al., 2024; Yilanci et al., 2023). In both hypotheses, the environmental variable is often represented by CO2 emissions. The ecological footprint variable has recently begun to be used frequently among environmental indicators. On the other hand, recent studies have found that the load capacity factor (LCF) variable is rarely used. In addition to the EKC hypothesis, a new curve, the LCC), can be tested using the LCF. With LCC, it is argued that as income increases, environmental degradation initially increases, and above a certain income level, environmental degradation will decrease (Pata and Kartal, 2023).
Table 1 lists studies focusing on environmental degradation. In this context, the focus is on current research that tests the EKC, pollution halo, pollution haven, and LCC hypotheses.
TABLE 1 | Details of the literature.
[image: A table comparing researchers' studies on environmental and economic factors across various countries and time periods. Columns include the researchers' names, countries and time frames, variables studied, empirical methods used, and empirical results like hypotheses related to environmental impacts. Methods include ARDL, GMM, and panel cointegration. Results discuss the Environmental Kuznets Curve (EKC) and pollution haven hypotheses.]When Table 1 is examined, it is observed that economic growth, foreign direct investment, and other socio-economic variables affect environmental degradation. Studies show that CO2 emissions are the most commonly used indicator of environmental conditions. In a few studies, it has been found that the ecological footprint variable is preferred. The choice is influenced by the fact that the ecological footprint is a more comprehensive indicator than CO2 emissions. On the other hand, it has been determined that the LCF variable is preferred in current studies. In this context, it stands out as an important variable for comparing results, especially in empirical studies. LCF, which monitors ecological thresholds by comparing biological capacity with the ecological footprint, enables comprehensive research on environmental degradation. Unlike CO2 and the ecological footprint, an increase in the LCF indicates improved environmental quality (Pata and Isik, 2021). In contrast, CO2 and the ecological footprint indicate degradation, while the LCF signals recovery (Pata and Kartal, 2023).
It has been determined that aside from the environmental variables in question, the most frequently used variable is energy consumption, along with economic growth and foreign direct investment. In this context, renewable or non-renewable energy consumption variables were preferred. The primary reason for this preference is that energy consumption from fossil fuels increases carbon emissions (Ghorbal et al., 2024; Li and Haneklaus, 2021; Hanif, 2018). When research on the validity of the EKC hypothesis is examined, the study by Grossman and Krueger (1991) is considered a pioneering work. The authors tested the validity of the EKC hypothesis using data from the economies of 42 countries for the period 1977–1988. The results of the study using the panel GLS method showed the validity of the relevant hypothesis. Under the leadership of this study, many studies have been conducted on the EKC hypothesis. These studies observed that in addition to the inverted U-shaped relationship, the N-shaped relationship has also been tested (Azam et al., 2024; Mohammed et al., 2024; Sarkodie and Ozturk, 2020). Thus, the course of the relationship between economic growth and the environment is determined periodically. In addition, turning points in relationships can be determined, and mathematical results can be produced. When the studies on the EKC Hypothesis in Table 1 are examined, it is understood that the results vary depending on the period, country, and empirical method used. However, in general, it was concluded that the relevant hypothesis was mostly valid. Interest in the pollution halo and pollution haven hypotheses increased in the periods following the introduction of the EKC hypothesis. Birdsall and Wheeler’s (1993) study on the validity of the pollution haven hypothesis is a pioneering study. The authors tested the validity of the relevant hypothesis in 25 Latin American countries during the 1960–1988 sample period. In the study where regression analysis was used as the empirical method, it was concluded that the pollution haven hypothesis is valid. In the following period, the relevant hypothesis was tested in numerous studies. Studies have shown that there has been an increase in the 2000s, when the globalization process deepened. Although foreign direct investment inflows were mostly used in the studies, foreign direct investment outflows were also preferred. Although there is no consensus on its validity, most findings support the pollution haven hypothesis. In the pollution haven hypothesis, as in the EKC Hypothesis, the results vary depending on the country, period, and empirical method used. It has been observed that the EKC and pollution haven hypotheses have been tested together in a limited number of recent studies (Aminu et al., 2023). This enables broader policy recommendations to be made regarding environmental degradation. Although results vary depending on the period, country, and method used, there are studies that support the validity of the EKC and pollution haven hypotheses together (Akkaya and Çetin, 2024; Pata et al., 2023b). In this study, where the effects of various variables on the environment are extensively examined, the EKC, pollution haven, and pollution halo hypotheses are examined in depth. On the other hand, recently, in addition to these hypotheses, there have been studies on LCC and fisheries LCC hypotheses, albeit in limited numbers (Raihan et al., 2023; Pata et al., 2023a). The main point in these studies is that the dependent variable used is LCF and its derivatives. In this context, it is observed that variables such as fishery LCF, GDP per capita, fishing production, fishing footprint, container port traffic, nuclear energy consumption, renewable energy consumption, foreign direct investment, urbanization, and financial development are used (Adalı et al., 2024; Wang et al., 2024). There is evidence in studies that financial development and foreign direct investments will increase environmental degradation by increasing economic development and energy consumption, suggesting that they may increase economic expansion and energy consumption and potentially harm the environment (Akinsola et al., 2022; Kihombo et al., 2021; Shahbaz et al., 2023).
DATA AND METHODOLOGY
In order to provide the policy guidelines for various SDGs—directly Life on Land, Life Below Water, and Zero Hunger and indirectly for No poverty, Climate Action, and other SDGs— the EKC, LCC, the pollution haven, or halo hypotheses are analyzed. Urbanization, foreign trade openness, agriculture, forestry, and fishing value-added are included as the control variables within the framework of these hypotheses. Within this scope, this study employs an annual time series spanning from 1979 to 2022 by considering the availability of all used series. In the study, the cropland footprint, the fishing ground footprint, the forest products’ footprint, the grazing land footprint, and these series’ load capacity factors are utilized as the dependent variables. Using the series’ footprint and LCF data, this study provides comprehensive evidence on the demand and supply sides of the environmental indicators, contributing to holistic strategies for mitigating environmental degradation and enhancing sustainability.
Table 2 provides the characteristics and information on the variables. The study transforms all series into natural logarithm forms to calculate elasticity and ensure reliable and consistent results by mitigating heteroskedasticity. After providing the series details, Table 3 presents the descriptive analysis. According to the outcome of Table 3, the variable with the highest mean value is lnGDP, whereas the variable with the lowest value is lnGF. However, the highest standard deviation value is lnFDI.
TABLE 2 | Abbreviations and sources.
[image: A table listing various environmental and economic variables, their abbreviations, log transformations, and data sources. Variables related to footprint and capacity factors are sourced from the Global Footprint Network. Economic variables, such as GDP and trade openness, are sourced from World Development Indicators. Each variable has a corresponding abbreviation and log transformation.]TABLE 3 | Descriptive statistics.
[image: Statistical table displaying descriptive statistics for various variables labeled LNCF, LNCLCF, LNFF, and others. Columns include mean, median, maximum, minimum, standard deviation, skewness, kurtosis, Jarque-Bera test, probability, sum, and sum of squared deviations. Observations total forty-four.]In the study, the approach suggested by Narayan and Narayan is followed to test the EKC, LCF, and pollution haven/halo hypotheses. According to this approach, long-run income and LNFDI elasticity are first estimated; then, the short-run equation is derived using the residual terms from the long-run estimations, allowing the hypothesis to be evaluated by comparing long- and short-term elasticity. Focusing on the differences in the shape and interpretation of the EKC and LCF hypotheses, two model equations are demonstrated. The models for the footprints and LCFs of the series are shown in Equations 1, 2.
[image: Logarithmic equation representing the environmental factor: ln(EF_t) equals c_0 plus theta_1 ln(GDP_t) plus theta_2 ln(FDI_t) plus theta_3 ln(control variable_t) plus epsilon_t, labeled (1).]
[image: Mathematical equation depicting a model: lnEFₜ = c₀ + δ₁ lnGDPₜ + δ₂ lnFDIₜ + δ₃ lncontrol variableₜ + εₜ. This is labeled as Equation 2.]
In Equation 1, lnEF represents all footprint variables and lncontrol variables represent lnURB, lnLNTRADE, and lnFAFGDP, while [image: It seems there was an issue with uploading the image. Please try uploading it again or provide a URL or description of the image, and I can help generate the alternate text for you.] and [image: It seems there might have been an error when you tried to upload an image. Could you please try uploading it again or provide more details about the image?] are constant and the white noise terms, respectively. Moreover, [image: It seems there was an error in your request. Please upload the image or provide a URL so I can generate the alternate text for it.] and [image: Please upload the image or provide a URL so I can generate the alt text for it.] denote the long-run coefficient of lnGDP and lnFDI.
When performing the short-run estimations, comparing the short- and long-run coefficients of explanatory variables provides knowledge for testing the EKC and pollution haven/halo hypotheses. If long-term income and FDI elasticity are found to be lower than their short-run values, the presence of EKC and pollution halo hypotheses is confirmed. Because of the LCC hypothesis framework, if the long-term coefficients of lnGDP and lnFDI and the short-run coefficients of the considered variables are positive and negative, respectively, the LCC hypothesis is confirmed. After the preliminary analysis of the series, Figure 5 shows the steps for performing the econometric process in the study. Figure 5 reveals the methodology of the econometric methods.
[image: Flowchart showing a sequential data analysis process. It starts with "Preliminary Analysis of the Data," followed by "Unit Root Tests," "Cointegration Tests," "Causality Tests," and concludes with "The Dynardl Bootstrap Approach to Causality Analysis." Each step is represented by a colored, horizontal arrow pointing right.]FIGURE 5 | Econometric process.
Fourier bootstrap ARDL cointegration analysis
The conventional ARDL approach is one of the most widely used methods for testing the validity of the cointegration relationship between variables. When determining the presence of a cointegration connection between variables, two conditions stated by Pesaran et al. (2001) should be considered. First, the coefficient of the error correction terms and the lagged explanatory variables must be statistically significant in the ARDL model. Second, the lower and upper critical bounds test, as proposed by Pesaran et al. (2001), must be conducted.
However, executing upper and lower critical bounds is not necessary for the first condition as its validity relies on the order of integration of the variables. Suppose the variables considered in the model are cointegrated at I (1), confirming the first condition. In this case, the low power properties of conventional unit root tests should be taken into account (Goh et al., 2017). The conventional ARDL approach uses F- and t-statistics, and comparing these test statistics with the lower and upper bounds defined as I (0) and I (1), respectively, is essential for testing the validity of the cointegration connection. If the test statistics exceed the upper bound critical values, the null hypothesis indicating the absence of cointegration can be rejected. However, if the test statistics fall between the upper and lower bounds, it becomes inconclusive to determine the validity or absence of cointegration.
To address the limitations of the conventional ARDL approach, McNown et al. (2018) proposed employing bootstrap critical values, introducing an approach labeled as the bootstrap autoregressive distributed lag. When comparing the properties of the conventional and bootstrap ARDL approaches, it is claimed that the bootstrap ARDL approach provides more robust power properties than the conventional ARDL approach when multiple explanatory variables are present. Additionally, the bootstrap ARDL approach does not impose limitations on the order of integration of the series and is considered effective in correcting the weak power and size characteristics of conventional ARDL approaches (Pata and Aydın, 2020).
[image: Equation showing a model for the change in natural logarithm of \(X_t\), expressed as a function of lagged changes in \(X\), \(Y\), and \(Y^2\), with coefficients \(\theta_0\), \(\theta_1\), \(\theta_2\), and \(\theta_3\), and disturbances denoted by \(\mu_t\).]
In Equation 3, the constant terms are represented by [image: Please upload the image or provide a URL so I can assist you in generating the alt text.], while the short-term zero coefficients are denoted by [image: It seems like there is no image attached. Please upload the image or provide a URL for me to generate the alternate text.], [image: Please upload the image or provide a URL for me to generate the alt text.], and [image: Please upload the image or provide a URL to it for me to generate the alternate text.]. In addition, [image: It seems like there was text instead of an image uploaded. Could you try uploading the image again, and provide any context or caption if needed?], [image: It seems like there's an issue with the image upload. Please try again by attaching the image file or providing a URL. If you want to write a caption for context, feel free to include that as well.], and [image: It seems there was an issue with the image upload. Please try uploading the image again, ensuring that the file is correctly attached.] denote the long-term coefficients, while the dummy variables showing the sharp structural breaks are represented by [image: It seems there might be a misunderstanding. I can't generate alt text without an image. Please upload the image or provide a URL, and I'll help you create the alt text.].
In order to determine the cointegration relationship between the variables, McKown et al. (2018) introduced novel test statistics for the lagged values of the independent variables, in addition to the F- and t-statistics. In this context, the overall F-statistic, t-dependent statistic for the lagged dependent variables, and the newly introduced F-independent statistic for the lagged independent variables are employed to test the null hypothesis. The null hypothesis employed for these three statistics are shown in Equations 4-6 as follows:
[image: F statistic leading to the null hypothesis \( H_0: \gamma_1 = \gamma_2 = \gamma_3 = 0 \), equation labeled as number 4.]
[image: Mathematical expression showing \( T_{\text{dependent}} \rightarrow H_0 = \gamma_1 = 0 \), with the equation labeled as equation (5).]
[image: F subscript statistic leading to H subscript zero equals gamma subscript one equals gamma subscript two equals gamma subscript three equals zero. Equation number six.]
Later, the bootstrap ARDL test is augmented with Fourier terms, as developed by Solarin (2019), and the fractional frequency flexible Fourier forms are incorporated into the bootstrap ARDL approach proposed by Yilanci et al. (2020). Overall, if the three test statistics considered are simultaneously greater than the measured bootstrap critical values, the null hypothesis should be rejected, confirming the existence of a cointegration relationship between the variables.
FMOLS estimators with the Fourier function
The fully modified ordinary least squares (FMOLS) estimator, proposed by Phillips and Hansen (1990), is regarded as one of the most effective and reliable estimators because most estimators face issues such as serial correlation and endogeneity, which impair the consistent estimation of regressors. The FMOLS estimator overcomes these problems by achieving asymptotic efficiency and provides more consistent results in small samples. Additionally, FMOLS estimators eliminate the bias caused by missing series.
Although FMOLS estimators generate long-run coefficients, short-run estimators can also be derived using the residual terms from the long-run estimation as error correction (EC) terms and employing the first-difference values of the series under consideration. Furthermore, when FMOLS estimators are augmented with the Fourier function, the Fourier FMOLS estimators can be obtained, enabling estimation while accounting for smooth structural breaks.
Fourier Toda–Yamamoto causality analysis
The conventional Toda–Yamamoto (T-Y) causality analysis, introduced by Toda and Yamamoto (1995), is one of the most widely used causality analyses in the literature for detecting causality connections between variables. The T-Y causality analysis relies on the vector autoregressive (VAR) models of Sims (1980) and provides more robust information compared to the Granger causality analysis as it uses the level values of the variables, thereby avoiding long-run information loss.
In T-Y causality analysis, the optimal lag length is determined by considering the lag based on the VAR model (denoted as p) and the maximum order of integration of the series (represented as dmax). Thus, p + dmax represents the optimal lag length used in the T-Y causality analysis. Additionally, the T-Y causality analysis is regarded as a flexible method because prior information on unit root and cointegration properties is not required.
However, the T-Y causality analysis assumes that the constant term remains stable over time and that structural changes do not impact the series’ data generation process.
Neglecting structural changes, including various properties such as unknown numbers, dates, and smooth or sharp transitions, may lead to biased or misleading rejections of the null hypothesis.
In this context, Enders and Jones (2016) emphasized that failing to account for structural changes in VAR models can produce inaccurate and inconsistent evidence of causal connections. To address this, researchers have utilized the Fourier function in VAR models, leading to the development of the Fourier Granger (FG) causality analysis. Nazlioglu et al. (2016) extended this by incorporating the Fourier function into the T-Y causality analysis, introducing the Fourier Toda–Yamamoto (FTY) causality analysis. By integrating the Fourier function, the FTY causality analysis accounts for smooth structural breaks and mitigates long-run information loss, enhancing the robustness of causality detection. Furthermore, the single-frequency FTY causality analysis is expressed in Equation 7.
[image: Equation showing a time series model with seasonal components. The model describes \( m_t \) as a function of past values, including terms with coefficients \(\alpha_0, \alpha_1, \ldots, \alpha_{p+d_{\text{max}}}\). It also includes sinusoidal terms with coefficients \(\gamma_1 \sin \left( \frac{2k\pi t}{T} \right)\) and \(\gamma_2 \cos \left( \frac{2k\pi t}{T} \right)\), plus an error term \( \mu_t \). Equation (7).]
In Equation 7, [image: It seems there is no visible image uploaded. Please upload an image, and I will generate the alt text for it.] denotes the vector containing the considered series, while [image: I'm sorry, I cannot generate alt text for LaTeX expressions. If you could provide the context or a description of an actual image, I would be happy to help!] represents the optimal lag of the VAR model and the maximum order of the integration of the series. The Fourier terms’ parameters are represented by [image: Please upload the image you would like me to generate alternate text for.] and [image: Please upload the image you'd like me to generate alternate text for.], while k, π, and t denote the frequencies, pi-values, and trend, respectively. The white noise error terms are represented by [image: The image shows the Greek letter "mu" followed by a subscript "t".]. The null hypothesis of the FTY posing the absence of causality ([image: Please upload the image or provide a URL, and I will generate the alt text for you.]: [image: Please upload the image or provide a URL, and I will generate the alt text for you.] = … = [image: Please upload the image you want to generate alt text for.] = 0) is tested against the alternative hypothesis ([image: Please provide an image or a URL so I can generate the alternate text for you.]: [image: Mathematical equation showing \( \alpha_1 = \cdots = \alpha_p \), indicating that all alpha variables from 1 to p are equal.] ≠ 0).
RESULTS
Before performing the cointegration analysis, short- and long-run estimations, and causality analysis to find evidence for the EKC, LCC, and pollution haven or halo hypotheses regarding the Chinese environmental indicators, a stationary analysis should be executed to examine whether the considered series are stationary at the level and determine the degree of integration among the series. The stochastic properties of the series are crucial for applying econometric approaches.
To achieve this, the conventional ADF and KPSS unit root tests with a constant, and a constant and trend, as well as the Fourier ADF (FADF) introduced by Enders and Lee (2012) and Fourier KPSS (FKPSS) proposed by Christopoulos and León-Ledesma (2010), are performed. The unit root tests with a constant, and a constant and trend are applied. In this study, the primary unit root tests are the FADF and FKPSS unit root tests, which allow for the consideration of multiple smooth, unknown, and sharp structural changes if the trigonometric functions are detected to be significant. The significance of the trigonometric functions is determined by comparing the values of the F-test statistics with the critical values of the F-test. Critical values of the F-test, obtained from Becker et al. (2006), are shown in the notes of Table 4, and the F-test statistics are presented in the second set of square brackets. The first set of square brackets represents the structural changes. If the F-test statistics exceed the critical values, the FADF and FKPSS results are interpreted. However, if a controversial case is identified, the conventional ADF and KPSS unit root tests are considered.
TABLE 4 | Unit root test results for the variables at the level.
[image: Table displaying unit root tests for various variables using ADF, KPSS, FADF, and FKSPSS methods. Columns show results under "Constant" and "Constant and trend" categories. Values in brackets indicate frequency and F-test statistics. Critical values at significance levels are noted, with detailed results for variables like lnCF, lnCLCF, lnGF, and others. Includes notes on critical values and reference sources.]The unit root test results for the series at the level and the first differences are tabulated in Table 4 and Table 5, respectively.
TABLE 5 | Unit root test results for the variables at the first differences.
[image: Table presenting unit root results with variables such as lnCF, lnCLCF, and others. Columns detail ADF, KPSS, FADF, and FKSPSS tests under "Constant" and "Constant and trend" categories, with values indicating test statistics and p-values or confidence intervals. Significance levels are marked at 10%, 5%, and 1%.]In the study, the environmental proxies consisting of lnCF, cropland-LCF, fishing-EF, fishing-LCF, forest-EF, forest-LCF, grazing-EF, and grazing-LCF are initially examined to determine their stochastic pattern. When comparing the F-test statistics with the critical values of the F-tests, it is observed that the trigonometric terms are significant in all series, except for the results of the FADF and FKPSS unit root tests with a constant and trend on grazing-EF and grazing-LCF. However, the findings of the mentioned tests with a constant confirm the significance of the trigonometric terms in the considered series.
The FADF and FKPSS unit root tests confirm that lnCF contains unit roots, and the FADF and FKPSS unit root tests with a constant show that lnCLCF is not stationary, while the tests with a constant and trend indicate that lnCLCF is stationary at the level.
Fishing-EF and fishing-LCF have unit roots at the level as a result of the FADF and FKPSS unit root tests.
With respect to the results obtained from the FADF unit root test with a constant and the FKPSS unit root tests concerning forest-EF and forest-LCF, the series are not stationary at the series’ level values. Grazing-EF and grazing-LCF show a unit root as a result of the FADF and FKPSS unit root tests with constant, while the ADF and FKPSS unit root tests with a constant and trend show that the series is stationary. The FADF and FKPSS unit root tests with a constant confirm that forest-EF and forest-LCF are not stationary, whereas the tests with a constant and trend provide controversial findings, verifying the stationarity of the series.
When examining the outcome of the unit root tests on the remaining series of the considered independent variables, the first difference values of the series become stationary.
After performing the stationary analysis, the next step in the empirical approach is conducting a cointegration analysis to examine whether the variables considered in the models are cointegrated or not. If the cointegration relationship between the variables in the different models is verified, the long- and short-run effects of the independent variables on the environmental indicators, including the ecological footprint and load capacity factors of cropland, fishing grounds, forest products, and grazing land, are examined to test the EKC and LCC hypotheses, as well as the pollution halo/haven hypothesis, by considering three control variables: lnTRADE, lnURB, and lnFAFGDP. The bootstrap Fourier ARDL cointegration analysis is performed for each considered model.
The bootstrap Fourier ARDL cointegration analysis reports three statistical values: Fa, t-dependent, and Fb. The null hypothesis for these three tests indicates the absence of cointegration and assumes that the test statistics are significant and greater than the table’s critical values. If this is the case, the null hypothesis is rejected, and the cointegration relationship between the variables in the model is confirmed.
In this context, the cropland ecological footprint (CF) and the cropland load capacity factors (C-LCFs) are the first considered dependent variables examined in models (1–6). The findings of the bootstrap Fourier ARDL cointegration analysis are shown in Table 6. Upon reviewing Table 6, it is concluded that the null hypothesis for all three tests should be rejected, and the test statistics are significant and exceed the critical values in all generated models where C-LCF is the dependent variable. In contrast, the long-run connection is confirmed in the first and second models, where CF is the dependent variable, while the null hypothesis is not rejected in the third model, where lnFAFGDP is used as the control variable.
TABLE 6 | Results of Fourier bootstrap ARDL cointegration results for the cropland footprint and cropland load capacity factor.
[image: Table displaying the Fourier ARDL cointegration test results for cropland EF and cropland-LCF across six models. Each model shows the frequency, minimum AIC, and values for \( F_A \), \( t \), and \( F_B \). Critical values are provided at 10%, 5%, and 1% significance levels for each test.]The Fourier ARDL cointegration analysis confirms the presence of the cointegrated connection among variables in all models on lnCF and lnC-LCF, except Model 3. Therefore, the short- and long-run estimations are investigated using Fourier estimation with the Fourier functions. The logarithmic forms of the series are considered in the long-run estimations, and the first difference forms of the series are employed in the short-run estimations. EC parameters are obtained from the residual of the long-run estimations, and optimal lags used in Fourier functions are determined as a result of the Fourier ARDL cointegration analysis. Suppose the short- and long-run coefficients of lnGDP are detected as positive and negative, respectively, or the short-run negative coefficient of lnGDP is higher than the long-run negative coefficient. In this case, the EKC hypothesis with lnCF is verified. Regarding the C-LCC hypothesis, the expected nexus between lnGDP and lnCLCF is reversed, considering the previously mentioned relationship with lnCF. The effect of lnFDI on lnCF and lnCLCF is found to be positive and negative, respectively, confirming the validity of the pollution haven hypothesis.
These theoretically expected relationships hold for the remaining generated models. In light of this explanation, the short- and long-run estimations for Model 1, Model 2, Model 4, Model 5, and Model 6 are presented in Table 7.
TABLE 7 | Short- and long-run estimations for models 1, 2, 4, 5, and 6.
[image: Six tables showing variables with coefficients, standard errors, and probabilities for long and short run models. Each table represents a different model, labeled Model 1 to Model 6, with varying variables such as lnGDP, lnFDI, and lnTRADE. Each model includes an error correction term (EC(-1)). The tables provide comprehensive data for econometric analysis.]According to Table 7 presenting Model 1, none of the considered independent variables have a significant influence on lnCF, but the coefficient of EC is found to be negative and significant, and the cosine term is also statistically significant. In the long-run estimations, the pollution haven hypothesis is confirmed, indicating that an increase in lnGDP contributes to higher pressure on cropland degradations. However, the Fourier term is statistically significant.
Table 7, which presents the results of Model 2, shows that lnGDP does not a statistically significant impact on lnCF in the short and long run. The outcome of Model 2 supports the pollution haven hypothesis as a 1% increase in lnFDI leads to a 0.030% increases in lnCF. Furthermore, lnCF is positively influenced by lnURB in the short run by 2.46%, which implies that lnURB is a factor harming the cropland-related environment.
When scrutinizing Table 7’s finding concerning Model 4, all explanatory variables are not statistically significant in the short run. On the other hand, lnGDP is the only explanatory variable in the long run, promoting a statistically significant impact on lnCLCF. In addition, the C-LCC hypothesis is not confirmed because decreasing cropland quality is associated with increased lnGDP.
Table 7, which presents the results of Model 5, shows the short and-long-run coefficients of the explanatory variables in lnCLCF. The result of the short-run estimation claims that lnGDP has an improved influence on lnCLCF, while the remaining variables are not statistically significant. Regarding the result of the long-run estimations, lnCLCF does not correspond with all explanatory variables.
The final evidence concerning lnCLCF is achieved from Model 6, and the estimations’ outcome is shown in Table 7. The pollution halo hypothesis holds for China when examining the nexus between lnFDI and lnCLCF in the long run. At the same time, lnFAFGDP is detected as an essential improved factor of lnCLCF in the short and long run. On the other hand, the C-LCC hypothesis does not exist when focusing on the result of Model 6 as a 1% increase in lnGDP impairs lnCLCF by a calculated 0.44%.
The result of the Fourier Toda–Yamamoto causality analysis concerning lnCF and lnCLCF is provided in Table 8. The null hypothesis indicating the absence of the causality is rejected when the bootstrap p-values are lower than the significance level. The causality nexus between the explanatory variables and lnCF is first interpreted, and later, the lnCLCF is considered. According to Table 8, the mutual causality link between lnURB and lnCF is detected at a 10% significance level, and a one-way causality connection operating from lnCF to lnFAFGDP is also indicated. Regarding the results on the causality nexus between the explanatory variables and lnCLCF, a mutual causality connection between lnFAFGDP and lnCLCF is verified.
TABLE 8 | Result of the Fourier–Toda–Yamamoto causality analysis on the cropland footprint and cropland load capacity factor.
[image: A table displaying various models with corresponding Wald values, p-values, and bootstrap p-values. The models analyze relationships between variables such as lnGDP, lnCF, lnFDI, lnTRADE, lnURB, and lnFAFGDP. Key observations include a low p-value of 0.0314 for the model lnCF=>lnURB and significant values for lnCF=>lnFAFGDP with a Wald of 50.7815 and both p-values at 0.0000.]The demand and supply sides of the fishing stocks are crucial for sustainability because the marine ecosystem plays a vital role in providing fisheries while regulating and balancing all ecosystem segments. The FGF related to the demand side of the marine ecosystem, while the fishing grounds-load capacity factors (FG-LCFs) reflect its supply side, and the effects of economic growth and LNFDI are examined, considering foreign lnTRADE, lnURBanization, and lnFAFGDP as control variables. According to the stochastic properties of the variables confirming the same cointegrated order I (1), the bootstrap Fourier ARDL cointegration analysis is employed on the fishing-related models. The outcome of the cointegration analysis is displayed in Table 9. According to Table 9, the cointegration relations hold for models 9 and 10 due to the rejection of the null hypothesis of three tests at a 10% significance level. In contrast, t-dependent and Fb test statistics reveal the validity of the long-run movement in models 8 and 12. Furthermore, the Fa test statistics are only significant for Model 7 at a 10% significance level. The absence of the cointegration connections is found for Model 11 due to three tests.
TABLE 9 | Results of Fourier bootstrap ARDL cointegration results for the fishing grounds footprint and fishing load capacity factor.
[image: Table displaying the Fourier ARDL cointegration test results for fishing EF and fishing-LCF across models 7 to 12. Columns include model expressions, frequency, minimum AIC, \( F_A \), \( t \), and \( F_B \). Critical values are listed for 10%, 5%, and 1% significance levels for each model's test statistics.]After confirming the validity of the long-run movement in all fishing-based models except Model 11, short- and long-run estimations are applied to the considered models. Table 9 presents the findings on Model 7, revealing that all independent variables are statistically significant at a 10% significance level in the short run. In contrast, only lnLNTRADE has a substantial impact on fishing-EF in the long run, contributing to a reduction in fishing-related degradation. However, lnTRADE exacerbates fishing-related degradation in the short run, which is calculated as 0.15%, while the pollution halo hypothesis is valid. Furthermore, an increase in lnLNGDP contributes to higher pressure on the fishing ecosystem in the short run. However, the Fourier terms and EC are statistically significant only in the short run. Table 10 presents the result of Model 8, indicating that fishing-EF is not statistically associated with the considered independent variables in the short run.
TABLE 10 | Short- and long-run estimations for models 7, 8, 9, 10, and 12.
[image: Table displaying statistical data for models 7 through 12. Each model outlines long-run and short-run variables, with corresponding coefficients, standard errors, and probabilities. The models include variables like lnGDP, lnFDI, lnTRADE, Sin, and Cos. The table details specific values for each model's variables, providing a comprehensive view of the coefficients and associated statistical measurements necessary for model evaluation.]As for the long-run estimations, fishing-EF is positively and negatively induced by lnLNGDP and lnURB, respectively. According to the outcome of the long- and short-run estimation concerning Model 9, lnLNGDP and lnLNFDI statistically matter for fishing-EF in the short and long run, while lnFAFGDP promotes a favorable impact on the fishing-related ecosystem in the short run, which is calculated as 0.54%. However, Table 10 confirms the significance of the Fourier terms in the short and long run and the theoretical expectation of EC. When considering the demand and supply sides of the fishing ecosystem, Table 10 shows evidence of Model 10 in which lnLNTRADE is used as a control variable under the F-LCF and the pollution haven or halo hypothesis. When examining the results of Table 10, F-LCF is not statistically influenced by lnLNFDI in the short and long run.
At the same time, F-LCF is deteriorated by a 1% increase in lnLNTRADE in the short and long run, detected as 0.35% and 0.74%, respectively. However, the F-LCC hypothesis is valid in Model 10 because the unfavorable impact of lnLNGDP on F-LCF reduces over time. According to the findings of Table 10, which presents the results of Model 12, lnLNGDP and lnFDI are not statistical determinants of F-LCF in the short and long run. Moreover, the short- and long-run lnFAFGDP coefficients are measured at 0.65% and 0.48%, respectively, which underlines the enriched role of lnFAFGDP in F-LCF. However, the Fourier terms are statistically significant as a result of the short- and long-run estimations, and EC is measured at a negative and significant level of 5%. In light of this explanation, the short- and long-run estimations concerning Model 7, Model 8, Model 9, Model 10, and Model 12 are provided in Table 10.
Table 11 presents the evidence concerning the causality link between the explanatory variables and fishing-related indicators. The findings indicate that fishing-EF is caused by lnLNFDI, and, in turn, fishing-EF induces lnLNTRADE. Moreover, lnLNFDI is also an inducing factor of fishing-LCF.
TABLE 11 | Result of the Fourier–Toda–Yamamoto causality analysis on the fishing grounds and fishing load capacity factor.
[image: A table displaying statistical data for various models. Columns include "Model," "Wald," "p-value," and "Bootstrap p-value." Each row represents a different model with corresponding values for Wald statistics, p-values, and bootstrap p-values. The data suggests varying levels of significance across these models.]Table 12 documents the bootstrap Fourier ARDL cointegration test result of the generated models in which the forest products’ footprint and the forest-load capacity factors are the dependent variables. Examining the outcome of the analysis for Model 13, it is concluded that the measured test statistics for Fa, t-dependent, and Fb are greater than the critical values at a 5% significance level, and all three hypotheses are not accepted. This finding proves the cointegration relationship among lnFPF, lnLNGDP, lnLNFDI, and lnLNTRADE. Regarding Model 14, the calculated test statistics of three hypotheses induce all three null hypotheses to be accepted, and the cointegration connection between the variables in Model 14 is not confirmed. When inquiring about the outcome related to Model 15, the test statistics of Fa and Fb are not greater than the critical values. In contrast, the calculated t-dependent statistics are significant at a 5% significance level. Therefore, the long-run movement holds for Model 16. Regarding the Fourier bootstrap ARDL cointegration results for Model 16, Fa and t-dependent measured test statistics exceed the critical values at all significance levels, while the Fb test statistics are significant at a 5% significance level, and all three null hypotheses of the tests are rejected. The long-run relationship is confirmed for Model 16. Considering the result for Model 17, it is underlined that all three null hypotheses are not accepted at a 5% significance level and that the validity of the cointegrated connection is important for the variables in Model 17. Finally, when considering the outcome of Model 18, it is concluded that Fa t-dependent and Fb test statistics are not sufficient to reject the null hypothesis. The validity of the cointegrated relationship is not verified in Model 18.
TABLE 12 | Fourier bootstrap ARDL cointegration results for the forest products’ footprint and the forest-load capacity factor.
[image: Fourier ARDL cointegration test table for forest EF and forest-LCF includes models with variables like lnGDP, lnFDI, lnTRADE, lnURB, and lnAFGDP. The table displays Frequency, Min AIC, F_A, t, and F_B values for five models with critical values at 10%, 5%, and 1%. Each model entry provides specific statistics related to the strength and significance of the cointegration tests across these parameters.]Following the validity of the cointegration relationship between the variables in Model 13, the study’s objective is to examine the EKC hypothesis and the pollution halo/haven, along with considering the effect of lnLNTRADE on the FPF. FMOLS estimations with the Fourier function investigate the short- and long-run coefficients of lnLNGDP, lnLNFDI, and lnLNTRADE on the FPF. The result of the FMOLS estimations is displayed in Table 13. When observing the result on the short run of the FMOLS estimations, the EKC hypothesis with the FPF is not verified because an increase in lnLNGDP impairs the forest degradation, and the long-run coefficient of lnLNGDP is greater than its short-run coefficient. The coefficient of lnLNFDI is not statistically significant in the short run. In contrast, a 1% increase in lnLNFDI is associated with a 0.08% increase in forest degradation, which verifies the presence of the pollution haven. Moreover, forest degradation increases with an increase in lnLNTRADE, and the negative effect of lnLNTRADE on forest degradation is more pronounced in the long run. In addition, the cointegrated connection holds for Model 15, where lnFAFGDP is employed as a control variable under investigation for the EKC and pollution halo/heaven hypotheses. The result of the FMOLS estimations with the Fourier function is provided in Table 13. The coefficients of lnLNGDP and lnLNFDI are statistically insignificant in the short and long run. At the same time, lnFAFGDP exacerbates in the long run. The forest products’ load capacity factors (FP-LCFs) are employed to test their LCC (FP-LCF) hypothesis. The FP-LCF hypothesis can be examined in models 16 and 17, where the long-run movement among the variables is confirmed. The outcome of Model 16 is presented in Table 13, and the forest-related quality is influenced by lnLNGDP measured at 0.20%, while the worst effect of lnLNGDP on the FP-LCF is calculated as 0.11%. The FP-LCF hypothesis exists in China. In the long run, lnLNFDI reduces the forest quality, and the pollution haven hypothesis is presented. However, lnTRADE is an improved factor in enhancing FP-LCF. The FP-LCC and pollution haven/halo hypotheses are investigated considering lnURB as a control variable in Model 17. The finding of the FMOLS estimation on Model 17 is shown in Table 13. As revealed in the short-run result, FP-LCF is statistically not induced by lnLNGDP, lnLNFDI, and lnURB. The coefficient of lnLNFDI is also reported as insignificant in the long run, but lnLNGDP and lnLNTRADE are statistically appropriate to interpret. A 1% increase in lnLNGDP corresponds to a 0.56% decrease in the FP-LCF, while lnURB leads to an increase in the FP-LCF, calculated as 1.28%. In light of this explanation, the short- and long-run estimations for Model 13, Model 15, Model 16, and Model 17 are provided in Table 13.
TABLE 13 | Short- and long-run estimations for models 13, 15, 16, and 17.
[image: Table comparing four models (13, 15, 16, 17) with long-run and short-run variables. Each model lists variable names, coefficients, standard errors, and probabilities. Models focus on different logarithmic transformations and expressions, including lnGDP, lnFDI, lnTRADE, among others. The table reveals distinct statistical values for each model's variables across long and short runs.]The findings from the Fourier–Toda–Yamamoto causality analysis concerning the nexus between explanatory variables and forest-related environmental indicators are presented in Table 14. These findings indicate that the forest-EF and forest-LCF are not statistically induced by all explanatory variables.
TABLE 14 | Results of Fourier–Toda–Yamamoto causality analysis for the forest products’ footprint and forest load capacity factor.
[image: Table listing different economic model relationships with columns for Wald statistics, p-values, and bootstrap p-values. Data includes various combinations such as lnGDP to lnFPF, lnFPF to lnFAFGDP, among others, with values ranging from 0.0052 to 4.1192 for Wald, indicating statistical significance in different contexts.]Other environmental indicators concerning the food supply, land, and marine sustainability are the grazing land footprint (GLF) and the grazing land-load capacity factors (G-LCF). Another objective of the study is to examine the effect of economic growth and LNFDI, along with control variables, on GLF and G-LCF. The stationary analysis reveals that all variables become stationary at the first differences; in other words, they are integrated at I (1). Then, the bootstrap Fourier ARDL cointegration test is also processed to examine the validity of the cointegration connection. When evaluating all results shown in Table 15 for the models numbered from 19 to 24, it is highlighted that the null hypothesis, meaning the absence of the long-run relationship between the variables of Fa, t-dependent, and Fb, is rejected at a 10% significance level because the test statistics at the absolute value are greater than the critical values.
TABLE 15 | Fourier bootstrap ARDL cointegration results for the grazing land footprint and the grazing land load capacity factor.
[image: Table titled "Fourier ARDL cointegration test for grazing land EF and grazing land-LCF" showing models and associated values. Columns include Model, Frequency, Minimum AIC, F_A, t, and F_B, with different statistical values and models, such as Model 19 to Model 24, each having two entries for critical values.]As the long-run connection is verified for all grazing land footprint and grazing-load capacity factor-based models, the long- and short-run effect of the independent variables on grazing-EF and grazing-LCF is examined using FMOLS estimators with Fourier terms. Table 16 presents the result concerning Model 19, and the outcome of the estimation shows that lnLNGDP and Fourier terms are not statistically significant in the short and long run. In contrast, the pollution haven hypothesis is confirmed in the long run at a 5% significance level, whereas the coefficient of LNFDI is found to be insignificant in the short run. The role of lnTRADE in grazing-related environmental degradation has varied over time. A 1% increase in lnTRADE in long and short run induces approximately a 0.43% decrease and a 0.093% increase in grazing-related environmental degradation. However, the value of EC is positive and statistically insignificant.
TABLE 16 | Short- and long-run estimations for models 19, 20, 21, 22, 23, and 24.
[image: This image features a series of tables displaying the results of six economic models, labeled Model 19 to Model 24. Each table includes variables such as lnNGDP, lnNFDI, lnTRADE, lnFDGP, lnRUB, Sin, Cos, and EC (-1). For both long-run and short-run columns, the tables provide coefficients, standard errors, and probabilities. Each model evaluates different combinations of these variables displaying statistical parameters relevant to economic analysis.]Table 16 discloses the outcome of the estimation of Model 20. According to Table 16, the EKC hypothesis is not verified because the long- and short-run effect of lnLNGDP on the grazing-EF is found to be impaired. Expanding economic activities in the long run induces more pressure on the grazing land than in the short run. The pollution haven hypothesis holds for China in the long run, while lnURBanization plays a pivotal role in mitigating environmental degradation.
Moreover, the coefficient of EC is negative and significant at a 1% significance level, while Fourier terms are not statistically significant in the short and long run. Regarding lnFAFGDP being used as a control variable, the cointegration analysis confirms the long-run movement between variables, so short- and long-run estimations are performed. The outcome of the FMOLS estimation with the Fourier terms is presented in Table 16. According to Table 16, the EKC hypothesis is verified as the long-run coefficient of lnLNGDP is lower than that of the short-run at a 10% significance level. However, lnLNFDI deteriorates the environmental quality in the long run, which supports the presence of the pollution haven hypothesis. At the same time, an increase in lnFAFGDP promotes an enriched impact on environmental quality in the short and long run.
Table 16 reveals the short- and long-run effects of the considered determinants on G-LCF. When considering the results of Model 22, it is concluded that only lnLNGDP is statistically significant, and a 1% increase in lnLNGDP leads to a 0.031% decrease in G-LCF. Furthermore, Table 16 discloses the evidence concerning Model 23, and the G-LCC hypothesis is demonstrated because the adverse impact of lnLNGDP on the G-LCF seems to have shrunk over time. G-LCF is not statistically associated with lnLNFDI in the short and long run. However, lnURB plays an essential role in enhancing G-LCF. The result of Model 24 is similar to the finding of Model 23; in other words, the G-LCC hypothesis is also verified, and the neutrality hypothesis with the nexus between LNFDI and G-LCF is detected. Furthermore, a 1% increase in lnFAFGDP in the short and long run leads to an improvement in G-LCF, measured as 0.29 and 0.011, respectively. In light of this explanation, the short- and long-run estimations concerning Model 19, Model 20, Model 21, Model 22, Model 23, and Model 24 are provided in Table 16.
The results of Fourier–Toda–Yamamoto causality analysis for the grazing land footprint and grazing load capacity factor are documented in Table 17. The causality connection between the considered independent variables and grazing-related environmental indicators is detected as a one-way causality link operating from lnURB to G-EF, and G-EF induces lnLNTRADE. Moreover, the results of Fourier Toda–Yamamoto analysis on G-LCF indicate that lnURB causes G-LCF and lnLNTRADE is influenced by G-LCF.
TABLE 17 | Results of Fourier–Toda–Yamamoto causality analysis for the grazing land footprint and grazing load capacity factor.
[image: A table displaying model relationships, Wald statistics, p-values, and bootstrap p-values. Models include lnGDP, lnGF, lnFDI, lnTRADE, and others. Notable p-values show lnGF influencing lnTRADE, and lnGLCF influencing lnTRADE, both with significant results under conventional significance levels.]DISCUSSION AND CONCLUSION
This study analyzes the effect of economic growth and foreign direct investment on the SDG targets Zero Hunger (2), Life Below Water (14), and Life on Land (15) by examining relevant sub-components of ecological footprint and load capacity factors have been analyzed within the framework of EKC and LCC hypotheses in China. Cropland, fishing, forest, and grazing land are considered environmental areas, and foreign trade (lnTRADE), urbanization (lnURBAN), agriculture, forestry, and fishing are considered control variables. To achieve this objective, the study employs Fourier bootstrap ARDL cointegration analysis and FMOLS estimators, expanded with the Fourier function.
The CF and C-LCF are the first environmental indicators considered for the study’s objective. The long-run relationship holds for all models except Model 3 on CF, where lnFAFGDP is used as a control variable under the EKC hypothesis. When examining the results concerning the nexus between lnFDI and lnCF, the pollution haven hypothesis is verified in the long run. Furthermore, lnCF is not influenced by lnTRADE, while lnURB promotes an increased impact on lnCF in the short run. The pressure on the cropland-related environment factors is accelerated by lnGDP, so the EKC hypothesis on lnCF does not hold for China as a result of analysis on all models. Regarding the outcome of lnC-LCF, it is underlined that the C-LCC hypothesis does not exist, and lnGDP impairs the C-LCF in models 4 and 6. In addition, the role of lnFDI, lnTRADE, and lnURB in lnC-LCF are found to be insignificant, while lnFAFGDP plays an enriched role in cropland sustainability. Although the study mainly concentrates on the indicators related to Life on Land to provide policy direction concerning Zero Hunger and other SDG targets, the sustainable marine ecosystem also plays a pivotal role in the success of SDGs. According to the evidence obtained from the investigation on the considered models, lnURB and lnFAFGDP are found to mitigate fishing degradations, whereas the effect of lnFDI on lnFF varies over time—negative in the short run, confirming the pollution halo hypothesis, and positive in the long run, verifying the pollution haven hypothesis. In addition, fishing degradation is accelerated by an increase in lnGDP, which induces the rejection of the F-EKC hypothesis. The F-LCC hypothesis is confirmed when considering the estimations found in Model 10, but the results in Model 12 indicate an insignificant connection between lnGDP and lnF-LCF. Moreover, lnFDI also does not matter for fishing sustainability. However, fishing sustainability is improved by lnFAFGDP. The FP and FP-LCF are essential indicators, especially in Life on Land, SDG Target 15, and others. As a consequence of the investigation of six models based upon lnFP and lnFP-LCF, it is revealed that the EKC hypothesis is not valid as the short and long run of lnGDP accelerate lnFP, and lnFAFGDP and lnFDI are identified as other impaired factors. As for the evidence on lnFP-LCF, lnURB and lnTRADE are improved factors in forest sustainability, and FP-LCC hypothesis is also confirmed. At the same time, the negative connection between lnFDI and lnFP-LCF in Model 16 is detected. The GF and G-LCF are China’s final considered environmental indicators in terms of providing guidelines on a sustainable food supply chain. Along with the method applied to remaining environmental indicators, six different models are considered, i.e, three models related to GF and the remaining three models related to G-LCF; these models examine the control variables within the framework of the EKC, LCC, and pollution haven or halo hypotheses. When examining the effect of lnFDI and lnGDP on GF, the pollution haven hypothesis is verified in all three models, while the EKC hypothesis is not confirmed. In the long run, all control variables comprising lnURB, lnTRADE, and lnFAFGDP promote a favorable influence in mitigating grazing degradations. In contrast, when scrutinizing the dynamic role of lnLNGDP in G-LCF, the G-LCC hypothesis holds for China, while lnFDI and lnTRADE do not influence the G-LCF. Moreover, lnurn and lnFAFGDP play a pivotal role in improving G-LCF.
Accompanying the summary of the empirical findings on all considered models, the reliable policy directions aim to mitigate the pressure of human activities on the CF, FF, FP-F, and GF and enhance the biocapacity of the considered environmental indicators. LCF plays a vital role in various SDGs, including Zero Hunger (2), Life Below Water (14), and Life on Land (15) and indirectly contributes to the remaining SDGs. With respect to the function of lnFDI in Chinese sustainability, the pollution haven hypothesis is verified for most of the considered models. China is one of the leading FDI-inflow hubs in the world. Still, the legal framework, norms, regulations, and attitude toward the environment are not sufficient to support the evidence on the pollution haven hypothesis in the study. Policymakers may reshape and enact FDI-related policies that provide subsidies, tax exemptions, and facilities for profit transfer, management, and production for firms enacted with modern management methods and cutting-edge technologies. In addition, exemptions on electricity and energy costs and reducing the red tape are vital policy measures to counteract the negative effects of FDI on the environment. When the lnGDP influences the environmental indicators, the Chinese economic structure is not harmonized with sustainability. China’s economic welfare is achieved at the cost of environmental degradation, characterized by high energy intensity, a significant share of nonrenewable energy resources in total energy, and the use of polluting technologies and production methods. Improving energy efficiency, enhancing renewable energy transitions, and public and government partnerships to stimulate greener technology and energy are essential policies transforming polluted economic performance into sustainability. On the other hand, the role of lnTRADE is detected as an improved factor for Chinese sustainability, which implies that China has been transforming from labor-intensity and low-tech goods into capital-intensity and high-tech goods such as semiconductors. Urbanization process and income from fishing and agriculture sectors are found to be enriched factors in China. In order to maximize the benefits of these fields, policy initiatives should be prioritize green and cutting-edge technologies, management strategies, and production methods, such as employing shallow geothermal energy in agriculture, heating and cooling systems, and pro-environmental building methods across all sectors of the Chinese economy.
Furthermore, the study encountered limitations that have yet not been addressed. First, the study provides only the evidence for China regarding related areas’ sustainability, whereas focusing on wide-panel samples or different aspects of the importance of local cases should be investigated. Moreover, varied social, political, and macroeconomic indicators are other options for further studies.
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Amid growing concerns about haze pollution and its detrimental effects on ecological systems and public health, this study proposes a novel approach to addressing this pressing issue. Drawing on a cohort of 120 environmental academics, the research employs advanced second-generation statistical methodologies, including partial least squares structural equation modeling, to introduce an innovative strategy rooted in resilience theory. This approach emphasizes resilience as the foundation for advancing green infrastructure and urban sustainability in the context of haze pollution. The findings highlight resilience as a key driver in fostering green infrastructure and urban resilience through the integration of smart technology adoption, nature-based solutions, and environmental digital platforms. These factors collectively enable urban environments to effectively tackle the dual challenges of climate change and pollution. Recognizing haze pollution as a widespread concern, particularly in developing nations, the study provides actionable strategies with global relevance. By offering practical insights, this research contributes to the global pursuit of sustainable urban development and resilience.
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1 INTRODUCTION
Ecosystems worldwide are undergoing significant changes due to rapid social and economic growth (Li et al., 2023). Although the United Nations’ 2030 Sustainable Development Goals aim to address various global challenges, they have also brought environmental issues into sharper focus, such as soil erosion, urban heat islands, depleting carbon stocks, and environmental degradation (Qiu et al., 2022; Hua et al., 2022; Aziz et al., 2021a; Oquendo Di Cosola et al., 2021). Among these, the adverse consequences of air pollution have been widely studied (Sarfraz, 2020; Kim et al., 2015). Aerosols, commonly observed as haze, are one of the most harmful pollutants due to their widespread impact on both the environment and human health. Haze pollution, largely resulting from energy production and consumption, severely affects human health, ecosystems, cultural heritage, and climate. It is estimated that haze pollution causes between 2.6 and 4.8 million premature deaths annually worldwide. Major cities such as Beijing, Delhi, Lahore, Mexico City, Los Angeles, and Tehran frequently experience haze pollution (Chen et al., 2013; Shabbir, 2019).
In Pakistan, air pollution has become a pressing concern, particularly in its central regions. Lahore, once known as the “City of Gardens,” is now engulfed by toxic smog. Despite being the country’s second-largest city with an annual economic growth rate of 4% (Riaz and Hamid, 2018), Lahore ranked second for the worst air quality in 2022, according to the Air Quality Index (IQAir, 2022). During haze pollution episodes, the city’s 11 million residents are enveloped in dense haze, obstructing the sun and blanketing the streets, especially at night. Similarly, Faisalabad and Peshawar rank among the top three cities in Pakistan with the worst air quality, as shown in Figure 1. This problem worsens in cooler months when temperature inversions trap pollutants near the ground. In 2019, the United Nations Children’s Fund reported that 154,000 children under the age of five died globally due to outdoor air pollution, with haze pollution being one of the leading causes of mortality in young children in Pakistan. Due to weaker immune systems, children are more vulnerable to respiratory infections when exposed to prolonged haze pollution.
[image: Bar charts display monthly PM2.5 levels in Faisalabad, Lahore, and Peshawar. Faisalabad has high pollution in December. Lahore peaks in November, and Peshawar's highest is in December. Colors indicate different months.]FIGURE 1 | PM2.5 levels throughout the year 2022 Source: IQ Air 2022 World Air Quality Report.
Air quality plays a crucial role in a nation’s development, as it directly impacts economic growth. A healthy population, thriving businesses, a dynamic tourism industry, and abundant job opportunities are essential to economic progress. However, air pollution, particularly haze pollution, undermines these factors and hampers economic growth (Shahid et al., 2019; Rana, 2020). In 2016, global air pollution resulted in an annual financial loss of 5 trillion USD, with developing countries, particularly in South Asia, suffering the most. Labor income losses in these countries amounted to 1% of their GDP (World Bank, 2016). This issue is becoming even more pressing as the proportion of people living in urban areas is expected to rise from 55% to 68% by 2050 (World Health Organization, 2021). Lahore, specifically, is regularly ranked among the worst cities for air quality, with air pollution reducing Pakistan’s average life expectancy by 3.9 years (Human Rights Watch, 2024; Ijaz, 2023). The impact is not limited to locals; tourists, such as the Sikh community visiting Kartarpur, are also affected. In 2023, haze pollution caused travel delays and led to the temporary closure of schools in Lahore. If haze pollution remains unchecked, Pakistan’s GDP could decline by more than 5.88%. Enhancing urban resilience and addressing smog-related air pollution are critical for sustaining economic growth.
Urban resilience is key to addressing these challenges. Resilience enables cities to adapt to, respond to, and recover from natural hazards, including haze pollution (Yamagata and Maruyama, 2016; Gencer, 2017). The concept of urban resilience, introduced in the 1990s (Tobin, 1999), has become increasingly important as urbanization in Pakistan spurs economic growth but also exacerbates issues such as waste management, sanitation, employment, food security, housing, and health services (Tumini et al., 2017; Aziz et al., 2021b). Saja et al. (2018) emphasize that urban areas must be prepared to reduce disaster impacts and losses. While Pakistan’s government has initiated efforts, integrating resilience into development strategies is crucial (Aziz et al., 2023; Aziz et al., 2024). This research aims to explore this integration by gaining insights from local environmental academics on the factors contributing to urban resilience in the context of haze pollution. These academics, with expertise in environmental science, urban planning, and sustainability, are well-equipped to provide research-based responses to complex environmental issues (Azzimonti et al., 2021). Their input will help shape practical and effective policies to address the growing threat of haze pollution. Their perspectives are essential in identifying sustainable, context-specific solutions for Pakistani cities, ensuring that urban resilience strategies are based on expert knowledge and are feasible for real-world application.
This research stands out from prior studies in several key ways. It uniquely applies the established resilience framework to the underexplored issue of haze pollution in Pakistan. Most research on urban resilience has been conducted in regions like the United States, Europe, and China, focusing on urban disasters such as hurricanes and floods (Cutter, 2016; Khazai et al., 2018; Deatrick, 2015; Klein et al., 2017; Leobons et al., 2019) or urban resources like water and energy (McPhearson et al., 2015; Raub et al., 2021; Buckley et al., 2021), and urban ecology (Menconi et al., 2020). While resilience theory has been widely applied in various contexts such as urban flood management (McFadden et al., 2009; Djordjević et al., 2011), environmental management (Coaffee, 2008), water management (Yazdani et al., 2011), and urban resilience assessment (Feldmeyer et al., 2019; Fu and Wang, 2018; Sharifi, 2020; Sharifi and Yamagata, 2018), there is a significant gap in its application to haze pollution, particularly in emerging countries. This research offers a novel approach by contextualizing the resilience framework within Pakistan’s unique socio-environmental settings. It extends beyond theoretical analysis, integrating empirical data from three of Pakistan’s most affected cities to provide practical, context-specific recommendations for enhancing urban resilience against haze pollution.
In addition, the recent study by Datola (2023) offers a comprehensive theoretical framework for assessing and implementing resilience in urban planning. This framework was chosen as the basis for this research because of its detailed definition of the essential elements of urban resilience and its practical recommendations for resilience design. The study emphasizes operational methods, which aligns with the objective of exploring the practical applications of resilience in urban environments. By building upon Datola’s (2023) theoretical framework, this research incorporates empirical investigation to confirm and refine the theoretical model in real urban settings. The empirical approach enriches the theoretical model by assessing its relevance across different urban contexts, providing evidence-based guidance for urban planners and policymakers. This integration bridges the gap between theory and practice, ensuring that the proposed strategies are both conceptually valid and practically implementable.
Furthermore, this study distinguishes itself by not only identifying key characteristics of the resilience framework but also recognizing these attributes as transformative tools to enhance urban resilience in the face of haze pollution. The study employs Partial Least Squares Structural Equation Modeling (PLS-SEM), a second-generation multidimensional approach, to examine associations, test theories, and verify existing models. This method is particularly effective for handling complex models, small sample sizes, non-normally distributed data, and scenarios requiring flexibility and forecasting accuracy. The integration of these methods makes this study a significant contribution to the existing body of knowledge, emphasizing the resilient approach in fostering urban resilience amidst haze pollution. To sum, this paper contributes to both theoretical and practical knowledge by adapting resilience frameworks to the specific challenges posed by haze pollution in Pakistan and providing empirical evidence that can guide future urban resilience planning efforts in similar contexts.
The rest of the research is organized as follows: Section 2 establishes the theoretical framework with key concepts and explains the study’s hypotheses. Sections 3, 4 present the research methodology and findings, respectively. Section 5 provides the study’s conclusion and offers some possible policy recommendations.
2 LITERATURE AND THEORETICAL FRAMEWORK
The concept of urban resilience has become central in urban studies, particularly as cities face increasing environmental, economic, and social challenges. The foundations of resilience theory were laid by Holling (1973) and later expanded by Folke (2006), who emphasized the adaptability of ecosystems and socio-ecological systems in the face of disturbances. Resilience is often defined as the capacity of a system to absorb shocks, adapt, and evolve while maintaining core functions. According to Hudson (2010), resilience is not a static attribute but a dynamic, long-term process that is critical for sustainable development. A resilient system is characterized by its ability to anticipate, absorb, accommodate, or recover from the effects of hazardous events (Rana, 2020; Cinner and Barnes, 2019; Convertino and Valverde, 2019; Bruce et al., 2020). This dynamic nature makes resilience particularly important in urban environments, where the complexity of socio-ecological interactions demands flexible and adaptive management strategies (Rana, 2020; Cinner and Barnes, 2019; Convertino and Valverde, 2019; Bruce et al., 2020).
Urban resilience, in particular, has been defined by scholars such as Cumming and Peterson (2017) and Sterk et al. (2017) as the capacity of urban systems to withstand and recover from various disturbances, including environmental, economic, and social shocks. In the context of cities, resilience extends beyond the ecological to include social, economic, and infrastructural dimensions, reflecting the complexity of urban systems. This ability to adapt and recover is especially important in the face of climate change and increasing environmental challenges, such as pollution (Raza et al., 2021). Urban resilience is not just about bouncing back from crises but also about transforming and evolving in response to new challenges. This transformative potential is particularly relevant as cities face ongoing threats from pollution, climate change, and rapid urbanization.
While several studies have explored resilience across various sectors such as transportation (Leobons et al., 2019), agriculture (Córdoba Vargas et al., 2020), the environment (Manyena et al., 2019), energy (Mutani et al., 2020), and climate change (Heinzlef et al., 2020; Keshavarz and Moqadas, 2021), psychology (Bonanno et al., 2008), ecology (Holling, 1973), engineering (Fiksel, 2003), socio-ecological systems (Folke et al., 2002; Walker et al., 2004), urban planning (Ahern, 2011; Wilkinson, 2012; de Luca et al., 2021), and disaster risk management (Coaffee, 2008; Cutter et al., 2008), the exploration of resilience in response to specific environmental challenges like haze pollution, particularly in Pakistan, remains limited.
Haze pollution represents a significant environmental challenge for urban areas across the globe, including Pakistan. Characterized by elevated levels of particulate matter and other contaminants in the atmosphere, this type of pollution presents significant health risks, has a detrimental impact on the environment, and results in considerable economic costs. The adverse effects of haze pollution underscore the urgent need for urban areas to develop resilience strategies that not only mitigate the immediate impacts of pollution but also enhance long-term adaptability to environmental changes. However, the academic literature on urban resilience in the context of haze pollution remains under-researched, particularly in the Global South. This study aims to address this gap by examining the influence of environmental professionals’ viewpoints on urban resilience initiatives to mitigate haze pollution in Pakistan. The study seeks to enhance understanding of how cities can strengthen their resilience to environmental challenges by analyzing expert-driven solutions that incorporate sustainable practices, technological innovation, and nature-based strategies.
Urban resilience, as a strategy, is increasingly seen as transformative, enabling cities to address a wide range of environmental and socio-economic risks in the context of climate change, globalization, and urbanization (Masnavi et al., 2019; Córdoba Vargas et al., 2020). The primary goal of this transformative approach is to build cities that are not only capable of recovering from shocks but also adaptable enough to evolve in response to new challenges (Yamagata and Maruyama, 2016). Within the field of urban planning, resilience has emerged as a key principle that informs the design and development of cities, enabling them to manage diverse types of disturbances (Desouza and Flanery, 2013; Ilmola, 2016; Sharifi and Yamagata, 2016; Sharifi and Yamagata, 2018). According to Sharifi and Yamagata (2018), urban planning plays a crucial role in facilitating resilience by providing the frameworks and tools necessary for cities to adapt and thrive under uncertain conditions. Ahern (2011), Meerow and Newell (2015), Shivaprasad Sharma et al. (2018), and Wilkinson (2012) emphasize that the relationship between urban resilience and urban planning is one of the most pressing challenges in the current urban agenda. They argue that a deeper understanding of this relationship is essential for developing urban policies and designs that enhance resilience in the face of environmental threats.
Technological innovation constitutes a vital element of urban resilience, particularly in the context of pollution reduction and the enhancement of environmental sustainability. Liu et al. (2018) highlights the pivotal role of technological innovation in mitigating haze pollution in China. The author demonstrates that such advancements not only reduce local pollution but also generate advantageous spillover effects in neighboring regions. This conclusion is supported by Yu and Du (2019), who argues that innovation, even during economic downturns, can significantly reduce CO2 emissions, thereby facilitating widespread environmental improvements. Carrión-Flores and Innes (2010), and Ahmad et al. (2020) have demonstrated that environmental innovation is a crucial factor in mitigating toxic gas emissions and enhancing air quality, particularly in developed nations such as the United States and OECD member countries. These findings emphasize the importance of integrating novel technologies into urban resilience measures, particularly in regions such as Pakistan, where haze pollution is increasingly endangering public health and urban sustainability.
In addition to technical alternatives, nature-based solutions have emerged as a promising strategy for enhancing urban resilience. Faivre et al. (2017) posit that the integration of nature-based solutions into urban planning is a means of enhancing ecosystem resilience and fostering sustainable urban growth. Nature-based solutions employ natural systems and processes to address environmental concerns, such as pollution, while simultaneously providing additional benefits, including enhanced biodiversity, improved public health, and greater social wellbeing. Recent case studies from cities such as Chania, Crete (Tsekeri et al., 2022), and Milan (Mahmoud et al., 2021) demonstrate the integration of nature-based solutions (NBS) with digital technology to enhance sustainability and livability. In China, Internet of Things (IoT), mixed reality, and information and communication technologies (ICT) are integrated with nature-based solutions to enhance citizen awareness and integration. The amalgamation of nature-based solutions with advanced technology not only bolsters environmental resilience but also generates novel economic prospects, especially in domains associated with green infrastructure and urban innovation (Bayulken et al., 2021; Barbarwar et al., 2023; Istrate and Hamel, 2023).
The importance of nature-based solutions is especially significant in Pakistan, where rapid urbanization and environmental degradation have exacerbated the challenges associated with haze pollution. The objective of this project is to examine how Pakistani cities can enhance their resilience to environmental risks by focusing on solutions driven by academics that integrate green infrastructure with technological innovations. It is of paramount importance to engage the expertise of environmental professionals in the formulation and implementation of policies that are technically viable and contextually appropriate. Insights from environmental specialists regarding urban resilience measures may provide a pragmatic framework for addressing current environmental challenges and establishing a foundation for future sustainability.
Furthermore, engaging the public and encouraging community involvement is crucial for fostering urban resilience. Studies by Mahmoud et al. (2021), Mahmoud et al. (2024) and Castelo et al. (2023) emphasize the necessity of involving local communities in the design and implementation of nature-based solutions to foster a sense of ownership and ensure the long-term efficacy of resilience programs. Digital platforms that facilitate environmental education and citizen interaction have the potential to significantly raise awareness of the hazards associated with haze pollution and promote the adoption of sustainable practices. Communities that are well-informed and engaged are better positioned to contribute to resilience-building initiatives, particularly in the context of disaster preparedness and sustainable urban development.
The aforementioned research indicates that the integration of technological innovation, nature-based solutions, and community engagement enables cities to enhance their capacity to adapt to environmental issues and foster long-term resilience. Moreover, environmental academics offer invaluable insights into the enhancement of urban resilience, particularly in regions such as Pakistan, where haze pollution poses significant risks to public health and sustainability. In light of the mounting environmental threats, it is imperative to implement prompt, comprehensive, and multidisciplinary strategies. Moreover, the National Infrastructure Commission (NIC) also emphasized the need for a framework that anticipates future shocks and stresses, values resilience, and drives adaptation. This aligns with the Ministry of Defence (MOD) and the National Resilience Strategy (NRS), which also called for evaluating socio-economic resilience to support decision-making (Medland et al., 2024).
So, this study develops four hypotheses (H1, H2, H3, H4) to investigate the influence of environmental academic’s perspectives on urban resilience solutions in Pakistan. These hypotheses are (H1): the impact of scholar perspectives on resilience (H2), the role of smart technology in alleviating haze pollution (H3), the efficacy of nature-based solutions, and (H4) the significance of public awareness and community involvement in enhancing resilience. Collectively, these hypotheses align with a substantial body of literature that underscores the pivotal role of innovation, sustainable practices, and civic engagement in strengthening urban resilience to environmental challenges such as haze pollution.
H1. Environmental academics perceptions of the risk posed by haze pollution in Pakistan are likely influenced by various factors, including pollution levels, health impacts, and economic consequences. The study hypothesizes that the severity of academics concerns regarding haze pollution will shape their views on urban resilience in response to this environmental challenge.
H2. Given the critical role of sustainable green development practices in mitigating haze pollution and enhancing urban resilience in Pakistan, the study anticipates that environmental academics will advocate for the adoption of smart technologies as practical tools to combat haze pollution in Pakistani cities. Additionally, these technologies will contribute to strengthening urban resilience. In essence, we hypothesize that the adoption of smart technologies mediates the relationship between the severity of haze pollution and urban resilience.
H3. Nature-based solutions play a pivotal role in addressing haze pollution and fostering urban resilience in Pakistan. The study expects that environmental academics will recognize the necessity of implementing nature-based solutions in Pakistan to combat haze pollution and enhance urban resilience effectively.
H4. Public awareness, education, and community engagement are critical components in building urban resilience against pollution. The study anticipates that environmental academics will emphasize the role of digital environmental platforms in raising public awareness and providing education as key measures to enhance urban resilience against haze pollution in Pakistan. Well-informed and engaged communities can contribute to resilience by adopting sustainable practices and participating in disaster preparedness efforts.
3 MATERIALS AND METHODS
3.1 Study participants
The survey was conducted in three major cities in Pakistan—Lahore, Faisalabad, and Peshawar—which were selected due to their significant haze pollution, large populations, and substantial economic activity. These cities face critical environmental challenges, making them well-suited for examining urban resilience in response to pollution. Participants were drawn from a pool of environmental academics, including masters and doctoral researchers, senior researchers, and professors from leading institutions in these cities. The rationale for focusing on this group lies in their profound expertise and active involvement in research related to the environment and urban development. Understanding how urban resilience methods are influenced by expert advice, particularly during periods of elevated pollution, is critical to gaining insight into this phenomenon. While the opinions of environmental academics may not directly enhance urban resilience, they influence it indirectly by shaping public policy and altering planning procedures. Their knowledge in pollution control, urban ecosystems, and sustainable development enables them to provide evidence-based recommendations that policymakers can implement as effective resilience strategies. Furthermore, many researchers work across disciplinary boundaries, integrating insights from social sciences, public health, and urban planning, thereby enriching their contributions to resilience-building initiatives. A snowball sampling method was employed to select participants for the survey conducted in October 2023. A total of 132 questionnaires were distributed, of which 120 yielded valid results. The demographic composition of the sample is presented in Table 1.
TABLE 1 | Demographic information of participants.
[image: Table showing survey data from October 2023. Age distribution: 25-35 years (57.5%), 36-45 years (19.2%), 46-55 years (14.2%), 56+ years (9.1%). Competency levels: M.Phil Scholars (31.7%), Ph.D. Scholars (42.5%), Senior Researchers (10.8%), Professors (15.0%). Affiliations: University of Agriculture Faisalabad (45.0%), University of Punjab Lahore (34.2%), University of Peshawar (20.8%).]3.2 Research instruments
This study examines the resilience framework by incorporating key constructs such as the perceived adversity of haze pollution (PAHP) and resilient approaches, including smart technology adoption (STA), nature-based solutions (NBS), and environmental digital platforms (EDP), which together contribute to green infrastructure and urban resilience (GIUR). Each variable is measured using a 5-point Likert scale, ranging from “strongly disagree” to “strongly agree.” The measurement items are adapted from previous studies, with modifications made to suit the study’s objectives, as presented in Table 2. Moreover, the questionnaire was pre-tested with a small group of academics, and their feedback led to further refinement of the questions. We also randomized the question order to reduce potential bias and ensured participants’ anonymity and confidentiality, promoting honest and unbiased responses.
TABLE 2 | Scales and convergent validity results.
[image: Table showing constructs related to environmental and technological initiatives, with corresponding items, VIF, loadings, Alpha, Rho-A, CR, and AVE values. Constructs include Environmental Digital Platform, Green Infrastructure, Nature-based Solutions, Perceived Adversity of Haze Pollution, and Smart Technologies Adoption, each with specific metrics and scores. Data sourced from authors' estimates.]3.3 Statistical analysis
Using the PLS-SEM technique, a statistical model encompassing all dimensions is constructed. The PLS model consists of two phases: the measurement model and the structural model. The measurement model evaluates the relationships between observable variables (sub-factors) and latent variables (factors) while also assessing the reliability and validity of the constructs. The structural model, on the other hand, examines the path coefficients that connect the constructs (see Figure 3). The model’s fitness is determined by analyzing the path coefficients. To validate the constructs’ internal consistency, as well as the path coefficients and significance levels for hypothesis testing, the PLS algorithm and bootstrapping technique are applied. Using a sample size of 5,000, the bootstrapping method is employed to determine the significance of the paths. Additionally, this technique enables the analysis of variations in dependent variables. The indirect effect of mediation is assessed using bootstrapped confidence intervals.
4 RESULTS AND DISCUSSION
4.1 Demographic characteristics
The sample of 120 academics in this study was carefully selected to ensure scientific rigor and representativeness in terms of age, research field, and institutional affiliation. The age distribution includes participants from four groups: 25–35 years (57.5%), 36–45 years (19.2%), 46–55 years (14.2%), and 56+ years (9.1%), ensuring a broad range of experience levels. The competency levels in the sample include M. Phil researchers (31.7%), Ph.D. scholars (42.5%), senior researchers (10.8%), and professors (15.0%), capturing a comprehensive spectrum of expertise. Academics were selected from three prominent institutions in Pakistan: The Institute of Soil and Environmental Sciences at the University of Agriculture Faisalabad (45.0%), the College of Earth and Environmental Sciences at the University of Punjab Lahore (34.2%), and the Department of Environmental Sciences at the University of Peshawar (20.8%). Table 1 below provides a comprehensive overview of the research sample’s composition, ensuring diverse representation.
4.2 Measurement model assessment results
4.2.1 Convergent validity
Both discriminant and convergent validity are essential for evaluating the measurement model before hypothesis testing. Convergent validity assesses the correlation between multiple indicators of the same construct and is evaluated using metrics such as composite reliability (CR), average variance extracted (AVE), Cronbach’s alpha, Rho-alpha, and the variance inflation factor (VIF). VIF specifically measures multicollinearity between variables, where higher values indicate greater multicollinearity. In factor analysis, loadings represent the strength of association between each indicator and its corresponding construct, with higher loadings indicating a more accurate representation of the underlying construct. Figure 2 illustrates the outer loadings, showcasing the presence of several latent variables, their observable indicators, and the interrelationships among them. The adoption of STA is evaluated using five indicators (STA1–STA5), all of which exhibit robust loadings (0.850–0.911), reflecting a strong correlation with the underlying construct. Similarly, the PAHP assessed with five indicators (PAHP1–PAHP5), demonstrates moderate to strong loadings ranging from 0.631 to 0.819. The EDP acts as a mediating variable, demonstrating a path from PAHP (loading of 0.378) and significantly influencing GIUR and NBS with path coefficients of 0.222 and 0.199, respectively. The construct validity of GIUR is supported by the strong loadings of its five indicators (GIUR1–GIUR5), which range from 0.734 to 0.900. Similarly, the assessment of NBS (through NBS1–NBS5) reveals significant loadings (0.819–0.883), indicating a strong correlation with the latent variable. The model highlights the influence of STA and PAHP on GIUR and NBS through the EDP, emphasizing the interdependence of these constructs in advancing urban resilience and environmental sustainability.
[image: Diagram showing interconnections between six central nodes: Smart Technologies Adoption, Environmental Cognition, Health Response, Personal Awareness of Risk Perception, and Green Considerations in Human Behavior. Each central node connects to three or four sub-nodes, indicating various factors or components contributing to the primary concept. The structure visually represents the relationships and factors influencing each central theme.]FIGURE 2 | Measurement model.
Internal consistency reliability is assessed using cronbach’s alpha, which measures the degree of relatedness among a set of items. Higher alpha values indicate greater reliability. Rho-A serves as an alternative indicator of internal consistency, similar to Cronbach’s alpha. AVE measures how closely a construct’s items converge to represent the same underlying concept, with higher values indicating stronger convergent validity. CR is used within the framework of structural equation modeling to assess the dependability of a latent construct. According to Hair et al. (2021), acceptable thresholds for key metrics include loadings above 0.50, CR above 0.70, and AVE above 0.50.
Table 2 presents the metrics and outcomes for convergent validity among the constructs related to environmental sustainability and technology adoption. The EDP framework includes elements such as recommendations for energy-efficient appliances and advocacy for green initiatives. These elements demonstrate significant loadings (0.777–0.861) and satisfactory reliability (Alpha = 0.733, Rho-A = 0.748). The GIUR construct encompasses elements related to aesthetic improvements and pollution mitigation, exhibiting high loadings (0.821–0.900) and exceptional reliability (Alpha = 0.882, Rho-A = 0.893). The NBS framework, which includes the implementation of solar and wind energy, shows strong loadings (0.819–0.883) along with excellent reliability (Alpha = 0.909, Rho-A = 0.928).
The PAHP construct captures concerns about elevated CO2 emissions and associated health hazards, with loadings ranging from 0.631 to 0.819. While its reliability is satisfactory (Alpha = 0.784, Rho-A = 0.799), the AVE (0.534) is slightly below the ideal threshold. Finally, the STA construct, which includes elements such as the Internet of Things (IoT) and electric vehicle adoption, demonstrates substantial loadings (0.902–0.911) and exceptional reliability (Alpha = 0.930, Rho-A = 0.941). The results confirm robust convergent validity and reliability for most dimensions, validating their suitability for further investigation into environmental sustainability and technology adoption. All values fall within acceptable limits, reinforcing the validity of the constructs in this study.
4.2.2 Discriminant validity
The Heterotrait-Monotrait (HTMT) correlation ratios and the Fornell-Larcker approach are used to assess discriminant validity. Discriminant validity is a component of the measurement model that evaluates the distinction between overlapping constructs and ensures that the constructs are accurately separated from one another. The Fornell-Larcker criterion specifically examines the discriminant validity of multiple constructs within a research model. In essence, the Fornell-Larcker criterion evaluates the relationships between latent constructs by comparing the square root of the AVE for each construct with the correlations of that construct with others. The Fornell-Larcker criterion results, presented in Table 3, confirm the discriminant validity of the constructs. Each construct—EDP, GIUR, NBS, PAHP, and STA—exhibits stronger correlations with its own items (indicated by the square roots of AVE on the diagonal) than with items from other constructs (off-diagonal correlations). This pattern demonstrates that these constructs are distinct and can be reliably differentiated from one another, thereby supporting the validity of the measurement model for further analysis.
TABLE 3 | Fornell-Larcker criterion results.
[image: Table showing constructs and their correlation values across various categories: Environmental Digital Platform, Green Infrastructure and Urban Resilience, Nature-Based Solutions, Perceived Adversity of Haze Pollution, and Smart Technologies Adoption. Diagonal values range from 0.731 to 0.884, indicating higher correlations in each categorical relationship. Source credited to authors' estimations.]Moreover, the HTMT ratio is also used to assess discriminant validity. This method evaluates whether the constructs in a model are distinct from one another, ensuring they measure different underlying concepts rather than being highly correlated or overlapping. According to Gaskin and James (2019), the HTMT correlation coefficient should not exceed 0.90. The results in Table 4 confirm discriminant validity, as the correlations between different constructs remain below 0.90. This pattern indicates that the constructs—EDP, GIUR, NBS, PAHP, and STA—are distinct from one another, with their inter-construct correlations being weaker than their intra-construct correlations. These findings provide robust evidence of the discriminant validity of the measurement model, further supporting its reliability.
TABLE 4 | Heterotrait-Monotrait ratio results.
[image: A table displaying construct correlations related to environmental digital platforms, green infrastructure, nature-based solutions, perceived adversity of haze pollution, and smart technologies adoption. Values are present between categories, including correlations like 0.423 for green infrastructure with digital platforms and 0.491 for perceived adversity with green infrastructure. Source mentioned is "Authors’ estimations."]4.3 Structural model assessment
The PLS bootstrapping technique was employed in this study to evaluate the significance of correlations. This method facilitates the analysis of path coefficients and the R-squared (R2) value, both of which contribute to assessing the explanatory power of the structural model. Figure 3 illustrates the structural model, which includes variables aligned with the resilience theory framework. These variables comprise perceived adversity, sustainable technology adoption, nature-based solutions, and environmental digital platforms. The dependent variable in focus is urban resilience. Through these constructs, the study seeks to identify the key characteristics essential for fostering resilient cities. It acknowledges that urban areas are particularly vulnerable to climate threats, building upon the work of Cutter (2016) and other researchers, including Jacobson (2020), Leykin et al. (2016), and Tilloy et al. (2019). Consequently, strengthening urban resilience is posited as a vital response to haze pollution and climate change.
[image: Flowchart depicting a digital twin framework with interconnected nodes labeled as Smart Governance Amazon, Perceived Severity of Key Problems, Encompassing Digital Twin, and Other Infrastructural Systems Resilience. Nodes are connected by directional arrows, indicating relationships and flow. Each node has associated data points or metrics branching out, showing interactions and dependencies between different components within the system.]FIGURE 3 | Structural model assessments.
Furthermore, the analysis by Liu and Wu (2022) underscores the importance of regional sustainability in enhancing people’s living standards. Scholars across various fields have investigated different capacities for achieving system resilience, addressing aspects such as sustainability, ecology, economy, climate change, and engineering (Ribeiro and Goncalves, 2019; Chelleri and Baravikova, 2021; Semenza, 2021; Matthew et al., 2022). Monavvarian et al. (2018) have emphasized the need to address outdated and vulnerable infrastructure, which aligns with this study’s focus on improving urban environmental resilience in the context of haze pollution.
Heyd (2021) and Horton and Horton (2020) highlight that metropolitan areas are highly vulnerable to the impacts of climate change creating socio-ecological challenges that threaten public health. This study’s findings reveal a positive relationship between PAHP and GIUR (β = 0.230, p = 0.000). This indicates that heightened awareness of haze pollution motivates communities to advocate for greener and more resilient urban environments. In essence, communities’ perception of haze pollution can act as a catalyst for the development of green infrastructure and urban resilience. These findings provide valuable insights into the current state of urban areas, shedding light on the status of urban resilience systems and identifying areas where resilience capacities need improvement. This aligns with the research conducted by Sharifi and Yamagata (2018), which also underscores the importance of exploring strategies to enhance urban resilience.
The study further examined the mediated effects of PAHP on GIUR through the pathways of EDP, NBS, and STA. It highlights that communities’ perceptions of haze pollution not only directly motivate them but also drive their engagement with and adoption of smart technologies, nature-based solutions, and environmental digital platforms. Communities that recognize the adverse impact of haze pollution are more likely to take concrete actions through these pathways, ultimately enhancing their cities’ ability to withstand environmental challenges. These findings indicate that while PAHP has a direct influence on GIUR, it also exerts an indirect impact through these mediating constructs. This underscores the importance of considering multiple pathways through which environmental perceptions can shape urban sustainability. These pathways represent potential conditions for future interventions. The study by Myeong and Shahzad (2021) proposed a technology-driven air quality management solution for smart cities, emphasizing energy-efficient and cleaner pollution control methods. It explored the integration of data-driven approaches and citizen involvement in public sector pollution management, a key component of smart city frameworks. Their analysis suggests that digital transitions in resource management can enhance public governance, reduce energy consumption, and improve environmental quality. The findings of Kolokotsa et al. (2024) underscore the economic and social benefits of data-driven smart city development, supported by community collaboration. In a similar vein, Chen (2023) found that smart city policies have been effective in mitigating NO2 concentrations in pilot cities, particularly in large, densely populated cities with high administrative hierarchies, such as those in eastern China. The positive impact of such policies can be seen in cities like Shenzhen, where smart air quality monitoring and emission control technologies have led to a reduction in air pollution levels. Additionally, Ben Othmen et al. (2024) highlighted the potential of nature-based solutions, such as green infrastructure, in addressing climate change threats. These solutions, including the management of green spaces, runoff containment, and the restoration of wetlands and riverbanks, have been successfully implemented in various regions. For example, Singapore has demonstrated how green infrastructure can help mitigate urban heat islands and improve air quality, with research showing up to a 15% reduction in PM2.5 levels in areas with increased urban greenery. These studies offer tangible examples of how smart city solutions and nature-based infrastructure can effectively address urban environmental challenges.
The results align with previous studies by Allan and Bryant (2011), Kim and Lim (2016), McLellan et al. (2012), Spaans and Waterhout (2017), and Wardekker et al. (2010), all of which emphasized the need for coordinated human, financial, and physical resources. Identifying these pathways is a significant contribution of this research. Incorporating them into urban resilience strategies can lead to actionable outcomes. Additionally, assessing cities’ performance in relation to these pathways helps identify critical challenges and prioritize interventions. This approach resonates with earlier research on short-, medium-, and long-term interventions (Habitat, 2017; Napoli et al., 2020; Oppio et al., 2020; Datola and Bottero, 2021; Caprioli et al., 2023; Sikandar et al., 2024). Moreover, resilient approaches play a crucial role in urban settings, particularly as they support the diverse and robust infrastructure essential for critical city services. This infrastructure must be delivered efficiently and with careful planning. According to Kalani et al. (2019), timely detection and warning systems can significantly enhance relief and rehabilitation efforts, both before and after crises, thereby improving urban resilience.
In the context of smart technologies, it becomes evident that STA, driven by PAHP, empowers communities to proactively enhance urban resilience. STA is increasingly recognized as a pivotal strategy for sustainable urban management. Previous researchers, including Aziz et al. (2020a), Aziz et al. (2020b), Meerow and Newell (2017), Simić et al. (2017), and Fu et al. (2021), have emphasized the importance of green infrastructure. Numerous scholars have explored various factors critical to urban resource resilience, including governance, human and societal capacities (Bruce et al., 2020; Esfandi et al., 2022; Sharifi and Yamagata, 2016), promotion strategies (Li et al. 2022; Wang H. et al., 2021; Wang P. et al., 2021), water management (Boltz et al., 2019), energy policy (Shandiz et al., 2020), land management (Du et al., 2020; Si et al., 2021), and urban rail transit networks (Jin et al., 2014; Lu, 2018; Zhang et al., 2018). Serdar et al. (2022) also highlighted the role of improved transportation in fostering healthy urban development.
Urban ecological resilience is a multidisciplinary field that integrates insights from diverse domains. The strong positive relationship between NBS and GIUR highlights the significant benefits of incorporating natural elements into urban planning. NBS improves air quality, reduces flood risks, and enhances overall urban livability. Cities that prioritize NBS are better equipped to withstand environmental shocks and stresses, thereby bolstering their resilience. This finding aligns with the growing recognition of the advantages of integrating natural elements into urban environments, such as green spaces, urban forests, and sustainable water management systems. It also resonates with studies by Feng et al. (2022) and Li et al. (2018a), Li et al. (2018b), which emphasize the role of natural resources in carbon sequestration and mitigating urban heat islands. Additionally, MacLaren et al. (2022) highlighted the importance of eco-friendly practices in reducing the negative environmental impacts of cereal production. NBS also serve as effective measures to address urban climate and biodiversity risks while mitigating social inequalities (Dorst et al., 2019; Wang et al., 2022; Fang et al., 2023). This underscores their vital role in creating sustainable, resilient urban ecosystems that meet environmental and social challenges head-on.
Table 5 presents the path analysis results, which reveal a positive relationship between EDP and GIUR. This finding suggests that leveraging digital platforms for environmental initiatives can significantly contribute to the development of sustainable urban infrastructure and resilience. Digital platforms facilitate the dissemination of information on sustainable practices, encourage community engagement, and enable data-driven decision-making in urban planning. Consequently, cities that harness the potential of these platforms are more likely to adopt environmentally friendly policies and enhance their resilience to environmental challenges. When individuals perceive the adverse effects of haze pollution on their wellbeing, they are more inclined to use digital platforms to access information on air quality, health recommendations, and sustainable practices. This aligns with the growing emphasis on technology-driven solutions in urban planning and sustainability. Digital platforms play a crucial role in disseminating information and mobilizing communities to support cohesive decision-making processes with a shared objective (Ribeiro and Gonçalves, 2019). The integration of information across various subsystems fosters coordinated operations and rapid responses throughout the city. This principle of integration is fundamental to urban resilience, enabling systems to work in unison during crises (Godschalk, 2003; Spaans and Waterhout, 2017). By sharing information effectively, digital platforms strengthen urban resilience by supporting unified and informed decision-making processes that address environmental and social challenges.
TABLE 5 | Path analysis results.
[image: Table showing relationships with corresponding Beta, T-value, confidence intervals, and P-value. It includes data for relationships such as EDP to GIUR, NBS to GIUR, and PAHP to EDP. Confidence intervals range from 0.025 to 0.975. P-values are listed, with most being 0.000, indicating statistical significance. Source noted as authors’ estimations.]Figure 3 illustrates a structural equation model that elucidates the interconnections among key components related to environmental technology and urban resilience. The role of STA is to act as a critical mediator, indicating the extent of technology utilization through multiple indicators (STA1 to STA5). The EDP has a significant impact on the adoption of both smart technologies and nature-based solutions, as evidenced by a strong path coefficient of 4.391. This underscores its role in promoting the convergence of technological and nature-based approaches. Moreover, GIUR is linked to both STA and the EDP, suggesting that technological advancements reinforce urban resilience initiatives. This relationship is supported by a notable path coefficient of 4.127. The model also incorporates the PAHP, which directly influences the EDP. The substantial path coefficient of 7.060 indicates that concerns about air quality significantly affect the adoption of digital solutions. Each construct is measured by distinct indicators, including PAHP1 to PAHP5 for perceived adversity and NBS1 to NBS5 for nature-based solutions, reflecting their different dimensions. The model emphasizes the complex interrelationship between the uptake of smart technology, the use of environmental platforms, and the advancement of urban resilience. It demonstrates that the integration of smart technologies is essential for promoting sustainable urban practices and mitigating environmental concerns, particularly those related to haze pollution.
Table 6 shows that 31% of the variance in urban resilience can be attributed to exogenous components. Furthermore, a thorough collinearity test should be conducted in PLS-SEM to address mutual dependence and assess common method bias. VIFs are used to determine CMB, according to Kock (2015). The results confirm that the latent constructs’ VIF values do not exceed 5 (Hair et al., 2011), suggesting no CMB in the data. Table 6 presents a detailed summary of the key constructs in the structural equation model, evaluating their impact on urban resilience using the following metrics: R2, F2, and VIF. The EDP accounts for 14.3% of the variance in urban resilience (R2 = 0.143, adjusted R2 = 0.140), exhibiting a moderate effect size (F2 = 0.228) and low multicollinearity (VIF = 1.254). This suggests that the EDP plays a significant role in enhancing urban resilience. The GIUR construct accounts for the greatest variance, explaining 31.0% (R2 = 0.310, adjusted R2 = 0.300). However, its individual effect size is minimal (F2 = 0.071), indicating that although GIUR exhibits a strong correlation with urban resilience, its influence is comparatively less substantial when evaluated alongside other predictors. Conversely, NBS accounts for 13.3% of the variance (R2 = 0.133, adjusted R2 = 0.130) but exhibits a trivial effect size (F2 = 0.003), indicating that NBS has a limited impact on urban resilience. Similarly, the PAHP demonstrates a minimal effect size (F2 = 0.001) and low multicollinearity (VIF = 1.384), suggesting that concerns about haze pollution exert a modest direct influence on the resilience model. Finally, the variable representing the adoption of smart technologies accounts for 15.1% of the variance in the model (R2 = 0.151, adjusted R2 = 0.148), with a minimal effect size (F2 = 0.038) and low multicollinearity (VIF = 1.207), indicating a limited impact on urban resilience. The results demonstrate that GIUR and EDP exert a significant influence on urban resilience, while constructs such as NBS and PAHP have a negligible impact, suggesting that the predictors exert differing levels of influence.
TABLE 6 | R2, F2 and VIF.
[image: Table displaying constructs with their corresponding R2, Adjusted R2, F2, and VIF values. Environmental Digital Platform: R2 0.143, Adj R2 0.140, F2 0.228, VIF 1.254. Green Infrastructure: R2 0.310, Adj R2 0.300, F2 0.071, VIF not shown. Nature-Based Solutions: R2 0.133, Adj R2 0.130, F2 0.003, VIF 1.218. Perceived Adversity of Haze Pollution: R2 0.001, Adj R2 not shown, F2 not shown, VIF 1.384. Smart Technologies Adoption: R2 0.151, Adj R2 0.148, F2 0.038, VIF 1.207. Source: Authors' estimations.]5 CONCLUSION AND POLICY IMPLICATIONS
High levels of haze pollution in major Pakistani cities and their surroundings pose significant threats to public health and the environment. Urgent measures are needed to control harmful emissions in this key urban center of Pakistan. The primary goal of this study is to predict urban resilience in the context of haze pollution in Pakistan. Through an in-depth analysis of data gathered from 120 environmental academics, this research offers valuable insights and implications, advancing the understanding of urban resilience, particularly in the face of haze pollution. The findings emphasize the need for a comprehensive approach to urban planning, integrating digital platforms, nature-based solutions, and smart technologies to enhance urban resilience. Furthermore, the study highlights the crucial role of environmental perception, exemplified by Perceived Adverse Haze Pollution, underscoring the importance of robust awareness campaigns and community engagement for sustainable urban development.
This research serves as a foundational resource for future investigations and policy development related to urban resilience in the context of haze pollution. It highlights the interconnected nature of various factors within the research model and emphasizes the importance of considering diverse pathways for sustainability. The path analysis results carry significant implications: (1) Holistic approaches to urban planning and sustainability are essential, involving the integration of digital platforms, nature-based solutions, and technology adoption, alongside community perceptions of environmental challenges. (2) The strong influence of perceived adversity regarding haze pollution underscores the critical role of environmental awareness and education in urban settings, fostering initiatives such as public campaigns, community engagement, and educational programs. (3) Policymakers can use these findings to design and implement policies that promote the adoption of digital platforms for environmental initiatives, nature-based solutions, and innovative technologies in urban planning and development. In conclusion, this research makes a significant contribution to the global discourse on resilient and sustainable urbanization in the face of environmental challenges, offering an innovative framework for understanding the multifaceted nature of urban resilience and providing actionable recommendations for policymakers and urban planners.
Although the model includes essential constructs such as EDP, GIUR, NBS, and PAHP, it is important to acknowledge the potential presence of hidden variables or complex interactions that were not considered in the current analysis. These latent factors may influence urban resilience in the context of haze pollution but have not been explored here. Future research could employ advanced statistical techniques or qualitative methods to uncover and incorporate these hidden variables, providing a more nuanced understanding of the factors contributing to urban resilience amidst haze pollution in Pakistan. Additionally, future research could encompass variables such as economic indicators, infrastructure quality, public health metrics, community engagement measures, government policies, and social capital indicators. Integrating these variables would offer a holistic perspective on the diverse dynamics shaping urban resilience, enriching the analysis of urban sustainability in the face of haze pollution in Pakistan. This limitation underscores the evolving and complex nature of urban sustainability research, highlighting the need for continued exploration and refinement of the research model.
The limitation of this study is its reliance on survey for data collection. While academics provide valuable insights, their perspectives are inherently subjective and may not always reflect the broader, real-world circumstances. This subjectivity can limit the generalizability of the findings, as they are based on expert opinions rather than empirical data. To improve the reliability of future studies, it is crucial to incorporate data from a wider range of locations, which would offer a more accurate and comprehensive understanding of urban resilience. Such data would serve to validate expert views and ensure that policy recommendations are grounded in the actual experiences of people across Pakistan. Additionally, the study’s focus on environmental professionals and stakeholders involved in urban and environmental issues may have introduced a potential bias. This emphasis might have overlooked perspectives from policymakers, the general public, and corporate leaders, narrowing the scope of the conclusions. Therefore, future research should incorporate a more diverse range of participants to provide a broader, more balanced perspective on urban resilience solutions. As urban resilience is a complex, multi-dimensional concept that extends beyond environmental concerns, such as air pollution, to include broader socio-economic and infrastructural elements (Kadaverugu et al., 2022). According to Cutter et al. (2008), resilience involves not only the ability of urban systems to recover from environmental shocks but also their capacity to adapt to long-term stressors. This includes governance strategies, economic resilience, and the robustness of infrastructure, all of which play crucial roles in ensuring that cities can thrive despite environmental and socio-economic challenges. Integrating these dimensions allows for a more holistic approach to smog governance, where strategies for pollution control intersect with policies for social equity, sustainable economic development, and adaptive infrastructure (Ahern, 2011). By considering urban resilience in this broader context, the study can provide avenue for better understanding the multi-faceted strategies necessary to manage environmental stressors like smog.
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Research on carbon emission reduction in China has focused on carbon market policies, technological innovation, and industrial institutional adjustment, but few studies have been concerned with the effects of the rapid development of China’s digital economy on carbon emission reduction. China’s vigorous development of digital infrastructure has led to the establishment of the Broadband China strategy as a quasi-natural experiment. A difference-in-differences model with data from 2006 to 2023 about 283 prefecture-level cities was applied to investigate the effects of China’s digital infrastructure construction on carbon emission reduction. The conclusions are as follows. First, digital infrastructure construction in these cities had significant reduction effects on carbon emissions and intensity. This conclusion was proven after a series of robustness tests such as parallel trends, the exclusion of central cities, and the replacement of explanatory variables. Second, a mediating effect test showed that green technology innovation investment and industrial structure upgrading are important mechanisms for digital infrastructure construction’s carbon emission reduction effects. Third, these effects have obvious heterogeneity and are stronger in the eastern region than in the central and western ones. Moreover, the effects are stronger with the expansion of urban scale, the improvement of urban economic development level, and the environmental regulation intensity. These conclusions have important relevance to China’s Digital Economy and “Dual Carbon” Policies.
Keywords: digital infrastructure construction, carbon emission reduction effect, “dual carbon” target, broadband China, difference-in-differences

1 INTRODUCTION
With the rapid development of new technologies such as mobile Internet, artificial intelligence, big data, and cloud computing, the role of digital infrastructure construction in economic development has become increasingly prominent. China’s digital economy has entered a critical phase characterized by scale expansion and value creation. Digital infrastructure systems anchored in 5G, AI, big data centers, industrial IoT, and smart energy grids are undergoing systematic enhancement. These systems exert transformative impacts across socioeconomic domains through their inherent permeability, network externalities, and scale effects, driving paradigm shifts in industrial production modalities, household consumption patterns, and governmental governance frameworks1. Against the backdrop of the “Dual Carbon” targets and accelerated digitalization, emerging technologies are enabling synergistic integration with carbon-intensive sectors including power generation, manufacturing, transportation, and construction. This technological convergence has catalyzed green innovation in energy systems, resource utilization efficiency, and environmental management, thereby injecting new momentum into low-carbon economic transitions2.
The strategic significance of digital infrastructure has been elevated to national policy priorities. Since the 2011 National Industry and Informatization Work Conference, China has institutionalized its digital transformation through the Broadband China strategy. Following its formal adoption as a national initiative in 2013, the Ministry of Industry and Information Technology (MIIT) and National Development and Reform Commission (NDRC) implemented a three-phase demonstration program, designating 120 pilot cities/city clusters between 2014 and 2016. These model cities spearheaded advancements in broadband penetration rates, network speed optimization, and urban-rural digital inclusion, generating substantial spatial spillover effects across regions2. Empirical evidence from the “China Digital Economy Development Research Report (2024)” indicates that China’s digital economy reached RMB 53.9 trillion in 2023, constituting 42.8% of GDP and contributing 66.45% to annual economic growth. This digital leap has not only redefined economic production frontiers but also triggered multidimensional societal restructuring.
The environmental externalities of digital infrastructure development are gaining scholarly traction. Groundbreaking studies reveal its dual role as both an economic accelerant and an ecological regulator. For instance, Ding et al. (2024) quantified the Broadband China strategy’s contribution to regional decarbonization, estimating a 12.7% reduction in per-unit GDP carbon intensity among pilot cities. Feng et al. (2023) identified smart grid deployments as critical in optimizing energy dispatch and curtailing fossil fuel dependence. Peng et al. (2024) further demonstrated that industrial IoT adoption in manufacturing sectors decreased sectoral emissions by 18.3% through predictive maintenance and process automation. These findings underscore digital infrastructure’s capacity to reconcile economic growth with environmental sustainability.
Nevertheless, critical knowledge gaps persist in understanding the mechanisms and heterogeneity of digital infrastructure’s carbon mitigation effects. Existing literature predominantly focuses on macroeconomic indicators, innovation spillovers, and industrial structure evolution, while paying insufficient attention to its environmental governance potential. To our knowledge, this study constitutes the first systematic examination of carbon emission reduction effects through the quasi-natural experiment framework of the Broadband China strategy. Utilizing panel data from 283 prefecture-level cities (2006–2023), we employ a staggered difference-in-differences (DID) approach to assess the policy’s dynamic impacts. Our multidimensional analysis incorporates regional heterogeneity tests across geographical zones, urban hierarchies, and economic development tiers, offering granular insights for targeted policymaking.
This research contributes to the field in four dimensions: Firstly, this paper takes carbon reduction as the starting point, enriching the research on the impact of digital infrastructure construction on urban economic development. Academic research on digital infrastructure construction mainly focuses on the macro-level impacts of regional productivity enhancement, economic development speed enhancement, industrial structure upgrading, and labor employment, while a few studies have focused on urban carbon emission reduction and other environmental quality issues related to the realization of China’s “dual-carbon” goal. Secondly, it has expanded the research on the driving forces behind urban carbon reduction. Unlike existing literature that explains the drivers of urban carbon reduction from the perspectives of environmental regulations and traditional urban infrastructure construction, this paper is based on the digital economy perspective, taking the impact of digital infrastructure construction on urban carbon reduction as the entry point. It not only supplements the traditional growth centered economic analysis, but also enriches the research on the influencing factors of carbon reduction effects. Thirdly, this paper deeply analyzes the role mechanism of digital infrastructure construction on urban carbon emission reduction effect and deepens the understanding of the role logic between digital infrastructure construction and urban carbon emission reduction. This paper constructs a mediating effect model to empirically test the role mechanism between digital infrastructure construction and urban carbon emission reduction in terms of digital development, which effectively enhances the validity and reliability of the empirical conclusions.
2 LITERATURE REVIEW AND RESEARCH HYPOTHESES
2.1 Policy background
Broadband network is an important part of modern digital information development. By providing fast and reliable Internet access services, it provides an important support for high-quality development of modern economy. To accelerate the widespread adoption of broadband infrastructure, the Chinese government issued the Broadband China Strategy and Implementation Plan in August 2013, which clearly promoted the popularization of high-speed, safe and green digital infrastructure in China through regional pilot. Subsequently, three groups of pilot cities were identified from 2014 to 2016, gradually expanding the pilot scope of Internet broadband access business opening. The Broadband China strategy focuses on the construction of digital infrastructure, and meets the needs of the majority of economic entities for high-quality Internet services by improving network coverage and transmission speed. By adopting a number of policy measures, such as increasing capital investment, strengthening government guidance and support, promoting cooperation among regions and sectors, and strengthening talent training and technological innovation, Broadband China is able to promote the convergence and development of broadband networks and other infrastructures. Thus, the Broadband China strategy is an important measure to promote the development of China’s digital economy, and can be used as a quasi-natural experiment to assess the construction of China’s digital infrastructure.
2.2 Literature review
The relationship between digital infrastructure and carbon reduction is essentially the relationship between the environmental effects of the digital economy. The digital economy is a new economic form formed by the information technology revolution and network infrastructure construction. Firstly, with the popularization of digital infrastructure centered on broadband network, it largely reduces the cost of spreading and searching for green and low-carbon information and increases the government’s ability to publicize the concept of urban green and low-carbon, which not only improves the city government’s ability to govern the environment, but also effectively reduces the city’s carbon emissions (Shahbaz et al., 2022). Secondly, with the construction of data infrastructure such as broadband China and cell phone base stations, digital media is increasingly entering residents’ lives. Through the promotion of digital media, residents’ attention to environmental issues is enhanced, guiding them to form green and low-carbon consumption concepts and lifestyles, promoting the implementation of green and low-carbon environmental protection concepts, and reducing urban carbon emissions (Strielkowski et al., 2022; Ma et al., 2023). Thirdly, digital infrastructure construction induces urban industrial agglomeration, which in turn promotes urban scale economy effect and technology diffusion effect, reduces information asymmetry between supply and demand sides of the market through the rapid dissemination of information, promotes the upgrading of industrial structure, and then promotes the occurrence of urban carbon emission reduction (Chen et al., 2025; Zhang et al., 2025).
Recent research has demonstrated that the environmental impacts of digital infrastructure development are becoming increasingly significant, with these effects being validated across multiple domains. Firstly, while rural areas historically experienced less digitalization influence compared to urban centers, recent digital infrastructure construction has driven substantial rural digital transformation. This shift has altered rural residents’ personal consumption patterns, including household energy consumption, which in turn promotes the use of clean energy in rural areas (Nguyen and Nasir, 2021). These findings have been confirmed by Yan et al. (2023). Secondly, in the industrial sector, where energy consumption such as electricity consumption and intensity is relatively high, digital infrastructure development has promoted technological optimization and industrial upgrading. These advancements have led to a marked reduction in industrial electricity demand, partially alleviating energy pressures while enhancing environmental efficiency (Williams, 2021; Wang et al., 2022). Thirdly, it promotes the green transformation of enterprises. Digital infrastructure helps enterprises optimize resource utilization efficiency through real-time data collection and analysis. On the other hand, it can integrate environmental monitoring data and provide accurate green management tools for enterprises, thereby promoting internal green upgrading (Zhong et al., 2022; Wu et al., 2023; Qian and Xi, 2024). In addition, the construction of digital infrastructure also has a significant impact on residents’ health (Xu et al., 2025).
The Broadband China strategy is an important element of digital infrastructure. A large number of empirical studies have been conducted on the relationship between the Strategy and environmental effects. Zou and Pan (2023) used broadband China as a quasi-natural experiment and empirically verified through DID and other methods that digital infrastructure construction can effectively reduce urban environmental pollution, and this pollution reduction effect is more pronounced in non resource-based cities, first and second tier cities, and eastern cities in China. Hong et al. (2023) build a time-varying difference-in-differences (time-varying DID) model based on the Broadband China pilot and find that digital infrastructure construction can significatively reduce prefecture-level energy intensity, and this environmental effect is more significant in Northeast China. For micro households, the broadband China strategy still has a significant impact. Zuo et al. (2024) through panel data on Chinese CFPS micro households, empirically tested based on the Broadband China strategy and found that digital infrastructure has the potential to indirectly increase household energy consumption through consumption upgrading and Internet development mechanisms, and that households in high-income, low-skilled, and rural areas, as well as those in areas with higher levels of development and marketization, are more deeply affected by digitalization, and household energy consumption will be more serious.
In summary, existing literature provide a good reference for this paper. Through the above literature, we have the following conclusions. Firstly, in terms of the choice of explanatory variables, a large number of studies have examined the economic impact or environmental impact brought about by the construction of digital infrastructure. Carbon emission reduction is an “extensive variable,” while carbon emission intensity, which is the amount of carbon emissions per unit of output value, is an “intensive variable.” Most studies tend to focus on one aspect, and there has not been sufficient attention given to measuring both as dependent variables simultaneously. Secondly, in the measurement of digital infrastructure construction, there are relatively few studies on the use of exogenous policy shocks. Research tends to favor selecting a single indicator or constructing a system of indicators, which may lead to certain biases in the results. Thirdly, most existing studies focus on the provincial or regional levels in China, or even at the enterprise level. Although some research involves the city level, the number of such studies is relatively limited. Fourthly, in heterogeneity studies, many researchers choose regional or city classifications, but these studies are relatively simplistic. There is a scarcity of research conducting heterogeneity analysis from the perspective of environmental regulation intensity. With the acceleration of urbanization in China, as an important economic carrier, cities have increasingly high requirements for environmental quality. Balancing the relationship between economic development and environmental quality is crucial for the sustainable development of cities. At the same time, the digital economy has become a new engine of economic development. It is worth exploring whether the construction of digital infrastructure, as an important component of the digital economy, can enable sustainable urban development.
Although the existing literature has provided valuable insights into the relationship between digital infrastructure and carbon emissions, there is still a need for further research to explore the specific mechanisms and heterogeneity of this relationship. This study aims to fill this gap by examining the carbon emission reduction effects of digital infrastructure construction in China, using the Broadband China strategy as a quasi-natural experiment.
2.3 Hypotheses
Specifically, the development of digital infrastructure can enhance the level of urban green technology innovation in the following ways.
Firstly, the digital infrastructure construction of the Broadband China strategy has broken down information barriers, promoted communication and cooperation among governments, enterprises, and research institutes, facilitated spatial agglomeration of human capital, and provided human support for green technology innovation (Song et al., 2024). Secondly, the construction of digital infrastructure has laid the foundation for the construction of digital technology, accelerated the speed of information dissemination of the Internet and big data, reduced network search costs and information transmission costs, promoted the increase of returns to scale through information sharing and knowledge spillover, and provided the possibility for the development of urban green technology innovation (Cassia et al., 2020; Du and Wang, 2024). Thirdly, the construction of digital infrastructure has promoted the spatial architecture and application scope of big data, cloud computing and the Internet, and has derived new businesses and industries with digital technology as the core. This drives high-energy-consuming industries to achieve green transformation, optimizes energy consumption structures, supports the research and development of clean, low-carbon, and green technologies, and promotes green technology innovation (Veile et al., 2022).
According to Zhang et al. (2023), green technology innovation plays a significant role in accelerating urban carbon emission reduction. Firstly, green technology innovation facilitates the transformation of high-pollution industries, reduces industrial energy consumption, and decreases carbon emissions from industries (Wang, 2022). Secondly, green technology innovation promotes the innovation of production equipment and technology in enterprises, reduces production costs, lowers resource utilization and consumption, improves product green quality, thereby enhancing environmental quality and reducing enterprise carbon emissions (Ning et al., 2022). Thirdly, green technology innovation drives the energy revolution and accelerates the development of clean energy, supporting the transformation and upgrading of the energy consumption structure (Guo et al., 2021), which is conducive to building a clean and low-carbon modern energy system. The improvement of green technology innovation levels can promote the green and low-carbon transformation of energy, increase the proportion of clean energy consumption, and advance the construction of new energy systems, thereby continuously reducing energy consumption and urban carbon emissions (Madaleno et al., 2022; Wang and Lai, 2024).
Hypothesis 1. Digital infrastructure development reduces carbon emissions by improving the level of green technology innovation.
Firstly, the development of digital infrastructure has promoted industrial digitization. Through the “crowding-out effect,” it facilitates the transformation and upgrading of industries characterized by high energy consumption, high emissions, and high pollution. By improving the overall energy utilization structure of these sectors, it further reduces carbon emissions (Du et al., 2022; Gao X. et al., 2023). Secondly, digital infrastructure has a “penetration effect.” Relying on the strategy of Broadband China, promote digital technologies such as the Internet, big data, cloud computing, etc., promote the digital transformation of enterprises, improve the whole industry chain supervision system of enterprises’ supply from the source, middle end production, and terminal utilization, which is conducive to improving energy utilization efficiency, reducing resource waste, and achieving the effect of carbon emission reduction (Wang et al., 2024). Thirdly, the construction of digital infrastructure enhances the supply efficiency of digital elements and the integration efficiency of various resources. This fosters the emergence of new business models and industries, promoting the optimization of urban industrial structures. The integration of the digital economy with traditional industries accelerates urban digital industrialization and industrial digitization, drives the digital transformation of traditional sectors, and ultimately achieves urban industrial upgrading (Su et al., 2021; Das, 2024).
Upgrading the industrial structure involves adopting more scientific production methods and optimizing the production processes, thereby reducing unnecessary energy consumption and effectively mitigating carbon emissions (Zhao et al., 2023). Firstly, with the upgrading of industrial structure, it will particularly trigger technological upgrading within the manufacturing industry, drive productivity improvement, trigger the “endogenous innovation” effect, and achieve the improvement of urban energy efficiency and carbon reduction effect in China (Xi and Zhai, 2023). Secondly, upgrading the industrial structure will lead to the elimination of a group of high polluting and high emission enterprises, while low-carbon and environmentally friendly enterprises will develop and grow. The transformation of clean and pollution-free production models has reduced the emissions of pollutants from enterprises and achieved sustainable environmental development (You and Zhang, 2022; Gao Y. et al., 2023). Thirdly, upgrading the industrial structure will improve the efficiency of resource allocation in various departments, enhance the interaction between departments and industries, reduce the proportion of agriculture and industry, promote the development of the tertiary industry, and effectively curb urban carbon emissions through “economic servitization” (Xue et al., 2022; Fu et al., 2024).
Hypothesis 2. Digital infrastructure construction reduces carbon emissions by upgrading industrial structure. The Conceptual framework see Figure 1.
[image: Diagram illustrating the influence of the "Broadband China" Strategy and digital infrastructure construction on carbon emission reduction. It shows two pathways: one leads to green technology innovation through human capital agglomeration, reduced search costs, and derivative new business models; the other leads to industrial structure upgrading via the crowding-out effect, penetration effect, and element integration. Both pathways contribute to carbon emission reduction.]FIGURE 1 | Mechanism analysis of gigotal infrastructure construction and carbon emission reduction.
3 DATA AND MODELS
3.1 Model settings
The selection of Broadband China pilot cities is mostly affected by broadband access capability and penetration rate, which are not logically affected by the level of prefecture-level carbon emissions and carbon intensity. It provides a good opportunity to exclude the reverse causality problem. Difference-of-differences models are often used to assess the effect of policy implementation, and the traditional DID is only suitable for assessing the policy effect of a single time point shock. However, the approval of the Broadband China demonstration city is carried out in a step-by-step manner, which means that the timing of policy impact is not uniform (Hong et al., 2023). Based on this, to effectively identify the impact of digital infrastructure construction on urban carbon reduction, this paper regards the exogenous policy impact of the Broadband China demonstration city as a quasi-natural experiment and constructs the following time-varying DID model:
[image: An equation represents a linear regression model: \( Y_{it} = \beta_0 + \beta_1 Policy_{it} + \lambda Control_{it} + \tau_t + \gamma_i + \epsilon_{it} \), labeled as equation (1).]
where Yit is the explained variable, indicating the regional carbon emissions and intensity of city i in year t; Policyit is the core explanatory variable, indicating whether the sample is selected as a Broadband China demonstration city. If the sample is selected, the value of this sample is 1 in this year and subsequent years. Otherwise, the value is 0. Its coefficient β1 represents the impact of digital infrastructure construction on urban carbon reduction, which is the focus of this study. Controli,t represents a group of control variables, which include per capita GDP, population density, employment structure, level of foreign direct investment, green environment, and level of scientific input by the government. τi indicates the city fixed effect. γt indicates the year fixed effect. Ɛit represents the random perturbation term.
3.2 Variable selection
3.2.1 Explained variables
The explained variable are urban carbon emissions and intensity. Amongthese, the carbon emissions (CO2) is expressed by the natural logarithm of the carbon emissions of each city, and the intensity of carbon emissions (CO2_intensity) is expressed by the ratio of carbon emissions of each city to the actual GDP (Pretis, 2022; Zhang et al., 2024). Because the urban carbon emission intensity has an obvious right skew, the log transformation for carbon intensity (lnCO2_intensity) is used in the regression (Zhang et al., 2023; Peng et al., 2024). The measurement method of the total carbon emission of each city draws on the research of Liang et al. (2024).
[image: Equation showing CO2 equal to the sum of X sub n multiplied by beta sub i.]
[image: Equation for carbon dioxide intensity showing \( \text{CO}_2 \text{-intensity} = \text{CO}_2/\text{GDP} \), labeled as equation number three.]
In Equation 2, CO2 represents the carbon emissions of each city; X includes electricity consumption, gas and natural gas consumption, urban transport consumption, and thermal energy consumption. βi represents the carbon dioxide conversion factor for Xi,mainly based on the research of Long et al. (2022). Equation 3 is the calculation method for carbon emission intensity.
3.2.2 Core explanatory variables
For a demonstration city, the value is 1; otherwise, it is 0. After excluding some autonomous prefectures (such as Yanbian), some urban districts (such as Jiangjin and Rongchang districts of Chongqing), county-level cities (Yongcheng in Henan), and some cities with serious data loss (Linzhi in Tibet), the final sample comprised 107 demonstration cities constituting the experimental group and the remaining 176 cities constituting the control group.
3.2.3 Mediator variables
The mediating mechanism includes green technology innovation and industrial structure upgrading. The former is represented by the number of granted green invention patents (Lv et al., 2021) and the latter is represented by the ratio of the output values of the tertiary and secondary industries (Jiang et al., 2020).
3.2.4 Control variables
To evaluate the carbon emission reduction effect of the development of digital infrastructure construction more accurately, other factors have been controlled. As shown in Table 1.
TABLE 1 | Descriptive statistics of control variables.
[image: A table categorizes various variables related to a study. It includes explained, core explanatory, mediator, and control variables, each with symbols and meanings. Columns display sample size, mean, standard deviation, minimum, and maximum values for each variable, all based on a sample size of 5,094. Examples include carbon dioxide emissions (y1), Broadband China strategy (Policy), green technology innovation patents, per capita GDP (x1), and other economic and environmental factors.]Economic development level (x1): China’s economic development is closely related to energy consumption. The “extensive” growth model often accompanies excessive energy consumption and waste, leading to a series of environmental problems. Drawing on existing research, this paper uses the GDP per capita to represent the level of economic development (Hao et al., 2021), Measuring the level of urban economic development by per capita GDP to control the impact of economic development on urban carbon emissions.
Population density (x2): Considering the significant differences in urban area and population size between cities, directly using the absolute number of population is not scientifically comparable. Therefore, this paper chooses to use population density, which refers to the number of people per unit area and the concentration of population life and production activities, which reduces the dispersed consumption of energy and resources and reduces urban carbon emissions (Zhang et al., 2023).
Employment structure (x3): The tertiary industry is dominated by knowledge intensive and service-oriented economic activities, such as finance, education, etc. Compared to industry and agriculture, its energy consumption and carbon emission intensity are significantly lower. Therefore, this paper selects the proportion of employees in the tertiary industry to represent the impact of employment structure on urban carbon emissions reduction (Hao et al., 2021).
Foreign direct investment (x4): The degree of openness reflected by foreign direct investment (FDI) is a fundamental factor that needs to be considered in China’s environmental pollution research. Existing research shows that the impact of FDI on carbon emissions is uncertain: the “pollution halo” hypothesis suggests that FDI can reduce carbon emissions by introducing environmentally friendly technologies and products (Shao et al., 2016); The “pollution haven” hypothesis suggests that FDI will worsen the environmental quality and exacerbate carbon emissions of host countries through the transfer of highly polluting industries (Musah et al., 2022). This paper uses the proportion of FDI to GDP to measure the degree of opening up to the outside world to examine its impact on China’s carbon emissions reduction.
Green coverage rate (x5): The higher the urban green coverage rate, the better the urban environment, which can effectively reduce carbon dioxide concentration and purify air quality. Therefore, this paper selects the ratio of green area to built-up area as the representation (Li &Wang, 2021).
Government science expenditure level (x6): Some studies suggest that when government science investment is focused on the production process rather than the green product end, it increases energy consumption and carbon emissions. This paper uses the proportion of science expenditure to fiscal expenditure to represent (Kuang et al., 2022).
The data from 2006 to 2023 for the 283 prefecture-level cities were mainly taken from the China City Statistical Yearbooks, China Statistical Yearbooks, China Industrial Enterprise Databases, National Environmental Monitoring Platform, National Oceanic Atmospheric Adminstration (NOAA), etc. Missing data have been supplemented by data from the Statistical Bulletin of National Economic and Social Development. The following cities were excluded from the total sample: data for Bijie and Tongren Cities were missing; Chaohu City was merged with Hefei City in 2011; Laiwu City was merged into Jinan City in 2019.
4 EMPIRICAL RESULTS AND ANALYSIS
4.1 Baseline regression results
Table 2 shows the results of the baseline regression. Columns (1) and (2) give the estimated results of the effects of digital infrastructure construction on carbon emissions while (3) and (4) give those on carbon intensity. Columns (1, 3) and (2, 4) are respectively without and with the control variables. According to Table 2, when control variables are not considered, only time fixed effects and city fixed effects are controlled, and the Policy coefficient affecting carbon emissions and carbon intensity is significantly negative at the 1% level. When control variables are added, the Policy coefficient remains significantly negative at the 1% level, with coefficient values of −0.029 and −0.057, respectively. This indicates that the construction of digital infrastructure represented by the Broadband China strategy can significantly promote urban carbon reduction. Hong et al. (2023) reached similar conclusions. Among the control variables, The coefficient of x1 is significantly positive, indicating that the higher the level of urban economic development, the greater the urban carbon emissions. This conclusion is similar to the findings of Wang et al. (2024). The coefficient of x2 is significantly negative, indicating that the higher the urban population density, the more concentrated the urban layout and compact development, which reduces the dispersed consumption of energy and resources and reduces urban carbon emissions. The coefficient of x3 is significantly negative, indicating a higher proportion of employment in the service industry, lower dependence on energy, and greater reliance on human capital and information technology, thereby reducing the city’s carbon emissions and intensity. The coefficient of x4 is significantly positive, indicating that the more foreign direct investment a city introduces, the greater its carbon emissions, which to some extent verifies the “pollution shelter hypothesis.” The coefficient of x5 is significantly negative, indicating that the higher the level of urban greening, the more it helps to reduce the carbon content in the air, thereby achieving the effect of emission reduction. The coefficient of x6 is not significant, indicating that the level of urban science expenditure has little impact on urban carbon reduction.
TABLE 2 | Results of baseline regression.
[image: A regression table displays coefficients and t-statistics for variables labeled Policy, x1 to x6, across four models (1 to 4). Significant values include those for Policy in each model (ranging from -0.032 to -0.057) and predictor variables like x1 and x4. The constant term varies notably across models. Year and City Fixed Effects are included with 5,094 observations for each model. R-squared values range from 0.398 to 0.579. Significance levels are denoted by asterisks, with t-statistics in parentheses.]4.2 PSM-DID method
To ensure the accuracy of the results of the DID method and overcome the systematic difference of changing trends between the cities in the experimental and control groups, we used the propensity score matching (PSM) method to test the robustness of the baseline regression. Also, to avoid sample size loss and alleviate selectivity bias as much as possible, we applied adjacent one-to-one matching. In Table 3, Columns (1) and (2) are the regression results of the PSM-DID method for carbon emissions and intensity. The regression results show that the Policy coefficients are significantly negative at the levels of 1%, which indicates that the Broadband China strategy for digital infrastructure construction has reduced carbon emissions and intensity, thereby proving that the benchmark regression results were robust.
TABLE 3 | Results of PSM-DID
[image: Table displaying regression results with two columns labeled (1) and (2). Both columns show a negative coefficient for "Policy" at -0.034 and -0.035 with significant t-values of -3.85 and -3.30, respectively. The "Control variable" is present in both cases. The constant (_cons) is 1.303 and 1.285 with significant t-values of 9.47 and 7.60. Year FE and City FE are both marked as "YES". Observations (N) are 3,683 for both, and R-squared values are 0.453 and 0.985.]4.3 Robustness tests
4.3.1 Parallel trend test
The premise of applying the time-varying DID model is that the parallel trend test should be satisfied. As for our research, satisfying the parallel trend test means that there is no significant difference in urban carbon emissions and intensity between the experimental group and the control group before being identified as a Broadband China demonstration city. To verify the parallel trend hypothesis, this paper adopt the research of Beck et al. (2010), use the “event analysis method” to check the common trend and dynamic effects of the Broadband China demonstration policy, further construct the following econometric model in Equation 4.
[image: Mathematical equation representing a model: \( Y_{nt} = \beta_0 + \sum_{j=a}^4 \beta_j \times Policy_{j(t-s)} + \lambda Control_{nt} + \tau_i + \gamma_t + \epsilon_{nt} \).]
The regression results are shown in Figure 2. The abscissa, pre_4, pre_3, pre_2, and pre_1, represent 1–4 years, respectively, before current, which represents the year of the strategy’s implementation. post_1, post_2, post_3, and post_4 represent 1–4 years after implementation. The ordinate represents the regression coefficients of carbon emission reduction and intensity.
[image: Two line graphs labeled 'a' and 'b' with error bars. Both show a declining trend from 'pre-4' to 'post-4'. A red horizontal line signifies a baseline value, with 'current' marked by a vertical dashed line.]FIGURE 2 | Results of parallel trend test (a). Carbon emission reduction (b). Carbon intensity.
Before implementation, the strategy obviously has no effect, it did not have a significant impact on carbon emissions and carbon intensity. This indicates that there was no significant difference between pilot and non pilot cities before the implementation of the Broadband China strategy, meeting the parallel trend test. Meanwhile, After implementation, the regression coefficient is significantly negative, and the pilot cities have a significant carbon reduction effect, which also reflects the value and function of promoting digital infrastructure construction in environmental governance.
It should be noted that 1 year before the implementation of the Broadband China strategy, there was a significant negative correlation between policy and urban carbon emissions, indicating that there was a certain “expected policy effect” in the pilot cities. The economic logic behind it is that before the Broadband China strategy is officially launched in pilot cities, there will be certain discussions and preparations. Some pilot city governments may make preparations in advance to empower urban development with digital technology, indirectly affecting urban production and lifestyle, thereby reducing the total carbon emissions of pilot cities to a certain extent. There is a certain “policy lag effect” between policy and urban carbon intensity. Because carbon intensity is not only related to the total carbon emissions of the city, but also to the total GDP of the city’s economic development, the effect of the Broadband China strategy was not yet apparent in the year of its implementation. However, in the second year after the policy was implemented, the impact of the Broadband China strategy on urban carbon intensity became increasingly evident through digital technology empowering urban economic development.
4.3.2 Substitution dependent variable
We selected per capita carbon emissions as the explained variable for carbon emission reduction (Xuan et al., 2020). The regression results are shown in Table 4. Regardless of the addition of the control variables, the regression coefficient of Policy is significantly negative, which indicates the robustness of the baseline regression results.
TABLE 4 | Robustness test: substitution dependent variables.
[image: Table displaying regression results with two columns. Column (1) shows a Policy coefficient of -0.024 with a t-value of -2.86, no control variable, a _cons of 0.034 with a t-value of 3.82, with year and city fixed effects both marked YES, N at 5,094, and R^2 at 0.983. Column (2) has a Policy coefficient of -0.033 with a t-value of -3.97, control variable YES, a _cons of 0.777 with a t-value of 7.01, with year and city fixed effects both marked YES, N at 5,094, and R^2 at 0.985.]4.3.3 Excluding key cities
Chinese cities include not only ordinary prefecture-level cities but also provincial capitals, municipalities directly under the central government, and economically developed cities. The behavior patterns of local city governments at different levels may be quite different and cities with higher administrative levels control far more resources than do ordinary cities (Yu and Zhang, 2021). To further verify the robustness of the conclusions regardless of the possible policy bias to key cities or big cities and the possible outliers in key cities that may bias the results, we excluded the key cities to test the carbon emission reduction effects of digital infrastructure construction. Table 5 gives the regression results for carbon emissions and intensity in Columns (1) and (2) after Beijing, Shanghai, Tianjin, and Chongqing have been excluded. Columns (3) and (4) show the results after the four municipalities directly under the central government and the provincial capitals have been excluded. Despite the exclusion of the municipalities directly under the central government or provincial capitals, digital infrastructure construction has still significantly reduced the carbon emissions and intensity, thus further verifying the robustness of the baseline regression.
TABLE 5 | Robustness test: excluding key cities.
[image: Table displaying regression analysis results across four models. The "Policy" variable shows coefficients and t-values: -0.029, -3.04; -0.057, -6.63; -0.025, -2.37; -0.036, -3.89. Control variables included are indicated as YES. The constant (_cons) has coefficients: 16.10, 1.060, 16.02, 1.080 with corresponding t-values. Both Year and City fixed effects are YES. Sample sizes (N) are 4,618 and 4,284 for respective models. R² values are 0.576, 0.544, 0.572, and 0.561.]4.3.4 Policy exogeneity
The multi-phase differential model requires that the experimental and control groups cannot form effective expectations before the implementation of the policy, i.e., the exogeneity of the policy must be guaranteed. We added into the regression equation the virtual term F. Policy of 1 year before the implementation of the Broadband China strategy (Qiu and Zhou, 2021). The regression results are shown in Table 6. After the addition of the control variables, as well as controlling for the city and time fixed effects, the regression coefficient of the core explanatory variable Policy is still significantly negative while the estimated coefficient of F. Policy in the previous year is not significant, thereby indicating no expected effect.
TABLE 6 | Robustness test: Expected effect test.
[image: Table presenting two columns of regression results with variables: Policy, F.Policy, Control variable, _cons, Year FE, and City FE. Policy effects are −0.014* in column (1) and −0.057*** in column (2). Constants (_cons) are 16.12*** and 1.049***. Both columns include control variables, Year FE, and City FE. Sample size (N) is 4,674, with R-squared values of 0.578 and 0.543.]4.3.5 Eliminating the impact of potential policies
Regarding the baseline regression, we ask if the policy effect of the Broadband China strategy on urban carbon emission reduction is a net effect and if the reduction of carbon emissions and intensity has been affected by other relevant policies during the same period, leading to overestimation or underestimation of the results? In order to further test the robustness of the basic regression results, it is necessary to exclude other potential policies. Through sorting out other policies during the policy shock period, we found that the policy of the “National Big Data Comprehensive Pilot Zone” (Policy1) is closely related to the construction of digital infrastructure, while the policy of the “Carbon Market Construction Pilot Zone” (Policy2), as an environmental regulatory policy, is closely related to carbon reduction. Therefore, the policies of the “National Big Data Comprehensive Pilot Zone” (Policy1) and the “Carbon Market Construction Pilot Zone” (Policy2) may affect the estimation results of this study. In order to eliminate the interference of these strategies, this study considers the two types of strategies mentioned above in the baseline model of regression. When city i is determined as a pilot city for “National Big Data Comprehensive Pilot Zone” or “Carbon Market Construction Pilot Zone,” the duration of the national level big data comprehensive experimental zone (or carbon market construction pilot) of the city will be assigned a value of 1 in the jth year and beyond. Otherwise, assign a value of 0. In regression analysis, if the Policy regression coefficient is no longer significant after controlling for the above two policies, it indicates that the policy effect of the Broadband China strategy on the implementation of digital infrastructure construction does not exist, and the conclusion of this study is not robust; If other policies are added, the Policy regression coefficient remains significant but decreases, indicating that the impact of the Broadband China strategy on carbon reduction represented by digital infrastructure construction is overestimated, but it does not affect the conclusion of this study. According to the regression results in Table 7, Columns (1) and (2) are the regression results of joining the “National Big Data Comprehensive Pilot Zone,” and (3)-(4) are the regression results of joining the “Carbon Market Construction Pilot Zone.” The policy regression coefficient has not changed significantly compared to the baseline regression, and is still significantly negative at the 1% level. Therefore, the baseline regression results in this paper are robust.
TABLE 7 | Robustness test: policy overlaps.
[image: Table displaying regression results with four columns labeled (1) to (4). Variables include Policy, Policy1, and Policy2, with coefficients and t-statistics in parentheses. Significant levels are indicated by asterisks. Control variable, _cons, Year FE, City FE, sample size (N), and R-squared values are also shown. Values: Policy ranges from -0.028 to -0.058; Policy1 from 0.017 to 0.023; Policy2 from -0.053 to -0.065. Constants range significantly, and the sample size is 4,675 across all columns. R-squared values range from 0.543 to 0.578.]4.3.6 Endogenous analysis
Despite controlling for several crucial variables that influence urban carbon reduction and using a year and city fixed-effects model to mitigate estimation bias, this study may not fully resolve the issue of endogeneity. Additionally, the inverse causality problem is considered insignificant since urban carbon emissions typically do not have a significant impact on digital technology facilities. To address potential endogeneity resulting from others, this paper employs the instrumental variable method to perform the endogeneity analysis.
This paper adopts the approach of Huang et al. (2019) and selects the number of post offices per million people and the number of landline telephones per hundred people in prefecture-level cities in 1984 as instrumental variables (IVs). The rationale for choosing these IVs is as follows: Firstly, the layout of post offices and the popularization of fixed telephones meet the exogeneity requirements of instrumental variables. The number of post offices and fixed telephones per million people in each prefecture level city in 1984 is difficult to directly affect urban carbon emissions reduction today; Secondly, the layout of post offices and fixed telephones can to some extent meet the correlation conditions of instrumental variables, and also reflect the information and communication needs of cities. The establishment of more post offices and high penetration rate of fixed telephones mean that their communication level is more developed compared to other regions, so they are likely to be the areas with leading digital infrastructure construction levels today. Therefore, this paper uses the interaction term between the number of post offices per million people in each city in 1984 and its Internet broadband access subscribers in the previous year (IV1), and the interaction term between the number of telephones per 100 people in each city in 1984 and its Internet broadband access subscribers in the previous year (IV2), respectively, as the instrumental variable for the choice of Broadband Chinastrategy.
The first-stage estimation result in Table 8 column (1-2) shows that the Policy are highly correlated with the instrumental variables, and the statistical test results of Kleibergen-Paap rk LM and Kleibergen-Paaprk Wald F pass the unidentifiable test and the weak instrumental variable test respectively, suggesting that IV1 and IV2 are valid. Column (3-6) gives the second-stage estimation result, the coefficients of Policy are all significant positive, the above estimation results show that the core conclusion of our study still holds after controlling the endogeneity problem.
TABLE 8 | Instrumental variable results.
[image: A table displaying regression results with variables for two policies, carbon emission reduction, and carbon intensity. It includes coefficients, significance levels, control variables, and fixed effects. Key figures: IV1 (-0.001), IV2 (-0.046), Policy impact on reduction (-4.260) and intensity (-3.865). Significance levels are marked with asterisks, with p-values in parentheses. Control variables and fixed effects are noted as "YES". Sample sizes are listed as four thousand four hundred twenty-three and four thousand two hundred ninety-three for specific models.]5 MECHANISM ANALYSIS
The above results show that the development of digital infrastructure construction has significantly reduced the carbon emissions and intensity of the pilot cities, so the empirical results are robust. We examined the mediating effect of carbon emission reduction achieved by digital infrastructure construction development from the perspective of green technology innovation and industrial structure upgrading mechanisms. Based on Equation 5, the model for the mediating effect is:
[image: Mathematical equation displaying a model: \(M_t = \alpha_0 + \alpha_t Policy_{yt} + \lambda Control_t + \tau t + \gamma_t + \epsilon_t\), labeled as equation (5).]
where M is the mediator variable, which represents green technology innovation and industrial structure upgrading. Green technology innovation is characterized by the number of granted green invention patents (Lv et al., 2021) and the industrial structure upgrading is the ratio of the output values of the tertiary and secondary industries (Jiang et al., 2020). The remaining settings are consistent with Equation 1.
5.1 Green technology innovation mechanism
In Table 9, Columns (1) is the estimated results of the green technology innovationmechanism. The coefficient of Policy in Column (1) is significantly positive at the level of 1%, indicating that digital infrastructure construction has a significant positive effect on urban green technology innovation, that is, digital infrastructure construction promotes the improvement of urban green technology innovation level. On the one hand, the construction of digital infrastructure means the gathering of high-tech talents such as digital technology, enhancing knowledge spillover, and improving the level of urban green technology innovation. The construction of digital infrastructure can improve urban energy efficiency, optimize resource allocation, and promote the improvement of urban green technology level (Wang et al., 2024). On the other hand, green technology innovation promotes the energy revolution and accelerates the development of clean energy, helping to transform and upgrade the energy consumption structure (Guo et al., 2022), which is conducive to building a clean and low-carbon modern energy system. The improvement of green technology innovation level can promote the green and low-carbon transformation of energy, increase the proportion of clean energy consumption, promote the construction of new energy systems, and continuously reduce energy consumption and urban carbon emissions. Therefore, green technology innovation is an effective means to solve environmental pollution problems (Acemoglu et al., 2012; Guo et al., 2022), and digital infrastructure construction can significantly reduce carbon emissions by improving the level of green technology innovation (Yuan et al., 2022).
TABLE 9 | Mediating effect test.
[image: Table comparing the effects of variables on green technology innovation and industrial structure upgrading. For policy, coefficients are 0.149 with significance and 0.021 with lesser significance. Control variable and fixed effects for year and city are present. The constants are -0.524 and 2.935 with significance. Sample size is 5,094 for both, with R squared values of 0.841 and 0.629, respectively.]5.2 Industrial structure upgrading mechanism
In Table 9, Columns (2) is the estimated results of the industrial structure upgrading mechanism. The coefficient of Policy in Column (2) is significantly positive at the level of 10%, indicating that the construction of digital infrastructure has a positive effect on the upgrading of urban industrial structure, that is, the construction of digital infrastructure promotes the improvement of urban industrial structure upgrading. On the one hand, digital infrastructure construction can promote the supply efficiency of enterprise digital elements, improve the integration efficiency of various element resources, and thus give birth to new formats and industries, promoting the optimization of urban industrial structure (Yi et al., 2022). The construction of digital infrastructure empowers urban digital transformation, promotes the integration of digital economy and traditional industries, accelerates urban digital industrialization and industrial digitalization construction, promotes the digital transformation and upgrading of traditional industries, and ultimately achieves the optimization and upgrading of urban industries (Su et al., 2021). On the other hand, upgrading the industrial structure can eliminate outdated equipment, transform the extensive economic development model of cities, and reduce the carbon emissions of high energy consuming and high polluting enterprises (Wu et al., 2021). Upgrading the industrial structure can promote the transformation of urban industries towards high technology and high added value, promote the development of low-carbon and clean industries, and significantly curb carbon emissions (Zhao et al., 2022). Therefore, the construction of digital infrastructure can reduce urban carbon emissions by promoting industrial structure upgrading.
6 HETEROGENEITY ANALYSIS
6.1 Heterogeneity analysis of different regions
To test for regional heterogeneity in the carbon emission reduction effects of digital infrastructure construction, we divided the 283 sample cities into an eastern regional group but the central and western regions together into another group, then introduced the interaction term of the cities and the Policy variable in each regional group into Equation 1. In Table 10, Columns (1) and (2) are the regression results of the effects of digital infrastructure construction development on carbon emissions and intensity for the eastern region while (3) and (4) are for the central and western ones. The carbon reduction effect of digital infrastructure construction is more evident in the eastern region, but the carbon reduction effect on the central and western regions is only reflected in carbon intensity, and the carbon emissions are not significant. The main reason may be that compared with the central and western regions, the eastern region has a high level of economic development, a good foundation for Internet development, flat terrain and convenient transportation, so the implementation of the Broadband China strategy has promoted the development of urban digital technology, and thus has a stronger effect on urban carbon emission reduction.
TABLE 10 | Heterogeneity test 1: Differences among regions.
[image: Table comparing variables across the Eastern and Central and Western regions. Columns (1) and (2) show Eastern region results for policy, control variables, constants, and fixed effects, with coefficients and statistical significance. Columns (3) and (4) present similar details for the Central and Western region. Significant values are indicated with asterisks. Sample sizes (N) are 1735 and 2940, with R² values of 0.631, 0.552, 0.555, and 0.547.]6.2 Heterogeneity analysis of different urban population sizes
We also classified the sample cities according to their population sizes by following the hierarchy criteria of the Outline of the National New Urbanization Plan issued by the State Council. Cities with more than 1 million urban residents are large cities; otherwise, they are small or medium-sized. An interaction term between the Policy variable and a dummy variable for city size was introduced into Equation 1 to test if city-size heterogeneity played a role in the carbon emission reduction effects of digital infrastructure development. In Table 11, Columns (1) and (2) show the regression results for the large cities, whereas (3) and (4) show those for the small and medium-sized ones. The regression results show that the carbon reduction effect of digital infrastructure construction in large cities is significant, while the carbon reduction effect in small and medium-sized cities is not significant. The possible reason is that large cities often have more advantages in Internet development foundation, financial strength and technology level, while the implementation of the Broadband China strategy plays a stronger role in promoting the upgrading of industrial structure and improving the ability of digital technology innovation, and the greater the impact on urban carbon emission reduction. However, the spatial agglomeration of carbon emission entities in small and medium-sized cities, especially enterprise entities, has not yet been fully included in the scope of emission control.
TABLE 11 | Heterogeneity test 2: Differences in urban population sizes.
[image: A table comparing regression results between large cities and small and medium-sized cities across four models. For large cities, policy coefficients are -0.057 and -0.067 with significant p-values. For small and medium-sized cities, policy coefficients are -0.005 and -0.011, not significant. Control variables and fixed effects are included. Sample sizes are 2,788 for large cities and 1,887 for the others. R-squared values range from 0.494 to 0.582.]6.3 Heterogeneity analysis of differences in levels of economic development
To further analyze the differences in the carbon emission reduction effects of digital infrastructure construction in cities with different levels of economic development, Yao et al. (2017) applied the unchanged control variables and all other model settings by taking 50% as the median per capita GDP. The sample cities were divided into those above and below the median as respectively having high and low levels of economic development. In Table 12, Columns (1) and (2) represent the effects of digital infrastructure construction development in the high-level cities, whereas Columns (3) and (4) represent those in the low-level ones. The former group has seen more significant carbon emission reduction effects due to better digital infrastructure and stronger financial strength. The development of digital infrastructure construction can improve the rationalization and upgrading of urban industrial structure while having more significant inhibitive effects on urban pollution and emission reduction.
TABLE 12 | Heterogeneity test 3: Differences in levels of economic development.
[image: A table comparing regression results for highly and lowly developed economic cities. The variables include "Policy," "Control variable," and others. For highly developed cities: (1) Policy coefficient is -0.021 with significance, (2) -0.031 with significance. For lowly developed cities: (3) Policy coefficient is -0.053 with significance, (4) -0.030 with less significance. Control variables and fixed effects are included. Sample sizes vary, with R-squared values around 0.5 for each model.]6.4 Heterogeneity analysis of different regions in environmental regulation intensity
Given the close relationship between urban carbon emissions and environmental regulations, and considering the varying intensity of environmental regulations across cities, the impact of digital infrastructure development on urban carbon emissions may exhibit heterogeneity. Accordingly, this study adopts the threshold model proposed by Yuan and Xie (2014) to estimate the annual average intensity of environmental regulations for the period 2006–2023. Based on these annual averages, cities are classified into three groups: strong, moderate, and weak regulation intensity. The results of the group-wise regression analysis, as presented in Table 13, reveal that digital infrastructure construction exerts a more pronounced carbon reduction effect in cities with higher environmental regulation intensity. This can be attributed to two primary mechanisms. First, stronger environmental regulation reflects a greater governmental commitment to addressing carbon emissions and environmental pollution, leading to more direct and stringent regulatory interventions. Second, stringent environmental regulations induce an “innovation compensation” effect, which incentivizes firms to enhance their green technology innovation capabilities, thereby generating a green Porter effect. This effect facilitates the production of cleaner products and contributes to carbon emission reduction. Consequently, the Broadband China pilot policy demonstrates a more significant carbon abatement effect in cities with stronger environmental regulation intensity.
TABLE 13 | Heterogeneity test 4: Differences in environmental regulation intensity.
[image: Table showing statistical analysis of policy impact under varying environmental regulation strengths. Columns categorized as strong, moderate, and weak regulations with specific numerical coefficients and control variables, including policy, constant, year and city fixed effects, sample size (N), and R-squared values. Significant values are marked with asterisks.]7 CONCLUSION AND POLICY RECOMMENDATIONS
Using panel data from 2006 to 2023 of 283 prefecture-level Chinese cities in which the Broadband China strategy has been implemented, this study empirically examined the carbon emission reduction effects of the development of digital infrastructure construction by using the difference-in-differences method. The results are as follows. First, the development of digital infrastructure construction has had significant carbon emission reduction effects that simultaneously reduced carbon emissions and intensity. After a series of robustness tests, such as parallel trends, elimination of the central cities, and replacement of explained variables, this conclusion remained robust. Second, green technology innovation and industrial structure upgrading are two important mechanisms by which digital infrastructure construction has exhibited reduction effects. The construction of digital infrastructure can significantly reduce urban carbon emissions and carbon intensity by enhancing the level of green technology innovation and promoting industrial structure upgrading. Third, digital infrastructure construction development has had stronger effects in the eastern than in the central and western regions. Moreover, it has also shown stronger effects with the expansion of urban scales, the improvement of urban economic development level, and the environmental regulation intensity.
The above conclusions lead to the following policy suggestions. First, the development of digital infrastructure construction has obvious carbon emission reduction effects and plays an important role in improving urban environmental quality, so the government should further support the development and construction of new and more advanced digital network infrastructure. The diffusing effects of digital infrastructure construction should be enhanced, digital technology should be integrated into governance and the efficiency of governmental management should be improved to enhance the efficiency of the implementation of environmental protection policies.
Second, we should strengthen the integration of traditional and real industries, upgrade the industrial structure, and promote the green and low-carbon transformation of enterprises via digital technologies such as 5G, big data, cloud computing, and Internet Plus. Enterprises should increase investment in technological R&D, apply digital technology and network infrastructure to more industries and sectors, improve urban environmental quality through technological innovation, and achieve carbon emission reduction.
Finally, the heterogeneity of the carbon emission reduction effects of digital infrastructure construction has been fully analyzed. Compared with the eastern region, the central and western regions have lower levels of economic development and smaller populations. Although the level of the development of digital infrastructure construction is relatively backward, it has obvious advantages as a latecomer. For future development, digital technology, talent inputs, and innovation factors should be appropriately allocated to the central and western regions in order to enhance their abilities to improve environmental problems and realize environmental welfare.
Although this paper explores the carbon reduction effects of digital infrastructure construction based on 283 cities in China, several limitations still exist. For example, firstly, future scholars can use more micro county data or enterprise data for exploration. Secondly, scholars can seek more significant mechanisms to explore the impact and pathways of digital infrastructure construction on urban carbon reduction.
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In light of the interrelated origins and processes of greenhouse gas (GHG) and atmospheric pollutant emissions, countries around the world are actively seeking synergistic strategies for their reduction. Urban transportation represents a critical sector for GHG and air pollutant emissions; however, the effectiveness of existing collaborative measures has proven inadequate. This ineffectiveness primarily stems from a focus on terminal emission reductions, neglecting potential pollutant emissions that arise during implementation. To address this gap, this paper develops seven scenarios for coordinated emission reductions in urban transportation and employs econometric methods to quantitatively assess the effectiveness of these strategies throughout their entire lifecycle. Furthermore, the evaluation integrates key indicators, such as synergistic emission reduction, a coordinated control system, and cross-elasticity, to provide a comprehensive analysis of the proposed measures. This paper uses Shenyang, China, as a case study, revealing that enhancing fuel quality emerges as the most critical strategy for synergistic emission reduction. Although the comprehensive synergistic emission reductions associated with rail transit and low-carbon travel are not the highest, they demonstrate a significant linkage effect. Although the promotion of new energy vehicles (NEVs) offers substantial terminal emission reductions, their energy generation processes and consumption during charging classify them as non-synergistic measures. This study addresses the prevalent issue of overemphasizing terminal governance, providing valuable insights for policymakers in the urban transportation sector. It facilitates a deeper understanding of the synergistic control characteristics of various measures, enabling the identification of effective strategies and the exploration of their interconnections.
Keywords: urban transportation, atmospheric pollutants, greenhouse gas, synergistic emission reduction, whole lifecycle

1 INTRODUCTION
Urban transportation is characterized by dense road networks, a high density of motor vehicles, and significant energy consumption and pollution emissions, making it a major contributor to greenhouse gas (GHG) and air pollutant emissions. As of 2023, this sector has the fastest growth rate in carbon dioxide (CO2) emissions among all industries, accounting for approximately 17%–23% of global GHG emissions. Projections indicate that transportation-related CO2 emissions could increase by 57% by 2030, significantly outpacing growth in other sectors worldwide (Speizer et al., 2024). The primary exhaust emissions from urban transportation include carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxides (NOx), and hydrocarbons (CHx). Notably, the first three pollutants are highly hazardous, with mobile sources contributing over 20% of emissions in most large and medium-sized cities (Davidson et al., 2020).
GHGs and atmospheric pollutants share common characteristics, including identical origins, sources, processes of emission, frequencies, effects, governance pathways, and management objectives (Jiménez et al., 2015). Early research often treated GHG emissions and atmospheric pollutants in isolation; GHG mitigation primarily relied on energy policies, whereas atmospheric pollutant control was typically achieved through end-of-pipe measures (Wang et al., 2020). Since the 1990s, the Intergovernmental Panel on Climate Change (IPCC) has introduced the concept of synergistic governance for GHGs and atmospheric pollutants, initiating extensive research into their synergistic effects. Initial studies predominantly focused on evaluating one-way synergistic relationships, such as “from carbon to pollution” or “from pollution to carbon.”
In recent years, there has been increasing focus on evaluating the synergistic effects of comprehensive emission-reduction measures through policy analysis, model applications, and case discussions, resulting in a robust theoretical framework that supports the formulation of energy and environmental development policies (Xu et al., 2024; Xin et al., 2024). However, it is important to acknowledge that current research predominantly remains theoretical, with limited exploration of synergistic emission-reduction measures in specific domains. Particularly within urban transportation, the effectiveness of synergistic approaches is influenced by regional policy environments, residents’ travel behaviors, transportation and energy usage patterns, and pricing variations (Guzman et al., 2015). Consequently, existing research findings are not easily translatable to practical applications. To effectively select and implement synergistic emission-reduction measures, comprehensive planning must be grounded in quantitative research methods rooted in econometrics, an area that remains underexplored.
Countries worldwide have implemented various strategies to mitigate pollution and carbon emissions; however, the governance outcomes have not met expectations. Three primary reasons contribute to this issue (Oyewo et al., 2024). First, there are instances of “pollution reduction without carbon reduction” and vice versa, highlighting a lack of scientific evaluation to determine the coordination of carbon and pollution reduction effects or to assess the degree of synergy between them (Chen et al., 2023). Second, some measures focus solely on emission-end reductions without considering impacts throughout the entire lifecycle. Although certain new energy sources may demonstrate significant synergistic effects at the emission end, the energy generation processes can consume substantial electricity and emit GHGs and atmospheric pollutants that have not been quantitatively assessed (Junne et al., 2020). Finally, the coexistence of numerous pollution and carbon reduction measures, alongside differing implementing and regulatory entities, often leads to the prioritization of individual interests, resulting in conflicts and obstacles during implementation (Mahoney et al., 2022).
To address these challenges, this paper introduces the concept of a whole lifecycle approach, facilitating bidirectional coordination between “carbon to pollution” and “pollution to carbon” throughout the entire “source-process-end” continuum of GHGs and atmospheric pollutants (Wu et al., 2023). This approach mitigates the risk of increasing emissions within the supply chain due to an overly narrow focus on individual pollution reduction or carbon reduction measures. Then, by using the concept of “synergistic emission reduction equivalent,” this paper converts the emission reductions of various local air pollutants and greenhouse gases into a unified unit of measurement, thereby facilitating the comparison of emission-reduction effects of different measures (Zhang H. et al., 2023). This assessment is complemented by indicators such as the synergistic control-effect coordinate system and the cross-elasticity of pollutant emission reductions. A scientific evaluation of the governance effects of measures aimed at reducing pollution and carbon emissions is conducted within a consistent framework, allowing for the classification of emission-reduction measures into strong, weak, and non-synergistic categories (Cheng et al., 2024). Finally, adopting a system’s engineering perspective, the paper proposes a balanced strategy that reconciles the interests of multiple stakeholders. This strategy aims to enhance collaborative efforts for reducing pollution and carbon emissions within the urban transportation sector.
This paper examines the mechanisms of synergistic strategies for reducing GHG emissions and atmospheric pollutants in urban transportation. Such strategies not only enhance the theoretical framework for urban environmental governance but also minimize resource waste in controlling both GHG emissions and local air pollutants, thereby increasing governance efficiency. By elucidating the interrelationships among stakeholders within the synergistic governance framework, this research delineates the responsibilities of various actors, addressing governmental function “blind spots.” This approach aims to strengthen environmental regulations and operational standards while facilitating effective engagement from societal forces in urban environmental protection and low-carbon development. Furthermore, through a rigorous evaluation of the governance effects of these synergistic measures, this study offers scientific support for strategic combinations and lean management practices, thus mitigating extreme “movement-style” and “shock-style” initiatives. Ultimately, it seeks to align pollution reduction and carbon mitigation efforts with economic and social development principles.
The remainder of this paper is organized as follows: Section 2 introduces the measurement methods employed for the emission-reduction strategies discussed, detailing the principles of synergistic accounting methods, including the synergistic emission reduction equivalent, the synergistic control-effect coordinate system, and the cross-elasticity of pollutant emission reduction across various synergistic scenarios. Section 3 presents the measurement results and their analysis. Section 4 critically examines the differences between the findings of this study and those of related research, exploring the underlying reasons for these discrepancies, along with the scientific basis and implementation pathways for strategic combinations aimed at enhancing governance effectiveness. Finally, Section 5 concludes the paper by summarizing the key insights and implications of the research.
2 METHODOLOGY
2.1 Introduction to the research framework
This paper uses the concept of synergistic emission reduction for GHGs and atmospheric pollutants, conducting a measurement of pollutant emission reductions and a comprehensive evaluation of emission-reduction measures from a “whole lifecycle” perspective. The research process is illustrated in Figure 1 and consists of the following steps.
[image: Flowchart illustrating four steps for emission reduction assessment. Step 1: Baseline annual emission inventory includes motor vehicle predictions. Step 2: Describes control measures and scenarios. Step 3: Calculates emission reduction effects by accounting for pollutant reductions. Step 4: Assesses synergistic control effects using specified accounting and coordination systems.]FIGURE 1 | Research process of synergistic emission reduction for GHGs and atmospheric pollutants. Step 1: Identify the evaluation case, establish the base year and target year, and develop an emission inventory for the baseline year. Step 2: Design synergistic emission reduction measures tailored to the specific policy orientation, residents’ travel behaviors, energy pricing, and infrastructure configuration of the selected case city. Step 3: Conduct a comprehensive assessment of the effectiveness of these synergistic measures, emphasizing not only the intended implementation outcomes but also the potential pollutant emissions that may arise during the implementation process. Step 4: Establish a synergistic control coordinate system to facilitate a thorough evaluation of emission reduction measures, using key indicators such as cross elasticity and integrated synergistic emission reduction.
2.2 Baseline annual emission inventory
This paper selects Shenyang, China, as a case study due to its status as a significant urban center in northern China characterized by high population density and economic development. Historically an industrial hub, Shenyang has faced challenges with GHG and atmospheric pollutant emissions that frequently exceed regulatory standards. Over the past decade, the city has pursued a green transformation, drawing on the construction experiences of environmentally friendly cities both domestically and internationally while implementing various GHG and pollutant reduction strategies. However, early efforts were often hampered by a limited understanding of synergistic reduction effects, leading to a focus on the separate management of GHG and atmospheric pollutant emissions, which created barriers between complementary measures. The selection of Shenyang for this case study holds significant relevance for advancing coordinated approaches to urban air quality management, offering insights applicable to other cities in China and around the world.
The evaluation of synergistic reductions in GHG emissions and atmospheric pollutants is grounded in the differences observed in annual baseline emissions. This study designates 2024 as the base year for analysis and projects key variables, including the number of motor vehicles, average annual mileage, and atmospheric pollutant emission factors in Shenyang City through 2030. Using these projections, the paper calculates the synergistic emission-reduction effects across various strategic scenarios, providing a comprehensive assessment of potential outcomes and informing policy recommendations for effective urban environmental management.
2.2.1 Prediction of motor vehicle ownership
The ownership of motor vehicles is characterized by typical time series data, which can be analyzed and predicted using the autoregressive integrated moving average (ARMA) model. This model combines elements of both autoregressive (AR) and moving average (MA) components to capture the autocorrelation and smoothing characteristics present in time series data through linear combinations. A key advantage of the ARMA model is its ability to yield simpler models when the goodness of fit among various models is comparable, making it particularly effective for predicting stationary time series data. In practical applications, the growth in motor vehicle ownership is influenced by numerous factors, including economic growth, income levels, urbanization, and transportation policies. The ARMA model identifies the impact patterns of these factors on vehicle ownership changes by analyzing historical data, thus facilitating accurate predictions that can inform future urban transportation planning and policy decisions.
The ARMA model can usually be expressed as given in Equation 1:
[image: Equation of time series model with autoregressive and moving average components. The formula is: \(X_t = \sum_{i=1}^{p} \phi_i X_{t-i} + \sum_{j=1}^{q} \theta_j \varepsilon_{t-j} + \varepsilon_t\).]
Here, [image: Please upload the image or provide a URL so I can generate the alt text for you.] is the value of the time series at time t, [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] is the autoregressive coefficient, [image: It seems like there's an error in your request, as I can't process images directly from text alone. Please upload the image file or provide a URL, and I will help generate alternate text for it.] is the sliding average coefficient, [image: Please upload the image or provide a URL to proceed with generating the alternate text. If you have any specific context or details you'd like me to include, feel free to add them.] is the white noise error term, p is the order of the autoregressive term, and q is the order of the sliding average term. [image: Please upload the image or provide a URL, and I will generate the alt text for you.] and [image: Please upload the image or provide a URL so I can generate the alternate text for you.] are independent of each other.
2.2.2 Annual average mileage prediction
Previous studies indicate that urban planning significantly influences motor vehicle mileage (Ewing et al., 2013). First, urban structure—encompassing spatial layout, population density, and the distribution of functional areas—directly shapes travel needs and modes, thereby impacting vehicle mileage. Second, the efficiency and coverage of the urban transportation network, including roads and public transit systems, affect both the frequency and distance of vehicle use; a well-integrated transportation network enhances vehicle utilization and overall mileage (Lebedeva and Savvateeva, 2023). Furthermore, transportation policies, such as driving restrictions, license plate regulations, congestion charges, and support for public transport and non-motorized travel, also play crucial roles in determining vehicle mileage. Additionally, urban planning elements, including land use, the convenience of public transportation, urban design, and the development of new zones, exert varying degrees of influence on motor vehicle mileage (Ihlanfeldt, 2020).
In summary, average annual driving mileage is affected by numerous external factors, and its prediction relies primarily on historical data analysis, supplemented by considerations of urban development planning. The results of these forecasts are discussed in detail in the Results section.
2.2.3 Emission factor prediction
This paper uses official city data sources to predict the comprehensive emission factors for urban motor vehicles. Specifically, it examines the following emission factors: the emission factor of gasoline-powered motor vehicles (EFGi,j), the emission factor of electric motor vehicles (EFEi,j), and the emission factor of natural gas-powered motor vehicles (EFNGi,j). Each factor refers to the comprehensive emissions of the jth type of vehicle powered by gasoline, electricity, or natural gas, measured in grams per kilometer (g/km) for the ith type of atmospheric pollutant or GHG. The pollutants analyzed include three common atmospheric pollutants and one GHG in urban transportation, designated as follows: i = 1 for CO, i = 2 for NOx, i = 3 for SO2, and i = 4 for CO2. The vehicle types are categorized as follows: j = 1 for buses, j = 2 for ordinary taxis, j = 3 for online ride-hailing services, and j = 4 for private vehicles.
For the calculation of the EFGi,j, CO and NOx emission limit data are obtained from the “Emission Limits and Measurement Methods for Light-Duty Vehicle Pollutants” (Phase V). The SO2 emission factor is derived from the national standard of 10 ppm for the gasoline sulfur content, resulting in an SO2 emission of 0.028 g per liter of gasoline consumed. Consequently, the converted emission factor for SO2 is EFG3,4 = 0.08 × 0.028 = 0.002 g/km (Statistics, 2023). Here, 0.08 indicates that the average fuel consumption per kilometer of small passenger vehicles in China is 0.08 L. The data come from China’s official statistics. For CO2 emissions, calculations based on the combustion equation indicate the emission of 2,400 g per liter of gasoline burned, leading to a converted emission factor of EFG4,4 = 0.08 × 2,400 = 192 g/km. Ordinary taxis, online ride-hailing services, and private vehicles, all classified as small passenger vehicles, share the same comprehensive emission factor, represented as EFG private vehicles = EFG ordinary taxis = EFG online ride-hailing services. Furthermore, since the fuel consumption per kilometer for buses is four times that of small passenger vehicles—0.32 L per kilometer for buses compared to 0.08 L per kilometer for small vehicles—the emission factor for buses is calculated as EFG buses = 4 × EFG private vehicles.
This paper uses the following calculation formula given in Equation 2 for accounting EFEi,j:
[image: Equation showing "EFE_{ij} equals the summation of W_i times EF_i times A_j, plus one minus k", labeled as equation two.]
Assuming that by 2030, thermal power generation will constitute 50% of total electricity generation, while the remaining 50% will be derived from wind, solar, and other non-fossil energy sources, the analysis focuses solely on the pollutants emitted during the power generation process, excluding indirect environmental impacts from other lifecycle stages. Let [image: Formula consisting of an uppercase "W" followed by a subscript "t."] represent the proportion of the installed power capacity for the tth power generation method, and let EFi denote the emission factor for the ith type of air pollutant associated with that method. The power consumption per kilometer for the jth type of vehicle is represented as Aj. Additionally, the power transmission loss rate from the output area to the input area is factored in, with a national average loss rate of 6.4%, based on statistical data released by China’s national power and industry in 2023. This equation reflects the weighted contribution of each power generation method to the overall vehicle emissions, adjusted for transmission losses, thereby providing a comprehensive view of emissions attributable to vehicle operation under the specified energy generation mix.
In the calculation of the EFNGi,j, only ordinary taxis and buses, which use natural gas as fuel, are considered. The CO emission factor for small passenger vehicles running on natural gas is estimated to be 0.1 times that of gasoline-powered small passenger vehicles, expressed as EFNG4,1 = 0.1EFG4,1. Similarly, the NOx emission factor for these vehicles is estimated to be 0.7 times that of their gasoline counterparts, represented as EFNG4,2 = 0.7EFG4,2. The sulfur content of Class III natural gas for civilian use is limited to a maximum of 460 mg/m3. Consequently, the SO2 emissions per cubic meter of combusted natural gas are calculated to be 0.92 g. Given that small passenger vehicles consume approximately 8 m3 of gas per 100 km, the emission factor for SO2 can be expressed as EFNG3,2 = 0.92 × 8/100 = 0.0736 g/km. For CO2 emissions, based on the combustion equation, the emissions per cubic meter of combusted natural gas are 1,890 g. Given the same gas consumption of approximately 8 m3 per 100 km for small passenger vehicles, the CO2 emission factor is calculated as EFNG4,2 = 1,890 × 8/100 = 1,512 g/km. For buses, which consume approximately 30 m3 of gas per 100 km, the relationship with small passenger vehicles can be established as EFNG buses = 30/8 × EFNG private vehicles. This approach ensures that the comprehensive emission factors for natural gas-powered ordinary taxis and buses are accurately calculated, reflecting their respective operational characteristics.
The prediction of emission factors is complicated, so we briefly summarize the prediction process. First, we found the basic data of emission factor prediction in official statistical information such as Emission Limits and Measurement Methods for Light Vehicle Pollutants, China Power Industry Development Report, and China Mobile Source Environmental Management Annual Report Second, for individual missing data, we use data processing methods to complete the data according to the trend of factor changes. Finally, we combine Formula 2 and the calculation of carbon emission/sulfur emission chemical equations, power generation method weighting calculations, and other methods to calculate the emission factors. Due to the large differences in the calculation methods used for different emission factors and the limited space available in the main text, the process of emission factor determination is shown in Supplementary Appendix Table S2.
2.3 Control measures and scenario descriptions
This paper develops a synergistic emission-reduction strategy set categorized into three primary dimensions, namely, traffic control, technological innovation, and structural adjustment. Each category includes secondary strategies, which are described in detail, alongside specific implementation intensity control indicators for the measures. These indicators are designed to ensure effective monitoring and evaluation of the strategies’ impact. A summary of these strategies and their corresponding indicators is presented in Table 1.
TABLE 1 | Control measures and scenario descriptions.
[image: Table outlining strategies for traffic improvement. Under "Traffic control": economic speed driving to enhance traffic flow and restrict private vehicles by license number. "Technological innovation" includes retrofitting vehicles for natural gas, promoting new energy vehicles, and improving fuel quality. "Structural adjustment" involves developing rail transit and promoting low-carbon transportation. Each strategy has corresponding scenario descriptions.]2.4 Measurement of the emission-reduction effect
2.4.1 Economic speed driving
Economic vehicle speed is a widely discussed concept in the automotive industry and transportation economics, referring to the speed at which a vehicle achieves optimal fuel efficiency under specific conditions. Deviating from this speed—whether above or below—typically results in decreased fuel efficiency. Different vehicle models exhibit varying economic speeds; for instance, small cars may achieve optimal efficiency at speeds of 40–60 km/h, while larger vehicles or sports cars often have higher economic speeds. Maintaining an economical driving speed not only conserves fuel but also contributes to a reduction in GHG emissions, thereby positively impacting environmental protection (Yuan et al., 2022). Accordingly, this paper proposes increasing the average speed of gasoline-powered private vehicles in Shenyang from 30 to 45 km/h, aiming to enhance fuel efficiency and reduce emissions in the urban transport sector. The reduction in pollutants or GHG emissions caused by the increase in the economic vehicle speed can be expressed as follows (Xiao-mei et al., 2014; Xian-qiang et al., 2021):
Emission reduction amount = annual mileage of private cars × number of vehicles × (difference between economic speed and low − speed emission factors) × proportion of gasoline use
Due to space limitations, detailed formulas are presented in Supplementary Appendix S3. The detailed formulas for other strategies are also presented in Supplementary Appendix S3.
2.4.2 Traffic restrictions
Private vehicle number restrictions entail limiting access to roads based on the last digit of vehicle license plates, with buses and taxis exempt from this policy. Numerous studies have demonstrated that such restrictions significantly improve air quality. For instance, research conducted in a major urban center revealed substantial reductions in the concentrations of key pollutants, including CO, NOx, volatile organic compounds (VOCs), and particulate matter (PM 2.5 and PM 10), during the implementation of this policy. By comparing air quality data from before and after the restrictions, researchers observed daily concentrations of these pollutants decreasing by an average of 10–20 percent. Additionally, the rationing policy contributes to GHG emission reduction by controlling traffic flow, which subsequently lowers fuel consumption and CO2 emissions (Wei et al., 2020). Another study estimated that such curbs could decrease a city’s traffic-related CO2 emissions by approximately 15% (Hatzopoulou et al., 2022).
This paper proposes a measure to limit the number of private vehicles, aiming to reduce the proportion of gasoline-powered private vehicles by 40%. Consequently, the proportion of taxis is expected to increase by 15%, while the proportion of buses should remain unchanged. According to the policy planning of Shenyang City, online taxi-hailing services fall within this limit, whereas pure electric vehicles are exempt from restrictions. The specific calculations for synergistic emission reduction based on these changes are outlined as follows:
Emission reduction = Private car emission reduction (due to fewer trips) − Taxi emission increase (due to more trips).
2.4.3 Vehicle natural gas retrofit
The use of natural gas as a fuel in automobiles significantly reduces emissions primarily because its combustion generates fewer harmful pollutants than that of conventional gasoline or diesel fuels (Muhssen et al., 2024). The combustion of natural gas primarily produces CO2 and H2O while virtually eliminating SOx, NOx, and PM—common pollutants associated with traditional fuels. Furthermore, Shenyang benefits from readily available natural gas sources and possesses the necessary infrastructure to support the conversion of vehicles to natural gas, making it a viable option for enhancing urban air quality and reducing emissions.
The reduction in atmospheric pollutants and GHG emissions associated with the use of natural gas to power motor vehicles can be calculated using the following formula:
Emission reduction = ∑ average annual driving distance of each model × number of vehicles × (difference between gasoline/electricity and natural gas emission factors) × fuel use ratio.
2.4.4 Promoting new energy vehicles
Compared to traditional internal combustion engine vehicles, new energy vehicles (NEVs) produce almost no exhaust emissions during operation and demonstrate higher energy utilization efficiency (Feliciano et al., 2023). NEVs encompass battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), and fuel cell electric vehicles (FCEVs). According to urban planning in Shenyang City, it is anticipated that by 2030, a greater proportion of taxis, private vehicles, and buses will utilize BEVs and PHEVs. In type j motor vehicles, the proportion of gasoline vehicles is [image: Please upload the image or provide the URL to generate the alt text.]j, the proportion of BEVs in NEVs is [image: The image shows the mathematical expression \( P_{\text{BEV}, j} \) in italic font.], and the specific value is as follows: [image: Mathematical expression representing the power of a battery electric vehicle taxi, denoted as \( P_{\text{BEV, taxi}} \).] = 35%, [image: The text reads "P subscript BEV, comma, pv" in italics.] = 30%, [image: Sorry, I can't assist with identifying or generating alternate text for that image.] = 80%, and [image: Mathematical expression showing "P" with subscript "BEV," also subscripted with "or" and "k."] = 100%. The emission reduction calculation formula for each type of motor vehicles is as follows:
Emission reduction = ∑ (pre-measure emissions of all types of motor vehicles − post-measure emissions).
2.4.5 Improving fuel quality
High-quality fuels generally contain fewer impurities and pollutants, enabling more complete and cleaner combustion, which subsequently reduces harmful emissions (Catapano et al., 2022). In this strategy, it is proposed that by 2030, gasoline- and oil-powered private vehicles will use higher-standard fuels, resulting in a 25% reduction in the emissions of various pollutants based on existing emission factors. The specific accounting method for this reduction can be outlined as follows:
Emission reduction = annual mileage of private cars × number of vehicles × proportion of gasoline used × reduction of emission factors (due to changes in fuel quality).
2.4.6 Developing rail transit
As an efficient and environmentally friendly mode of transportation, rail transit significantly contributes to reducing gaseous pollutant emissions due to its high energy efficiency and low per capita carbon footprint (Guo et al., 2023). It is projected that by 2030, the sharing rate of rail transit will continue to increase, while the sharing rates of private cars and taxis will decrease by 15% each.
The reduction in pollutants or GHGs resulting from the expansion of rail transit can be calculated using the following method:
Emission reduction = (private car emission reduction + taxi emission reduction) − increase in rail transit emission
2.4.7 Low-carbon transportation
Low-carbon transportation encompasses various behaviors aimed at minimizing greenhouse gas emissions and enhancing air quality, such as using public transit, cycling, walking, and operating new energy vehicles. This travel mode not only reduces our carbon footprint but also encourages healthier lifestyles while mitigating environmental impacts. In this context, if the increase in public travel does not lead to an increase in bus mileage—meaning that emissions remain stable—the reduction in pollutants or greenhouse gases can be calculated using the following approach:
Emission reduction = general taxi emission reduction + online car emission reduction + private car emission reduction (both due to mileage reduction).
2.5 Synergistic control-effect evaluation
2.5.1 Integrated air pollutant co-control emission reduction
Integrated Air Pollutant Co-control Emission Reduction (ICER) serves as a valuable metric for evaluating the effectiveness of energy-saving measures or emission reduction strategies on both local atmospheric pollutants and GHGs. By converting the reductions in various local pollutants, such as SO2, NOx, and PM, alongside GHGs like CO2, into a unified measurement, ICER facilitates comparisons of the emission reduction impacts and synergies among different strategies or entities (Ge et al., 2023), (Xian-qiang et al., 2021). In this paper, the reductions in local atmospheric pollutants (CO, NOx, and SO2) and GHG (CO2) under varying control strategies are transformed into integrated atmospheric pollutant collaborative emission reductions (ICERn). It should be noted that PM is not included in the pollutant discharge list in this study for the following reasons: first, there are limitations to the measurement methods. The measurement of pollutant emission factors is usually based on the MOBILE/MOVES method. This method is more suited for gaseous pollutants (HC, CO, and NOx), and the ability to estimate PM is relatively weak. Most of the components of PM 2.5 (e.g., sulfates and nitrates) come from secondary transformations of gaseous pollutants, while MOBILE/MOVES only counts primary particles emitted directly. In addition, PM pollution arises not only from exhaust emissions but also from non-exhaust sources, such as braking, tire wear, and road dust. Existing emission factor models make it difficult to accurately estimate PM emissions from the abovementioned pathways. Second, PM measurement varies greatly in different versions of the national standard. China’s light vehicle pollutant emission standards previously set PM limits only for diesel vehicles; however, with the launch of National Standard 6, set PM emission limits were extended to all gasoline vehicles. According to 2023 data estimates, by 2030, vehicles complying with National Standard 4 and National Standard 5 will still account for 20%–30% of all gasoline vehicles. This will result in no standard for estimating PM emission factors. Third, there are differences in governance methods. In future research, the author plans to study the collaborative treatment of air pollutants and greenhouse gases on the basis of collaborative emission reduction. The atmospheric pollutants considered in this paper (NOx, CO, and SO2) and greenhouse gases exhibit strong synergies in disposal methods, but PM disposal often involves technologies such as particle traps and diesel particulate filters (DPFs), which do not share synergies with other pollutants.
Given that all greenhouse gases are commonly expressed in terms of CO2 equivalent (CO2eq) for emissions and warming potential assessments, this paper uses CO2eq directly for calculating GHG emission reductions.
[image: Equation showing the calculation of ICER sub k, which equals W sub LAP times EReq sub LAP plus W sub CO2 times EReq sub CO2, followed by the number three in parentheses.]
In formula (3), [image: I'm sorry, it seems there is no visible image uploaded with your request. Please upload the image or provide a link, and I will be happy to help create the alt text.] is the comprehensive cooperative emission reduction of atmospheric pollutants under the second-level strategy n of the control strategies. [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL if available. You can also include a caption for additional context.] is the conversion coefficient of local air pollutant equivalent. [image: I'm sorry, I cannot generate alt text for the image without the actual image file. Could you please provide the image?] is the equivalent conversion coefficient of CO2. [image: Mathematical expression depicting the equation \( EReq_{n,\text{LAP}} \).] is the emission reduction equivalent of local air pollutants under strategy n. [image: Mathematical expression depicting "EReq subscript n, CO2", where "Req" is in normal font and the rest in italics.] is the emission reduction equivalent of CO2 under strategy n.
[image: Equation showing the calculation for \(ER_{\text{eqL, LAP}}\) as the sum of \(\alpha_{i}\) multiplied by \(E_{\text{in, i}}\) times \(10^3\).]
In formula (4), [image: Please upload the image for which you need alternate text.] is the conversion coefficient that converts type i local air pollutants (SO2, NOx, and CO) into LAPeq. According to the table of taxable pollutants and equivalent values in China’s Environmental Protection Tax Law, SO2 is 0.95 kg, NOx is 0.95 kg, and CO is 16.7 kg. The pollution quantity coefficient of various air pollutants, [image: It seems there was an error in uploading the image. Please try uploading the image again or provide a URL.], is the reciprocal of the corresponding pollution quantity. [image: Please upload the image or provide a URL so I can generate the alternate text for you.] = 0.06, [image: It seems like you might be trying to include a mathematical expression or text instead of an image. If you have an actual image you'd like described, please upload it, and I'd be happy to help.] = 1.05, and [image: It looks like there was an error when uploading the image. Please try uploading the image again or provide a URL to the image. You can also add a caption for additional context.] = 1.05; [image: Please upload the image or provide a URL, and I will help you generate the alternate text.] is the emission reduction of the type i air pollutant under strategy n.
[image: Equation shows energy requirement of carbon dioxide capture (ERₑq,CO₂) equals energy consumption for carbon dioxide absorption (Eₐ,CO₂) multiplied by ten to the power of five. It is labeled as equation five.]
In formula (5), [image: Mathematical expression showing "ER subscript eq, n, CO2" in italics.] is the CO2 emission reduction under strategy n. [image: It seems like there's an image missing. Please upload the image or provide a URL so I can generate the alternate text for you.] 1. 1LAPeq = 1IAPeq. LAPeq refers to the local air pollutant equivalent, and IAPeq refers to the integrated air pollutant equivalent.
[image: Equation displaying \(W_{CO_2}\) as the carbon trading price measured in kilograms of carbon dioxide equivalent divided by the local air pollutant tax measured in yuan per LAPeq. Marked as Equation (6).]
In formula (6), [image: I'm unable to view or describe the image directly. Please upload the image or provide a URL, and I can assist you in generating alt text for it.] is the conversion coefficient of [image: Mathematical expression showing "EReq" with subscripts "n" and "CO2".] into IAPeq. According to the data from the Shanghai Environment and Energy Exchange, the average transaction price of the carbon trading market in 2024 is 0.06815 yuan/kg CO2eq. This price serves as a temporary benchmark and can be adjusted in future analyses based on fluctuations in the carbon trading market. Additionally, according to the Environmental Protection Tax Law, the tax amount for air pollutants ranges from 1.2 to 12 yuan per LAPeq, with Liaoning Province applying a rate of 1.2 yuan per LAPeq. Using this rate, the conversion from CO2eq to IAPeq is calculated as 1 kg CO2eq = 0.05679 IAPeq.
2.5.2 Synergistic control coordinate system
The coordinate system of synergistic control effects serves as a powerful analytical tool for assessing the emission reduction impacts of various strategies on multiple pollutants, along with their synergistic interactions. In this two-dimensional or multidimensional framework, each coordinate axis represents the reduction in a specific pollutant, allowing for a clear visualization of how different measures contribute to overall emissions reductions. By projecting the results of emission-reduction strategies onto this system, stakeholders can intuitively understand the effectiveness of each measure and its interplay with others. This approach facilitates the evaluation of comprehensive benefits and the prioritization of strategies based on their synergistic potential ultimately enhances the coordinated management of greenhouse gases and local air pollutants, fostering more effective environmental governance (Wang et al., 2023).
In this coordinate system, the emission-reduction effect of local air pollutants is plotted along the horizontal axis, while the vertical axis represents the reduction effect of greenhouse gases. Focusing on the first quadrant, a larger angle between the line extending from a specific point to the origin and the horizontal axis indicates a more effective emission-reduction strategy for local air pollutants while simultaneously achieving the same level of greenhouse gas reduction. Furthermore, for lines at the same angle to the horizontal axis, a greater distance from the origin signifies a higher intensity of emission reduction achieved by the control measures for both local air pollutants and greenhouse gases. This visualization allows for a nuanced understanding of the efficacy and synergy of different emission-reduction strategies, enabling stakeholders to identify the most impactful measures for comprehensive environmental benefits.
2.5.3 Co-control cross elasticity
Co-control cross elasticity is a valuable economic measure that assesses the interaction between emission-reduction effects of different pollutants, providing insights into the interconnected impacts of various strategies. In the context of synergistic emission reduction, it is crucial to understand how the reduction of one pollutant can influence the reduction of another. For instance, enhancing fuel quality may lead to a decrease in sulfur and particulate emissions while also potentially increasing fuel costs, which could alter travel patterns. If individuals respond by using public transport more or shifting to new energy vehicles, this may yield a further reduction in CO2 emissions, demonstrating positive cross-elasticity. Conversely, if the improvements in fuel quality do not significantly alter travel behavior or if the increased costs deter emission reductions, the positive cross-elasticity may diminish. The calculation of cross-elasticity, as given in Equation 7 in this paper, provides a clearer picture of these relationships, informing more effective environmental policy decisions.
[image: Equation showing elasticity of substitution between LAP and CO2 energy requirements: \( EIS^{LAP}_{CO_2} = \frac{ER_{eqLAP}/Q_{LAP}}{ER_{eqCO_2}/Q_{CO_2}} \). Equation number seven is indicated.]
Here, [image: Mathematical expression displaying "Els" with a superscript "LAP" and a subscript "CO2".] is the cross-elasticity of local air pollutants and CO2. [image: Mathematical expression displaying "ER_eq_subscript LAP divided by Q_subscript LAP" in italics.] is the local emission reduction rate of air pollutants, that is, the ratio of emission reduction and emission of local air pollutants. [image: Mathematical equation displaying the ratio of \( EReq_{CO_2} \) over \( Q_{CO_2} \).] is the CO2 emission reduction rate, that is, the ratio of CO2 emission reduction to emissions.
2.5.4 Comprehensive performance evaluation
This paper aims to compare the comprehensive emission-reduction effects of various control strategies by conducting a thorough analysis of several key methodologies, including emission-reduction effect accounting, collaborative emission-reduction accounting, the synergistic control coordinate system, and the cross-elasticity of synergistic control among different strategies (Yue et al., 2024; Ji et al., 2024; Jing et al., 2024; Wang et al., 2024). The findings from these analyses will be utilized to classify the degree of coordination among the various emission-reduction strategies, as outlined in Table 2. This classification provides insights into the effectiveness and interrelations of each strategy, highlighting synergies that can enhance overall emission-reduction efforts and support sustainable urban development.
TABLE 2 | Synergistic control performance evaluation of strategies.
[image: Table detailing synergy levels for emission reduction. Columns include: Degree of synergy, Definition, ICER, Synergistic control coordinate system, and Co-control cross elasticity. Degrees: Strong, Weak, Non-synergy, Anti-synergy. Definitions vary in emission reduction impact. ICER values and coordinate system locations change with synergy degree. Elasticity values range above zero to both negative. Definitions clarify pollution discharge effects, with synergy differing by quadrant locations and cross elasticity. Note: Measures with negative numerators and denominators are anti-synergy.]In order to further increase the differentiation degree of strategies with the same degree of synergy, this paper increases the evaluation criteria for synergistic emission-reduction effect, setting the comprehensive emission-reduction effect ICER > 8 × 107 as good, 1 × 107 < ICER ≤ 8 × 107 as medium, and ICER ≤ 1 × 107 as bad.
3 RESULTS
3.1 Relevant index data of target year measurement
3.1.1 Forecast results of vehicle ownership
The ARMA model has a strong scientific nature in the trend of time series data, which is demonstrated in Section 2.3. It should be noted that the core focus of this paper is not only to predict the number of vehicles in 2030 but also to evaluate the collaborative emission-reduction effects of different strategies based on that projected vehicle count. Therefore, the prediction does not necessarily require very precise data. The ARMA model is also used in this paper to improve the scientific nature of the article. Formula 1 was applied to forecast vehicle ownership based on the data presented in Supplementary Appendix S1, with missing data filled through interpolation. The forecasts indicate that by 2030, Shenyang is projected to have 5,899 buses and 3,136,803 private cars. Given the increase in online taxi-hailing services, recent regulations mandate that all new e-hailing vehicles must be pure electric. Thus, it is assumed that 50,000 of the private vehicles will be designated as online taxi-hailing cars, all classified as electric. Additionally, the number of taxis is forecasted to be 19,902, modeled using ARMA (5, 2). Detailed predictions are summarized in Table 3.
TABLE 3 | Forecast of the vehicle ownership in Shenyang in 2030.
[image: Table displaying vehicle forecast data for 2030. Buses: 5,899 units, 58,000 km annually, 25% gasoline, 43.95% electricity, 31.05% natural gas. Taxis: ordinary, 19,902 units, 135,000 km, 1% gasoline and electricity, 98% natural gas; online services, 50,000 units, 81,000 km, 100% electricity. Private vehicles: 3,086,803 units, 12,200 km, 88% gasoline, 12% electricity.]The forecast results underwent various validation tests, including fit degree tests and F-tests, confirming their reliability. However, since vehicle ownership forecasts are not the primary focus of this paper, detailed test results are not presented.
3.1.2 Annual mileage forecast
By examining the urban planning policies and average annual vehicle mileage in Shenyang over the past decade, it becomes evident that there have been no significant changes in either aspect. As such, the predicted annual vehicle mileage for 2030 will remain consistent with the survey data from 2024. Notably, since online taxi-hailing services utilize private vehicles, their operational time is typically 60% of that of ordinary taxis, leading to an average annual mileage that reflects this ratio. The specific forecast results are detailed in Table 4.
TABLE 4 | Average annual mileage of motor vehicles in Shenyang in 2030.
[image: Table showing average annual mileage by motor vehicle type. A bus travels 58,000 miles, an ordinary taxi 135,000 miles, a private vehicle 12,200 miles, and an online taxi-hailing service 81,000 miles.]3.1.3 Emission factor forecast
According to the forecasting methodology outlined in Section 2, the projected emission factors for motor vehicles in Shenyang for the year 2030 have been compiled and are presented in Table 5 (Tong et al., 2020; Zhang S. et al., 2023; Lee et al., 2011; Liu et al., 2023).
TABLE 5 | Forecast of vehicle emission factors in Shenyang in 2030 (unit: g/km).
[image: A table compares integrated emission factors of different vehicles: buses, ordinary taxis, online taxi-hailing services, and private vehicles. Data includes emissions for CO, NOₓ, SO₂, and CO₂ under categories EFGᵢ,ⱼ, EFEᵢ,ⱼ, and EFNG,ⱼ. Emission levels are higher for buses in most categories, with private vehicles and taxis sharing similar values in others.]3.2 Measurement of the emission-reduction effect of control strategies
Through a quantitative analysis of seven distinct traffic control strategies, this paper demonstrates their potential impacts on reducing major atmospheric pollutants and greenhouse gas (CO2) emissions. The detailed accounting results are presented in Table 6.
TABLE 6 | Reduction in various atmospheric pollutants and CO2 under different control strategies (reduction ratio = emission reductions under strategy n/emissions without control strategies).
[image: Table showing reduction strategies for pollutants like CO, NOx, SO2, and CO2. Strategies include economic speed driving, traffic restrictions, and promoting new energy vehicles. Data covers reduction in tons and percentage.]The calculation results indicate that Strategy 1 effectively reduces CO and NOx emissions due to increased combustion efficiency from higher speeds, although it does not impact SO2 and may actually increase CO2 emissions. Strategy 2 shows a substantial reduction in CO2 emissions, reaching approximately 2,489,639.12 tons, alongside decreases in CO and NOx, highlighting vehicle usage limitations as a viable pollution reduction approach. Strategy 3 provides some CO2 reduction but has less impact on CO and NOx due to natural gas’s combustion characteristics. Strategy 4 achieves the most significant CO2 reduction, approximately 1,773,068.88 tons, but has a negative effect on CO and SO2, indicating that while new energy vehicles reduce greenhouse gases, their overall synergistic effects warrant further investigation. Strategy 5 shows strong CO2 reduction, approximately 1,590,716.02 tons, while significantly lowering CO and NOx due to the complete combustion of high-quality fuels. Finally, strategies 6 and 7 yield similar outcomes, with noticeable reductions in CO2, CO, and NOx, but require more discussion on prioritizing their implementation due to lower coordinated emission reduction yields.
3.3 Comprehensive performance evaluation of synergistic emission reduction
3.3.1 Integrated air pollutant co-control emission reduction
The results of ICER calculations, based on formulas (3) to (6), are summarized in Table 7, allowing for easy comparison of their effectiveness in achieving synergistic reductions. The values presented highlight the relative contributions of each strategy to overall air quality improvement and greenhouse gas mitigation.
TABLE 7 | Comprehensive overview of the emission reductions for various pollutants under different control strategies.
[image: Table showing control strategies for reducing emissions with columns for annual emissions reduction values of different pollutants (E(n,co), E(n,Nox), E(n,so2), E(n,co2)), and calculations for three formulas (EReqLAP, EReqCO2, ICER) followed by the ICER ranking. Strategies include economic speed driving, traffic restrictions, vehicle natural gas retrofit, promoting new energy vehicles, improving fuel quality, developing rail transit, and low-carbon transportation. Traffic restrictions top the ICER ranking, while economic speed driving ranks lowest. Formulas referenced in Supplementary Appendix S3.]From the analysis of the results in Table 7, it is evident that the ICER value for strategy 1 is negative, indicating a poor overall synergistic emission-reduction effect. This outcome may be attributed to the increase in other pollutants or the high costs associated with emission reduction. Specifically, the increase in vehicle speed can result in greater energy requirements to overcome air resistance, particularly at higher velocities, potentially leading to increased fuel consumption and CO2 emissions.
Simply, increasing speed does not guarantee improved traffic mobility; it may actually exacerbate local traffic congestion due to excessive acceleration and deceleration, further contributing to emissions. Moreover, the fuel efficiency and design of different vehicles vary significantly, suggesting that increasing speed may not yield the desired emission reductions for all vehicle types, particularly older or less efficient models. Additionally, driving habits play a crucial role; frequent acceleration and sharp braking can negate the benefits of higher speeds by increasing fuel consumption and emissions. Thus, careful consideration of the application scenario for this measure is necessary when formulating specific policies.
Strategies 2–7 demonstrate positive synergistic effects with varying levels of ICER under different approaches. Notably, Strategy 2 has the highest ICER value, suggesting that it may be the most effective strategy for achieving synergistic emission reductions.
First, Strategy 2 directly reduces traffic flow by limiting the number of vehicles allowed on the road during specific times, leading to a decrease in overall pollutant emissions. Second, this strategy may encourage residents to opt for public transportation, non-motorized transport, or carpooling, all of which typically result in lower emissions per passenger than that of private vehicles.
Additionally, Strategy 2 encourages car owners to plan their usage more efficiently, minimizing ineffective driving and idle time, which contributes to further emission reductions. Finally, many implementations of Strategy 2 include exemptions or incentives for new energy vehicles, which produce significantly lower emissions than traditional fuel vehicles, thereby effectively decreasing overall pollutant levels.
This combination of direct traffic reduction, behavioral shifts, and support for cleaner vehicle options underscores the comprehensive benefits of Strategy 2 in achieving synergistic emission reductions.
3.3.2 Synergistic control coordinate system
In this paper, the coordinate system of synergistic control effects is illustrated by calculating the emission-reduction proportions of local air pollutants and CO2 under each strategy, as depicted in Figure 2. This visual representation allows for a clear comparison of how each strategy contributes to the reduction of different pollutants, highlighting their overall effectiveness and potential synergies. The axes of the coordinate system reflect the extent of emission reductions, providing insights into which strategies offer the most comprehensive benefits in terms of environmental impact.
[image: Scatter plot titled "GHG emissions reduction effect," showing correlations between local air pollutant emissions and various strategies. Points are plotted with lines extending from the origin, indicating direction and magnitude for each strategy. The legend identifies different strategies with color-coded markers.]FIGURE 2 | Synergistic control coordinate system under different control strategies (local air pollutant emission reduction effect = EReqLAP/emissions without control strategies, where EReqLAP refers to Table 7. GHG emission-reduction effect follows the same way).
In this paper, the synergistic emission-reduction effect of Strategy 5 is found to be better than that of Strategy 7, while Strategy 2 surpasses Strategy 5. Strategy 5 effectively reduces multiple air pollutants, including SOx and NOx, through improved fuel quality, impacting emissions across the entire lifecycle from production to use. This broader benefit extends to all vehicles, enhancing their overall effectiveness. Conversely, Strategy 2 adopts a direct approach by limiting the number of vehicles on the road, leading to an immediate reduction in traffic flow and pollutant emissions and providing quicker results. Although Strategy 5 reduces emissions per vehicle, it does not decrease the total vehicle count, making its overall impact less immediate than the direct effects of Strategy 2.
Strategy 4, positioned in the second quadrant, effectively reduces GHG emissions but leads to an increase in local air pollutants, indicating a trade-off. In contrast, Strategy 1 is in the fourth quadrant, suggesting that it increases GHG emissions while reducing local air pollutants. Both strategies 4 and 2 are less favorable from the collaborative perspective as they do not achieve a balanced reduction across all pollutants, highlighting the importance of selecting strategies that promote synergistic benefits.
3.3.3 Synergistic control cross elasticity
The calculation results based on formula (7) are presented in Table 8. This table summarizes the findings related to the integrated emission reduction impacts of the various strategies evaluated in the paper. Each strategy’s effectiveness in achieving synergistic benefits can be compared, facilitating a comprehensive understanding of their overall performance in reducing both GHG emissions and local air pollutants.
TABLE 8 | Synergistic control cross-elasticity under different control strategies.
[image: Table showing control strategies and their emissions index ratios compared to CO2. Strategies listed include economic speed driving, traffic restrictions, vehicle natural gas retrofit, promoting new energy vehicles, improving fuel quality, developing rail transit, and low-carbon transportation. Emissions indices are presented for LAPI, CO, NOx, and SO2 in relation to CO2, with values ranging from significant reductions to increases, indicating varying impacts depending on the strategy.]The calculation results indicate that strategies 5, 6, and 7 effectively reduce emissions of air pollutants and CO2, exhibiting significant synergistic control effects. In particular, Strategy 5 emerges as the most effective approach for addressing pollution at the source of motor vehicle energy supply as it reduces various air pollutants and CO2 emissions, thereby demonstrating robust synergistic benefits. Conversely, strategies 6 and 7 focus on energy conservation and emission reductions through alterations in travel modes, contributing to similar synergistic outcomes. Although the remaining four strategies show varying degrees of emission reduction, they lack true synergistic control effects. These strategies primarily achieve reductions during vehicle operation; however, they may generate additional emissions during production and manufacturing stages, resulting in an overall increase in pollutants. This underscores the importance of prioritizing source emission reductions to achieve comprehensive and sustainable environmental benefits.
3.3.4 Comprehensive performance evaluation
The comprehensive performance evaluation of the emission reduction strategies was conducted based on the criteria outlined in Table 3, with the findings presented in Table 9.
TABLE 9 | Results of synergistic control performance evaluation under different control strategies.
[image: Table listing control strategies, their degree of synergy, emission reduction effects, and evaluation outcomes. Strategies include economic speed driving, traffic restrictions, vehicle retrofit, promoting new energy vehicles, fuel quality improvement, rail transit, and low-carbon transportation. Synergy ranges from non-synergy to strong synergy, with effects classified as bad, good, or medium, leading to either positive or negative outcomes. ICER values are compared to zero, indicating quadrant location and co-control cross-elasticity values.]Among the evaluated emission reduction strategies, strategies 5, 6, and 7 demonstrate effective reductions across various pollutants. In the cooperative control coordinate system, Strategy 2 outperforms Strategy 5, while Strategy 5 surpasses both strategies 6 and 7. Notably, only strategies 5, 6, and 7 exhibit positive cross-elasticity, indicating a beneficial cooperative control effect. Therefore, when considering all evaluation criteria comprehensively, Strategy 5 emerges as the most effective among the seven control strategies.
4 DISCUSSIONS
This paper quantitatively evaluates the collaborative emission reduction strategies in the transportation sector of Shenyang from the perspective of a full life cycle and reveals significant differences from traditional terminal governance studies.
	(1) This paper finds that Strategy 5 (improving fuel quality) is far more comprehensive and synergistic in emission reduction than other strategies. This result is in contrast to the findings of Huo et al. (2015): The latter is based on the terminal emission data of 10 Chinese cities, indicating that fuel quality improvement (country 5 standard) can only reduce CO2 emissions by approximately 12%, but through the whole life cycle accounting, this paper finds that Shenyang fuel quality improvement (country 5 to country 6) can increase CO2 emission reduction by 25% (Table 6), and SO2 reduction reaches 18.56 tons (Table 6), which is significantly higher than that predicted by the terminal model (Huo et al., 2011). The difference is due to the inclusion of emissions from the frontend link of logistics, thereby correcting the underestimation commonly found in traditional studies.
	(2) Strategy 4 (promoting new energy vehicles) is a non-collaborative strategy, mainly due to the current power structure of Shenyang (thermal power accounts for 50%) and the implied emissions from battery production. If the proportion of thermal power decreases to 20%, the ICER value of Strategy 4 can increase from −1.8 × 108 to 1.5 × 108, but its economic cost will increase by 23% (based on the local price elasticity estimate). This finding highlights the key impact of the regional power mix on policy effectiveness.
	(3) Strategy 2 (traffic restrictions) is a weak coordination strategy. The reason is that under the license plate restriction scenario, the annual mileage of taxis increases by 15% (Table 4), resulting in 27.01 tons of SO2 emissions from natural gas taxis. This result challenges the conclusions of Zhao and Feng (2024). Based on the case of Beijing, the latter believes that the license plate restriction policy is one of the best strategies for collaborative emission reduction, but it does not consider the hidden emissions of vehicle detours and alternative travel modes. This paper quantifies the local pollution transfer effect of the license plate restriction policy for the first time through the dynamic correction model of annual taxi mileage, which provides data support for its optimal design.
	(4) Strategies 6 (developing rail transit) and 7 (low-carbon transportation) are also strong synergistic strategies, but the comprehensive emission reduction effect is moderate. Although both strategies are inferior to Strategy 5 in terms of single-strategy implementation priority, the two strategies clearly exhibit good linkage. Designing policies is considered to ensure that policies 6 and 7 are implemented simultaneously. For example, we can learn from the experience of Japan and implement dynamic management of the urban expressway toll fee and parking fee of private cars according to the density of vehicles on the road to encourage urban residents to actively choose low-carbon travel or use rail transit and other travel modes during busy hours.

5 CONCLUSION
This paper addresses the evaluation and research of collaborative emission-reduction measures in urban transportation, correcting the tendency to focus solely on terminal emission-reduction effects. By adopting a “whole lifecycle” perspective, it measures the interplay of various emission reduction strategies and their synergistic effects across different scenarios. Comprehensive evaluations are conducted through the integration of characteristic indicators from the synergistic control coordinate system and cross-elasticity metrics. The findings offer a model for the implementation of collaborative management measures targeting greenhouse gases and air pollutants in specific contexts, providing theoretical support for governmental agencies in prioritizing measures and exploring the interlinkages between strategies.
However, due to space constraints, although this paper discusses the potential for linkages among different strategies, it does not accurately quantify the emission-reduction effects arising from these interconnections. This aspect will be addressed in future research. Furthermore, economic efficiency—specifically the cost per unit of pollution reduction associated with implementing these measures—must also be considered in the deployment of emission-reduction strategies. Future studies will incorporate metrics such as unit pollutant emission-reduction cost and marginal emission-reduction cost to evaluate the “environment-economic” rationality of these strategies, aiming to minimize the costs associated with achieving specific emission reductions and devise synergistic control pathways for various industries or regions.
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This study investigates the dissemination of major waste sorting policies and public feedback attitudes across 46 key Chinese cities using data from the Weibo social media platform. The research employs a Latent Dirichlet Allocation (LDA) topic model to identify and mine themes from comment texts, extracting multiple core discussion topics. The results show that although negative sentiments slightly outweighed positive sentiments in public comments, there was no significant difference in the focal points of attention between positive and negative sentiments. Negative sentiments primarily centered on policy specifics and implementation methods, with key concerns including details of policy execution and operational challenges. Cities such as Shanghai, Beijing, Nanjing, and Hangzhou exhibited higher volumes of policy-related discussions, indicating greater public engagement in these regions. Analysis of IP address distribution revealed pronounced regional concentration, particularly among residents in developed eastern coastal areas. Finally, the study proposes strategic recommendations for optimizing information dissemination on social media to enhance public willingness to participate in waste sorting initiatives.
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HIGHLIGHTS
The study covers the waste sorting policies in 46 key cities across China, with data collected through the Sina Weibo platform, providing representative public feedback.
Utilizing text mining techniques, including sentiment analysis and the LDA model, the study conducts an in-depth analysis of public comments, uncovering the public’s cognition and attitudes towards waste sorting policies.
The study identifies specific reasons for the public’s dissatisfaction with waste sorting policies, providing policymakers with precious insights to improve policy design, optimize promotional strategies, and enhance public participation.
The article highlights the regional concentration of waste sorting policy discussions, particularly the high level of resident engagement in the developed eastern coastal areas, offering a reference for policy dissemination.
1 INTRODUCTION
As the pace of global urbanization accelerates and the demand for environmental protection increases, the issue of waste management in China has become increasingly severe. Waste sorting has emerged as one of the crucial measures to alleviate the pressure of urban waste disposal (Zhang et al., 2010). However, despite the implementation of waste sorting policies by local governments across China in recent years, the actual outcomes have not been entirely satisfactory, with a persistently low rate of active participation among residents. Confronted with this challenge, effectively promoting public participation in waste sorting has become a focal point for policymakers and researchers. The rapid development of the internet and social media, particularly the widespread use of platforms such as Weibo, WeChat, and Douyin, has provided a new pathway to address this issue (Wu and Zhang, 2023). These platforms not only have the advantage of disseminating policy information but also facilitate public interaction, enhancing the awareness and action of waste sorting.
The policy of waste sorting originated from the environmental governance experience of developed countries. Since the mid-20th century, countries such as Europe and Japan have been the first to implement systematic waste sorting and recycling mechanisms, which have achieved significant results (Hara and Yabar, 2012). The successful experiences of these countries indicate that waste sorting can significantly reduce the environmental burden of waste disposal and effectively recycle resources, promoting the development of the green economy. However, the implementation of waste sorting largely depends on the cooperation and participation of the public (Yang et al., 2021). Therefore, how to enhance the public’s environmental awareness and actual participation rate has become the key to the success of the policy.
In China, the implementation of waste sorting policies came relatively late, with the government only officially launching a comprehensive waste sorting system in 2017. This plan was issued by the National Development and Reform Commission (NDRC) and the Ministry of Housing and Urban-Rural Development, requiring the 46 key cities to essentially establish a legal framework and infrastructure for waste sorting by 2020 (Table 1).
TABLE 1 | Forty-six key cities in China for waste sorting and their major policies.
[image: Table listing cities with their main waste sorting policies. The left columns include cities like Shanghai, Beijing, and Nanjing, paired with specific municipal waste management regulations. The right columns list other cities such as Tai’an, Ningbo, and Changchun, each associated with their respective waste sorting regulations or methods.]According to the plan of China’s Ministry of Housing and Urban-Rural Development, by 2025, the waste sorting coverage rate in all cities across the nation will reach 100%, encompassing the waste sorting and disposal systems in urban residential communities (Xinhua News Agency, 2023). These policies signify a significant step forward for China in waste sorting and solid waste management, aiming to enhance resource utilization rates through recycling and sorted disposal, and to reduce environmental impact. Despite the initiation of these policies, the implementation of waste sorting remains less than ideal due to reasons such as weak environmental awareness among residents and incomplete supporting facilities (Zhang D. et al., 2024). There exists substantial societal opposition to waste sorting policies, while formal resource recyclers and non-governmental organizations (NGOs) demonstrate limited operational capacity (Guo and Chen, 2022). Against this backdrop, researching how to leverage emerging technological means—particularly the internet and social media—to promote the implementation of waste sorting policies has become an important topic in current environmental governance studies (Chen et al., 2023).
The advancement of the internet, particularly the prevalence of social media, has significantly altered the modalities through which the public accesses information and engages in social affairs. Platforms such as Weibo, WeChat, and Douyin have introduced novel channels for the dissemination of policies. Utilizing these platforms, the government is capable of rapidly and extensively conveying policy-related information to the public and gaining insights into public feedback through interactive mechanisms. Furthermore, social media offers a venue for the public to articulate opinions and share experiences, thereby transcending waste sorting from a mere level of policy promotion to an ingrained behavioral norm in the daily lives of the populace (Xu et al., 2023). The integration of a “top-down” policy promotion model with a “bottom-up” public feedback mechanism has significantly enhanced the enforceability of policies and the enthusiasm of the public for participation.
In recent years, an increasing number of studies have demonstrated that the role of social media in the promotion of environmental policies cannot be overlooked. Environmental information disseminated through online networks significantly enhances public environmental awareness and policy acceptance. In the implementation of waste sorting policies, social media serves not only as a tool for information dissemination but also as a crucial bridge between the public and the government. Internet usage has a significant positive impact on the willingness of rural households to engage in waste sorting. After accounting for individual choice biases, this result remains robust, with mobile internet emerging as the primary channel for promoting waste sorting. Research indicates that internet usage influences residents’ willingness to sort household waste; residents who use the internet are more inclined to engage in waste sorting than those who do not. Compared to computer usage, the impact of mobile internet usage on the willingness to sort waste is even more pronounced (Wang et al., 2024). Discussions, interactions, and sharing behaviors on social media platforms have gradually turned waste sorting into a topic of widespread public concern.
Traditional policy evaluation and public opinion research often rely on methods such as surveys and interviews. While these methods can provide reference data, they often suffer from issues like small sample sizes and lagging information. In contrast, social media platforms offer a vast amount of data that is real-time and comes from a wide range of sources, encompassing users of different ages, professions, and regions. This makes the use of social media data for policy evaluation and public opinion research an important and valuable tool (Adams-Cohen, 2020). For instance, Weibo, as one of the primary social media platforms in China, boasts a substantial user base. The behaviors and interactions of users on this platform can reflect the public’s cognition and emotional changes regarding waste sorting policies (Liu and Zhou, 2011).
The application of text mining technologies has made the analysis of large-scale social media data feasible. By automating the analysis of waste sorting-related content on platforms such as Weibo, WeChat, and Douyin, researchers are able to uncover the genuine attitudes, emotional inclinations, and behavioral intentions of the public towards policies (Irfan et al., 2015). Specifically, through sentiment analysis, it is possible to identify public support and opposition sentiments towards waste sorting policies, as well as how these emotions evolve over time. This provides a deeper insight into the public’s concerns and doubts. Such information is of great significance for refining policy design, optimizing promotional strategies, and enhancing public participation.
2 LITERATURE REVIEW
Social media has emerged as a critical instrument for the dissemination of policies, particularly within the domain of environmental governance. Governmental entities should harness the potential of social media platforms such as Weibo to enhance the propagation of environmental policies, augment public engagement with policy issues, and intensify involvement in environmental management efforts. The content of policy dissemination ought to prioritize the welfare interests of the populace. Utilizing a public discourse system that is accessible and comprehensible is essential to reinforce the interaction between the public and policy content, and to motivate a diverse array of societal actors to participate in the dissemination of policies (Gong et al., 2022). Numerous studies investigating government social media use for crisis communication have predominantly focused on popular platforms such as Twitter and Facebook (Ahmed and Rasul, 2023). Text analysis, as an effective research method, enables a deep understanding of public sentiment and attitudes reflected in social media data. Various Deep Learning (DL) methods have developed rapidly, and they have proven to be successful in many fields such as audio, image, and natural language processing (Peng et al., 2022).
2.1 Study on the Public’s attitude towards waste sorting
Research on public attitudes toward waste sorting has gradually become a focal point in the field of environmental management. Utilizing social media platform data, Huang et al. analyzed public perceptions of waste sorting and found that while discussions predominantly exhibited positive sentiments, negative attitudes emerged regarding specific policy implementation challenges, such as ambiguous classification guidelines, time-consuming procedures, and inadequate regulatory oversight. Additionally, their study revealed divergent concerns across city types: key cities prioritized rural waste sorting fee structures, whereas developed cities focused more on residential environmental impacts (Huang et al., 2023). Through sentiment analysis, Sun et al. demonstrated that public dissatisfaction primarily stems from unclear sorting rules, inconveniences caused by mandatory use of specialized waste bags, and insufficient supporting infrastructure (Sun et al., 2023). The heightened public attention to environmental hazards of plastic pollution reflects rising environmental consciousness, yet practical participation remains constrained by infrastructural deficiencies. Zhang et al. further identified education level and income as critical determinants of waste sorting compliance, with highly educated groups showing stronger adherence to sorting protocols (Zhang Z. et al., 2024). Residents’ positive attitudes contribute to the successful implementation of waste sorting initiatives. Subjective norms and perceived behavioral control indirectly influence behavioral intentions and actual behaviors through the mediation of attitudes (Liu et al., 2023). Despite broad public acceptance and enthusiasm for waste sorting, persistent implementation barriers—including rule ambiguity, inadequate infrastructure, and accessibility limitations—require systematic optimization to enhance participation rates and satisfaction.
2.2 Research on the online dissemination of environmental policies
Studies on waste sorting policies have shown that social media enhances public engagement and feedback mechanisms, presenting an important opportunity for the modernization of China’s environmental governance capabilities. Social media provides a flexible channel for policy advocacy at all levels of government (Chenghao et al., 2020). At the same time, research has also indicated that the use of the internet can motivate individuals to sort household waste. The willingness of Chinese residents to engage in waste sorting is significantly influenced by their use of the internet via smartphones. The dissemination of waste sorting information through internet media, particularly smartphones, is of great importance (Ma and Zhu, 2021). For the environment issue, the social media agenda of parties is more predictive of the traditional media agenda than vice-versa. These findings underscore how closely different agendas are tied together, but also show that advocacy campaigns may play an important role in both constraining and enabling parties to push their specific agendas (Gilardi et al., 2022). These studies collectively demonstrate that social media effectively enhances public participation in and feedback on waste sorting policies. The use of the internet, particularly smartphones, has significantly increased residents’ willingness to engage in waste sorting, while the agenda-setting function of social media further advances the modernization of environmental governance.
2.3 Research on the interaction between policy and the public
In terms of public feedback, two-way communication and the public’s potential willingness to discuss waste sorting policies create possibilities for environmental construction. Within this context, the government and the public are no longer clearly defined opposing entities but rather a community that needs to fulfill the obligation of waste sorting and co-create a clean and tidy living environment (Li et al., 2023). In the matter of waste sorting, current government new media policy dissemination exhibits multiple trends of interaction. This includes action-based interaction, topic-based interaction, and discourse-based interaction on government new media platforms. The government deepens its interaction with the public at various stages of public policy proposal, formulation, announcement, implementation, and feedback, aiming to enhance understanding and expand participation (Zhemin and Fu, 2020). Since 2015, the term “classification” has begun to emerge in the semantic network. By 2016 and 2017, discussions about “garbage treatment” and “waste sorting” became more prominent than “incineration.” This shift originated from the anti-garbage incineration movement, where the government successfully shifted the focus to “waste sorting.” Official and mainstream media framed waste sorting as a solution to the pollution caused by incineration, and civil actors gradually embraced this perspective. A consensus was formed between the official and civil sectors that waste sorting is beneficial for reducing pollution emissions (Jia and Chenghao, 2020). Social media plays a significant role in shaping public opinion and influencing economic decision-making. Through social media platforms, individuals and groups interact, share information, and engage in discussions, thereby forming collective perspectives on diverse issues (Ausat, 2023). These studies collectively demonstrate that bidirectional interactions and sustained communication between the public and government have fostered a collaborative environmental governance community. This synergy promotes the effective crystallization of public opinion and co-governance of environmental agendas.
Although existing research has emphasized the role of social media in the dissemination of waste sorting policies, the specific mechanisms of impact on public attitudes and feedback require further exploration. Social media plays a significant role in enhancing the communication and feedback loop of waste sorting policies. Through textual analysis methods, it is possible to delve deeper into the public’s cognition and sentiment towards policies, thereby addressing the gaps in current research. By systematically analyzing the content of social media discussions, we can gain a better understanding of how the credibility of information and the effectiveness of communication channels influence public attitudes. Future research should continue to focus on public behavior in the social media environment, exploring how social media can be utilized to optimize policy dissemination and public engagement, thereby providing more effective support for the implementation of waste sorting policies. Future studies should further apply textual analysis techniques to investigate the complexity of these influencing factors, thereby enhancing the effectiveness of policy communication.
3 INNOVATION AND RESEARCH SIGNIFICANCE
Despite the research that has explored the application of the internet and social media in environmental policies, studies specifically focusing on waste sorting policies are still relatively scarce, particularly in relation to social media discussions, which await further supplementation. For instance, there is a lack of systematic analysis and empirical research in the existing literature on how to enhance public participation and optimize the dissemination effects of policies through social media. Consequently, this study targets the online dissemination of policies in 46 key Chinese cities with waste sorting initiatives. It involves the collection and analysis of dissemination data on Weibo, including posts, comments, reposts, and likes, to conduct an in-depth textual analysis.
3.1 Innovation of research

	(1) Innovation in Data Sources and Research Methods: This study breaks through the limitations of traditional questionnaires and interviews by using web crawling technology to collect a large amount of user comment data on Weibo and employs text mining techniques for analysis. This approach provides a more comprehensive and objective reflection of the public’s real attitudes and emotional tendencies towards waste sorting policies. The study uses the LDA topic model for thematic analysis of the text data, revealing hot topics of public concern, such as “garbage bins,” “fines,” and “kitchen waste,” offering policymakers a deeper understanding.
	(2) Innovation in Research Perspective: The study focuses on the public’s feedback attitudes towards policies. Through the analysis of public attitudes, it provides a basis for policymakers to improve policies. The study also reveals regional differences in public discussions, with higher participation in eastern coastal developed areas and lower participation in central and western regions, offering references for the formulation of more targeted local policies.
	(3) Implications for Policy Making: The study finds that the public’s negative emotions towards waste sorting policies mainly focus on the details of policy implementation and execution processes, such as considerations of time and convenience. This provides policymakers with directions for improvement, such as optimizing the timing and locations of waste sorting and enhancing the training of waste sorting personnel. Additionally, the lack of public knowledge about waste sorting is one of the reasons for negative emotions, suggesting that the government should conduct educational activities on waste sorting knowledge through a combination of online and offline methods.

3.2 Significance of research

(1) Methodological Contribution. By applying big data and text mining techniques to the field of policy research, this study provides new perspectives and methodologies, promoting the scientific and modernization of policy research.
(2) Guidance for Environmental Protection Practice. The research results offer scientific evidence for government departments to optimize the dissemination strategies of waste sorting policies, helping to increase public acceptance and participation in policy implementation and promoting the effective implementation of waste sorting policies.
	(3) The study reveals the complexity of the public’s attitudes towards waste sorting policies. Although the public generally supports environmental causes, there are concerns and dissatisfaction with the specific content and execution methods of the policies. This ambivalence provides important insights for policymakers.

The structure of the remaining parts of this paper is as follows. First, a literature review of social media and waste sorting policies is conducted, followed by a detailed description of data collection, processing methods, and text mining. Next, the paper succinctly introduces the public’s focus points, the results of sentiment analysis, and the discussion and analysis of waste sorting policies. Finally, conclusions are drawn, and suggestions for the formulation or improvement of waste sorting policies are proposed.
4 RESEARCH METHODOLOGY
4.1 Data source
The data for this study is sourced from the Weibo social media platform. In the era of big data, web crawling information retrieval technology can intelligently and efficiently collect information, providing assistance for scientific research (Jian and Qin, 2022). The web crawler program is capable of accessing thousands of pages per second, and it includes a high-performance failure manager that can operate independently of the platform or in a platform-dependent manner. Additionally, it can adapt to a variety of configurations without the need for additional hardware. This flexibility and efficiency make the crawler suitable for large-scale data collection tasks in diverse environments (Desai et al., 2017). Through web crawling technology, public interaction and feedback information regarding urban waste sorting policies on Chinese internet platforms can be collected. Web crawlers are generally divided into four types based on differences in target objects, system architecture, and implementation technology: general-purpose web crawlers, focused web crawlers, incremental web crawlers, and deep web crawlers. This paper mainly employs focused web crawler technology to collect the required information. Focused web crawler technology is a type of web crawler designed for specific subject demands, and it filters content during the crawling process, attempting to only collect relevant information from web pages (Akbari Torkestani, 2012). Hence, this paper employs the focused web crawling method. During data crawling, comments were collected based on Weibo posts that explicitly mentioned policy/regulation names (Table 1). Data were collected from Weibo comments from June 2019 to October 2024, yielding a total of 56,841 comments. The implementation principle and workflow are as follows.
To search for the target theme focusing on the main policies of 46 key cities in China for waste sorting, a web crawler program was designed, including functions such as topic identification, content filtering, and link tracking. The program collects the content of each blog post, comments, likes, forwards, as well as information of registered and verified users (such as username, region), etc. The web crawler is written in Python 3.9 programming language to implement the functions of a focused web crawler, collect information, and export it to an Excel file.
The study employs the DrissionPage module as an automated web page interaction tool. The process involves the following steps:
4.1.1 Keyword search and pagination
A loop traversal method is used to search for each keyword in sequence.
The browser’s built-in functions are utilized to perform pagination, ensuring comprehensive coverage of relevant content.
4.1.2 Article link extraction and storage
During the traversal process, the article links from each page of search results are extracted and stored in a file named detail_href for subsequent access.
4.1.3 Article link reading
The stored article links are read from the detail_href file to prepare for individual article content access.
4.1.4 Article access
The browser accesses each article link read from the file to obtain the required information.
4.1.5 Article information scraping and storage
While accessing the articles in the browser, key information such as article content, like counts, and comment numbers are scraped and stored in a detail_json file for data analysis.
4.1.6 Article information reading
The stored article information is read from the detail_json file to provide data support for subsequent comment scraping.
4.1.7 Revisiting articles
Based on the read article information, the browser revisits the article pages one by one.
4.1.8 Comment acquisition
Browser operations are used to scroll down the page and click the “More” button to trigger the loading of all comments, thus completing the capture of comment data.
This systematic approach ensures that the web crawler efficiently collects and stores the necessary data for analysis, focusing on the interaction and feedback related to urban waste sorting policies.
4.2 Text mining analysis
Social media provides a new data source for investigating community opinions on a specific subject or event (Sun et al., 2020). The combination of text mining and web crawling technologies for the collection and processing of unstructured data is more objective and efficient than the traditional methods used in social science research (Wang et al., 2019). Therefore, this paper employs sentiment analysis to dissect the public’s attitudes towards waste sorting. Unsupervised sentiment analysis primarily combines sentiment dictionaries and semantic rules to determine sentiment polarity. This method generally operates at the sentence level and is suitable for fine-grained short texts. It offers a short analysis time and generally produces accurate results. Since Weibo posts are short texts, this paper opts for unsupervised sentiment analysis (Huang et al., 2015). This investigation utilizes the SnowNLP module to conduct sentiment analysis on each comment. SnowNLP has been tailored for Chinese language corpora, particularly excelling in the realm of sentiment analysis, where it demonstrates a superior understanding of Chinese semantics and emotional expression. SnowNLP incorporates a sentiment analysis model based on the Naive Bayes classifier, which has been trained on a substantial dataset of Chinese sentiment data, including both positive and negative reviews. This model is immediately applicable, and sentiment scores can be rapidly obtained either by using the model as-is or by training with one’s own annotated data. The study employs a stop words list to filter out semantically insignificant words. The jieba toolkit is used for the segmentation of each comment into words. The study iterates through the segmentation outcomes, examining each word against the stop words list and excluding it if present, while also tallying the occurrence of each word and sorting them by frequency in descending order. Through this process, the sentiment analysis and word frequency statistical analysis of the comments are completed. After a thorough text preprocessing of the comment content, a total of 35,021 pieces of comment data were consolidated from the 56,841 comments retrieved, with sentiment scores ranging from 0 to 1, where a score closer to one indicates a more positive sentiment.
4.3 Latent Dirichlet Allocation Model
Latent Dirichlet Allocation Model employs unsupervised learning to generate “document-topic” and “topic-word” probability distributions, thereby identifying latent thematic information within large collections of documents (Tang and Xiang, 2014). LDA not only possesses excellent data dimensionality reduction capabilities but also has good model scalability, and it has been widely applied in the field of natural language processing (Yang et al., 2020). The application of LDA in text sentiment classification was thoroughly evaluated, and it was found to perform well in alleviating the issues of high-dimensional feature space and feature sparsity, significantly improving the classification results (Onan et al., 2016).
This paper employs the Python programming language and the LDA algorithm to conduct topic modeling on textual data, and visualizes the analysis results for intuitive presentation. Table 2 displays the probability distribution of the main topic keywords, with the public’s most concerns focusing on “garbage bins” and “fines”. Some topics (such as Topic_3 and Topic_4) concentrate on the practices of specific cities and communities, while other topics (such as Topic_5 and Topic_6) are more focused on the enhancement of environmental awareness. The study also conducts a detailed of the frequency of topic words (Figure 1), presenting the distribution of different topics within the overall data, which provides strong support for further understanding and mining of the textual content. This objectively reflects the naturally emerging focus of public discussions. Such quantitative visualization of keyword weights provides data-driven evidence of public cognition for formulating subsequent policy recommendations.
TABLE 2 | Keywords of topics.
[image: A table displays topics related to waste management and environmental themes. Each column lists words associated with six topics: community trash can, fine, kitchen waste, demonstration city, takeaway, and environmental protection. Words in each column have percentages indicating their significance or frequency within the topic.][image: Pie chart titled "Subject attribution (count)" with six segments: blue (community trash can topic, 2,877), red (kitchen waste topic, 6,534), orange (takeaway topic, 5,031), green (fine topic, 4,596), purple (environmental protection topic, 3,568), and teal (demonstration city topic, 3,068).]FIGURE 1 | Frequency statistics of key words.
5 RESULTS AND DISCUSSION
This study meticulously collected and analyzed the dissemination of key policies on waste sorting from 46 pilot cities in China on the Weibo platform. The research focused on the comment sections of popular Weibo posts, which were identified based on their high ranking resulting from interactive metrics such as likes, views, comments, and retweets, indicative of significant public engagement and open discourse. Utilizing Weibo’s “Settings” feature, we precisely pinpointed these trending posts.
5.1 Sentiment orientation analysis
After conducting a sentiment analysis on the comment data gathered from Weibo, this study employed the NLPIR-Parser platform for in-depth exploration. Following meticulous text preprocessing and the removal of trivial vocabulary, the results revealed (Table 3) that there were a total of 15,133 comments expressing positive sentiments, accounting for approximately 43.21% of the total comments, while 17,074 comments expressed negative sentiments, making up about 48.75% of the total. Negative comments exceeded positive comments by approximately 5.54 percentage points. The remaining approximately 8.31% consists of comments with undetermined or unrecognized sentiments. These comments primarily consist of ambiguous statements, emoji-based interactions, or extremely brief responses.
TABLE 3 | Distribution of emotional tendency of public comments.
[image: Table displaying sentiment analysis results. Negative sentiment: 17,074 occurrences, 48.75%, example comment: "Garbage sorting is too strict." Positive sentiment: 15,133 occurrences, 43.21%, example comment: "I classify them meticulously every time."]5.2 Analysis of emotions and policy support
Upon conducting an in-depth analysis of the data, it was found that there is no significant difference in the focus of positive and negative emotions. Examining the structure of the grouped data, one can observe the counts of positive (pos) and negative (neg) emotions associated with different thematic categories. Utilizing these data, an unstacked pivot table was created to compare the distribution of positive and negative emotions across various themes. Figure 2 illustrates the standardized distribution results. From these data, it can be observed that the distribution of positive and negative emotions across different thematic categories is relatively uniform, with no pronounced discrepancies.
[image: Stacked bar chart showing the normalized distribution of positive and negative emotions by subject category. Categories on the x-axis include Other, Fitness, Shopping, Community Events, Dinner/Bar/Cafe, Beauty/Activity, and Free. Positive emotions (blue) range from 47.5% to 62.5%, while negative emotions (orange) range from 37.5% to 52.5%.]FIGURE 2 | Distribution of key terms in data pertaining to positive and negative emotions.
This study further examines the content of blog posts within the dataset that pertain to positive and negative emotions, seeking the usage of key terms, extracting these keywords, and comparing their frequency of occurrence in both positive and negative emotional contexts. By comparing the key terms associated with positive and negative emotions, it can be observed that there is a certain degree of overlap in the usage of keywords between the two (Table 4). These keywords appear frequently in both emotional contexts, indicating common concerns among the public with differing attitudes. To address the issue of overlapping positive and negative sentiment keywords in the sentiment analysis results, this study further conducted co-occurrence mining analysis on reduplicated words (e.g., “hahaha,” “haha”) found in the comments. Specifically, advanced co-occurring vocabulary following these reduplicated words was extracted, and the emotional relationships and contextual meanings of these terms were analyzed to explore potential sarcastic usage in both sentiment categories. The findings revealed that co-occurring words associated with the high-frequency reduplicated “ha” exhibited distinct emotional correlations. The contextual usage of reduplicated words demonstrated significant diversity, potentially expressing positive encouragement, public controversy, or neutral teasing sentiments, depending on their subsequent co-occurring terms and expressive contexts (Figure 3). The likely reason for this phenomenon is that the public holds a supportive stance towards environmental protection causes, yet there are some disagreements with the content and implementation of the policies (Table 5).
TABLE 4 | The ten most common keywords in positive and negative emotions and their frequency of occurrence.
[image: Table comparing positive and negative sentiment keywords. Positive keywords include "Forward weibo" (479 times), "Waste classification" (276 times), and "Support" (187 times). Negative keywords include "Forward weibo" (508 times), "Waste classification" (244 times), and "Support" (180 times). Similar phrases appear in both columns with varying frequencies.][image: Scatterplot showing the emotional polarity of words co-occurring with "Haha." The x-axis indicates emotional polarity from negative to positive, and the y-axis shows frequency. Words like "Shopping" and "Environment" appear positive, while "Shelters" and "Demo City" are negative. A color gradient from red to blue represents emotional polarity intensity.]FIGURE 3 | Distribution of Co-occurring terms for reduplicated words across sentiment categories.
TABLE 5 | Linguistic samples of attitudinal expressions in positive and negative emotions.
[image: A table displaying various comments on garbage classification organized by emotional type. There are two main categories: positive and negative emotions. The positive emotion section includes supportive comments encouraging participation and environmental responsibility. The negative emotion section features comments expressing difficulty in implementation and skepticism about policy effectiveness. Each section contains five comment samples, reflecting different perspectives and emotions about garbage classification.]Through the analysis of keywords and context in negative sentiment blog posts, we can summarize the reasons for the public’s negative attitude towards garbage classification. We identified and extracted frequently occurring keywords from negative sentiment blog posts. Subsequently, we calculated the frequency of these keywords in negative sentiment blog posts to measure the impact of various reasons on public sentiment. The following are the keywords related to each reason and their frequency of occurrence in negative sentiment blog posts (Figure 4), focusing on seven aspects:
[image: Bar chart titled "Frequency of occurrence in comments," displaying seven categories. Categories and frequencies: "Change in personal habits" (963), "Lack of knowledge of products" (785), "Time and convenience issues" (560), "Different views on policy" (406), "Implementation details" (352), "Doubts about effectiveness" (349), "Dissatisfaction with noncompliance" (321).]FIGURE 4 | Reasons for Public’s negative attitudes and their frequencies.
Implementation Details and Execution Issues: Many negative comments focus on the implementation details and execution issues of the garbage classification policy. Some blog posts mention problems such as inappropriate placement of garbage sorting points and littering of garbage bags.
Time and Convenience Issues: Some blog posts mention that garbage classification restricts the time for waste disposal, which inconveniences the public who need to dispose of garbage outside of peak commuting hours on weekdays.
Divergent Views on the Policy: There is a divergence in the public’s views on the garbage classification policy. Some blog posts express skepticism about the garbage classification policy, arguing that there is no need to completely emulate the timed waste disposal practices of foreign countries.
Discontent with Non-compliance: The public expresses discontent with behaviors that do not comply with garbage classification regulations. For example, some blog posts mention neighbors or upstairs tenants not sorting or improperly discarding garbage bags, which may exacerbate public dissatisfaction.
Lack of Knowledge on Garbage Classification: Some blog posts refer to confusion over garbage classification standards, reflecting the public’s lack of knowledge about garbage classification and the need for more guidance and publicity.
Change in Personal Habits: Garbage classification requires the public to change long-standing living habits, which may take some time and an adaptation process, leading to a negative attitude from some members of the public.
Skepticism about Policy Effectiveness: Some blog posts express skepticism about the effectiveness of the garbage classification policy, questioning whether it can truly solve environmental problems and suggesting that its impact remains to be seen.
5.3 Analysis of attention across different cities
In the discussions regarding garbage classification policies, different cities have shown varying levels of participation enthusiasm (Figure 5). First and foremost, Shanghai tops the list with 12,007 comments, demonstrating the residents’ high level of attention to garbage classification policies and an active discussion atmosphere. This may be related to the strict implementation of Shanghai’s Domestic Waste Management Regulations and its close connection to residents’ daily lives. Beijing follows closely with 10,517 comments, also reflecting a strong interest in the topic of garbage classification among its residents. Nanjing, Chengdu, and Hangzhou are next in line with 2,525, 2,053, and 970 comments, respectively. The participation of residents in these cities in the discussion of garbage classification policies is relatively lower, but still shows a certain level of attention.
[image: Bar chart titled "Number of Post Comments by City," showing Shanghai with the highest number of comments (over 12,000), followed by Beijing, Guangzhou, Shenzhen, and others with significantly fewer comments, decreasing gradually.]FIGURE 5 | Hot discussion on policies in 46 key cities of waste sorting.
According to statistical analysis of the data, the distribution of IP addresses also shows clear regional concentration (Figures 6, 7). Specifically, IP addresses from Shanghai appear most frequently, followed by Beijing, Jiangsu, and Zhejiang. These data reflect the significant advantage of the eastern developed regions in internet usage and also indicate that internet activities are still widely distributed across the country. In terms of the heat of discussion on garbage classification policies, the participation of cities in central and western China is relatively low. Overall, there is considerable room for improvement in the discussion of garbage classification policies in central and western cities, which also suggests that policymakers and environmental promoters need to increase their efforts in these areas to encourage nationwide participation in garbage classification.
[image: Pie chart showing the number of occurrences in various regions. Largest segment is Jiangsu with 7,004 occurrences, followed by Fujian with 6,723. Other notable regions include Zhejiang with 5,253 and Hubei with 3,502.]FIGURE 6 | Frequency statistics of IPs in various provinces and municipalities in China.
[image: Map of China highlighting population density by region, with higher densities in eastern areas. Numbers indicate population per square kilometer, increasing from light to dark shades of red. An inset map shows China's location in Asia.]FIGURE 7 | Distribution of 5.IP frequency on the map.
6 CONCLUSIONS AND RECOMMENDATIONS
The study on the internet dissemination effect of waste sorting policies holds significant importance. This research conducted an in-depth analysis of the online dissemination of major waste sorting policies in 46 key cities in China. Specifically, we collected public comment data on household waste sorting policies through the platform of Sina Weibo and utilized text mining techniques to explore residents’ attitudes towards these policies. The main conclusions of the study are summarized as follows: (1) Negative public sentiment is prominent in policy comments, indicating the presence of factors leading to public dissatisfaction in the dissemination and implementation of waste sorting policies. (2) Although there is no significant difference between positive and negative sentiments in terms of focus, it is evident that the public generally supports environmental protection initiatives. Negative emotions are directed towards specific content and implementation methods of the policies, with some dissenting opinions expressed by the public. (3) The main reasons for public negative sentiment can be attributed to several aspects: firstly, issues with policy implementation details and the execution process, such as considerations of time and convenience; secondly, differing views on policy content; thirdly, dissatisfaction with non-compliance behaviors; additionally, the lack of waste sorting knowledge and the difficulty of changing personal habits are also significant factors contributing to negative sentiment. (4) In the discussions on waste sorting policies, cities like Shanghai, Beijing, Nanjing, Chengdu, and Hangzhou have a higher number of comments, reflecting their active participation in policy discussions. Moreover, the distribution of IP addresses shows a clear regional concentration, particularly in the eastern coastal developed areas, indicating a higher level of resident engagement and a more fervent focus on waste sorting policies in these regions.
This study, through textual analysis of waste sorting policy dissemination across 46 key Chinese cities, reveals that while most citizens conceptually support waste sorting, implementation deficiencies—particularly insufficient policy refinement—undermine behavioral compliance. To bridge the “concept-practice” gap, we propose human-centric implementation pathways across three dimensions: institutional design, communication strategies, and educational paradigms. (1) Embed Flexible Governance and Dynamic Adjustment Mechanisms in Policy Design. Maintain unified classification standards while establishing adaptive implementation frameworks. Integrate public deliberation into policy iteration cycles through a “proposal-hearing-feedback” workflow for regulatory revisions. (2) Develop Stratified Communication Narratives and Precision Targeting Systems. Move beyond unidirectional policy advocacy. For younger demographics, employ short videos depicting daily-life scenarios; for older residents, enhance operational clarity via community bulletin boards using “sorting flowcharts + common mistake case studies”. (3) Cultivate Civic Participation Networks. Implement school-based sorting practicums to facilitate youth-led family education. Establish intergenerational learning communities by mobilizing senior sorting experts for peer mentoring within neighborhoods. (4) Promote Regional Coordination through Gradual Scaling and Knowledge Transfer. In eastern metropolises like Shanghai, advance smart infrastructure integration (e.g., the “Green Account” point system). For central/western cities, prioritize baseline infrastructure while adopting eastern management models via city-pairing mechanisms, avoiding resource misallocation from technological overreach.
This study contributes to both the academic and practical realms. Academically, the research provides a new perspective and methodology for the policy research field by utilizing big data and text mining techniques. Practically, the findings offer a scientific basis for government departments to optimize the dissemination strategies of waste sorting policies, which can help increase public acceptance and participation, and promote the effective implementation of these policies. Furthermore, the study reveals regional differences in public discussions, providing a reference for the development of more targeted local policies, and achieving an effective integration of academic research with social practice.
7 METHODOLOGICAL LIMITATIONS
The study also has its limitations. Firstly, data collection was mainly confined to the Sina Weibo platform, which may not have fully covered public discussions on other social media or online forums. Secondly, the research did not consider the impact of cultural and economic development level differences between cities on the dissemination effect of waste sorting policies. Future research is advised to overcome these limitations.
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China’s central government introduced the low-carbon agricultural pilot (LCAP) policy to curb carbon emissions and foster sustainable growth. While most research has centered on macro-level impacts (provinces and cities), this study uniquely examines the LCAP policy’s influence on agricultural companies’ environmental expenditures and farmers’ net income. Given the LCAP’s weak-constraining nature, its effectiveness at the company and farmer level remains intriguing. We apply the Propensity Score Matching–Difference in Differences (PSM-DID) method, which excels in mitigating sample selection bias, focusing on the 2011–2020 LCAP phase involving 34 listed companies in China’s agriculture and food sectors. Further, we analyzed data from 410 rice farmers in Hubei, Zhejiang, and Shanghai, assessing the LCAP’s effects on their income. Results reveal that companies in LCAP cities decrease their environmental spending by 0.91 points (1% significance). On the farming front, non-participation leads to a potential 28-thousand-yuan income reduction. Organic fertilizers, compost, and recycling cultivation waste prove impactful, promoting income and ecological sustainability. However, the effectiveness of high-cost, long-payback energy-saving machinery subsidies appears limited under current implementation conditions. These findings suggest a potential misalignment between policy design and implementation outcomes, highlighting the challenges associated with non-mandatory environmental policies such as the LCAP in achieving their intended objectives.
Keywords: low-carbon agricultural pilot policy, environmental expenditures, farmers’ net income, propensity score matching -difference in differences, China’s agriculture and food industries, policy-implementation gap

1 INTRODUCTION AND LITERATURE REVIEW
The increasing importance of addressing GHG emissions has become more evident in light of changing climate patterns. Recent data indicates that in 2015, the global food system contributed approximately 18 Gt CO2-equivalent, representing 34% of total greenhouse gas emissions (Caliendo and Kopeinig, 2008). In the Chinese context, achieving a balance between advancing eco-friendly agricultural practices and addressing farmers’ economic considerations presents a significant challenge. The transition towards sustainable agriculture in China has been gradual, influenced by the substantial costs associated with implementing green farming methods. Research suggests that financial limitations, stemming from variable income streams and restricted capital access, present substantial barriers to the adoption of environmentally sustainable practices among farmers in developing nations (Giné and Yang, 2009; Karlan et al., 2014).
China’s agricultural development over recent decades has played a pivotal role in meeting the food requirements of its growing population. However, this agricultural expansion has been accompanied by notable environmental consequences, particularly in terms of GHG emissions. Primary contributors to this environmental impact include rice cultivation practices, livestock production systems, and the application of synthetic fertilizers (Liu et al., 2013; Yan et al., 2005; Huang et al., 2012). Specific areas of concern include methane emissions from rice paddies and the environmental implications of the expanding livestock industry.
The development of an integrated approach to mitigate GHG emissions across agricultural, forestry, and fisheries sectors has been identified as essential, as illustrated in Figure 1 (Ministry of Ecology and Environment and The People’s Republic of China, 2022). In response to these challenges, the Chinese government implemented the Low-Carbon Agricultural Policy (LCAP) in 2015. While policy formulation occurs at the national level, the execution and implementation primarily rest with local government entities. The Ministry of Agriculture’s focus on energy efficiency and emission reduction initiatives highlights the significance of adopting low-carbon agricultural technologies.
[image: Donut charts illustrating emissions from agriculture, forestry, and fisheries as eleven percent of total emissions in 2016. Breakdown includes CO2 at 33.2 percent, consumption of food at 19.7 percent, N2O at 19.5 percent, digestive fermentation at 28 percent, rice cultivation at 10 percent, and manure management at 6.5 percent.]FIGURE 1 | GHG emissions from China’s agriculture, forestry, and fisheries sectors.
Contemporary sustainable farming practices, including organic waste management, agricultural byproduct utilization, and advanced irrigation technologies, are increasingly being adopted (Liang et al., 2022). However, the effectiveness of these national policies at the local level may be influenced by fiscal decentralization mechanisms, potentially affecting the implementation outcomes of the LCAP initiative (Zhang et al., 2011). Additionally, the shift towards sustainable agricultural methods may result in increased production expenses and labor requirements. Research indicates that without adequate policy support mechanisms, maintaining stable income growth for agricultural producers may present challenges.
The adoption of sustainable farming practices faces several challenges, primarily related to increased labor demands and associated costs. Policy interventions play a crucial role in addressing these barriers. The Ministry of Agriculture (MOA) has implemented various initiatives to support the adoption of low-carbon agricultural techniques, including financial incentives and skill development programs. Initially launched in Zhejiang Province in 2015, these initiatives were subsequently extended to other regions by 2020, as illustrated in Figure 2.
[image: Flowchart illustrating the timeline and impact of low-carbon agricultural policies. In 2016, policies started in Zhejiang Province. By 2020, these expanded to the Yangtze River basin, promoting practices like low-emission equipment use, agricultural waste recycling, irrigation improvements, and organic fertilization. This led to reduced emissions of CO2, N2O, and CH4.]FIGURE 2 | Policies related to low-carbon agriculture production.
Research related to farming GHG emissions and associated fiscal policies can be categorized into:
Agricultural GHG Emissions: GHG emissions in China’s agricultural sector primarily arise from rice cultivation, livestock activities, and synthetic fertilizer use (Liu et al., 2013; Yan et al., 2005; Huang et al., 2022). Following the introduction of the LCAP policy, there has been an increased focus on low-carbon agricultural practices.
Environmental Expenditure by Agricultural Companies: Existing research predominantly examines the LCAP policy’s macro effects, with limited exploration of its micro-level impact, particularly its influence on the environmental expenditure of agricultural firms (Du et al., 2023; Li C. et al., 2023; Su et al., 2023).
Impact of Subsidies: Subsidies, as a key fiscal tool, significantly influence the financial behaviors of agricultural firms. These financial supports can reduce the costs associated with sustainable practices, but they may also lead to unintended distortions in investments, potentially resulting in increased pollution (Wang et al., 2020). Studies show that farmers with access to relevant information and subsidies are more likely to adopt low-carbon farming practices. These practices can enhance crop value and alter the agricultural structure, thereby influencing farmers’ production behaviors (Clarke et al., 2012; Breustedt and Glauben, 2007; Duan and Xu, 2022).
Most studies on the LCAP policy adopt a macro perspective, focusing on carbon reduction, efficiency, and productivity (Du et al., 2023; Su et al., 2023; Li L. et al., 2023). However, micro-level research, particularly on the environmental expenses of agricultural companies and the direct effects of these policies on farmers’ incomes, remains limited.
This study aims to address these gaps by utilizing data from Chinese publicly traded agricultural firms between 2016 and 2022. The primary objective is to evaluate the LCAP policy’s impact on environmental expenses using the PSM-DID method. Additionally, data from 410 valid survey responses will be used to assess the policy’s influence on household income in the Yangtze River Basin.
2 BACKGROUND
2.1 Policy background
Over the past four decades since China’s reform and opening up, its agricultural sector has undergone significant growth, highlighting the ongoing importance of agricultural development. However, this growth has led to increased energy consumption and a corresponding rise in GHG emissions. At the same time, the environmental consequences have been substantial, presenting challenges such as land pollution, soil degradation, and the effects of chemical fertilizer use (Shi et al., 2022).
The Middle and Lower Reaches of the Yangtze River Basin, encompassing provinces such as Hubei, Hunan, Zhejiang, and Jiangsu, constitute a major grain-producing region, playing a critical role in China’s food security. This region is also the largest source of the country’s agricultural GHG emissions. Environmental issues, including intensive use of agricultural resources, declining soil quality, and water pollution, have become increasingly significant in this area, highlighting the need for targeted mitigation efforts (Yang et al., 2020).
In response, the Ministry of Agriculture, in 2013, introduced the blueprint of an agricultural GHG reduction strategy, subsequently designating Zhejiang as the first low-carbon agriculture pilot province in 2015. This initiative expanded post-2020 to cover the entire basin. Zhejiang, as the initial pilot province, implemented measures such as reducing chemical fertilizer use, improving the efficiency of chemical inputs, promoting low-emission farming machinery, and optimizing livestock and poultry waste management. These measures were designed to reduce agricultural GHG emissions and promote a low-carbon, sustainable agricultural model.
2.2 Institutional background
Post-1978, marking the beginning of China’s economic liberalization and reform period, there has been a significant transfer of decision-making powers between the central and local governments (Tang et al., 2018). The key fiscal reform, known as the tax-sharing system, was introduced in 1993, defining three central elements: the separation of administrative and financial responsibilities, the division of revenue streams, and the creation of a fiscal transfer payment mechanism between the two levels of government. This reform provided local governments with increased autonomy in economic governance, enabling them to plan urban development, manage local public services, and develop policies to support regional business sectors.
Nevertheless, these powers are counterbalanced by increased financial accountability. With the central government receiving the majority of tax revenue, local governments consistently face fiscal constraints, requiring a focus on economic growth to meet local expenditure needs—a challenge that is often difficult to address (Tang et al., 2018). Within such a fiscal context, local authorities may demonstrate limited enthusiasm for the implementation of environmental regulations, potentially affecting the effectiveness of such policies at the local level.
2.3 LCAP policy and its knowledge gap
Low-carbon agricultural policies have become significant in guiding sustainable economic development in developed nations. The growing academic interest in LCAP policy primarily focuses on its effectiveness (Ganda, 2023; Laborde et al., 2021; Mittenzwei et al., 2017). While carbon footprint reduction remains a key indicator of policy success, definitive conclusions have yet to be reached. Notably, the majority of research is concentrated on developed countries, with limited attention given to developing nations. Additionally, the difficulty of accurately measuring carbon emissions, due to methodological limitations, has led to a shift from macroscopic to microscopic analytical paradigms.
Macro-level investigations primarily focus on the procedural and outcome dynamics of LCAP across different regions (Liang et al., 2021; Zhang et al., 2023). In contrast, micro-level studies, particularly empirical analyses, remain relatively limited. Macro perspectives may not fully capture the differentiated impacts on smaller entities, often providing a generalized overview. As companies and farmers constitute the foundation of the agricultural sector, it is essential to examine the LCAP’s effects on agribusiness operations and farmer income. An important aspect of micro-level analysis involves resident behaviour and lifestyle patterns. For example, factors influencing urban bicycle usage in Baoding were assessed (Li et al., 2017), emphasizing the role of variables such as gender, age, income, transportation accessibility, and awareness of policies like LCCP (Low-carbon City Policy).
LCCP represents a component of China’s broader strategy to reduce emissions within industrial sectors and urban areas. However, some studies suggest potential challenges associated with the policy’s implementation. Scholars (Cheng et al., 2019) analyzed the initial phase of LCCP at the provincial level, identifying gaps in support from other policy frameworks and institutional mechanisms. Additionally, a misalignment between environmental policy design and its execution has been noted (Lo, 2014; Ran, 2013; Chen et al., 2021). Factors contributing to this issue include limited involvement from local governments and potential coordination between these entities and corporate enterprises.
The implementation of policy, particularly at the grassroots level, depends significantly on local governments, whose priorities can influence the policy’s effectiveness. Lo (Lo, 2014) highlights the case of low-carbon urban innovations in Changchun, where implementation was less effective, primarily due to local governments prioritizing economic growth over environmental policy compliance. At the same time, the alignment of interests between local authorities and industrial firms poses a challenge to the enforcement of environmental regulations.
Liang and Gao (Liang and Gao, 2014) provide empirical evidence linking the tenure of local officials with the robustness of legal frameworks, suggesting that longer leadership tenures may foster closer relationships between government officials and polluting enterprises, potentially reducing regulatory oversight. In summary, the limited achievement of LCCP’s goals can be attributed to China’s unique institutional context and the prevailing focus on local economic development.
Furthermore, it is important to note that similar initiatives, such as the LCCP, have been associated with unintended outcomes in multiple studies. Therefore, investigating the effects of the LCAP, as a policy similar to the LCCP, on the financial performance of agricultural firms and farmers’ income is a key objective of this research. Our analysis highlights a gap in the literature: the lack of studies examining the LCAP’s impact on agricultural firms’ environmental expenditures and farmers’ net income. This paper aims to address this gap by providing empirical analyses that could contribute to the LCAP discourse and clarify its effects at the grassroots level—both for companies and farmers. Given the LCAP’s nature as a weakly enforced central directive, its effectiveness at these micro-levels merits further investigation.
2.4 Theoretical mechanism and research hypotheses
2.4.1 Multi-level governance and enforcement
From a multi-level governance perspective, central government policy directives are delegated to local authorities with varying degrees of financial autonomy and administrative capacity (Tang et al., 2018; Lo, 2014). Although the LCAP seeks to reduce agricultural GHG emissions via techniques such as chemical input reduction or recycling, it is non-mandatory in nature, meaning its success largely depends on local enforcement enthusiasm. If a local government prioritizes economic growth or lacks adequate fiscal resources, environmental programs may receive lower enforcement or be implemented superficially (Lo, 2014; Ran, 2013). This governance dynamic implies that, under a weak enforcement context, policy targets may be attained only formally—on paper—while actual environmental investments at the firm level remain modest.
2.4.2 Corporate environmental expenditures under weak constraints
For agribusinesses, engaging in environmentally friendly processes often entails upfront costs (e.g., purchasing low-carbon machinery or investing in new waste management systems). In a setting where LCAP enforcement is lenient, firms may opt to reduce or strategically reallocate their environmental budgets to maintain short-term competitiveness. By contrast, in jurisdictions that rigorously promote low-carbon farming (e.g., through stricter oversight, aligned incentives, or penalty mechanisms), firms might be compelled or encouraged to sustain or even increase their environmental spending. The nature of local government support thus becomes a deciding factor in how agribusinesses balance the tension between short-term cost savings and long-term environmental responsibilities (Shi et al., 2022; Yang et al., 2020; Cheng et al., 2019).
2.4.3 Farmer household participation and income
At the micro level, households’ willingness to embrace low-carbon practices (e.g., composting, waste recycling, or reduced chemical fertilizer usage) depends on financial feasibility, awareness, and policy-induced incentives (Ganda, 2023; Laborde et al., 2021; Mittenzwei et al., 2017). When local authorities effectively channel LCAP subsidies—particularly for organic fertilization or new technology adoption—farmers stand to reduce operating costs and potentially increase net income. However, if such incentives are scarce, or if the administrative process is burdensome, farmers may be reluctant to deviate from traditional practices. This aligns with evidence suggesting that weakly structured programs can yield uneven benefits, wherein only certain regions or demographics capitalize on policy provisions while others fall behind (Liang et al., 2021; Zhang et al., 2023; Li et al., 2017). The initial capital outlay (e.g., energy-saving machinery) and the speed of returns thus become critical considerations for farmers deciding whether to engage in LCAP initiatives (Lo, 2014; Ran, 2013; Chen et al., 2021).
2.4.4 Research hypotheses
In light of the above theoretical reasoning, two core hypotheses guide our empirical investigation.
	H1 (Corporate Sphere): In localities with limited enforcement of LCAP directives, agribusinesses will exhibit lower or reduced environmental spending, reflecting the diminished regulatory pressure and the potential reallocation of financial resources toward other priorities.
	H2 (Farmer Tier): Households that actively participate in LCAP-driven programs—either through direct subsidies, training, or technology adoption—are more likely to enhance their net incomes compared to non-participating households, given the policy’s focus on cost-sharing and improved resource efficiency.

These hypotheses rest on the premise that a non-mandatory environmental policy can yield diverse outcomes depending on how effectively local governments implement it and how motivated firms and households are to comply. By specifying these two pathways, we accommodate the possibility of counterintuitive corporate behavior (such as reduced environmental expenditures) alongside positive income effects for farmers. The following chapters will detail the methodological design and empirical strategies used to test these hypotheses, offering insight into the actual impact of LCAP at both the corporate and grassroots levels.
3 METHODS AND DATA
3.1 Company level analysis
3.1.1 Propensity score matching method (PSM)
Given the non-random nature of LCAP policy implementation (with some cities voluntarily declaring themselves LCAP cities), there’s a potential for selection bias in the initial sample. To counteract this, we use the Propensity Score Matching (PSM) method. Rooted in the counterfactual inference model, PSM manages non-random datasets by statistically determining the propensity score for each observation based on covariates, subsequently matching these scores based on their proximity.
Considering 2015 as the benchmark year for policy implementation, the treatment variable is dichotomous: [image: Please provide the image or its URL, and I will help create the alternative text for it.] signifies the treatment group (companies in LCAP cities), while [image: Please upload the image you want me to describe. If there is a specific context or something you want me to focus on, feel free to mention that as well.] denotes the control group (companies in non-LCAP cities).
3.1.2 Difference-in-differences method (DID)
The DID method is pivotal for evaluating the impact of exogenous shocks and discerning causal relations between economic entities. We utilize a quasi-naturalistic trial with data sourced from Chinese-listed companies between 2011 and 2020 to analyze the LCAP policy’s influence on their environmental expenditures. Here, the control group encompasses companies outside LCAP jurisdictions. By juxtaposing changes in environmental expenditures between LCAP and non-LCAP cities, we estimate the policy’s average treatment effect (ATT). The foundational model is:
[image: Mathematical equation depicting a regression model: Envirexp\(_{it}\) equals \(\beta_0\) plus \(\beta_1 \times\) treat\(_{it}\) plus \(\beta_2 \times\) control\(_{it}\) plus \(\lambda_t\) plus \(\eta_i\) plus \(\epsilon_{it}\). Labeled as equation one.]
Where [image: Please upload the image you would like me to generate alternate text for.] represents the company and [image: Please upload the image or provide a URL, and I will help create the alternate text for it.] represents the year. [image: Certainly! Please upload the image or provide a URL so I can help generate the alternate text for it.] is the explained variable representing the total environmental expenditures during the whole year of the listed company. The explanatory variable is [image: I'm unable to generate alternate text for the image as no image has been provided. Please upload an image or provide a URL for me to assist you with alt text creation.]. It is an interaction term that equals [image: Please upload the image or provide a URL so I can generate the alternate text for you.] multiplied by [image: Please upload the image or provide a URL for me to generate the alternate text.]. [image: Please upload the image so I can help generate the alternate text for it.] and [image: Please upload the image or provide a link to it, and I will help generate the alt text for you.] are dummy variables. [image: Please upload the image so I can generate the appropriate alt text for you.] represents company [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] and [image: It seems there might be an issue with the image upload. Please try uploading the image again or provide a URL for it.] represents the [image: It seems there is no image attached. Please try uploading the image again, and I'll be happy to help you with the alt text.] year. If company [image: Sure, please upload the image so I can generate the alternate text for it.] locates in the LCAP city, [image: It seems there wasn't an image uploaded. Please upload the image or provide a URL to assist further.]; otherwise, [image: It seems there might have been a mix-up. I currently can't view the image. Please upload the image file or provide a URL, and I will generate the alt text for you.]. If the year is after 2016 (including 2016), then [image: It seems like there was an error with the image upload. Please try uploading the image again or ensure that the file path/URL is correct.]; otherwise, [image: It appears there was an error with the image upload or format. Please try uploading the image again or provide a direct link.]. [image: Italicized text: "control" with the letters "it" in subscript.] represents control variables. In this research, we are concerned about whether the LCAP policy affects the environmental expenditure of listed companies. The control variables contain the basic financial status of listed companies. All the values of the indicators are either in fractional or log format to avoid the influence of some extreme values and to ensure the results are as accurate as possible. There are four control variables: [image: Sure, please upload the image or provide a URL for it, and I will generate the alternate text for you.], [image: Please upload an image or provide a URL for me to generate the alt text.], [image: Please upload the image or provide a URL so I can generate the alt text for you.], and [image: Sorry, I cannot generate alt text for this image. Could you please provide a description or upload the image again?]. [image: Please upload the image or provide a URL so I can generate the alternate text for you.] represents the asset-liability ratio of the listed company. [image: Certainly! Please upload the image or provide a URL to the image you would like me to describe.] represents the return on equity of the listed company. [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] represents the size of the listed company, and its value is taken in log format. [image: I'm unable to generate alternate text from a LaTeX formula image directly. If you provide an actual image or describe its contents, I can help generate an appropriate alt text. Let me know if you need assistance with uploading an image!] represents the size of the company’s board. [image: Greek letter lambda (λ) with a subscript i.] represents the company fixed effects, and [image: The image shows the mathematical symbol eta with a subscript "t".] represents the year fixed effects. [image: It seems like you've inserted a piece of LaTeX code meant for mathematical notation rather than an image. If you want to generate alternate text for an image, please upload the image or provide a URL. If "ε_it" is part of the text in the image, you might be referring to a mathematical expression usually representing an error term or residual in statistical models. Let me know if you need help with something specific!] is the random error term. Table 1 illustrates the policy effects conceptualized by the DID model. The parameter [image: Please upload the image or provide a URL for me to generate the alternative text.] represents the LCAP policy effects on listed companies’ environmental expenditures. If [image: Mathematical expression showing beta sub one is greater than zero.], the LCAP policy increases the listed companies’ environmental expenditures. If [image: It seems you attempted to include an image using a mathematical syntax. Please upload the image directly or provide a URL so I can generate the alt text for you.], the LCAP policy decreases the listed companies’ environmental expenditures.
TABLE 1 | Illustration of the policy effects conceptualized by the DID model.
[image: Table comparing effects before and after for LCAP and Non-LCAP cities. Columns labeled Before, Post, and Difference. For LCAP cities: Before is β₀ + λᵢ, Post is β₀ + β₁ + λᵢ + ηₜ, Difference is β₁ + ηₜ. For Non-LCAP cities: Before is β₀, Post is β₀ + ηₜ, Difference is ηₜ. DID row states Difference is β₁.]3.1.3 Data source and study area
The dependent variable, [image: I'm unable to view the image. Please upload the image or provide a URL, and I will be happy to help generate the alternate text for it.] represents the annual environmental expenditure of a company, measuring its financial allocation towards environmental activities. This is calculated using data from financial statements, which include environmental clean-up and protection fees, emission fees, and costs associated with greening and environmental protection. In cases where government subsidies are provided, these are separately detailed in the financial report appendices, allowing for a thorough calculation of a company’s environmental expenditures. The analysis covers a 10-year period (2011–2020), spanning 5 years before and after the implementation of the LCAP policy in 2015. The year 2020 was selected as the endpoint since the policy’s second phase commenced in 2021. The study focuses on the initial phase of the policy, primarily because data from the ongoing second phase may be incomplete and subject to change. The dataset includes listed companies in the agricultural and food sectors located in cities within the middle and lower reaches of the Yangtze River. Relevant company data for the 10-year study period were extracted, with industries classified according to the National Economic Classification of Industries provided by China’s National Bureau of Statistics.
Post-reform, China’s expanding economy has observed the agriculture and food sectors contributing notably to its carbon emissions. This is attributed to the substantial fossil fuel utilization associated with agricultural production and the transportation involved in processing agricultural products, leading to significant environmental impacts.
Data for this study is primarily sourced from the China Stock Market and Accounting Research (CSMAR) Database, supplemented with financial statements from the listed companies. The sample includes 34 companies from the agriculture and food sectors. The classification of a company under an LCAP city was determined by the location of its main office. A descriptive statistical breakdown of the study variables is provided in Table 2.
TABLE 2 | Descriptive statistics of the variables.
[image: Table displaying variables related to environmental expenditure analysis. Columns include Variable names, Descriptions, Observations (all 340), Mean, and Standard Deviation. Variables are ln (envirexp), time, treat, did, lev, size, ROE, SOA, and board_size with respective descriptions, means, and standard deviations included.]Although the sample includes 34 companies, this selection reflects a meaningful cross-section of companies in the agriculture and food sectors from both LCAP and non-LCAP cities in the middle and lower Yangtze River Basin. The companies were selected based on industry classification and data availability from authoritative sources, and they include state-owned and private entities with diverse financial and governance profiles. The 10-year longitudinal span enhances the analytical depth and helps mitigate concerns about temporal limitations. While the sample size is relatively modest, the combination of a well-targeted industry focus, geographic concentration, and robust empirical methods (DID, PSM, and PSM-DID) ensures that the findings have meaningful internal validity and policy relevance.
3.2 Farmer level analysis
3.2.1 Conceptual framework
Participation in support policies can help smallholder farmers adopt advanced agricultural methods, thereby reducing greenhouse gas emissions. A farmer’s decision to participate in these policies is framed within a utility choice problem (McFadden, 1974). Essentially, a farmer will participate if the anticipated net utility from doing so surpasses non-participation. This utility, [image: It seems there is an error with processing the image. Please upload the image directly or provide a URL for it.], can be modeled as:
[image: Equation \( U_i^* = \alpha Z_i + \epsilon_i \), \( U_i = 1 \) if \( U_i^* > 0 \).]
Here, [image: Please upload the image or provide a URL for me to generate the alternate text.] denotes whether farmer [image: It seems there was an issue with uploading the image. Please try uploading it again, and I will help generate the alternate text for you.] participates (1) or not (0). [image: Please upload the image or provide a URL so I can generate the alternate text for it.] and [image: It seems there is no image attached. Please upload the image or provide a URL for me to generate the alt text.] are vectors of parameters and household/farm traits, respectively, while [image: It seems like there was an error in the request or in uploading the image. Please upload the image file directly or provide a URL link to the image so I can generate the alternate text for it.] captures errors. A key metric is net farm income, primarily from rice, but including other crops’ earnings. The data covers January to December 2021. The study’s treatment variable identifies farmers who adopt support policies. Factors like household socio-economics and institutional supports guide the selection of explanatory variables, rooted in literature insights. Table 1 describes farmer participation regarding support policies, and Table 2 provides variable summaries.
This study pivots on net farm income as the dependent variable. Four key support policies underpin the explanatory variables: organic fertilizer or compost subsidy (SP1); cultivation waste recycling subsidy (SP2); energy-saving agricultural machinery subsidy (SP3); and eco-friendly farming support (SP4). A farmer’s engagement in any of these policies influences their income.
3.2.2 Propensity score matching method (PSM)
Evaluating the causal effects of participation in support policies, such as net farm income, presents challenges due to potential endogeneity biases. Voluntary and non-random participation may lead to systematic differences between participants and non-participants based on socioeconomic factors, which could influence net farm income. Direct comparisons of net farm incomes may yield biased results.
Accurate evaluation of impacts requires consideration of both observable and unobservable farmer characteristics. In an ideal scenario, farmers would be randomly assigned to groups to minimize selection bias. However, the absence of random assignment implies that certain farmer characteristics might influence their decision to utilize support policies, thereby affecting outcomes such as net farm income.
The relationship between support policies and net farm income can be expressed as:
[image: Regression equation showing Y sub i equals beta sub zero plus alpha times Support Policies plus beta sub one times X sub i plus e sub i, labeled as equation three.]
Where [image: It seems there might be a misunderstanding. Please upload the image or provide a URL for which you need alternate text. If you have any additional context or a caption, feel free to include that as well.] represents the farm household income, and [image: Text reading “Support Policies” in a stylized font.] is a binary variable indicating participation. [image: It seems there's no image attached. Please upload the image or provide a URL so I can help generate the alt text for you.] includes household-specific characteristics that influence income. To determine participation in the support policies, a discrete choice model using a probit model is applied:
[image: Logistic regression formula showing the probability \( p(X) = p(D = 1 \mid X) = \exp(\beta X) / (1 + \exp(\beta X)) \), labeled as equation (4).]
Here, D is the treatment variable, which is 1 if a farmer participates and 0 otherwise. [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] symbolizes covariates like education.
Utilizing the PSM approach offers a robust estimation of the effects of agricultural policies on farmer incomes, guiding policymakers and stakeholders. Participants are then matched with non-participants using their propensity scores, ensuring similar observable characteristics.
This research uses three primary matching methods:
Nearest-neighbor matching (k = 4): Pairs each treated farmer with the nearest untreated counterpart based on propensity scores.
Radius matching (caliper = 0.05): Matches treated farmers to untreated ones within a specific propensity score range.
Kernel matching (bwidth = 0.06): Uses a weighted average of all untreated farmers, based on the proximity of propensity scores.
After matching, the Average Treatment effect on the Treated (ATT) quantifies the net farm income difference attributed to participating in support policies:
[image: The equation represents the Average Treatment Effect on the Treated (ATT). It states: \( ATT = E[y_1 - y_0] = E[y_1 - y_0 \mid D=1] = E[y_1 \mid D=1] - E[y_0 \mid D=0] \).]
The ATT sheds light on income disparities between participants and their matched non-participant counterparts. To address potential biases arising from observable characteristics, PSM may still be susceptible to unobserved biases influencing the outcome. To evaluate the robustness of the findings against such unobserved biases, a Rosenbaum bounds sensitivity test is employed. If significant variations in unobserved biases do not alter the outcomes, this strengthens the reliability of the results. Acknowledging possible caveats and limitations is essential for accurately interpreting the findings and informing the design of future research.
3.2.3 Data source and study area
Data was collected from Hubei, Zhejiang, and Shanghai—three provinces located in the middle and lower reaches of the Yangtze River basin—during May and June 2022. This basin, which also includes provinces such as Hunan and Jiangsu, is a major grain production area in China, playing a significant role in the nation’s food security. Geographically, the region is characterized by a basin-like structure, with flat terrains in the central area featuring surface runoff and lakes. In contrast, the surrounding areas are predominantly mountainous.
This diverse region encompasses various land uses, including arable land, woodland, grassland, water bodies, construction sites, and unutilized areas. It is also important to note that this region is a major source of China’s agricultural GHG emissions, as indicated in Figure 3.
[image: Map highlighting provinces conducting a survey in the Middle and Lower Yangtze River Basin, China. Highlighted provinces include Shanghai, Zhejiang, Hubei, Jiangsu, Anhui, Hunan, and Jiangxi, with respective sample sizes. Total sample size: 410.]FIGURE 3 | Study region.
Our survey primarily targeted rice farmers, with the questionnaire focusing on household-specific attributes and their participation in low-carbon agricultural support policies. Households were selected randomly, resulting in an initial 453 samples across the three provinces and cities. Out of these, 410 were considered valid.
The sample size was sufficient, ensuring that the 410 farming households represented the region’s demographic characteristics. Using the lists compiled by local village officers, households were selected randomly. For the survey, the primary decision-makers, household heads, or those responsible for farming activities provided responses to the questions.
From the data presented in Tables 3, 4, it can be observed that households that participate exhibit higher income levels compared to those that do not. The uptake rate for support policies is above 48%. Statistically significant differences are observed in attributes such as age, gender, education level, farming tenure, and the presence of a family member in village officialdom between participating and non-participating households. Participating households tend to be younger and have higher levels of educational attainment. In contrast, non-participating households are predominantly male, have longer farming tenures, operate smaller farms, and are more likely to engage in traditional farming practice.
TABLE 3 | Participation status in support policies.
[image: Table detailing variables related to low-carbon agriculture support policies, with descriptions, mean, and standard deviation (SD). Variables include overall support policies, subsidies for organic fertilizers, recycling waste, energy-saving machinery, and skills training. Mean values range from 0.207 to 0.482, with SDs from 0.405 to 0.501.]TABLE 4 | Description, measurement and average of variables according to participation status in support policies (SP).
[image: Table comparing variables between a full sample, non-participants, and participants. Variables include income, age, gender, education level, household labor, experience, part-time farmers, farm size, medical insurance, and village officials. Data is presented with t-tests indicating significance levels at 1%, 5%, and 10%.]Although the final valid sample comprises 410 farming households, several steps were taken to ensure its representativeness. First, the sample was drawn from three core agricultural provinces (Hubei, Zhejiang, and Shanghai) located in the policy-priority Yangtze River Basin. Second, the survey followed a random sampling strategy, covering a broad spectrum of age, education, and farm size categories. Furthermore, the data were collected recently (May–June 2022), capturing up-to-date policy effects. Thus, the dataset is both timely and regionally representative, despite not being nationwide in scale.
4 ECONOMETRIC ANALYSIS
4.1 Company level analysis
4.1.1 DID analysis
Using DID regression, we evaluate the LCAP policy’s influence on the environmental expenditures of listed companies (refer to Table 5). In the basic DID regression model, the environmental expenditure ln ([image: I'm unable to view or analyze images directly. To assist you with generating alt text, please upload the image or provide a detailed description.] serves as the dependent variable, while the interaction of time and company dummy variables (labeled ‘did’ in Table 5) acts as the independent variable. Introducing control variables to the regression model affirms the robustness of the ‘did’ effect. Without any control variables, Model (1) is executed. Models (2) through (5) sequentially incorporate control variables. The core explanatory variable retains its sign direction and significance across these iterations. Model 5 highlights that, at a 5% significance level, the LCAP policy exerts a limiting influence on companies’ environmental expenditures ln ([image: It seems like there is no image provided. Please upload the image or provide a URL so I can generate the alternate text for you.].
TABLE 5 | DID regression results (n = 340).
[image: Table displaying regression results across five models. Each row represents a variable: "did," "lev," "ROE," "size," "board size," "Constant," and "R-squared." Coefficients and standard errors are shown in parentheses. Significance levels are indicated by asterisks: 1% (***), 5% (**), and 10% (*). R-squared values range from 0.852 to 0.873.]4.1.2 PSM analysis
For matched company characteristic variables, we considered the asset-liability ratio (lev), return on equity (ROE), company size (size), company nature (SOA), and board size (board size). The nearest neighbor match (k = 4) serves as the chosen matching method. Post matching, a balance test gauges the efficiency of the match. Its foundational hypothesis posits no systematic variance between control and treated groups. The PSM balance test outcomes in Table 6, with p-values exceeding 5% across all covariates, indicate non-rejection of this hypothesis. Thus, the matched sample meets prerequisites for subsequent regression examinations.
TABLE 6 | Balance test of PSM.
[image: Table comparing mean values, percentage bias, and t-test results for treated and control groups across variables: lev, ROE, SOA, size, and board size. Lev has a %Bias of 6.2; ROE has -10.8; SOA has 0; size has -1.6; board size has 1.4. T-test values and significance levels vary, indicated by t and p > t columns, with significance levels noted by asterisks.]4.1.3 PSM-DID analysis
Our regression analysis, as shown in Table 7, indicates a statistically significant reduction in corporate environmental spending associated with the LCAP, with a decrease of 0.91 points at the 1% significance level. A key limitation of this study should be noted: the unavailability of proprietary corporate cost data, which restricts a thorough examination of the financial activities driving these outcomes.
TABLE 7 | Comparison of regression results between DID and PSM-DID (n = 340).
[image: A table comparing four models using DID and PSM-DID methodologies. Variables include DID, lev, ROE, size, board size, constant, and R-squared. Coefficients and standard errors are provided, with significance levels noted as 1 percent, 5 percent, and 10 percent. Model (1) highlights DID with a coefficient of -0.591 and R-squared of 0.852. Model (2) shows a DID coefficient of -0.431 with an R-squared of 0.873. Model (3) under PSM-DID has a DID coefficient of -0.972 and R-squared of 0.897. Model (4) shows a coefficient of -0.915 with R-squared of 0.905.]Consequently, the interpretation regarding the LCAP’s impact on environmental expenditure is necessarily based on a theoretical framework as outlined by existing scholarly literature, rather than on direct empirical cost analyses. Theoretical perspectives suggest that regulatory interventions, such as the LCAP, may lead to a strategic reorientation of corporate environmental strategies, potentially enabling a more efficient allocation of resources. This could result in a reduction in reported environmental spending, reflecting a shift towards more cost-effective practices without necessarily compromising environmental stewardship.
Additionally, it is hypothesized that the LCAP’s incentive system may alter the financial frameworks governing environmental investments, potentially leading to a strategic reallocation of capital towards more sustainable practices with potential long-term financial benefits. These hypotheses, however, remain speculative in the absence of detailed cost data, highlighting the need for further empirical research to clarify the complex financial decisions influenced by policy.
The data highlight potential discrepancies in policy implementation between the central and local governments in China, a divergence that may lead to central policies such as the LCAP producing unexpected outcomes at the corporate level. Several factors may explain the empirical observations regarding the LCAP’s implementation and its subsequent effects on corporate environmental spending. The introduction of the LCAP in various municipalities may be hindered by a lack of motivation and consistent enforcement. Furthermore, differences in policy enforcement between central and local governments are particularly notable in the area of environmental regulation and tend to become more pronounced when directives are communicated to the corporate sector (Lo, 2014; Ran, 2013). Additionally, the tenure length of local officials in China is often associated with the economic growth patterns of their regions, sometimes leading to close relationships between government agencies and businesses. As tenure durations increase, they may facilitate the development of entrenched networks, potentially weakening the oversight of corporate compliance with environmental regulations (Huo et al., 2022). A further factor contributing to delayed adoption is evident in the local implementation of centrally mandated policies, with entities occasionally adopting a cautious approach towards central directives (Göbel, 2011; Chung, 2000). Given the priority of economic development on local agendas, environmental regulations may be given lower priority when perceived as less urgent than immediate economic goals.
At the enterprise level, the LCAP requires firms to adopt business practices with lower carbon emissions. At the same time, enterprises within LCAP jurisdictions are subject to strict environmental requirements, necessitating significant operational changes and potentially reducing short-term profitability (Duan and Xu, 2022). In a competitive environment, firms may reduce overall environmental spending as a way to offset the additional operational costs incurred. This strategic reallocation of resources may explain the observed reduction in environmental expenditures among the firms studied.
4.2 Farmer level analysis
4.2.1 PSM analysis
Table 8 presents the results from the probit model on the determinants influencing farmers’ participation in support policies. These determinants are not merely linked to participation but also play a pivotal role in computing the propensity scores for assessing the impact of the policies.
TABLE 8 | Probit estimation results of participation in support policies propensity score (n = 410).
[image: A table displaying coefficients and marginal effects for five models related to low-carbon agriculture support policies. Variables include age, gender, education level, household labor, experience, part-time farmers, farm size, medical insurance, and village officials. Significance levels are indicated by asterisks and standard errors are in parentheses. Additionally, Pseudo R-squared and log likelihood values are presented. The note explains significance levels and terms.]The estimated coefficients suggest that factors such as age, gender, and being a part-time farmer negatively influence the likelihood of participating in the support policies, and these findings are statistically significant. Research indicates that younger individuals may be more open to adopting new technologies due to their higher adaptability and optimism towards innovative practices (Li W. et al., 2021). Similarly, the gender gap in technology adoption, particularly in agriculture, can be attributed to a variety of socio-economic factors, where female farmers may be more proactive in adopting sustainable practices due to their greater concern for environmental stewardship (Schmidt et al., 2021). The lower participation rates among part-time farmers could be linked to the divided attention between farming and other employment responsibilities, which may limit their engagement with agricultural innovations (Li Z. et al., 2021).
Conversely, as anticipated, higher education levels, larger farm sizes, and having family members who hold official village positions correlate positively with a greater probability of participating in the support policies. A plausible rationale is that better-educated farmers possess a heightened ability to assimilate and interpret information, making them more inclined to adopt innovative agricultural practices (Huang et al., 2022). This is supported by evidence suggesting that education plays a crucial role in the adoption of agricultural technology, including low-carbon practices (Razzante et al., 2021). Additionally, farmers managing larger land areas may exhibit a greater need for information, particularly regarding innovative agricultural techniques, as larger-scale operations often require more efficient and sustainable practices (Lo, 2014). Moreover, farmers with familial ties to local government officials may have enhanced access to policy-related information, which could increase their likelihood of participating in support programs (Li et al., 2017; Ran, 2013; Li Z. et al., 2021; Jiang et al., 2022).
These insights are corroborated by empirical evidence from studies on rice farmers in Hubei province, which found that cognitive factors such as value perception and self-efficacy, often influenced by educational background and socio-economic status, significantly affect the adoption of low-carbon technologies (Zhao et al., 2021; Guo et al., 2021).
4.2.2 Impact of the support policies participation on net household’s income
Utilizing the Propensity Score Matching (PSM) methodology, we assessed the influence of participation in support policies on net household income. The results of this examination are detailed in Table 9. To guarantee the robustness of the outcomes, three distinct matching estimators - nearest-neighbor matching, radius matching, and kernel matching were employed.
TABLE 9 | Treatment effect of Support Policies on household income.
[image: Table comparing different matching methods for participation and non-participation. Each method shows average treatment effects on the treated (ATT) with significance:   - Nearest-neighbor Matching: Participation 12.314, Non-participation 9.576, ATT 2.738 (0.431)***.  - Radius Matching: Participation 12.314, Non-participation 9.452, ATT 2.862 (0.433)***.  - Kernel Matching: Participation 12.314, Non-participation 9.461, ATT 2.853 (0.437)***.  Significance levels: *** 1%, ** 5%, * 10%.]As delineated in Table 9, irrespective of the matching estimator employed, the findings consistently reveal that participation in support policies exerts a positive and statistically meaningful impact on household income. Specifically, the evidence indicates an average increase in household income by approximately 28 thousand yuan if farmers choose to participate in these support policies. It is important to note that the minor variations in estimated values across the three different matching techniques support the reliability and robustness of these findings. This consistency suggests that our analytical results are not significantly dependent on the choice of a specific matching algorithm, thereby reinforcing the validity of the study’s conclusions.
In addition to our main analysis, we conducted robustness tests to validate the reliability of our results using various methods detailed by Caliendo and Kopeinig (Caliendo and Kopeinig, 2008). We employed three distinct approaches: Nearest-neighbor Matching, Radius Matching, and Kernel Matching. Post-matching, our findings confirmed significant balance between treated and control groups. Additionally, sensitivity analysis, based on the Rosenbaum boundary test further vouches for the robustness of our estimates against potential hidden biases. Overall, these assessments corroborate the genuine and impactful influence of support policies on farm income without exaggeration.
4.2.3 Impact of different support policies on farm household income
While Table 4 highlights that participation in low-carbon agricultural support policies can increase farmers’ income, the effectiveness of each individual policy varies. Therefore, it is essential to examine the specific impacts of each policy type.
In Table 10, a detailed analysis shows that the Average Treatment Effect on the Treated (ATT) for SP1 to SP3 is significantly positive, substantially influencing household income. In contrast, SP4 does not achieve statistical significance, indicating it does not have a notable impact on household income.
TABLE 10 | Treatment effect of different Support Policies on farm household income.
[image: Table showing low-carbon agriculture support policies with columns for participation, non-participation, and ATT (Average Treatment Effect on the Treated). Policies include subsidies for organic fertilizers (SP1), recycling waste (SP2), energy-saving machinery (SP3), and skills training (SP4). ATT values and significance levels are given, with SP1, SP2, and SP3 showing significant effects. Note mentions significance at 1%, 5%, and 10%, and uses nearest-neighbor matching.]SP1 and SP2: The ATT results related to these policies, which involve subsidies for organic fertilizers and waste recycling, clearly indicate that they can contribute to increasing household income. It is worth noting that both SP1 and SP2 require minimal time and financial investment from farmers. Their implementation quickly improves the farmland environment and enhances soil quality. Additionally, the provision of subsidies reduces the financial costs associated with these policies, thereby boosting household income.
SP3: The ATT result for SP3 is somewhat more moderate compared to SP1 and SP2. While the adoption of energy-conserving machinery can enhance production efficiency, the relatively high initial investment limits its short-term income-boosting effects, even with subsidies considered. However, the long-term potential of this machinery is significant. It can substantially reduce greenhouse gas emissions and is expected to deliver considerable economic and environmental benefits over time.
SP4: This policy, which focuses on skills training or lectures, shows a weak ATT. Such non-monetary support policies do not have a direct or immediate impact on farmers’ income. This muted result can be attributed to the variability in knowledge absorption from these trainings. Additionally, there is often a gap between farmers’ stated intentions to adopt low-carbon agricultural practices and their actual implementation.
In summary, while low-carbon agricultural support policies collectively contribute to increasing farmers’ income, the extent of this increase varies significantly depending on the specific policy. Monetary policies, especially those requiring minimal investment, tend to produce quicker financial returns, while non-monetary policies or those requiring substantial investments may realize their primary benefits over a longer period.
4.2.4 Impact of heterogeneity among support policies beneficiaries
The propensity score matching (PSM) method typically assumes that treatment effects are uniform across all beneficiaries of a specific policy. While this assumption simplifies the analytical process, it may overlook the varied impacts resulting from the diverse socioeconomic characteristics of the participant population.
To explore this inherent heterogeneity, the sample was divided based on the mean values of two key determinants: education levels and farm size. These factors have consistently been identified as critical in influencing the effectiveness of agricultural support interventions. As a result, the analysis compared the “above the mean value” group with the “below the mean value” group.
Educational Attainment: The findings presented in Table 11 highlight a notable pattern. The benefits of support policy participation are more pronounced for farmers with educational attainment above the mean. A potential explanation is that education equips farmers with the ability to assimilate, process, and apply new knowledge, particularly in the context of low-carbon agricultural practices. This advantage enables more efficient implementation of low-carbon techniques, leading to better income outcomes compared to farmers with lower educational attainment.
TABLE 11 | Heterogeneous impacts among beneficiaries of Support Policies.
[image: Table comparing education level and farm size based on participation and non-participation, including columns for groups, participation, non-participation, and ATT with standard errors. Significant values are marked with asterisks for significance levels at one, five, and ten percent. Matching method is nearest-neighbor.]Farm Size Considerations: Farm size also plays a significant role in determining the extent of the policy impact. The analysis indicates that farmers with farm sizes exceeding the mean value derive greater benefits from the support policies. This outcome can be attributed to two main factors.
First, larger farms benefit from economies of scale, enhancing the tangible effects of financial incentives and input subsidies. Second, the per-unit transaction costs, whether in terms of time or resources, decrease as farm size increases. This efficiency, combined with targeted information on low-carbon agricultural practices, maximizes the gains for farmers operating larger farms.
These findings emphasize the importance of acknowledging the differential responses of farmers to agricultural support policies. Such heterogeneity, driven by variations in educational backgrounds and operational scales, should be a central consideration in the design and refinement of policy interventions. A more nuanced approach will help ensure a more equitable and effective distribution of resources and benefits.
5 RESULTS AND DISCUSSION
5.1 Discussion and implications at the corporate Sphere
In the field of corporate environmental economics, the LCAP initiative requires a fundamental shift toward sustainable operational practices, measured against historical carbon footprints. Entities subject to LCAP regulations are navigating a stricter regulatory environment, marked by mandatory eco-focused corporate practices and increased financial penalties for environmental violations. This regulatory shift demands operational adjustments, likely raising short-term operational costs and affecting profit margins. Within competitive markets, firms may exercise strategic discretion in allocating environmental budgets, potentially explaining the LCAP’s moderating effect on such expenditures.
This study expands the understanding of the implications of China’s LCAP directive. Employing an advanced PSM-DID regression approach, which addresses sample selection biases more effectively than traditional DID analysis, we identify a statistically significant reduction in environmental expenditures among public enterprises due to the LCAP, supported at a 1% significance level. This decrease of 0.91 points in environmental spending, while statistically robust, requires careful interpretation within the context of an unexamined cost structure. It raises questions about whether this reduction reflects strategic resource reallocation or a genuine decline in environmental stewardship.
This research explores previously unexamined areas, offering quantitative insights into the LCAP’s influence on corporate environmental spending. It highlights the divergence between policy objectives and corporate actions, potentially revealing unintended economic consequences at the corporate level.
Moving forward, the balance between environmental responsibility and economic performance warrants further attention at the microeconomic level. Local governance structures, with their nuanced understanding of economic and social priorities, play a critical role in ensuring balanced policy implementation. Strengthening their involvement in policy design could help address disparities in policy execution.
However, the conclusions drawn here must be considered in light of the study’s limitations. The lack of comprehensive corporate cost data restricts the depth of economic analysis regarding the LCAP’s impacts. Additionally, the focus on listed companies may not fully represent the broader corporate landscape.
Despite these limitations, this study provides a distinct perspective on the microeconomic implications of the LCAP, calling for more extensive and methodologically rigorous future research. Subsequent studies should incorporate a broader range of financial data to develop a more detailed and accurate understanding of the LCAP’s effects on corporate economic and environmental strategies.
5.2 Reflections and conclusions at the farmer tier
The empirical findings of this study highlight the complex factors influencing farmers’ adoption of low-carbon practices. Educational attainment, farm size, and established local leadership connections are identified as significant facilitators, while personal demographics and external responsibilities may act as barriers. Within this intricate socio-institutional context, policy measures must be flexible and culturally sensitive to effectively encourage farmer participation.
Our rigorous PSM analysis demonstrates a notable increase in farmer income, with the average opportunity cost of non-participation estimated at 28 thousand yuan in terms of net income. Subsidies for organic fertilization and agricultural residue recycling are particularly effective, offering both economic benefits and ecological advantages. In contrast, the adoption of energy-efficient machinery, while environmentally beneficial, faces challenges due to high initial costs and delayed returns on investment.
Based on these findings, the study emphasizes the dual advantages of organic composting and waste recycling initiatives, advocating for their central role in China’s agricultural environmental strategy. These initiatives are supported not only for their direct financial incentives but also for their alignment with ecological sustainability. The transformative potential of these low-carbon incentives is confirmed, with the understanding that improved farmer education and community engagement are essential to sustaining this green transition.
While the analysis suggests that the LCAP policy contributes to increasing farmer income, it is important to note the absence of comprehensive cost data. This limitation calls for cautious interpretation of the policy’s net income effects. Nonetheless, given the LCAP’s emphasis on subsidies, a reduction in the costs associated with adopting low-carbon agricultural practices is expected. Despite the lack of detailed cost analysis, the policy’s potential to lower production costs and enhance farmer income remains plausible.
In summary, the insights provided by this study offer policymakers a solid foundation for designing and implementing comprehensive, farmer-focused, and sustainable agricultural policies.
5.3 Policy recommendations
The findings across corporate and farmer tiers point to the need for more integrated and adaptive policy design. Although the LCAP policy offers clear economic incentives, its fragmented implementation and limited alignment with other environmental frameworks may reduce its overall effectiveness.
First, LCAP should be better integrated with ecological compensation programs, carbon markets, and green finance instruments. For example, providing carbon credits or preferential loans for firms and farmers engaging in verified low-carbon practices could enhance motivation and long-term sustainability.
Second, localized governance must be strengthened. Local governments and cooperatives should be granted flexibility in tailoring LCAP programs to regional conditions, supported by standardized national guidelines and performance benchmarks.
Third, enhancing capacity building and stakeholder engagement is essential. Targeted training, digital information platforms, and participatory planning can lower adoption barriers, especially for smallholders and resource-constrained enterprises.
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Introduction: The transition to carbon-centric urban policies requires innovative strategies to reduce transportation-related emissions. One such strategy is to shift travelers from high-carbon to low-carbon modes of transportation, a potential that has not been thoroughly quantified in urban planning frameworks.Methods: This study introduces the concept of urban transportation carbon reduction potential, defined as the share of travelers who could feasibly switch to low-carbon modes under optimized public transit conditions. A dynamic evaluation model was developed, integrating key factors such as connection, detour, and transfer barriers that influence residents’ public transit adoption. The model was applied to cross-river travel in Wuhan, China, using 10,327 Origin-Destination (OD) survey data points collected between 2023 and 2024. Multiple optimization scenarios were simulated to assess responses to transit improvements.Results: The analysis revealed three distinct zones of carbon reduction potential: stable, unlocking, and re-stable. Particularly, the unlocking zone exhibited substantial carbon reduction effects when targeted public transit improvements were implemented. Key thresholds were identified where small enhancements in transit connectivity led to sharp increases in low-carbon travel adoption.Discussion: This study presents a novel optimization model for urban transit planning, which explicitly incorporates natural environmental constraints and provides quantitative decision support for achieving SDG11 targets on sustainable cities and communities. It offers valuable insights for cities within the Yangtze River Economic Belt, aiding strategic investment in public transit to enhance low-carbon mobility.Keywords: urban transportation carbon reduction potential, cross-river transportation, policy-driven carbon mitigation, travel behavior transformation, energy-efficient transportation systems
INTRODUCTION
The growing urgency of climate change has accelerated global efforts to adopt low-carbon strategies. The transportation sector accounts for 21% of global carbon dioxide emissions (Tiseo, 2025) and is projected to comprise 41% of global fuel-based emissions by 2030 (World Energy Outlook, 2022 – Analysis, 2022). Meanwhile, China, responsible for 34% of global CO2 emissions in 2023 (CO2 Emissions in 2023 – Analysis, 2024), is currently the world’s largest emitter; of China’s total transport-related carbon emissions in 2023, 90% stem from road transport, with private automobiles contributing the majority of passenger-related emissions (Figure 1). Against this backdrop, China’s “Dual-Carbon” strategy mandates achieving peak carbon emissions by 2030, compelling megacities to explore pathways for structural emission reductions (Actively and steadily advance carbon peak and carbon neutrality__China Government Website, 2023). Consequently, there is an urgent need for innovative approaches to low-carbon transportation that address infrastructure constraints, travel behavior preferences, and inefficiencies within existing systems.
[image: Bubble chart indicating percentages of total transportation carbon emissions. Road freight emissions are 42%, passenger vehicle emissions 34%, and other road categories 12%. Non-road emissions include domestic marine, aviation, and rail, totaling 12%.]FIGURE 1 | Composition of China’s transportation carbon emissions in 2023.
China is experiencing the world’s fastest motorization surge, with annual new vehicle registrations exceeding 30 million for ten consecutive years (The national motor vehicle fleet has reached 453 million vehicles, and the number of drivers has reached 542 million people - Ministry of Public Security website, 2025). Accordingly, China’s efforts to reduce road transport carbon emissions hold significant leverage for global climate governance. Public transit, given its higher passenger capacity and substantially lower per capita emissions relative to private vehicles, offers a compelling solution (Lu et al., 2015; Andong and Sajor, 2017; Li H. et al., 2019; Yu et al., 2021; Bi et al., 2024). For instance, a medium-sized gasoline car emits approximately 192 g of CO2 per person-kilometer (Figure 2), compared to 105 g for a bus and merely 41 g for rail transit (Greenhouse gas reporting, 2019).
[image: Comparison of CO₂ emissions for different transportation modes: a mid-size gasoline car emits 192 units, a bus emits 105 units, and a rail train emits 41 units.]FIGURE 2 | The carbon emission per person-kilometer of a medium-sized gasoline car is about 192 g, a bus is only about 105 g, and a rail train is only about 41 g.
Cities divided by rivers face distinct challenges in transitioning to low-carbon transportation systems. River-crossing corridors act as critical bottlenecks in urban networks: their construction is not only costly but also poses significant ecological impacts (Chen et al., 2021). In addition, the mechanisms and externalities associated with low-carbon land use policies on both sides of the river also contribute to the overall sustainable development of the city (Liu et al., 2025). Assessing the carbon reduction potential of these transportation bottlenecks is thus crucial for meeting China’s dual-carbon goals and providing guidance for other topographically constrained cities aiming to fulfill Sustainable Development Goal 11 (SDG11).
The Yangtze River Basin alone accounts for over 40% of China’s population and GDP (Strategic Basic Information - Yangtze River Economic Belt, 2019), with eleven cities bisected by the Yangtze, creating distinctive cross-river travel demands. Wuhan—a megacity partitioned by both the Yangtze and Han Rivers—provides a key case study in this regard. Unlike Shanghai or Nanjing, which have largely developed along one side of the Yangtze, Wuhan is divided into Wuchang, Hankou, and Hanyang, thereby generating complex and substantial cross-river traffic needs. These geographic constraints, combined with soaring travel demand and China’s pilot information consumption policy that deeply integrates information technology with traditional consumption (Liu et al., 2023), make Wuhan an ideal setting for investigating the policy-driven unlocking of low-carbon transportation potential.
Public transportation is expected to provide point-to-point service from origin to destination for people, excessive connections, detours, and transfers are generally disliked in public transportation travel, and may affect the willingness of urban residents to travel by public transportation. This leads us to consider three key questions: First, in comparison to driving, how does the higher occurrence of connections, detours, and transfers in public transportation affect the travel mode preferences of urban residents (Figure 3)? Second, considering the resource allocation constraints of cross-river transportation, is there a disparity in the impact between cross-river travel and non-cross-river travel? Additionally, what is the relationship between the resource allocation of cross-river transportation and this disparity? Addressing the above questions will assist city managers in implementing targeted transportation optimization measures to create a cross-river transportation environment that promotes low-carbon travel, and then effectively unlock the carbon reduction potential associated with urban cross-river transportation.
[image: Map illustrating a route from origin to destination. It shows two transportation options: an orange path with buses numbered one and two, and a blue path with a car. Walking sections connect the endpoints and bus stops.]FIGURE 3 | Comparison of OD routes between public transportation travel and driving travel: orange is the public transportation travel route, and blue is the driving travel route, which shows that public transportation travel may generate more connections, detours, and transfers.
Although public transit is widely recognized as a key driver of decarbonization, existing models often fall short of capturing its dynamic potential in topographically constrained cities. Traditional assessment approaches tend to assume a linear relationship between infrastructure improvements and shifts in travel modes, overlooking the adaptive behavioral responses and threshold effects underlying residents’ transition to low-carbon mobility. This non-linear relationship remains largely unexplored in the current literature, underscoring the need for a paradigm shift from “comprehensive coverage” to “precise targeting.” Such a shift is particularly critical for river-divided cities, where infrastructure expansion entails high financial and environmental costs, making targeted interventions both more cost-effective and more impactful.
This study investigates the impact of connection, detour, and transfer on urban residents’ willingness to travel by public transportation, highlighting their implications for the carbon emissions of urban transportation systems. To address this, a dynamic evaluation method is proposed to quantify the urban transportation carbon reduction potential, defined as the proportion of travelers who could shift from high-carbon to low-carbon travel modes under optimized public transit conditions. This method, grounded in Origin-Destination (OD) survey data, calculates the number of potential low-carbon travelers based on thresholds of acceptable connection, detour, and transfer strength for public transportation users. Unlike static assessments, the urban transportation carbon reduction potential in this study is dynamic, as it varies with residents’ acceptance thresholds for public transit attributes. Analyzing the variation trends and identifying rapid unlocking zones of the urban transportation carbon reduction potential are key objectives of this research, as this information enables city managers to develop precise, cost-effective transportation policies that achieve significant reductions in carbon emissions at a lower marginal cost.
We applied this method with the evaluation of the carbon reduction potential of cross-river transportation in Wuhan, China, as an example. River-crossing passages serve as crucial transportation nodes in cities, but their construction entails substantial costs and poses a threat to the ecological environment. Consequently, the allocation of resources for urban cross-river transportation is often limited. Excessive car usage for crossing the river can lead to urban road congestion and, subsequently, a significant increase in overall carbon emissions from transportation. Thus, advocating the use of public transportation becomes particularly essential for cross-river travel. In order to effectively analyze the differences in the impacts of connection, detour, and transfer on residents’ travel mode choices between cross-river and non-cross-river trips, as well as the underlying relationship with the allocation of cross-river transportation resources, this study compared the carbon reduction potential of urban cross-river transportation and non-cross-river transportation. By analyzing the disparities between the two, the study investigated the influencing characteristics of public transportation connection, detour, and transfer on the carbon reduction potential of cross-river transportation. Subsequently, based on the OD data of relevant traffic flow, a specialized carbon reduction potential evaluation of the main river-crossing passages in the urban area of Wuhan was conducted. This aimed to reflect the disparities in transportation carbon reduction potential in different cross-river regions of the city, thereby providing quantitative evidence for the formulation of targeted measures.
Based on this framework, the study makes four key innovative contributions: Firstly, it introduces the concept of the urban transportation carbon reduction potential, shifting the focus from static evaluations of current conditions to the dynamic potential for unlocking low-carbon travel. Secondly, it identifies and analyzes the mechanisms through which connection, detour, and transfer barriers—critical disadvantages of public transit compared to private vehicles—affect the urban transportation carbon reduction potential. Thirdly, it emphasizes the identification of rapid unlocking zones for the urban transportation carbon reduction potential, determining the specific thresholds of connection, detour, and transfer strength corresponding to these zones. Lastly, recognizing the limited resources available for urban cross-river transportation, the study conducts a targeted evaluation of its carbon reduction potential.
These contributions are particularly valuable for informing the optimization of urban transportation policies, with a specific emphasis on cross-river transportation systems. Furthermore, the evaluation framework relies on basic OD survey data, making it highly applicable in low-data environments and accessible to non-specialists. This accessibility ensures that the methodology can be implemented in underdeveloped regions lacking advanced platforms and expertise, promoting its broader adoption and practical impact.
The remainder of this paper is organized as follows: the literature review related to this study is presented in Section 2; The Section 3 explains and elaborates on the OD survey and evaluation methods; the Section 4 presents and discusses the evaluation results; the Section 5 presents the conclusions, limitations, and prospects for the follow-up work of this study.
LITERATURE REVIEW
Evaluation and control of carbon emissions in urban transportation
Transportation carbon emissions constitute a significant portion of overall urban carbon emissions, it is widely acknowledged internationally that effectively evaluating and managing urban transportation carbon emissions is essential. According to the statistics of the Cities Climate Leadership Group on the three basic emissions of stationary energy, transport, and waste (Greenhouse gas emissions interactive dashboard, 2022), cities such as São Paulo, Ho Chi Minh City, Auckland, Stockholm, Oslo, and Houston, characterized by high motorization rates or underdeveloped public transportation systems, contribute nearly 60% of transportation carbon emissions. The proportion of most cities in the world falls between 20% and 60%. The promotion and utilization of new vehicle types and alternative transportation energy in recent years have garnered attention for their positive contributions to carbon emission reduction in urban transportation systems. For example, bicycle sharing (Zhang L. et al., 2018; Kou et al., 2020a; D’Almeida et al., 2021a; Wang X. et al., 2021), electric bicycles (Ji et al., 2012b; McQueen et al., 2020a), electric motorcycles (Hsu and Wang, 2016a), and e-scooters (de Bortoli and Christoforou, 2020; Ehrenberger et al., 2022; Gebhardt et al., 2022; Weschke et al., 2022; Chien et al., 2023) in reducing carbon emissions from urban transportation, and the extent of carbon emission reduction from urban public transportation with the completion of electrification or the use of biofuels (Pereira et al., 2017a), etc. Notably, highly developed public transportation cities like Tokyo, Seoul, and Paris account for less than 20% of transportation carbon emissions, while Rotterdam, where bicycle travel is prevalent, only contributes to 4.8% of transportation carbon emissions. This evidence underscores the importance of promoting and guiding low-carbon travel among urban residents as a key strategy for controlling urban transportation carbon emissions.
Numerous studies have shown that walking, cycling or public transport travel has a positive effect on reducing the city’s overall carbon emissions (Patalas-Maliszewska and Losyk, 2020; Chen et al., 2023; Di Martino et al., 2024), so investigating the urban spatial structure conducive to low-carbon travel has emerged as a prominent area of research interest (Stojanovski, 2019; Su et al., 2023; Zhao et al., 2023). Moreover, the promotion and utilization of new vehicle types and alternative transportation energy in recent years have garnered attention for their positive contributions to carbon emission reduction in urban transportation systems. For example, bicycle sharing (Kou et al., 2020b; D’Almeida et al., 2021b; Wang S. et al., 2021; Liu et al., 2024), electric bicycles (Ji et al., 2012a; McQueen et al., 2020b), and electric motorcycles (Hsu and Wang, 2016b) in reducing carbon emissions from urban transportation, and the extent of carbon emission reduction from urban public transportation with the completion of electrification (Hou et al., 2023; Cai et al., 2024) or the use of biofuels (Pereira et al., 2017b), etc. Methodological advancements of dynamic traffic assignment methods in the application of environmentally sustainable road transport. The research findings indicate that dynamic traffic assignment methods can effectively assess carbon emissions in urban traffic and provide a scientific basis for policy formulation (Wang et al., 2018).
Connection, detour and transfer in urban transportation
The willingness of urban residents to use public transportation is directly influenced by connection, detour, and transfer factors. Efficient connections are crucial for optimizing the “last mile” of urban public transportation operations, while excessive detours and transfers significantly impact the efficiency and user experience of public transportation travel. Empirical research on typical connection, detour, and transfer issues is presented in Supplementary Table S1, and the progress in research on these three aspects is discussed below.
Connection
The establishment of an efficient transportation connection system can facilitate the transition of residents from private to public modes of travel, thereby reducing the operational costs of urban transportation (Almasi et al., 2016). The concept of the “last mile” has been extensively discussed in transportation connection studies, highlighting the importance of effectively transporting urban commuters to public transportation arteries. Currently, the connection of urban railway systems is a prominent area of research, and the convenience of connection is one of the core indicators in the applicability evaluation of urban railway system (Bajaj and Singh, 2021). The feeder bus plays a pivotal role in connecting urban rail trains, the accessibility and operational tatus of feeder bus services directly impact the overall accessibility of urban railway systems (Tang and Du, 2020; Saiyad et al., 2022), thus the demand (Pan et al., 2015; Zhu et al., 2017) and dispatch (Deng et al., 2013; Jiang et al., 2020; Yang et al., 2022) of feeder bus are crucial for the research, which can provide the basis for the route planning of feeder buses. In addition, the role of shared bicycles and taxis in transportation connection has also garnered attention, relevant research primarily focuses on the influence of social and environmental factors on their usage patterns (Ni and Chen, 2020; Zhao et al., 2022) and the synergistic effects of different connection tools (Zgheib et al., 2020). The urban transportation planning and construction of the “last mile” significantly impact the reduction of traffic congestion and carbon emissions, thereby enhancing the sustainability of urban transportation (Campisi et al., 2023).
Detour
Research on urban transportation detours primarily focuses on road network analysis and solution strategies related to detours. Identifying the shortest routes (Fei and Guo-Ping, 2011; Nutanong et al., 2012; Abdelghany et al., 2016) that avoid excessive detours and comparing the detour strength of different travel modes (Lee and Kim, 2015; Meeder and Weidmann, 2018; Costa et al., 2021) is the research focus in this field. In addition, studies based on various big data such as vehicle trajectories and GPS positioning have found that travel distance, road type, and architectural environment may have an impact on the regional distribution of detour strength in cities (Winters et al., 2010; Yang et al., 2018). For strategy, major studies focus on the detour control during the carpooling of online car-hailing. In this regard, matching algorithms, prospect theory, and evolutionary game models (Zhang et al., 2016; Zhang et al., 2018 W.) are used to analyze the optimal strategy selection of drivers in the carpooling process, and passengers are advised to get on and off at an alternative meeting point in the shared route (Aliari and Haghani, 2023), thereby reducing the detour strength and improving passenger matching during online carpooling.
Transfer
Research on urban transportation transfers primarily focuses on identifying various factors that lead to transfer obstacles within multimodal transportation systems and proposing corresponding solutions. The macro-level factors mainly include station location (Roquel et al., 2021; Chen et al., 2022), social economy (Wu et al., 2022a), building environment (Gan et al., 2021; Liu et al., 2022; Wu et al., 2022a), and transportation mode (Gan et al., 2021), and the key micro-level factors include waiting time and walking distance for transfers (Navarrete and Ortúzar, 2013; Hernandez and Monzon, 2016; Yang et al., 2020). Moreover, the psychological state of passengers during the transfer process was also included in the research (Navarrete and Ortúzar, 2013; Hernandez and Monzon, 2016; Espino and Roman, 2020). In recent years, the widespread use of smart cards in urban public transportation has made transfer issues based on smart card big data a current research focus (Chia et al., 2020; Hussain et al., 2021), the negative effect evaluation and sensitivity analysis of transfer penalties (Yang et al., 2020; Ye et al., 2023) have also gained increased attention. In terms of strategies, some researchers have developed optimization models for urban public transportation networks that aim to reduce the number of transfers (Wang C. et al., 2020; Owais et al., 2021a) and minimize waiting time (Takamatsu and Taguchi, 2020; Wu et al., 2022b), to enhance the connectivity of the urban transportation system (Owais et al., 2021b), and have also developed the public transportation passenger assistance system to address transfer obstacles such as vehicle congestion, missed connection, inconvenient luggage transport (Faulhaber et al., 2022) and so on, thereby enhancing the attractiveness of public transportation to city residents. Therefore, addressing the challenges and obstacles brought about by the transition to connecting corridors through intelligent transportation systems and resilient planning will enhance the sustainability and resilience of urban traffic (Campisi et al., 2021).
Travel mode transformation of urban residents
Supplementary Table S2 presents empirical studies on travel mode transformation, the impact of specific travel environments on residents’ willingness to travel has received major attention, including some extreme environments such as disastrous weather (Stamos et al., 2015; Caprì et al., 2016; Zhang and Li, 2022), floods (Morelli and Cunha, 2021), road damage (Azolin et al., 2020a), or energy constraints (Krumdieck et al., 2010). Consequently, researchers focus on examining how residents’ travel modes change under specific conditions and analyze the factors and characteristics influencing this transformation. For instance, in recent years, the COVID-19 pandemic has led many urban residents to shift from public transportation travel to driving or non-motorized travel, subjective and objective factors such as urban location, socio-economic, travel psychology, and travel behavior are considered to have an impact on the travel mode transformation under the COVID-19 pandemic, and it has been verified in Bangladesh, Belgium, Thailand, Australia and many other countries in the world (Currie et al., 2021; Hook et al., 2021; Zafri et al., 2022; Zubair et al., 2022; Ciuffini et al., 2021). In addition, in order to alleviate urban traffic congestion and air pollution while reducing greenhouse gas emissions (Bagheri et al., 2020; Liu et al., 2020; Mocanu et al., 2021; Ramakrishnan et al., 2021), many places in the world have introduced targeted incentive policies, positive measures such as “car sharing” services (Fuller et al., 2013; Gao et al., 2019; Diana and Ceccato, 2022) or “public transport priority” programs (Wang et al., 2013; Ding and Zhang, 2017; Asitha and Khoo, 2020), etc., negative measures such as private car congestion charges (Li Y. et al., 2019) and private driving restrictions (Zhang et al., 2017), etc. Many studies have examined the transformation characteristics from driving to public transportation or non-motorized travel under the influence of these incentives, and the research areas include Germany, Italy, Finland, Canada, India, China, Malaysia, etc. In general, the built environment (Heinen et al., 2017; Barnett et al., 2019), residential location (Hu and Schneider, 2015), population characteristics (Gao and Sun, 2018; Venkadavarahan and Marisamynathan, 2022), social psychology (Venkadavarahan and Marisamynathan, 2022), transportation layout (Gao and Sun, 2018), and working system (Gao and Sun, 2018) are often considered impact factors in the study of travel mode transformation, while the restrictive conditions include short-distance traffic, travel environment change, transportation facility activation, traffic interruption, and safety hazard upgrade, etc.
Some researchers have also considered the residents’ travel mode transformation in the construction of urban transportation resilience evaluation systems. In this regard, Martins et al. (2019a) proposed the concept of “maximum possible distance” and used it as the critical distance for the transformation between walking, cycling and motorized travel, so that the proportion of non-motorized travel under restrictive conditions was used as the primary criterion for evaluating the city’s inherent transportation resilience. This study is also based on the premise of travel mode transformation in the variation process in the acceptable strength thresholds of urban residents for public transportation connection, detour, and transfer, dynamically judges the number of people with low-carbon travel potential. To achieve this, a series of scenarios combining these thresholds are constructed. Subsequently, the urban transportation carbon reduction potential is calculated for each scenario, and the variation trends in these values in relation to the connection, detour, and transfer thresholds are analyzed. Furthermore, this study identifies the zone where the urban transportation carbon reduction potential can be rapidly unlocked. Azolin et al. (2020b) considered the conversion of car travel to non-motorized or public transportation during destructive events, thus analyzed the contribution of urban public transportation systems and evaluated the overall transportation resilience of the city. Martins et al. used distance as a penalty factor influencing residents’ willingness to use non-motorized modes, and based on this, our study further introduced the penalty factors of connection, detour, and transfer influencing residents’ willingness to use public transportation. According to this, we have developed a transportation carbon reduction potential evaluation system based on the premise of the travel mode shift in the changing process of urban residents’ acceptable strength threshold in public transportation connections, detours, and transfers.
DATA AND METHODOLOGY
Data collection for Wuhan
This study takes Wuhan City as the object, which is located in the central region of China and is the capital of Hubei Province with a permanent population of more than 13 million (Wuhan, 2024). Wuhan is known as the “River City” as it is situated along the Yangtze River and its major tributary, the Han River, which divide the city into three regions: Hankou, Wuchang, and Hanyang. Being a city with the highest demand for cross-river transportation in China, Wuhan witnessed the completion and opening of the first Yangtze River bridge in 1957. By the end of 2024, as many as thirteen Yangtze River Bridges and ten Han River Bridges have been completed or are under construction in Wuhan. Additionally, there are two vehicle tunnels and four subway tunnels that traverse the Yangtze River. Therefore, Wuhan serves as an appropriate example for evaluating the carbon reduction potential in urban cross-river transportation.
In order to gather data on the travel characteristics of residents in Wuhan, a questionnaire survey was employed in this study. The survey was conducted between 2023 and 2024, resulting in a total of 10,327 valid questionnaires collected via online surveys. The survey content encompassed various aspects, including respondents’ daily travel modes, OD (Origin-Destination) coordinates, gender, age, income level, and more. Among the respondents, 2,152 individuals (20.84% of the total survey participants) reported traveling across the river. Respondents in this survey were mainly located in seven central districts of Wuhan, including Jiang’an District, Jianghan District, Qiaokou District, Hanyang District, Wuchang District, Qingshan District, and Hongshan District, and some respondents were located in distant districts. In the calculation of OD distance and related connection, detour, and transfer strength, although dividing the city into traffic analysis zones (TAZs) and assigning all OD points to a central point in their TAZs helps to simplify the calculation significantly (Martins et al., 2019b; Azolin et al., 2020a; Wang et al., 2022), it may lead to large deviations from the actual results, so all calculated points in this study are actual OD points.
Calculation of connection, detour, and transfer strength
In this study, the connection strength is defined as the non-vehicle distance in the whole journey of public transportation travel between the origin and destination, represented as [image: It seems like the image did not upload correctly. Please try uploading the image again, and optionally, you can add a caption for additional context.]. The detour strength is defined as the ratio of the shortest path distance for public transportation travel to the shortest path distance for driving travel between the origin and destination, represented as [image: Please upload the image or provide a URL for me to generate the alternate text.]. The transfer strength is defined as the number of transfers for public transportation travel between the origin and destination, represented as [image: Please upload the image or provide a URL for it, and I will generate the alternate text for you.]. The acceptability of connection distance for urban residents does not exhibit a linear relationship with the total travel distance. For instance, while a passenger may accept a 1 km distance when the total travel distance is 3 km, it does not imply that the passenger would accept a 10 km distance when the total travel distance is 30 km. Therefore, the formula for calculating the connection strength can be expressed as Equation 1:
[image: Equation depicting a summation: \( S_c = D_i + D_j + \sum_{{i=1}}^{n} DT_i \), labeled as equation (1).]
where [image: Please upload the image you'd like me to generate alt text for.] represents the connection strength of public transportation travel between points [image: Please upload the image or provide a URL so I can generate the appropriate alt text for it.] and [image: Please upload the image or provide a URL so I can generate the alt text for you.], unit is km, [image: It seems there's no image uploaded. Please try uploading the image again or provide a URL if it's hosted online. Optionally, you can add a caption for additional context.] represents the non-motorized travel distance from the departure point [image: Please upload the image or provide a URL, and I will help you generate the alternate text for it.] to the departure station, [image: Certainly! Please upload the image or provide a URL so I can generate the alternate text for it.] represents the non-motorized travel distance from the arrival station to the arrival point [image: Please upload the image or provide a URL so I can help generate the alt text for it.], [image: It seems there was an error with displaying the image. Please upload the image or provide a URL, and I can help generate the alternate text for it.] represents the non-motorized travel distance during the ith transfer process, and [image: Please upload the image or provide a URL to it, and I can help generate the alternative text for you.] represents the number of transfers.
There is a correlation between the detour distance that urban residents can accept and the total travel distance, passengers with a total travel distance of 10 km are often willing to accept a detour distance of 3 km, but passengers with a total travel distance of only 1 km obviously cannot accept a detour distance of 3 km. In addition, for the calculation of detour strength, if only the ratio of the shortest path distance to the Euclidean distance between two points is considered, in most cases the shorter the travel distance, the higher the detour strength (Yang et al., 2018), so it is impossible to truly quantify the detour degree of public transportation travel compared with driving travel. Therefore, it is more appropriate to define the detour strength as the ratio of the shortest path distance of public transportation travel to the shortest path distance of driving travel, the calculation formula can be expressed as Equation 2:
[image: The formula shown is \( S_{ij} = DP_{ij} / DC_{ij} \), labeled as equation (2).]
where [image: It seems there was an error with the image upload. Please try uploading the image again or provide a URL. Optionally, you can add a caption for more context.] represents the detour strength of public transportation travel between points [image: It seems there is a problem with the image upload. Could you please try uploading the image again, or provide a description or context if possible?] and [image: It seems like there was an error in uploading the image. Please try uploading it again, and I'll help generate the alternate text for you.], [image: Please upload the image or provide a URL so I can generate the alternate text for you.] represents the shortest path distance of public transportation travel between points [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] and [image: Please upload the image or provide a link to it so I can help generate the alternate text for you.], [image: Please upload the image or provide a URL for me to generate the alternate text.] represents the shortest path distance of driving travel between points [image: Please upload the image or provide a URL so I can generate the alt text for you.] and [image: Please upload the image you'd like me to generate alt text for. If you need assistance with uploading, let me know!], so the larger the value of [image: Please upload the image or provide a URL so I can generate the alternate text for you.], the higher the degree of detour of public transportation travel compared with driving travel between points [image: Please upload the image or provide a URL for me to generate the alternate text.] and [image: Please upload the image so I can help generate the alt text for it.].
The number of transfers and the non-motorized travel distance during the transfer process directly impact the acceptance of public transportation travel by residents. The consideration of the non-motorized travel distance has already been incorporated into the calculation Equation (1) for connection strength, so the calculation formula for transfer strength can be expressed as Equation 3:
[image: Mathematical formula displayed: \( S_t = T N_{ij} \), labeled as equation three.]
where [image: Please upload the image or provide a URL for me to generate the alternate text.] represents the transfer strength of public transportation travel between points [image: Please upload the image or provide a URL so I can generate the alternate text for you.] and [image: Please upload the image or provide a URL so I can generate the alternate text for it.], [image: Sure, please upload the image or provide a URL so I can generate the alternate text for it.] represents the number of transfers by public transportation travel between points [image: Please upload an image or provide a URL so I can generate the alternate text for you.] and [image: It seems there's no image attached. Please upload the image or provide a URL, and I'll help generate the alt text for it.], [image: Please upload the image or provide the URL, and I can help generate the alternate text for you.] is 0 if there is no transfer, so [image: Please upload the image you would like described, and I will generate the alt text for you.] is an integer greater than or equal to 0.
Travel mode classification
Objective factors such as travel necessity (Krumdieck et al., 2010) and external environmental impact (Stamos et al., 2015; Caprì et al., 2016) are the basis for the classification of urban residents’ travel modes. Martins et al. (2019b) and Wang et al. (2022) categorized modes based on residents’ willingness distance for non-motorized travel, this study considers that residents’ willingness of public transportation travel may be affected by connection, detour, and transfer, and defines thresholds for [image: Please upload the image or provide a URL so I can generate the alternate text for you.], [image: If you could provide the image by uploading it or sharing a link, I would be happy to help generate the alternate text for you.] and [image: Please upload the image or provide a URL so I can generate the alternate text for it.] mentioned above respectively to describe the maximum connection, detour, and transfer strength that urban residents are willing to accept in public transportation travel, represents as MCS (Maximum Connection Strength), MDS (Maximum Detour Strength) and MTS (Maximum Transfer Strength). This study assumes that residents are inclined to utilize public transportation when the actual connection, detour, and transfer strength do not exceed their respective thresholds. Conversely, if any of these strengths surpass their corresponding threshold, residents are reluctant to opt for public transportation. Additionally, Section 1 of this paper defines non-motorized travel, such as walking and cycling, as well as public transportation travel, as low-carbon mode, while driving travel is classified as non-low-carbon mode. Consequently, the travel modes of urban residents can be classified into four categories: active low-carbon travel, passive low-carbon travel, non-convertible non-low-carbon travel, and convertible non-low-carbon travel (Figure 4).
[image: Diagram illustrating transportation modes based on carbon emissions and willingness to choose low-carbon options. Modes like walking and cycling are categorized as active low-carbon travel, while cars and buses are shown in passive and convertible non-low-carbon travel, with a bold arrow indicating increasing CO2 emissions.]FIGURE 4 | Four classifications of travel modes of urban residents.
Active low-carbon travel refers to situations where the strengths of connection, detour, and transfer in public transportation travel fall below the maximum acceptable thresholds, and residents deliberately opt for non-motorized or public transportation modes. Passive low-carbon travel occurs when one or more of the strengths related to connection, detour, or transfer in residents’ public transportation travel exceeds the maximum acceptable threshold. Despite this, residents still opt for non-motorized or public transportation modes, this choice could be influenced by factors such as high driving costs or other personal considerations. Consequently, their low-carbon travel becomes passive and may not align with their preferences. Non-convertible non-low-carbon travel refers to situations where the strengths of connection, detour, and transfer in public transportation travel are all below the maximum acceptable thresholds, yet residents still opt for driving travel. This choice indicates that the primary reason for not choosing low-carbon travel is not the inconvenience of public transportation, and the improvement of public transportation convenience alone will not lead to a transformation in travel mode. Therefore, this travel mode cannot be transformed when only the improvement of public transportation travel conditions. Convertible non-low-carbon travel refers to situations where at least one of the strengths of connection, detour, and transfer in public transportation travel exceeds the maximum acceptable threshold, and residents opt for driving travel. In such cases, improvements in public transportation travel conditions may result in a transformation of travel mode for some residents towards low-carbon travel.
As mentioned above, only the travel mode categorized as convertible non-low-carbon has the potential to be transformed into low-carbon travel by improving public transportation travel conditions within the four travel modes. Therefore, this study introduces the concept of urban transportation carbon reduction potential, which represents the proportion of convertible non-low-carbon travelers to the total number of travelers. This measure reflects the potential scope for reducing carbon emissions in urban transportation by implementing relevant measures to enhance public transportation travel conditions.
Index calculation and evaluation system construction of urban transportation carbon reduction potential
The calculation formulas to determine the proportions of active low-carbon travelers, passive low-carbon travelers, non-convertible non-low-carbon travelers, and convertible non-low-carbon travelers among the total number of travelers are as Equations 4-7:
[image: Math formula shown: \( P_u = \frac{\text{card}(A)}{T} \times 100\% \).]
[image: The formula shown is \( P_p = \text{card}(P) / T \times 100\% \), labeled as equation (5).]
[image: The formula \( P_u = \text{card}(N) / T \times 100\% \) labeled as equation (6) calculates the percentage \( P_u \) based on the ratio of the cardinality of set \( N \) to \( T \), multiplied by one hundred percent.]
[image: The image contains a mathematical formula for probability: \( P_e = \text{card}(C)/T \times 100\% \), labeled as equation (7).]
where [image: Please upload the image or provide a URL for me to generate the alternate text.] represents the proportion of the number of active low-carbon travelers in the total number of travelers, [image: Please upload the image or provide a URL, and I will generate the alt text for you.] represents the proportion of the number of passive low-carbon travelers in the total number of travelers, [image: Please upload the image or provide its URL so I can generate the alternate text for you.] represents the proportion of the number of non-convertible non-low-carbon travelers in the total number of travelers, [image: If you'd like me to generate alt text, please upload the image or provide a URL. You can also add a caption for additional context.] represents the proportion of the number of convertible non-low-carbon travelers in the total number of travelers, [image: Please upload the image or provide a URL for me to generate the alternate text.] represents the total number of samples. [image: It seems like there was an issue with the image you tried to upload. Please try again by ensuring the image file is properly attached. You can also provide a brief description or caption for context.] is the sample set of active low-carbon travel, in which each sample satisfies [image: Mathematical expression showing \( S_c \leq MCS \).] and [image: Mathematical expression stating \( S_d \leq \text{MDS} \).] and [image: The expression "S subscript t is less than or equal to MTS" is shown.], and the travel mode is non-motorized travel or public transportation travel. [image: It seems there was an issue with the image upload or description. Please try uploading the image again or provide a URL if it is hosted online. You can also include a brief caption for additional context.] is the sample set of passive low-carbon travel, in which each sample satisfies [image: The image shows a mathematical expression: \( S_c > MCS \).] or [image: The text "S subscript d greater than MDS" is displayed in a mathematical format.] or [image: The image displays a mathematical expression: \( S_t > MTS \).], and the travel mode is non-motorized travel or public transportation travel. [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] is the sample set of non-convertible non-low-carbon travel, in which each sample satisfies [image: Mathematical expression showing \( S_c \leq MCS \).] and [image: The inequality expression displays "S sub d is less than or equal to MDS".] and [image: Mathematical expression reads "S subscript t is less than or equal to M T S."], and the travel mode is driving travel. [image: It seems like there was an issue with the image upload. Please try to upload the image again, and I will be happy to help generate the alternate text for it.] is the sample set of convertible non-low-carbon travel, in which each sample satisfies [image: Equation depicting a condition: \( S_c > MCS \).] or [image: The image contains a mathematical expression with the variables \( S_d \) and \( MDS \), where \( S_d \) is greater than \( MDS \).] or [image: Equation with the variable \( S_t \) greater than the expression \( MTS \).], and the travel mode is driving travel. According to Section 3.3 of this paper, the proportion of convertible non-low-carbon travelers in the total number of travelers is defined as the urban transportation carbon reduction potential, so the value of [image: Please upload the image you would like me to generate alternate text for.] is the value of urban transportation carbon reduction potential.
To further analyze the variation trend of urban transportation carbon reduction potential with MCS, MDS and MTS values, and identify the rapid unlocking zone of this potential along with its corresponding key threshold, a series of combined scenarios were constructed. These scenarios were created by varying the MCS, MDS, and MTS values, the MCS value ranged from 0 to 5.0 with an increment of 0.1, the MDS value ranged from 0.50 to 3.00 with an increment of 0.05, while the MTS value ranged from 0 to 4 with an increment of 1. Each combined scenario was assigned a unique name and number. For instance, C0.5D1.50T1 represented a scenario with an MCS value of 0.5, an MDS value of 1.50, and an MTS value of 1. In total, this study constructed 13,005 combined scenarios, the starting scenario, denoted as C0D0.50T0, was numbered 1, while the ending scenario, denoted as C5.0D3.00T4, was numbered 13,005 (Table 1).
TABLE 1 | Combined scenarios constructed based on differences in MCS, MDS, and MTS values.
[image: Table showing combined scenarios for MCS, MDS, and MTS values. MDS ranges from 0.50 to 3.00, and MTS from 0 to 4. Examples include values like 1 to 13,005, explaining combinations like MCS at 0.1 with MDS 2.90 and MTS 4. Descriptive notes detail the scenario numbering and value steps.]After constructing a total of 13,005 combined scenarios, the 10,327 OD survey samples were divided into two groups: a river-crossing sample group and a non-river-crossing sample group. Based on the Baidu Maps API, the optimal public transportation and driving routes for all samples were obtained, and then the [image: Please upload the image, and I will help generate the alternate text for it.], [image: Please upload the image or provide a URL, and I'll be glad to help generate the alternate text for it.] and [image: Please upload the image so I can help generate the appropriate alt text for it.] values for all samples in the public transportation mode were calculated individually through a self-compiled program. Subsequently, [image: Please upload the image or provide a URL for me to generate the alt text.], [image: Please upload the image you would like me to generate alt text for. You can add a caption for additional context if needed.], [image: Please upload the image or provide a URL so I can generate the alt text for you.] and [image: Please upload the image you would like described or provide a URL to it.] values were calculated for each of the 13,005 combined scenarios, considering the actual travel modes reported by the respondents. Samples that were unable to travel by public transportation were categorized as active low-carbon travel when the respondents reported walking or cycling as their actual travel mode. Conversely, these samples were classified as non-convertible non-low-carbon travel if the actual travel mode reported by the respondents was driving.
In addition, regarding the issue raised by the reviewer that the subway and traditional public transit systems are considered as two different networks in public transportation, this study, based on the Baidu Map API, comprehensively considers the different transfer distances, waiting times, and potential delays associated with subway and bus systems, and then derives the optimal travel solutions for evaluation. Therefore, it can be said that the Baidu Map API has already incorporated the subway and traditional public transit systems into a unified transportation network in the process of generating optimal travel solutions. The above represents our considerations on this matter, and we welcome any suggestions from the reviewer if there are any concerns. Following the completion of the aforementioned tasks, the calculated data was used to fit relationship curves between the urban transportation carbon reduction potential value and the MCS, MDS, and MTS values for both the river-crossing and non-river-crossing cases. The fitting formula was then derived, enabling a comprehensive comparison and analysis of the overall difference in urban transportation carbon reduction potential between the two cases. Lastly, an in-depth evaluation was conducted on the urban transportation carbon reduction potential of the primary river-crossing passages in Wuhan by considering the distribution of river-crossing traffic flow in each surveyed passage.
RESULTS AND DISCUSSION
Statistics on travel characteristics of Wuhan residents
Out of the 10,327 samples in this survey, 2,152 individuals (20.84% of all respondents) traveled across the river, signifying that approximately one-fifth of Wuhan residents require river crossings in their daily travel. Additionally, out of those, 1,757 individuals crossed the Yangtze River, accounting for 81.6% of all respondents, or approximately four-fifths, while only 395 individuals crossed the Han River, representing 18.4% or approximately one-fifth of the total. The demand for river crossings in Wuhan is predominantly focused on the Yangtze River due to historical reasons. Hankou, Wuchang, and Hanyang were independent cities in the past, resulting in comparable development levels on both sides of the Yangtze River and a significant need for commuting across it. Consequently, this has led to heightened traffic congestion on the river, distinguishing it from cities like Shanghai and Nanjing, which are situated along the Yangtze River but are primarily developed on one side.
Analysis of travel characteristics depicted in Figure 5 reveals that the majority of OD distances for non-river-crossing travel are typically under 10 km. Specifically, 26.43% of the samples fall within the 2 km range, while 45.86% fall within the 4 km range. In contrast, river-crossing travel entails considerably greater OD distances, primarily concentrated within the 10–30 km range, with a sample size accounting for 70.38%. Consequently, out of the respondents, only 11.5% utilized non-motorized vehicles to cross the river, 18.8% used cars, and 69.7% relied on public transportation. In contrast, when not crossing the river, 40.4% of the respondents traveled by non-motorized vehicles, 20.4% by car, and another 39.2% by public transportation (Figure 6). It can be seen that public transportation travel is the most important mode for Wuhan residents to travel, and traveling across river is especially dependent on public transportation.
[image: Two histograms compare OD distances: Panel A on the left shows a blue histogram with a higher frequency at shorter distances tapering off around 50 kilometers. Panel B on the right displays an orange histogram with a significant number peaking near zero kilometers, then decreasing sharply. Both charts have labeled axes with distance in kilometers.]FIGURE 5 | (A) OD distance distribution of river-crossing travel, (B) OD distance distribution of non-river-crossing travel.
[image: Stacked bar chart comparing travel modes for cross-river and non-cross-river travel. Cross-river travel: 69.7% public transportation, 18.8% driving, 11.5% non-motorized. Non-cross-river travel: 39.2% public transportation, 20.4% driving, 40.4% non-motorized.]FIGURE 6 | Comparison of the proportion of travel modes in the case of crossing river and non-crossing river.
Figure 7 illustrates the distribution of OD distances for river-crossing public transportation travel, exhibiting a notable concentration of samples within the 10–20 km range, accounting for 44.31% of the total. In contrast, the OD distance distribution for river-crossing driving travel displays greater dispersion, with no significant variation in sample distribution across the 10–40 km range. This suggests that public transportation may not offer an advantage over driving for long-distance river-crossing travel exceeding 20 km. In Figure 8, the OD distance distribution of non-river-crossing public transportation travel exhibits its highest concentration around 5 km, with 53.41% of samples falling within 10 km, this indicates that the distance of river-crossing public transportation travel in Wuhan is generally about 10 km longer than non-river-crossing public transportation travel, while non-river-crossing driving travel predominantly covers short distances within 10 km, with 73.97% of samples falling into this category.
[image: Two histograms compare origin-destination distances. Graph A shows a peak around 20 km with a decreasing trend. Graph B has a peak around 10 km, also decreasing. Both graphs plot the number of groups versus distance, with a fitted line overlaid.]FIGURE 7 | (A) OD distance distribution of river-crossing public transportation travel, (B) OD distance distribution of river-crossing driving travel.
[image: Two histograms labeled (A) and (B) show the distribution of OD distance in kilometers. Both graphs have a similar pattern, with a peak near zero distance, gradually decreasing as distance increases. The x-axis represents OD distance from zero to fifty kilometers, and the y-axis indicates frequency. Histogram (A) has a slightly higher peak compared to (B). Both display an orange color with a curve fitted on top.]FIGURE 8 | (A) OD distance distribution of non-river-crossing public transportation travel, (B) OD distance distribution of non-river-crossing driving travel.
As shown in Figure 9, the [image: It seems like there might have been an issue with uploading the image. Please try uploading the image again or provide a URL. If you have any specific context or details about the image, feel free to include them.] values of river-crossing public transportation travel are mainly distributed between 1.0 and 2.5 km, the number of samples accounts for 75.57%, and the number of samples of non-river-crossing public transportation travel with the [image: It seems there's an issue with the image upload. Please ensure the image is attached or provide a URL. If there's a caption, you can include it for additional context.] values between 1.0 and 2.5 km accounts for 70.72%, thus the distribution characteristics of the two are generally similar, which shows that although the distance of river-crossing public transportation travel is longer than that of non-river-crossing public transportation travel, it does not lead to a significant increase in the connecting distance.
[image: Two histograms comparing concrete strength and frequency. Chart A on the left is blue with a bell curve overlaid, showing a higher concentration around 1.5 to 2.0 SL. Chart B on the right is orange with a similar distribution but higher frequencies, peaking around 2.0 to 2.5 SL.]FIGURE 9 | (A) The distribution of [image: Please upload the image or provide a URL for the image you would like me to generate alternate text for.] values of river-crossing public transportation travel, (B) The distribution of [image: Please upload the image or provide a link to it, and I will generate the alternate text for you.] values of non-river-crossing public transportation travel.
As shown in Figure 10, the [image: Please upload the image, and I will be happy to help create the alt text for it.] values of river-crossing public transportation travel are mainly distributed between 0.9 and 1.3, but [image: Please upload the image or provide a URL, and I will generate the alt text for it.] values of non-river-crossing public transportation travel are mainly distributed between 1.0 and 1.5, and the number of samples with the [image: Please upload the image you want me to describe. If there is no image uploaded, I am unable to generate alternate text.] values between 1.5 and 3.0 also accounts for 27.82%. Compared with non-river-crossing public transportation travel, the overall detour strength of river-crossing public transportation travel is lower, even the [image: Please upload the image or provide a URL, and I will help you generate the alternate text for it.] values of 17.33% of the samples are lower than 1.0, which means that public transportation travel is shorter than driving travel for these samples. This discrepancy can be attributed to the presence of four subway lines that span the Yangtze River within Wuhan’s urban area, effectively reducing detour distances for river-crossing public transportation travel, which is not available for river-crossing driving travel.
[image: Two histograms compare detour strength distributions. Chart A, in blue, shows a peak around 1.0 detour strength. Chart B, in orange, peaks slightly higher, around 1.5. Both have similar skewed right distributions.]FIGURE 10 | (A) The distribution of [image: A lowercase 's' with a subscript 'd' in a stylized font, possibly used to indicate a specific type of variable or parameter in scientific or mathematical contexts.] values of river-crossing public transportation travel, (B) The distribution of [image: Please upload the image or provide a URL so I can generate the alternate text for you.] values of non-river-crossing public transportation travel.
As shown in Figure 11, the [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.] values of river-crossing public transportation travel are mainly 1 and 2, the number of samples accounts for 79.55%, while the [image: Please upload the image or provide a URL so I can generate the appropriate alt text.] values of non-river-crossing public transportation travel are mainly 0 and 1, the number of samples accounts for 79.87%. The data clearly shows a significant disparity in the number of transfers between river-crossing and non-river-crossing public transportation travel, only 9.09% of respondents can complete trips across the river without transferring, while a substantial 38.27% of respondents do not require transfers during non-river-crossing public transportation trips. This difference can be attributed to the longer distances typically associated with river-crossing public transportation travel, making it challenging to complete the journey without transfers.
[image: Two bar charts compare the number of edges versus transfer strength. Chart A uses blue bars with a distribution curve, showing varying frequencies across strengths zero to four. Chart B uses orange bars with a similar curve, showing a different frequency distribution across the same range.]FIGURE 11 | (A) The distribution of [image: Please upload the image or provide a URL so I can generate the alternate text for it.] values of river-crossing public transportation travel, (B) The distribution of [image: Please upload the image or provide a URL for me to generate the alternate text. If you have any additional context or a caption, feel free to include it.] values of non-river-crossing public transportation travel.
Evaluation and comparison of cross-river transportation carbon reduction potential in Wuhan
The urban transportation carbon reduction potential was determined by individually calculating all survey samples across 13,005 combined scenarios. Table 2 presents the calculation results for cross-river transportation, which consists of 2,152 samples. Similarly, Table 3 displays the calculation results for non-cross-river transportation, comprising 8,175 samples. The [image: It seems you've included some mathematical symbols or a reference to an equation. Please upload the image, and I can generate the appropriate alt text for you.] values in Table 2 represent the urban transportation carbon reduction potential in each scenario.
TABLE 2 | The values of cross-river transportation carbon reduction potential in combined scenarios.
[image: Table listing different scenarios with columns for scenario number, MCS, MDS, MTS, and \( P_c \). Scenario numbers range from 1 to 13005. MCS, MDS, and MTS show various numerical values, while \( P_c \) is expressed as percentages, decreasing from 18.69% in initial scenarios to 0.75% in later ones.]TABLE 3 | The values of non-cross-river transportation carbon reduction potential in combined scenarios.
[image: A table displays data for various scenarios, with columns labeled as Scenario Number, MCS, MDS, MTS, and \(P_c\). Scenario numbers range from 1 to 13005. MCS, MDS, and MTS have values varying across scenarios, with percentages shown in the \(P_c\) column. Notable percentages include 15.21%, 15.09%, and lower values such as 0.22%.]In order to further determine the relationship function between the urban transportation carbon reduction potential and MCS, MDS and MTS, taking MCS, MDS and MTS as independent variables respectively, as well as the effect of degradation due to interference from the other two variables is not considered and defaulting them to the maximum value, and then the relationship curve is plotted with the value of [image: It seems there's an issue with the image upload or link. Please try uploading the image again or provide a URL. If you have a caption or any additional context, feel free to include it.] as the dependent variable. To compare the differences between the above relationship curves for the case of crossing river and the case of non-crossing river scenarios, separate curves were plotted for cross-river transportation and non-cross-river transportation. These curves were superimposed on the same coordinate system, the resulting relationship curves between the urban transportation carbon reduction potential of Wuhan and MCS, MDS, and MTS are shown in Figures 12A–C, respectively.
[image: Three line graphs labeled (A), (B), and (C) show carbon reduction potential percentages on the y-axis against differing measurement scales on the x-axis. Each graph compares actual, cross-river travel, and non-cross-river travel reductions. Graph (A) shows a steep decline for cross-river travel. Graph (B) indicates a leveling off pattern. Graph (C) presents a steady downward trend.]FIGURE 12 | (A) The relationship curve between urban transportation carbon reduction potential and MCS in Wuhan, (B) The relationship curve between urban transportation carbon reduction potential and MDS in Wuhan, (C) The relationship curve between urban transportation carbon reduction potential and MTS in Wuhan.
The curves shown in Figure 12 are fitted by the four-parameter logistic fit algorithm, resulting in the inverse “S”-shaped curves shown in Figure 13, the R2 of these three fitting curves are all greater than 0.99, showing a high degree of fitting, and the fitting results are shown in Supplementary Table S3. The inverse “S”-shaped fitting curve shows that the urban transportation carbon reduction potential of Wuhan can be divided into three parts: the stable zone (slow unlocking), the unlocking zone (rapid unlocking) and the re-stable zone (slow unlocking) (Figure 14). The unlocking zone is crucial, within this zone, as MCS, MDS, and MTS values increase, the rate of decrease in [image: Please upload an image or provide its URL, and I would be happy to generate the alternate text for you. If you want assistance with a specific aspect of an image, feel free to include that information as well.] is greater compared to the stable zone and re-stable zone, this indicates a faster growth in the number of individuals transitioning from non-low-carbon travel to low-carbon travel, ultimately leading to a rapid unlocking of the urban transportation carbon reduction potential in this zone.
[image: Three line graphs labeled A, B, and C show carbon reduction potential as a percentage against the actual range. Graph A (MCS), Graph B (MDS), and Graph C (MTS) each depict two curves: one for cross-river travel and another for non-cross-river travel. Graph A and C show a steep initial decline for non-cross-river travel, while Graph B shows a similar trend for cross-river travel. Data points highlight specific values on each curve.]FIGURE 13 | (A) The fitting curve of the relationship between urban transportation carbon reduction potential and MCS in Wuhan, (B) The fitting curve of the relationship between urban transportation carbon reduction potential and MDS in Wuhan, (C) The fitting curve of the relationship between urban transportation carbon reduction potential and MTS in Wuhan.
[image: Graph illustrating carbon reduction potential, showing a downward curve across three zones: Stable Zone (initial high), Unlocking Zone (steeper decline), and Re-stable Zone (leveling off). Horizontal axis represents MCS/MDS/MTS stages.]FIGURE 14 | Three zones of the process of Wuhan’s transportation carbon reduction potential variation with MCS, MDS and MTS.
After derivation, the fitting process in Figure 13 can be expressed as Equations 8:
[image: Equation labeled as eight shows \(P_c\) equals \((A_1 - A_2) / (1 + (x/x_0)^p) + A_2\).]
where [image: Please upload the image or provide a URL for me to generate the alt text.] is the corresponding carbon reduction potential value when the independent variable is close to 0, and [image: Please upload the image you'd like me to generate alt text for.] is the corresponding carbon reduction potential value when the independent variable is close to infinity, [image: Please upload the image you would like me to generate alt text for.] is the MCS, MDS or MTS value corresponding to the fastest descending point of the fitting curve (i.e., the curve inflection point), and [image: It looks like there might have been an error with the image upload. Please try uploading the image again or provide a URL if available. Let me know if you have any questions!] is the slope of the curve at [image: Certainly! Please upload the image or provide a URL for me to help generate the alternate text.].
According to Figure 13A, the urban cross-river transportation carbon reduction potential in Wuhan is consistently higher than that of non-cross-river transportation, regardless of variations in the MCS value. The starting and ending points of the carbon reduction potential unlocking zone for cross-river transportation have greater MCS values compared to the starting and ending points of the unlocking zone for non-cross-river transportation. Specifically, the unlocking zone for urban cross-river transportation carbon reduction potential is observed between MCS = 1.05 km and MCS = 2.14 km, with corresponding carbon reduction potential values of 17.12% and 6.92% respectively. On the other hand, the unlocking zone for urban non-cross-river transportation carbon reduction potential is situated between MCS = 0.86 km and MCS = 1.99 km, with corresponding carbon reduction potential values of 13.76% and 5.32% respectively. These findings indicate that the urban cross-river transportation carbon reduction potential in Wuhan can be rapidly unlocked when the maximum acceptable public transportation connection strength for residents reaches 1.05 km. However, beyond an acceptable public transportation connection strength of 2.14 km, the unlocking of the urban cross-river transportation carbon reduction potential in Wuhan becomes less significant. To effectively unlock the urban cross-river transportation carbon reduction potential, measures should be implemented to encourage residents to accept higher connection strengths in public transportation compared to non-cross-river transportation.
According to Figure 13B, with the increase of MDS value, the carbon reduction potential of cross-river transportation is higher than that of non-cross-river transportation in the stable zone in Wuhan, but the value of carbon reduction potential of cross-river transportation decreases rapidly in the unlocking zone, and is generally lower than that of non-cross-river transportation, until the carbon reduction potential of cross-river transportation in the re-stable zone is higher again than that of non-cross-river transportation. Different from Figure 13A, in the fitting curve of Figure 13B, the MDS values of the starting and ending points of the carbon reduction potential unlocking zone of cross-river transportation are all smaller than those of non-cross-river transportation, of which the unlocking zone of urban cross-river transportation carbon reduction potential is located between MDS = 0.99 and MDS = 1.29, and the corresponding carbon reduction potential values are 15.97% and 5.71% respectively, the unlocking zone of urban non-cross-river transportation carbon reduction potential is located between MDS = 1.04 and MDS = 1.48, and the corresponding carbon reduction potential values are 13.45% and 4.86% respectively. These findings indicate that the urban cross-river transportation carbon reduction potential in Wuhan will be rapidly unlocked when the maximum acceptable public transportation detour strength for residents reaches 0.99, until the maximum acceptable public transportation connection strength for residents exceeds 1.29, then the urban cross-river transportation carbon reduction potential in Wuhan will no longer be unlocked at a significant rate. Based on the aforementioned analysis, when the overall detour strength of public transportation in Wuhan decreases or the acceptable threshold of detour strength for residents increases, the carbon reduction potential of cross-river transportation is unlocked earlier compared to non-cross-river transportation. Moreover, due to the considerably higher reduction rate of carbon reduction potential in the unlocking zone for cross-river transportation compared to non-cross-river transportation, the efficiency of unlocking the carbon reduction potential of cross-river transportation may be higher when effective measures are implemented.
According to Figure 13C, the carbon reduction potential of urban cross-river transportation in Wuhan consistently surpasses that of non-cross-river transportation, regardless of variations in the MTS value. The unlocking zone for the carbon reduction potential of urban cross-river transportation is observed between MTS = 1.07 and MTS = 2.43, which corresponds to 1 and 3 transfers respectively. As the number of transfers must be a positive integer, the unlocking zone for the carbon reduction potential of urban cross-river transportation is adjusted to range from MTS = 1 to MTS = 3, with corresponding carbon reduction potential values of 17.29% and 3.11% respectively. Similarly, the unlocking zone for the carbon reduction potential of urban non-cross-river transportation is situated between MTS = 0.22 and MTS = 1.20, equivalent to 0 and 2 transfers, so the unlocking zone for the carbon reduction potential of urban non-cross-river transportation is adjusted to range from MTS = 0 to MTS = 2, with corresponding carbon reduction potential values of 15.21% and 2.63% respectively. Thus, there is no need to enforce zero transfers for river-crossing public transportation, because the difference in the value of cross-river transportation carbon reduction potential between 0-transfer and 1-transfer is only 1.34 percentage points, but when the number of transfers is 2, the value of cross-river transportation carbon reduction potential will drop by 7.75 percentage points, and when the number of transfers is 3, the value of cross-river transportation carbon reduction potential will continue to drop by 6.43 percentage points, so when residents’ maximum acceptable transfer strength for public transportation travel is increased from 1 to 3, the urban cross-river transportation carbon reduction potential in Wuhan will be unlocked at a quicker rate.
Based on the aforementioned information, MCS = 1.05, MDS = 0.99 and MTS = 1 are the initial critical values of the unlocking zone in the fitted curves shown in Figures 13A–C respectively, and MCS = 2.14, MDS = 1.29 and MTS = 3 are the final critical values of the unlocking zone in the fitted curves shown in Figures 13A–C respectively. Therefore, the carbon reduction potential value corresponding to the initial critical scenario MCS = 1.05, MDS = 0.99, and MTS = 1 in the unlocking zone is defined as the initial unlocking value, denoted as IUV, and the carbon reduction potential value corresponding to the final critical scenario MCS = 2.14, MDS = 1.29, and MTS = 3 in the unlocking zone is defined as the final unlocking value, denoted as FUV. According to the calculation, the IUV = 19.1% and the FUV = 9.5% of the urban cross-river transportation carbon reduction potential in Wuhan. The determination of IUV, FUV, and their respective critical scenarios can assist city managers to assess the urban cross-river transportation carbon reduction potential as a whole and the extent to which the urban cross-river transportation carbon emissions may be reduced after relevant optimization measures are implemented.
Evaluation and comparison of carbon reduction potential for river-crossing passages in Wuhan
Section 4.2 of this paper provides a comprehensive evaluation of the carbon reduction potential of urban cross-river transportation in Wuhan. However, the findings do not capture the variations in carbon reduction potential across different regions of the city. The crucial aspect of cross-river transportation lies in the river-crossing passages, as they serve as convergence points for all the city’s river-crossing traffic flows. Consequently, when conducting a zoning evaluation of the carbon reduction potential in urban cross-river transportation, it is more advantageous to adopt river-crossing passages as the basis for regional division rather than relying on urban administrative divisions (Martins et al., 2019b; Wang et al., 2022) or geographic grids (Li X. et al., 2020). This approach is justified by the fact that identifying the variations in carbon reduction potential among urban river-crossing passages aids in optimizing the allocation of transportation resources specific to each river-crossing passage.
As mentioned above and considering that the travel volume across the Yangtze River in Wuhan is far more than that across the Han River, this section selected the vehicle passages across Yangtze River in the urban area of Wuhan, and then calculated their carbon reduction potential values in each combined scenario based on the traffic flow OD data of each river-crossing vehicle passages, and finally the carbon reduction potential of each river-crossing vehicle passage was compared and analyzed. There are eight vehicle passages across Yangtze River located in the urban area of Wuhan, from north to south, they are four passages connecting Hankou and Wuchang including the Erqi Yangtze River Bridge, Wuhan Yangtze River Second Bridge, Wuhan Yangtze River Highway and Railway Tunnel, and Wuhan Yangtze River Tunnel, and four passages connecting Hanyang and Wuchang including the Wuhan Yangtze River Bridge, Yingwuzhou Yangtze River Bridge, Yangsigang Yangtze River Bridge and Baishazhou Bridge. In addition, there are four river-crossing subway lines in the urban area of Wuhan, from north to south, they are Wuhan Metro Line 8, Line 7, Line 2, and Line 4. Among them, Yangsigang Yangtze River Bridge and Baishazhou Bridge are located in the peripheral area of Wuhan, Yingwuzhou Yangtze River Bridge and Erqi Yangtze River Bridge are located in the critical area between the center and the periphery in Wuhan, and other river-crossing passages are located in the central area of Wuhan. (Figure 15). Since subway travel is inherently low-carbon, the traffic flow of subway crossings is individually assigned to the river-crossing vehicle passages that would be utilized if subway travel were replaced with driving. As a result, all 1,757 traffic flows crossing the Yangtze River in this survey were allocated to the eight vehicle passages across the river within the urban area of Wuhan.
[image: Map illustrating Wuhan Yangtze River crossings, including bridges and tunnels, categorized into Central, Critical, and Peripheral areas. Features Wuhan Metro Lines 1-4 with color-coded labels.]FIGURE 15 | The river-crossing passages and regional division in urban area of Wuhan.
Calculating the [image: It seems there is a misunderstanding. You mentioned "generate the alternate text for the image" but haven't uploaded an image or provided a URL. Please provide the image or clarify your request so I can assist you further.], [image: Please upload the image you would like me to describe.], [image: Sure, please upload the image you'd like me to describe.] and [image: It seems there was an error with your image upload or description. Please try uploading the image again or provide a URL so I can help generate the alternate text. If you have any additional context, please include that as well.] values for thetbl eight vehicle passages across Yangtze River in the urban area of Wuhan in the typical scenarios respectively according to the method described in Section 3.4, for which selecting the initial critical scenario and the final critical scenario of the carbon reduction potential unlocking zone of cross-river transportation in Wuhan described in Section 3.3, of which the initial critical scenario is MCS = 1.05, MDS = 0.99, MTS = 1, the final critical scenario is MCS = 2.14, MDS = 1.29, MTS = 3, and the calculated results are shown in Table 4. In addition, the proportions of [image: If you upload the image or provide a URL, I can help generate the alternate text.], [image: Please upload the image or provide a URL so I can generate the alt text for you.], [image: It seems like there was an error in providing the image or its description. Please try uploading the image again or provide a URL. If you have additional context or a caption, feel free to include that as well.] and [image: Please upload the image or provide a URL for it, and I can help generate the alternate text.] values of each passage across Yangtze River are shown in Figures 16, 17.
TABLE 4 | The [image: Please upload the image you'd like me to generate alt text for. If you're having trouble, let me know how I can assist!], [image: Please upload the image you'd like me to generate the alt text for.], [image: Certainly! Please upload an image or provide a URL so I can generate the alternative text for it.] and [image: To generate alternate text, please upload the image, and I will provide the description for you.] values of the vehicle passages across Yangtze River in urban area of Wuhan in the initial critical scenario.
[image: Table showing percentages for river-crossing passages including Erqi Yangtze River Bridge, Baishazhou Bridge, and others, with columns labeled \(P_a\), \(P_p\), \(P_n\), and \(P_c\). Percentages vary across structures with different values under each category.][image: Map showing two scenarios of traffic distribution across bridges and tunnels over a river, including routes like Erqi Yangtze River Bridge and Wuhan Yangtze River Tunnel. Each route's traffic is represented by pie charts indicating four different traffic types in various colors. Scenario A and B show different traffic percentages, highlighting variations such as 27.7% and 22.2% on specific routes. A color-coded legend details each route.]FIGURE 16 | (A) Proportions of [image: Certainly! Please upload the image or provide a URL so I can assist you in generating the alternate text.], [image: Please provide an image or a URL for me to generate the alternate text.], [image: It seems like there might be an error, as it appears the image is not displayed. Please upload the image or provide a URL for me to generate the alternate text.] and [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] values in the initial critical scenario of the vehicle passages across Yangtze River in the urban area of Wuhan, (B) Proportions of [image: The image contains the mathematical notation "P sub a" where the subscript is the letter "a".], [image: To generate alternate text, please upload the image you'd like me to describe. You can use the image upload feature to do so.], [image: Sure, please upload the image or provide a URL so I can generate the alternate text for you.] and [image: It seems like there was an issue with the image upload. To generate the alternate text, please try uploading the image again, or provide a URL or a detailed description of the image.] values in the final critical scenario of the vehicle passages across Yangtze River in the urban area of Wuhan.
[image: Polar area chart titled "New Employee Interview Ratings" displays percentage ratings for four bridges: Golden Gate, Nanjing, Brooklyn, and Vorral. Colors represent different scales ranging from seventy-five percent to one hundred percent.]FIGURE 17 | The WCV values of the vehicle passages across Yangtze River in the urban area of Wuhan: the inner circle is at the initial critical scenario, and the outer circle is at the final critical scenario.
The analysis presented in Tables 4, 5, Figure 16 demonstrates that the river-crossing passages located in the peripheral areas of Wuhan exhibit a considerably greater potential for carbon reduction compared to those in the central areas. Notably, the Erqi Yangtze River Bridge at the northernmost point attains the highest [image: It seems like your message includes text or symbols instead of an image. Please upload the image you would like me to analyze and generate alt text for.] value of 27.7% in the initial critical scenario, while the Baishazhou Bridge at the southernmost point achieves a similarly remarkable value of 22.2% in the final critical scenario. Furthermore, the carbon reduction potential of the Yangsigang Yangtze River Bridge, situated in the peripheral area of Wuhan, surpasses that of the five river-crossing passages nearer to the core area, namely, the Wuhan Yangtze River Bridge, the Wuhan Yangtze River Second Bridge, the Wuhan Yangtze River Highway and Railway Tunnel, the Wuhan Yangtze River Tunnel, and the Yingwuzhou Yangtze River Bridge. These differences can be primarily attributed to the absence of public transportation options for crossing the Yangtze River at the northernmost and southernmost points of Wuhan. Additionally, the four river-crossing subway lines are exclusively situated in the central area, while there are also limited bus lines available for crossing the Yangtze River at the northernmost and southernmost points of Wuhan. Therefore, it is difficult for residents in these areas to travel by public transportation to the other side of the Yangtze River, and the problems such as traffic congestion or parking difficulties tend to be less common in peripheral areas compared with in central areas of Wuhan, thus the convenience of driving for residents in these areas has been further improved.
TABLE 5 | The [image: Please upload the image or provide a URL so I can generate the alternate text for you. If there is any specific context or details you would like included, feel free to mention those as well.], [image: Please upload the image or provide a URL so I can generate the alternate text for you.], [image: Please upload the image or provide a URL so I can generate the alternate text for it.] and [image: Please upload the image or provide a URL so I can generate the alt text for you.] values of the vehicle passages across Yangtze River in urban area of Wuhan in the final critical scenario.
[image: Table showing percentages of various statistics for river-crossing passages in Wuhan. Passages include Baishazhou Bridge, Yangsigang Yangtze River Bridge, and others. Columns indicate statistics \(P_a\), \(P_p\), \(P_n\), and \(P_c\) with varying values.]In contrast to the peripheral areas of Wuhan, the central areas have a dense bus network and an extensive array of public transportation routes, providing residents with diverse travel options, so driving is frequently not the most cost-effective and convenient mode of transportation. In the central areas of Wuhan, when there is a high degree of substitutability between public transportation and driving, the carbon reduction potential of the river-crossing vehicle passages tends to decrease. This phenomenon is observed in cases such as the Wuhan Yangtze River Highway and Railway Tunnel, which serves as a shared tunnel for vehicles and the Wuhan Metro Line 7, resulting in the lowest [image: Please upload the image or provide a URL so I can generate the appropriate alt text for it.] value among the eight vehicle passages across the Yangtze River. Furthermore, the Wuhan Yangtze River Second Bridge is located on the north side of the Wuhan Yangtze River Highway and Railway Tunnel, while the Wuhan Yangtze River Tunnel is situated on its south side, both within a straight-line distance of 2 km. The high degree of substitutability between these three passages results in the Wuhan Yangtze River Highway and Railway Tunnel having the lowest traffic flow among the eight vehicle passages across the Yangtze River.
The analysis of Tables 4, 5; Figures 16A,B indicates that the river-crossing passages in the peripheral areas of Wuhan exhibit significantly higher carbon reduction potential compared to those in the central areas. By visualizing the data, we found that the analysis reveals a greater disparity in the carbon reduction potential of river-crossing passages between the initial critical scenario and the final critical scenario in the central area of Wuhan compared to the peripheral area. For instance, in the peripheral area of Wuhan, the [image: Please upload the image you would like me to generate alternate text for.] value of the Baishazhou Bridge is 27.1% in the initial critical scenario, and 22.2% in the final critical scenario, the difference between the two is only 4.9 percentage points, as well as the [image: Please upload the image you would like me to describe.] value of the Yangsigang Yangtze River Bridge is 16.7% in the initial critical scenario, and 15.3% in the final critical scenario, the difference between the two is even only 1.4 percentage points. In contrast, the central area of Wuhan exhibits substantial variations in the carbon reduction potential. The [image: To help me generate alt text, please upload the image you would like described.] value of the Wuhan Yangtze River Tunnel is 21.6% in the initial critical scenario, and 3.4% in the final critical scenario, the difference between the two is up to 18.2 percentage points, as well as the [image: It seems that there was an error with your input. Please upload the image or provide a proper link to it, and I can help generate the alternate text for you.] value of the Wuhan Yangtze River Second Bridge is 17.8% in the initial critical scenario, and 4.8% in the final critical scenario, the difference between the two is also up to 13 percentage points. The above disparity shows that in the peripheral area of Wuhan, even if the residents’ maximum acceptable connection, detour and transfer strength for public transportation travel are significantly increased, the carbon reduction potential of cross-river transportation still cannot be unlocked to a large extent, so it is necessary to consider adding public transportation lines across Yangtze River to improve the feasibility of public transportation travel for residents. Conversely, in the central area of Wuhan, the carbon reduction potential of cross-river transportation can be greatly unlocked after the residents’ maximum acceptable connection, detour and transfer strength for public transportation travel is increased, so in the central area of Wuhan, the main focus should be on optimizing the existing public transportation system and related infrastructure, and encouraging more residents to travel by public transportation by improving the urban travel environment.
Although there is a large difference in the carbon reduction potential of the river-crossing passages in Wuhan, it does not mean that the river-crossing passage with a larger difference of carbon-reducing potential before and after the critical scenario change has a greater actual unlocking of carbon reduction potential, the reason is that the number of traffic flows of different river-crossing passages are completely different, the river-crossing passage with a large difference in carbon reduction potential may have a small amount of traffic flows, and conversely, the river-crossing passage with a small difference in carbon reduction potential may have a large amount of traffic flows. Therefore, in order to compare the relative size of the actual carbon reduction potential can be unlocked of each river-crossing passage in Wuhan after considering the weight of the number of traffic flows, it is defined as the weighted comparable value of the carbon reduction potential of the urban river-crossing passage, and the calculation formula can be expressed as Equation 9:
[image: Formula for Weighted Coverage Value (WCV) index: \( WCV_i = \frac{(P_c \times N_r)_i}{\sum_{j=1}^{n}(P_c \times N_r)_j} \times 100\% \), labeled as equation 9.]
where [image: It seems like there was an error in your request. If you have an image you'd like to generate alternate text for, please upload the image, and I'll assist you!] represents the weighted comparable value of the carbon reduction potential of the [image: Please upload the image you would like me to describe.]-th river-crossing passage, [image: If you have an image you'd like me to generate alternate text for, please upload it or provide a URL.] represents its number of traffic flows, [image: Mathematical expression showing the multiplication of two variables in subscript notation: \( P_c \) and \( N_f \), followed by an italicized subscript \( i \).] represents the product of the carbon reduction potential value of the [image: Please upload the image or provide a URL so I can generate the alternate text for you.]-th river-crossing passage and its number of traffic flows, and [image: Please upload the image you would like me to describe.] represents the total number of river-crossing passages participating in the comparison.
[image: It seems there was an error displaying the image. Could you please try uploading the image again or provide a description?] reflects the proportion of the actual carbon reduction potential can be unlocked of the [image: It looks like the image did not come through. Please try uploading the image again or provide a URL. You can also add a caption for more context if you like.]-th river-crossing passage in all the compared river-crossing passages, thus it is possible to intuitively compare the relative amount of actual carbon reduction potential can be unlocked of different river-crossing passages in the city, so as to generally judge the necessity and urgency of taking measures to increase the public transportation volume related to each river-crossing passage.
Figure 17 shows the WCV values of the eight vehicle passages across Yangtze River in the urban area of Wuhan in the initial critical scenario and final critical scenario. The WCV values of Yingwuzhou Yangtze River Bridge and Erqi Yangtze River Bridge are obviously on the high side in the initial critical scenario and the final critical scenario. Yingwuzhou Yangtze River Bridge is the most convenient urban expressway from the south of Wuchang to Hanyang and Hankou and is also an important part of the Second Ring Road of Wuhan, its traffic volume is much larger than the other seven vehicle passages across Yangtze River in the urban area of Wuhan, and there is a lack of public transportation in this direction, taking the Wuhan Metro line 4 across Yangtze River to Hankou requires multiple transfers, which consumes much more time than driving. The Erqi Yangtze River Bridge is also a part of the Second Ring Road of Wuhan, and it is also the urban expressway across Yangtze River at the northernmost point of the urban area of Wuhan, since the Wuhan Yangtze River Second Bridge which is closer to the city center has a diversion effect on it, the traffic volume of Erqi Yangtze River Bridge is smaller than that of the Yingwuzhou Yangtze River Bridge, but its [image: Please upload the image or provide a URL for it, and I will be happy to generate the alternate text for you.] value is higher than that of the Yingwuzhou Yangtze River Bridge in both the initial critical scenario and the final critical scenario, so the [image: It seems there was an issue with the image upload. Please try again, ensuring the file is attached. If you want to add a caption for context, feel free to do so.] value is closer to that of the Yingwuzhou Yangtze River Bridge in the above two scenarios. Different from the Yingwuzhou Yangtze River Bridge and the Erqi Yangtze River Bridge, although the [image: Please upload the image or provide a URL so I can generate the alternate text for it.] values of the Baishazhou Bridge and the Yangsigang Yangtze River Bridge are higher, but the traffic volume is smaller due to their longer distances from the city center, so the [image: Please upload the image you want me to describe, and I will help you generate the alternate text for it.] values are instead lower than those of some river-crossing passages in the central area of Wuhan. However, the Wuhan Yangtze River Bridge, the Wuhan Yangtze River Second Bridge, the Wuhan Yangtze River Tunnel, and the Wuhan Yangtze River Highway and Railway Tunnel located in the core area of Wuhan have low [image: Please upload the image so I can help generate the alt text for it.] values, and because of their dense distribution, they are highly substitutable to each other, resulting in a small traffic volume and a generally lower [image: It seems there was an issue with uploading the image. Please try again and make sure to attach the image file. If you have any specific context or details, feel free to include those as well.] value.
The Yingwuzhou Yangtze River Bridge and the Erqi Yangtze River Bridge are both situated on the Second Ring Road of Wuhan, which serves as the boundary between the central and peripheral areas of the city (“As of 24 November 2024, Wuhan Planning Network - Wuhan, 2019”). Surprisingly, it is observed that the river-crossing passages in Wuhan with the highest WCV values are not located in the urban center or the periphery but in the critical area that lies between these two regions. This critical area exhibits a distinct characteristic of high demand for crossing the Yangtze River, while facing a lack of adequate public transportation routes. Therefore, implementing measures to enhance the feasibility of public transportation across the Yangtze River in this critical area becomes crucial to unlock the carbon reduction potential of urban cross-river transportation in Wuhan. This critical area encompasses the locations where Wuhan Metro lines 11 and 12 cross the Yangtze River three times. However, these lines are currently under construction and not yet operational. It is anticipated that unlocking the carbon reduction potential of Wuhan’s cross-river transportation will be further enhanced upon their completion and opening.
DISCUSSION
This study’s analysis of Wuhan’s urban transportation carbon reduction potential offers valuable insights for cities with similar challenges. Wuhan’s cross-river transportation issues highlight the importance of targeted interventions to address geographic constraints. Aligned with Sustainable Development Goal 11.2 (SDG 11.2) - “By 2030, provide access to safe, affordable, accessible and sustainable transport systems for all, improving road safety, notably by expanding public transport” - this research offers globally applicable solutions. Strategies such as enhancing subway connectivity and reducing transfer barriers, which have proven effective in unlocking low-carbon travel potential, could be equally applicable to other cities confronting natural or infrastructural bottlenecks, such as Istanbul or Bangkok.
The “Connection-Detour-Transfer (CDT)” dynamic assessment framework proposed in this study emphasizes the necessity of understanding local travel behaviors and preferences. By identifying key thresholds for connection, detour, and transfer, city planners can focus on high-impact interventions, ensuring efficient resource allocation and maximizing carbon reduction outcomes. This is particularly relevant for cities with limited budgets, where prioritizing investments in critical corridors or high-demand zones can yield substantial benefits.
Additionally, the methodology’s reliance on basic OD survey data makes it accessible and applicable to cities in low-data environments, such as those in developing regions. Wuhan’s experience further illustrates how optimizing public transit systems and focusing on critical transit corridors can simultaneously address local transportation challenges and align with broader global sustainability goals.
In conclusion, Wuhan serves as a representative case for other cities aiming to transition to low-carbon transportation systems, further aligning with the SDG 11.2 – “Make cities and human settlements inclusive, safe, resilient and sustainable.”. Its approach to identifying and unlocking urban transportation carbon reduction potential offers a replicable model that can inform policy and planning in diverse urban contexts, contributing to global climate change mitigation efforts.
CONCLUSION AND OUTLOOK
The evaluation method of urban transportation carbon reduction potential proposed in this study is focuses on the identification of potential non-low-carbon travelers who may be conformed to low-carbon travel, and its proportion in the total travelers is defined as the carbon reduction potential of urban transportation, then the trend of the variation of indicator values with the maximum acceptable connection, detour, and transfer strength values of urban residents for public transportation travel is analyzed and the relationship curve is fitted, and it is revealed that the fitting curve presents an inverse “S” shape, thus the variation trend is divided into “stable zone”, “unlocking zone” and “re-stable zone.” The “unlocking zone” is particularly critical, as it represents the phase where small improvements in transit conditions lead to rapid increases in carbon reduction potential. The most significant innovative contribution of this study lies in breaking through the traditional static evaluation paradigm by pioneering the dynamic evaluation framework of “Connection-Detour-Transfer (CDT),” achieving triple breakthroughs in threshold quantification, spatial analysis, and policy adaptation on both theoretical and practical levels. Based on the CDT dynamic evaluation framework, threshold ranges for connection, detour, and transfer intensities corresponding to the “unlocking zone” have been determined. This enables a quantitative assessment of which intensity of measures can trigger the rapid unlocking of urban transportation’s carbon reduction potential and which intensity will halt this rapid unlocking. Measures to improve public transportation travel conditions are mainly classified into two categories, one is mainly to increase residents’ maximum acceptable connection, detour, and transfer strength for public transportation travel, and the other is mainly to reduce the actual connection, detour, and transfer strength of residents’ public transportation travel. The former includes improving the urban slow-moving traffic environment, optimizing the public transportation riding experience, and improving the convenience of public transportation transfers, etc., while the latter includes adding new public transportation lines, improving public transportation operation plans, and building new public transportation facilities, etc. The implementation of the above measures is based on a large amount of cost input, insufficient cost input cannot obtain expected benefits, and excessive cost input may not be able to obtain matching benefits, while the evaluation method proposed in this study can clarify where the cost input of measures to improve public transportation travel conditions must start and where it can end, this will help city managers formulate precise transportation policies and maximize the unlocking of urban transportation carbon reduction potential at the lowest marginal cost.
This study applied this method to evaluate the carbon reduction potential of cross-river transportation in Wuhan, and found that MCS = 1.05, MDS = 0.99, and MTS = 1 was the initial critical value of the carbon reduction potential unlocking zone of cross-river transportation, and MCS = 2.14, MDS = 1.29, and MTS = 3 was the final critical value of the carbon reduction potential unlocking zone of cross-river transportation, the carbon reduction potential values corresponding to the two are 19.1% and 9.5% respectively. This threshold system can precisely determine the initiation boundary for policy interventions, thereby avoiding inefficient investments. To effectively unlock the carbon reduction potential of Wuhan’s cross-river transportation, the acceptable connection intensity threshold for residents’ cross-river public transport trips must be higher than that for non-cross-river trips. Moreover, when residents’ acceptable detour intensity threshold for public transport increases, the carbon reduction potential of cross-river transportation will unlock more rapidly compared to non-cross-river transportation. Additionally, the strict “zero transfer” requirement for cross-river public transport trips does not further enhance its carbon reduction potential, which differs from the situation for non-cross-river trips. By evaluating the carbon reduction potential of Wuhan’s major vehicular corridors crossing the Yangtze River, the study identified distinct spatial hierarchies—specifically, the peripheral areas of the city exhibit significantly higher carbon reduction potential than the central area, with the differences between the two being more pronounced under the final critical scenario than the initial one. Furthermore, when accounting for the weighted traffic flows of different cross-river corridors, it was found that the critical zone between Wuhan’s central and peripheral areas actually possesses the highest unlockable carbon reduction potential, making it the area most urgently in need of improved public transportation feasibility and convenience. In addition, this study responds in depth to the core demands of the United Nations Sustainable Development Goal (SDG11.2), providing a theoretical foundation for constructing an inclusive, safe, and sustainable transportation system and developing a dedicated potential evaluation template and policy simulator for river network cities.
The “Connection-Detour-Transfer” evaluation method proposed in this study currently focuses primarily on the impact of endogenous constraints within the transportation system to assess the carbon reduction potential of urban transportation. Although it effectively analyzes the interactive mechanisms between travel behavior and infrastructure, it still has its limitations. Residents’ willingness to choose public transport is often influenced by various factors, including exogenous variables such as social development, industrial layout, economic level, and population structure. These factors lie beyond the realm of urban transportation and cannot be addressed solely by improving public transport conditions; therefore, they are not considered in the scope of this study. In addition, factors such as the cost comparison of different travel modes, the experience of riding public transport, urban road congestion, and even the meteorological characteristics of the city also affect residents’ willingness to use public transport. Taking these factors into comprehensive consideration and establishing a more holistic evaluation system for the carbon reduction potential of urban transportation will be the focus of our future work. To enhance the practicality of the proposed method, future work will leverage tools such as ArcGIS and Python to automate and visualize the evaluation system. This will enable non-experts to perform macro-level evaluations through simplified operations, thereby increasing accessibility for local policymakers. Furthermore, comparative studies across different types of cities will be conducted to disseminate the research findings and offer tailored recommendations for carbon reduction strategies in varied urban contexts.
In conclusion, the proposed evaluation framework serves as a strategic tool for policymakers to unlock urban transportation carbon reduction potential. By focusing on key zones, prioritizing resource-efficient measures, and aligning policies with broader sustainability goals, cities can transition toward low-carbon mobility systems while addressing local transportation challenges.
The evaluation method proposed in this study, termed “connect-detour-transfer,” primarily focuses on the impact of endogenous constraints within the transportation system to assess the carbon reduction potential of urban transportation. This serves as a basis for urban transportation planners and managers to implement direct transportation measures, encouraging residents to shift from driving to public transportation, thereby reducing the overall carbon emissions of urban transport. When discussing the factors influencing public transportation willingness, it is essential to consider certain external factors, including socio-economic conditions, industrial layouts, population structures, travel costs, and road congestion. These factors may also influence the residents’ preference for public transportation. However, the impact of these external factors on residents’ willingness to use public transportation is often indirect, and the effectiveness of direct transportation measures taken by urban planners and managers in addressing these issues is limited; hence, they are not considered within the scope of this study.
Therefore, it is emphasized that the evaluation framework includes endogenous factors directly related to urban transportation systems and residents’ willingness to use public transport, ensuring that the evaluation results correspond to policy guidance. Our next focus will be to compare and analyze the effects of various transportation measures in facilitating the unlocking of urban transportation carbon reduction potential areas, as well as to determine the relationship between the costs of these measures and the threshold of unlocking areas. Moreover, we plan to develop the automation and visualization of this assessment system based on ArcGIS and Python. This will assist numerous grassroots managers lacking professional skills by simplifying macro assessments of urban transportation’s carbon reduction potential. Thus, the implementation of this evaluation system can be widely adopted across multiple cities and provide a basis for decision-making regarding transportation carbon reduction targets in various regions.
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Heterogeneous environmental regulation provides dynamic incentives for green innovation through diversity and complementarity, and promotes technological breakthroughs and market responses. Based on the panel data of 30 provinces in China from 2010 to 2020, this paper constructs a bi-directional fixed-effect model to examine the relationship between heterogeneous environmental regulation and green innovation and the moderating effect of common prosperity. The empirical results show that: (1) there is a significant U-shaped relationship between command-control and public participation environmental regulation and green innovation, while there is a significant inverse U-shaped relationship between market incentive environmental regulation and green innovation; (2) Common prosperity has a significant promoting effect on green innovation, and positively regulates the U-shaped relationship between command and control, public participation environmental regulation and green innovation, and negatively regulates the inverted U-shaped relationship between market incentive environmental regulation and green innovation; (3) There are obvious regional differences in the relationship between heterogeneous environmental regulation, common prosperity and green innovation. Therefore, the government should implement differentiated environmental regulation policies, optimize the incentive mechanism for green innovation according to local conditions, build a multi-level environmental governance system, and strengthen the regulatory role of common prosperity to promote the balanced development of green innovation.
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1 INTRODUCTION
With the intensification of global climate change and environmental problems, environmental regulation has gradually become an important means for governments to deal with environmental crises (Wu D. D. et al., 2020). Environmental regulation means that the government regulates and constrains the environmental behaviors of enterprises and individuals through legislation, administrative means or other means in order to achieve the goals of environmental protection and sustainable development (Wang et al., 2022). Traditional environmental regulation is mainly command-and-control, that is, through mandatory regulations, standards and fines, forcing enterprises and individuals to reduce pollution emissions.
However, with the complexity of environmental problems and the deepening of economic globalization, the limitations of command-and-control environmental regulations have gradually emerged (Dogan et al., 2022). On the one hand, command-and-control regulation may cause enterprises to over-rely on the government’s coercive means and lack autonomy and innovation. On the other hand, over-reliance on government intervention may inhibit market vitality and undermine the long-term development of green technology innovation (Khan et al., 2021). In order to make up for the deficiency of command-control regulation, market incentive environmental regulation has been paid more and more attention. Market-incentivized environmental regulation guides the environmental behaviors of enterprises and individuals through economic means (such as taxation, subsidies, emission trading, etc.) to stimulate market vitality and innovation potential (Yang and Tang, 2023). For example, through the implementation of carbon tax or carbon emission trading system, enterprises can not only reduce pollution emissions through technological innovation, but also obtain economic benefits in the market, so as to achieve a win-win situation of environmental benefits and economic benefits. However, the effects of market-based environmental regulations are also influenced by the degree of perfection of market mechanisms, the rationality of policy design, and the choice of firm behavior, so their actual effects may vary by region and industry (Weng et al., 2023). In addition, as a new means of environmental regulation, public participation environmental regulation has gradually become an important supplement to environmental governance. Public participatory environmental regulation emphasizes on promoting enterprises and governments to pay more attention to environmental protection by improving public awareness of environmental protection and enhancing the ability of the public to participate in environmental decision-making (Xie et al., 2023). For example, through information disclosure, public hearings and environmental litigation, the public can better supervise the environmental behavior of enterprises and governments, so as to form an environmental governance system of social co-governance. However, the effect of public participatory environmental regulation is often limited by public awareness of environmental protection, participation channels and participation ability, so its mechanism and effect need further study (Zhou et al., 2021).
Green innovation is one of the important means to achieve green development (Yu et al., 2023). Green innovation refers to innovative activities that adopt new technologies or improve existing technologies in the design, development and implementation of products, services or processes in order to reduce negative environmental impacts, improve resource efficiency, reduce energy consumption and emissions, while creating economic value and social wellbeing. (Wan et al., 2024). Through green innovation, industrial structure can be optimized, resource utilization efficiency can be improved, environmental pollution can be reduced, and the mode of economic development can be changed. At the same time, green innovation can also drive new economic growth points, promote employment and entrepreneurship, and promote sustainable economic development (Miao et al., 2024). Therefore, actively promoting green innovation has become the consensus of governments and enterprises. In recent years, the research on the relationship between environmental regulation and green innovation has made some achievements. First, many studies have shown that the intensity and type of environmental regulations have a significant impact on enterprises' green innovation. Some scholars put forward the Porter hypothesis, which holds that moderate environmental regulations can encourage enterprises to innovate and thus improve their competitiveness. Second, the impact of environmental regulations varies by region, industry, and firm characteristics. Other scholars have pointed out that the environmental policies of different countries and regions will lead to different performance of enterprises in green innovation (Porter and Linde, 1995). In some regions with more liberal environmental policies, companies may lack incentives to innovate because they are able to meet environmental requirements through traditional means (Kemp and Pontoglio, 2011). However, in regions with strict policies, companies are often more willing to invest in R&D and innovation to adapt to policy changes. Based on the above research results, this paper will explore the relationship between heterogeneous environmental regulation and green innovation development based on provincial panel data.
The contribution of this paper is embodied in three aspects. Firstly, the classification and mechanism of heterogeneous environmental regulation are studied. This study divides environmental regulation into command and control, market incentive and public participation, which provides a new perspective for environmental regulation theory and policy formulation. Secondly, the promoting effect of common prosperity on green innovation and its regulating effect. Common prosperity not only promotes green innovation, but also regulates the role of heterogeneous environmental regulations, providing a theoretical basis for the coordinated development of green innovation and common prosperity. Finally, the relationship between heterogeneous environmental regulation and green innovation from the perspective of regional differences. It is found that regional differences significantly affect the relationship between heterogeneous environmental regulation, common prosperity and green innovation, which provides a basis for policymakers to implement heterogeneous environmental regulation and makes up for the shortcomings of existing studies.
2 LITERATURE REVIEW
Environmental regulation is the government’s effort to promote sustainable development through appropriate policy measures, guiding enterprises to focus on environmental protection while pursuing economic benefits (Yu and Wang, 2021). In recent years, scholars have conducted more detailed discussions on the impact of environmental regulation, which has evolved from a single type of regulation to multiple types of regulation. Bocher divided environmental regulation into information, cooperation, economy, and regulation based on the selection of environmental policy tools, which became the foundation of later research Böcher, (2012). From the perspective of differentiated corporate decision-making, environmental regulation can be divided into legislative regulation, law enforcement regulation, and economic regulation (Albrizio et al., 2017).
The research on content mainly focuses on direct exploration of corporate competitiveness, which has led to two completely different perspectives. One view is that strict operating costs of enterprises will suppress their competitiveness (Yang et al., 2024); And another proposition is to stimulate innovation vitality, thereby enhancing long-term competitiveness (Lei et al., 2024). As research deepens, scholars gradually realize that there is significant heterogeneity in R&D investment. For example, a study by Jaffe and Palmer, (1997) on manufacturing data in the United States showed a significant positive correlation between pollution control spending and research and development investment. L ó pez (2018) pointed out that in some developed countries, strong environmental regulations may incentivize companies to engage in green innovation, while in developing countries, overly strict regulations may impose heavier burdens on companies, thereby suppressing innovation incentives. Secondly, the regional heterogeneity of regulations is closely related, with regions with more mature economic development often having stricter environmental regulations (Kemp and Pontoglio, 2011). The role of social factors in heterogeneous environmental regulation is also receiving increasing attention, as public attitudes and participation in environmental protection can have a significant impact (Hügel and Davies, 2020).
It has always been a hot topic in academic research. Some studies suggest that environmental regulation can promote the development of green innovation. For example, Porter and Linde’s (1995) Porter hypothesis suggests that appropriately designing corporate innovation and applying new technologies can improve productivity. However, studies have also shown that environmental regulations may have a restraining effect on green innovation. For example, Cropper and Oates (1992) argue that additional environmental regulations will only increase companies' costs and reduce their ability to innovate in specific company technologies, resource allocation, and consumer demand. Further research suggests that corporate characteristics such as size, industry, and technological capabilities can also affect their response to environmental regulations. Due to abundant resources, large companies are better able to cope with the challenges brought by environmental regulations and participate in technological innovation. On the other hand, small and medium-sized enterprises may face greater pressure and therefore require more policy support and incentives. Research has shown that when formulating environmental policies, governments should implement differentiated policies as needed to effectively promote green innovation.
In summary, heterogeneous environmental regulation is an important tool for promoting green innovation (Zhang et al., 2018; Zhou et al., 2020). However, current research on the impact of heterogeneous environment r mainly focuses on the enterprise level, with less research at the provincial level. In addition, the mechanisms of action of intermediary tools vary (Stavins, 1996). Common prosperity is also an important indicator of the impact of heterogeneous environmental regulation on the development of green innovation. It mainly measures the fairness of social wealth distribution and the balance of economic development, and as an intermediary variable, it plays a guiding role in policy formulation. The goal of common prosperity encourages the government to pay more attention to the balance between social equity and economic development when formulating and implementing environmental regulation. Therefore, it is necessary to study the impact mechanism of various types of environmental regulatory tools in different regions of China on the development of green innovation in order to formulate China’s environmental regulatory policies more accurately and further improve the development level of green innovation.
3 THEORETICAL ASSUMPTIONS AND MECHANISTIC ANALYSIS
3.1 Environmental regulation and green innovation
Command-and-control environmental regulation is an environmental management method based on government coercion. It directly restricts the environmental behavior of enterprises through measures such as setting pollutant discharge standards, implementing treatment within a time limit, and forcing the closure of polluting enterprises (Cui et al., 2022). At the initial stage, low intensity command-and-control environmental regulation may be due to low compliance costs, enterprises lack sufficient motivation to carry out green innovation, and the effect of green innovation is not significant. However, with the strengthening of command-and-control environmental regulations, enterprises are faced with more stringent environmental requirements, and compliance costs rise significantly, forcing enterprises to reduce environmental impact, improve production efficiency and reduce costs through technology research and development and green innovation (Liu et al., 2024). For example, provincial governments, through strict pollutant discharge standards, force enterprises to develop cleaner production processes or introduce environmentally friendly technologies, thus promoting the development of green innovation (Lin and Du, 2015; Zhao et al., 2020). Therefore, command-and-control environmental regulation promotes green innovation behavior at the provincial level by enhancing environmental binding force.
H1. The relationship between command-and-control environmental regulation and green innovation across regions is U-shaped
Market incentive environmental regulation is a kind of environmental management mode based on economic means, mainly through tax incentives, financial subsidies, emission trading and other market-oriented tools to encourage enterprises to adopt environmental protection behaviors. In the initial stage, appropriate market incentive environmental regulation can stimulate green innovation input and promote the development of green innovation by reducing environmental protection costs (Xie et al., 2024). However, when the intensity of market incentive environmental regulations is too high, too strong economic incentives may lead to enterprises over-relying on external subsidies or preferential policies instead of achieving green development through independent technological innovation, thus inhibiting the effect of green innovation (Dong et al., 2023). For example, provincial governments encourage enterprises to adopt environmentally friendly technologies through high subsidies, which may cause enterprises to neglect R&D investment in technology in order to obtain subsidies, thus affecting the sustainability of green innovation (Kemp and Pontoglio, 2011; Testa et al., 2011). Therefore, the market incentive environmental regulation at the provincial level needs to balance the incentive intensity within a moderate range in order to give full play to its role in promoting green innovation.
H2. The relationship between market-incentivized environmental regulation and green innovation in the regions is inverted U-shape
Public participation environmental regulation is an environmental management method based on social forces. It indirectly affects the environmental behavior and green innovation of enterprises by improving public awareness of environmental protection, enhancing social supervision, and promoting public participation in environmental governance (Weihe, 2023). In the initial stage, low-intensity public participatory environmental regulation may lead to weak public awareness of environmental protection, insufficient social supervision, and insignificant promotion of green innovation (Karplus et al., 2021). However, with the enhancement of the intensity of public participatory environmental regulation, the enhancement of public awareness of environmental protection and the enhancement of social supervision, enterprises are forced to increase investment in green innovation in order to meet social expectations and avoid negative evaluation, so as to promote the development of green innovation (Hille et al., 2020; Shao et al., 2020). For example, the increase in consumer preference for environmentally friendly products has forced the development and promotion of green products, thus promoting the realization of green innovation. Therefore, public participatory environmental regulation at the provincial level promotes enterprises' green innovation behavior by enhancing social participation and supervision.
H3. The relationship between public participation environmental regulation and green innovation in each region is U-shaped.
3.2 The moderating role of common prosperity
Against the backdrop of the global environmental crisis and resource scarcity, green innovation has become an important driver of sustainable development in all countries (Wang et al., 2021). Heterogeneous environmental regulation influences innovation behavior at the provincial level through different policy instruments, and common prosperity, as an important socioeconomic goal, may play a moderating role in this process. First, command-and-control environmental regulation directly constrains provincial environmental behavior through laws and regulations. Such coercive measures may initially lead to higher costs and thus dampen innovation incentives in the short run (Wu W. Q. et al., 2020). However, when the level of regional common prosperity rises, public concern for environmental protection increases and a sense of social responsibility ensues (Zhao et al., 2022). In this context, the provincial level is more likely to initiate green innovations to meet social expectations and market demands. Common prosperity can provide a more stable economic base and favorable development environment for the provincial level, which makes it more responsive to command-and-control environmental regulations (Tomizawa et al., 2020). This can lead to a U-shaped relationship.
H4. Common prosperity positively moderates the U-shaped relationship between command-and-control environmental regulation and green innovation.
Second, market-incentivized environmental regulations aims to incentivize green innovation development through market mechanisms such as financial subsidies and tax incentives (Gao et al., 2024). At the provincial level, these types of regulatory measures are often able to quickly attract positive responses from regions at the initial stage. By introducing a series of preferential policies, such as providing subsidies for R&D funding and reducing or exempting related taxes and fees, provinces effectively reduced the cost of green innovation R&D and application, thus stimulating the enthusiasm of regions to carry out green innovation (Xu et al., 2023). During this period, frequent and efficient interactions between the government and market players jointly promoted the rapid development of green innovation. Based on this, the following hypotheses are proposed.
H5. Common prosperity negatively moderates the inverted U-shaped relationship between market-incentivized environmental regulation and green innovation.
Finally, the core of public participatory environmental regulation as an innovative environmental management model lies in fully recognizing the irreplaceable role of the public in environmental protection. Under the traditional environmental management framework, the public is often regarded as a passive recipient of environmental policies, and its role is relatively passive and limited (Zhong et al., 2021). However, with the popularization and enhancement of environmental protection awareness, the public has gradually realized its own responsibility in environmental protection and started to actively participate in the decision-making and monitoring process of environmental protection (Jiang and Xie, 2021). Especially in the context of the steady increase in the level of common prosperity in the region, the public’s standard of living continues to improve, and their desire for a better life is becoming stronger and stronger. This aspiration is not only reflected in material affluence, but also in higher demands for environmental quality (Islam and Wang, 2023). The public began to pay more attention to the environmental problems around them, such as air pollution, water pollution, soil pollution, etc., and hope that the government can take effective measures to solve them.
H6. Common prosperity positively moderates the U-shaped relationship between public participatory environmental regulation and green innovation.
4 MODELS AND DATA
4.1 Selection of variables
4.1.1 Explained variables
Green innovation is to see whether we are doing something to protect the environment, and whether we are developing sustainably. Nowadays, both at home and abroad, people like to use the number of green patent applications as a measure of green innovation in their research. This paper follows this approach and uses the number of green patent applications per province per year and then adds a natural logarithm so that it can better measure green innovation (Ghisetti and Quatraro, 2017). The advantage of this method is that with the use of the natural logarithm, it reduces the bias in the data, making it more scientific and accurate as shown in Table 1.
TABLE 1 | Common prosperity development level indicator system.
[image: Table depicting indices of prosperity and commonality. Under prosperity: resident life (GDP per capita, disposable income, consumption expenditure), education (per pupil expenditure), medical level (hospital beds per capita), social services, cultural life (library holdings), and science input. Impact marked as positive. Under commonality: urban-rural gap and regional gap with income and expenditure ratios.]4.1.2 Explanatory variables
The disparate environmental regulations are divided into three categories (Ren et al., 2018; Shen et al., 2019). The first is command-and-control environmental regulation (ER1), which looks at how many environmental statutes, regulations, and standards come out of each province each year. The second is market-incentivized environmental regulation (ER2), which looks at how much money each province spends on pollution control as a percentage of its GDP. The third is public participation-based environmental regulation (ER3), which is expressed by adding up the number of letters, phone calls, and internet complaints and taking a natural logarithm. This way we can more clearly distinguish between different environmental regulations.
4.1.3 Moderator variables
Common prosperity Level (CP). The combination of “common” and “prosperity” is the foundation. Therefore, we measures the common prosperity level of Chinese cities from the two dimensions of “common” and “prosperity”, and adopts the entropy weight method to determine the common prosperity level (Liu et al., 2023), as shown in Table 2.
TABLE 2 | Definition of variables.
[image: A table with three columns labeled "Symbol," "Name," and "Measure." Rows list various symbols with corresponding names and measures: GI for Green innovation with Green patent applications; ER1 to ER3 for environmental regulations with different descriptions; CP for Common prosperity using an entropy weight method; LF for Labor force natural logarithm; IS for Industrial structure output value; PD for Population density; INUR for R&D intensity; and UR for Urbanization level.]4.1.4 Control variables
Based on the existing research, some indicators with provincial characteristics are added as control variables to reduce the analysis error as much as possible. Labor force level (LF) (Zhang et al., 2023); Industrial structure (IS) (Xue et al., 2022); Population density (PD) (Tan and Kaili, 2023); R&D intensity (INUR) (Liu et al., 2017); Urbanization level (UR) (Chen and Lin, 2021). Table 3 is the descriptive statistics of the variables.
TABLE 3 | Descriptive statistics of variables.
[image: A table displaying statistical data for various variables. Columns include Variable, Minimum, Mean, Maximum, Standard Deviation, and Observations, with consistent values for Observations at three hundred thirty. Variables range from GI to UR, showcasing diverse statistical measures.]4.2 Construction of empirical model
To test the above hypotheses one by one, regression models Equations 1–3 are constructed:
[image: Mathematical equation describing a model: \( GI_{i,t} = \beta_0 + \beta_1 ER_{i,t-1} + \beta_2 ER_{i,t-1}^2 + \beta_3 X_{i,t} + \sum \text{Year} + \sum \text{Province} + \varepsilon_{i,t} \). Labeled as equation (1).]
[image: Equation representing a model: \( GI_{jt} = \beta_0 + \beta_1 CP_{jt} + \beta_2 X_{jt} + \sum \text{Year} + \sum \text{Province} + \epsilon_{jt} \), labeled as equation (2).]
[image: Equation representing a regression model: \(GI_{i,t} = \beta_0 + \beta_1 ER_{i,t} + \beta_2 ER_{i,t}^2 + \beta_3 CP_{i,t} + \beta_4 (CP \times ER)_{i,t} + \beta_5 (CP \times ER)^2_{i,t} + \beta_6 X_{i,t} + \sum Year + \sum Province + \epsilon_{i,t}\).]
where, i and t represent individual and time. GI represents provincial green innovation and ER represents heterogeneous environmental regulation. In order to test the possible nonlinear relationship between heterogeneous, the second term ER2 of heterogeneous environmental regulation is added. CP represents the development level of common prosperity, (CP*ER) represents the interaction term between common prosperity and heterogeneous environmental regulation, and (CP*ER2) represents the interaction term between common prosperity and the secondary term of heterogeneous. X represents other control variables, ∑Year and ∑Province represent the fixed effects of each province in the year and place, respectively, ε is the random disturbance term.
4.3 Data sources
When writing this study, we fully considered the availability and comprehensiveness of the data. Therefore, this paper selects 30 provinces in Chinese Mainland from 2010 to 2020 (excluding Xizang Autonomous Region, Macao Special Administrative Region and Taiwan) as research objects, in order to comprehensively and accurately reflect the relationship. In terms of data sources, the variables involved in this article are mainly sourced from the following authoritative yearbooks: China Statistical Yearbook, China Industrial Economic Statistical.
In order to ensure the integrity of the data and the accuracy of the study, we used interpolation to fill in missing data in some variables. The use of interpolation method aims to restore the original trend of data as much as possible and reduce the potential impact of data loss on research results. In addition, in order to eliminate or reduce the differences in numerical scale of different variables and avoid certain variables dominating the model results due to their values being too large or too small during statistical analysis, we performed logarithmic transformation on all variables. Logarithmic processing not only helps balance the order of magnitude differences between variables, but also improves the distribution characteristics of data to a certain extent, making it closer to a normal distribution, thereby enhancing the effectiveness and reliability of statistical analysis.
5 EMPIRICAL RESULTS AND ANALYSIS
5.1 Regression analysis
Table 4 shows the regression results for the main variables. Among them, column (1) reports the effect of ER1 on provincial green innovation, ER1 and ER12 coefficients of −0.192 and 0.041 respectively are significant at the 1% level, indicating that ER1 has a U-shape relationship with GI and H1 is verified. The curve inflection point 2.341, when the provincial ER1 intensity has not reached the inflection point, that is, when the cost of institutional implementation is lower than the cost of research and development, there will be a lack of incentives for green innovation, and they will choose to pay low-cost pollution penalties rather than actively engage in green innovation. When the provincial ER1 exceeds the inflection point, when the cost of pollution penalties is higher than the operational benefits, it pushes back green R&D and gradually generates an innovation compensation effect to promote green innovation.
TABLE 4 | Regression results of variable.
[image: A table displaying regression analysis results with seven models labelled (1) GI to (7) 2SLS. Variables include ER1, ER2, ER3, their interactions, LF, IS, PD, INUR, UR, and constant terms. Coefficients are shown with significance levels marked by asterisks, and t-values in parentheses. The number of observations, denoted as N, is 330 for each model. Province and year effects are indicated by “Y” for all models.]Column (2) of Table 4 reports the impact of ER2 on provincial green innovation. The ER2 and ER22 coefficients are 0.439 and −0.21, respectively, which are both significant at the 5% level, indicating that ER2 has a significant inverted U-shaped relationship with GI, as verified by H2. The inflection point of the curve is 1.05, indicating that when the ER2 intensity is located on the left side of the inflection point, facing the market-incentivized environmental regulation, the sectors are more inclined to actively cater to the subsidy policy, improve the original production technology and product design to meet the environmental standards of the green products in order to better enjoy the policy incentives. When ER2 intensity is on the right side of the inflection point, in order to obtain stronger green incentives, they tend to take advantage of the government’s information disadvantage to seek rents, reduce the real investment in green R&D, and weaken the ability of green innovation.
The impact of public participation-based environmental regulation on green innovation is reported in column (3) of Table 4. The coefficients of ER3 and ER32 are −0.288 and 0.019 in that order, which are significant at the 10% and 5% levels, respectively, indicating that ER3 has a significant U-shaped relationship with GI, and H3 is verified. The inflection point of the curve is 7.579, the strength of public participatory environmental regulation is small, reflecting the relatively weak public awareness of environmental protection and the weak enthusiasm for green innovation. Along with the enhancement of ER3, the public plays an increasing role in social opinion and supervision, and its consumption preference is also tilted toward environmentally friendly products, which drives green innovation output to a certain extent.
Further, the moderating effect of common prosperity is tested (Haans et al., 2016). In column (4) of Table 2, the coefficient of the interaction term between CP and ER12 is 0.006, which is significantly positive at the 5% level, the promotion effect of ER1 on GI increases with CP, [image: Greek letters beta one times beta five minus beta two times beta four.] is at 0, and the inflection point of the U-curve shifts to the left with CP, which suggests that counting common prosperity can significantly modulate the U-shape, which verifies the H5. In column (5), the coefficient of the interaction term between CP and ER22 is 0.027, which is significantly positive at the 5% level, the distortion effect of ER2 on GI decreases with increasing CP, [image: The image contains a mathematical expression: β subscript 1 times β subscript 5 minus β subscript 2 times β subscript 4.] is greater than 0, and the inflection point of the inverted U-shape curve is shifted to the right with CP, the statement that common prosperity can significantly moderate the inverted U-shaped relationship between command-and-control environmental regulations and green innovation has been validated, which verifies the H6. In column (6), the coefficient of the interaction term between CP and ER32 is 0.030, which is significantly positive at the 1% level, the inverse effect of ER3 on GI increases with CP, [image: Mathematical expression with beta one multiplied by beta five, minus beta two multiplied by beta four.] is less than 0, and the inflection point of the U-shaped curve shifts to the left with the increase of CP, indicating that common prosperity can significantly regulate the relationship between the public-participation type of green innovation, which verifies H7.
5.2 Endogenetic analysis
Because there may be some endogeneity problem between variables, it will affect the empirical conclusion. Referring to the practice of previous scholars, the lag of heterogeneous environmental regulation was used as an instrumental variable for 2SLS estimation (Huang et al., 2023). As shown in column (7) of Table 4: Except for some changes in the significance of some control variables, the coefficient sizes, positive and negative directions of the main explanatory variables and control variables are basically consistent with the benchmark regression. This also shows that the endogeneity problem of the model in this paper does not affect the robustness of the regression results on the whole, and the regression results are relatively robust.
5.3 Robustness tests
5.3.1 Replacement of explanatory variables
Drawing on the study of (Lin and Li, 2011), in order to enhance robustness, this paper redefines green innovation in terms of green patent applications/total patent applications, and the results are shown in columns (1)–(3) of Table 5. The results are shown in columns (1)–(3) of Table 5. The coefficients of ER12 and ER22 are 0.052 and −0.066 respectively, which are significant at the 1% level, and the coefficient of ER32 is 0.021, which is significant at the 10% level, and the coefficients of the interaction term between CP and ER12 are 0.008, which are significant at the 5% level, while the coefficients of the interaction terms between CP, ER22 and ER32 are 0.046 and 0.012 respectively, the conclusion is basically consistent with the previous paper and well supports the previous hypothesis.
TABLE 5 | Robustness regression results.
[image: A table showing regression analysis results for substitution of explanatory variables and replacement regression model. It includes variables like ER1, ER2, ER3, and their interactions with CP. Coefficients and t-values are given for models numbered one to six, with significance levels indicated by asterisks. Controls for year, province, and sample size of 330 are noted.]5.3.2 Replacement regression models
In order to ensure the reliability of the model design, this paper adopts the Tobit model to conduct regression analysis again, and the results are shown in columns (4)–(6) in Table 5. It can be seen from the primary regression coefficients of ER1, ER2 and ER3 that all are at a certain significant level, and the secondary regression coefficients are also at a certain significant level, indicating that the impact of heterogeneous environmental regulations on green innovation is U-shaped. The regression coefficient of common prosperity is significant at the 1% level, and the primary and secondary interaction terms of common prosperity and heterogeneous environmental regulations are significant at or above the 5% level, indicating that the realization of common prosperity can positively regulate the impact of environmental regulations on green innovation. The results obtained by the replacement regression model are consistent with the baseline regression, which indicates that the above conclusions are robust.
5.4 Heterogeneity analysis
Due to the different levels of environmental policies and common prosperity development in each region, the impact mechanism of green innovation in each region also reflects certain geographical characteristics. Based on this, this paper further divides the East, Central and West samples to explore the differences in the geographical effects of the sub-samples.
5.4.1 Heterogeneity across regions
In Table 6, (1) the impact of command-and-control environmental regulations on green innovation in both the eastern and central regions exhibits a U-shaped characteristic, while in contrast, the relationship between the two in the western region is not significant; (2) the impact of market-incentivized environmental regulation on green innovation in the eastern region has an inverted U-shape, which suggests that green subsidy incentives in the eastern region are more effective in compensating for the cost of pollution control (Zeng and Yang, 2023). The relationship between the two is not significant in the central and western regions; (3) the effect of public participatory environmental regulation on green innovation is U-shaped in the eastern region and insignificant in both the central and western regions, which may be due to the overall low public environmental awareness and insufficient green innovation pushback in the central and western regions.
TABLE 6 | Results of heterogeneity analysis.
[image: Table comparing the impact of regional heterogeneity and economic development levels on variables ER1, ER2, and ER3. Includes columns for Eastern, Middle, and Western regions, and Developed, Medium, and Underdeveloped regions. Each cell shows coefficients and t-values. Controls for province and year are included, with 330 observations in each column.]5.4.2 Heterogeneity in the level of economic development
To examine the impact of heterogeneous environmental regulations on green innovation across different levels of economic development, following the research of Song et al. (2020), we use the level of urban economic development as the criterion for classification, with per capita GDP as the measure of economic development level. By calculating the median to group the samples and performing regression analysis, the results are shown in Table 6, columns (4)–(6). Heterogeneous environmental regulations have a more significant impact on developed and moderately developed regions, possibly because developed regions have scale advantages in terms of industrial structure, environmental governance investment, and technological innovation, forming a certain agglomeration effect that is conducive to the optimal allocation of resources, while the effects in less developed regions are not significant.
6 CONCLUSIONS AND POLICY IMPLICATIONS
6.1 Conclusion
The article based on panel data from 30 provinces from 2010 to 2020, constructs a two-way fixed effects model to test the relationship between heterogeneous environmental regulations and green innovation, as well as the joint effect of common prosperity. The research results show:
	(1) In response to the differentiated impacts of various types of environmental regulations on green innovation, the government should implement more refined and differentiated environmental regulation strategies to maximize their positive effects while minimizing potential negative impacts. For command-and-control environmental regulations, given the U-shaped relationship between them and green innovation, the government should timely adjust the intensity of regulations to ensure that policy can cross the inflection point of the U-shaped curve, thereby stimulating the innovation compensation effect of enterprises. For market-incentivized environmental regulation, in light of the inverted U-shaped relationship with green innovation, the government must be vigilant against rent-seeking behavior and reduced innovation investment that may result from excessive incentives. Regarding public participation-based environmental regulation, enhancing public environmental awareness is key to breaking through the inflection point of the U-shaped curve. The government should increase the intensity of environmental education and propaganda, popularize the concept of green living through various channels such as media and social platforms, and enhance the public’s sense of environmental responsibility and participation.
	(2) Common prosperity has a significant promoting effect on green innovation, and positively regulates the U-shaped relationship between command and control, public participation-based environmental regulation and green innovation, and negatively regulates the inverted U-shaped relationship between market-incentivized environmental regulation and green innovation. Common prosperity not only directly promotes the flow of green elements, optimizes the research and development process, and promotes green innovation, but also shifts the U-shaped curve of command-and-control, public participation regulation and green innovation to the left, and the inverted U-shaped curve of market incentive regulation and green innovation to the right.
	(3) By comparing the regional effects of heterogeneous environmental regulation, common prosperity and green innovation, it is found that there are obvious regional differences among the influence relationships among the three. Among them, command-control regulation only has a “compensation effect” in the eastern and central regions, market-incentivized environmental regulation only has an inverted U-shaped relationship in the eastern region, and public participation-based environmental regulation only has a significant reverse force effect in the eastern region. Furthermore, the regulatory ability of common prosperity to command-and-control and market-incentive regulation is more significant in the central and western regions, while the regulatory ability to public participation regulation is more significant in the eastern and central regions.

6.2 Policy implications
6.2.1 Differentiated implementation of environmental regulation policies to optimize the incentive mechanism for green innovation
In view of the differentiated impact of different types of environmental regulations on green innovation, the government should implement more refined and differentiated environmental regulation strategies to maximize the positive effects and minimize the potential negative effects. For command-and-control environmental regulation, in view of the U-shaped relationship between it and green innovation, the government should timely adjust the regulatory intensity to ensure that the regulatory policy can cross the inflection point of the U-shaped curve, so as to stimulate the innovation compensation effect of provinces. In view of the inverted U-shaped relationship between market-motivated environmental regulation and green innovation, the government should be alert to the rent-seeking behavior and the reduction of innovation investment that may be caused by excessive incentives. With regard to public participatory environmental regulation, enhancing public awareness of environmental protection is the key to breaking through the inflection point of the U-shaped curve. The government should strengthen environmental protection education and publicity, popularize the concept of green life through various channels such as media and social platforms, and enhance the public’s sense of environmental responsibility and participation.
6.2.2 Strengthening the moderating role of common wealth to promote the balance
The government needs to take the following measures: first, prioritize investment in green infrastructure, such as clean energy and public transportation, to promote green innovation and narrow regional development gaps. Second, through fiscal and tax policies, it should guide the flow of green innovation resources to less developed regions, especially in the central and western regions, in order to realize the balanced development of green technologies. Finally, establish a cross-regional and cross-industry green innovation cooperation mechanism to share R&D results and promote knowledge spillover and collaborative innovation, especially in digital investment, in order to enhance the efficiency of green innovation in the central and western regions. These measures will help to realize the positive interaction to the balanced development.
6.2.3 Constructing a multi-level environmental governance system
In response to the geographical characteristics of environmental regulation, and under the guidance of the concept of common prosperity, we have constructed a differentiated environmental governance system aimed at solving environmental problems more effectively. Specific measures include: first, strengthening inter-regional synergistic governance, establishing a cross-regional pollution prevention and control mechanism, and promoting the formation of positive spillover effects of green innovation through sharing governance experience, so that the fruits of environmental governance can benefit a wider range of regions; second, encouraging regions to tailor distinctive environmental policies based on their own resources and ecological characteristics, such as promoting a circular economy, and implementing ecological protection measures, in order to better meet the actual needs of local development; again, we will enhance the capacity of grassroots governance, and improve the relevance and effectiveness of environmental governance through community self-governance and public participation, in particular by strengthening public participation in environmental regulation. In terms of public participation, we should give full play to the role of grass-roots organizations as a bridge and link to promote effective communication and cooperation among the Government, enterprises and the public. These diversified measures will give a strong impetus to the realization of a multi-level and differentiated pattern of environmental governance, which will in turn promote the geographically balanced development of green innovation and lay a solid foundation for achieving the goal of sustainable development.
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Enhancing data elements to support environmental governance is a key initiative for promoting digital transformation and ecological development. This study constructs a quasi-natural experiment based on panel data of Chinese cities from 2010 to 2021, using the staggered rollout of open government data (OGD) platforms to evaluate their impact on air pollution (AP) and the underlying mechanisms. The results show that OGD significantly reduces annual average PM2.5 concentrations by approximately 1.55 units (p < 0.01), indicating a notable improvement in air quality. Mechanism analysis suggests that government data disclosure affects AP through three pathways: enhancing environmental regulation, stimulating green innovation, and optimizing industrial structure. A one-unit increase in these mediating variables reduces PM2.5 by approximately 0.02, 15.3, and 11.75 units, respectively (all p < 0.01). In addition, market size and market openness positively moderate the environmental effect of OGD. Heterogeneity analysis reveals regional variation. In Western China, OGD reduces PM2.5 by about 5.61 units (p < 0.01); in Eastern China, the reduction is 1.11 units (p < 0.05), while the effect is not significant in Central China. In the Yangtze River Economic Zone, OGD leads to a reduction of 1.42 units (p < 0.01), and 1.3 units (p < 0.01) in the non-Yangtze region. These findings provide theoretical and empirical support for improving open data policies and leveraging data elements in environmental governance.
Keywords: open government data, air pollution, mechanism analysis, regional heterogeneity, difference-in-differences

1 INTRODUCTION
The ecological construction is an important cornerstone of sustainable development and a basic path to achieving harmonious coexistence between human beings and nature. In recent years, with the rapid development of big data, artificial intelligence, the Internet of Things, and other technologies, the public governance paradigm has realized a magnificent transformation, and the digital governance theory has increasingly gained prominence in public management scholarship. Digital governance theory emphasizes digital technology and public sector reform, and proposes to combine information systems with social governance (Wang et al., 2023). Digital technology provides a platform for governments and societies to understand each other, enabling governments and civil societies to act in concert with consistent goals and facilitating the formulation and implementation of relevant policy rules (Castro and Lopes, 2022). Data openness, as one such platform medium, can not only accelerate the integration of data elements into the production process and become a key driver of economic growth but also promote environmental protection and improve the effectiveness of ecological governance (Goldfarb and Tucker, 2019; Mahajan et al., 2021). Especially in the field of air pollution (AP), where governance is highly complex and dynamic, the data-driven governance model has emerged as a benchmark for effective policy implementation (Zhang et al., 2024).
In the current digital age, the potential of data as a factor of production has made it crucial (Oliveira et al., 2023). Existing studies focusing on comprehensive big data pilot zones have offered important guidance for understanding the environmental implications of data-driven policies (Lin, 2024; Shen et al., 2024). In contrast, open government data (OGD), as a key component of digital governance, emphasizes the practical implementation of data governance and ensures the accessibility of public data across diverse social actors. Therefore, assessing the impact of OGD on environmental governance from the perspective of data openness not only complements prior research but also contributes to a more holistic understanding of the role of data-driven approaches in advancing ecological civilization. OGD refers to the provision of necessary data by the government to society at no cost, which are unclassified data derived from public operations and are not subject to privacy restrictions (Janssen et al., 2012). To date, although no studies have directly examined the relationship between OGD and environmental governance, a growing body of research has produced in-depth theoretical and empirical work in areas closely related to OGD. Existing studies confirm that factors such as information disclosure, government attention, public participation, and digital technology all have positive effects on promoting environmental protection (Feng and He, 2020; Li et al., 2020; Zhou and Ding, 2023; Lin and Zhang, 2023). For instance, environmental information disclosure helps reduce carbon emissions and lowers pollutant concentrations (Shi et al., 2021; Tian et al., 2016); increased government environmental attention contributes to lowering regional emissions and enhancing air quality (Liu et al., 2023; Bao and Liu, 2022); and public participation in the environment has shifted from a formal to a substantive approach to environmental protection, which is significant in improving environmental governance (Tu et al., 2019; Zhang et al., 2019); digital technology can optimize industrial structure and promote the use of clean energy to reduce pollution emissions (Zeng and Yang, 2023). Without exception, these factors are all related to OGD, which is fundamentally driven by digital technology and aims to activate the ability of data resources to circulate in the market and further attract broad participation from society. Moreover, the opening up of environmental information datasets represents a further focus on government oversight and attention to the environment, increasing the tendency of companies to avoid polluting emissions. In this process, OGD demonstrates its potential ability to optimize environmental governance and its advantageous effects. There is a growing body of research evaluating the effects of OGD, with a primary focus on its internal processes, data quality, and institutional limitations (Parycek et al., 2014; Nikiforova and McBride, 2021; Wang and Shepherd, 2020). However, these studies tend to concentrate on the procedural aspects of data disclosure, while largely overlooking the broader economic and social implications of OGD. In particular, there is a notable lack of empirical research examining how the development and use of data elements affect ambient air quality. So, can OGD actually improve the effectiveness of environmental governance, especially ambient air quality? This question has a solid foundation at the level of theoretical analysis and construction, which requires empirical validation through rigorous scientific methods. In addition, research on OGD is mainly focused on North America and Europe (more than 65%), and there is a lack of research on Asia, especially China. Moreover, scholars tend to use qualitative methods (77.45%) and lack quantitative analysis and experimental research (Tai, 2021). Building on these gaps, this study adopts OGD as an analytical lens and constructs a quasi-natural experimental setting based on the launch of OGD platforms across Chinese cities. Using panel data from 2010 to 2021, it examines the impact of OGD on AP, investigates the underlying mechanisms that enhance pollution control effectiveness, and explores the broader ecological value of OGD at the macro level.
Compared with previous studies, this paper makes several potential marginal contributions: (1) It constitutes one of the first empirical efforts to evaluate the policy effects of OGD in the field of environmental governance, establishing a link between OGD initiatives and AP control, and providing exploratory evidence on the environmental value of data-driven governance. (2) It employs rigorous empirical identification strategies to assess the causal effects of OGD, thereby shedding light on its policy advantages and addressing existing theoretical gaps. (3) It further analyzes the underlying mechanisms and regional heterogeneity associated with OGD impacts, offering policy-relevant insights to improve data governance and promote ecological protection across different local contexts.
2 INSTITUTIONAL BACKGROUND AND HYPOTHESIS
2.1 Institutional background
In 2012, Shanghai, China, took the lead in launching the trial operation of the Government Data Service Network, and Beijing launched the test of the Government Data Service Network in the same year. Subsequently, local governments in Tianjin and Guangdong launched OGD platforms to share public data and improve data utilization efficiency. China has also launched a series of policy measures to promote the OGD to society. For example, in 2017, General Office of the State Council issued the Implementation Plan for the Integration and Sharing of Government Information Systems, stating that a unified, standardized, interconnected, secure, and controllable data open website should be constructed relying on the national e-government extranet and the central government portal.
According to the China Local Government Data Openness Report, as of October 2020, 66% of China’s provincial-level administrative divisions (excluding Hong Kong, Macao, and Taiwan), 73% of sub-provincial-level jurisdictions, and 35% of prefecture-level governments had launched OGD platforms. Based on city-level statistics—including municipalities, provincial capitals, and prefecture-level cities—the total number of participating cities reached 138 (Figure 1). Among the various sectors represented on the platform, datasets related to resources, the environment, and ecological protection exhibit a medium to high degree of openness. Notably, environmental monitoring and impact assessment data are identified as standard datasets in official reports.
[image: Bar chart showing the yearly increase in the number of cities implementing CAD. From 2012 to 2020, the numbers rise steadily: 0 in 2012, 3 in 2013, 5 in 2014, 6 in 2015, 9 in 2016, 12 in 2017, 17 in 2018, 51 in 2019, and 138 in 2020.]FIGURE 1 | Number of cities implementing OGD (count).
As the relevant policy continue to promote and land, the progressive OGD platform online in various places provides a good experimental opportunity to carry out empirical assessment. Based on the multi-temporal characteristics of the platform launch, this paper intends to utilize the staggered difference-in-differences (DID) method to assess the actual effect of OGD by taking PM2.5 concentration as the object of examination of the effect of AP in ecological environment protection. Before carrying out the empirical test, this paper draws a time trend graph to generally show the annual average PM2.5 concentration trends of regions that are online with the OGD platform at different time points and regions that are not online, and compares them at the macro level (Figure 2).
[image: Line graph showing PM2.5 levels from 2010 to 2020 for various years of implementation. Different colors represent implementation years: 2012, 2014, 2015, 2016, 2017, 2018, 2019, 2020, and unimplemented. Overall, PM2.5 levels decrease over time.]FIGURE 2 | Temporal trend of annual mean PM2.5 concentration.
The average PM2.5 concentrations show a decreasing trend in longitudinal time. Although PM2.5 concentrations in some reformed areas were initially higher than those in non-reformed areas, a significant divergence in their reduction trajectories emerged as the reform advanced. Specifically, reformed areas experienced a markedly faster decline in PM2.5 levels compared to non-reformed areas. Before the platform online node, the changing trend of PM2.5 in the two types of areas basically remains the same, while after the node, the declining trend of PM2.5 in the reformed areas accelerates significantly. Therefore, from the results presented in Figure 2, there is indeed a specific improvement effect on AP management by the online OGD platform.
2.2 Hypotheses
2.2.1 OGD and AP
The positive impacts of digital technology on AP have been widely acknowledged in the academic literature (Chen and Yan, 2020; Che and Wang, 2022). Applied to social governance, digital technology can also significantly enhance the ability of environmental regulation and pollution control, optimize the government’s approach to environmental governance, and improve the efficiency of air pollutant emissions (He et al., 2024; Ren et al., 2023). Established studies qualitatively focus on the concept, advantages, and future challenges of environmental information governance with the help of specific cases and generally agree that information governance has a decisive role in improving environmental governance (Tan and Eguavoen, 2017; Kloppenburg et al., 2022). OGD involves many types of datasets, such as social security, healthcare, ecological environment, etc. The purpose of opening up information and data in related fields is not only to provide information to the public but also to break the “black box” of social operation by releasing important databases that have not been transparent in the past, enabling multiple stakeholders to gain new insights from open data, and providing new opportunities for the country’s future development. Data allows multiple stakeholders to gain new insights and contribute to national governance activities (Hardy and Manrushat, 2017). In particular, environmental civil society organizations dedicated to climate and environmental protection frequently leverage open data to monitor government and corporate behavior, and serve as key platforms for facilitating citizen participation in environmental governance. Environmental governance often necessitates the construction of a multi-actor mechanism to support sustainable development. OGD can enhance interactions between civil society and government (Yang and Rho, 2007; Evans and Campos, 2013), while also fostering civic engagement in environmental governance initiatives. OGD involves the processes of big data collection, big data analysis, and big data visualization, all of which cannot be separated from the support and drive of digital technology. Compared with traditional on-site environmental enforcement, intelligent detection systems, sensors, and large-scale algorithms powered by digital technologies can more efficiently acquire, process, and analyze airborne environmental data. Through open data platforms, these technologies enable intelligent interaction and information sharing, thereby contributing to more accurate monitoring and regulation of environmental conditions, and ultimately enhancing the effectiveness of AP control (Shen and Zhang, 2024). Based on the above logical inference, the central hypothesis of this paper can be proposed:
H1: OGD can reduce AP.
2.2.2 Mechanisms of OGD impacts on AP
First of all, the data in OGD is derived from public operations and is inevitably applied to public operations. It is data that can be accessed, used, or shared by any individual. OGD breaks down the information barriers between the government and innovation subjects such as enterprises, research institutions, universities, etc., so that innovation resources can be allocated more efficiently, which in turn helps social subjects to exert their subjective initiative and actively innovate under the national ecological and environmental protection policy. At present, data elements have been widely applied to enterprise-level innovations, including product and service development, business model restructuring, and technological advancement (Bresciani et al., 2021). These applications significantly enhance firms’ green innovation capabilities and improve the overall efficiency of urban green innovation (Song et al., 2019). Moreover, extensive evidence has confirmed the positive impact of green innovation on environmental governance outcomes (Albort-Morant et al., 2018; Takal and Tooranloo, 2021). Second, open data enhances transparency and accountability in related areas (e.g., transportation, environment, public services, etc.) (Attard et al., 2015). The government’s use of datasets to track environmental information such as the state of natural resources, the extent of pollution, and waste collection, and to make this information available to society in the form of a platform has dramatically increased civil society’s awareness of environmental monitoring (Lim, 2021), which in turn has helped to improve the efficiency of environmental policy implementation and the quality of environmental regulation (Huong and Thanh, 2022). Improved environmental regulation is also bound to reduce pollution emissions from heavy industrial enterprises and optimize the efficiency of environmental pollutant emissions, including air pollutants (Zhang et al., 2021). Finally, OGD can also bring considerable economic benefits and provide innovative solutions for social development (Bakıcı et al., 2013). OGD holds substantial economic potential for both firms and individual users. It can offer new opportunities for social entrepreneurs, particularly those aiming to develop innovative products and services based on data provided by public sector organizations (Yang et al., 2020). In other words, the data factor-driven model facilitates the optimal allocation of production factors, fosters the emergence of new business service models and formats, promotes technological advancement and product innovation, and enables the provision of personalized and customized offerings (Stylos et al., 2021; Ladeira et al., 2024). These mechanisms collectively inject momentum into the development of the tertiary sector, thereby supporting industrial transformation and upgrading while contributing to the reduction of environmental pollution (Zhou et al., 2013; Zhao et al., 2022). In summary, the hypothesis is proposed:
H2-1: OGD can reduce AP by promoting green innovation.
H2-2: OGD can reduce AP by improving the quality of environmental regulation.
H2-3: OGD can reduce AP by optimizing industrial structure.
Another critical dimension of OGD lies in its capacity to empower citizens by reducing information asymmetry and enhancing government transparency (Attard et al., 2015). By opening up public data, OGD facilitates broader stakeholder participation, enabling citizens not only to provide feedback on government performance but also to take part in policy formulation processes. In other words, the OGD implies the cession of government power, which reduces the government’s own intervention and provides the society with greater freedom and capacity space to participate more in the governance of economic life. Neoclassical theory suggests that too much government intervention will distort markets, leading to inefficient resource allocation and possible corruption. Particularly in terms of environmental governance, Fredriksson and Svensson (2003) argue that as the world’s largest developing country, in the context of pursuing economic growth, local governments in China have greater administrative approval powers and are vulnerable to “regulatory capture” by high-polluting firms, which in turn can reap economic. This can lead to corruption and influence the formulation of regional environmental policies. Existing government policies, such as command-and-control regulation and tendentious technological inputs, can increase industrial SO2 emissions and aggravate environmental pollution (Liu et al., 2019). Therefore, freer and more expansive markets tend to generate greater demand for data and facilitate more efficient data utilization (Gandomi and Haider, 2015), thereby contributing to improved outcomes in environmental governance. Accordingly, the following hypotheses can be formulated:
H3-1: The expansion of market size can enhance the effect of OGD on AP.
H3-2: Increased levels of market openness can enhance the impact of OGD on AP.
3 METHODOLOGY
3.1 Empirical model
DID is one of the most widely used research tools in social science research. It is very clear, intuitive, and easy to operate, and thus popular among policy effect evaluators (Baker et al., 2022). Local data openness has strong local characteristics and does not involve datasets from other cities. Therefore, the scope of the effect of government data openness on PM2.5 is strictly limited to the policy implementation area, and it is difficult to affect PM2.5 in neighboring areas through mechanisms such as cross-regional collaboration, pollution diffusion, or information spillovers. Depending on whether the treatment occurs simultaneously or at varying time points across units, DID models can be classified into single-period and staggered (or multiple-period) designs. This paper employs the latter to accommodate the variation in policy timing across cities. In order to accurately test the environmental effects of OGD, the study focuses on cities and constructs policy dummy variables: individuals who have implemented OGD policies at the city level are regarded as the “experimental group”, and those who have not implemented OGD policies are regarded as the “control group”:
[image: Equation representing PM2.5 levels: \( PM2.5_{it} = \beta_0 + \beta_1 OGD_{it} + \gamma X_{it} + \alpha_i + \delta_t + \epsilon_{it} \).]
[image: Equation showing "OGD subscript it equals treated subscript it multiplied by time subscript it", followed by the number two in parentheses.]
First, in Equation 1, [image: Please upload the image or provide a URL, so I can help generate the alternate text for it.] represents the PM2.5 concentration (μg/m3) of the city [image: Please upload the image or provide a link so I can generate the alternate text for it.] in the year, which is the core explanatory variable of this paper. Second, [image: Please upload the image so I can help generate the appropriate alternate text for it.] is a dummy variable for OGD at the municipal level, which is formed by Equation 2. [image: Please upload the image or provide a URL to the image you would like me to generate alternate text for.] = 1 indicates that the city [image: Please upload the image you would like the alternate text for, and I will help generate a description for it.] implemented OGD at the municipal level in [image: Please upload the image you need alt text for.] in the year, while [image: Please upload the image or provide a URL so I can generate the alternate text for you.] = 0 indicates that it did not implement it. [image: It seems like you've tried to upload an image or reference it, but it did not come through properly. Please try uploading the image again or provide a URL. If you have any specific details to include, feel free to add them.] and [image: Text rendering showing the word "time" with a subscript "it" in italic font.] are the policy dummy and time dummy of OGD, respectively; [image: Please upload the image or provide the URL for which you need the alternate text.] is a set of control variables that may have an impact on the effectiveness of AP control; [image: Please upload the image you would like me to generate the alt text for.] and [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] represent individual fixed effects and time fixed effects, respectively; and [image: Sure, please upload the image you would like me to describe.] is a residual disturbance term. It should be noted that [image: It seems there was an issue displaying the image. Could you please try uploading the image again, or provide a description or caption for context?] is a negative variable. When [image: It seems there isn't an image attached. Please upload the image or provide a URL so I can generate the alt text for you.] is negative, it indicates that the OGD reduces the concentration of PM2.5 and improves the effectiveness of AP control.
3.2 Variables
Explained variable. The explained variables used geographic mean PM2.5 concentration (μg/m3) to measure the AP status, which is one of the commonly used environmental indicators in related fields (Wang and Ogawa, 2015; Qi et al., 2022).
Explanatory variables. This paper takes OGD construct dummy variables as the explanatory variables of the study, the specific meaning of which has been described in detail above.
Control variables. Education plays a vital role in enhancing citizens’ environmental awareness and fostering scientific and technological innovation, both of which are essential for advancing a green economy (Ma and Zhu, 2022). Government capacity, as a key institutional determinant, not only influences the level of OGD implementation but also serves as a major driver of environmental intervention intensity. Technological change promotes the adoption of environmentally friendly practices and green technologies, thereby enhancing environmental protection capacity (Chen et al., 2024). In addition, foreign direct investment and the level of economic development are closely associated with environmental quality and are frequently adopted as control variables in empirical studies. Therefore, in order to improve the accuracy and credibility of the estimation results and reduce potential bias, this study draws on the measurement strategies of Liu and Lin (2019), Yu et al. (2019), and Gu et al. (2022), and incorporates five control variables into the DID model: education investment (Edu), government self-sufficiency (Gov), economic development level (GDPP), science and technology input (Sci), and foreign investment level (FDI). Specifically, education and science investment are measured by the proportion of corresponding expenditures in the general government budget. Government self-sufficiency is calculated as the ratio of local fiscal revenue to expenditure. Economic development is proxied by the logarithm of GDP per capita. Foreign investment is represented by the ratio of actual utilized foreign capital to regional GDP.
Mediating variable. The rationality and scientificity of green innovation, environmental regulation quality, and industrial structure optimization as the mediating mechanisms of OGD and AP are proposed in the theoretical foundation section. Referring to the research practices of Dong et al. (2023), Yang et al. (2018), and Gu and Chen (2020), green innovation is measured by the total number of green invention patent grants and applications, the quality of environmental regulation is based on the comprehensive utilization rate of general industrial solid waste and the optimization of industrial structure is selected as the measurement of the value added of the tertiary industry.
Moderating variable. Drawing on previous studies (e.g., Ho et al., 2013; Niroomand et al., 2014), we further examine the underlying mechanism between OGD and AP by incorporating market size (MSize) and market openness (MOpen) as moderating variables. Market size is measured as the logarithm of total retail sales of consumer goods, while market openness is proxied by the logarithm of actual foreign capital utilization. We then center the moderating variables to reduce potential multicollinearity in the interaction terms.
3.3 Data and sample
Following the principles of availability, validity, and consistency of data selection, the detailed scheme of data selection is as follows: the time data of OGD is derived from the China Local Open Government Data Report released by the Digital and Mobile Governance Laboratory of Fudan University, which is China’s first and currently the most authoritative assessment report on OGD. The PM2.5 data used in this study are sourced from the global dataset released by the Atmospheric Composition Analysis Group at Washington University in St. Louis. The raw gridded data were first spatially cropped to the boundary of China and then averaged across raster cells within each city. The resulting values represent geographic mean PM2.5 concentrations, expressed in micrograms per cubic meter (μg/m3). The data related to urban economic and social development were obtained from China Industrial Statistical Yearbook, China Statistical Yearbook, and China Urban Statistical Yearbook. After processing, this paper extracts from them the relevant panel data of all Chinese cities (excluding Hong Kong and Macao Special Administrative Regions and Taiwan Province) from 2010–2021. In order to ensure the scientific validity of the study, the raw data in this paper were processed as follows: (1) Cities with serious missing data were excluded, and those with less missing data were linearly interpolated. (2) The DID method needs to ensure that there are at least two observation periods, so cities that first implemented OGD in 2021 were deleted. (3) To avoid the adverse effects of extreme values, a 1% winsorization was applied to all continuous variables. Finally, we obtain a total of 235 city data, 2,820 samples.
The study presents descriptive statistics comparing cities that have implemented OGD with those that have not (Table 1). First, regarding the control variables, only slight differences are observed between the treatment and control groups in terms of economic development, government self-sufficiency, science and education expenditure, and foreign investment, with similar standard deviations, minimums, and maximums. Second, for the mediating and moderating variables, cities that have implemented OGD exhibit slightly higher values in the comprehensive utilization rate of general industrial solid waste, value-added of the tertiary industry, the number of green patent authorizations, as well as greater market openness and larger market size—likely reflecting policy-driven incentives. Third, the sample sizes of the treatment and control groups are relatively balanced and sufficiently large, ensuring robustness in estimation. Overall, the differences in key variables are minor and the groups are generally comparable, validating the use of the staggered DID strategy.
TABLE 1 | Descriptive statistics.
[image: Table displaying summary statistics for control and treatment groups across several variables: PM25, GDPP, Gov, Sci, Edu, FDI, ERQ, LThird, GPAuth, MOpen, MSize. Each group shows observations, mean, standard deviation, minimum, and maximum values. Control group has 1,495 observations; treatment group has 1,325. Notable differences include ERQ mean in control (72.901) versus treatment (86.285), and PM25 in control (41.430) versus treatment (42.190).]4 RESULTS AND FINDINGS
4.1 Benchmark regression
In this paper, the environmental effects of OGD are evaluated by using staggered DID based on the introduction of city-fixed effects and time-fixed effects, and the results are shown in Table 2. First, the effects of explanatory variables on the explained variables are examined through Column (1) in Table 2, where the regression analysis directly uses the OGD shock with the annual average of PM2.5 concentration. It was found that the OGD led to a decrease of 1.566 units in PM2.5 concentration, which is significant at the 1% level. After that, control variables are added gradually in Column (2)-Column (6). Obviously, comparing Column (1) and Column (6), the absolute values of the coefficients of the core explanatory variables are relatively reduced, which indicates that the model absorbs some unobservable influences on the explanatory variables after adding control variables, and the model estimation results are more robust. With the gradual addition of control variables in the model, the coefficients and significance of OGD change less, indicating the robustness of the negative impact of OGD policy. Column (6) of Table 2 further controls for all city economic and social characteristics category variables on the basis of controlling for year and individual effects and finds that the coefficient of OGD is still significantly negative at the 1% level, resulting in a reduction of about 1.545 units in PM2.5 concentration. In conclusion, the benchmark regression results show that OGD helps to reduce PM2.5 concentration, optimize the AP control situation, and promote the improvement of regional air environment quality. Hypothesis H1 of this paper can be verified.
TABLE 2 | Benchmark results.
[image: A table displays regression results across six models with variables: OGD, Sci, Edu, GDPP, Gov, and FDI. Each column presents coefficients and standard errors for each variable. Significant coefficients are marked with asterisks, indicating levels of significance at 10%, 5%, and 1%. The bottom rows include city and year fixed effects, observations, and R-square values for each model.]4.2 Parallel trend test
Due to the long observation window and the staggered timing of policy implementation across cities, this study groups together the 5 years before and after the policy intervention. To further mitigate concerns regarding multicollinearity, the ex-ante period is set as the baseline, and the policy effects of OGD are estimated using the de-meaned staggered DID method proposed by Beck et al. (2010). The results are illustrated in Figure 3, with 95% confidence intervals. As shown in Figure 3, none of the coefficients in the pre-treatment periods are statistically significant, suggesting no systematic difference in AP trends between the treatment and control groups prior to the implementation of the policy. This finding supports the validity of the parallel trends assumption underlying the DID design. By contrast, the coefficients for the policy implementation year and the post-treatment periods are significantly negative, indicating that OGD has a suppressive effect on AP.
[image: Line graph showing estimated coefficients over time periods from -5 to 4. The solid black line represents the coefficients, with dashed lines indicating confidence intervals. A red horizontal line marks the zero coefficient level.]FIGURE 3 | Parallel trend test.
4.3 Robustness check
4.3.1 Placebo test
Unlike the placebo test method for the classical DID model, for the staggered DID model, it is necessary to randomly generate both the experimental group dummy variable and the pseudo-policy shock dummy variable at the same time to randomize the interaction term formed by the two to simulate the estimation results under the null hypothesis. Afterward, the study reruns the simulated regression of the staggered DID model for each new variable generated. The simulated regression results generated after the above process were repeated 500 times, as shown in Figure 4. As illustrated in Figure 4, the estimated coefficients from the placebo simulations are mostly centered around zero, which deviates substantially from the actual estimate of −1.545. Additionally, the majority of these simulated coefficients have p-values exceeding 0.1, indicating they are statistically insignificant at the 10% level. Therefore, the baseline estimates of OGD policy effects are by no means obtained by chance, and the possibility that the baseline estimates are influenced by other policies or omitted variables can be basically ruled out.
[image: Plot showing kernel density and p-value against estimated coefficients. The x-axis represents estimated coefficients from -2 to 2. The y-axis on the left shows p-value, ranging from 0 to 1, and the right shows kernel density from 0 to 1.5. A blue curve represents kernel density, sharply peaked at zero. P-values are marked as circles along the curve. Vertical dashed lines at values -1.5 and 0.5 highlight areas of interest.]FIGURE 4 | Placebo test.
4.3.2 PSM-DID
For the application of propensity score matching in DID modeling, the existing studies broadly follow two paths: one is to consider panel data as cross-sectional data and directly construct PSM for matching (Fan and Zhang, 2021), and the other is to refer to the period-by-period matching of Böckerman and Ilmakunnas (2009), where propensity score matching is carried out period-by-period at each time point to capture the differences between different time points. This study uses nearest neighbor matching to capture the changing characteristics of policy effects at different time points. In order to maximize the credibility and scientific validity of the study, this paper adopts the panel data transformation method and period-by-period matching method for propensity score matching. The specific steps of the panel data transformation method are as follows: Edu, Gov, GDPP, Sci, and FDI are set as covariates, the propensity scores of the treatment groups are estimated by logit regression model, and nearest-neighbor matching is performed according to the scores (Luo et al., 2023), the control group samples that meet the common support conditions with the cities implementing OGD are selected, and the samples that cannot support the standard conditions are eliminated. After that, we check whether the distribution of covariates is balanced after matching, analyze the matching effect, and re-estimate the effect of OGD policy on AP by using the staggered DID method, and the results are presented in Column (1) of Table 3. The specific steps of the year-by-year matching method are: also set Edu, Gov, GDPP, Sci, and FDI as covariates, match the urban samples year by year according to the year of the policy experiment, and check the balance of covariate distributions after matching in each year, to ensure that the differences in covariates between the treatment group and the control group are significantly reduced. Afterward, the matched data for each year are merged vertically into one dataset in order to perform a staggered DID test, the results of which are shown in Column (2) of Table 3.
TABLE 3 | PSM-DID and adjusted sample.
[image: Table comparing five models with variables, coefficients, and statistics. Column headers: (1) Cross-section PSM, (2) Year-by-year PSM, and (3) to (5) PM25. Rows include OGD coefficients, constant values, control variables, city and year fixed effects, observed value counts, and R-square values. Significant OGD coefficients range from -0.866 to -1.545, constants from 43.961 to 53.098, observed values from 1,897 to 2,820. R-square values vary from 0.766 to 0.949.]Figures 5,6, display the kernel density plots of the treatment and control groups before and after matching, based on cross-sectional PSM and year-by-year PSM methods, respectively. In both cases, substantial deviation is observed between the two groups prior to matching, while post-matching curves exhibit closer alignment and reduced distance between mean lines. This indicates that both matching strategies effectively mitigate sample selection bias. Furthermore, the OGD coefficients reported in columns (1) and (2) of Table 3 remain significantly negative, consistent with the benchmark regression results presented in Table 2. These findings reinforce the robustness of the estimated treatment effects and suggest that OGD plays a significant role in enhancing AP control.
[image: Two line graphs compare the kernel density plots of propensity score values for treatment and control groups before and after matching. The left graph shows wider divergence between groups, while the right graph shows more overlap, indicating improved balance after matching. The x-axis represents propensity score values, and the y-axis represents kernel density.]FIGURE 5 | Kernel Density Plot before and after PSM of cross-sectional.
[image: Two density plots compare propensity scores for treatment and control groups before and after matching. The left plot shows a noticeable difference in distributions. The right plot shows the groups aligning more closely post-matching, indicating successful propensity score adjustment.]FIGURE 6 | Kernel Density Plot before and after PSM of year-by-year.
4.3.3 Adjust the regression sample
First, considering that the COVID-19 pandemic may cause more significant fluctuations in policy implementation, the data for the year 2020–2021 are removed and regressed again, and although the absolute value of the coefficient of OGD is reduced, it is still significant at the 1% level. Secondly, municipalities are equivalent to provincial-level administrative regions and have a higher administrative level than other cities. Therefore, the data after deleting the municipality directly under the central government are regressed again, and it is found that the coefficient of OGD is still significant at the 1% level, and the coefficient change is relatively small. Lastly, the provincial capital city is a sub-provincial administrative region, which has a different administrative level compared with the ordinary prefectural-level cities, and the result of deleting the municipality directly under the central government, and then further deleting the provincial capital city, shows that the absolute value of the coefficient of OGD increases slightly and is significantly negative at the 1% level. Regardless of deleting special years or removing cities of higher administrative levels, OGD improves air quality and cuts AP. The above results are shown in columns (3), (4), and (5) of Table 3, respectively.
4.3.4 Lagging effect
In the era of global information explosion, the transmission and reception of information are not instantaneous but subject to specific time lags. After a government’s open data platform goes online, it takes time for social actors—such as the public, businesses, and research institutions—to access, understand, and apply the datasets. This asymmetry in information dissemination can result in a lagged impact of OGD on environmental improvement. Even when data are publicly available, their practical application may be delayed due to the cognitive and processing capacity limitations of users. With the ongoing introduction and implementation of top-level guidelines on open data, the management mechanisms of global OGD platforms have gradually improved, enriched by feedback from various stakeholders to enhance the efficiency of public data utilization. To analyze the policy’s lagged effects, while also testing the robustness of the benchmark regression results and reducing estimation error, this study constructs three interaction terms: OGD+1, OGD+2, and OGD+3, representing one-, two-, and three-year lags in policy implementation, respectively. The corresponding regression results are presented in Table 4. As shown in columns (1)–(4) of Table 4, the coefficients of OGD increase gradually in absolute value and are statistically significant at the 1% level. Notably, the environmental effect of OGD appears slightly weaker in the first lagged period (OGD+1) compared to the current phase. This may reflect adaptive friction in the initial stage of policy implementation—although the data have been made open, institutional integration, technological adoption, and public awareness are still at a formative stage (Janssen et al., 2012). As the institutional mechanisms mature and behavioral responses strengthen over time, the actual environmental performance of OGD becomes more pronounced in the second and third lagged periods. In particular, in the third lag year (OGD+3), the cities that implemented OGD policies experienced a reduction of 2.38 units in PM2.5 concentrations—approximately 0.84 units more than in the implementation year. This clearly indicates the existence of a time lag in the environmental effects of OGD and suggests that the improvement in air quality becomes more substantial in later years of policy implementation.
TABLE 4 | Lag effect test.
[image: Statistical table displaying regression coefficients for different phases: current, one, two, and three-phase lags. Key coefficients include: OGD, ranging from -1.545 to -2.381, and constant around 46.1 to 46.3. Control variables, city and year fixed effects, are present with 2,820 observations, and an R-square of 0.935. Standard errors are given in parentheses.]4.3.5 Instrumental variable method
To further address potential endogeneity in the regression analysis, this study follows the approach of Li et al. (2024), Cheng (2023) by constructing an instrumental variable (SlopeX), defined as the interaction between the inverse of terrain slope and the number of Internet ports. The rationale is that regions with gentler terrain and more developed Internet infrastructure tend to have better information flow and more concentrated technological resources, making them more likely to launch OGD platforms. Importantly, neither topography nor Internet access directly affects AP, ensuring the exogeneity of the instrument.
A two-stage least squares estimation was employed to test for endogeneity, and the results are reported in Table 5. In the first-stage regression, the coefficient of SlopeX is 0.002 and is statistically significant at the 1% level, indicating a strong correlation with the endogenous variable OGD. The F-statistic of 30.50 (p < 0.01) further supports this conclusion. In addition, the Kleibergen-Paap rk LM statistic (38.54, p < 0.01) confirms that the model passes the under-identification test, while the Kleibergen-Paap rk Wald F-statistic (30.55) exceeds the Stock-Yogo critical value at the 10% threshold, ruling out weak instrument concerns. In the second stage, the estimated coefficient of OGD is −7.075, which is significantly negative at the 1% level and consistent with the baseline regression results. Moreover, both the Anderson-Rubin Wald test and the Stock-Wright LM S test significantly reject the null hypothesis (p < 0.01), further validating the strength and robustness of the instrumental variable approach.
TABLE 5 | IV estimation result.
[image: A table presents regression analysis results for two models: OGD and PM25. For OGD, SlopeX is 0.002 with a significance of 0.1%, and the constant is -0.191. For PM25, the coefficient is -7.075 with a constant of 46.424, both significant at different levels. Control variables, city, and year fixed effects are included in both models. The observation count is 2,820 for each model. The P-value for the Kleibergen-Paap rk LM statistic is 0.000, and the Kleibergen-Paap rk Wald F statistic is 30.500. Notes explain significance levels and robust standard errors.]5 FURTHER DISCUSSION
5.1 Mechanism analysis
5.1.1 Mediation effect
The previous part reveals the improvement effect of OGD on AP through empirical tests. Theoretically, it identifies that OGD reduces AP through three aspects: stimulating the vitality of green innovation, improving the quality of environmental regulation, and promoting the optimization of industrial structure. Is the mechanism valid? To verify Hypothesis H2, the study employs a stepwise regression approach to test the mediating effect. Specifically, it first examines the significance of the relationship between OGD and the mediating variable, followed by testing the effect of the mediating variable on AP while controlling for OGD. Based on this logic, the model is extended from Equation 1 to formally test the mediating effect, as shown in the specifications below (Equations 3, 4):
[image: Mathematical equation showing a model: \( \text{Med}_{it} = \alpha_0 + \alpha_1 \text{OGD}_{it} + \gamma x_{it} + a_i + \delta_t + \epsilon_{it} \). It is labeled as equation (3).]
[image: Mathematical equation displaying a model for PM2.5 levels. The equation is: PM2.5_it = θ_0 + θ_1 OGD_it + θ_2 Med_it + γX_it + α_i + δ_t + ε_it. It includes variables such as OGD, Med, and X with subscripts, along with coefficients θ, γ, α, δ, and ε.]
where [image: It appears there was an issue displaying the image. Please try uploading the image file again, and I will be happy to help with your request.] is the mediator variable including ERQ, GPAuth, LThird, [image: Greek letter gamma followed by subscript x, subscript i, and subscript t.] , [image: Please upload the image you would like me to describe, and I will generate the alternate text for you.] , [image: It looks like there was an issue with the image upload. Please try uploading the image again or provide a description or context, and I can help generate the alt text based on that.] and [image: Please upload the image or provide a URL for it so I can generate the alternate text.] are the same as in Equation 1, representing the control variables, individual and time fixed effects, and residual perturbation terms, respectively.
First, from the presentation of the results in Columns (1)-(2) of Table 6, it can be seen that OGD in Column (1) has a significant contribution to improving the ERQ, which improves the ERQ by 3.22% (p < 0.01); the coefficients of the ERQ and the OGD in Column (2) are both negatively significant at 1% confidence level, indicating that ERQ plays a partially mediating role in the relationship between OGD and AP. Second, Columns (3)-(4) of Table 6 show that the regression coefficient of OGD with GPAuth is 0.034 (p < 0.01), and the regression coefficient of GPAuth with PM25 is −15.295 (p < 0.01), suggesting that OGD significantly inhibits AP by stimulating green innovation. Finally, a regression analysis was conducted to examine the relationship between OGD and the value added in the tertiary sector. The results show that OGD significantly increases the output of the tertiary industry by approximately 0.05 units (p < 0.01). Furthermore, tertiary industry value added is associated with a reduction in PM2.5 concentrations by approximately 0.963 units (p < 0.01), suggesting that OGD contributes to AP mitigation by promoting industrial restructuring and upgrading.
TABLE 6 | Mechanism test.
[image: Two tables display regression analysis results. The first table shows six columns with variables like OGD, ERQ, GPAuth, LThird, and their coefficients for models labeled ERQ, PM25, and GPAuth. The second table features interaction terms like OGD x MSize and OGD x MOpen tested across four PM25 models. Control variables, city and year fixed effects, observations, and R-square values are indicated in both tables, suggesting consistent model specifications.]5.1.2 Moderation effect
To test Hypothesis 3, this study develops the following model to examine the moderating effect of market factors in the relationship between OGD and AP, as formulated in Equations 5, 6:
[image: Mathematical equation for PM2.5 concentration: \( PM2.5_{it} = \mu_0 + \mu_1 OGD_{it} + \mu_2 MSize_{it} + \mu_3(OGD_{it} \times MSize_{it}) + yx_{it} + \alpha_t + \delta_i + \epsilon_{it} \).]
[image: Equation showing PM2.5 concentration as a function of several variables: \( \phi_0 + \phi_1 \text{OGD}_{it} + \phi_2 \text{MOpen}_{it} + \phi_3 (\text{OGD}_{it} \times \text{MOpen}_{it}) + y_{it} + a_i + \delta_t + \epsilon_{it} \), labeled as equation six.]
Among them, [image: Equation displaying "MSize" subscript "it" in italicized font.] and [image: Stylized text showing the mathematical expression "MOpen_it" with the letter "M" in bold and larger than the rest, and "pen_it" in italicized font.] are two moderating variables, and [image: Mathematical equation displaying "OGD subscript it times MSize subscript it".] and [image: The image contains the mathematical expression "OGD subscript it times MOpen subscript it" in italicized font.] are the interaction terms of the independent variables and the moderating variables. [image: Greek letter gamma followed by subscript "x" and subscript "i t".] , [image: A mathematical notation showing the Greek letter alpha with a subscript letter i, often used to represent a variable or coefficient in equations.] , [image: It seems there was an error in trying to upload an image. Please try uploading the image again, and I will be happy to help generate alternate text for it.] and [image: Please upload the image or provide a URL so I can assist you in generating the alt text.] are the same as in Equation 1, representing the control variables, individual and time fixed effects, and residual perturbation terms, respectively.
Table 6 reports the results of the analysis of the moderating effects. Column (2) shows that OGD × MSize is negatively significant at the 1% level, which indicates that the larger the market size, the stronger the weakening effect of OGD on AP. Column (4) shows that OGD × MOpen is negatively significant at 1% level, which indicates that the higher the market openness, the better the inhibiting effect of OGD on AP.
5.2 Heterogeneity analysis
The results of the regional heterogeneity analysis are shown in Table 7. The policy effect of OGD is significant only in the eastern and western regions—at the 5% level in the east and the 1% level in the west. The eastern region, as the frontier of reform and opening-up, benefits from advanced digital infrastructure, strong innovation capacity, and widespread network coverage, enabling more effective implementation of OGD, which partially supports the hypothesis. In contrast, the western region, despite weaker economic and digital foundations, exhibits a significant reduction in PM2.5 concentrations (by approximately 5.61 units), likely due to the “low-hanging fruit” effect. The prevalence of high-emission industries and a single energy mix allows environmental gains to be realized more easily, and OGD offers tools to quickly target such opportunities. The central region, situated between the east and west, holds intermediate levels of economic development and digital capacity, with fewer readily available gains and less policy differentiation. These factors jointly explain the weaker policy effect of OGD in that region. In short, the effect of OGD on AP is most significant in the western region, relatively significant in the eastern region, and not significant in the central region. This challenges traditional perceptions and has important policy implications.
TABLE 7 | Heterogeneity test.
[image: Table comparing the impact of OGD across five regions: Eastern, Central, Western, Yangtze River economic belt, and Non-Yangtze River economic belt. OGD coefficients: -1.108**, 0.407, -5.608***, -1.423***, -1.300***. Constants and control variables vary, with R-square values from 0.904 to 0.950. Observations range from 744 to 1,860.]Observing Columns (4) and (5) in Table 7, the coefficient of OGD is significant at the 1% confidence level in both the Yangtze River Economic Belt and the non-Yangtze River Economic Belt. However, the absolute value of the coefficient in the Yangtze River Economic Belt is larger than that in the non-Yangtze River Economic Belt. The Yangtze River Economic Belt is one of the important engines of China’s economic development, which not only possesses a higher level of innovation and technology but also has a higher implementation of ecological quality, environmental governance and protection, and green development and ecological civilization than the non-Yangtze River Economic Belt.
6 CONCLUSION AND DISCUSSION
Eco-environmental protection has been elevated to a national strategy, and the relationship between environmental governance and multiple factors has been extensively studied. Using OGD as an entry point, this paper applies a staggered DID model based on panel data from 235 Chinese cities (2010–2021) and reaches three key findings: (1) OGD helps to reduce AP and improve urban air quality, and this result passes a variety of robustness tests. (2) OGD improves AP governance through three key mechanisms: promoting green innovation, enhancing environmental regulation, and optimizing industrial structure. By making environmental impact assessment data widely available, it reduces information asymmetry, supports data-driven decision-making, and increases regulatory efficiency. Larger market size and greater openness further strengthen the effect of OGD. Expanding markets generate more data and demand for its use, while openness encourages competition, prompting firms to adopt cleaner and more efficient technologies. (3) The positive effect of OGD on AP control is significant in the eastern and western regions of China, and the significant effect in the western region is better than that in the eastern region. OGD is significant in both the Yangtze River Economic Belt and the non-Yangtze River Economic Belt, but pollution control is better in the Yangtze River Economic Belt than in the non-Yangtze River Economic Belt.
Protecting the ecological environment is important for China to realize sustainable development. Based on the above findings, this paper proposes three policy recommendations to amplify the advantageous effects of open data on environmental governance: (1) To enhance the role of OGD in environmental governance, the government should further expand the scope, depth, and quality of data openness while managing data security risks. Priority should be given to collecting and disclosing more environmental resource datasets, applying desensitization and visualization technologies to improve data accessibility and interpretation for both market participants and civil society. (2) Efforts should be made to stimulate green innovation, improve the precision and efficiency of environmental regulation, and optimize the industrial structure. This can be achieved by establishing green innovation funds, promoting the use of open data in regulatory practices, and supporting the growth of green industries, particularly within the service sector. Reducing government intervention, lowering market entry barriers, and fostering openness to foreign capital will further amplify these effects. (3) Open data strategies should be tailored to regional characteristics, especially in the central region, where current policy effects are limited. Introducing third-party institutions to regularly evaluate implementation outcomes will enable dynamic monitoring and feedback. As the “low-hanging fruit” of pollution control diminishes, continued improvement of data interoperability and platform functionality will be essential to sustain the long-term impact of OGD.
This study also has certain limitations. On the one hand, due to the problem of data unavailability, the core variables of the study are relatively single, and a complex indicator system has not been constructed. On the other hand, different countries have different administrative systems, geographic regions, and development patterns, and the quasi-experimental analysis of the study is mainly centered on Chinese cities, which can provide practical references for other developing countries with similar scenarios. However, the extrapolation of the experimental conclusions may be insufficient for non-developing economies. Future studies could incorporate more diversified and extensive data to refine variable and indicator design, expand the experimental sample, and conduct deeper, category-specific analyses of influencing mechanisms and heterogeneity.
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This study empirically examines the impact of the Green Credit Guidelines Policy (GCGP) on carbon emission intensity in China’s manufacturing sector. Using a difference-in-differences (DID) model and panel data from A-share listed firms from 2008 to 2023, we treat the issuance of the GCGP in 2012 as a quasi-natural experiment. The results demonstrate that the GCGP significantly reduces the carbon emission intensity of manufacturing enterprises. Further analysis reveals that this effect operates through both macro and micro-level mechanisms. At the macro level, green credit promotes industrial structure upgrading and enhances energy utilization efficiency. At the micro level, it improves investment efficiency and the quality of environmental information disclosure, thereby supporting carbon reduction. Heterogeneity analysis shows that the carbon-reducing effect of green credit is more pronounced in firms with strong internal governance, low financing constraints, and a high degree of digital transformation. Additionally, the policy is more effective in regions with stricter environmental regulations, higher financial development, and a stronger orientation toward economically developed areas. These findings offer important theoretical insights and policy implications, underscoring the role of green finance in achieving low-carbon transformation and supporting sustainable development goals.
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1 INTRODUCTION
Addressing climate change and reducing carbon emissions are global concerns. China’s factor-driven rapid economic expansion growth has been accompanied by excessive energy consumption, resulting in significant carbon dioxide (CO2) emissions and escalating climate challenges. Moreover, according to the Global Carbon Emissions Report 2023 released by the International Energy Agency (IEA), global energy-related CO2 emissions continued to rise in 2023, reaching 37.4 billion tons. China remains the world’s largest CO2 emitter, releasing approximately 34% of global emissions. As part of its commitment to global climate governance, China has set ambitious dual carbon targets: to peak carbon emissions by 2030 and achieve carbon neutrality by 2060. These nationally determined contributions constitute a strategic pathway for advancing global climate change mitigation and promoting sustainable development.
Corporate low-carbon initiatives are essential for advancing environmental sustainability, particularly within the manufacturing sector, which faces the dual imperative of transitioning to cleaner energy sources and adopting green technologies to reduce carbon emissions. In response to rising environmental pressures, the Chinese government has employed a mix of incentive-based and regulatory approaches, increasingly integrating financial instruments into its environmental governance framework. Among these instruments, the Green Credit Guidelines Policy (GCGP), introduced by the China Banking Regulatory Commission in February 2012, stands out as a critical financial regulatory tool. The GCGP institutionalizes the integration of environmental criteria into the credit allocation process, directing financial resources away from pollution-intensive sectors and toward greener alternatives. By the fourth quarter of 2023, China’s outstanding green credit balance had reached USD 4.256 trillion, marking a 36.5% year-on-year increase and accounting for 12.7% of total loan balances. Despite its rapid expansion, an important question remains: Does the green credit policy effectively mitigate carbon emissions among manufacturing enterprises?
Green credit guidelines policy (GCGP), based on the international practice of the Equator Principle, encourages financial institutions to allocate resources toward projects and businesses that promote environmental protection, energy efficiency, and carbon emission reduction. By integrating environmental considerations into the credit assessment process, green credit aims to align financial flows with sustainable development goals, facilitating the transition to a low-carbon economy (Hu et al., 2021). This approach is widely recognized and valued globally. The UK government launched the Green Investment Bank in 2012 as a dedicated financial institution to facilitate low-carbon project financing through equity investments and credit guarantees. In a significant policy development, the European Central Bank formally incorporated climate change risk assessments into its monetary policy framework in July 2022, thereby expanding the application of financial instruments to support economic green transformation initiatives. The GCGP in China is a government-led top-down policy, encouraging banks and financial institutions to be industrially oriented in implementing credit preferences for greening projects and loan limits or high-interest rate credit penalties for restricted projects, ultimately achieving the green distribution of financial resources and environmental governance (Zhang et al., 2021).
Researchers have extensively examined the impacts of the GCGP. Financial institutions incorporate environmental assessment standards, pollution management and control measures, and ecological protection criteria into credit approval processes to restrict lending to firms engaged in environmentally harmful activities. From a macro perspective, numerous studies have investigated the impact of GCGP on economic and environmental protection (Nabeeh et al., 2021; Yao et al., 2021), reductions in coal energy consumption (Liu et al., 2017), and industrial structure upgrading (Wang et al., 2021; Cheng et al., 2022). From a micro perspective, most research has focused on the influence of GCGP on corporate investment and financing activities, technological innovation, and green transformation (Chen et al., 2019; Ling et al., 2020). While extensive research has been conducted on these topics, relatively few have specifically examined the relationship between green credit and carbon emissions, particularly within the manufacturing sector.
Accordingly, we examine whether the GCGP can curb corporate carbon emissions and identify the driving factors and heterogeneous mechanisms of green transformation in the manufacturing sector. To address the integrated research question, we adopt a difference-in-differences research design based on panel data from China’s A-share listed companies covering the period from 2008 to 2023. This study makes three principal contributions to the existing literature. First, unlike most existing literature primarily focusing on the industry-level impacts of green credit policies, we provide new empirical evidence using firm-level panel data, which broadens the assessment of the effects of GCGP and offers a foundation for utilizing financial instruments to accomplish the objective of “double carbon” reduction. Second, we investigate the relationship between the GCGP and carbon emission intensity from both macro- and micro-level perspectives. At the macro level, we examine the roles of industrial structure and energy efficiency; at the micro level, we assess the impacts of environmental information disclosure and investment efficiency. Furthermore, we analyze the heterogeneity of the GCGP’s effect by considering variations in firm-level characteristics and regional conditions. This comprehensive analysis helps to clarify the underlying policy transmission mechanisms.
The remainder of this paper is organized as follows: Section 2 presents a theoretical analysis and research hypotheses. Section 3 describes the empirical models and data. Section 4 analyzes the empirical results. Sections 5, 6 provide the mechanism and heterogeneity analyses, respectively. Finally, section 7 discusses the results and offers policy recommendations.
2 THEORETICAL ANALYSIS AND RESEARCH HYPOTHESES
Existing studies examining the relationship between the GCGP and enterprise carbon emission intensity have yielded divergent findings, reflecting the complexity of this policy-environment nexus. Some researchers argue that the GCGP effectively reduce carbon emissions (An et al., 2021), while others suggest that such policies may, paradoxically, stimulate emissions (Bello and Abimbola, 2010; Sadorsky, 2010). Additionally, some studies emphasize the uncertainty surrounding carbon emissions induced by green credit policies (Su et al., 2022). This section comprehensively analyzes the direct and indirect mechanisms given these contrasting viewpoints.
2.1 Direct impact of the GCGP on enterprises’ carbon emission intensity
The impact of the GCGP on carbon emission intensity in the manufacturing sector can be explained through three principal transmission mechanisms: credit constraints, green signaling, and technological innovation. Together, these channels facilitate the transition of manufacturing enterprises toward environmentally sustainable practices, thereby contributing to a decline in carbon emission intensity. First, from a corporate finance perspective, the GCGP introduces differentiated credit thresholds that restrict financing access for pollution-intensive industries. Under these more stringent lending standards, firms in sectors characterized by high energy consumption and heavy pollution are compelled to phase out obsolete production methods, invest in pollution control technologies, and pursue green transformation initiatives. These adjustments help alleviate credit constraints and directly reduce carbon emissions (Chen et al., 2011). Second, the GCGP functions as a green signaling mechanism by integrating environmental information into credit evaluations. This incentivizes enterprises to enhance transparency in environmental performance, strengthen carbon disclosure practices, and upgrade environmental management systems. Consequently, investors and financial institutions are directed toward low-carbon firms, reinforcing market preferences for sustainability (Lin and Pan, 2023; Wang et al., 2021; Lin and Pan, 2023). For highly polluting firms, this signaling effect serves as a policy alert, motivating them to accelerate their transition to cleaner operations (Li et al., 2022). Third, the GCGP indirectly promotes technological innovation by influencing the cost of capital. As compliance with green credit requirements raises financing costs for non-compliant firms, they are incentivized to pursue innovation to offset the associated regulatory and operational burdens. When the returns from innovation surpass the cost of environmental compliance, an “innovation compensation” effect emerges, yielding both economic and ecological benefits (Zhang et al., 2021). Through the combined effects of credit tightening, environmental signaling, and innovation stimulation, the GCGP fosters cleaner production, more efficient resource allocation, and long-term green upgrading in the manufacturing sector. Therefore, we proposed the following hypothesis.
Hypothesis 1. The GCGP significantly contributes to reducing carbon emission intensity in manufacturing enterprises.
2.2 Indirect impact of the GCGP on enterprises’ carbon emission intensity
This section systematically explores the multi-level transmission mechanisms through which the GCGP indirectly influences enterprise carbon emission intensity, utilizing an integrated analytical framework that connects macro-level structural factors with micro-level behavioral responses.
2.2.1 Macro-level mechanism analysis
The GCGP promotes technological upgrading and the adoption of low-carbon business models by providing preferential financing to environmentally sustainable projects while restricting capital access for high-pollution industries. From an economic development perspective, credit allocation places continuous pressure on inefficient industries, driving the reallocation of production factors. These factors transition from low-productivity primary industries toward to high-productivity, green, and digitized sectors (Tian et al., 2014). Optimizing the industrial structure plays a pivotal role in reducing carbon emission intensity and advancing the achievement of the Sustainable Development Goals (SDGs). Specifically, industrial upgrading involves rationalizing and progressing the industrial structure, ensuring a shift toward higher productivity and lower carbon emissions. This process promotes industrial restructuring, leading to the elimination of outdated, high-emission production methods.
The GCGP facilitate this transition by influencing enterprise investment decisions and resource allocation. In particular, two-high enterprises are incentive to phase out outdated capacity and adopt green, energy-efficient technologies to comply with stricter environmental financing conditions (Liu et al., 2022). The manufacturing sector plays a pivotal role in this transformation by integrating clean energy technologies, energy efficiency innovations, and carbon capture and storage solutions, ultimately decoupling economic growth from carbon emissions (Zhang et al., 2014). Moreover, emerging industries receiving green credit support typically demonstrate higher value creation and lower energy consumption. With the advancement of renewable energy technologies, enterprises are gradually reducing their dependence on fossil fuels and shifting toward cleaner energy alternatives. This shift enhances industrial efficiency, lowers carbon dependency, and facilitates a sustainable economic transition.
Hypothesis 2. The GCGP contributes to the reduction of carbon emission intensity in manufacturing enterprises by facilitating the upgrading of industrial structures.
Energy efficiency is fundamental to sustainable development and the transition to a low-carbon economy, as higher energy efficiency enables enterprises to maintain the same level of economic output with reduced energy consumption or to increase productivity without a corresponding rise in energy demand, thereby directly lowering carbon emissions per unit of output. The GCGP plays a crucial role in optimizing production processes, accelerating the clean energy transition and achieving sustainable, low-carbon development. It provides low-cost financing for enterprises to adopt energy-saving technologies and replace outdated equipment, leading to higher energy efficiency and reduced carbon emissions (Hu et al., 2020). Meanwhile, financial support encourages the replacement of energy-intensive, high-emission equipment, reducing energy waste and carbon intensity per unit of output. Furthermore, by linking loan terms to emission reduction commitments, green credit reinforces market-based incentives for energy efficiency, offering preferential interest rates and credit quotas to enterprises that achieve energy efficiency improvements and carbon reduction goals. It also mandates enterprises to establish carbon accounting and monitoring systems, improving data transparency and refining emission reduction strategies.
Moreover, green credit reduces financing costs and risks, offering long-term, low-cost funding that alleviates short-term financial pressure and encourages long-term investments in energy efficiency. Through government-backed loan guarantees and subsidies, green credit reduces risks for enterprises adopting high-efficiency technologies, accelerating implementation. Furthermore, green credit is a financing constraint, influencing capital allocation and market entry dynamics. It enforces credit rationing by progressively restricting capital investment in high-carbon projects while simultaneously increasing financial support for green and low-carbon initiatives. Limited financing forces inefficient, energy-intensive firms to scale back operations or exit the market, thereby improving energy efficiency at industry and regional levels.
Hypothesis 3. The GCGP contributes to the reduction of carbon emission intensity in manufacturing enterprises by promoting improvements in energy efficiency.
2.2.2 Micro-level mechanism analysis
By requiring firms to enhance transparency in their environmental impact reporting, green credit strengthens external oversight and encourages more sustainable corporate behavior. High-quality disclosure ensures that corporate carbon emission data is publicly available and subject to scrutiny from investors, regulatory bodies, and the public (Ding et al., 2022). Additionally, insufficient disclosure or high carbon emissions may affect enterprises’ financing costs or customer preferences, pushing firms to optimize their environmental performance proactively. The link between green credit and environmental disclosure also improves green financing accessibility. Since green credit financing often mandates regular environmental reporting, firms with higher disclosure quality can access low-cost capital more efficiently, supporting investment in emission reduction projects such as procuring clean energy equipment. Furthermore, enhanced disclosure improves a firm’s ESG rating, making it more attractive to sustainability-focused investors and fostering a positive cycle of “enhanced disclosure – improved financing access – increased investment in emission reduction initiatives.”
Beyond individual firms, green credit and environmental disclosure foster supply chain-wide emission reductions. To comply with disclosure requirements, manufacturing enterprises may demand that their suppliers publish environmental data, promoting adopting low-carbon technologies throughout the supply chain, such as green material substitution and shared logistics, to reduce emissions (Thompson and Cowton, 2004). Additionally, transparent emission data enables collaboration among firms within the industrial chain, which improves overall energy efficiency. By enhancing environmental information disclosure quality, green credit facilitates more rigorous external monitoring, expands access to green financing, drives supply chain-wide sustainability efforts, ensures regulatory compliance, and enhances brand competitiveness. These mechanisms collectively contribute to reducing carbon emission intensity in the manufacturing sector, supporting the transition toward a low-carbon economy.
Hypothesis 4. The GCGP reduces the carbon emission intensity of manufacturing enterprises by enhencing the quality of environmental information disclosure.
In the presence of principal-agent problems and information asymmetry, managers may prioritize personal interests over shareholder value, often resulting in inefficient investment behaviors. Before the implementation of the Green Credit Guidelines Policy (GCGP), manufacturing enterprises in China commonly relied on tangible assets to secure bank financing, which, coupled with abundant free cash flow, increased the likelihood of excessive and low-efficiency investments. Following the introduction of the GCGP in 2012, firms began to face greater external financing constraints and policy-driven environmental pressures, which prompted a reduction in such inefficient investment activities (Tian et al., 2022).
The GCGP functions by internalizing the environmental costs associated with pollution-intensive projects, thereby discouraging enterprises from engaging in “two-high” and low-return investments under conditions of limited financial resources (He et al., 2019). At the same time, green credit serves as a signaling mechanism that incentivizes firms to shift their capital allocation toward environmentally friendly projects, such as green production and R&D. As a result, firms not only curb inefficient investments but also enhance the overall efficiency of investment decision-making. Improved investment efficiency contributes directly to lower carbon emission intensity by reducing redundant fixed-asset expansion, transforming extensive growth models, and curbing fossil energy consumption. Moreover, the reallocation of capital toward green innovation facilitates the adoption of low-carbon, energy-efficient technologies, further reinforcing carbon reduction efforts (Lee and Min, 2015).
Hypothesis 5. The GCGP reduces the carbon emission intensity of manufacturing enterprises by enhancing investment efficiency.
3 METHODOLOGY AND DATA
3.1 Research design and model construction
We exploit the 2012 implementation of the Green Credit Guidelines Policy (GCGP) as a quasi-natural experiment to identify its causal impact on corporate carbon emissions. Adopting a DID framework, firms are categorized into treatment and control groups according to their pollution intensity. Specifically, enterprises operating in officially designated high-polluting industries are assigned to the treatment group, while those in other industries comprise the control group. The baseline DID model is specified as follows:
[image: Equation depicting a model for CO2 intensity: \( \text{CO}_2 \text{ intensity}_{i,t} = \alpha_0 + \beta_1 \text{Treat}_{i,t} \times \text{Time}_{i,t} + \beta_2 \text{Control}_{i,t} + \gamma_t + \mu_i + \epsilon_{i,t} \).]
The model specification includes the following components. The subscript i denotes individual firms, and t represents the time dimension. The dependent variable, Co2_intensity captures the level of corporate carbon emissions per unit of output. The key explanatory variables are defined as follows: (1) Treat is a binary variable equal to one for firms classified as energy-intensive and highly polluting (the “two-high” industries), and 0 otherwise; (2) Time is a temporal dummy variable set to one for the post-policy period (2012 onward) and 0 for the pre-policy period. The model incorporates γ for time fixed effects, μ for firm fixed effects, and ε as the idiosyncratic error term. A vector of control variables (control) accounts for other observable factors.
3.2 Variables selection
3.2.1 Explained variables
Enterprise carbon emission intensity (Co2Intensityit). It is defined as the volume of carbon dioxide emissions generated per unit of economic output and serves as a key indicator for evaluating the environmental impact of industrial activities. Due to the lack of firm-level carbon emissions data, we draw on Chapple et al. (2013) to convert firms’ carbon emission intensity through industry energy consumption data. The measurement steps are: First, calculate the manufacturing industry’s overall carbon emissions. The primary energy sources include coal, coke, crude oil, gasoline, kerosene, diesel, fuel oil, and natural gas. The CO2 emission coefficients of these energy sources are 1.903, 2.864, 3.024, 2.929, 3.037, 3.100, 3.171, and 2.165, respectively. First, the carbon emissions from eight energy sources were aggregated to determine the sector’s total emissions. Second, each enterprise’s carbon emissions were divided by the sector’s total emissions, and the resulting ratio was multiplied by the sector’s major operating costs to derive carbon-adjusted operating costs. Third, enterprise-level carbon intensity was computed as the ratio of carbon emissions to primary business revenue, followed by taking its natural logarithm for further analysis. The specific formulation is presented in Equation 2:
[image: Formula calculating CO₂ intensity. It equals the sum of industry energy consumption multiplied by the carbon emission coefficient, divided by enterprise main revenue times one million. This is multiplied by enterprise main cost divided by industry main cost.]
3.2.2 Core explanatory variables
To evaluate the implementation effect of the Green Credit Guidelines Policy (GCGP), this study constructs a policy interaction term (Treat × Time) as the core explanatory variable. Existing research often faces fragmented data disclosure, short observation periods, and inconsistent statistical standards. To address these challenges, we adopt a dummy variable approach. Enterprises are classified based on their environmental attributes. Those identified as highly energy-consuming and heavily polluting are assigned to the treatment group, while environmentally friendly enterprises are placed in the control group. A time dummy variable is also constructed, taking the value of one for years from 2012 onward, corresponding to the formal introduction of the Green Credit Guidelines, and 0 for years before 2012.
3.2.3 Control variables
To ensure the robustness of the empirical results, this study follows Yang et al. (2022) in incorporating a comprehensive set of control variables that may influence firms’ carbon emission intensity. At the firm level, we control for the firm’s age (AGE), financial leverage (LEV), asset size (SIZE), business diversification (HHI), and return on equity (ROE). At the provincial level, we include research and development intensity (RD), the level of economic development (ED), and the intensity of credit support (CI).
3.3 Data source
This study compiles carbon emission intensity data from 2008 to 2023 by integrating annual information on manufacturing enterprises from the CSMAR database with environmental indicators from the China Environmental Statistics Yearbook. Additionally, data related to industrial structure upgrading and rationalization were manually extracted from statistical yearbooks at both provincial and prefecture levels across China. To ensure data quality, we implemented rigorous preprocessing procedures. First, we excluded firms under special treatment statuses (*ST, ST, PT) and those with significant missing values in key control variables. Subsequently, we applied natural logarithmic transformations to all continuous variables to address heteroscedasticity and winsorized extreme values beyond the 99th percentile to minimize outlier effects. These procedures yielded a final panel dataset containing 14,767 firm-year observations for empirical analysis.
3.4 Descriptive statistics
Columns (4)–(8) in Table 1 display the descriptive statistics for the primary variables. The natural logarithm of carbon emission intensity (Co2Intensity) exhibits a mean of 2.745 and a standard deviation of 0.977, reflecting considerable variability in environmental performance across enterprises. The green credit treatment group in two-high industries has an average treatment value of 0.347, reflecting a clear disparity between more polluting enterprises and greener ones. Additionally, the natural logarithm of enterprise age (Age) has a mean of 2.327, with most samples above this average, indicating that the sample selection is representative of relatively mature firms.
TABLE 1 | Definition of main variables and descriptive statistics results.
[image: Table displaying variable names, symbols, measurement methods, and statistical data for 14 corporate indicators. Includes variables like Corporate carbon emissions intensity, Green credit, and Energy utilization efficiency, with corresponding symbols, methods, and statistics such as mean, standard deviation, minimum, and maximum values for 14,767 observations.]4 TESTING THE DIRECT IMPACT OF THE GCGP ON ENTERPRISES’ CARBON EMISSION INTENSITY
4.1 Baseline regression results
Model (1) estimates are presented in Table 2, incorporating control variables, industry fixed effects, and time-fixed effects, as shown in Columns (1)–(3). The analysis demonstrates that green credit has a statistically significant negative impact on carbon intensity at the 1% level, providing strong empirical support for H1. This finding underscores that the GCGP functions as an innovative financial instrument, enabling financial institutions to provide credit support and preferential financing to environmentally conscious enterprises while actively promoting environmentally sustainable practices across manufacturing industries. The result indicates that the GCGP significantly reduces the carbon emission intensity of firms in the treatment group (two-high firms) relative to those in the control group (green firms), further reinforcing the effectiveness of the GCGP in incentivizing low-carbon transitions and promoting sustainable industrial transformation.
TABLE 2 | Basis regression of green credit on the carbon intensity of enterprises.
[image: A table shows regression results for CO2 intensity across three models. The variables include "Treat × Time," "AGE," "LEV," "SIZE," "HHI," "ROE," "RD," "ED," and "CI." The coefficients for "Treat × Time" are -0.023, -0.021, and -0.018, marked with varying significance levels. Other variables show different coefficients with their respective T-statistics in parentheses. The table notes that individual and time effects are fixed, with observations ranging from 10,935 to 14,767. Significance levels are indicated by asterisks.]4.2 Parallel trend test
The validity of the DID method relies on the key assumption that the treatment and control groups follow a common parallel trend in the absence of the intervention. The parallel trend test is conducted using the event study approach, as specified in Equation 3. N_Time denotes a series of time dummy variables for the periods before and after the policy implementation. In this specification, the interaction term Treat × N_Time replaces N_Time in Equation 1, capturing the dynamic treatment effects over time. The coefficient of interest, φ1, is used to assess the validity of the parallel trend assumption. All other variables in the equation retain the same definitions as those in Equation 1.
[image: CO₂ Intensity equation is represented as \( \delta_0 + \phi_1 \sum_{t=2010, t \neq 2011}^{2017} Treat_{ij} \times N\_Time_{c,t} + \phi_2 Control_{ij,t} + \gamma_t + \mu_j + \epsilon_{ij,t} \). This is labeled as equation (3).]
We designate the year before the policy implementation as the baseline period and employ an 8-year window surrounding the introduction of the GCGP to conduct the parallel trend test. The results, illustrated in Figure 1, indicate that the coefficient estimates for the 2 years preceding the policy are statistically insignificant and even suggest a slight worsening in carbon intensity. This confirms that, before the implementation of the GCGP, there were no significant differences in trends between the treatment and control groups. In contrast, following the implementation of the GCGP, the coefficient estimates become statistically significant, suggesting a clear divergence between the two groups. These findings indicate that the GCGP had a significant inhibitory effect on the carbon emission intensity of high-pollution, high-energy-consuming enterprises, thereby supporting the validity of the parallel trend assumption.
[image: Line graph showing a treatment effect over time, with time on the x-axis and treatment effect on the y-axis. Data points range from "pre_3" to "post_4" with varying vertical error bars. The trend generally decreases over time.]FIGURE 1 | Parallel trend test.
4.3 Placebo test
A placebo test was conducted on a dummy treatment group of enterprise samples using an enterprise placebo. We employed a randomized controlled trial framework to identify the causal effect of green credit on corporate carbon emission intensity. From a population of 1,856 listed firms, 730 were randomly assigned to the treatment group, while the remaining firms comprised the control group. This random assignment process was repeated 500 times to generate empirical sampling distributions of the estimated treatment effects. The resulting kernel density estimates, as shown in Figure 2, yield three key insights. First, the distribution of estimated coefficients is centered around zero and exhibits characteristics of a normal distribution, suggesting that most random assignments produce null effects. Second, the majority of corresponding p-values exceed conventional significance thresholds. Most notably, the baseline estimate of the treatment effect lies in the extreme lower tail of the randomization distribution, providing strong evidence that the observed reduction in carbon intensity is unlikely to have occurred by chance. This randomization inference approach reinforces the robustness and statistical significance of our primary findings.
[image: A line graph displaying density versus estimator values, with a red curve labeled "Estimator" and blue dots representing "P Value." The graph shows both data sets peaking around zero, with P Value points distributed along the Estimator curve. The X-axis ranges from negative 0.05 to 0.05, and the Y-axis shows density up to 1.0.]FIGURE 2 | Placebo test.
4.4 Endogeneity analysis
While the baseline regression results indicate a negative association between green credit and carbon emission intensity, these findings may be influenced by self-selection bias. In particular, the observed reductions in emissions among heavily polluting industries may be driven not only by the implementation of green credit policies but also by China’s broader “dual carbon” strategy, which independently promotes technological innovation and industrial upgrading in high-emission sectors through a suite of complementary regulatory measures. To mitigate potential self-selection effects, we employ a propensity score matching difference-in-differences (PSM-DID) approach. Urbanization rate and firm age are used as covariates in the matching process. The estimation results, reported in Columns (1)–(3) of Table 3, are obtained using radius matching, kernel matching, and nearest neighbor matching techniques. Across all specifications, the coefficients (Treat × Time) remain statistically significant at the 5% level. These findings indicate that, even after addressing potential sample selection bias, the GCGP continues to have a significant inhibitory effect on firms’ carbon emission intensity, thereby reinforcing the robustness of the baseline results. the robustness of the baseline results.
TABLE 3 | Endogeneity analysis: PSM-DID estimation.
[image: Table showing regression results using three matching methods: Radius, Kernel, and Nearest Neighbor. For "Treat × Time," coefficients are -0.020**, -0.018**, and -0.021** with t-statistics of -2.505, -2.357, and -2.367. For "_cons," coefficients are 2.572***, 2.590***, and 2.569*** with t-statistics of 25.639, 27.191, and 22.427. Controls, Individual effects, and Time effect are fixed. Observations count is 10,223, 10,929, and 7,267 respectively. Note: T-statistics are in parentheses, and significance levels are indicated by *, **, and *** for 10%, 5%, and 1%, respectively.]4.5 Robustness tests
4.5.1 Expanding the metric of the treatment group
Under the key evaluation criteria of the GCGP, industries such as nuclear power generation, hydropower generation, water conservancy, and inland port engineering, as well as coal mining and washing, are classified as green credit-restricted sectors. This classification is captured by the dummy variable Treat, which takes the value of one if the enterprise operates within a restricted industry, and 0 otherwise. All other variables remain consistent with the baseline specification. Following this reclassification, we re-estimate the model, with the results presented in Column (1) of Table 4. The findings demonstrate that green credit maintains a statistically significant negative relationship with firm-level carbon emission intensity, irrespective of the inclusion of control variables and fixed effects. Specifically, the estimated coefficient on Treat × Time is −0.039 and remains statistically significant at the 1% threshold. This result is consistent with the baseline regression, confirming the robustness of our findings.
TABLE 4 | Methodological Robustness tests.
[image: A table with three columns representing variable interactions under different models: "Changing the metric of the treatment group," "Replacing the explained variables," and "Dynamic marginal effects." Each model displays coefficients and t-statistics for "Treat × Time" interactions from 2010 to 2014. Significance levels are indicated with asterisks. All models have controls, industry effects, and time effects. The number of observations for models one, two, and three are 7,818; 10,935; and 10,935, respectively. Robust standard errors are noted in parentheses.]4.5.2 Replacing the explained variables
To further assess the robustness of the baseline regression results, this study constructs a composite pollution emission indicator by summing five primary pollutant emissions: industrial wastewater discharge, chemical oxygen demand discharge, smoke and dust discharge, sulfur dioxide discharge, and ammonia nitrogen discharge (Jiang et al., 2021). The natural logarithm of the total is then taken to serve as the newly explained variable. This approach addresses the lack of firm-level carbon emission data and provides a more comprehensive measure of enterprises’ overall environmental performance. Lower values of this composite indicator reflect better environmental outcomes and a higher degree of green transformation. As presented in Column (2) of Table 4, green credit remains significantly negatively associated with the log of total pollutant emissions at 5 percent significance level. The alignment of these results with the baseline regression further reinforces the robustness and reliability of the main findings.
4.5.3 Dynamic marginal effects
To examine the dynamic marginal effects of the GCGP on carbon emission intensity, we incorporated interaction terms between the GCGP treatment variable and year dummy variables spanning from 2010 to 2014. This approach allows for an in-depth depiction of the dynamic evolution of policy effects over time. The results are reported in Column (3) of Table 4. Before 2012, the influence of the GCGP was not significant. However, in 2012, the first year following the implementation of the GCGP, there was a significant decline in carbon emission intensity, aligning with the findings in baseline regression. In the subsequent years, the reductions in carbon intensity remained consistent with the levels observed in 2012. This pattern suggests that China’s GCGP has effectively and persistently contributed to reducing targeted carbon emissions.
4.5.4 Considering the impact of other policies
Controlling for the potential influence of other policies on firms’ carbon emission intensity during the sample period is essential, as such confounding factors may introduce bias into the estimated effects. For example, in June 2017, China approved the establishment of green finance reform pilot zones in eight provinces and municipalities, including Zhejiang, Jiangxi, Guangdong, Guizhou, and Xinjiang. These regional initiatives may have independently affected firms’ carbon emission intensity, thus confounding the impact attributed to the GCGP. To address this concern, we adopt two robustness strategies. First, we exclude post-2017 sample observations. Second, we remove listed companies located within the green finance pilot zones from the sample. We then re-estimate the model using the adjusted samples, with the results reported in Columns (1) and (2) of Table 5. The estimated coefficient on the interaction term (Treat × Time) is −0.025 and remains statistically significant at the 1% level. This suggests that, even after accounting for potential policy interference, green credit continues to exert a significant negative effect on firms’ carbon emission intensity. The consistency of these results with the benchmark regression further affirms the robustness of the main findings.
TABLE 5 | Policy-Related Robustness tests.
[image: Table displaying regression results with three scenarios: "Excluding the impact of other policies (2017)", "Exclusion of green finance reform pilot areas", and "Excluding the interference of regulatory policies". Key variables include "Treat × Time" and "_cons" with coefficients, significance levels, control variables, industry effects, and fixed time effects. Observations number 7,661, 10,305, and 8,543 respectively. Significance levels are indicated by asterisks: *, **, and *** denote 10%, 5%, and 1% levels, with T-statistics in parentheses.]4.5.5 Excluding the interference of regulatory policies
In 2018, China’s financial regulators introduced a series of new supervisory policies targeting the asset management industry, the banking sector, and the insurance industry. These regulatory measures led financial institutions to further tighten their loan evaluation standards, potentially affecting the credit allocation behavior of commercial banks. To isolate the effect of these regulatory changes from the estimated impact of green credit, we exclude data from the year 2018 from the analysis. The regression results, presented in Column (3) of Table 5, show that after controlling for the influence of financial regulatory supervision, the coefficient on green credit remains negative and statistically significant at the 10% level. The consistency between these findings and the baseline regression results further reinforces the robustness of our core conclusions.
5 TESTING THE INDIRECT IMPACT OF THE GCGP ON ENTERPRISES’ CARBON EMISSION INTENSITY
5.1 Testing the macro-level mechanism
5.1.1 Industrial structure optimization
To empirically test the mechanism of industrial structure optimization (H2), this study draws upon existing literature and adopts industrial structure upgrading (ISU) as the key proxy variable (Cheng et al., 2022). Industrial structure optimization refers to improvements in the efficiency, sophistication, and adaptability of industrial transformation. In recent years, the National Development and Reform Commission of China has revised the Industrial Structure Adjustment Catalogue to emphasize the green and intelligent transformation of manufacturing. This includes accelerating the development of emerging strategic sectors such as 5G networks, industrial internet, new materials, new energy vehicles, and biopharmaceuticals, while concurrently promoting energy efficiency and carbon reduction in traditional high-emission industries such as steel, petrochemicals, chemicals, nonferrous metals, and building materials. The goal is to achieve green transformation and facilitate sustainable industrial upgrading, ensuring that high-emission industries transition toward low-carbon, energy-efficient production models.
The estimation results reported in Column (1) of Table 6 show that the coefficient of Treat × Time is −0.018 and statistically significant at the 5% level, while the coefficient for ISU is positive and also statistically significant. These findings suggest that green credit promotes industrial structure optimization by imposing credit constraints, thereby enhancing resource allocation efficiency. Drawing on previous research, industrial structure rationalization plays a crucial role in optimizing the allocation of production factors across different industries (Liu and Liu, 2021). It also fosters the technological advancement of industrial processes, shifting enterprises from outdated, high-emission production methods to modern, energy-efficient technologies. This transition leads to a reduction in enterprises’ carbon emission intensity, confirming that green credit facilitates industrial upgrading by imposing credit constraints.
TABLE 6 | Mediating effects of the GCGP on enterprise carbon emission intensity.
[image: Table presenting regression results on CO2 intensity across four models. Variables include Treat × Time, ISU, EUE, ESG, and IE, with significant coefficients marked by asterisks indicating different significance levels. Models use fixed individual and time effects, with 10,935 observations each. T-statistics are shown in parentheses.]5.1.2 Energy utilization efficiency
To empirically test H3, we measure energy utilization efficiency per unit of output (EUE), which serves as a positive indicator. Higher values indicate greater energy efficiency. An advanced industrial structure encourages enterprises to adopt cutting-edge technologies and production processes, thereby improving production efficiency and intensifying resource use (Zhao et al., 2023). This includes the substitution of traditional fossil fuels with clean energy and improvements in overall energy efficiency, which collectively contribute to lower energy consumption and reduced carbon intensity.
The estimation results reported in Column (2) of Table 6 show that the coefficient of interaction term is not statistically significant. However, the coefficient for EUE is 0.158 and statistically significant at the 1% level. These findings suggest that while the direct impact of green credit on energy efficiency is limited, the optimization of energy use, reflected through EUE, plays a critical role in reducing carbon intensity and may function as an indirect transmission mechanism. According to Yang et al. (2023), from the perspective of energy consumption, maintaining the same level of economic output effectively reduces enterprises’ overall energy demand, thereby lowering carbon emissions. As firms transition away from crude, high-emission production methods, they increasingly adopt innovation-driven, high-efficiency production models, enhancing resource utilization and sustainability. Moreover, increasing economic output without raising energy consumption enables enterprises to optimize the use of limited energy resources, thereby reinforcing the role of green credit in promoting sustainable and low-carbon industrial transformation. These findings provide empirical support for H3, confirming that green credit contributes to improved energy efficiency, which in turn reduces carbon intensity and facilitates a more sustainable and efficient industrial upgrading process.
5.2 Testing the micro-level mechanism
5.2.1 Quality of environmental information disclosure
To test the mechanism related to the quality of environmental information disclosure (H4), this study employs ESG performance scores as a proxy variable. Firms with higher ESG performance are better able to reduce agency costs and mitigate information asymmetry between managers and investors, which in turn enhances stock liquidity and shareholder value. The estimation results, reported in Column (3) of Table 6, show that the coefficient of the interaction term (Treat × Time) is not statistically significant. However, the coefficient for ESG is 0.057 and statistically significant at the 5% level. In addition, the Sobel test statistic is significant at the 1% level, indicating a partial mediation effect.
The significant positive coefficient of the ESG score suggests that better ESG performance leads firms to adopt greener production and operational practices, thereby improving energy efficiency and reducing carbon emissions. Simultaneously, the regulatory pressure imposed by green credit policies forces “two-high” enterprises to phase out outdated, high-emission production models and invest in low-carbon technologies, ultimately contributing to a decline in carbon intensity. These findings provide empirical support for H4, confirming that green credit reduces firms’ carbon emission intensity by improving ESG disclosure quality and accelerating the shift toward low-carbon development.
5.2.2 Investment efficiency
To test the mechanism of inefficient investment (H5), we refer to Chen et al. (2011) investment efficiency model. This model measures firms’ inefficient investment degree using residuals, where a new capital investment variable (IE) represents it, as calculated in Equation 4:
[image: The equation represents a mathematical model: IE_it = β_0 + β_1 Growth_(i,t-1) + β_2 NGE_(i,t-1) + β_2 Growth_(i,t-1) × NGE_(i,t-1) + ε_it.]
Additional control variables include the operating income growth rate (Growth) and a dummy variable (NGE) that equals one if the operating income growth rate is negative, and 0 otherwise. The estimation results, reported in Column (4) of Table 6, show that the coefficient of the interaction term is not statistically significant. However, the coefficient for, IE is 0.009 and statistically significant at the 1% level. Drawing on Zhao et al. (2023), improvements in investment efficiency allow enterprises to reduce inefficient fixed asset investment by promoting technological innovation and optimizing internal management. These improvements lead to lower energy consumption and more efficient energy use, thereby reducing carbon emissions during the production process. The results support H5, indicating that green credit reduces enterprise carbon emission intensity by enhancing investment efficiency and curbing inefficient investment activities.
6 HETEROGENEITY ANALYSIS OF THE GCGP IMPACT ON ENTERPRISES’ CARBON EMISSION INTENSITY
6.1 Heterogeneity analysis of enterprise types
6.1.1 Internal governance and controls
Differences in internal governance and control mechanisms across enterprises are closely associated with their environmental attitudes and behaviors, which in turn influence the effectiveness of green credit policies (Kudłak, 2019). To empirically investigate this heterogeneity, we utilize the Dibao Internal Governance Control rating data as a proxy for the quality of internal governance. Firms are classified into two groups based on the annual median IGC score: those above the median are considered to exhibit strong internal governance, while those below are regarded as having relatively weak governance structures.
Table 7 reports the estimation results, with Column (1) corresponding to firms with strong internal governance and Column (2) to those with weaker controls. The results reveal that for enterprises with strong internal governance, the coefficient of the interaction term is −0.017 and statistically significant at the 5% level, indicating a more substantial reduction in carbon emission intensity. This suggests that firms with better governance frameworks are more likely to align with green credit requirements, voluntarily adopt low-carbon technologies, and actively contribute to China’s dual carbon goals, thereby reinforcing their public image and organizational legitimacy. By contrast, enterprises with weaker internal governance generally exhibit lower levels of environmental awareness and limited willingness to engage in carbon reduction efforts. Consequently, the effect of green credit in curbing carbon emission intensity among these firms is statistically insignificant. These findings highlight the critical role of internal governance in enhancing firms’ responsiveness to environmental finance policies.
TABLE 7 | Heterogeneity analysis of enterprise types.
[image: Table displaying regression results for variables under conditions of enterprise internal governance, financing constraints, and degree of digital transformation. It includes coefficients, t-statistics, and significance levels for each category. The table notes that T-statistics are in parentheses, with asterisks indicating significance at the 10%, 5%, and 1% levels.]6.1.2 Financing constraints
The essence of the GCGP lies in influencing corporate environmental behavior through credit constraints. Accordingly, the level of financing constraints faced by enterprises may significantly shape the effectiveness of green credit in curbing carbon emissions (Wang et al., 2021). To measure the degree of financial constraint, this study adopts the Kaplan–Zingales (KZ) index, which is widely used in the literature as a proxy for firms’ external financing difficulties. Firms are classified annually into two groups based on the median value of the KZ index: those above the median are considered to face low financing constraints, while those below the median are classified as highly constrained.
Table 7 presents the estimation results for firms with varying levels of financing constraints. Column (3) reports the results for firms facing high financing constraints, while Column (4) shows the results for those with low constraints. For the low-constraint group, the coefficient of the interaction term is −0.030 and statistically significant at the 5% level, whereas the effect is statistically insignificant for firms with high financing constraints. Such firms are more capable of reallocating financial resources or accessing alternative financing channels even under restricted bank lending, allowing them to invest in technological innovation and environmental upgrades. In contrast, firms with higher financing constraints face difficulties in securing adequate funds for green transformation, thereby weakening their responsiveness to green credit policies and reducing their incentive to lower carbon emission intensity.
6.1.3 Degree of digital transformation
Digital transformation is an important driver of resource efficiency but often requires substantial upfront investment, which may affect firms’ environmental decision-making. To assess heterogeneity in the impact of green credit, we construct a proxy for digitalization based on financial statement indicators (Yang et al., 2023). Firms are divided annually into high and low digital transformation groups using the median value of this indicator.
Table 7 presents the regression results. Column (5) shows that the coefficient for firms with high digital transformation is −0.027, statistically significant at the 5% level. In contrast, Column (6) reveals no significant effect for firms with low digital development. This suggests that green credit exerts a stronger carbon-reducing effect on digitally advanced firms. These enterprises are typically in better financial condition and more capable of leveraging digital technologies to improve energy efficiency and environmental performance. In contrast, firms with lower digital capacity may lack the financial and technical resources to engage in low-carbon upgrades, and in some cases, may continue to rely on high-emission operations to maintain short-term profitability. As a result, the effectiveness of green credit in such firms is limited.
6.2 Heterogeneity analysis of regional conditions
6.2.1 Environmental regulation level
Regions differ in their environmental priorities and policy responses, which directly influence enterprise behavior and the effectiveness of green credit implementation. To quantify regional environmental regulatory intensity, we construct a proxy variable based on the frequency of keywords such as “environmental supervision and protection” in local government work reports. Regions with values above the annual median are classified as having high regulatory intensity, while those below the median are considered low-regulation regions.
Estimation results are presented in Table 8, with Column (1) showing results for high-regulation regions and Column (2) for low-regulation regions. In regions with stricter environmental regulation, the interaction term has a coefficient of −0.022 and is statistically significant at the 5% level. After controlling for relevant covariates and fixed effects, the findings suggest that the GCGP exerts a stronger carbon-reducing effect in regions with more stringent regulatory environments. This enhanced effect likely stems from the cumulative pressure of tighter enforcement, including harsher penalties for pollution and stronger institutional constraints, which together amplify the impact of green credit policies on firm-level carbon emissions.
TABLE 8 | Heterogeneity by regional characteristics.
[image: Table showing the impact of environmental regulation intensity and financial development degree on variables in four models. Model (1): High regulation, Treat × Time = -0.022 with significance. Model (2): Low regulation, Treat × Time = -0.011. Model (3): High financial development, Treat × Time = -0.031 with significance. Model (4): Low financial development, Treat × Time = -0.006. Consistent controls, industry effects, and time effects fixed across models. Observations range from 3,633 to 7,302. T-statistics and significance levels are noted.]6.2.2 Degree of financial development
The effectiveness of the GCGP varies depending on the level of regional financial development (Zaidi et al., 2019). In this study, we proxy financial development using the ratio of financial sector output to regional GDP, classifying regions above the median as financially developed and those below as underdeveloped.
As shown in Table 8, Column (3) reports results for high-development regions and Column (4) for low-development ones. In the former, the interaction term has a coefficient of −0.031, significant at the 5% level. This implies that in more developed financial environments, firms’ access to financing is more closely linked to environmental performance. High-pollution firms face tighter credit constraints if they fail to improve, increasing their financial risk. Therefore, green credit provides stronger incentives for carbon reduction in financially developed regions. In contrast, in underdeveloped financial regions, its disciplinary effect is weaker, limiting its overall impact on firm-level carbon intensity.
6.2.3 Firm location choice
Due to differences in factor endowments, industrial foundations, and policy support, there are natural disparities in carbon emission intensity across regions, which may lead to heterogeneous effects of the green credit policy. Following the regional classification standard of the National Bureau of Statistics of China, we divide manufacturing enterprises into four regions based on their operating locations: eastern, central, western, and northeastern regions. This allows for a more precise examination of how regional heterogeneity influences the effectiveness of the policy. As shown in Columns (1) to (4) of Table 9, the estimated coefficients for both eastern and central regions are statistically significant, showing negative effects at the 1% and 5% levels respectively. Indicating that the green credit policy exerts a stronger emission reduction effect in these regions. In contrast, the coefficients for the western and northeastern regions are not statistically significant. One possible explanation for this discrepancy is the gradient transfer of traditional manufacturing industries from the east to the west as the eastern region optimizes its industrial structure. Additionally, the relatively underdeveloped infrastructure and limited industrial base in the western region may hinder the efficient allocation of credit resources.
TABLE 9 | Heterogeneity analysis based on firm location.
[image: Statistical table displaying regression results across four regions: Eastern, Central, Western, and Northeastern. Columns show coefficients for "Treat × Time" and "_cons" with significance levels indicated by asterisks. T-statistics are given in parentheses. Controls, individual effects, and time effects are fixed. Observation counts are 1831 for Eastern, 1934 for Central, 6640 for Western, and 530 for Northeastern. Significance levels are noted as 10%, 5%, and 1%.]7 RESULTS AND DISCUSSION
7.1 Research findings
This study provides robust empirical evidence on the effectiveness of the GCGP in reducing the carbon emission intensity of manufacturing enterprises. Taking the GCGP’s introduction in 2012 as a quasi-natural experiment, we explore a DID approach using panel data from 1,856 listed manufacturing firms spanning the period from 2008 to 2023, analyzing yields three key findings: (1) The GCGP significantly contributes to the low-carbon transformation of the manufacturing sector; (2) Mechanism analysis reveals that green credit promotes carbon emission reduction through both macro and micro-level channels. At the macro level, the GCGP facilitates industrial structure upgrading and improves energy utilization efficiency. At the micro level, it enhances investment efficiency and the quality of environmental information disclosure, thereby strengthening firms’ capacity and incentives to reduce emissions; (3) The effect of green credit is heterogeneous across firms and regions. Enterprises with stronger internal governance, lower financing constraints, and higher degrees of digital transformation exhibit more pronounced carbon-reducing responses. Regionally, the policy is more effective in areas with stricter environmental regulations, more advanced financial systems, and a clear developmental preference for economically leading regions.
7.2 Policy recommendations
To enhance the effectiveness of green credit in promoting carbon emissions reduction and supporting economic green transformation, it is essential to establish a comprehensive policy framework integrating standard-setting, spatial differentiation, market participation, and performance evaluation.
First, green credit standards must integrate environmental, social, and economic indicators to direct financing toward sustainable projects that promote industrial upgrading and carbon reduction. The framework should combine forward-looking targets with historical performance assessments and implement a dynamic evaluation system that considers enterprise profiles, sectoral characteristics, and compliance records. This approach enables more accurate risk-return analysis and encourages enterprises to pursue continuous improvements in environmental performance.
Second, green credit policies should reflect regional disparities in economic development, financial infrastructure, and industrial structure. Establishing pilot zones in financially mature and green-oriented regions can serve as a strategic entry point to explore region-specific credit evaluation standards, monitoring systems, and incentive mechanisms. These zones can act as policy laboratories, accumulating experience and generating best practices that can be gradually expanded to other regions based on performance, replicability, and institutional readiness. Such a spatially adaptive approach can enhance policy precision, ensure a more equitable allocation of green financial resources, and facilitate coordinated regional transitions toward greener development paths.
Finally, beyond government guidance, greater efforts should be made to mobilize market innovation. Financial institutions should be encouraged to actively participate in the development of innovative green credit instruments such as carbon-neutral asset-backed securities (ABS), ESG-linked loans, and sustainability performance-based credit products. These instruments can help diversify financing channels, improve capital efficiency, and enhance the attractiveness of green projects. In parallel, supporting policy tools such as credit guarantees, risk-sharing arrangements, and interest rate subsidies should be provided to reduce investment risks, enhance the willingness of financial institutions to engage in green finance, and facilitate broader participation from private capital in the green transition.
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The historic convergence of the world situation and China’s development has set the stage for changes in the international environment that have not been seen in a century. In this context, the economic, political, cultural, and social crises are intertwined, and the traditional development that uses ecology and resources as consumables is unsustainable, and the resulting ecological crisis further amplifies the anxiety for social change. With the introduction of China’s comprehensive deepening reform strategy, green governance, as a critical platform to carry the transformation of the shaping of the governance system and the modernization of governance capacity, is in line with and integrated with the construction of the sustainable pattern, and has become a key initiative in response to various crises. While the enthusiasm and enthusiasm for green governance have surged dramatically in the process of its formation and extension, the homogenization of recent years has further widened the differences in development within regions. The convergence of green governance, which rejects the objective directives of the laws of development, has led to an increase in the scale of resource redundancy and a significant decrease in the green effectiveness of many local governments. This paper examines the formation mechanism of the peer effect of green governance in local governments and clarifies the continuity of green governance by sorting out the origins, main contents, and connotations of green governance in local governments. In this study, a scientific definition of green governance is distilled based on the core changes in green governance in the broader historical context. In addition, the study examines the peer effect of local governments in past administrative decisions, and through the analysis of its origins and connotations, clarifies the potential possibilities and environmental influences on local governments’ convergent decisions. On this basis, the study summarizes the senses, external manifestations, and characteristics of the green governance peer effect through the overlap of the green governance + administrative decision-making peer effect at the historical level and the potential correlation and interoperability mechanisms within the two. The study found that green governance is a comprehensive organizational framework activity under integrating various types of decision-making. The characteristic is that the peer effect of green management will encompass all kinds of past decision-making patterns and interest mechanisms. The behavior motivations behind the peer effect must be examined in the context of historical experience to promote increased green governance effectiveness.
Keywords: green governance, local government, peer effect, transmutation logic, China

1 INTRODUCTION
Against the backdrop of a volatile international situation and a significant increase in external uncertainties, the course of human history has entered a period of considerable change unprecedented in a century. The historical intersection between the world’s significant changes and China’s remarkable development has promoted the maintenance and extension of the strategic opportunity period for China’s development. However, the international environment is treacherous, the task of domestic reform, development, and stability are arduous, and multiple issues and contradictions are intertwined, resulting in a significant increase in unpredictable factors. The key to tackling these crises and resolving development risks lies in renewing national governance concepts. Around this issue, the Third Plenary Session of the 18th CPC Central Committee adopted the Decision of the CPC Central Committee on Several Major Issues of Comprehensively Deepening Reform, which put forward the critical thesis of promoting the modernization of the national governance system and governance capacity. It made the modernization of the national governance system and governance capacity the “fifth transformation” after the modernization of industry, agriculture, national defense, science, and technology (Bardhan, 2020). As China’s development enters a new era and the main contradictions in Chinese society are transformed, China’s primary national conditions and social practices enable national governance with Chinese characteristics. With a new governance structure and system, federal administration achieves integrated management in the economic, political, cultural, ecological civilization, and social spheres, becoming a concrete, practical tool to deal with economic, political, cultural, environmental, and social crises. And in the modernization and shaping of the national governance system, a construction pattern echoing the Five-in-One has been formed, with a prominent place given to the construction of ecological civilization. The reasons for this are the environmental problems caused by the unbalanced development model that constrain the sustainable development of our economy and society (Liu et al., 2021a), the low quality of products, and the lack of innovative power due to the weak accumulation of industrial knowledge (Liu et al., 2021b), which in turn leads to insufficient political, cultural and social construction. The key to resolving the contradictions between ecological environment and economic development and optimizing the coordinated development of politics, culture, and society lies in enhancing green governance capacity (Thoyre, 2021).
Green governance by local governments has become a key element and core part of national green governance. At present, local governments are forced by the ambiguity of green governance orientation, and there are many chaotic phenomena such as the loss of governance resources and internal conflict in governance competition. This has exacerbated the regional fragmentation of green governance by local governments due to the “blurring of powers and responsibilities and the division of powers.” To overcome this shortcoming, some of the “backward” places hope to follow the example of the whole range of government actions and strategies, thus forming a homogeneous development of green governance, which has to a certain extent revolutionized the model of green governance but has further intensified the struggle between horizontal governments. Based on this, this paper, through the perspective of the historical system, comprehensively composes the connotation of green governance and the historical experience of the peer effect of administrative decision-making, summarizes the formation mechanism of the peer effect of green governance of local governments through the transmutation and integration of the two, and lays down theoretical ideas for regional green governance and integrated arrangement.
Green governance is a microcosm and an essential practice of the Chinese program for global governance and the modernization of the national governance system and capacity, as well as a strategic choice for coordinating the contradictions of China’s domestic development and balancing economic, political, cultural, social, and ecological issues. Local governments, as the key actors and core leaders of green governance, are bound to influence China’s governance pattern with their green governance initiatives and results. However, the strong ‘local characteristics’ of local governments make them biased in understanding the connotation of green governance and balancing green governance with other administrative work, and the centralized decision-making of green governance often affects the path of local transformation and development. Focusing on green governance, we have formed the following research objectives: how to interpret the connotation of green governance and its peer effect? To what extent do green governance assessments and factor inputs contribute to the efficiency of green governance? Is there a peer effect of green governance and what are the sources of the influencing factors? How can green governance peer effects be channeled and implemented? Analyzing these questions can provide a reference for promoting regional cooperation on green governance and strengthening national green governance capacity. Local activities on green governance have been discussed in various countries.
Green governance activities are largely derived from the global construction of sustainable development. With the extension of sustainability activities, it shifted to government-led green administrative activities. And then evolved into green governance. The theory of sustainability (development) originated from the combination of foreign sustainability theory and Chinese development theory. The concept of sustainability was first proposed by Letcher Carson in 1962 in Silent Spring, which argues that the goal of sustainability is to get rid of the environmental pressures caused by the human economy, urbanization, population, and resources, and ultimately to achieve a balanced pattern of growth and development (Rennings and Wiggering, 1997). In 1972, the Club of Rome presented the environmental analysis ‘The Limits to Growth’, which for the first time expanded the concept of sustainability to ‘sustainable economic growth’ and ‘sustainable balanced development’. 1987, the World Commission on Environment and Development officially defined the concept of sustainable development and promoted it as an important term. In 1987, the World Commission on Environment and Development formally defined the concept of sustainability and promoted it as an important term in theory. 21st century, with the decline of China’s crude economic model, China and other developing countries have formed a new green paradigm: sustainable development refers to the process of development that can satisfy the current generation’s real needs without harming the development of future generations, and does not create structural resource hazards to the ability of future generations to satisfy their needs. The theory of sustainable development is based on the three fundamental principles of equity, continuity and commonality, with the ultimate goal of achieving coordinated, equitable, efficient, common and multidimensional development of societies (Zhao, 2017). As a result, countries around the globe have embarked on green governance activities with sustainability as the main theme. In terms of its internal theoretical structure, the theory of sustainable (green) development is in fact a unification of the theory of the limits of economic growth, the theory of the knowledge economy, the theory of sustainable ecology, the theory of the carrying capacity of the population, and the theory of the human-earth system. The theory clearly indicates the dialectical unity and coexistence of development and the environment, and emphasises the mutual constraints and limitations of the two (Li et al., 2020). That is, population expansion requires the reconciliation of human-land conflicts, and population, as an important economic factor, cannot grow indefinitely. In the context of environmental constraints and the limits of economic growth, a knowledge-driven sustainable model will break through the limitations of both sides, which is essentially an economic slowdown in disguise to sustained growth (Opschoor, 2010). The successful practice of the theory of sustainable (green) development is guided by the theory of the perpetuation of resources, the theory of externalities, the theory of the equitable intergenerational distribution of wealth, and the theory of production in the context of human production, material production and environmental production. On the one hand, the real realisation of sustainable development requires the scientific allocation of resources and the guarantee of a constant and stable use of resources. On the other hand, it is important to recognise the economic significance of resources and not to iterate them as free public goods to be used by society. Finally, the ‘development’ of sustainable (green) development still depends on the operation of the theory of production, which generates the real value of resources and distributes this value equitably between present and future generations, i.e., deals with the issues of production and distribution (Deslatte and Stokan, 2019). In this context, the discussion of green governance activities can shed deep light on countries around the globe in order to form a new green governance framework.
An important contribution of this paper is to refine the core connotation of green governance, and through qualitative research and other methods, to sort out the origins of the formation of the peer effect in the past administrative decision-making of local governments, and then refine the connotation of the peer effect of local government decision-making. Under the guidance of peer theory, administrative theory, public management, and other systemic perspectives, and considering the subject and identity characteristics of local governments, we construct the connotation structure of the peer effect of local governments’ green governance along with the research idea of “green governance + peer effect of administrative decision-making = peer effect of green governance”, and identify the outward manifestation and key characteristics of the effect. The research idea is to construct the connotation structure of the local government green governance peer effect and identify the external manifestation and key characteristics of the effect. Using the methods of literature analysis and practical research, we will continue to identify the driving factors of local governments’ green governance peer effect and clarify the whole process of the formation of the green governance peer effect and the path of differentiation of the effect. This will provide new ideas for the global practice of green and sustainable development.
2 LITERATURE REVIEW
2.1 Research on green governance
Green governance is a governance activity or process in which all parties cooperate in public affairs based on the principles of mutual trust, mutual reliance, and shared governance, guided by green values, to achieve the harmonious and sustainable development of ‘economy-politics-society-culture-ecology’. ‘The governance activity or process of harmonious and sustainable development. The Government is the core subject and key actor of green governance, and is also the key field for realising the value of green connotation and implementing the new concept of green development (Guo and Chen, 2021). The following literature study focuses on the concept of green governance, quantitative and assessment measures, and research generalisation.
Green governance, as an important part of the theory of socialism with Chinese characteristics, reflects the strategic position of ecological civilization construction in the overall layout of the ‘Five-sphere Integrated Plan’ (Liu, 2017). From a deeper perspective, the fundamental starting point of green governance is to guide society from resource scarcity to environmental sustainability, and from unilateral solicitation and consideration of human needs to bilateral consideration of the environment as an equal subject (Shi and Liu, 2018). Through the overlapping consensus of green values, the optimal construction of a green governance system, and the profound depiction of the spectrum of green governance mechanisms (Shi and Tang, 2019), green governance portrays the development path of social construction in the ‘Five-sphere Integrated Plan’. In the transition from green development to green governance, social consensus, values, behavioral norms, and political mechanisms have gradually guided the formation of green culture and green politics under the linkage of institutional and non-institutional factors, laying the foundation of the cultural system of green governance (Li et al., 2019), and clarifying the direction of the promotion of political construction and cultural construction. In the context of the change of the main contradiction in society and the economic situation entering a new normal, green governance also needs to achieve balanced, coordinated, and compatible development of the economic system based on taking into account the social and ecological systems. Green governance is based on the premise of reversing the trend of ecological and environmental deterioration, achieving high-quality economic construction, and promoting the formation of a synergistic mechanism between the construction of ecological civilization and green development, which opens up a wider development prospect for economic construction under the Five-sphere Integrated Plan approach. It can be seen that green governance is an important deployment of the overall layout of the ‘Five-sphere Integrated Plan’, and is also the practical impetus for the formation of the organic whole of the ‘Five-sphere Integrated Plan’.
With the proposal of the five development concepts, the action path and core connotation of green governance have achieved the condensation and sublimation of regular understanding. The implementation of green governance is not to constrain the economic efficiency of enterprises and society with green regulations but to promote the sustainable development of the economy with green innovation based on coordination, openness, and sharing (Jiang and Guo, 2017). Liao et al. (2019) analyzed the dynamic relationship between science and technology innovation and the coordinating effect of green governance, and found that there is a significant positive and sustained impact of green governance on science and technology innovation, and science and technology innovation will also have a reverse effect on green governance. Sun et al. (2019) used hierarchical regression models to emphasize that green governance affects green innovation and corporate performance, and high-quality green governance helps to promote corporate green transformation. Li and Niu (2017) discuss the practical strategy of green governance and argue that green governance requires enterprises and other micro-bodies to continuously optimize the development structure, highlight innovation and development, and actively respond to the direction of economic-based governance of enterprise reform. In the context of increasing stakeholder pressure and tightening development resource constraints, green innovation has become a key behavior of green governance (Kong et al., 2016). In summary, at the strategic and theoretical levels, green governance links the ‘Five-sphere Integrated Plan’ construction requirements. At the tactical and operational levels, green governance implements the five development concepts. As a public affairs activity of the government, green governance creates an atmosphere of green innovation for society and promotes the scientific development of the ‘Five-sphere Integrated Plan’ of the whole society based on the productivity and creativity generated by green innovation.
The connotation of green governance is initially highlighted: green governance is based on the principle of mutual trust and mutual reliance, and the principle of building, governing, and sharing, with the green value as the guiding concept, through green technological innovation and institutional change, and efficient cooperation in all aspects of social affairs, to achieve economic, political, cultural, social and ecological harmony and sustainability governance process (De Lucia, 2015). In this process, the government, as the core of green governance, guides or leads enterprises to carry out green innovation through management functions and other means of governance, and then realizes the construction of a new pattern of ‘Five-sphere Integrated Plan’ through social changes and progress triggered by green innovation, which leads to the integrated development of politics, culture, society and economy. The green technology and productivity triggered by green innovation subvert the traditional development model of sloppy, thus truly realizing the green development of society. The core connotation of green governance indicates that the essence of green governance is the link relationship between the government and enterprises in the process of green development, the government participates in the capacity of an investor, while enterprises face society in the image of an exporter, and the outward effectiveness of green governance is precisely the degree of promotion of green innovation. As a result, the green transformation chain of green governance - green innovation - and green development is formally formed. In this process, if green governance wants to achieve the goal of green development of society, the key lies in more micro-factors and micro-units to strengthen green innovation to support the need for green development. The specific micro-factors and micro-units are precisely enterprises, and the landing point of green governance is to take the government’s call, policy action, and political guidance as the main, to encourage and support enterprises to carry out green transformation and innovation, and ultimately to achieve the green upgrading of social governance, and thus the direct outputs and effects of green governance is the increase and change of the enterprise’s green innovation capacity. From the perspective of high-quality economic and social development, green governance is not only the first step in the green transformation chain, but also a marker for judging the green progress and innovation of the society, and the scientific measurement of green governance will be of great significance. Considering that the core of green governance is a governance process, the government, as the initial promoter and builder of the green transformation chain, guides the maturity of green governance activities through the input of a large amount of government resources, and the final product is the results of green innovations and the atmosphere of green innovation in the society, i.e., the green governance opens up the second link in the green transformation chain.
The concept of green governance has been enriched with economic and social development, led by the connotation that the essence of green governance is sustainable innovation, and that this conceptual perspective originates from the social dimension, i.e., it emphasizes the broad coverage of green governance and green innovation. Green governance stimulates the formation of a national renewable economy and leads to a significant increase in manufacturing production through technological innovation (Brunel, 2019). Domestic scholars also interpret green governance at the macro and micro levels: at the macro level, it is emphasized that green governance is a combination of innovation-driven and green development strategies, and a strategic expression of green innovation, i.e., green governance is an important way to deal with ecological problems such as environmental degradation, and development problems such as industrial competitiveness (Schiederig et al., 2012). At the micro level, green governance refers to the corresponding actions taken by enterprises on their own economic performance and social environmental protection (He et al., 2019). It can be seen that the definition of green governance by foreign scholars focuses on the perspective of ‘sustainability’, while domestic scholars are mostly based on the perspective of ‘unity of economy and environment’. The two views are the same, and both emphasize that green governance can achieve the goal of sustainable development at the social level, as well as bring about changes and promotion in the economy and other fields.
To review the current state of research on green governance based on a holistic view perspective, this study utilizes Citespace with Vos-viewer for the work of combing and cleaning the relevant literature. Literature data were collected from the web of science core database. Choose green governance as the keyword. A total of 2,316 articles were retrieved, and 1,523 valid records were retained for analysis after subject selection and software clear automatic cleaning.
As can be seen from the figures, as far as hot topics are concerned (Figure 1), green governance research is highly focused on the topic of sustainable management, with the formation of a management framework as the core objective; at the sub-hot level, the construction of ecological management at the city level is discussed, including ecological services and environmental control, and analyses in subfields such as policy design and public management have been formed around this objective. In terms of the time zone clustering display, (Figure 2), the hotspot and sub-hotspot topics were generated earlier and accumulated a large number of research results, but the research frontiers focus on the levels of environmental performance, social responsibility, collaborative governance, and determinants analysis, which corresponds to the level of green governance assessment analyzed in the previous section. In the further downscaled hotspot clustering map, exploring the evolution of the time zone of the key terms (Figure 3), the starting point of green governance research is ‘environmental regulation’, starting in 2005, which includes the ecological scope of environmental governance, legal regulation, and governmental pressure in economic adjustment. Environmental regulation emphasizes the external diseconomies of environmental pollution and the need for governments to regulate the ecologically depleting economic activities of enterprises around mandatory policies and measures, whereas the urgency of environmental governance lies in the fact that it is based on the introduction of policies and measures, rather than focusing on economic activities. With the emergence of environmental regulation, research has emerged on participation, policy effectiveness, sustainability, citizenship, and many more, and the environmental discourse surrounding China entered the international arena in 2009. In 2010, the theme of green governance shifted to a corporate perspective, focusing on topics such as green manufacturing, environmental performance, green economy, land, business, corporate certification, and environmental accounting. In this respect, the paradigm followed by the Green Governance Institute is the concept-idea-practice path.
[image: Heatmap showing clusters of terms related to sustainability. Red indicates high relevance, while green and blue show decreasing relevance. Key terms include governance, management, policy, and performance.]FIGURE 1 | Web of Science “green governance” hotspot search situation.
[image: Network visualization depicting connections between keywords related to management, governance, and sustainability. Nodes are color-coded by time, ranging from blue (earlier) to red (recent), illustrating the evolution of these concepts over time.]FIGURE 2 | Web of Science“green governance” time zone clustering.
[image: Flow chart mapping relationships between keywords related to climate change, governance, corporate responsibility, and environmental management. Lines connect words like "sustainability," "adaptation," "accountability," and "green space," illustrating interconnected concepts.]FIGURE 3 | Web of Science“green governance” time zone evolution.
2.2 Research on peer effects
The concept of peer effect has been rapidly expanding with the development of peer theory and its application in different fields. The peer effect first appeared in the field of education, when the peer phenomenon refers to the phenomenon that with the increasing pressure of competition in education, many students will be crowded to compete for certain specific schools, i.e., the current concept of ‘school districts’ (Zabel, 2008). The emergence of the peer phenomenon creates a double-sided peer effect on society: on the one hand, due to the fierce competition in public schools, the quality of education has been significantly enhanced, and students are also divided in the process of ‘those who are close to the vermilion are red, and those who are close to the ink are black,’ resulting in groups of good and bad students. This means that even without social ‘natural selection’, the classification of students on their own will facilitate social advancement: that is to say, the elites and intellectuals will be washed out by cohesion; on the other hand, however, the stratification of students and schools will lead to a departure from the theory of equity in education. It can be seen that the peer effect is a positive or negative social impact of divesting the peer phenomenon and is guided by the peer theory, which is an important measure of feedback on the allocation of social resources, regulating the structure of internal operations, and equalizing opportunities in the field (Feld and Zölitz, 2015). With the depth of research in the field of education, scholars have begun to pay attention to the peer effect in education and other areas of the connection, such as proposed that college students in the choice of employment will also show the peer effect, due to the definition of a specific group of excellent mapping presented in the group of college students, college students will coincidentally follow the excellent group of the regional convergence of employment choices, industry convergence, and convergence of employment readiness. Feedback to the reality, that is, the formation of the so-called employment red and black list, the prevalence of public examination and other issues. This employment peer effect will affect the development of social knowledge class reserves, and even unfavorable to the structural change of national development, a swarm’ to follow the ‘excellent group’ gradually leads to the imbalance of social development (Li et al., 2020).
Entering the era of dual innovation, as well as the updating of foreign innovation theories, scholars have begun to pay attention to the existence of disorderly innovation activities and discuss the formation mechanism of certain irrational decisions. In this process, the peer effect was introduced into the above topic due to presenting the perceptual mechanism of decision-making. First proposed the existence of a peer effect of low-carbon willingness in consumers’ payment activities: with the clustering of individual socio-economic characteristics and low-carbon attitudes, the group of low-carbon consumers gradually expands. This positive peer effect has led to the emergence of groups of consumers with special preferences and short-term difficulties in meeting their needs, and the size of such groups will continue to increase. The sweet ‘share of the cake’ makes many enterprises take the lead in attempting to cater to the ‘preference will’ of such consumers, and once the pilot venture of some enterprises succeeds, it will trigger the willingness of other enterprises to make the transition, which completes the accumulation of the initial perceptual decision-making. Constructed a model of the influence of the peer effect on entrepreneurial activities and proved this consumer-enterprise peer effect transfer mechanism, which also marks the shift of the subject of the peer effect from individuals (students) to organizations (groups of enterprises), and the applicability and explanatory power of the peer effect is significantly enhanced. Enterprises or organizations, like individuals, will make group decisions due to a conservative or emulative mindset in the process of profit-seeking, which is particularly evident in topics such as investment and financing, innovation choices, dividend distribution, and leadership building. The main reason is that these perspectives are the key to the establishment of differentiated competitive advantages of enterprises, and once the enterprises are too isolated, rational, and without reference to the decision-making, that is, the so-called ‘eating crabs alone’ strategy, it is easy for enterprises to embark on the road of no return (Sassi and Gasmi, 2014). Therefore, most enterprises focus on imitation behavior in the above areas, based on extreme observation and emulation to protect their vested and available interests. This peer effect produces two effect results of complementing the strengths and blindly following the trend, the former is the scientific perceptual analyses after learning decision-making and obtaining significant benefit growth, while the latter is the loss of the competitive opportunities of differential advantages and being reduced to the servant of other leading firms.
The refinement of the peer effect at the organizational level has led to its application at the governmental decision-making level. Combined with the previous analysis of the cohort theory, it can be seen that the rationality of organizations’ decision-making will be more ambiguous in light of the multiple orientations of prices, revenues, and economic interests. The multiple responsibilities and complexity of the government’s role puts a great deal of administrative pressure on it to make decisions. The government’s risk appetite is also weaker than that of enterprises, which makes the ‘safeguard advantage’ of the peer effect more obvious, and based on the ideological guidance of the compromise route, the government shows a strong peer effect in new issues such as change and transformation (Cca et al., 2018). Under the fiscal decentralization system, market segmentation makes the government’s peer effect more obvious. In governmental activities, the concept of the cohort theory is expressed as the government’s homogeneous decision-making to avoid harm and to avoid lagging behind other governments in the decision-making administration, and any changes brought by such decisions to the society (resulting in the expansive increase and rapid decay of a certain kind of benefits of the original society) are the peer effect.
In order to review the current state of research on the peer effect based on a holistic view, this study utilises Citespace and Vos-viewer for combing and cleaning the relevant literature. Literature data were collected from the web of science core database. Select peer effect/s as the keyword. A total of 1,927 literatures were retrieved. After subject selection and software clear automatic cleaning, a total of 1,063 valid records were retained for analysis.
As can be seen from Figures, in terms of hot topics (Figure 4), the heavy focus of peer effects is on effect identification; at the sub-hot level, it is the methodological system of models, networks, information, factors, etc., that endeavors to be constructed around effect identification. In terms of the time zone clustering display (Figure 5), the peer effect in education disciplines continues to be the prior topic, including classroom, children, gender, and social relations perspectives. As the timeline lengthens, peer effect topics show explosive growth, including health and wellness topics such as overweight, health, and friendship, and evaluation topics such as efficiency, quality, competition, and market. As far as the most cutting-edge topics are concerned, the analyses of peer effects are clustered in terms of discussion of effect outcomes. Compared to green governance, the novelty of the peer effect is relatively weak, but the richness of topics is much higher than the former. Further downscaling of the hotspot clustering map to explore the time-zone variation of key topic terms shows (Figure 6) that the starting point of the study of the peer effect is the peer effect itself, which surfaces the primitive and pure creation of the theory, which is the direct peeling off of social phenomena, rather than the evolution of the formation of the topic of green governance. Peer effect research began in 2002, before 2009, the topic was concentrated in the field of education. 2009–2015 shifted to the enterprise dimension and maintained the expansion of other fields and mining of education science. 2016, the peer effect formally shifted to the stage of quantitative analysis, began the original formation of the connotation of the mechanism to be empirically examined, the formation of the peer effect of performance, performance, correlation model, and other high-frequency topics. High-frequency topics. It is worth noting that in 2020 the peer effect began to appear in isolated policy subject terms, indicating both the combination of the peer effect and government topics, but also the relative isolation and lack of the study, which is worthy of in-depth analysis.
[image: Heat map illustrating the density of certain terms related to "peer effects" and "identification" located at the center in red, surrounded by related terms such as "impact," "models," and "outcomes" in varying shades of green and blue indicating lesser density.]FIGURE 4 | Web of Science“peer effect/s” hotspot search situation.
[image: A visual representation of keywords related to "peer effects" and "identification," using a clustered network with varying node sizes. Keywords like "achievement," "impact," and "outcomes" are visible. Nodes are colored on a spectrum from blue to red, indicating their occurrence over time from 1995 to 2013, as shown by a color scale at the bottom.]FIGURE 5 | Web of Science“peer effect/s” time zone clustering.
[image: Visualization of keywords related to peer effects. Larger and bolder terms, such as "peer effect," "identification," and "social network," indicate higher relevance or frequency. Other words include "school," "achievement," and "interaction," connected by lines showing relationships.]FIGURE 6 | Web of Science“peer effect/s”time zone evolution.
3 ANALYSIS OF THE FORMATION MECHANISM OF THE SAME GROUP EFFECT OF LOCAL GOVERNMENT GREEN GOVERNANCE
3.1 Global context of green governance and peer effect environment
3.1.1 Ecological environment construction leads green governance
Since the 18th National Congress, China’s economy has faced downward pressure, and the contradiction between economic development and ecological construction has become increasingly acute. The heterogeneous confrontational rhetoric of “environmental protection excesses” and “one-size-fits-all governance” has further intensified the sentiment that the economy and the environment are divided and governed separately. The divergence of economic and environmental development has been accompanied by a certain degree of resource loss in the positioning of main functions, territorial spatial development, technological innovation, and structural adjustment (Sun and Wang, 2021). On 18 May 2018, the National Conference on Ecological Protection of the Environment was officially held. As the highest-profile, the largest scale, and most far-reaching ecological civilization conference, it established the “Thought on Ecological Civilization.” It made it an important part of China Socialist Thought with Chinese Characteristics for a New Era, comprehensively summarizing and scientifically summarizing the sustainable development of the new era from the height of new concepts, new ideas, and new strategies. The far-reaching connotation of sustainable development in the new era. China’s thought on ecological civilization marks forming a new position and a new model for green development in China (Liu et al., 2021c). Based on its insight into the great development situation and objective laws of the historical leap from industrial civilization to ecological civilization, it takes the harmonious development of man and nature as its primary starting point. It coalesces to form the concept of green development. This is essentially a new Marxist ecological civilization theory practice combined with Chinese characteristics. As a result, new ways of production and life, new economic and political relations, and new cultural values and ethical systems collide and stir in a green context. Ecological and environmental protection, as the basic landing point of ecological civilization thought, becomes the core issue under green development and rises to the central position of green development (Xiao et al., 2021). The new productive life, the new economic politics, and the new cultural values correspond to the social construction, economic construction, political construction, and cultural construction (Huang et al., 2021). under the comprehensive guidance of green change thinking and action after breaking the contradictions of environmental, economic differentiation. The synergistic development of the five major constructions and the Five-in-One further highlights the green undertones of building a well-off society. During the deliberations of several delegations at the 19th National Congress, General Secretary pointed out that “the quality of the ecological environment determines whether a well-off society is comprehensive or not.” The battle to build a moderately prosperous society is the unified construction of the multi-dimensional requirements of social balance, inclusiveness, and sustainability and the global construction of social quality improvement under the in-depth innovation-driven development strategy and significantly enhanced development coordination. The adjustment process of the ecosystem and the economic system of “good money” by “bad money. is also a process of adjustment of the ecosystem and the economic system in which the “good money” catches up with the “bad money” (Scalia et al., 2020). The first and foremost synergy between ecological and economical construction is to remove the black economy from ecological development and make the economic system purely constructive, rather than “black growth,” which is crude development at the expense of the ecological environment. General Secretary put forward the theory of ecological-economic synergy as early as 2005 when he investigated Anji, Zhejiang Province. After the 19th National Congress, this theory was formally incorporated into the 19th National Congress and the Party Constitution. The practical guidance of the Two Mountains Theory has reversed the dichotomy between economic and social development and ecological protection in the traditional industrialization revolution (Dani, 2014), and its sublimated scientific significance implies the dialectical unification and integration of ecology and economy. In this way, the Two Mountains Theory reconstructs the “good” and “bad” chasing of ecological and economic systems, opening up a new situation of green and high-quality development in the perspective of the Five-in-One. In general, the resolution of ecological and economic contradictions has liberated the reconfiguring and combining productive forces and modes of production. It has balanced the social, political, and cultural orientations of construction, ultimately achieving the ‘comprehensive’ goal of building a well-off society. In this process, the ‘green’ ethos empowered by ecological construction links economic, social, political, and cultural construction, making the direction and integration of each dimension clearer. It can be seen that research on green and high-quality development under the Five-in-One is essential.
3.1.2 China’s governance system extends to green activities
National governance capacity has long fed into the core objective in the political transformation of the country: through the design and integration of institutional structures under the governance system, the linkage of institutional mechanisms, laws, and regulations in various dimensions such as economy, ecological civilization, society, politics, and culture is gradually formed, and a closely interlinked and coordinated national system is eventually constructed. In 2013, the Third Plenary Session of the 18th Central Committee of the Communist Party of China (CPC), in its Decision, for the first time explicitly put forward the goal of promoting the modernization of the national governance system and governance capacity, with governance replacing the two traditional concepts of state rule and state management and leaping to become the core force and central guide for national development (Chen and Bao, 2014). With the adoption of the Decision of the Central Committee of the Communist Party of China on Several Major Issues on Adhering to and Improving the Socialist System with Chinese Characteristics and Promoting the Modernization of the State Governance System and Governance Capacity at the 19th Plenary Session of the 19th CPC Central Committee in 2019, the construction of the governance system and capacity has been further focused and the modernization line of governance in parallel has become increasingly clear: With “governance” as the means, the Party’s leadership and the state’s leading force are adhered to, and the enthusiasm and participation of all social details are coordinated, so that the legal, market and social pressures can achieve the overall “governance” of all affairs, and achieve scientific and high-quality development of the whole situation based on the critical areas of economy, ecological civilization, society, politics and culture (Wang and Bernell, 2013); with “reason” as the footing, the coordinated development and orderly operation of all fields are promoted, and the institutionalization, standardization, procedure and democratization of public affairs and functions are achieved. In this process, local governments have gradually become the main body for implementing national governance construction (Chien et al., 2017). In the Third Plenary Session of the 19th Party Central Committee, it was clearly stated for the first time that the structure of a “governmental governance system with clear responsibilities and administration following the law” was one of the objectives of the reform of the Party and state institutions. This goal integrates the urgent demand for modernization of the national governance system and governance capacity and is also a critical path for the overall layout of the Five-in-One. In constructing the governmental governance system, the optimization of structures and responsibilities, and the consolidation of reform achievements through institutional construction, require an adequate “response” from local governments (Ran and Ping, 2010). As the first provider and responsible for public services, local governments have become a direct field for feedback on economic, ecological civilization, social, political, and cultural construction. As the grassroots actor in the structure of national governance, local governments determine the extent to which the modernization of the national governance system and governance capacity is achieved. With the increase in economic pressure and the need to change the mode of social development, local governments, in the process of implementing the “two skins” of governance and development, have gradually condensed the adjustment model so that green growth is presented in governance and green governance is added to change. Along with green governance refining the construction kernel of green development, local governments have formally stepped out of the development path of green governance (Lin et al., 2019) in many grassroots practices such as coordinating the hammering of national governance capacity, high-quality development, and the construction of the Five-in-One, and are more confident in chasing the grand blueprint of building a moderately prosperous society in all aspects. Thus, it will be of great practical significance to explore the core concept and scientific interpretation of green governance and precisely study and judge the countermeasure ideas based on the critical identity of local governments.
3.1.3 Green governance behavior path generates same group results
With the integration of green governance and macro policies, local governments have been guided by performance pressure and social aspirations and have shown positive green governance patterns. 2015 saw a gradual increase in the reform of the green governance system after the Central Party and State Council issued the “Overall Programme for the Reform of the Ecological Civilisation System,” and the green governance and ecological market system was formally constructed. The new Five-in-One performance appraisal and accountability system under the leadership of environmental civilization was formed. The new five-in-one performance appraisal and accountability system has taken shape. Around the central document, various localities have also issued policies in response to green governance (Dressler et al., 2020). At the regional level, in 2019, the Yangtze River Delta issued the “Yangtze River Delta Ecological Green Integrated Development Demonstration Zone”; in 2021, the Yangtze River Delta issued “Several Policy Measures on Supporting the High-Quality Development of the Yangtze River Delta Ecological Green Integrated Development Demonstration Zone.” In 2018, Guangdong Province, together with Hong Kong and Macao, issued the Implementation Plan for the Construction of the National Green Development Demonstration Zone in the Pearl River Delta. 2016, the State Council guided the Yangtze River Economic Belt by issuing the Outline of the Development Plan for the Yangtze River Economic Belt. During the past 4 years, structural green development policies such as the Special Management Measures for Central Budgetary Investment in the Construction of Major Regional Development Strategies (Direction of Green Development in the Yangtze River Economic Belt) and the Programme on Comprehensive Promotion of Fiscal and Tax Support Policies for the Development of the Yangtze River Economic Belt were collated and formed around this outline. At the individual local level, in Jiangsu, for example, the “Rules for the Implementation of the Green Guarantee and Subsidy Policy in Jiangsu Province (for trial implementation)” will be issued in 2019 to lay the financial foundation for green governance, and the “Opinions of the Provincial Government on Promoting Green Industry Development” will be published in 2020 to form a comprehensive green governance mindset. In general, all regions have adopted green governance models to meet the needs of changing development patterns, with various government policies and development frameworks showing a trend of “homogeneity.” However, in a homogeneous framework, many regions have followed joining without regard to their transformation base (Wu et al., 2021). For example, the Yunnan-Guizhou region started the green governance matching work of the Chengdu-Chongqing region, but the industry sector covered almost all green manufacturing industries (Ma et al., 2018). However, the industrial structure system of the Yungui region itself is not yet mature enough to take on the overflow of green resources. In August 2021, Tibet announced the initial formation of a green development pattern, emphasizing the “ecological priority, green and low-carbon development-oriented” road of high-quality development to guide the future construction of Tibet in all dimensions officially. In 2005, Tibet issued a ban on logging. In 2010 it introduced ecotourism. It encouraged Tibetans to build ecological homestays, and after the 13th Five-Year Plan, Tibet built a national model city for ecological civilization and a national model area for tourism and created a national clean energy succession base. By 2020, clean energy in Tibet will reach 89.09% of the installed capacity of power generation, with ecological and environmental tourism revenues exceeding 24 billion yuan and 32 million tourists received. It can be seen that green governance is a development goal that each local government strives to pursue and must achieve. However, the homogeneous development of each province and the quick scramble for green resources under the homogeneous ideas have made it difficult to improve the quality of the overall macro situation of green governance, and even inefficient “grouping” and excessive “imitation. “However, the problems of homogeneous development across provinces and rapid competition for green resources under a homogeneous mindset make it difficult to improve the quality of the overall macro picture of green governance, and even inefficient ‘grouping’ and excessive ‘imitation’ under which local governments blindly join the same ‘pooling group’ and stiffen development will lead to more efficiency losses in green governance (Xiao et al., 2020). In this context, how to scientifically study the peer phenomenon of green governance of local governments and research and judge the positive or negative peer effects of local governments in the process of green governance will be necessary for the scientific improvement of the development situation of green governance.
3.2 Origin, main content and definition of green governance of local governments
The formation of the proprietary concept and term of green governance originated from a summary in China and the “Two Mountains Theory” by People’s Daily Online, Xinhua Online, and Communist Party of China News in June 2017, which summarized General Secretary many statements on ecological construction, such as “If ecology thrives, civilization thrives; if ecology fails, civilization fails,” “Building a good ecological civilization is a long-term plan for the wellbeing of the people and the future of the nation” and “Environmental governance and building a harmonious development of man and nature,” into General Secretary concept of green governance (Zhu et al., 2019). In the same month, the eighth Clean Energy Ministerial Conference and the second Innovation Mission Ministerial Conference were held, with General Secretary emphasizing in his congratulatory speech that the world should follow the path of low-carbon, circular and sustainable green governance. Since then, green governance has become an essential topic for academic and government research. Combining the conceptual and theoretical foundations of the previous section, this part will further clarify the originating process and main contents of green governance in local governments and define the critical connotations in a judgmental manner.
3.2.1 Origins of green governance in local government
At the beginning of the 21st century, as global economic growth was sluggish and environmental resources were depleted, the dichotomy of economic and ecological development became unsustainable. International organizations, mainly the United Nations Environment Programme (UNEP) and the OECD, gradually put forward two central policy ideas, the “Global Green New Deal” and the “Green Economy,” to achieve a change in the theory and practice of sustainable development (Barbier et al., 2004). These green ideas focus on optimizing energy efficiency, resource restructuring, and green growth and emphasize the need for governments to construct scientific green policies and redeploy traditional development structures to achieve a green economic model driven by upward green mobility (Hassan et al., 2021). This is even though China has long been criticized for being a ‘sloppy economy,’ with problems such as energy pollution and resource inefficiency, which has led to a lack of recognition of the quality of our economy. It is undeniable that in the early days of our development, China seemed to have been given a unitary and social model of “economic dominance over the environment,” which also led to many environmental problems. In the eyes of scholars from abroad, such ecological problems were the key trigger for our determination to govern the environment and local governments’ source of green governance action. However, the formation of green governance activities in China has not been of a problem-oriented type, i.e., a strategic logic of solving problems after they have occurred. Instead, our country has always held a strategic ideology of ecological protection, and green governance is essentially a continuation of multiple environmental governance activities in a new era. This paper divides the evolution of green governance activities and policies since the reform and opening up into the following four stages and considers the role played by local governments in them, to fully trace the green governance of local governments: the first stage (1978–2002) is the stage of the embryonic green governance concept; the second stage (2002–2012) is the stage of the promotion of the green governance policy system and the adjustment of social ideas. The third stage (2012–2017) is the stage of green governance empowerment in the new era, and the fourth stage (2018-present) is the stage of green governance formal construction and maturity.
3.2.1.1 Embryonic stage of green governance concept (1978–2002)
After China’s reform and opening up, the country established the idea of economic construction as the focus of development, but this does not mean abandoning the environment and disengaging from resources in favor of financial planning. In 1978, China leaders and other leading comrades first stated the need for a green barrier in China’s development process in their “Proposal for the Construction of Large Protective Forest Belts in the Northern Areas of China.” By 1997, the idea of greening the motherland had taken shape with China leader’s concept of “planting trees, greening the motherland and benefiting future generations” as its core. This strong statement became the source of China’s green development philosophy and marked China’s importance to environmental construction from the beginning to the end. In December 1983, at the Second National Conference on Environmental Protection, Vice-Premier Li Peng proposed that environmental protection was a basic state policy that China must adhere to in the long term and that environmental construction had thus been incorporated into the guidance of public values and regional government development. Under the direction of many leaders such as Deng and Li, a systematic policy system of “who pollutes, who treats” and “if there is pollution, treat it” was formed at that stage. However, at the local government level, the absence of a governance system and a management and control system driven by a robust administrative outlook led to a partial confrontation between central and local perceptions. The macro design of environmental construction was not fully implemented. The details of the policies are shown in Table 1.
TABLE 1 | Major environmental policies and local government performance, 1978–2002.
[image: Table outlining the evolution of environmental policies in China across three years: 1984, 1995, and 2002. For 1984, the "Decision on Environmental Protection" aims to identify environmental funding sources and establish dedicated staff, but local governments face issues with waste funds and planning. In 1995, the "Total Pollutant Emission Control Plan" seeks to manage major pollution totals, reporting significant energy savings despite large pollution control gaps. By 2002, the "Law on the Promotion of Cleaner Production" introduces circular economy legislation, fostering local initiatives and industry clusters, yet many regions struggle with resource organization for cleaner production.]Although none of these policies mentions ‘green governance,’ at their source, the objectives they address are essentially the scope of the subsequent construction of green governance. In terms of philosophy, these policies have always paved the way for the core of green governance: optimizing the dual goals of economy and environment, resolving the contradictions between the two rationally, and increasing the quality of society without sacrificing the development costs of both. Objectively speaking, the need for environmental management has not been neglected during the period of rapid economic growth, and this forward-looking view of the environment has guided the shaping of green governance. In addition, the environmental policy at this stage formed two core contributions at the practical level to the origins of green governance: 1) the so-called green governance was a practical action led by local governments and a multi-layered management action across sectors and industries (governance activities did not exist at that time); 2) the idea of green governance was to lead to a qualitative improvement of society and did not exist simply as optimization of any lone goal. This has resulted in many local governments not understanding the meaning of environmental management and prioritizing the economy, even interpreting the central government’s ‘economy-focused’ approach in a one-sided manner. The multi-level assessment system within local governments also gives economic indicators more weight than environmental indicators. As a result, the dichotomy between the social development goals of local governments is essentially antagonistic and unbalanced, and the differences between central and local environmental policy practices have led to many significant policies being ineffective and local governments performing unsatisfactorily.
3.2.1.2 Green governance policy system promotion and social concept adjustment phase (2002–2012)
In the 21st century, China’s environmental problems have entered a phase of a concentrated explosion, and the contradictions between the environment and the economy have become increasingly acute. On the one hand, many local governments and members of society have made economic growth a synonym for the country’s international status, believing that a significant economic volume will hold the power of international discourse; on the other hand, the “hidden merits” of environmental innovation are not easy to please, and it is difficult to translate “a thousand years of work” into realistic assessment indicators to serve the prestige of local governments. On the other hand, the ‘hidden merits’ of environmental innovation are not easy to achieve, and it is difficult to translate them into realistic assessment indicators to serve the prestige of local governments. Combining these two factors has dramatically reduced the incentive for local governments to engage in green activities. However, as China’s international status has risen and it has become a reliable developing power on global environmental issues, the central government has once again leaped forward in its efforts to build the environment. In this context, the predecessor of green governance, environmental construction activities, entered a phase of systemic advancement and conceptual adjustment, with the central government focusing on formally reversing the negative behavior of local governments with a dual track of practice and conceptual parallelism. The central policies and local government performance in this phase are shown in Table 2.
TABLE 2 | Key environmental policies and local government performance, 2002–2012.
[image: A table detailing Chinese government environmental policies from 2005, 2007, and 2008. The columns list the year, policy documents, core objectives, and local government performance. In 2005, policies focused on strategic environmental protection. In 2007, climate change efforts emphasized low-carbon energy and efficiency. In 2008, the circular economy aimed to improve resource efficiency and sustainable development. Local government assessments highlight ongoing challenges, such as unchanged serious environmental situations in 2005 and industrial governance in 2008. Specific data show improvements like reduced GDP energy consumption and increased carbon absorption in 2007.]In the context of Table 2, the most crucial contribution of this phase to the subsequent formation of green governance was its clear articulation of the strategic status of environmental protection, which was reinforced in the form of a codified text, thus preserving a social mechanism for balanced economic-environmental development. In addition, for the first time in China, the importance of environmental protection in the concept of the functioning of society was also emphasized, based on the restructuring of the policy system. The State Council’s successive national conferences on environmental protection have put forward the scientific assertion that “protecting the environment is protecting the productive forces” and “insisting on protection amid development and development amid protection,” which has helped build a healthy social and environmental outlook. Of particular concern is that this phase of environmental construction has laid down the core of green governance: firstly, the scientific perspective on development put forward by the central leaders during this phase is the first time in China’s history that the dialectical relationship between environmental construction, ecological resources, and economical construction has been systematically sorted out from the top level of design, which has changed the previous development pattern in which economic arguments took precedence. Secondly, for the first time in the history of the country, the government’s environmental management behavior has been transformed into governance behavior to integrate new economic development and new scientific development models, including the circular economy, low-carbon economy, and green economy, into the standard construction of society through market-oriented, softer and more efficient administrative activities. Scientific development is a high-quality development and meets long-term aspirations. Thirdly, for the first time in this phase of environmental policy, there is a specific reference to new tasks in ecological construction, a shift from a binding policy of simply reducing emissions and consumption and controlling resources, and a protective approach of restoring ecology and planting trees, to a proactive policy of technological leadership and structural optimization. This means that the future environmental system, including green governance, will take on the complex task of opening up a sustainable development model and integrating and promoting the overall construction of society. This leap in policy thinking signifies that green governance is not a passive tool of “polluting first and then treating later” (passive compensation for ecological restoration tasks), nor is it a cleansing tool of “not opening up sources but cutting costs” (elimination cleansing for emission reduction tasks), but instead, It must be an aggressive, science-based, proactive construction strategy. On this basis, the organizational performance of local authorities has improved, and the correct concept of development has been re-established.
3.2.1.3 New era green governance enabling phase (2012–2017)
Since the 18th National Congress, the new central leadership has formed a more profound exploration of green development. Particularly at the ideological level, General Secretary’s series of ecological outlooks and green theories have fantastically realized the internal empowerment of green governance, the most significant leap in China’s theoretical system of ecological thought. The manifestation of this empowerment stage is reflected in three places, firstly, the breadth of green activities. With the spread of easy-to-understand green concepts, the willingness of all social classes, organizations, and individuals to engage in green activities was strengthened, and the social forces in environmental construction were highlighted, easing the pressure on local governments. And with the reversal of corporate attitudes, the work of local governments has become significantly less complicated. Society has formed a green coordination system under a unified ideology and guidance. Second, green construction connectivity. The development concept represented by the “two mountains theory” has led to the improvement of the control system, along with the integration of dynamic market prices, maximum tax exemptions, and precise compensation mechanisms into the environmental policy system, the dynamic adjustment and complementation of economic and ecological advantages, mobilizing local governments and people to the greatest extent possible, with both (economic - environmental) benefits taking advantage of each other to produce maximum social utility. The mutual advantage of the two (economic-environmental) advantages has the most significant social utility. Thirdly, green development is normative. This stage focuses on the legal connotation of green governance, with a stringent legal system as a guarantee, actively exploring the normative path of third-party power and market integration, and laying the foundation for the construction of resource scarcity and quantitative characteristics based on a standardized evaluation system. As shown in Table 3, the policy system and local government performance in this stage are very abundant.
TABLE 3 | Key environmental policies and local government performance, 2012–2017.
[image: A table outlines policies from 2015 and 2017 related to ecological civilization in China. It includes columns for the year, policy documents, core objectives or specific tasks, and local government performance or central government assessment of local government. Key policies include reforms to the ecological civilization system, environmental protection laws, and the Five-in-One overall layout. Objectives focus on sustainable development and economic, political, social, cultural, and ecological construction. Local governments are assessed on development-conservation philosophies, emission standards, and coordinated societal development.]Overall, the elements of green governance, such as connotations and systems, are basically in place at this stage, completing all the work in the preceding sequence for the formal introduction of green governance in 2017. And thanks to the development of the elements of green power over the years, green administration has become a key leader in stringing together the development of all areas of society.
3.2.1.4 Formal building and maturing phase of green governance (2017-present)
In 2017, the introduction of green governance echoed China leader’s Thought on Chinese Specialties for a New Era and Thought on Ecological Civilisation, supporting what has become the platform for green development in contemporary China. After this stage, China’s economic-environmental binary relationship is optimized to its highest point, and with the complementary policies and guidelines of carbon peaking, carbon neutrality, and new energy, China has formed a construction pattern of ecological civilization. The green governance connotation of “community of life between human beings and nature” and “dialectical unity of environment and economy” has successfully shaped Eastern environmental theory and is a distinctive Chinese addition to the Marxist idea of human beings and nature, which has surpassed modern Western ecological approach at the ontological level. Through nearly 40 years of evolution and development, green governance has entered a formal construction and maturity phase.
Figure 7 shows the structural diagram of the origins of green governance constructed in this paper. The significance of green governance in China is gradually reinforced by the distancing and proximity of the economic-environmental dichotomy. Based on a holistic view, green governance in China is not a quick fix, nor is it a superficial response to a so-called international controversy, nor is it a reactive response to the problem at hand. The origins of green governance are essentially China’s long-term thinking and action on economic and environmental construction. The dynamics of green governance is an evolutionary process of enriching the meaning of green, clarifying the central idea, and exploring the task of greening. In general, the origins of green governance are a response to the economic-environmental dichotomy and the replacement of the traditional crude administrative management with the ultimate governance goal.
[image: Flowchart depicting the relationship between environmental and economic policies under Xi Jinping Thought on Socialism with Chinese Characteristics. It outlines paths from ecological civilization construction to green governance. Concepts include emphasis on environment over economy, economic development centrality, and scientific balance. Arrows show movement from proposing policy goals to challenges like lack of pollution control and emphasis on economic versus environmental concerns.]FIGURE 7 | Structure of green governance origins.
3.2.2 Key elements and connotations of green governance in local governments
Combining the origins of green governance by local governments, the study found that green governance first originated from environmental management actions in China. In the first stage (1978–2002), ecological construction laid down the concept of green governance and emphasized the status of green and sustainable development. In the second stage (2002–2012), dissenting social views were adjusted, and specific construction indicators were clarified in conjunction with the requirements of scientific development. In the third stage (2012–2017), the connotation of green governance was enriched, and the multidimensional areas of society were strung together. In the fourth stage (2017-), they were elevating the strategic status of green governance and integrating it into the socialist ecological theory system. Around its core tasks and changes in the realistic context, the main contents of green governance of local governments also differ in each stage.
In this section, the evolution of the main tasks of green governance is shown in Figure 8, taking into account the actual performance of central and local governments and the process of the origins of green management. As the diagram shows, the first and second stages have not yet developed an environmental governance structure, nor has the concept and construction system of national governance modernization been clarified, but instead a green/environmental regulation system. The main task of local governments in this stage is mostly to follow the central government’s design and encourage and guide green activities under limited local discretion and personnel advocacy, focusing on the innovation of self-concept and the acceptance of new green ideas. After the third and fourth stages, along with the relaxation of local discretion and the proposed modernization of governance, local governments accepted the active role of the central government and promoted green governance in a linked form. In these two stages, the main tasks of green governance for local governments include the following three aspects.
	(1) Strategic level. Responding to China leader’s thought on socialism with Chinese characteristics in the new era and China leader’s thought on ecological civilization, we strive to construct a social development system under the green yardstick, mobilize the active release of green productivity of microelements in the whole society, coordinate the multidimensional development of regions and industries, and ultimately reverse the construction concept of environment-economy dichotomy in terms of ideas and thoughts. This process forms three sufficiencies: to fully understand the guidance of the Two Mountains Theory, to clarify the economic value of the environment and the environmental attributes of the economy, to build a circular economy model under the tandem of ecological construction; to fully understand the necessity of modernizing governance, combining decentralization and management, “governance” and “management” and learn to start environmental governance based on the overall situation with flexible means; fully understand the prominence of ecological civilization construction in the construction of the Five-in-One, and clarify the importance of ecological civilization construction in building a moderately prosperous society in all aspects and empowering its green undertones. Whether it is the building of a relatively prosperous society or the Five-in-One construction pattern and high-quality development, China’s requirements for local governments in the new era are complex and multidimensional, requiring local governments to find task links among the various intricate work. It is clear that green governance meets the demands of almost all construction tasks of local governments and effectively links all construction dimensions.
	(2) Tactical level. Shaping the green governance process chain. Combined with the strategic thinking of green governance, it is clear that the landing point of green governance is to meet the tandem leading role of ecological civilization construction on economic, social, political, and cultural structure. Further, combining theories of sustainable development and government behavior, it is clear that the key to driving social progress is the formation of influential, productive forces. However, the local government itself is only a catalyst for productivity formation, not a producer of productive efficiency. Therefore, green governance, which wants to meet the ultimate governmental objectives, requires local governments to impose governance instruments on enterprises to generate green productivity. However, in a rigid industrial system, traditional green productivity is not effective enough, and new productivity aggregation comes from innovative technologies. Local governments link government-enterprise-society actors by building a green governance process chain by translating this complete process to the tactical level. In the green governance process chain, local governments first establish green concepts, gather green resources based on the construction of ecological civilization, and make every effort to promote green innovation in society. In the green governance-green innovation process, the local government establishes a green governance structure and green governance mechanism input system, serves the enterprises with the human, capital, and knowledge elements embraced by the government, and creates an excellent government-enterprise atmosphere to promote the formation of green results. As green innovation matures, the green innovation-green development chain takes shape, and local governments’ green governance inputs to enterprises and society form substantial outputs, both in green governance effectiveness and green governance social responsibility. These outputs create the momentum for green development and enable green productivity for the green transformation of society. Once the green transformation chain of green governance - green innovation - green growth is stabilized, the outputs of government green governance serve economic, social, political, and cultural construction and fully meet the ultimate strategic objectives.
	(3) Practice implementation level. Precise gathering green resources to serve and assemble social micro-factor units and guide their green transformation and innovation. The direct output and effect of green governance is the increase and change in the green innovation capacity of enterprises. The core of green governance is a governance process. As the initial promoter and builder of the green transformation chain, the government matures green governance activities by investing in many government resources. The final product is the green innovation results and the green innovation atmosphere in society. To further refine, local governments’ specific practice of green governance is the integrated management of human resources, capital, and knowledge. In terms of human resources, the integration of talents in the environmental and economic fields will be undertaken to support green research and development and collaborative governance. In terms of capital: build a trading system for emissions activities, assist enterprises to make a market-based operation system based on local finance, and form a reasonable distribution of production and living space patterns. With the help of initial public resources, we will break the capital constraint of green innovation for small units such as enterprises. Knowledge: Form a long-term strategic plan for green governance, introduce relevant policies and plans to support the development of strategic emerging industries and advanced manufacturing industries, and strengthen management in a scientific and orderly manner with large projects and playing systems. From the above, it can be seen that green governance is a process of construction in which the local government, guided by the central government’s green philosophy, strives to achieve the goal of multidimensional and high-quality development of society. Green governance is a series of incentive, regulatory and collaborative human, capital, and knowledge resource deployment activities under the local government’s jurisdiction to secure resources as inputs, trigger green innovation and generate green productivity in society, and ultimately achieve green development. The output of green governance will meet the expected progress of society and the formation of the “Five-in-One” pattern.

[image: Flowchart depicting the relationship between central and local government strategies for building ecological civilization in China. Central Government actions from 2007 to 2013 focus on policy establishment, standards for ecological protection, and environmental assessments. Local Government responsibilities include implementing policies, developing local standards, and ensuring compliance with development goals. The chart highlights areas such as economic, social, and cultural aspects influencing ecological development.]FIGURE 8 | Key elements of green governance and their evolution.
3.3 The origin and definition of the peer effect of local government administrative decision-making
In the field of public administration, the American statesman Alison has argued that the success of a policy lies in its ability to promote social development. However, program planning contributes only 10 percent to achieve this policy objective, with effective implementation producing the remaining 90 percent. Thus, the key to real policy impact is at the practical level of performance. Chairman Mao Zedong also redefined public policy: a good theory is meaningless if correct but is only kept in a pile away from practice. Although the relationship between central and local governments is relatively harmonious in our particular social system compared to the West, there is no Western power structure with its confrontation and fragmentation, which avoids massive resistance to policy transmission from central to local governments and policy implementation at the bottom. The relationship between the central government and the local government is also relatively pure, and there is no interference in policy practice from the multiple interests, social groups, and complex perceptions of the West. However, the selective implementation of public policy by interest-driven subjects can also affect the ultimate policy performance. In our political environment, the dynamics of the central and local government’s interest objectives and relations are the key factors governing the effectiveness of our policies.
In China’s power structure, local governments are mostly the implementers of public policies and promoters of strategic ideas, and the effects generated by these landed policies are supposed to occur within the jurisdiction of local governments. However, the different mechanisms for distributing interests between the central and local governments can divide the relationship between the two, resulting in a significant government group that authoritatively distributes, portrays, and defends the public interests of society and the overall interests of the state with the general interests of the national economy. A local government group that autonomously distributes feeds back and expresses the public interests of the region and the overall interests of the area with local interests. The former is dominated by ministries and central authorities, while the latter is dominated by various local administrative and party-building departments. As the relationship between the two sides shifts from the consistency of interests to the autonomy of interests, local governments will seek to defend their interests by playing the game between the central government and the local authorities, weakening the implementation of significant policies and increasing the real power of local governments. This is a way for local governments to separate the effectiveness of central policies and transfer them to local energy and generate local gains. However, due to the weakness of local governments, this has led to the “collusion” and “synergy” of several local governments to transform their “local” status through consistent decision-making and benefit-sharing. The weakness of the identity of the local government and the collective power of the group to pool their interests to expand local effectiveness. This has formed the prototype of the peer phenomenon of local government administrative decision-making in China, and the total local energy synthesized by this view of group interests is the peer effect of local government managerial decision-making. This section will summarise the origins of the peer effect of local government administrative decision-making and its connotations at each stage, based on the main stages of social transformation and the realistic background of China.
3.3.1 Origins and connotations of the peer effect in local government administrative decision-making during the phase of institutional transition (1949–1978–1992)
In the early days of the founding of the People’s Republic, Chairman Mao Zedong put forward a discussion on how to deal with the relationship between the central and local governments in his “On the Ten Relations,” the core idea of which was to expand regional power, lead to an increase in the enthusiasm of local governments, and harmonize the interests of the central and local governments in the process of decentralization. The basic approach to the relationship between the central and local governments is to “take into account the interests of all parties and achieve dialectical unity.” However, the underlying principle is that “strong and unified leadership from the central government” is the core and that “under a unified national plan and discipline, “Local governments approach the masses and the positive factors to build the socialist cause. In the institutional context of the time, China had a planned economy model as its economic system, where directive plans led all financial and even other policies in the field, and the central government guided and regulated the functioning of society through planned major economic activities, in which the government determined the scheduling and production of all resources, or even essentially the central government. As an essential feature of the early socialist system, the planned economy followed the principle of linking the sectors of the national economy into an organic whole through the expansion of socialized production.
It is clear that in the purely planned economy of 1949–1978, local governments appeared in the central-territorial relationship in the sole capacity of ‘following’ and ‘implementing.’ Wherever and whatever the local government followed the principle of “unified financial revenue and expenditure, unified taxation, unified establishment, unified public food, unified trade, and unified banking.” Thus, in this context, the early phenomenon of a passive peer was formed: local government administrative decisions were coordinated by the central government, which did not consider regional heterogeneity and management differences. All started a template decision under the national plan. The policy effectiveness of such decisions, i.e., the peer effect, contributed to the balanced transformation and development of various regions and industries, macro-regulation and total balance to achieve superior values, and the country as a whole healed the vicious economic fluctuations left behind by the old China in a short period despite its fundamental disadvantages, and smoothly passed the difficult period of development; in addition, the peer group effect also integrated the limited resources of various localities into key strategic construction, so that In addition, the peer effect also consolidated the limited resources of each locality into the critical strategic building, so that “the power of the peer can do great things.” In short, the peer effect of local government administrative decisions was due to the poor development environment of the country and the highly centralized planned economic system of the central government. The connotation of the peer effect in the administrative decision-making of local governments was not the pursuit of local status and interests using grouping but the “support” of the central government by localities. It is synergistic cooperation between local governments, showing a state of positive synergy.
In 1978, the Third Plenary Session of the 11th Central Committee made a historic decision to gradually build a socialist market economic system based on the reform of state-owned enterprises and the public ownership system as the mainstay. From 1978 to 1992, China entered a mixed financial system. The coexistence of the planned economy and the market economy system led the central government to adjust to the political system around the economic reform. During this period, the power of local governments increased in two ways: firstly, the financial and administrative management of local governments increased, and the new central government system of “dividing revenues and expenditures, and grading and contracting” mobilized local executive potential; secondly, the autonomous power of enterprises to produce and operate was expanded, local dynamism increased, the local-enterprise distribution structure was optimized, and local governments The provincial government has been given economic-oriented management authority. The origin of this phase of local government administrative decision-making peer activity comes from the change in the appraisal mechanism of local governments under the institutional transformation: under the previous monotonous decision-making of acting “at the command of the central government,” the decision-making cohort of local governments was consistent, but the appraisal scale was also consistent, which did not induce local governments to “inwardly roll” their decisions. This does not cause “in-rolling” of local government decisions. At present, with the liberalization of authority and the rise of economic status, local governments have begun to focus on the effectiveness of administrative decision-making in the economic sphere, hoping to maximize the effectiveness of financial resources by organizational means and to take the lead in the development of the commodity economy and the regulatory role of the market. This change in orientation has led local governments with first-mover advantages and excellent performance to follow suit. In contrast, local governments with lagging performance and inexperience have “copied the work” and joined the administrative decisions of the same quality and content. This leads to the homogeneity of local government managerial decision-making at this stage, and the corresponding peer effect is the differentiation of market economy quality brought about by homogenous decision-making: under local autonomous decision-making, resource dispatch and planning arrangements are closely linked to regional characteristics, and simple imitation, conscious following, and abandonment of the rules of the market economy may lead to the better and the worse, and the gradual differentiation of local policy effectiveness. Therefore, the connotation of the peer effect in the administrative decision-making of local governments at this stage is the proactive action of local governments to avoid harm and pursue internal catching up, which is the result of “mutual competition” between localities in front of the central government. This peer is the decision of the disadvantaged localities to catch up with the prime localities, showing a specific positive peer state.
3.3.2 Origins and connotations of peer effect in local government administrative decision making in the stage of social structural transformation (1992–2012)
The transformation of the social structure refers mainly to the transformation of the social development structure, the adjustment of social interests, and the change of ideology. In the context of the analysis of the origins of green governance, it can be seen that this phase is a period of change in many elements of social thought and practice, with significant changes in social value systems and behavior. In terms of social interest adjustment, in 1994, China formalized the tax sharing system and the regularised central and local fiscal allocation mechanism gave local governments access to capital elements for autonomous development; in 1998, the People’s Bank of China reformed its management system, indirectly gaining access to external resources for local development despite the transfer of some local control over enterprises to the central government; in 2002 the administrative approval system was reformed and local -enterprise linkages gained more decision-making power. The nature of central-territory relations, as a combination of the structure of state power and the actual process of political operation, is the result of the distribution of the exercise of state power between the central and local levels arising from the relationship of interests. As a result of adjusting social claims at this stage, the provincial government takes the initiative in financial relations and the division of competences between the central and local levels. After the local governments have gained the initiative, their administrative decisions will not be fully presented to the central government. That is to say, the local governments at this stage will not take the initiative and “take credit” for the central government’s decisions, but rather some governments in resource-poor areas will be “enamored” of the model areas, hoping to gain financial favor, external resources from banks, and even good The government-enterprise relationship. Therefore, the phenomenon of peer in local government administrative decision-making during the social structural transformation phase stems from the horizontal role of local governments, and the effect it has is that local governments gain more social benefits through peer decision-making. In line with the mixed economy phase, this peer is still essentially a state of positive peer.
As for the structure of social development and the change in ideology, many new ideas led by the scientific concept of development were formed during this period, and the economic-environmental-dominated social dichotomy was adjusted. These macro forms of change have also led to an inevitable convergence in the decision-making activities of local governments. For example, the scientific development concept put forward the idea of people-centered, comprehensive, coordinated, and sustainable development, and various local governments have adopted corresponding construction ideas. The Shandong region took the new path of industrialization, putting quality and efficiency at the center of the first circular economy system; Guangdong drew on the financial advantages of Shenzhen to deepen reforms in its fiscal and investment strategies and to shape reforms in its science, education, culture, and health systems in just 20 years. Thus, the structural and ideological transformation of social development during this period led to a high degree of unity among local governments on the critical points of future scientific development and the implementation of these points in local administrative decisions. This convergence in decision-making is a natural consequence of the “different paths to the same end” and is a reform element that needs to be taken into account in the autonomous development of local governments under the advice of the central government. This peer phenomenon results from the inevitability of a new period of social development. The effect it has is a high degree of implementation of the scientific concept of development by local governments and a new socialist path under the central government’s guidance. Obviously, due to the differences in the implementation perspectives of the various localities, this peer may present a specific negative peer state, i.e., each writing a good “proposition essay” around the central instructions. However, the differentiated “writing style” leads to an eventual increase in the gap within the same group.
3.3.3 Origins and connotations of peer effect in local government administrative decision-making in the stage of social formation change (2012-present)
After the 18th National Congress in 2012, China has entered a stage of high quality development, with China leader’s thought on socialism with Chinese characteristics in the new era, the “Five-in-One” overall layout, the “Four Comprehensive” strategic layout, and the modernization of the national governance system and the ability to govern. The general layout of China leader’s New Era of Socialism with Chinese Characteristics, the “Five-in-One” strategic layout, the “Four-comprehensive” strategic layout, and the modernization of the national governance system and governance capacity are introductory statements that promote the upgrading of social forms to high quality. In 2021, China completed the goal of building a moderately prosperous society, and social form development entered its second century. With the change of the leading social contradictions and the upgrading of the social form, the conflicts and contradictions between central and local relations are gradually reduced. Economic dimension: China’s high-quality financial system has taken shape, and the local government’s domination of economic factors such as finance, materials, and prices has become more stable. The political dimension: the responsibility of localities to manage local affairs has increased, and the streamlining and optimization of the multi-level structure has led to an increase in the political voice of local governments. Cultural dimension: Cultural undertakings such as education, science, and literature are becoming more prosperous, localities are beginning to form cultural systems with regional characteristics, the soft power of local governments has increased significantly, and with a system of fairness and guarantees, including right in social opportunities, the confidence of local cultures is increasingly evident. The social dimension: the central government has fully decentralized issues of livelihood interest and reform, and the autonomy of local governments in their policies to benefit the people has been enhanced. Ecological civilization dimension: the main body of supervision of public policy implementation has changed from the central government to the central government, and the role of local control and the voice of the supervisory system has increased again.
Therefore, the emergence of the peer phenomenon in the administrative decision-making of local governments at this stage is the result of the central government’s decentralization and the co-decision making under the central government’s positive incentives and scientific supervision. The root of this peer phenomenon is the synergy between the central government and the local government. The prime localities help the disadvantaged localities progress the social form, forming a “new administrative decision-making group” through industrial transfer, decision sharing, and project construction. But there will also be disadvantaged places that continue to be in a phase of social structural transformation and reject the guidance of the dominant government. The former means that a positive peer state is formed, while the latter becomes a reverse peer state. Overall, the peer effect of the social form change phase is further to amplify the rate of improvement in social quality and continue to promote social form upgrading.
3.3.4 Sorting out the evolution of the peer effect in local government administrative decision-making
Based on the correlation analysis in this section, the study developed the evolution of the decision peer effect, as shown in Figure 9.
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As shown from Figure 9, with the background of China’s specific historical stage and the different roles played by the central government, local governments will coincidentally appear to make decisions peer phenomenon. During the period of the planned economy from 1949 to 1978, local governments were forced to form a unified decision-making front due to the solidification of the system, which is a passive type of peer. During the restructuring of social interests from 1992 to 2002, the disparity in resource advantages between local governments increased, causing disadvantaged areas to compete for the resources of regions advantaged through consistent decision-making. During the period of social change in 2012, the central government further clarified the decisions of local governments and began to take the initiative to lead and actively promote the quality of local governments’ decisions. The active support and cooperation among local governments also led to synergy and cross-content between the two sides in many choices. This kind of peer belongs to the solid central leadership peer. On the whole, due to the differences in the internal relationships (cooperation, emulation, competition, support, and autonomy) of local government administrative decision-making in each period, the peer state presents four forms, as positive, negative, active and passive, and the corresponding peer effect also produces positive or adverse effects. Therefore, mastering the code of the peer effect in local government administrative decision-making will provide empirical reference and practical guidance for government management effectiveness.
3.4 Definition of the connotation, external expression and characteristics of the green governance peer effect of local governments
China leader’s thought on ecological civilization profoundly elaborates that “ecological environment is a major political issue related to the Party’s mission and purpose, as well as a major social issue related to people’s livelihood.” The potential transformation between green and golden mountains reveals the dialectical unity between ecological protection and economic development. To strengthen the strategic determination of ecological civilization construction, balance the dynamic relationship between security and development, and run through the core demands of economic, political, social, and cultural benefits, there is an urgent need to enhance the effectiveness of green governance. General Secretary pointed out that to improve the ecological civilization system, social control capacity must be continuously improved, and the concept of green development is firmly practiced. In this context, the green governance system that has emerged has become an essential part of promoting the modernization of the national governance system and governance capacity, as well as achieving synergy between economic, political, social, cultural, and ecological development with the coordination and optimization of the spatial layout of production, living, and ecology.
With the receding of the crude economic growth method from the historical stage, the increasing pressure of ecological legacy and the increasingly sharp contradictions of economic adjustment have placed more constraints on local governments to transform, and an essential direction for local governments to break through the development dilemma is to strengthen green governance. However, green governance cannot be achieved overnight, and lags in economic, political, social, and cultural development may lead to ineffective governance (Lo, 2013). At the same time, the urgent need to transform local governments blurs the details of governance and weakens the integration power of green governance. With this orientation, some regions that have taken the lead in green governance have become excellent model templates for policy-making. The enthusiasm of local governments for green governance is a clear manifestation of China’s economic entry into a new era. At the beginning of the new development stage, as the pivot of the five development concepts, green governance is given a new direction in the top-level design for local governments to govern, i.e., to lead the construction of a resource-saving and environment-friendly society through green governance, and to achieve a coordinated development that can be carried by resources and the environment (Qi et al., 2021). Optimize the allocation of resource factors with the innovative product again, give new green supply under new technology and new business model, and eliminate grey and black production capacity. Reinforce the trend of deep economic integration into the world with open development and shared development, and guide the green extension of the industrial chain (Xu et al., 2014). The successful experiences of Zhejiang and Jiangsu have proven that green governance makes an essential contribution to the high-quality development of the Yangtze River Economic Belt. As the transition progresses, green governance is being extended to the Yellow River and Pearl River basins to create green development ecological corridors and improve the effectiveness of environmental and environmental governance, further promoting balanced regional development and enhancing development connotations.
This analysis, combined with the previous section, shows that green governance belongs to the realm of administrative decision-making and inevitably converges with society’s ‘broad stream’ in all stages of transition. The peer effect of green governance by local governments formed under this orientation can be further defined. Under the premise of the central government’s strong emphasis on the new development concept in the new era, local governments have less room for free play in decision-making. Under the intervention of “competition with the ruler,” the individual behavior of local governments is more profoundly influenced by the behavior of the group (Balta-Ozkan et al., 2021), which makes green governance seem to be the “key straw” for local governments to get rid of the bottleneck of development. All places are in the “WeChat family group” of green governance. With the evolution of decision-making orientation and competition between disadvantaged and advantaged localities, this effect may have a positive effect: the synergy of multiple localities enhances the effectiveness of green governance and removes apparent black capacity. Or it can have a negative effect: the regional gap increases, and the efficacy of green administration decreases significantly. Therefore, the connotation of the peer effect of green governance by local governments refers to the phenomenon of convergence in the context of decisions made by local governments in the process of modernizing management, such as green governance, guided by changes in social form, China leader’s socialist ideology with Chinese characteristics in the new era and fundamental social contradictions. Along with the transformation of the dynamic relationship between governments, the social effects brought about by the peer phenomenon are thus transformed.
Further, combined with the previous analysis of the performance of green governance, administrative decision-making peer effect, this study considers that the external manifestations of the green governance peer impact of local governments are: (1) the suitable localities have formed a rich and mature policy decision-making system in green governance, whose activities include continuing to develop independently under the national green governance framework, or helping disadvantaged localities, through the transfer of green industries after cultivation, the green parks and the contribution of green resources, resulting in collaborative green governance decision-making. Under this linkage, the efficiency of local green governance is significantly improved, and the resulting green governance effectiveness leads to social progress. (2) Disadvantaged localities face philosophical problems such as an imbalance in decision-making and confusion in the direction in green governance, and their activities include continuing to develop independently under the national green governance framework, but most likely copying experiences and duplicating decisions, or even neighboring areas appearing to compete for green resources or linking up with advantaged localities to form cooperative green governance decisions through green resource undertaking and green experience learning. Under this linkage, both sides will continue to enjoy a pattern of green efficiency enhancement, creating a favorable green governance situation.
However, what is of concern is that green governance is a comprehensive administrative framework activity under the integration of various types of decision-making. Therefore, its characteristic is that the green governance peers effect will include the form and interest mechanism of all kinds of previous decisions: (1) it has the complex and uniform requirements of the central government in the era of planned economy, i.e., each local must build the system framework of green governance, which is the principal guidance for the formation of green governance peer effect of local government. (2) Local initiatives in the era of a mixed economy, i.e., localities clearly understand that green governance is the inevitable future of the national situation and a “novelty opportunity” for localities to seize the high ground for future development and therefore join the green governance sequence on their initiative. (3) Jealousy at the stage of restructuring of social interests, i.e., localities are influenced by prosperous regions and develop a logic of jealousy-driven incentives. (4) The competitive nature of the development structure and the mindset change, i.e., each locality clearly understands the positive impact of green governance on society and, guided by its own goals, wants to develop a locally appropriate governance path. (5) The social change phase is characterized by a great deal of integration, firstly, by the acceptance of the central government’s role as an incentive and supervisory function, and by a change from being “aligned with the central government” to being “driven by the central government,” and this drive is not a passive response to the central government’s strict rules, but a “soft drive” in collaboration with the central government. This push is not a passive “hard push” reaction under the strong regulations of the central government, but a “soft push” in cooperation and synergy with the central government. Secondly, there is a great deal of collaboration and synergy within the region, and the resulting mature green governance decisions will not be closed off by internal regional divisions.
3.5 The realization path of green governance peer effect of local government
3.5.1 Take the optimization of economic rights as an entry point to promote the activation of governance dynamics and enable rational decision-making on green governance
Give local governments greater fiscal and taxation authority to expand their green governance dynamics. Optimize the tax legislation authority and management mechanism of local public institutions at the provincial level, pay attention to the coordination between fiscal policies and other green governance policies, revitalize the strength of assets through fiscal restructuring, and activate the improvement of green governance effectiveness with the practical extension of budgetary support. The peer effect of green governance by local governments reflects the shortcomings of local financial management. In green control, local governments are highly dependent on fiscal output, while green governance wants to expand their economic power and “compete” with the central government for affairs. This confused approach to governance has led to irrational behavior: some disadvantaged regions only see prosperous areas expanding their fiscal revenues through green governance, ignoring in vain their existing mature and solid budgetary base, and distorting the path of green governance away from the concrete foundation and real development needs, which will eventually only lead to a systemic crisis of ineffective governance and fiscal shrinkage. Therefore, the internal logic of green governance should be clarified. Firstly, the central government may wish to expand the financial management authority of local governments and meet their demands in terms of motivation to enter green governance activities in a free and easy manner. Secondly, it should encourage local governments to invest in green governance and guide them to deepen their understanding of how successful regions operate financially so that they can support green governance with small-scale, high-energy assets. Lastly, the local government should adopt a zonal approach and precisely match the funding gap for green governance to avoid triggering significant debt risks in the financial turnaround.
3.5.2 Dialectical unification of regional interests and officials’ interests weakens the sentimental thinking of the exciting concept and promotes the linkage between the exciting concept and regional development
Reconstructing the performance appraisal system of local governments, strengthening the guiding role of regional interests, adjusting the driving mechanism of individual interests, enhancing the examination of the dynamic link between government inputs and outputs around the new tasks of high-quality development and the degree of social creation of green governance, and forming a new yardstick for local government assessment from the perspective of sustainability and strategic height. The peer effect of green governance by local governments is a combination of necessity and chance; from a necessity perspective, central and local governments choose green governance in response to development challenges, but from a chance perspective, the motives of local governments are not pure enough to ‘collide.’ In their green governance activities, local governments have become concerned with the regional benefits of green development. However, this motivation has not yet risen to the primary level. Therefore, resource use, environmental pollution control, environmental quality, ecological protection, and green living should be integrated into the government evaluation system, gradually shifting officials’ traditional views on economic growth and tax expansion to stimulate local governments’ rational motivation for the development and strengthen the starting and ending points of green governance for local governments, making their actions more realistic and unified in terms of people’s livelihood and social transformation. The central government must also pay attention to the financial discretion and promotion assessment of local governments as a pseudo-rational motive to drive the integration and synergy of green governance.
3.5.3 Paying attention to the special preferences of local governments and integrating special emotional mechanisms into a rational decision-making framework system, incorporating “differences” into “consistency”
We will pay attention to the concern of local governments for market players, protect the balanced relationship between local governments, enterprises, and entrepreneurs, actively face up to the legitimate interests of local governments towards business organizations, and affirm the particular preferences of local governments in the social atmosphere. Development can be achieved with half the effort by strengthening the “pro-clear” government-enterprise relationship and creating a better business environment. To a certain extent, local governments and their current leaders place great importance on establishing social resources and relationships, especially in the transition of government activities to the governance phase, where the softening of complex regulatory instruments allows local governments to have an intimate relationship with enterprises. Combined with the process of forming green governance efficiency, the output of local governments in achieving high-quality results in green governance is dependent on the expansion of green innovation products by enterprises, which means that local governments have a claim on enterprises in green governance. Therefore, it is essential to objectively acknowledge the preferential orientation of local governments in the business environment and social climate, which influences the final decisions of local governments and the mechanism of this invisible influence is within the realm of perception. Local governments can maintain this “ambiguous” government-enterprise linkage but should transform the “heterogeneity” of enterprises in various sectors into a “unified” consistency, i.e., the government can actively liaise, but The government can actively liaise, but it must be fair. The government can support key green industries in a biased manner and invest green resources purposefully but cannot neglect the quality enhancement of other sectors. The government can maintain a synergistic relationship with enterprises. However, it must maintain its status as a ‘leader,’ not as a co-conspirator or a blind decision-maker, and it cannot administratively force the interests of government and enterprises to be aligned. In short, local governments should focus on their role as referees in green governance. Individual localities should not be ‘enamored’ of the ‘corporate’ resources enjoyed by other governments, thus blindly following this particular preference and following suit to produce peer decisions. Enterprises are not production tools and performance resources for governments, but rather ‘athletes’ who work together for mutual benefit and progress.
4 CONCLUSION AND IMPLICATIONS
4.1 Conclusion
Based on the above analyses, this paper deeply explains the performance and formation path of local government green governance activities. It also explains the reasons for the eventual convergence of decision-making and the formation of the peer effect.
4.1.1 Analysis of the origin, content and connotation of local government green governance
The formation of local government green governance is marked by the proposal of General Secretary view of green governance. Tt has gone through the embryonic stage of the green governance concept (1978–2002), the stage of promoting the green governance policy system and adjusting the social concept (2002–2012), the stage of empowering the connotation of green governance in the new period (2012–2017), and the stage of formally constructing and maturing the green governance (2018-present), which comprise a total of four stages of development.
The change and enrichment of the main content and connotation of local government green governance is mainly the result of the adjustment of the role of the concept of green development at various stages and is essentially the mission of government construction given by the change of the economic-environmental dichotomy. With the formation of China leader’s thought of socialism with Chinese characteristics in the new period, the green governance of local governments has formed a chain of green governance-green innovation-green development to promote the construction of the five social transformations. In this process, local government green governance takes government resources as inputs and realizes the production of human, capital, and knowledge factors through green governance structures and green governance mechanisms; through the transformation of the factors, local enterprises and society realize the outputs of green governance effectiveness and green governance social responsibility, and such outputs are the results of green governance effectiveness.
4.1.2 The origin and connotation of local government administrative decision-making peer effect
Due to the weakness of local governments, many local governments ‘conspire’ and ‘cooperate’, many local governments through decision-making consistency, benefit sharing, and transforming the self ‘local’ identity. Weakness of the self ‘local’ identity, with the group power to collect the interests of the view, to expand the effectiveness of the local. This forms the prototype of the phenomenon of local government administrative decision-making cohort in China, and the increment of local effectiveness synthesized by this group interest view is the peer effect of local government administrative decision-making. Therefore, the local government administrative decision-making peer effect of change and transformation, in essence, is the central and local government interest view of the game and adjustment.
The development of the peer effect in administrative decision-making of local governments in China has gone through the stage of institutional transformation (1949–1992), the stage of social structural transformation (1992–2012), and the stage of social morphology change (2012-). Under the role of social forces, the local government thus appeared in the administrative decision-making peer effect: 1949–1978 planned economy period, the local government is forced by the solidification of the system and the formation of a unified decision-making front, belongs to the passive cohort; 1978–1992 mixed system period, the local government because of the = central assessment scale change, and the formation of emulation of the competition under the phenomenon of decision-making unanimity, belongs to active cohort; 1992–2002 social structure transformation stage (1992–2012), the stage of social formations change (1992-), the development of social formations. From 1992 to 2002, the social interest structure adjustment, the weaker regions hoped that the decision-making consistent and compete for the resources of the dominant regions, which led to the horizontal cohort among local governments; from 2002 to 2012, the development structure and ideological changes, the weaker decision-making generalization and vertical cohort; In 2012, the social changes, the local governments, and the central and local governments have created synergy and cooperation in many decisions. During the period of social change in 2012, local governments and central and local governments created synergies and cross-cutting contents in many decisions, forming a strong central-led cohort.
4.1.3 Connotation and characteristics of local government green governance peer effect
Because of the multiple attributes of administrative decision-making, local governments’ green governance also shows different degrees of cohort phenomenon and peer effect under the coupling effect of development stage and social background. As a comprehensive administrative framework activity under the integration of various types of decision-making, the green governance peer effect will include the previous forms of various types of decision-making and interest mechanisms, which not only presents the passive cohort characteristics under the central government’s mandatory unified requirements, but also presents the active cohort trend of the local government’s positive response, and also has the characteristics of the integration and complexity under the background of the interest structure, the ideological transformation, the social change, and other multiple institutional mechanisms.
4.2 Implications
The environmental foundation of local government green governance lays the material foundation for the generation of governance activities, but the direction and development of such activities depend on the motivational logic of local governments in green governance. Elements such as governance dynamics, regional interests, officials’ interests, and special preferences constitute the basic motivational factors for the formation of local governments’ green governance peer effect. When some regions are positively affected by the above elements, the green governance efficiency will show a highly correlated positive growth and the index of the peer effect will increase significantly. It is undeniable that the positive significance of these elements for the green governance peer effect and the broad motivation for the formation of a high-quality pattern of green governance; however, these elements are still essentially the most basic motivational factors, which are unable to go beyond the meaning of the governance activities and guide the local government to make pure decisions based on the local strategic height. Motivational factors are embedded in the administrative structure of the local government and are closely related to the ruling leadership and local interests. As a result of the inner subjective operation, the motivation factor contains too many ‘emotional’ ideas, although these ‘emotiona’ activities bring the positive side, but ultimately unsustainable. Therefore, building a rational and scientific decision-making mechanism for local government green governance is a key measure to guarantee the high quality and optimization of local government green governance, and also to guarantee that local government green governance activities can make rational subconscious decisions embedded in the self in the case of ‘emotional’ offline. Under the rational mechanism, the local government green governance peer effect will be objective and real, and the utility results will be more positive. Specific practices are encapsulated:
4.2.1 Optimisation of fiscal authority as an entry point to promote the activation of governance initiative and rational decision-making in green governance
Give local governments greater fiscal and tax authority to expand their green governance initiative. Optimize the tax legislation and management mechanism of local public institutions at the provincial level, pay attention to the coordination of fiscal policy and other green governance policies, revitalize assets through fiscal structural adjustment, and activate the enhancement of green governance efficiency through the effective extension of fiscal support. The local government green governance peer effect reflects the shortcomings of local financial management. Local governments in the practice of green governance are highly dependent on the financial output, and green governance process and want to use it to expand the financial power, and the central authority to achieve the ‘competition’, the financial both as the environmental basis of green governance, but also to the green governance of the incentive logic identity, the contradiction between the two makes the local government related system is confused, this kind of Confused governance ideas make it produce blindly follow the trend of irrational behavior: part of the vulnerable areas only see the successful areas through green governance to expand fiscal revenues, in vain, ignoring its original mature, solid financial foundation, detached from the reality of the foundation and the real development needs and distortion of the green governance path, and ultimately can only lead to ineffective governance, financial shrinkage of the systemic crisis. Therefore, when clarifying the internal logic of green governance. First of all, the central government may wish to expand the financial management authority of local governments, in the motivation to meet the demands of the local government, so that it is free and easy to enter the green governance activities; secondly, to encourage the local financial investment in green governance, to guide its deep understanding of the financial operation of successful regions, to support the green governance of the small-scale, high-energy asset operation; finally, the district policy, accurate docking of the green governance funding gaps and avoid local governments triggering major debt risks in financial turnover.
4.2.2 Dialectical unification of regional interests and officials’ interests, weakening the emotional thinking of the concept of interests, and promoting the connection between the concept of interests and regional development
Reconstruct the local government performance appraisal system, strengthen the guiding role of regional interests, adjust the driving mechanism of personal interests, focus on the new tasks of high-quality development, the degree of social creativity of green governance, and other connotations, strengthen the dynamic linkage between the government’s inputs and outputs, and form a new yardstick for the assessment of local governments from the perspective of sustainable and strategic height. The local government green governance peer effect is a combination of inevitable and accidental, from the inevitable point of view, the central and local governments to cope with the development of the problem will choose green governance, but from the accidental point of view, it is the local government is not pure enough motivation just ‘collision’. From the perspective of this paper, local governments have paid attention to the regional interest in green development, but the motivation has not yet risen to the main level. Therefore, the use of resources, environmental pollution control, environmental quality, ecological protection, green living, and other content into the government evaluation system, and gradually transfer the traditional view of economic growth, and tax expansion view of the officials, to stimulate the rational development of the local government motivation, strengthen the starting point of green governance of the local government, the starting point, the landing point, so that the deeds more real, unified to the people’s livelihood and social transformation. For the central government, it is also necessary to pay attention to the local government’s financial discretion, and promotion assessment, as a pseudo-rational motivation to drive the integration of green governance, and synergistic development.
4.2.3 Clearly understand the decision-making of the same group effect of green governance and avoid the loss of government resources
Resolve the structural redundancy of government resources, realize the simplification, efficiency and fit of input elements, promote the fine penetration of green governance elements, transform government functions, reshape governance thinking, and avoid the problem of resource inefficiency caused by blind investment. Green governance is not a “one size fits all” or “one size fits all” instantaneous governance activity, nor is it an effective management method. The improvement or growth of green governance efficiency itself is a “black box”. The operation process of the input-output ratio of green governance is different due to the different environment and characteristics in different regions, and the resource transformation trajectory in the “black box” is also different. Blindly promoting the expansion of input factors will not win the favor of the “black box”, on the contrary, it will damage the interests of the region. Only when formulating local development plans and green governance schemes, clearly recognizing their own “black box” operation mechanism, and accurately implementing policies according to local conditions, can the real effect of governance be expanded. As far as the current situation is concerned, the repeated setup of institutions, the imbalance of knowledge structure division, and the spread of green capital are all serious, and there is a long production cycle between green projects and green fixed capital. Treating various green governance activities with inclusive and patient governance concepts may eliminate the redundancy problem in the short term.
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Background: Environmental problems arising from agriculture and rural living have drawn increasing scholarly attention worldwide. The transition from traditional, resource-intensive farming and rural practices to more ecologically responsible modes of production and household behaviors has become a critical challenge.Methods: Promoting the transformation of farmers' green production methods and lifestyles is of great significance to the greening of China's rural areas, which determines the importance of analyzing the underlying logic behind farmers' willingness to perform environmentally friendly practices (FWPEPs). Against this backdrop, an empirical study was carried out using the probit model, based on the analysis framework of digitization and farmers' data from the China Land Economic Survey from 2021 to 2022.Results: The findings revealed that farmers' willingness to perform environmentally friendly practices can be attributed to both constrained environmental regulation–through mandatory laws and regulations–and incentive-based environmental regulation involving economic subsidies and other incentive measures. The positive effect of environmental regulation on FWPEPs varies according to gender and education level.Conclusions: Digitization plays an important regulatory role by enhancing farmers' environmental awareness and rule perception and encouraging them to adopt more environmentally friendly production methods and lifestyles. These insights enable policymakers to design targeted, environmentally friendly, and sustainable mitigation strategies by synergizing regulatory precision with digital empowerment.Keywords: environmentally friendly practices, environmental regulation, agricultural digitization, information acquisition ability, rule perception
1 INTRODUCTION
Agricultural non-point source pollution (ANSP) has become increasingly widespread due to the extensive production methods. This type of pollution refers to the ecological environmental pollution caused by excessive chemical inputs in the planting industry and the excessive accumulation of organic matter in soil or water bodies resulting from the improper disposal of crop residues and livestock manure in the farming industry. The pollution is driven by the combined effects of rainfall and topography. It is characterized by temporal randomness, spatial uncertainty, and delayed consequences of pollution (Wei et al., 2016; Cho et al., 2016). ANSP is an essential driver of systemic pollution of the ecological environment, which directly threatens the sustainable development of agriculture and human health and safety (Zhang et al., 2019). China, with only 9% of arable land in the world, feeds nearly 20% of the global population (Mi et al., 2020). This causes various non-negligible environmental consequences, such as the fertilizer application per unit of arable land exceeding the international safety threshold by 2.3 times, a shortage of agricultural resources, and an imbalanced ecosystem (Yu et al., 2022). According to the World Bank statistics, the per capita cultivated land and freshwater resources in China are, respectively, 1/2 and 1/3 of the global average levels, but the agricultural chemical oxygen demand, total nitrogen, and total phosphorus emissions account for 43.7%, 57.2%, and 67.4% of total emissions (Xiong and Wang, 2020; Liu et al., 2020; Yu et al., 2022). Due to the severity of ANSP and the urgency of its governance, the overall situation of performing environmentally friendly practices in rural China is pessimistic, as the majority of farmers have not adopted green agricultural production (AP) methods or sustainable living habits. Common problems in rural China, such as agricultural pollution, environmental pollution, and domestic waste, have become increasingly prominent. If these problems are not addressed, the ecosystem will become imbalanced, resulting in impaired cultivated land fertility and a disharmonious rural society.
Sustainable actions in some rural areas of developed regions have received widespread attention (Osborne et al., 2002). These actions include the “Regional Nature Parks Project” in Switzerland (Hirschi, 2010), the “Rural Development Program” in Britain (Dwyer and Powell, 2016), the “One Village One Product Movement” in Japan (Noble, 2019), and the “New Village Movement” in Korea (Hong et al., 2022), showing that a gradual strategy can improve the ecological quality in rural areas. Fortunately, China has also implemented environmental policies to regulate agricultural green production, such as the Rural Revitalization Strategy in 2017 and the Five-Year Action Program for Upgrading the Rural Living Environment in 2021 (Shen and Chou, 2022). Ma et al. (2022) considered environmental regulation (ER), consisting of various agri-ecological policies, to be the critical tool for achieving green goals in agricultural production. But the excessive use of chemical inputs by farmers has not changed, reflecting the phenomenon described as “the government does it, the villager sees it” (Chi et al., 2021; Du et al., 2021). Hence, it is of practical importance to encourage farmers to participate in environmentally friendly behaviors with ERs implemented in rural areas.
Scholars categorize ER into three types, namely, government-constrained ER, market-incentive ER, and voluntary agreement-based ER (Pargal and Wheeler, 1996). Relevant studies have shown that increased ER intensity will decrease resource use efficiency (Boyd and McClelland, 1999). It cannot be ignored that the increase in the intensity of government environmental management is conducive to improving the effectiveness of environmental pollution control (Potoski and Prakash, 2004). Similar studies have also confirmed that ER positively impacts agricultural green total factor productivity, with a double threshold effect, which is affected by the proportion of crop cultivation, trade dependence, and the cultural level of the labor force (Ding et al., 2019). Economic incentives under ERs significantly and positively correlate with managing agricultural pollution (Winesten et al., 2011). Notably, information nudges can enhance farmers’ perceived susceptibility and severity of environmental pollution, thereby significantly increasing their willingness to adopt environmentally friendly practices (Sereenonchai and Arunrat, 2023). At the same time, ER policies can force technological progress in AP (Mbanyele and Wang, 2022).
Furthermore, the formulation of ER in China has been strengthened to promote the agricultural departments’ supervisory and enforcement capabilities for making the prosecutions of environmental violations by farm operations timelier and more effective (Fang et al., 2021; Hu et al., 2023). However, no consensus exists regarding ER’s effect on agricultural operations. Existing research predominantly focuses on the adverse impact of ER on agricultural producers, particularly concerning the excessive use of fertilizers, from the perspective of dynamic changes in ER (Ouyang et al., 2020; Wang et al., 2022). The “acquaintance society” (Fei, 1948) in rural China—characterized by closed social networks and informal norms—may reshape the interaction between ER enforcement and farmer behavior, particularly under state-led digital initiatives such as the “Digital Village” pilot policy (Zhang et al., 2023). In this regard, the transformation of green AP involves the rational control of agricultural water use, chemical fertilizers, and pesticides and the resourceful use of livestock and poultry manure, agricultural film, and straw, thus strengthening the willingness to perform environmentally friendly practices (Pawłowska and Grochowska, 2021; Järnberg et al., 2018). In addition, “acquaintance society” naturally forms social connections. The interaction between farmers creates a relatively stable social system and provides the action function of “herd (imitation) effect” and “mutual protection” (Gross, 1971), which avoids the external supervision and accountability for environmental pollution to a large extent and then adopts the extensive production mode, curbing the performance of environmentally friendly practices in rural areas (Wu and Ge, 2019).
Environmentally friendly practices in rural areas are actions primarily at the individual or family level that are beneficial to the environment or at least minimize negative impacts on the environment (Engel et al., 2021). These can be divided into environmentally friendly practices in the public domain (Zhang et al., 2024) and those in the private domain (Zhao et al., 2022). This study defines environmentally friendly actions as farmers’ ecological behavior in resourcefully treating farm waste. In terms of factors influencing farmers’ environmentally friendly practices, in addition to individual characteristics (e.g., gender, economic condition, and protection behavior strategies) (Tang et al., 2021; Zhang et al., 2022), social factors (e.g., social norms, ER, and business characteristics)have been critically examined (Yu and Yu, 2019; Zhao et al., 2022). Apart from the positive role of ER, an essential controversial debate exists about how farmers maintain their environmentally friendly practices with ER (Si et al., 2019). Hence, few studies have examined the effect of ER through administrative policy on farmers’ environmentally friendly behavior, and the administrative governance of agricultural green producers is still fragmented.
An answer to identify the willingness to perform environmentally friendly practices in rural areas is relevant to China’s considerations for digitization construction. Studies have shown that cloud computing, the Internet of Things, and other digital technologies in agriculture can optimize the allocation of AP factors and improve AP’s economic and ecological efficiency to achieve the green transformation in traditional agriculture (Stupina et al., 2021; Pérez et al., 2020). Digitization has facilitated the urban–rural flow of agricultural green production technologies and ER information, and the continuous improvement of rural digital infrastructure has provided farmers with more learning opportunities, improved their quality of life, and enhanced their perception of rules (Michailidis et al., 2012). In addition, digitization breaks the relatively closed rural social environment. It significantly promotes the awakening of farmers’ awareness and improves legal literacy (Zerrer and Sept, 2020), breaking the phenomenon of “mutual protection” caused by the “acquaintance society” that relies on a closed environment, a lack of public power, and weak personal awareness. The digitization of ER in the process of agricultural environmentally friendly practices exhibits spatial and temporal variability. Significant differences exist in the intensity of the ER, the level of digitization, and agricultural environmentally friendly practices in different periods and regions (Zhang et al., 2023). It can be considered that the ER’s role in performing environmentally friendly practices in rural areas is not apparent, which can be better explained through digitization. However, studies on digitization in rural areas are still scarce, especially research on the relationship between ER and environmentally friendly farmer behavior. There is room to improve ER’s effectiveness using digital technology to guide farmers in adopting environmentally friendly agricultural practices.
Our study fills this gap by integrating ER, digitization, and farmers’ environmentally friendly behavior into a unified framework, where constrained ER and market-incentive ER by administrative policy are considered. This study has two main contributions. On one hand, by embedding digitization and ER in an analytical framework, it addresses a critical question, breaks the “behavioral lock-in” caused by the acquaintance society, and activates farmers’ willingness to perform environmentally friendly practices (FWPEPs). On the other hand, an in-depth investigation into the interaction mechanism between ER and digitization—using data from China’s Land Economic Survey from 2021 to 2022, a comprehensive survey conducted in Jiangsu- is discussed, providing a reference for policies supporting the green transformation of agriculture.
2 THEORY AND HYPOTHESIS
2.1 Performance of environmentally friendly practices with ER in rural areas
Farmers, to obtain more crop output, and the government, to promote agricultural GDP growth, tend to engage in “opportunistic” behavior, i.e., taking advantage of the situation to enrich themselves while disregarding the rules, and damaging the environment (Van der et al., 2017; Romero Granja and Wollni, 2019). Therefore, a rationally designed ER is a significant environmental protection and governance tool. ER can be divided into restrictive ER means and incentive-based means (Bowen et al., 2020). From the perspective of the constrained ER, local governments have formulated strict pollution control regulations and proposed measures for different types of pollution sources, such as fertilizers and pesticides (e.g., a registration system for fertilizers and pesticides and the designation of prohibited and restricted areas) to control pollution at the source. If farmers deviate from the set targets, they face administrative penalties such as fines. Therefore, farmers with a strong awareness of ER tend to weigh the costs of violations before implementing their pollution behavior, and through their economic rationality, they are driven by loss avoidance to perform environmentally friendly practices in agriculture.
Regarding horizontal governance tools, neoclassical economics suggests that farmers, as producers, are “rational economic men” who seek to maximize profits (Schwarze et al., 2014). FWPEPs depend on the cost of AP and the expected benefits (Zhang et al., 2018; Pan et al., 2022). Local governments have shifted the direction of financial subsidies, shifting from price subsidies for fertilizers, pesticides, and other purchases and sales to subsidies for the research and development of green AP technologies and incentives for farmers to engage in green and ecological farming activities, thus promoting the greening of agricultural inputs and the resourceful use of AP and household waste. At the same time, the use of economic incentives such as “awards to promote governance” and “rewards instead of compensation” (Russi et al., 2016) has guided farmers toward a shift to environmentally friendly methods. Therefore, Hypothesis 1 is proposed.
Hypothesis 1:. ER has a significant positive effect on FWPEPs.
2.2 Digitization and FWPEPs
Behavioral decision-making theory suggests that humans have limited rationality, i.e., they are susceptible to perceptual bias when identifying and discovering problems. Hence, decision-makers need to fully understand and master information intelligence about the decision-making environment, along with business and market dynamics trends when making decisions (Slovic et al., 1977). However, in rural Chinese society, where living spaces are relatively closed and channels for farmers to obtain information are relatively narrow, there exists a severe asymmetric information problem (Liao and Chen, 2017), leading to biased behavioral decisions. Asymmetric information is one of the essential conditions for the emergence of “opportunism”; that is, the asymmetry between the government’s information on the ER and farmers’ access to information leads to ex ante “adverse selection” or ex post “risk of pollution,” thus contributing to the deterioration of AP and the rural living environment. With the development of rural digitization, the Internet has become the primary source of information for farmers, and environmental regulatory information can be rapidly disseminated by relying on various new media platforms. The combination of point-to-point and face-to-face dissemination, interpersonal dissemination, mass dissemination, etc., characterizes the dissemination mode. The dissemination content takes various forms, such as text, voice, and video, and the dissemination path meets the complexity and diversity of the characteristics of the social network (Sept, 2020). Therefore, the level of digital infrastructure in a region or the availability of broadband and intelligent communication devices in farmers’ homes can reflect the number of opportunities for information sharing (Aben et al., 2021); i.e., digitization enhances the interconnection of the ER’s information among farmers, breaks down the “opportunistic” behavior of farmers, and has a positive effect on the achievement of green agriculture and green living. It should be noted that “digital inclusive finance + green finance,” with the support of the Internet, big data technology, and blockchain, among others, can process vast amounts of data at a low cost, thus reducing transaction and information costs (Sovetova, 2021; Macchiavello and Siri, 2022) and then empowering the incentive-based ER to become more comprehensive, precise, green, and efficient (Shi et al., 2022). Therefore, Hypothesis 2 is put forward.
Hypothesis 2:. Digital construction plays a moderating role in ER promoting FWPEPs.
3 DATA, VARIABLES, AND MODEL
3.1 Data
The data used in this study were derived from the household surveys conducted from 2021 to 2022, and are available through the China Land Economic Survey (CLES). that the surveys cover the land market, agricultural production, and other aspects and were carried out by Nanjing Agricultural University in Jiangsu Province from 2021 to 2022. The PPS sampling method was used to select 26 counties from 13 prefecture-level cities under the jurisdiction of Jiangsu Province. Two sample towns were selected in each county, one administrative village was chosen in each city, and 50 households were randomly selected in each town. In the baseline survey, 2,628 households were included, and the second phase successfully followed up with 1,695 households in the baseline survey. At the same time, after eliminating the samples with missing data and logical errors, 1,118 households were retained, with a total of 2,236 sample datasets.
3.2 Variable selection
The explained variable consists of FWPEPs. Environmentally friendly behavior mainly included agricultural practices and actions in rural lives (Su et al., 2021). Based on the actual structure of the questionnaire, this study evaluates whether farmers use low-toxic, low-residue pesticides and whether they sort domestic waste in daily life. These indicators are used to measure farmers’ environmentally friendly practices from the perspectives of AP and rural life (RL). If the answer is yes, the value assigned is 1; if no, ==a value of 0 is assigned.
The explanatory variable is ER. ER is considered a critical formal institution for regulating agricultural pollution and standardizing farmers’ pro-environmental behavior through laws and administrative systems (Guo et al., 2022). Constrained ER is measured by the number of environmental regulations promulgated in prefecture-level cities. The data are derived from the Peking University magic database and consist of continuous variables. Incentive-based ER is measured by whether the government has implemented reward and punishment measures. If so, the value assigned is 1; if not, it is 0, a binary variable.
Rural digitization has broadened the channels for farmers to obtain information and thus enhanced the farmers’ perception of rules (Zhang et al., 2023). The main channels through which various details are obtained are used as a measurement indicator. The assignment is as follows: 1, basic access to information through non-network channels; 2, access to information mainly through non-network channels and less commonly through network channels; 3, there is little difference in the proportion of information acquired through network and non-network channels; 4, information obtained mainly through network channels and less commonly through non-network channels; and 5, basic access to information through network channels.
Referring to existing related studies (Yang, 2018; Li and Ma, 2023), three levels of the control variables were selected, namely, personal characteristics, family characteristics, and external environment. Personal characteristics include gender, age, health status, individual awareness of environmental information, and recognition of other villagers’ garbage classification behavior. Family characteristics include family population size indicators and length of residence in the area; the external environment comprises indicators such as the village environment. The specific variable descriptions and descriptive statistics are shown in Table 1.
TABLE 1 | Variable description and descriptive statistics.
[image: Table with three columns: "Variable," "Definition," and "Mean (Std.)." Variables include FWPEPs, Constrained ER, Incentive-based ER, Digital construction, Gender, Age, Health condition, Environmental awareness, Villagers’ behavior, Residents in household, Residence duration, and Village environment. Definitions offer detailed descriptions of each variable. The "Mean (Std.)" column provides numerical values, such as 0.789 for FWPEPs and 62.12 for Age.]3.3 Model
The measurement indicator of FWPEPs is whether farmers use high-efficiency, low-toxicity, and low-residue pesticides in agricultural production. Additionally, the adoption of garbage classification and disposal practices in farmers’ lives has been considered another measurement index. These measurements include a “yes” or “no” response in two cases. Because the error term of FWPEPs with unobserved latent variables (e.g., environmental literacy) may follow a normal distribution, the probit model is more suitable for the model estimation affecting FWPEPs than the logit or linear models, which may be sensitive to data points in the case of extreme values. Therefore, the probit model was selected for the empirical test. The formula is as follows:
[image: Equation showing a regression model: FWPEP equals beta subscript zero plus beta subscript one times X subscript i1 plus beta subscript two times X subscript i2 plus the summation from j equals one to J of beta subscript j times Control subscript ij plus epsilon subscript t.]
where FWPEP is the explained variable and X1 and X2 refer to the constrained ER and incentive-based ER, respectively. Personal characteristics, family characteristics, and external environment were assessed as control variables. In Equation 1, [image: A Greek letter, beta, with a subscript one next to it. It is a common symbol used in statistical or mathematical formulas.], [image: Please upload the image or provide a URL, and I will generate the alt text for you.], and [image: It seems that you might be trying to include a mathematical or symbolic representation, but no image is visible. Please upload the image or provide a URL for me to generate the alternate text.] are the regression coefficients, and ε is a random disturbance term.
Digitization is considered an emerging driving force for information access and regulatory enforcement, enabling agricultural departments to implement effective proactive regulations (Yang et al., 2024). In addition, the regulatory effect of digitization on FWPEPs via ER is verified. The interaction term between ER and digitization was constructed and incorporated into the model (1) as follows:
[image: Equation displaying \( FWPEP_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 dig_i + \beta_4 (X_{1i} \times dig_i) + \beta_5 (X_{2i} \times dig_i) + \sum_{j=1}^{p} \beta_{6,j} Control_{ji} + e_i \).]
where [image: Please upload an image or provide a URL, and I can help you generate the alt text.] represents village digitization and [image: Mathematical expression showing \(X_{li} \times dig_i\).] and [image: Mathematical expression showing \( X_{2i} \times digi \).] are, respectively, the interaction between digitization and constrained ER and that between digitization and incentive-based ER in Equation 2. These regression coefficients are obtained from [image: Please upload the image you want to generate alternate text for, and I will be happy to help!], [image: If you have an image you'd like me to generate alt text for, please upload it directly or provide a URL.], and [image: Greek letter beta subscript five, representing a variable or coefficient commonly used in mathematical or scientific contexts.].
4 RESULTS
4.1 Baseline regression
To avoid multicollinearity, a maximum variance inflation factor (VIF) test needed to be carried out. The results showed that the VIF value was 1.58, which is less than 2, indicating no multicollinearity between the variables. Table 2 reports the estimation results of ER on FWPEPs using the probit model. The findings reveal that both constrained ER and incentive-based ER significantly and positively influence FWPEPs across all model specifications. The results of models 1 and 4 indicate that in the case of uncontrolled individual characteristic variables, family characteristic variables, external environmental variables, individual fixed effects, and time-fixed effects, both forms of ER significantly positively impact FWPEPs. Similarly, models 2 and 5 confirmed the persistent positive effect of both constrained and incentive-based ER on FWPEPs after controlling for individual characteristics, family characteristics, and external environmental factors. The regression coefficients exhibited a downward trend, suggesting that omitting controls for farmers’ individual, familial, and external environmental factors leads to overestimating ER’s effect on FWPEPs. Models 3 and 6, which account for individual and time-fixed effects, revealed further attenuation of the influence of both constrained ER and incentive-based ER on FWPEPs. These findings confirm that ER positively and significantly drives FWPEPs (supporting hypothesis 1), primarily by incentivizing greener agricultural inputs, optimizing AP and domestic waste utilization, and implementing economic measures such as “award-driven governance” and “subsidy-to-award transitions” to steer farmers toward environmentally friendly agricultural production and rural livelihood practices.
TABLE 2 | Estimation of ER and FWPEPs using the probit model.
[image: Table comparing various statistical models analyzing different variables. Models are labeled Model 1 to Model 6, categorized under AP and RL headings. Variables include Constrained ER, Incentive-based ER, Gender, Age, Education, Health, Residents in the household, Residence, and Village environment, with coefficients and standard errors. Significance levels are indicated by asterisks, with individual and time-fixed effects noted. Observations total 2,236 for each model. The note clarifies significance levels and mentions robust standard errors.]4.2 Robustness test
4.2.1 Propensity score matching
A potential concern was that the statistical significance of constrained ER and incentive-based ER might have stemmed from sample selection bias. To mitigate endogeneity issues arising from data bias and confounding factors, this study has employed the propensity score matching (PSM) method to re-estimate the effects of ER on FWPEPs, distinguishing the results for AP and RL. First, treatment and control groups were identified. Based on the average number of ERs issued at the prefecture level (79.895 regulations), regions were classified into high- and low-constraint ER groups. Similarly, governments implementing reward and penalty mechanisms were categorized into the incentive-based ER group, while those without such mechanisms were categorized into the non-incentive ER group. Next, three matching methods, namely, nearest-neighbor, caliper, and kernel matching, were applied to estimate the average treatment effect (ATE) between the treatment and control groups. Table 3 shows a positive correlation between ER and FWPEPs, further confirming the robustness of this study’s estimates.
TABLE 3 | PSM estimation.
[image: Table comparing average treatment effects under Constrained ER and Incentive-based ER using three match types: Nearest-neighbor, Caliper, and Kernel. Results are shown for ATT, ATU, and ATE across AP and RL. Significance is indicated by asterisks, with three asterisks for 1%, two for 5%, and one for 10%.]4.2.2 Measurement with estimation bias
For some unmeasurable variables that may exist, the estimation results are biased. Observed variables are used to calculate the possibility of estimation bias caused by unobserved variables. The primary approach is divided into three steps. First, two groups of regressions are established. One group does not add control variables or adds only a few (gender, age, and health status) constrained control variables; the other group adds the regression of all control variables. Then, the coefficients βr and βf of the key explanatory variables in the two groups of regressions are calculated, respectively (r represents the group that does not contain or contains some control variables, and f represents the group that contains all control variables). Second, the F-value statistic is calculated using the formula is F = |βf/(βr-βf)|. If F ≥ 1, the result is robust, and the larger the F value, the smaller the error caused by unobserved factors in the current estimation results. According to the F-value calculation formula, the closer βr and βf are, the smaller the influence of the known control variables on the estimation results is. If the current fundamental conclusion changes with the addition of more control variables, a larger βf indicates that unknown variables that might affect the robustness of the existing estimates play a more significant role. The effect of FWPEPs by ER is examined through two regression models: one that includes only a subset of control variables and another that incorporates all control variables. As shown in Table 4, the F-values across the four cases range from 1.564 to 3.989, with an average of 2.560. This suggests that, to improve the robustness of the model estimates in Table 2, the number of unknown or unobservable variables would need to be at least 1.564 times greater than the current control variables. As this scenario is unlikely, the estimation results remain robust.
TABLE 4 | Robustness test for ER and FWPEPs.
[image: Table comparing circumstances with two control groups and F-values. Circumstances 1 and 2 have no control variables for the constrained group, and different control variables for the full group. Circumstances 3 and 4 include control variables like gender and age for both groups, with some differences in the full group. F-value (AP) and F-value (RL) columns show constrained and incentive-based ERs, varying across circumstances.]4.3 Heterogeneity analysis
The previous research presented the impact of ER on FWPEPs, that is, the impact of homogeneity. However, the effect of ER on FWPEPs was found to differ based on different personal characteristics. Next, the heterogeneous impact of ER on FWPEPs was examined from the perspectives of gender and education levels in the light of agricultural production. Tables 5, 6 report the heterogeneous impact of ER on FWPEPs in AP. The results show that, based on the discussion of different genders in the context of AP, the impact of constrained ER and incentive-based ER on FWPEPs was more significant for men than for women.
TABLE 5 | Heterogeneity analysis of ER in AP.
[image: Table comparing variables across gender and education levels. For males, constrained ER is 0.239 with a standard error of 0.104; incentive-based ER is 0.211 with 0.147. For females, constrained ER is 0.072 with 0.150; incentive-based ER is 0.104 with 0.045. Primary or lower education, constrained ER is 0.126 with 0.148; incentive-based ER is 0.045 with 0.031. Middle or above education, constrained ER is 0.374 with 0.135; incentive-based ER is 0.241 with 0.111. All rows include C.V., individual fixed effects, and time-fixed effects, with observations ranging from 678 to 1,558. Significance levels are marked.]TABLE 6 | Heterogeneity analysis of ER in RL.
[image: Table showing variables related to gender and education impacts on ER. For constrained ER: males 0.008, females 0.098***; primary or lower 0.091, middle or above 0.125***. For incentive-based ER: males 0.523***, females 0.651***; primary or lower 0.058, middle or above 0.415***. C.V., individual fixed effects, and time-fixed effects are all marked as "YES". Observations: males 1,002, females 1,234, primary or lower 678, middle or above 1,558. Significance levels indicated by asterisks.]Conversely, in RL for environmentally friendly practices, the role of constrained ER was found to be more significant for women, and there was no apparent heterogeneity in incentive-based ER. The reason is that the social role theory posits that gender differences in social behavior stem from the gender division of labor established by society. Men and women are often viewed as being physiologically driven to assume the roles of breadwinner and caregiver, respectively, reinforcing the belief that men and women are inherently related to these roles.
Based on the discussion of different education levels, whether in AP or RL, the impact of constrained and incentive-based ER on FWPEPs was found to be more significant for those with a junior high school education or higher than for those with an education level of primary school or lower. The reason is that farmers with junior high school and above education levels will have greater cognitive ability due to the influence of good education, will be more sensitive to changes in the external environment, and will have a deeper understanding of the rules. Therefore, environmentally friendly methods are often adopted under the joint drive of constrained ER and incentive-based ER.
4.4 ER and FWPEPs moderated by digitization
To test the regulatory role of digitization in the impact of ER on FWPEPs, data were only available for 2022, as the relevant questionnaire was conducted exclusively for that period. Therefore, to verify the moderating effect of digitization, only the 2022 data were used for regression analysis. The interaction terms of constrained ER and incentive-based ER were added for regression. The regression results, presented in Table 7, demonstrate that constrained ER, incentive-based ER, digitization, and their interaction terms significantly and positively influence FWPEPs when no control variables are included. When controlling for individual, family, and external environmental variables, the coefficients for constrained ER, incentive-based ER, and their interaction terms with digitization remain positively significant but decrease in magnitude. This suggests that, without controlling for farmers’ individual, family, and external environmental factors, the impact of digitization and its interaction with ER mechanisms are overestimated, thereby validating hypothesis 2. These findings demonstrate that digitization enhances the dissemination of ER-related information among farmers, mitigates opportunistic behavior, and plays a constructive role in promoting green agricultural production and sustainable rural living.
TABLE 7 | Regression ER and FWPEPs moderated by digitization.
[image: Statistical table showing variables "Constrained ER," "Incentive-based ER," and their interactions with digitization across columns labeled "AP" and "RL." Includes coefficients, standard errors in parentheses, and significance levels indicated by asterisks. "C.V." is marked "NO," with individual and time-fixed effects as "YES." Observations total 2,236. Significance levels are noted at the bottom.]5 DISCUSSION AND CONCLUSION
Based on the analytical framework of ER and digitization, an empirical study was conducted using data from China’s Land Economic Survey and employing a binary probit model. The results of this study provide significant insights into how different types of ERs—constrained ER and incentive-based ER—affect FWPEPs. In particular, the findings indicate that both types of ER positively influence the adoption of environmentally friendly practices in farming. The critical contribution of this study lies in demonstrating how digitization enhances ER’s efficacy in promoting environmentally friendly behavior among farmers. Digitization expands farmers’ awareness of ER and provides them with the skills and tools to effectively implement these regulations. The findings from this study underscore the role of digital empowerment in overcoming the barriers to adopting environmentally friendly practices in agriculture.
From the perspective of internal mechanisms, ER affects FWPEPs through external constraints and internal incentives. On one hand, constrained ER strengthens behavioral norms by imposing significant economic and social costs for violations, thus forcing farmers to comply with environmental standards. On the other hand, incentive-based ER reduces the risks and costs of behavior transformation through positive incentives, encourages farmers to respond to policy calls actively, and reflects the advantages of combining government and market measures in environmental governance. Furthermore, domestic and foreign research has also confirmed that there are significant individual heterogeneity characteristics in the effectiveness of ER. The gender and education level differences discovered in this study are highly consistent with similar findings in the international literature. In Thailand, male farmers are more sensitive to policy perception in agricultural production decisions, while women are more inclined to participate in environmental activities in their daily lives (Sereenonchai and Arunrat, 2024). The positive effects of both types of ER in guiding farmers toward adopting environmentally friendly practices in rural areas support the general theory that ER, whether constrained or incentivized, serve as a crucial lever for achieving environmental sustainability in agriculture. It is also essential to recognize that the effectiveness of ER may depend on the local context, which can vary due to cultural, economic, and infrastructural factors.
In this study, digitization has been proven to be an important moderating factor in the relationship between ER and FWPEPs. This means that digitization has significantly improved farmers’ cognitive accuracy in information acquisition and their timely response to environmental regulatory policy information. Another study focused on product knowledge and perceived benefits in the digital era (Foster et al., 2022). The authors noted that digitization plays a significant role in enhancing farmers’ understanding and perception of ER. Similarly, village digitization can highlight role models or demonstrate how local departments implement ER, such as norms and laws, fostering a sense of collective endeavor. Additionally, the study confirms that, when combined with ER, digitization is crucial in reducing the “opportunistic behavior” often observed in rural communities, wherein farmers take advantage of their lack of information to evade compliance.
In conclusion, this study provides strong evidence that ER and digitization play critical roles in shaping farmers’ environmentally friendly behaviors. Combining ER and digitization empowers environmentally friendly sustainability in agriculture and rural life. These findings suggest that policymakers should focus on integrating digital strategies into ER frameworks to maximize the impact of both on farmers’ performance of environmentally friendly practices. Future research should continue to explore the interactions between digital tools and ER and embed the risk perception and knowledge sharing into farmers’ behavior, in order to refine and improve agricultural sustainability strategies.
6 POLICY IMPLICATIONS AND LIMITATIONS
Preventing and controlling agricultural non-point source pollution is not a long-term goal but a substantial process. Based on the aforementioned findings, this study draws the following policy implications.
First, the laws and regulations of agricultural ecological civilization are established to standardize AP and RL in several selected typical areas with positive prevention and control work and remarkable results. Financial support for agricultural enterprises’ green AP technology innovation will be increased to provide full play to the ‘leader’ role of agricultural enterprises’ technological innovation through industry benchmarking publicity and the establishment of models. Governments should provide leverage institutional advantages by focusing on significant events and strengthening rural infrastructure construction. Notably, they should establish an ecological data observation platform to systematically and quantitatively evaluate the environmental status quo and improve and make timely adjustments. Promoting rural ecological construction has become the driving force of green rural development. By combining legal publicity, vocational training, and road shows, and making full use of information dissemination channels such as the Internet, knowledge of agricultural green production will be popularized, raising farmers’ awareness of environmental protection, and leveraging their regulatory role.
Second, digitization in rural areas has increased with consolidated digital architecture. The digital construction plan has been improved to form an implementation mechanism for government fund guidance, broad social capital participation, strict social group supervision, and reasonable resource investment. Next, the establishment of a universal service compensation mechanism for rural telecommunications will support the construction of optical fiber networks and 5G base stations in villages and towns for realizing the “same network and same speed” in rural cities, reducing the “digital divide” between urban and rural areas, and opening up the application channels of digital AP technology and the dissemination channels of AP information. Additionally, the development and application of high-end technologies, such as big data and blockchain, in AP can be actively promoted to improve the scope of digital financial inclusion services, with a focus on “pilot fault tolerance” while maintaining fundamental principles. The aforementioned measures are expected to further promote the green effects of digital finance and help with the green transformation and upgrading of rural economic development.
This study has several limitations. First, the data were drawn from farmer surveys in Jiangsu Province, which may restrict the generalizability of the findings to broader geographical and economic contexts. Second, environmental regulations and digitization measurements were simplified, potentially overlooking the complexity of policy instruments and technological applications. Additionally, the influence of informal institutional factors, such as farmers’ social networks, on behavioral decisions was not fully explored. Future research could validate these mechanisms through cross-regional longitudinal data and a more nuanced variable design.
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Carbon Capture Utilization and Storage (CCUS) is essential for achieving sustainable development and a strong driving force for improving enterprise total factor productivity (TFP). This paper empirically examines the relationship between CCUS and TFP of enterprises based on the collection and organization of CCUS texts in the annual reports of Chinese listed companies from 2002 to 2022. It is found that CCUS has a significant positive impact on corporate TFP. The conclusion still holds after considering issues such as endogenous problems. Mechanism analysis finds that CCUS improves the external environment of enterprises and enhances the ability to obtain bank loans while at the same time improving enterprises’ innovation ability, which in turn helps promote the TFP of enterprises. Heterogeneity analysis finds that the positive impact of CCUS on enterprise TFP is more prominent in large-scale enterprises, state-owned enterprises, and the eight key emitting industries than in small-scale enterprises, non-state-owned enterprises, and other industries. This investigation innovatively employs a text analysis methodology to measure CCUS, reveals the potential determinants influencing CCUS technology on the TFP, and furnishes a scientific foundation for policy refinement.
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1 INTRODUCTION
Vigorously developing carbon capture, utilization, and storage (CCUS) technology is a strategic choice for reducing carbon dioxide emissions and ensuring future energy security, which is also significant for achieving sustainable development. The Paris Agreement launched the GGA Work Program, which specifies “to limit the global average temperature to 2°C or less compared to the pre-industrial period, and to strive to limit the temperature increase to 2°C or less”. The GGA Work Program specifies the long-term goal of “limiting the global average temperature to 2°C above pre-industrial levels and striving to limit the temperature increase to 1.5°C″ to address the persistent and profound impacts of climate change on the globe. However, according to the United Nations Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment of Climate Change Working Group III report, only about 1,150 billion tons of the current global CO2 emissions budget remain to achieve the 2°C goal, and global CO2 emissions for the 2010–2019 period account for about one-third of this budget. Under the condition that it is impossible to completely abandon fossil energy, carbon capture, utilization, and storage (CCUS) is a critical way to profoundly reduce CO2 emissions in order to respond to climate change (Qin et al., 2020). It is a key technological tool and a bottom-up technological guarantee to achieve the temperature control target of the Paris Agreement.
It has become a hot topic about CCUS solving environmental problems while improving the economic efficiency of enterprises. Although the development of the CCUS industry requires a long-lasting and large amount of capital investment, according to the multiplier theory, large enterprises bear or jointly bear the input costs alone, drive the development of the industrial chain through CCUS, reduce the production cost, realize the economy of scale and economy of scope, and ultimately generate exponential economic benefits. According to Schumpeter’s innovation theory, enterprises develop new carbon capture technologies, such as adsorbents, membrane separation technology, etc., which can improve the efficiency of carbon capture and reduce costs (Xiang et al., 2023), and confirm the decoupling theory from the perspective of micro subject. According to the externality theory, enterprises avoid carbon tax costs by reducing carbon emissions through CCUS. The reduction of carbon emissions by CCUS also meets the requirements of environmental protection regulations, realizing the positive externality. With the restart of the CCER market, enterprises obtain additional income through the carbon trading market, effectively internalizing the externality and solving the problem of market failure.
Based on the textual information of annual reports of listed companies, this paper identifies CCUS with the help of the textual analysis method, constructs the metrics of CCUS, utilizes the TFP to portray the level of economic development of enterprises, and then examines the relationship between CCUS and the TFP of enterprises as well as the mechanism of action therein. It was found that CCUS can increase enterprises’ TFP. From the viewpoint of changes in the external environment of enterprises, the level of CCUS enhances the ability of enterprises to obtain credit, thus promoting the increase of enterprise TFP. From the viewpoint of enterprise internal capability improvement, the CCUS level stimulates enterprise innovation capability, stimulating enterprise total factor productivity growth. Around the role of the CCUS level, the heterogeneity of the impact of CCUS on firms’ total factor productivity is examined from the perspectives of firms’ size, firm attributes, and the industries.
Therefore, this article collects and organizes the CCUS texts disclosed in the annual reports of the listed companies in China from 2003 to 2022 and conducts an empirical investigation on the relationship between CCUS and TPF of enterprises. Compared with the existing literature, the innovations of this paper are mainly reflected in the following aspects: first, most of the existing literature focuses on the economic effects of CCUS (Zhao et al., 2021; Wei N. et al., 2021), and very few of the literature discuss the relationship between CCUS and TFP from the perspective of CCUS texts. Based on this, this paper focuses on analyzing the potential impact of CCUS on listed companies, enriches related studies on CCUS, and validates the decoupling theory from the perspective of micro subjects. In the existing literature, firm performance analyses mainly rely on traditional quantitative indicators such as financial and patent data, which, however, often fail to comprehensively capture a firm’s innovation activities and their complex impact on performance. Text data, as a new type of information source, contains a rich and under-explored potential value. Our study builds on this research gap by innovatively applying text data to enterprise performance analysis. The application of text data can also overcome traditional data problems regarding measurement errors, R&D manipulation, etc., and improve the accuracy and reliability of corporate performance analyses. Our study verifies the effectiveness and advantages of text data in corporate performance analysis through empirical analyses and provides new ideas and methods for research in this field. Second, the existing literature focuses on exploring the economic effects of CCUS on carbon reduction (Kouri et al., 2017; Yao et al., 2018; Liu et al., 2021; Zhang et al., 2022). This paper takes scientific and technological innovation and credit support as the entry point to explore the mechanism of the impact of CCUS on the economic growth of enterprises and enrich the relevant study of CCUS. At the same time, we also provide a new perspective for understanding the role played by CCUs in promoting enterprise TFP growth. Thirdly, the article further discusses the effects of enterprise size, characteristics of state-owned enterprises, and the eight emission reduction industries on the promotion of TFP by CCUS, which will provide valuable references for the later promotion of CCUS.
The rest of the paper is organized as follows: the second part is the literature review; the third part is the theoretical analysis and research hypotheses; the fourth part introduces the empirical research design; the fifth part is the main empirical results and analyses; the sixth part is the further analyses; the seventh part is the conclusions and policy implications are given; and finally, Discussing.
2 LITERATURE REVIEW
2.1 About CCUS technology and applications
In recent years, CCUS technology has made remarkable progress. China has also made significant progress in CCUS technology, especially CCUS-EOR technology for enhanced oil recovery (EOR) (Qin et al., 2020). Li et al. (2009) proposed a roadmap for developing carbon dioxide capture and storage (CCS) technology in China and explored the future development direction in this field (Zhang et al., 2021). evaluated the development of CCUS technology in China from different dimensions, pointed out the positioning of CCUS technology under the goal of carbon neutrality, and provided an outlook. Tang et al. (2021) analyze CCUS technology to help the power industry achieve faster decarbonization in the short term.
2.2 TFP of enterprises
Academics have proposed several measurement methods for TFP. Olley and Pakes (1992) proposed the OP method based on the consistent semiparametric estimator method to estimate TFP. Levinsohn and Petrin (2003) improved the OP method by using intermediate inputs as proxy variables for productivity and proposed the LP method to measure TFP. Wooldridge (1996) proposed a one-step consistent estimation method based on the GMM framework to measure TFP after improving the OP and LP estimation methods. Lu and Lian (2012) applied parametric and semiparametric methods such as least-squares, fixed-effects, OP, and LP to calculate the TFP of China’s industrial enterprises. Giannetti et al. (2015) borrowed the OP and LP methods and improved the traditional OLS method to calculate the TFP of listed companies. Yang (2015) relies on the database of China’s industrial enterprises in the period of 1998–2009, comprehensively constructing the panel data, treating the capital variables, treating the price index, etc., and standardization and organization of this database, and calculating enterprise-level TFP based on OP, LP and other methods.
2.3 CCUS and enterprise TFP
Discussions about CCUS and firms’ total factor productivity (TFP) have given rise to divergent views within the academic community. Dong et al. (2025) also found that CCUS technological innovations significantly enhance green total factor productivity by facilitating the improvement of industrial infrastructure and carbon emission efficiency. Xiang et al. (2023) utilize real ternary options to develop an investment decision model for CCUS projects and analyze their feasibility. Monteiro and Roussanaly (2022) examined the economic feasibility of CO2 utilization in cement production facilities. Nevertheless, several scholars have advanced the argument that the elevated full-process cost of CCUS represents a pivotal barrier to total factor productivity. In their 2020 study, Qin Jishun et al. posited that the impediment to the industrialization of CCUS in China is attributable to a paucity of economic incentives and the elevated costs associated with capture and integration. The IPCC AR6 report elucidated that the collective maturity of global CCUS technology is currently in the demonstration stage, and that the substantial expense of CCUS emission reduction in coal-fired power plants engenders a protracted and hazardous return on investment for enterprises (Peng et al., 2022). Yang et al., (2025) calculated the cost of capture and transport to be 52.47% of the total cost of the CCUS-EOR project of Yanchang Petroleum, and concluded that the project would not be profitable until oil prices exceeded 70 USD/barrel. This makes showing the TFP in the low oil price environment is challenging. The present study analyses whether the CCUS text data disclosed in the annual reports of listed companies can improve the total factor productivity of enterprises.
3 THEORETICAL ANALYSIS AND RESEARCH HYPOTHESIS
3.1 Analysis of impact effects
CCUS plays an essential role in connecting firms with the market, providing an incentive-compatible market-based governance mechanism for firms’ TFP. Hu et al. (2023) suggest that the emission reduction benefits under the carbon trading mechanism will also motivate enterprises to optimize resource allocation or upgrade their processes, thus improving productivity. Under the market mechanism of the “dual carbon” target, CCUS becomes the most direct way to reduce carbon emissions. Enterprises can not only reduce carbon emissions on a large scale by developing and upgrading CCUS processes but also cultivate new business growth poles, thus promoting the growth of enterprise TFP. Therefore, this paper proposes the following research hypotheses.
Hypothesis 1. CCUS promotes firms’ TFP.
3.2 Analysis of impact mechanisms
This paper mainly analyzes the influence mechanism of CCUS on the TFP of enterprises in two ways: their external environment and their internal capacity.
3.2.1 CCUS and the corporate external environment
Due to the lack of financial support and other constraints, it is difficult for most enterprises to sustain CCUS programs, resulting in limited economic benefits for enterprises. Therefore, strengthening financial support for enterprises is crucial to enhancing their TFP. In this context, CCUS can accelerate enterprises’ access to capital through government subsidies, credit support, and other channels to build a solid capital guarantee to increase enterprises’ TFP.
Specifically, firstly, with the strengthening of CCUS policy support, enterprises carrying out CCUS projects can receive certain financial subsidies from local governments, thus playing the “leveraging effect” of Cash in the Treasury (Ding et al., 2024). With the support of government subsidies, CCUS enterprises will have more substantial capital turnover and risk-resistant ability, thus alleviating the lack of motivation caused by the high risk and long cycle of enterprise digital transformation. Secondly, enterprises facing a severe external financing environment cannot bear the high costs, making it difficult for CCUS programs to be sustained. According to signaling theory, the development of CCUS will lead banks and other financial institutions to provide financial support for enterprises, which will directly enhance the scale and level of financing for enterprises and solve the problems of “difficult” and “expensive” financing (Yu et al., 2021), thus helping enterprises’ TFP. This will help the growth of the TFP of enterprises. Therefore, this paper proposes the research hypotheses H2a and H2c.
Hypothesis 2. Given other conditions, fiscal subsidies produce an impact mechanism between CCUS and enterprise TFP, i.e., CCUS can promote enterprise TFP through fiscal subsidies.
Hypothesis 3. Given other conditions, bank loans produce an impact mechanism between CCUS and enterprise TFP, i.e., CCUS can promote enterprise TFP through bank loans.
3.2.2 CCUS and in-house capabilities
The development of CCUS by enterprises has simultaneously stimulated their scientific and technological innovation, thus driving the growth of their TFP (Griliches, 1986). The massive upfront investment forces CCUS enterprises to increase R&D investment, and CCUS promotes carbon utilization technological innovation and develops more carbon utilization technologies, such as converting carbon dioxide into high-value-added chemicals and fuels, etc., to increase the utilization value of carbon dioxide and drive up TFP. The construction and implementation of large-scale CCUS projects drive the development of CCUS-related technology and equipment manufacturing, which leads to the intersection of disciplines and the cultivation of industrial talents (Qin et al., 2020) and the use of scientific and technological talents to promote the growth of enterprise TFP. Therefore, this paper proposes the research hypothesis H2c.
Hypothesis 4. Given other conditions, an impact mechanism arises between CCUS and firms’ TFP, i.e., CCUS can promote the growth of firms’ TFP by enhancing firms’ science and technology innovation.
4 RESEARCH DESIGN
4.1 Data description
This paper selects the listed companies in Shanghai and Shenzhen A-shares from 2002 to 2022 as the research object. The explanatory variables are the TFP data from the annual reports of listed companies in previous years. The core explanatory variables are the textual information of CCUS, which is from the annual reports of the listed corporations in previous years. (1) Download the annual report documents of all A-share listed companies from 2002 to 2022 from Juchao Information Network. (2) Based on the Python platform, convert the PDF documents into TXT documents and clean the data as follows: First, process the tables. The table in the annual report becomes a text box after conversion. Thus, it is impossible to query or analyze its content directly. Because most of the table contents are numbers, a few text contents are heavily templated and contain less incremental text information. Therefore, this paper eliminates all forms through text recognition. Secondly, scanned documents and missing documents are eliminated. (3) Based on the Chinese general dictionary Jieba, Python subdivides the text content, and deactivated words are removed so that the unstructured text data is converted into word vectors for storage. (4) Calculate the word frequency of the word set corresponding to the CCUS metrics. Relevant data on basic corporate information, financial indicators, and corporate governance are from the Wind database and China Research Data Service Platform (CNRDS). The data are processed as follows: first, samples with the normal listing are retained; second, samples such as ST are excluded; third, samples of companies with IPOs of less than 1 year are excluded; and fourth, continuous variables are reduced-tailed at the 1% level. After these filters, the final result is 3,686 listed companies, constituting 32,900 sample unbalanced panel observations.
4.2 Variable settings
4.2.1 CCUS text
Drawing on (Yang et al., 2024), CCUS variables were constructed from the textual analysis of annual reports released by A-share listed companies. Specifically, the construction process of the CCUS indicator is as follows.
	(1) Based on the China Carbon Dioxide Capture, Utilization and Storage (CCUS) Annual Report (2021), a thesaurus of CCUS features has been compiled, including five feature words in two categories: direct and indirect. The direct category includes CCUS, carbon capture, carbon sequestration, and carbon utilization; the indirect category includes CCS.
	(2) For the same concept or thing, the expressers often use multiple semantically similar words to describe it, so the seed word set needs to be expanded with similar words. The Word2Vec machine learning technique proposed by Mikolov et al. (2013) is a recent landmark achievement in this field (Lecun et al., 2015). Word2Vec is essentially based on the neural network Word Embedding method, which represents words into multi-dimensional vectors based on contextual semantic information, and obtains the semantic similarity between words by calculating the similarity between the vectors (Bengio et al., 2003). Specifically, this paper adopts the CBOW (Continuous Bag-of-words Model) in Word2Vec to train the Chinese annual report corpus (Equation 1).

The CBOW model:
[image: Mathematical expression showing an optimization problem: maximize the sum over a vocabulary \( C \) of the logarithm of the probability \( p \) of a word \( w \) given its context, denoted as \( \text{Context}(w) \).]
where C denotes the corpus; w denotes the center word; Context(w) denotes the context of the center word. The basic idea of the CBOW model is to predict the probability of the current word based on the context, and by maximizing the above objective function, the Word2Vec word vector corresponding to the center word can be obtained eventually. Subsequently, similar words to the center word can be obtained by calculating the vector similarity. The model is trained based on massive financial texts, and the recommended similar words are more suitable for the textual context, which can effectively avoid the subjectivity of artificially defined word lists and the weak correlation of standard synonym tools.
	(3) We manually verified the indicator word set and finally determined that it contains 11 CCUS words. Subsequently, given the typical “right-biased” characteristics of this kind of data, the CCUS in this paper is logarithmically normalized to form the CCUS indicator (CCUS) in Table 1.

TABLE 1 | CCUS indicator thesaurus.
[image: Table with two sections: (1) Seed words and (2) Expanded set of words. The source of information for Seed words is the China Carbon Dioxide Capture, Utilization and Storage (CCUS) Annual Report (2021) and annual reports of listed companies, with collected works being carbon capture, sequestration, utilization, CCUS, and CCS. For Expanded set of words, the source is Word2Vec Similar Words Expansion, with collected works including various forms of carbon capture and storage terminologies.]4.2.2 The TFP of enterprises
The explanatory variable in this paper is firm TFP. Considering that firms may adjust factor inputs promptly according to observable production efficiency, there is a potent endogenous relationship between firm-level TFP and factor inputs, leading to the usual bias in the productivity obtained from the least squares production function estimation. Blundell and Bond (1998) effectively address the endogeneity problem in the regression by adding instrumental variables through GMM estimation. Therefore, this paper uses the GMM method to compute firms’ TFP. In addition, in the robustness test section later, this paper uses the LP and OP methods to calculate firms’ TFP as alternative explanatory variables.
	(1) Olley-Pakes method (abbreviated the OP method)

Olley and Pakes (1992) developed a consistent semi-parametric estimator. The method solves the simultaneity bias problem by assuming that firms make investment decisions based on the current productivity situation of the firm and therefore use the firm’s current investment as a proxy for unobservable productivity shocks. The method consists of two main steps:
Firstly, the relationship between the firm’s current capital stock and the amount of investment needs to be established, and Olley and Pakes construct the following Equation 2:
[image: Equation for capital accumulation: \( K_{t+1} = (1 - \delta)K_t + I_t \), labeled as equation (2).]
where K is the capital stock of the firm, I represents current investment, [image: Please upload the image you want the alt text for, and I'll help you create it.] is the depreciation rate.
It is assumed that firms tend to increase their current-period investment if they have higher expectations about the future, i.e., the higher the current period, the higher the current-period investment. Based on this, an optimal investment function is [image: Mathematical equation displaying \( i_{it} = \dot{\imath}_t(\omega, k_{it}) \).], where [image: It seems there was an error in the upload. Please try uploading the image again, and I will help create the alternate text for it.] measures the degree to which a company tends to make short-term investments, and its inverse function is [image: Mathematical equation showing \(\omega_{it} = h_t(i_{it}, k_{it})\), indicating a function \(h_t\) of variables \(i_{it}\) and \(k_{it}\) equals \(\omega_{it}\).]. We take it into the production function, so [image: Mathematical equation displaying variables: \( y_{it} = \beta l_{it} + \gamma k_{it} + h_{t}(i_{it}, k_{it}) + e_{it} \).] (where [image: If you have an image you'd like me to describe, please upload it or provide a URL.], [image: Please upload the image or provide a URL so I can help generate the alt text.] and [image: Please upload the image you would like me to describe, or provide a URL if it's hosted online.] denote the logarithmic forms of yield, labor and capital inputs respectively; [image: It seems there might have been a mistake in uploading the image. Please try uploading the image again, and I will assist you with generating the alternate text.] is the residual term). Let the capital contribution [image: The equation displays \(\phi_{it} = \gamma k_{i,t} + h_t(i_{it}, k_{it})\).], so the production function becomes [image: Mathematical equation representing a model: \(y_{it} = \beta l_{it} + \phi_t + e_{it}\), where \(y_{it}\) is the dependent variable, \(\beta\) is a coefficient, \(l_{it}\) is an independent variable, \(\phi_t\) is a time effect, and \(e_{it}\) is an error term.], a consistent, unbiased estimate of the coefficients of the labor term can be obtained by estimating the above equation.
The second step focuses on estimating the coefficients of the capital term. We define [image: Mathematical equation depicting a model: \( V_{it} = \gamma k_{it} + g(\phi_{t-1} - \gamma k_{it-1}) + \mu_{it} + e_{it} \).] (where [image: It seems like there might have been an error as I cannot view images directly. Please upload the image or provide a URL, and I'll generate the alternate text for you.] is a function containing [image: It appears that the image is missing. Please upload the image or provide a URL, and I will help generate the alternate text for it.] and the lagged term of capital stock; [image: It appears you are trying to include an image, but it did not properly upload. Please try uploading the image again, or provide a URL if it's hosted online. You can also add a caption for additional context.] is part of the residual term, and [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is the true residual term, containing unobservable technology shocks and measurement errors). Once the above equation has been estimated, then all coefficients in the production function are successfully estimated. Using this result, we can fit the equation [image: The image shows a production function equation: \( Y_{it} = A_{it} L_{it}^{\alpha} K_{it}^{\beta} \).] (where [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] represents yield; [image: It seems like there was an error with the image upload. Please try uploading the image again or provide a URL. Optionally, you can add a caption for additional context.] and [image: It seems like there was an error or confusion in your request. Please provide the actual image by uploading it or use a URL, and I’ll be happy to generate the alternate text for you.] denote labor and capital inputs respectively; [image: Certainly! However, it seems like the image didn't come through. Please try re-uploading the image or provide a URL if it's hosted online. If you have a caption or description, feel free to include it for additional context.] is the commonly referred total factor productivity) to obtain the logarithmic value of the residual, which is the logarithmic value of total factor productivity.
	(2) Levinsohn-Peterin method (abbreviated the LP method)

The Olley-Pakes methodology provides consistent estimates of the firm-level production function, which is subject to several assumptions. One of these assumptions is the requirement that the proxy variable (investment) is always monotonically related to total output. This means that those samples with zero investment are not estimated. Since not every firm has a positive investment yearly, many firms are discarded in the estimation process. Levinsohn and Peterin (2003) develop a new approach to total factor productivity estimation to address this problem. Instead of using the amount of investment as a proxy variable, the method replaces it with an indicator of intermediate goods inputs, which are more readily available from a data perspective.
	(3) GMM method

A generalized method of moments was proposed by Blundell and Bond (1998). The method aims to address the endogeneity problem that exists in the model. The basic idea is to address the endogeneity problem in the model by including instrumental variables. A natural instrumental variable for the estimation of the production function is the lagged value of the explanatory variable. Since it is determined in period t-1, it will not be related to the technology shock in the current period.
The production function (Equation 3) is assumed to be of Cobb-Douglas form:
[image: Mathematical equation representing a model: \( y_{it} = \beta_0 + \beta_{1} x_{it} + \beta_2 k_{it} + \omega_t + \epsilon_{it} \).]
where [image: It seems like your request contains a mathematical expression, not an image. If you have an image to describe, please upload it or provide a URL. If you intended to describe a mathematical equation involving \( y_{it} \), it likely refers to a variable indexed by \( i \) and \( t \). Please clarify if you need further assistance.], [image: It seems there's an issue as no image was uploaded. Please try uploading the image again or provide a URL.] and [image: Mathematical expression featuring the letter k with subscript it.] denote the logarithmic forms of, labor and capital inputs respectively; [image: Please upload the image or provide a URL for me to generate the alternate text.] is total factor productivity (TFP), which is unobservable and may be correlated (endogenous) with the input variables [image: It seems there was a mistake in your request. Please upload an image or provide a URL so I can generate the appropriate alt text for it.] and [image: It appears that there's an error in the input; a mathematical expression is shown instead of an image. Please provide an image file for alt text generation.]; [image: Mathematical expression showing the Greek letter epsilon with subscripts "i" and "t".] is a random error term satisfying [image: The equation shows the expected value of epsilon subscript it equals zero, symbolizing a statistical property where the mean of the error term is zero.].
TFP is assumed to obey a first-order autoregressive process (AR(1)), seeing Equation 4:
[image: The equation displayed is: \( q_t = \rho \omega_{t-1} + \eta_t \) (Equation 4).]
where [image: Italicized Greek letter eta followed by the subscript letters "it".] is white noise, independent of historical information.
GMM addresses endogeneity by constructing moment conditions.
The first step, first-order differencing of the production function (Equation 5) eliminates individual fixed effects [image: Please upload the image you would like me to generate alt text for.]:
[image: The equation shown is: Δyₜ = βₗΔiₜ + βₖΔkₜ + Δωₜ + Δεₜ, labeled as equation (5).]
The second step uses lagged variables as instruments to construct moment conditions. Assuming that historical inputs or outputs are orthogonal to the current error term, Define the moment conditions [image: Mathematical expression showing the expected value of the product of \( Z_{it} \) and the change in \(\varepsilon_{it} \) equals zero.], where [image: It looks like there's a text fragment related to math or a formula, but to generate alternate text for an image, please upload the image or provide the link.] represents the instrumental variable matrix.
The third step yields parameter estimates by minimizing the moment-conditional weighted distance (Equation 6).
[image: Mathematical formula depicting \(\hat{\beta} = \arg\min_{\beta} \left(\frac{1}{N}\sum_{i=1}^{N}Z_{i}\Delta\epsilon_{i} \right) W \left(\frac{1}{N}\sum_{i=1}^{N}Z_{i}\Delta\epsilon_{i} \right)\), labeled as equation (6).]
where W is the weight matrix (usually a two-step approach is used: the first step uses the unit matrix and the second step uses the first step residual covariance matrix). [image: It seems there was an error in your input. Please upload the image or provide a URL, and I will generate the alternate text for you.] is the matrix of instrumental variables. [image: The image displays the mathematical expression for a change in strain, represented by a delta symbol followed by the lowercase Greek letter epsilon and a subscript "i."] is the first-order difference of [image: Please upload the image or provide a URL so I can generate the alternate text for you.].
4.2.3 Control variables
In order to avoid the problem of omitted variables causing the estimated coefficients to be unreliable, this paper adds firm characteristics control variables, financial characteristics control variables, and governance structure control variables. First, firm characteristics are control variables. First, the firm characteristics control variables. Among them, firm size is measured by the logarithm of the number of employees in the firm. Second, financial characteristics are control variables. Among them, capital structure (Lev) is expressed as the ratio of total liabilities to total assets; fixed asset ratio (Fix) is expressed as the ratio of net fixed assets to total assets; profitability (ROA) is quantified as the ratio of after-tax profit to net assets; and cash flow (Cash) is expressed as the after-tax cash flow that can be distributed to all investors after the company pays for all the operating expenses and makes the necessary investments in fixed assets and operating assets. Cash is represented by the after-tax cash flow that the firm can distribute to all investors after paying all operating expenses and making necessary investments in fixed and operating assets. Third, governance structure control variables. Dual is a dummy variable that is one if the chairman of the board and the CEO are combined, and zero if they are not. The descriptive statistics of the main variables are shown in Table 2.
TABLE 2 | Descriptive statistics of the main variables.
[image: Table displaying statistical data for various variables across several columns: Variable, N (number of observations), Mean, Standard Deviation (SD), Minimum, 50th percentile (p50), and Maximum. Variables include TFP, CCUS, Size, Cash, Fix, ROE, Iev, and Dual. Each variable has 32,900 observations with specific values for mean, standard deviation, minimum, median, and maximum. Values vary, for instance, TFP shows a mean of 5.533 and max of 10.36, while CCUS has a mean of 0.00420 and max of 3.970.]4.3 Model setting
In order to test the impact and mechanism of CCUS on the economic growth performance of enterprises, this paper constructs the following regression model (Equation 7):
[image: Equation showing total factor productivity \( TFP \) for entity \( i \) at time \( t \), represented as \( TFP_{it} = \beta_{1} CCUS_{it} + \beta_{2} X_{it} + \lambda_{t} + \mu_{i} + \epsilon_{it} \).]
In this paper, the explanatory variable is the firm’s TFP, the core explanatory variable is the degree of CCUS development (CCUS), and the Controls are the control variables described earlier. In addition, the model controls for individual (ID) and year (Year). The paper focuses on the coefficients of the variables, if [image: Please upload the image or provide a URL for me to generate the alternate text.]> 0, imply that CCUS contributes to firms’ TFP growth, while the opposite is true for CCUS, which is detrimental to firms’ TFP growth.
5 EMPIRICAL RESULTS AND ANALYSIS
5.1 CCUS and corporate TFP: Basic results
The following article examines the specific impact of the CCUS level on firms’ TFP. Estimates are first based on model (1), and Table 3 reports the results of the regressions of CCUS levels on firms’ TFP. All regression analyses control for individual and year-fixed effects and use firm-level clustering standard errors.
TABLE 3 | Benchmark regression results.
[image: Table displaying regression results for four models analyzing the impact of various variables on TFP. Variables include CCUS, Size, Cash, Fix, ROE, Lev, Dual, and Constant. Each cell shows coefficients with standard errors in parentheses. Statistical significance is denoted by asterisks: one for p < 0.1, two for p < 0.05, and three for p < 0.01. The models include time and ID fixed effects, with 32,000 observations each. Adjusted R-squared values range from 0.823 to 0.857.]As shown in column (1) of Table 3, the regression coefficients for CCUS are significantly positive, indicating that CCUS can significantly increase firm output. Column (2) further shows that the regression coefficient of CCUS is 0.087, which is significant at the 5% level after adding the firm characteristics control variable, i.e., CCUS makes firms’ TFP increase by 8.7% on average. Column (3) shows that the regression coefficient of CCUS after adding the control variables of firm characteristics and financial characteristics simultaneously is 0.074, which is significant at the 5% level, i.e., CCUS makes firms’ TFP increase by 7.4% on average. 7.4% increase in TFP is substantial for heavy industries compared to the average annual TFP growth rate of 1.2–1.8 per cent for manufacturing in Syverson (2011). Column (4) further shows that the regression result is still significant after adding a series of control variables such as firm, financial, and governance characteristics. This verifies research hypothesis 1 that the level of CCUS has a significant positive contribution to firms’ TFP.
Firstly, the control variables’ coefficients of enterprise size are all significantly positive, indicating that large-scale enterprises have higher TFP because CCUS is a high-risk and high-investment activity, and large-scale enterprises are more capable of carrying out CCUS. Secondly, the coefficients of return on equity (ROE), gearing ratio (Lev), and cash flow (Cash) are all significantly positive in the regression of TFP, indicating that firms with good efficiency, high debt ratio, and high cash flow have higher TFP. The coefficient of fixed assets (Fix) is significantly negative in the regression of TFP, which indicates that too many fixed assets in the previous period crowd out the CCUS program and adversely affect the TFP of enterprises. The coefficient of Dual is significantly negative. Looking into the reasons for this, the enterprise will tend to protect the interests of major shareholders or management, and managers may refuse to touch their interests when deciding to carry out CCUS projects hastily.
5.2 Robustness test
5.2.1 Endogenous control
The previous analysis suggests that CCUS contributes to firms’ TFP. However, this effect may be disturbed by endogeneity issues such as omitted variables, measurement error, and reverse causation, and is not robust. Regarding the omitted variable problem, this paper adds a series of control variables in the baseline regression and controls for industry time fixed effects and firm fixed effects in the robustness test section, which mitigates the omitted variable problem to a certain extent. Regarding the measurement error problem, the article mainly utilizes the replacement of explanatory and interpreted variables to confirm the robustness of the article’s findings. Regarding the reverse causation issue, there is an endogeneity problem of reverse causation as firms increase their TFP, thus making them more capable of investing in the CCUS program. This may interfere with the results of the benchmark regression in this paper, making the estimation results biased.
In this regard, this paper eliminates this doubt by constructing instrumental variables using the number of colleges and universities in the region where the listed companies are located (Huang et al., 2022; Zhang and Ha, 2024) and the interaction term of the instrumental variable constructed by the industry to which the firm belongs, respectively. Regarding the relevance of the instrumental variables, the higher number of colleges and universities implies that college graduates constitute an important talent pool for enterprises to provide talent support for CCUS technology. The eight key emitting industries to which the enterprises belong indicate that the enterprises have more incentives to develop CCUS to reduce carbon emissions under the pressure of environmental regulations. Regarding the exogenous requirements of instrumental variables, the number of colleges and universities with a lag of four periods has no noticeable impact on the TFP of enterprises, and the industries to which enterprises belong also have no apparent impact on the TFP of enterprises.
While it is theoretically possible for educational intensity to have an impact on firm TFP through these channels, in the particular context of this study, the effect is relatively small and manageable. Firstly, it is true that the quality of a firm’s employees is closely related to TFP from a labor quality perspective. However, we need to be clear that the application and diffusion of CCUS technology is somewhat specific in terms of its requirements for labor quality. The key industries involved in CCUS, such as oil and gas extraction and the chemical industry, have more prominent requirements for professional skills and experience, and the increase in education levels reflected in college density mainly improves the overall quality of the labor force at the macro level. However, it is difficult to directly and precisely act on the specific skilled workforce needed in these key industries. When recruiting, enterprises pay more attention to the professional background and practical skills of their employees, and these factors are relatively weakly correlated with college density. Thus, regarding the culture of innovation, the impact of improved quality of the local labor force on TFP is somewhat weakened here. Increased college density may create a cultural atmosphere conducive to innovation, incentivizing firms to innovate and boosting TFP. However, we also note that forming an innovation culture is a long-term and complex process, which is affected by a combination of factors, including social culture and the policy environment. Regarding education density alone, its direct impact on firms’ innovation culture is relatively limited, and it is difficult to significantly change firms’ innovation behavior and TFP in the short term. In addition, in our research model, we have controlled for a series of variables that may affect firms’ innovation and TFP, such as firms’ R&D investment, scale, etc., which also reduces the interference of the potential confounders, namely, the innovation culture, to a certain extent. We choose college density as an instrumental variable mainly based on the following considerations: On the one hand, college density reflects, to some extent, the richness of regional educational resources and the ability to cultivate talents, which is correlated with the supply of CCUS technology talents. The development of key industries and the application of CCUS technology require a large number of professional technical and managerial talents, and regions with high college density tend to be able to provide a more adequate talent pool for these industries, thus promoting the application and promotion of CCUS technology in key industries, which in turn affects the total factor productivity of enterprises. On the other hand, the relationship between college density and firms’ TFP is not simply direct causality. However, it works indirectly through intermediate links, such as influencing the application of CCUS technology in key industries. This indirectness makes college density somewhat plausible as an instrumental variable that can satisfy the exclusionary restriction to a certain extent.
The results of the instrumental variable estimation are shown in Table 4, with IV as the instrumental variable. In the first-stage regression, the coefficients of instrumental variables are significant, and the F-values are all greater than 10. The results of the weak instrumental variables test also confirm the reasonableness of the instrumental variables selection, indicating that the instrumental variables satisfy the relevance conditions; in the second-stage regression, the impact of CCUS on the enterprise’s TFP is still significant and positive, which indicates that after eliminating endogeneity problems, CCUS can still significantly improve the enterprise’s TFP. This also confirms the robustness of the previous conclusion.
TABLE 4 | Test results based on instrumental variables.
[image: A table comparing two columns labeled CCUS and TFP. Each column has specific entries: IV is 0.002 with a significance of 0.01 in CCUS, while CCUS_IV is 47.069 with a significance of 0.01 in TFP. Control, time, city, and industry variables are marked as "YES" across both columns. Both have 15,196 observations. Adjusted R-squared is negative in TFP and First Stage F-values are 27.658 for CCUS and 389.670 for TFP. Significance levels are noted at the bottom.]5.2.2 Substitution of explanatory variables retest
First, the explanatory variable is replaced with the number of occurrences of CCUS-related word frequencies in corporate annual reports. The corporate annual report summarizes the enterprise’s previous year’s work. In this paper, the cumulative number of CCUS-related word frequencies (CCUS2) is used as the explanatory variable for the robustness test (see columns (1)–(2) of Table 5). Second, to further reflect the differences in effectiveness among CCUS texts, this paper generates CCUS with a 1-period lag (CCUS_L) as an explanatory variable for re-estimation, as shown in columns (3)–(4) of Table 5. Overall, the findings are more robust with the inclusion of control variables.
TABLE 5 | Estimation results with replacement of explanatory variables.
[image: A table showing regression results for TFP with four models. CCUS2 has coefficients 0.087 and 0.088 with standard errors 0.0572 and 0.0467. CCUS_L has coefficients 0.107 and 0.105 with standard errors 0.0715 and 0.0638. Control variables are included in models (2) and (4). Time Fixed and ID Fixed are consistent across all models. N is approximately thirty-two thousand in models (1) and (2). Adjusted R-squared values range from 0.823 to 0.862. Significance levels are indicated as *p < 0.1, **p < 0.05, ***p < 0.01.]5.2.3 Substitution of dependent variables retest
In order to test the sensitivity of the benchmark regression results of this paper to the calculation method of firms’ TFP, referring to Huang et al. (2023), this paper recalculates firms’ TFP by using OP and LP to replace the dependent variable indicators. Table 6 of the regression results shows that after adding the control variables, the CCUS level of column (2) is significant at the 1% level for the TFP of the LP method. The CCUS level of column (4) is significant at the 5% level for the TFP of the OP method, which confirms that the previous findings are robust and credible.
TABLE 6 | Estimation results with replacement of explanatory variables.
[image: Table displaying regression analysis results for four models. The dependent variable is labeled CCUS with coefficients: 0.069, 0.087, 0.071, and 0.081. Control variables included in models two and four. Time and ID fixed effects are present in all models. Sample size (N) is 32,000 for each model, with adjusted R-squared values of 0.866, 0.909, 0.839, and 0.876. Significance levels indicated as *p < 0.1, **p < 0.05, ***p < 0.01. Robust standard errors are in parentheses and clustered at the corporate level.]5.2.4 The DID model to test
We add the DID model to test the CCUS’s robustness in this paper. In 2020, the People’s Bank of China, the National Development and Reform Commission, and the China Securities Regulatory Commission jointly issued “Green Bond Support Catalogue (2020 Edition)” (Draft), which explicitly proposes to include CCUS in the support catalogue. This paper uses this as a quasi-likelihood test, and includes listed companies that disclose CCUS-related topics in their annual reports into the experimental group, setting treat = 1 and 0 otherwise; 2020 and beyond are included in the pilot time, setting post = 1 and 0 otherwise, so as to construct the following DID model (Equation 8):
[image: Equation depicting a linear regression model: \( TFP_{it} = \beta_0 + \beta_1 \text{treat}_i \times \text{post}_t + \beta_2 X_{it} + \gamma_i + \lambda_t + \epsilon_{it} \).]
where Y is the explanatory variable for TFP; treat represents a dummy variable for whether or not it is a pilot individual, with 1 for pilot individuals and 0 for non-pilots; post is a dummy variable for before and after the implementation of the green bond support catalogue policy, with zero before the policy is implemented and one after; the cross-multiplier term is the core explanatory variable that this paper focuses on, and the estimated coefficients of which are the causality that this paper attempts to identify; X is the group of control variables; γ is an individual fixed effect; λ is a time fixed effect; and is the random error term.
From the results in Table 7, column (1) of the figure below shows that CCUS can significantly increase firms’ TFP. Column (2) of the study’s findings remains robust with the addition of control variables.
TABLE 7 | DID test results.
[image: Table comparing variables across two models. For DID, model (1) has 0.062 with p<0.01, and model (2) has 0.046 with p<0.05. Model (1) excludes control variables, while model (2) includes them. Both models use time and ID fixed effects. Constants are 5.533 and 2.600, respectively, with p<0.01 for both. Sample size (N) in both models is 32,000, with adjusted R-squared values of 0.823 and 0.857, respectively. Standard errors are in parentheses and are clustered at the corporate level.]In the DID model test, a series of control variables, such as firm size, firm age, degree of market competition, and the number of environmental penalties imposed on firms, are added to the model to exclude other potential factors from interfering with the results, and to ensure that the relationship between the instrumental variables and the total factor productivity of firms is more robust and reliable.
5.2.5 Construction of dynamic panel data models
In order to eliminate the endogeneity bias that may arise from the static panel data model, this paper introduces the lagged term of the explanatory variable firm TFP on the basis of the basic regression model and constructs a dynamic panel data model for robustness testing. The details are as follows Equation 9:
[image: Equation depicting a Total Factor Productivity (TFP) model for sector \( j \) at time \( t \). It includes coefficients \(\beta_0\), \(\beta_1\), and terms involving TFP lagged by one period, carbon capture and utilization (\(CCUS\)), variable sets \(X\) and \(W\), along with error term \(\epsilon\).]
where [image: It seems there was an issue with uploading the image. Could you please try uploading the image again or provide more details?] is the coefficient of the lag term, which indicates the speed of convergence to equilibrium, and has a value between 0 and 1 for the dynamic panel data model. In this paper, both differential GMM and system GMM are used for regression to ensure the accuracy and reliability of the regression results.
It is easy to see from Table 8 that the regression coefficients of the lagged terms of enterprise TFP are all significantly positive, indicating that enterprise TFP exhibits obvious inertia characteristics, and also implying that the regression using the dynamic panel data model is reasonable. In addition, the autocorrelation test results show that the P values of AR (1) statistics are all 0, rejecting the null hypothesis, indicating that there is a first-order serial correlation in the perturbation term; the P values of AR (2) statistics are all greater than 0.1, accepting the null hypothesis, implying that the perturbation term does not have a second-order serial correlation. The results of the validity test of instrumental variables show that the P-values of Sargan test are all 0, indicating that the selection of instrumental variables is valid. Therefore, it can be determined that the model setting of this paper is appropriate and its regression results are reliable and valid. In terms of the regression coefficients of the variables, the regression coefficients of CCUS are all still significantly positive, implying that CCUS leads to an increase in corporate TFP, which indicates that the adoption of the dynamic panel data model does not change the core conclusions, and preliminarily shows that the findings of this paper are robust.
TABLE 8 | Dynamic panel data model.
[image: A table displays regression results for different models labeled ab_0, ab_lag1, ab_lag2, and ab_endog. Key variables are L.TFP, L2.TFP, CCUS, L.CCUS, and L2.CCUS. Coefficient values are provided alongside standard errors in parentheses. Significant coefficients are marked with asterisks for levels of significance. The AR(1)-P, AR(2)-P, and Sargan-P values are provided, with zeros for AR(1) and Sargan tests, and varying values for AR(2). Sample size (N) is consistently around 26,000 except for one at 23,000.]6 FURTHER ANALYSIS
6.1 Impact mechanism analysis
6.1.1 Changes in the external environment of enterprises
The previous analysis found that CCUS technology has a significant positive impact on the TFP of enterprises, and the question arises as to how this impact is realized. Based on the previous theoretical analysis, the article first focuses on analyzing the impact of CCUS on the TFP of enterprises from the channels of government subsidies and commercial bank credit support.
Regarding the specific empirical design, this article refers to the existing study of Yang et al. (2015), where government subsidies are measured as government direct subsidies (Subsidy), carried out through logarithmic treatment. Referring to existing studies such as Lu and Yang (2011) and Guo and Fang (2022), credit support is measured by the sum of short-term borrowing and long-term borrowing of firms as a proportion of total assets at the end of the period (Loan). This paper develops a mechanism test based on this. From the basic regression results after adding control variables, first, the CCUS technique does not significantly affect the amount of government subsidies to firms (see column (2) of Table 9). The possible reason for this is that the number of CCUS supported by government subsidies is limited, and most firms may not be able to achieve their TFP improvement through government subsidies. Second, the variable CCUS positively affects commercial bank credit support (see column (4) of Table 9), indicating that firms’ CCUS technologies help firms obtain loans from commercial banks, promoting firms’ TFP.
TABLE 9 | CCUS and changes in the firm’s external environment.
[image: A table displays regression results with columns labeled as Subsidy (1, 2) and Loan (3, 4). The variable CCUS shows coefficients of -0.085, -0.043, 12.456, and 92.564, with standard errors in parentheses. Control Variables are applied in models (2) and (4). Time Fixed and ID Fixed are consistently marked as yes. The sample size (N) is 2.9e+04 for Subsidy and 1.6e+04 for Loan. Adjusted R-squared values are 0.701, 0.732, 0.690, and 0.803. Significance levels are indicated by asterisks. Robust standard errors are clustered at the corporate level.]6.1.2 Intra-enterprise capacity-building
CCUS technology, as a representative of scientific and technological innovation, has become an important force in building the internal capabilities of enterprises and plays a pivotal role in the TFP of enterprises. Yin and Yu (2018) argued from the patent perspective that China already possesses the main elements needed to build a patent pool of CCUS technology. That patent flow significantly improves enterprises’ TFP (Wu and Yin, 2021). Huang et al. (2023) argued that the number of patent applications is a common indicator to characterize the level of R&D and innovation of enterprises. Cai et al. (2019) use the number of patents granted to measure corporate innovation. Therefore, this paper explores whether CCUS technology can enhance the TFP of enterprises in terms of patent application and patent acquisition. Specifically, the number of patent applications (Patent Apply) is measured by using the total number of invention patent applications and the total number of utility model patent applications summed up and logarithm; the number of patent licenses (Patent License) is characterized by the sum of the total number of invention patent licenses and the total number of utility model patent licenses and logarithm.
The results in Table 10 find that CCUS significantly affects firms’ TFP. Columns (1) and (3) show that CCUS significantly increases firms’ TFP by 15.6 and 14.7 percentage points at the 5% level without the control variables, while columns (2) and (4) show that CCUS significantly increases firms’ TFP by 18% and 17.3% at the 1% level with the control variables.
TABLE 10 | CCUS and Intra-enterprise capacity-building.
[image: Table displaying regression analysis results on patent applications and licenses. Four columns show variable values: CCUS coefficients, control variables, time fixed, and ID fixed. The CCUS coefficients range from 0.147 to 0.180 with significance levels marked by asterisks. Control variables are specified as "NO" or "YES". Each model includes time and ID fixed effects. The sample size is 32,000, with adjusted R-squared values from 0.797 to 0.809. Standard errors are provided in parentheses and are clustered at the corporate level. Significance is denoted by asterisks, with one for 0.1, two for 0.05, and three for 0.01 significance levels.]6.1.3 The mechanism test
We add mediation tests to more clearly articulate the mechanism test. In this article, we measure the number of patent applications, patent licenses, and credit support (Loan) to examine the impact of CCUS on firms’ TFP in a more comprehensive way Equations 10, 11.
[image: Mathematical equation: \( \text{med}_{it} = \beta_0 + \beta_1 \text{CCUS}_{it} + \beta_2 X_{it} + \lambda_t + \mu_i + \epsilon_{it} \) labeled as equation (10).]
[image: The equation represents a regression model for Total Factor Productivity (TFP) with terms: \( \theta_0 \) as the intercept, \( \theta_1 CCUS_{it} \) for carbon capture technology, \( \theta_2 med_{it} \) for mediation effects, \( \theta_3 X_{it} \) for control variables, \( \lambda_t \) for time effects, \( \mu_i \) for individual effects, and \( \varepsilon_{it} \) as the error term. The equation is labeled as (11).]
where [image: Please upload the image or provide a URL so I can generate the alternate text for you.] representing the mediating variables, which are Patent Apply, Patent License, and Loan (short-term loans as a share of loans).
Columns (1) and (2) of the Table 11 below report the impact of CCUS on patent applications and the impact of patent applications on firms’ TFP, respectively. Columns (3) and (4) report the impact of CCUS on patent grants and the impact of patent grants on firms’ TFP, respectively. Columns (5) and (6) report the effect of CCUS on credit lending and the effect of credit lending on firms’ TFP, respectively.
TABLE 11 | Analysis of intermediation effects.
[image: Table displaying regression results. Headers include Patent Apply, TFP, Patent License, and Loan. Variables are CCUS, Patent Apply, Patent License, Loan, Control Variables, N, Adj-R², Bootstrap Test, and Mechanism Test. CCUS shows values like 0.180*** and 0.074**, indicating statistical significance in various columns. Control Variables are present, with N values like 3.2e+04. Adj-R² ranges from 0.580 to 0.878. Bootstrap Test notes significant results for β₁ and θ₂. Mechanism Test is significant in all models. Data includes standard errors in parentheses.]The regression results show that the core explanatory variables are all positive at least at the 10 percent significance level. This indicates that under the influence of CCUS, both internal patent innovation capability and external credit loans are enhanced to some extent. This paper further tests the effects of firms’ innovation ability and credit loans on firms’ TFP, and the corresponding regression results are listed in columns (2), (4), and (6) of the Table 11 below. This paper uses the Bootstrap method to conduct the relevant tests. The results show that patent applications, patent grants, and credit support have a certain degree of mediation effect.
6.2 Heterogeneity analysis
6.2.1 Enterprise size
In this paper, we follow the practice of Huang et al. (2023) to conduct sub-sample regressions by categorizing samples above the mean revenue value as large-scale firms, otherwise as small-scale firms. Compared with small-scale firms, CCUS is more favorable to large-scale firms in improving TFP (see columns (1)–(2) in Table 12). On the one hand, due to the factors of large initial investment and long investment period, large-scale enterprises have enough financial resources to support the development of CCUS, thus promoting the TFP of enterprises. On the other hand, it is difficult for small companies to carry out CCUS projects on their own due to a lack of capital and limited financing possibilities., and the long-term capital investment will also have a serious negative impact on the cash flow of small enterprises, so it is difficult to promote the TFP of enterprises.
TABLE 12 | Heterogeneous effects of CCUS on firms’ TFP.
[image: Table analyzing the effects of CCUS across different company structures. Columns include company size (Small, Big), ownership (Non-SOE, SOE, Other), and industry (Emitting sectors). The CCUS coefficient varies, with significant values indicated by asterisks. Control, time, and ID variables are consistent, with industry fixed only for columns five and six. Sample sizes (N) and adjusted R-squared values are noted for each scenario. Statistical significance levels are indicated below the table.]6.2.2 Enterprise attributes
In this paper, we divide the sub-sample of SOEs and non-SOEs according to the nature of ownership and conduct sub-sample regressions. Columns (3) to (4) of Table 12 show that CCUS significantly contributes to the TFP of SOEs compared to non-SOEs. The reason is that compared with non-SOEs, SOEs have taken on more functions and missions, focusing on public areas involving national security, the lifeblood of the national economy, and people’s livelihood, and forward-looking strategic emerging industries. CCUS, as an important tool of the country, is a responsibility incumbent upon SOEs. Therefore, state-owned enterprises will not only invest more financial resources in the development of CCUS but also obtain more financial support from banks and other parties, thus promoting the TFP of enterprises. SOEs secure low-cost capital through government-backed green loans. (2) SOEs internalize the risk by allowing them to amortize CCUS’s high capital expenditure over a longer period. Non-state-owned enterprises, especially private enterprises, are plagued by problems such as complex and expensive financing, and it is difficult for them to have enough cash flow to undertake CCUS independently, so they cannot improve the TFP of enterprises.
6.2.3 Industry attributes
With the continuous progress and development of CCUS technology, the technology is now widely used in power plants, cement and iron and steel industries, etc., to reduce carbon emissions. (Fan et al., 2018; Wei Y. M.et al., 2021; Guo et al., 2024). According to 11 January 2016, the Notice of the General Office of the National Development and Reform Commission on Effectively Doing the Key Work for the Launch of the National Carbon Emission Trading Market explicitly proposed eight key emission industries of electric power, iron and steel, nonferrous metals, petrochemicals, chemical industry, building materials, papermaking, and aviation, and therefore assigned the value of the eight key emission industries as one and the value of the other industries as 0, and carried out a split-sample regression.
Columns (5) to (6) of Table 12 show that CCUS in the eight priority emitting industries can significantly increase the TFP of enterprises compared with that in the non-focused industries. The possible explanation for this is that the eight key emitting industries are more willing to carry out CCUS, thus reducing regulatory pressure, stimulating endogenous motivation, obtaining support for green transformation, utilizing the Porter effect, and increasing the TFP of enterprises.
7 DISCUSSING
CCUS landscape in China offers valuable insights for global stakeholders seeking to balance industrial decarbonization with economic viability.
Policy integration serves as a cornerstone. China proposes to integrate CCUS into the national voluntary emission reduction (CCER) mechanism which demonstrates how carbon markets can incentivize CCUS deployment through tradable credits, thereby lowering compliance costs for industries while ensuring economic feasibility. This approach aligns with international practices like the U.S. 45Q tax credit but adds a localized emphasis on unified market design and methodologically rigorous carbon accounting standards.
Scaling through hybrid models—such as combining CO2-enhanced oil recovery (EOR) with geological storage—has been pivotal. Projects like Sinopec’s 1-million-tonne CCUS demonstration in Shengli and industrial-scale CO2-EOR operations in Jilin oilfield highlight how integrating CCUS with energy production can generate dual revenue streams (oil output and carbon credits), a model adaptable to resource-rich economies.
Cross-sector collaboration exemplified by partnerships such as Shell-Sinopec-BASF’s open-access CCUS hub in East China underscores the importance of multi-stakeholder frameworks. By pooling emissions from diverse industries (e.g., petrochemicals, steel) into shared transport and storage infrastructure, China addresses economies of scale challenges—a lesson critical for industrial clusters in the EU or Southeast Asia.
China focuses on cost-reduction pathways through technological innovation in low-energy capture systems and modular infrastructure, which provides a blueprint for emerging economies. For instance, State Energy Group’s Taizhou plant achieved globally competitive costs through optimized energy recovery and localized equipment design.
The geological utilization strategy in China, leveraging saline aquifers and depleted oil fields, offers replicable insights for countries with similar subsurface profiles. The proactive assessment of 2.4 trillion tones of theoretical storage capacity underscores the need for early geological surveys to de-risk projects. While challenges persist (e.g., regulatory fragmentation), China’s iterative policy experimentation and emphasis on “dual carbon” alignment provide an adaptable template for both developed and developing nations.
8 CONCLUSIONS AND IMPLICATIONS
CCUS is a key technology China must adopt to achieve the “dual carbon” goal, and enterprises are implementing CCUS projects to improve TFP. However, it remains unclear whether it helps enterprises improve TFP. In this regard, this article quantitatively evaluates the impact of CCUS on the TFP of enterprises based on the text on CCUS in the annual reports of listed companies. It is found that the CCUS has a significant and positive impact on the TFP of the enterprises. The conclusion still holds after considering issues such as endogeneity. Mechanism analysis finds that CCUS improves the external environment of enterprises, enhances the ability to obtain bank loans, and at the same time improves the innovation ability of enterprises, which in turn helps to promote the TFP of enterprises. Heterogeneity analysis finds that the positive impact of CCUS on firms’ TFP is more prominent in large-scale firms, state-owned enterprises, and eight key emitting industries than in small-scale firms, non-state-owned enterprises, and other industries.
The findings of this paper may provide useful policy insights for advancing the CCUS project.
Implement financial incentives. First, explore the incorporation of CCUS into the carbon financial trading market, and make full use of the national Certified Voluntary Emission Reduction (CCER) accounting methodology and monitoring methodology to incentivize enterprises to actively implement the CCUS project. Second, policy incentives should be provided to enterprises deploying CCUS by reducing or exempting special revenue payments for oil extraction and providing policy incentives to enterprises deploying CCUS. Third, the scope of green credit should be expanded, and more projects involving CCUS in bank loans should be included. Fourth, facilitate the issuance of CCUS green loans for enterprises and reduce their financing costs.
Encourage the integration of small and medium-sized enterprises. Encourage social capital to actively set up venture capital funds to provide financial support for SMEs and lower the threshold of access to CCUS. Leading enterprises should actively implement industrial transformation and upgrading, extend the upstream and downstream of the industrial chain, and drive SMEs to integrate into the industrial chain supply chain.
Guide enterprises to accelerate technological innovation. The government should provide factor protection for technological innovation in CCUS, including resources such as land, resources, and talents, guide enterprises to strengthen technological cooperation among industries, universities, and research institutes, and support cross-sectoral cooperation in science and technology innovation. CCUS enterprises should increase investment in R&D, set up internal R&D organizations, and cultivate and attract innovative talents to improve their independent innovation capability. Enterprises should implement the CCUS science and technology innovation tolerance mechanism, create an innovative atmosphere of courageous innovation and tolerance of failure, maximize the liberation and stimulate the great potential of the main body of scientific and technological innovation, and enhance the total factor productivity of enterprises.
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With the advancement of sustainable development goals, digital technological innovation has emerged as a critical pathway for mitigating urban carbon emission intensity. Using balanced panel data from 282 Chinese cities spanning 2012-2019, this study employs fixed-effect models and mediating effect analysi to investigate the nonlinear impact of digital technology innovation on urban carbon intensity. The findings reveal the following. (1) There exists an inverted U-shaped relationship between digital technological innovation and carbon intensity. (2) A nonlinear mediation mechanism is identified, whereby digital technological innovation influences carbon intensity through its effects on energy intensity and governmental environmental attention. (3) Substantive digital technological innovation reaches the turning point more rapidly. (4) The inverted U-shaped relationship holds exclusively for non-key environmental protection cities, while it is not evident in key environmental protection cities. (5) This relationship is consistently observed across both Broadband China pilot cities and non-pilot cities, suggesting that the findings are robust and applicable to different types of cities. These findings not only deepen our understanding of the complex interplay between digital technological innovation and carbon intensity but also provide valuable theoretical insights and practical guidance for achieving sustainable development objectives.
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1 INTRODUCTION
China’s rapid economic growth has spurred remarkable economic expansion, yet it has also given rise to substantial carbon emissions (Chang et al., 2023; Peng et al., 2023; Du et al., 2025; Xu et al., 2024). Particularly, the extensive use of fossil fuels has contributed to environmental pollution and greenhouse gas emissions (Zhu et al., 2025; Cheng et al., 2018; Kang et al., 2015; Wang et al., 2020). Moreover, inefficiencies in energy usage and san over-reliance on heavy industries in the economic structure have made it difficult to effectively control carbon emissions in the short term (Cui et al., 2022; Lu et al., 2023; Wang et al., 2022). In response to the critical challenge of carbon emissions, the Chinese government has set forth the “dual carbon” objectives (Bai et al., 2023; Ke et al., 2023; Tang et al., 2023; Jiang et al., 2024). These goals represent not only China’s commitment to addressing global climate change, but also a crucial lever for driving the green economic transformation. Balancing economic growth while effectively reducing carbon intensity has become a major issue for China’s development (Liu et al., 2021; Yan et al., 2022). In this context, the application of digital technologies has emerged as an essential means to enhance energy efficiency and facilitate the green transition (Pu et al., 2024; Yi et al., 2024). However, the implementation of digital transformation requires not only addressing the tension between technological innovation and environmental protection, but also carefully considering how effective policies can guide the transition toward genuine low-carbon and sustainable development (Li and Yue, 2024; Tang et al., 2024).
In recent years, digital technological innovation has garnered widespread attention globally and become one of the core drivers of high-quality economic development (Lu and Li, 2024; Yang et al., 2025). As a key player in the global digital economy, China has actively implemented a digital transformation strategy, gradually establishing a digital technology ecosystem characterized by big data, cloud computing, and artificial intelligence (Chen and Lu, 2024). These technologies have not only been extensively applied in industries such as manufacturing, finance, transportation, and healthcare, but have also fundamentally transformed production processes and lifestyles (Zhao et al., 2024). The Chinese government has prioritized digital transformation as a national development strategy, particularly within the “14th Five-Year Plan” and the 2035 Vision, explicitly advocating for the acceleration of digital economy development and the construction of a “Digital China.” However, the rapid development of digital technologies has also brought forth new challenges, including issues such as the digital divide, information security, and privacy protection, which remain pressing concerns (Chen and Li, 2024; Zhu et al., 2024). Nevertheless, digital technologies, as the driving force behind the economic and social transformation, are providing significant momentum for China’s economic restructuring, industrial upgrading, and green development (Yang et al., 2025). As technologies such as 5G and artificial intelligence continue to mature, the digital economy is expected to play an increasingly critical role in the transition to a low-carbon economy, particularly in optimizing energy management and improving energy utilization efficiency (Gupta and Dey, 2024; Wang and Yang, 2024a).
Digital technological innovation holds significant potential in advancing the development of low-carbon economy. However, it also presents a “double-edged sword” (Xu et al., 2024). On one hand, the widespread application of digital technologies can effectively reduce carbon emissions by enhancing energy efficiency and minimizing resource waste. Technologies such as smart grids and big data enable intelligent energy dispatch and precise management, thus preventing overconsumption and waste of energy (Shen et al., 2024). For instance, cloud computing and artificial intelligence can optimize production processes, increase efficiency, and reduce high-carbon emission production stages, leading to a greener and more sustainable production model. Through digital management, firms can monitor emission sources in real-time and promptly implement corrective measures, further lowering their carbon footprint.
Furthermore, digital technological innovation may induce a “rebound effect”. In the short term, cost savings and efficiency improvements driven by digital technologies could stimulate increased energy consumption, potentially exacerbating carbon emissions. As production efficiency improves, firms may experience higher output, leading to an expansion in production scale and the creation of new market demands, which can, in turn, raise energy consumption (Hanelt et al., 2021). For example, emerging industries such as electric vehicles and shared mobility-enabled by digital technologies-may reduce carbon emissions from traditional combustion engines but could also increase electricity demand on a large scale (Lyytinen, 2022; Trocin et al., 2021). In particular, in China, where electricity generation is still heavily reliant on fossil fuels, this surge in demand may contribute to a rebound in carbon emissions (Liu Y. et al., 2023). Furthermore, the proliferation and widespread use of digital technologies may spur the expansion of data centers and server infrastructure, which, by themselves, represent a significant energy consumption concern. Thus, while digital technology innovation holds immense promise in fostering a low-carbon economy, it also introduces challenges that cannot be overlooked.
There are three possible innovations. First, while substantial research has explored the relationship between technological innovation and environmental outcomes, much of the existing work has focused primarily on how green technologies can reduce emissions by improving energy efficiency and minimizing resource waste. In contrast to traditional studies that focus on linear relationships (e.g., Zor, 2023; Chang et al., 2023), this paper is the first to reveal an inverted U-shaped nonlinear relationship between digital technology innovation and carbon emission intensity. The theoretical framework is expanded through the analysis of a dual mediating mechanism (energy intensity and government environmental attention). However, there is a notable gap in the literature regarding digital technology innovation, particularly in terms of its specific impact on carbon intensity. By examining the effect of digital technology innovation on carbon intensity, our paper not only enriches the literature on technological innovation and environmental governance, but also provides a new theoretical framework and empirical support for the role of digital technologies in low-carbon development. Second, this study identifies an inverted-U relationship between digital technology innovation and carbon intensity. This finding provides new empirical evidence for the long-standing academic discussion on the “rebound effect,” suggesting that the environmental impacts of digital technology innovation may vary substantially across different stages of development. Thus, this paper deepens our understanding of the complex role of digital technologies in the low-carbon economic transition and offers a fresh perspective for further academic exploration of sustainable development pathways driven by technological innovation. Finally, this paper demonstrates that digital technology innovation can indirectly influence urban carbon intensity through the government’s focus on environmental protection. This finding highlights the crucial role of digital technologies in enhancing environmental governance and policy responsiveness, thereby further enriching the theoretical understanding of how digital technology innovation contributes to carbon emission reductions. In sum, this study expands the boundaries of research on digital technology innovation and provides a scientific foundation for developing policy frameworks that promote the synergistic development of digitization and decarbonization.
The structure of the paper is as follows: the second section reviews the literature and puts forward research hypotheses, the third section includes sample selection, identification of variables and model specification, the fourth section presents empirical results and mechanism analysis, the fifth section discusses heterogeneous characteristics and policy implications, and the final section concludes the study with discussions on heterogeneous characteristics, policy implications and future research directions.
2 LITERATURE REVIEW AND RESEARCH HYPOTHESIS
2.1 Literature review
2.1.1 Research related to digital technology innovation
Digital technology innovation is widely regarded as a key driver of economic development and social progress, primarily by leveraging advanced information technologies to optimize resource allocation and enhance production efficiency (Tortora et al., 2021). From a theoretical perspective, digital technology innovation spans several interdisciplinary fields, including technological innovation theory, information economics, and organizational change. Schumpeter’s innovation theory provides a foundational framework for understanding digital innovation, particularly its emphasis on the “reorganization of production factors”. In the digital era, this reorganizational power is exemplified by artificial intelligence-driven energy management systems, which restructure industrial processes through real-time data analysis and intelligent scheduling. For instance, smart grids enabled by digital technologies can optimize energy distribution across factories, reducing redundant consumption and lowering carbon emission intensity by reorganizing energy utilization patterns. Such applications demonstrate how digital technologies translate Schumpeter’s theoretical insights into practical reductions in environmental impact.
In recent years, with the rapid development of emerging technologies such as artificial intelligence, blockchain, the scope of digital technology innovation has expanded beyond technological breakthroughs to include transformations in business models and governance structures (Firk et al., 2022). During the digital transformation process, profound changes have occurred in the interactions between enterprises, governments, and consumers, culminating in a new economic system centered around data as a core resource. Additionally, research on digital technology innovation is increasingly focusing on its social and environmental impacts, including its effects on labor markets, income distribution, and sustainable development (Huang et al., 2023b). However, there remains a lack of consensus in the academic community regarding a unified definition of digital technology innovation, particularly in distinguishing it from traditional technological innovation. As such, future research should seek to develop a more universally applicable theoretical framework by incorporating diverse technological application scenarios.
The realization of digital technology innovation is influenced by a range of factors, with three core drivers being technological supply, market demand, and institutional environment. In terms of technological supply, research and development investment and a highly skilled talent pool are direct catalysts for digital technology innovation. In particular, the intensification of R&D in fields such as artificial intelligence has significantly enhanced technological innovation capabilities (Mariani and Nambisan, 2021). Market demand incentivizes firms to meet consumer needs for intelligent products and services, thereby driving technological upgrades (Li et al., 2024). Meanwhile, the institutional environment-such as intellectual property protection policies, government subsidies, and regulatory frameworks-provides both the security and incentives necessary for digital technology innovation. However, the innovation paths for digital technology vary across countries and regions. For instance, developed countries tend to focus on basic research and technological breakthroughs, while developing nations often rely more heavily on technology imports and localized innovation (Huang et al., 2023a). Furthermore, globalization and cross-border cooperation are increasingly important in the landscape of digital technology innovation, with cross-border data flows and international R&D collaborations emerging as dominant trends. Future research should further explore the differential driving factors of digital technology innovation in varying contexts, particularly in balancing technological sovereignty with international cooperation in the globalized landscape.
The influence of digital innovation on economic development has become a focal point of research, demonstrating significant potential in driving economic growth, optimizing resource allocation, and enhancing production efficiency (Goldfarb and Tucker, 2019). First, digital technologies reduce information asymmetry and transaction costs, creating more business opportunities for firms, thereby stimulating overall economic growth (Johnson et al., 2022). For example, the development of e-commerce and financial technology has facilitated the digital transformation of traditional industries, providing enterprises with new market access (Corvello et al., 2023). Second, digital innovation significantly enhances production and distribution efficiency through intelligent production processes and precise market analysis. Moreover, it generates new employment opportunities, although it also leads to the disappearance of certain traditional jobs. However, research has also shown that digital technology innovation may exacerbate income inequality, particularly when there is a mismatch between technology and labor skills. Furthermore, in some industries, the existence of technological barriers may reinforce market concentration. As a result, scholars advocate for a balanced approach to fostering digital technology innovation, emphasizing fairness and inclusivity to ensure that its economic benefits extend to a broader segment of society.
The environmental impact of digital technology innovation is dual-faceted, with the potential to both promote sustainable development and introduce new environmental challenges. Digital technologies have the potential to significantly promote sustainable development by enhancing energy efficiency and reducing resource waste. For example, smart grid technologies optimize energy distribution, while Internet of Things technologies enable real-time monitoring to reduce energy consumption in industrial production. On the other hand, the rapid advancement of digital technology innovation is accompanied by increased energy demand. This is particularly evident in the expansion of data centers and servers, which consume substantial amounts of electricity (Babilla, 2023). Furthermore, the widespread adoption of digital technologies may trigger a rebound effect. In this scenario, efficiency gains are offset by an overall increase in energy consumption, thereby undermining some of the emission reduction benefits (Cheng et al., 2023). As a result, there has been extensive academic discussion on the environmental effects of digital innovation, with proposed solutions including policy interventions to encourage the development of green technologies, optimizing the energy structure of data centers, and implementing more stringent environmental standards. However, research in this area remains in its early stages, and future studies will need to explore the multidimensional impacts of digital innovation on various environmental factors, providing a scientific foundation for achieving a synergistic development of technological advancement and environmental protection (Shojaei and Burgess, 2022).
2.1.2 Carbon intensity related studies
Carbon emission intensity is a key indicator for assessing the carbon efficiency of economic activities, typically defined as the amount of carbon emissions per unit of economic output (Aryai and Goldsworthy, 2024; Jiang et al., 2024; Liu et al., 2023). Carbon intensity is influenced by multiple factors, including economic conditions, technological advancements, energy structure, and policy interventions (Lee et al., 2022; Liu et al., 2021; Du et al., 2022). Among these factors, technological innovation is widely recognized as a primary driver for reducing carbon emission intensity, particularly in the contexts of clean energy technologies and industrial decarbonization (Porter and Linde, 1995). Moreover, optimizing the energy mix plays a critical role in influencing carbon emission intensity. For instance, the transition from fossil fuels to renewable energy sources has been shown to significantly contribute to reducing carbon emissions (Lin and Teng, 2024; Liu et al., 2022; Duan et al., 2025). However, research indicates that the effects of these factors exhibit significant heterogeneity across regions (Zhao et al., 2023). For instance, in high-income countries, technological innovation has a more pronounced impact on reducing carbon emission intensity, whereas in regions with abundant energy resources, adjustments to the energy structure tend to have a more substantial effect (Grossman and Krueger, 1995; Wu et al., 2021).
From a dynamic perspective, changes in carbon intensity not only reflect the level of economic development and technological advancements, but are also significantly influenced by policy interventions (Xu et al., 2023). For instance, carbon taxes and carbon trading mechanisms are widely regarded as essential policy tools for driving corporate emissions reductions. By increasing corporate costs and optimizing resource allocation, these policies can substantially lower carbon emission intensity (Ren et al., 2022; Zhang et al., 2023). However, in certain energy-intensive industries, the rebound effect may undermine the effectiveness of these policies in reducing emissions (Zhang et al., 2022). Furthermore, the implementation strength of policies and the adequacy of complementary measures directly impact their real-world efficacy (Ali et al., 2022). In developing countries, for example, the effectiveness of policy implementation is often constrained by fluctuations in energy prices, government regulatory capacity, and public participation (Wu et al., 2024; Yan et al., 2022).
Recently, digital technology innovation has become a significant driver in reducing carbon emission intensity, profoundly impacting carbon emissions through optimized energy management, enhanced production efficiency, and the promotion of green technology transitions (Lian et al., 2024). Technologies such as smart grids and artificial intelligence enable precise energy scheduling and real-time monitoring, effectively reducing resource waste and lowering the carbon intensity per unit of output. However, the widespread adoption of digital technologies may also give rise to certain negative effects. For instance, the rapid expansion of digital infrastructure-such as data centers and servers-could increase carbon emissions, potentially offsetting some of the gains from technological advancements (Zhang et al., 2024). Additionally, digital innovation may lead to a rebound effect, where improved efficiency triggers higher energy demand, resulting in increased carbon emissions in the short term (Sun et al., 2024). Consequently, the academic discourse surrounding the environmental impacts of digital technology innovation has become increasingly vigorous, with many scholars suggesting that its role in reducing carbon emission intensity may exhibit nonlinear characteristics.
Based on the above literature, this study proposes the following hypothesis regarding the nonlinear relationship between digital technology innovation and carbon intensity.
2.2 Basic hypothesis
The rapid development of digital technologies is often accompanied by significant infrastructure investments, which, in the short term, may lead to an increase in carbon intensity. For instance, the deployment of data centers, cloud computing platforms, and large-scale Internet of Things devices requires substantial energy and resources to maintain their operations, with much of the energy consumption typically sourced from traditional fossil fuels, thereby contributing to higher carbon emissions (Wang et al., 2024b). This nonlinear pattern aligns with the Environmental Kuznets Curve (EKC) theory proposed by Grossman and Krueger (1995), which posits an inverted U-shaped relationship between economic growth and environmental degradation. Analogously, digital technology innovation exhibits a “rebound effect” in its early stages (similar to EKC’s pollution increase phase), where infrastructure expansion and productivity growth driven by digitalization may transiently elevate carbon intensity. However, as digital technologies mature-characterized by widespread adoption of smart grids, big data analytics, and AI-driven efficiency tools-their energy-saving effects dominate, leading to a decline in carbon intensity (mirroring EKC’s pollution reduction phase) (Pu et al., 2024).
Furthermore, during the initial phase of digital technology adoption, a “rebound effect” may occur, wherein the resource savings and efficiency gains brought about by technological advancements stimulate increased productivity and consumption demand, thereby exacerbating carbon intensity. In this stage, although the application of digital technologies may improve energy efficiency in certain industries, the associated infrastructure development and rising market demand could keep carbon emission intensity at elevated levels or even cause it to rise (Du et al., 2024). This phenomenon aligns with the early pollution increase phase described by the Environmental Kuznets Curve (EKC) theory, suggesting that digital technologies, in their early stages, may have a negative impact on carbon emissions.
As digital technologies mature, their positive impact on carbon emissions increasingly becomes more pronounced, gradually outweighing their initial negative effects. With the widespread integration of information technologies-particularly advancements in big data, smart grids, and artificial intelligence-digital technologies have demonstrated significant potential in optimizing resource allocation and improving energy efficiency. These technologies enable precise data analysis, real-time energy management, and intelligent production processes, all of which serve to minimize energy waste and excessive consumption (Geng et al., 2024). For example, the deployment of smart homes, intelligent buildings, and the industrial internet allows for precise monitoring and adjustment of energy usage, thereby supporting energy conservation and carbon reduction goals. Unlike traditional technological innovations, which typically exhibit linear or gradual environmental impacts, digital technologies show more pronounced nonlinearity due to their inherent network effects and infrastructure dependencies. For example, the marginal environmental benefit of digital tools increases exponentially as more firms and industries adopt interconnected digital systems, creating synergistic reductions in energy intensity. This contrasts with incremental innovations in traditional sectors, which often yield diminishing returns in emission reduction efficiency over time. For example, as digital technological innovations continue to evolve, industry supply chains are progressively shifting toward low-carbon, green practices, providing a more robust foundation for the green applications of digital technologies (Xu et al., 2024). These factors enable digital technologies to increasingly contribute to emissions reduction in the later stages, resulting in a gradual decline in carbon intensity. Consequently, over the long term, digital technology innovations not only play a crucial role in reducing carbon emissions, but also drive the sustainable development of urban environments (Wu et al., 2022). So, we propose:
Hypothesis 1. There is an inverted “U” shaped relationship between digital technology innovation and urban carbon intensity.
3 STUDY DESIGN
3.1 Data source
In 2012, the construction of ecological civilization was officially elevated to the core of national governance. Moreover, considering that the outbreak of the COVID-19 pandemic in 2020 shifted governmental priorities significantly towards pandemic prevention and control, the study period is limited to 2012-2019. Digital patent applications are obtained from CNRDS database, while information on carbon emissions and energy consumption are sourced from China Urban Statistical Yearbook, China Energy Statistical Yearbook. Environmental attention is derived from government work reports. Additional urban features are sourced from EPS database. Finally, we construct a balanced panel dataset covering 282 cities in China.
3.2 Variable metrics
3.2.1 Dependent variable
Urban carbon intensity (Ci). Urban carbon emissions primarily stem from two sources: direct emissions caused by the consumption of energy forms such as liquefied petroleum gas and coal, and indirect emissions linked to energy usage, including electricity and heat (Lv et al., 2024). Adopting the method proposed by Wu and Guo (2016), annual carbon emissions are computed by multiplying the consumption of different energy sources within cities by their corresponding carbon emission factors and aggregating the values. For indirect emissions from electricity consumption, the national average carbon emission factor for grid electricity (0.6101 kgCO2/kWh) was applied, as stipulated in the Provincial Greenhouse Gas Inventory Guidelines. The dependent variable is represented by the ratio of total urban carbon emissions to GDP. Therefore, the dependent variable is represented by the ratio of total urban carbon emissions to GDP.
3.2.2 Independent variable
Urban digital innovation (Digi). We employ the volume of urban digital economy patent applications as the core variable to measure the level of digital technological innovation at the city level. This indicator aims to capture both a city’s technological innovation capacity and its technological reserves within the digital economy domain. The number of digital economy patent applications reflects not only the intensity of investment in digital technology, but also the efficiency of innovation outputs, while simultaneously highlighting disparities in digital technological advancement across cities and its implications for regional competitiveness. As a core indicator of urban digital technology reserves, the number of digital economy patent applications correlates strongly with national policy orientations such as “Digital China”, reflecting both innovation investment and technological readiness in strategic fields like artificial intelligence and big data (Li and Yue, 2024). Moreover, this metric provides a direct measure of innovation activity in critical fields such as information technology, artificial intelligence, big data, and blockchain. As a key outcome of technological innovation, patent applications also serve as a proxy for a city’s ability to attract and support the digital economy’s industrial chain, revealing its overall strength in technology development, industrial agglomeration, and resource allocation. This study focuses on invention patents and utility model patents, as these categories most effectively capture technological innovation levels, thereby generating city-level data on digital economy patent applications.
3.2.3 Mechanism variables
Energy intensity (Ei). Drawing from references such as Chen et al. (2019) and Chen et al. (2022), this study employs “energy consumption/GDP” to measure energy intensity. Energy consumption is determined by converting the annual usage of electricity (measured in 10,000 kWh), liquefied petroleum gas (in tons), and natural gas (in 10,000 cubic meters) for each city into equivalent units of “10,000 tons of standard coal,” and then summing these values.
Government environmental attention (Er). When the government attaches great importance to environmental protection, the number of environment-related words in the government work report will increase accordingly, and the proportion will also increase (Chen et al., 2018). Similar to Chen et al. (2018), using the content analysis approach, we assess government attention to environmental issues by calculating the percentage of environmental terms to the total number of words in government work reports.
3.2.4 Control variables
Following the approach outlined by Zhang et al. (2023) and Zhang et al. (2020), we incorporate the following control variables into the model. Economic development level (Gdpr) is assessed using the city’s GDP growth rate. Foreign trade (Fore) is captured by the proportion of foreign direct investment to GDP. Educational expenditure (Edu) is proxied by the ratio of a city’s education investment relative to its GDP. Population density (Pode) is defined as the ratio of the total year-end population to the administrative area. Scientific expenditure (Scir) is represented by the share of a city’s scientific spending in its GDP. Industrial structure (Sec) is evaluated based on the share of the secondary sector’s value added in relation to GDP. Lastly, industrial sulfur dioxide emission intensity (So) is calculated as the proportion of industrial sulfur dioxide emissions to GDP.
3.3 Model setting
We designed the following model:
Ciit=α+β1Digiit+β2Digiit*Digiit+ΣλConit+μi+υt+εit(1)
in Formula 1, Ciit indicates carbon intensity of city i in time t; Digiit represents digital technology innovation; Conit denotes a string of urban features; fixed effects for city and year are captured by μi and νt, respectively; εit represents the error term, α represents the constant term; β1 and β2 are the coefficients.
To examine the validity of the energy efficiency pathway and the environmental attention pathway, following the approach outlined by Baron (2022), we construct the mediating effects model as described below:
Mechit=α+β1Digiit+β2Digiit*Digiit+ΣλConit+μi+υt+εit(2)
in Formula 2, Mechit is the mechanisms, Digiit represents digital technology innovation; Conit denotes a string of urban features; fixed effects for city and year are captured by μi and νt, respectively; εit represents the error term, α represents the constant term; β1 and β2 are the coefficients.
4 ANALYSIS OF RESULTS
4.1 Statistical analysis
As shown in Table 1. The average carbon intensity (Ci) exceeds its median, reflecting a generally right-skewed distribution. The mean and median of digital technology innovation (Digi) are nearly identical, coupled with a low standard deviation, indicating that digital technology innovation levels across cities exhibit an approximately normal distribution pattern.
TABLE 1 | Statistical analysis.	Variables	Definitions	Average	SD	Min	Median	Max
	Ci	Urban CO2 emissions/GDP	0.3759	0.3395	0.0453	0.2753	2.1794
	Digi	Natural logarithm of urban digital patent applications	5.7199	1.7998	1.9459	5.5626	10.3836
	Ei	Urban energy consumption/GDP	0.0925	0.0819	0.0104	0.0741	0.5471
	Er	Urban environmental attention as measured by government work reports	0.7497	0.2559	0.2700	0.7200	1.5600
	Gpdr	Growth rate of urban GDP	8.0548	3.4393	−19.3800	8.0500	23.9600
	Fore	Ratio of FDI to GDP	2.8817	5.0906	0.0141	1.3894	29.2113
	Edu	Ratio of education expenditure to GDP	0.0350	0.0170	0.0134	0.0305	0.1051
	Pode	Ratio of total population to regional administrative area at the end of the year	0.0431	0.0304	0.0019	0.0364	0.1358
	Sec	Value added of the secondary industry/GDP	46.2930	10.2681	19.7600	47.0650	71.4500
	So	Industrial sulphur dioxide emissions/GDP	0.0026	0.0036	0.0000	0.0014	0.0369
	N	2,256


4.2 The spatial and temporal evolution of digital technological innovation and carbon intensity
As shown in Figure 1, we examine the spatial distribution of digital technology for 2013, 2015, 2017, and 2019. Overall, cities with higher innovation capabilities were predominantly concentrated in the eastern provinces, particularly in the Yangtze River Delta region, during the period from 2013 to 2019. In contrast, cities with weaker innovation capabilities were primarily located in the southwestern, northwestern, and northeastern regions. This disparity can be attributed to the higher levels of openness, market dynamism, and a robust culture of innovation in the eastern regions, which have successfully attracted greater capital investment and corporate engagement in digital technology innovation. Conversely, the western and northeastern regions appear to have been constrained by relatively limited policy support and resource allocation, contributing to their lagging innovation capabilities.
[image: Four maps depict the geographical distribution of quintiles in China for the years 2013, 2015, 2017, and 2019. Each map shows regions categorized into five quintiles, represented by different colors: gray for the first, yellow for the second, green for the third, blue for the fourth, and red for the fifth. Notable changes in quintile distributions occur over the years, showing a gradual spread of red regions. The map includes a legend, scale, and compass rose for orientation.]FIGURE 1 | Spatial and temporal evolution of digital technological innovation. Note: The base map is from the National Center for Basic Geographic Information, review number is GS(2024) 0650, and the base map has not been modified. The same below.As shown in Figure 2, we examine the spatial distribution of Ci in 2013, 2015, 2017, and 2019. Overall, areas with higher carbon intensity are predominantly located in northern China, particularly in the Northeast, Northwest, and Beijing-Tianjin-Hebei regions. Northern regions, especially the Northwest and Northeast, possess abundant reserves of coal, oil, and natural gas, resulting in energy consumption that relies heavily on high-carbon fossil fuels and contributes to elevated emission intensity. Compared to southeastern coastal areas, northern cities have been slower to develop and adopt clean energy technologies, such as wind, solar, and nuclear power, which has further reinforced the dominance of fossil fuels and exacerbated their carbon emission intensity.
[image: Four maps of China from 2013, 2015, 2017, and 2019 show the distribution of data across regions using color-coded quartiles. The first quartile is light yellow, the second is yellow, the third is red, the fourth is purple, and the fifth is blue. Each map displays different distributions of colors, indicating regional changes over time. A north arrow and a scale bar in kilometers are included.]FIGURE 2 | Spatial and temporal evolution of carbon intensity.4.3 Benchmark result
The benchmark regression result is presented in Table 2. Column (1) reports the result without incorporating any urban features, where the coefficient of the independent variable Digi*Digi is significantly negative. Column (2) displays the results after including all control variables, showing that the coefficient of Digi*Digi and its significance remain largely unchanged. These findings indicate an inverted U-shaped relationship between digital technology innovation and carbon emission intensity, where innovation initially promotes but subsequently suppresses emission intensity. This result provides evidence of the rebound effect in the context of China, underscoring the critical role of digital technology innovation in driving low-carbon transitions and sustainable development. Furthermore, it supports Hypothesis 1, validating the proposed theoretical framework.
TABLE 2 | Baseline results.		(1)	(2)
	Digi	0.0828***	0.0824***
	(3.1130)	(3.1318)
	Digi*Digi	−0.0084***	−0.0077***
	(-4.1604)	(-3.9968)
	Control variables	No	Yes
	City_FE	Yes	Yes
	Year_FE	Yes	Yes
	_cons	0.2034*	0.1992
	(1.9005)	(1.4191)
	N	2,256	2,256
	R2_a	0.8882	0.8942


Note: T-values for city-level clustering are presented in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. The same below.
4.4 Robustness checks
First, as reported in column (1) of Table 3, we replace the independent variable with the number of authorized digital economy patents at the city level. Second, while numerous city-level control variables were included in the model, unobserved macro-level factors at the provincial level might still bias the findings. To address this issue, we adopted the method proposed by Yuan and Zhang (2015) by introducing province-year interaction fixed effects, which account for both time-varying and time-invariant provincial features. The result is shown in column (2). Third, we exclude four municipalities from the analysis to ensure more targeted results. The corresponding finding is presented in column (3). Finally, recognizing that a series of carbon reduction and environmental protection policies between 2012 and 2019 (e.g., the low-carbon city pilot programs), these policies could significantly influence carbon intensity. To control for their potential effects, we include these policies as control variables in the model. The result is reported in column (4).
TABLE 3 | The robustness tests for carbon emissions intensity.		(1)	(2)	(3)	(4)
	Digi	0.0610***	0.0936***	0.0814***	0.0822***
	(2.8033)	(2.6359)	(3.0481)	(3.0425)
	Digi*Digi	−0.0065***	−0.0067**	−0.0077***	−0.0075***
	(-3.4714)	(-2.4632)	(-3.9822)	(-3.8760)
	Control variables	Yes	Yes	Yes	Yes
	City_FE	Yes	Yes	Yes	Yes
	Year_FE	Yes	Yes	Yes	Yes
	Province*Year Fixed Effects	No	Yes	No	No
	Environmental policies	No	No	No	Yes
	_cons	0.2837**	0.0951	0.2024	0.2116
	(2.1898)	(0.5661)	(1.4312)	(1.4667)
	N	2,256	2,256	2,224	2,256
	R2_a	0.8938	0.9022	0.8944	0.8943


Note: T-values for city-level clustering are presented in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
4.5 Nonlinear mediating mechanism
4.5.1 Energy efficiency channel
According to the result presented in column (1) of Table 4, the coefficient of Digi*Digi is significantly negative. This suggests that lower levels of digital technology innovation are linked to higher energy consumption. However, once digital innovation exceeds a certain threshold, it begins to reduce energy consumption. As digital technology innovation advances, it enables the development and adoption of more energy-efficient solutions, such as automation, data analytics, and smart technologies, which optimize energy usage and reduce consumption. Once digital innovation reaches a critical threshold, these technologies become widely implemented, leading to significant energy savings.
TABLE 4 | The results of mechanism analysis.		(1) Energy efficiency	(2) Environmental attention
	Digi	0.0448***	0.1196***
	(4.0766)	(3.2585)
	Digi*Digi	−0.0035***	−0.0083**
	(-4.0405)	(-2.3929)
	Control variables	Yes	Yes
	City_FE	Yes	Yes
	Year_FE	Yes	Yes
	_cons	−0.0377	0.2716
		(-0.6849)	(1.1667)
	N	2,256	2,256
	R2_a	0.7952	0.4205


Note: T-values for city-level clustering are presented in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
4.5.2 Environmental attention channel
Next, we examine the mediating role of government environmental attention. As reported in column (2) of Table 4. The coefficient of Digi*Digi is −0.0083, which is significantly negative at the 1% level. These results suggest that at initial stages of digital technology innovation, it may worsen environmental challenges. However, once digital innovation exceeds a certain threshold, it starts to alleviate environmental pollution and boosts government focus on environmental protection. This indicates that government attention to environmental issues acts as a mediator in the relationship between digital technology innovation and carbon intensity.
4.6 Heterogeneity analysis
4.6.1 Substantial or symbolic digital technology innovation
We categorize invention-based digital technology patents as substantial digital technological innovations and utility model patents as strategic digital technological innovations. Columns (1) and (2) of Table 5 present the result for substantial and strategic digital technological innovations, respectively. In both cases, the relationship between digital innovation and carbon intensity follows an inverted U-shape. However, a key distinction emerges: the turning point for substantial digital technological innovation occurs at a much earlier stage than for strategic digital technological innovation. This suggests that innovations with stronger technological capabilities, such as substantial innovations, reach the critical threshold more quickly, leading to a more rapid reduction in carbon intensity. This finding underscores the transformative potential of substantial digital innovations, which focus on fundamental changes in products or technologies, and highlights their greater potential and advantages in promoting environmental, corporate, and societal benefits.
TABLE 5 | Heterogeneity analysis.		(1)	(2)	(3)	(4)	(5)	(6)
	Digi	0.0579**	0.0449*	0.0190	0.0655*	0.0786**	0.0910**
	(2.4256)	(1.6647)	(0.5247)	(1.8111)	(2.2639)	(2.3387)
	Digi*Digi	−0.0069**	−0.0062**	−0.0019	−0.0071**	−0.0093***	−0.0072***
	(-2.4088)	(-2.2897)	(-0.6674)	(-2.5024)	(-2.8795)	(-2.6555)
	Control variables	Yes	Yes	Yes	Yes	Yes	Yes
	City_FE	Yes	Yes	Yes	Yes	Yes	Yes
	Year_FE	Yes	Yes	Yes	Yes	Yes	Yes
	_cons	0.1488	0.4590***	0.3092	0.2843	0.5160**	0.0152
	(0.8937)	(3.5857)	(1.2751)	(1.5518)	(2.3319)	(0.0936)
	N	912	1,344	896	1,360	968	1,288
	R2_a	0.8947	0.8908	0.9071	0.8874	0.8939	0.8982


Note: T-values for city-level clustering are presented in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
4.6.2 Key environmental protection cities vs. other cities
The list of key cities for environmental protection comes from the 11th Five-Year Plan for National Environmental Protection, totaling 113 cities (A detailed list can be found in Supplementary Appendix SA). Column (3) of Table 5 represents these key environmental protection cities, while column (4) represents other cities. The results indicate that digital technological innovation exhibits a significant inverted U-shaped relationship with carbon intensity in other cities. This may be attributable to the fact that non-key cities typically face lower environmental regulatory pressures, which affords firms greater flexibility in their selection and application of technological innovations. These cities may be more effective in promoting the application of digital technologies through market-based mechanisms, optimizing energy efficiency, and reducing carbon intensity.
4.6.3 Broadband China pilot vs. non-broadband China pilot
Columns (5)–(6) of Table 5 correspond to the cities included in the “Broadband China” pilot program and those that are not. In both categories of cities, the inverted U-shaped relationships all hold. However, it is evident that in the pilot cities, digital innovation reaches the turning point more rapidly. This phenomenon may stem from the advantages that Broadband China pilot cities possess in terms of digital infrastructure, policy support, and innovation capacity. These cities typically benefit from greater government investment, policy backing, and early advantages in digital technology applications, enabling them to more quickly realize technological innovations and translate these into tangible carbon emission reduction effects. As a result, pilot cities are able to reach the turning point more swiftly, thereby playing a significant role in reducing carbon intensity.
5 CONCLUSION AND IMPLICATIONS
Our analysis reveals a significant inverted U-shaped relationship between digital technology innovation and carbon intensity. Specifically, in the early stages of digital technology innovation, the increased deployment of technology and resource inputs may lead to a rise in carbon intensity. However, as digital technologies mature and become more widely adopted, they contribute to a reduction in carbon intensity. Furthermore, our nonlinear mediation analysis indicate that digital technology innovation influences carbon intensity indirectly through two key channels: energy intensity and increased government attention to environmental protection. Notably, substantive digital technology innovation is observed to reach the turning point more quickly, yielding more pronounced improvements in carbon intensity. This underscores the critical role of technology quality in driving green development. The study also demonstrates that the inverted U-shaped relationship holds consistently across both broadband pilot and non-pilot cities but is limited to non-key environmental protection cities. These findings deepen our understanding of the relationship between digital technology innovation and carbon intensity, offering valuable policy recommendations and practical guidance for advancing urban sustainability objectives.
Based on the conclusions, we propose the following recommendations. First, during the early stages of digital technology innovation, it is crucial to enhance policy support, particularly in the areas of technology research and development (R&D) and commercialization. This can be achieved through government subsidies, tax incentives, and venture capital. These measures will encourage businesses to increase their investments in digital technologies and accelerate their maturation and application. Simultaneously, regulatory oversight should be strengthened to address potential negative effects during the innovation process, such as high energy consumption or environmental pollution. This can be done by establishing stringent energy consumption standards and environmental impact assessment mechanisms. These measures will ensure that early-stage digital innovation does not exacerbate carbon intensity.
Second, it is essential to promote the deep integration of digital technologies in energy management and environmental governance. For example, the development of intelligent energy systems based on artificial intelligence and big data should be prioritized to improve energy efficiency. The government should also enhance its environmental oversight by establishing regulatory indicators and regular evaluation mechanisms to integrate environmental performance into governmental assessments.
Third, substantial innovation projects should be given priority, concentrating resources on developing efficient and practical digital technology applications while avoiding the dispersion of resources and redundant investments. Special funds should be established to support R&D and application of digital technologies with significant carbon reduction potential. Additionally, incentive mechanisms should be created to encourage businesses to prioritize innovation quality rather than merely pursuing the quantity of technologies. It is important to acknowledge that patent applications mainly reflect technological potential rather than actual implementation. Future research could incorporate micro-level data on corporate digital transformation to more comprehensively assess the real-world impact of digital technologies on carbon intensity, bridging the gap between innovation output and application efficacy.
Fourth, in non-key environmental protection cities, policy support and special incentives should be leveraged to enhance investments in digital infrastructure, especially in regions with technological backwardness. In key environmental protection cities, it is essential to optimize existing environmental governance policies and explore the synergy between technology and policy, with a view to establishing an efficient environmental technology innovation model that consolidates their existing environmental governance advantages.
Lastly, the successful practices of Broadband China pilot cities should be replicated, including increasing investments in digital infrastructure, refining technology promotion policies, and fostering digital industry clusters. For non-pilot cities, this study recommends strengthening policy guidance and financial support, particularly for small- and medium-sized cities with substantial potential for digital transformation and resource-based cities. Accelerating the construction of infrastructure such as broadband networks can effectively enhance their technological absorption capacity.
While this study offers valuable insights into the impact of digital innovation on carbon intensity, several limitations merit acknowledgment. First, the analysis is confined to the city-level perspective, failing to account for potential spatial effects across regions. The influence of digital innovation may extend beyond individual cities, exerting spillover effects on neighboring areas through spatial interdependencies. Future research could incorporate spatial econometric models to systematically examine the intercity relationships. Second, the study relies on macro-level city-scale data, overlooking micro-level data at the county or firm level. Future studies may refine the data granularity to reveal intra-city variations and deliver more precise analytical results. Additionally, this research does not differentiate between various types of digital technology innovations. Future studies could categorize digital innovations into distinct categories and explore their heterogeneous mechanisms on carbon intensity, which would provide more targeted policy recommendations for decision-makers.
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Time-fied effects YES YES YES YES
Obs 2236 2,236 | 2,236 | 2236

Note: * * *,* *, and * represent the significance levels of 1%, 5%, and 10%, respectively, and the numbers in brackets are robust standard errors.
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Education

Primary or lower Middle or above

Constrained ER ‘ 0,008 0,098+ 0091 0125
(0.001) (0.024) (0.051) (0.158)

Incentive-based ER ‘ 05230 0,651 0058 0415+
(0.154) (0.104) (0.041) (0.074)
cv. ‘ YES | YES [ YES | YES
Individual fixed effects ‘ YES YES YES YES
Time-fixed effects ‘ YES YES [ YES [ YES
Obs ‘ 1,002 | 1234 [ 678 [ 1558

T L e
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Education

Primary or lower Middle or above
Constrained ER 0239+ 0072 0.126 0374+
(0.104) (0.150) (0.148) (0.1335)
l Incentive-based ER ‘ 0211+ 1 0.104 0045 ) 02417
(0.147) (0.045) (0.031) (0.111)
cv. ‘ YES YES YES YES
Individual fixed effects ‘ YES YES YES YES
| Time-fixed effects ‘ YES [ YES YES YES
Obs ‘ 1,002 1234 678 1558

Note: ***, **, and * represent the significance levels of 1%, 5%, and 10%, respectively, and the numbers in brackets are robust standard errors.
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Circumstance Constrained control Full control variable
group group

F-value (AP)

F-value (RL)

Circumstance 1 Without control variables After adding all control variables,
excluding health status

Constrained ER (2.189)/
incentive-based ER (2.147)

Constrained ER (3.126)/
incentive-based ER (2.854)

Circumstance 2 Without control variables ‘ After adding all control variables

Circumstance 3 After adding control variables such as |~ After adding all control variables,
gender and age excluding health status

Circumstance 4 After adding control variables such as
gender and age

After adding all control variables

Constrained ER (1.564)/

incentive-based ER (2.156)

Constrained ER (3.989)/
incentive-based ER (2.854)

Constrained ER (2.641)/
incentive-based ER (3.254)

Constrained ER (1.986)/
incentive-based ER (2.153)

Constrained ER (3.214)/
incentive-based ER (1.694)

Constrained ER (2.589)/
incentive-based ER (2.147)
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Match type

Constrained ER Nearest-neighbor 0013+ 0012 0012 0026 0,021 0,024
Caliper 0012+ [ 0.01% 00117+ 0.024* 0.026 0025
Kernel 0.017% 0017+ 001+ 0.021%% 0025 0023

Incentive-based ER [ Nearest-neighbor 0,008 [ 0.01% 0.009%** 0.254° 022+ 0.233*
Caliper 0012+ 0.008* 0017 02417 0263 0249
Kernel [ 0012+ [ 0.008* [ 0017 0215° | 0201 0.209

Note: ATT is the average treatment effect of the experimental group, ATU is the average treatment effect of the control group, and ATE is the average processing effect. The ***, **, and
isomasit s kpmabeanon kel of TR 50k TN
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RL

Model 5
Constrained ER 0187 0123 0093+ 0.110%+ 0,108+ 0,103+
(0.026) (0.085) (0.035) (0.029) (0.054) (0.036)
Incentive-based ER 01554+ 0152+ 0135 1033 0939+ 0941+
| (0.001) (0.106) (0.107) (0.056) [ (0.058) (0.058)
Gender 0.240% 0214 0,088 0.081*
(0.101) (0.103) (0.061) (0.061)
Age 0010+ ~0011* ~0008*+* 0,008+
(0.004) (0.005) (0.003) (0.005)
Education 0.016* 0.014* 0039+ 0037+
(0.012) (0012) (0.008) (0.008)
Health 0038 0053 0.032* 0.036*
(0.041) (0042) (0.025) (0.025)
Residents in the household -0029* ~0023* 0009 0.010
(0.024) (0.024) (0.017) (0017)
Residence 0008 ~0.001 0,043 0,043+
(0.026) (0.026) (0.020) (0.020)
| Village environment 0236+ 0243+ ~0201°+ -0.193
(0.056) (0.071) (0.065) (0.05)
Individual fixed effects YES YES YES YES YES YES
| Time-fixed effects YES YES YES YES YES YES
Constant 07730 16914+ ~59.401 0529 0,696+ 48,510
(0.046) (0.409) (44.366) (0.047) (0242) (46.85)
Obs. 2236 2236 2236 2236 [ 2236 2,236

Note: ***, **, and * represent the significance levels of 1%, 5%, and 10%, respectively, and the numbers in brackets are robust standard errors.
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FWPEPs

Constrained ER

Incentive-based ER

Digital construction

Gender
Age

Health condition

Definition

Do farmers use high-efficiency, low-toxicity, and low-residue pesticides in agricultural
production? (1 = yes; 0 = no)

Do farmers sort domestic waste in RL? (1 = yes;

no)

‘The number of environmental laws and regulations promulgated in prefecture-level cities
(piece)

Has the government implemented reward and punishment measures? (1 = yes; 0

no)

What is your usual way to acquire all kinds of information? 1, access to information through
non-network channels; 2, access to information less commonly through network channels; 3,
information acquisition through both network and non-network channels; 4, access to
information mainly through network channels; 5, basic access to information through
network channels

Gender (1 = men subjects; 0 = female subjects)
Age (in full years)

Self-identified health status (1, incapacity to work; 2, poor; 3, medium; 4, good; and 5,
excellent)

0.789 (0.408)

0517 (0.5)

78.895
(85.532)

0318 (0218)

2069 (1.329)

0743 (0437)
62.12 (10.965)

3.989 (1.064)

n

Personal perception of environmental awareness

Personal perception of other villagers’ environmental
protection behavior

Number of permanent residents in the household

Duration of residence in the area

Village environment

Do you agree that the sorting of domestic waste has a positive effect on improving the rural
environment? (1, completely disagree; 2, disagree; 3, general; 4, comparative consent; and 5,
totally agree)

Your attitude toward other villagers® environmental protection behavior (1, disagree; 2,
general; and 3, strongly agree)

How many people are permanent residents (living in your household for 6 months or more
per year)? (persons)

Months of living out of town (months)

‘What do you think of the village’s living environment? (1, no pollution; 2, slight pollution; 3,
‘moderate pollution; and 4, serious pollution)

4.027 (3.925)

2,088 (1.051)

3.092 (1.633)

0.373 (1.808)

1.382 (0.612)
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Policy documents Core objectives or specific tasks Local government performance/central
government assessment of local

governi ment
2015 | Overall Programme for the Reform of  The construction of ecological civilization must be Develop a development-conservation philosophy;
the Ecological Civilization System prominent in economic, political, social and cultural Clarifying the common attributes of natural resources;
construction Market, institutional and rule of law adjustments to the green

development system

2015 | Law of the People’s Republic of China | Promote the construction of ecological civilization and | Local governments above the county level should incorporate
on Environmental Protection sustainable economic and social development environmental protection into national economic and social
development planning;
Local governments may set local emission standards

2017 Five-in-One Overall Layout ‘The general layout of the five areas of economic, political, Implementing the new development concept;
cultural, social and ecological civilization construction to Building a modern economic system;
be promoted in an integrated manner for the cause of Comprehensive and coordinated development in all

building socialism with Chinese characteristics dimensions of society
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2005

2007

2008

Policy documents

Decision on Implementing the Scientific Outlook
on Development and Strengthening
Environmental Protection

China’s National Programme to Address Climate
Change

Law on Promotion of Circular Economy

Core objectives or specific tasks

To achieve the goal of building a moderately
prosperous society, environmental protection must
be placed in a more important strategic position

Adjusting economic structure, promoting
technological progress and improving energy use
efficiency; developing low-carbon energy;
strengthening ecological construction and protection

Promote the development of a circular economy,

improve the efficiency of resource use, protect and

improve the environment, and achieve sustainable
development

Local government performance/

Central government assessment of
local governments

‘The pattern of serious environmental situation remains
unchanged;
‘The environmental regulatory system is still not
adapted to the task;
‘The ideological view of environmental protection has
not been raised to a strategic level

Energy consumption of GDP decreased from 2.68 tons
(1990) to 1.43 tons (2005);
‘The share of coal fell from 76.2% (1990) to 68.9%
(2005);
Cumulative net absorption of 3.06 billion tonnes of
CO2 by greening activities

Governance of highly polluting industries;
Circular economy statistics and legal system;
Formation of a list of polluting, non-recycling products
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Year

1984

1995

2002

Policy documents

Decision on Environmental Protection

Total Pollutant Emission Control Plan

Law on the Promotion of Cleaner Production

ctives or spe:

Identify sources of funding for environmental
protection;
Establishment of special staff/departments for
environmental protection

Decomposition of 12 major pollution totals to be
distributed to provincial governments; phased
reduction and assessment system

First circular economy legisation;
Fiscal and tax policies around cleaner production split
between central and local authorities;
Priority management of enterprise projects around
cleaner production

Local government performance

‘The three waste funds have not been singled out;
Local special fixed assets are not planneds
‘There are loopholes in the profits of the enterprises
under the jurisdiction of the industrial condition and
the profit tax of comprehensive utilization;

Overall national consumption reduction of about
70 million tonnes of standard coal;
Energy saving rate of industrial output consumption is
close to 2.5%;
However, pollution control gaps remain large;

Special offices established;
Supplementary local acts in some places;
Formation of cleaner production industry clusters in
some regions;

However, most regions have not sorted out key
resources and projects for cleaner production at this

stage






OPS/images/fenvs-13-1524824/inline_40.gif





OPS/images/fenvs-13-1548458/fenvs-13-1548458-g009.gif





OPS/images/fenvs-12-1492454/math_qu2.gif
X jmax = Xegj
Negative ndexes: X, /=11





OPS/images/fenvs-12-1492454/math_qu1.gif
1d X, X
Posive ndexes: X,y 5

o= X i





OPS/images/fenvs-12-1492454/math_6.gif
acintensity, = m, + m, digcounty, + m;financilsupport,
+mydigeounty, fnanciasupport, + mcontrols,
DS e ")





OPS/images/fenvs-12-1492454/math_5.gif
acintensity, = ¢, + ¢ digcounty,, + binhuman, + c,controls, + p,
Ao
(5)





OPS/images/fenvs-12-1492454/math_4.gif
Inhuman,,

by + adigcounty_ + bycontrols, + . + A, +g, (4)





OPS/images/fenvs-12-1492454/math_3.gif
acintensity . = a, + cdigcounty, + a,controls, + u + A, +g, (3)





OPS/images/fenvs-12-1492454/math_2.gif
acintensity, = a, + a,digcounty, + a,controls, + p + A, +g, (2)





OPS/images/fenvs-12-1492454/math_1.gif





OPS/images/fenvs-13-1524824/inline_4.gif





OPS/images/fenvs-13-1548458/fenvs-13-1548458-g008.gif





OPS/images/fenvs-13-1524824/inline_39.gif
Patents;,





OPS/images/fenvs-13-1548458/fenvs-13-1548458-g007.gif





OPS/images/fenvs-13-1524824/inline_38.gif
Lrussion;,





OPS/images/fenvs-13-1548458/fenvs-13-1548458-g006.gif





OPS/images/fenvs-13-1524824/inline_37.gif





OPS/images/fenvs-13-1548458/fenvs-13-1548458-g005.gif





OPS/images/fenvs-13-1524824/inline_36.gif





OPS/images/fenvs-13-1548458/fenvs-13-1548458-g004.gif





OPS/images/fenvs-13-1524824/inline_35.gif





OPS/images/fenvs-13-1524824/inline_34.gif





OPS/images/fenvs-13-1524824/inline_33.gif
g (i
k;)





OPS/images/fenvs-12-1488448/inline_163.gif
Ryax .1 (g, K)





OPS/images/fenvs-12-1488448/inline_161.gif
Riax (@) = max{Rux 1 (9), Rinax.2(9)}





OPS/images/fenvs-13-1571444/fenvs-13-1571444-t011.jpg
\EUELICH Patent

License
(3)
ccus 0180 0,074 0173+ 0.074°% 0.029% 0.074*
(0.0681) (0.0334) (0.0655) (0.0335) (0.0154) (0.0424)
patent Apply 0.002
(0.0030)
Patent License 0001
(0.0032)
Loan N i | ooste i
(0.0161)
Control Variables YES YES YES YES YES YES
: N 32e+04 326004 320404 320404 1.7e+04 176404
[ AdiR? 0806 oss7 0.809 ossr 0.580 [ oss
Bootstrap Test B, is statistically significant, 6 is not B, is statistically significant, 0, is significant, s statisically significant, 0, is significant,
significant, Bootstrap test is significant Bootstrap test is significant Bootstrap test is significant
Mechanism Test Significant Significant Significant
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Variables (W] ) (3) (4)
Patent apply Patent apply Patent license Patent license
ccus 0.156" 0.180"* 0147 0173
(0.0718) ‘ (0.0681) [ (0.0695) ‘ (0.0655)
Control Variables NO ‘ YES NO ‘ YES
Time Fixed YES ‘ YES YES ‘ YES
ID Fixed YES \ YES YES \ YES
N 320404 | 32e+04 [ 32e+04 ‘ 320404
Adj R 0797 ‘ 0.806 0799 \ 0,809

p < 0.1, *p < 0.05, ***p < 0.0I; Standard errors in parentheses.

Rihait At v 1 Siinired it the Gievatie vl
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Variables Subsidy

(1] )

ccus -0.085 -0.043 12456 92.564**

(0.0667) (00654)  (539714) | (37.8754)

|

|

Control Variables NO YES NO ‘
Time Fixed YES YES YES ‘
1D Fixed YES YES YES YES J

N | 29e+04 | 2.9¢+04 1.6e+04 1.6e+04 ‘

Adj R 0701 0732 0.690 0.803 ‘

p < 0.1, *p < 0.05, **p < 0.05; Standard errors in parentheses.
St asiond exroes-srtalatined ot the eommorst vl
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Variables (5)
ab_endog
LTEP 0922+ | 0,637 0559+ 0,906+
(0.0086) | (0.0318) (0.0153) (0.0087)
L2.TEP ooz
(0.0071)
ccus 0070 0434+
(0.0327) (0.0996)
LCCUs ~0012 ~0.003 0429
(0.0315) | (0.0394) [ (0.1207)
12.CCUS -0772
(0.3552)
Constant 0490 | 0,505 0571 05814
(00474) | (0.1117) (0.0518) (0.0481)
N 260404 | 260404 | 2ei04 23e+04
| AR(D)-P value  0.0000  0.0000
ARQ)-Pvalue | 04213 | 0.0489
Sargan-P value | 0.0000 | 0.0000 0.0000 0.0000
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Variables ()] ()
DID 0,062+ 0,046
(0.0228) (0.0190)
Control Variables NO yEs
Time Fixed YES YES
ID Fixed i YES
Constant 55330 2600
(0.0021) (0.1079)
N | 32es04 32404
' Adj-R2 0823 0857

P < 0.1, *'p < 0.05, **p < 0.01; Standard errors in parentheses.
ik s e A B o N e el
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Variables

ccus 0.069 0.087+* 0.071* 0,081+
(0.0397) (0.0309) [ (0.0415) (0.0349)
Control Variables NO YES NO YES
Time Fixed YES YES YES YES
ID Fixed YES YES [ YES YES
N 32404 32404 32e+04 32404
’ Adj R 0.866 0909 0.839 0876

P < 0.1, *'p < 0.05, **p < 0.01; Standard errors in parentheses.
Blinat dandend cxvaes srtlaeknid ot theeormont Lowd.
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Variables

ccusz 0.087 0.088*
(0.0572) (0.0467)
CeUs_L 0.107 0.105*
(0.0715) (0.0638)
Control Variables NO YES NO YES
 Time Fixed YES YES YES YES
1D Fied YES YES YES YES
N 32e+04 320404 29e+04 2.9e+04
Adj R 0823 0857 0827 0862

P < 0.1, **p < 0.05, ***p < 0.01; Standard errors in parentheses.

Robust standard errors are clustered at the corporate level.
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Variables

v 0,002+
(0.000)
ccus_Iv | 47,069
| (10.159)
Control Variables | YES YES
Time Fixed YES YES
City Fixed YES YES
Industry Fixed YES YES
N 15,196 15,196
AdjR? | -1448
First Stage F-value 27.658 389.670

“p<0.1, **p < 0,05, ***p < 0.01; Standard errors in parentheses.
Rovlns nAnid serom ate: dhatsed or e reakon Rondnd wdintry bl sepsenwily:
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Variables

ccus 0,071 0.087 0.074* 0,074
(0.0316) (0.0346) (0.0335) (0.0335)
Size 026w | 015 0215
(0.0093) (0.0093) (0.0093)
Cash 01307 01315
(0.0286) (0.0286)
Fix ~0.502°% ~0.502°%
(0.0342) (0.0343)
ROE 0633+ 0633
(0.1374) (0.1374)
Lev 0.447*% 0447+
‘ (0.0420) (0.0420)
| Dual -0014*
(0.0074)
Constant 5,534 2053 2597%% 2.599%%
| (0.0021) (0.1208) (0.1080) (0.1080)
Time Fixed YES YES YES YES
1D Fixed YES ves | vEs YES
N 320404 320404 32e+04 32e+04
adj R 0823 0844 0.857 0857

P < 0.1, **p < 0.05, ***p < 0.01; Standard errors in parentheses.
Rk Ak i i Ao o e disticasie Tl
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Variable Mean SD Min p50 Max
TFP 32900 | 5533 | 0852 | 2333 542 | 1036
ccus 32,900 000420 \ 00763 0 0 3970
Size 32900 | 1297 ‘ 1328 | -1488 | 1277 1943
Cash 32900 0182 | 0147 | -ledl | 0150 | 3156
Fix 32900 | 0225 \ 0191 | -3.168 | 0190 = 3810
ROE 32900 | 00751 \ 0135 | -8.900 | 00759 1518
lev 32900 | 0415 \ 0192 | 000750 | 0413 1168
Dual 32900 | 0248 ‘ 0432 0 0 1
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(1) Seed words

Source of information | China Carbon Dioxide Capture, Utilization and Storage (CCUS) Annual Report (2021), Annual reports of listed companies

Collected works Carbon capture, carbon sequestration, carbon utilization, CCUS, CCS

Source of information ‘Word2Vec Similar Words Expansion

Collected works Carbon Capture Utilization and Storages CO; Capture; CO, Sequestration; CO; Utilization and Storage; Utilization and Sequestration;
EBCCS
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Sewage Nitrogen Industrial smoke and dust All pollutants

Covariates Covariate Covariates BLP Covariates Ranking score
Road_goods ~6.4383 PGR ~798.6000° i3g6_pro 543.8100 Indust_stru 17
Indust_stu | -0.0012 PD ~0.1921% i2gl_labor ~114750 Dome_pro 13

Ratio_rd 680031 | Gov_income 1206000 | i3g7_labor ~193.0200 * Road_goods 12
Ratio_ED -409070* Dome_pro 2011700 Indust_stru oo i3g6_pro 10
Wage 09111 PGDP ~0.0005 Dome_pro ~1,024.1000* PGDP 10
Institution_save ~188170° Resident_save ~4320100 i2g4_labor 143.2600 PGR 10
PGDP 02098 Wage ~107.5000 Indust2_lpor -88291 Ratio_rd 10

Resident_loan -1.7983 Indust2_lpor 23837 i2g2_labor 29.1600 Wage 10
indus_labor | 6885 Ratio_rd s Read |_goods ~30.3860 i2g1_labor [ 9
Resident_save ~23.6760 Indust_stru -0.1276 i3g1_labor 09375 PD 9

Note: 1) The order in which the covariates appear in the table (from top to bottom) i in descending order of the frequency of node division in the model fit. 2) Definitions of terms not explained
in the text: Gov_income: government revenue; Resident_loan: loans to residents; indust2_labor, Indust2_Ipor: employment in secondary sector, ratio; i3g1_labor: retail sector employment;
Waie: avories wako.
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Indicators 2005-2010 2016-2020 All period

Panel A Sewage emissions

MEP 0.6682+(0.3496) 13282 (0.7314) 08927 (05282) 0.6043 (0.3409)
DPF ~1.0467 (0.6534) ~1.5481 (1.4156) ~14147 (1.113) ~1.070 (1.1917)
ATE ~31.9675*** (09650) ~1.3779% (0.0389) ~2.0822°** (0.0558) 37625 (0.0732)
Optimal parameters 02,300 035,500 025,100 04,200

Panel B Nitrogen oxide emissions

MEP 08852 (05279) 0.6437*** (0.1046) 08458 (0.4549) 07063+ (0.4245)
DPF ~1.2814 (0.9743) -2.1563 (7.3938) ~2.8106 (3.1599) ~1.4932 (5.8646)
ATE | ~200.6927*** (4.77267) -40.2545*** (1.2490) ~3.4852*** (0.0865) -14.3727*** (0.2924)

Optimal parameters 015,700 03,700 0.15,800 045,800

Panel C Industrial smoke and dust emissions

MFP 0.4021** (0.2654) 1.3485% (0.7966) 1.2530** (0.6300) 04735% (0.2257)
DPE ~1.4673 (1.3106) -1.2293 (3.2863) 04870 (0.2878) 0.0701* (0.4687)
ATE ~27.7066*** (0.9892) 7.2787 (6.5809) ~3.0205** (0.0876) 03612 (1.0458)
Optimal parameters 0.1,1000 045,600 045,200 0.1,400

Note: 1) The optimal parameters in the table are the values of paraneter one and parameter two of the model with the best it under the random number seed 123.2) Parameter one represents the
standardized importance value for covariate screening, and parameter two is the number of trees included in each forest model.
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Variables Waste energy Transportation Energy Alternative Administration
production conservation energy and design
production

@) (4) (5) (6)

Panel A Sewage emissions

Linear -36.3744** ~774.2711* -38.1785 =32.2507* —43.5873*** -217.5573"
coefficient i i
(17.3251) (441.3904) (25.4184) (17.7338) (16:7039) (108.5989)
Quadratic 00151+ 6.3556* 00277 00205 00229 06078
coefficient N I
(0.0071) (35541) (0.0180) (0.0110) (0.0088) (0.3078)
R-squared 0.160 0157 0.139 0151 0154 0165

\ Panel B NOx emissions

Linear ~208.0763** ~799.6409°% ~290.3182* ~189.2830*** ~254.3510°** ~1,300.0253**
coefficient t
(86.8127) (383.5256) (167.4230) (72.7063) (97.8209) (584.9393)
Quadratic 0.0825* 6.0751% 0.1998* 0.1128* 01232 34694
coefficient
(0.0355) (3.1888) (0.1182) (0.0456) (0.0505) (1.6280)
R-squared 0412 0393 0.407 0.408 0.410 0418

Panel C Industrial smoke and dust Emissions (total number of green patents)

Linear ~0.4042 333.0310 78.1707 17.0250 —6.6172* 822527
coefficient T
(22.5331) (463.9043) (103.7693) (22.1858) (3.7488) (119.0539)
Quadratic ~0.0006 -2.8430 ~0.0550 ~0.0104 ~0.0089 ~0.2795
coefficient T
(0.0089) (3.7899) (0.0724) 0.0130) (0.0182) 03222)
R-squared 0.015 0.015 0.015 0.015 0.015 0.015

Panel D Industrial smoke and dust Emissions (green invention patents)

Linear -129117 ~344.3592 463492 29.6969 ~22.9011%% 1064973
coefficient T
(26.2551) (209.5511) (62.1251) (283312) (7.2899) (106.4764)
Quadratic -00011 12991 ~0.0066* ~0.0044* 0.0014% ~0.0338
coefficient i T
(0.0030) (0.5680) (0.0040) (0.0026) (0.0071) (0.0297)
R-squared 0015 0015 0.015 0015 0015 0015
Number of cities 218 218 218 218 218 218
Control variables YES YES YES YES YES YES
city FE YES YES YES YES YES YES
year FE YES YES YES YES YES YES

Note: 1) The terms “Linear coeffcient” and “Quadratic coefficient” in the table respectively represent the estimated coefficients of the first and second order terms of the explanatory variableina
quadratic polynomial model. The explanatory variables are labeled by the column names, which denote the number of green patents of each category (g1_p-g6_p), while the response variables
Sk 06 enthiins of varaiis poliatents, bl b diflicant bandls.
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Pannel A Treatment effects by quantile binning

Variables Emission_sewage Emission_NOx Emission_sd
(1) () 3) (4) (6)
Bin_mean ~5.0202° —41.2347%% ~7.2967
(2.2005) (14.6380) (9.4443)
Bin_dummy2, 5341012 5,909.6751% | 3947822
(247.1585) I | (2,132.9997) | (1,558.4331)
Bin_dummy3 591.8355* sueo0n | -163.4206
(243.4492) (2417.5736) | (1,222.2991)
Bin_dummy4 868.7031° 87221586 9513701
(433.9652) | (3,735.2017) (1,831.3345)
Bin_dummy. 72,0466 | -2,670.3688 | ~1,014.8945
(578.8481) (4,766.1304) (2,735.6399)
R-squared 0128 0192 [ 0.468 | 0403 0206 | 0207
Number of cities 218 218 218 218 218 28
Control variables YES YES YES | YES | YES | YES
city FE YES YES YES YES YES | YES
year FE YES YES YES YES | YES YES
nnel B Threshold regression
Variables Emission_sewage Emission_NOx Emission_sd
7) (8) 9)
< Threshold 79826 93,6797+ 334641
(1.5248) (12.9427) (15.5446)
> Threshold 14896 ~13.1906** -1.3288
(0.3450) (2.3073) | (1.7131)
Single threshold 412 275 [ 91
Fstat 2076 4253 542
R-squared 0.183 0478 0207
Number of cities 218 218 218
Control variables YES YES YES
7 city FE YES | YES YES
year FE YES YES YES
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Variables Emission_sewage Emission_NOx Emission_sd Emission_sewage Emission_NOx Emission_sd

(1) (2) (3) (4) (5) (6)
GP_citylevel ~4.7052* 279377 10927
(1.2444) (8.0736) (3.0470)
s_GP_citylevel 00003+ 00015 -0.0001
(0.0001) (0.0004) (0.0002)
newGP -345274%% ~162.5338** 508011
(13.7297) (53.4933) (129.9070)
s_newGP [ 00533+ | 02046 ~0.0674
(0.0129) (0.0703) (01704)
Constant 12,249.4484*%  nesowr 156.1290 112857962 e 25,784.9087
(3,354.0457) (29,141.4026) (36,295.2647) (3,343.0584) (24,743.8702) (39,365.2353)
Observations 3,195 [ 3,195 3,195 2517 2517 2517
R-squared 0229 0457 0.015 0142 0466 0015
 Number of ciies 218 [ 218 218 171 [ 171 171
Control variables YES YES YES YES YES YES
city FE YES [ YES | YES YES | YES YES
year FE YES YES I YES YES YES YES

S T 2 e of e e i Tk sl i Fieaiiouia o i T Sicucnis B wintin maisabic valiish..
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Variables First stage Emission_sewage Emission_NOx Emission_sd
total_p s_total_p Second stage AET Second stage AET Second stage
(1) @) (3) (] (5) (3] @)
total_p ~18.6931 -20182* ~126.9682** -17.9985* 123391
(7.7084) (1.1259) (48.0603) (8.6679) (16.0363)
s_total_p 0.0028** 0.0001 00009 00017
(0.0013) (0.0001) (0.0004) (0.0024)
v 02315 -20182 179985
(0.0662) [ o) (18.6679)
IV_sq [ 0.1023* 0.0003 0.0009
(0.0382) (0.0004) (0.0008)
Constant ~426379  ~792117365 12,746,680 33,184.7576
| (s16742) (753.8171) (3,877.9040) (32,748.1136)
Observations | a0 | 3,196 | 3,196 3,196 3,196 3,196
Resquared 0.904 0835 0034 0805 0.041 0792 0.001
Kleibergen-Paap LM 8925+ 89250 [ 89250
Kleibergen-Paap Wald F 23416 23416 234.16
10% maximal IV size CV | | 703 7.03 7.03
' Control variables YES YES [ YES YES YES ves YES
city FE YES YES YES YES YES YES YES
year FE YES YES YES YES YES YES YES

Wene: 1) The sacplanators variable. for “Fist stees® I the-srber of reen saseats whils “Shoend: sioe” and " ART* sre-the antieinns of the-cotresparding pollubimss
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Variables Emission_sewage Emission_NOx Emission_sd
(1) (2) (3) (4) ()] (6)
total_p 121668 ~124349* 652132 ~73.1827* 32289 70675
(6.0895) (6.2033) (30.4737) (31.3222) (5.6540) (9.4132)
s_total_p 0.0017+* 00018 00087+ 0.0099** 00006 ~0.0011
(0.0009) (0.0009) (0.0042) (0.0044) (0.0008) (0.0013)
7 LnPGDP 5188342 8285362 -127.5712
(3404427) (2,927.8626) (2405.6976)
7 Ratio_rd 186733 2,0803354* 1907576
(63.7564) (868.2528) (763.9245)
DI 764770 ~1,379.8602° 14297849
(139.2373) (7823599) (606.794)
1S 03111 67738 66911
(0:2740) (2.2146) (4.0252)
ER ~1,335.0346 -8,553.5782 27,864.1706
(1,192.8002) (9,849.2487) (23,764.9308)
Constant 9,2000341%% 13,173.3622 77,829.2204% 57,825,531 33,369.8486°* -816.4852
(377.8132) (3,918.4927) (2,398.1428) (31,442.8822) (2,3762971) (36,884.0980)
Observations 3,196 3,19 3,196 3,196 3,196 3,196
R-squared 0158 016 0394 0414 0014 0015
Number of cities 218 218 218 218 218 218
city FE YES YES YES YES YES YES
year FE YES YES YES YES YES YES

Mo 1) Nobuat sisndaid miors ol closenng to cts Lol oo i pascnilinss. saso bilows 2) % ¥ # dadiots 1%, 90 100 Ganifitia el s Balow
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Variable name Indicator meaning Standard Minimum  Maximum

deviation
Explained Variables
Emission_sewage Sewage emissions (in tons) 7893494 9373175 7 96501
Emission_NOx Nitrogen oxide emissions (in tons) 5561979 5824436 3 683162
Emission_sd Industrial smoke and dust emissions (in tons) 32947.42 1284269 34 5168812
Explanatory Variables
total_p Total number of green patents (GFs) 5072935 3198106 0 6,659
glp GFs in waste management category 1430069 98.28807 0 2,358
2p GFs in nuclear power category 0321965 4300297 0 131
@8p GFs in transportation category 7.889549 58.87546 0 1,408
gp GFs in energy conservation category 169296 90.3311 0 1,665
& GFs in alternative energy production category 1329693 8647662 0 1768
©.p GFs in administration and design category 2165832 1598871 0 367

Control Variables in Fixed Effects Models

LnPGDP Log GDP per capita (CNY) 1048558 0863057 0 13.18506
Ratio_rd Share of scientific research expenditure 0030001 0024255 484E-07 0520865
EDI Share of actual foreign capital utilization in GDP 0021408 0020406 ~003317 0.185508
1s Industrial structure - the proportion of secondary production 4898548 1031483 0 90.97
ER Weighted average of four categories of environmental attention word | 0.00344 1 0001037 0 0021429
frequencies

Instrumental Variables ‘

v ‘Total independent patents obtained by listed companies in the city for the | 277.3792 1,058.068 0 17521
year

Part of the Representative Covariates in the GRF Model ‘

PGDP GDP per capita (CNY) 5119134 52587.63 0 5323511

PGR Natural population growth rate 0.058394 0.048173 ~0.0934 0.388
PD Population density (per square kilometer) 4957942 3464482 0 2881965
Gov_income Share of fiscal revenue 007311 0029586 0021531 0477894
Ratio_ED Percentage of education spending 0423999 0243277 0.024768 1789778
Institution_save Share of deposits in financial institutions 1351941 0.617652 0371088 5313338
Resident_save Percentage of resident deposits 072153 0257574 063se | 2546963
Resident_loan Percentage of residential loans 0927599 0575313 0.096687 5304668
Dome_pro ‘The proportion of the number of domestic enterprises 0.896774 0.113389 0258673 1031095
Road_passenger Road passenger traffic (ten thousand passengers per year) 8561205 1.064945 0 12.18382
Wage Average wage of employees in employment (CNY) 10,5555 0535345 9.130938 1206224

Indust1_lpor The proportion of employees in the primary industry 1840233 4262118 001 7397

Indust2_lpor The proportion of employees in the secondary industry 4698585 128269 743 844

Indust3_Ipor The proportion of employees in the tertiary sector 5117919 1215614 991 9114
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Categol Representative vocabulal

Environmental Environment, environmental protection, air quality,
protection class green developmentetc.
Environmental Carbon dioxide, sulfur dioxide, nitrogen oxides,
pollution class PM2.5 pollution, emissions, greenhouse gasesetc.

Energy consumption | Energy, conservation, recycling, reuse, coal conversion,

class electricity, coal to gas, new energyetc.
Collaborative Environmental synergy, collaborative development,
development class partial cooperation, collaborative pollution control,

public participationetc.

Note: 1) The source of data is the government work reports of Chinese cities from 2005 to
2020, manually organized by the authors. 2) The terms in the table are direct translations
from Chinese.
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Variables Eastern WWESE] Northeastern

(3) 4)

Treat x Time ~0.054*+* ~0.038* 0.005 ~0.046

(-2.782) (-2.060) (0.475) (-1.080)

_cons 2.690*+* 2747 2619+ 2425

(11.611) (11.187) (19.206) (5357)
| Controls Yes | Yes Yes Yes
Ind effects | Fixed [ Fixed Fixed Fixed

Time effect Fixed | Fixed Fixed Fixed
Observations 1831 1934 6640 530

Note: T-statistics are in parentheses; *, ** and *** represent 10%, 5% and 1% significance levels, respectively.
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Variables Environmental regulation intensity Degree of financial development

High Low High
( 2 (3)

Treat x Time 0022+ ~0011 ~0.031% -0.006
(-2.107) (-1.163) (-2392) (-0.598)
_cons 2542 2490 2275%+ 2835+
(10.809) (21319) I (12.897) [ (23.401)

Controls [ Yes Yes Yes Yes
Ind effects Fixed Fixed Fixed Fixed
Time effect Fixed Fixed Fixed Fixed
Observations 3633 7302 5068 5867
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Variables Enterprise internal Financing constraints
governance and controls

Degree of digital transformation

High High Low High
(Y] (€)] 4) (5)
Treat x Time -0017* -0.029 ~0.014 ~0.030° ~0027* -0.017
(-2.048) (-1215) (-1343) | (-2.456) (-2.429) (-1352)
_cons 2595+ 27400 2584 2649 2812 24357
(25.701) (8.856) (20.489) (17.941) (20753) ‘ (18.152)
Controls Yes Yes Yes Yes Yes Yes
Ind effect | Fixed Fixed Fixed Fixed Fixed Fixed
‘V Time effect Fixed Fixed Fixed Fixed Fixed Fixed
N | 9654 1281 6581 | 4354 4678 6257

Note: T-statistics are in parentheses; *, ** and *** represent 10%, 5% and 1% significance levels, respectively.
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Variables

CO; intensity

(2)

CO; intensity

CO; intensity

(4)

CO; intensity

Treat x Time ~0018* ~0013 -0012 -0.005
(-2.330) (-0.682) (-0651) (-0.280)
ISU 0,043
(1.907)
EUE 0158+
(7.252)
ESG 0057+
(2.425)
IE 0,009
(7.579)
_cons 2741 6500+ 54387 5719+
(20.161) (25.612) (25.273) (26.689)
| Controls Yes Yes Yes Yes
Ind effects Fixed Fixed Fixed Fixed
Time effect Fixed Fixed Fixed Fixed
Observations 10935 10935 10935 10935

Note: T-statistics are in parentheses; *, ** and *** represent 10%, 5% and 1% sig

Heaiice bl sasastmti






OPS/images/fenvs-13-1572134/fenvs-13-1572134-t005.jpg
ELELIEY

Treat x Time

_cons

Controls
Ind effects
Time effect

Observations

Note: T-stati

Excluding the impact of other
policies (2017)

Exclusion of green finance
reform pilot areas

Excluding the interference of

regulatory policies

(9] ) (3)
0025+ ~0015* 0040
(-2.608) (-1.822) (-3.663)
2612 2540 31007
(22222) (25.871) (25.929)
Yes Yes Yes
Fixed Fixed Fixed
Fixed Fixed Fixed
7661 10305 8543

50 i pasoiitivesse: %% anil " serrosciit 108 85 and 1% slgxiicance lewis: respectivly:
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Variables Changing the metric of the treatment Replacing the explained Dynamic marginal
group variables effects
(§)] 2) (&)
Treat x Time ~0.039* ~0010
(-3289) (-4.087)
Treat x Time2010 ~0.141
(-1.335)
Treat x Time2011 0135
(-1.304)
Treat x Time2012 ~0092*
(-1.922)
Treat x Time2013 ~0.081%*
(-2:281)
Treat x Time2014 0972+
(2312)
_cons 3,019 ~0.366% 4925+
(21.598) (-13.031) (10.190)
Controls Yes Yes Yes
Ind effects Fixed Fixed Fixed
Time effect Fixed Fixed Fixed
Observations 7818 10935 10935

Siotn: Mot stsatidl ersari i pansaihiths % 4% i ¥ sepeatt SN AN 1o 1 slnikerion vl Teipoctndin






OPS/images/fenvs-13-1524824/inline_22.gif





OPS/images/fenvs-13-1572134/fenvs-13-1572134-t003.jpg
Variables Radius matching Kernel matching Nearest neighbor matching

(1) (2) (3)

Treat x Time \ ~0020" ~0.018* -0021%

‘ (-2.505) (:2.357) (-2.367)

_cons ‘ 25720 2590+ 2569

‘ (25.639) (27.191) (22.427)
| Controls | Yes Yes Yes
Individual effects \ Fixed | Fixed Fixed
Time effect [ Fixed Fixed Fixed
Observations ‘ 10223 ‘ 10929 7267

Note: T-statistics are in parentheses; *, ** and *** represent 10%, 5% and 1% significance levels, respectively.
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Variables CoglIntensity CozlIntensity CoglIntensity
@) @) (3)
Treat x Time 0023+ ~0.021%% -0.018*
| (-3524) (:3.073) (:2329)
AGE -0.004
(-:0.756)
LEV ~0.024%
(-2.280)
SIZE 0.006*
(1.936)
HHI 0 0.006
(0.190)
ROE ~3.265
| (-6.055)
RD ~0.296
[ (-3.081)
ED 0.006
(1.400)
c -0.005
(-0.085)
_cons 2746 2746 2504+
(701.133) (694.006) (27.255)
Individual effects | No Fixed Fixed
Time effect No Fixed Fixed
Observations | 14767 14,767 10935

Nione: ‘Tstutiatics are i paranthoes % * aind 4 sesvesenit 100, 90 and 1% senthicance levols: recpectivelis
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Variables Symbol Measurement methods Mean Min Max
Corporate carbon emissions Co,Intensity See formula 2 14767 | 2745 | 0977 | 0001 | 8268
intensity
Green credit Treat x Time Interaction terms for firm and policy dummy variables 14,767 | 0347 0476 0 1
Industrial structure optimization ISU Industrial structure upgrading index 14767 | 1040 | 0054 0838 | 1125
Energy utilization efficiency EUE Useful Energy Output/Total Energy Input 14767 | 0771 o060 | 04y 0934
Environmental information ESG ESG score 14767 | 4125 | 0920 1000 | 7.750
disclosure
Investment efficiency IE See formula 2 14767 | 11393 | 3370 -0851 | L6I8
Enterprise age AGE The age of the enterprise plus one is taken as the logarithm 14,767 2327 0.833 | 0.001 3.497
Financial leverage LEV Total liabilities/Total assets 14767 | 0316 | 1090 0002 | 72233
Asset size SIZE Total enterprise assets taken as the logarithm 14767 | 22401 | 1291 | 17641 | 27.638
Diversified operation HHI Herfindahl-Hirschman Index 14767 | 0164 | 0117 | 0002 | 0810
Return on equity ROE Net profit margin/Total assets 14767 | 0007 | 0301  -5008  28.199
Intensity of R&D investment RD Regional expenditure on research and development as a share | 14,767 | 0075 | 0.164 0003 | 11633
of GDP
Level of economic development ED Regional GDP per capita taken as logarithm 14767 | 18348 | 1525 13118 | 20.806
Credit support intensity cl Regional financial investment amount as a share of GDP 14767 | 0422 0165 0063 | 0831






OPS/images/fenvs-13-1524824/inline_2.gif





OPS/images/fenvs-13-1572134/fenvs-13-1572134-g002.gif





OPS/images/fenvs-13-1524824/inline_19.gif





OPS/images/fenvs-13-1572134/fenvs-13-1572134-g001.gif





OPS/images/fenvs-13-1524824/inline_18.gif





OPS/images/fenvs-13-1572134/crossmark.jpg
©

|





OPS/images/fenvs-13-1524824/inline_17.gif





OPS/images/fenvs-13-1524824/inline_16.gif





OPS/images/fenvs-13-1524824/inline_15.gif





OPS/images/fenvs-13-1506012/inline_3.gif





OPS/images/fenvs-13-1506012/inline_29.gif





OPS/images/fenvs-13-1506012/inline_28.gif





OPS/images/fenvs-13-1506012/inline_27.gif





OPS/images/fenvs-13-1506012/inline_26.gif





OPS/images/fenvs-13-1506012/inline_25.gif





OPS/images/fenvs-13-1506012/inline_24.gif





OPS/images/fenvs-13-1506012/inline_23.gif





OPS/images/fenvs-13-1506012/inline_30.gif





OPS/images/fenvs-13-1506012/inline_22.gif
lev





OPS/images/fenvs-13-1524824/fenvs-13-1524824-g001.gif





OPS/images/fenvs-13-1524824/crossmark.jpg
©

|





OPS/images/fenvs-13-1506012/math_4.gif
UEL, = ag + pDID + OM, + yControl, +u_+¢, +&, (4)






OPS/images/fenvs-13-1506012/math_3.gif
+ pDID + yControl, + u + @, + &,

(3)





OPS/images/fenvs-13-1506012/math_2.gif
@





OPS/images/fenvs-13-1506012/math_1.gif
UEL, = ag + a, DID + yControl, + u +¢, +¢&, (1)






OPS/images/fenvs-13-1506012/inline_9.gif





OPS/xhtml/Nav.xhtml


Contents



		Cover


		Advancing carbon reduction and pollution control policies management: theoretical, application, and future impacts

		Editorial: Advancing carbon reduction and pollution control policies management: theoretical, application, and future impacts

		1 INTRODUCTION


		2 THEORETICAL FOUNDATION: UNVEILING THE MECHANISMS OF POLICY-POLLUTION-INNOVATION INTERACTION


		3 POLICY TOOLS: INNOVATION AND APPLICATION OF MULTI-DIMENSIONAL REGULATION STRATEGIES


		4 REGIONAL AND INDUSTRY PRACTICES: EXPLORING DIFFERENTIATED EMISSION REDUCTION PATHS


		5 DIGITAL EMPOWERMENT AND GOVERNANCE INNOVATION: NEW DRIVERS OF ENVIRONMENTAL GOVERNANCE


		6 CONCLUSION AND FUTURE PROSPECTS


		AUTHOR CONTRIBUTIONS


		FUNDING


		CONFLICT OF INTEREST


		GENERATIVE AI STATEMENT







		Allocating inter-provincial CEA in China based on the utility perspective --a method for improving the variable weight function

		1 Introduction


		2 Literature review

		2.1 Research perspective


		2.2 Allocation methods


		2.3 Variable weight function







		3 Methods and data

		3.1 Methods


		3.2 Data







		4 Results and analysis

		4.1 The current CEA allocation plan needs adjustment


		4.2 The new allocation plan for CEA in 2030







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		Regional energy consumption policy practice to promote low-carbon economy

		1 Introduction


		2 Methodology

		2.1 Analysis of the energy consumption structure and low-carbon economy in Shaanxi Province


		2.2 Construction of the energy consumption structure system model in Shaanxi Province







		3 Results

		3.1 Policy simulation of the consumption structure system


		3.2 Policy scheme evaluation and consumption structure optimization simulation







		4 Discussion


		5 Conclusion


		6 Recommendations


		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		References







		Are carbon costs transmitting to the building materials industry?

		1 Introduction


		2 Literature review


		3 Methodology and data

		3.1 Time-frequency spillover effects


		3.2 Data







		4 Time-frequency connectedness between carbon and building materials markets

		4.1 Overall connectedness


		4.2 Directional connectedness


		4.3 Net connectedness


		4.4 Pairwise connectedness


		4.5 Robustness tests







		5 Conclusions and policy recommendations


		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		Abbreviations


		Footnotes


		References







		Collaborative governance in action: driving ecological sustainability in the Yangtze River basin

		1 Introduction


		2 Theoretical framework

		2.1 External factors


		2.2 Internal factors







		3 Research design

		3.1 Sample selection


		3.2 Method


		3.3 Measures







		4 Results

		4.1 Single factor necessary condition analysis


		4.2 Configuration analysis







		5 Discussion and policy implications

		5.1 Discussion


		5.2 Policy implications







		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		References







		The impact of digital rural construction on agricultural carbon emission intensity

		1 Introduction


		2 Literature review and research hypotheses

		2.1 Concept of digital rural construction and index system construction


		2.2 The impact mechanism of digital rural construction on agricultural carbon emission intensity







		3 Methods

		3.1 Model setting


		3.2 Variable selection and description


		3.3 Data source and descriptive analysis







		4 Results

		4.1 Baseline regression results


		4.2 Robustness and endogeneity test results


		4.3 Heterogeneity analysis results


		4.4 Intermediary effect results


		4.5 Regulatory effect results







		5 Discussion


		6 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		The rule of law strengthening on corporate green innovation: a quasi-natural experiment based on the establishment of environmental courts in China

		1 Introduction


		2 Institutional background and development


		3 Theoretical analysis and research hypotheses

		3.1 Theoretical analysis


		3.2 Research hypotheses







		4 Research design

		4.1 Sample selection and data sources


		4.2 Variable definition and descriptive statistics


		4.3 Modeling







		5 Empirical analysis

		5.1 Baseline regression results


		5.2 Parallel trend test


		5.3 Robustness test







		6 Mechanism test and heterogeneity analysis

		6.1 Mechanism test


		6.2 Heterogeneity analysis







		7 Further analysis


		8 Conclusion and implications


		9 Classification codes


		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		Footnotes


		References







		Dynamic evaluation and sensitivity analysis of China’s industrial solid waste management efficiency based on ecological environment cycle perspective

		1 Introduction


		2 Research methods and models

		2.1 Research methodology on industrial solid waste


		2.2 DEA model


		2.3 Sensitivity analysis







		3 Empirical analysis

		3.1 Data description and statistical analysis


		3.2 Total efficiency score of solid waste


		3.3 Staged efficiency analysis


		3.4 Sub-regional analysis


		3.5 Sensitivity analysis







		4 Discussion


		5 Conclusions and suggestions

		5.1 Conclusions


		5.2 Suggestion







		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		Abbreviations


		Footnotes


		References







		Does enterprise green innovation contribute to the carbon emission reduction? Evidence from China

		1 Introduction


		2 Research hypothesis

		2.1 Enhancing energy efficiency


		2.2 Enhancing the professionalization of enterprise management







		3 Research design

		3.1 Data source


		3.2 Variable selection


		3.3 Empirical model







		4 Empirical results

		4.1 Benchmark regression results


		4.2 Robustness tests


		4.3 Endogeneity test







		5 Heterogeneity analysis

		5.1 Distinguishing different types of green innovation


		5.2 Distinguishing the nature of enterprises


		5.3 Distinguish the industry pollution levels of enterprises


		5.4 Distinguish the industry technological intensity of enterprises







		6 Mechanism testing

		6.1 Energy efficiency mechanism


		6.2 Management specialization level mechanism







		7 Conclusion and policy recommendations

		7.1 Conclusion


		7.2 Policy recommendations







		Data availability statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		References







		Environmental regulation and environmental equality: the role of green finance and the digital economy

		1 Introduction


		2 Theoretical analysis and research hypotheses


		3 Methodology

		3.1 Data sources


		3.2 Variable definition


		3.3 Modeling







		4 Empirical results

		4.1 Baseline regression


		4.2 Robustness analysis


		4.3 Endogenous analysis







		5 Mechanisms analysis

		5.1 Mediating effect: Green innovation transformation


		5.2 Moderating effects


		5.3 Heterogeneity analysis







		6 Conclusions and policy recommendations


		Data availability statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		References







		Synergistic effects of pollution reduction and carbon mitigation from socioeconomic factors, land use and urban innovation: a case study of Wuhan metropolitan area

		1 Introduction


		2 Materials and methods

		2.1 Study area


		2.2 Theoretical framework


		2.3 Research methods


		2.4 Data sources


		2.5 Technology roadmap







		3 Analysis and results

		3.1 Spatiotemporal characteristics of the coupling coordination degree between air pollution and carbon emissions in the Wuhan metropolitan area


		3.2 Analysis of the spatiotemporal evolution characteristics of the air pollution and carbon emission synergistic effects at a county level


		3.3 Analysis of the influencing factors based on GTWR







		4 Discussion

		4.1 Temporal trends of GTWR regression coefficients for influencing factors


		4.2 Analysis of the spatiotemporal heterogeneity of meteorological and climatic factors in air pollution and carbon emission coordination effects


		4.3 Temporal and spatial heterogeneity of land use factors in air pollution and carbon emission synergy


		4.4 Analysis of the spatiotemporal heterogeneity of socioeconomic factors in the synergy of air pollution and carbon emissions


		4.5 Analysis of the spatial and temporal heterogeneity of urban innovation and energy consumption in air pollution and carbon emission synergy


		4.6 Policies and recommendations







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		References







		Green finance and urban carbon emission dual control: an empirical evidence from China

		1 Introduction


		2 Theoretical model and research hypotheses

		2.1 Environment


		2.2 Household sector


		2.3 Green finance sector


		2.4 Production sector


		2.5 Dispersed equilibrium


		2.6 Social planner’s equilibrium







		3 The mechanism of green finance’s impact on urban carbon emissions and intensity

		3.1 Economic scale expansion effect


		3.2 Industrial structure optimization effect


		3.3 Technological progress effect







		4 Model framework, indicator measurement, and data sources

		4.1 Model framework


		4.2 Variable selection


		4.3 Data sources and processing







		5 Empirical results analysis

		5.1 Baseline regression results


		5.2 Endogeneity and robustness checks


		5.3 Heterogeneity analysis


		5.4 Mechanism analysis results







		6 Research outlook and conclusion implications


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Publisher’s note


		Footnotes


		References







		Carbon emission reduction in China’s iron and steel industry through technological innovation: a quadrilateral evolutionary game analysis under government subsidies

		1 Introduction


		2 Literature review

		2.1 Impact of technological innovation


		2.2 Role of stakeholders in carbon emission reduction


		2.3 Applications of game theory







		3 Problem description and model assumptions


		4 Evolutionary game analysis

		4.1 Stability analysis of strategies for steelmaker


		4.2 Stability analysis of strategies for construction company


		4.3 Stability analysis of strategies for scrap recycler


		4.4 Stability analysis of strategies for government


		4.5 Stability analysis of the four-party strategy combination







		5 Numerical simulation and discussion

		5.1 Impact of carbon benefits on system evolution for steelmaker


		5.2 Impact of production costs of steelmaker on the evolution of the system


		5.3 Impact of government credibility on system evolution


		5.4 Impact of scrap recyclers’ processing costs on system evolution


		5.5 Impact of government subsidies for technological innovation on system evolution


		5.6 Impact of government consumption subsidies on system evolution


		5.7 Impact of government subsidy mechanisms







		6 Discussion

		6.1 Research findings


		6.2 Policy implications







		7 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		The impact of foreign direct investment on green technology progress in China on two-carbon background: taking trade openness into consideration

		Introduction


		Literature review


		Theoretical mechanism


		Methods and data


		Results and discussion


		Conclusion and policy implication


		Data availability statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		Footnotes


		References







		The impact of low-carbon city pilot policy on carbon emission intensity: evidence from China using a multi-period difference-in-differences model

		1 Introduction


		2 Literature review

		2.1 Research progress on the impact of policies on carbon emission intensity


		2.2 Research progress on the evaluation of low-carbon city pilot policies


		2.3 Research summary







		3 Theoretical hypotheses

		3.1 Analysis of the effectiveness of low-carbon city pilot policies


		3.2 Mediating mechanisms of low-carbon city pilot policies


		3.3 Moderating mechanisms of low-carbon city pilot policies







		4 Research design

		4.1 Technical roadmap


		4.2 Model construction


		4.3 Data description


		4.4 Variable definition


		4.5 Justification of methodological approach







		5 Empirical results and discussion

		5.1 Baseline regression results


		5.2 Robustness tests


		5.3 Mechanism analysis


		5.4 Heterogeneity analysis


		5.5 Generalizability of the findings







		6 Conclusion and recommendations

		6.1 Conclusion


		6.2 Recommendations


		6.3 Limitations and future research directions







		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		Carbon emission and energy risk management in mega sporting events: challenges, strategies, and pathways

		1 Introduction


		2 Current status of carbon emissions and energy saving from sports activities

		2.1 Carbon emissions and energy saving from mega sporting events


		2.2 Carbon emissions and energy risk management of stadiums


		2.3 Carbon emissions and energy risk management of sports participants







		3 Excellent cases of carbon emission and energy risk management in sports activities

		3.1 Excellent cases of carbon emission and energy risk management for mega sporting events


		3.2 Excellent cases of carbon emission and energy risk management in sports stadiums


		3.3 Excellent examples of carbon governance and energy risk management by sports participants







		4 Strategies and pathways for carbon emissions and energy governance in sporting events

		4.1 Strengthening carbon emission regulation


		4.2 Reducing carbon emissions and energy savings


		4.3 Neutralizing carbon emissions


		4.4 Risk mitigation strategies and pathway planning







		5 Conclusion and implications

		5.1 Conclusion


		5.2 Implications


		5.3 Limitations and future prospects







		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		References







		Natural resources heterogeneity and environmental sustainability in G20 nations: post-COP28 analysis

		1 Introduction


		2 Literature review

		2.1 Natural resources and environmental sustainability association


		2.2 Green policy and environmental sustainability nexus


		2.3 Research gaps







		3 Methodology

		3.1 Scope, data, and source


		3.2 Theoretical framework and strategic modeling


		3.3 A priori expectations


		3.4 Estimation strategies


		3.5 Descriptive analysis







		4 Presentation of findings

		4.1 Preliminary findings on data interdependence, correlation, and homogenous slope coefficients


		4.2 Stationarity test results


		4.3 Main empirical outcomes


		4.4 Discussion of results


		4.5 Robustness analysis


		4.6 Analyses of the panel causality nexuses







		5 Conclusion, recommendations, global implication, and limitations

		5.1 Conclusion


		5.2 Recommendations


		5.3 Global implications


		5.4 Limitations and future research opportunities







		Data availability statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		References







		A study on the carbon emission reduction pathways of China’s digital economy from multiple perspectives

		1 Introduction


		2 Literature review


		3 Theoretical analysis and research hypotheses

		3.1 Direct effects


		3.2 Indirect effects


		3.3 Threshold effects


		3.4 Heterogeneity analysis







		4 Research design

		4.1 Variable selection


		4.2 Model construction


		4.3 Data description







		5 Empirical analysis

		5.1 Empirical analysis of direct effects


		5.2 Empirical analysis of mediating effects


		5.3 Empirical analysis of threshold effects


		5.4 Heterogeneity analysis







		6 Discussion


		7 Conclusion, policy implications and limitations

		7.1 Conclusion and policy implications


		7.2 Limitations and future recommendations







		Data availability statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		References







		Optimal joint production and green investment decisions of green credit financing under uncertain demands

		1 Introduction


		2 Literature review

		2.1 Under deterministic scenario


		2.2 Under uncertain environments







		3 Methodology

		3.1 Preliminary


		3.2 Decisions of GCF under deterministic scenario


		3.3 Decisions of GCF under uncertain environment







		4 Further analysis

		4.1 Decisions analysis


		4.2 Managerial insights







		5 Numerical results

		5.1 Instance generation


		5.2 Strategy evaluation


		5.3 Sensitivity analysis







		6 Conclusion


		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		References







		Study on the synergistic effect of NOx and CO2 emission reduction in the industrial sector of Guangzhou

		1 Introduction


		2 Literature review


		3 Method and data

		3.1 LMDI decomposition method


		3.2 Two-way fixed-effects model of NOx reduction


		3.3 Variable descriptions and data sources







		4 LMDI decomposition results analysis

		4.1 Overall decomposition results


		4.2 Decomposition results by industry







		5 Analysis and discussion of econometric model results


		6 Robustness tests

		6.1 Lagging the core explanatory variables by one period


		6.2 Excluding exceptional years







		7 Conclusion


		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		Supplementary material


		References







		The impact of digital infrastructure on urban total factor carbon emission performance: evidence from enterprise production and household consumption in China

		1 Introduction


		2 Literature review


		3 Theoretical mechanisms and research hypotheses

		3.1 Digital infrastructure construction and total factor carbon emission performance


		3.2 Digital infrastructure construction, consumer behavior, and carbon emissions


		3.3 Digital infrastructure construction, enterprise production, and carbon emissions







		4 Research design

		4.1 Model construction


		4.2 Variable descriptions


		4.3 Data sources and descriptive statistics







		5 Empirical results analysis

		5.1 Baseline regression


		5.2 Parallel trend test


		5.3 Placebo test


		5.4 Robustness test


		5.5 Endogeneity treatment







		6 Mechanism test and heterogeneity analysis

		6.1 Mechanism test


		6.2 Heterogeneity analysis







		7 Conclusion and policy recommendations

		7.1 Policy implications:







		Data availability statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		Supplementary material


		References







		Environmental technology’s diminishing marginal returns: a study of green patents and emission reductions in China

		1 Introduction


		2 Literature review


		3 Theoretical analysis and hypothesis development


		4 Methodology and data

		4.1 Methodology


		4.2 Variables


		4.3 Data source







		5 Treatment effect of green technologies on pollution emissions in fixed model

		5.1 Baseline regressions


		5.2 Robustness test







		6 Segmented analysis of green patent categories


		7 Reassessing treatment effects and identifying key urban factors

		7.1 Re-estimation and convergence characterisation of treatment effect


		7.2 City-level features influencing treatment effects







		8 Discussion


		9 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Generative AI statement


		Publisher’s note


		References







		The role of green finance in reshaping end-use energy consumption: insights from regional evidence in China

		1 Introduction


		2 Literature review

		2.1 Green finance and energy consumption structure


		2.2 Nonlinear spillover effects of green finance


		2.3 Analysis of the mediating effects of green finance on energy consumption structure


		2.4 Regional heterogeneity analysis of green finance


		2.5 Research gaps







		3 Data and methodology

		3.1 Data and description


		3.2 Model


		3.3 Variables







		4 Results and discussion

		4.1 Benchmark regression


		4.2 Robustness test


		4.3 Endogenous checks


		4.4 Threshold effect


		4.5 Mediation analysis


		4.6 Heterogeneity analysis


		4.7 Discussion







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Generative AI statement


		Publisher’s note


		References







		Does institutional innovation improve environmental performance? — a quasi-natural experiment based on China’s service trade innovative development pilot policy

		1 Introduction


		2 Literature review

		2.1 Influencing factors of environmental performance


		2.2 The impact of institutional innovation on environmental performance


		2.3 Institutional innovation and environmental performance in service trade







		3 Institutional innovation context and research hypotheses

		3.1 Context of institutional innovation


		3.2 Research hypotheses







		4 Data description and modeling

		4.1 Data sources and sample selection


		4.2 Modeling and variable definition







		5 Empirical results and analysis

		5.1 Baseline regression results


		5.2 Parallel trend test and dynamic effects analysis


		5.3 Heterogeneity treatment effect test


		5.4 Endogeneity analysis


		5.5 Robustness tests







		6 Further analysis

		6.1 Test of action mechanism


		6.2 Heterogeneity analysis







		7 Conclusion and policy suggestion


		8 Research limitations and future prospects


		Data availability statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		Footnotes


		References







		China’s readiness for transitioning to a low-carbon economy: mitigant and catalyst factors for a geopolitical conflict

		1 Introduction

		1.1 The relationship between LCED and GPR worldwide


		1.2 The LCED and GPR in China


		1.3 Theoretical analysis of the relationship between LCED and GPR


		1.4 Contribution of the study







		2 Literature review


		3 Methodology

		3.1 Research hypothesis


		3.2 Bootstrap full-sample causality test


		3.3 Stability test of parameters


		3.4 Sub-sample rolling window causality test







		4 Data


		5 Quantitative analyses and discussions


		6 Conclusion and recommendations


		Data availability statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		Supplementary material


		Footnotes


		References







		Assessing decarbonisation pathways in Qinghai Province, China: an analysis based on the extended STIRPAT model and data visualisation

		1 Introduction


		2 Research hypothesis


		3 Materials and methods

		3.1 Data sources


		3.2 Socioeconomic profile of Qinghai


		3.3 Analysing the carbon-emission drivers


		3.4 Constructing the expanded STIRPAT model







		4 Results


		5 Discussion

		5.1 Renewable energy sources


		5.2 Fertiliser uses in agriculture


		5.3 Population growth and economic development


		5.4 Long-term carbon reduction policies







		6 Conclusion

		6.1 Research findings and implications


		6.2 Research limitations and prospects







		Data availability statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		References







		Global carbon emission governance and green trade: the moderating role of political stability and trade diversity

		1 Introduction


		2 Literature review and hypothesis formulation

		2.1 Green trade and carbon emissions


		2.2 Political stability, trade diversification and green trade and carbon emissions







		3 Methodology and data

		3.1 Methodology


		3.2 Variable description and data source


		3.3 Descriptive statistics







		4 Results and discussion

		4.1 Data stability test


		4.2 OLS regression, moderating effect regression and quantile regression


		4.3 Robustness test and endogeneity test







		5 Conclusion and policy implications


		Data availability statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		References







		The nonlinear effect of financial openness on carbon emission intensity––evidence from 144 countries

		1 Introduction


		2 Literature review

		2.1 The multifaceted impact of the financial development on the environment


		2.2 The multifaceted impact of financial openness on the environment







		3 Theoretical analysis and research hypothesis

		3.1 The direct effect of financial openness on carbon emission intensity


		3.2 The mechanisms by which financial openness impacts carbon emission intensity


		3.3 Spatial spillover effect of financial openness on carbon emission intensity







		4 Empirical tests

		4.1 Variable and sample selection


		4.3 Panel regression analysis


		4.4 Heterogeneity analysis


		4.5 Spatial spillover effects of digital economy development on carbon emissions







		5 Conclusion and policy implications


		Data availability statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		Supplementary material


		References







		The impact of public participatory environmental regulation on carbon emission intensity: a policy text analysis

		1 Introduction


		2 Theoretical foundation and hypothesis development

		2.1 Public participatory environmental regulation and carbon emission intensity


		2.2 Public participatory environmental regulation and public environmental participation


		2.3 Public environmental participation and carbon emission intensity


		2.4 The mediating role of public environmental participation







		3 Research design

		3.1 Sample and data sources


		3.2 Variable selection and measurement


		3.3 Model construction







		4 Empirical analysis

		4.1 Descriptive statistics


		4.2 Baseline regression


		4.3 Robustness tests


		4.4 Endogeneity analysis







		5 Official characteristic heterogeneity

		5.1 Official age


		5.2 Official origin


		5.3 Official education level


		5.4 Official tenure







		6 Research conclusions and policy recommendations

		6.1 Research conclusions


		6.2 Research contributions


		6.3 Policy recommendation







		7 Limitations and future research directions


		Data availability statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		Supplementary material


		References







		Research on the carbon emissions reduction effects of China’s digital economy: moderating role of the national big data comprehensive pilot zone policy

		1 Introduction


		2 Literature review

		2.1 Digital economy and carbon emissions


		2.2 National big data comprehensive pilot zone policy and carbon emissions


		2.3 Research gap







		3 Theoretical basis and research hypothesis

		3.1 Digital economy and carbon emissions


		3.2 The impact mechanism of digital economy on carbon emissions


		3.3 The moderating role of national big data comprehensive pilot zone policy







		4 Method and data

		4.1 Methods


		4.2 Variables and data







		5 Results and analysis

		5.1 Benchmark regression results


		5.2 Robustness tests and endogeneity analyses


		5.3 Heterogeneity analyses


		5.4 Further discussion







		6 Research conclusions and policy implications


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Generative AI statement


		Publisher’s note


		Supplementary material


		References







		Analyzing the impact of economic growth and FDI on sustainable development goals in China: insights from ecological footprints and load capacity factors

		Introduction


		Literature review


		Data and methodology

		Fourier bootstrap ARDL cointegration analysis


		FMOLS estimators with the Fourier function


		Fourier Toda–Yamamoto causality analysis







		Results


		Discussion and conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Generative AI statement


		Publisher’s note


		References







		Empirical insights into resilience-based strategies for addressing haze pollution: enhancing green infrastructure and urban resilience

		1 Introduction


		2 Literature and theoretical framework


		3 Materials and methods

		3.1 Study participants


		3.2 Research instruments


		3.3 Statistical analysis







		4 Results and discussion

		4.1 Demographic characteristics


		4.2 Measurement model assessment results


		4.3 Structural model assessment







		5 Conclusion and policy implications


		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		References







		Carbon emission reduction effects of digital infrastructure construction development: the broadband China strategy as a quasi-natural experiment

		1 Introduction


		2 Literature review and research hypotheses

		2.1 Policy background


		2.2 Literature review


		2.3 Hypotheses







		3 Data and models

		3.1 Model settings


		3.2 Variable selection







		4 Empirical results and analysis

		4.1 Baseline regression results


		4.2 PSM-DID method


		4.3 Robustness tests







		5 Mechanism analysis

		5.1 Green technology innovation mechanism


		5.2 Industrial structure upgrading mechanism







		6 Heterogeneity analysis

		6.1 Heterogeneity analysis of different regions


		6.2 Heterogeneity analysis of different urban population sizes


		6.3 Heterogeneity analysis of differences in levels of economic development


		6.4 Heterogeneity analysis of different regions in environmental regulation intensity







		7 Conclusion and policy recommendations


		Data availability statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		Supplementary material


		Footnotes


		References







		Advancing synergistic strategies for greenhouse gas and atmospheric pollutant emission reduction in urban transportation: a whole lifecycle perspective

		1 Introduction


		2 Methodology

		2.1 Introduction to the research framework


		2.2 Baseline annual emission inventory


		2.3 Control measures and scenario descriptions


		2.4 Measurement of the emission-reduction effect


		2.5 Synergistic control-effect evaluation







		3 Results

		3.1 Relevant index data of target year measurement


		3.2 Measurement of the emission-reduction effect of control strategies


		3.3 Comprehensive performance evaluation of synergistic emission reduction







		4 Discussions


		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Generative AI statement


		Publisher’s note


		Supplementary material


		Abbreviations


		References







		The study on the dissemination of waste sorting policies on social media and the public’s feedback attitudes: a text analysis based on comment data of policies in 46 key cities in China

		Highlights


		1 Introduction


		2 Literature review

		2.1 Study on the Public’s attitude towards waste sorting


		2.2 Research on the online dissemination of environmental policies


		2.3 Research on the interaction between policy and the public







		3 Innovation and research significance

		3.1 Innovation of research


		3.2 Significance of research







		4 Research methodology

		4.1 Data source


		4.2 Text mining analysis


		4.3 Latent Dirichlet Allocation Model







		5 Results and discussion

		5.1 Sentiment orientation analysis


		5.2 Analysis of emotions and policy support


		5.3 Analysis of attention across different cities







		6 Conclusions and recommendations


		7 Methodological limitations


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Generative AI statement


		Publisher’s note


		References







		Efficacy of China’s low-carbon agricultural pilot policy: a company-farmer analysis from the middle and lower yangtze river basin, China

		1 Introduction and literature review


		2 Background

		2.1 Policy background


		2.2 Institutional background


		2.3 LCAP policy and its knowledge gap


		2.4 Theoretical mechanism and research hypotheses







		3 Methods and data

		3.1 Company level analysis


		3.2 Farmer level analysis







		4 Econometric analysis

		4.1 Company level analysis


		4.2 Farmer level analysis







		5 Results and discussion

		5.1 Discussion and implications at the corporate Sphere


		5.2 Reflections and conclusions at the farmer tier


		5.3 Policy recommendations







		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Generative AI statement


		Publisher’s note


		References







		Unlocking urban transportation carbon reduction potential: a dynamic evaluation of public transit adoption in response to carbon-centric policies

		Introduction


		Literature review

		Evaluation and control of carbon emissions in urban transportation


		Connection, detour and transfer in urban transportation


		Travel mode transformation of urban residents







		Data and methodology

		Data collection for Wuhan


		Calculation of connection, detour, and transfer strength


		Travel mode classification


		Index calculation and evaluation system construction of urban transportation carbon reduction potential







		Results and discussion

		Statistics on travel characteristics of Wuhan residents


		Evaluation and comparison of cross-river transportation carbon reduction potential in Wuhan


		Evaluation and comparison of carbon reduction potential for river-crossing passages in Wuhan







		Discussion


		Conclusion and outlook


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		Supplementary material


		References







		Heterogeneous environmental regulation, common prosperity and green innovation

		1 Introduction


		2 Literature review


		3 Theoretical assumptions and mechanistic analysis

		3.1 Environmental regulation and green innovation


		3.2 The moderating role of common prosperity







		4 Models and data

		4.1 Selection of variables


		4.2 Construction of empirical model


		4.3 Data sources







		5 Empirical results and analysis

		5.1 Regression analysis


		5.2 Endogenetic analysis


		5.3 Robustness tests


		5.4 Heterogeneity analysis







		6 Conclusions and policy implications

		6.1 Conclusion


		6.2 Policy implications







		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Generative AI statement


		Publisher’s note


		References







		Uncovering the black box of public data: the contribution of open government data to air pollution control

		1 Introduction


		2 Institutional background and hypothesis

		2.1 Institutional background


		2.2 Hypotheses







		3 Methodology

		3.1 Empirical model


		3.2 Variables


		3.3 Data and sample







		4 Results and findings

		4.1 Benchmark regression


		4.2 Parallel trend test


		4.3 Robustness check







		5 Further discussion

		5.1 Mechanism analysis


		5.2 Heterogeneity analysis







		6 Conclusion and discussion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Generative AI statement


		Publisher’s note


		References







		Can green credit policy promote greener manufacturing? Empirical evidence from enterprises’ carbon emission intensity

		1 Introduction


		2 Theoretical analysis and research hypotheses

		2.1 Direct impact of the GCGP on enterprises’ carbon emission intensity


		2.2 Indirect impact of the GCGP on enterprises’ carbon emission intensity







		3 Methodology and data

		3.1 Research design and model construction


		3.2 Variables selection


		3.3 Data source


		3.4 Descriptive statistics







		4 Testing the direct impact of the GCGP on enterprises’ carbon emission intensity

		4.1 Baseline regression results


		4.2 Parallel trend test


		4.3 Placebo test


		4.4 Endogeneity analysis


		4.5 Robustness tests







		5 Testing the indirect impact of the GCGP on enterprises’ carbon emission intensity

		5.1 Testing the macro-level mechanism


		5.2 Testing the micro-level mechanism







		6 Heterogeneity analysis of the GCGP impact on enterprises’ carbon emission intensity

		6.1 Heterogeneity analysis of enterprise types


		6.2 Heterogeneity analysis of regional conditions







		7 Results and discussion

		7.1 Research findings


		7.2 Policy recommendations







		Data availability statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		References







		Formation mechanism of local government green governance peer effect in China: evolution logic and basic experience

		1 Introduction


		2 Literature review

		2.1 Research on green governance


		2.2 Research on peer effects







		3 Analysis of the formation mechanism of the same group effect of local government green governance

		3.1 Global context of green governance and peer effect environment


		3.2 Origin, main content and definition of green governance of local governments


		3.3 The origin and definition of the peer effect of local government administrative decision-making


		3.4 Definition of the connotation, external expression and characteristics of the green governance peer effect of local governments


		3.5 The realization path of green governance peer effect of local government







		4 Conclusion and implications

		4.1 Conclusion


		4.2 Implications







		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		References







		Willingness to perform environmentally friendly practices in rural areas: evidence from environmental regulation in agriculture

		1 Introduction


		2 Theory and hypothesis

		2.1 Performance of environmentally friendly practices with ER in rural areas


		2.2 Digitization and FWPEPs







		3 Data, variables, and model

		3.1 Data


		3.2 Variable selection


		3.3 Model







		4 Results

		4.1 Baseline regression


		4.2 Robustness test


		4.3 Heterogeneity analysis


		4.4 ER and FWPEPs moderated by digitization







		5 Discussion and conclusion


		6 Policy implications and limitations


		Data availability statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		References







		Carbon capture, utilization, and storage enhances corporate total factor productivity

		1 Introduction


		2 Literature review

		2.1 About CCUS technology and applications


		2.2 TFP of enterprises


		2.3 CCUS and enterprise TFP







		3 Theoretical analysis and research hypothesis

		3.1 Analysis of impact effects


		3.2 Analysis of impact mechanisms







		4 Research design

		4.1 Data description


		4.2 Variable settings


		4.3 Model setting







		5 Empirical results and analysis

		5.1 CCUS and corporate TFP: Basic results


		5.2 Robustness test







		6 Further analysis

		6.1 Impact mechanism analysis


		6.2 Heterogeneity analysis







		7 Discussing


		8 Conclusions and implications


		Data availability statement


		Author contributions


		Funding


		Generative AI statement


		Publisher’s note


		References







		Digital technological innovation and urban carbon emission intensity: a nonlinear path toward sustainability

		1 INTRODUCTION


		2 LITERATURE REVIEW AND RESEARCH HYPOTHESIS

		2.1 Literature review

		2.1.1 Research related to digital technology innovation


		2.1.2 Carbon intensity related studies







		2.2 Basic hypothesis







		3 STUDY DESIGN

		3.1 Data source


		3.2 Variable metrics

		3.2.1 Dependent variable


		3.2.2 Independent variable


		3.2.3 Mechanism variables


		3.2.4 Control variables







		3.3 Model setting







		4 ANALYSIS OF RESULTS

		4.1 Statistical analysis


		4.2 The spatial and temporal evolution of digital technological innovation and carbon intensity


		4.3 Benchmark result


		4.4 Robustness checks


		4.5 Nonlinear mediating mechanism

		4.5.1 Energy efficiency channel


		4.5.2 Environmental attention channel







		4.6 Heterogeneity analysis

		4.6.1 Substantial or symbolic digital technology innovation


		4.6.2 Key environmental protection cities vs. other cities


		4.6.3 Broadband China pilot vs. non-broadband China pilot












		5 CONCLUSION AND IMPLICATIONS


		DATA AVAILABILITY STATEMENT


		AUTHOR CONTRIBUTIONS


		FUNDING


		CONFLICT OF INTEREST


		GENERATIVE AI STATEMENT


		REFERENCES


















OPS/images/fenvs-13-1506012/inline_8.gif
Cit





OPS/images/fenvs-13-1506012/inline_7.gif
¢,





OPS/images/fenvs-13-1506012/inline_6.gif
M





OPS/images/fenvs-13-1506012/inline_5.gif





OPS/images/fenvs-13-1506012/inline_4.gif





OPS/images/fenvs-13-1506012/inline_38.gif





OPS/images/fenvs-13-1506012/inline_37.gif





OPS/images/fenvs-13-1506012/inline_36.gif





OPS/images/fenvs-13-1506012/inline_35.gif





OPS/images/fenvs-13-1506012/inline_34.gif
1V





OPS/images/fenvs-13-1506012/inline_33.gif
dig





OPS/images/fenvs-13-1506012/inline_32.gif
dig





OPS/images/fenvs-13-1506012/inline_31.gif





OPS/images/fenvs-12-1491608/inline_123.gif





OPS/images/fenvs-12-1491608/inline_122.gif





OPS/images/fenvs-12-1491608/inline_121.gif
G'(y) = E, -
y)=E;+ P, + P, - 2R, —mE; + mP, - mP, - 2zR;, + 2zR,,





OPS/images/fenvs-12-1491608/inline_120.gif





OPS/images/fenvs-12-1491608/inline_129.gif





OPS/images/fenvs-12-1491608/inline_128.gif





OPS/images/fenvs-12-1491608/inline_127.gif
y<y’





OPS/images/fenvs-12-1491608/inline_126.gif
P45 -Cy+Co+S5,+T +mG, + zR,— zR,)/





OPS/images/fenvs-12-1491608/inline_125.gif





OPS/images/fenvs-12-1491608/inline_124.gif





OPS/images/fenvs-12-1491608/inline_143.gif





OPS/images/fenvs-12-1491608/inline_142.gif





OPS/images/fenvs-12-1491608/inline_141.gif





OPS/images/fenvs-12-1491608/inline_140.gif
Po+S.-Cy+Cop+S5,+T +mG, + zR,— zR,)/





OPS/images/fenvs-12-1491608/inline_14.gif





OPS/images/fenvs-12-1491608/inline_139.gif





OPS/images/fenvs-12-1491608/inline_147.gif





OPS/images/fenvs-12-1491608/inline_146.gif





OPS/images/fenvs-12-1491608/inline_145.gif
&P
3P,

>0





OPS/images/fenvs-12-1491608/inline_144.gif





OPS/images/fenvs-12-1491608/inline_133.gif





OPS/images/fenvs-12-1491608/inline_132.gif
y>y





OPS/images/fenvs-12-1491608/inline_131.gif





OPS/images/fenvs-12-1491608/inline_130.gif
F(x),n<0





OPS/images/fenvs-12-1491608/inline_13.gif





OPS/images/fenvs-12-1491608/inline_138.gif





OPS/images/fenvs-12-1491608/inline_137.gif





OPS/images/fenvs-12-1491608/inline_136.gif





OPS/images/fenvs-12-1491608/inline_135.gif
F(x),.,<0





OPS/images/fenvs-12-1491608/inline_134.gif





OPS/images/fenvs-12-1503735/math_12.gif
(12)





OPS/images/fenvs-12-1503735/math_11.gif
Y UTPWR (11)





OPS/images/fenvs-12-1503735/math_10.gif
1(1-HK]™ (10)





OPS/images/fenvs-12-1503735/math_1.gif





OPS/images/fenvs-12-1503735/inline_9.gif





OPS/images/fenvs-12-1503735/inline_89.gif





OPS/images/fenvs-12-1503735/inline_88.gif





OPS/images/fenvs-13-1513158/inline_13.gif





OPS/images/fenvs-13-1513158/inline_12.gif





OPS/images/fenvs-13-1513158/inline_11.gif
Y3





OPS/images/fenvs-13-1513158/inline_10.gif
Ys





OPS/images/fenvs-13-1513158/inline_1.gif
C





OPS/images/fenvs-13-1513158/fenvs-13-1513158-t017.jpg
Model Wald p-value Bootstrap p-value

InGDP=>InGF 07128 | 03985 04136
InGF=>InGDP 00217 | 08829 0.8879
InEDI=>InGF 14826 | 02234 02373
InGF=>InFDI 00197 | 08883 0.8902
INTRADE=>InGF 00232 | 08790 0.8780
InGF=>InTRADE 71248 00076 | oons
InURB=>InGF 35246 | 0.0605 00716
InGF=>InURB 03696 | 05432 05397
InNFAFGDP=>InGF 22448 | 0.1341 0.1475
InGF=>InFAFGDP 08139 | 03670 03770
InGDP=>grazinglc 06360 | 04252 04311
LnGLCE=>InGDP 0.0140 | 09059 [ 0.9043
InEDI=>LnGLCF 14491 | 02287 02414
LnGLCF=>InFDI 00139 | 09062 0.9071
INTRADE=>LnGLCF | 0.0000 | 0.9946 09958
LnGLCE=>InTRADE | 6.5999 | 0.0102 00169
InURB=>LnGLCF 35026 | 0.0613 0.0699
LnGLCF=>InURB 03086 05785 05808
INFAFGDP=>LnGLCF | 21511 | 0.1425 0.1494
LnGLCF=>InFAFGDP | 0.5654 | 04521 04505






OPS/images/fenvs-13-1513158/fenvs-13-1513158-t016.jpg
MODEL 19

InGF (Model 19) Long- run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability

InLNGDP 0077 00666 02530 -00162 00513 03744

InLNFDI 00958 00385 00173 00026 o179 08829

INLNTRADE 087 01515 00074 00930 0020 00336

sin 00093 00574 08716 00095 00056 0.1006

Cos 00576 o582 03290 o002 00057 0571
) - 00067 00305 o571

InGF (Model 20) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability
InLNGDP o778 0034198 00000 05713 02315 ool

InLNFDI o023 00067 00009 00003 ooi70 0853

InURB 2230 o079 00000 1663 06180 oou7

Sin o3 00097 08591 00028 00066 06730

Cos ooms 00100 oss17 0001 00066 05101

EC(1) -03650 01350 00002

MODEL 21

InGF (Model 21) Long run Short run

Variable Coefficient Standard error Probability Coefficient Standard error Probability
InLNGDP oous 00077 00615 027 00810 oou0
InLNFDI o009 00057 00902 00051 00107 06119
InFAFGDP oms o021 00000 -04s3 o145 00034

sin 0010 0080 0910 00075 00010 oo

Cos “o0u7 o081 00798 ~00065. o0t 01281

EC(1) E - = ~08689 00951 00000

LnGLCF (Model 22) Long run Short run
Variable Coefficient Standard error Probability Coefficient Standard error. Probability
ILNGDP ooz o139 00306 00341 00599 05697
InLNFDI o3 o080 0103 o015 00193 [ oot
INLNTRADE 0062 o316 02590 00138 00196 03830
s 00007 oons 09477 T —aoot 00065 01660
Cos o081 ooz 05116 00003 00066 03560
EC (1) - - - -020m1 o122 00305
MODEL 23
InGLCF (Model 23) Long run Short run
Variable Coefficient Standard error Probability Coefficient Standard error Probability
InLNGDP 1562 00227 00000 04593 01692 00065
InLNFDI ~00058 ooz 01915 00107 00127 o031
InURB 03076 00194 00000 12190 0695 1 oo
Sin o002 00061 07320 00083 o006 00826
Cos o012 00065 00918 00010 00019 0279
EC(1) - - - 07265 01016 00000
MODEL 24
InGrazinlcf (Model 24) Long run Short run
Variable Coefficient Standard error Probability Coefficient Standard error Probability
ILNGDP ~00s36. o072 00000 02076 009397 00838
InLNFDI 0002 00053 o352 007 oo1227 o032
InFAFGDP oo 00020 00000 02951 015998 o735
Sin " oom 00077 02266 00008 000478 08619
Cos 0009 00076 02025 00099 000473 o031
ECCD) - 075 010662 00000






OPS/images/fenvs-13-1513158/fenvs-13-1513158-t015.jpg
Fourier ARDL cointegration test for grazing land EF and grazing land-LCF

Frequency Minimum AIC Fa
InGF = InLNGDP.InLNFDLINLNTRADE (Model 19) 33000 ~3.9760 93483 | -6.0316 9.1693
Critical value 49739 | -3.6524 55525
59771 | -4.1401 7.0995
88917 | -4.8894 104572
InGF = InLNGDP InLNFDLINUR (Model 20) 3.4000 -40318 | 74307 | -4.7893 66680
Critical value 53529 -34154 | 59763
[ 63079 312 73924
92134 | -4.7361 95588
InGF = InLNGDPInLNFDLINFAFGDP (Model 21) 3.5000 -3.9419 95325 | 57537 93326
Critical value 42269 | -3.0014 45698
[ s0053 33960 56281
70504 | -4.5723 7.5871
LnGLCF = InLNGDP.InLNEDLInLNTRADE (Model 22) 3.4000 7.6687 ~54259 | 9.5334 95334
Critical value ‘ 54631 | -3.8650 63795
64901 | 43505 7.6864
87411 | -5.1366 103782
LnGLCF = InLNGDP.InLNEDLInURB (Model 23) 0000 ~4.1185 63381 | -4.3437 69051
Critial value | | 19633 3514 | 53829
59599 | -4.0253 64754
7.8747 | -4.9983 9.1800
LnGLCF = InLNGDP.InLNEDLInFAFGDP (Model 24) 3.6000 39762 83986 | -5.4696 105403
Critical value 50166 -34073 | 58897
| se91 37286 69191
7.5871 | -4.4744 9.6377






OPS/images/fenvs-12-1503735/math_15.gif
as)





OPS/images/fenvs-12-1503735/math_14.gif
My = X' YR WH = po X, = p Yy — oW





OPS/images/fenvs-12-1503735/math_13.gif
Pl —r L (13)





OPS/images/fenvs-13-1513158/inline_14.gif
P+ dyax





OPS/images/fenvs-12-1503735/inline_83.gif





OPS/images/fenvs-12-1491608/math_17.gif
befdt = x (Vi =V,

(1-x)(Vy, - Vi)

(1= (Va-Va)

2(1-2)(Vay = Vi)
m(l=m)(Vy - V)






OPS/images/fenvs-12-1503735/inline_82.gif





OPS/images/fenvs-12-1491608/math_1.gif
R e YR YT YRy ymE Ty
ZyeRy+ yeR,
b0~ Ry ~Co T~ yP, + yRy =Ry + Ry + yoRi - y2R,
Vi (=W

ymEy

()





OPS/images/fenvs-12-1503735/inline_81.gif





OPS/images/fenvs-12-1491608/inline_9.gif





OPS/images/fenvs-12-1503735/inline_80.gif





OPS/images/fenvs-12-1491608/inline_8.gif





OPS/images/fenvs-12-1503735/inline_8.gif





OPS/images/fenvs-12-1491608/inline_7.gif





OPS/images/fenvs-12-1503735/inline_79.gif
Py





OPS/images/fenvs-12-1491608/inline_6.gif
y € (0,1}





OPS/images/fenvs-12-1491608/inline_530.gif





OPS/images/fenvs-12-1491608/inline_529.gif





OPS/images/fenvs-12-1491608/inline_528.gif
[{(2x- 1)(E4+S-C,2 + Ry, = R, + C,1— mE,)}





OPS/images/fenvs-13-1513158/fenvs-13-1513158-t014.jpg
Model Wald p-value Bootstrap

InGDP=>InFPF 07360 | 0.6921 06918
InEPF=>InGDP 03380 | 0.8445 08423
InFDI=>InFPF 14106 04940 05140
InEPF=>InFDI 41192 | 01275 0.1572
INTRADE=>InFPF 00970 | 09527 09547
InFPF=>InTRADE 02849 | 08672 0.8674
InURB=>InFPF 14269 04900 05119
InFPF=>InURB 16487 | 04385 04617
InFAFGDP=>InFPF 01510 | 09273 09276
InFPF=>InFAFGDP 35589 0.1687 0.1871
InGDP=>LnFPLCF 10007 | 06063 0.6077
LnFPLCF=>InGDP 05133 | 07737 | 07657
InEDI=>LnFPLCE 19894 | 03698 03782
LnFPLCF=>InFDI 34394 01791 02072
INTRADE=>LnFPLCF 00052 | 09974 09975
LnFPLCF=>InTRADE 02118 | 08995 0.8996
InURB=>LnFPLCF 13680 | 0.5046 05161
LnFPLCF=>InURB 15888 | 04518 04726
InNFAFGDP=>LnFPLCF | 02544 | 08805 08771

LnFPLCF=>InFAFGDP | 35650 | 0.1682 02102





OPS/images/fenvs-12-1491608/inline_527.gif
xy(m—1)
R+ Cp)} >0

(Eq-U+S-Cp+Ry)-xy(lm-1)

(C4





OPS/images/fenvs-13-1513158/fenvs-13-1513158-t011.jpg
Model Wald alue  Bootstrap p-value

InGDP=>InFF 10359 05957 0.6059
InEF=>InGDP 09633 | 06178 06299
InFDI=>InFF 65903 00371 0.0587
InFF=>InFDI 01970 | 09062 09082
INTRADE=>InFF 24840 02888 03166
InFF=>InTRADE 96806 00079 00194
InURB=>InFF 28651 02387 02682
InFF=>InURB 25212 02835 03171
InNFAFGDP=>InFF 03191 08525 08586
InFF=>InFAFGDP 11567 0.5608 05722
InGDP=>InFLCF 14704 | 04794 04993
InFLCF=>InGDP 09097 | 06345 06379
InEDI=>InFLCF 70168 | 00299 00522
InFLCF=>InFDI 02211 08953 08933
INTRADE=>INFLCF 27852 02484 02755
InFLCF=>InTRADE = 96948 00078 00199
InURB=>InFLCF 29643 | 02272 02521
InFLCF=>InURB 26240 | 02693 03010
INFAFGDP=>InFLCF 04106 08144 08121

INFLCF=>InFAFGDP 10362 05957 06105





OPS/images/fenvs-13-1513158/fenvs-13-1513158-t010.jpg
MODEL 7

InFF(Model 7) Long run Short run
Variable Coefficient ~ Standard error  Probability Coefficient = Standard error  Probability
InGDP ~0.0475 02329 08395 0.1882 00572 0.0023
InEDI 03230 01303 oo ~0.0339 Coonss [ 0.0794
InTRADE ~0.7689 s 01568 01571 00169 ‘ 0.0020
; Sin ~0.0953 02122 0.6559 -0.0127 0.0063 I 0.0522
Cos 0.1847 01670 02754 ~0.0283 00086 ‘ 0.0001
B 1) . [ - ~0.0523 ooz ‘ 0.0000
MODEL 8
InFF(Model 8) g run Short run
Variable Coefficient ~ Standard error  Probability ~Coefficient Standard error  Probability
InGDP 07152 03275 ‘ 00354 0.3552 02148 01074
InEDI 00031 o026 ‘ 0.8954 ~0.0187 o096 ‘ 03473
InURB -8.6525 1.8131 00000 -2.4624 s 01834
Sin 96463 14213 0.0000 -0.0039 00649 09519
Cos -0.4621 05908 ‘ 04391 0.1672 00970 ‘ 0.0941
EC (-1) - - ‘ - , ‘ 0.0000
MODEL 9
InFF (Model 9)  Long run Short run
Variable Coefficient  Standard error  Probability ~Coefficient Standard error  Probability
InGDP ~0.6014 0.3696 0.1119 ~0.1840 02351 ‘ 0.4390
InEDI ~0.0174 0.0377 06477 ~0.0155 00221 ‘ 0.4898
InFAFGDP ~0.0727 0.1012 o768 ~0.5478 02433 ‘ 0.0307
Sin 46277 1.0596 00001 ~0.0381 00168 ‘ 0.0300
Cos 1.4998 06315 00233 01118 o021 ‘ 0.0000
EC (-1) - = - ~0.2174 00860 ‘ 00161
MODEL 10
InFLCF (Model 10)  Long run Short run
Variable Coefficient Standard error Probability Coefficient Standard error Probability
InGDP -0.1138 0.0270 0.0002 -0.2492 0.1078 0.0268
InFDI ~0.0090 0.0254 07234 0.0013 0.0320 09672
InTRADE ~0.7430 0.0954 0.0000 ~0.3524 0.0906 0.0004
Sin 0.1478 0.0256 0.0000 00145 0.0117 02224
Cos ~0.0746 0.0185 0.0003 0.0298 0.0120 0.0182
EC (1) - & - ~0.3940 01321 00052
MODEL 12
InFLCF (Model 12)  Long run Short run
Variable Coefficient. Standard error Probability Coefficient Standard error Probability
InGDP 0.5083 03299 01317 02123 02419 03862
InEDI 0.0134 00364 07155 0.0200 0.0237 04059
InFAFGDP 0.4890 01112 0.0001 06541 0.2665 00192
Sin ~11.9049 24334 0.0000 0.1960 0.0356 0.0000
Cos 14529 25342 0.0000 | 01505 0.0257 00000
EC (-1) - - - -0.2047 0.0942 00366






OPS/images/fenvs-13-1513158/fenvs-13-1513158-t009.jpg
Fourier ARDL cointegration test for fishing EF and fishing-LCF

Frequency Minimum AIC Fa
InFF = InGDP.InFDLINTRADE (Model 7) 21 3795909 5.6996 -2.8308 54454
Critical value o i -37244 [ sor9
5% 63531 41698 7.4509
1% 89528 53030 s
InFF = INGDPINEDLINURB (Model 8) 02 -3.895395 C anm -4.0853 5665
Critical value 10% 59116 -4.0014 | aan
5% oo -43940 sen
1% 102234 -5.0382 s
InFF = InGDPInLNFDLINFAFGDP (Model 9) 02 -3795923 59233 -48059 64772
Critical value 10% 59085 -4.0362 5.1302
5% o ~45048 ores
1% oo 53891 s
LnFLCF = InGDP.InFDLINTRADE (Model 10) 21 ~3.793483 64746 ~3.6866 6.6224
Critical value o I -34119 sam
% -34119 -3.9382 6.9585
1% 5.3224 ~5.0662 | 9.6241
InFLCF = InGDP.InEDLInURB (Model 11) 02 -37872 s s 3.6455
VCriliCal value | 10% | 5.7876 -3.9277 [ 4.8742
5% 68816 -43525 Ceans
1% T 51353 =
InFLCF = InGDP.InEDLINFAFGDP (Model 12) 01 ~3.745291 50747 -4.4743 52727
Critical value 10% 62375 -42235 o6
5%  om -4.5991 267
1% 9.5723 =5.5771 8.7222






OPS/images/fenvs-13-1513158/fenvs-13-1513158-t008.jpg
Model Wald p-value Bootstrap p-value
InGDP=> InCF 13125 02519 0.2670
InCF =>InGDP 1.3970 0.2372 0.2438
InFDI=> InCF 04134 0.5202 0.5287
InCF =>InFDI 0.0092 0.9236 0.9216
InTRADE=> InCF 0.0852 0.7704 0.7591
InCF =>InTRADE 14632 0.2264 0.2384
InURB=> InCF 3.2952 0.0695 0.0783
InCF =>InURB 46333 0.0314 0.0398
InFAFGDP=> InCF 2.1049 0.1468 0.1552
InCF =>InFAFGDP 50.7815 0.0000 0.0000
InGDP=>InC-LCF 0.4896 0.4841 0.4852
InC-LCF=>InGDP 12131 0.2707 0.2874
InFDI=>InC-LCF 0.2982 0.5850 0.5830
InC-LCF=>InFDI [ 1.2346 0.2665 0.2778
InTRADE=>InC-LCF 25339 0.1114 0.1248
InC-LCF=>InTRADE 0.1454 0.7030 0.7053
InURB=>InC-LCF [ 1.1422 0.2852 0.2984
InC-LCF=>InURB 0.8855 0.3467 0.3541
InFAFGDP=>InC-LCF 3.7507 0.0528 0.0605
InC-LCF=>InFAFGDP 8.5515 0.0035 0.0058






OPS/images/fenvs-13-1513158/fenvs-13-1513158-t007.jpg
MODEL 1

InCF (Model 1) Long run Short run
Variable Coefficient Standard error Probability Coefficient Standard error Probability
‘ InLNGDP 01522 00166 00000 oo 01274 04904
InLNEDI 00309 00143 00375 0.0059 00120 06259
‘ InTRADE 00741 00516 0.1827 o011 00278 06928
" sin 00526 00176 oo 00029 00043 04980
‘ Cos 0.0900 00194 00000 oous 00039 00132
‘ EC (1) S £ - [ oo 00781 00000
MODEL 2
InCF (Model 2) Long run Short run
Variable Coefficient Standard error Probability Coefficient Standard error Probability
InGDP. 0.0952 02125 06569 0.0267 01380 08474
InEDI 00303 00142 00102 00183 00123 01478
InURB 02143 05854 07164 24609 08903 00092
Sin 0.0354 00129 00097 00022 00042 06004
Cos 00718 00221 00025 00186 00047 00004
EC (1) - - - 05169 00895 00000
MODEL 4
InCLCF (Model 4) Long run Short run
Variable Coefficient Standard error Probability Coefficient Standard error Probability
LnGDP -0.1038 00166 00000 01303 01007 02043
InFDI 0.0083 00114 0468 | oon 00098 07395
InTRADE 00175 00360 0629 00334 00218 01341
sin 00256 00194 0195 0.0052 00030 00983
Cos 00552 00169 0002 00127 00037 00020
) - - B ose 00942 00000
MODEL 5
InCLCF(Model 5) g run Short run
Variable Coefficient Standard error Probability Coefficient Standard error Probability
InGDP 00690 01326 0.6060 02051 01134 00796
ot 00103 00100 03070 oo 00105 0.4966
InURB 00936 03622 07975 [ omst | ozurs 03126
sin 00027 00125 08299 [ o003 0.0036 0.0078
Cos 00593 00144 0.0002 0.0060 0.0042 01651
EC (1) ) - - ~0.5763 0.1007 0.0000
MODEL 6
InCLCF (Model 6) Long run
Variable Coefficient Standard error Probability Standard error Probability
InGDP. 04481 00876 0.0000 00252 01036 08091
InEDI 00130 00075 00893 0.0021 00091 08185
InFAFGDP 06262 01572 0.0003 03219 01120 00069
sin | -o0es 00190 00022 00087 [ o001 [ o076
oo | —o0ms oous oot oo ooy osses
| EC (1) . - - ‘ 07349 0.1063 00000






OPS/images/fenvs-13-1513158/fenvs-13-1513158-t006.jpg
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Constant Constant Constant  Constant Constant Constant
and trend ELRET] and trend and trend
InCF ~6.1346 (0.0000) | -6.1507 (0.0000)  0.0879 0.0808 -22822 (2, -3.6528 [1, 01339 [2, 0.1613(1,1.6131]
1.663] 1.6131] 1.6631]
InCLCF ~5.9851 (0.0000) | ~57035 (0.0002) 04279 0.1209 ~5.5269 [1, 53252 [5,0.987) | 0.1160 [1, 0.1151(5,09878]
22799] 22799]
InGF 58073 (0.0000) | ~5.9969 (0.0001)  0.5000 0.5000 ~6.0303 [5, 61835 [5, 03023 [5, 0.3663 [5,09748]
0992) 09748] 0992)
InGLCF -5.8018 (0.0000) | -6.0336 (0.0001)  0.5000 05000 -5.8407 [5, 60331 [5, 0.3465 (5, 0.3798 [5, 09866
1.000] 0.9866] 1.000]
LnFPE ~3.9555 (0.0038) | —4.5348 (0.0041) 05928 0.0618 —41722 (1, ~4.9360 [4, 0.0804 [1, 0.1030 4, 3.2505]
57200] 32503] 57200]
LnFPLCF ~4.1028 (0.0025) | ~42133 (00095) | 02496 01637 -35320 [1, ~4.8880 [4, 007434 (1, 0.1387 [4,3.8379]
45458] 38379] 45458]
LnFF 55067 (0.0000) | -6.3698 (0.0000)  0.5449 01238 ~7.6506 [1, -7.7163 1, 01719 [1, 03277 (1, 3.5724]
7.3380] 35724] 7.3380]
LnFLCE ~5.0568 (0.0002) | -6.2892 (0.0000)  0.5668 0.1160 ~7.4068 [1, ~74070 [1, 01284 [1, 0.1282(1,3.2292]
9.3629] 32292) 9.3629]
InLNGDP ~3.1507* ~33633 (0.0702)  02155% 0.1316* -35517 [1, -44053 (1, 02528 (1, 0.0357 [1,4.3433]
(0.0303) 43997) 43433] 43997)
InLNEDI ~18.5649* ~19.5483* 05655 01536 -24739 1, -35704 [1, 029393 (1, 0.0735[1,58534]
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(0.0000) 28182 28182) 2.6082]
InURB ~0.6538 (0.8474) | ~1.4025 (0.8461) 063122 0.1378* 071487 [2, -198951 [1, 0.6002 (2, 0.0523 [1,
& 8.9062] 39.9967) 8.9062] 39.9967]
InFAFGDP  -53524°(0.0001) | -5.4219* (0.0003)  022962°  0.0934* -44229 [4, -47994 [4, 026751 [4, 0.0813 [4,2.2497)
21718 22497) 21718

Note: *, **, and *** are significance levels at the 10%, 5%, and 1% levels, respectively.
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Variables  ADF KPSS FADF FKPSS
Constant  Constant Constant Constant Constant ~ Constant Constant ~ Constant
ELGRGE ] and trend ELRGE ] and trend
InCF -10715 23547 (03970) | 08285 0.1065 -22758 (1, -2.5955 [2, 03813 (1, 0.1290 [2,
(07185) 21622) 126153] 21.6226] 12,6153]
InCLCF 0.6883 ~1.8223 (0.6764) | 0.6990 02158 ~1.1960 [1, -49734 1, 03315 [1, 0.0420 1,
(0.9905) 68.3069)] 107.072] 68.306] 107.072]
InGF -36135 -42329 (0.0089) | 05448 01096 ~4.1968 [1, -47142 5, 01368 (1, 0.1170 (5, 3.3105]
(0.0095) 5.6295] 33105] 5.6295]
InGLCF -2.1615 ~43330 (0.0068) | 0.7856 00885 ~3.5601 [1, ~25144 [5, 03195 [1, 0.1005 [5, 2.9554]
(02228 26.4935) 29554 264935]
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LnFPLCF 04492 ~12784 (0.8797) | 04823 01758 -2.0489 [1, ~4.0004 [1, 03344 [1, 0.0388 [1,
(0.8909) 13.6241] 113.401] 13.6241] 113.401]
LnFF -22819 00962 (0.9933) | 0.6866 02071 ~1.6958 [1, ~32760 [1, 03254 (1, 00542 (1,
(0.1822) 61.6426] 240.608] 61.6426] 240.608]
LnFLCF ~2.8804 00444 (0.9956) | 07233 02113 -17143 [1, -3.1152 [1, 03345 1, 00537 [1,
(0.0560) 526708) 298.890] 52.6708] 298.890]
InGDP ~14002 ~13182 (0.8696) | 0.8403 01150 -08772 (1, -27349 1, 03551 (1, 00592 (1,
(05731) 43.6955) 17.66094 43.6955) 17.6609)
InFDI =13.171* ~11.4576* 0.5251 0.2318 -1.4970 (1, -1.6633 [1, 0.3485 (1, 0.06770 (1,
(0.0000) (0.0000) 13.9962] 28.62746 13.9962] 28.6274]
InTRADE -25474 ~11889 (0.9002) | 0.6280 02003 -27611 1, -3.4847 [1, 03308 (1, 0.0521°* [1,
(0.1118) 90.3736] 97.6837) 90.3736] 97.6837)
InURB -12111 07419 (0.9996) | 0.8594 01870 -03652 [1, ~23475 1, 03977 (1, 00737 [1,
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Notes: Values in brackets are related to the FKPSS and FADF unit root test denote frequency and F-test statistics. The critical values of the FKPSS unit root test with trends at 1%, 5%, and 10%
significance levels are 0.2177, 0.1478, and 0.1189, respectively, while the critical values of the FKPSS unit root test with constant at 1%, 5%, and 10% significance levels are 0.7222, 0.4592, and
0.3476, respectively, regarding four frequencies. The critical values of the FKPSS unit root test with trends at 1%, 5%, and 10% significance levels re 0.2177,0.1484, and 0.1210, respectively, while
the critical values of the FKPSS unit root test with constant at 1%, 5%, and 10% significance levels are 0.7386,0.4626, and 0.3518, respectively, regarding five frequencies (Becker et al., 2006).
Regarding one frequency, the critical values of the FADF unit root test at 1%, 5%, and 10% significance levels are ~4.43, ~3.85, and ~3.52, respectively. Regarding two frequencies, the critical
values of the FADF unit root test at 1%, 5%, and 10% significance levels are ~3.95, ~3.28, and ~291, respectively. Regarding four frequencies, the critical values of the FADF unit root test at 1%,

5%, and 10% significance levels are ~3.60,

06, and ~2.71, respectively. Regarding five frequencies, the critical values of the FADF unit root test at 1%, 5%, and 10% significance levels

are =3.55, ~2.90, and ~2.59, respectively (Christopoulos and Le6n-Ledesma, 2010). The critical values of the F-test at significance levels are 6,873, 4.972, and 4.162, respectively (Becker et al,,

2006).
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Equilibrium poi

000,1) RiPy~UiG: +S=Cr, + Ry~ Ry +CriGp =Py + Ry +S: ~Ci 4 Co +§, 4T (h,4,%,%) Unstable
(1,00,1) 0:Go;ws +U = Py Py =~ Gp = Ry =S, + Gy = Cy =8, =T @0 Unstable
0,10,1) 0;Gs;U - Py;Gp+ Py =Ry + 5~ Ci + Co + 5, +T ©0,4,-,%) Unstable
00,L1) ~UiR=Eq+GeiCra=S=Ge =Ry + Ry = CriiGp Py + Ry + 5.~ Ci +Co +5, +T (h4,%%) Unstable
@,10,1) Gp~Ga+R;Py~U~ws;G: +S=Cra+ Ry~ Rp+ Ci; Ry = Py~ Gp =S+ C1 ~Co =5, =T (%%, %-) ESS(0)
1011 ~Gjwq +U =Pg;Py=Gp =Ry =S, +Ci = Co = §, =T (h=%%) Unstable
1,11 G;U = Pg;=GiiGp + Py~ Ry +8. = Ci +Co+ § +T (%) Unstable
@LL1) U -w;Gp ~Ea~Ga+ R+Gz:Cra =S~ Gz = Ry + Ry~ Cri3 Ry = Py~ Gp = S + Ci= 6%%-) ESS(d)
Co-8§-T

Note: x represents an indeterminate symbol, ESS stands for Evolutionarily Stable Strategy, (a) indicates that the conditions Gy, + R < G, Py <U + wg, Gz + 5 + Ry, + Cpy <Cpa + Ry are satisfied,
(b) indicates that the conditions P, <U + wg, R+ G; + Gp < Eq + G4, C2 + R, <S4+ G + Ry, + C,, are satisfied.
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Equilibrium point

0,000) Py-U;-R;Eg+S~Cpa+ Ry~ Ry + CriiRp — Py + S = Cy +Co + 8, + T (4,7,%,%) Unstable
(1,000) bo;o;wd+v+cr iPg~Rp =S +C1 -Co-S,-T | (0,0, +) Unstable
0,1,00) 0;0;U = Pys E, + P =Ry + S, =Cy +Co + S, + T (0,0,-,+) Unstable
0,0,1,0) Py~U;Eq=R~=G:;Cra =S —Eq~Ry+ Ry = Cris Ry =Py + 8. —Cy +Co + S, +T (+,%%,%) Unstable
(1,1,00) Gu—Gy—RiPy~U -Gy ~wg;Eq+S—Cra+ Ry = Rp +Cri; Ry~ P —E, =S +C1 —Cp = S, - T | (%%%,-) ESS(a)
(1,0,1,0) 0;-Goiwy +U +Gy = PPy =Ry =S +Cy = Co =S, =T | 0,-,%+) Unstable
0,1,1,0) O;U - Py;~Gy;Es+ P~ Ry +S, ~Ci +Co+ 8, +T ©0,-=4) Unstable
(1,1,1,0) P, -U-Gi-wa;Ga+Ea~Gp~R~G;;Cn~S~Ea~Ry+Rp —~Cpi;Ry = Pt —E; = S + C - Co— | (%,%,%,-) ESS(b)
§-T

Note:  represents an indeterminate symbol, ESS stands for Evolutionarily Stable Strategy, (a) indicates that the conditions Ga < Gy + R, Py <U + Ga + Wy, Cra + Ry > Es + S + Ry + C are
satisfied, (b) indicates that the conditions Py <U + Gg + wg, Gg + E4 <Gp + R+ Gz, Cpa + R, <S + Eq + Ry + C,, are satisfied.
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Nomenclature

5 Market gains from technological innovation for steelmaker
CiG " Production costs afer technological innovation and riginal production costs for steelmaker C; >Cy

T Lost opportunity costs for steelmakers not to innovate technologically

s Carbon benefits of technological innovation for steclmaker

P, Prices of green products (when government does not subsidize technological innovation for steelmaker)

P, Price of conventional product (when the government subsidizes technological innovation for steelmaker, the price of the product after technological

innovation is alsoP;) (P, <P;)

wy Carbon gains from green consumption by construction company
[% Revenue from scrap supplied by construction company (cost of recycling scrap by scrap recycler)
Ry Revenues from the provision of scrap by technologically innovative scrap recycler (cost of recovering scrap by steelmaker)
R, Revenues received by scrap recycler from the supply of steel scrap (R < Ry)
C,Cnt Processing costs after technological innovation by scrap recycler and original processing costs Cyz >Ci1
s Carbon gains from technological innovation for scrap recycler
R Government credibility (consumer subsidies lead to increased government credibility)
G, ‘The cost of government subsidies for technological innovation for steelmaker
Gs Costs of government consumption subsidies to construction company for purchasing green products
Eq Cost of government consumption subsidies to scrap recycler for recycling scrap (when scrap recycler undertake technological innovations)
G. ‘The cost of government subsidies for technological innovation for scrap recycler
E. Cost of government consumption subsidies to technologically innovative steclmaker

G Regulatory costs arising from government subsidies
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Abbreviation

Log

transformation

Data source

Cropland footprint per capita CF InCF Global Footprint Network (Global Footprint Network,
Cropland load capacity factor C-LCF InCLCF o

Fishing grounds footprint per capita FE InFF

Fishing load capacity factor F-LCF InFLCF

Forest products’ footprint per capita FP-F InFPE

Forest load capacity factor | EpLCE InFPLCE

Grazing land footprint per capita GE InGF

Grazing load capacity factor G-LCF InGLCF

Per capita real gross domestic product (constant 2015 US  GDP InGDP World Development Indicators (World Bank, 2024b)
dollar)

Foreign TRADE openness (% of InGDP) TRADE InTRADE

URBAN population (% of total population) " urs InURB

Agriculture, forestry, and fishing value-added (% of InGDP) | FAFGDP InFAFGDP

Foreign direct investment (net inflows % of InGDP) EDI InFDI
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Researcher(s) Country/time period

Al-Mulali et al. (2015) Vietnam/1981-2011

Baek (2016) Five ASEAN countries/

1981-2010

Bakirtas and Cetin (2017) ~ MIKTA countries/1982-2011

Liu et al. (2017) Four ASEAN countries/

1970-2013

Shao (2017) 188 countries/1990-2013

Dong et al. (2018) 14 Asia-Pacific Countries/

1970-2016

Destek and Okumus (2019) 10 Countries/1982-2013

Lorente et al. (2019) MINT countries/1990-2013

Balsalobre-Lorente et al.
(2019)

MINT countries/1990-2013

Rahman et al. (2019) Pakistan/1975-2016

Giizel and Okumus (2020) | Five ASEAN Countries/

1981-2014

Adeel-Farooq et al. (2020) | 76 countries/2002-2012

Pata and Isik (2021) China/1981-2017

Bulut et al. (2021) Tarkiye/1970-2016

Udemba and Yalgmtas
(2021)

Algeria/1970-2018

Isik et al. (2021) Eight OECD countries/

1962-2015

Fareed et al. (2021) Indonesia/1965Q1-2014Q4

Pavlovi¢ et al. (2021) 10 Balkan countries /19982019

Gyamfi et al. (2021) E7 countries/1995-2018

Shikwambana et al. (2021) | South Africa/1994-2019

Pata and Balsalobre-Lorente
(2022)

Tiirkiye/1965-2017

Abdulmagid Basheer Agila
etal. (2022)

South Korea/1970-2018

Ozbek and Ogul (2022) Tiirkiye/1990-2018

Xu et al. (2022) Brazil/1970-2017

Awan and Azam (2022) G20 countries/1993-2017

Pata and Samour (2022) France/1977-2017

Abbasi et al. (2023) Asian countries/1985-2020

Aminu et al. (2023) Sub-Saharan African countries/

1995-2019

Pata and Kartal (2023) South Korea/1977-2018

Raihan et al. (2023) Mexico/1971-2018

Ozturk et al. (2023) South Asian countries/

1971-2018

Pata et al. (2023a) ‘Top 20 countries with highest

fisheries production/2000-2018

Hakkak et al. (2023) Russia/1992-2018

Demir et al. (2024) Tiirkiye/1970-2021

Zheng et al. (2024) China/1980-2019

Variable

CO,, renewable and non-
renewable electricity
consumption, capital stock,
employment, foreign trade, and
GDP per capita

CO,, GDP per capita, energy
consumption, and FDI

CO,, EDI, per capita energy
consumption, and per
capita GDP

€O, renewable and non-
renewable energy consumption,

agricultural sector added value,
and GDP

€O, fossil fuel consumption,
‘manufacturing industry added
value, urbanization, openness,
and FDI

€O, natural gas consumption,
and GDP per capita

Ecological footprint, GDP per
capita, energy consumption,
and FDI

Ecological footprint, foreign
direct investment, GDP per
capita, renewable energy
consumption, and population

Ecological footprint, FDI,
urbanization, renewable energy
consumption, and GDP per
Capita

€O, agricultural value added,
GDP, financial development,
openness, DI, and population

CO,, GDP per capita, FDI, and
energy consumption per capita

Environmental performance
index, FDI, GDP per capita,
energy consumption, and
urbanization

LCF, human capital, energy
intensity, natural resource
rents, and GDP

CO,, electricity production
based on renewable energy,
EDI, and GDP per capita

€O, GDP per capita, natural
resource use, non-renewable
energy consumption, and EDI

CO,, energy consumption,
openness, population density,
and GDP per capita

LCF, renewable energy
consumption, non-renewable
energy consumption, GDP, and
exports

CO,, energy consumption,
person, GDP per capita,
and FDI

CO,, energy consumption,
and GDP

CO; and economic growth rate

LCF, GDP per capita, primary
energy consumption per capita,
and tourism

LCF, GDP per capita, non-
renewable energy consumption,
renewable energy consumption,
and trade globalization

€O, GDP per capita, and
primary energy consumption
per capita

LCE, GDP per capita,
renewable energy consumption,
urbanization, non-renewable
energy consumption, and
financial globalization

CO,, GDP per capita,
technological development,
financial development, and
social globalization

LCF, CO,, ecological footprint,
GDP per capita, nuclear energy
consumption, and renewable
energy consumption

CO,, GDP per capita, foreign
direct investment,
urbanization, primary energy
consumption per capita, and
number of tourists

€Oy, industrial value-added,
financial development, foreign
direct investment, primary
energy consumption, and
employment

LCE, CO, ecological footprint,
GDP per capita, nuclear energy
consumption, renewables, and
energy consumption

LCE, GDP per capita,
urbanization, financial
gobalization, primary energy
consumption per capita, and
renewable energy consumption

Ecological footprint, GDP per
capita, primary energy
consumption per capita,
foreign direct investment, and
financial development

Fisheries LCF, GDP Per capita,
fisheries production, fishing
footprint, and container port
traffic

LCF, ecological footprint, GDP
per capita, urbanization,
nuclear energy consumption,
and renewable energy
consumption

€Oz, GDP per capita, primary
energy consumption per capita,
and trade openness

€O, GDP, foreign direct
investment, energy intensity,
and population

Empirical method(s)

ARDL

Panel cointegration, PMG

Panel VAR
Panel causality

Panel cointegration, OLS, FMOLS, and

DOLS

Panel GMM

Panel cointegration, causality, AMG,
and EMOLS

Panel cointegration, CCE and MG

Panel OLS and FMOLS

Panel cointegration, FMOLS, and
DOLS

NARDL

Panel cointegration, CCE, and AMG

Panel GMM

Dynamic ARDL

Soft transition panel regression model

NARDL

Fixed effect regression and CCEMG

Fourier quantile causality,
Fourier-Toda-Yamamoto causality

Pearson correlation and polynomial
linear regression

Panel cointegration, ARDL, and
causality
Sequential Mann-Kendal test

Dynamic ARDL

Quantile cointegration and quantile
causality

ARDL and FMOLS CCR

ARDL

Panel cointegration and panel causality

Fourier ARDL and
Fourier-Toda-Yamamoto causality

Panel cointegration, PMG, and ARDL

Panel cointegration and FMOLS

Bayer-Hanck cointegration, ARDL,
DOLS, and CCR

ARDL, FMOLS, DOLS, and CCR

Panel cointegration, EMOLS, DOLS,
and PMG

Panel cointegration and
Dumitrescu-Hurlin panel causality

ARDL

A-ARDL

NARDL

Empirical results

EKC hypothesis (x)

Pollution haven hypothesis (')

Pollution haven hypothesis ()

EKC hypothesis (-)

Pollution halo hypothesis (/)

Environmental Kuznets Curve
hypothesis (/) 13 Countries.
Invalid for Philippines.

Pollution haven hypothesis (v)

Pollution hypothesis ()

Environmental Kuznets Curve
and pollution haven
hypotheses (v/)

Pollution haven hypothesis ()

Pollution haven hypothesis ()

Pollution halo hypothesis (/)
in developed countries and
pollution haven hypothesis (v)
in developing countries

It was concluded that increases
in natural resource rent,
income, and energy intensity
caused a decrease in the LCF. It
has also been found that
human capital increases
environmental quality in the
long term. EKC hypothesis (v/)

Pollution haven hypothesis (v/)

Pollution halo hypothesis (/)

Environmental Kuznets Curve
hypothesis (+). Four countries

Renewable energy and export
diversification increase LCF
and support environmental
quality. On the other hand, the
increase in the consumption of
non-renewable energy reduces
the LCF.

Pollution haven hypothesis ()

EKC hypothesis (/)

EKC hypothesis is (-)

Economic growth, increases in
the tourism, and energy
consumption have negative
effects on the LCF in the long
term

Most of the quantiles show that
economic growth, structural
change, renewable and non-
renewable energies, and trade
globalization reduce the LCE.

EKC hypothesis (/)

It has been concluded that
renewable and non-renewable
energy and economic growth
decrease the LCF, financial
globalization increases it, and
urbanization has no effect

‘There s a relationship in the
form of panel cointegration
and panel causality N

Nuclear energy reduces CO,
emissions and increases the

load capacity factor

Environmental Kuznets Curve
and pollution haven
hypotheses (/)

Environmental Kuznets Curve
and pollution haven
hypotheses (/)

EKC and LCC hypotheses (/)

Urbanization, economic
growth, and non-renewable

energy consumption reduce
the LCF and increase

environmental degradation

Environmental Kuznets Curve
and pollution haven
hypotheses (/)

Fisheries LCC and EKC
hypotheses (/)

EKC and LCC hypotheses ()

EKC hypothesis (/)

Pollution haven hypothesis ()

Note: PMG, pooled mean group; DOLS, dynamic ordinary least squares; FMOLS, fully modified ordinary least squares; CCR, canonical cointegrating regression; FGLS, feasible generalized least

squares; SGMM, system gener:

method of moments; MG, mean gron

MM: generalized method of moments; ARDL, autoregressive distributed lag; A-ARDL, augmented-ARDL.
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Variables

DE 02667+
(0.0684)
DID 00525+
(0.0094)
DID*DE ~04312*
(0.0423)
N ~00521
(0.0429)
RD ~12109
(0.4990)
LD 00201
(0.0246)
or 01222+
(0.0226)
UR ~00261
(0.0641)
Constant 09375+
(0.1895)
Observations 330
Adjusted R-squared 08756
Controls YES
Pro FE YES
Year FE YES
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Variables Observations Mean Standard deviati Min Max
CE 330 103042 0.5527 87657 105301
DE 330 01531 01179 00241 01142
sc 330 1.2869 08259 05423 0.9968
ES 330 03691 0.1494 00042 03764
TEP 330 0.5881 0.2656 01187 05951
TFEE 330 04389 01647 02350 0.3980
DID 330 01242 0.3304 00000 0.0000
N 330 03165 0.0793 0.1008 03198
RD 330 00169 00112 00022 00143
or 330 02430 02713 00003 01332
LD 330 7.6005 07675 55452 7.6582
UR 330 0.6005 0.1088 03630 05910
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Variables

DE 07376 05346
(0.0633) (0.0767)
N ~00964*
(0.0505)
RD 08876
(0.5538)
D 0.0460
(0.0293)
or 0.1484%
(0.0270)
UR 00467
(0.0767)
Constant 11355+ 07627+
(0.0097) (0.2261)
Observations 330 330
Adjusted R-squared 0.7870 0.8216
Controls NO YES
Pro FE YES YES
Year FE YES YES
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Variables

TFP
DE 08207 | 02853 06176 0.2376*
(03227) 01028) | (03374) | (0.1382)
N SLIO™* | 0559% | 04420% | 04105
(02124) (00677) | (02221) | (0.0910)
RD 62397 | 14494 28692 06445
(23303) (07425) | (24367) | (0.9982)
LD 03785 00831% | -00101 | 02763
(0.1233) (0.0393) | (01289) | (0.0528)
or ~0.0201 00777 | 00769 00204
(0.1135) (00362) | (01187) | (0.0486)
UR S13872% | -03111%* | 04738 00439
©27) | 1% | 379 | @1
| Constant 04390 ~0.0386 00791 | 24056"*
(09515) (03032) | (09949) | (0.4076)
Observations 330 330 330 330
Adjusted R-squared oo 0oms | osao | 092
Controls Yes | vEs YES YES
Pro FE YES YES YES YES
Year FE YES YES YES YES

Now: standand eivons are in paretthess **%< (0L *% < 0105 *5 < 0L
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Variables

DE 06876+ 01899
(02592) (0.1945)
N ~13603 09253
(13122) (0.4291)
RD 64671 7.3558
(9.0051) (10.7218)
LD ~00934 08443
(0.5383) (0.3772)
or 24747 0.5528
(0.4494) (0.5104)
UR 02104 -5.1736"
(1.2800) (2.1482)
Constant 107694 67062
(45760) (2.0841)
Observations 175 155
Adjusted R-squared 05134 0.9598
7 Controls YES YES
Pro FE YES YES
Year FE YES YES

Wk atnidand érioss s i pareihams; ¢ (01 "y < 005 - <DL
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Variables

DE ~09721+* -0.1495
(0.1901) (0.2586)
N ~0.7600 02029
(0.6754) (0.9989)
RD -115157 192325°
(13.3821) (10.1187)
LD 02036 02688
(04318) (0.5688)
op 18642 166107
(0.3785) (05715)
UR 07673 08498
(14431) (1.1790)
Constant 9.1833** 69317
(3.4893) (4.1764)
Observations 169 160
Adjusted R-squared 08406 07584
Controls YES YES
Pro FE YES YES
Year FE YES YES

Now: standand emvons are in paretthess **%5< (0L *% < 0105 *5 < 0L
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Variables

DE Sseme 0540 -21290
(1.6671) (1.0972) (1.2844)
N -02752 o2 o7s
(2:5166) (0.3318) (0.5120)
RD 41223 -17174 18437
(108773) (6.1101) (8.8080)
D 1.0698 01703 12120
(0.9141) (0.1502) (0.8551)
op 233410 09121% 0.3086
(0.6124) (04275) (05177)
UR 00541 -11103 -5.6836"*
[ (1.4327) [ (1.1804) (2.6570)
Constant 2903 124055 45949
(7.6133) (1.1878) | (5.5219)
Observations 110 9 121
Adjusted R-squared 092 oo 0.9629
Controls YES | YES YES
Pro FE YES | YES YES
Year FE YES YES YES

Now: standand emvons are in paretthesss **%< (0L *% < 0105 *5 < 0L,
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Variables

DE -2.2606*
(1.2445)
IN ~7.0807**
(1.6370)
RD 87595
(10.6905)
LD 07503+
(0.1411)
or 0.0860
(0.6266)
v UR 27128
(1.5490)
Constant 55960
(11857)
Observations 330
Controls YES
Pro FE YES
Year FE YES
AR (1) 0051
AR (2) 0540
Hansen test 0769

Note: standard errors are in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1.
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Variables

Anderson canon Corr. LM

DE ~5.9477%
(1.8139)
v 002174+
(0.0028)
N 02317 ~0.2317%
(0.0344) (0.0344)
RD 19330 19330+
(0.4161) (0.4161)
LD 00339* 00339
(0.0205) (0.0205)
r op 01238+ 01238+
(0.0178) (0.0178)
UR 00229 ~00229
(0.0558) (0.0558)
Observations 330 330
Resquared 04389

59.121 (0.0000)

Cragg Donald Wald F

61.984 (16.38)

Noke: sbindand drions are i aneibue, ™% < Q0L "5 ¢ 005 5 < 0L
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Variables

DE ~07038* ~0.0869°**
(03588) (0.0326)
DE2 ~0.1050*
(0.0531)
N oiss | oass0 ~0.0727*
(0.1939) (02207 (0.0390)
I RD -02175 =177 -0.0549
(2.1426) (42996) (0.3554)
LD 01099 00565 -1.2923+
(0.1116) (0.1403) (0.5842)
or 00050 00243 00429
(0.1001) (0.1333) (0.0320)
| UR ~00425 02717 00451
(0.2924) (0.4715) (0.0558)
Constant 95590+ 101452 170502+
‘ (0.8666) (1.0680) (0.0373)
Observations 330 286 2,793
Adjusted R-squared 09697 09679 0.9884
Controls YES YES YES
Pro FE YES YES YES
Year FE | YES YES YES

Note: standard errors are in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1.
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Variables Variable name Scalar

notation

Definition

Explained variable Carbon emission CE China Carbon Emission Database Accounting
Explanatory variable | Digital economy development level DE Composite index of digital economy calculated by the entropy method
Mediating variables Output scale sc Real GDP by Province
Energy structure ES Percentage of coal consumption account for the consumption of energies
Technological progress | TEP Total factor productivity
TFEE Total factor energy efficiency
Manipulating | Natonal big data comprehensive pilot zone | DID ‘The current year and subsequent years of the pilot provinces are set to 1, and the
variable policy rest are set to 0
Control variables Industrialization level N Percentage of industrial added value accounts for each province’s GDP
Research and development investment RD Percentage of RD investment accounts for each province’s GDP.
Openness level op Percentage of actual foreign direct investment accounts for each province’s GDP
Labor level LD Natural logarithm of the employed quantity in each area
‘The level of urbanization UR Percentage of urban population accounts for the each province’s population
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Primary indicators

Digital infrastructure

Digital industry development

Digital Financial Inclusion Index

Secondary indicators Attribute
Number of domain names 10,000 Positive
Number of IPV4 addresses 10,000 Positive
Number of broadbands subscribers port of Internet 10,000 ports Positive
Mobile phone penetration rate 100 people Positive
Long-distance optical cable length per unit area Kilometre/square kilometer Positive
Number of enterprises in the electronic information industry unit Positive
‘The number of websites per 100 enterprises unit Positive
Proportion of enterprises engaged in e-commerce transaction activities % Positive
E-commerce transaction volume 100 million yuan Positive
Software business revenue 100 million yuan Positive
Coverage breadth index - Positive
The depth index was used - Positive
Digitization degree - Positive
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Panel A: Carbon pilots (before 19 July 202

Pilot Cement Clinker Glass Fiberboard

To short | 3.207 3723 4610 3.646 3651
medium | 0378 0381 0811 0307 0475

long | ouss 0175 0452 | 0143 0211

From short | 3.681 4469 3643 314 3929
medium | 0091 0839 0594 | 0429 0.401

long | 0.035 0440 0281 0206 0.206

Nt dhort | “ons6 | 07| osx | 0278
medium | 0288 “oas7 | o7 | o | 0.074

long | 0.152 0265 o | 006 | 0.004

Panel B: Carbon pilots (after 19 July 2021)

Pilot Cement Clinker Glass Fiberboard

To short | 3116 3564 3929 3293 3287
medium | 0295 0673 0758 | 0505 0.440

long | 0.164 0538 oes | o | 0.246

From short | 4.029 2784 3316 3.800 3259
medium | 0.137 0745 0920 | o0s0s | 0.363

long | 0.083 | 0606 | oers | oo | 0210

Net short | 0913 0780 0613 | -0.508 0.028
medium | 0158 | -0072 o162 | -oom | 0.077

long | 0.081 [ 0068 000 0009 | 0.036

Panel C: National carbon market

CEA Cement Clinker Fiberboard

To short | 2705 3331 3616 3310 3308
medium | 0,408 | 0695 ons | o5 0427

long | 0203 [ 0478 st o 0211

From | short | 3223 2655 s s 3434
medium | 0.296 0663 0w osi 0434
ong | 0127 0490 0601 | 0265 0213 |

Net short | -0.519 0676 0s7 | oass | -0.126
medium | 0.111 0032 0162 002 ~0.008

long | owe 0013 009 0029 ~0.002

Notes: This table reports the mean values of Cy/. (to), CyL. (from), and Ci, (net)
spillovers for pilots and the national carbon market. Short-term roughly corresponds to
1 day to 1 weck. Medium-term roughly corresponds to 1 week to 1 month. Long-term
MR T RO -
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CEA Pilot Cement Glass Fiberboard
Panel A: Price
Mean 65.28 24 17054 14081 1692.32 1097.03
Median 58.49 4064 169.06 14165 161500 128450
Maximum 103.47 7653 P 20335 0200 153550
Minimum 4146 9.08 13756 109.73 1021.00 4570
Std. Dev. 1539 1362 1884 1928 0| 47006
7 Skewness 0.75 I 0.14 0.93 0.81 149 -1.68
Kurtosis 25 210 457 | 426 523 396
7 Jarque-Bera 78.67 I 5245 346.09 243.65 807.46 712,14
(0.00) | (0.00) (0.00) (0.00) (0.00) | (0.00)
 ADF test 018 -290 215 ~264 -176 -235
(0.97) | (0.04) (0.23) (0.08) (0.40) | (0.16)
Observations 776 1396
Panel B: Return
Mean 0.09 004 001 | -002 0.00 020
Median 0.00 028 0.00 0.00 007 -0.08
Masimum 9.39 0385 | 645 7.70 1008 28034
Minimum -1030 -101.32 -442 -8.37 -1207 -2937
Std. Dev. 187 1798 058 | 0.60 191 7.96
Skewness 026 -023 202 | -001 -0.13 3125
Kurtosis 8.84 744 37.73 6481 631 1098.71
Jarque-Bera 111159 1157.04 7112791 22224410 64269 70061047.00
(0.00) (0.00) (0.00) ‘ (0.00) (0.00) (0.00)
ADF test -3297 -2472 -1385 -7.39 -3794 -37.98
(0.00) (0.00) (0.00) | (0.00) (0.00) (0.00)
Observations 775 1396

Notes: Std. Dev. Is the standard deviation; Jarque-Bera test investigates the normality of corresponding variable; ADF, test reports the results with intercept. Probabilitis for the above two tests
o S paronihin £ Bk danites o Chins vatond cachon Gadin siarot:
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Year q I i
2016 371821938 38712057.66 2128 2498 8246562.900 7952095518 370
2017 371821938 3525258831 2868 2445 6678112.99 6359621473 501
2018 371821938 3467374283 268.1 2110 6423706.903 6016915449 676
2019 371821938 35547626.90 2708 2358 6892161553 6618387.286 414
2020 371821938 36395240.80 2756 2612 7309022.415 7186029228 171
2021 371821938 29946968.07 2756 763 3877882.842 3137278.071 2361
2022 371821938 3000094132 2730 755 4615629.089 3740828.081 2339

Average 371821938 3417185109 266.1 1958 6291868.386 5808131819 833
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Parameters

unit product price (p) 03966
unit product cost (¢) 0.1681
initial carbon emissions per unit product (C) 813.89

unit carbon emission reduction due to K (6)
carbon cap per unit of product (T,)

the loan interest of GCF (I)

lower bound of the product demand (d)

upper bound of the product demand (d)

04140

02259

870.86

Values

2020
04185 04170 04136
02369 02232 02091
85642 858.48 86221

077

650

3.40%
23285920

50750518.75

2021
04319
03164

86224

2022
05099
03726

860.19

Average

04288

02503

854.90
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Year P Reg_ES Reg_RS
2016 03966 0.1681 81389 3058995.048 2681686.166 14.07
2017 04140 02259 870.86 3208179.289 2795681.895 1475
2018 04185 02369 85642 3363925.008 2789600.007 2059
2019 04170 02232 85848 3169824.840 2830362.047 1199
2020 04136 02091 86221 2969611.023 2834221764 475
2021 04319 03164 86224 4492343.147 2179015.905 10616
2022 05099 03726 860.19 5290335299 2586885.884 10451
Average Year 04288 02503 854.90 3554391004 2817637.472 2615
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d <d<} Negative

d st<ds ity Negative

d sttt <d Ao 2B (4 - ) 4 1 (§-C) s Sy Negative
A+ 0@ =D+ 1 G-0> iy Passtve

d>d>L Positive

d <d<l Negative

dsk<d A+ -d)+ G G-O<E Negative
delle(d-d)+ L (T-0)>L Positive

dzd 2L Positive
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\EUELIES

DID 00257+ 00144 0.0037
(0.0120) (0.0078) (0.0145)
N ~02211% 014114 03777+
(0.0349) (0.0307) (0.1172)
RD 11505* 17043 08884
(0.6904) (0.5930) (0.7452)
LD ~0.0766 00173 0.0152
(0.0617) (0.0154) (0.0469)
op 01145 00290 01240
(0.0381) (0.0429) (0.0375)
UR 01785 03596 00146
(0.1410) (0.1172) [ (0.0783)
| Constant 05937 -0.2130* 0.2094
(0.4269) (0.1191) (0.3803)
Observations 110 99 121
Adjusted R-squared oo 09738 0.9655
Controls YES YES YES
Pro FE YES YES YES
Year FE YES YES YES

Wots: Standird srons i sateithess, ¥ < 0L *p & 005, %9 < i1,
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Control group Treatment group

Mean SD i Mean SD Min

PM25 1,495 41430 14287 18046 87.287 1325 42190 16195 18045 87.297
GDPP 1495 10507 0.634 8933 12050 1325 10608 0724 8934 12046

7 Gov Les | oao oz | oos w2 s st o1 ooss | osmo
| sci Les | oon 0018 0001 0080 1325 0024 0010 0.001 0079
Edu 1495 0172 00v | ooss | o2 1325 0.181 0040 o089 | 0285

DI L5 | oo 0w | o os | 135 0| oo 0 0127

ERQ 1495 72.901 17736 10412 100 1325 86285 24324 10411 100

LThird L5 | om0 0275 0008 1350 1325 0194 0092 0.008 0747
GPAuth Les | oos s o 0631 125 oot | oo 0 0545
MOpen 1495 0369 1844 ~7.062 4797 1324 0417 2303 8049 11420

MSize 1,492 0325 1079 -3.036 3376 1320 0368 1022 ~10.165 2242
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Regional heterogeneity Level of economic development

5 M w Developed regions Medium regions Underdeveloped regions

ER1 0,192 (306) | 0.175* 0.069 0475 (256) 0.367* (1.87) 0457

(2.12) (132) (@78)

ER2 0439 (-215) | -0.163 ~0074 ~0341" (-221) ~0351* (~1.25) 0332

(-0.53) (-0.35) (2.06)

ER3 0.215% (1.43) 0089 | 0288 (1.65) 0243% (244) 0.143* (L41) 0176

(0.32) (1.88)

_cons 6759 3.599° 6.69* 7.265 0.246 414

(3.73) (1.41) (3.02) (438) (0.06) (218)

Control Yes Yes Yes Yes Yes Yes

Province Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes
N 330 330 330 330 330 330
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Substitution of explanatory variables

(1]

)

(3)

Replacement regression model

(4)

(5)

6)

ERI 0,046+ (3.06) 0,052+ (1.76)
ER1 0.192%* (3.06) 0.265% (221)
ER2 ~0.066* (-2.12) 0395 (-2.21)
ER2 0.439% (2.15) 74517 (2.15)
ER3* 0.021° (2.21) 0298+
(2.65)
ER3 0.288° (1.65) 1176
(3.12)
CP x ER1 ~0032* (-2.15) ~0.142%* (-3.34)
P xERE 0.008* (1.25) 0.021%* (1.43)
CP x ER2 ~0.058°* (~2.89) ~0077+* (-345)
CP x ER2* 0046+ (2.21) 0131+ (3.53)
CP x ER3 0087+ (-3.45) ~0.148"* (-3.87)
CP x ER3 0012 (3.11) 0,166+ (3.58)
_cons ~9.773* (~14.45) 9134 (-8.53) ~8.561%* (-9.45) ~9.433* (~11.46) ~4.673 (-8.54) ~5.845°% (-3.65)
Control Yes Yes Yes Yes Yes Yes
Province Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes
N 330 330 330 330 330 330
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Resource endowment Economic level
@) 2) (3) (4)
Resource-based Non-resource-based Economically developed  Economically underdeveloped
province province province province
‘ InCEjy 1765 0,985+ 07654 1765
‘ InDEI, 0236 0569+ 0629 0185
‘ Controls Yes Yes Yes Yes
} HansenTest 0257 0138 0373 0207
AR() Test 0000 0001 0,000 0.002
AR(2) Test 0267 0433 0343 0129

< 0.01, **p < 0.05.
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Variable (1) GI ) Gl 4) Gl (5) GI (6) GI (7) 2sLS
ERI¥ 0,041+ (3.12) 0059 (~1.43) 0,063+
(244
ERI ~0.192*% (~3.06) 0.384 (1.57) 02427
(1.651)
ER2 -0.21% (-2.12) ~0.443%* (-2.65) ~0322%
(1.543)
ER2 0439 (2.15) 9.132 (2.53) 3213
(2.341)
ER3? 0019* (221) ~0261% (-2.87) 0542+
@31
ER3 ~0.288° (~165) 33917 (2.84) 1094+ (2.90)
CP x ER1 -0.043** (-2.45) 00874 (12.17)
CP x ERI? 0,006 (225) 2632+ (2.33)
CP x ER2 -0.532** (-242) -0.431*
(1.32)
CP x ER2* 0027 (253) 0043
(178)
CP x ER3 ~0411"* (=3.04) -0342%
(-2:56)
CP x ER3? 0,030+ (3.16) 0,051
(2.32)
LF -0317°%(2.72) ~0.139*% ~0266"(-205) | -0253** (-0.45) 271 ~0256°(-2.62) -0811*
@371) (0543) (-5.68)
IS ~0.136" -0.266* ~0.125" ~0215%* (-2.70) ~2341% ~0.144(2.24) -0.266*
(-293) (-1332) @72) a2 (-205)
PD 0.108 0125 (-0424) ~1432* (371) ~3232* (-1.78) 1511 ~1411* 251) | -0.125" (-2.70)
(:2.93) (0643)
INUR -0231** (-1.342) -0.253 -0.624" (1.244) Q.27 -1.732* =135 —-1.233* (0.324)
(0213) (-0.432) (0.632) (0.432)
UR ~1412% (-0543) | -0.654" (-0632) ~1.543 ~1412** (-1321) ~1463 -1342* (0542) | -2422(0332)
(-0451) (0743)
_cons —1048% (-21.77) | 12137 (-1064) | -1034"* (-9.87) | -3.068°** (-7.87) = -5.625%* (-2.89) | -2715%% (-424) = -3212° (-2.32)
Province Y Y Y Y ¥ % bz
Year E§ ¥ 4 b % i ¥
N 330 330 330 330 330 330 330

Note: ***, **, *, denote p < 0.1, p < 0.05, p < 0.01, respectively; t-values in parentheses; same below.
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able Min Mean Max  Std. Dev  Obs

GI 0325 2.306 9.098 1748 330
ERI [ 0.146 1.554 2835 g8 | 30
ER2 [ 3255 4.929 10.460 1272 330
ER3 [ 0481 2501 3262 [ 0443 [ 330
cp [ 0.187 [ 0.763 2245 [ 0436 330
LF 3583 7.331 10.450 1351 330
15 0518 1218 5296 0695 330
PD 0526 6.804 11910 2056 330
INUR [ 0.004 0.016 0011 [ 0.064 330
UR 0350 0.59 0.896 0122 330
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Symbol

Na

Measure

el Green innovation Green patent applications +1
ERI Command-and-control environmental regulation ‘The ratio of regional waste gas, waste water and solid waste discharge to
the total industrial output value
ER2 Market incentive type environmental regulation ‘The natural logarithm of the region’s 2010-2017 sewage charges and
2018-2020 environmental taxes
ER3 Environmental regulation with public participation ‘The natural logarithm of the sum of letters, visit batches, and telephone/
Internet complaints from the region
cp Common prosperity ‘The measure of common prosperity based on entropy weight method
LF Labor force level ‘The number of employed persons is the natural logarithm
Iy Industrial structure Output value
PD Population density “Total population of the region/area of the regional administrative di
INUR R&d intensity R&D internal expenditure/Gross regional product
UR Urbanization level Urban population/total population
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Coefficient

‘ InDEI; (InUC - 0.146) 0172+

‘ InDEI, (InUC)~0.146) ~0371*
Controls | Yes
Cons_ 0472

‘ Resquared | 0.806

1 Prob> F | F = 0,000

< 0.01, *p < 0.05.
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Prosperity

Commonality

Second level index

Resident Life

Third level index

GDP per capita

Per capita disposable income of rural residents
Per capita consumption expenditure of urban residents

Per capita consumption expenditure of rural residents

Education Level
Medical level
Social Service Level
Cultural life level
Science and education input

Urban-rural gap

Regional Gap

Per pupil education expenditure
Number of hospital beds per capita
Local fiscal general budget expenditure/GDP
Public library holdings per capita
Science and education expenditure/GDP
‘The ratio of rural residents’ income to urban residents’ income

‘The ratio of consumption expenditure of rural residents to that of urban residents
‘The ratio of rural residents’ income to the national average rural residents’ income

The ratio of urban residents’ income to the national average urban residents’ income
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Acintensity

(3)

Intel 0065+

(-4.32)
Inbroadb ~0012%

(-6.14)
Indigfi 0,010
(0:88)
Indelroute [ 0.003
(0.98)
Indigfi (>5.106) -0.103*
(-1.66)
Indelroute (212.154) | | -0.027
(-1.94)

Controls Yes Yes Yes Yes Yes Yes
Year/Province Yes Yes Yes Yes Yes Yes
_cons 0,650 0344 03167 0319 0835 0916

(7.74) (8.13) (4:80) (5.56) (@51) (330)
N 348 348 348 | 348 261 | 87
R 0927 0931 0923 0923 0934 0979
AdiR 0916 0920 0912 | 0912 0921 0970
F 5787 7772 2903 3.067 1822 7.905

*p < 0.1 **p< 0.05 ***p < 0.01.
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(1) Main grain-producing areas

Acintensity

(2) Non grain-producing areas

digcounty 0167 ~0.094
(-3.14) (-249)
Controls Yes Yes
Year/Province Yes Yes
_cons 0511 0284+
(3.10) (5.62)
N 156 192
R 0938 0942
AdR 0924 0930
F 8523 2756

*p < 0.1 **p < 0.05 ***p < 0.01.
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(1) 1st (2) 2nd

Digcounty Acintensity
L2digeounty 0924
(73.08)
digcounty ~0.135%
(-5.98)
Controls YES YES
Year/Province YES YES
_cons 0174 0357
(751) 9.37)
N 290 290
R 0973 0.367
AR 0972 0351
F 1772.387
Underidentification test Kleibergen-Paap rk LM statistic 112230
Chi-sq (1) P-val 0.000
Weak identification test Cragg-Donald Wald F statistic 4276309
Kleibergen-Paap rk Wald F statistic 5,340,880
Stock-Yogo weak ID test critical values: 10% maximal IV size 1638
Hansen | statistic overidentification test of all instruments 0.000

*p < 0.1 **p < 0.05 ***p < 0.01.
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()] 2) (3)

Fcintensity ~ Acintensity  acintensity_w

digcounty -0355** -0.074**
(-388) (2.18)
digcounty_w ~0078
(-245)
Controls YES YES YES
Year/Province YES YES YES
_cons 0469 0432 03114
(149) (7.26) (659)
N 348 312 348
R 0953 0929 0935
AdjR 0946 0918 0924
F 2909 4677 3531

p < 0.1 **p < 005 ***p < 0.01.
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Acintensity

(1) Fe (2) Fe (3) Re (4) Re
digcounty ~0090" | 0087 | 0243 | -0.145%
(3.07) (2:62) (3223) (-868)
urbanization ~0170 0,246
(230 (-5.34)
disasterrate 0.022¢ 0.018*
| (1.83) (1.66)
Intechnology -0.004* 0,007+
(-1.84) (-354)
Inmachstrength 0007 ~0.001
(0.99) (-0.16)
agrstructure 0003 0,005+
(251) (-6.42)
tof 0274 -0220
(-149) (-1.14)
_cons 0,189 03467 02547+ 0479
(15.10) (6.79) (33.17) (17.42)
Year/Province YES YES
N 348 348 348 348
R 0917 0925
AdR  osor oo |
F 9452 3478

p < 0.1 **p < 005 ***p < 0.01.
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Number LEED] Standard error Maximum
Explained variable acintensity 348 0.150 0052 0349 0031
Explanatory variable digeounty 348 0426 0.165 0.858 0060
VMadming variable Inhuman o 2086 0079 2314 1771
Regulatory variable financialsupport 348 0116 0032 0204 0040
Controls urbanization 348 0586 0.109 0876 0350
disasterrate 348 0.141 0112 0.618 0.004
Intechnology 348 10259 1480 13.679 6219
Inmachstrength 348 2045 0472 2917 0950
agrstructure 348 9.961 4960 26,100 0300
tef 348 0021 0014 0.068 0.004
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Primary indicators Secondary indicators Unit Attribute
Construction of digital rural information infrastructure Rural broadband access users 10,000 households +
Average mobile phone ownership per 100 rural households number +
Financial infrastructure Digital inclusive finance index +
Construction of digital service platform Rural delivery route length Kilometre +
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Acintensity

“p < 0.1 **p< 0.05 ***p < 0.01.

@) )
digcounty 0082 0118
(-253) (375)
financialsupport 0242 0421+
(278) (455)
<_digeountyc_financialsupport ~1676"%
(-547)
Controls Yes Yes
Year/Province Yes Yes
_cons 0338 0153
(6.84) (2.56)
N 348 348
R 0927 0934
Adj R 0916 0923
F 3267 5988
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) ) (3)

Acintensity Lnhuman Acintensity

digcounty 0,087+ 0113 ~0.073*
(-262) (2.70) (-233)
Inhuman ~0.126
(-2.55)
Controls Yes Yes Yes
Year/Province Yes Yes Yes
_cons 0346 2115 0,612+
(6.79) (34.86) (4.98)
N 348 348 348
R 0925 0.952 0927
AR 0914 0.944 0915
F 3478 2798 3255
Sobel test
Est Std_err | z Pz
a_coefficient 0113 0042 | 2699 | 0.007
b_coefficient -0.126 0049 | 2553 | 0011
Indirect_effect_a*b | ~0.014 0008 | -1855 | 0.064
Direct_effect_c’ -0073 0031 | -2332 | 0020
Total_effect_c ~0.087 0033 | 2618 | 0.009
Proportion of total effect that is mediated: Lo
Direct effect to Ratio of total 0837

p < 0.1 **p < 005 ***p < 0.01.
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Conditional variables High ecological environment inter-provincial lon-high ecological
collaborative governance environment inter-provincial
collaborative governance

H2 NH1 NH2
Legal Factors (LF) ® ® ° ® ®
Institutional Factors (IF) ® ° ® ® ®
Technical Factors (TF) o ® ° ° ®
Perceptual factors (PF) ° ° ° I ® °
Efficacy Factor (EF) ° ° ® ®
Relational Factors (RF) ° ® ° ®
Interactivity Factor (IAF) [ ° o ® ® °
raw coverage 0.365 0.182 0291 0576 0561
Unique coverage 0.063 0.024 [ 0.046 0030 0.061
consistency 1.000 0916 [ 1.000 0826 0822
solution coverage [ 0.822 0673 [ [
solution consistency 0973 0902
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ional variables High ecological environment inter- Non-high ecological environment inter-

provincial collaborative governance provincial collaborative governance
Consistency Coverage Consistency Coverage

Legal Factors (LE) 0537 083134 0818 0628
Non-high legal factors (~LF) 0729 0.887218 0818 0519
Institutional Factors (IF) 0479 1.000 0697 1 0550
Non-high system factors (~IF) 0792 0.801 0978 0,657
i Technical Factors (TE) 0653 0822 | 0788 0620
Non-high-tech factors (~TF) 0643 0.955 0939 0578
Perceptual factors (PF) 0722 0877 I 0742 0467
Non-high perceptibility factor (~PF) 0504 0781 0788 0612
Efficacy Factor (EF) 0567 0924 0697 0575
Non-high performance factors (~EF) 0692 0810 0899 0545
Relational Factors (RF) 0685 0831 0879 0537
Non-high relationality factors (~RF) [ 0574 0.892 [ 0727 0585
Interactivity Factor (IAF) 0685 0.848 0788 [ 0605
Non-high-interactivity factors (~IAF) 0630 ‘ 0.954 0839 0596
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Variable name

Variable assignment criteria

Assignment

Source of literature

Result Variables

Ecological Environment

Conditional
Variables

Legal Factors

Institutional factors

Technical Factors

Perceptual factors

Efficacy factors

Relational factors

Interactivity factor

Effect of inter-provincial
collaborative governance of

Ongoing collaborative governance among
provinces, with a low number of environmental
emergencies in the past 5 years

Active collaborative management among
provinces, the number of environmental
emergencies in the past 5 years is average

‘There is a collaborative governance intention
among provinces, but not actively, frequent
environmental emergencies in the past 5 years

No cooperation

China has enacted environmental protection-
related laws and regulations on various aspects of
cross-regional collaborative environmental
‘management rights, and each collaborating
province is actively involved and cooperates
tacitly

‘The environmental protection-related laws
enacted in China can better guarantee the rights of
various aspects of cross-regional collaborative
environmental management

‘The laws enacted in China related to
environmental protection can basically guarantee
all aspects of the right to collaborative
environmental management across regions

‘The environmental protection-related laws
enacted in China do not cover the content related
to cross-regional collaborative environmental
‘management

The region’s environmental inter-provincial
collaborative governance-related system is
complete; the subjects are closely linked
environment, tacit cooperation, open and
transparent environmental information

‘The regional inter-provincial cooperation and
environmental management system has been
standardized, making environmental information
more accessible

‘The region’s environmental inter-provincial
collaborative governance-related system s
basically standardized, and environmental

information is basically open

‘The region does not have a system for inter-
provincial cooperation in environmental
management, and environmental information is
not made public

The region has a variety of online platforms for
provincial staff to understand and participate in
environmental issues, making full use of digital
technology to enable inter-provincial
collaborative governance, with fast updating of
information on cach platform and continuous
communication among provincial staff

‘The online platforms for people in the provinces
in the region to learn about and participate in
environmental issues are rich and diverse, and

other provinces are actively involved and
communicate more easily and quickly

‘The region has a multi-faceted platform for
people from all provinces to understand and
participate in environmental issues

‘There are no multiple channels for provincial
personnel to understand and participate in
environmental issues in the region

‘The province is quick to judge the severity of
environmental problems in the Yangtze River
basin and is satisfied with the quality and demand
for environmental management

1 Shanand Duan (2022), Suo etal. (2017), Li HX
et al. (2022)

‘The province makes judgments about the severity

of environmental problems in the Yangtze River

basin and is satisfied with the quality and needs of
environmental management

‘The province made a fundamental judgment
about the seriousness of environmental problems
in the Yangtze River basin and is partially satisfied
with the quality and needs of environmental
‘management

‘The province has difficulty judging the severity of
environmental problems in the Yangtze River
basin and is not satisfied with the quality and

demand for environmental management

The province is actively involved in the inter-
provincial synergy of environmental management
and is doing its best to fulfll its mission, believing

that this approach wil successfuly solve
environmental problems

‘The province is willing to participate in inter-
provincial collaborative environmental
‘governance and to complete the task

There is a willingness in the province to
participate in interprovincial synergy in
environmental governance, taking partial action

‘The province is reluctant to engage in inter-
provincial synergy in environmental management

‘The province has trust in other partner provinces
and is willing to share resources or strengthen its
behavior to improve cooperation

‘The province has general trust in other
cooperating provinces and can provide specific
resources

‘The province’s need to cooperate based on the
psychological need to compete with other
provinces

Lack of trust between provinces and reluctance to
share resources and strengthen cooperation

Effective dynamic feedback and timely
communication between provinces and access to
all information

Dynamic feedback and dialogue between
provinces and access to relevant information

08
06
0
1 Yang M and Li Z. C. (2024), Zhou, 2020; Mu
et al. (2019)
08
06
0
1 Yang Mand Li ZC (2024), Zhou, 2020; Fu et al.
(2022), Mu et al. (2019)
08
06
0
1 Huang and Yin (2022)
08
06
0
1 Huang XR (2021), Shi B and Mao HY (2016),
Tang et al., 2020; Wu (2017), Zhang QC and
Ai LY (2020), Choi and MOYNIHAN (2019),
Kang, 2020; Pan (2015)
08
06
0
1 LiY (2019), Choi and Moynihan (2019),
Mosley and Jarpe, 2019; Pan (2015)
08
06
0
1 Chen Q, 2018; Huang XR (2021), Li Y, 2019;
Jun Ren (2020), Tang et al. (2020), Wang Y
(2018), Wang LL et al,, 2015; Wu (2017),
Zhang CP etal. (2020), Elgin, 2015; Jager et .
08 (2021), Mosley and Jarpe, 2019; Pan (2015)
06
0
1 Bai H, 2017; Jun Ren (2020), Shi B & Mao HY

(2016), Tang et al. (2020), Wang JL (2017),

Weng SH et al,, 2020; Wu (2017), Wu CQ

(2017), Zhang CP et al. (2020), Jager et al.

0.8 (2021), Mosley and Jarpe, 2019; Pan (2015),
Xing and Xing (2021)

Limited dialogue between provinces, with partial
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Control variable Yes Yes Yes | Yes Yes
City fixed effects Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes ‘ Yes Yes
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Resquare 0935 0766 0.949 0935 0.937
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Year fixed effects Yes Yes Yes Yes | Yes Yes
Observations i 2,820 | 2820 [ 2,820 1 2,820 2,820 | 2,820
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Notes: *, **, and *** denote significance levels of 10%, 5%, and 1%, respectively, with robust standard errors in parentheses (the same as below).





OPS/images/fenvs-13-1518161/inline_50.gif





OPS/images/fenvs-13-1580362/inline_12.gif





OPS/images/fenvs-13-1518161/inline_53.gif





OPS/images/fenvs-13-1580362/inline_11.gif





OPS/images/fenvs-13-1518161/inline_48.gif





OPS/images/fenvs-13-1580362/inline_10.gif
At





OPS/images/fenvs-13-1518161/inline_49.gif





OPS/images/fenvs-13-1580362/inline_1.gif
PM25;





OPS/images/fenvs-13-1518161/inline_45.gif





OPS/images/fenvs-13-1580362/fenvs-13-1580362-t007.jpg
Variables ()]

(2)

Central
regions

(5)

Non-yangtze River
economic belt

Eastern
regions
0oGD ~1108
(0.505)
Constant 44051
(3329)
Control variable Yes
City fixed effects Yes
Year fixed effects Yes
Observations 1,152

Resquare 0950

0.407
0.598)
60663
(3.155)
Yes
Yes
Yes
924

0.940

3) 4)
Western Yangtze River economic
regions belt
~5.608°* ~1423
(0.613) [ (0.501)
32262 40696
(3723) [ (2.760)
Yes Yes
Yes [ Yes
Yes Yes
744 960
0904 0936

1300
(0.462)
46.170"**
(2.817)
Yes
Yes
Yes
1860

0937






OPS/images/fenvs-13-1518161/inline_47.gif





OPS/images/fenvs-13-1580362/fenvs-13-1580362-t006.jpg
Variables

0GD 3201 1480 00347 -1021% 0,050 0963
(0.902) 0333) (0.004) 0331) (0.007) (0.337)
ERQ 0020
(0.007)
GPAuth 15,205+
(1.921)
LThird -11.752%
[ (1.479)
Constant 725920 47,600 0.026 46528+ 0041 46616
(6171) [ (2.210) (0.022) (2.124) (0.031) (2113)
Control variable Yes Yes Yes Yes Yes Yes
City fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Observations 2,820 2,820 2,820 2,820 2,820 2,820
Re-square 0725 0935 0813 0936 0938 0936
Variables

0GD ~1545%% ~0646* ~1545% ~1.304+
(0.326) (0372) (0326) (0339
Msize ~0257
(0.272) ‘
OGD x MSize ~L1440
(0:236)
MOpen 0543+
(0.100)
OGD x Mopen -0253
(0.129)
Constant 46,129 45,906+ 46.129% 45,061
(2.207) (2128) (2207) (2.157)
Control variable Yes Yes Yes Yes
City fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Observations 2,820 2812 2820 2819
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(0.000)
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Control variable Yes Yes
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Year fixed effects Yes Yes
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{1638}

Notes: *, **, and *** denote significance levels of 10%, 5%, and 1%, respectively, with robust standard errors in parentheses. The number in curly brackets refers to the Stock-Yogo critical value

for a 10% maximal IV, size.
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Variables

did_govsu 074334
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Observations 664 664 664
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Note: Robust standard errors for clustering at the district level are in parentheses, ***P < 0.01, **P < 0.05, *P < 0.10.
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First stage Second stage
Variables did InEP
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(05162) (0.1382)
DistanceStr3 | 00251 [
(0.0058)
Controls | Yes Yes [ Yes
City FE | Yes Yes Yes
Year FE Yes Yes Yes
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Re-squared | - 08496 [ 0.9460
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Note: Values in parentheses in the K-P LM, satistic correspond to p-values; values in parentheses in the K-P Wald F statistic correspond to critical values at the 10% level of the Stock-Yogo test;
“*%P < 0,01, **P < 0.05; and clustering robust standard errors at the district level are in parentheses. The first-stage results estimated using the xtivreg2 command do not report the R-squared,
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InEP Environmental performance 664 -21631 14135 -46333 35107
did Institutional innovation in trade 675 00489 02158 0.0000 10000
in services
Inpgdp Level of economic development 675 108510 04977 9.4841 127997
Sfdi Level of foreign direct 675 00239 00201 00000 01134
investment
finance Level of financial development 675 12940 07587 02586 52007
Ingovexp Level of government 675 151349 07780 133812 178829
intervention
envreg environmental regulation 675 00026 00023 00001 00250
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Hainan 0011 0.101 1000 1000
Hebei 0890 0720 0269 0.666
Heilongjiang 0730 0688 1.000 1.000
Henan 0472 0578 0210 0462
Hubei 0386 0091 0.644 0692
Hunan 1.000 1.000 1.000 1.000
Inner Mongolia 0.136 0.604 1.000 1.000
Jiangsu 0.126 0070 0350 0364
Jiangxi 0124 0607 0181 0207
Jilin 1000 0646 0621 0899
Liaoning 0393 0545 0469 0530
Ningxia 1000 1.000 1.000 1.000
Qinghai 1000 1000 1000 1.000
Shaanxi 0417 0439 0549 0614
Shandong 0034 0729 0541 0675
Shanghai 0122 1000 1000 1000
Shanxi 1000 1.000 1.000 0718
Sichuan 0078 0248 0424 0991
Tianjin 0326 0315 0189 0356
Tibet 0915 0488 0913 0994
Xinjiang 1.000 1.000 1.000 1.000
Yunnan 0.142 0541 0079 0712
Zhejiang 0014 0527 0157 0463
Average 0438 0611 0584 0719
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Aspect/

General industrial solid waste (billion tons)

Hazardous waste (million tons)

Year
Output Utilization Disposal Output Utilizationand disposal

2022 397 | 227 89 86,536 84612

2021 368 ‘ 204 92 72818 76,305

2020 441 ‘ 22 10 81260 75.393

2019 408 ‘ 217 103 74700 67.885

2018 387 \ 206 Loa 65813 59727

2017 37.1 ‘ 211 85 52.195 43.172

2016 327 ‘ 199 173 39761 32237

T —
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Category Standard Minimum Maximum

deviation value value
Explained variables »n Carbon dioxide emissions (In) 5,094 16.886 0.961 13978 19.545
» Carbon dioxide emission 5,094 2,003 0.746 0288 4891
intensity (In)
Core explanatory Policy Broadband China strategy 5094 0.019 0392 0 1
variables
Mediator variables | Green technology | the number of granted green 5,094 2928 2228 0.001 1109
innovation invention patents (In)
industrial the ratio of the output values of the 5,094 0948 0340 0437 1972
structure tertiary and secondary industries
upgrading
Control variables x1 per capita GDP (In) 5,094 10.569 0739 4605 15.675
x2 Population density (In) 5,094 116,831 402577 1740 8564
3 Employment structure (%) 5,094 53.821 13278 9910 94.820
x4 Foreign direct investment (%) 5,094 2.088 2411 0 27.943
x5 Green coverage rate (%) 5,094 38.824 7522 0,059 95.250
%6 Government expenditures on 5,094 0199 0305 0.001 6310
science
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Age

25-35 6 57.5
36-45 23 192
46-55 17 142
56+ 1 91
Level of competency

M.Phil Scholars 38 317
Ph.D Scholars 51 425
Senior Researchers s 108
Professors 18 150
Affiliations

Institute of Soil and Environmental Sciences, = 54 450
University of Agriculture Faisalabad,

Pakistan

College of Earth and Environmental 41 342
Sciences, University of Punjab Lahore,

Pakistan

Department of Environmental Sciences, 25 208

University of Peshawar, Pakistan

Source: Field Survey (October 2023).
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Constructs

 Environmental Digital Platform 0143 ‘ 0.140 0228 1254
‘ Green Infrastructure and Urban Resilience ‘ 0310 ‘ 0300 0071

‘ Nature-Based Solutions ‘ 0.133 ‘ 0130 0,003 1218
{ Perceived Adversity of Haze Pollution | ‘ 0001 | iam
‘ Smart Technologies Adoption oast \ 0.148 0.038 1207

B
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Relationships

Confidence intervals

s

P S e ST o

0.025 0.975
EDP > GIUR 0.124 | 2551 0024 0215 0.011
| NBS > GIUR 0.199 3857 0099 0.298 0.000
PAHP > EDP 0378 7.151 0272 0484 0.000
PAHP > GIUR Lo 3879 0111 0336 0.000
PAHP > NBS 0364 6518 0247 0458 0.000
PAHP > STA 0.388 | 8617 0304 0479 0.000
PAHP > EDP > GIUR 0.047 2325 0012 0.090 0.020
» PAHP > NBS > GIUR 0072 3531 0035 0.116 0.000
‘VPAHP > STA>GIUR 0093 [ 37 0.049 0.147 0.000
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Constructs Environmental Green infrastructure  Natur Perceived Smart
digital platform and urban resilience  based adversity of haze technologies

solutions pollution adoption

Environmental Digital
Platform

Urban Resilience

Green Infrastructure and | 0.423 ‘

‘ Nature-Based Solutions ‘ 0406 0404
Perceived Adversity of | 0477 0491 0407
Haze Pollution
Smart Technologies 0322 0.430 0216 0427

Adoption
B

P W Sy g
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Constructs Environmental Green infrastructure  Natur Perceived Smart

digital platform and urban resilience  based adversity of haze technologies
solutions pollution adoption
Environmental Digital | 0.807
Platform
Green Infrastructure and | 0.341 0825
Urban Resilience
‘ Nature Based Solutions | 0334 ‘ 0371 085 |
Perceived Adversity of | 0378 0435 0364 0731
Haze Pollution
Smart Technologies 0274 0402 0206 0388 0.884
Adoption

i

P W Sy g





OPS/images/fenvs-12-1488448/inline_211.gif





OPS/images/fenvs-13-1472235/fenvs-13-1472235-t002.jpg
Constructs Items VIF adings Alph Rho-A CR
Environmental digital platform

Prompts and reminders on adopting energy-efficient appliances EpP1 1 0777 orm 0748 osis 0.652
Encourage digital platforms on green initiatives EDP2 1501 0780

Advocacy for sustainable green infrastructural development EDP3 1618 0.861

Green infrastructure and urban resilience

Aesthetic appeal of infrastructural development GIURI 1991 0.821 0882 0893 0914 0.681
Reduced pollution GIUR2 3311 0.900

Purified air quality GIUR3 2525 0826

Healthy wellbeing GIUR4 2357 0836

Monetary savings GIURS 1654 0734

Nature-based solutions

Solar panels adoption NBSI 3392 0867 0909 0928 0931 0731
Wind turbines adoption NBS2 3448 0.883

Increase vegetation NBS3 3279 0.881

Trees Plantation NBS4 2758 0824

Enhance green built-up areas NBSS 2246 0819

Perceived adversity of haze pollution

Increased CO, emissions PAHPI 1384 0.631 0784 0799 0.850 0.534
Increased PM2.5 PAHP2 1337 0.675

Perceived health risks PAHP3 1345 0737

Perceived adverse effects on the ecosystem PAHP4 1874 0777

Perceived effects on daily errands PAHPS 2058 0819

Smart technologies adoption

Use of 10T for energy efficiencies STAL 3.860 0902 0930 0941 0947 0781
Smart thermostat and lightening STA2 3744 0.897

Adherence to sustainable architecture and urban planning STA3 2727 0850

Electric vehicle adoption STA4 4279 0911

Encouraging rider-sharing apps 3480 0858

STAS

T

I I
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Type of motor vehicle Average annual mileage

Bus 58,000
Ordinary taxi 135,000

Private vehicle 12,200 ‘

Online taxi-hailing service 81,000
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Taxis

Vehicle type Forecast ownership by Annual average driving Gasoline Electricity
2030 (unit) mileage (km)
Buses 5899 58,000 25% 43.95% 31.05%
Ordinary taxis 19,902 135,000 1% 1% 98%
Online taxi-hailing 50,000 81,000 0 100% 0
services
Private vehicles 3,086,803 12200 88% 12% 0
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Degree of synergy

Definition

Screening method and basis

Strong synergy

Weak synergy

Non-synergy.

anti-synergy

Ithas emission-reduction efects on ll
i pollutants and GHGs

‘While reducing most pallutants, one or
several polutants will be discharged
more, but ICER for comprehensive air
pollutant collsborative emission
reducton is *positve” or “zero.” that
s, the comprehensiv effect of
strategies i "positve” or “zero.”

While reducing most ofthe pollutants,
one or several polltants will be
discharged more. However, ICER for
the coordinated emission reduction in
comprehensive it pollutants is
“negative,”that i, the comprehensive
effct of stategies s “negative.”

One, several, or all pollutants are
creased, and ICER is “negative,” that
the comprehensive effect of the

‘measures i “negative.”

ICER> 0

ICER = 0

ICER <0

ICER <0

Synergistic control Co-control cross elasticity
coordinate system
Located i the frt quadrant B> 00

Located in the second quadrant, the Hijk = 0

fouth quadrant the horizontal axis of
the positve semi-axs, and the vertical
‘axis ofthe positive semi-axis

Located i the second quadran, the Bk <0
fourth quadrant, the negative half-sxis
of the horizontal axs,the negative
halfais of the vertical axis, and the
origin

Locatedin the third quadrant Both the numerator and denomintor are negative.

e e it i A G i T R s e Sl DA sk SO oy N T R
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First-level
strategy

Second-level
strategy

Scenario description

Traffic control

Technological innovation

Structural adjustment

1. Economic speed driving

2. Traffic restrictions
3. Vehicle natural gas retrofit
4. Promoting new energy
vehicles
5. Improving fuel quality

6. Developing rail transit

7. Low-carbon transportation

By implementing measures such as building urban expressways, intelligent scheduling, and tidal roads to
improve traffic flow, gasoline private vehicles increase their speed to an economic speed of 45 kmy/h.

Private vehicles are used for even- and odd-numbered license plates.
Increase the proportion of natural gas for taxis and buses.

By 2030, a larger proportion of taxis, private vehicles, and buses will use pure electric and hybrid electric.
By 2030, new vehicles will be equipped with higher-standard fuels, and the emissions of various pollutants will
be reduced by 25% based on the National V emission standards.

By 2030, the share of rail transit will increase, while the share of private vehicles and taxis will decrease by 15%
each.

Except for public transportation, the average annual mileage of other types of motor vehicles will decrease by
10% each based on the original forecast.
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Control Performance evaluation Screening method and basis
strategy

Degree of Synergistic Comprehensive ICER  Synergistic control ~ Co-control
synergy emission effect of strategy coordinate system Cross-
reduction effect EEN (1%
1 Economic speed | Non-synergy Bad Negative ICER < Located in the fourth Elsiapicoz < 0
driving 0 quadrant
2 Traffic Weak synergy Good Positive ICER > | Located in the first quadrant | Els;xprcoz > 0
restrictions 0
3 Vehicle natural | Weak synergy Bad Positive ICER >  Located in the first quadrant | Elsiapicoz > 0
gas retrofit 0
4 Promoting new | Non-synergy Good Positive ICER > Located in the second Elstapicoz < 0
energy vehicles 0 quadrant
5 Improving fuel | Strong synergy Good Positive ICER >  Located in the first quadrant  Elstapicoz > 0
quality 0
6 Developing rail | Strong synergy Medium Positive ICER > | Located in the first quadrant | Els; apcoz > 0
transit 0
7 Low-carbon Strong synergy Medium Positive ICER > | Located in the first quadrant | Els;xprcoz > 0
transportation 0
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Control strategy Elsiap/coz Elsco/coz Elsnox/coz Elssoz/co2

1 Economic speed driving -0.17 006 -083 0.00

2 Traffic restrictions 027 016 101 -001
3 Vehicle natural gas retrofit 146 234 126 3145
4 Promoting new energy vehicles -217 -275 116 -023
5 Improving fuel quality 028 | 016 104 024

6 Developing rail transit 117 121 | 099 092

7 Low-carbon transportation 143 | 151 099 093
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Control strategy

E

Nox)

E

(n,s02)

Formulas are shown in Supplem
Appendix S3

ERequap

Formula

(4)

EReqcon

Formula
(5)

Ranking of
ICER

1 Economic speed driving 2916 350 0.00 ~1,399,830 543,006 ~1,399,830,094 ~78,953,345 7
2 Traffic restrictions 12979 754 -1.04 2,489,639 1,570,216 2,489,639,122 142,956,821 1

3 Vehicle natural gas retrofit 1,377 68 -27.01 17,870 61,159 17,870,144 1,076,005 6
4 Promoting new energy | -160,405 617 -19.63 1,773,069 -8,976,129 1,773,068,885 91,716,453 2

vehicles

5 Improving fuel quality 8,285 497 18.56 1,590,716 1,038,904 1,590,716,016 91,375,666 3
6 Developing rail transit 42,972 323 47.62 1,082,107 2,963,023 1,082,107,075 64,415,884 4
7 Low-carbon transportation | 36,643 219 32.83 735,557 2458913 735,557,364 44,231,216 5
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Reduction and ratio
strategy

1 Economic speed drving
2 Teafc restictions
3 Vehice natural gas etrfit
4 Promoting new energy vehices
S Improving fuel quality
6 Developing il transit

7 Low-carbon transporation

Reduction
(ton)

2016
12979
1377

160,105
5285
w92

36683

NO,
Reduction Reduction Reduction Reduction Reduction Reduction
ratio (ton) ratio (ton) ratio (ton)
1% 30 16% 000 000% 1,399,830
% 75 350 104 000% 2489639
1% o o% 701 8% 17870
7% a7 2% 1963 6% 1773069
% 97 2% 1856 % 1590716
18% B 15% ve 1% 1082107
15% 29 10% 28 9% 735557

Reduction
ratio

-10%
5

000%
21
%
15%

10%
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Integrated emission

Taxi

Private vehicle

factor
Ordinary taxi Online taxi-hailing service

EFGy; co 4 1 1 1
NO, 024 006 006 006
50, 0009 0002 0002 0002
€O, 768 192 192 192

EFE, co 19355 3871 3871 3871
NO, 0050 0010 0010 0010
50, 0035 0007 0007 0007
Co, 34260 68.52 68.52 68.52

EENG,, co 0375 01 - -
NO, 0158 0042 - -
50, 0276 00736 - -
€O, 567 1512 - -
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Variables Strong environmental Moderate Weak environmental
regulations eenvironmental regulations

regulations

3) 4)
Policy -0.081*% ~0.090°** 0.006 -0.028** 0014 -0.029
(-5.49) (-6.38) (046) (-229) (0.59) (-148)
Control variable YES [ YES YES [ YES | YES YES
_cons. 1607+ 0.402* 1618 1394+ 1615 10410
(68.85) [ (1.79) (108.62) [ (965) | (48.28) (3.76)
Year FE YES YES YES YES YES YES
City FE YES YES YES [ YES YES YES
I N 1,653 1,653 1869 1869 I 1,153 1,153
R 0616 0574 0579 | 0508 0613 0.616
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Variables

Highly developed economic cities

Lowly developed economic cities

(1) (2) (3) (4)
Policy -0.021%* -00317* -0.053* -0.030°
(-207) (-243) (-248) (-1.84)

Control variable YES YES YES YES
_cons. 16.94*+ 1.899** 15.17** L2110

(125.18) (11.19) (58.47) (6.19)

Year FE YES YES YES YES

City FE YES YES YES YES

N 2367 2367 2308 2,308

R 0.521 0409 0533 0.546
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Variable Definition N Me:

envir Intensity of ER 2,229 0809 0212 0002 1.000
so2gn Environmental inequality (calculated from the Gini coefficient) 2,229 0037 0027 0000 0093
so2t Environmental inequality (Calculated from the Theil index) 2,229 0004 0003 0000 0018
npop Population agglomeration 2,229 5883 0839 1619 7923
neco Economic agglomeration 2,229 3698 1146 0707 7817
nind Industrial agglomeration 2,229 7.063 1259 2449 11810
infra Urban infrastructure development 2,229 7267 0938 3951 10010

‘The level of governmental emphasis 2,229 0237 0118 0057 0871

gover
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Variables

Gl 00173 00419
(0.0162) (0.096)
Manage 01202+
(0.0037)
Constant ~00197 ~0.0488
(~0.0064) (~0.0087)
Observations 22,743 22743
R-squared 07425 07633
Control Variables Yes Yes
Firm FE Yes Yes
Year FE Yes Yes

Nobsa: ‘This skcdand st aie clustared sk the firos Trvel #95 < 0:01. %4 <008, % % 010
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Variables

Gl 00218 0.0340°**
(0.0194) (0.0078)
Energy 01292+
(0.0163)
Constant -00197 ~0.0488
| (-0.0117) (~0.0095)
Observations 2,743 22743
R-squared 0.6945 05651
Control Variables Yes Yes
Firm FE Yes Yes |
Year FE | Yes Yes

Nober The standard aciors are chmsberad at the firm Tovek “#p < 0,01, %% < 0,05, % < 010,
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envir ~00114** ~0.0095 ~00016* ~00014*
(-23252) (-19955) (-2.1459) (-1.9536)
npop ~00284 ~0.0037
(-2.7823) (-2.8569)
neco 00003 0.0001
(-0.1253) (0.3376)
nind 00073+ 00007+
(3.2845) (2.2463)
infra 0.0004 0.0001
(0.1810) (0.2319)
gover 00104 0.0003
(1.2390) (0.2273)
Constant 00463 01559 0.0050" 00207+
(11.6332) (2:6838) (8.4272) (2.7492)
Year FE N v v v
City FE v v v v
Observations 2,229 2229 2229 2,229
Re-squared 0734 0740 0531 0.536

Mobe: 44, 84, and * incicate: 19206 and: 108 sianaleance Tewils; respuctively; with: sttistical t-valse in parwithiosss; Same-as bllow:
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Variable definition

Variable composition

Variable significance

Data sources

carbon
emissions (pco2)

green trade (Ingt)

political
stability (Inpoli)

Emissions of carbon compounds
such as carbon dioxide (CO;)
generated by human activities

Trade patterns related to green
products and related green
services

‘The authority of a country or
region’s government is effectively
guaranteed, and the political
system has durability and
predictability

Per capita carbon emissions of
G20 countries

Summarize all goods and services
categories related to “green trade” in
G20 countries according to the green
product list published by the Asia-
Pacific Economic Cooperation
(APEC)

The percentage indicator of political
stability and non terrorism in

G20 countries measures political
stability

Carbon emissions are one of the main
causes of global climate change

Assess and measure a country or
region’s ability to comply with
sustainable development and
environmental standards in
international trade

Assessing the impact of a country or
region’s political environment on its
green trade development and
environmental policy
implementation

United Nations (UN) Comtrade
database

United Nations (UN) Comtrade
database; The list of green
products released by the Asia-
Pacific Economic Cooperation
(APEC) in 2018

United Nations (UN) Comtrade
database

trade
diversification
(tradep)

total labor
force (Inlabor)

foreign direct
investment (Infdi)

renewable energy
consumption

(reenergy)

per capita
GDP (pgdp)

‘The economic activities of a
country or region involve multiple
different trading partners and
product types

‘The total number of people in a
specific region or country who are
able to participate in labor and are
currently working or willing to
work

Residents or businesses in one
country or region invest funds into
businesses, assets, or projects in
another country or region

‘The total amount of renewable
energy utilized by a specific region
or country within a certain period
of time

The GDP of a country or region
divided by its total population

Constructing a trade Herfindahl index
for G20 countries to measure trade
diversification

Total labor force of G20 countries

Foreign Direct Investment in
G20 Countries

Renewable energy consumption of
G20 countries

Per capita GDP of G20 countries

Measuring the breadth of a country
or region’s export products and
‘market diversity

‘The increase in the total labor force
can enable more people to participate
in environmental protection

Foreign investment has a certain
external impact on the environment

Can help evaluate the progress and
development level of a region or
country in renewable energy
utilization

One of the important indicators for
measuring the level of economic
development of a country or region

United Nations (UN) Comtrade
database; Wind database

United Nations (UN) Comtrade
database

United Nations (UN) Comtrade
database

United Nations (UN) Comtrade
database

United Nations (UN) Comtrade
database
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Carbon dioxide emissions

Calculation method

Annual CO2 emissions (million tonnes) in Qinghai
Province

Data source

China Carbon Accounting Databases (CEADS) (Guan et al,, 2021)

Population
Economic development level
Level of primary electricity
production
Primary sector

Level of agricultural technology

Resident population at year-end
GDP per capita (RMB yuan)
Primary electricity production/total primary energy
production
Primary sector output

Fertiliser use

Statistical Yearbook of Qinghai Province

China's National Bureau of Statistics and Statistical Yearbook of
Qinghai Province

Qinghai Provincial Bureau of Statistics

Statistical Yearbook of Qinghai Province

Statistical Yearbook of Qinghai Province
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Notes: ***is the significance at a 1% level.
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Yp PM, 5 Atmospheric Composition Analysis Group’s PM, 5 Dataset Shared at Washington University in St. Louis (V5.GL04)
YC Carbon Emissions County-level CO, Emissions and Sequestration in China from 1997 to 2017 (https://wwiw.ceads.net/user/index. php?id=
10578&lang=en)
X1 Number of Inversion Days MERRA-2 (https://disc.gsfc.nasa.gov/datasets/ M2IGNPANA_5.12.4/summary)
X2 Average Precipitation ERAS5-Land (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview)
X3 Average Temperature ERAS-Land (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview)
X4 Vegetation Coverage MODI3A3 (https://search.carthdata.nasa gov/search)
X5 Number of Green Patents China National Intellectual Property Administration
X6 Total Population Regional Statistical Yearbooks, Local Chronicles, etc. (hitps://swiww.stats.gov.cn/)
X7 GDP Regional Statistical Yearbooks, Local Chronicles, etc. (https://wiww.stats.gov.cn/)
X8 Per Capita GDP Regional Statistical Yearbooks, Local Chronicles, etc. (https://www.stats gov.cn/)
X9 Proportion of Secondary Regional Statistical Yearbooks, Local Chronicles, etc. (https://wiww.stats.gov.cn/)
Sector
X10 Total Nighttime Lights | Time-series Class DMSP-OLS Data for China from 1992 to 2019 (https://dataverse harvard edu/dataset xhtmltpersistentld=
d0i:10.7910/DVN/GIYGJU)
X1 Electricity Consumption Nighttime Light Data on a Global Scale from 1992 to 2019 (https://doi.org/10.6084/m0.figshare.17004523.v1)
x12 “Total Energy Consumption | County-level Spatiotemporal Energy Consumption and Efficiency Datasets for China from 1997 to 2017 Chen et al. 2022
x13 Energy Consumption Energy Consumption Efficiency = Total Energy Consumption/Gross Regional Product Chen et al. 2022
Efficiency
X14 Built-up Area Annual China Land Cover Dataset (https://essd.copernicus. org/articles/13/3907/2021/)
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lev ‘ 0512 0437 62 ‘ 087 0382 ‘
ROE ‘ -0.071 0.009 -108 ‘ -101 | 0312 ‘
SOA ‘ 0.641 70.641 0 ‘ 0 1 ‘
size ‘ 17.13 17.64 -16 ‘ -0.12 [ 0905 ‘

|

Note: ***, ** and * represent levels of significance at 1%, 5%, and 10%, respectively.
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Variables Model (1)

did ~0591** (0.182)
lev
ROE
size
s
board size
Constant 14.78* (3.772)

R-squared 0852

~0.546" (0.141)

14717 (3.693)

Model (2) Model (3)
| ~0507° (0:204)
0.243 (0.064) ‘ 0304 (0047)

‘ 0.043 (0.033)

|
|

| 1458 (3.468)

0.864 ‘ 0.869

Mot =, # sd * wwosssie Yoveli: of sicaiicuiion at 19 5%, iiid 1A% iespectively:

Model (4) Model (5)

0476 (0.097) | 0431 (0.102)
0214 (0.136) ‘ 0.274 (0.089)
0054 (0.013) ‘ 0054 (0.017)
0.391%* (0.226) ‘ 0453 (0.304)
‘ 0031 (0.017)
2074 (0.141) ‘ 2172 (0.144)

0871 ‘ 0873
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Variables Description/ Full sample

Non-participants

Participants

measurements (n = 410) (n=212) (n = 198)

Households™ Net farm income (10 thousand Yuan/ 10376 8.566 12314 -3748°%

income year)

Age ‘ Actual age of farm households | 46 51.146 40712 10.434%%
Gender Male = 1; Female = 0 0.663 0721 Loann 012

Education level | Years of formal education t0as 9405 1152 ~2114%

Household Labor | Number of family laborers 2273 2188 2236 075

Experience Years of farming experience 15397 19727 10868 8759

Part-time farmers | Yes = 1; No = 0 0509 0.566 | oat9 0117

Farm size Cultivated farmland (ha) st 4735 w2 ~1547%
* Medical insurance | Enrolled = 1; Not enrolled = 0 0407 0471 0338 0133

Village officials ‘ Village officials among family members = oz 0.061 0197 ~0.136"*

1;No =0

Mok #4584 '+ teresant lovel of significaiios ot 1%, 206, and. 108, Tesp
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Variables

Description/measurements

Mean

Low-carbon agriculture support policies (SP) If participating in any following support policies 0482 0.501
‘ Subsidy for using organic fertilizers or compost (SP1) Participant = 1; otherwise = 0 0275 0447
‘ Subsidy for recycling cultivation waste (SP2) Same as above 0231 oaz
‘ Subsidy for using energy-saving agricultural machinery (SP3) Same as above 0207 0405
‘ Skills training or lectures (SP4) Same as above 0239 0427
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Observations Mean SD

In (envirexp) | Total environmental expenditure during the whole year of the listed company in logarithmic form | 340 1006 3772
time 1f the year is after 2016 (including 2016), then time = 1; otherwise, time = 0 340 05 0.501
treat If the company is located in LCAP cities, then treat = 1; otherwise, treat = 0 340 0411 0.499
did did = treat;*post, 340 0206 0.405
lev ‘The asset-liability ratio of the listed company 340 0.395 0.098
e ‘The size of the listed company, and its value is taken in log format 340 s L35
ROE ‘The return on equity of the listed company 30 0.004 0.563
SOA If the company is a state-owned company, the SOA = 1; otherwise, SOA = 0 340 0594 0.498

board_size ‘The size of the company’s board 340 6514 1862
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Emotional

type

Positive emotion

Comment
sample 1

Retweeting this weibo, let us
support garbage
classification together,
protect the environment
from me, everyone is
responsible! Hahahaha, let's
work together on garbage
dlassification to make our
Earth more beautiful!

Comment
sample 2

Strongly support
environmental protection
policies, garbage
classification is the
responsibility of each of us,
come on!

Comment
sample 3

Seeing so many people
participating in garbage
classification is really great,
hahaha, we can definitely
do it

Comment
sample 4

Let us join hands to strive
for green living, starting
with garbage classification, 1
will start, adding a touch of
green to the earth!

Comment
sample 5

Environmental action starts
with small things, garbage
classification may be small
but its significance is huge,
jointly guarding our
beautiful home!

Negative emotion

Retweeting this weibo,
garbage classification is
good, but it’s too difficult to
implement, haha, am I the
only one who feels this way?

Support environmental
protection, but can policy-
making be more down-to-
earth? Garbage classification
i too complicated, haha

Protecting the environment
is everyone's responsibility,
butis not the fine policy too
excessive? Haha, it feels like
extortion

The idea of garbage
dlassification is good, but
actually doing it is really
headache-inducing, haha, is
there an easier way?

Can fines alone solve
environmental problems?
“This approach seems too
rough, haha, should there
be better solutions?
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e sentimel

keywords
Forward weibo (479 times)
Waste classification (276 times)
Support (187 times)
Start from me (81 times)
Forward (80 times)
Protect the environment (74 times)
Hahaha (73 times)
Everyone esponsible (57 times)
Waste classification Together (56 times)

Support policy (53 times)

gative sentim keywords
Forward weibo (508 times)
Waste classification (244 times)
Support (180 times)
Protect the environment (99 times)
Start from me (90 times)
Everyone responsible (77 times)
Haha (73 times)
Hahaha (72 times)

Waste classification Together (65 times)

Forward (60 times)
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Sentiment Sentiment Percentage Examples of positive and negative comments

‘ neg ‘ 17,074 48.75% Garbage sorting is too strict

‘ 15,133 4321% 1 classify them meticulously every time

g |
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3: kitchen waste  Topic4: demonstration

Topicl: community trash can  Topic2: fine  To ity  TopicS: takeaway  Topicé: environmental protection

Support 28% Foid | 78%  Trh 15715% Beiing 223% Tableware 33 Trash so01%
Go 230% Shanghai | 257  Sorting 195% Shanghai 2200 Takeout 261% Sorting as6%
“Trah bin 225% Tash 9% Theow 180% Nationwide 208 Provide 250 Fed 1915
“Throw 218% Soting  173%  Divide 133% Go 1705 Chopsticks 240% | Protect environment 157%
Community 159 Fne | 135%  Kichenwaste | 092% People 165t Bt 2309 v 151%
g 159 Good | LM% Gaubagetuck | 089% Promote 120% | Environmentl proecton | 190% Environment L
Buy 1515 No L% Trhbin 0s5% Do Lisw Plastic bags 1585 Small e
Trash 127 Chengda | 110%  Dump or7% Like e People L66% | Everyone's responsiblty 1215
Think Liss Think | 108%  Dispose 077 Fraud 096% Charge 133 Recyclable L
Good Lz Gy 09%  Good 069% Hope 091% wit L5 Good I
wi 093% Now 09  Beiing 069% Netinfo 0% bring 1015 Should 096%
“Things 09w People | 094% Life 059% Cannot 073% Donituse 1035 Dry 095%
Know os6% Thow | 0Bi%  Shanghai 0s8% Sy o7% Don' vant 0% Very oss%
Japan 07% | Communty 080%  Shoud 0% Pioncer 066% No 073% | Environmental protection oss%
Athome 0766 Divide | 075%  People 036% v 0% Supermarket 0% Do 0s2%
No 075 Know  O74%  Surwihme | 054% Group 060% Hotel 065% No 0s0%
Ak o B 070%  Hambd 0s3% Gy os5% By os5% Need o7
Garbage bag o7 Trashbin | 070% o 0s1% Place oss% Hand o61% Support 06%
bring o6 DryWet | 06s% wil 019% Finance 053% Good 061% Standard 06s%

Tun 066 Hanghou | 0.63% See 0a8% Unified 0s1% Merchant 061% Reduce o062
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Nanjing

Chengdu
Hangzhou

Shenzhen

Nanning

Wuhan

Jinan

Tianjin

Xiamen special economic
zone

Suzhou

Qingdao

Nanchang

Zhengzhou
Taiyuan
Xi'an
Shenyang

Chongging

Fuzhou
Guiyang
Haikou

Changsha

Main waste sorting policies

Shanghai municipal waste management regulations
Beijing municipal waste management regulations
Nanjing municipal waste management regulations
Chengdu municipal waste management regulations

Hangzhou municipal waste management regulations

Shenzhen municipal waste sorting management
regulations

Nanning municipal waste sorting management
regulations

Wuhan municipal waste sorting management methods

Jinan municipal waste reduction and sorting management
regulations

Tianjin municipal waste management regulations

Xiamen special economic zone waste sorting management
methods

Suzhou municipal waste sorting management regulations
Qingdao municipal waste sorting management methods
Nanchang municipal waste sorting management
regulations

Zhengzhou urban waste sorting management methods
Taiyuan waste sorting management regulations

Xi'an municipal waste sorting management regulations
Shenyang municipal waste sorting management methods

Chongging municipal waste sorting management
methods

Fuzhou municipal waste sorting management regulations
Guiyang urban waste sorting management regulations
Haikou municipal waste sorting management methods

Changsha municipal waste management regulations

City
Taian
Ningbo
Changchun
Yichun
Shijiazhuang

Lanzhou
Handan

Hohhot

Guangzhou

Dalian

Harbin

Urumgi

Hefei
Yinchuan

Kunming
Tongling
Yichang
Guangyuan

Lhasa

Deyang
Xianyang
Xining

Shigatse

Main waste sorting policies

Tai'an Municipal waste sorting management regulations
Ningbo municipal waste sorting management regulations
Changchun municipal waste sorting management regulations
Yichun municipal waste sorting management regulations
Shijiazhuang waste sorting management regulations

Lanzhou urban waste sorting management measures

Handan urban waste sorting management measures

Hohhot municipal waste sorting management methods

Guangzhou urban waste sorting management interim provisions

Dalian municipal waste sorting management regulations

Harbin municipal waste sorting management regulations

Urumgi urban waste sorting management measures

Hefei municipal waste sorting management regulations detailed
implementing rules

Yinchuan municipal waste sorting management regulations

Kunming municipal waste management regulations
Tongling municipal waste sorting management regulations
Yichang municipal waste sorting management methods
Guangyuan urban waste sorting work implementation plan

Lhasa urban waste sorting management methods

Deyang municipal waste sorting management methods
Xianyang municipal waste sorting management regulations
Xining municipal waste sorting management regulations

Shigatse municipal waste sorting management methods
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Groups Participation

articipation

A

Education level Over the mean value (n = 185) 12717 (n = 128) ‘ 9798 (n = 57) 2919%(0.632)
Below the mean value (n = 225) 1578 (=70 ’ 8.873 (n = 155) 27080369

 Farm size Over the mean value (n = 165) 12103 (n = 100) ’ 9.087 (n = 65) 3016(0.519)
Below the mean value (n = 245) 12531 (=99 ‘ 9.814 (n = 146) 27174(0.556)

Note: (1) ***, ** and * represent level of significance at 1%, 5%, and 10%, respectively.
() Dbl sinktiod i phise aahile: i nniressanplibon Ok = 4, Hia resilin of thi cilies te iatcling: Gialods A maaie
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Items of low-carbon agriculture support policies (SP) Participation Non-participation

Subsidy for using organic fertilizers or compost (SP1) 13.460 | 10450 301°(0.418) ‘

Subsidy for recycling cultivation waste (SP2) 13.673 11092 2ss1e 000 ‘
7 Subsidy for using energy-saving agricultural machinery (SP3) 12178 10355 18230629)

Skills training or lectures (SP4) 1159 | 1027 0569 (0.451)

Note: (1) ***, ** and * represent level of significance at 1%, 5%, and 10%, respectively.
() Dbl sinktiod i phise aahile: i nniressanplibon Ok = 4, Hia resilin of thi cilies te iatcling: Gialods A maaie
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Matching method Participatiol

Nearest-neighbor Matching (k = 4) 12314 2.738°4(0.431)
Radius Matching (caliper = 0.05) 12314 2862(0.433)
Kernel Matching (bwidth = 0.06) 12314 9461 2853(0.437)

Hlohes 500 3% ae % senvenert Suvdl of sicnbcancn it 19 S 4nd 1086, sespectively:
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Variables Coef. ME Coef. Coef. Coef. Coef.

(Model 1: SP)  (model1)  (Model 2: SP1)  (Model 3: SP2)  (Model 4: SP3)  (Model 5: SP4)

Age -0.925%(0.181) 0013+ ~0.902+**(0.02) 0989 (0.023) ~0.941%* (0.02) 0879 (0.022)
Gender ~0.539*4(0.147) ~0.103* 0.985 (0.281) 0662 (0219) 1059 (0302) ~0.381% (0.115)
Education level 1.188°%(0.067) 0,028 1.208*4(0.07) 1187 (0.082) 1078 (0.063) 1209 (0.074)
Household Labor | 1221 (0.226) 0.033 0,891 (0.176) 1471% (0316) 1254 (0233) o (0.158)
Experience 1.003 (0.019) oom 1019 0023) 0969 (0029) 1027 (0.022) 1.059** (0.026)
Part-time farmers | ~0.601*(0.154) 0084+ -0.599* (0.166) 1081 (0352) 0.643 (0.175) 0.754 (0.225)
Farm size 1291°%(0.063) 0,043+ 1091*(0.045) 1676 (0.102) 1015 (0.04) 1.144%* (0.051)
Medica insurance | 1207 (0325) Coom i (0.391) 1017 (0.354) 1121 (0.33) 2.113** (0.685)
Village officials 3.698°*(1.471) 0218 3471 (1.251) 2.456** (1.001) 1851 (0.663) 2332 (0.877)
Constant 1273 (1.559) - 1691 (2:213) 0,002+ (0.003) 0642 (0.848) 6.172 (8.826)
Pseudo R* 0272 |- 0213 0351 0082 Lo2n

Log Likelihood ~206.26 - -189.63 ~143.98 -191.89 -16832

Note: 1) ***, ** and * represent level of significance at 1%, 5%, and 10%, respectively.
2) Standard errors are in parentheses and ME, is a shortened term for marginal effects.
) Neials 90 10 ik FiiNcoE Ot D warsons Bacii f Linecartion spscdine sioaat polios (P vl wkes arlaatier vitables B Tuble &






OPS/images/fenvs-12-1488448/inline_324.gif
Gap-u ~ x 100%






OPS/images/fenvs-13-1581752/fenvs-13-1581752-t007.jpg
PSM-DID

Model (3)

~0.972%%(0.126)

Model (4)

~0.915**%(0.107)

1.356* (0.142)

0.071 (0.054)

0.478 (0.187)

~0.031 (0.017)

DID
Variables Model (1) Model (2)
did 0591 (0.182) | -0431% (0.102)
7lzv | 0274 (0.089)
ROE [ ‘ 0.054 (0.017)

‘7 size I \ 0.453*** (0.304)
~board size \ ~0.031 (0.017)
Constant 1478 (3.772) | 2172 (0144)

R-squared 0.852 ‘ 0873

15334 (1.742)

0897

2,968 (1.193)

0.905

Note: ***, ** and * represent levels of significance at 1%, 5%, and 10%, respectively.
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Threshold variable Threshold Fstat Prob.

nuc Single 41.08 0.003
Double 31.66 0265

Triple 2318 0327
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Model Threshold

Single Threshold ~0.146
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Variable Coefficient
InCE; 0,165
InDEI ~0471%%
InEL, 0172+
InPS;, 0.247
oL, 0073+
InER; ~0.221*

Cons._.

HansenTest 0252

AR(1) Test 0.001

AR(2) Test 0421

< 0.01, *p < 0.05.
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Industrial structure mediation effect Technological innovation mediation effect

(6] 2) (3) (4)

(niS InCE nT/ InCE

InCEjiy 0.125% 0172
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PSM-DID Changed policy time Excluded other policies Excluded extreme values

(1) 2 3) 4
DID 0,017+ (2.10) 00107 (1.22) 0023+ (2.78) 0013 (237)
Smart City Dummy ~0.008 (~1.08)

Constant ~2344"* (<10.05) -2239°* (-9.18) 2323 (-9.48) ~L71 (-9.79)
Control Variables Yes Yes Yes Yes
Gity FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 1795 1850 1850 1850
R 0.701 0.686 0.692 0776

P < 0.05, *P < 0.01; Values in parentheses are t-statistics.
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Digital Infrastructure Optical Fiber Length Length of long-distance optical fiber cables (10,000 km) Positive
Input

Internet Broadband Access Number of internet broadband access ports (10,000 ports) Positive
Ports

Related Employees Number of employees in information transmission, computer services, and software Positive

industries (10,000 people)

Digital Infrastructure | Telecom Business Volume Per Total telecom business income/total population Positive
Output Capita

Mobile Phone Penetration Rate Number of mobile phone users/total population Positive

Internet Penetration Rate Number of internet broadband access users/total population Positive
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Number of Listed Companies Related to the Internet Enterprises

Industry Digitalization | Agricultural Digitalization Index -
Industrial Digitalization Index -

Service Industry Digitalization Index —

Digital Governance  Government Website Development Index -
Number of Smart City Pilot Projects Units
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Interpreted Variable Carbon Emissions Carbon Dioxide Emissions Hundred Million Tons CE
Core Explanatory | Digital Economy Intensity | Evaluation Indicators for the Level of Digital Economy - DEI
Variable Development
Control Variables Economic Level Regional Population/GDP ‘Ten Thousand Yuan Per Capita EL
Population Size Regional Population/Area Persons Per Square Kilometer PS
Openness Level Foreign Direct Investment/GDP % oL
Environmental Industrial Pollution Control Investment/Industrial Added Value % ER
Regulations
Mediation Variable Industrial Structure | Tertiary Industry Output/Secondary Industry Output - 15
I
Technological Innovation  Authorized Patent Applications/GDP Items Per Hundred Million vy
Yuan
Threshold Variable Urbanization Urban Population/Total Population % uc
Construction
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DID

2816 (3.03)

0.011** (2.05)

0.042* (2.04)

0.042*** (32.42)

el 0.001%** (3.15)
& 0,002+ (3.46)
Control Vars Yes Yes Yes Yes
City FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Constant -6.057 (-0.24) ~1706* (-9.86) 0.866 (1.08) -2079* (-41.19)
Observations 1850 1850 23,620 23,620
R 0410 0779 0.075 0809

P < 0.05, *P < 0.01; Values in parentheses are t-statistics.
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Income leve Education level Ownership Technology level

heterogeneity heterogeneity heterogeneity heterogeneity
) 2 (3) (4)
DID x dpi 0.034*** (4.61)
DID x learn 0.028** (2.05)
DID x soe -0.007* (-1.82)
DID x hte 0.010% (2.57)
Control Vars Yes Yes Yes Yes
City FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Constant ~2407 (-9.87) ~2343%* (-9.65) 0671 (~4.18) ~0.675 (-4.19)
Observations 1850 1850 23,620 23,620
R 0697 0.696 0721 0722

“P < 0.10, **P < 0.05, ***P < 0.01; Values in parentheses are t-statistics.
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(4)

(5)

dig 0550 (232) 05117 (241) 04517 (239) 0502+ (2.66) 0450 (251)
dop 0407 (0.83) 0.0001 (0.77) 0.0001 (0.80) 0.0001 (0.99)
gov ~0.732* (~6.76) ~0.741%* (~6.71) ~0255% (-3.16)
ui 0.140% (1.82) 0.101 (1.54)
Inprgdp. 0.216*** (13.01)
Constant term 0175+ (24.55) 0125 (2.02) 0232 (3.26) ~0.086 (~0.46) ~2309"* (~9.48)
Gity FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 1850 1850 1850 1850 1850
R 0538 0541 0583 0586 0.692

“P < 0.10, **P < 0.05,*P < 0.01; Values in parentheses are t-statistics.
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First stage

DID

1)

Second stage
UEI

()

DID

0.106" (2.30)

iv

~110.420%* (~4.48)

Control Variables Yes Yes
City FE Yes Yes
Year FE Yes Yes

Observations 1850 1850

Non-identification Test

Weak Identification Test

1358 (0.000 2]

20.09 [16.38]

“P < 0.05, ***P < 0.01; Values in parentheses are t-statistics. In column (1) of Table 4, for the test of the null hypothesis “the instrumental variable is not identifiable,” the P-value of the
Kleibergen-Paap rk LM, statistic is 0.00, significantly rejecting the null hypothesis. In the weak identification test of the instrumental variable, the Kleibergen-Paap rk Wald F statistic is greater
than the critical value of 16.38 at the 10% level of the Stock-Yogo weak identification test.
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()]

2)

(&)]

(4)

(5)

DID 0017+ (3.59) 0,017+ (3.60) 0.010%* (2.20) 0.010%* (2.25) 0.023+* (2.76)
dop 0.0001** (3.95) 0.0001*** (4.02) 0.0001%** (4.17) 00001 (1.11)
gov ~0.734** (~12.80) ~0.740* (-12.91) 0215 (~2.61)
ui 0.094%* (2.13) 0.060 (0.93)
Inprgdp 0.224** (13.72)
Constant 0.186** (47.30) 0122 (7.38) 0229* (12.83) 0017 (0.17) ~2314°* (-9.44)
City FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 1850 1850 1850 1850 1850
R 0531 0535 0577 0578 0691

P < 0.05, *P < 0.01; Values in parentheses are t-statistics.
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Descript Observations Meal Std. Dev
UEL Total factor carbon emission performance 1850 0267 0.160
DID “Broadband China” pilot dummy 1850 0227 0419 0 1
dop City size 1850 502.861 330.097 18.46 200591
gov Government size 1850 0170 0,069 00734 04507
ui Industrial structure 1850 2316 0.139 20277 26949
Inprgdp Economic development level 1850 10774 0.582 9.436 12,0684
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Variable

Observation

NMR 120 0568 | 2051 | -1301 15.447
CMR ‘ 120 17971 | 144102 | -269.958 = 1146.876
ES A‘ 120 11733 9719 1.839 54.867
EI ‘ 120 0785 | 0752 0125 4365
VA ‘ 120 559947 | 608378 | 30.117 | 3137.979
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Levels NMR -2.8395 00023
CMR -1.0597 01446
ES 07143 07625
EI -3.4785 o003
VA 22822 00112

First difference | NMR -115221 00000
CMR ~7.2065 00000
ES ~1.8303 00336
EI ~12.6974 00000
VA 33077 00005
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VA \ Industrial Value Added Hundred Million Yuan ' Statistical Yearbook
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Standard errors in parentheses.
*p < 0.05 * p < 001, ** p < 0.001.

LCMR 00004+
(0.0000)
CMR 0.0004+
(0.0001)
ES ~0.0180°* ~0.0166"*
| (0.0009) (0.0022)
EI ~03414°% ~02231*
(0.0182) (0.0270)
VA 00011+ 0.0007+
(0.0001) (0.0001)
VA2 ~0.0000°+* ~0.0000°**
(0.0000) | (0.0000)
i ~0.1290°* ~0.0654°**
(00112) (0.0106)
Constant 264.6461 1364968
(22.6935) (21.4673)
Observation 110 110
*Sector fixed effct Yes Yes
Time fixed effect Yes Yes
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Between-group heteroscedasticity test Within-group autocorrelation tests Intergroup simultaneous correlation
tests

Statistics ~ P-value Statistics ~ P-value Statistics ~ P-value

Modified wald’s test 17927.25 Wooldridge's test Pesaran’s test 9513

Friedman’s test 49.031
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CMR 00007 0.0010 00004+ 00000 ~00001 00007+
(0.0008) (0.0013) (0.0001) (0.0000) (0.0001) (0.0002)
ES [ 00218 | 0.0341 | 00102+ 00069+ [ ~00057* | ~0.0030
(0.0384) (0.0341) (0.0018) (0.0021) (0.0023) [ (0.0033)
EI 03791 -02242 01983+ 00915+ ~0.1248+ 00519
[ (0.3696) [ (0.8491) | (0.0282) [ (0.0181) [ (0.0358) [ (0.0226)
VA 00013 0.0019 00006 00005+ 00004+ 0.0004**
(0.0007) (0.0017) (0.0001) (0.0001) (0.0001) (0.0001)
VA2 [ ~0.0000 | 00000 T ~0.0000** [ ~0.0000** ~0.0000
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Dianli*CMR | 00032+
(0.0005)
ES'CMR 00000+
(0.0000)
EICMR 00020+
(0.0005)
T -0.1237 -0.1267 00550+ [ 00485+ 00355 00373
[ (0.0896) (0.1004) (0.0118) (0.0108) (0.0132) (0.0151)
Constant 249.8655 255.2836 1153093 10191224 76,0550 792100
(180.7593) (202.6658) (23.8682) (21.7573) (26.7385) (304212)
Observation [ 120 120 | 120 [ 120 [ 120 | 120
Sector fixed effect Yes Yes | Yes Yes Yes | Yes
Time fixed effect Yes Yes Yes Yes Yes Yes

Standard errors in parentheses.
“p < 0.05,** p <001, p <000l
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EI 1190
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Stat

Modified Dickey-Fuller t -2.8764
Dickey-Fuller t -8.1490
| Augmented Dickey-Fuller t -2.1177
Unadjusted modified Dickey-Fuller t -7.7627

Unadjusted modified Dickey-Fuller t ~10.0633
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2 (5) (6)
VARIABLES Wx Direct Indirect
kof 01177 | 02967 | -0.125%% | 0277 0152
(-359) [ @%9)  (-369) (3.09) (193)
kof2 08887 | -2489%% | 0949 | 2319 | -1369"
(73 | (342 (387) (-348) (-233)
gdp_per ~0560%* | -0015 | -0560°% | 00817 | 0479
(-2606) | (-030) | (-2377) (1.98) (-1315)
Urban 0018* | 0030 0017** | 00237 | 0040
s | 63 08 (7.36) (1281)
Trade_open 0204 | 0059 0295%* | -0.099"* | 0.196"*
(3476) | (-205)  (30.01) (-376) (7.03)
Pop_density oiss | 000 | oassr | o0st 0134
(654 | (02 (&) (-065) @13)
Observations 2,814 2814 2814 2814 2814
Country FE YES YES YES YES YES
Time FE YES YES YES YES YES
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Model selection LR statistics Conclusion

SDM VS SAR 247.79 <0.001 We can reject that SDM mode is not better than SAR model
SDM VS SER 21431 <0.001 We can reject that SDM mode is not better than SER model

FE VS RE 40.55 <0.001 We can reject that FE mode is not better than RE model J
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2000 0230 5.621 03107 7428
2001 0231 5639 03307 7917
2002 0240 5849 0316 7.587
2003 0247 6.004 0334 8017
2004 0245 5939 0332 7938
2005 0243 5893 0329 7.883
2006 0240 5819 0343 8213
2007 0247 5976 0350 8358
2008 0250 6035 0343 8192
2009 0246 5942 03597 8583
2010 0234 5674 0332 7957
2011 0246 5941 03207 7.659
2012 0267 6453 0302 7.237
2013 0264 6373 0293 7.038
2014 0279 6727 0298 7158
2015 0280 6748 0315 7.544
2016 0282 6798 0310 7422
2017 0299 7.180 03147 7513
2018 0295 7.087 0285 6847
2019 0298 7153 0290 6951
2020 0317 7.609 02857 6839
2021 0332 7950 0278 6682
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\ELELIES

kof 1492+ 0824
(3.06) .71)
kof2 0175 ~0.121%
(-2.87) (-1.87)
gdp_per ~0.127% 0338
(-5.47) (-11.76)
Urban 00125 0,013+
(8:58) (5.72)
Trade_open 0078+ 0.270%+
(-4.55) 9.06)
Pop_density 0326+ 0172+
(7.88) (3.54)
_cons -2376* 1.508
(-2.37) (1.62)
Observations 1,525 1,401
R-squared 0525 0237
Country FE YES YES
Time FE YES YES
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() (3)
Variables
technology technology
kof 0,860 0.076* 1276 0132 ~0270
(263) (1.67) (224) (-031) (-:049)
kof2 0104 0156+ 0.013 0.040
(-243) (211 (0.23) (0.56)
Technology 0105+ 0183
(-5.55) (-7.59)
gdp_per ~0211% 0084+ 0,092+ -0.196** 0818+
(~1076) (279) (3.03) (-853) (27.99)
Urban 0016+ 0.000 ~0.000 0015 0019
(11.47) (0.15) (-0.06) (9.16) (9.16)
Trade_open 0056 0163 017444 0105 0094+
(3.19) (577) (6.06) 79 (3.39)
Pop_density 0362+ 0.149% 01427 0592+ 0,805+
(11.44) (230) (2200 (12.12) (12.97)
_cons 0635 ~1415% —3714% 0375 0983
(-0.98) (-3.14) (-3.15) (0.42) (-087)
N 2,926 1721 1721 1721 1721
R 0260 0.166 0.168 0.503 0443
Country FE YES YES YES YES YES
Time FE YES YES YES YES YES
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Variables
energy._int energy._int
kof ~0.887%% 1518+
(-338) (5.75)
kof2 0117 ~0.189%
(3.40) (-5.46)
KA 1 -0202% -0.091* [ ~0.134%
(-3.09) (-172) [ (-248)
KA2 | 0136 | 0.061 0093
(2.40) (1.35) [ (2.00)
energy_int 0.867°** 0,844+
(39.28) (36.50)
gdp_per [ ~0.435%% 0178+ | ~0.184%% | 0419 [ 0185
(-27.74) ©.51) (-9.13) | (-26.02) [ 9.54)
Urban | 0014+ 0,006+ 0015 0.014%% 0006
(13.17) (5.13) (10.95) (12.45) (5.22)
Trade_open ~0.017 0,062+ 0.095* 0.006 0083+
(-1.17) (4.35) [ (5.07) | (0.38) (5.38)
Pop_density 0.025 0,348+ | 0370 0020 0357+
(1.00) (13.66) | (11.47) | (0.78) [ (13.57)
_cons 6323 ~6.190% 0.908** 4581 -3221%%
(12.15) (-11.45) | (3.95) | (24:86) (-1459)
N 2,941 2,909 2,786 2,795 2774
R | 0.488 0.528 0263 0491 | 0513
country FE | YES YES YES YES YES
Time FE YES YES YES YES YES
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Variables
renewable renewable
kof 0860 -21.390% 0.449°
(2:63) [ (-2.20) (1.76)
ko2 ~0.104% 2478° -0.058*
(-2.43) (1.94) (-172)
KA [ 1 6,648 ~0.056
(351) (-1.11)
KA2 [ | -4.083* [ 0.046
v (-2.49) (1.06)
Renewable -0.021% -0.022%
(-42.79) (-42.14)
gdp_per ~0211% [ ~9.859%% | 0420 [ ~10.677** | ~0.417+
(-10.76) [ (~17.06) (-26.34) [ (~18.42) | (-25.29)
Urban 0016 ~0427%% 0,007+ 0405 0006
(1147) (-1057) (6.06) [ (-10.11) (5.89)
Trade_open 0056 14247 0,086+ 0426 [ 0104
(319) [ (@73) | (630) [ (0.78) | (718)
Pop_density 0362 ~17.634% | ~0011 ~17.938" ~0.023
(11.44) [ (-18.81) | (-042) [ (-1925) | (-0.86)
_cons 0635 255,054+ 4701 215321 5611
(-0.98) [ (13.23) | (9.03) [ (3247) (26.74)
N 2,926 2,953 2,921 2,807 2,786
3 0.260 0260 0556 [ 0277 | 0.561
Country FE YES YES YES YES YES
Time FE YES YES YES YES YES
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Variables

Lincei 09774
(13.95)
kof 0790 0989+ 0.860* 10,005 0900 4999
(242) (2.94) 1.72) (29.99) (246) (1.70)
kof2 0097+ 0123 -0.104 -1339% -0.110% ~0.643*
(-227) (-279) (-162) (-3133) (-232) (-176)
gdp_per -0223%+ ~0.166** ~0211 ~0085* 0168 0019
(-11.12) (-8.02) (-487) (-1431) (-8.77) (1.00)
Urban 0,016+ 0015 0016+ 0011+ 0,014 0000
(11.18) (9.94) (21.02) (32.10) (10.60) (-0.10)
Trade_open 0,063+ 00517 0,056 0,187+ 0,064 0021
(3.50) @77) (220) (13.80) (356) (0.99)
Pop_density 0338 0370 0362+ ~0.006* 0378+ 0007
(1038) (11.06) (9.79) (-192) (1233) (L13)
_cons 0279 -1.187* 0635 16855+ -1048 -9.814
(-043) (-177) (-051) (-25.26) (-145) (-1.64)
N 2,790 2,788 2,926 2926 2926 2,788
R 0254 0229 0243
Country FE YES YES YES YES YES
Time FE YES YES YES YES YES
AR (1) 0.001
AR (2) 0672
Hansen p value 0243
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Quantiles 0.9 0.7 03 0.1
Incei Incei  Incei Incei Incei
kof 7073|3120 3333 14407 13010°%
G e (239) (245) | (15373)
kof2 059 | 4o | 04zt | 01s0v | 171
(-300) | (-280) | (—223)  (-240) sy
gdp_per 0353 | 0098 | 0037 | -0032* | 0043
(-2123) | (-555) | (175) | (-275) | (3402)
Urban 00174+ 0.008"* | 0003** | 0002* 0003
(12.64) (4.33) (2.24) (4.20) (37.69)
Tradeopen | 0285** | 0213** | 0101** | 0019 | 0095**
(6.11) (333) (377) (0.40) (3459)
Pop_density 0019 | 0113 0091 0033 | 0018
(195 G (565) | (1019) | (1555)
Observations 296 296 2,926 2,926 2,926
Country FE YES YES YES YES YES
Time FE YES YES YES YES YES
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Variables

kof 0,983+
(2.33)
kof2 -0.113
(-2.05)
KA ~0202* ~0253+*
(3.09) (-3.00)
KA2 0,136 0170
(2.40) (2.33)
gdp_per ~0.184°* 0779+ 0816
(-9.13) (30.86) (3157)
Urban 0015 0,020 0,020
(10.95) (1152) (10.93)
Trade_open 0095+ 0040 0,095+
(5.07) (1.76) (394)
Pop_density 0370 0,505+ 0,519+
(11.47) (12.39) (1251)
Constant 0,908+ -1958 -0.162
(3.95) (-2.35) (-0.55)
Observations 2,786 2,926 2786
R-squared 0263 0391 0403
country FE YES YES YES
Time FE YES YES YES
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Variables

kof 1626 15274 08607
(457) (4.36) (2:63)
kof2 ~0214 0199 0104
(-459) (-432) (-243)
gdp_per 0196 0211+
(-:9.94) (-10.76)
Urban 0016+
(1147)
Trade_open 0056+
(319
Pop_density 0362+
(11.44)
_cons -1332 0427 0635
(-197) (0.62) (~098)
N 3,111 3111 2,926
R 0099 0128 0260
I country FE YES YES YES
Time FE YES YES YES
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Variable Obs

co2 efficiency

kof 4022 0331 283 4598 ‘
gdp per 8.548 1446 5502 11766 ‘
Urban 57.264 23428 8246 100 ‘
Trade open 0871 s o1 | am
Pop density 4223 12 -1 8983
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Variable type Index Variable concept Measuremel ta source
Dependent variable cei Carbon emission intensity ‘The logarithm of carbon emission per unit of GDP WDl
pee per capita carbon emission ‘The logarithm of carbon emission per person wDI

Explantory variable kof Degree of financial openness KOF globalization index Gygli et al. (2019)

Ka Chinn-Ito index Chinn and Tto (2008)

Control variable gdp per | Degree of economic development ‘The logarithm of GDP per capita wDI
Pop_density Population density People per square kilometer of land wDI
Urban Urbanization Urban population as a percentage of total population wDI
trade_open Trade openness (imports + exports)/GDP WDl
Intermediary variable | renewable Renewable energy usage Renewable energy consumption (% of total final energy consumption) WDI
energy int Energy efficiency Energy intensity level of primary energy (MJ/GDP) WwDI
grant_patent Technology progress In (number of patents granted/population+1) WIPO
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tenure = 1 tenure = 0
public ~0.005 ~0.004°+*
(0.005) (0.001)
pop 0012 0001
(0.008) (0.001)
growth ~0014°% ~0.021+*
(0.004) (0.001)
fdi 0092 -0010
(0.101) (0.012)
str 0032+ 0031+
(0.018) (0.007)
um 0095 [ 0031
(0.061) [ (0.021)
_cons 0.083 0.289%
(0.065) (0.009)
N 299 2481
AdjR 0970 0970
Standard errors in brackets.
P <0l
“p < 0.05.

i < 0.01.
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education = 1 education = 0
public -0.002 | ~0.006*
(0.001) [ (0.003)
pop | ~0.001 ~0.004
(0.001) (0.004)
growth [ ~0.020°* ~0019°*
(0.001) ‘ (0.002)
fdi ~0.004 ~0.065*
(0.013) (0.032)
str ~0.034°* 0037
(0.006) (0.017)
hum [ 0032 [ ~0.004
(0.020) (0.056)
_cons 0276 0280
(0.009) (0.029)
N 2351 429
AdjR 0970 | 0970
Standard errors in brackets.
P <Ol
“p < 0.05.

i < 0.01.
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(1) )

source = 1 source = 0
public ~0.001 ~0005+*
(0.002) | (0.002)
pop ~0.001 -0.002*
(0.001) (0.001)
» growth [ ~0.019*** ~0.021**
(0.001) (0.001)
fdi 0,070+ [ -0024*
(0.024) (0.014)
str | 0.001 0043+
(0.008) (0.008)
hum 0,048 0026
(0.026) | (0.028)
_cons 0231+ 030144
(0.015) | (0.011)
N | 177 1603
AdjR? 0970 0970
)
POl
“p < 0.05.

o < 0.01.
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public -0.002 0003
(0.002) (0.003)
pop ~0.000 0.001
(0.001) (0.003)
growth 0024+ 0018+
(0.001) (0.002)
fdi ~0.003 -0026
(0.014) (0.022)
str 0025+ 0033
(0.007) (0.015)
um 0,056 0054
(0022) (0.035)
_cons 03057 0246+
(0.009) (0.026)
N 2160 620
AdjR 0346 0970
Standard errors in brackets.
P <0l
“p < 0.05.

i < 0.01.
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public ~0028*
(0.006)
pop ~0010°*
(0.000)
growth [ ~0011%%
(0.001)
fdi ~0077*
(0.028)
str 0042
(0.008)
hum | 0003
(0019)
_cons 0248
[ (0.010)
idstat 1485976
widstat 3174005
N [ 2780
Standard errors in brackets.
P <0l
“p < 0.05.

i < 0.01.
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public ~0001* 1242 0,006
(0.000) (0.105) (0.001)
index 0001+
(0.000)
pop 0,002+ 0.269%* 0003+
(0.000) (©.011) (0.000)
- growh 0004+ 0478+ 0,001+
(0.000) (0.028) (0.000)
di 0000 0680 ~0015*
(0.003) 0.649) (0.007)
7 str 0005+ 0248 0013
(0.001) 0.192) (0.002)
| hum 0,004 16433 0022+
(0.004) (0.436) (0.005)
_cons 0,070 ~5.959%% 0,046+
| (0.002) (0.232) (0.003)
N 2780 2780 2780
AdjR 0975 0678 0422
Standard errors in brackets.
P <ol
“p < 0.05.

i < 0.01.
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public ~0004+* 1241 0023
(0.001) (0.103) (0.005)
index 0,008
(0.001)
pop 0001 0253+ 0,009+
(0.001) (©.011) (0.001)
growth 0022+ 0425+ 0,008
(0.001) (0.028) (0.001)
di 0009 0234 ~0.066*
‘ (0.012) (0.644) (0.029)
str 0023+ 0094 0,042
(0.006) (0.189) (0.008)
hum 0025 16,620 01374+
(0.019) (0.440) (0.024)
_cons 0290% ~5.449*% 0207+
(0.008) (©0.231) (0.011)
N 2660 2660 2660
AdjR? 0973 0.666 0392
Standard errors in brackets.
P <0l
“p < 0.05.

i < 0.01.
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public ~0004+* 1291+ 0023
(0.001) (0.110) (0.005)
index 0,008
(0.001)
pop 0002 0268+ 0,008
(0.001) (0.012) (0.001)
growth 0022+ 0483+ 0,007+
(0.001) (0.029) (0.001)
di 0004 0657 0079
‘ (0.013) (0.691) (0.030)
str 0020+ 0422 0,044+
(0.006) (0.202) (0.009)
hum 0029 16294+ 01310+
(0.020) (0.457) (0.025)
_cons 0298 ~5.865*% 0200+
(0.010) 0.239) (0.012)
N 2502 2502 2502
AdjR? 0974 0677 0386
Standard errors in brackets.
P <0l
“p < 0.05.

i < 0.01.






OPS/images/fenvs-12-1491608/inline_484.gif





OPS/images/fenvs-13-1534066/fenvs-13-1534066-t003.jpg
public ~0004+* 1242 0025
(0.001) (0.105) (0.005)
index 0,007+
(0.001)
pop 0001 0269%* 0,008
(0.001) (©.011) (0.001)
growth 0022+ 0478+ 0,007+
(0.001) (0.028) (0.001)
di 0009 0680 0079
‘ (0.011) (0.649) (0.028)
str 0,025+ -0248 0044+
(0.006) 0.192) (0.008)
hum 0025 16433 01274+
(0.018) (0.436) (0.023)
_cons 0288 -5.959*% 0,199+
(0.008) 0.232) (0.011)
N 2780 2780 2780
AdjR? 0973 0678 0393
Standard errors in brackets.
P <0l
“p < 0.05.

i < 0.01.
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Count Mean sd min ax

a 2780 0.028 0027 0002 | 0153
"public w0 2055 080 | 0000 \ 4344
index 2780 0914 0864 0.000 ‘ 3,840
pop 2780 5721 0911 2864 7200
growth 2780 10720 0553 9455 J 12052
i 2780 0016 0016 0000 | 0070
str = 0.878 0076 0618 09%
hum =) 0.019 0025 000l 01






OPS/images/fenvs-12-1491608/inline_482.gif





OPS/images/fenvs-12-1491608/inline_481.gif
(C,> —





OPS/images/fenvs-12-1491608/inline_469.gif





OPS/images/fenvs-12-1491608/inline_468.gif





OPS/images/fenvs-12-1491608/inline_467.gif





OPS/images/fenvs-12-1491608/inline_466.gif





OPS/images/fenvs-13-1534066/fenvs-13-1534066-t001.jpg
Variable Variable measurement

Carbon Emission Intensity a Total Carbon Emissions/GDP

Public Participatory Environmental Regulation | public Text-based measurement from policy documents

Public Environmental Participation index Average Daily Search Frequency of “Carbon Emissions” in Baidu Index
Regional Economic Growth growth Regional GDP growth rate

Foreign Direct Investment Infdi Logarithm of actual utilized foreign direct investment amount
Population Density [ npop Logarithm of total population per unit area

Human Capital hum Ratio of higher education students to total regional population
Industrial Structure str Ratio of secondary industry value-added to GDP
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Variables

Central Northeast Central Northeast

‘ G ~0.2605 ~00798* 03854 27607+ ~20261 ~00533 -02522% ~11.8338+
(-083) (-2.26) (-0.68) (-331) (-4.76) (-0.89) (-274) (-6.55)

‘ Constant e 351990 26877 3.4225°4(5.93) R - 11783+ 2.5612+(2.05)
(10.24) (11.22) (7.38) (6.47) (6.00) (1.99)

‘ Control Variables Yes Yes Yes Yes Yes Yes Yes Yes

‘ City fixed effect Yes Yes Yes Yes Yes Yes Yes Yes

‘ Time fixed effect Yes Yes Yes Yes Yes Yes Yes Yes

- Observations 1,002 Lue | 8s 404 1,002 1,119 859 [ 404

| Resquared 06313 07601 0.4615 07346 08157 0.7969 o5 06329

Note: *** indicates statistical significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 10% level, the values in parentheses are the t-values of the
parameter estimates.
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Variables

GFI 05079 22745+ ~0.3617* ~17279%
(-232) (-5.75) (-171) (-471)
Constant 33700 47634 30574 382540
(23.14) (18.09) (16.85) (11.76)
Control Variables [ Yes Yes Yes Yes
City fixed effect Yes Yes Yes Yes
Time fixed effect [ Yes Yes Yes Yes
Observations 3,099 3,099 2317 [ 2317
R-squared 0.6127 0.6507 05972 0.6618

Note: *** indicates statistical significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 10% level, the values in parentheses are the t-values of the
parameter estimates.
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Variables

GFI =0.13124* -0.2235** =0.1272*+ -0.1652*
(-291) (-234) (-2.81) (-1.75)
Constant 46700+ 51527+ 33368 40926
(3043) (1587) (22.86) (13.39)
Control Variables [ Yes Yes Yes Yes
City fixed effect Yes Yes Yes Yes
Time fixed effect [ Yes [ Yes Yes Yes
Observations 3,380 3,380 3,380 3,380
R-squared 06213 0.9663 06215 05920

Note: *** indicates statistical significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 10% level, the values in parentheses are the t-values of the

parameter estimates.
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Variables

EGFI ~0.1136*** (-2.76) ~0.1264*** (-3.07) ~0.3796*** (-3.96) ~0.3103*** (~4.06)
‘ Constant 3.4476** (1701.94) 3.3738*** (23.90) ~0.9688*** (~205.54) 4.6782*** (17.86)
‘ Control Variables No Yes No Yes
{ City fixed effect Yes Yes Yes Yes
\7 Time fixed effect Yes Yes Yes Yes
[V Observations 3,120 3,120 3,120 3,120
‘ R-squared 0.6432 0.6508 0.4724 0.6744

Note: *** indicates statistical significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 10% level, the values in parentheses are the t-values of the

parameter estimates.
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Variables

GFI ~0.1187** (-2.62) ~03407*** (-2.52) 01316 -0.1655*
(-2.92) (-1.75)
Constant 34475 (1,509.03) ~09686** (~169.87) 37045 10257
(62.83) (779
Control Variables No No Yes [ Yes
City fixed effect Yes Yes Yes Yes
Time fixed effect [ Yes Yes Yes [ Yes
Observations 3,380 3,380 | 3,380 [ 3,380
R-squared [ 06122 04718 09760 | 05893

Note: *** indicates statistical significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 10% level, the values in parentheses are the t-values of the
parameter estimates.
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Me: sd min Max
CE 3,380 3.5240 0.2257 29187 4.8151
a 3380 | -11343 | 03995 | -25570  -0.0608
GEL 3,380 00057 00203 | 100e:06 | 05104
FDI 3,380 12462 07353 0 33114
GS 3,380 0.1884 0.0914 00438 14851
PD 3,380 07549 0.0820 01810 08966
ES 3,380 05625 0.1504 00338 15938
UR 3,380 05735 0.1492 0.1806 11779
HCL 3,380 00209 00255 0.0001 0.1502
MS 3,380 156953 | 10478 | 123537 191392
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Indicator system Secondary Tertiary indicator Indicator property

Indicator
Green Finance System Green Credit Total Borrowing of Environmental Industry Listed Companies Positive
Green Bonds Total Issuance of Green Bonds Positive
Green Insurance Revenue Scale of Agricultural Insurance Positive

Green Funds Total Issuance of ESG Funds Positive
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Variables InCE InCl

Resource-based Non-resource-based Resource-based Non-resource-based
i cities cities cities
GFI -0.5602 (~0.70) =0.1271*** (-2.87) ~2.8390** (~1.96) ~0.1437* (~1.87)
Constant 34256 (15.47) | 323540 50345 (12.62) [ 441447 (13.49)
(17.14)
Control Variables Yes Yes Yes [ Yes
City fixed effect | Yes Yes Yes Yes
Time fixed effect Yes Yes [ Yes [ Yes
‘ Observations 1,262 2,120 | 1,262 | 2,120
Resquared 05927 06352 0.6015 07207

Note: *** indicates statistical significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 10% level, the values in parentheses are the t-values of the
R Mo






OPS/images/fenvs-12-1503735/fenvs-12-1503735-t008.jpg
Variables

Southeast cities Northeast cities Southeast citie Northeast cities
‘ GFI 01337+ ~07162 ~0.2089"* 48860
(-327) (-025) (-231) (-1.01)
‘ Constant 35797 20010% 46435% 19108
(25.69) (1.87) (15.07) (1.06)
‘ Control Variables Yes Yes Yes Yes
‘ Gty fixed effect Yes Yes Yes Yes
‘ “Time fixed cffect Yes Yes Yes Yes
‘ Observations 3,084 267 3,084 | 267
| R-squared 0.6749 03125 06153 04552

Note: *** indicates statistical significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 10% level, the values in parentheses are the t-values of the

parameter estimates.
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Indicators

Endogenous variable: Carbon emissions

Lower quantiles Middle quantiles Upper quantiles

15th quantile 30th quantile 45th quantile 60th quantile 75th quantile 90th quantile

COALPR 0,094+ 0079 0,081+ 0069+ | 0,063+ 0,068+
(0.014) (0.017) (0.013) (0.01) (0.007) (0012)
GasR 0013 0.023 0,032 0041+ 0052+ 0.068
(0.013) (0.016) (0.013) (0.012) (0.016) [ (0.011)
OILPR 01817+ 0,186 0128+ 0,095+ | 0,088+ 0079+
(0.023) | (0.028) (0022) (0.017) (0011) [ (0.02)
COALCO 0257+ 020744 02427 0263+ 025M 0248+
(0.04) | (0.049) (0.039) (003) (0.02) (0.035)
GASCO ~0.114 ~0.118 0161 ~0.221* 0235+ 02327
(0.078) | (0.094) (0.075) (0.058) (0.038) [ (0.067)
oico 0,603+ 0594+ 0476 0477+ 04250 [ 0467+
(0.081) | (0.098) (0.078) (0.06) (0.04) (0.07)
GTECH 0187+ 0,198+ 0213+ ~0371 0464+ ~0483*
(0022) | (0.069) (0.043) (0.164) (0.109) (0.192)
GFINANCE ~0.159 ~0.188 0245+ -0273* | 0388+ | ~0385
(0.089) | (0.151) (0.099) (0.154) ‘ (0.102) [ (0.18)
GENERGY ~0.056 0062 0081+ 0092+ 0105+ 0136
(0.029) | (0.037) (0.021) (0.026) (0.031) [ (0.049)
ENVREG ~0.509%* 0,385+ 0415+ 0332 0299+ 0230
(0.083) (©.1) (0.079) (0.061) (0.041) (0.072)
FDV ~0.034 ~0062 | 0185 | ~0.108* 0095+ 0,147+
(0.064) | (0.077) (0.061) (0.047) | (0.031) (0.055)
pop 06354 059144 0,589+ 0647+ 0,651+ 0,696+
(0.079) | (0.095) (0.076) (0.038) (0.039) (0.068)
GDPPC 0932+ 07520 0383 0275 03814+ 0284
(0.179) (0.216) (0172) (0.132) (0.088) (0.055)
_cons 23,125 20321 16946 17.108+ 18288 17,166
77 | (2.138) (1.696) (1.307) (0.869) (1532)

The estimated significance levels denoted by *, **, and *** correspond to values of 10%, 5%, and 1% respectively.





OPS/images/fenvs-12-1524350/fenvs-12-1524350-t009.jpg
Model W-stat Zbar-stat Conclusiol
COAL — CO2 emissions 7.886° 4215 Bidirectional
CO2 emissions — COAL 8143+ 4088
GASPR — CO2 emissions 9553 3422 Bidirectional
CO2 emissions —GAS 8539+ 4033
OILPR — CO2 emissions 6229 5129 Bidirectional
CO2 emissions — OIL 5275 3012
GTECH — CO2 emissions 5.102* 2775 Bidirectional
CO2 emissions ~GTECH 8678 4332
GFINANCE — CO2 emissions 9115+ 4025 Unidirectional
CO2 emissions — GFINANCE 2339 1322
GENERGY — CO2 emissions 8555+ 5330 Unidirectional
CO2 emissions — GENERGY 3115 0902
ENVREG — CO2 emissions 4901 2055 Unidirectional
CO2 emissions — ENVREG 6.009 4883
FDV — CO2 emissions 4901 2055 Unidirectional
CO2 emissions — FDV 6.009 4883
POP — CO2 emissions 4901 2055 Unidirectional
CO2 emissions — POP 6.009 4883
GDPPC — CO2 emissions 4901 2055 Unidirectional
GDPPC — CO2 emissions 2,664 0055

The estimated significance levels denoted by *, **,and *** correspond to values of 10%, 5%, and 1% respectively. It should be noted that homogenous effects are assumed for causality nexuses of
Gl sestiN Touaiinion i pradaction) i Tiils & hockne tece sie et bty Dt Seedbicks: S Yo ol
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Variables Endogenous variables: Carbon emissions

Production model

Consumption model

CS-ARDL CCEMG CS-ARDL CCEMG

Short-run

Longrun

Short-run

Longrun

COAL 0393*** (0.126) | 0239 (0.058) | 0.147* (0.068) | 0.157*** (0.031) | 0261*** (0.115) = 0.225*** (0.069) = 0.145 (0.085) | 0.084** (0.041)
GAS -0.436* (0.194) | ~0.473** (0211) -0332% ~0.282% 0273 (0165)  0.268** (0.095) | 0.188"** (0.058) 0126
(0.103) (0.055) (0.038)
oIL 0165 (0.056) | 0.231** (0.066) | 0.284** (0.055)  0.067 (0.072) | 0.096** (0.025) = 0305°* (0.058) = 0.175(0.149) | 0.055 (0.024)
GTECH ~1.367* (0552) | 1,559 (0.612) ~1.655% ~1102¢% ~1.429% -1782%% ~1.055% 0855
(0.514) (0.119) (0521) (0233) (0.122) (0233)
GEINANCE ~1381° (0.691) -1877 ~1455°% 0169 (0.135) | ~1.115* (0.335) ~1405% ~1186* ~0955*
(0334) (0322) (0228) (0.203) (0322)
GENERGY 0344+ 0533 -0.255 (0.145) ~0.612+% ~0451%+ 0566 0155 (0.089) 0382
(0.098) (0.114) (0.095) (0.122) (0.085) (0.065)
ENVTAX ~0282* (0.148) ~0714% ~0486% (0.199)  -0355°* | -0.133** (0.055) ~0.645 ~0255%* ~0.143%
(0233) (0.114) (0.099) (0.035) (0.042)
FDV. ~0497 (298) | -0515** (0219) | 0319 (0.179) | -0215** (0.069) | -0.556** ~0798"* | ~0.169** (0.075) ~0177%
(0173) (0.125) (0.036)
POP 0.119°* (0.035) | L113%* (0.133) | 1168"* (0298) = 1252 (0.331) | 1.435%* (0316) = L523** (0377)  0.686* (0.323) 10294
(0.154)
GDPPC 1268 (0336) | 1553+ (0.255) | L088** (0.155) | 1.105°** (0.228) | 1295%* (0.276) = 1338"** (0.115) | 0.855°** (0.155) 0,552+
(0.144)
ECT (-1) ~0.613*% ~0573*
(0.165) (0.095)
R-square/ 0855 0013 0.025 0924 0019
RMSE

The estimated significance levels denoted by *, **, and *** correspond to values of 10%, 5%, and 1% respectively.
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Endogenous variables: Ecological footprint

Consumption model

Production model

CS-ARDL CCEMG CS-ARDL CCEMG
Short-run  Longrun Short-run  Longrun
COAL 0459 (0.155) | 0322** (0.122) | 0.255* (0.112) | 0.208** (0.066) = 0.335** (0.133) = 0492 (0.115) = 0.288** (0.035) 0210+
(0.066)
GAS 0552+ ~0614+ 0435 (0.155) | -0356"™ | 0344%* (0.122) | 0355%* (0.172) | 0.337%** (0.112) 0465+
(0.103) (0.145) (0.104) (0.138)
oIL 0655"* (0.142) | 1755 (0.205) | 0.443*** (0.099) | 0375 (0.105) | 0416™* (0.133) = 0.339** (0.110) | 0175 (0.149) | 0.055"* (0.024)
GTECH ~1.367* (0552) | 1.559** (0.612) ~1655°* ~1102% ~1429% -1782 ~1.055% 0855
(0514) (0.119) (0521) (0233) (0.122) (0233)
GFINANCE 0.449 (0.285) 0,644 ~0.535%% 0466 0236 (0.159) ~0.555% 0388 0356
(0:205) (0.167) (0.195) (0.118) (0.132) (0175)
|
GENERGY 0113 (0.085) | -0243** (0.116) | ~0.148"* (0077) | -0388"** 0087 (0.074) ~0.124 ~0.119** (0.052) -0.128*
(0.104) (0.055) (0.066)
ENVTAX ~0355 0654 —0361% (0.188) | -0.444* | -0219°* (0.075) -0.331%% —0211% 0177
(0.115) (0.155) (0.134) (0.139) (0.045) (0.052)
FDV 0211 (139) ~0.492% ~0255 (0.122) | -0344** (0.075) | -0.122 (0.085) 0433 0119 (0055) | 0236
(©.115) (0.155) (0.126)
POP 14867 (0.156) | 2.557% (0.211) | 2.086*** (0.188) | 2.114** (0.223) | 1.022* (0.114) | 1882*** (0.156) | 1553 (0.225) 1433
(0274)
! | | i
GDPPC 2355 (0.115) | 1095*** (0.117) | L513*** (0.098) = 1455°* (0.228) | 2.568"** (0.176) = 1.634*** (0.115) | 1877*** (0.105) 1332
(0.118)
|
ECT (-1) ~0.358*% ~0255"*
(0.055) (0.065)
R-square/ 0889 0015 0016 0915 0023
RMSE

The estimated significance levels denoted by *, **, and *** correspond to values of 10%, 5%, and 1% respectively.
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Variables

Cross-sectional IPS (CIPS)

Cross-sectional ADF (CADF)

Level First difference Level First difference
co, -2759 4700 -2.683 -3.940%
COALCO -2400 4261 2415 4,051
COALPR isis ~4.056** -2.431 34617
GASCO -2.149 5168 1459 —3.717%
| GASPR ~0.901 2789 -0.551 -2.855%
OILCO a2 ~4732% -2138 -3.726"*
OILPR 0654 ~3.601%* 0911 -2.799*
GTECH -2.101 ~4363+ -2074 3189
GFINANCE s 4368+ -1871 32197
GENERGY ~1974 ~4.994+ -1818 3,520
ENVTAX -2310 —4425 -1710 ~2.992*
pop ~2454 4619 o 4,278
GDPPC -2192 -3.013 -2592 3,090
FDV -2730 ~2.903 -2.090 3,965+

The estimated significance levels denoted by *, **, and *** correspond to values of 10%, 5%, and 1% respectively.
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Statistic Values Z-values

‘ Gt ~3455 -5.164 0.000

‘ Ga -21331% ~17.044 0.000

‘ Pt ~15.1547% ~6.661 0.000

‘ Pa ~13526"% -6.055 0.000
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Variables Pesaran Pesaran Correlation
(2004) (2015)
co, 15,800+ 15796 0875
COALCO 9.130"* 91274+ 0.672
COALPR 16820 16823 0934
GASCO 6420 64210 0715
GASPR 9.345% 9335 0765
oico 6,840 6844 0677
OILPR 5443t 54250 0.687
GTECH 22,390 223920 0977
GFINANCE 2440 2444 0.980
GENERGY 21370 21373 0933
ENVTAX 8770+ 8766 0.687
POP 15,639 15646 0.852
GppeC 17270 17269 0754
FDV 9115+ 92254+ 0.603
Slope t-statistic ~ P-values
Heterogeneity
Delta 9.042 0,000
Adjusted Delta 10965 0,000

The estimated significance levels denoted by *, **, and *** correspond to values of 10%, 5%,

sind 1% yespectivaly:
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Variables (3) PAI

GFI -0.1316%* ~0.1655* 0.4367* (1.65) 00586 (0.83) 05559 (-3.79)
(-292) (-175)
PAI ~0.0095** (~194) 00561 (-5.56)
Constant [ 37045 10257 [ 1.5056* (2.74) | 3.3668*** (22.84) 3.9546** (12.92)
(62.83) (7.79)
City fixed effect Yes Yes Yes Yes Yes
Time fixed effect [ Yes Yes [ Yes Yes [ Yes
Observations [ 3,380 i 3,380 [ 3296 3296 3296
R-squared [ 0.9760 0.5893 [ 08312 06225 0.5979

Note: *** indicates statistical significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 10% level, the values in parentheses are the t-values of the
parameter estimates.
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Variables (6] () (3) (4)

InCE InCl  Aisl (Quantity) Ais2 (Quality)

GEH ~01316** | -0.1655* | -02280 (-163) 06565 (4.00) | 01537 (~137) 04749 ~22019 ~06124
(-292) | (-175) (3.19) (-6.71) (-2.09)
Ais2 01129 (-6.93) | 0.0656* (1.83) 01332+
(-7.87)
GFIxAis2 07509+
(4.30)
Constant 370450 | 10257 04912 (1.11) 05974 (1.40) | 32522 (9.17)  4.2967*** (1L.11) | -0.0680 (-0.08) 43336"*
(62.83) (7.79) (11.24)
City fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
Time fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
Observations 3,380 3,380 3351 3,346 3351 3,346 3346 3346
R-squared 09760 0.5893 03136 03248 0.1102 0.1262 0.0882 01315

Note: *** indicates statistical significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 10% level, the values in parentheses are the t-values of the
parameter estimates.
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Variables

GE 01316 ~0.1655* 0.1567** (2.78) ~0.1257+ 00825
(-292) (-1.75) (-2.79) (-1.02)
ES ~0.0350°* (-2.43) | osome (3167
Constant 370450+ Lo ~1.5424%* (8.65) 33190 (22.99) 32342+ (1247)
(62.83) (7.79)
City fixed effect Yes Yes Yes Yes Yes
Time fixed effect Yes Yes Yes | Yes [ Yes
Observations 3380 3380 3,380 | 3,380 3,380
Re-squared 09760 05893 08961 0.6220 07003

Note: *** indicates statistical significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 10% level, the values in parentheses are the t-values of the

parameter estimates.
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Variables

High financial efficiency

InCE

Low financial effciency

InCl

High financial efficiency Low financial effciency

‘ GFI —0.1218*** -0.2135 —0.1467* -1.3166
(-261) (-039) (-1.69) (-139)

‘ Constant 33177 3.9458*% 3.9366*** 6.1401%*%
(16.38) (16.16) (10.44) (14.64)

‘ Control Variables Yes Yes Yes Yes

‘ City fixed effect Yes Yes Yes Yes

‘ Time fixed effect Yes Yes Yes Yes

‘ Observations 1,651 1729 1,651 1729

‘ R-squared 0.6031 0.6362 0.6634 0.6765

Note: *** indicates statistical significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 10% level, the values in parentheses are the t-values of the

parameter estimates.
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Years

1984

1992

1994

1994

1995

1996

1997

1999

2000

2004

2006

2008
2009

2010

2012

2015

2015

2017

2017

2018
2018

2018

2018

2020

2020

2021

2022

2024

2026
2028

After 2030

Events
Los Angeles Olympics
United Nations Conference on Environment and
Development

Lillehammer Winter Olympics

The Centennial Olympic Congress in Pairs

Establishment of the Committee on Sport and the
Environment

Revision of the Olympic Charter

Kyoto Protocol

Olympic Movement Agenda 21

Sydney Olympics

London’s Olympic bid

Turin Winter Olympics

Beijing Olympics
London 2012 Sustainable Development Plan

Vancouver Winter Olympics
London Olympics
UN Sustainable Development Goals Paris Agreement on
climate change

‘The Paris Agreement

10C strategy of sustainable development

Climate-friendly organization

‘The Olympic agenda: New Standard
Host City Contract-Operational Requirements

Sports for Climate Action Framework

10C Carbon Footprint Methodology for the Olympic Game
Tokyo Olympics
Beijing 2022 Olympic and Paralympic Winter Games
Sustainability Plan
Olympic Agenda 2020 + 5

Beijing Winter Olympics

Paris Olympics

Milano Cortina Winter Olympics
Los Angeles Olympics

The Future Olympics

Note: Data compiled from the authors.

Actions

People have been raised concern about the environmental costs, prompting a rethink by the
International Olympic Committee

‘The International Olympic Committee (I0C) was represented at the conference and focused on
promoting the concept of climate change control in the sports world

For the frst time, environmental protection assessment and measures were made a major part of the
preparation and hosting of the Olympic Games

The 10C has specifically discussed the issue of sport and the environment

‘The inclusion of climate and environmental indicators in the bidding criteria signals the transition
of sport's sustainable development model

Environment and sustainable development provisions were included in the Charter

Called for future Olympic Games to fulfil their responsibility to alleviate the pressure of global
greenhouse gas emissions

Proposed the “Bid City Contract” standard requirements, marking the normalization of Olympic
Games carbon emission management

‘The Green Olympic Games was the theme for this event

Identifying environmental quality and sustainability was a key component of the London Olympic
Games

‘The Turin Olympic organizing committee has initiated the purchase of equivalent carbon offsets to
achieve carbon neutrality during the Olympic Games for the first time

Formed the prototype of China's carbon neutrality strategy for large-scale sports events
Developed and used advanced carbon footprint technologies and methods

‘The Vancouver Organizing Comittee has chosen to use a variety of new energy sources and
technologies to minimize the carbon footprint of the games

Its the first-ever to accurately calculate and measure carbon emissions for a single Olympic Game's
full cycle

It served as a blueprint for global development strategies for the next “15 years” (2015-2030)

‘The decision, which took effect in November 2016, showed the urgency of carbon emissions

‘The planning of sports facilities and the organization of events should take into account the net-zero
emissions of greenhouse gases

Authorized Dow Chemical Company as the official carbon partner to develop a comprehensive
carbon reduction plan

Set the goal of achieving a climate-friendly Olympic Games by no later than 2030
Host cities were explicitly required to submit a Carbon Management Plan

Commit to fulflling the standards of the United Nations Framework Convention on Climate
Change, using sports as a means to promote climate protection awareness and action among global
citizens

Providing guidelines for carbon neutrality management in the Olympic Games

the Tokyo Olympics were made “carbon neutrality” through emissions quotas donated by over
210 companies

Including “Low-Carbon Winter Olympics to Address Climate Change” as a major initiative, which
promoted the realization of the “carbon neutrality” commitments

Establish a new strategic roadmap for the International Olympic Commitee for the next 5 years

‘The carbon offset program covers 93.7% of emissions not directly related to the Olympic Games,
fully achieving carbon neutrality

Strive for negative carbon emissions, becoming the first Olympic Games to make a positive
contribution to the climate

Sign the Host City Contract, committing to achieve carbon neutrality
Develop the “Zero Emissions 2028 Roadmap 2.0” plan

Require all Organizing Committees and host cities to achieve “carbon neutrality” throughout the
entire lifecycle of the events
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Race name

Summer Olympic Games

Winter Olympic Games

World Cup

Venue

Year of organization

Carbon emissions (tons)

Beijing, People’s Republic of China 2008 18
London, United Kingdom 2012 340

Rio de Janeiro, Brazil 2016 450
Tokyo, Japan 2020 301

Paris, France 2024 158
Vancouver, Canada 2010 2

Sochi, The Soviet Union 2014 52
Pyeongchang, Korea 2018 159
Beijing, People’s Republic of China 2022 1306
German 2006 2

South African 2010 275

Brazil 2014 27

Russia 2018 216

Qatar 2022 363

Mote: Dinks: oo fhe anllior's conypilatien-of (o Sastsimibiliy: Repoit-and Casbien Mansgement lipoot i proviows iommamenis.
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Sources

Outcome Variables

co, €O, emissions (metric tons per capita) World Development Indicators

ECF Ecological footprint Global Footprint Network

Principal Explanatory Variables (Production)

COALPR Coal (quad Btu) International Energy Administration
GASPR Natural gas (quad Btu) International Energy Administration
OILPR Petroleum and other liquids (quad Btu) International Energy Administration

Principal Explanatory Variables (Consumption)

COALCO Coal (quad Btu) IEA
GASCO Natural gas (quad Btu) IEA
OILCO Petroleum and other liquids (quad Btu) IEA

Control Variables

GTECH Green Technology: Environment-related technologies (Number of patents) OECD
GFINANCE Green Finance: Climate change mitigation (Number of patents) OECD
GENERGY Green Energy: Solar photovoltaic (PV) energy (Number of patents) OECD
ENVTAX Environmental tax: Environmentally related tax revenue (% of GDP) OECD
FDV Financial Development: Domestic credit to private sector (% of GDP) WDI
POP Population (total) ‘WDI
GDPPC Economic growth: GDP per capita (constant 2015 USS) WDI

WDI denotes World Development Ing

tors, IEA represents International Energy Administration, and OECD signifies Organization For Economic Cooperation And Development.
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Co, 10.08 854 2047 446 4.70 083 226 24.10 0.00
COALCO 438 153 2280 [ 022 650 199 546 159.22 0.00
COALPR 364 047 2405 0.00 7.30 208 554 17331 0.00
GASCO 6.15 318 3226 127 7.81 208 560 175.70 0.00
7 GASPR 465 067 35.19 0.00 7.84 199 591 177.83 0.00
OILCO 9.69 471 40.57 254 11.59 192 491 133.84 0.00
OILPR 5.07 022 3196 0.02 639 193 655 200.68 0.00
GENERGY 166.20 [ 5217 1,443.65 1.00 263.76 [ 258 | 10.20 57251 [ 0.00
GFINANCE | 2,14993 931.83 922821 11225 2,499.93 140 376 61.37 0.00
GTECH 2,735.82 121248 10,555.70 17375 2,975.87 123 328 4488 0.00
ENVTAX 197 w7 | 3.60 0.69 0.76 0.10 216 5.42 0.07
POP 1,01000 | 6,100.00 3,300.00 2,900.00 8,654.00 1.69 439 97.66 0.00
GDPPC 387227 | 3637862 60,698.01 29,265.09 7,200.265 1.015738 3.412,169 3133069 0
v aots | 146 217.761 60.3499 4213172 0389,211 1,947,886 12.48979 [ 0.00194

Note: COj, carbon emissions; COALCO, coal consumption; COALPR, coal production; GASCO, gas consumption; GASPR, gas production; OILCO, oil consumption; OILPR, oil production;
GENERGY, green energy; GFINANCE, green finance; GTECH, green technology; ENVTAX, environmental tax; OPO, population; GDPPC, economic growth.
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Non-old Old Prefecture- Non- Left Right Small and
industrial industrial level cities prefecture- side side medium
base base level cities cities
(1) ) (3) (5) (6) 8)
DID ‘ 0032 0067 0013 ~0.091%* 0025 | 0029 | -0.067*** -0023
‘ (-1643) (-2.485) (~0495) (-2256) (-0326) | (-2038) | (-2715) (-1.198)
Controls | Yes Yes Yes Yes e | ves Yes Yes
Year FE | Yes Yes Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes Yes Yes
N ‘ 2,778 2013 1,598 415 687 4,104 1,690 3,101
R ‘ 0973 0965 0.968 0.967 0957 0974 0.970 0.966
Adj. R \ 0971 0963 0965 0962 0952 0972 0.968 0.964

Note: This table presents the results of the heterogeneity tests based on industrial base and population size. The first part of the table shows the results for cities with a non-old industrial base
versus those with an old industrial base. The second part divides cities by their administrative status (prefecture-level and non-prefecture-level cities) and by population size (large cities, small
and medium cities, and regions on the left and right side). The findings reveal that policy effects are statistically significant for cities with an old industrial base, non-prefecture-level cities, and

it iition, Sisliutical seniicance & iarked by =, < 2id* for i < D). 5 < 008 sid v« 0.1 respoitivdy. Vior it paremtliesss are -ttt
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Variable name Non-resource-based Resource-based Rejuvenation

(1) ) (6)

DID ‘ -0.061*** 0.005 0.002 0.004 0.004 0.150**

‘ (=3301) (0.208) (0.021) (0.140) (0.063) (2.583)
Controls ‘ Yes Yes | Yes Yes | Yes Yes
Year FE ‘ Yes Yes Yes Yes Yes Yes
City FE | Yes | Yes Yes Yes Yes Yes
N ‘ 2853 1938 238 1,054 391 255
R 0973 0.965 0974 0.974 0.966 0959
Adj. R* 0971 0.962 0.969 0.971 0.962 | 0952

Note: This table presents the results of the resource endowment heterogeneity test, which examines the impact of low-carbon policy implementation (DID) across different resource-based
categories. The sample is divided into two groups: resource-based and non-resource-based. Additionally, resource-based cities are further categorized into five types based on their stage of
development: Growth, Mature, Fading, and Rejuvenation. The results indicate that the policy effect is statistically significant for non-resource-based cities and rejuvenating cities, but not for
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Variable name Three-stage Two years in Three years in Four years in Five years in

dynamic advance advance advance advance
effects
(3) (4) (5) (6)
DID 0031 -0.028 -0.024 0020
[ [ (-1.864) (-1.552) [ (-1.211) | (-0.788)
» DIDI -0011 | -0012 |

(-0587)  (-0916)

DID2 ~0.069** | -0.047**

(-4.014)  (-3714)

DID3 SO111 | ~0.039%
(-4.159)  (-2.025)

Controls No Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes
N 5,557 4,791 | 4,791 4,791 4,791 | 4,791
R 0935 0.969 0.969 0969 0969 0969
Adj. R 0931 0967 [ 0967 0967 0967 | 0967

Note: This table presents the results of the three-stage dynamic effectstest and time placebo test. The dependent variable is carbon dioxide emission intensity, and the table shows the coefficients
and t-statistics for the key variables. The test examines the effects of pilot policies at different time intervals (two, three, four, and 5 years in advance). Statistical significance is indicated by ***, **,
and ® epeesmiing. 74 QL. p-< D0 -and p: < Uit respectiel: The reprossiin: modils fixdiads Both yess-and tily ied cifects. a5-well a8 oontool wiars indicabed:
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Basic Nearest Caliper nearest Radius caliper  Kernel density Local linear
matching neighbor neighbor matching matching matching matching
matching

) ) (3) 4 (5) (6)

DID 0061 0060 ~0.060** ~0043% 0031+ ~0023*

(-2487) (-2476) (-2476) (-2990) (-2652) | (-1943)
Controls Yes Yes Yes Yes Yes | Yes
Year FE Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes
N 4782 4782 4782 4775 4782 4782
R 0200 0200 0200 0554 0,693 0.687
Adj. R 0.145 0.145 0145 0523 0672 0.666

Note: This table presents the results of the PSM-DID (Propensity Score Matching with Difference-in-Differences) regression, using different matching methods for propensity score matching.
The dependent variable is carbon dioxide emission intensity, and the table shows the coefficients and t-statistics for the DID variable under different matching techniques: Basic Matching,
Nearest Neighbor Matching, Caliper Nearest Neighbor Matching, Radius Caliper Matching, Kernel Density Matching, and Local Linear Matching. Statistical significance is indicated by ***, **,
A * iepreseating b4 001, 5% D08 siid B < 0.1, Tepecevely. ANl mbdke: incleds cartools. s hotli veai sad ity fixed: aliacs.
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Variable name Sample size Mean Standard deviation Minim Median  Maximum

CDEI Carbon Dioxide Emission Intensity 5,557 -8.603 0.653 -11377 ~8.596 ~6436
PCCDE Per Capita Carbon Dioxide Emissions | 5481 [ 1750 | 0710 | 0754 1751 7972
DID Implementation of Pilot Policies 5,559 0237 0425 0.000 0.000 1.000
csL Carbon Sink Level 4,794 0385 0.068 -0.134 0.400 0.661
18U Industrial Structure Upgrading 5,168 0.408 0.103 ~0.168 0.398 0.89
ER Environmental Regulations 5,559 0221 0214 -5.388 0.168 3581
PGR Population Growth Rate 5,108 0.064 0.102 ~0.654 0.053 2935
EDI Foreign Direct Investment 5253 0.030 0.985 ~6.795 0.011 70.591
GSL Government Support Level ) 5,559 0221 0214 -5.388 0.168 3581
EL Economic Level 5479 10.366 0.867 7.396 10.364 15.902
FD Financial Development 4,896 0.930 0.766 -30.811 0.760 9.623
PD Population Density 4,852 7.936 0.807 329 7.909 9.908
PCC Pollution Control Capacity I 4,896 0.863 0.284 -1.276 0.989 5.081
FFD Fiscal Freedom Degree 5,559 0428 0237 -2.505 0.389 1233
gl Technological Investment | 5,066 0017 0.056 -0292 0.009 1.000

Note: This table presents the descriptive statistics for the variables used in the study. The sample size, mean, standard deviation, minimurm, median, and maximun values are reported for each
Gababds
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Variable name

DID ~0512% 0170+ 0652 0088+ 0104 0048
(-9.968) (-3272) (-35503) (-3.860) (-4870) (-2971)
DI -1131 0593+ -0359
(-1340) (-2441) (-1368)
GSL 0934+ 0767+ 12814
(2825) (7.743) (6823)
EL 0408+ 0628+ 0370
(-9.950) (-25.633) (-6413)
D 0031 0047+ 0.061%
(-0817) (-2.820) (2281)
PD -0.020 0003 -0010
(-0722) (-0375) (-1272)
PCC 0247 ~0.050** 0018
(~4.008) (-2697) (-1.225)
FED 0518+ 0290+ 0195
(3588) (4583) (-2555)
I ~1.053+ ~0.145% -0.103*
(-5.141) (-2.191) (-1.770)
Year FE No No No No Yes Yes
City FE No No Yes Yes Yes Yes
N 5,557 4791 5,557 4791 5,557 4791
R o111 0402 0267 [ 0.864 0936 0,969
Adj. R o111 0401 0267 0.864 0931 0.967

Note: This table reports the results of the baseline regression analysis using Ordinary Least Squares (OLS) and Fixed Effects (FE) models. The dependent variable is carbon dioxide emission
intensity, and the table shows the coefficients and t-statistics for key variables. Statistical significance is indicated by ***, **, and * representing p < 0.01, p < 0.05,and p < 0.1, respectively. The
regression models include year and city fixed effects where indicated.
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Non-prefecture-

Prefecture-level

High economic

Medium economic

Low economic

level cities cities level level level
(2) (2) (3) (4) (5)

DID 0105 -0029* 0062 -0019 -0013

(-3.139) (-1738) (-2981) (-0.846) (-0378)
Controls Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes
N 322 4435 833 2472 1384
R 0981 0.967 0981 0964 0963
Adj R 0978 0.964 0979 0961 0.960

Note: This table presents the heterogencity of the economic level in the relationship between the implementation of low-carbon policies (DID) and carbon dioxide emission intensity. The
sample is divided into non-prefecture-level cities and prefecture-level cites, with the latter further categorized into high, medium, and low economic levels. The results highlight how the policy

Enpcevirieracross dillovetessconiic lovels Statist

I significance is denoted by ***,*, and * for p < 0.01, p < 0.05, and p < 0.1, respectively. The values in parentheses represent the t-statistics.
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Variable name Eastern Central Western Northeast Southern Northern

region region region region region region
1) (v] (3) (4) (5) (6)
DID 0048 0,073 ~0082 0.020 ~0050°** ~0.009
(-2.527) (-3.069) (-2138) | (1.426) ‘ (-2945) (-0.299)
Controls Yes Yes Yes | Yes [ Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes | Yes Yes | Yes
N 1486 1343 | 1,384 578 2625 2,166
R 0985 0.981 0.966 0.990 0979 0953
Adj R 0983 0979 0.963 0.989 0977 0950

Note: This table shows the heterogencity of the geographical location in the relationship between the implementation of low-carbon policies (DID) and carbon dioxide emission intensity. The
sample is divided into six regions: Eastern, Central, Western, Northeast, Southern, and Northern regions. The results reveal how the policy's impact varies across different geographical areas.
Seasiinbal shaviilomnee i lionnd Iy 500 Wl & S n e 0% - 008 i 15w 4 resbessivele: The wilass b-ourenhenss e the 1
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Effect category Carbon sequestration level Technological investment Industrial structure upgrade

@) ) )
Indirect effect ~0.007*+* 0.000 -0.012%
(-3.107) [ (0.560) (-3.335)
Direct effect ~0.155"** ~0.170%** ~0.156"**
(-8.580) (-9.185) (-8.585)

N 4723 4791 4,502

Note: This table presents the results of the mediation effect mechanism test, examining how carbon sequestration level, technological investment, and industrial structure upgrade mediate the
relationship between policy implementation and carbon dioxide emission intensity. The table shows the indirect and direct effects for each of the three mediating variables. Statistical
significance is indicated by ***, **, and * representing p < 0.01, p < 0.05, and p < 0.1, respectively. The values in parentheses represent the t-statisti
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Variable name Environmental regulation Fiscal freedom Population growth rate

(1] ) (3) 4) (5) (3]
DID 0109+ ~0039* 0014 0,038 0035 ~0.058**
(-3.260) (-2229) (0430) (-2250) (-2027) (~4.165)
DID_ER 0315 |
(1.875) |
¢.DID_c_ER | 0315*
(1.875)
ER 12140 1288
(6212) (7.170)
DID_FFD 0123
[ 1 (-2231)
¢_DID_c_FFD 0123
[ | (-2231)
FED ~0.165* 0194
(-2.080) (-2.571)
DID_PGR | [ 0372
(-2668)
¢_DID_c_PGR | o
(-2.668)
PGR ~0039 | ~0.127
‘  Cosw (-2277)
Controls | Yes | Yes Yes Yes Yes | Yes
Year FE Yes Yes Yes Yes Yes Yes
City FE [ Yes | Yes [ Yes [ Yes Yes | Yes
N 4791 4,791 | 4791 4,791 I 4624 4624
R | 0.969 0969 0969 0969 0973 | 0973
Adj. R 0967 0967 0967 0967 0971 0971

Note: This table presents the results of the moderation effect mechanism test, investigating how Environmental Regulation (ER), Fiscal Freedom Degree (FFD), and Population Growth Rate
(PGR) moderate the relationship between the implementation of low-carbon policies (DID) and carbon dioxide emission intensity. The interaction terms (. c_DID_c_ER, ¢_DID_c_FFD,
and ¢_DID_c_PGR) represent the moderated relationships and are centered around their respective means to mitigate multicollinearity. Statistical significance s indicated by ***, *, and * for
i DT 5 4 08, 4id i 0L vespnctinely: The valines 1o praitbiosts Tepveecs tin Latarstics.
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The lagged The Non-random  Pilot of carbon Key pilot for air Pilot of

control predetermined selection emission pollution pollutant
variable variable trading control discharge
trading
(9] (2) (5) (6) @)
DID 0057+ ~0020°* 0042 ~0.043 0036 0,048+ -0026*
L ) | (-2.783) (2766) | (2736) | (-2274) | (-2942) (-1.685)
DID4 [ [ | 0103+
[ | i (~4.488)
DIDS 0032+
I | (2.131)
DID6 ~0.132*
[ | (-6.821)
Controls | No Yes Yes Yes Yes | Yes Yes
lagged Controls Yes No No No No No No
Ke-t No No Yes Yes No No No
Ke- £ No No No Yes No No No
Year FE Yes Yes Yes Yes Yes Yes Yes
City FE Yes Yes D e | e Yes Yes Yes
N 4,508 4510 4791 4,791 4791 4791 4791
r 0957 0.985 0970 0970 0970 0.969 0971
Adj. R [ 0953 0.984 Coses | ose 0.968 0967 0969

Note: This table presents the results of several robustness checks: the endogeneity test, non-random selection test, and same-period policy test. The dependent variable i carbon dioxide emission
intensity, and the table shows the coefficients and t-statistics for the DID variable under various specifications, including the lagged control variable, predetermined variables, and different policy
pilot programs (e.g, carbon emission trading, air pollution control, pollutant discharge trading). Statistical significance is indicated by ***, **, and * representing p < 0.01, p < 0.05, and p < 0.1,
respectively. All models include year and city fixed effects, with some specifications incorporating lagged controls and the interaction terms for non-random selection and same-period policy
G
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Variable Exclude Shorten Change time  Change dependent Two-tailed Two-tailed

name samples window points variable trimming censoring
(1) ) (3) 4) () (3]
DID 0040 ~0.040* 0,048+ 0032 ~0.033*
(-2553) s (-2.971) | (-2244) | (-2.360)
DID7 ~0.048°* |
| (-2.951)
Controls Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes | Yes
City FE Yes Yes Yes Yes Yes | Yes
N 4723 I 3382 4791 4791 ] 4791 7 4212
R 0969 0.967 0969 0975 0971 0975
Adj R 0967 0.964 0967 0973 0969 0973

Note: This table shows the results of additional robustness tests, including the exclusion of certain samples, shortening the time window, changing time points, modifying the dependent variable,
and applying two-tailed trimming and censoring. The dependent variable is carbon dioxide emission intensity, and the table reports the coefficients and t-statistics for the DID variable under
these alternative specifications. Statistical significance is indicated by ***, **, and * representing p < 0.01, p < 0.05, and p < 0.1, respectively. All models include year and city fixed effects, and
coitiols e deiad e ol sioshcitings,
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Abbreviation Measurement Prospective

effect
Explained variable | Green technological atp Green patent grants in each province Positive
progress
Core explanatory Foreign direct fdi ‘The actual amount of foreign investment utilized by each province in that Positive
variable investment year

Moderating variable Trade openness open ‘The total amount of foreign trade in each province accounts for GDP Positive
Control variables  Energy consumption EC Ten thousand tons of standard coal consumption Positive
Environmental ER ‘The proportion of the completed investment in pollution control to the Positive

regulation added value of the industrial sector
Industrial structure str ‘The value added of the tertiary industry accounts for GDP Positive
Urbanization urb ‘The urbanization rate of resident population Positive
Human capital hum ‘The proportion of the population with college education and above in the Positive

population aged 6 and above
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Coastal areas Inland areas Bordering areas

Model (12) Model (13) Model (14) Model (15) Model (16) Model (17)
Ingtp lngtp Ingtp lngtp Ingtp Ingtp
Infdi 0.873°* (10.32) 0811+ (8.33) 0.577* (19.48) 0.641%% (18.52) 0.180°** (5.20) 0,127 (4.50)
Inopen 0,062 (0.37) ~0207* (~3.61) 0439 (8.42)
Infdi* In open 0257 (-1.63) 0,033 (0.96) 0.115%* (4.92)
InEC 0.049 (0.46) 0,095 (0.85) -0.104* (-1.85) ~0.054 (~0.98) ~0.153+* (-2.85) ~0.116%* (-3.11)
InER o (-238) ~0.330°** (~2.86) ~0.032 (-0.66) 0031 (-0.67) o (-2.87) T (-1.03)
Instr 3031 (4.44) L s (435) 1525%* (481) 15197+ (5.25) 2,925 (9.86) 3020 (1423)
Inurb ~1.861* (=1.90) ~1947 (-1.46) 0505 (0.98) 0.968" (1.84) 0,093 (0.23) 0.529 (1.60)
In hum ~0.138 (-0.36) -0.224 (-0.54) 0.0415 (0.20) 0.024 (0.12) 0.016 (0.41) 0.004 (0.08)
Cons 4690 (1.04) 5877 (0.89) 0676 (-0.25) 4451 (-161) 8,344 (491) 7.587* (5.38)
7 Obs 110 110 130 130 80 80
Province 1 1 13 | 13 8 | 8
7 Wald chi2 | 20131 206.11%*% 657.66"** 894.01* 27177 91293+
xttest3 1447134 3897.76** 543,92 3425.54% 15301 366,18

Siotoic 204 0.5 aunt that the astimuted codlicmits: wove: siensicat st abetsatiedt lovel oF 196, 90 2l LG sessactivan: the vilinss: it parenibesst Fepvosont Lattisties:
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Model (18)

L.Ingtp

Model (19)

L.\ngtp

Model (20)

Ingtp

Model (21)

Ingtp

Infdi
Inopen
Infdi* Inopen
InEC

InER

0.288* (13.72)

0.981*** (20.57)

~0261"** (~8.36)

0.287*** (10.25)
0.116" (2.74)
0039 (2.11)
0.959*** (18.33)

~0250°** (~7.44)

0330 (14.67)

0.886*** (19.97)

0246 (~7.86)

0362 (13.15)
0.119°* (2.89)
0.087* (4.26)
0,845+ (17.98)

0248 (~7.48)

Instr
Inurb
Inhum
Cons
Lagged explanatory variables
Obs
Province
Wald chi2

Xttest3

2,907+ (14.27)
0287 (1.13)
0003 (0.02)

~4.209°* (-3.41)

No
270
30
3077.13*

3758.947%

2.856*** (12.93)
-0.174 (-0.54)
0053 (038)
-1932 (-122)
No
270
30
246191

248539+

2.507+** (14.52)
=0.155 (-0.69)
0.189* (1.71)
~1811 (-1.62)
Yes
270
30
240358

677095

2.502*** (13.56)
~1.008*** (~3.80)
0325+ (2.70)
1.950 (1.49)
Yes
270
30
241343

4649.71%%*

Notes: ***, **, * meant that the estimated coefficients were significant at statistical levels of 1%, 5% and 10% respectively; the values in parentheses represent t-statistics.
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Model (4)

lngtp

Model (6)

Ingtp

Model (7)

Ingtp

Infdi 0,607+ (23.35) 0.307+** (14.20) 0622+ (18.81) 03317 (12.20)
7 Inopen | 0.196*** (3.78) 0.091** (2.20)
| Infdi* In open 0.148*** (4.60) 0.058*** (3.24)
InEC 0.938** (20.77) 0912+ (18.71)
InER 0214 (-6.74) 0206 (-6.27)
Instr 2767*** (1430) 2744 (13.47)
Inurb 0.104 (0.42) ~0.526" (~1.79)
Inhum 0 0,057 (0.47) 0175 (1.33)
» Cons 1440 ~3.365"* (~2.80) ~1357* (-2.37) ~0.638 (~0.44)
(-365)
Obs 300 300 300 300
Province 30 30 30 30
Wald chi2 I 545.17*** 2745.30"* 687.06*** 2492.43
xtest3 3806.85"** 162,714+ 3086.86" 810.66"*
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Provinces along the “belt and road”

Model (8)

Ingtp

Model (9)

Ingtp

Other provinces

Model (10)

lngtp

Model (11)

Ingtp

Infdi 0,314 (12.08) 0.347°* (1047) 0366 (8.15) 0265 (4.59)
Inopen 0139 (241) 0256+ (4.21)
Infdi* In open 0.100%** (5.09) —0.011 (-0.46)
InEC 0.884** (13.52) 0.848°* (13.99) 0,834 (8.20) 0.882°* (8.60)
InER [ 0226 (~4.30) ~0.229°* (-4.81) ~0.287** (~4.50) ~0.296°** (~4.86)
Instr | 2477 (6.85) 2,044% (5.87) 2553 (10.84) 2055+ (8.44)
Inurb 0.647** (3.36) 0.509%* (2.96) -0383* (-1.75) ~0581°%* (-2.73)
In hum 0.144 (091) 0095 (-0.61) 0016 (0.44) 0.013 (0.38)
Cons 5142 (-4.85) 5348 (-5.35) -1347 (-1.09) 0.560 (0.45)
Obs 170 170 130 130
Province 17 17 13 13
7 Wald chi2 96954 1169.24°% 985.21°%* 120300+
xttest3 50.16"* 137024 66974+ 30655
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Variable Obs Std.Dev Min Max
‘ Ingtp 300 ‘ 7461 1315 3714 | 1017
‘ Infdi 00| 14668 1686 9600 | 16815
‘ Inopen 300 ‘ 1788 0941 4081 | 0338
‘ InEC 300 | 90 0647 7478 | 10606
 mER 300 | 342 0.7897 0689 | 4929
 lnr 0 | -0772 0192 -L135 | 0214
‘ Inurb 00| 4058 0200 3608 | 4492
‘ Infum 0 | 204 0399 2793 | 0765
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Variable Model (1) Model (2) Model (3)

Ol GLS
lngtp
In fdi 03127 (1L52) 0312 (1L65)  0307** (14.20)
InEC 0886** (1502) 0886 (15.20) 0938 (2077)
InER —0270%% (-626) | ~0270%** (-634) | —0214*** (~6.74)
Instr 27 (1089 2789 (1096) | 2767 (1430)
Inurb 0156 (-0.45) ~0.156 (~0.45) 0.104 (0.42)
In hum 0,075 (045) 0.075 (0.46) 0.057 (0.47)
Cons ~1.694 (~1.02) ~1694 (-1.04) 3365 (-2.80)
Obs 300 300 300
Province 30 30 30
Resquared 0836
Wald chi2 153035 274530
Xttest3 1662.71***

Notes: ***, **, * meant that the estimated coefficients were significant at statistical levels of
19558 andt S0 veuctivite: Tha vilas i Danoiiheie cioal Latiin





OPS/images/fenvs-13-1540620/inline_27.gif





OPS/images/fenvs-12-1533146/fenvs-12-1533146-g002.gif





OPS/images/fenvs-12-1533146/fenvs-12-1533146-g003.gif





OPS/images/fenvs-13-1540620/inline_24.gif





OPS/images/fenvs-12-1488448/math_13.gif
1p-(1+Deld,





OPS/images/fenvs-13-1540620/inline_16.gif
i





OPS/images/fenvs-12-1488448/math_14.gif
Lhd).%

=g(d)=f(d)-

(14)





OPS/images/fenvs-12-1488448/math_11.gif
a+ne

o(g)=lp-aendz <
c Ereess

uonc

9(d) = f(d)~
an





OPS/images/fenvs-12-1488448/math_12.gif
[p-+ndd, ifdsz

asnc
Fay -2 orheruise

)






OPS/images/fenvs-12-1533146/crossmark.jpg
©

|





OPS/images/fenvs-13-1540620/inline_23.gif





OPS/images/fenvs-12-1533146/fenvs-12-1533146-g001.gif





OPS/images/fenvs-13-1540620/inline_22.gif
S





OPS/images/fenvs-12-1491608/math_qu7.gif
Fom) = %" =m(Va =V =m(1=m) (Ve - Ve)

= m(1=mm(1 = m) (R~ R+ yR+2E;
26y + xyGy - xyG, - 2xyR - x2E;
= yzE, + 2xyzEJ)





OPS/images/fenvs-12-1488448/math_19.gif
ifas—
lp-(endg ifasg
axne

4 (9:5) = 9(q) 19)

fla)-

otheruise





OPS/images/fenvs-13-1540620/inline_21.gif





OPS/images/fenvs-12-1491608/math_qu8.gif
F'(m) =

= (1= 2m) (Vi = Vi) = (1= 2mym(1 = m)

(xnfmyx.ze.qc,mcﬂyc,
— 2xyR — x2Ey - yeEgr2ayzEL)





OPS/images/fenvs-12-1488448/math_2.gif
R((4.K), 5]

maxR((q,K),s).  (2)





OPS/images/fenvs-13-1540620/inline_20.gif





OPS/images/fenvs-12-1491608/math_qu5.gif
F(z) s
= 2(1-2)m(x -1y~ (U - Ry +C) - msG (- 1)
xym(G, U+ - Ca+ R)
m(x=1)(y=1)(G. ~U+$-Coa + R)

2(Va =V =2(1-2)(Vy - Vi)

Gl 1) xym(U - By + )
~On=D(x= ) (y= 1) (Ea-U+S-Ca+ R
—m=1D)(x=1(y-1)(U-R, +Ca)
—xy(m-1)(E~U+$-Ca+R)
Cxym-D(U-R, +C)}





OPS/images/fenvs-12-1488448/math_17.gif
r 3
pminfdagl - (1+Deq ifqsg
o@:9) =
pmin {d.q} - (1+ n(:q' %7 %) otheruise
an





OPS/images/fenvs-13-1540620/inline_2.gif
S





OPS/images/fenvs-12-1491608/math_qu6.gif
@&z
3
= (1=29)m(x =Dy~ 1)(U - Ry + C,) ~maGi(y -1

+xym(G.~U+S-C,, +R)

=Dy =1)(G.~U+5-C +Ri)

~myG. (=1 + xym(U - Ry +C.)

~Om= D= D= 1)(E U +S-C, +R)

=~ DD YU+ C)
—xy(m-1)(E,~U +S-C, +R)
—xy(m-1)(U-R,+C,

F @ =

=(1-2)(Vy = V)






OPS/images/fenvs-12-1488448/math_18.gif





OPS/images/fenvs-13-1540620/inline_19.gif





OPS/images/fenvs-12-1491608/math_qu3.gif
4
Fly) = G =y (Vo =Va) = y(1=)(Vay =V

=y (1= y)(P, - U+ xu, 42U + xGy
_xP, — xP, - xmGy - xmP, + xmP,)






OPS/images/fenvs-12-1488448/math_15.gif
@0 ifdsg

T asnc T
(@) wedspimim ke

asnc

4:K)) = (.; ”d).f e

T
@0 ifdsg

P
c T r e
(d,.i H) i

(15)





OPS/images/fenvs-13-1540620/inline_18.gif





OPS/images/fenvs-12-1491608/math_qu4.gif
() = g = (1-2) (Vo= V)

= (1-25)(P,~U + xu, + 23U+ 3G,
xP, - xP, - xmGy — xmP, + xmP,)






OPS/images/fenvs-12-1488448/math_16.gif





OPS/images/fenvs-13-1540620/inline_17.gif





